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Abstract

In this thesis, different ways to use right-handed Majorana neutrinos to explain the active neutrino

masses as well as the baryon number asymmetry observed in our universe are investigated. It is

shown that the induced lepton number violation can assist baryon number asymmetry generating

models, whose asymmetry without additional lepton number violation is completely washed out

by sphaleron transitions. Extending this investigation to the scotogenic model, also the relic dark

matter abundance observed in our universe can be explained. Furthermore, different mechanisms for

generating a lepton number asymmetry directly via interactions involving right-handed Majorana

neutrinos are investigated. It is discussed that for models in which the Yukawa couplings of the

neutrino sector can be larger than in the type-I seesaw mechanism, the parameter space for thermal

leptogenesis is enlarged. Moreover, it is pointed out that considering thermal mass corrections, only

an induced mass degeneracy of right-chiral neutrinos enables new prospects of leptogenesis.

Additionally, loop corrections for massive vector bosons interacting with each other are investigated

in time-dependent perturbation theory. Studying the case of two interacting massive vector bosons

in a simple example in detail, it is shown that the degree of divergence in the S-matrix is the same

as expected from Rξ gauge.

Kurzfassung

In dieser Arbeit werden verschiedene Möglichkeiten untersucht, wie rechtshändige Majorananeutrios

zur Erzeugung der beobachteten Baryonzahlasymmetrie beitragen können. Es wird gezeigt, dass

die induzierte Leptonenzahlverletzung Baryonenzahlasymmetrie erzeugende Modelle unterstützen

kann, bei denen die erzeugte Asymmetrie ohne zusätzliche Leptonenzahlverletzung durch Spha-

leronenübergänge wieder ausgelöscht wird. Um zusätzlich die beobachtete Dunkle Materie Dichte

zu erklären, wird diese Untersuchung auf das Scotogenic Modell erweitert. Des Weiteren werden

verschiedene Mechanismen einer direkten Leptonenzahlasymmetrieerzeugung durch Interaktionen

mit rechtshändigen Majorananeutrinos untersucht. Es wird diskutiert, dass sich für Modelle, bei

denen größere Yukawakopplungen als im Type-I Seesaw-Mechanismus möglich sind, der Parameter-

bereich für thermische Leptogenese vergrößern. Außerdem wird gezeigt, dass unter Beachtung ther-

mischer Massenkorrekturen nur eine induzierte Massendegenerierung von rechtschiralen Neutrinos

neue Möglichkeiten für Leptogenese eröffnet.

Unabhängig davon werden Schleifenkorrekturen von miteinander wechselwirkenden massiven Vektor-

bosonen in zeitabhängiger Störungstheorie betrachtet und dabei der Spezialfall von zwei wechsel-

wirkenden massiven Vektorbosonen genauer untersucht. Für ein einfaches Beispiel wird gezeigt, dass

der Divergenzgrad der S-Matrix der Erwartung aus der Rξ-Eichung entspricht.
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1 Introduction

The Standard Model (SM) of particle physics – summarizing all of our knowledge about observed

particles and their interaction which can be put together into a consistent theory – is consistent

with most experimental observations referring to particle interactions. However, some observations

cannot be explained by the SM, requiring extensions of the model which are often called physics

beyond the Standard Model (BSM). One open question e.g. is the origin of the neutrino masses

observed in neutrino oscillation experiments, cf. e.g. reference [1, 72]. Moreover, the observed relic

baryon number (B) asymmetry as well as the relic dark matter (DM) abundance, cf. e.g. reference [2],

cannot be explained by the SM only.

In this thesis, extensions of the SM addressing these three problems related to the particle content

of the SM are investigated. The focus lies on right-handed Majorana neutrinos which can naturally

explain the smallness of the observed active neutrino masses and at the same time would naturally

cause lepton number (L) violating processes. These L violating processes can e.g. be used to assist

sources of B violation which individually cannot explain the observed B asymmetry. Furthermore,

under certain circumstances, L violation on its own can generate a non-vanishing L asymmetry

which is partly converted to a B asymmetry by sphaleron transitions.

Moreover, the temperature dependent effective Higgs potential is calculated and the equations

of motion for fields after spontaneous symmetry breaking are investigated. Additionally, loop

contributions for massive vector bosons interacting with each other are considered in time-dependent

perturbation theory. For a simple example, it appears that the loop contributions deviate from the

naive expectation. It is discussed that this deviation is essential when investigating the degree of

diverges in the S-matrix.

First, in chapter 2, quantum field theory (QFT) is introduced and subtleties in the consideration

of local interaction terms arising from theories including massive vector bosons interacting with

each other are investigated. Afterwards, gauge theories are discussed with an emphasis on gauge

fixing and spontaneously broken symmetries. Furthermore, the SM of particle physics is presented

and flavor oscillation as well as CP violation – a key element of baryogenesis – are introduced.

After that, in chapter 3, the focus is shifted to thermal systems including many particles. In this

chapter, among others, the Boltzmann equations describing the time evolution of number densities

and particle-antiparticle asymmetries are derived. Subsequently, in chapter 4, the time evolution of

the B asymmetry is investigated in a general setup. In particular, sphaleron transitions, which, as

part of the SM, build the framework for all baryogenesis scenarios, are discussed.

Following this, extensions of the SM which are of relevance to this thesis are presented. First,

in chapter 5, right-handed Majorana neutrinos are introduced, the induced rate of lepton number

violation is calculated, and the basic concept of thermal leptogenesis is briefly discussed. Afterwards,

1



1 Introduction

in chapter 6, an extended Higgs sector is investigated and thermal corrections to the effective Higgs

potential are discussed. In particular, the inert Higgs model – a two-Higgs-doublet model (2HDM)

with an imposed Z2 symmetry – and the scotogenic model – the inert Higgs model extended by

right-handed Majorana neutrinos – are investigated. The scotogenic model suggests itself in light of

this thesis because it includes a DM candidate and allows for larger Yukawa coupling of the neutrino

sector without being in conflict with the Planck bound on the sum of the active neutrino masses,

cf. reference [2]. Consequently, the enlarged parameter space of the Yukawa couplings of the neutrino

sector allows e.g. for new prospects of leptogenesis and, as a byproduct, also the observed relic DM

abundance can be explained.

Subsequently, in chapter 7, the interplay of B−L asymmetry conserving GUT baryogenesis, lepton

number violation induced by right-handed Majorana neutrinos, and sphaleron transitions is presented

in detail. For this, L violation represents an essential ingredient because the B − L conserving

sphaleron transitions would completely wash out the initial B−L conserving B asymmetry without

having an additional source of B −L violation. First, all relevant parts of the time evolution of the

baryon number asymmetry are brought together and, afterwards, the parameter space is investigated

for various benchmark points. Last, in chapter 8, various possibilities to realize leptogenesis based

on right-handed Majorana neutrinos are investigated. For this, the focus lies on Majorana masses

in the region below 1010 GeV, which are insufficient to generate the observed B asymmetry in the

simplest version of thermal leptogenesis. In particular, thermal leptogenesis in light of the scotogenic

model is briefly investigated and, afterwards, possibilities of enlarging CP violation with the help

of thermally induced mass degeneracy is investigated.

Finally, in chapter 9, the main results of this thesis are summarized.
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2 Quantum Field Theory in the Vacuum

Physics is a natural science examining fundamental phenomena of nature to find patterns which are

expressed as laws and equations. In order to develop fundamental theories, the basic assumption is

made that not only individual but all phenomena of nature follow laws.

An essential principle of physics is that the laws of nature are universal, i.e. applicable always

and everywhere. This homogeneity of space and time yields the conservation of momentum and

energy. Furthermore, it is assumed that the laws of nature know no direction – they are isotropic in

space. This causes the conservation of the angular momentum. In addition, it is assumed that the

description of nature is independent of the choice of the inertial frame of reference.

The special theory of relativity (SR) combines these basic principles with the observation that the

speed of light in vacuum is identical for all observers. Consequently, light can neither be a massive

particle nor a wave propagating in a medium (Lorentz ether theory). SR claims that massless

particles always travel with the speed of light while massive particles can only asymptotically reach it

with increasing energy. In addition, the transformation from one inertial frame of reference to another

– known as Lorentz transformation – does not shift time and space independently, cf. equation (A.2).

Consequently, space and time cannot be treated separately but as a unit called spacetime.

The assumption that gravity and acceleration are locally indistinguishable leads to the general theory

of relativity (GR) which states that spacetime itself does not exist independently of its content.

The connection between spacetime geometry and the energy-momentum tensor is described by the

Einstein field equations (A.3). These equations state that massive objects curve the surrounding

space and that the space expands depending on its energy content, cf. equation (A.5). The first

prediction can be observed as gravitational lensing while the second one leads to the Big Bang theory

which has among others been confirmed by the observation of the cosmic microwave background

(CMB) and the validation of the Big Bang nucleosynthesis (BBN) predictions.

In general, the content of the universe is observed to be structured into bound objects. During

interactions with high enough energies, the substructure of the objects can be observed. Objects

which have no substructure are elementary particles.

In classical mechanics, free objects can be fully described by their mass, momentum, and position

in spacetime. Furthermore, in classical electrodynamics fields appear which can be excited to

oscillations propagating at the speed of light. However, observations show that this classical picture

breaks down when considering very light objects such as elementary particles. In addition, it cannot

explain the photoelectric effect. To explain observation, the concept of particles and waves as

discrete and continuous objects, respectively, have to be abandoned. Quantum mechanics (QM)

combines both concepts, meaning that all objects have to be described by a time-dependent position

probability amplitude function ψ(x, t) called wave function. As a consequence, objects can only

either carry a discrete momentum or be localized in space but not both at once.

3



2 Quantum Field Theory in the Vacuum

In the following, in section 2.1, the well-known relativistic equations of motion for scalar bosons,

vector bosons, and spin-1/2 fermions are motivated. Afterwards, in section 2.2, the essentials of QFT

are introduced and the calculation of transition amplitudes based on time-dependent perturbation

theory is investigated. This introduction is done in preparation of the investigation of thermal

systems, cf. chapter 3, and the calculation of propagators and loop contributions in time-dependent

perturbation theory, cf. section 2.3. Especially for the latter, a fundamental comprehension of

the basics of QFT is of special relevance in order to classify the found discrepancy between loop

contributions from massive vector bosons derived in time-dependent perturbation theory and the

naively expected result. Afterwards, in support of the results from time-dependent perturbation

theory, in section 2.4, the path integral formalism is introduced and investigated in detail for massive

vector bosons.

Because the validity of the derived loop contribution of massive vector bosons is supported by the

fact that the degree of divergence in the S-matrix is the same as expected from Rξ gauge, the

basic concepts of renormalization are summarized in section 2.5. Furthermore, the resulting scale

dependence of the coupling constants being usually expressed in the form of renormalization group

equations (RGEs) is relevant for the leptogenesis model considered in chapter 7.

In the SM, massive vector bosons only arise from spontaneously broken gauge symmetries. The

usual method to prove the renormalizability of a theory including massive vector bosons arising from

spontaneously broken gauge symmetries is to apply the gauge-fixing procedure. To investigate this

in more detail, first of all, the basic concepts of gauge symmetries and the gauge-fixing procedure

are introduced in section 2.6. Afterwards, in section 2.7, the equations of motion for fields after

spontaneous symmetry breaking (SSB) are investigated.

Afterwards, in section 2.8, the SM of particle physics is introduced. Following, in section 2.9,

the appearance of the observed flavor oscillations is briefly explained. Finally, in section 2.10, the

effective equation of motion resulting from a non-vanishing interaction rate is introduced and the

resulting CP violation is investigated.

2.1 Introduction Into Relativistic Quantum Mechanics

Inspired by the observation that the energy of a single photon is given by the frequency times the

Planck constant h = 2π1 (E = 2πν = ω), the wave function of a photon – i.e. the wave function of

light – is written as

ψ(x) := ψ(t, x⃗) ∝ exp
[︂
−i
(︂
ωt− k⃗r⃗

)︂]︂
= exp

[︂
−i
(︂
Et− k⃗r⃗

)︂]︂
= e−ipx , (2.1)

where the equivalence of the wave vector (k⃗) and momentum vector (p⃗) is required by Lorentz

invariance and the common abbreviation px = pµxµ is used. Based on this, the wave function of free

massive objects in position space are written as a superposition of energy eigenstates (∝ e−ipx):

ψ(x) =

∫︂
d3p⃗

(2π)3
c (p⃗) e−ipx , (2.2)

1In this thesis all equations are given in Planck units (c = ℏ = G = kB = 1).
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2.1 Introduction Into Relativistic Quantum Mechanics

with Ei =
√︂
p⃗ 2 +m2

i . As a consequence, objects cannot be localized and carry a definite momentum

at the same time. This result can be formalized in the uncertainty principle2

σ2x σ
2
p = ⟨(x̂− ⟨x̂⟩)2⟩ ⟨(p̂− ⟨p̂⟩)2⟩ ≥ 1

4
, (2.3)

with the standard deviation of position σx and momentum σp. Moreover, the expectation value of

an operator in position space is defined as

⟨Ô(t)⟩ = ⟨ψ(t)|Ô(t)|ψ(t)⟩ =
∫︂
d3xψ∗(x) Ô(x)ψ(x) , (2.4)

where ψ(x) and Ô(x) are the position space representation of |ψ(t)⟩ and Ô(t), respectively:

ψ(x) = ⟨x⃗|ψ(t)⟩ , (2.5)

with |x⃗⟩ being the eigenstate of position operator:

x̂ |x⃗⟩ = x⃗ |x⃗⟩ . (2.6)

Besides, the position operator, one can also define a momentum operator and Hamiltonian with

corresponding eigenstates:

p̂ |p⃗⟩ = p⃗ |p⃗⟩ and Ĥ |E⟩ = E |E⟩ . (2.7)

According to equation (2.1), the spatial derivative of the wave function is proportional to the

momentum. Based on this, the momentum operator in position space can be expressed as

⟨x⃗|p̂|ψ⟩ = −i∇ψ(x) . (2.8)

Moreover, the time derivative is proportional to the energy, meaning that the time evolution of a

state vector is determined by the Hamiltonian:

ĤS |ψS(t)⟩ = i
∂

∂t
|ψS(t)⟩ = i

∂

∂t
U(t) |ψS(0)⟩ , (2.9)

where the Schrödinger picture (S) with time-dependent state vectors is used. However, in QM,

only expectation values of operators are observable. Consequently, the time evolution can also be

absorbed into the operators,

ÔH(t) := U †(t)ÔS(t)U(t) ⇒ d

dt
ÔH(t)− U †(t)

∂ÔS(t)

∂t
U(t) = i

[︁
ĤH , ÔH

]︁
, (2.10)

known as Heisenberg picture (H), meaning that the state vectors are time independent.

Due to the energy-momentum relation, the time evolution of a free particle can be expressed in terms

of the Hamiltonian. Furthermore, considering an external spacetime dependent potential V (x), it

also contributes to the total amount of energy. In the non-relativistic limit E ≈ m + p⃗ 2/(2m) this

leads to the Schrödinger equation, cf. equation (A.6).

2Note that the uncertainty principle not only holds for deviation of position and momentum but for all pairs of

complementary variables.

5



2 Quantum Field Theory in the Vacuum

However, due to the insufficiency for the description of highly energetic (|p⃗| ≳ m) or massless

particles, a relativistic generalization of the Schrödinger equation is needed. Using the relativistic

energy-momentum relation E =
√︁
p⃗ 2 +m2 instead of the non-relativistic one leads to the intuitive

ansatz

i
∂

∂t
ψ(x) =

√︁
−∇2 +m2 ψ(x) . (2.11)

But this equation treats time and space derivatives differently which is not what is expected from a

relativistic equation of motion. Furthermore, the series expansion of the square root in power of ∇2

leads to a non-local expression [64]. This problem can be circumvented by squaring the operators

on both sides, resulting in the Klein-Gordon equation (A.7) which is sufficient to describe wave

functions that transform as Lorentz scalars.

Particles with non-vanishing spin and therefore an orientation in space have to be described by

multi-component wave functions which do not transform trivially under a Lorentz transformation.

In general, the wave function of massive spin-1 particles can be expressed in terms of a plain wave

times one of the three orthogonal polarization vectors describing the Lorentz structure, cf. equation

(A.59). The time evolution of the single polarization can be expressed by the Klein-Gordon equation.

By including a projection operator (Πµ
ν ενλ = εµλ and Πµ

ν pν = 0) to ensure that only observable

particle states are eigenstates, the equation of motion for a massive spin-1 particles can be expressed

by the Proca equation (A.9).

More advanced, considering a theory which also includes massless vector bosons, only two polarization

vectors εµt1,2 fulfill the defining conditions (A.59) are observable. However, these polarization vectors

are not definite anymore because a term proportional to the four-momentum pµ can be added without

altering the defining conditions. In addition, these terms proportional to pµ also appear in Lorentz

transformations:

Λν
µ ε

µ
t1,2

= α1 ε
ν
t1 +

√
1− α1 ε

ν
t2 + α2 p

ν , (2.12)

which yields a non-Lorentz invariant polarization sum3. As a consequence, massless vector bosons

can only give rise to a Lorentz invariant theory if the time evolution is invariant under the transfor-

mation εµ → εµ + αpµ. It can be shown that this condition is fulfilled when the Lagrangian is

invariant under the transformation (A.25) leading to the concept of gauge theories, cf. section 2.6.

For spin-1/2 particles, the Lorentz structure is given by so called spinors Ψ which neither transform

as Lorentz scalars nor as Lorentz vectors, cf. equation (A.17). In contrast to bosons (particles with

integer spin), the time evolution for fermions (particles with half odd integer spin) is not based on

the Klein-Gordon equation. This is because the probability current resulting from the Klein-Gordon

equation is not positive definite. In QM, this is problematic for all kinds of particles but in QFT, the

probability current becomes a charge current which can be negative. On the other hand, unlike for

bosons, the number of fermions is conserved, requiring a theory with a positive definite probability

current.

Actually, the Klein-Gordon equation is not positive definite due to the squared time derivative

implying that a linear equation in time would circumvent this problem. As Paul Dirac noticed first,

3Actually, the problem arises because pµ is not a valid base vector for massless particles (p2 = 0).
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2.2 Introduction Into the Basic Concepts of Quantum Field Theory

this can be done in a Lorentz invariant way by writing down the equation of motion in matrix form.

Consequently, the time evolution of spin-1/2 fermions is described by the Dirac equation (A.8).

However, besides the problem of a negative probability current resulting from the Klein-Gordon

equation, positive as well as negative energy eigenstates occur from all derived equations of motion

because they are all base on the relation E2 = p⃗ 2 +m2. This fact makes arbitrarily small energies

possible as soon as interaction terms allow for the transition between eigenstates of the free equation

of motion.

Furthermore, QM is unable to describe systems with variable particle number, meaning that only

transitions between energy eigenstates induced by external forces can be described but not e.g. the

emission of a photon.

2.2 Introduction Into the Basic Concepts of Quantum Field Theory

To overcome the issues of QM mentioned in the previous section, QFT was developed. Because in

QFT, states with variable particle number are considered, it is convenient to distinguish between

the particle content and the state of the individual particles. Note that in this context, as for the

rest of this work, the term particle does not refer to a classical object but to eigenstates of the free

Hamiltonian.

2.2.1 Essentials of Quantum Field Theory

Starting with the investigation of a non-interacting theory, a multi-particle system with arbitrary

particle content can be fully described by a state vector |F ⟩ containing information about the

particle content in momentum space. To determine the time evolution of the system, the information

about the particle content needs to be converted into a set of wave functions. For this reason, an

operator ψ(x) is included, generating the quantum mechanical wave functions whose time evolution

is determined by the quantum-mechanical equations of motion introduced in the previous section.

Thus, only ψ(x) is time dependent, meaning that here, the Heisenberg picture is considered. More-

over, another operator ψ†(x) can be added which converts the set of wave functions back to a state

vector:

i ψ†(x)
d

dt
ψ(x) |F ⟩ = ψ†(x) Ĥ(x)ψ(x) |F ⟩ . (2.13)

Because the time evolution of each particle species is described by a different Hamiltonian, it makes

sense to decompose ψ(x) into so called quantum field operators for each particle species ψi(x),

cf. equation (A.39), which only generates the wave functions of the corresponding particle content.

Using this, the time evolution of |F ⟩ can be written as a sum of Hamiltonian for each particle

species:

i ψ†(x)
d

dt
ψ(x) |F ⟩ = i

∑︂
i

ψ†
i (x)

d

dt
ψi(x) |F ⟩ =

∑︂
i

ψ†
i (x) Ĥi(x)ψi(x) |F ⟩ . (2.14)

For a detailed derivation of quantum field operators, cf. appendix A.4.
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2 Quantum Field Theory in the Vacuum

It is useful to consider the complex conjugate of the equations of motion in order to find an

interpretation for the negative energy eigenvalues arising from the relativistic equations of motion.

As long as only the free equation of motion is considered, the resulting equation of motion of

the conjugated wave functions is basically equivalent to the initial equation of motion. However,

considering an interacting theory with particles that are charged under a gauge symmetry, cf. section

2.6, the equation of motion in the complex-conjugated picture differs by a sign in front of the gauge

interaction term. Thus, the complex-conjugated picture describes the time evolution of a particle

with opposite charge and is for this reason also called charge-conjugated picture. Such a particle with

an equivalent free equation of motion but negative charge is known as the antiparticle. Thus, the

negative energy solutions which correspond to positive energy solutions in the charge-conjugated

picture, can be interpreted as antiparticles traveling in the inverse time direction. In QFT, this

interpretation can be implemented by defining the quantum field operator such that it not only

produces a particle state but also annihilates an antiparticle state, cf. equation (A.55).

This interpretation of negative energy eigenstates as antiparticles is proven by the fact that for each

particle which is charged, meaning that it transforms non-trivially under a symmetry transformation

(e.g. gauge symmetries), an associated antiparticle can be observed. Furthermore, writing down

particle content changing interactions in terms of the quantum field operators given in (A.55), the

production and annihilation of particle-antiparticle pairs is predicted. Additionally, at each vertex,

either a particle can be produced or an antiparticle can be annihilated, both with the same coupling

strength. Both of these predictions are in agreement with observations.

A big advantage of QFT is that, due to the introduction of creation and annihilation operators,

particle number violating interactions can be added easily. Generally, using the basic assumption

that the state vector at any given time can be expressed as a superposition of eigenstates of the free

Hamiltonian, any interaction can be written in terms of a local transition probability among state

vectors:

ĤI =
∑︂
F,F ′

cF→F ′ |F ′⟩ ⟨F | . (2.15)

In QFT, such an interaction term can be expressed by the local action of multiple quantum field

operators:

ĤI(x) =
∑︂
k

αk ψ
†
jm

(x) . . . ψ†
j1
(x)ψin(x) . . . ψi1(x) , (2.16)

where k sums all different interaction terms4. Note that including particle content changing inter-

actions, |F ⟩ as well as ψ(x) are time dependent. In detail, the time dependence of ψ(x) is determined

by the free equation of motion (Ĥ0) while the time dependence of |F ⟩ is only determined by the

particle content changing interactions (ĤI). Thus, in the following, as not mentioned otherwise, the

time evolution in the interaction picture is considered, cf. equation (A.30).

4Note that both expressions of the interaction Hamiltonian are not synonymous because (2.15) only shows the

general structure of transition terms while (2.16) correspond to a Lorentz invariant theory allowing to express

general transition amplitudes in terms of the coupling constants αk and the particle content of the state vectors.

8



2.2 Introduction Into the Basic Concepts of Quantum Field Theory

2.2.2 Calculation of Transition Rates in Quantum Field Theory

Considering transition amplitudes between eigenstates of the free equation of motion, time-dependent

perturbation theory, for details cf. appendix A.3, can be used to express these transition amplitudes

between different state vectors – known as S-matrix – as

SF→F ′ =
∑︂
n

(−i)n
n!

⟨F ′|T
(︃∫︂

dx′(ĤI)D(x
′)

)︃n

|F ⟩

=
∑︂
n,mn

A

∫︂ n∏︂
i=1

dx′i ⟨F ′|T ψ11(x
′
1) . . . ψnkn

(x′n)|F ⟩ , (2.17)

where n runs over all orders in perturbation theory, mn runs over all combinations of different

interaction terms being part of (ĤI)D(x
′), and A is a prefactor containing coupling constants. Note

that here, the particle content of |F ⟩ is not assumed to have a distinct momentum but a momentum

distribution and for |F ′⟩, only the content but not the momentum is assumed to be distinct. The

reason for this definition is that the resulting transition probabilities can be used to describe the

time evolution of thermal systems, cf. section 3.2.

Defining |F ′′⟩ as the state vector with the joint particle content of |F ⟩ and |F ′⟩, the field operators

can be divided into a set of field operators ψik(x
′
ik
) whose action adjusts the particle content of |F ⟩

and |F ′′⟩, another set of field operators ψfl(x
′
fl
) whose action adjusts the particle content of |F ′⟩

and |F ′′⟩ and a set of remaining field operators ψ′
11
(x′1) . . . ψ

′
njn

(x′n) which together do not alter the

particle content5.

Furthermore, defining xi = x′i − x′m for i ̸= m, one is only left with a x′m dependence in the plain

waves of ψik(x
′
ik
) and ψfl(x

′
fl
) because it cancels out in the remaining part. Consequently, the

corresponding spacetime integral enforces four-momentum conservation in the limit tinitial → −∞
and tfinal → ∞. Using this and only considering the connected part of the S-matrix6 the transition

amplitude becomes

SF→F ′ =

∫︂ ∏︂
k

dp̃ik

∏︂
l

dp̃fl ⟨F
′|
∏︂
l

a†fl(p⃗fl)
∏︂
k

aik(p⃗ik)|F ⟩AF→F ′ , (2.18)

where the abbreviation dp̃i = δ(p2 −m2
i )dp = d3p/(2π)3/(2Ei) is used and the wave function part

of the quantum field operator ψ̃
i,k⃗
(x), cf. equation (A.43), acting on the external states is part of

AF→F ′ being defined as

AF→F ′ =
∑︂
n,mn

A

∫︂ n∏︂
i=1,i ̸=m

dxi
∏︂
l

ψ̃
fl,k⃗fl

(xfl)
∏︂
k

ψ̃
ik,k⃗ik

(xik)

× ⟨F ′′|T ψ′
11(x1) . . . ψ

′
njn

(xn)|F ′′⟩ (2π)4δ4
(︃∑︂

k

kik −
∑︂
l

kfl

)︃
: = iMF→F ′(2π)4δ4

(︃∑︂
k

kik −
∑︂
l

kfl

)︃
, (2.19)

5When rearranging the quantum field operator, one has to take care of the Lorentz and the spinor structure by

including according summation indices
6The connected part of the S-matrix only considers amplitudes which can be visualized by a connected diagram,

cf. appendix A.3.2.
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2 Quantum Field Theory in the Vacuum

with xm = 0 and MF→F ′ being the matrix element. Note that it is convenient to visualize the

elements of the perturbation series by diagrams, cf. appendix A.3.2.

Next, for the calculation of the transition probability, one uses(︃∫︂
dx ei(pf−pi)x

)︃2

=

∫︂
dx ei(pf−pi)x(2π)4δ4

(︁
pi − pf

)︁
= V T (2π)4δ4

(︁
pi − pf

)︁
, (2.20)

with V T being the spacetime volume. In addition, using (A.48) and (A.45) or (A.47), respectively,⃓⃓⃓ ∫︂ ∏︂
k

dp̃ik

∏︂
l

dp̃fl ⟨F
′|
∏︂
l

a†fl(p⃗fl)
∏︂
k

aik(p⃗ik)|F ⟩
⃓⃓⃓2

=

∫︂ ∏︂
k

dp̃ikf
F
ik
(p⃗ik)

∏︂
l

dp̃fl

(︂
1± fF

′′
fl

(p⃗fl)
)︂
, (2.21)

is obtained, where fFi (p⃗i) denotes the distribution function corresponding to the state |F ⟩7 and the

sign in front of the second distribution function is determined by the particle species: + for bosons

and − for fermions.

Hence, the transition probability per spacetime volume can be expressed as

pF→F ′ =

∫︂ ∏︂
k

dp̃ikfik(p⃗ik)
∏︂
l

dp̃fl
[︁
1± ffl(p⃗fl)

]︁
|MF→F ′ |2(2π)4δ4

(︃∑︂
k

kik −
∑︂
l

kfl

)︃
. (2.22)

At this point, it makes sense to introduce the well-known C, P , and T transformations which are of

special relevance in light of this thesis. First of all, the time reversal transformation (T ) invert the

time t→ −t which in the context of transition amplitudes relates SF→F ′ and SF ′→F . Consequently,

the transition probabilities for both processes, F → F ′ and F ′ → F , are equal if T is conserved.

In analogy, the parity transformation (P ) inverts space x⃗→ −x⃗ relating transition amplitudes with

chirality-flipped particle content and the charge conjugation (C) links transition amplitudes where

the particle content is replaced by the corresponding antiparticles. Note, however, historically charge

conjugation is defined such that actually both together C and P transformations convert particles

into their antiparticles. Because the negative energy solutions of the free equation of motion arising

from a Lorentz invariant theory where interpreted as antiparticles traveling backwards in time,

resulting in an according definition of the quantum field operators, cf. equation (A.39), it is implied

that a combination of C, P , and T transformation leave the time evolution invariant which is well-

known as CPT theorem.

Turning back to vacuum QFT, single scattering processes are studied isolated from the environment

which means that |F ′′⟩ = |0⟩ and, as a consequence, fF
′′

fl
= 0 are implied. Furthermore, for |F ′′⟩ =

|0⟩, |MF→F ′ |2 is independent of the state vector and the square of AF→F ′ becomes equivalent to

the square of SF→F ′ because the expression in equation (2.21) is one.

Considering simple processes involving only one or two incoming particles with fixed momentum,

7Note that in general, the product of distribution functions become non-trivial when multiple field operators of the

same species contribute. This is due to the fact that the creation and annihilation operators alter the particle

content, implying that the next creation or annihilation operator acts on a field with modified particle content.

However, in most cases, it is a reasonable approximation to assume independent distribution functions of the

individual incoming and outgoing particles.

10
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it is convenient to define the differential decay width in the rest frame of the decaying particle

(fi(p⃗i) = δ3(p⃗i)/V )

dΓi→f1...fn = V pi→f1...fn =
|Mi→f1...fn |2

2mi
(2π)4δ4

(︃
pi −

∑︂
l

pfl

)︃∏︂
l

dp̃fl , (2.23)

and the differential cross section

dσi1i2→f1...fn =
V pi1i2→f1...fn

|v⃗i1 |
=

|Mi1i2→f1...fn |2
2λ
[︁
s,m2

i1
,m2

i2

]︁(2π)4δ4(︃pi1 + pi2 −
∑︂
l

pfl

)︃∏︂
l

dp̃fl , (2.24)

with λ[a, b, c] being defined in (D.5). In the case of only two outgoing particles (n = 2) both

expressions can be further simplified to

dΓi→f1f2 =
|Mi→f1f2 |2

32π2
|p⃗f1 |
m2

i

dΩ , (2.25)

dσi1i2→f1f2 =
|Mi1i2→f1f2 |2

64π2s

|p⃗f1 |
|p⃗i1 |

dΩ . (2.26)

2.3 Derivation of Propagators and Loops in Time-Dependent

Perturbation Theory

According to equation (2.19), the simplest non-trivial matrix element appearing in the perturbation

series only contains two quantum field operators acting on a vacuum state. This case is closely related

to propagators, which are of special importance since more complex terms of the perturbation series

can be expressed in terms of propagators.

In this section, first of all, the propagator and loop contributions for scalar bosons are investigated in

time-dependent perturbation theory to get familiar with the formalism. Afterwards, it is discussed

that for massive vector bosons, local interaction terms appear in the interaction Hamiltonian,

which guarantees the Lorentz invariance of transition amplitudes. Subsequently, this investigation

is extended to a theory containing two massive vector bosons interacting with each other. In a

simple example, it is demonstrated that loop contributions only including massive vector bosons

deviate from what is naively expected. Moreover, it is discussed that this deviation is essential in

the investigation of the degree of divergence in the S-matrix.

2.3.1 Propagators for Scalar Bosons and Spin-1/2 Fermions and Introduction of Loop
Contributions

In general, the vacuum propagator in position space is defined by the action of two quantum field

operators on the vacuum state. Hence, the propagator of scalar fields, cf. equation (A.57a), is given

by

⟨0| T ϕ(x+ y)ϕ†(y) |0⟩ =
∫︂
dk̃
(︂
Θ(t)e−ikx +Θ(−t)eikx

)︂
, (2.27)
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2 Quantum Field Theory in the Vacuum

where the bosonic commutation relation, cf. equation (A.45), and the normalization of the vacuum

(⟨0|0⟩ = 1) are used. Furthermore, Θ(x) is the Heaviside step function defined in equation (D.9).

Next, it is convenient to use the residue theorem to rewrite equation (2.27) into the well-known form

of the spacetime propagator, cf. equation (A.60):

⟨0| T ϕ(x+ y)ϕ†(y) |0⟩ = lim
ϵ→0+

∫︂
dk

(2π)4
i

k20 − (Ek − iϵ)2
e−ikx . (2.28)

Note that deriving the propagator in this way, the intuitive interpretation is difficult because starting

from operators describing observable particles which fulfill the energy-momentum relation known as

on-shell, a propagator is obtained which can transfer four-momentum which does not fulfill the

energy-momentum relation – known as off-shell. However, as investigated in appendix A.6, the

propagator in the given form arises from the quantum mechanical interference of the exchange of

a particle from y to x + y for positive x0 and the exchange of an antiparticle from y + x to y for

negative x0, where both, the particle and the antiparticle, fulfill the energy-momentum relation.

Besides, so called tree-level processes where two separated spacetime points are interconnected

by a single propagator, also so-called loop contributions appear in the perturbation theory where

separated spacetime points are interconnected by multiple propagators. In the simplest case of a

tree-level processes where external currents only couple at two spacetime points being interconnected

by a scalar boson propagator, the matrix-element is proportional to the propagator in momentum

space:

M ∝
∫︂
dx ⟨0| T ϕ(x+ y)ϕ†(y) |0⟩ eipx =

i

p2 −m2
, (2.29)

where p is the sum of the incoming and outgoing four-momenta, respectively.

In contrast, for the simplest loop process where external currents couple at two spacetime points

but are interconnected by two scalar boson propagators, the matrix-element becomes

M ∝
∫︂
dx ⟨0| T ϕ1(x+ y)ϕ2(x+ y)ϕ†1(y)ϕ

†
2(y) |0⟩ eipx

= lim
ϵ→0+

∫︂
dk

(2π)4
i

k2 −m2
1 + iϵ

i

(p− k)2 −m2
2 + iϵ

, (2.30)

where, for simplicity, two different scalar fields (ϕ1 and ϕ2) are considered here. Note that the

remaining momentum integral in loop contributions can be divergent. Addressing this issue, renor-

malization can be used to absorb the divergences by redefining the Hamiltonian, cf. section 2.5.

Considering spin-1/2 fermions, the propagator in position space is

⟨0| T Ψ(x+ y)Ψ(y) |0⟩ =
∫︂
dk̃
(︂
Θ(t)(/k +m)e−ikx −Θ(−t)(/k −m)eikx

)︂
. (2.31)

Making use of the residue theorem, the propagator in the well-known form, cf. equation (A.61), is

obtained.
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2.3.2 Derivation of the Massive Vector Boson Propagator

The propagator for massive vector bosons in position space is given by

⟨0| T Aµ(x+ y)(Aν)†(y) |0⟩

=
∑︂
λ

∫︂
dk̃A

(︂
Θ(t)ϵµλ(k⃗)(ϵ

ν
λ(k⃗))

†e−ikx +Θ(−t)(ϵµλ(k⃗))†ϵνλ(k⃗)eikx
)︂
. (2.32)

Evaluating the polarization sum for massive vector bosons,∑︂
λ

ϵµλ(k⃗)(ϵ
ν
λ(k⃗))

† =
∑︂
λ

(ϵµλ(k⃗))
†ϵνλ(k⃗) = −gµν + kµAk

ν
A

m2
A

, (2.33)

the propagator becomes

⟨0| T Aν(x+ y)(Aµ)†(y) |0⟩ =
∫︂
dk̃A

(︃
−gµν + kµAk

ν
A

m2
A

)︃(︂
Θ(t)e−ikx +Θ(−t)eikx

)︂
, (2.34)

where the energy of a four-momentum with an index A is determined by the energy-momentum

relation: k⃗A = k⃗ and k0A = Ek =
√︂
k⃗ 2 +m2

A.

However, for massive vector bosons, the propagator in the well-known form, cf. equation (A.62),

cannot simply be derived by making use of the residue theorem because the energy integration path

has to be closed e.g. by adding a path which, for positive and negative x0, leads from k0 → ∞ over

k0 → ±i∞ to k0 → −∞, respectively8. For the scalar bosons and spin-1/2 fermions, the propagators

in the well-known form are obtained, as the remaining part of the integrand (1/(k20 − E2
k + iϵ) and

(/k+m)/(k20 −E2
k + iϵ)) converges to zero for k0 → ±∞, implying that the contribution of the path

closing the integration curve vanishes. In contrast, considering massive vector bosons, the remaining

part of the integrand converges to

lim
k0→±∞

(︃
gµν −

kµkν
m2

A

)︃ −i
k20 − E2

k + iϵ
= −i gµ0gν0

m2
A

, (2.35)

meaning that the contribution of the integration path closing the integration curve cannot be

ignored.

Thus, the polarization sum has to be excluded from the energy integral when using the residue

theorem, meaning that the propagator is given by the on-shell polarization sum times the scalar

boson propagator:

⟨0| T Aν(x+ y)(Aµ)†(y) |0⟩ =
∫︂

dk

(2π)4

(︃
gµν − kµAk

ν
A

m2
A

)︃ −i
k2 −m2

A + iϵ
e−ikx , (2.36)

which can also be written as, cf. equation (D.15),

⟨0| T Aν(x+ y)(Aµ)†(y) |0⟩ =
∫︂

dk

(2π)4

[︃(︃
gµν − kµkν

m2
A

)︃ −i
k2 −m2

A + iϵ
− igµ0gν0

m2
A

]︃
e−ikx . (2.37)

8The path is chosen such that the exponential function and, for this reason, the integrand does not diverge but

becomes exponentially suppressed in the limit k0 → ±i∞.
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2 Quantum Field Theory in the Vacuum

However, this propagator is not Lorentz invariant, cf. e.g. reference [68, pp. 274-278], which means

that something must be missing because the Proca Lagrangian, cf. equation (A.18c), determining

the time evolution of massive vector bosons is Lorentz invariant.

Because the propagator is only relevant for an interaction theory, to address this issue, a general

Lorentz invariant interaction term is added to the Proca Lagrangian

L(x) = −1

4
FµνF

µν +
m2

2
Aµ(x)A

µ(x)− Jµ(x)A
µ(x) . (2.38)

Evaluating the corresponding Hamiltonian, an additional local interaction term arises in the inter-

action Hamiltonian [68, pp. 320-323]:

ĤI(x) = Jµ(x)A
µ(x) +

[J0(x)]
2

m2
A

. (2.39)

Thus, adding the contributions of the local interaction term and the non-local interaction term, the

naively expected Lorentz invariant S-matrix is obtained9:

SF→F ′ =
(−i)2
2

∫︂
dy

∫︂
dx ⟨F ′|T Jµ(x+ y)Aµ(x+ y)Aν(y)Jν(y)|F ⟩ − i

∫︂
dy

⟨F ′|[J0(y)]2|F ⟩
2m2

A

=
(−i)2
2

∫︂
dy

∫︂
dx ⟨F ′|T Jµ(x+ y)Jν(y)|F ⟩

∫︂
dk

(2π)4

(︃
gµν − kµkν

m2
A

)︃ −i
k2 −m2

A + iϵ
e−ikx

− i

2m2
A

∫︂
dy ⟨F ′|[J0(y)]2|F ⟩

(︃
1−

∫︂
dx

∫︂
dk e−ikx

)︃
, (2.40)

where the bottom row is zero (
∫︁
dx
∫︁
dk e−ikx =

∫︁
dx δ(x) = 1).

Similarly, considering interaction terms involving derivatives of scalar boson field operators, the

resulting propagator is given by

⟨0|T [∂µϕ(x+ y)][∂νϕ(y)]|0⟩ =
∫︂

dk

(2π)4

kµϕk
ν
ϕ

m2

i

k2 −m2
ϕ + iϵ

e−ikx , (2.41)

with k0ϕ =

√︂
k⃗
2
+m2

ϕ. Furthermore, a similar local interaction term – ĤI(x) = J2
0 (x)/(2m

2
ϕ) – is

obtained, ensuring that the S-matrix is Lorentz invariant.

2.3.3 Detailed Investigation of Transition Amplitudes Involving Self Interactions of
Massive Vector Bosons

For now, only an interaction term involving a single massive vector boson has been considered,

cf. equation (2.39). Thus, the obtained local interaction term only ensures the Lorentz invariance of

the S-matrix for a theory including no interaction terms involving multiple massive vector bosons.

Thus, to generalize the investigation made in reference [68, pp. 320-323], in the following, a

9Note that here, the vacuum QFT approximation ⟨F ′′|Aµ(x+ y)Aν(y)|F ′′⟩ = ⟨0|Aµ(x+ y)Aν(y)|0⟩ is used, which is

sufficient because the additional thermal contributions do not break the Lorentz symmetry.
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2.3 Derivation of Propagators and Loops in Time-Dependent Perturbation Theory

generalized interaction Lagrangian containing two massive vector bosons interacting with each other

is studied in detail:

LI(x) = −Jµ
A(x)AH,µ(x)− Jµ

B(x)BH,µ(x)− Jµν(x)AH,µ(x)BH,ν(x) , (2.42)

with Aµ
H(x) and Bµ

H(x) being two different massive vector fields and Jµ
A(x), J

µ
B(x), and J

µν(x) being

independent of Aµ
H(x) and Bµ

H(x). Note that here, the fields carry the subscript H to highlight that

the fields in the Heisenberg-picture and not in the interaction-picture are considered10. Moreover,

it should be mentioned that the following derivation of the interaction Hamiltonian is derived in

close relation to reference [68, pp. 320-323], meaning that the single steps are adjusted to the

generalized interaction Lagrangian and the different signature of the Minkowski space used in this

thesis, cf. equation (A.1).

To derive the interaction Hamiltonian, first of all, the conjugated fields need to be calculated:

Πµ
A,H(x) =

∂L(x)
∂(∂0AH,µ(x))

= −F 0µ
A =

{︄
0 µ = 0

−∂0Aµ
H(x) + ∂µA0

H(x) µ = i
, (2.43a)

Πµ
B,H(x) =

∂L(x)
∂(∂0BH,µ(x))

= −F 0µ
B =

{︄
0 µ = 0

−∂0Bµ
H(x) + ∂µB0

H(x) µ = i
. (2.43b)

Because Π0
A,H(x) and Π0

B,H(x) vanish, A0
H(x) and B0

H(x) are only auxiliary fields which need to

be replaced by their solutions when changing to the Hamilton formalism11. For determining the

replacement, the Euler-Lagrange equations for A0
H(x) and B0

H(x) are considered,

m2
AA

0
H(x)− J0

A(x)− J0
ν(x)B

ν
H(x) = −∂µFµ0

A , (2.44a)

m2
BB

0
H(x)− J0

B(x)− J 0
µ (x)Aµ

H(x) = −∂µFµ0
B , (2.44b)

which, using equation (2.43), can be written as

A0
H(x) =

1

m2
A

(︂
∇Π⃗A,H(x) + J0

A(x) + J0
ν(x)B

ν
H(x)

)︂
, (2.45a)

B0
H(x) =

1

m2
A

(︂
∇Π⃗B,H(x) + J0

B(x) + J 0
µ (x)Aµ

H(x)
)︂
. (2.45b)

10In the QFT Lagrangian, the fields are always considered in the Heisenberg picture because the resulting equations

of motion (Euler-Lagrange equations) also include the interaction terms. In contrast, in the interaction picture,

the equations of motion of the fields are only determined by the free equation of motion.
11This can be understood from the fact that the Lagrangian does not contain time-derivatives of A0

H(x) and B0
H(x),

implying that equation (2.45) cannot arise from Hamilton’s equations.
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2 Quantum Field Theory in the Vacuum

Because A0
H(x) depends on B0

H(x) and vice versa, both can be determined iteratively, implying that

both are replaced by an infinite series:

A0
H(x) =

1

m2
A

(︃
∇Π⃗A,H(x) + J0

A(x) + J0
i(x)B

i
H(x)

+
J0

0(x)

m2
B

(︃
∇Π⃗B,H(x) + J0

B(x) + J 0
i (x)Ai

H(x) +
J 0
0 (x)

m2
A

. . .

)︃)︃
(2.46a)

=:
1

m2
A

(︂
∇Π⃗A,H(x) + J ′0

A (x)
)︂
, (2.46b)

B0
H(x) =

1

m2
B

(︃
∇Π⃗B,H(x) + J0

B(x) + J 0
i (x)Ai

H(x)

+
J 0
0 (x)

m2
A

(︃
∇Π⃗A,H(x) + J0

A(x) + J0
i(x)B

i
H(x) +

J0
0(x)

m2
B

. . .

)︃)︃
(2.46c)

=:
1

m2
B

(︂
∇Π⃗B,H(x) + J ′0

B (x)
)︂
. (2.46d)

Using this, the Hamiltonian can be evaluated, cf. equation (A.77).

Following reference [68, p. 321], changing from the Heisenberg-picture to the interaction-picture

(A⃗H(x) → A⃗(x), Π⃗A,H(x) → Π⃗A(x), B⃗H(x) → B⃗(x) and Π⃗B,H(x) → Π⃗B(x)), the obtained

Hamiltonian can be split into a free Hamiltonian

Ĥ0 =

∫︂
d3x

1

2

(︃
Π⃗A(x)

2 +
1

m2
A

[︁
∇Π⃗A(x)

]︁2
+
[︁
∇× A⃗(x)

]︁2
+m2

AA⃗(x)
2

)︃
+

∫︂
d3x

1

2

(︃
Π⃗B(x)

2 +
1

m2
B

[︁
∇Π⃗B(x)

]︁2
+
[︁
∇× B⃗(x)

]︁2
+m2

BB⃗(x)2
)︃
, (2.47)

determining the time evolution of the fields, and an interaction part

ĤI(x) = −J⃗A(x)A⃗(x)− J⃗B(x)B⃗(x) + J ij(x)Ai(x)Bj(x)− 1

2m2
A

[︁
J ′0
A (x)

]︁2 − 1

2m2
B

[︁
J ′0
B (x)

]︁2
+

1

m2
A

[︁
J0
A(x)− J0j(x)Bj(x)

]︁ [︁
∇Π⃗A(x) + J ′0

A (x)
]︁

+
1

m2
B

[︁
J0
B(x)− J i0(x)Ai(x)

]︁ [︁
∇Π⃗B(x) + J ′0

B (x)
]︁

+
1

m2
Am

2
B

J00(x)
[︁
∇Π⃗A(x) + J ′0

A (x)
]︁ [︁

∇Π⃗B(x) + J ′0
B (x)

]︁
. (2.48)

Finally, as argued in reference [68, pp. 321-322], in the interaction-picture, A0(x) and B0(x) can be

reintroduced by defining

A0(x) :=
1

m2
A

∇Π⃗A(x) and B0(x) :=
1

m2
B

∇Π⃗B(x) . (2.49)

Using this definition, the equations of motion for Aµ(x) and Bµ(x) become the Proca equation,

cf. equation (A.9), on which the definition of the field operator for massive vector bosons, cf. equation

(A.57c), considered previously for the derivation of the propagator is based on. Furthermore, the
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2.3 Derivation of Propagators and Loops in Time-Dependent Perturbation Theory

interaction Hamiltonian density becomes, cf. equation (A.81),

ĤI(x) = Jµ
A(x)Aµ(x) + Jµ

B(x)Bµ(x) + Jµν(x)Aµ(x)Bν(x) +

[︁
J0
A(x)

]︁2
2m2

A

+

[︁
J0
B(x)

]︁2
2m2

B

+
J0
A(x)J

0ν(x)Bν(x)

m2
A

+
J0
B(x)J

µ0(x)Aµ(x)

m2
B

+
J0
A(x)J

00(x)J0
B(x)

m2
Am

2
B

+
(J0ν(x)Bν(x))

2

2m2
A

+
(Jµ0(x)Aµ(x))

2

2m2
B

+ . . . . (2.50)

Including the local interaction terms, it can be shown that, as expected, at tree level, the well-known

Lorentz invariant result is obtained. Considering e.g. the simplest amplitude involving the vector

boson self coupling (S ∼ Jµ
A(x)J

νσ(x)Jρ
B(x)), there are four contributing parts:

SF→F ′ = (−i)3
∫︂
dx

∫︂
dy

∫︂
dz ⟨F ′|T Jµ

A(x+ y)Aµ(x+ y)Aν(y)J
νσ(y)Bσ(y + z)Bρ(y + z)Jρ

B(y + z)|F ⟩

+ (−i)2
∫︂
dy

∫︂
dz ⟨F ′|T J

0
A(y)J

ν
0 (y)

m2
A

Bν(y)Bµ(y + z)Jµ
B(y + z)|F ⟩

+ (−i)2
∫︂
dx

∫︂
dy ⟨F ′|T Jµ

A(x+ y)Aµ(x+ y)Aν(y)
Jν

0(y)J
0
B(y)

m2
B

|F ⟩

− i

∫︂
dy ⟨F ′|J

0
A(y)J00(y)J

0
B(y)

m2
Am

2
B

|F ⟩ . (2.51)

Replacing all pairs of field operators by the propagator given in equation (2.37), the local contributions

cancel out and the naively expected Lorentz invariant S-matrix is obtained:

SF→F ′ = (−i)3
∫︂
dx

∫︂
dy

∫︂
dz ⟨F ′|Jµ

A(x+ y)Jνσ(y)Jρ
B(y + z)|F ⟩

×
∫︂

dk

(2π)4

(︃
gµν −

kµkν
m2

A

)︃ −i
k2 −m2

A

e−ikx

∫︂
dq

(2π)4

(︃
gσρ −

qσqρ
m2

B

)︃ −i
q2 −m2

B

e−iqz . (2.52)

2.3.4 Implications on Loop Contributions Involving Multiple Massive Vector Bosons

Next, loop contributions only containing massive vector boson propagators are investigated. Consi-

dering the interaction Lagrangian (2.42), for the simplest loop contribution only containing massive

vector bosons (S ∼ Jµσ(x)Jνρ(x)), the naively expected S-matrix is given by

Snaive
F→F ′ =

(−i)2
2

∫︂
dx

∫︂
dy ⟨F ′|T Jµσ(x+ y)Jνρ(y)|F ⟩

× (−i)2
∫︂

dk

(2π)4

gµν − kµkν

m2
A

k2 −m2
A

e−ikx

∫︂
dq

(2π)4

gσρ − qσqρ

m2
B

q2 −m2
B

e−iqx , (2.53)

where the external currents are interconnected by the Lorentz invariant part of the propagators,

cf. equation (A.62), because all local contributions are expected to cancel. However, the naively

expected loop contributions lead to difficulties related to the degree of the divergence of the S-

matrix. The reason for that is that, in the naive form, loop contributions with an arbitrary number
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2 Quantum Field Theory in the Vacuum

of external currents diverge. This issue can be seen e.g. when vanishing external momenta are

considered. In this case, the external currents can be expressed in terms of the metric and the

loop four-momentum kµ: Jµσ = f1(k
2)gµσ + f2(k

2)kµkσ. Thus, the loop integrand containing n

massive vector bosons scales (for f2(k
2) = 0) at least like (f1(k

2)/m2
A,B)

n for large k2, implying that

the loop diverges independent of n if f1(k
2) contains elements which are not suppressed for large k2

(e.g. f1(k
2) ∝ 1). Thus, the power-counting arguments cannot be used to prove the renormalizability

of a theory, cf. reference [69, p. 299]12.

However, investigating the loop contribution from equation (2.53) in more detail, there are three

different contributing parts13:

SF→F ′ =
(−i)4
2

∫︂
dx

∫︂
dy ⟨F ′|T Jµσ(x+ y)Jνρ(y)|F ⟩

×
∫︂

dk

(2π)4

[︄
gµν − kµkν

m2
A

k2 −m2
A

+
gµ0gν0

m2
A

]︄
e−ikx

∫︂
dq

(2π)4

[︃gσρ − qσqρ

m2
B

q2 −m2
B

+
gσ0gρ0

m2
B

]︄
e−iqx

+ (−i)2
∫︂
dx

[︄
1

m2
A

⟨F ′|T J0σ(x)J0ρ(x)|F ⟩
∫︂

dq

(2π)4

[︃gσρ − qσqρ

m2
B

q2 −m2
B

+
gσ0gρ0

m2
B

]︄
e−iqx

+
1

m2
B

⟨F ′|T Jµ0(x)Jν0(x)|F ⟩
∫︂

dk

(2π)4

[︄
gµν − kµkν

m2
A

k2 −m2
A

+
gµ0gν0

m2
A

]︄
e−ikx

]︄

= Snaive
F→F ′ − 1

m2
Am

2
B

∫︂
dx ⟨F ′|T

[︁
J00(x)

]︁2|F ⟩ . (2.54)

Thus, deriving the loop contribution for massive vector bosons properly, a result differing from the

naive expectation is obtained because local interaction terms of the form ∼ [J00(x)]
n do not appear

in the interaction Hamiltonian, cf. equation (2.50). However, the remaining loop contribution is still

Lorentz invariant which becomes more obvious when the matrix element is rewritten as

SF→F ′ = −(−i)3
4

∫︂
dx

∫︂
dy ⟨F ′|T Jµσ(x+ y)Jνρ(y)|F ⟩

∫︂
dq

(2π)4

[︄∫︂
dk̃A

(︃
gµν − kµAk

ν
A

m2
A

)︃

×
gσρ − qσqρ

m2
B

q2 −m2
B

e−i(kA+q)x +

∫︂
dk̃B

(︃
gσρ − kσBk

ρ
B

m2
B

)︃ gµν − qµqν

m2
A

q2 −m2
A

e−i(kB+q)x

]︄
. (2.55)

On first sight, equation (2.55) does not seem Lorentz invariant because of the appearance of on-shell

four-momenta. Moreover, for the corresponding massive vector boson, only one momentum integral

occurs (dk̃A,B). However, one of the propagators in each loop can be on-shell without breaking the

Lorentz invariance because the remaining four-momentum integrals (dq in equation (2.55)) ensure

four-momentum conservation in each vertex. Intuitively, this can be understood from the fact that

cutting one propagator of a loop diagram results in a different diagram with the loop particle as an

external particle (on-shell). The contribution of the resulting diagram is Lorentz invariant because

the other loop propagators are given in the naive, Lorentz-invariant form.

12More precisely, in reference [7], it is stated that the Green functions in unitary gauge are not renormalizable, meaning

that divergences do not cancel until the S-matrix is evaluated.
13Considering more complex matrix-elements (S ∼ [Jµν(x)]2n) that an alike result is obtained: Snaive

F→F ′ −
1/(m2

Am
2
B)

n
∫︁
dx ⟨F ′|[J00(x)]2n|F ⟩, which can be rewritten into a similar form as given in equation (2.55).
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Moreover, considering vanishing external momenta again, the external current can be expressed as

Jµσ = f(k2A,B)g
µσ + g(k2A,B)k

µ
A,Bk

σ
A,B, implying that the sum over all Lorentz indices is independent

of kµA,B:

(︂
f1(k

2
A,B)g

µ1ν1 + g1(k
2
A,B)k

µ1

A,Bk
ν1
A,B

)︂(︄
gν1µ2 −

kν1A,Bk
µ2

A,B

m2
A,B

)︄
. . .

(︄
gνnµ1 −

kνnA,Bk
µ1

A,B

m2
A,B

)︄
= 3

∏︂
i

fi(k
2
A,B) .

(2.56)

Thus, considering the local interaction terms properly, the propagator part of the loop containing n

massive vector bosons scales as 1/(k2)n, implying that the usual power-counting argument can be

used to prove renormalizability. Hence, as expected, the degree of divergence in the S-matrix is the

same as expected from Rξ gauge. Note that the propagator part scaling like 1/(k2)n can be seen

from the fact that, after evaluating the Lorentz sum, the residue theorem can be used to rewrite the

loop momentum integral (dk̃) into the typically investigated four-momentum integral form (dk).

However, to make statements about the degree of divergences in the S-matrix of general theories, this

investigation needs to be extended for a more general interaction Lagrangian of a form containing

an arbitrary number of massive vector fields Ai:

LI(x) = −
∑︂
i

Jµ
i (x)Ai,H,µ(x)−

∑︂
j

Jµν
ij (x)Ai,H,µ(x)Aj,H,ν(x) +O(A3) . (2.57)

However, without evaluating the corresponding interaction Hamiltonian in detail, following the

previous calculation, it can be seen that local interaction terms of the form [J00]n are still absent

in the interaction Hamiltonian, meaning that for self-interacting massive vector bosons as well as

for multiple massive vector bosons interacting with each other, a deviation of the properly derived

loop contribution from the naive expectation is expected. Nevertheless, it should be proven that no

further subtleties especially with respect to higher order interaction terms ∼ O(A3) occur.

Because nowadays, the path integral formalism is typically used for the calculation of transition

amplitudes, the loop contribution of interest will be discussed in the path integral formalism in the

next section.

2.3.5 Implications on Massless Vector Bosons

Finally, considering massless vector bosons, their contribution to the perturbation series is determined

by the massless limit of the massive vector bosons. The reason for that is that the Lagrangian and

therefore the equations of motion of both only differ by the mass term. On first sight, taking the

massless limit for the propagator is non-trivial because of the kµkν/m2
A term. However, as has

been discussed in section 2.1, massless vector bosons can only appear in gauge theories, meaning

that the gauge invariance enforces Jµ(x)kµ = 0. Consequently, the kµkν/m2
A term can simply be

ignored or replaced by kµkν/k2, meaning that the propagator in the most general form is given by

equation (A.63).

However, this propagator causes problems again when loop contributions only containing massless

vector bosons are considered because in the loop, they count as four degrees of freedom while only
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two are physical. The reason for that is that the polarization sum does not only sum over the physical

polarizations, cf. equation (A.59), but also includes unphysical polarizations. As a consequence, the

naively expected loop contribution contradicts the optical theorem [60, pp. 510-512]. Following

the previous investigation for massive vector bosons, it is indicated that also for massless vector

bosons, one of the propagators in the loop is given by the propagator only including the physical

polarizations. In this case, also the loop contribution is determined by the massless limit of the

massive vector bosons case, cf. equation (2.55). The reason for that is again the conservation of the

gauge current, implying that the contribution of the unphysical polarizations vanishes as long as one

of the gauge bosons is on-shell. Thus, contracting the Lorentz indices, a simple loop contribution

induced e.g. by two different massless vector bosons (A and B) interacting with each other becomes

SF→F ′ =− (−i)3
2

∫︂
dx

∫︂
dy ⟨F ′|T Jµν(x+ y)Jµν(y)|F ⟩

×
∫︂

dq

(2π)4

[︄∫︂
dk̃A

1

q2
e−i(kA+q)x +

∫︂
dk̃B

1

q2
e−i(kB+q)x

]︄
. (2.58)

Note that the dk̃ integral cannot simply be rewritten into a four-momentum integral because only

when one of the gauge bosons is on-shell, the conservation of the gauge current guaranties that only

physical polarizations contribute14.

2.4 Path Integral for Quantum Field Theory

In this section, first of all, the aspects of the path integral formalism relevant for QM are briefly

introduced and, afterwards, the usual method for calculating transition amplitudes in QFT in the

path integral formalism is discussed for scalar boson fields15. Finally, the path integral for quantum

fields – with a focus on massive vector bosons – is investigated in detail. In particular, it is discussed

that, including interaction terms involving multiple vector bosons, the path integral cannot be

written in the naively expected form.

2.4.1 Path Integral for Quantum Mechanics

It can be shown that a transition amplitude between eigenstates of the position operator x̂ |xi⟩ =

xi |xi⟩ in QM can be expressed by the path integral

⟨xf , tf |xi, ti⟩ =
∫︂

DxDp exp

⎡⎢⎣i tf∫︂
ti

dt
(︂
p(t)ẋ(t)− Ĥ(p(t), x(t))

)︂⎤⎥⎦ :=

∫︂
DxDp eiS , (2.59)

14This can be understood from the fact that Jµν(x), in general, contains spacetime derivatives acting on the momentum

integrals, meaning that Jµν(x) is not necessarily independent of the loop momenta.
15The introduction to the path integral formalism and the following derivation of the scalar boson propagator are

closely related to the derivations in sections 6 and 8 of reference [64].
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where x(t) and p(t) are defined by the action of the position and momentum operators

x̂ |ψ(t)⟩ = x(t) |ψ(t)⟩ and p̂ |ψ(t)⟩ = p(t) |ψ(t)⟩ , (2.60)

and the path integral integrates over all phase-space paths (DxDp) which fulfill the boundary

conditions x(ti,f ) = xi,f .

To see the benefit of the path integral formalism, more generalized forms of transition amplitudes

which also include the action of operators can be considered:

⟨xf , tf |T x̂(t1) . . . x̂(tn) p̂(t
′
1) . . . p̂(t

′
n′)|xi, ti⟩ =

∫︂
DxDp x(t1) . . . x(tn) p(t′1) . . . p(t′n′) eiS , (2.61)

with ti ≤ t1, . . . , tn, t
′
1, . . . , t

′
n′ ≤ tf . Using the modification Ĥ(p(t), x(t)) → Ĥ(p(t), x(t))−f(t)x(t)−

h(t)p(t), the generalized transition amplitude can be rewritten in terms of functional derivatives:

⟨xf , tf |T x̂(t1) . . . p̂(t′n′)|xi, ti⟩ = (−i)n+n′ δ

δf(t1)
. . .

δ

δh(t′n′)
⟨xf , tf |xi, ti⟩f,h

⃓⃓⃓⃓
f=h=0

, (2.62)

with ⟨. . . | . . .⟩f,h referring to the modified amplitude and the functional derivative being defined as

δ

δf(t′)
g(f(t)) =

∂g(f(t))

∂f(t)
δ(t− t′) . (2.63)

Furthermore, it is convenient to consider the transition amplitude of the ground state (|0⟩) and take

the limit ti,f → ∓∞. Additionally, using the modification Ĥ → (1− iϵ)Ĥ, cf. appendix A.6,

⟨0|0⟩f,h = lim
ti→−∞,tf→∞

∫︂
dxfdxi ⟨0|xf , tf ⟩ ⟨xf , tf |xi, ti⟩f,h ⟨xi, ti|0⟩

=

∫︂
DxDp exp

⎡⎣i ∞∫︂
−∞

dt
(︂
p(t)ẋ(t)− (1− iϵ)Ĥ(p(t), x(t)) + f(t)x(t) + h(t)p(t)

)︂⎤⎦ , (2.64)

is obtained. Next, as in time-dependent perturbation theory, considering transition amplitudes

between eigenstates of the free Hamiltonian in the limit
∫︁
dt ĤI(p(t), x(t)) ≪ 1, the interaction

Hamiltonian can be excluded from the path integral by exchanging p(t) and x(t) by functional

derivatives:

⟨0|0⟩f,h = exp

⎡⎣−i ∞∫︂
−∞

dtĤI

(︃
1

i

δ

δh(t)
,
1

i

δ

δf(t)

)︃⎤⎦
×
∫︂

DxDp exp

⎡⎣i ∞∫︂
−∞

dt
(︂
p(t)ẋ(t)− (1− iϵ)Ĥ0(p(t), x(t)) + f(t)x(t) + h(t)p(t)

)︂⎤⎦ . (2.65)

Finally, in case of Ĥ0 being only quadratic in p(t) the integral over p(t) is Gaussian and can be

evaluated. Furthermore, if the appearing terms, which are quadratic in p(t), are independent of

x(t), the prefactors of the p(t) integration can simply be absorbed into the normalization of the Dx
integral so that the path integral becomes

⟨0|0⟩f = exp

⎡⎣i ∞∫︂
−∞

dtLI

(︃
1

i

δ

δf(t)

)︃⎤⎦∫︂ Dx exp

⎡⎣i ∞∫︂
−∞

dtL0(ẋ(t), x(t)) + f(t)x(t)

⎤⎦ , (2.66)
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2 Quantum Field Theory in the Vacuum

where the ϵ factor is neglected to obtain the usual form16.

2.4.2 Common Extension of the Path Integral in Quantum Field Theory

The path integral formalism can be generalized to QFTs where instead of position operators x̂, field

operators ψ(x) are considered. Hence, the path integral in QFT integrates over all field configurations

ψc(x) fulfilling the boundary conditions. Besides, the function f(t) becomes a function of spacetime

and is usually named J(x). Thus, the path integral of a QFT is

Z0(J) = ⟨0|0⟩J =

∫︂
Dψc exp

[︃
i

∫︂
dx (L(ψc(x)) + J(x)ψc(x))

]︃
. (2.67)

Excluding the interaction Lagrangian from the path integral by expressing it in terms of functional

derivatives with respect to J(x), the remaining path integral corresponds to a non-interacting theory

including the classical sources J(x). Consequently, for a scalar theory the relevant path integral is

given by

Z0(J) =

∫︂
Dϕc exp

[︃
i

∫︂
dx

(︃
−1

2
(∂µϕc(x))(∂µϕc(x))−

1

2
(m2 + iϵ)ϕc(x)

2 + J(x)ϕc(x)

)︃]︃
. (2.68)

Next, ϕc(x) and J(x) can be expressed in terms of their Fourier transformed

ϕc(x) =

∫︂
dk

(2π)4
ϕc(k)e

−ikx and J(x) =

∫︂
dk

(2π)4
J(k)e−ikx , (2.69)

allowing to rewrite the space integral into a momentum integral

1

2

∫︂
dk

(2π)4
[︁
−ϕc(k)(k2 −m2 + iϵ)ϕc(−k) + J(k)ϕc(−k) + J(−k)ϕc(k)

]︁
. (2.70)

By transforming ϕ(k) → ϕ(k)− J(k)/(k2 −m2 + iϵ), the mixed terms disappear. Thus, demanding

Z0(0) = 1 the path integral completely disappears:

Z0(J) = exp

[︃
i

2

∫︂
dk

(2π)4
J(k)J(−k)
k2 −m2 + iϵ

]︃
. (2.71)

Finally, the integral can be transformed back into position space:

Z0(J) = exp

[︃
1

2

∫︂
dx dy J(x)Dϕ(x− y)J(y)

]︃
, (2.72)

with Dϕ(x− y) being the propagator of scalar bosons, cf. equation (A.60).

Using the path integral method, the propagators of fermions (A.61), massive vector bosons (A.62),

and gauge bosons (A.63) can be evaluated in the same way. Furthermore, the well-known Feynman

rules can be deduced.

However, as discussed in the previous section, loop corrections containing only massive vector

boson propagators and derivatives of scalar boson propagators deviate from the naive expectation,

cf. equation (2.55). Hence, the question arises whether subtleties of the path integral formalism have

not been considered yet.

16Note that when considering a Hamiltonian which includes a mass term, the factor ϵ can be reintroduced by just

exchanging m2 → m2−iϵ fulfilling the same function and besides allowing to maintain the factor in the Lagrangian.
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2.4 Path Integral for Quantum Field Theory

2.4.3 Subtleties of the Path Integral for Quantum Field Theory

In QM, in position space, all operators can be expressed in terms of the position and the momentum

operator. For both of these operators, eigenstates can be found, fulfilling the relations (2.60) which

was essential for the derivation of the path integral. In contrast, considering QFT, the state vector

only contains information about the particle content and the relevant operators are the field operators

containing creation and annihilation operators. As a consequence, the action of each field operator

modifies the state vector by altering the particle content, implying that no eigenstates of the field

operator exist17. This modification of the state vector by the action of field operators cannot

be ignored because the creation and annihilation operators have a non-vanishing mass dimension,

implying that the mass dimension of a state vector changes.

This can e.g. be seen considering the action of a single field operator on a full set of states, cf. equation

(A.67),

ψi(x) |S⟩ ⟨S| =
(︄∏︂

i

∞∑︂
ni=0

1

(ni − 1)!

)︄⎛⎝∏︂
i

ni∏︂
j=1

∫︂
dk̃i,j

⎞⎠ui(k⃗i,ni)e
−iki,ni

x

×

⎛⎝∏︂
i

ni−1∏︂
j=1

ai(k⃗i,j)

⎞⎠†

|0⟩ ⟨0|

⎛⎝∏︂
i

ni∏︂
j=1

ai(k⃗i,j)

⎞⎠ = |S⟩ ⟨S|ψi(x) , (2.73)

where not only a prefactor is obtained but the full set of states becomes asymmetric. In addition,

including a full set of states into an amplitude at any point is irrelevant because, according to

equation (2.73), the operator commutes with it,[︁
ψi(x), |S⟩ ⟨S|

]︁
= 0 , (2.74)

meaning that only the action on a distinct state vector is relevant.

To circumvent the issue that relation (2.60) cannot be counted on to replace the field operators

by field configurations, instead, the action of a field operator on a state produced by another field

operator can be investigated:∫︂
dx ⟨F ′|J ′(y)ψi(y)ψ

†
i (x)J(x)|F ⟩

=

∫︂
dx

∫︂
dk̃i

(︂
ui(k⃗)u

†
i (k⃗)e

iki(x−y) + vi(k⃗)v
†
i (k⃗)e

−iki(x−y)
)︂
⟨F ′|J ′(y)J(x)|F ⟩ . (2.75)

Next, the momentum integral can be rewritten into a dk integral by making use of the residue

theorem: ∫︂
dx

∫︂
dk

(2π)4
i

k2 −m2
i

u′i(k)(u
′
i)
†(k)eik(x−y) ⟨F ′|J ′(y)J(x)|F ⟩ . (2.76)

Thus, the allowed field values at y are proportional to u′i(k)e
iky, where k is determined by the external

momenta. As a consequence, in the path integral, it can be integrated over all field configurations

when u′i(k) represents a full basis in the field configuration space.

17In principle, for bosons, an infinite series of state vectors with increasing occupation number can be defined such

that the action of the annihilation operator results in the same state but this state cannot be normalized.
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2 Quantum Field Theory in the Vacuum

However, as has been discussed in the previous section, this is not the case for vector bosons and

derivatives of scalar boson field operators. Thus, focusing again on massive vector bosons, it makes

sense to start with the investigation of the path integral in the Hamilton form where the path integral

only integrates over Π⃗A(x) and A⃗(x), cf. reference [68, pp. 389-395]. Starting with the investigation

of a single non-self-interacting massive vector boson, one can in principle evaluate the path integral

of Π⃗A(x). However, the obtained Lagrangian is not equivalent to the Lagrangian initially considered,

cf. equation (2.38), but still includes the local interaction term, cf. equation (2.39).

In contrast, as shown in reference [68, p. 394], the auxiliary field can be reintroduced by subtracting

∆H =
m2

A

2

∫︂
d3x

(︃
A0(x)− 1

m2
A

[︁
∇Π⃗A(x) + J0

A(x)
]︁)︃2

(2.77)

from the Hamiltonian, cf. equation (2.46) with Jµν(x) = 0, and, at the same time, including a path

integral over A0(x)18. Finally, evaluating the path integral over Π⃗A(x), the naively expected form

of the path integral – where the action is determined by the initially considered Lagrangian and the

path integral integrates over all field configurations – is obtained.

In contrast, considering the Hamiltonian of a theory including self-interacting massive vector bosons,

cf. equations (2.47) and (2.48), this trick does not allow to rewrite the path integral into the naively

expected form. However, rewriting the interaction Hamiltonian into the form given in equation

(A.84), it seems that one can still use the trick to rewrite the path integral into a simpler form. For

that,

∆H =
1

2

(︃
m2

A − 1

2m2
B

[︁
J00(x)

]︁2)︃∫︂
d3x

(︃
A0(x)− 1

m2
A

[︁
∇Π⃗A(x) + J ′0

A (x)
]︁)︃2

+
m2

B

2

∫︂
d3x

(︃
B0(x)− 1

m2
B

[︁
∇Π⃗B(x) + J0

B(x)
]︁)︃2

+

∫︂
d3xJ i0(x)Ai(x)

(︃
B0(x)− 1

m2
B

[︁
∇Π⃗B(x) + J0

B(x)
]︁)︃

(2.78)

can be subtracted from the interaction Hamiltonian and, at the same time, include a path integral

over A0(x) and B0(x). Even though this cannot be used to absorb all local interaction terms, it can

be seen that a local interaction term of the form [J00(x)A0(x)]
2 occurs. Thus, it can be expected

that this local interaction term guarantees the equivalence of the loop contribution calculated using

the path integral formalism and time-dependent perturbation theory, respectively.

Note that loops contributions only containing massive vector boson propagators are only induced

by the interaction term LI(x) = −Jµν(x)Aµ
H(x)Bν

H(x). Considering only these interaction term,

the equations of motion for A0
H(x) and B0

H(x) in the Heisenberg picture for the two massive vector

boson case become

A0
H(x) =

1

m2
A

(︃
A0(x) + J0ν(x)Bν(x) +

J00(x)

m2
B

(︃
Jµ0(x)Aµ(x) +

J00(x)

m2
A

. . .

)︃)︃
, (2.79a)

B0
H(x) =

1

m2
B

(︃
B0(x) + Jµ0(x)Aµ(x) +

J00(x)

m2
A

(︃
J0ν(x)Bν(x) +

J00(x)

m2
B

. . .

)︃)︃
, (2.79b)

18The introduction of the additional path integral is justified in reference [68, p. 394] with the argument that the

integral over A0(x) only induces a field-independent prefactor because ∆H is quadratic in A0(x).
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cf. equation (2.46), with Aµ(x) and Bµ(x) being the fields in the interaction picture with A0(x) and

B0(x) being defined in equation (2.49). Hence, considering e.g. the loop from the previous section,

cf. equation (2.54), A0
H(x) and B0

H(x) are both determined by the field operators Bν(x) and Aµ(x),

respectively, and the external current Jµν(x) ∼ eipx. As a consequence, accounting for p0, either

A0
H(x) or B0

H(x) can become a field variable independent of the loop momenta integral but not both

at once.

Note that for the same reason, the result from the path integral integrating over all field configurations

for loops only containing massless gauge bosons differs from equation (2.58). However, instead of

sticking to the physical field configurations for one of the gauge bosons in the loop, the problem

can also be solved by the well-known gauge-fixing procedure being discussed in the context of gauge

theories, cf. section 2.6.

2.5 Renormalization and Renormalization Group Equations

As was discussed in the previous sections, the perturbation series of an interacting QFT contains

elements where the momentum of the exchanged particles is not fixed due to four-momentum

conservation, cf. e.g. equation (2.30)19. In general, these loop contributions can be divergent.

However, this contradicts the observation of finite transition amplitudes.

In principle, the divergence of a single matrix element could cancel when summing up all matrix

elements contributing to a certain process, but for most of the considered models this is not the

case. For this reason, methods have been developed to erase the unobserved divergences from the

perturbation series.

For being able to erase the divergences, the momentum integral has to be regularized first, meaning

that the divergence appears in the limit of some new parameter. The resulting loop contribution can

then be divided into a finite part depending on the kinematics of the considered process and some

remaining part which diverges. Subsequently, the fact that the masses and coupling strengths can

be measured at least for one specific kinematic configuration is used, to redefine the Hamiltonian

such that it already contains all loop corrections at this renormalization scale20. This procedure –

known as renormalization – is essential for QFTs because the concept of a bare parameter, which

does not contain loop corrections, is insufficient considering a theory where the divergences does not

cancel out. In this case, bare parameters are not observable and all predictions have to be expressed

in terms of measured quantities to obtain finite expressions. Note that especially for the mass terms

which are part of the free Hamiltonian this redefinition of the Hamiltonian is essential: Particles are

defined as eigenstates of the free Hamiltonian and are only described correctly when all corrections

19In detail, these loop corrections always appear when a matrix element defined in equation (2.22) – which can be

visualized by a connected diagram – contains more than 2n− 2 field operators where n is the number of different

spacetime interaction points.
20Note that the renormalization scale can be chosen at will because the division of the loop contribution into a

finite and a divergent part is arbitrary. Furthermore, in the literature also other renormalization schemes which

are independent of a renormalization scale are used. However, the resulting amplitudes are independent of the

renormalization scale and the renormalization scheme.
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2 Quantum Field Theory in the Vacuum

to the free Hamiltonian are included.

For more details on regularization and renormalization, cf. appendix A.8.

A QFT is called renormalizable if all appearing loop divergences can be absorbed by redefining

the bare parameters of a theory. The reason for this is that one cannot absorb the divergences of

purely loop induced couplings by redefining the Hamiltonian. In detail, only theories in which all

coupling constants have a vanishing or positive mass dimension are called renormalizable because

otherwise an infinite series of bare parameters is needed to absorb all divergences. Consequently,

only interaction terms with up to four bosons and with two fermions and one boson can appear in

a renormalizable theory21.

2.5.1 Renormalization Group Equations

Instead of considering a specific renormalization scale, typically, depending on the regularization

method, only a specific part of the loop contribution is absorbed. Considering the commonly used

dimensional regularization, cf. appendix A.8, one can e.g. only absorb the poles in ϵ (MS scheme)

or also further universal factors as in the MS scheme, cf. e.g. reference [63]. With this, the running

of the couplings depending on the choice of the arbitrary energy scale µ can be expressed in terms

of a differential equation:

dg

d lnµ
= β(g) =

∞∑︂
n=1

βn(g) , (2.80)

where β(g) is the so-called β-function being independent of µ and n is the loop order, meaning that

βn(g) are the nth order parts of the β-function. Note that in case of multiple considered coupling

constants, in general, a coupled system of differential equations – known as renormalization group

equations (RGEs) – is obtained22.

For the SM, cf. section 2.8, only taking into account the gauge couplings, the dominant Yukawa

interactions (top, bottom and tau), and the Higgs self coupling, the RGEs at one-loop order in

the MS scheme are given in appendix A.9. The solution of these differential equations are shown in

figure 2.123. Considering the running of the couplings in the MS scheme, for a process at a kinematic

scale Λ, the tree-level coupling can be approximated by the coupling strength at µ = Λ. Doing so,

the logarithms in the loop corrections remain small, meaning that higher order loop corrections to

21Interaction terms involving one fermion and two bosons are forbidden due to the conservation of the fermion number.
22Note that considering RGEs is useful when the kinematic scale of interest deviates significantly from the scale

where the effective couplings are measured. In this case, simply choosing the renormalization scale to be the scale

where the effective couplings are measured, the suppression of higher order loop corrections decreases for larger

scale shifts, meaning that higher order loop corrections become more important. Considering the running of the

couplings instead, this issue is shifted into the RGEs where it is addressed more properly. This can be understood

from the fact that the RGEs consider the µ dependence of the parameters of the theory and not loop contributions

to individual processes.
23Note that a negative value for λ is not directly a problem in light of perturbation theory. However, considering

vacuum loop corrections to the effective Higgs potential, the Higgs potential becomes negative as well for large VEV

implying the potential to become unstable. Note that a detailed analysis including higher order loop corrections

shows that the SM Higgs potential is actually at least meta stable.
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(a) Scale dependence of the gauge couplings (g′ for

U(1)Y , g for SU(2)L, and gs for SU(3)c) and

the top Yukawa coupling (yt).
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Figure 2.1: Scale dependence of the dominant SM coupling constants in the MS scheme considering

the RGEs of the SM at one-loop order.

the considered process are less important. For this reason, considering thermal systems at high

temperatures, the couplings at µ ∼ T are used for the calculation of transition amplitudes.

2.6 Introduction Into Gauge Theories

As preparation for the investigations following in the next section, in this section, at first, a short

introduction into the essentials of gauge theories is presented to remind the reader of the basic

concepts. Afterwards, the gauge fixing procedure – representing an elegant solution to the issues

arising from loop corrections including gauge bosons – is introduced.

2.6.1 Essentials of Gauge Theories

In general, any given Lagrangian and therewith the equations of motion can be invariant under

certain transformations. This invariance is of special interest because according to Noether’s theorem,

each of these symmetry transformations correspond to a conserved quantity. Following this, the

system of equations of motion is over-determined. In quantum field theory, two different kinds of

symmetries are distinguished, namely global symmetries, which can be discrete or continuous, and

local symmetries which have to be differentiable and therefore continuous. Hence, local symmetries

are associated with Lie groups.

The local symmetries of quantum field theories are called gauge symmetries and are defined by the

invariance of the action of the Lagrangian on any given state under a local transformation which

can be parameterized by a continuous and differentiable set of functions αa(x):

L(x)|αa(x)=0 |F ⟩ = L(x)|αa(x)=fa(x) |F ⟩ , (2.81)
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2 Quantum Field Theory in the Vacuum

where fa(x) are arbitrary continuous and differentiable functions and |F ⟩ is an arbitrary state

vector.

To obtain the conserved quantity corresponding to the gauge invariance, an infinitesimal set of

symmetry transformation δαa(x) is considered:

(︁
L(x)|αa(x)=δαa(x) − L(x)|αa(x)=0

)︁
|F ⟩ =

(︄
dL(x)
dαa(x)

⃓⃓⃓⃓
αa(x)=0

δαa(x) +O(δαa(x)2)

)︄
|F ⟩

=

(︄∑︂
i

(︃
∂L(x)
∂ψi(x)

dψi(x)

dαa(x)
+

∂L(x)
∂[∂µψi(x)]

d(∂µψi(x))

dαa(x)

)︃⃓⃓⃓⃓
αa(x)=0

δαa(x) +O(δαa(x)2)

)︄
|F ⟩ !

= 0 . (2.82)

Considering only leading order terms in δαa(x) and making use of the Euler–Lagrange equation,

∂L(x)
∂ψi(x)

= ∂µ
∂L(x)

∂[∂µψi(x)]
, (2.83)

the well-known statement of Noether’s theorem

∂µJ
aµ(x) |F ⟩ = ∂µ

∑︂
i

(︃
∂L(x)

∂(∂µψi(x))

dψi(x)

dαa(x)

)︃⃓⃓⃓⃓
αa(x)=0

|F ⟩ = 0 , (2.84)

is obtained, saying that for every differentiable continuous symmetry there is a conserved current

Jaµ(x).

Consequently, fields have to transform non-trivially under a certain group transformation to obtain

a non-vanishing conserved current. E.g. considering an invariance under a U(n) (unitary group)

transformation, the Lagrangian has to be invariant under the transformation

ψi(x) → ψ′
i(x) = eiα

a(x)taψi(x) , (2.85)

with t0 being a diagonal matrix and ti being the generators of the SU(n) (special unitary group)

symmetry transformation defined in equation (A.24).

Considering a general Lagrangian of a QFT, mass terms are trivially invariant under a U(n) group

transformation while the kinetic terms are not:

m2
i (ψ

′
i)
†(x)ψ′

i(x) = m2
iψ

†
i (x)ψi(x) (2.86a)

|∂µψ′
i(x)|2 = | exp(iαa(x)ta)(∂µ + i(∂µα(x)

a)ta)ψi(x)|2

̸= | exp(iαa(x)ta)∂µψi(x)|2 = |∂µψi(x)|2 . (2.86b)

Consequently, to obtain a gauge invariant Lagrangian, the derivative of a field transforming non-

trivially under a U(n) transformation needs to be replaced by a covariant derivative

∂µ → Dµ with Dµ = ∂µ − igAµ(x) , (2.87)

where Aµ(x) = Aa
µ(x)t

a is an element of the Lie-Algebra which transforms as defined in equation

(A.25).

Next, to make the interaction term induced by the covariant derivative physical and not completely

arbitrary, the local field Aµ(x) has to be interpreted as a quantum field. Therefore, a kinetic term
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2.6 Introduction Into Gauge Theories

for the gauge field is added to the Lagrangian which also needs to be invariant under the gauge

transformation. This requirement lead to the Yang-Mills actions, defined in equation (A.20), which

in case of considering a non-abelian gauge theory (SU(n) with n > 1) give also rise to interaction

terms among the gauge fields.

Because all derivatives of a field transforming non-trivially under a U(n) transformation are replaced

by covariant derivatives, the equation of motion of the gauge field can be expressed in terms of the

conserved current defined in (2.84):

∂µ
∂L(x)

∂[∂µAa
ν(x)]

=
∂L(x)
∂Aa

ν(x)
= −gJa ν(x) . (2.88)

Since ∂µJ
aµ(x) = 0 holds, the kµ polarization of the gauge field does not couple to Ja ν(x), which

for tree-level processes means that the propagator can be rewritten into a Lorentz invariant form,

cf. section 2.3.

2.6.2 The Gauge-Fixing Procedure

As was discussed in section 2.3, for non-abelian gauge theories, one cannot simply count on gauge

invariance to rewrite the propagator into a Lorentz invariant form because non-vanishing loop

contributions from unphysical polarizations are obtained. Moreover, it was investigated that the

contribution of the unphysical polarizations vanishes when one of the gauge bosons in the loop is

considered to be on-shell because in this case, the conservation of the gauge current guarantees

that the unphysical polarizations do not contribute. However, another method to remove the

unphysical loop contributions known as gauge fixing, which uses gauge invariance, is typically used

in literature.

As can be seen in equation (A.25), the appearance of the kµ polarization is a relic of gauge invariance.

Consequently, one can get rid of the paths of the unphysical polarizations by introducing a Dirac

delta function – fixing the gauge function – into the path integral:∫︂
DA δ(α− f(x)) eiS . (2.89)

Next, choosing the gauge function such that ∂µAµ is fixed to ω(x), the Dirac delta function is

accompanied by a functional determinant:∫︂
DA det

(︃
δG

δα

)︃
δ(G(α)) eiS , (2.90)

with G(α(x)) = ∂µAµ(x) − ω(x). The functional determinant can be calculated by introducing

Faddeev-Popov ghosts to the path integral:

det

(︃
δG

δα

)︃
∼
∫︂

DcDc exp
[︃
i

∫︂
d4x

(︂
−(∂µca(x))(∂µc

a(x)) + gfabc(∂µca(x))cb(x)Ac
µ(x)

)︂]︃
. (2.91)

Consequently, additional Feynman rules for the anti-commuting ghost fields (ca(x)) are obtained

which precisely cancel the loop contributions from the unphysical polarizations. To obtain the
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2 Quantum Field Theory in the Vacuum

gauge boson propagator in a nice form only depending on gµν and kµkν , a proper superposition of

different ω(x) can be used resulting in an additional gauge fixing term in the Lagrangian

L = L0 −
1

2ξ
(∂µAa

µ(x))
2 , (2.92)

with the arbitrary gauge-fixing parameter ξ. The resulting propagator for the gauge bosons is given

by equation (A.63).

2.7 Spontaneously Broken Symmetries

In this section, first of all, the concept of spontaneous symmetry breaking (SSB) is introduced.

Furthermore, the equations of motion for fields after SSB are investigated and issues appearing

when quantizing the resulting equations of motion are briefly discussed.

2.7.1 Essentials of Spontaneous Symmetry Breaking

Considering a theory containing a complex scalar field ϕ, the corresponding renormalizable Lagran-

gian ignoring interaction terms with other fields in the most general form is given by

Lϕ(x) = [∂µϕ
†(x)][∂µϕ(x)]−m2

ϕϕ
†(x)ϕ(x)− λ

2

(︂
ϕ†(x)ϕ(x)

)︂2
:= [∂µϕ

†(x)][∂µϕ(x)]− V (x) . (2.93)

This potential is invariant under a local U(1) symmetry transformation: ϕ(x) → eiα(x)ϕ(x). To

obtain a stable potential, λ > 0 is required while m2
ϕ can be negative resulting in a minimum of

the potential for non-vanishing field values. As a consequence, the field takes on a non-vanishing

vacuum expectation value (VEV)

| ⟨0|ϕ|0⟩ | = v/
√
2 ̸= 0 , (2.94)

with v2 = −2m2
ϕ/λ. Note that the absolute value appears because the scalar field is complex,

implying that the minimum of the potential is not distinct but continuous. However, the VEV is

observable and therefore distinct. Next, the complex scalar field can be globally rotated, ϕ(x) →
eiαϕ(x), such that only a certain component obtains a VEV, ⟨0|ϕi|0⟩ =

√
2vδi0, where ϕi are the

real scalar field components of ϕ.

Defining

ϕ(x) =
1√
2
(v + h(x) + i φ(x)) e0 , (2.95)

where e0 = eiϕ0 denotes the direction of symmetry breaking, it can be deduced that the fields φ,

which are orthogonal to the VEV, become massless:

L′
ϕ(x) =

1

2
[∂µh(x)][∂

µh(x)] +
1

2
[∂µφ(x)][∂

µφ(x)]−
(︄
m2

ϕ

2
+
λ

4
v2

)︄[︁
2vh(x) + h(x)2 + φ(x)2

]︁
− λ

2
v2h(x)2 − λ

2
vh(x)

[︁
h(x)2 + φ(x)2

]︁
− λ

8

[︁
h(x)2 + φ(x)2

]︁2
, (2.96)
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2.7 Spontaneously Broken Symmetries

with m2
ϕ+λ/2v2 = 0 in the minimum of the potential. The fact that for each spontaneously broken

symmetry a massless particle appears is known as the Goldstone’s theorem and the corresponding

particles are called Goldstone bosons.

Next, considering the case where the complex scalar field transforms non-trivially under an U(1)

gauge transformation, the corresponding gauge invariant Lagrangian is given by

L(x) = −1

4
Fµν(x)F

µν(x) + [(∂µ − igAµ(x))ϕ(x)]
†[(∂µ − igAµ(x))ϕ(x)]− V (x) . (2.97)

Defining ϕ again as in equation (2.95), it can be seen that the VEV does not only break the rotation

invariance of ϕ′ but the gauge invariance of the corresponding Lagrangian:

L(x) = L′
ϕ(x)−

1

4
Fµν(x)F

µν(x)− gAµ(x)
[︁
(v + h(x))[∂µφ(x)]− [∂µh(x)]φ(x)

]︁
+
g2

2

[︁
(v + h(x))2 + φ(x)2

]︁
Aµ(x)A

µ(x) , (2.98)

withm2
A = g2v2 being the mass of the gauge boson induced by SSB. Note that in case of spontaneously

broken gauge symmetries, the corresponding Goldstone bosons become unphysically. This can be

understood from the fact that they can be absorbed by an according gauge transformation.

2.7.2 Equations of Motion for Goldstone Bosons and Massive Vector Bosons

Considering the Lagrangian given in equation (2.98), due to the mixing term (mAAµ(x)[∂
µφ(x)]),

the resulting free equations of motion for Aµ and φ are coupled. This becomes clear when considering

the Euler-Lagrange equation for φ:

∂µ
∂L(x)

∂[∂µφ(x)]
= ∂µ [∂µφ(x)− g[v + h(x)]Aµ(x)] =

∂L(x)
∂φ(x)

⇒∂µ [∂µφ(x)−mAAµ(x)]−
∂L0

∂φ(x)
=
∂LI(x)

∂φ(x)
− ∂µ

∂LI(x)

∂[∂µφ(x)]
=: −Jφ(x) , (2.99)

with

Jφ(x) = −g[∂µAµ(x)]h(x)− 2gAµ(x)[∂
µh(x)]− g2φ(x)Aµ(x)A

µ(x)

+
λ

2
[2vh(x) + h(x)2 + φ(x)2]φ(x) (2.100)

for the considered Lagrangian and L0(x) being the free Lagrangian. Consequently, ∂L0(x)/∂φ(x) = 0

is obtained in the minimum of the potential.

Next, the Euler-Lagrange equations for Aµ are given by

∂ν
∂L(x)

∂[∂νAµ(x)]
= −∂νFνµ(x) =

∂L(x)
∂Aµ(x)

= −J1
A,µ(x)−mA[∂µφ(x)] +m2

AAµ(x) , (2.101)

with

J1
A,µ(x) = − ∂LI(x)

∂Aµ(x)
= g (h(x)[∂µφ(x)]− [∂µh(x)]φ(x))− g2

[︁
2vh(x) + h(x)2 + φ(x)2

]︁
Aµ(x) .

(2.102)
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Using this equation,

∂µ
(︁
JA,µ(x) +mA[∂µφ(x)]−m2

AAµ(x)
)︁
= 0 (2.103)

can be derived with

∂µ∂νFνµ(x) = ∂µ∂ν
∂LI(x)

∂[∂νAµ(x)]
=: −∂µJ2

A,µ(x) , (2.104)

which vanishes for the considered Abelian case and JA,µ(x) = J1
A,µ(x) + J2

A,µ(x). Putting this into

equation (2.99),

∂µ

mA
JA,µ(x) = Jφ(x)−

∂L0(x)

∂φ(x)
(2.105)

is obtained. This important result states that in the minimum of the potential, the amplitude of

coupling to a Goldstone boson with momentum kµ is equivalent to the amplitude of coupling to a

vector boson with momentum kµ times kµ/mA. This fact is well-known as Goldstone equivalence

theorem.

If one now tries to switch to the Hamilton formalism in order to quantize the theory, A0(x) is still an

auxiliary field because Π0(x) vanishes, cf. equation (2.43) and following. However, replacing A0(x)

by making use of equation (2.101),

A0(x) =
1

m2
A

(︁
−∂iFi0(x) + JA,0 +mA∂0φ(x)

)︁
, (2.106)

the conjugated field of φ becomes independent of ∂0φ(x):

Πφ(x) = ∂0φ(x)−mAA0(x) =
1

mA

(︁
∂iFi0(x) + JA,0(x)

)︁
. (2.107)

Thus, ∂0φ(x) cannot be expressed in terms of Πφ(x) but only in terms of A0(x) so that naively, it

seems not possible to switch to the Hamilton formalism24.

To overcome this issue, typically, the gauge invariance of the considered Lagrangian, cf. equation

(2.97), is used to remove the Goldstone bosons from the theory – known as unitary gauge – or to

derive in analogy to the gauge fixing procedure of massless vector bosons the well-known Rξ gauge

Feynman rules, cf. e.g. references [37, 69, 64].

2.8 The Standard Model of Particle Physics

The SM of particle physics summarizes the knowledge about observed particles and their interaction

which can be put together into a consistent theory. Consequently, the SM does not contain any

particle not observed but it includes interaction terms which are needed to obtain a consistent

theory but have not been directly measured yet (e.g. the Yukawa interaction of the light quarks

24For switching to the Hamilton formalism, auxiliary fields as well as time derivatives of fields need to be replaced by

fields and conjugated field.
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2.8 The Standard Model of Particle Physics

or the Higgs self interaction). The fermionic particle content of the SM comes in three families

which only differ by their Yukawa interaction. Each family consists of a right-chiral lepton (ℓR,i),

a left-chiral lepton doublet (ℓi), an up-type right-chiral quark (Ui), a down-type right-chiral quark

(Di) and a left-chiral quark doublet (Qi). In addition, for each fermion there is an antiparticle with

opposite charge (ℓR,i, ℓi, U i, Di, and Qi). This classification of the fermions is a consequence of the

three gauge symmetries, cf. section 2.6, being part of the SM.

The Lagrangian of the SM is invariant under a U(1)Y × SU(2)L × SU(3)c gauge transformation.

The gauge boson associated to the U(1)Y is Bµ(x). The fermionic degrees of freedom forming one

class carry the same hypercharge (Y ) determining their transformation behavior

Ψi(x) → Ψ′
i(x) = exp (iYiα(x))Ψi(x) , (2.108)

resulting in a different coupling strength to the corresponding gauge boson (Dµ = ∂µ − iYig
′Bµ(x)).

The SU(2)L symmetry has three gauge bosons W b
µ(x) (b ∈ {1, 2, 3}). Left- and right-chiral particles

are distinguished by their transformation behavior under the SU(2)L. Right-chiral particles are

uncharged and therefore singlets under the SU(2)L while left-chiral particles transform as doublets

and contain two degrees of freedom. Furthermore, the strong interaction (SU(3)c) has eight gauge

bosons called gluons Ga
µ(x) (a ∈ {1, . . . , 8}) and differentiates between leptons which are singlets

and quarks which are triplets under the SU(3)c.

In contrast to U(1) symmetries where the gauge bosons are uncharged under the corresponding

symmetry, in SU(n) symmetries the gauge bosons self interact. As a consequence of this self

interaction, the energy which is needed to separate a bound state diverges. Consequently, fermions

which are charged under an SU(n) and the corresponding gauge bosons cannot be observed as

free particles but only as uncharged bound states. Thus, this so-called confinement does not allow

for distinguishing the single SU(3)c triplet components. For this reason, it is not distinguished

between quarks of different color, and they are simply counted as three degrees of freedom. The

same would also be true for the SU(2)L doublets without the last ingredient of the SM, the Higgs

mechanism. Besides fermions and gauge bosons, the SM contains a complex scalar SU(2)L doublet

H(x). This doublet is also charged under the U(1)Y but not under the SU(3)c. Consequently,

besides self interactions and the coupling to the gauge bosons, an interaction term which involves

right- and left-chiral leptons or quarks is allowed. As already mentioned, these Yukawa interaction

terms distinguish the three families. The crucial point of the Higgs mechanism is that H(x) is

spontaneously broken, cf. section 2.7, meaning that the H(x) takes on a non-vanishing VEV. As a

consequence, the electroweak SU(2)L×U(1)Y symmetry (Glashow-Salam-Weinberg model [31, 65])

breaks down to the electromagnetic interaction U(1)em and the weak interaction which is no longer

associated with a gauge symmetry. While the gauge boson of the U(1)em called photon (Aµ(x))

remains massless, the three remaining bosons (W±(x) and Z(x)), which are the mediators of the

weak interaction, become massive. Moreover, mass terms between right-chiral singlets and left-

chiral doublet components are induced by electroweak symmetry breaking (EWSB). Furthermore,

confinement is resolved, meaning that the single doublet components can be observed as free particles

which can be distinguished by their masses.

Finally, the basis of three left-chiral quark doublets in which each component Qi interacts with

one of the right-chiral quarks (Ui or Di) via the Yukawa interaction does not coincide with the
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2 Quantum Field Theory in the Vacuum

basis in which a SU(2)L transformation is diagonal. Consequently, in Yukawa basis conversions

between the different quark families are allowed and can be described by the Cabibbo-Kobayashi-

Maskawa (CKM) matrix, cf. equation (A.93). For the leptons – assuming neutrinos to be massless

– the basis of the doublets is defined such that each doublet just couples to one of the right-chiral

charged leptons.

Defining the direction of EWSB such that only the lower real component take on an VEV, the

SU(2)L doublets are defined as

Ψℓi(x) =

(︄
Ψνi(x)

Ψℓ−(x)

)︄
, ΨQi(x) =

(︄
ΨQ1

i
(x)

ΨQ2
i
(x)

)︄
, and H(x) =

1√
2

(︄
0

v + h(x)

)︄
, (2.109)

with the left-chiral neutrinos νi, the left-chiral charged leptons ℓ−, the left-chiral up-type quarks

Q1
i , the left-chiral down-type quarks Q2

i , the Higgs particle h(x), and the VEV of the Higgs field v.

Furthermore, the hypercharge of the different particles

Yℓi = −1

2
, YQi =

1

6
, YH =

1

2
, YℓR,i

= −1 , YUi =
2

3
, and YDi = −1

3
, (2.110)

is associated to the conserved electric charge (Q) by

Q = t32 + Y =
σ3
2

+ Y , (2.111)

with t32 being a generator of SU(2)L. After EWSB, the gauge bosons of the electroweak interaction

are redefined:

Aµ(x) =
1√︁

g2 + g′2

(︁
g′W 3

µ(x) + gBµ(x)
)︁
, (2.112a)

W±
µ (x) =

1√
2

(︁
W 1

µ(x)∓W 2
µ(x)

)︁
, (2.112b)

Zµ(x) =
1√︁

g2 + g′2

(︁
−gW 3

µ(x) + g′Bµ(x)
)︁
, (2.112c)

such that the photon stays massless while the W±(x) and the Z(x) bosons obtain a mass of

mW =
g

2
v and mZ =

√︁
g2 + g′2

2
v , (2.113)

with g′ and g being the gauge couplings of the U(1)Y and SU(2)L symmetries, respectively. The

gauge coupling constant of SU(3)c is in the following called gs.

2.9 Flavor Oscillation

In section 2.2, transition probabilities among different state vectors induced by the interaction

Hamiltonian are calculated. State vectors with a definite particle content (species and energy)

are considered meaning that all particles are completely unlocalized. However, usually, the focus

is set on transition probabilities for scattering processes of localized particles. Nevertheless, as

long as the annihilation and production region of the initial and final states overlap, the result
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2.9 Flavor Oscillation

from perturbation theory is a very good approximation because the size of the wave packets is so

large that integrating over all spacetime differences is a reasonable approximation. This changes

when two or more locally separated interaction regions become relevant. Such processes are usually

treated as two independent interaction processes which is reasonable as long as a distinct particle is

exchanged between the separated interaction regions. However, if instead a superposition of different

particles is exchanged, interference effects – known as flavor oscillation (FO) – can be relevant. As

a consequence, the squared amplitude for the whole process – production and measurement – and

not for both individually has to be calculated.

Considering a process where an interaction eigenstate which does not correspond to an energy

eigenstate ψi(x) is produced with energy E or momentum p⃗ the corresponding wave function is

ψ(x) =
∑︂

αiψi(x) =
∑︂

αiuie
ipix , (2.114)

with Σα2
i = 1. Furthermore, considering the high energy limit pi =

√︂
E2 −m2

i ≈ E −m2
i /(2E) or

Ei =
√︂
p2 +m2

i ≈ p+m2
i /(2p), the wave function becomes

ψ(x) =
∑︂

αiuie
iE(t−xp) exp (−i(E − pi)xp) ≈

∑︂
αiuie

iE(t−xp) exp

(︃
i
m2

i

2E
xp

)︃
or (2.115a)

ψ(x) =
∑︂

αiuie
ip(t−xp) exp (i(Ei − p)t) ≈

∑︂
αiuie

ip(t−xp) exp

(︃
i
m2

i

2p
t

)︃
, (2.115b)

with xp = x⃗p⃗/p. While the first exponential function is the same for all particle species – just giving

rise to an overall phase factor – the second exponential function induces a particle dependent phase

resulting in a spacetime dependent amplitude for interaction eigenstates which do not correspond

to energy eigenstates.

However, for a realistic derivation of FO, wave packets, which are localized in space and consequently

do not carry a distinct momentum, need to be considered. FO only occurs when the momentum

uncertainty is comparable to or larger than the momentum differences of the energy eigenstates

because otherwise the individual mass eigenstates can be distinguished. Consequently, for being

able to observe FO involving larger mass squared differences, a larger momentum uncertainty is

needed, requiring a more precise localization.

It is notable that this condition directly results from the uncertainty principle (σxσp ≥ 1/2) because

a localization which is roughly smaller than the oscillation length is required (σx ≲ 2E/(∆m2
i )) for

FO to be relevant. Thus, the uncertainty principle requires σp ≳ ∆m2
i /(2E).

Note that due to the momentum uncertainty the energy is not definite either, implying that the

oscillation length is not distinct. In the case of E ≫ σE , this effect is irrelevant at the scale of the

oscillation length. However, for much larger distances, this effect leads to a damping of FO.

For two reasons, the phenomenon of FO is of special relevance for neutrinos. First of all, they only

interact with other SM particles via the weak interaction, meaning that only eigenstates of this

interaction can be observed. Secondly, their mass differences are very small (< eV), implying that

for relevant energies, the oscillation length is macroscopic and therefore observable. Considering

e.g. neutrinos produced in nuclear reactions (E ∼ MeV), the oscillation length is of order ∼ km and

∼ 30km for ∆m2
atm and ∆m2

sol, respectively, cf. equation (C.4).
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Besides, FO effects are also relevant for neutral mesons where the energy eigenstates do not correspond

to a distinct quark content inducing particle-antiparticle oscillations, such as K0 − K
0
, D0 − D

0
,

and B0 −B
0
oscillations.

It can be concluded that FO is relevant when both the production and detection uncertainties are

small compared to the oscillation length or when the free propagation length is comparable to the

oscillation length so that oscillation phenomena become relevant but do not average out.

2.10 Decaying Particles and CP violation

In this section, first of all, the effective time evolution of a particle whose amplitude is damped

by an interaction rate is considered in detail. Afterwards, the amount of CP violation – being a

key element of all baryogenesis models – induced by the interaction rate part of the effective time

evolution is calculated.

2.10.1 Effective Free Equation of Motion of Decaying Particles

In section 2.2, time-dependent perturbation theory for QFT is introduced as a general method for

the calculation of transition amplitudes between eigenstates of the time-independent undisturbed

Hamiltonian. At that, the undisturbed Hamiltonian is assumed to be equivalent to the free Hamilto-

nian (Ĥ0). This assumption is well motivated from the observation of approximately free particles.

However, transition amplitudes have a pole at an exchanged four-momentum fulfilling the energy

momentum relation of the mediator (p2 = m2
mediator) resulting in a divergent transition amplitude.

This issue can be understood from the fact that the interaction range diverges when the intermediate

state is produced on-shell and, at the same time, at each spacetime point, the intermediate state

has a non-vanishing probability to produce the final state. Actually, the non-vanishing interaction

probability induces a damping of the mediator amplitude, implying that the amplitude of producing

the final state should not diverge but is less or equal to one. Thus, this damping of the mediator,

induced by a non-vanishing interaction rate, needs to be taken into account when mediators are

produced close to their mass-shell. This can e.g. be done by defining an effective equation of motion

including such a damping term.

In practice, divergent transition amplitudes often arise from s-channel diagrams, where the initial

states produce the mediator which then decays into the final state. In this case, producing the

mediator on-shell implies that the mediator can at least decay into the initial as well as the final

state. This damping of the mediator amplitude, induced by a decay width, is not state dependent

but only determined by the theory, meaning that it can be included into the effective equation of

motion without difficulty. Using this, divergences arising from s-channel diagrams disappear and

the resonant part of the cross section becomes the production probability of the intermediate state

times the branching ratio of the decay into the final state of interest.

36



2.10 Decaying Particles and CP violation

To derive the effective equation of motion, it is used that – similar to a measurement – the state

changing interactions induce a damping of the amplitude squared25. In addition, the interaction

amplitude of a state induced by a certain interaction I is determined by the scalar product of the

wave function with the corresponding interaction eigenstate |ψI⟩. As a consequence, the damping

induced by the considered interaction can be written as

d
dt | ⟨ψI |ψ(t)⟩ |2
| ⟨ψI |ψ(t)⟩ |2

= 2
d
dt | ⟨ψI |ψ(t)⟩ |
| ⟨ψI |ψ(t)⟩ |

= −ΓI , (2.116)

where ΓI is the interaction rate of |ψI⟩ and the time derivative does not act on |ψI⟩. Furthermore, the

interaction rate does not damp the whole state but only the part being proportional to the interaction

eigenstate. Thus, the generalized equation of motion including the interaction rate induced by the

interaction Hamiltonian is given by

i
d

dt
|ψ⟩ =

(︄
Ĥ− i

2

∑︂
I

ΓI |ψI⟩ ⟨ψI |
)︄
|ψ⟩ :=

(︃
Ĥ− i

2
Γ̂

)︃
|ψ⟩ := Ĥ |ψ⟩ , (2.117)

where I runs over all relevant interactions and Ĥ and Γ̂ are both Hermitian operators meaning that

iΓ̂ is skew-Hermitian.

This form of the equation of motion is also reproduced considering self-energy corrections Π(p2) –

loop corrections with only two external lines – in more detail. In the case where the decay into the

loop particles is kinematically allowed, the self-energy correction becomes complex where, according

to the optical theorem, the imaginary part is given by

Im[Πi(p
2)] =

1

2

∫︂
|Mi→f1...fn |2(2π)4δ4

(︃
pi −

∑︂
l

pfl

)︃∏︂
l

dp̃fl =
√︁
p2Γi→f1...fn(p

2) , (2.118)

with f1 . . . fn being all combinations of loop particles into which the particle i can decay and

Γi→f1...fn(p
2) being the decay width of the considered particle in its rest frame, cf. equation (2.23).

This imaginary part of the self-energy correction is non-Hermitian, implying that it cannot be

absorbed into the Hamiltonian using renormalization. As a consequence, the effective free Lagrangian

can be written as

Leff = ϕ†i (x)∂
µ∂µϕi(x) + ϕ†j(x)

[︂
−m2

ij − Re[Πij(p
2)]− i

√︁
p2Γij(p

2)
]︂
ϕi(x) , (2.119)

so that the equation of motion becomes

d2

dt2
ϕ(x) =

[︂
∇2 +m2 +Re[Π(p2)] + i

√︁
p2Γ(p2)

]︂
ϕ(x) . (2.120)

Using again a Fourier ansatz for the field operators, cf. equation (A.39), the equation of motion in

momentum space is obtained:

k20ϕ(x) =
[︂
k⃗
2
+m2 +Re[Π(k2)] + i

√
k2Γ(k2)

]︂
ϕ(x) . (2.121)

25The wave function of the scattered particle typically does not interfere in a relevant way with the unscattered one

anymore.
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Approaching e.g. k2 = m2
i + imiΓi with mi and Γi being real, the eigenvalue equation becomes

non-trivial:[︁
m2

i + imiΓi

]︁
ϕ(x) =

[︁
m2 +Re[Π(m2

i + imiΓi)] + i
√︂
m2

i + imiΓi Γ(m
2
i + imiΓi)

]︁
ϕ(x) . (2.122)

In case of m2
i ≫ imiΓi, this approximately simplifies to

imi[Γi − Γ(m2
i )] =

[︁
m2 +Re[Π(m2

i )]−m2
i

]︁
. (2.123)

Furthermore, in the limit

√︂
k⃗
2
+m2

i ≫
√
miΓi, the intuitive result

k0 =

√︂
k⃗
2
+m2

i + imiΓi ≈
√︂
k⃗
2
+m2

i + i
mi

2

√︂
k⃗
2
+m2

i

Γi (2.124)

is obtained, with miΓi/

√︂
k⃗
2
+m2

i being the Lorentz boosted decay width.

Note that the propagator resulting from the effective equation of motion modifies to

i

k2 −m2
i + imiΓi

, (2.125)

which is well-known as the Breit-Wigner propagator.

2.10.2 CP Violation

This paragraph focuses on the violation of the CP symmetry – in the following called CP violation

– which is a key element for the generation of the observed B asymmetry, cf. chapter 4. At tree-

level, neglecting the decay width in the generalized equation of motion discussed previously, the

amplitude of processes are in general not CP invariant because couplings are replaced by their

complex conjugate. However, each vertex and each propagator appears with a factor of i in the matrix

element and, at tree level, the number of both vertices and propagators for interfering diagrams

differ by the same number. Consequently, the CP -transformed matrix element is determined by the

complex conjugate of the considered matrix element, implying that the transition probability is CP

invariant.

Next, including the decay width of particles, a CP -invariant complex phase arises from the Breit-

Wigner propagator. As a consequence, interfering diagrams can deviate by a complex phase which

changes under a CP transformation26, as well as a complex phase which is CP invariant:

CP -odd phase: eiφ
CP
odd

CP→ e−iφCP
odd , (2.126a)

CP -even phase: eiφ
CP
even

CP→ eiφ
CP
even . (2.126b)

Besides including the decay width, a CP -even phase also arises from vertex corrections when the

decay into loop particles is kinematically allowed. In this case, the complex phase arises from the

26In the SM, a CP -odd phase naturally arises from Yukawa interactions which, in contrast to the gauge interactions,

arise with complex coupling constants.
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2.10 Decaying Particles and CP violation

interference of the decay into the loop particles with a succeeding scattering process producing the

final states. Thus, similar to producing the mediator on-shell, the considered process decomposes

into two distinct scattering processes which each arises with a complex phase of i (M = iM1M2).

Nonetheless, in this thesis, the focus is mainly on the CP violation induced by particle decays

which alter the eigensystem. As a consequence, the resulting CP violation can in principle be large

compared to the CP violation induced by vertex corrections which are always suppressed by the

additional scattering amplitude.

The CP violation induced by particle decays can be deduced from the eigenvalues of the effective

equation of motion. To find a general analytic expression for the eigensystem, time-independent

perturbation theory can be used when the time evolution can be divided accordingly. In many

cases, it is e.g. reasonable to assume that the interaction rate is small compared to the differences of

the energy eigenstates, meaning that Γ̂ can be treated as a perturbation. Consequently, cf. appendix

(A.3.3), the eigensystem is approximately given by

λi = Ei −
i

2
⟨ψi|Γ̂|ψi⟩ −

1

4

∑︂
j ̸=i

| ⟨ψj |Γ̂|ψi⟩ |2
Ei − Ej

, (2.127a)

|ψ′
i⟩ = |ψi⟩ −

i

2

∑︂
j ̸=i

⟨ψj |Γ̂|ψi⟩
Ei − Ej

|ψj⟩ . (2.127b)

At first sight, this does not seem to violate the CP symmetry because the eigenvalues of the equation

of motion for particles and antiparticles are equivalent27. Note that the equivalence of the interaction

rate of particles and antiparticles is a direct consequence of the CPT invariance and unitarity of the

S-matrix, implying that, summing over all processes, the production and annihilation probabilities

of a state are equivalent. However, considering only the damping induced by a particular interaction,

CP violation becomes visible [53]:

Γ′
I,i = ⟨ψi|Γ̂I |ψi⟩+

1

2

∑︂
j ̸=i

Im

[︃⟨ψi|Γ̂I |ψj⟩ ⟨ψj |Γ̂|ψi⟩
Ei − Ej

]︃
. (2.128)

Thus, the total interaction rate is CP invariant but the interaction rates for the individual processes

are not when the involved couplings are complex and multiple processes, inducing non-vanishing

⟨ψi|Γ̂I |ψj⟩ with different complex phases, contribute. Furthermore, substantial CP asymmetry is

only achieved when the mixing is not too small, implying that ⟨ψj |Γ̂|ψi⟩ needs to be sizable compared

to Ei − Ej .

Another case of interest, which allows using perturbation theory, is a time evolution operator which

is dominantly diagonal in a certain basis:

Ĥ = Ĥ0 + ĤI , with |(Ĥ0)ii − (Ĥ0)jj | ≫ |(ĤI)ij | for i ̸= j , (2.129)

Ĥ0 being diagonal ((Ĥ0)ij = (Ei−iΓi/2)δij), and ĤI being off-diagonal. In this case, the eigensystem

27⟨ψi|Γ̂|ψi⟩ is real because Γ̂ is Hermitian
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2 Quantum Field Theory in the Vacuum

is approximately given by

λi = Ei −
i

2
Γi + 2

∑︂
j ̸=i

⟨ψi|ĤI |ψj⟩ ⟨ψj |ĤI |ψi⟩
2(Ei − Ej)− i(Γi − Γj)

, (2.130a)

|ψ′
i⟩ = |ψi⟩+ 2

∑︂
j ̸=i

⟨ψj |ĤI |ψi⟩
2(Ei − Ej)− i(Γi − Γj)

|ψj⟩ . (2.130b)

Consequently, the interaction rate, being the imaginary part of the eigenvalue, is28

Γ′
i = Γi − 4

∑︂
j ̸=i

(Γi − Γj)Re[⟨ψi|ĤI |ψj⟩ ⟨ψj |ĤI |ψi⟩] + 2(Ei − Ej)Im[⟨ψi|ĤI |ψj⟩ ⟨ψj |ĤI |ψi⟩]
4(Ei − Ej)2 + (Γi − Γj)2

= Γi − 4
∑︂
j ̸=i

(Γi − Γj)(|Ĥij |2 + |Γij |2/4) + (Ei − Ej)Re[ΓijĤ
∗
ij ]

4(Ei − Ej)2 + (Γi − Γj)2
, (2.131)

with Ĥij = ⟨ψi|ĤI |ψj⟩ and Γij = ⟨ψi|Γ̂I |ψj⟩29. Thus, the total interaction rate is again CP invariant.

However, considering a particular interaction process, in case of Im[ΓI,ijΓ̂
∗
ij ] ̸= 0, a CP -violating

interaction rate is obtained:

Γ′
I,i = ΓI,i − 4

∑︂
j ̸=i

(ΓI,i − ΓI,j)(|Ĥij |2 + |Γij |2/4)− (Ei − Ej)Re[⟨ψi|Γ̂I |ψj⟩ ⟨ψj |ĤI |ψi⟩]
4(Ei − Ej)2 + (Γi − Γj)2

= ΓI,i − 4
∑︂
j ̸=i

(ΓI,i − ΓI,j)(|Ĥij |2 + |Γij |2/4)− (Ei − Ej)(Re[ΓI,ijĤ
∗
ij ]− Im[ΓI,ijΓ̂

∗
ij ]/2)

4(Ei − Ej)2 + (Γi − Γj)2
.

(2.132)

Note that for Γi − Γj ≪ Ei − Ej , the CP -violating term is equivalent to the one case considered

before, cf. equation (2.128).

It can be concluded that substantial CP asymmetry can only be achieved when |Γ̂ij | is not too

small compared to [4(Ei−Ej)
2+(Γi−Γj)

2]/(Ei−Ej), requiring an interaction rate which is sizable

compared to the energy difference and an interaction rate which is not dominantly diagonal. Conse-

quently, either sizable couplings or small mass squared differences are needed.

Furthermore, it should be mentioned that in the used approximation where the eigensystem is mainly

determined by Ĥ0, FOs become irrelevant because either the off-diagonal interaction rate is small

compared to the oscillation length, or the interaction rate is mainly diagonal in the eigenbasis of the

free equation of motion, or the interaction rate dominates and the eigenbasis is determined by the

interaction eigenbasis. Only in the non-perturbative case where the interaction rate induces large

mixing between the eigenstates of the free equation of motion with energy differences of the order

of the interaction rate, FO becomes relevant.

28A comparable result can be found e.g. in references [9, 24] for the production rate of sterile neutrinos.
29Note that the term proportional to Γi − Γj is induced by the mixing of the undisturbed eigenstates while the term

proportional to Ei − Ej considers the damping induced by the off-diagonal elements of the interaction rate.
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In this chapter, the focus is shifted from considering the time evolution of a few single particles to

the description of many-particle systems. In principle, also a many-particle system can be described

by an exact state vector. However, considering many particles, an exact description is inconvenient.

To find an effective description, the basic concepts of thermodynamics and thermal equilibrium

are introduced in section 3.1. Afterwards, in section 3.2, the focus is turned to QFT again and

the time evolution of the many-particle state vector induced by inelastic scattering processes is

examined leading to the well-known Boltzmann equations. These equations are e.g. essential for the

investigation of particle densities or particle-antiparticle asymmetries of the early universe. Because

the focus in this thesis is on the latter, the Boltzmann equations for chemical potentials are derived

in order to handle the different properties of bosons and fermions properly.

Besides “real” scattering processes changing the state of the system also coherent forward scattering

occurs leaving the state vector unchanged. These processes give rise to an effective potential,

implying that effective masses and couplings become dependent on the state of the system. In

section 3.3, it is discussed how these corrections can be taken into account, leading to the well-

known formalism of thermal quantum field theory (TFT). Subsequently, in section 3.4, details of

the approximation of the thermal self-energy corrections are discussed. These thermal masses are

e.g. of relevance to determine which decay processes, being of special interest in light of Boltzmann

equations, are kinematically allowed at which temperature scale. Furthermore, both TFT and the

resulting thermal masses are needed for the calculation of the effective Higgs potential in dependence

of the temperature investigated in section 6.3

Afterwards, in section 3.5, the influence of thermal masses on FO is examined. Finally, in section

3.6, the validity of the thermal equilibrium assumption is discussed, allowing to simplify Boltzmann

equations significantly. Moreover, the thermal rates for the dominant Yukawa interactions (top,

bottom, and tau) and the scales at which they reach thermal equilibrium are calculated.

3.1 Introduction to the Basic Concepts of Thermodynamics and

Thermal Equilibrium

In this section, the most relevant quantities describing a system in thermodynamic equilibrium are

shortly motivated. Furthermore, the free energy density, which can be used to deduce equilibrium

states, is introduced. For a more detailed derivation of the given equations and further explanations,

cf. appendix B.1.

According to QFT, a system can be fully described as a set of particles i where each particle can

be fully described by their momentum p⃗i and mass mi. Knowing the corresponding state vector for
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3 Description of Many-Particle Systems

a time t0 exactly, the time evolution of the full state vector can be calculated. But with increasing

particle number and density – causing a larger number of scattering processes –, the necessary

computation power increases rapidly, meaning that the description of systems with many particles

by an exact state vector is unpractical. To find an effective description, one can use that, independent

of the exact form of the initial state vector, many body systems tend to take on a distribution of

states which can be described by only a few quantities.

Considering an isolated system first, due to elastic scattering processes, the probability of measuring

the system in a certain state is – after many scattering processes (equilibration) – equally distributed

over the entire allowed phase space. During equilibration, the allowed phase space is restricted by

conserved quantities such as energy and momentum. To quantify the distance of a state from its

equilibrium state, it is convenient to define the entropy

S = −
∫︂
ρ ln(ρ) , (3.1)

with the phase space density ρ. Using this definition, the entropy is minimal when a system is

in a defined state. Moreover, when the entropy is maximal, a system is in its equilibrium state.

Consequently, the phase space density in thermal equilibrium can be obtained by minimizing the

entropy. Thus, demanding an expectation value for the energy as an additional condition,

ρ =
1

Z
e−βE (3.2)

is obtained, where β = 1/T is the inverse of the temperature and the canonical partition function Z

is determined by the normalization condition:∫︂
ρ = 1 ⇒ Z =

∫︂
e−βE . (3.3)

Furthermore, considering a system with variable particle content, additionally, an expectation value

for the number of particles can be introduced, resulting in an equilibrium phase space density of the

form

ρ =
1

Z e
−β(E+µN) , (3.4)

where the grand canonical partition function Z is determined by

Z =

∫︂
e−β(E+µN) , (3.5)

with the chemical potential µ.

In the context of this thesis, it is of special interest to assume an expectation value for particle

number differences such as particle-antiparticle asymmetries instead:

ρ =
1

Z e
−β(E+µ[N1−N2]) , (3.6)

with appropriate changes in the definition of Z. As a consequence, the distribution functions for

particles and antiparticles in the presence of a particle-antiparticle asymmetry differ by a sign in

front of the chemical potentials while the absolute values are equivalent (µi = −µi).
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So far, particle configurations which are in agreement with external conditions have been considered.

The resulting probability to measure a particle in a certain state is determined by the Maxwell-

Boltzmann statistics (B.20). However, this does not take into account the properties of bosons

and fermions properly. Considering the commutator relations for bosons and the anti-commutator

relations for fermions, the distribution functions of bosons and fermions are determined by the

Bose-Einstein statistics (B.18) and the Fermi-Dirac statistics (B.19), respectively.

Further quantities of relevance in this thesis are the free energy F and the grand potential Ω being

defined as

Ω = F − µN = − 1

β
ln(Z) and (3.7)

F = ⟨E⟩ − TS =
1

β

[︃
µ
∂

∂µ
ln(Z)− ln(Z)

]︃
= Ω− µ

∂

∂µ
Ω . (3.8)

Considering a system with constant temperature (and constant chemical potential), the corresponding

equilibrium state minimizes the free energy (grand potential).

Considering the partition functions for bosons and fermions, the grand potential density is given

by1

Ω

V
= − 1

β

[︃∑︂
bi

∫︂
d3k⃗

(2π)3
ln (Zbi) +

∑︂
fi

∫︂
d3k⃗

(2π)3
ln (Zfi)

]︃

=
1

β

[︃∑︂
bi

∫︂
d3k⃗

(2π)3
ln
(︂
1− e−β(Ek+µbi

)
)︂
−
∑︂
fi

∫︂
d3k⃗

(2π)3
ln
(︂
1 + e−β(Ek+µfi

)
)︂]︃

. (3.9)

According to equation (3.8), the corresponding free energy density in the limit of small asymmetries

(µi ≪ T ) becomes

1

T 4

F

V
=
∑︂
bi

[︄
−π

2

90
+

1

12

µ2bi
T 2

]︄
+
∑︂
fi

[︄
−7π2

720
+

1

24

µ2fi
T 2

]︄
+O

(︂µi
T

)︂3
. (3.10)

This free energy density is relevant when processes changing the chemical potentials are considered

because their equilibrium condition can be obtained by minimizing the free energy2. Considering

e.g. a process converting a set of bosons bi and fermions fi into a different set of bosons bf and

fermions ff , according to equation (B.22), the chemical potential of fermions in the limit µi ≪ T

receive an additional factor two, compared to bosons. Thus, the values for the chemical potentials

of the involved particles which can be reached by the considered process are given by

µbi = µibi +∆ , µfi = µifi + 2∆ , µbf = µibf −∆ , µff = µiff − 2∆ . (3.11)

1Note that in the literature, cf. e.g. reference [], the free energy density is sometimes defined similar to the grand

potential, which is only valid as long as the chemical potentials vanish. However, considering particle-antiparticle

asymmetries, terms which are odd in the chemical potentials cancel out so that assuming small asymmetries µi ≪ T ,

the grand potential and the free energy only differ by a minus sign in front of the dominant µ2
i dependence. As a

consequence, setting the derivative of the free energy to zero, the same result is obtained but now with a maximum

instead of a minimum.
2Note that only processes with interaction rates much larger than the changing rate of the temperature equilibrate

to a state minimizing the free energy because otherwise, the assumption of a constant temperature is not valid.

43



3 Description of Many-Particle Systems

Minimizing the resulting free energy density with respect to ∆, the well-known equilibrium condition∑︂
µbi +

∑︂
µfi =

∑︂
µbf +

∑︂
µff , (3.12)

is obtained.

3.2 Derivation of the Boltzmann Equations

In this section, the Boltzmann equations – describing the time evolution of the number density

of each particle species in a thermal system – are derived using different approximations. These

Boltzmann equations are e.g. used for the investigation of the time evolution of particle numbers

and particle number asymmetries in the early universe.

At first, to be able to investigate the time evolution of a thermal system, it has to be described as

a set of particles. Actually, as long as the time evolution of a system is clearly dominated by the

effective free Hamiltonian – describing the time evolution of a state vector which leaves the particle

content unchanged – the description of the state vector as a set of eigenstates of the effective free

Hamiltonian is a good approximation. This is the case when the coupling strength is not too large

so that the perturbation series converges and no bound states are formed. As can be deduced from

the SM RGE, cf. equation (A.88), for µ ≳ 100 MeV, all SM couplings are perturbative, implying

that the basis of elementary particles can be used at high temperatures (T ≳ GeV).

However, when the temperature is close to the binding energy, the interaction Hamiltonian becomes

relevant and bound states begin to form. Consequently, the plasma has to be described in a mixed

basis. When the temperature drops significantly below the binding energy, the particle densities

of the corresponding elementary particles are irrelevant and it becomes sufficient to consider the

distribution functions of bound states3.

In general, many-particle systems can be described by the distribution functions of the single

constituents (elementary particle and bound states) fi. The time evolution of these distribution

functions is determined by the probability of annihilating a state from the distribution function and

the probability of creating a state. As discussed in section 2.2, these probabilities are determined by

equation (2.22), implying that the time evolution of the distribution function of a particle species i

can be written as:

2Ei
dfi
dt

= −
∫︂
(Πdk̃fi)(Πdk̃bi)(Πdk̃ff )(Πdk̃bf )(2π)

4δ(ki +Σkfi +Σkbi − Σkff − Σkbf )

×
[︂
|Mifi1 ...bi1 ···→ff1 ...bf1 ...

|2fi(Πffi)(Πfbi)(Π[1− fff ])(Π[1 + fbf ])

− |Mff1 ...bf1 ···→ifi1 ...bi1 ...
|2(Πfff )(Πfbf )(1± fi)(Π[1− ffi ])(Π[1 + fbi ])

]︂
:= C[fi] .

(3.13)

3Note that for non-abelian gauge theories, things are more complicated because only uncharged bound states can

exist. However, for temperatures above the binding energy, the particle density is larger than for bound states.

As a consequence, there is a force ensuring that the plasma is uncharged on the bound state scale but the single

particles are not bound together and can be assumed to be approximately free. The reason for that is that the

energy of a bound state is determined by the mass and the kinetic energy of the particle content and the kinetic

energy is – according to QM – determined by the size of the bound state.

44



3.2 Derivation of the Boltzmann Equations

Furthermore, the time evolution of a thermal plasma in the early universe is also affected by the

expansion of the universe. Taking this into account, the time evolution of the distribution function

is given by [47]:

dfi
dt

= H(t)
ki⃗

2

Ei

∂fi
∂E

+
1

2Ei
C[fi] , (3.14)

where H(t) is the Hubble expansion rate being defined in equation (A.5). Next, assuming thermal

equilibrium for elastic scattering processes, only particle densities become relevant. By further

normalizing the number density to the entropy density, the time evolution simplifies to [47]

dYi(t)

dt
=:

d

dt

ni(t)

s(t)
=

1

s

∫︂
dk̃iCinelastic[fi] . (3.15)

Considering particle densities which significantly differ from the equilibrium density at µi = 0,

Cinelastic[fi] is often further simplified by neglecting the influence of T violation:

|Mifi1 ...bi1 ···→ff1 ...bf1 ...
|2 ≈ |Mff1 ...bf1 ···→ifi1 ...bi1 ...

|2 . (3.16)

Furthermore, both the Fermi-Dirac and the Bose-Einstein statistics are approximated by the Maxwell-

Boltzmann distribution (fi = e−β(Ei+µi) =: e−βµif eqi ), which – in case of small occupation numbers

– is a good approximation. With this, the time evolution becomes

dYi(t)

dt
= −1

s

(︂
e
−Σβµff

−Σβµbf − e−βµi−Σβµfi
−Σβµbi

)︂∫︂
dk̃i(Πdk̃fi)(Πdk̃bi)(Πdk̃ff )(Πdk̃bf )

× (2π)4δ(ki +Σkfi +Σkbi − Σkff − Σkbf )|Mifi1 ...bi1 ···→ff1 ...bf1 ...
|2e−βk0 (3.17a)

: = −1

s

(︂
e
−Σβµff

−Σβµbf − e−βµi−Σβµfi
−Σβµbi

)︂
γifi1 ...bi1 ···→ff1 ...bf1

, (3.17b)

with the spacetime density of scattering γifi1 ...bi1 ···→ff1 ...bf1
– in the following called thermal rate.

For a more detailed derivation of the given equations, cf. appendix B.2.

It can be assumed that processes producing and annihilating particle-antiparticle pairs are also in

thermal equilibrium. Consequently, only inelastic scattering processes changing particle-antiparticle

asymmetries C ′
inelastic[fi] have to be considered in detail:

dY∆i(t)

dt
=:

dYi(t)

dt
− dYi(t)

dt
=

1

s

∫︂
dk̃i
(︁
C ′
inelastic[fi]− C ′

inelastic[fi]
)︁
. (3.18)

Using the CPT invariance of the matrix element

|Mif i1
...bi1 ···→ff1

...bf1 ...
|2 = |Mff1 ...bf1 ...i→fi1 ...bi1 ...

|2 , (3.19)

the relations (B.18b) and (B.19c), and µi = −µi, cf. equation (3.6),

dY∆i(t)

dt
= −1

s

∫︂
dk̃i(Πdk̃fi)(Πdk̃bi)(Πdk̃ff )(Πdk̃bf )(2π)

4δ(ki +Σkfi +Σkbi − Σkff − Σkbf )

×
[︂
|Mifi1 ...bi1 ···→ff1 ...bf1 ...

|2
(︂
e
Σβµff

+Σβµbf + e
βµi+Σβµfi

+Σβµbi

)︂
− |Mff1 ...bf1 ···→ifi1 ...bi1 ...

|2
(︂
eβµi+Σβµfi

+Σβµbi + e
Σβµff

+Σβµbf

)︂ ]︂
× eβK

0
fi(Πffi)(Πfbi)(Πfff )(Πfbf ) (3.20)
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is obtained. Furthermore, defining

δCP = δT :=
|Mifi1 ...bi1 ···→ff1 ...bf1 ...

|2 − |Mff1 ...bf1 ···→ifi1 ...bi1 ...
|2

|Mifi1 ...bi1 ···→ff1 ...bf1 ...
|2 + |Mff1 ...bf1 ···→ifi1 ...bi1 ...

|2 , (3.21)

using µi = −µi, cf. equation (3.6), and expanding the collision term up to first order in the chemical

potentials (µi ≪ T ) as well as CP violation (δCP ≪ 1), equation (3.20) simplifies to

dY∆i(t)

dt
= −1

s

∫︂
dk̃i(Πdk̃fi)(Πdk̃bi)(Πdk̃ff )(Πdk̃bf )(2π)

4δ(ki +Σkfi +Σkbi − Σkff − Σkbf )

×
[︂
|Mifi1 ...bi1 ···→ff1 ...bf1 ...

|2 + |Mff1 ...bf1 ···→ifi1 ...bi1 ...
|2
]︂
f eqi (Πf eqfi )(Πf

eq
bi
)(Πf eqff )(Πf

eq
bf
)

×
(︁
Σβµff +Σβµbf − βµi − Σβµfi − Σβµbi + 2δCP

)︁
eβK

0
, (3.22)

where the distribution functions fi are evaluated at µi = 0. Again, the evaluation of the momentum

integrals can be simplified by approximating both the Fermi-Dirac and the Bose-Einstein statistics

by the Maxwell-Boltzmann distribution4:

dY∆i(t)

dt
= −

(︃
1

2

)︃
d

dt

µiT
2

3s
= −1

s

(︁
Σβµff +Σβµbf − βµi − Σβµfi − Σβµbi + 2δ′CP

)︁
×
(︂
γifi1 ...bi1 ···→ff1 ...bf1 ...

+ γff1 ...bf1 ···→ifi1 ...bi1 ...

)︂
, (3.23)

with

δ′CP =
γifi1 ...bi1 ···→ff1 ...bf1 ...

− γff1 ...bf1 ···→ifi1 ...bi1 ...

γifi1 ...bi1 ···→ff1 ...bf1 ...
+ γff1 ...bf1 ···→ifi1 ...bi1 ...

. (3.24)

Note that equation (3.23) is valid for bosons as well as fermions for which the extra factor 1/2 in

parentheses is obtained.

The equilibrium condition of equation (3.23) is

Σβµff +Σβµbf − βµi − Σβµfi − Σβµbi + 2δ′CP = 0 , (3.25)

which, in case of vanishing CP violation, is equivalent to the well-known equilibrium condition

derived previously, cf. equation (3.12). On the other hand, a non-vanishing CP violation induces

non-vanishing chemical potentials in thermal equilibrium, even when their initial values vanish.

However, this statement is based on the consideration of a single process. Considering all processes

instead, as a consequence of the unitarity of the S-matrix, the total interaction rate of a state is

T invariant, implying that in thermal equilibrium, the individual δ′CP cancel out when summing

over all processes5. Thus, the equilibrium condition resulting from the Boltzmann equations always

coincides with the condition resulting from minimizing the free-energy.

4Note that in literature, the Boltzmann approximation is typically used earlier in the derivation so that an equation

for the time evolution of particle-antiparticle number asymmetries instead of chemical potentials is obtained,

cf. e.g. reference [30]. As a consequence, the fact that the same value of the chemical potential for bosons correspond

to twice the amount of particle-antiparticle number asymmetry than for fermions is ignored.
5Often, the out-of-equilibrium condition is justified directly or indirectly (e.g. that only a deviation form thermal

equilibrium defines a arrow of time) by the CPT invariance, cf. e.g. reference [21] or [6]. However, the unitarity

of the S-matrix on its own is responsible for the vanishing asymmetries associated to non-conserved quantities in

thermal equilibrium; cf. reference [48] for a detailed investigation.
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3.2 Derivation of the Boltzmann Equations

Since in thermal equilibrium no asymmetry is produced, CP -violation and at least one particle

involved in a process leaving its equilibrium density is required to generate a non-vanishing particle-

antiparticle asymmetry. To obtain the time evolution of the asymmetry, the contribution from the

other processes compensating δ′CP need to be subtracted. Furthermore, when elastic scattering

processes are efficient, the deviation from the equilibrium densities of the involved particles can be

implemented by a chemical potential being equivalent for particles and antiparticles µ′
i
= µ′i. Using

this and the Boltzmann approximation (fi = e−β(Ei+µ′
i) = e−βµ′

if eqi ), equation (3.20) becomes

dY∆i(t)

dt
= −1

s

(︂
γifi1 ...bi1 ···→ff1 ...bf1 ...

+ γff1 ...bf1 ···→ifi1 ...bi1 ...

)︂[︂
− βµi − Σβµfi − Σβµbi

+Σβµff +Σβµbf + δ′CP

(︂
e
−Σβµ′

ff
−Σβµ′

bf + e
−βµ′

i−Σβµ′
fi
−Σβµ′

bi − 2
)︂ ]︂

. (3.26)

Considering this Boltzmann equation, it seems that deviation from thermal equilibrium of any

particle involved in a process is sufficient to generate a particle-antiparticle asymmetry. However, the

total interaction rate of the particle deviating from thermal equilibrium is CP invariant, cf. section

2.10, implying that for fermion-number conserving interactions, summing over all particle-antiparticle

asymmetries induced by the deviation from thermal equilibrium of the considered particle, a vanishing

total amount of particle-antiparticle asymmetry is obtained. Thus, only particles being involved

in processes as well as their CP transformed processes (e.g. decaying into particles as well as

their antiparticles) can produce a non-vanishing total amount of particle-antiparticle asymmetry,

cf. reference [47, 48]. Consequently, a non-vanishing fermion-antifermion asymmetry can only be

induced by deviation from thermal equilibrium of bosons coupling to fermion number violation

currents (e.g. leptoquarks) or by Majorana fermions, cf. chapter 5, whose mass terms violate the

fermion number (e.g. right-handed Majorana neutrinos).

Thus, considering e.g. the time evolution of the baryon number (B), CP -violation, a reaction out of

thermal equilibrium, and obviously a reaction that violates B is required to produce the observed B

asymmetry. Additionally, P violation is needed because otherwise, the asymmetry produced in the

left-handed sector would be offset by the asymmetry produced in the right-handed sector. These

conditions necessary for receiving a net B asymmetry are well-known as Sakharov conditions [62].

The most dominant contribution to the Boltzmann equations usually comes from particle decays

and inverse decays as well as 2 → 2 processes. For the decays and inverse decays the thermal rate

reduces to

γi→f1···fn = γf1···fn→i =
m4

i

2π2
√︁
aΓi→f1...fn

K1(z)

z
, (3.27)

cf. equation (D.12), with Kα(z) being the modified Bessel functions of the second kind.

For a 2 → 2 process, the thermal rate in the common form is derived using equation (2.24):

γi1i2→f1f2 =
1

8π

∫︂
dk

(2π)4
σ̂i1i2→f1f2(k)e

−βk0 , (3.28)

cf. equation (D.13), which, in case of a cross section that only depends on the Mandelstam variable

s, simplifies to

γi1i2→f1f2 =
m4

i

64π4

∞∫︂
umin

du
√
u σ̂i1i2→f1f2(u)

K1 (
√
uz)

z
, (3.29)
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cf. equation (D.14), with umin = max{(√ai1 +
√
ai2)

2, (
√
af1 +

√
af2)

2} and the reduced cross section

being defined as

σ̂(u) = 2uλ
[︂
1,
ai1
u
,
ai2
u

]︂2
σ(u) . (3.30)

The common abbreviations

z =
mi

T
, u =

s

m2
i

, aj =
m2

j

m2
i

, and aΓj =
Γ2
j

m2
i

, (3.31)

are used, where mi is some arbitrary mass scale which is typically chosen to be the largest particle

mass involved in the process.

Note that rewriting the thermal rates in terms of z is useful when the expansion of the universe

is dominated by radiation and no significant reheating occurs. Under these premises, the scale

factor a(t) is proportional to z, which – together with the Friedmann equation (A.5) – leads to the

relation

H(t) =
1

a(t)

da(t)

dt
=

1

a(z)

da(z)

dz

dz

dt
=

1

z

dz

dt
, (3.32)

where H(t) is the Hubble expansion rate. This, together with the relations

H(T ) =

√︃
8π3

90
geff

T 2

mP
, (3.33a)

s =
2π2

45
gSeffT

3 , (3.33b)

which are valid during the radiation-dominated epoch, allows to rewrite the time evolution completely

in terms of z so that equations (3.17b) and (3.23) become

z
dYi(t)

dz
= − 1

H(T )s

(︂
e
Σβµff

+Σβµbf − eβµi+Σβµfi
+Σβµbi

)︂
γifi1 ...bi1 ···→ff1 ...bf1

, (3.34)

z
d

dz
βµi =

(︁
Σβµff +Σβµbf − βµi − Σβµfi − Σβµbi + 2∆CP

)︁
× (2)3

H(T )T 3

(︂
γifi1 ...bi1 ···→ff1 ...bf1 ...

+ γff1 ...bf1 ···→ifi1 ...bi1 ...

)︂
. (3.35)

mP =
√︁

ℏc/G ≈ 1.22×1019 GeV is the Planck mass and the effective degrees of freedom are defined

by

geff =
∑︂

i=bosons

(︃
Ti
T

)︃4

+
7

8

∑︂
j=fermions

(︃
Tj
T

)︃4

, (3.36a)

gSeff =
∑︂

i=bosons

(︃
Ti
T

)︃3

+
7

8

∑︂
j=fermions

(︃
Tj
T

)︃3

, (3.36b)

where T is the temperature of the entire system and Ti are the temperatures of the single particle

species. Assuming all particles to be in thermal equilibrium, all Ti become equivalent to T so that
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3.2 Derivation of the Boltzmann Equations

geff = gSeff = 106.75 is obtained for the SM. Furthermore, the Hubble expansion rate is simply

proportional to T 2:

H(T ) =

√︃
8π3

90
gSMeff

T 2

mP
=: AHT

2 , (3.37)

with AH ≈ 1.405× 10−18/GeV for the SM.

Note that in this thesis, the differential equation for βµi is considered for relativistic particles

(T ≫ mi) because – following from previous assumptions – it is conserved by the expansion of

the universe.

In light of equations (3.34) and (3.35), the relevant quantity to decide whether a reaction can be

assumed to be in thermal equilibrium or not is γ/(H(T )T 3). For the decay process, assuming the

masses of all involved particles to be constant or negligibly small,

γi→f1···fn
H(T )T 3

=
1

2π2

√aΓi→f1...fn

AHmi
K1(z)z

4 ≲
1

6

√aΓi→f1...fn

AHmi
(3.38)

is obtained, with √aΓi→f1...fn
being constant. Moreover, K1(z)z

4 scales like z3 for z < 1, reaches the

upper bound at z ∼ 3.4 and scales like
√
z
7
e−z for larger z with z = mi/T . In contrast, assuming

all masses to be proportional to the temperature, the relevant ratio becomes

γi→f1···fn
H(T )T 3

=
1

2π2

√aΓi→f1...fn

AHT
K1(z)z

3 ∝ 1

T
, (3.39)

where √aΓi→f1...fn
and z = mi/T are constant.

For the 2 → 2 process, in the high temperature approximation, σ̂ is basically constant6 and

γi1i2→f1f2

H(T )T 3
=

1

16π4
1

AHT
σ̂i1i2→f1f2 ∝ 1

T
(3.40)

is obtained. Furthermore, considering scattering processes involving fermions, σ̂(u) in case of a

fermionic mediator scales as u = s/m2
M when the temperature falls significantly below the mediator

mass mM and the relevant ratio becomes

γi1i2→f1f2

H(T )T 3
=

1

2π4
T

AHm
2
M

σ̂i1i2→f1f2(u)

u
∝ T . (3.41)

Finally, considering pure bosonic scattering processes, σ̂(u) induced by quartic couplings is again

constant. Thus, the relevant ratio for the pair annihilation and pair production rate of i assuming

mi > mf1,2 is given by

γii→f1f2

H(T )T 3
=
γf1f2→ii

H(T )T 3
=

σ̂ii→f1f2

64π4AHT

∞∫︂
4

du
√
u
K1(z

√
u)

z
=

σ̂

8π4AHmi

K2(2z)

z
. (3.42)

6Including thermal masses, σ̂(u) is usually not exactly constant but still independent of T .
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3.3 Introduction to Thermal Field Theory

In this section, scattering processes which do not change the state of a system – known as coherent

forward scattering processes – are investigated. Similar processes (self-energy corrections) were

already encountered in vacuum QFT where renormalization is used to absorb these corrections into

the free Hamiltonian (on-shell renormalization), cf. appendix A.8, meaning that the time evolution

of a free non-decaying particle is completely determined by the free equation of motion. However,

considering a set of particles, coherent forward scattering processes with the other particles give rise

to an additional non-vanishing contribution to the effective free equation of motion. Consequently, it

is reasonable to absorb this additional contribution into the free Hamiltonian by including an effective

potential, causing that the interaction Hamiltonian still only induces state changing interactions7

thermal quantum field theory (TFT) was developed to formalize the contribution of coherent forward

scattering processes, cf. e.g. reference [51], for an detailed introduction into TFT. In the previous

chapter, the action of a pair of field operators on a vacuum state as an key element of the perturbation

series was examined, cf. section 2.3. In analogy, considering many body systems, the action of a

pair of field operators on a general state vector |F ⟩ becomes an essential part of the perturbation

series. Consequently, for scalar bosons, the thermal propagator in the position space is defined as

⟨F |Tϕ(x+ y)†ϕ(y) |F ⟩ =
∫︂
dk̃
[︂(︁
Θ(x0) + fb(Ek)

)︁
e−ikx +

(︁
Θ(−x0) + fb∗(Ek)

)︁
eikx

]︂
. (3.43)

Using

f(Ep) =

∞∫︂
−∞

dp0 f(p0)δ (p0 − Ep) (3.44)

and substituting pµ → −pµ for the term proportional to eikx, the thermal propagator can be written

as

⟨F |Tϕ(x+ y)†ϕ(y) |F ⟩ =
∫︂
dk̃

∫︂
dk0

(︂
fb(k0)δ (k0 − Ek) + fb∗(−k0)δ (k0 + Ek)

)︂
e−ikx

+

∫︂
dk̃
[︂
Θ(x0)e

−ikx +Θ(−x0)eikx
]︂
. (3.45)

Like for the vacuum case, the part being independent of the distribution function can be rewritten

by applying the residue theorem, while the density dependent part can be summarized using the

relation

δ(k2 −m2) =
1

2Ek

(︂
δ (k0 − Ek) + δ (k0 + Ek)

)︂
. (3.46)

Thus, the thermal propagator for a scalar boson in the real-time formalism is given by

DT
b (x) =

∫︂
d4k

(2π)4

(︃
i

k2 −m2
b

+ 2π (Θ(k0)fb(k0) + Θ(−k0)fb∗(−k0)) δ(k2 −m2
b)

)︃
e−ikx . (3.47)

7Note that in contrast to vacuum QFT, the properties of the eigenstates of the effective free equation of motion of

particles in a thermal environment are not known from experiment where approximately free particles are observed.

Consequently, the thermal quantities (e.g. thermal masses) need to be calculated using perturbation theory.
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3.3 Introduction to Thermal Field Theory

For deriving the propagator in the imaginary time formalism, typically, the time component is

continued to imaginary time arguments 0 ≤ (x0, y0) ≤ iβ and the time ordered operator is assumed

to order imaginary time [20]. However, this way of deriving the thermal propagator is only reasonable

when the real part of x0 vanishes. More generally, the propagator in the imaginary time formalism

can also be derived by rewriting equation (3.45) as∫︂
d4k

(2π)4
2π

2Ek

[︃(︃
1

2
+ fb(Ek)

)︃
δ(k0 − Ek) +

(︃
1

2
+ fb∗(Ek)

)︃
δ(k0 + Ek)

]︃
e−ikx . (3.48)

Assuming the particle to be in thermal equilibrium with vanishing chemical potential (nb(Ep) =

nb∗(Ep)) and using

1

2Ep
(1 + 2fb(Ep)) =

1

β

∞∑︂
n=−∞

1

(2πn/β)2 + E2
p

, (3.49)

the propagator in the imaginary time formalism is obtained8 [55]:

DT
b (x) =

∫︂
d4k

(2π)4
π

β

∞∑︂
n=−∞

1

(2πn/β)2 + E2
p

[︁
δ(k0 − Ep) + δ(k0 + Ep)

]︁
e−ikx . (3.50)

In case of x0 = 0, the k0 integral results in a factor of two so that the well-known form is deduced:

DT
b (0, x⃗) =

∫︂
d3k

(2π)3
1

β

∞∑︂
n=−∞

1

(2πn/β)2 + E2
p

eik⃗x⃗ . (3.51)

Similar to the vacuum propagator, the thermal propagator for vector bosons is simply given by

the scalar boson propagator multiplied with the polarization sum over the physical polarizations.

Furthermore, as discussed in section 2.3, the vacuum part of the propagator can be expressed in the

common Lorentz invariant form when local interaction terms are included. However, the thermal

part remains unaffected by local interaction terms.

Equivalently, for the thermal fermionic propagator

⟨F |TΨ(x+ y)†Ψ(y) |F ⟩

=

∫︂
dk̃
[︂(︁
Θ(x0)− ff (Ek)

)︁
(/k +m)e−ikx +

(︁
Θ(−x0)− ff (Ek)

)︁
(−/k +m)eikx

]︂
, (3.52)

the real-time formalism result is

ST
f (x) =

∫︂
d4k

(2π)4
(/k +m)

[︄
i

k2 −m2
f

− 2π
(︂
Θ(k0)ff (k0) + Θ(−k0)ff (−k0)

)︂
δ(k2 −m2

f )

]︄
e−ikx .

(3.53)

Using

1

2Ep
(1− 2ff (Ep)) =

1

β

∞∑︂
n=−∞

1

(π(2n+ 1)/β)2 + E2
p

, (3.54)

8Note that in the usual form of the propagator in the imaginary time formalism, the energy integral and the Dirac

delta functions are absent with k0 = 2πn/β. This does not coincide with the given result, but in case of considering

loops, without external momentum flow – as for loop corrections to the Higgs potential – the result is equivalent.
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the result in the imaginary time formalism is obtained:

ST
f (x) =

∫︂
d4k

(2π)4
π

β

∞∑︂
n=−∞

/k +m

(π(2n+ 1)/β)2 + E2
k

[︁
δ(k0 − Ek) + δ(k0 + Ek)

]︁
e−ikx . (3.55)

Again, in case of x0 = 0, the k0 integral can be evaluated:

ST
f (0, x⃗) =

∫︂
d3k

(2π)3
1

β

∞∑︂
n=−∞

/k +m

(π(2n+ 1)/β)2 + E2
k

eik⃗x⃗ , (3.56)

with k0 = π(2n+ 1)/β and the relation

a−1∑︂
n=−a

π(2n+ 1)/β

(π(2n+ 1)/β)2 + E2
p

= 0 a ∈ N+ . (3.57)

Using this formalism allows to calculate the matrix element of a process taking place inside a

medium, cf. equation (2.22), by replacing the vacuum propagators in the vacuum matrix element

by thermal propagators9. Note that during this replacement, the diagram should not be split into

two isolated diagrams by the thermal part of the propagator as they are already taken into account

by the Boltzmann equations. This means that each diagram has to be interconnected via vacuum

propagators, implying that only one thermal contribution can appear for each loop momentum

integral. However, considering self-energy corrections, diagrams being split by the thermal part

of the propagators contribute to the imaginary part of the self-energy correction, cf. reference [71].

Consequently, similar to the imaginary part of vacuum loop corrections, cf. section 2.10, this considers

the damping of mediator states induced by the particle decay and scattering processes with other

particles.

3.4 Approximation of Thermal Masses

As mentioned in the previous section, thermal self-energy corrections give rise to an effective potential

which alters the properties of particles inside a medium. Well-known examples for this effect are

the altered speed of light and the altered neutrino masses in a medium resulting e.g. in dispersion of

light and the Mikheyev–Smirnov–Wolfenstein (MSW) effect [73, 58] explaining the observed neutrino

flavor flux from the sun. However, the implications of thermal masses on FO are investigated in

detail in the next section while, in this section, the focus is set on the elaboration of the effective

potential.

Using TFT, the thermal masses are determined by self-energy corrections (Π(p2)) replacing all

vacuum propagators by thermal propagators. At that, as discussed in the previous section, only

9Note that in general, considering multiple field operators of the same species, this replacement is non-trivial because

the creation and annihilation operators alter the particle content, implying that the next creation or annihilation

operator acts on a field with modified particle content. However, usually, this effect only leads to very small

deviations so that it is reasonable to only use the derived thermal propagator.
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3.4 Approximation of Thermal Masses

the real part of the self-energy correction contribute to the thermal mass while the imaginary

part considers the interaction rate. However, calculating the thermal self-energy correction ΠT (p
2),

usually one has to start from only knowing the mass eigenstates in the vacuum. This implies that the

loop integrals have to be renormalized as in the vacuum case. Consequently, the eigenstates of the

effective Hamiltonian differ from the ones used for the calculation leading to a couple of conceptional

difficulties10.

The main problem of not knowing the eigensystem of the effective equation of motion in advance

is that the distribution functions assuming thermal equilibrium are unknown. As a consequence,

the result is self dependent because the thermal self-energy corrections depend on the distribution

functions which in turn depend on the effective thermal masses. However, in practice, considering

some self dependent thermal self-energy correction, recalculating the thermal mass iteratively starting

from the vacuum masses, the result typically converges rapidly. Thus, the perturbation series still

converges and can be considered order by order11. However, at the same loop order, diagrams

including corrections to the thermal masses of the propagating particles contribute significantly

more than diagrams without these corrections. This means that using a better approximation for

the distribution functions is for not very large coupling constants more relevant than an additional

thermal loop, cf. appendix B.3.

For calculating ΠT (p
2), it is useful to make some approximations. First of all, including thermal

propagators breaks the Lorentz invariance because the distribution functions are not Lorentz invariant.

Thus, ΠT (p
2) is not only a function of pµ but also of the four-velocity uµ describing the motion

relative to the rest frame of the plasma. However, in many cases, the dependence on uµ in the

rest frame of the plasma only gives rise to a small correction so that it is typically ignored and

the distribution functions in the rest frame are used (ΠT (p
µ, uµ) → ΠT (p

2)), cf. reference [70].

Another approximation which can be made without changing the result significantly is to use

ΠT (p
2) to approximate the effective on-shell mass but to ignore the p2 dependence for the further

calculation12.

A very simple approximation for the thermal mass, which is often used, is to consider only first

order corrections (Π1
T (p

2)) in the high temperature limit (T ≫ m), meaning that Π1
T (p

2) ∝ T 2 is

obtained. As can be seen from the results given in appendix B.3, this approximation (m2 ≈ m2
0+αT

2)

is reasonable if α is not too large.

10In the vacuum case it is typically insisted on renormalizing such that on-shell particles are eigenstates of H0.

Practically, this is done because the on-shell mass can be measured directly. (For quarks and gluons this is

debatable but only because they do not exist as free particles. However, for their bound states (hadrons) the

on-shell masses can be measured.) Moreover, the propagator contributes most if p2 is close to the pole mass which

is given by the mass of the mass eigenstates of H0. Thus, on average, the perturbation series converges most rapidly

if on-shell renormalization is used. In thermal field theory renormalizing on-shell becomes even more important

because the forward scattering contribution comes always from on-shell particles whose distribution functions in

thermal equilibrium depend on the on-shell masses.
11Note that self-energy corrections to a thermal propagator inside a diagram do not divide the thermal propagator

into two parts but only change the masses the thermal propagators depend on.
12For the vacuum case where the effective on-shell mass is known, this would be pointless but at high temperatures,

where the thermal loop contribution dominates and the on-shell mass is not known from measurement, this

approximation is useful because the thermal contribution only comes form on-shell particles.
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Figure 3.1: Leading order thermal masses of the SM particles being relevant for this thesis,

cf. equation (B.40), normalized to the temperature in the high temperature region. The

shown temperature dependence results form considering the one-loop running of the SM

coupling constants.

Within the SM, the thermal masses induced by the gauge interactions, the Higgs self coupling,

and the top Yukawa interaction before EWSB in this high temperature limit are given by equation

(B.40). Taking into account the one-loop running of the SM coupling constants, cf. figure 2.1, and

setting the Higgs self coupling λ = 0 for large µ for simplicity, the resulting thermal masses for the

relevant SM particles in the region 108 GeV ≤ T ≤ 1016 GeV are shown in figure 3.1

3.5 Matter Effects on Flavor Oscillation

Including thermal corrections, the mixing angles between interaction and mass eigenstates as well as

the mass squared differences between mass eigenstates can change. As a consequence, the oscillation

behavior, investigated in section 2.9, changes when the effective potential is non-diagonal because

otherwise – if all relevant interaction eigenstates interact with the medium with the same strength –

the matter effects just give rise to an overall phase factor. Such an altered oscillation behavior occurs

e.g. considering neutrinos traveling through matter containing a surplus of electrons compared to

muons and taus as it is the case for the earth or the sun.

In general, these matter effects and, for this reason, the effective potential are spacetime dependent,

implying that it is not sufficient to simply decompose the interaction eigenstates into energy eigen-

states with a trivial time evolution. Actually, the time dependence of the eigensystem induces

transitions between the different energy eigenstates where the transition probability depends on

how fast the eigensystem changes. To show this, it can be used that ignoring the state changing

interactions, the time evolution operator (Hamiltonian) is Hermitian, implying that the normalized

eigenvectors vi build an orthonormal basis. Consequently, any state at any time can be expressed

as a superposition of the time-dependent eigenstates

|ψ(t)⟩ =
∑︂
i

ai(t) |vi(t)⟩ , (3.58)
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with

ai(t) = ⟨vi(t)|ψ(t)⟩ . (3.59)

Using this, the time evolution of ψ(t) can be transferred to a differential equation for ai(t),

d

dt
ai(t) =

(︃
d

dt
⟨vi(t)|

)︃
|ψ(t)⟩+ ⟨vi(t)|

d

dt
|ψ(t)⟩

=
∑︂
j

aj

[︃(︃
d

dt
⟨vi(t)|

)︃
− i ⟨vi(t)| Ĥ

]︃
|vj⟩

= −iEiai(t) +
∑︂
j ̸=i

aj(t)

(︃
d

dt
⟨vi(t)|

)︃
|vj⟩ := −i

∑︂
j

Ĥcoff(t)aj(t) , (3.60)

where it is used that an infinitesimal shift of a normalized vector is orthogonal to the normalized

vector: (︃
d

dt
⟨vi(t)|

)︃
|vi(t)⟩ = 0 . (3.61)

Consequently, transitions between energy eigenstates are suppressed as long as the time derivative

of the eigenvectors is small compared to the mass squared differences. In contrast to this adiabatic

transition, for rapidly changing eigenvectors, transitions between the energy eigenstates become

important. Hence, considering a rapidly changing eigensystem – meaning that the time derivative

of the eigenvectors are dominant – investigating the time evolution in the energy eigenbasis is not

very useful anymore.

A phenomenon of special interest that can arise from spacetime dependent matter effect is a level

crossing where the effective potential gives rise to an effective Hamiltonian with at least two diagonal

elements which are in a certain fixed basis degenerated at a certain time tLC . As a consequence,

the mixing in the considered fixed basis is maximal at tLC while, in case of constant off-diagonal

elements of the Hamiltonian, the difference of the energy eigenvalues is minimal. Moreover, the

mass hierarchy is inverted, meaning that the diagonal element which is larger for t < tLC becomes

smaller for t > tLC and vice versa. In the simplest case of considering a two component state vector

where the matter effects are purely diagonal in a certain basis, the corresponding Hamiltonian is

given by

Ĥeff = E0I2 +
∆E0

2

(︄
cos 2θ sin 2θ

sin 2θ − cos 2θ

)︄
+ V (t)I2 + V ′(t)σ3 , (3.62)

where E0 = (E1,0+E2,0)/2 is the mean of vacuum energy eigenvalues, ∆E = E1,0−E2,0 the difference

of the vacuum energy eigenvalues, and V (t) and V ′(t) are effective potentials. Consequently, the

mixing of the first and the second component is maximal when V ′(t)+∆E0/2 cos 2θ vanish (t = tLC).

During a level crossing, the flavor of a state not only oscillates into another flavor but the flavor

composition of the energy eigenstates completely changes. This behavior can e.g. be seen considering

neutrino oscillation inside of the sun. There, neutrinos within a certain energy range experience an

adiabatic level crossing during their propagation from the core, where they are produced by nuclear

reactions, to the surface, converting the electron neutrinos produced in nuclear reaction mainly into
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a neutrino mass eigenstate which is dominated by the muon and tau neutrino flavor. This Mikheyev-

Smirnov-Wolfenstein (MSW) effect [73, 58] explains the observed neutrino flavor flux from the sun.

Considering more generally a non-adiabatic level crossing, in many cases of interest, it can be

assumed that in the resonance region, the off-diagonal elements of the Hamiltonian are approximately

constant, cf. equation (3.62), and the difference of the diagonal elements changes approximately

linearly, Ĥ1(t) − Ĥ2(t) = αt + O(t2). Within this approximation, the equation of motion in the

resonance region can be rewritten into one second order differential equation, which can be solved

analytically [75]. For this purpose, one defines

|ψi(t)⟩ = exp

⎡⎣−i t∫︂
0

Ĥi(t
′)dt′

⎤⎦ ci(t) (3.63)

to rewrite the equation of motion into

d

dt
|ψ(t)⟩ = −i

(︄
Ĥ1(t) 0

0 Ĥ2(t)

)︄
|ψ(t)⟩+

⎛⎜⎜⎝exp

[︃
−i

t∫︁
0

Ĥ1(t
′)dt′

]︃
d
dtc1(t)

exp

[︃
−i

t∫︁
0

Ĥ2(t
′)dt′

]︃
d
dtc2(t)

⎞⎟⎟⎠
!
= −i

(︄
Ĥ1(t) Ĥ12(t)

Ĥ21(t) Ĥ2(t)

)︄
|ψ(t)⟩ . (3.64)

Using Ĥ1(t)− Ĥ2(t) = αt, the resulting equation of motion for ci(t) becomes

d

dt

(︄
c1(t)

c2(t)

)︄
≈ −i

(︄
Ĥ12(0)e

iα/2t2c2(t)

Ĥ21(0)e
−iα/2t2c1(t)

)︄
. (3.65)

Next, defining c′1(t) = e−iα/4t2c1(t), the second order differential equation

d2

dt2
c′1(t) = −

[︃
α2t2

4
+
iα

2
+ Ĥ12(0)Ĥ21(0)

]︃
c′1(t) (3.66)

is obtained. Solving this differential equation, the transition probability in the flavor basis (|ψ1⟩ →
|ψ2⟩ and |ψ2⟩ → |ψ1⟩, respectively) integrating over all times is given by [75]

Ptransit = 1− exp

[︄
−2π

Ĥ12(0)Ĥ21(0)

|α|

]︄
. (3.67)

Note that this result is in agreement with the statement that a sufficiently large mixing and a slow

enough transition is needed for having an adiabatic level crossing.

3.6 Details on Thermal Equilibrium

In section 3.1, it was shown that a process in thermal equilibrium leads to a compensation of the

involved chemical potentials, resulting in condition (3.12). In this section, this estimation will be
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investigated in more detail. Subsequently, the thermal rates of processes inducing the equilibrium

condition of the top, bottom, and tau Yukawa interaction are calculated.

Considering a single process with a reaction rate Γi, the involved chemical potentials µi approach

their equilibrium value µeqi being given by the equilibrium condition of the reaction as

µi(t)− µeqi
µi(t0)− µeqi

= exp

⎛⎝−
t∫︂

t0

Γi(t)dt

⎞⎠ . (3.68)

Comparing this result with the cooling of the plasma due to the expansion of the universe,

T (t)

T (t0)
∝ a(t0)

a(t)
= exp

⎛⎝−
t∫︂

t0

H(t)dt

⎞⎠ , (3.69)

the assumption of thermal equilibrium is well motivated when a process is efficient (Γ ≫ H) for a

sufficiently long period. In this case, the equilibrium condition can be used to simplify a system of

coupled Boltzmann equations involving reactions which are in thermal equilibrium and ones that

are not. In this case, the equilibrium conditions can be used for the reactions which are efficient to

reduce the number of free parameters and rates that have to be taken into account.

However, considering a system of coupled Boltzmann equations involving rates which are efficient for

only a short period or where the interplay of efficient and less efficient reactions is of special interest

(e.g. for the production of small asymmetries such as the observed B asymmetry), it cannot be

assumed that all processes whose rates are efficient to be in thermal equilibrium. Yet, the equilibrium

condition can be used for those reactions which are much more efficient than the investigated ones

and also when the time period of interest is still large compared to 1/Γ. In addition, processes of no

special interest whose rates are much smaller than the dominant rates of interest can be ignored even

if they are efficient because on the time scale where the process or the interplay of interest is relevant,

processes with much smaller rates do not shift the involved chemical potentials significantly.

3.6.1 Thermal Equilibrium of the Dominant Yukawa Interactions

Within the scope of this thesis, Boltzmann equations are used to calculate the time evolution of B

and L asymmetries involving sphaleron transitions and L violating processes, cf. chapter 4. For the

resulting Boltzmann equations, the transfer of asymmetry between SU(2)L charged and uncharged

particles is relevant because sphaleron transitions and depending on the considered model also the

L violation only act on asymmetries of SU(2)L charged particles. In addition, the transfer of

asymmetry between different generations is relevant because the rate of L violation is not expected

to be equivalent for all generations. Hence, to study the interplay of sphaleron transitions and L

violation, the thermal rates for the dominant Yukawa interactions need to be calculated first.

Considering the thermal masses shown in figure 3.1, for 108 GeV < T < 1016 GeV, the decay of H

into quarks is kinematically forbidden and the decay into leptons is either kinematically forbidden

or strongly kinematically suppressed. Consequently, the shift of asymmetries resulting in the

equilibrium condition is dominated by 2 → 2 processes. Thus, to estimate the temperature where a
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3 Description of Many-Particle Systems

Yukawa interaction becomes efficient, 2 → 2 scattering processes involving the corresponding Yukawa

couplings have to be considered. The dominant processes are given by the Yukawa interaction with

an additionally emitted or absorbed gauge boson. The corresponding Feynman diagrams for the top

Yukawa interaction are shown in figure 3.213.

U3 U3 U3

Q3 Q3 Q3

H

H H

AµAµ

Aµ

U3 U3 U3Q3

Q3

Q3

H† H† H†Aµ

Aµ

Aµ

U3 U3 U3

Aµ Q3

H

Aµ Aµ

Q3 Q3

H H

Figure 3.2: Dominant 2 → 2 scattering processes generating the equilibrium condition of the top

Yukawa interaction: U3Q3 → HAµ (top row), U3H
† → Q3Aµ (middle row), and U3Aµ →

Q3H (bottom row).

The corresponding matrix elements for the top Yukawa interaction before EWSB are given by

iM1(U3Q3 → HAµ) = ytϵ
(a)
µ vQ3

[︃
αa
1

γµ/pt
t−m2

Q3

+ αa
2

/puγ
µ

u−m2
U3

+ αa
3

pµs + pµH
s−m2

H

]︃
RuU3 , (3.70a)

iM2(U3H
† → Q3Aµ) = ytϵ

(a)
µ uQ3

[︃
αa
1

γµ/ps
s−m2

Q3

+ αa
2

/puγ
µ

u−m2
U3

+ αa
3

pµt − pµH
t−m2

H

]︃
RuU3 , (3.70b)

iM3(U3Aµ → Q3H) = ytϵ
(a)
µ uQ3

[︃
αa
1

γµ/pu
u−m2

Q3

+ αa
2

/psγ
µ

s−m2
U3

+ αa
3

pµt + pµH
t−m2

H

]︃
RuU3 , (3.70c)

where the kinematic variables defined in equation (D.1) are used. The index a runs over all group

generators and αa
i is determined by the coupling strength times the generator of the corresponding

gauge group (SU(3)c/SU(2)L/U(1)Y ):

αa
1 = gst

a
3/gt

a
2/g

′YQ3 , αa
2 = gst

a
3/0/g

′YU3 , αa
3 = 0/gta2/g

′YH , (3.71)

with the weak hypercharges YQ3 = 1
6 , YU3 = 2

3 , and YH = 1
2 .

Taking the average over the different colors of U3, summing over all other external states, and using

the limit of small masses (mU3 , mQ3 , mH , mAµ ≪ s, t, u), cf. equation (D.3), the squared matrix

13Note that the scattering process involving twice the top Yukawa interaction does not change µU3 and the

corresponding equilibrium condition is µH+ + µQ1
3

= µH0 + µQ2
3
which is irrelevant for vanishing asymmetry

among the doublet components.
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elements averaged over the scattering angle, cf. equation (D.18), become

|M1|2 ≈ −2|yt|2Tr
[︄
(αa

1)
2 ln

(︄
m2

Q3

s

)︄
+ (αa

2)
2 ln

(︄
m2

U3

s

)︄
+ (αa

1 − αa
2)

2 + (αa
1 − αa

2 + αa
3)α

a
3

]︄
,

(3.72a)

|M2|2 ≈ |yt|2Tr
[︄
(αa

1)
2 − 2(αa

2)
2 ln

(︄
m2

U3

s

)︄
− 4αa

1α
a
2 + 2(αa

1 − αa
2 + αa

3)α
a
3

]︄
, (3.72b)

|M3|2 ≈ |yt|2Tr
[︄
−2(αa

1)
2 ln

(︄
m2

Q3

s

)︄
+ (αa

2)
2 − 4αa

1α
a
2 + 2(αa

1 − αa
2 + αa

3)α
a
3

]︄
. (3.72c)

Thus, the sum over all squared matrix elements is given by

|Myt |2 = |M1|2 + |M2|2 + |M3|2

≈ |yt|2Tr
[︃
− 4(αa

1)
2 ln

(︄
m2

Q3

s

)︄
− 4(αa

2)
2 ln

(︄
m2

U3

s

)︄
− (αa

1 + αa
2)

2 − 2αa
1α

a
2 + 2(αa

1 − αa
2 + αa

3)α
a
3

]︃
.

(3.73)

Plugging in αa
i for the SM gauge interactions,

|Myt |2 ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−8|yt|2g2s
[︃
3 + 2 ln

(︃
m2

Q3
s

)︃
+ 2 ln

(︃
m2

U3
s

)︃]︃
for SU(3)c

3
2 |yt|2g2

[︃
3− 4 ln

(︃
m2

Q3
s

)︃]︃
for SU(2)L

−|yt|2 g
′2

36

[︃
33 + 4 ln

(︃
m2

Q3
s

)︃
+ 64 ln

(︃
m2

U3
s

)︃]︃
for U(1)Y

(3.74)

is obtained.

Furthermore, using mQ3 ≈ mU3 ∼ mh, cf. figure 3.1, the thermal rate can be approximated as

γU3,yt ≈
T 4

16(2π)5

∞∫︂
(mh+mA)2/T 2

du
√
u |Myt |2K1(

√
u) , (3.75)

with u = s/T 2, cf. equation (3.29). The calculation of the squared matrix element can be repeated

for the less efficient bottom Yukawa interaction:

|Myb |2 ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−8|yb|2g2s
[︃
3 + 2 ln

(︃
m2

Q3
s

)︃
+ 2 ln

(︃
m2

Di
s

)︃]︃
for SU(3)c

3
2 |yb|2g2

[︃
3− 4 ln

(︃
m2

Q3
s

)︃]︃
for SU(2)L

−|yb|2 g
′2

36

[︃
3 + 4 ln

(︃
m2

Q3
s

)︃
+ 16 ln

(︃
m2

Di
s

)︃]︃
for U(1)Y

, (3.76)

and tau Yukawa interaction:

|Myτ |2 ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for SU(3)c

3
2 |yτ |2g2

[︃
3− 4 ln

(︃
m2

ℓi
s

)︃]︃
for SU(2)L

−|yτ |2 g
′2

4

[︃
13 + 4 ln

(︃
m2

ℓi
s

)︃
+ 16 ln

(︃
m2

ℓR,i

s

)︃]︃
for U(1)Y

. (3.77)
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However, in contrast to the top and the bottom Yukawa interaction, the Higgs decay for the tau

Yukawa interaction is kinematically allowed for T ≲ 1011 GeV, cf. figure 3.1. Thus, the corresponding

thermal rate – which is calculated for a similar process in section 5.1 – needs to be included. Hence,

the thermal rates for the bottom and tau Yukawa interaction can be approximated by

γD3,yb ≈
T 4

16(2π)5

∞∫︂
(mh+mA)2/T 2

du
√
u |Myb |2K1(

√
u) , (3.78)

γτ−R ,yτ
≈ T 4

16(2π)5

∞∫︂
(mh+mA)2/T 2

du
√
u |Myτ |2K1(

√
u)

+
m3

HT

2π2
|yτ |2
16π

(︄
1−

m2
ℓi

m2
H

−
m2

ℓR,i

m2
H

)︄
λ

(︄
1,
m2

ℓi

m2
H

,
m2

ℓR,i

m2
H

)︄
K1

(︂mH

T

)︂
, (3.79)

where the contribution from the decay is ignored for the region where the decay is kinematically

forbidden.

Note that especially for the tau Yukawa interaction, the approximation mℓi ≈ mℓR,i
∼ mh is not as

good as before, but the expected deviation from the exact result is still small because the lower bound

of the integral is only slightly shifted to lower values while the integrand is not significantly larger in

this region. Taking into account the one-loop running of the gauge couplings and the top, bottom,

and tau Yukawa couplings, the thermal rates in comparison to the rate of B violation induced by

sphaleron transitions are shown in figure 4.1. In detail, ΓU3,yt = 6γU3,yt/T
3 > H(T ) is obtained for

T ≲ 7.7 × 1014 GeV, while ΓD3,yb > H(T ) and Γτ−R ,yτ
> H(T ) requires T ≲ 2.0 × 1011 GeV and

T ≲ 1.2× 1011 GeV, respectively.

3.6.2 Implication of the Equilibrium Condition

As discussed in section 3.1, the equilibrium condition of a process on its own is not sufficient

to describe equilibration but only represents a relation of the involved chemical potentials after

equilibration. However, to obtain the values of the individual chemical potentials, starting from some

initial condition, also the relative change of the single chemical potentials mediated by the process

becomes essential. If e.g. an extended Higgs sector with m scalar Higgs doublets is considered, where

the reactions sharing the asymmetry among the different doublets are assumed to be in thermal

equilibrium (ĤI(x) ∼ (H†
i (x)Hj(x))

2 + (H†
j (x)Hi(x))

2), the corresponding equilibrium condition is

given by

µH1 = · · · = µHm . (3.80)

Next, to obtain the individual resulting chemical potentials, it is used that a shift of the chemical

potential of one doublet always shifts the chemical potential of another doublet by the opposite

amount. Consequently, the sum over all µHi is conserved by the interactions of interest. Thus, the

individual chemical potentials after equilibration become

mµHi := µH =
m∑︂
i=1

µexHi
, (3.81)
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where µexα are the chemical potentials given by the initial conditions µinitialα and shifts induced by

other reactions ∆α:

µexα = µinitialα +∆α . (3.82)

Taking e.g. also the top Yukawa interaction into account, the equilibrium condition

µHSM + µQ3 − µU3 = 0 (3.83)

has to be fulfilled. In addition, the relative shifts of the involved chemical potentials are given by

4∆µHSM = 6∆µQ3 = −3∆µU3 , (3.84)

where the prefactors count the number of degrees of freedom, where bosons obtain an additional

factor 2, cf. equation (B.22).

Combining these conditions with the ones from the equilibration among the m Higgs doublets,

cf. equation (3.81),

µH
m

+ µQ3 − µU3 = 0 , (3.85a)

4∆µH = 6∆µQ3 = −3∆µU3 , (3.85b)

is deduced. Accordingly, the chemical potentials after equilibration are given by

µH =
1

1 + 2m
(2µexH − µexQ3

+ µexU3
) , (3.86a)

µQ3 =
1

3 + 6m
(−2µexH + (3 + 4m)µexQ3

+ 2mµexU3
) , (3.86b)

µU3 =
1

3 + 6m
(4µexH + 4mµexQ3

+ (3 + 2m)µexU3
) . (3.86c)
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From cosmological observations, it is known that the baryonic content of the observable part of the

universe mainly consists of matter and not of antimatter. The existence of a significant amount

of antimatter would lead to measurable particle-antiparticle annihilation emitting a characteristic

radiation signal. Furthermore, measurements of the abundance of light elements such as hydrogen,

deuterium, helium-3, helium-4, and lithium-7 produced during the first minutes after the Big Bang

(T ≳ MeV) – a process known as BBN – are sensitive to the baryon abundance (ΩB). An

even stronger constraint baryon number (B) is determined from the measurements of the CMB.

Considering the base-ΛCDM model, the obtained relic B abundance is given by [47, p.81]

1

7.04

nB
nγ

≃ YB = 3.81× 10−9 × (ΩBh
2) = (8.54± 0.05)× 10−11 , (4.1)

where the recent Planck data for ΩBh
2 is used, cf. equation (C.8).

The origin of this observed B asymmetry is an open question in particle physics as it cannot

be explained within the SM. For calculations on perturbation level this is obvious because the

interaction terms in the SM, cf. section 2.8, conserve B as well as L. On the other hand, due to non-

perturbative transitions being efficient before EWSB – known as sphaleron transitions –, violation of

B and L occurs, cf. section 4.1. Since sphaleron transitions wash out B−L conserving asymmetries

in thermal equilibrium, they cannot individually explain the observed B asymmetry. A detailed

investigation, cf. section 3.2, shows that three criteria – known as the Sakharov conditions – need

to be fulfilled to obtain a final non-vanishing baryon asymmetry [62]:

1. Violation of B

2. Violation of the C-symmetry and CP -symmetry

3. Out-of-thermal-equilibrium interactions

Sphaleron transitions can only account for the first condition as well as P violation and they only

erase B asymmetries as long as B − L vanishes. Consequently, additional sources for B and/or

L violation and CP violation are necessary to explain the observed B asymmetry. In section 4.2,

three popular baryogenesis mechanisms are presented, two of which are of special interest in this

thesis. Afterwards, in preparation for explicit investigations following in chapter 7 and chapter 8,

the interplay of B − L violation and sphaleron transitions is investigated and a general form of the

time evolution of B and L including an additional source of L violation is deduced, in section 4.3.

62
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4.1 Rate of B and L Violation Induced by Sphaleron Transitions

As was first shown by ’t Hooft in 1976 [38], the electroweak field equations are broken by Adler-Bell-

Jackiw anomalies, in the SM. As a consequence, the electroweak potential has distinct minima with

different B and L while the difference of both, B − L, is conserved. However, in the vacuum only

tunneling processes through the potential barriers separating the topologically different minima –

called instantons – are possible. Thus, the rate of B and L violation is exponentially suppressed

∼ exp(−4π/αW ) and can be neglected to a good approximation.

Considering very hot thermal systems (T ≳ 100 GeV) thermal corrections to the Higgs potential

shift the Higgs expectation value (EV) so that it becomes significantly smaller until it vanishes at a

critical temperature (Tc) and the electroweak symmetry is restored, cf. section 6.3. In 1980, it was

shown that the exponential suppression of the instanton transitions between the different vacua only

holds after EWSB [52, 35]. For temperatures close to Tc or higher, non-perturbative transitions over

the potential barrier are possible as well. These transitions – called sphalerons – were mathematically

first described in 1984 [45]. The induced rate of B and L violation due to sphaleron transitions is

only suppressed polynomially, ∼ α5
W [5].

In detail, each transition between different topological vacua converts three left-chiral quarks (anti-

quarks) of each generation into one lepton (antilepton) of the same generation or vice versa. Thereby,

each transition within one generation conserves all charges (color, weak isospin, and hypercharge).

Consequently, 2Q1
i + Q2

i ↔ ℓ2i (2Q
1
i + Q

2
i ↔ ℓ

2
i ) and Q1

i + 2Q2
i ↔ ℓ1i (Q

1
i + 2Q

2
i ↔ ℓ

1
i ) are the

relevant processes, implying that summing over all generations there are 2× (2Ng) different allowed

sphaleron transitions. As discussed in the previous chapter, cf. section 3.2, thermal equilibrium

implies equivalence of the transition rates for the back and forth process. Consequently, the sum of

all chemical potentials involved in each of the 2× (2Ng) different relevant transitions has to vanish

in thermal equilibrium. For this condition to be fulfilled,

2µQ1
i
+ µQ2

i
+ µℓ2i

= µQ1
i
+ 2µQ2

i
+ µℓ1i

(4.2)

is required, meaning that the equilibrium condition of all transitions is equivalent:

Ng∑︂
i=1

(2µQ1
i
+ µQ2

i
+ µℓ2i

) = 0 . (4.3)

As has already been discussed in the previous chapter, cf. section 3.1, the equilibrium conditions

can also be derived by minimizing the free energy F .

Furthermore, the exact form of the time evolution of B and L resulting from a detailed derivation

is given by [44]

dnB
dt

= −N2
g

Γdiff

V T

dF

dnB
, (4.4)

with the volume V and the sphaleron diffusion constant Γdiff, which is defined as [44]

Γdiff = lim
V,t→∞

⟨︁
[NCS(t)−NCS(0)]

2
⟩︁

V t
. (4.5)
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4 Violation of Baryon and Lepton number

The time evolution of the Chern-Simons number can be expressed as [38]

NCS(t)−NCS(0) =
g2

32π2

t∫︂
0

dt′
∫︂
d3xϵµνρσTr[W

µνW ρσ] , (4.6)

whereWµν is the field strength tensor of the SU(2)L gauge symmetry, cf. section 2.8. The sphaleron

diffusion constant can e.g. be calculated using large-scale lattice simulations where for the SM [19],

Γdiff ≈ (18± 3)α5
WT

4 ×
{︄

1 T ≥ Tc
exp

(︁
(0.83± 0.01)T−Tc

GeV

)︁
T < Tc

(4.7)

is obtained, meaning that sphaleron transitions become inefficient for v2 ≳ 1, 5T 2 [19].

Moreover, nB is also diluted by the expansion of the universe, cf. equation (B.28). Thus, it is useful

to rewrite the differential equation (4.4) in terms of the chemical potential normalized with respect to

the temperature (β = 1/T ) being conserved by the expansion of the universe as long as no reheating

occurs:

dβµB
dt

= − 36

T 6
N2

g

Γdiff

V T

dF

dβµB
. (4.8)

Next, to calculate the free energy as a function of βµB, other reactions which are assumed to be

in thermal equilibrium relate the individual chemical potentials with each other. Moreover, when

not all relevant chemical potentials are related due to equilibrium conditions, additional assumptions

(e.g. initial conditions) have to be made to obtain a definite free energy. Considering a SM-like theory

with Ng generations and m SU(2)L Higgs doublets (Ng = 3 and m = 1 for the SM), assuming all

reactions (gauge, Yukawa, and Higgs self-interactions) to be in thermal equilibrium and all charges

to be conserved by the initial conditions, the free energy density in the small asymmetry limit

(µi ≪ T ), cf. equation (3.10), becomes [44, 36]1

F

V
= cT 4 + T 4 1

48Ng

13m+ 22Ng

3m+ 5Ng

(︃
βµB − 4m+ 8Ng

13m+ 22Ng
βµB−L

)︃2

+O(βµB)
4 . (4.9)

Thus, the resulting rate of B violation is given by

dβµB
dt

= −3Ng

4

13m+ 22Ng

3m+ 5Ng

Γdiff

T 3

(︃
βµB − 4m+ 8Ng

13m+ 22Ng
βµB−L

)︃
. (4.10)

After EWSB, the rate of B violation is VEV-dependent

dβµB
dt

−N2
g ρ
(︂ v
T

)︂ Γdiff

T 3

(︃
βµB − 4m+ 8Ng

13m+ 22Ng
βµB−L

)︃
, (4.11)

where ρ(x) for m = 1 is given by [13]

ρ (x) =
3

2Ng

65 + 136Ng + 44N2
g + (117 + 72Ng)x

2

30 + 62Ng + 20N2
g + (54 + 33Ng)x2

. (4.12)

1The free energy density with m = 1 was first calculated in reference [44] while neq
B with arbitrary m can be found in

reference [36].
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4.1 Rate of B and L Violation Induced by Sphaleron Transitions

Ignoring all Yukawa interactions and assuming that the initial B and L asymmetry is completely

stored in the left-chiral sector,

µinitialUi
= µinitialDi

= µinitialℓR,i
= 0 , (4.13a)

µinitialQ1
i

= µinitialQ2
i

:= µinitialQi
=

3

Ng

nB
T 2

:=
µB
2Ng

, (4.13b)

µinitialℓ1i
= µinitialℓ2i

:= µinitialℓi
= 3

nLi

T 2
:=

µLi

2
, (4.13c)

µinitialH = − 3

2m

nB−L

T 2
= − 1

4m

⎛⎝µB −
Ng∑︂
i=1

µLi

⎞⎠ = − 1

4m
µB−L , (4.13d)

where the value of µinitialH results form conservation of hypercharge, the rate of B violation is

determined by

dβµB
dt

= −6Ng
Γdiff

T 3

(︃
βµB − 1

4
βµB−L

)︃
. (4.14)
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Figure 4.1: Comparison of the rate of βµB violation normalized to the Hubble expansion rate,

cf. equation (4.15), induced by sphaleron transitions (black line) with the normalized

rate of βµU3 , βµD3 , and βµτ−R
violation induced by the dominant top (red line), bottom

(green line), and tau (dark orange line) Yukawa interaction respectively, cf. section 3.6.1.

Comparing the resulting rate of B violation with the rates generating the equilibrium condition of

the dominant SM Yukawa interactions, cf. equations (3.75), (3.78), and (3.79), it can be deduced

that before EWSB only the top Yukawa interaction is much more efficient than the rate of B

violation induced by sphaleron transitions while all other SM Yukawa interactions are significantly

less efficient, cf. figure 4.1. Thus, only the equilibrium condition of the top Yukawa interaction,

cf. equation (3.86), can be used while the equilibrium condition of all other SM Yukawa interactions

can be ignored when the rate of B violation induced by sphaleron transition itself and not only the

equilibrium condition is relevant, cf. section 3.6. Using this together with the initial conditions given

in equation (4.13), the rate of B violation becomes

dβµB
dt

= −3

(︃
2Ng −

m

2m+ 1

)︃
Γdiff

T 3

(︃
βµB − mNg

m(4Ng − 1) + 2Ng
βµB−L

)︃
. (4.15)
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4 Violation of Baryon and Lepton number

4.2 Diversity of Baryogenesis Models

Sphaleron transitions on their own are insufficient to explain the observed B asymmetry. For this

reason, physicists came up with a great number of models addressing this issue. Here, the basic

mechanism of three popular categories of models are shortly explained to highlight their diversity.

For a detailed, up-to-date investigation of diverse baryogenesis scenarios, cf. e.g. reference [6].

One category are electroweak baryogenesis models [49, 21], which only use sphaleron transitions as

a source of B and L violation. However, to generate a non-vanishing B asymmetry by sphaleron

transitions only, two more ingredients, CP violation and a strong first order electroweak phase

transition (EWPT), are needed. In these models, the universe does not smoothly transit from

the SU(2)L symmetric to the broken phase. Instead, the phase transition is of first order when

the field value tunnels through the potential barrier separating two distinct minima – one with a

vanishing and one with a non-vanishing EV of the Higgs field – at different spacetime points. Thus,

rapidly expanding bubbles form, where the field inside of the bubbles is in the broken phase while

outside, the state remains in the symmetric phase. Additionally, to have a strong first order phase

transition, the EV inside the bubbles needs to be larger than the temperature, meaning that inside

of the bubbles sphaleron transitions are inefficient. Furthermore, the masses of particles are different

in the symmetric and broken phase, implying that the particles are partly reflected at the bubble

wall – similar to light at the interface of media with different refraction indices.

Finally, CP violation implies that the reflection probabilities of particles and antiparticles are

different, resulting in a net baryon flow through the bubble wall. The resulting surplus of antiparticles

in front of the bubble wall is partly reduced by sphaleron transitions while the surplus of baryons

inside the bubble is secured because sphaleron transitions are inefficient.

However, in the SM, there is no strong first order EWPT, meaning that an extended Higgs sector

including multiple Higgs doublets is required. Furthermore, the CP violation within the SM is too

small to produce the observed baryon asymmetry so that an additional source of CP -violation is

needed as well.

Another category of special interest in the scope of this thesis are leptogenesis models where the

observed B asymmetry has its origin in an asymmetry produced in the lepton sector which is then

partly converted into a B asymmetry by sphaleron transitions. There are two main motivations to

let the observed B asymmetry originate in the lepton sector. First of all, in contrast to B violating

models, which are strongly restricted by the lower bound on the proton lifetime, L violation does

not induce nucleon decays allowing for a larger parameter space – larger coupling constants and

lower involved masses. Furthermore, right-chiral neutrinos – representing the simplest extension of

the SM to explain the observed non-vanishing active neutrino masses – are uncharged under all SM

gauge groups. As a consequence, they can have a Majorana mass naturally inducing L violation,

cf. chapter 5.

In the original model suggested in 1986 by Fukugita and Yanagida [26] the necessary CP violation

has its origin in the Yukawa couplings of the neutrino sector. The out-of-equilibrium condition is

fulfilled if the right-handed neutrinos never reach thermal equilibrium or the production of right-

handed neutrinos falls out of equilibrium when the temperature drops below their mass so that they
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4.2 Diversity of Baryogenesis Models

decay in a CP violating manner, cf. section 5.3. Note that also other mechanisms give rise to a

Majorana mass for the left-chiral neutrinos inducing L violation.

Finally, another category which is of special interest in this thesis are Grand Unified Theory (GUT)

baryogenesis models. GUTs aim at unifying the three SM gauge symmetries into one primal

gauge symmetry. Similar to the unification of the electromagnetic (U(1)em) and the weak force

to the spontaneously broken electroweak force (SU(2)L × U(1)Y ), the strong and the electroweak

force are further unified to e.g. a spontaneously broken SU(5)GUT (Georgi–Glashow model [29]) or

SO(10)GUT [25] with SU(3)C × SU(2)L × U(1)Y ⊂ SU(5) ⊂ SO(10).

There are a couple of motivations for this unification. First of all, physicists strive to find a theory

of everything with only one force and a minimal number of free parameters. Moreover, there are

also practical reasons for assuming that the SM forces can be unified. One reason is that GUTs

can explain the discrete values of the hypercharge of SM particles which in principle could have any

value in U(1)Y . Another hint at the existence of GUTs can be found by considering the running of

the SM coupling constants g, g′, and gs since they have roughly the same value in the SM around

1015 GeV2, cf. figure 2.1. Consequently, the scale where the unified theory breaks down into the

three SM gauge symmetries is usually assumed to be roughly of this order. As for the breaking of

SU(2)L × U(1)Y → U(1)em where the masses of Higgs and gauge bosons are of the same order as

the breaking scale ∼ 100 GeV, it is expected that the masses of the particles given by the GUT

breaking are also of the order of the GUT breaking scale. This assumption is also supported by the

fact that the Georgi-Glashow model requires the existence of a scalar color triplet Higgs boson –

also known as leptoquarks – inducing nucleon decays. Thus, their masses have to be greater than

∼ 1011 GeV [33] to be in agreement with the measured bound on the proton lifetime. However,

particles with so large masses are way too heavy to be produced in current collider experiments,

meaning that it is not expected to observe GUT particles inducing B violation in the near future.

Nevertheless, GUTs naturally lead to B violation and are therefore of interest for baryogenesis.

However, in many GUT-baryogenesis models, an equivalent amount of L violation is induced,

implying that the difference of both (B − L) is conserved resulting in a complete washout of the

produced asymmetry by sphaleron transitions if no further B − L violating processes are active

before sphalerons reach thermal equilibrium. The reason therefore is that in SU(5), B − L is a

conserved quantity. Furthermore, GUTs of higher symmetry groups such as SO(10) contain U(1)B−L

as a subgroup which is unbroken above the GUT breaking scale. Consequently, before the GUT

symmetry is broken, only many body decays can violate B − L. However, these many body decays

are too inefficient to explain the observed asymmetry [27].

2Note that in the Minimal Supersymmetric Standard Model (MSSM), all SM coupling constants become equivalent

at ∼ 1016 GeV, cf. e.g. review 94. in reference [76]
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4.3 Interplay of Sphaleron Transitions and B − L Violating Interactions
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Figure 4.2: Rate of βµB violation induced by sphaleron transitions (Γspha) normalized to the Hubble

expansion rate H(T ) (black line), distinguishing five major regions of interest. In region

I (T ≲ 110 GeV) and region V (T ≳ 1013 GeV), the violation of the baryon number is

inefficient and sphaleron transitions are irrelevant. In region II (T ∼ 115 GeV) and region

IV (1011 GeV ≲ T ≲ 1013 GeV), the rate of βµB violation is roughly of the same order

as the Hubble expansion rate, implying that the interplay of sphaleron transitions and

other processes become relevant. In region III (120 GeV ≲ T ≲ 1011 GeV), the violation

of the baryon number is very efficient, meaning that only the equilibrium condition is

relevant.

After presenting the basic mechanism of various baryogenesis models, in this section the interplay

between sphaleron transitions and other sources of B and/or L violation is investigated in more

detail. Considering the rate of βµB violation induced by sphaleron transitions (Γspha), five major

regions can be distinguished for the interplay with additional sources of B and/or L violation,

cf. figure 4.2.

In the first region of interest (T ≳ 1013 GeV), cf. region V in figure 4.2, Γspha is small compared to

the Hubble expansion rate. Consequently, sphaleron transitions in this region can be ignored to a

good approximation, meaning that only the rates of additional B- and/or L-violating processes are

relevant for the time evolution of the B and L asymmetries. Thus, assuming the additional sources of

B and/or L violation to only be relevant in this region, the resulting B asymmetry is determined by

the B−L asymmetry generated in this region, cf. the equilibrium condition of equation (4.10). The

GUT baryogenesis scenarios mentioned in the previous section usually take place in this region.

Next, for 1011 GeV ≲ T ≲ 1013 GeV, Γspha is comparable to the Hubble expansion rate, cf. region

IV in figure 4.2. Consequently, the rate of B and L violation induced by sphaleron transitions has

to be taken into account as a part of the Boltzmann equation requiring a more detailed analysis of

the interplay of sphaleron transitions and additional B- and/or L-violating processes.

In the third region of interest (120 GeV ≲ T ≲ 1011 GeV), cf. region III in figure 4.2, sphaleron

transitions are in thermal equilibrium (Γspha ≫ H(T )). Hence, sphaleron transitions do not have to

be taken into account as part of the Boltzmann equations. Instead, the equilibrium condition can be
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4.3 Interplay of Sphaleron Transitions and B − L Violating Interactions

used to simplify the Boltzmann equations. Leptogenesis scenarios are often assumed to take place

in this region.

Moreover, after EWSB sphaleron transitions become exponentially suppressed so that for 110 GeV

≲ T ≲ 120 GeV, Γspha is again comparable to the Hubble expansion rate, cf. region II in figure 4.2.
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Figure 4.3: Required value of βµB−L in the SM depending on the generation scale necessary to

obtain the observed B asymmetry of βµfinalB = −2.4 × 10−8, cf. equation (4.20). For

the calculation of the critical temperature appearing in the sphaleron diffusion constant,

only the leading thermal corrections to the effective Higgs potential have been taken into

account, cf. equation (6.41).

The freeze out of sphaleron transitions can be visualized by calculating the initial B−L asymmetry

required to obtain the observed B asymmetry depending on the scale where the B−L asymmetry is

produced, cf. figure 4.3. As can be seen, an initial B − L asymmetry of order βµinitialB−L ≲ 10−7 being

present at T ∼ 115 GeV is sufficient to explain the observed B asymmetry if no further source of B

violation is relevant at lower temperatures.

Finally, for T ≲ 110 GeV the rate of B violation induced by sphaleron transitions is inefficient

(Γspha ≪ H(T )), cf. region I in figure 4.2. Consequently, this last region is not very promising to

account for the observed B asymmetry because an L asymmetry produced by additional sources of L

violation cannot be converted into a sizable B asymmetry when sphaleron transitions are inefficient.

Furthermore, additional B violating processes being efficient at such low temperatures naturally

imply a decay width of the proton which exceeds the current limits.

In chapter 7, the focus is on the fourth region where the rate of B violation induced by sphaleron

transitions is close to the Hubble expansion rate. Consequently, the interplay of both sphaleron

transitions and B and/or L violation has to be studied in detail.

For simplicity, the initial conditions given in equation (4.13) are used and only an additional source

of L violation is considered implying that B is only violated by sphaleron transitions. Furthermore,

all other processes, which do not violate B and/or L but connect different chemical potentials,

are assumed to be either in thermal equilibrium or negligible3. Within this set of conditions, the

3As discussed in section 4.1, this approximation is reasonable in the second and fourth region when only SM processes

and additional sources of L violation are considered. In detail, in region IV, all SM gauge interactions and the

top Yukawa interaction are way more efficient than sphaleron transitions, while all other Yukawa interactions are

significantly less efficient so that they can be neglected. In region II, all SM interactions are in thermal equilibrium.
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4 Violation of Baryon and Lepton number

quantities being relevant for the time evolution of the B asymmetry reduce to the total amount of

B asymmetry (βµB) and the L asymmetry of each generation Li (βµLi)
4, whose time evolution is

determined by

d

dt
βµLi = Γ/L,ijβµLj + Γ/L,BβµB + Γspha

(︃
βµLi −

cs − 1

2Ng
βµB−L

)︃
, (4.16a)

d

dt
βµB = −Γspha (βµB − csβµB−L) , (4.16b)

with Γ/L,ij and Γ/L,B being rates induced by additional source of L violation.

However, the solution of the differential equations 4.16 can be numerically unstable because it

strongly depends on µB−L = µB −µL being defined by the difference of two quantities, each of with

can be large compared to their difference (µB, µL ≫ µB−L). To circumvent this problem, the time

evolution of µB−Li = µB/Ng − µLi and µB can be considered instead:

d

dt
βµB−Li = Γ/L,ij

(︃
βµB−Li −

βµB
Ng

)︃
− Γ/L,2βµB , (4.17a)

d

dt
βµB = −Γspha (βµB − csβµB−L) , (4.17b)

where the time evolution of µB−Li is now independent of the rate of B violation induced by sphaleron

transitions.

According to (4.17) and considering baryogenesis originating from a B − L asymmetry produced

above the scale where sphaleron transitions become inefficient (T ≳ 115 GeV), the final B asymmetry

is given by

βµfinalB = csβµB−L(T ∼ 115 GeV) = 4
m+ 2Ng

13m+ 22Ng
βµB−L(T ∼ 115 GeV) , (4.18)

cf. equation (4.10). Based on observations,

βµfinalB = − 6s

T 3
Y final
B = −4π2

15
gSeff × (8.54± 0.06)× 10−11 (4.19)

is required, which becomes

βµfinalB = −(2.40± 0.01)× 10−8 (4.20)

for the SM (Ng = 3, m = 1, and gSeff = 106.75) and

βµfinalB = −(2.49± 0.02)× 10−8 (4.21)

for an extended Higgs sector with two scalar Higgs doublets (Ng = 3, m = 2, and gSeff = 110.75).

4The chemical potentials of additional BSM particles inducing L violation are either irrelevant or can usually be

expressed in terms of βµB and βµLi .
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5 Introduction of Right-Handed Majorana Neutrinos

In the SM, the three left-chiral neutrinos (νe, νµ, and ντ ) are massless but from the observation

of neutrino oscillations, it is known that at least two of the three neutrinos have a non-vanishing

mass, cf. equation (C.4). Consequently, an extension of the SM explaining these non-vanishing

masses is needed. Because all other masses in the SM besides the Higgs mass are generated by the

Higgs mechanism, it seems natural to introduce right-chiral neutrinos (νR) which are coupled to the

left-chiral lepton doublet (ℓ) via Yukawa interactions:

LN =
∑︂
i

[︃
iΨνRi

/∂ΨνRi
−
∑︂
j

(︂
yijΨℓjH

cΨνRi
+ y∗ijΨνRi

Hc†Ψℓj

)︂
− MNi

2

(︂
Ψc

νRi
ΨνRi

+ΨνRi
Ψc

νRi

)︂]︃
,

(5.1)

with Hc = iσ2H
∗ and the field operators in the charge-conjugated representation defined in equation

(A.15).

First, forgetting about the Majorana mass terms (MNi = 0), as all other SM particles, neutrinos

obtain a Dirac mass. This simple extension of the SM explains neutrino oscillations but it is difficult

to confirm by experiments because the introduced Yukawa couplings have to be naturally very small

(
∑︁
yij ≲ 10−12) to be in agreement with the limit on the sum of the neutrino masses (

∑︁
mν ≲ 0.12

eV [2]), meaning that the coupling of the dominantly right-chiral neutrino energy eigenstate to other

SM particles is tiny. This can be understood from the fact that right-chiral neutrinos are uncharged

under the SM gauge symmetries so that the dominantly right-chiral neutrino energy eigenstate only

couple via weak interaction due to Dirac mass induced mixing. However, this mixing becomes very

tiny for measurable neutrino energies (E ≫ yijv).

On the other hand, the fact that right-chiral neutrinos are uncharged under the SM gauge symmetries

allows the introduction of Majorana mass terms (MNi ̸= 0), which for SM particles are forbidden by

gauge symmetries. However, considering Majorana mass terms, the equations of motion resulting

from LN become more complicated because they also depend on field operators in the charge-

conjugated representation. In the SM, the Lagrangian can be either written in terms of field

operators or field operators in the charge-conjugated representation so that transition amplitudes

can either be calculated in the usual or the charge-conjugated representation. But the Majorana

mass terms switch between both representation, implying that the equations of motion of both

representations do not decouple. Hence, the SM Lagrangian, cf. equation (A.92), and the additionally

introduced Lagrangian including right-chiral neutrinos, cf. equation (5.1), in the charge-conjugated

representation become relevant

Lc
N =

∑︂
i

[︃
iΨc

νRi
/∂Ψc

νRi
−
∑︂
j

(︂
y∗ijΨ

c
νjHΨc

νRi
+ yijΨc

νRi
H†Ψc

νj

)︂
− MNi

2

(︂
Ψc

νRi
ΨνRi

+ΨνRi
Ψc

νRi

)︂]︃
,

(5.2)
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as well as equation A.95 for the SM Lagrangian in the charge-conjugated representation1.

That both representations are needed to calculate a transition amplitude involving Majorana masses

seem to be problematic because both representations contain the same creation and annihilation

operators and – ignoring the Majorana masses – independently give rise to the same equations

of motion. Nevertheless, fixing the used representation at one interaction point so that both

representations become distinct at each interaction point, the equation of motion including both

representations can be used as a simple method to calculate transition amplitudes involving Majorana

masses. Because only Majorana masses switch between both representations, the propagators of all

non-Majorana particles remain unchanged:

⟨0|T ψc
i (x+ y)ψi(y)|0⟩ = ⟨0|T ψi(x+ y)ψc

i(y)|0⟩ = 0 . (5.3)

Only for the field operators of right-chiral Majorana neutrinos, representation changing propagators

occur:

⟨0|T ΨνRi
(x+ y)ΨνRi

(y)|0⟩ = ⟨0|T Ψc
νRi

(x+ y)Ψc
νRi

(y)|0⟩ =
∫︂

dk

(2π)4
i/k

k2 −M2
Ni

e−ikx , (5.4a)

⟨0|T Ψc
νRi

(x+ y)ΨνRi
(y)|0⟩ = ⟨0|T ΨνRi

(x+ y)Ψc
νRi

(y)|0⟩ =
∫︂

dk

(2π)4
iMNi

k2 −M2
Ni

e−ikx , (5.4b)

where all other contractions of field operators vanish (e.g. ⟨0|T Ψc
N (x+ y)ΨN (y)|0⟩ = 0). Furthermore,

spin sums where the Majorana masses also change among the representations are given by

⟨0|ΨνRi
(x) |i, p⟩ ⟨i, p|ΨνRi

(x)|0⟩ = ⟨0|Ψc
νRi

(x) |i, p⟩ ⟨i, p|Ψc
νRi

(x)|0⟩ =
∑︂

uνRi
(p⃗)uνRi

(p⃗) = /p , (5.5a)

⟨0|Ψc
νRi

(x) |i, p⟩ ⟨i, p|ΨνRi
(x)|0⟩ = ⟨0|ΨνRi

(x) |i, p⟩ ⟨i, p|Ψc
νRi

(x)|0⟩ =
∑︂

vc
νRi

(p⃗)uνRi
(p⃗) =MNi ,

(5.5b)

where the relations vcs(p⃗) = us(p⃗) and u
c
s(p⃗) = vs(p⃗) are used. Note that, considering an antiparticle

instead (|i, p⟩ → |i, p⟩ uνRi ↔ vνRi
), a − sign in front of MNi is obtained. In addition, uνRi

are

the positive and vνRi
the negative energy eigenstates of the free equation of motion neglecting Dirac

masses inducing mixing between left- and right-chiral components. Note that, due to the fixing of the

representation at one interaction point, the second row of equation (5.5) can only become relevant

when multiple Majorana field operators appear in the transition amplitude. Alike Feynman rules

for Majorana fermions can be found in the literature, cf. e.g. reference [32], where the Majorana

condition is used, meaning that calculations can be completely done in the usual representation.

Nevertheless, charge-conjugated matrices have to be introduced and spinors have to be transposed

meaning that the resulting amplitudes become equivalent.

However, using the derived formalism including both representations, the detailed investigation of

eigenstates including both Majorana and Dirac masses become more obvious. Defining ψνRi
:=

1Note that the equation of motion for the field operators in the charge-conjugated representation is related to the

equation of motion of field operators by a complex conjugation of the Yukawa couplings and an additional minus

sign in front of the gauge couplings. This is because the same state vector that describes a particle in the usual

representation describes the corresponding antiparticle in the charge-conjugated representation.
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(ΨνRi
,Ψc

νRi
) and ψνLj

:= (ΨνLj
,Ψc

νLj
), the time evolution can be written as

i
d

dt
ψνRi

= γ0(i∇γ⃗ +MNi)ψνRi
+
∑︂
j

m†
ij ψνLj

, (5.6a)

i
d

dt
ψνLj

= −iγ0∇γ⃗ ψνLj
+
∑︂
i

mij ψνRi
, (5.6b)

with

mij =
v√
2

(︄
yijI2 0

0 y∗ijI2

)︄
. (5.7)

Note that one can always transform to a basis where p⃗ ∥ e⃗z so that the time evolution of the

first and third component decouples from the time evolution of the second and fourth component,

which is important because each degree of freedom is considered twice. Next, considering the time

evolution in the rest frame and defining ψ′ = (ψνL1
, . . . , ψνLNg

, ψνR1
, . . . , ψνRnN

), the mass eigenstates

are determined by

E ψ′ =

(︄
0 mD

m†
D MN

)︄
ψ′ , (5.8)

where the Dirac and the Majorana mass matrices are given by

mD =

⎛⎜⎝ m11 · · · mnN1

...
. . .

...

m1Ng · · · mnNNg

⎞⎟⎠ with mij =
v√
2

(︄
yij 0

0 y∗ij

)︄
, (5.9a)

MN =

⎛⎜⎝M1 0 0

0
. . . 0

0 0 MnN

⎞⎟⎠ with Mi =

(︄
0 MNi

MNi 0

)︄
. (5.9b)

Furthermore, it can be shown that the eigenvalues of the given mass matrix are equivalent to the

eigenvalues obtained by using mij = v√
2
yij and Mi = MNi instead. Assuming MNi ≫ mij , the

eigenvalues of the mass matrix at first non-vanishing order are given by the Majorana masses (MNi)

and the eigenvalues of the light mass matrix

(mI
ν)jk :=

∑︂
i

y∗ijyik

2MNi

v2 =:
∑︂
i

(mI
ν)

i
jk , (5.10)

which is known as the type-I seesaw mechanism [59]. This mechanism makes it possible to explain the

smallness of the observed neutrino masses compared to all other Dirac masses which are present in the

SM without requiring extremely small Yukawa couplings. Assuming e.g. yij ∼ 1 andMNi ∼ 1015 GeV

results in light neutrino masses of order 0.1 eV.

Note that the heavy-mass eigenstates (Ni), which are dominantly right-chiral, are usually named

right-handed neutrinos while the light mass eigenstates (ν), which are observed in experiments, are

dominantly left-chiral and are usually named active neutrinos. Before EWSB – when the Dirac

masses were zero – chirality and helicity become equivalent (νRi = Ni and ν
L
j = νj). Furthermore, in
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5 Introduction of Right-Handed Majorana Neutrinos

contrast to only introducing Dirac mass terms, the resulting mass matrix for the active neutrinos,

cf. equation (5.10), is also a Majorana mass matrix:

L0 =
∑︂
i

(︃
iΨNi

/∂ΨNi −
MNi

2

(︁
Ψc

NiΨNi +ΨNiΨ
c
Ni

)︁)︃

+
∑︂
j

(︄
iΨνj /∂Ψνj −

∑︂
k

(︃
mjk

2
Ψc

νkΨνj +
m∗

jk

2
ΨνkΨ

c
νj

)︃)︄
. (5.11)

Thus, neutrino-antineutrino oscillations are induced, resulting in the prediction of neutrinoless

double beta decay, cf. e.g. reference [61]. The measurement of such a decay would manifest the

Majorana type of the active neutrino masses. The type-I is the simplest and most popular model

inducing Majorana masses for active neutrinos but there are also other models such as the type-II

and type-III seesaw mechanisms or radiative seesaw models like the scotogenic model, cf. section

6.2, accomplishing this task.

Note that the active neutrino mass matrix, cf. equation (5.10), is not diagonal in the flavor basis so

that similar to the CKM matrix in the quark sector, also a mixing matrix called Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) matrix occurs in the lepton sector. Defining the PMNS matrix similar

to the CKM matrix, cf. equation (A.93), the corresponding angles are constrained by measurement,

cf. equation (C.6).

In the following, first of all, the thermal rate of the two-body decay involving Majorana neutrinos,

cf. section 5.1, and afterwards, the thermal rates of 2 → 2 scattering processes mediated by a

Majorana neutrino, cf. section 5.2, are calculated. Both of them contribute to the time evolution of

the L asymmetry and therefore are relevant for the investigations following in chapter 7. Finally, in

section 5.3, CP violation in the context of the two-body decay of Majorana fermions is investigated

and thermal leptogenesis is briefly discussed.

5.1 Thermal Rate of Two-Body Decays Involving Majorana Fermions

Considering the generalized interaction Lagrangian

L ⊃ −y′Ψχ(x)ϕ
†(x)RΨN (x)− y′∗ΨN (x)Lϕ(x)Ψχ(x) , (5.12a)

Lc ⊃ −y′∗Ψc
χ(x)ϕ

c†(x)LΨc
N (x)− y′Ψc

N (x)Rϕc(x)Ψc
χ(x) , (5.12b)

with a scalar field ϕ, a Dirac fermion χ, and a right-chiral Majorana fermion N , in case of MN >

mχ +mϕ, mχ > MN +mϕ, or mϕ > MN +mχ, a decay of the heaviest particles is induced. The

corresponding matrix elements are given by

iM =

⎧⎪⎨⎪⎩
−iy′uχRuN for N → χϕ

−iy′∗uNLuχ for χ→ Nϕ†

−iy′∗uNLvχ for ϕ→ Nχ

, (5.13a)

⇒ |M|2 = |y′i|2Tr
[︂
(/pχ ±mχ)R/pNi

]︂
= 2|y′i|2pχpNi . (5.13b)
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5.1 Thermal Rate of Two-Body Decays Involving Majorana Fermions

In case of MN > mχ +mϕ, in the rest frame of the decaying particle the decay width, cf. equation

(2.25), is

ΓN→χϕ =
2|y′i|2EχMN

8π

|p⃗χ|
M2

N

=
|y′i|2MN

16π

(︄
1 +

m2
χ

M2
N

−
m2

ϕ

M2
N

)︄
λ

(︄
1,
m2

χ

M2
N

,
m2

ϕ

M2
N

)︄

=
|y′i|2mN

16π
(1 + aχ − aϕ)λ (1, aχ, aϕ) , (5.14)

where the abbreviations defined in equation (3.31) with mi = MN are used. The decay width for

mχ > MN +mϕ is obtained by interchanging N and χ:

Γχ→Nϕ† =
|y′i|2mχ

16π

(︄
1 +

M2
N

m2
χ

−
m2

ϕ

m2
χ

)︄
λ

(︄
1,
M2

N

m2
χ

,
m2

ϕ

m2
χ

)︄

=
|y′i|2MN

16π

√
aχ

(︃
1 +

1

aχ
− aϕ
aχ

)︃
λ

(︃
1,

a

aχ
,
aϕ
aχ

)︃
. (5.15)

Finally, for mϕ > MN +mχ, the resulting decay width is given by

Γϕ→Nχ =
2|y′i|2(EχEN + |p⃗N |2)

8π

|p⃗N |
m2

ϕ

=
|y′i|2mϕ

16π

(︄
1− M2

N

m2
ϕ

−
m2

χ

m2
ϕ

)︄
λ

(︄
1,
M2

N

m2
ϕ

,
m2

χ

m2
ϕ

)︄

=
|y′i|2MN

16π

√
aϕ

(︃
1− 1

aϕ
− aχ
aϕ

)︃
λ

(︃
1,

1

aϕ
,
aχ
aϕ

)︃
. (5.16)

In the limit where the mass of the decaying particle is much larger than the masses of the decay

products, the decay width simplifies to

(︁
ΓN→χϕ/Γχ→Nϕ†/Γϕ→Nχ

)︁
=

|y′i|2MN

16π

(︁
1/
√
aχ/

√
aϕ
)︁
. (5.17)

According to equation (3.27), the corresponding thermal rate in case of MN > mχ + mϕ is given

by

γN→χϕ =
M4

N

2π2
√︁
aΓN→χϕ

K1(z)

z
, (5.18)

with z =MN/T , while in case of mϕ > MN +mχ, it becomes

γϕ→Nχ =
m4

ϕ

2π2
Γϕ→Nχ

mϕ

K1(z
′)

z′
=
M4

N

2π2
√︁
aΓϕ→Nχ

aϕ
K1(

√
aϕ z)

z
, (5.19)

with z′ = mϕ/T =
√
aϕz. Since the thermal rate of the (inverse) decay at T ∼ m often dominates the

Boltzmann equations, it makes sense to improve the used approximation by using the Fermi-Dirac

and Bose-Einstein statistics instead of Boltzmann statistics [30]:

K1(
√
ai z)

z
→ 1

2

∞∫︂
√
ai

dE′
i

√︂
(E′

i)
2 − ai

ezE
′
i

ezE
′
i ± 1

1∫︂
−1

dx
1

e
zE′

f1 ± 1

1

e
zE′

f2 ± 1
, (5.20)

with E′
i = Ei/MN . Note that the decay width can be excluded from the integral because it is

independent of x.
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5 Introduction of Right-Handed Majorana Neutrinos

5.2 Thermal Rate of Majorana Fermion Mediated Fermion Number

Violating 2 → 2 Scattering Processes

Considering the interaction term given in equation (5.12), besides the (inverse) decay, also scattering

processes violating the particle-antiparticle asymmetry of χ and ϕ (χϕ→ χcϕc and χχ→ ϕcϕc) are

induced.

The matrix element of the process χϕ → χcϕc mediated by Ni (s- and t-channel process) is given

by

M = −iucχ,r(−iy′∗i )
iMNi

q2 −M2
Ni

+ iMNiΓNi

(−iy′∗i )Luχ,s . (5.21)

Evaluating the spin sum∑︂
r,s

Tr
[︁
Rucχ,ru

c
χ,rLuχ,suχ,s

]︁
= Tr

[︁
R( /p3 −m3)L( /p1 +m1)

]︁
= 2(p1p3) , (5.22)

the squared matrix element summed over all spins is given by

∑︂
r,s

|M|2 = |y′i|4
M2

Ni
(−t+ 2m2

χ)
[︂(︁
s+ t− 2M2

Ni

)︁2
+ 4M2

Ni
Γ2
Ni

]︂
[︂
st−M2

Ni

(︂
s+ t−M2

Ni
+ Γ2

Ni

)︂]︂2
+M2

Ni
Γ2
Ni

(︂
s+ t− 2M2

Ni

)︂2 . (5.23)

Using equation (D.8), the reduced cross section, cf. equation (3.30), is obtained:

σ̂N,s(u) :=

2∫︂
0

dx σ̂Ns(u, x) =

2∫︂
0

dx
|y′i|4
32π

(︂
λ[u, aχ, aϕ]

2x

u
+ 4aχ

)︂ λ[u, aχ, aϕ]2
u2

×
(︁
2u− λ[u, aχ, aϕ]

2 x
u − 4

)︁2
+ 16aΓNi[︂

λ[u, aχ, aϕ]2x+
(︂
2u− λ[u, aχ, aϕ]2

x
u − 2 + aΓNi

)︂]︂2
+ aΓNi

(︁
2u− λ[u, aχ, aϕ]2

x
u − 4

)︁2 . (5.24)

The corresponding thermal rate γNs can be evaluated using equation (3.29) with mi = MNi and

umin = (
√
aϕ +

√
aχ)

2.

However, the resulting thermal rate has to be calculated numerically, which can be difficult when

the decay N → χϕ is kinematically allowed because in this case the s-channel propagator hits the

resonance. Furthermore, as discussed in section 2.10, this resonant contribution is already taken

into account by the thermal rate of the (inverse) decay γN→χϕ calculated in the previous section,

cf. equation (5.18). Thus, γNs includes γN→χϕ/2 [30], where the factor 1/2 appears because N can

decay into both χ and χc. To obtain a numerically stable formula for the subtracted thermal rate

(γsubNs = γNs − γN→χϕ/2), γN→χϕ can be rewritten using equation (D.19):

γN→χϕ

2
=
M4

Ni

4π3
aΓNi

K1(z)

z

∞∫︂
−∞

du
1

(u− 1)2 − aΓNi

:=
M4

Ni

64π4

∞∫︂
−∞

du
K1(z)

z

2∫︂
0

dx σ̂N (u, x) , (5.25)

with

σ̂N (u, x) =
|y′i|4
32π

(︁
λ[1, aχ, aϕ]

2x+ 4aχ
)︁
λ[1, aχ, aϕ]

2 1

(u− 1)2 − aΓNi

. (5.26)
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5.2 Thermal Rate of Majorana Fermion Mediated Fermion Number Violating 2 → 2 Scattering Processes

Consequently, the subtracted thermal rate can be expressed as

γsubN,s =
M4

Ni

64π4

2∫︂
0

dx

[︄
−
(
√
aϕ+

√
aχ)2∫︂

−∞

du σ̂N (u, x)
K1(z)

z

+

∞∫︂
(
√
aϕ+

√
aχ)2

du

(︃√
u σ̂Ns(u, x)

K1(
√
uz)

z
− σ̂N (u, x)

K1(z)

z

)︃]︄
MNi

≫T
≈ |yi|4T 6

8π5M2
Ni

, (5.27)

where the resonance is erased from the integral.

Moreover, the relation

2−umin∫︂
umin

f(u)du =

1∫︂
umin

[︁
f(u) + f(2− u)

]︁
du , (5.28)

can be used to subtract terms which are linear in u− 1. This simple trick can further suppress the

maximal value of the integrand by orders of magnitudes because terms which are linear in u − 1

multiplied with the resonance can be very large while terms of higher order in u−1 are unimportant.

This can be understood from the fact that the resonance scales with 1/(u− 1)2 for (u− 1)2 ≳ aΓNi
.

Finally, the integral up to umin can be solved analytically, cf. equation (D.19):

−
2∫︂

0

dx

(
√
aϕ+

√
aχ)2∫︂

−∞

du σ̂N (u, x)
K1(z)

z
= −4π

√︁
aΓNi

K1(z)

z

[︄
2 arctan

(︄
(
√
aϕ +

√
aχ)

2 − 1
√aΓNi

)︄
+ π

]︄
.

(5.29)

For the process χχ→ ϕcϕc, the matrix element (t- and u-channel process) is equivalent to the matrix

element of χϕ→ χcϕc, cf. equation (5.21). Hence, the squared matrix element summed over all spins

becomes

∑︂
r,s

|M|2 = |y′i|4
4M2

Ni
(s− 2m2

χ)
[︂
(m2

ϕ +m2
χ − s/2−M2

Ni
)2 +M2

Ni
Γ2
Ni

]︂
λ[(m2

ϕ +m2
χ − s/2−M2

Ni
)2, (s− 4m2

ϕ)(s− 4m2
χ)x

2/4,−M2
Ni
Γ2
Ni
]2
. (5.30)

Using equation (D.7), the reduced cross section can be written as

σ̂N,t(u) =

1∫︂
−1

dx
|y′i|4
4π

(u− 2aχ)
(︂
1− 4

aϕ
u

)︂ √
u− 2

√
aχ√

u− 2
√
aϕ

×
(aϕ + aχ − 1− u/2)2 + aΓNi

λ[(aϕ + aχ − 1− u/2)2, (u− 4aϕ)(u− 4aχ)x2/4,−aΓNi
]2
, (5.31)

so that the induced thermal rate is given by

γN,t =
M4

Ni

64π4

∞∫︂
max[4aϕ,4aχ]

du
√
u σ̂Nt(u)

K1(
√
uz)

z

MNi
≫T

≈ |yi|4T 6

4π5M2
Ni

. (5.32)
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5.3 CP Violation in the Two-Body Decay of Majorana Fermions and

Thermal Leptogenesis

In section 5.1, the two-body decay width of a Majorana fermion N into ϕ and χ is calculated.

The corresponding thermal rate for not too large coupling constants (y′ ≲ 1) clearly dominates

the interaction rate involving the Majorana fermion for the temperature region where it becomes

Boltzmann suppressed (MN/10 ≲ T ≲ MN ). Furthermore, the interaction rate involving the

Majorana fermion is most efficient in the same temperature region (Γ/H(T ) becomes maximal).

Cf. figure 7.1 for an exemplary plot of the dominant thermal rates. Consequently, for most lepto-

genesis scenarios, the CP violation induced by the two-body decay is the essential ingredient for

the generation of an L asymmetry. As was discussed in section 3.2, the relevant quantity for the

generation of an asymmetry, cf. equation 3.21, is

δCP,N→χϕ =
|MN→χϕ|2 − |MN→χϕ† |2
|MN→χϕ|2 + |MN→χϕ† |2

=
ΓN→χϕ − ΓN→χϕ†

ΓN→χϕ + ΓN→χϕ†
. (5.33)

As can be deduced from equation 2.132, at least two Majorana fermions decaying both into at least

two different final states, where at least two of the decay products for both Majorana fermions must

be equivalent, are required to obtain a non-vanishing CP violation2. For this reason, in the following,

a model with multiple Majorana fermions Ni decaying into a scalar boson ϕ(x) and non-Majorana

fermions χj is considered. In principle also multiple scalar bosons can be considered. However, this

only induces an extra sum over all scalar bosons and does not change the given results relevantly.

Ni Ni Ni Niχj

φ† φ φ φ

χj χj χj
χm

χmNn

χm/Nn

χm

Nn

Nn

NN/χm

Figure 5.1: One-loop corrections to the Yukawa interaction term y′ijΨχ(x)ϕ
†(x)ΨN (x), where the

left diagram with ϕ†(x) as final state only contributes when ϕ(x) is a real scalar field.

As discussed in section 3.2, due to the unitarity of the S-matrix, only CP violation of processes

involving fermion number violation can induce a non-vanishing particle-antiparticle asymmetry. Such

a source of fermion number violation are Majorana fermions where the energy eigenstates can decay

into both, particles and antiparticles. This can be seen by considering one-loop corrections to the

Yukawa interaction term y′ijΨχ(x)ϕ
†(x)ΨN (x), cf. figure 5.1, which are all proportional to y′imy

′∗
nmy

′
nj

so that the induced CP violation becomes3

δCP ∝
∑︂
m,n

f(MNi ,MNn) Im[y′imy
′∗
nmy

′
njy

′∗
ij ] , (5.34)

2Note that this statement is also valid for CP violation induced by vertex loop corrections which is not considered

in section 2.10
3Note that all other complex phases arising e.g. from including the decay widths of MNi and MNn are CP -even

phases.
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implying that summing over all non-Majorana fermions (j) the total amount of particle-antiparticle

asymmetry produced by the decay of Ni vanishes. Note that this statement is only valid at one-loop

order. In contrast, e.g. considering two-loop corrections, the CP violation becomes

δCP ∝
∑︂

m1,m2,n1,n2

f2(MNi ,MNn1
,MNn2

) Im[y′im2
y′∗n2m2

y′n2m1
y′∗n1m1

y′n2jy
′∗
ij ] , (5.35)

which in case of considering at least three different right-handed Majorana neutrinos does not vanish

when summing over all j.

×
×

N c
iN c

i

χc
m

N (c)
n

χj χc
m

N (c)
n

χj

φ φ†

N c
i

χc
m N (c)

n

χj

φ

Figure 5.2: One-loop corrections to the Yukawa-like interaction term ∼ Ψχ(x)ϕ
†(x)Ψc

N (x). The

left diagram considers Ni-Nn mixing at first order, the center diagram considers νj-νm
mixing at first order, and the right diagram shows the one-loop vertex correction. The

center-loop correction with ϕ†(x) as final state only contributes when ϕ(x) is a real scalar

field.

Thus, to obtain a total amount of CP violation at one-loop order interference with a Yukawa-

like interaction term ∼ Ψχ(x)ϕ
†(x)Ψc

N (x), being allowed due to the Majorana mass, need to be

considered, cf. figure 5.2. In this case, all loop contributions are proportional to y′∗imy
′
nmy

′
nj so that

the induced CP violation becomes

δCP ∝
∑︂
m,n

g(MNi ,MNn) Im[y′∗imy
′
nmy

′
njy

′∗
ij ] , (5.36)

which does not vanish when summing over all final states.

Consequently, to obtain the particle-antiparticle asymmetry induced by the decay of the Majorana

fermion, the interference of the tree-level decay with the loop induced decays shown in figure 5.2

have to be considered. Because here leptogenesis is studied, from now on right-handed Majorana

fermions Ni decaying into a Higgs doublet H and lepton doublets ℓj are considered. In this case,

H only corresponds to a real scalar field after EWPT, implying that the center diagram shown in

figure 5.2 does not induce CP violation before EWSB.

In the case of not very strongly degenerate masses for the Majorana fermions (Ei −Ej ≫ Γi − Γj),

the amount of CP violation originating from the decay width induced mixing between right-handed

neutrinos can be calculated perturbatively in orders of Ni-Nn mixing. At first order in the mixing,

cf. left diagram in figure 5.2, the resulting CP violation ignoring thermal corrections is given by [17]

δwaveCP,Ni→ℓjH
= − 1

8π

∑︂
m,n ̸=i

MNiMNn

M2
Nn

−M2
Ni

Im
[︂
y∗nmyimy

∗
njyij

]︂
|yij |2

, (5.37)

where MNi ,MNn ≫ mℓj +mH is assumed, n sums over all other Majorana fermions, and m over

all decay products. Furthermore, using the same approximation, the CP violation originating from
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5 Introduction of Right-Handed Majorana Neutrinos

the vertex loop correction, cf. the right diagram in figure 5.2, is determined by [17]

δvertexCP,Ni→ℓjH
=

1

8π

∑︂
m,n ̸=i

MNn

MNi

Im
[︂
y∗nmyimy

∗
njyij

]︂
|yij |2

[︄
1−

(︄
M2

Ni
+M2

Nn

M2
Ni

)︄
ln

(︄
M2

Ni
+M2

Nn

M2
Nn

)︄]︄

MNn≫MNi≈ − 1

16π

∑︂
m,n ̸=i

MNi

MNn

Im
[︂
y∗nmyimy

∗
njyij

]︂
|yij |2

. (5.38)

As expected, in case of closely degenerated masses (|MNi−MNn | ≪MNi), the CP violation is mainly

determined by the wave contribution and can in principle be sizable even when small couplings are

considered. However, in the typically considered case of hierarchical masses MNn ≫ MNi , both

contributions are relevant and the total amount of CP violation becomes

ϵNi :=

∑︁
j(ΓNi→ℓjH − ΓN i→ℓjH†)∑︁
j(ΓNi→ℓjH + ΓN i→ℓjH†)

= − 3

16π

∑︂
m,j,n̸=i

MNi

MNn

Im
[︂
y∗nmyimy

∗
njyij

]︂
∑︁

k |y′ik|2
, (5.39)

⇒ |ϵNi | ≤
3MNi

16π

∑︂
m,j,n̸=i

1

MNn

|y∗nmy∗njyimyij |∑︁
k |yik|2

≤ 3MNi

16π

∑︂
m,j,n̸=i

|ynm||ynj |
MNn

|yim||yij |∑︁
k |yik|2

. (5.40)

Next, using ∑︂
j,m

|ynj ||ynm||yij ||yim| ≤
∑︂
j,m

|ynm|2|yij |2 , (5.41)

and equation (5.10), the upper bound on the CP violation can be written as

|ϵNi | ≤
3MNi

16π

∑︂
m,n ̸=i

|ynm|2
MNn

≤ 3MNi

16πv2

∑︂
j

(mI
ν)jj . (5.42)

Finally, using

0.12 eV ≥
∑︂
j

(mI
ν)jj ≥

√︂
∆m2

atm +
√︂

∆m2
sol ∼ 0.06 eV , (5.43)

cf. equations C.7 and C.4, the upper bound on the CP violation becomes4

|ϵNi | ≲
MNi

GeV
× 10−16 . (5.44)

Considering for simplicity only the thermal rate induced by the two body decay (γDNi
), the Boltzmann

equations describing the time evolution of the number density of Ni, cf. equation (3.17), is given

by

z
dYNi

dz
= −

γDNi

H(T )s

(︄
YNi

Y eq
Ni

− 1

)︄
, (5.45)

4This upper bound coincides with the value given in the current literature, cf. e.g. reference [6]
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while for the B − L asymmetry, cf. equation (3.26),

z
dµB−L

dz
=

6γDNi

H(T )T 3

[︄
−αβµB−L − ϵNi

(︄
YNi

Y eq
Ni

− 1

)︄]︄
with α ≥ 0 (5.46)

is obtained, where the number densities of the decay products (ℓj and H) are assumed to be in

thermal equilibrium and the non-trivial prefactor α considers the shift of the produced B − L

between different degrees of freedom induced by SM processes. A detailed analysis of the obtained

Boltzmann equations shows that the produced B − L asymmetry generated by the CP violating

decay of Ni is at least roughly one order of magnitudes smaller than |ϵNi |, cf. e.g. reference [11].

Thus, |ϵNi | ∼ 10−6 and, consequently, MNi ≳ 1010 GeV are required to generate a B asymmetry of

the observed size, cf. equations (4.18) and (4.20).

Note that this statement is only true if a vanishing initial abundance for Ni is assumed. In

contrast, considering a thermal initial abundance, the decay width of Ni can be chosen to be so

small that the corresponding thermal rate remains significantly below the Hubble expansion rate

for all temperatures. As a consequence, Ni simply decays when the temperature falls significantly

below MNi i.e. the age of the universe becomes comparable to the inverse of the decay width. Using

this initial condition, |µB−L/ϵNi | ∼ 1 can be achieved, cf. e.g. reference [11], and, consequently,

MNi ≳ 109 GeV is required to generate a B asymmetry of the observed size. However, other

processes producing the thermal abundance of Ni at higher temperatures are needed.

Note that in order to fulfill the out-of-equilibrium condition, while still maintaining a sufficiently

efficient thermal rate resulting in a maximal ratio for |µB−L/ϵNi |, the decay rate should at maximum

be of the order of the Hubble expansion rate, cf. reference [11]. Using equations (3.38) and (5.17),

this leads to the condition∑︂
j

6γNi→ℓjH

H(T )T 3
≲
∑︂
j

|yij |2
8πAHMNi

=
1

4πAHv2

∑︂
j

(mI
ν)

i
jj ≈

100

0.12eV

∑︂
j

(mI
ν)

i
jj

!≈ 1 , (5.47)

where (mI
ν)

i
jk are the active neutrino masses induced by Ni by the type-I seesaw mechanism,

cf. equation (5.10), and an additional factor of two arises in the decay width since the decay into

doublets is considered here. Thus, the contribution of Ni to the active neutrino mass can still be

sizable (∼ 10−3 eV). Furthermore, the contribution to the active neutrino mass can be larger if MNi

significantly above 1010 GeV are considered. In this case, larger values for |ϵNi | are possible and, for
this reason, a less efficient asymmetry generation (smaller |µB−L/ϵNi |) is sufficient to explain the

observed B asymmetry.
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the Inert Higgs Model

In section 2.7, the Higgs mechanism basing on the concept of SSB was introduced. There, only

the most simple case of having one scalar field transforming non-trivially under a certain gauge

transformation was discussed. However, in general, also multiple scalar fields can be introduced,

resulting in an extended parameter space. This extended parameter space e.g. allows for an altered

dynamic of the EWPT and additional sources of CP violation, which are both required for electro-

weak baryogenesis, cf. section 4.2. Moreover, the additionally introduced scalar particles may include

a DM candidate. Because in this thesis, the focus is on DM, a simple extension known as inert Higgs

model is investigated in more detail. This extension is of special interest because it not only includes

a DM candidate but in combination with right-handed neutrinos – known as scotogenic model – also

allows for a radiative generation of the active neutrino masses which are suppressed compared to the

active neutrino masses induced by the type-I seesaw mechanism. As a consequence, larger Yukawa

couplings of the neutrino sector are allowed without being in conflict with the Planck bound on the

sum of the active neutrino masses, cf. equation (C.7).

Considering e.g. an extended Higgs sector with m complex SU(2)L Higgs doublets (ϕi, . . . ϕm) which

all carry the same hypercharge (Yϕi
= YH = 1/2), the corresponding Lagrangian is given by

L ⊃
m∑︂
i=1

[︂
(Dµϕi)

† (Dµϕi)− yi,ff ′Ψ̄fϕiΨf ′ − y∗i,ff ′Ψ̄f ′ϕ†iΨf

]︂
− Vm(x) , (6.1)

where the m Higgs doublet potential in the most general form can be written as

Vm(x) =

m∑︂
i=1

[︃
m2

i (ϕ
†
iϕi) +

λi
2
(ϕ†iϕi)

2 +

i−1∑︂
j=1

(︃
λ3,ij(ϕ

†
iϕi)(ϕ

†
jϕj) + λ4,ij(ϕ

†
iϕj)(ϕ

†
jϕi)

+
λ5,ij
2

[︂
(ϕ†iϕj)

2 + (ϕ†jϕi)
2
]︂
+
(︂
m2

ij + λ6,ij(ϕ
†
iϕi) + λ7,ij(ϕ

†
jϕj)

)︂
(ϕ†iϕj + ϕ†jϕi)

)︃]︃
. (6.2)

If the potential has a minimum at ⟨ϕi⟩ ≠ 0, once again the SU(2)L ×U(1)Y symmetry of the SM is

broken and three of the four gauge bosons become massive:

m2
W± =

g2

4
v2 , m2

Z =
g2 + g′2

4
v2 , and mA = 0 , (6.3)

with the VEV v2 =
∑︁ ⟨ϕi⟩2. Furthermore, three degrees of freedom of the Higgs sector corresponding

to the Goldstone bosons become unphysical.

In following, the inert Higgs model is investigated and experimental constraints are discussed, cf. sec-

tion 6.1. Afterwards, in section 6.2, the scotogenic model – an extension of the inert Higgs model
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including right-chiral Majorana neutrinos – where the active neutrino masses become loop induced

is introduced. Finally, in section 6.3, thermal corrections to the effective Higgs potential leading to

a restoration of the SU(2)L × U(1)Y symmetry are discussed and the temperature dependence of

the inert Higgs potential is investigated in detail.

6.1 The Inert Higgs Model

The inert Higgs model is a 2HDM (m = 2) where the additional Higgs doublet ϕ transforms

non-trivially under an imposed Z2 symmetry (ϕ(x) → −ϕ(x), odd transformation), while all SM

particles including the SM Higgs doubletH transform trivially (H(x) → H(x), even transformation).

Consequently, the Yukawa interaction involving only SM particles and ϕ vanishes, implying that the

masses of the SM fermions are determined by

m2
f = y2f ⟨H⟩2 . (6.4)

Furthermore, the imposed Z2 symmetry simplifies the Higgs potential to

Vinert(x) = m2
HH

†(x)H(x) +m2
ϕϕ

†(x)ϕ(x) +
λ1
2
[H†(x)H(x)]2 +

λ2
2
[ϕ†(x)ϕ(x)]2

+ λ3[H
†(x)H(x)][ϕ†(x)ϕ(x)] + λ4[H

†(x)ϕ(x)][ϕ†(x)H(x)]

+
λ5
2

(︂
[H†(x)ϕ(x)]2 + [ϕ†(x)H(x)]2

)︂
. (6.5)

For the vacuum to be stable, a finite VEV has to globally minimize this Higgs potential, which, at

tree level, leading to the three conditions

λ1 > 0 , λ2 > 0 , and λ1 + λ2y
2 + 2λ3|y|+ 2(λ4 + λ5)y > 0 ∀ y ∈ R . (6.6a)

To constrain λ3, λ4, and λ5, the left side of the third condition has to be minimized in y, whereas

the boundary conditions (y → 0 and y → ±∞) are satisfied by the first two conditions. Because

of the absolute value appearing in the third condition, all cases (λ3 > 0 ∨ λ3 < 0 and λ4 + λ5 >

0 ∨ λ4 + λ5 < 0) have to be considered individually which all lead to the condition

|λ4 + λ5| <
√︁
λ1λ2 + λ3 . (6.7)

Thus, to obtain a potential that is stable at tree level, λ3 is not allowed to take on negative values

smaller than
√
λ1λ2. Moreover, λ4 and λ5 can be further constrained by demanding the conservation

of the same charge for both VEVs, leading to the conditions λ5 < 0 and λ4 + λ5 < 0.

Next, to calculate the VEVs of ⟨H⟩ = vH and ⟨ϕ⟩ = vϕ, the inert Higgs potential has to be minimized,

leading to the conditions (︃
m11 +

λ1
2
v2H +

λ345
2
v2ϕ

)︃
vH = 0 , (6.8a)(︃

m22 +
λ2
2
v2ϕ +

λ345
2
v2H

)︃
vϕ = 0 , (6.8b)
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with λ345 = λ3 + λ4 + λ5. For non-vanishing VEVs, it is useful to rotate the fields:

ϕ1(x) = H(x) cosβ + ϕ(x) sinβ , (6.9a)

ϕ2(x) = −H(x) sinβ + ϕ(x) cosβ , (6.9b)

with

tanβ =
vϕ
vH

. (6.10)

Using this redefinition, only ϕ1 obtains a VEV. Next, to obtain the mass eigenstates, it is useful to

start from

ϕ1(x) =
1√
2

(︄
φ1(x) + iφ2(x)

iφ3(x) +H0(x)cβ + ϕ0(x)sβ + v

)︄
, (6.11a)

ϕ2(x) =
1√
2

(︄
η1(x) + iη2(x)

iη3(x)−H0(x)sβ + ϕ0(x)cβ

)︄
, (6.11b)

where the abbreviations v =
√︂
v2H + v2ϕ, cβ = cosβ, and sβ = sinβ are used.

Evaluating the mass matrices for (φi, ηi) and making use of the conditions 6.8a and (6.8b), it can

be seen that the masses of the Goldstone bosons φ1, φ2, and φ3 vanish while the masses of η1, η2,

and η3 are given by

m2
η1,2 = m2

ϕ +
λ3
2
v2 and m2

η3 = m2
ϕ +

λ3 + λ4 − λ5
2

v2 for vH ̸= 0 ∧ vϕ = 0 , (6.12a)

m2
η1,2 = m2

H +
λ3
2
v2 and m2

η3 = m2
H +

λ3 + λ4 − λ5
2

v2 for vH = 0 ∧ vϕ ̸= 0 , (6.12b)

m2
η1,2 = −λ4 + λ5

2
v2 and m2

η3 = −λ5v2 for vH ̸= 0 ∧ vϕ ̸= 0 . (6.12c)

Moreover, the mass matrix of H0 and ϕ0 is only diagonal if either vH or vϕ vanishes:

m2
H0

= λ1v
2 m2

ϕ0
= m2

ϕ +
λ3 + λ4 + λ5

2
v2 for vH ̸= 0 , (6.13a)

m2
ϕ0

= λ2v
2 m2

H0
= m2

H +
λ3 + λ4 + λ5

2
v2 for vϕ ̸= 0 . (6.13b)

If both vH and vϕ are non-zero the eigenvalues of the mass matrix are given by

v2

2

(︄
λ1c

2
β + λ2s

2
β ±

√︃(︂
λ1c2β − λ2s2β

)︂2
+ 4 (λ3 + λ4 + λ5)

2 c2βs
2
β

)︄
, (6.14)

where the particle with a larger mass is called H̃ and the lighter one h. It is further common to

define

tan(α) = 2cβsβ (λ3 + λ4 + λ5)
/︂(︁

λ1c
2
β − λ2s

2
β

)︁
, (6.15)

so one can write H0 = h cosα− H̃ sinα and ϕ0 = h sinα+ H̃ cosα. Note that using this convention,

in the case of vH = 0 or vϕ = 0, h corresponds to the remaining physical component of the broken
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field, while H̃ corresponds to the real electrical neutral component of the unbroken field.

For a more detailed discussion of the 2HDM, the interested reader is referred to e.g. reference [10].

Considering the case where only H takes on a non-vanishing VEV, the inert Higgs model contains

the DM candidate ϕ0 = H̃. For that, H̃ has to be the lightest component of ϕ:

m2
H̃

= m2
ϕ +

λ3 + λ4 + λ5
2

v2 < m2
η± = m2

η1,2 = m2
ϕ +

λ3
2
v2 , (6.16a)

m2
H̃

= m2
ϕ +

λ3 + λ4 + λ5
2

v2 < m2
η3 = m2

ϕ +
λ3 + λ4 − λ5

2
v2 , (6.16b)

requiring λ5 < 0 and λ4 + λ5 < 0.

Demanding that H̃ individually is responsible for the observed relic DM density, cf. equation (C.8),

the parameter space can be constrained further. Due to the imposed Z2 symmetry, the decay of all

components of ϕ is forbidden as long as ϕ remains unbroken (vϕ = 0). Consequently, only pairwise

annihilation processes can change the total number of H̃, meaning that the corresponding Boltzmann

equation can be in general written as

z
dYH̃
dz

= − 1

H(T )s

⎛⎝γH̃H̃→...

⎡⎣(︄ YH̃
Y eq

H̃

)︄2

− 1

⎤⎦+
∑︂
i

γH̃ηi→...

[︄
YH̃
Y eq

H̃

Yηi
Y eq
ηi

− 1

]︄⎞⎠ . (6.17)

Similarly, Boltzmann equations for ηi are obtained. However, the masses of H̃ and ηi are degenerate

before and almost degenerate after EWSB, meaning that their distribution functions can be assumed

to be equivalent. Thus, four equivalent Boltzmann equations are obtained:

z
dYH̃
dz

= −γannihilation
H(T )s

⎡⎣(︄ YH̃
Y eq

H̃

)︄2

− 1

⎤⎦ , (6.18)

with Y eq

H̃
= 45/(4π4gSeff)z

2K2(z). The thermal annihilation rate (γannihilation) has been calculated in

equation (3.42) and the appearing reduced cross section is taken from reference [28]:

σ̂annihilation =
1

32π

[︃
3

2
g2 + 3g2g′2 +

1

2
g′4 + (2λ3 + λ4)

2 + 3λ24 + 6λ25

]︃
, (6.19)

where only annihilation processes into lighter particles are considered.

According to reference [42], the relic density resulting from a time evolution of the considered form

is given by

ΩH̃h
2 ≈ 3× 10−27 cm3/s

⟨σv⟩ , (6.20)

with the thermally-averaged annihilation cross section multiplied by the relative DM velocity ⟨σv⟩.
In the considered case, ⟨σv⟩ can be approximated by [28]

⟨σv⟩ ≈ σ̂annihilation
8m2

H̃

≈ σ̂annihilation
(mH̃/TeV)2

× 1.5× 10−24cm3/s . (6.21)

Consequently, the resulting condition(︂mH̃

TeV

)︂2
≈ 500 σ̂annihilationΩH̃h

2 , (6.22)
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allows to express mH̃ as a function of λ3, λ4, and λ5 by demanding that the observed relic DM

density, cf. equation (C.8), completely consist of H̃. Furthermore, assuming λ3 = λ4 = λ5 = 0, this

sets a lower bound of (560± 50) GeV on mH̃
1.

Besides the observed relic DM density, the parameter space of the inert Higgs model is further

constrained by various experiments. Independent of H̃ being a DM candidate, collider experiments

constrain mH̃ +mη3 > mZ and mH̃ +mη± > mW from measuring the decay width of the Z boson

and the W± boson. Furthermore, for mH̃ < mh/2, λ3 + λ4 + λ5 can be constrained from invisible

decays of the SM Higgs boson. However, considering larger values of mH̃ , in collider experiments,

H̃ can only be observed as missing transverse momentum where the current measurements do not

put any further constraints on the parameter space of the inert Higgs model.

On the other side, assuming H̃ to be responsible for the observed relic DM density, direct detection

experiments set limits on the DM-nucleon cross section. For the inert Higgs model, H̃ at tree level

only scatters with nucleons via exchange of a Higgs boson. The corresponding spin-independent

cross section is given by [15]

σSI = (λ3 + λ4 + λ5)
2 f2N
4πm4

h

m4
N

(mN +mH̃)2
, (6.23)

where mN is the nucleon mass (mN ≈ mp ≈ mn ≈ 940 MeV) and fN the Higgs-nucleon coupling

which can be estimated by fN ≈ 0.30 [15] so that

σSI,n ≈ (λ3 + λ4 + λ5)
2

(1 +mH̃/mn)2
× 10−38cm2

mH̃≫mn≈ (λ3 + λ4 + λ5)
2TeV

2

m2
H̃

× 10−44cm2 (6.24)

is obtained. Comparing this with the constraint from XENON1T’s direct search at 90% CL [4],

σSI ≲ 10−45 mH̃

TeV
cm2 for mH̃ ≳ 50 GeV , (6.25)

the condition

(λ3 + λ4 + λ5)
2 ≲

1

10

(︂mH̃

TeV

)︂2
, (6.26)

is deduced. Combining this limit with the condition arising from requiring the production of the

observed relic DM density, cf. equation (6.22), the allowed parameter space for λ3, λ4, and λ5
becomes restricted.

Moreover, H̃ can also scatter inelastically via Z boson exchange with nucleons when the mass

difference to η3 is sufficiently small. In reference [43], a lower bound for the mass difference of

roughly 200 keV is found2, resulting in a lower bound on λ5:

mη3 −mH̃ ≈ −λ5v
2

mH̃

≳ 200 keV ⇒ |λ5| ≳ 3.3× mH̃

TeV
× 10−6 ≳ 2× 10−6 , (6.27)

1In reference [28] a lower bound of 530 GeV is found but it seems that the gauge coupling dependence of σ̂annihilation

has not be considered correctly in the given form of ⟨σv⟩, cf. equations (C8) - (C14) in reference [28]
2In reference [43] considers data from XENON100’s direct search. However, the given lower bound on the mass

difference does change significantly when considering e.g. the current data from XENON1T’s direct search because

it is not limited by experimental sensitivity but the maximal kinetic energy of the DM particle
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where mH̃ ≳ 560 GeV is used. In principle, a similar lower bound on |λ4+λ5| can be found from the

requirement of not too small mass difference between H̃ and η±. However, considering the one-loop

RGE of the Higgs self couplings of the inert Higgs model, cf. equation A.89, a lower bound on λ4
is not very relevant because it can only become so small in a very narrow energy scale region. In

contrast, the RGE for λ5 is always proportional to λ5, implying that λ5 cannot only be chosen to

be small at one specific energy scale and the limit becomes relevant.

6.2 The Scotogenic Model

In 2006, Ma suggested an extension of the SM called scotogenic model [54] including the inert

Higgs model and right-chiral Majorana neutrinos which also transform oddly under the imposed Z2

symmetry. The Lagrangian is given by

L(x) = LSM|mH=λ=0(x) + (Dµϕ(x))†(Dµϕ(x))− Vinert(x)

+
∑︂
i

[︂
iΨνRi

(x)/∂ΨνRi
(x)−

∑︂
j

(︂
y′ijΨℓj (x)ϕ

c(x)ΨνRi
(x) + (y′ij)

∗ΨνRi
(x)ϕc†(x)Ψℓj (x)

)︂
− MNi

2

(︂
Ψc

νRi
(x)ΨνRi

(x) + ΨνRi
(x)Ψc

νRi
(x)
)︂ ]︂

, (6.28)

with LSM being defined in equation (A.92) and Vinert(x) being defined in equation (6.5). Furthermore,

demanding that only the SM Higgs doublet obtains a VEV while the new Higgs doublet remains

unbroken (⟨H⟩ = v and ⟨ϕ⟩ = 0), the two Higgs doublets become

H(x) =
1√
2

(︄
0

h(x) + v

)︄
and (6.29a)

ϕ(x) =
1√
2

(︄
η1(x) + iη2(x)

H̃(x) + iη3(x)

)︄
=

1√
2

(︄ √
2η+(x)

H̃(x) + iη3(x)

)︄
, (6.29b)

where Goldstone bosons are ignored. The masses of the single components of ϕ have been calculated

in the previous section3:

mη± = m2
ϕ +

λ3
2
v2 , (6.30a)

mη3 = m2
ϕ +

λ3 + λ4 − λ5
2

v2 , (6.30b)

mH̃ = m2
ϕ +

λ3 + λ4 + λ5
2

v2 . (6.30c)

Since ϕ remains unbroken, the active neutrino masses in the scotogenic model are not produced by

the type-I seesaw mechanism but become only loop induced. Thus, the resulting Majorana masses

3Note that the VEV is defined differently in reference [54], so that v2 has to be replaced by v2/2 to match the

definition used in this thesis.
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for the active neutrinos are now determined by [54]4

(mS
ν )jk =

∑︂
i

(mS
ν )

i
jk :=

∑︂
i

(y′ij)
∗y′ikMNi

32π2

(︄
m2

H̃

m2
H̃
−M2

Ni

ln
m2

H̃

M2
Ni

−
m2

η3

m2
η3 −M2

Ni

ln
m2

η3

M2
Ni

)︄

=
∑︂
i

(mI
ν)

i
jkM

2
Ni

16π2v2

(︄
m2

H̃

m2
H̃
−M2

Ni

ln
m2

H̃

M2
Ni

−
m2

η3

m2
η3 −M2

Ni

ln
m2

η3

M2
Ni

)︄
=:
∑︂
i

αi
S(m

I
ν)

i
jk , (6.31)

with (mI
ν)

i
jk being the type-I seesaw mass induced by Ni, cf. equation (5.10). In case of

m2
H̃
−m2

η3 = λ5v
2 ≪ m2

0 =
m2

H̃
+m2

η3

2
= m2

ϕ +
λ3 + λ4

2
v2 , (6.32)

this expression simplifies to

αi
S :=

λ5
16π2

M2
Ni

m2
0 −M2

Ni

(︄
1−

M2
Ni

m2
0 −M2

Ni

ln
m2

0

M2
Ni

)︄
(6.33a)

MNi
≫m0

≈
∑︂
i

λ5
16π2

(︃
2 ln

MNi

m0
− 1

)︃
. (6.33b)

As a consequence, considering e.g. m0 ∼ TeV and MNi ∼ 1012 GeV, (mS
ν )

i
jk is suppressed by

αi
S ∼ λ5/4 compared to (mI

ν)
i
jk, cf. figure 6.1.
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Figure 6.1: Suppression of the active neutrino mass generated in the scotogenic model compared to

the active neutrino masses generated by the type-I seesaw mechanism. The suppression

is shown normalized with respect to proportionality factor λ5 and in dependence of the

determining mass ratio MNi/m0.

6.3 Thermal Corrections to the Effective Higgs Potential

In this section, the influence of a matter density ρmat on the EV of the Higgs field is investigated.

Like in classical mechanics, a quantum field ϕ takes on an EV ⟨ϕ⟩ that minimize the energy density

4Note that there is a missing factor 1/2 in the original paper – see e.g. version 1 of reference [56].
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in the state of equilibrium:

ρE =
1

V
⟨F |Ĥ|F ⟩ , (6.34)

with Ĥ being the Hamiltonian. Assuming that the mass eigenstates in dependence of the EV and

the temperature are known (Ei(k⃗)
2 = k2⃗ +m2

eff,i), cf. section 3.4, the contribution of the effective

free Hamiltonian is given by5

1

V
⟨Ĥ eff,free⟩ = Vtree-level +

Ndof∑︂
i

∫︂
d3k

(2π)3
Ei(k⃗)

(︃
fi(p⃗)±

1

2

)︃
, (6.35)

where i runs up all degrees of freedom and is +1/2 for bosons and −1/2 for fermions.

The divergent contributions are absorbed by renormalization. However, this subtraction is non-

trivial because thermal loop corrections to the divergent loop corrections need to be considered as

well to cancel the divergences in equation (6.35). Thus, the part of equation (6.35) which is already

considered by the renormalized potential is dimensional regularization (d = 4− ϵ) given by

±
m4

eff,i

64π2
A0(m

2
0,i)

m2
0,i

= ±
m4

eff,i

64π2

(︄
2

ϵ
− γ + ln 4π + 1− ln

m2
0,i

µ2

)︄
, (6.36)

with the Euler-Mascheroni constant γ ≈ 0.577 and m2
0,i is the mass of the particle i in the vacuum,

implying that the effective potential in the vacuum in the minimum of the potential is equivalent to

the tree-level potential. Subtracting this, the effective Higgs potential becomes

Veff = V R
tree-level +

Ndof∑︂
i

[︄∫︂
d3k

(2π)3
Ei(k⃗)fi(k⃗)±

m4
eff,i

64π2
ln

(︄
m2

eff,i

m2
0,i

)︄]︄
. (6.37)

Next, when considering thermalized systems, the distribution functions are not independent of the

particle masses. However, the EV takes on the value that minimizes the energy density for constant

distribution functions. To circumvent this issue, e.g. the derivative of the effective potential with

respect to the EV can be considered instead:

dVeff
dv

=
dV R

tree-level

dv
+
∑︂
i

∫︂
d3k

(2π)3
dEi(k⃗)

dv
fi(k⃗)±

d

dv

m4
eff,i

64π2
ln

(︄
m2

eff,i

m2
0,i

)︄
. (6.38)

5Note that an EV being constant in space is assumed for deriving the potential in this form. However, during EWPT,

the field breaks in different directions at different spacetime points. Consequently, an additional energy density

from the non-vanishing field gradient is obtained. However, this energy density does not change the shape of the

potential. For this reason, only the dynamic of symmetry breaking changes slightly because the energy stored in

the field gradient has to be smaller than the energy gained by the shift of the field EV to the minimum of the

potential. Hence, the symmetry breaking process is slightly delayed because a smaller field gradient implies a larger

correlation among field values in space. Moreover, it should be mentioned that the field gradient for spontaneously

broken continuous symmetries flattens with time so that it is observed to be constant on very large scales. The

reason for that is that, in contrast to a discrete symmetry where there are distinct minima separated by potential

barriers, the field value at each spacetime point is in the minimum of the potential. Only the direction of symmetry

breaking varies, implying that flattening the gradient gains energy.
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With this, the EV minimizing the effective potential can also be calculated for thermalized systems

without difficulty by setting the derivative of the effective potential equal to zero. However, to

ascertain whether the obtained minima of Veff are stable or not, Veff has to be calculated using the

distribution functions thermalized in the minimum. Furthermore, for unstable minima, the effective

potential calculated in this way can be used to determine the tunneling probability to a another

minimum6.

Thus, either considering an effective potential with only one minimum or an initial state in a

minimum that is stable on the considered time scales, equation (6.38) can be used to investigate the

temperature dependence of the EV (e.g. for the expanding universe). Furthermore, to obtain the

typically investigated well-known form of the effective Higgs potential, equation (6.38) is integrated

over v, including the thermalized distribution functions7 [16, 67, 20, 66]:

v∫︂
0

dv′
dVeff
dv′

∝ V R
tree-level +

Ndof∑︂
i

±
[︄
T

∫︂
d3k

(2π)3
ln
[︂
1∓ exp

(︂
−Ei(k⃗)/T

)︂]︂
+
m4

eff,i

64π2
ln

(︄
m2

eff,i

m2
0,i

)︄]︄
, (6.39)

where the solution of the remaining momentum integrals are usually series expanded in powers of

meff,i/T , cf. equation (D.10).

Note that for the Higgs boson, here, the full EV induced mass term (m2
h = 3λ/2v2+m2

H) needs to be

considered. However, this causes problems considering an EV corresponding to a negative mass of the

Higgs boson. To circumvent this problem, at least in the minimum potential, thermal corrections

to the Higgs boson mass need to be considered, cf. e.g. reference [14]. However, these thermal

corrections are basically equivalent to the corrections to the effective Higgs potential, implying that

the Higgs mass in the minimum of the potential is still determined by λv2. Thus, the issue of

negative Higgs masses can be circumvented by using m2
h = λv2 for the evaluation of the distribution

functions in equation (6.38). To compensate the altered v2 dependence when using m2
h = λv2 for

the calculation of the effective potential in the common form, cf. equation (6.39), the Higgs boson

has to be counted as 3/2 degrees of freedom.

Finally, to calculate the effective Higgs potential, it has to be decided which degrees of freedom are

to be summed over. The intuitive answer would be all observable ones especially relating to the

thermal contributions because only these degrees of freedom are present in the state vector of a

thermal system. However, in references [20, 66], it is argued that also unphysical degrees of freedom

such as unphysical gauge boson polarizations, Goldstone bosons, and ghosts need to be considered

as part of the sum. Intuitively, one would expect that the contributions from unphysical degrees of

freedom cancel out when they are considered properly. However, comparing the effective potential

calculated in Rξ gauge with the result form unitary gauge, the altered mass of the Goldstone boson

outside the minimum of the potential (m2
φ = ξm2

A + λ(v2 − v2min)) give rise to extra terms – even in

the limit ξ → ∞ – which on the other hand are absent in unitary gauge.

6One should keep in mind that the resulting EV after the tunneling process slightly differs from the value given by

the calculated Veff because the distribution functions change when the system thermalizes again.
7Note that the density-dependent part of the given effective potential coincides with the grand potential density,

cf. equation (3.9), being minimized by the equilibrium state for constant temperature and constant chemical

potentials.
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The argument for trusting the Rξ gauge result given in reference [20] is that the unitary gauge

Lagrangian does not correspond to a renormalizable theory and that for this reason higher-order

loop corrections are expected to remove the discrepancy. A similar argument can also be found in

reference [66], where it is stated that only the effective potential in the renormalizable gauge can be

used to study symmetry breaking.

Considering the SM Higgs sector, the matter density needed to substantially change the effective

potential is so large that the effects are mainly of interest in the very early universe (T ≳ GeV).

As discussed before, at this stage of the universe, all SM particles are in thermal equilibrium.

Furthermore, for calculating the effective Higgs potential, it is convenient to only consider degrees of

freedom which couple strongest to the EV. This means that for the SM, photons, gluons, and light

fermions can be neglected to a very good approximation. Thus, in case of only considering physical

degrees of freedom, one is left with three degrees of freedom for each the massive gauge bosons (W±

and Z0), the Higgs particle, and the twelve degrees of freedom for the top quark:

Veff ∼ V0 +

(︃
3λ

2
+

9g2 + 3g′2

4
+ 3y2t

)︃
T 2

24
v2 . (6.40)

Moreover, also taking into account the contribution from the three Goldstone bosons, the Rξ-

gauge result, which is used to approximate the temperature dependence of the EV in this thesis, is

obtained:

Veff ∼ V0 +

(︃
3λ+

9g2 + 3g′2

4
+ 3y2t

)︃
T 2

24
v2 . (6.41)
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7 L Violation Assisted GUT Baryogenesis

As was discussed in the section 4.2, many GUT baryogenesis models have the problem that the

produced B asymmetry conserves B − L, meaning that the produced B asymmetry is completely

washed out by sphaleron transitions. Consequently, these models need an additional source of

B −L violation, securing a part of the produced B asymmetry before sphaleron transitions become

efficient.

A simple extension of the SM, inducing B − L violation in the region of interest 1011 GeV ≲
T ≲ 1015 GeV1, are right-handed Majorana neutrinos (N), cf. chapter 5. In light of GUTs, right-

handed Majorana neutrinos can be introduced as singlets under SU(5)GUT or embedded into the

16-dimensional representation of SO(10)GUT. This interplay of GUT baryogenesis, L violation –

induced by right-handed Majorana neutrinos –, and sphaleron transitions was first suggested in

2002 by Yanagida und Fukugita [27] but no detailed analyses were made. In my master thesis [74],

this idea was further investigated and the Boltzmann equations for a simplified model including

one right-handed Majorana neutrino were solved, but L-violating processes were only partly taken

into account. In the following, this analysis is significantly improved and the model is extended

to a more realistic case involving two right-handed Majorana neutrinos to be able to explain the

phenomenology of neutrino oscillation. Furthermore, additional L-violating processes, which become

relevant when the decay involving right-handed Majorana neutrinos is kinematically forbidden, are

included in the Boltzmann equations. This work has been published in collaboration with Wei-Chih

Huang and Heinrich Päs, cf. reference [40]. Subsequently, an extended Higgs sector is investigated

for being able to explain both the observed B asymmetry and the observed DM relic density. The

results are published in reference [39].

However, before starting with the detailed discussion, it should be mentioned that the calculation

methods used in references [40, 39] have been significantly improved after publication and some

conceptual mistakes have been corrected. The most important differences will be discussed at the

respective places.

In the following, in section 7.1, the Boltzmann equations for the time evolution of the B and

L asymmetry involving sphaleron transitions and L violating processes induced by right-handed

Majorana neutrinos are derived. Afterwards, in section 7.2, the general setup and methods which

are used to solve the Boltzmann equations are discussed. Finally, in sections 7.3 - 7.5, three different

scenarios are investigated in detail and numerical results for parameter scans are shown.

1The region of interest w.r.t. the temperature lies above the scale where sphaleron transitions become very efficient,

cf. region IV and V in figure 4.2, but below the scale where the GUT symmetry is expected to break down to the

SM.
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7.1 Interplay of Sphaleron Transitions and L Violation Induced by

Right-Handed Majorana Neutrinos

As discussed in chapter 4, the essential ingredients for the Boltzmann equations of B and L are

the rate of B violation induced by sphaleron transitions and the thermal rates of additional B-

and/or L-violating processes. The details of sphaleron transitions have already been investigated

in section 4.1. For the rate of L violation induced by right-handed Majorana neutrinos, different

processes which are efficient at different temperatures need to be considered. First of all, there

are two-body (inverse) decays involving a right-handed Majorana neutrino, a lepton doublet, and

a Higgs doublet, cf. section 5.1. These processes are expected to dominate the rate of L violation

within the temperature range where the (inverse) decay is kinematically allowed, the mass of the

decaying particle is sizable compared to the temperature, and the density of all involved particles is

still sizable (MN ≳ T ≳MN/10). The corresponding thermal rate is given by

γD =

{︄
γN→ℓiH = 2γN→χϕ

⃓⃓
mN→MNi

,mχ→mℓi
,mϕ→mH

MNi > mℓi +mH

γH→Nℓi
= 2γϕ→Nχ

⃓⃓
mN→MNi

,mχ→mℓi
,mϕ→mH

mH > MNi +mℓi

, (7.1)

with γN→χϕ and γϕ→Nχ being calculated in equations (5.18) and (5.19). Note that the additional

factor of 2 for the thermal rates appears because the decay into doublets is considered. Furthermore,

the calculation of the thermal decay rate – being dominant in the most relevant region (MN/10 ≲
T ≲MN ) – is improved by using the Fermi-Dirac and Bose-Einstein statistics instead of Boltzmann

statistics, cf. equation (5.20). Note that, at least in the SM, the case mℓi > MNi +mH is not fulfilled

for the temperatures of interest, cf. figure 3.1.

However, for temperatures where the number density of the right-handed neutrino is already strongly

Boltzmann suppressed (T ≲MN/10), the dominant L violation comes from the scattering processes

exchanging a right-handed Majorana neutrino: ℓiH ↔ ℓiH
† and ℓiℓi ↔ H†H†/ℓiℓi ↔ HH. In case

of MN > mℓi + mH , the resonant contribution from the s-channel diagram has to be subtracted

because it is already taken into account by γN→ℓiH , cf. section 5.2. The corresponding thermal

equilibrium rates γsubN,s = γN,s − γN→ℓiH/8 and γN,t of these processes violating L by two units have

been calculated in section 5.2, cf. equations (5.27) and (5.32). Note that here, γN→ℓiH/8 instead of

γN→ℓiH/2 is subtracted because of the additional factor of 2 in the decay width.

Finally, in the region where the temperature become large compared to the Majorana mass and

especially in the region where the decay is kinematically forbidden – neither MNi > mℓi +mH nor

mH > MN +mℓi is fulfilled – also 2 → 2 scattering processes with a right-handed Majorana neutrino

and a lepton doublet as external particles become relevant. Accordingly, the relevant processes

are given by ℓiN ↔ Q3Ū3 (γH,s), ℓiQ3 ↔ NŪ3 (γH,t1), ℓiU3 ↔ NQ3 (γH,t2), ℓiN ↔ H∗A (γA,s),

ℓiH ↔ NA (γA,t1), and ℓiA↔ NH∗ (γA,t2). For the corresponding reduced cross sections, the results

from reference [30] are used2, where the small mass difference between the thermal masses of mU3

and mQ3 , cf. figure 3.1, is neglected to approximate γH,t1 = γH,t2 := γH,t. Note that all other 2 → 2

processes with a right-handed Majorana neutrino as external particle involve subleading Yukawa

2In the reference, the other relevant thermal rates are given as well but the result for γsub
N,s slightly differs from the

exact result calculated in this thesis. For all other thermal rates, the results from the paper were confirmed.
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7 L Violation Assisted GUT Baryogenesis

interactions. Hence, their thermal rates are strongly suppressed (y2b , y
2
τ ≪ g2, g′2, y2t ) as long as the

processes considered before are not kinematically suppressed, which is only the case after EWPT

when the temperature drops below the top quark mass.

Thus, using equation (3.35), where the thermal rates for the back and forth processes are assumed

to be equivalent, the time evolution induced by the mentioned L-violating processes is given by3

z
d

dz
βµℓi = − 12

H(z)T 3

[︃(︂γD
2

+ 4γsubN,s + 4γN,t

)︂
(βµℓi + βµH) + γH,s

(︃
nN
neqN

βµℓi − βµQ3 + µU3

)︃
+ γH,t1

(︃
βµℓi − βµQ3 + βµU3

nN
neqN

)︃
+ γH,t2

(︃
+βµℓi − βµQ3

nN
neqN

+ βµU3

)︃
+ γA,s

(︃
nN
neqN

βµℓi + βµH

)︃
+ γA,t1 (βµℓi + βµH) + γA,t2

(︃
βµℓi +

nN
neqN

βµH

)︃]︃
, (7.2)

with µℓ1i
= µℓ2i

= µℓi = µLi/2.

Next, in general, as discussed in section 3.2, a system of coupled Boltzmann equations is obtained

involving all particle densities which directly or indirectly influence the time evolution of the quantity

of interest. Consequently, as discussed in section 3.6, it is useful to simplify the Boltzmann equations

by neglecting reactions whose influence on the quantity of interest is negligible and assuming thermal

equilibrium for all reactions which are in thermal equilibrium Γ > H and are significantly more

efficient than the reactions of interest.

In detail, as discussed in section 4.1, this means that in the region of interest, cf. region IV in figure

4.2, where the focus is set of the rate of B violation induced by sphaleron transitions, only gauge

interactions and the top Yukawa interaction can be assumed to be in thermal equilibrium, while all

other SM processes can be neglected to a good approximation. Thus, the time evolution given in

equation (7.2) can be simplified using the equilibrium of the top Yukawa interaction, cf. equation

(3.86), and the initial conditions given in equation (4.13) allowing to express all involved chemical

potentials in terms of µB and µLi . Note that both sphaleron transitions and the considered L-

violating processes do not alter the form of the initial conditions (µexH = −µB−L/(4m) and µexQ3
=

µB/(2Ng)) but only shift µB and µLi . Consequently,

µH =
1

1 + 2m

(︃
−µB−L

2m
− µB

2Ng

)︃
, (7.3a)

µQ3 =
1

3 + 6m

(︃
µB−L

2m
+ (3 + 4m)

µB
2Ng

)︃
, (7.3b)

µU3 =
1

3 + 6m

(︃
−µB−L

m
+ 2m

µB
Ng

)︃
, (7.3c)

is obtained as long as only gauge interactions, top Yukawa interactions, sphaleron transitions, and

L violation acting only one left-chiral leptons are considered.

Furthermore, including B violation induced by sphaleron transitions according to equation (4.17),

3Note that for γsub
N,s and γN,t, a factor of 2 appears because all external particles are doublets and another factor of

2 because both chemical potential – µℓi and µH – contribute twice.
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the time evolution including all relevant processes can be expressed as4

z
d

dz
βµB−Li = − 6

H(z)T 3

[︃
2γLi

(︃
βµB−Li −

µB
Ng

)︃
+ 4γB−L

βµB−L

2m(1 + 2m)
+ 4γB

βµB
2Ng(1 + 2m)

]︃
,

(7.4a)

z
d

dz
βµB = −Γspha

H(z)
(βµB − csβµB−L) , (7.4b)

with

γLi =
γD
2

+ 4γsubN,s + 4γN,t + γH,s
nN
neqN

+ γH,t1 + γH,t2 + γA,s
nN
neqN

+ γA,t1 + γA,t2 , (7.5a)

γB−L =
γD
2

+ 4γsubN,s + 4γN,t + γH,s + γH,t1

(︃
1

3
+

2

3

nN
neqN

)︃
+ γH,t2

(︃
1

3

nN
neqN

+
2

3

)︃
+ γA,s + γA,t1 + γA,t2

nN
neqN

, (7.5b)

γB =
γD
2

+ 4γsubN,s + 4γN,t + γH,s + γH,t1

(︃
3 + 4m

3
− 4m

3

nN
neqN

)︃
+ γH,t2

(︃
3 + 4m

3

nN
neqN

− 4m

3

)︃
+ γA,s + γA,t1 + γA,t2

nN
neqN

, (7.5c)

and

Γspha = 3

(︃
2Ng −

m

2m+ 1

)︃
(18± 3)α5

W

MN

z
, (7.6a)

cs =
mNg

m(4Ng − 1) + 2Ng
, (7.6b)

cf. equation (4.15).

Finally, using the approximation γH,t1 = γH,t2 := γH,t, equation (7.5) simplifies to

γLi =
γD
2

+ 4γsubN,s + 4γN,t + γH,s
nN
neqN

+ 2γH,t + γA,s
nN
neqN

+ γA,t1 + γA,t2 , (7.7a)

γB−L = γB =
γD
2

+ 4γsubN,s + 4γN,t + γH,s + γH,t

(︃
1 +

nN
neqN

)︃
+ γA,s + γA,t1 + γA,t2

nN
neqN

. (7.7b)

Note that the derived Boltzmann equations are linear in the chemical potentials, implying that the

ratios µB−L/µ
initial
B and µB/µ

initial
B are independent of µinitialB .

For the time evolution of right-handed Majorana neutrinos, number densities and not asymmetries

are considered because asymmetries between N and N c are erased by the Majorana mass when the

4There are three major differences between this time evolution and the time evolution considered in references [40,

39]. First of all, the time evolution of chemical potentials instead of differences of number densities in the

Maxwell-Boltzmann approximation are considered. Thus, it is taken into account that for the same value of

the chemical potential, each bosonic degree of freedom stores the double amount of particle number asymmetry

as each fermionic degree of freedom. Furthermore, the interplay of sphaleron transitions and Yukawa interactions

have been investigated properly, meaning that the bottom and tau Yukawa interactions are irrelevant and the rate

of B violation induced by sphaleron transitions is determined by equation (4.17). In references [40, 39], the bottom

interaction is assumed to be in thermal equilibrium for T ≲ 1012 GeV while the tau Yukawa interaction is ignored

for simplicity. Moreover, the rate of B violation induced by sphaleron transitions is not calculated in detail but

only roughly estimated.
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mass becomes sizable (MN ≳ T ). Furthermore, right-handed Majorana neutrinos are not necessarily

in thermal equilibrium, implying that the ration nN/n
eq
N becomes relevant. For the calculation of

this factor, the small asymmetries of the other involved particles are irrelevant so that the Boltzmann

equation for N can be considered independently, cf. equation (3.34):

z
dYN
dz

=− γN
H(z)s

(︃
YN
Y eq
N

− 1

)︃
, (7.8)

with [30]

γN = 2 (γD + 2γH,s + 2γH,t1 + 2γH,t2 + 2γAs + 2γA,t1 + 2γA,t2)

≃ 2 (γD + 2γH,s + 4γH,t + 2γAs + 2γA,t1 + 2γA,t2) . (7.9)

Hence, when the reactions involving right-handed Majorana neutrinos as external particles are

efficient, nN becomes equivalent to neqN and all rates defined in equation (7.7) become equivalent

(γLi = γB−L = γB). Consequently, the Boltzmann equation (7.4) simplifies to

z
d

dz
βµB−Li = − 12

H(z)T 3
γLi

[︃
βµB−Li +

βµB−L

m(1 + 2m)
+

1

Ng

(︃
1

(1 + 2m)
− 1

)︃
βµB

]︃
, (7.10a)

z
d

dz
βµB = −Γspha

H(z)
(βµB − csβµB−L) , (7.10b)

resulting in the equilibrium condition

(1 + 2m)βµB−Li +
βµB−L

m
=

2m

Ng
βµB . (7.11)

7.2 Approximation of the Thermal Rates of L Violation Induced by

Right-Handed Majorana Neutrinos

Before solving the Boltzmann equations (7.4) and (7.8) numerically, all contributing thermal rates

in the temperature range of interest have to be calculated. For the occurring masses, the leading

contribution from the thermal one-loop correction are used, cf. equation (B.40) for the SM and

equation (B.42) considering an extended Higgs sector. For simplicity, the thermal contribution

induced by the new Yukawa couplings (y) – coupling left- and right-chiral neutrinos –, cf. equation

(B.41), is ignored. This may not seem to be a reasonable approximation because y up to a value

of 10 are investigated. However, for T ≲ MN , the thermal masses become suppressed by powers

of T/MN and, as can be seen from the numerical results, for MN ≲ 1013 GeV, only y ≲ 0.3

are relevant. Consequently, for the region where the interplay with sphaleron transitions becomes

relevant, the thermal contributions involving y are either sub-dominant or kinematically suppressed.

Furthermore, the neglected thermal corrections do not change the thermal rates by a lot but mainly

shift the region where both decays N → ℓiH and H → Nℓi are kinematically forbidden. For the

main part, the region where the decay H → Nℓi is kinematically forbidden enlarges, meaning that

the resonant behavior in the most important region 1 ≲ z ≲ 10 does not change significantly.
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Additionally, the one-loop running of the relevant SM coupling constants within the SM, cf. equation

(A.88), is taken into account5while the running of y and its influence on the running of the other

couplings is neglected. As for the thermal corrections, this represents a reasonable approximation as

long as y is small or the considered energy scale is roughly below MN and in the remaining region,

the altered running of the relevant couplings does not influence the presented results significantly.

At one-loop order, only the RGE of λ depends on λ so that the problem of negative values of λ

for µ ≳ 107 GeV, cf. figure 2.1, is circumvented by setting λ = 0 at the energy scale of interest.

Moreover, considering an extended Higgs sector, the added couplings do not alter the one-loop RGEs

of the SM gauge and Yukawa couplings, cf. equation (A.88), so that their one-loop running can be

considered separately, cf. equation (A.89)6.

Notice that for the thermal rates only depending on y (γD, γ
sub
Ns and γNt), the running of the SM

couplings only alters the thermal masses which in case of MN ≫ mℓi ,mH does not change the

thermal rates significantly. Only for the ∆L = 1 processes, the thermal rates directly depend on

the SM coupling constants, meaning that the running for these rates is more important. In detail,

for the thermal rates, the couplings at the scale µ =
√
s are used while for the calculation of the

thermal masses, the couplings at the average particle energy (µ = ρE/n ∼ 3T ) are chosen, for the

SM, cf. figure 3.1.
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Figure 7.1: Rate of µB violation induced sphaleron transitions (straight black line) and L

violation (γD purple line, γsubN,s dashed blue line, γN,t blue line, γH,s dashed green line, γH,t

green line, γA,s dashed orange line, γA,t1 orange line, and γA,t2 dotted orange line) induced

by a right-handed neutrino with a Majorana mass of MN = 1013 GeV and a Yukawa

coupling of y = 0.1. All rates are normalized with respect to the Hubble expansion rate.

The three dashed vertical lines correspond to three different initial B-generation scales

of interest: zi1 =MN/Ti1 = 0.2, zi2 =MN/Ti2 = 3, and zi3 =MN/Ti3 = 20.

5The largest impact on the considered equations of motion when considering the one-loop running of the SM coupling

constants is the g dependence of the sphaleron diffusion constant (Γdiff ∝ g10), cf. equation (4.7). Because this

effect was not taken into account in references [40, 39], the used rate of B violation induced by sphaleron transition

is roughly three times smaller than the rate used in references [40, 39].
6In reference [39], the one-loop running of the Higgs self couplings is ignored. However, taking this one-loop running

into account, the benchmark point investigated in reference [39] is disfavored because the coupling strength becomes

non-perturbative at µ ≳ 106 GeV which is way below the temperature range of interest.
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7 L Violation Assisted GUT Baryogenesis

An investigation of the thermal rates calculated using the given approximation, cf. figure 7.1 for

a benchmark point, shows that, as expected for large z (z ≳ 20), even for small y, the thermal

rates γsubNs and γNt together dominate the time evolution, while γD is dominant for 10 ≳ z ≳ 1.

For z ≲ 1, γD, the remaining 2 → 2 processes, and – for large Yukawa couplings – also γsubN,s and

γN,t are relevant. Thus, for small Yukawa couplings, in the window where the decay is kinematically

forbidden, the remaining 2 → 2 processes with a right-handed Majorana neutrino as external particle

dominate the rate of L violation.

Note that in the region where the decay H → Nℓi is kinematically allowed, no resonant contribution

has to be subtracted from γH,s and γA,s because the decays H → HA and H → Q3U3 are still

kinematically forbidden, implying that s does not hit the resonance.

Finally, for solving the Boltzmann equations (7.4), initial conditions have to be considered. However,

the temperature of the universe after inflation and therewith also the injection scale of the B − L

conserving B asymmetry (zi) resulting from the decay of GUT particles is unknown. It might be

argued that the temperature after inflation has to be at least of the order of the GUT breaking scale

for being able to produce the bosons responsible for the generation of the B asymmetry. However,

as has been shown in reference [46], heavy GUT bosons can also be produced non-thermally due

to the decay of the inflaton field. Thus, in principle, the Boltzmann equations need to be solved

starting from all reasonable initial temperatures. For this, three different regions of interest can be

distinguished. First of all, for zi ≪ 3, the injection of the B asymmetry takes place before L violation

becomes most efficient, implying that in case of MN ≲ 1012 GeV sphaleron transitions can erase a

significant mount of the B asymmetry before L violation becomes most efficient. For simplicity, this

region is represented by choosing zi1 = 0.2. For another region of interest, zi is of the scale where

L violation is most efficient, implying that the rate of L violation is only very efficient for a short

period before it is Boltzmann suppressed (zi2 = 3). Finally, the injection of the B asymmetry can

be chosen to occur after L violation is most efficient so that larger Yukawa couplings are needed

to obtain efficient rates of L violation. This region is represented by choosing zi right below the

resonance (zi3 = 20)7.

In the following, first of all, the simplest case with only one additional right-handed Majorana

neutrino giving rise to a relevant amount of L-violation is investigated, cf. section 7.3. This case

occurs when either the other right-handed Majorana neutrinos couple so weakly that the induced

amount of L violation is negligible or the induced L violation is only relevant at scales above zi,

or after sphaleron transitions become inefficient (T ≲ 100 GeV). Subsequently, in section 7.4, a

simplified model including two right-handed Majorana neutrinos, which are responsible for the

generation of the observed ∆m2 in normal and inverted hierarchy, is considered. Finally, in section

7.5, the simplified case with only one relevant right-handed Majorana neutrino is investigated within

the scotogenic model, cf. section 6.2, allowing also for the generation of DM.

7In references [40, 39], for simplicity, only zi = 3 and zi = 10 are investigated to avoid the region where the decay

H → Nℓi is kinematically allowed. The calculation method of γsub
Ns has been improved, cf. section 5.2, because the

numerical integration used before is unstable for z much smaller than 3
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7.3 L Violation Induced by One Right-Handed Majorana Neutrino

7.3 L Violation Induced by One Right-Handed Majorana Neutrino

In the most simple case where it is sufficient to only investigate the SM extended by a single

relevant right-handed Majorana neutrino, the basis of lepton doublets can be chosen such that

only one of them couples to the right-handed Majorana neutrino of interest. In this basis, the

Yukawa interactions involving right-handed charged leptons in general induce transitions between

the lepton generations. However, as discussed in section 4.1, the corresponding thermal rates are

small compared to the rate of B violation induced by sphaleron transitions meaning that they can

be ignored to a good approximation. Thus, only the time evolution of one µB−Li , cf. equation (7.4),

becomes non-trivial and a coupled differential equation involving two relevant chemical potentials

(µB−L = µB−Li and µB) is obtained. In this case, the equilibrium condition (7.11) simplifies to

µB−L =
1

6
µB , (7.12)

where m = 1 and Ng = 3 are considered. Using the initial conditions µB−L(zi) = 0 and µB(zi) =

µinitialB implies |µB−L(zi)| ≤ |µinitialB |/6. Furthermore, the equation of motion for µB determined by

sphaleron transitions implies that |µB(z)| > cs(z)|µB−L(z)|, where cs(z) for solving the Boltzmann

equation is given by cs = 3/17, cf. equation (7.6). However, the final value for the B asymmetry

(µfinalB ) is determined by

µfinalB = cs(Tc)µ
final
B−L =

28

79
µfinalB−L ≤ 28

79

1

6
µinitialB =

14

237
µinitialB ≃ 0.059µinitialB , (7.13)

where βµfinalB = (2.40± 0.01)× 10−8 is needed to produce the observed B asymmetry, cf. equations

(4.18) and (4.20).

Figure 7.2: Contour plots of the necessary initial B−L conserving B asymmetry (βµinitialB ) to produce

the observed final B asymmetry as a function of the Yukawa coupling (y) and the

Majorana mass of the right-handed neutrino (MN ). The initial B generation is assumed

to occur at zi1 = MN/Ti1 = 0.2 (left panel), zi2 = MN/Ti2 = 3 (middle panel), and

zi3 = MN/Ti3 = 20 (right panel). The three diagonal lines in each plot correspond to

three different active neutrino masses resulting from the type-I seesaw mechanism. In the

dark blue region βµinitialB < 10−6, in the middle blue region βµinitialB < 10−4, in the light

blue region βµinitialB < 10−2, and in the remaining region βµinitialB > 10−2 are required.
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7 L Violation Assisted GUT Baryogenesis

Using this setup, the resulting Boltzmann equation can be solved numerically. The result for the

required initial B−L conserving B asymmetry βµinitialB to produce the observed final B asymmetry

for the three different injection scales of interest (zi1 = 0.2, zi2 = 3, and zi3 = 20) as a function of

MN and y is shown in figure 7.2. For all considered injection scales, the necessary value of βµinitialB

becomes large when y is either so large (y ≳
√
MN × 10−7) that the non-resonant L violation

induced by γsubN,s and γN,t efficiently coexists with sphaleron transitions or so small that L-violation

is never efficient (y ≲ 2
√
MN × 10−10). Because the injection scale in the left panel of figure 7.2

(zi1 = 0.2) is assumed to be larger than to the scale where L violation is most efficient, the required

βµinitialB becomes strongly suppressed for MN ≲ 1013 GeV. If, the injection scale is assumed to

be roughly at the scale where L violation is most efficient (middle panel, zi2 = 3) the necessary

βµinitialB for MN ≳ 1013 GeV is close to the case of considering a higher injection scale. However, for

MN ≲ 1013 GeV, a slightly larger value for y is sufficient to explain the observed B asymmetry. The

right panel in figure 7.2 (zi3 = 20) can be explained by the same argument but here, significantly

larger values of y are allowed in the region MN ≲ 1013 GeV because for the same value of y, the

L violation is significantly less efficient, cf. figure 7.1. This can also be seen from the fact that the

region where L violation is never efficient is significantly enlarged so that for y ≲ 0.1, βµinitialB > 10−4

is required while for zi = 3 and zi = 0.2, y ∼ 0.01 is still in the region of maximal washout requiring

βµinitialB < 10−68.

The black lines in figure 7.2 correspond to different active neutrino masses of special interest resulting

from the type-I seesaw mechanism, cf. equation (5.10): the black solid line represents an active

neutrino mass of 0.12 eV which is the Planck bound, cf. equation (C.7), on the sum of the active

neutrino masses, while the dashed and dotted black lines denote mν =
√︁

∆m2
atm ≃ 5.0 × 10−2 eV

and mν =
√︂
∆m2

sol ≃ 8.7 × 10−3 eV, respectively, cf. equation (C.4). Thus, for the considered

right-handed Majorana neutrino to contribute significantly to the active neutrino masses, y has to

be in the region between the solid and the dotted black lines. Note that this region, without tuning

the model in this direction, falls right into the region where the necessary initial B asymmetry is

minimal. Thus, it can be concluded that a right-handed Majorana neutrino with MN ≳ 1013 GeV

can naturally explain both the observed active neutrino masses and the observed B asymmetry when

a B − L conserving B asymmetry of the order βµinitialB ∼ 10−6 is injected at T ≳MN/3.

To highlight the interplay of L violation and sphaleron transitions in more detail, three different

regions of interest are investigated in more detail, cf. figure 7.3. First of all, choosingMN = 1015 GeV

and y = 1, the corresponding rate of L violation is very efficient before sphaleron transitions are

efficient but become inefficient when sphaleron transitions reach equilibrium, cf. the top left panel in

figure 7.3. Thus, the generated B−L asymmetry is sizable for all considered zi (µ
final
B /µinitialB > 0.1),

cf. the bottom left panel in figure 7.3. In comparison, consideringMN = 1015 GeV and y = 0.01, the

induced rate of L violation is never efficient, resulting in a small generated B−L asymmetry, cf. the

middle panels in figure 7.3. Finally, choosing MN = 2 × 1012 GeV and y = 0.1, the corresponding

rate of L violation coexists with sphaleron transitions, resulting in a small final B − L asymmetry

for zi = 0.2 and zi = 3 but for zi = 20 – where the rate of L violation is never too efficient – still

8Note that the deviation of the upper boundary of the blue regions from the linear behavior for y ≳ 5 is not a numerical

mis-modulation but the decay width of N becomes comparable to MN . Consequently, the ΓN dependence of γsub
N,s

and γN,t in the limit s≪M2
N is relevant.
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7.3 L Violation Induced by One Right-Handed Majorana Neutrino

µfinalB /µinitialB ∼ 10−3 is obtained, cf. the right panels in figure 7.3.
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Figure 7.3: Top row: Rate of µB violation induced by sphaleron transitions (straight black

line), L violation (blue line), and N interaction (purple line) for three benchmark

points (columns) with different Yukawa couplings (y) and right-handed neutrino masses

(MN ). All rates are normalized with respect to the Hubble expansion rate.

Bottom row: Time evolution trajectory in the µB-µB−L plane starting from an initial

B − L conserving B asymmetry (µinitialB ) for the three benchmark points. The initial B

generation is assumed to occur at zi1 = 0.2 (right vertical dashed line in the rate plots

and purple line in the bottom row plots), zi1 = 3 (middle vertical dashed line in the rate

plots and blue line in the bottom row plots), and zi1 = 20 (left vertical dashed line in

the rate plots and green line in the bottom row plots).

Finally, it should be mentioned that the statement given in reference [27] saying that for MN ∼
1016 GeV and y ∼ 1, the observed B asymmetry can be reproduced, agrees with the results from

the detailed analysis where this benchmark point falls into the region of minimal required βµinitialB ,

cf. figure 7.2.

In preparation of explaining the numerical results shown in the next section, the required initial B−L
conserving B asymmetry (βµinitialB ) to produce the observed final B asymmetry when assuming the

initial B generation to occur at zi = 6 and zi = 10 is shown in figure 7.4. As can be seen, assuming

the initial B generation to occur in this region (6 ≲ zi ≲ 10) is of special interest because, for the

active neutrino masses of interest generated by the type-I seesaw mechanism, it allows to secure a

sizable amount of the initial B − L conserving B asymmetry (βµinitialB < 10−4) even for Majorana

masses of a few 1010 GeV. The reason for that is that for 6 ≲ zi ≲ 10, L violation in the parameter

space of interest is efficient a zi but rapidly becomes inefficient. Thus, efficient L violation occurs

before all asymmetry is washed out by sphaleron transitions but it becomes inefficient when the

sphaleron equilibrium condition is reached.
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7 L Violation Assisted GUT Baryogenesis

Figure 7.4: Contour plots of the needed initial B−L conserving B asymmetry (βµinitialB ) to produce

the observed final B asymmetry as a function of the Yukawa coupling (y) and the

Majorana mass of the right-handed neutrino (MN ). The initial B generation is assumed

to occur at zi1 = MN/Ti1 = 6 (left panel) and zi3 = MN/Ti3 = 10 (right panel). The

three diagonal lines in each plot correspond to three different active neutrino masses of

special interest resulting from the type-I seesaw mechanism, cf. equation (5.10). In the

dark blue region βµinitialB < 10−6, in the middle blue region βµinitialB < 10−4, in the light

blue region βµinitialB < 10−2, and in the remaining region βµinitialB > 10−2 are required.

7.4 L Violation Induced by Two Right-Handed Majorana Neutrinos

Next, a more general case involving two relevant right-handed Majorana neutrinos – N1 and N2,

which are both mass eigenstates – is investigated. Again, it is assumed that the L violation induced

by these two right-handed Majorana neutrinos is the only relevant source of L violation and that the

Yukawa interaction involving right-handed charged leptons are irrelevant. In this case, the lepton

doublets can be rotated into a basis in which only two of the three lepton doublets couple to the

right-handed Majorana neutrinos while the third decouples. For simplicity, it is assumed that the

lepton doublets can be further rotated such that only one of them couples to one of the right-handed

Majorana neutrinos while the other couples to the other right-handed Majorana neutrino.

Thus, the relevant part of the Lagrangian in this rotated basis is given by

L ⊃
2∑︂

i=1

(︃
iΨNi

/∂ΨNi − yiΨℓiH
†ΨNi −

MNi

2

(︁
Ψc

NiΨNi +ΨNiΨ
c
Ni

)︁)︃
, (7.14)

where the neutrinos after EWSB obtain masses of m1 = y21v
2/(2MN1) and m2 = y22v

2/(2MN2) from

the type-I seesaw mechanism, cf. equation (5.10). Furthermore, to reduce the parameter space, it is

assumed that there is no additional source of neutrino masses requiring either

m1 =
√︂

∆m2
sol ≃ 8.7× 10−3 eV

m2 =
√︂
∆m2

atm +∆m2
sol ≃ 5.0× 10−2 eV

, (7.15)
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in normal order or

m1 =
√︂⃓⃓

∆m2
sol +∆m2

atm

⃓⃓
≃ 4.9× 10−2 eV

m2 =
√︂⃓⃓

∆m2
atm

⃓⃓
≃ 5.0× 10−2 eV

, (7.16)

in inverted order to be in agreement with the observations from neutrino oscillation experiment,

cf. equation (C.4).

Using these assumptions, the necessary initial B−L conserving B asymmetry can again be calculated

solving the Boltzmann equations (7.4) taking into account the L violation induced by N1 and N2.

To examine the interplay of both B−L violating rates, the injection scale of the GUT B asymmetry

is assumed to be zi = Mmin/T = 0.2 with Mmin = min{MN1 ,MN2} so that both rates can coexist

efficiently – as long as their Majorana masses differ by less then one order of magnitude. Furthermore,

the result can be compared with the result from the 3+1 case choosing zi = 0.2 discussed in the

previous section, cf. the left panel in figure 7.2.

Now the time evolution of two µB−Li become non-trivial so that a coupled differential equation

involving three relevant chemical potentials (µB−L1 , µB−L2 , and µB) is obtained. Consequently, the

equilibrium condition (7.11) simplifies to

µB−L =
4

15
µB , (7.17)

where m = 1 and Ng = 3 are considered. Using the initial conditions µB−Li(zi) = 0 and µB(zi) =

µinitialB , this – similar to equation (7.13) – leads to the condition

µfinalB = cs(Tc)µ
final
B−L =

28

79
µfinalB−L ≤ 28

79

4

15
µinitialB =

112

1185
µinitialB ≃ 0.095µinitialB . (7.18)
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Figure 7.5: Contour plots of the necessary initialB−L conservingB asymmetry µinitialB to produce the

observed final B asymmetry as a function of the two right-handed neutrino mass, where

MN1 and MN2 (horizontal and vertical axis) is responsible for the generation of m1 and

m2, respectively, in normal order (left panel) or inverted order (right panel). It is assumed

that the generation of initial B asymmetry occurs at zi = min{MN1 , MN2}/T = 0.2.
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7 L Violation Assisted GUT Baryogenesis

The resulting required value for βµinitialB to produce the observed final B asymmetry for zi = 0.2 in

normal and inverted order as a function of both Majorana masses MN1 and MN2 is shown in figure

7.5. Contrary to the naive expectation, assuming one Majorana mass to be much larger than the

other ones, the result from the previous section is not simply reproduced. ForMN1 ,MN2 ≳ 1013 GeV,

corresponding to the region of maximal washout, the result is indeed identical to the 3+1 result with

mν = 8.7×10−3 eV (mν = 5.0×10−2 eV) corresponding to the dotted (dashed) line in the left panel

of figure 7.2. Nevertheless, as can be seen in figure 7.5, considering another right-handed Majorana

neutrino with much larger mass, in this region, still a sizable amount of B violation is secured.
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Figure 7.6: Right panel: Rate of µB violation induced by sphaleron transitions (straight black line),

B−L1 violation (blue and green line), andB−L2 violation (red and purple line) where the

blue (red) and the green (purple) lines correspond to two different Majorana masses of a

right-handed neutrino (MN1(MN2) = 1012 GeV for the blue (red) line and MN1(MN2) =

1015 GeV for the green (purple) line) generating m1 (m2) defined in equation (7.15) by

the type-I seesaw mechanism in normal hierarchy. All rates are normalized with respect

to the Hubble expansion rate.

Middle and left panel: Time evolution trajectory in the µB-µB−L plane with B − L

corresponding toB−L1 (purple line), B−L2 (blue line), and the sum of both, B−L (green

line) for two benchmark points in the MN1-MN2 plane. For both benchmark points, the

initial B generation is assumed to occur at T = 5×min{MN1 , MN2} = 5× 1012 GeV.

As can be seen in figure 7.6, the reason for that is that the rate of L violation induced by γsubN,s

and γN,t of the much heavier right-handed Majorana neutrino is still sizable enough to partly keep

the initial B asymmetry from being washed out. Moreover, this result does not depend on the

exact value of the heavier Majorana mass because the rate of L violation induced by a right-handed

Majorana neutrino for T ≪MN is equivalent when the active neutrino mass generated by the type-I

seesaw mechanism is equivalent and y ≲ 5 holds so that ΓN is negligibly small.

To understand the shape of the region where the interplay of both Majorana masses is relevant shown

in figure 7.5, three benchmark points with a fixed initial B asymmetry injection scale (Mmin/zi =

5× 1011 GeV) are investigated in more detail, cf. figure (7.7). First of all, considering degenerated

Majorana masses MN2 =MN1 = 1011 GeV, the L violation induced by both right-handed Majorana

neutrinos efficiently coexists with sphaleron transitions for a long period, implying that only a

tiny fraction of the initial B asymmetry survives, cf. the right panel in the top row of figure 7.7.

However, considering MN2 = 2 × 1012 GeV, L violation induced by N2 is only efficient for a short

period and then falls out of equilibrium rapidly, cf. the left panel in the top row of figure 7.7, meaning
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Figure 7.7: Top left panel: Rate of µB violation induced by sphaleron transitions (straight black

line), B −L1 violation (blue and green line), and B −L2 violation (red and purple line)

where the blue (red) and the green (purple) lines correspond to two different Majorana

masses of a right-handed neutrino (MN1(MN2) = 1011 GeV for the blue (red) line and

MN1 = 3 × 1012 GeV(MN1 = 2 × 1012 GeV) for the green (purple) line) generating m1

(m2) defined in equation (7.15) in normal hierarchy by the type-I seesaw mechanism. All

rates are normalized with respect to the Hubble expansion rate.

Top right panel and bottom row: Time evolution trajectory in the µB-µB−L plane with

B−L corresponding to B−L1 (purple line), B−L2 (blue line), and the sum of both, B−
L (green line) for three benchmark points in theMN1-MN2 plane. For all three benchmark

points the initial B generation is assumed to occur at T = 5 × min{MN1 , MN2} =

5× 1011 GeV.

that B − L2 violation is only efficient before sphaleron transitions equilibrate, producing a sizable

amount of B−L2 asymmetry, cf. the left panel in the bottom row of figure 7.7. The same is also true

considering MN1 = 3 × 1012 GeV where the L violation induced by N1 is only efficient for a short

period, cf. the right panel in the bottom row of figure 7.7. Consequently, the peaks in the shapes

shown in figure 7.5 correspond to the region 6 ≲ zi ≲ 10 with one of the right-handed Majorana

neutrinos allowing to secure a sizable amount of the initial B−L conserving B asymmetry even for

small Majorana masses, cf. figure 7.4.

Note that both effects highlighted in figures 7.6 and 7.7 only occur in the approximation where

each right-handed Majorana neutrino couples to one of the active neutrino mass eigenstates and
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7 L Violation Assisted GUT Baryogenesis

that mixing (y12 ̸= 0 and y21 ̸= 0) would reduce the amount of B − L asymmetry produced in

one of the lepton generations. Furthermore, the approximation of ignoring all Yukawa interactions

besides the top Yukawa interaction can still be used for calculating the amount of B−L asymmetry

produced in one of the lepton generations. However, when the other right-handed Majorana neutrino

coexists efficiently with sphaleron transitions so that both equilibrate, the sub-dominant tau Yukawa

interaction transferring the produced B −L asymmetry in one lepton generation with an inefficient

rate of L violation into the other lepton generation with an efficient L violation leads to a washout

of the secured B asymmetry.

Thus, it can be concluded that – independent of the other Majorana mass – having one of the

Majorana masses in the region of minimal required initial B asymmetry (MN ≳ 1013 GeV, cf. figure

7.2) and assuming the B asymmetry injection to take place before this Majorana neutrino falls out

of equilibrium, a sizable amount of B − L asymmetry is produced, meaning that βµinitialB ≲ 10−6 is

sufficient to explain the observed B asymmetry. However, this statement is only valid as long as the

influence of flavor mixing – inducing lepton asymmetry transitions between the different generations

– can be neglected to a good approximation.

7.5 L Violation Induced by One Right-Handed Majorana Neutrino

Within the Scotogenic Model

In the scotogenic model, cf. section 6.2, the masses of the active neutrinos are loop induced and

in the limit λ5v
2 ≪ m2

0 = m2
ϕ + (λ3 + λ4)v

2/2 ≪ MNi given by equation (6.33b). Furthermore,

the Yukawa interaction term yijΨℓj (x)H
c(x)ΨNi(x) is absent but instead the Yukawa interaction

term y′ijΨℓj (x)ϕ
c(x)ΨNi(x) involving the additional Higgs doublet ϕ is present. Hence, the SM

Higgs doublet H in all relevant L violating interactions has to be replaced by ϕ. Consequently, the

processes inducing the thermal rates γH,s, γH,t1 , and γH,t2 are forbidden because of the imposed Z2

symmetry. Thus, all relevant thermal rates are given by γD, γA,s, γA,t1 , γA,t2 , γ
sub
N,s, and γN,t where

the Yukawa coupling involving H is replaced by the Yukawa coupling involving ϕ (y → y′) and mH

is replaced by mϕ.

Additionally, the reaction transferring a particle-antiparticle asymmetry between both Higgs doublets

(ϕ(∗)ϕ(∗) ↔ H(∗)H(∗)) become relevant. The corresponding thermal rate is approximately given by

γϕϕ→HH ≈ T 4

64π4

∞∫︂
0

dx
√
x σ̂ϕϕ→HH(T 2x)K1(

√
x) =

T 4λ25
512π5

, (7.19)

with

σ̂ϕϕ→HH(s) ≈ 2sσϕϕ→HH(s) =
8πs

64π2s

(︃
λ5
2

)︃2

=
λ25
32π

, (7.20)

106
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meaning that it enters the Boltzmann equations as9

z
d

dz
βµϕ = −z d

dz
βµH =

12γϕϕ→HH

T 3H(T )
(βµH − βµϕ) := Γλ5(βµH − βµϕ)

≈ 3Tλ25
128π5H(T )

(βµH − βµϕ) ≈
λ25
T
(βµH − βµϕ)× 5.35× 1013 GeV . (7.21)

Consequently, in the region of interest, λ25 ≳ 1/30 is necessary to obtain a rate larger than the rate

of B violation induced by sphaleron transitions.

Moreover, the time evolution considering the inert Higgs model is not expected to significantly differ

from the SM case, cf. figure 7.2, but the generated active neutrino masses are suppressed by ∼ λ5/4

in the region of interest. Consequently, it can be estimated that |λ5| ≳ 0.2 is needed to generate

active neutrino masses within the observed rage and to secure a sizable amount of B asymmetry

(10−6 ≲ µinitialB ≲ 10−4) from being washed out by sphaleron transitions.
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Figure 7.8: Contour plot of the region in the λ3-λ4 plane being not excluded at 90% CL by the

XENON1T experiment (blue region) choosing λ5(mH̃) = −λSM(mh) ≈ −0.258. H̃

is assumed to be responsible for the observed relic DM density, implying that mH̃ is

determined by the required annihilation cross section. The darker blue region is more

than one order of magnitude below the 90% CL bound of XENON1T and the straight

black line corresponds to a vanishing DM-nucleon cross section at tree level. The light

and dark gray region correspond to a potential which is unstable at tree level assuming

λ2(mH̃) = λSM(mh) and λ2(mH̃) = 2λSM(mh), respectively.

For this reason, in the following λ5(mH) = −λSM(mh) ≈ −0.258 is chosen. Using this, the allowed

values of λ4(mH̃) and λ3(mH̃) which generate the observed relic DM density, cf. equation (6.22), and,

at the same time, are not in conflict with direct detection experiments, cf. equation (6.25), are shown

in figure 7.8. The shown straight black line corresponds to λ3 + λ4 + λ5 = 0 yielding – at tree-level

– a vanishing DM-nucleon cross section. Note that the parameter space with λ4(mH̃) > λSM(mh) is

excluded by requiring H̃ to be a DM candidate and demandingmH̃ to be the lightest component of ϕ.

9The factor 12 is composed of a factor of 3 from equation (3.35), a factor of 2 arising from two contributing initial

states, and a factor of 2 from having two initial ϕ and two final H.
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7 L Violation Assisted GUT Baryogenesis

Furthermore, the region with λ3 > 2 not shown is completely unconstrained by direct detection10.
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Figure 7.9: One-loop running of the Higgs self couplings for the benchmark point λ1(mh) =

λ2(mH̃) = λ3(mH̃) = −λ5(mH̃) = λSM(mh) ≈ 0.258 and λ4(mH̃) = λSM(mh)/2 ≈ 0.129

represented by the cross mark in figure 7.8.

However, considering the one-loop running of the Higgs self couplings, cf. equation (A.89), the

Higgs self couplings usually become non-perturbative in the region of interest (µ ≲ 1015 GeV)

when at least one of them is chosen to be approximately of the order 1 at µ ∼ TeV without

assuming unnatural cancellation. But having non-perturbative coupling constants does not allow the

investigation of scattering processes involving ϕ in the temperature range of interest. To avoid this

problem, the benchmark point with λ1(mh) = λ2(mH̃) = λ3(mH̃) = −λ5(mH̃) = λSM(mh) ≈ 0.258

and λ4(mH̃) = λSM(mh)/2 ≈ 0.129, cf. cross mark in figure 7.8, is investigated in more detail. These

values for the Higgs self couplings fulfill all requirements and – considering the one-loop running –

correspond to perturbative coupling constants for T ≲ 1017 GeV, cf. figure 7.9. Moreover, in the

region of interest (T ≳ 1010 GeV), λ25 ≳ 0.25 holds, meaning that the conversion of the particle-

antiparticle asymmetry among both Higgs doublets is roughly one order of magnitude more efficient

than sphaleron transitions. Consequently, it can to a good approximation be assumed that the

chemical potentials of H and ϕ are in thermal equilibrium, meaning that the time evolution of the

relevant chemical potentials is still determined by equation (7.4) with m = 2.

Finally, to obtain the observed relic DM density, cf. equation (6.22), for this benchmark point,

mH̃ ≈ 878 GeV is required. Consequently, the benchmark point is also not excluded by other

experiments such as collider experiments.

The thermal rates for the benchmark point choosing MN = 1013 GeV and y′ = 0.1 are shown in

figure 7.10. Because of the significantly larger thermal mass of ϕ compared to H, the region where

the decay is kinematically forbidden (γD = 0) moves to larger values of z, cf. figure 7.1. The other

thermal rates change slightly as well. However, the general picture is still the same so that no huge

10In reference [39], only the DM annihilation cross section induced by λ3 and not the contribution form λ4, λ5 and

the gauge couplings was considered. As a consequence, the parameter space with λ3 ≲ 2 was found to be excluded

by direct detection. Furthermore, λ5 ∼ 1 was assumed. However, taking into account the one-loop running,

this parameter region is disfavored because the coupling constants becomes non-perturbative at scales below the

temperature range of interest.
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Figure 7.10: Rate of µB violation induced by sphaleron transitions (straight black line), µH -µϕ
equilibration (Γλ5 straight green line), and L violation (γD purple line, γsubN,s dashed blue

line, γN,t blue line, γA,s dashed orange line, γA,t1 orange line, and γA,t2 dotted orange

line) induced by a right-handed neutrino with a Majorana mass of MN = 1013 GeV

and a Yukawa coupling of y = 0.1. All rates are normalized with respect to the

Hubble expansion rate. The three dashed vertical lines correspond to three different

initial B generation scales of interest: zi1 = MN/Ti1 = 0.2, zi2 = MN/Ti2 = 3, and

zi3 =MN/Ti3 = 20.

difference to the results from section 7.3 are expected.

Moreover, the equilibrium condition (7.11) becomes

µB−L =
8

33
µB , (7.22)

leading to the condition

µfinalB = cs(Tc)µ
final
B−L =

8

23
µfinalB−L ≤ 8

23

8

33
µinitialB =

64

759
µinitialB ≃ 0.084µinitialB , (7.23)

where now βµfinalB = (2.49±0.01)×10−8 is needed to produce the observed B asymmetry, cf. equation

(4.21).

As expected, the numerical results from solving the Boltzmann equations, cf. figure 7.11, only slightly

differ from the results shown in section 7.3. It can be seen that the different region shown in figure

7.11 are slightly enlarged to higher Yukawa couplings. The reason for that is that for the investigated

benchmark point, mϕ is larger than mH in the SM, resulting in a slightly smaller decay width and a

shift of the region where the decay is kinematically forbidden, cf. figures 7.1 and 7.10. Furthermore,

the Hubble expansion rate and the rate of µB violation induced by sphaleron transitions slightly

change because two Higgs doublets are considered. Hence, the main difference between figure 7.2

and figure 7.11 is that the black lines – corresponding to three neutrino masses of special interest –

move upwards as they are here determined by equation (6.33b) which is suppressed by approximately

|λ5|/4. As desired, for the chosen value of λ5, the necessary initial B asymmetry in the region of

special interest (∆m2
sol ≲ m2

ν ≲ ∆m2
atm) is still reachable. But when choosing λ5 significantly smaller
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7 L Violation Assisted GUT Baryogenesis

Figure 7.11: Contour plots of the necessary initial B − L conserving B asymmetry (βµinitialB ) to

produce the observed final B asymmetry as a function of the Yukawa coupling (y)

and the Majorana mass of the right-handed neutrino (MN ). The initial B generation is

assumed to occur at zi1 =MN/Ti1 = 0.2 (left panel), zi2 =MN/Ti2 = 3 (middle panel),

and zi3 =MN/Ti3 = 20 (right panel). The three diagonal lines in each plot correspond

to three different active neutrino masses resulting from the scotogenic model choosing

λ5(mH) ≈ 0.258 and m0 ≈ 883 GeV. In the dark blue region βµinitialB < 10−6, in the

middle blue region βµinitialB < 10−4, in the light blue region βµinitialB < 10−2, and in the

remaining region βµinitialB > 10−2 are required.

(λ5 ≲ 0.05), even for a generated active neutrino mass of m2
ν = ∆m2

sol, no significant amount of B

asymmetry survives.
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8 Thermal Aspects of Leptogenesis

In section 4.2, the idea of putting the origin of the observed B asymmetry into the lepton sector

(leptogenesis) is motivated. Right-handed Majorana neutrinos, introduced to explain the small

observed active neutrino masses, are a natural source of L violation and, for this reason, are the

essential ingredient for most leptogenesis models. The first and simplest case of a leptogenesis

induced by right-handed neutrinos is investigated in section 5.3. There, it is found that in the

simplest extension of the SM, where the active neutrino masses are induced by the type-I seesaw

mechanism, Majorana masses larger than 1010 GeV are required for being able to produce the

observed B asymmetry. Thus, it is not expected to produce the particles being responsible for

the generation of the observed B asymmetry in experiments in the near future so that proving or

disproving this simple leptogenesis model is difficult.

However, this lower bound on the Majorana mass is deduced from considering non-degenerate but

hierarchical Majorana masses. In contrast, considering nearly degenerate masses (MNi −MNn ≪
MNi+MNn), according to equation (5.37), the CP asymmetry is enhanced, meaning that in principle,

much smaller Yukawa couplings are sufficient to generate the required δCP violation of order 10−6.

Consequently, the Majorana mass of the right-handed neutrino, being responsible for the generation

of the L asymmetry, can in principle be much smaller than 1010 GeV, cf. reference [23]. However,

taking the Majorana masses, which are typically assumed to be independent quantities, to be nearly

degenerate, seems unnatural.

Thus, to naturally explain the observed B asymmetry with Majorana neutrino masses significantly

smaller than 1010 GeV, one can consider other active neutrino mass generation models such as the

scotogenic model, cf. section 8.1. In this case, larger Yukawa couplings are allowed without being

in conflict with the Planck bound on the sum of the active neutrino masses, allowing for larger CP

violation. Thermal leptogenesis in the context of the scotogenic model is investigated in detail in

reference [41]. Thus, even though the shown investigation was made independently, the given results

coincide with the results given in this reference.

Instead of considering models with enlarged Yukawa couplings, one can also use thermal mass

corrections to naturally obtain degenerate masses at a specific temperature scale, cf. section 8.2. The

idea of using thermal degeneracy of right-chiral neutrino masses has been introduced in reference [3].

Moreover, here, also the idea of using thermal degeneracy of left-chiral neutrino masses and thermal

degeneracy of left- and right-chiral neutrino masses are discussed. However, both of them do not

allow for new possibilities of leptogenesis and are – probably for this reason – not presently discussed

in literature.
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8 Thermal Aspects of Leptogenesis

8.1 Thermal Leptogenesis With Enlarged Yukawa Couplings

Considering models, such as the scotogenic model, where the masses of the active neutrinos are

suppressed by a αi
S compared to the masses generated by the type-I seesaw mechanism, cf. equation

(6.31), significantly larger Yukawa couplings than in the type-I seesaw mechanism are allowed by

the Planck bound on the sum of the active neutrino masses. Consequently, the upper bound on the

CP violation is shifted, cf. equation (5.44):

|ϵNi | ≲
αn
ν

αn
S

MNi

GeV
× 10−16 , (8.1)

with αn
ν =

∑︁
j(m

I
ν)

n
jj/(0.12 eV)≤ 1 being the sum of the active neutrino masses induced by Nn in

the type-I seesaw mechanism, cf. equation (5.10), normalized to the Planck bound on the sum of

the active neutrino masses, cf. equation (C.7). Thus, MNi ≳ αn
S × 1010 GeV is required for being

able to generate a B asymmetry of the observed size.

However, this idea has several weaknesses. First, the out-of-equilibrium condition, cf. equation

(5.47), which now becomes

100

0.12 eV

1

αi
S

∑︂
j

(mν)
i
jj

!∼ 1 , (8.2)

still needs to be satisfied, implying that the contribution ofNi to the active neutrino masses decreases

as the lower bound onMNi gets smaller. Note that this statement is based on the natural assumption

that the suppression of the seesaw mass is comparable for all right-handed Majorana neutrinos

(αi
S ∼ αn

S).

Moreover, the shifting of the lower bound on MNi is limited by the requirement that the rate of L

violation induced by Nn needs to be inefficient at T ∼MNi . The rate of L violation induced by Nn

for T ≲MNn/10 is given by

6

H(T )T 3

(︂
γsubNn,s + γNn,t

)︂
≈
∑︂
j

9|y′nj |4T
4π5AHM

2
Nn

=
9T

π5AHv4

∑︂
j

[︁
(mI

ν)
i
jj

]︁2
>

9T∆m2
atm

π5AHv4

(︃
αn
ν

αn
S

)︃2

≈
(︃
αn
ν

αn
S

)︃2 T

GeV
× 10−14 , (8.3)

cf. equations (5.27) and (5.32). Thus, to fulfill both conditions,

αn
ν

αn
S

MNi

GeV
× 10−10 ≳ 1 and

(︃
αn
ν

αn
S

)︃2

× 10−14MNi

GeV
≲ 1 , (8.4)

αn
ν/α

n
S ≲ 104 and, consequently, MNi ≳ 106 GeV are required1. Note that this lower bound is

only valid when assuming a vanishing initial number density for Ni. In contrast, considering a

thermal initial abundance for Ni, the decay width of Ni can be chosen smaller, implying that the

production of the B−L asymmetry can be shifted to lower temperatures where L violation induced

1Note that equivalently to the introduction of a suppression factor for the active neutrino masses, ignoring the upper

bound on the sum of the active neutrino masses leads to the same lower bound for MNi [12].
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by Nn is inefficient. However, the generation of the B−L asymmetry has to proceed before sphaleron

transitions become inefficient because otherwise, only an L but no B asymmetry is produced. Hence,

it can be estimated that L violation induced byNn should be inefficient at Tc ∼ O(100) GeV, meaning

that αn
ν/α

n
S ≲ 106, and, consequently, MNi ≳ 104 GeV are required, cf. reference [41].

Considering the scotogenic model, cf. section 6.2, the suppression of the active neutrino masses

compared to the type-I seesaw mass depends on the Higgs coupling λ5 and the ratio MNi/m0,

cf. equation (6.33) and figure 6.1. As discussed in section 6.1, λ5 ≳ 2 × 10−6, cf. equation (6.27),

is required from direct detection experiments, implying that the suppression factors αi
S and αn

S are

larger than ∼ 10−8 and 10−7 for MN ≳ 1 TeV and MN ≳ 103 TeV, respectively, cf. figure 6.1.

Comparing this to the bound αn
ν/α

n
S ≲ 106 with αn

ν ≤ 1 for not having efficient L violation at the

scale where sphaleron transitions become inefficient, there is no significant restriction of the lower

bound on λ5.

Besides the suppression of the active neutrino masses, the scotogenic model also contains a DM

candidate: the lightest component of ϕ, cf. section 6.1. Hence, one could get the idea that the

out-of-equilibrium condition can be naturally fulfilled, cf. reference [8], because the density of a DM

candidate has to fall out of equilibrium at the latest when the temperature falls significantly below

the DM mass, to obtain a relic DM abundance. This idea is of special interest in the scotogenic

model, where Ni decays into a left-chiral lepton doublet ℓi and ϕ, meaning that the decay product

of Ni deviates from thermal equilibrium. Thus, for Majorana masses not much larger than the DM

mass (MNi ≳ mH̃), for temperatures not much smaller than MNi , the number density of ϕ naturally

falls out of equilibrium when pair annihilation becomes inefficient.

However, there are two caveats to this idea. First, significant deviation from thermal equilibrium

of the DM density occurs only when the density is close to the relic density, implying that also the

corresponding right-handed neutrino density is strongly Boltzmann suppressed. Furthermore, the

relic DM density is suppressed by at least two orders of magnitudes compared to the B asymmetry

to be in agreement with the observation, cf. equation (C.8), because mH̃ ≳ 560 GeV is required,

cf. section 6.1. Consequently, the DM density is already smaller than the required B−L asymmetry

when it significantly deviates from the equilibrium density, meaning that it is doubtful that within

this scenario a sufficiently large B asymmetry is generated to explain observations.

Moreover, as discussed in section 3.2, an L asymmetry can only be generated when the particle

inducing L violation fulfills the out-of-equilibrium condition because otherwise the CPT invariance

and unitarity of the S matrix imply that no asymmetry is generated but only washed out. Thus,

in the scotogenic model, no L asymmetry can be generated by the deviation of ϕ from thermal

equilibrium because the only source of L violation are the Majorana fermions23.

2Nevertheless, reference [8] claims that this idea is capable to explain the observed B asymmetry as well as the

observed DM relic abundance. However, in the Boltzmann equation for the L asymmetry given in reference [8],

an L asymmetry can be generated only from DM being out of equilibrium. Furthermore, the shown numerical

result for the L violation does not seem to agree with the given Boltzmann equations because an L asymmetry is

generated at temperatures where the considered right-handed Majorana neutrinos as well as all components of ϕ

are not expected to relevantly deviate from their equilibrium densities.
3Note that considering models where pair annihilation itself induces B/L violation, a net B/L asymmetry can be

generated, cf. reference [18]
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8.2 Leptogenesis With Degenerated Masses Induced by Thermal

Corrections

As has been discussed in section 2.10, small mass squared differences can induce large CP violation

even for small coupling constants. However, it seems unnatural to assume strongly degenerate

Majorana masses for the right-handed neutrinos. Consequently, the question arises whether thermal

mass corrections, which can induce degenerated masses more naturally, are capable of significantly

enhancing CP violation, leading to an enlarged parameter space for leptogenesis.

There are basically three different cases of interest which are investigated in the following: Degenerate

masses of right-chiral neutrinos, degenerate masses of left-chiral lepton doublets, and degenerate

masses of left- and right-chiral neutrinos. Note that also temperatures below Tc are investigated.

For this reason, here, the distinction between chiral eigenstates and energy eigenstates is of special

relevance.

8.2.1 Thermal Degeneracy of Right-Chiral Neutrino Masses

The idea of naturally increasing CP violation due to a mass degeneracy of right-chiral neutrinos

induced by thermal mass corrections is investigated in reference [3]. In the following, the basic

mechanism behind this idea is presented and the current bound on the sum of the active neutrino

masses is applied. Note that the shown investigation is based on previous parts of this thesis and,

for this reason, differs from the investigation presented in reference [3]. However, the given results

coincides with the results from reference [3].

Considering right-chiral Majorana neutrinos, which only couple via Yukawa interactions to left-chiral

neutrinos, their thermal mass correction is given by, cf. equation (B.41) or reference [3],

m2
in =

∑︂
j

yijy
∗
nj

8
T 2 (8.5)

⇒ m2
ii =

∑︂
j

(mI
ν)

i
jj

4v2
MNiT

2 ≈ 4
αi
ν

αi
S

MNi

GeV
T 2 × 10−16 . (8.6)

When the focus is on non-degenerate Majorana masses (|MNn −MNi | ∼ max{MNi ,MNn}), in the

region where thermal leptogenesis is not capable to generate the observed B asymmetry, the masses

of the right-chiral neutrinos only become degenerate for temperatures much larger than the Majorana

masses of interest. To be more precise, to obtain degenerate masses, for the lighter Majorana neutrino

at least thermal corrections of the order of the heavier Majorana masses are required:

m2
ii ∼M2

Nn
⇒ TLC ∼

√︄
αi
S

αi
ν

√︄
M2

Nn

MNi

GeV × 108 , (8.7)

where MNi < MNn is assumed and TLC is the temperature where the energy difference between the

energy eigenvalues is minimal.

Furthermore, as discussed in the previous chapter, the relevant processes for the production of right-

handed neutrinos are the Higgs boson decay and the 2 → 2 scattering processes mediated via Higgs
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boson exchange. For both of these processes, the interaction rate normalized with respect to the

Hubble expansion rate scales as, cf. equations (3.39) and (3.40),

ΓNi

H(T )
∝
∑︂
j

|yij |2
T

∝ αi
ν

αi
S

MNi

T
(8.8)

for T ≳ MNi , where the exact proportionality factor depends on the thermal masses. As can be

seen from figures 7.1 and 7.10, for the SM and the scotogenic model with not too large Higgs self

couplings this proportionality factor is approximately one4:

ΓNi

H(T )
∼ αi

ν

αi
S

MNi

T
for T ≳MNi . (8.9)

Next, in order to fulfill the out-of-equilibrium condition, the interaction rate has to be inefficient

(Γ/H(TLC) ≲ 1). On the other hand, the interaction rate has to be large enough to significantly

alter the time evolution during the period when the mixing is enhanced by mass degeneracy. To

determine the temperature range of enhanced mixing, the interaction rate has to be compared to

the energy difference of Ni and Nn:

Ĥii − Ĥnn ≈
M2

Ni
−M2

Nn

6T
+ 50H(T )

(︃
αi
ν

αi
S

MNi

T
− αn

ν

αn
S

MNn

T

)︃
, (8.10)

with E ∼ 3T and

Ĥii ≈
M2

Ni
+m2

ii

2E
≈
M2

Ni

6T
+

4

6

αi
ν

αi
S

MNi

GeV
T × 10−16 ≈

M2
Ni

6T
+ 50H(T )

αi
ν

αi
S

MNi

T
. (8.11)

Close to the level-crossing temperature, the energy difference can be approximated as

Ĥii − Ĥnn ≈
[︄
−
M2

Ni
−M2

Nn

6T 2
LC

+ 50
H(TLC)

TLC

(︃
αi
ν

αi
S

MNi

TLC
− αn

ν

αn
S

MNn

TLC

)︃]︄
(T − TLC)

∼ 100H(TLC)
αi
ν

αi
S

MNi

TLC

T − TLC
TLC

=: H(TLC)αin
T − TLC
TLC

, (8.12)

where again MNn > MNi with non-degenerate masses is assumed, requiring αi
ν/α

i
S ×MNi to be

significantly larger than αn
ν/α

n
S ×MNn), and equation (8.7) is used to replace M2

Nn
. Thus, Γi/(Ĥii−

Ĥnn) ∼ T 2
LC/[100T (T − TLC)] is enlarged within a sizable region.

Since only mass squared differences are relevant in the investigated time evolution (Ĥij ≈ m2
ij/(2E)),

the induced mixing between right-chiral neutrinos does not violate the fermion number5, meaning

that no overall asymmetry is generated but only asymmetries between the different generations6.

Consequently, a net B asymmetry can only be produced when at least one but not all right-handed

neutrinos transfer their asymmetry to the active neutrino sector before sphaleron transitions become

inefficient. Because the Majorana masses mix particle and antiparticle states, the transition of the

4In figures 7.1 and 7.10, the thermal rate for MN = 1013 GeV and y = 0.1 corresponding to αi
ν/α

i
S ∼ 1 are shown.

5Fermion number violating amplitudes are always odd in powers of the Majorana masses.
6This statement can also be deduced from the fact that the eigenvalues of the effective equation of motion are CP

invariant, cf. section 2.10
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8 Thermal Aspects of Leptogenesis

asymmetry needs to take place at temperatures before fermion number violation becomes efficient

(T ≳ MN ). Furthermore, the rate of L violation has to be inefficient for T > TSph so that the

generated asymmetry is not washed out. Thus, to fulfill both conditions, at least one of the Majorana

masses needs to be roughly smaller than TSph with its thermal rate being in thermal equilibrium.

On the other hand, in order to avoid efficient L violation the rate cannot be too large either, where

this upper bound on the thermal rate becomes weaker when the Majorana mass gets smaller.

The other neutrinos, whose asymmetries do not contribute effectively to the generation of the final

B asymmetry, can either shift their asymmetries to the active sector and then wash it out by efficient

L violation which becomes inefficient before the other right-handed neutrinos share their asymmetry

with the active sector, or their thermal rate only reaches equilibrium for T < TSph.

Next, to calculate the B − L asymmetry generated by this mechanism, the time evolution of the

particle-antiparticle asymmetries for the right-handed neutrinos has to be investigated in detail. In

light of section 2.10, the number density of Ni at a certain time t can be expressed as [3]

YNi(t)

Y eq
Ni

(t)
=
∑︂
j

t∫︂
t0

dt′ Γj(t
′)
⃓⃓⃓
⟨ψNi | exp

[︂
− i

t∫︂
t′

dt′′ Ĥ(t′′)
]︂
|ψj⟩

⃓⃓⃓2
, (8.13)

where Γj(t) is the production rate of the interaction eigenstate |ψj⟩ at t and Ĥ(t) is the generalized

time evolution operator defined in equation (2.117). Considering this time evolution, as discussed in

section 5.3, CP violation in the production rate of right-handed neutrinos only occurs when either

interference with Ni-Nn mixing in the charged conjugated picture or multi-loop mixing including at

least three different Majorana neutrinos is considered. First, including mixing between the pictures,

an additional suppression factor of MNn/E appears, implying that the region of resonant enhanced

mixing becomes much smaller. Consequently, in the investigated mechanism only mixing between

multiple right-handed neutrinos can be capable of producing a sizable amount of particle-antiparticle

asymmetry for each Ni.

However, only the masses of two mass eigenstates are expected to become degenerate at a specific

temperature scale. As a consequence, two level crossings are required to induce sizable CP violation,

cf. equation (5.35): The first level crossing enhances mixing between Nn1 and Nn2 at T ∼ TLC,1

and the second induces increased mixing between Nn2 and Ni at T = TLC,2. Furthermore, to

obtain a non-vanishing CP asymmetry, in addition to the CP -odd phase also a CP -even phase is

required, implying that the action of the damping term in the generalized time evolution operator

is essential.

Because

Ĥij

H(T )
≲ 50

αi
ν

αi
S

MNi

T
and

Γij

H(T )
≲
αi
ν

αi
S

MNi

T
(8.14)

are both expected to be small at the region of the level crossings (T ≫ MNi) both are treated

perturbatively. Thus, the dominant CP violating contribution includes one mixing between the

right-handed neutrinos induced by Ĥij (larger and CP -odd phase) and another by Γij (CP -odd

and CP -even phase). According to equation (3.67), the conversion probability between two states
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8.2 Leptogenesis With Degenerated Masses Induced by Thermal Corrections

considering small mixing is given by

Pn→i ≈
2π|Ĥin(tLC)|2⃓⃓⃓

d
dt(Ĥii − Ĥnn)

⃓⃓
t=tLC

⃓⃓⃓ = 2π|Ĥin(TLC)|2

H(TLC)TLC

⃓⃓⃓
d
dT (Ĥii − Ĥnn)

⃓⃓
T=TLC

⃓⃓⃓ = |Ĥin(TLC)|2
H(TLC)2

2π

|αin|
, (8.15)

with αin being defined in equation (8.12)7. As a consequence, the transition amplitude can be

approximated as

An→i ≈
Ĥin(TLC)

H(TLC)

√︄
2π

|αin|
. (8.16)

Moreover, the result can equivalently be applied to the mixing induced by Γij , implying that the

produced particle-antiparticle asymmetry for the individual right-handed neutrinos after both level

crossings can be approximated as

Y∆Ni

Y eq
Ni

≈ 2π√
αn2n1αin2

(︄
Ĥn2n1

H(TLC,1)

Γin2

H(TLC,2)
+

Γn2n1

H(TLC,1)

Ĥin2

H(TLC,2)

)︄ ∞∫︂
Tmax

dT ′ Γn1i(T
′)

H(T ′)

≈ 2π√
αn2n1αin2

(︄
Ĥn2n1

H(TLC,1)

Γin2

H(TLC,2)
+

Γn2n1

H(TLC,1)

Ĥin2

H(TLC,2)

)︄
Γn1i(Tmax)

H(Tmax)
, (8.17)

with Tmax = max{TLC,1, TLC,2} and Y eq
Ni

≈ 0.002. Next, the fact that Γin and Ĥin only differ

by a proportionality factor, cf. equation (8.14), and that αin ≳ Ĥin/H(T ) holds can be used to

approximate8

Y∆Ni

Y eq
Ni

≲ 4π

√︄
Γn2n1

H(TLC,1)

Γin2

H(TLC,2)

Γn1i

H(Tmax)
. (8.18)

Considering αi
ν/α

i
S ∼ 1, MNi ∼ 100 GeV is required to at least partly shift the asymmetry to the

active sector, cf. equation (8.9). Consequently, the natural – assuming no mass degeneracy of the

Majorana masses – level-crossing temperature is of the order 109 GeV, cf. equation (8.7), implying

that the interaction rate of the right-handed neutrinos is suppressed by Γin/H(TLC) ≲ 10−7 during

the level crossing, cf. equation (8.9). Thus, only Y∆Ni/Y
eq
Ni

≲ 10−13 can be achieved which is too

small to generate YB−L of order 10−10, cf. equation (4.1).

In contrast, for αi
S/α

i
ν ∼ 0.01, MNi ≲ 10 GeV can be chosen, requiring TLC ≲ 3 × 106 GeV.

Consequently, the interaction rate at TLC is only suppressed by Γin/H(TLC) ≲ 10−4 so that it seems

possible to generate a sufficiently large B asymmetry to explain observations (Y∆Ni ≲ 2 × 10−10)

without degenerate Majorana masses9.

7Note that the proportionality of the results can directly be understood from the fact that |Ĥin|/H(T ) is the mixing

efficiency while |Ĥin|/(H(T )|αin|) is the time scale of enlarged mixing.
8Note that Y∆Ni scales as Γ2/H(TLC)

2 ∝ y4m2
P /T

2
LC ∝ y6m2

P /M
2
N , which is equivalent to the proportionality given

in reference [3].
9Note that the original considered case, cf. reference [3], is reobtained for αi

S/α
i
ν ∼ 0.01 because the bound on the

sum of the active neutrino masses was roughly two orders of magnitudes larger at the time when the paper was

published.
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8 Thermal Aspects of Leptogenesis

8.2.2 Thermal Degeneracy of Left-Handed Neutrino Masses

Next, considering left-handed lepton doublets, their thermal masses and also their interaction rates

are naturally degenerate because they only differ by their Yukawa interaction. Thus, according to

equation (2.130), sizable mixing between the eigenstates of the effective free equation of motion and

e.g. the eigenstates of the weak interaction can be expected. However, as has been discussed in

section 5.3, at one-loop order only particle-antiparticle mixing induces CP violation which allows to

produce a non-vanishing L asymmetry. Because particle-antiparticle mixing for left-chiral leptons

is forbidden by charge conservation before EWSB, degenerate masses for the left-chiral neutrino

at one-loop order can only induce relevant enhanced CP violation in a narrow region between the

EWPT and the scale where sphaleron transitions become inefficient (TLC < T < Tc).

Moreover, the interaction rate induced by the weak interaction, cf. equation (B.47), is large compared

to the rate of particle-antiparticle mixing, implying that the free propagation length of active

neutrinos is very small compared to the oscillation length. Thus, even though it seems that sizable

mixing can emerge, in fact, neutrinos produced e.g. via Yukawa interactions interact so fast via weak

interactions that no relevant neutrino-antineutrino oscillation occurs in the meantime10. Note that a

similar effect can be observed considering e.g. active neutrino oscillations where the mixing between

energy eigenstates and eigenstates of the weak interaction is sizable: When measuring neutrinos at

a distance from the production region which is much smaller than the oscillation length, no sizable

mixing is observed.

8.2.3 Thermal Degeneracy of Left- and Right-Chiral Neutrino Masses

An idea initially investigated in my master thesis, cf. reference [74], is to use mass degeneracy of left-

and right-chiral neutrinos to convert part of the active neutrinos into right-handed neutrinos. In case

of a non-adiabatic level crossing, cf. section 3.5, meaning that the conversion probability, cf. equation

(3.67), is not close to one, the out-of-equilibrium condition can be fulfilled when the thermal rates are

inefficient. Moreover, similar to the case of degenerate right-chiral neutrino masses, it was assumed

that including CP violation, the conversion probability for particles and antiparticles is different.

Consequently, a net L asymmetry would be shifted to at least one right-handed Majorana neutrino

which is not in thermal equilibrium11.

As was figured out in my master thesis, such a level crossing requires a Dirac mass term in order to

have a non-vanishing conversion probability – neither mass mixing nor off-diagonal interaction rates

are present for a vanishing VEV – implying that the level crossing has to take place in the region

between the EWPT and the scale where sphaleron transitions become inefficient (TSph < TLC < Tc).

Consequently, to have degenerate masses in this region, 25 GeV ≲ MNi ≲ 30 GeV is required,

cf. equation (B.41). Furthermore, to have a non-adiabatic level crossing which still converts a

sizable amount of particles (Ptransit ∼ O(0.1)), depending on the EV at TLC , a Yukawa coupling of

10Note that this statement is also valid considering multi-loop neutrino mixing.
11This idea was investigated in detail in collaboration with Tim Brune.
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8.2 Leptogenesis With Degenerated Masses Induced by Thermal Corrections

order |y| ≳ 10−9 is needed, cf. equations (3.67) and (B.41):

π|y|2v2⃓⃓⃓⃓
d
dt

m2
ℓi

2E

⃓⃓
t=tLC

⃓⃓⃓⃓ = π|y|2v2

H(T )T d
dT

m2
ℓi

2E

⃓⃓
T=TLC

≈ 1.4× |y|2v2
T 3

× 1020 GeV ≲ |y|2 × 1018
!∼ 1 , (8.19)

where v ≲ T for T > TSph and TLC ∼ 100 GeV are used. Consequently, for v(TLC) ∼ TLC , the

thermal rate of Ni is inefficient at TLC (Γ/H(T ) ∼ 10−6) and the contribution to the active neutrino

masses induced by the type-I seesaw mechanism is of order 10−6 eV.

When this idea was investigated in detail, multiple issues arose. First, CP violation being capable

of producing a sizable amount of L asymmetry is required. Considering the relevant loop corrections

shown in figure 5.2, the contribution of the left diagram is only enhanced when degenerate right-

chiral neutrino masses are considered. Furthermore, as discussed previously, the center diagram never

contributes significantly. However, assuming mass degeneracy for left- and right-chiral neutrinos, one

might think that the right diagram shown in figure 5.2 can induce enlarged CP violation when the

external Higgs in the diagram is replaced by the EV. The resulting diagram considers νm-Nn mixing

in the loop at first order and interferes with the Dirac mass term. Thus, considering degenerate

masses for Nn and νm, the contribution of the loop correction can in principle be enhanced in

comparison to the Dirac mass term. However, even for sizable mixing, the loop correction is still

suppressed quadratically in the Yukawa couplings while the Dirac mass is only suppressed linearly.

Moreover, due to the fact that left-chiral neutrinos interact via weak interaction and the right-chiral

neutrinos do not, the mixing between both is still suppressed by yv/Γν , cf. equation (2.130), with

Γν ∼ T × 10−3, cf. equation (B.47), even for exactly degenerate masses. Thus, degeneracy of left-

and right-chiral neutrino masses does not lead to strongly enhanced CP violation. Consequently, for

Majorana masses in the region of interest (25 GeV ≲MNi ≲ 30 GeV), either L violation is efficient

at TSph or the CP violation is too small to generate a sizable amount of L asymmetry. The only

way to circumvent this issue is to assume degenerate Majorana masses. However, in this case, also

thermal leptogenesis is capable of generating a B asymmetry of the observed size.

Furthermore, the initial idea of considering νj-Ni conversion via a level-crossing does not work

because a resonant particle conversion does not take place. This can also be understood from the

fact that the interaction rate of left-chiral neutrinos is so large that, for a level crossing with a sizable

conversion probability, their free propagation time is small compared to the time scale where the

mixing induced by Dirac masses is large. Thus, the conversion probability becomes very small or

left-chiral neutrinos basically stay left-chiral during their lifetime. Consequently, only the interaction

strength for the dominantly right-chiral eigenstate of the effective free equation of motion becomes

larger during the level crossing due to the increased mixing. Thus, the main influence of νj-Ni mixing

is an altered interaction rate of the right-handed neutrino which at maximum is ΓN + 2y2v2/Γν ,

cf. equation (2.132), and not, as naively expected, proportional to Γν .
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9 Conclusion

In the first part of this thesis, the time evolution of a theory including massive vector bosons

interacting with each other was considered in time-dependent perturbation theory. It was shown

that the corresponding interaction Hamiltonian includes an infinite series of local interaction terms.

Considering these local interaction terms properly, at tree level, transition amplitudes of the naively

expected form are obtained. However, for loop contributions, a proper consideration of local

interaction terms results in Lorentz invariant S-matrix deviating from the naive expectation. Fur-

thermore, it was shown that this deviation from the naive expectation is essential for proving that

the degree of divergence in the S-matrix is equivalent to what is expected from Rξ gauge.

Originally this investigation was made to understand the discrepancy between the Rξ gauge and

the unitary gauge result for the calculation of the effective Higgs potential. However, no intuitive

explanation for the origin of thermal contribution of the Goldstone bosons appearing in Rξ gauge

was found.

Following this, relevant elements for the investigation of baryogenesis with a focus on right-handed

Majorana neutrinos were introduced in a general way. Boltzmann equations in terms of chemical

potentials were derived taking into account that in thermal equilibrium, due to the different statistics,

bosonic degrees of freedom store twice the amount of number density asymmetry as fermionic

degrees of freedom. Moreover, the rate of B violation induced by sphaleron transitions in the

temperature range where sphaleron transitions reach thermal equilibrium (T ∼ 1012 GeV) was

calculated. In particular, only reactions which are significantly more efficient than the rate of B

violation induced by sphaleron transitions (e.g. the top Yukawa interaction) were assumed to be

in thermal equilibrium while significantly less efficient reactions (e.g. the bottom and tau Yukawa

interactions) were ignored.

In the main part of this thesis, the interplay of GUT baryogenesis, sphaleron transitions, and

L violation induced by right-handed Majorana neutrinos was investigated. For this, L violation

represents an essential ingredient because theB−L conserving sphaleron transitions would completely

wash out the initial B − L conserving B asymmetry without having an additional source of B − L

violation. In particular, it was shown that right-handed Majorana neutrinos in the mass range

MN ≳ 1012 GeV, which generate active neutrino masses within the observed mass range via the

type-I seesaw mechanism, naturally secures a sizable amount of B−L conserving B asymmetry from

being washed out by sphaleron transitions. Thus, in light of this investigation, GUT baryogenesis

scenarios, which typically have the issue of conserving B − L, are still a possible source for the

observed B asymmetry.

Moreover, this investigation was extended to the scotogenic model, which is a two-Higgs-doublet

model with an imposed Z2 symmetry extended by right-handed Majorana neutrinos. The scotogenic

model is considered here as a simple extension which includes a DM candidate and allows for larger

Yukawa couplings of the neutrino sector without being in conflict with the Planck bound on the sum
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of the active neutrino masses. It was shown that for the scotogenic model, a natural parameter space

is left where a sizable amount of a B − L conserving B asymmetry is secured from being washed

out by sphaleron transitions, active neutrino masses within the observed rage are generated, and the

dark matter relic density can be explained without being in conflict with the current experimental

limits. However, for that, the active neutrino masses generated in the scotogenic model are not

allowed to be suppressed by more than one order of magnitude compared to the active neutrino

masses generated by the type-I seesaw mechanism.

These results can be understood intuitively when demanding that active neutrino masses in the

observed range are induced by the type-I seesaw mechanism. This requires Yukawa couplings of

a size that induces interaction rates for the right-handed Majorana neutrino which are efficient

for temperatures close to the Majorana mass (ΓN/H ≲ O(10)) and become inefficient when the

temperature drops significantly below the Majorana mass. Because of this, Majorana neutrinos,

which generate the observed active neutrino masses via the type-I seesaw mechanism, represent a

natural source of B − L violation with a thermal interaction rate of the form required for thermal

leptogenesis.

Addressing this, in the last part of this thesis, general options for leptogenesis with the Majorana

masses of right-chiral neutrinos being the only source of fermion number violation were examined. It

was discussed that for thermal leptogenesis, at least Majorana masses larger than roughly 106 GeV

are required when neither degenerate Majorana masses nor an initial thermal abundance of the

right-handed Majorana neutrinos is assumed.

Moreover, the idea of naturally enhancing CP violation by thermally degenerate neutrino masses was

investigated. It was found that only mass degeneracy of right-chiral neutrino masses can significantly

increase CP violation at a specific temperature scale. However, to be able to produce a B asymmetry

of the observed size without considering degenerate Majorana masses, the bound on the sum of the

active neutrino masses requires a suppression of the active neutrino masses by roughly two orders

of magnitudes compared to the active neutrino masses induced by the type-I seesaw mechanism.

Finally, it was discussed that neither degenerated masses of left-chiral neutrinos nor mass degeneracy

of left- and right-chiral neutrinos can enhance CP violation significantly because the interaction rate

of left-chiral neutrinos via weak interaction in the region of interest is very large compared to the

interaction rate via Yukawa interactions. This can be understood from the fact that CP violation

enhanced by mass degeneracy originates from CP violating mixing in the generalized time evolution.

This time evolution includes both the free time evolution determined by the Hamiltonian and a

damping factor induced by the interaction rate. As a consequence, even for degenerate masses, the

CP violating mixing is strongly suppressed when the interaction rate is dominantly diagonal.
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A Supplementary Details to Quantum Field Theory in the

Vacuum

A.1 Spacetime Geometry

For the signature of the Minkowski space, the particle physics convention is used, where the Minkowski

metric is defined as

ds2 = gµνdx
µdxν = dx20 − dx21 − dx22 − dx23 = dx20 − dx⃗ 2 , (A.1)

with gµν = ηµν = diag(+ − −−), x0 = t being the time component, and x⃗ the space components.

In this convention, the Lorentz transformation, which transforms a Lorentz vector from one inertial

frame of reference A to another A′ moving with speed v⃗ relative to A, is given by

x′0 = γ (x0 − v⃗x⃗) and x⃗ ′ = γ (x⃗− v⃗x0) , (A.2)

with γ = (
√
1− v⃗ 2)−1.

The Einstein field equations are

Gµν − Λgµν = Rµν −
1

2
Rgµν − Λgµν = 8πTµν , (A.3)

where the Ricci curvature tensor Rµν and the scalar curvature R = gµνRµν can be calculated from

the metric and contain information about the curvature of the space. Tµν is the energy-momentum

tensor describing the energy density and its motion.

Assuming the universe to be homogeneous and isotropic (cosmological principle), the Friedmann-

Lemâıtre-Robertson-Walker metric is obtained:

ds2 = dt2 − a(t)2
(︃

dr2

1− kr2
+ r2dΩ2

)︃
, (A.4)

with a(t) being the scale factor. Considering this metric, Einstein’s field equations simplify to the

Friedmann equations [47]:(︃
1

a(t)

da(t)

dt

)︃2

+
k

a(t)2
=

8πρ(t) + Λ

3
=: H(t)2 +

k

a(t)2
, (A.5a)

1

a(t)

d2a(t)

dt2
=

−4π(ρ(t) + 3p(t)) + Λ

3
, (A.5b)

with ρ and p being the energy density and the pressure, respectively, both being part of the energy-

momentum tensor and H(t) being the Hubble expansion rate.
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A.2 Details on Relativistic Quantum Mechanics

Basing on the non-relativistic energy momentum relation the Schrödinger equation

i
∂

∂t
ψ(x) =

(︃
− 1

2m
∇⃗2

+ V (x)

)︃
ψ(x) , (A.6)

is obtained, where constant terms such as the mass are ignored because physical observables in QM

are always given by the expectation value of operators not depending on an overall phase of the

wave function.

Relativistic invariant generalizations are the Klein-Gordon equation

(i2∂µ∂µ −m2)ϕ(x) = −(∂µ∂µ +m2)ϕ(x) = 0 , (A.7)

applying to Lorentz scalar fields (spin-0), the Dirac equation

(i/∂ −mI4)Ψ(x) = 0 , (A.8)

describing the time evolution of spin-1/2 fermionic fields and the Proca equation

(i2∂µ∂µ −m2)Aν(x)− i2∂ν∂µA
µ(x) = −(∂µ∂µ +m2)Aν(x) + ∂ν∂µA

µ(x) = 0 , (A.9)

being a generalization of the Klein-Gordon equation for Lorentz vector fields (spin-1). For the Dirac

equation, the abbreviations Ψ = Ψ†γ0 and /∂ = ∂µγµ are used where the gamma matrices satisfy the

anticommutator relation

{γµ, γν} = 2gµνI4 , (A.10)

with In being the n× n identity matrix. In this thesis, the Weyl basis is used, in which the gamma

matrices are given by

γ0 =

(︄
0 I2
I2 0

)︄
, γi =

(︄
0 σi

−σi 0

)︄
, and γ5 := iγ0γ1γ2γ3 =

(︄
−I2 0

0 I2

)︄
, (A.11)

with the Pauli matrices

σ1 =

(︄
0 1

1 0

)︄
, σ2 =

(︄
0 −i
i 0

)︄
, and σ3 =

(︄
1 0

0 −1

)︄
. (A.12a)

There are a couple of useful relations for the Pauli matrices:

σ2i = I2 , [σa, σb] = 2iϵabcσc , and {σa, σb} = 2δabI2 . (A.13)

Moreover, the gamma matrices fulfill the relations:

γ20 = −γ2i = I4 , (A.14a)

(γµ)† = γ0γµγ0 , (A.14b)

(γµ)∗ = γ2γµγ2 , (A.14c)

(γµ)T = γ0γ2γµγ2γ0 , (A.14d)

tr[γµγν ] = 4gµν , (A.14e)

tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgρν) . (A.14f)

124



A.2 Details on Relativistic Quantum Mechanics

Moreover, the wave function in the charge-conjugated representation is defined as

Ψc = C(Ψ) = CΨ
T
= Cγ0Ψ∗ ⇒ Ψc = ΨTγ0C†γ0 = ΨTC , (A.15)

with the charge-conjugation matrix

C = iγ2γ0 ⇒ C−1 = C† = CT = −C . (A.16)

The Lorentz transformation of Dirac spinors is given by

Ψ(x′) = exp

[︃
− i

2
θ⃗γ5γ0γ⃗ +

1

2
η⃗γ0γ⃗

]︃
Ψ(x) , (A.17)

where θ⃗ are rotation angles and tanh(η⃗) = v⃗ are rapidities.

For all previously given relativistic equation of motions a corresponding Lagrangian density can be

defined:

LKlein−Gordon(x) = (∂µϕ†(x))(∂µϕ(x))−m2ϕ†(x)ϕ(x) , (A.18a)

LDirac(x) = Ψ(x)(i/∂ −mI4)Ψ(x) , (A.18b)

LProca(x) = −1

4
Fµν(x)F

µν(x) +
m2

2
Aµ(x)A

µ(x) , (A.18c)

with the field strength tensor being defined as

Fµν(x) = ∂µAν(x)− ∂νAµ(x) . (A.19)

Furthermore, referring to the Proca Lagrangian for massless vector bosons, the Lagrangian density

of Yang-Mills theories can be defined as

L(x) = −1

2
Tr[Fµν(x)F

µν(x)] = −1

4
F a
µν(x)F

aµν(x) , (A.20)

with the generalized field strength tensor

Fµν(x) = DµAν(x)−DνAµ(x) =
[︁
∂µA

a
ν(x)− ∂νA

a
µ(x) + gfabcAb

µ(x)A
c
ν(x)

]︁
ta = F a

µν(x)t
a (A.21a)

and the structure constants

[ta, tb] = ifabctc . (A.22)

The covariant derivative Dµ is defined as

Dµ = ∂µ − igAµ(x) = ∂µ − igAa
µ(x)t

a , (A.23)

and ta are the generators of the symmetry transformation. Considering an SU(n) symmetry transfor-

mation, the n2 − 1 generators are defined by the conditions

Tr[ta] = 0 , (ta)† = ta , and tatb =
1

2n
δabIn +

1

2

n2−1∑︂
c=1

(︂
ifabc + dabc

)︂
tc . (A.24)
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The Lagrangian density of Yang-Mills theories is invariant under the transformation

A′
µ(x) = G(α(x))Aµ(x)G

−1(α(x))− i

g
(∂µG(α(x)))G

−1(α(x)) , (A.25)

with

G(α(x)) = eiα
a(x)ta . (A.26)

This, according to Noether’s theorem, implies that the current

Jb µ(x) =
∂L(x)

∂[∂µAν(x)]

dAν(x)

dαb(x)
= −2Tr[Fµν(x)fabcAa

ν(x)t
c] = −fabcAa

ν(x)F
c µν(x) (A.27)

is conserved (∂µJ
b µ(x) = 0).

A.3 Perturbation Theory for Quantum Mechanics

The time evolution of a quantum mechanical system can in general be expressed as given in equation

(2.9), implying that it can be fully described by the wave function ψ(t0, x⃗) at an arbitrary time t0
and the Hamiltonian Ĥ. Thus, to evaluate ψ(x), the equation of motion has to be solved, which is

simple as long as the eigenbasis of Ĥ is time independent:

Ĥ |ψj⟩ = Ej |ψj⟩ . (A.28)

In this case, |ψ(t0)⟩ can be decomposed into the eigenstates with a trivial time evolution:

|ψ(t)⟩ =
∑︂
j

aj e
−iEj(t−t0) |ψj⟩ , (A.29)

with aj = ⟨ψ(t0)|ψj⟩.

A.3.1 Time-Dependent Perturbation Theory

On the other hand, solving the time evolution for a system with a time-dependent Hamiltonian

can be challenging. Depending on the considered system, different ways of solving the equation

of motion have been established. One often-used method is perturbation theory. In general, the

Hamiltonian can be decomposed into a time-dependent ĤI and a time-independent part Ĥ0. Using

that the equation of motion for Ĥ0 can be solved analytically, cf. equation (A.29). The interaction

picture (D) – also known as the Dirac picture – can be defined:

|ψD(t)⟩ = eiĤ0t |ψS(t)⟩ , (A.30a)

ÔD(t) = eiĤ0tÔS(t)e
−iĤ0t , (A.30b)
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where the subscript S highlights the Schrödinger picture in which only the state vector evolves in

time. In the interaction picture, the equation of motion becomes

i
∂

∂t
|ψD(t)⟩ = −Ĥ0e

iĤ0t |ψS(t)⟩+ eiĤ0ti
∂

∂t
|ψS(t)⟩

= −Ĥ0e
iĤ0t |ψS(t)⟩+ eiĤ0t(Ĥ0 + ĤI(t)) |ψ(t)⟩ = (ĤI)D(t) |ψD(t)⟩ , (A.31)

where (2.9) and [Ĥ0, Ĥ0] = 0 are used. Consequently, the time evolution of a state vector in the

interaction picture can be written as

|ψD(t)⟩ = T exp

⎡⎣−i t∫︂
t0

dt′(ĤI)D(t
′)

⎤⎦ |ψD(t0)⟩ , (A.32)

where the time-ordered product T ensures that the product of multiple (ĤI)D(ti) is ordered such

that the single (ĤI)D(ti) acts on the state vector in the correct time order:

T
∏︂
i

(ĤI)D(ti) = (ĤI)D(t
′
n) . . . (ĤI)D(t

′
2)(ĤI)D(t

′
1) , (A.33)

with t′1 < t′2 < · · · < t′n and {t1, t2 . . . tn} = {t′1, t′2 . . . t′n}.
Considering

t∫︂
t0

dt′(ĤI)D(t
′) ≪ 1 , (A.34)

writing down the time evolution in the interaction picture is very useful because the series expansion

of the exponential function converges. Thus, the time evolution can be approximated by only taking

into account contributions up to a certain order in (ĤI)D(t).

A.3.2 Diagrammatic Visualization of the Perturbation Series in QFT

diagram

Figure A.1: Representation of some element of the perturbation series in a diagram.

It is convenient to visualize the elements of the QFT perturbation series which diagrams, as for

example shown in figure A.1. For that, each spacetime interaction point called vertex is represented

as a point from which lines originate, each line illustrating a field operator, cf. figure A.2. Each

of these lines have to be connected to an external particle or to another line from another vertex.
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vertex propagator

Figure A.2: Diagrams are build of vertices and propagators.

Therefore, only field operators which can create or annihilate the external particles, respectively,

can be connected to the corresponding external line and two vertices can only be connected when

outgoing lines correspond to the same particle: one to create the state and the other to annihilate.

As a consequence, diagrams only represent non-vanishing elements of the perturbation series.

particle scalar boson

vector boson spin-1/2 fermion

Figure A.3: Representation of different particle species in diagrams.

To write down the contribution of a single diagram to the considered matrix element, it also makes

sense to indicate the particle species by labeling the line with the particle acronym. In addition, it

is convenient to highlight the Lorentz structure of the corresponding particle (spin-0, spin-1/2, or

spin-1) separately. For that, particles without requirements on their Lorentz structure are illustrated

by solid lines while scalar and vector bosons are represented as dashed and waves lines, respectively

(with an arrow when particles and antiparticles are distinguishable) and solid lines with an arrow

correspond to spin-1/2 fermions, cf. figure A.3.

A.3.3 Time-Independent Perturbation Theory

Another interesting case is to consider a time-independent Hamiltonian Ĥ which can be divided into

a part which dominantly determines the eigenbasis Ĥ0 and a remaining part ĤI being considered

as a perturbation. Consequently, at zeroth order in perturbation theory, the eigensystem is only

determined by Ĥ0, whose eigensystem is assumed to be known:

Ĥ0 |ψ0
i ⟩ = E0

i |ψ0
i ⟩ . (A.35)

Next, treating ĤI as a perturbation, the eigensystem can be calculated order by order. At first

order, the eigensystem is given by

E1
i = E0

i + ⟨ψ0
i |ĤI |ψ0

i ⟩ , (A.36a)

|ψ1
i ⟩ = |ψ0

i ⟩+
∑︂
j ̸=i

|ψj⟩
⟨ψ0

j |ĤI |ψ0
i ⟩

E0
i − E0

j

, (A.36b)
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while at second order, the energy eigenvalue becomes

E2
i = E0

i + ⟨ψ0
i |ĤI |ψ0

i ⟩+
∑︂
j ̸=i

| ⟨ψ0
j |ĤI |ψ0

i ⟩ |2
E0

i − E0
j

. (A.37)

A.4 Detailed Introduction of Quantum Field Operators

To be able to apply the quantum mechanical equations of motion on a state vector |F ⟩ which only

contains information about the particle content, quantum field operators convert the state vector

into the corresponding set of quantum mechanical wave functions. In general, the wave function

corresponding to |F ⟩ can be expressed in terms of eigenstates of the free Hamiltonian

Ĥui(k⃗) = Ei(k⃗)ui(k⃗) , (A.38)

where i denotes the particle species. Because all momenta are allowed in an infinite large space, it

is reasonable to use a Fourier ansatz for the quantum field operators:

ψi(x) =

∫︂
dk̃i ψi(k⃗) e

−ikx , (A.39)

with the Lorentz invariant phase space integral∫︂
dk

(2π)3
δ(k2 −m2

i ) =

∫︂
d3k

(2π)3
1

2Ei(k⃗)
:=

∫︂
dk̃i (A.40)

and the quantum field operator in momentum space

ψi(k⃗) = ui(k⃗) ai(k⃗) . (A.41)

Moreover, ai(k⃗) is the annihilation operator whose action on the state vector |F ⟩ is defined such

that it erases the corresponding state from the state vector if it is present or erases the entire state

when it is not present:

ai(k⃗) |F ⟩ = N |F ′⟩ , (A.42a)

ai(k⃗) |0⟩ = 0 , (A.42b)

with N being a normalization factor1 and |F ′⟩ being the state vector with the same particle content

as |F ⟩ but with one fewer particle of species i and momentum k⃗. The conjugated of the annihilation

operator (a†i (k⃗)) appearing in the conjugated quantum field operator is the creation operator adding

the corresponding state to the state vector.

1Considering normalized state vectors (⟨F |F ⟩ = 1), it is difficult to determine N . However, in textbooks,

cf. e.g. reference [68], the state vector is often normalized such that the delta distribution appearing in equation

(A.48) is part of the normalization. Using such a normalization for the state vector, a trivial normalization factor

can be assumed (N = 1).
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Requiring that an unnormalized one-particle state vector can be generated by just applying the

creation operator on the vacuum state (|0⟩) and that the action of the quantum field operator on

this state results in the wave function of the corresponding state,∫︂
dk̃i ui(k⃗) ai(k⃗) e

−ikx a†i (p⃗) |0⟩
!
= ui(p⃗) e

−ipx |0⟩ =: ψ̃
i,k⃗
(x) |0⟩ , (A.43)

the relation

ai(k⃗)a
†
i (p⃗) = 2Ei(k⃗)(2π)

3δ3
(︂
p⃗− k⃗

)︂
(A.44)

is obtained. Together with equation (A.42b) and the fact that the action of the creation operator

increases the corresponding occupation number by one, the well-known commutator relation

[ai(k⃗), a
†
i (p⃗)] = ai(k⃗)a

†
i (p⃗)− a†i (p⃗)ai(k⃗) = 2Ei(k⃗)(2π)

3δ3
(︂
p⃗− k⃗

)︂
, (A.45)

is obtained.

At this point, in contrast to QM, the Pauli exclusion principle can be implemented easily by

demanding that the action of the creation operator on an occupied state vanishes:

a†i (p⃗)a
†
i (p⃗) |0⟩ = 0 . (A.46)

This additional condition leads to the well-known anti-commutator relation

{ai(p⃗), a†i (k⃗)} = ai(k⃗)a
†
i (p⃗) + a†i (p⃗)ai(k⃗) = 2Ei(k⃗)(2π)

3δ3
(︂
p⃗− k⃗

)︂
. (A.47)

Using this definition of the creation and annihilation operator, the normalization factor in equation

(A.42a) is non-trivial and therefore, defining a normalized state with a certain particle content by the

action of creation operators is difficult. However, using that an unnormalized state can be created

by the action of creation operators, the relation

⟨F |a†i (q⃗)ai(k⃗)|F ⟩ = fi(k⃗) 2Ei(k⃗)(2π)
3δ3
(︂
p⃗− k⃗

)︂
, (A.48)

can be derived, with fi(k⃗) being the occupation number of the annihilated state.

The normalization condition for the energy eigenstates can be obtained by demanding that the

expectation value of the Hamiltonian is equal to the energy of the state,∫︂
d3x ⟨F |ψ†(x)Ĥψ(x)|F ⟩ =

∫︂
d3x

∫︂
dk̃i

∫︂
dk̃

′
i u

†
i (k⃗

′
)Ĥui(k⃗)e

−i(k−k′)x ⟨F |a†i (k⃗
′
)ai(k⃗)|F ⟩

=

∫︂
dk̃iEi(k⃗)u

†
i (k⃗)ui(k⃗)fi(k⃗)

!
=

∫︂
d3k

(2π)3
Ei(k⃗)fi(k⃗) , (A.49a)

⇒ u†i (k⃗)ui(k⃗) = 2Ei(k⃗) , (A.49b)

where equation (A.38), equation (A.48), and∫︂
d3x e−i(k−k′)x = exp

[︂
−i
(︂
Ei(k⃗)− Ei(k⃗

′
)
)︂
t
]︂
δ3
(︂
k⃗ − k⃗

′)︂
, (A.50)

are used.
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Considering the relativistic equations of motion obtained at the beginning of this section, only the

Hamiltonian for spin-1/2 fermions can be determined directly from the Dirac equation. For the

Klein-Gordon and the Proca equation, the Hamiltonian can be derived from the Lagrange density

instead. Hence, the Hamiltonian corresponding to the Klein-Gordon equation is given by

Ĥ =

∫︂
d3x Ĥ(x) =

∫︂
d3x [π(x)ϕ̇(x)− L(x)]

=

∫︂
d3x [π(x)π†(x) + (∇ϕ(x))†(∇ϕ(x)) +m2ϕ†(x)ϕ(x)] , (A.51)

with

π(x) =
∂

∂ϕ̇(x)
L(x) . (A.52)

Replacing the wave functions by quantum field operators

π(x) =

∫︂
d3k

(2π)3
i

2
u†i (k⃗)a

†
i (k⃗)e

ikx , (A.53)

the energy of a state is determined by∫︂
d3x ⟨F |Ĥ(x)|F ⟩ =

∫︂
dk̃i 2(Ei(k⃗))

2u†(k⃗)ui(k⃗)fi(k⃗)
!
=

∫︂
d3k

(2π)3
Ei(k⃗)fi(k⃗) , (A.54a)

⇒ u†i (k⃗)ui(k⃗) = 1 . (A.54b)

For massive vector bosons, a similar condition is obtained. However, in the four-vector representation,

where ui(k⃗) is given by the polarization vectors defined in equation (A.59), u†i (k⃗)ui(k⃗) is normalized

to −1 instead.

Next, interpreting the negative energy eigenvalues of the relativistic equations of motion as anti-

particles, the quantum field operators are modified such that they either annihilate a particle state

or create an antiparticle state,

ψ(x) =

∫︂
dk̃i

(︂
ui(k⃗)ai(k⃗)e

−ikx + vi(k⃗)b
†
i (k⃗)e

ikx
)︂
, (A.55)

where the vi(k⃗) are the eigenvectors corresponding to the negative energy eigenvalues

Ĥ vi(k⃗) = −Ei(k⃗) vi(k⃗) , (A.56)

and b†i are the creation operators of the antiparticles. Considering quantum fields without charge

under gauge symmetries, particles and antiparticles are indistinguishable, implying that they only

correspond to one degree of freedom2 (b†i = a†i ).

2This is also true for particles of the adjoin representation because they carry both charge and anticharge so that the

conjugated of a full set of these particles is equivalent to the full set.
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Thus, the quantum field operators for scalar bosons, spin-1/2 fermions, and massive vector bosons

can be defined as

ϕ(x) =

∫︂
dk̃
(︂
a(k⃗) e−ikx + b†(k⃗) eikx

)︂
, (A.57a)

Ψ(x) =

∫︂
dk̃
∑︂
s

(︂
a(k⃗)us(k⃗) e

−ikx + b†(k⃗) vs(k⃗) e
ikx
)︂
, (A.57b)

Aµ(x) =

∫︂
dk̃
∑︂
λ

(︂
a(k⃗) ϵµλ(k⃗) e

−ikx + a†(k⃗)
(︂
ϵµλ(k⃗)

)︂∗
eikx

)︂
. (A.57c)

For spin-1/2 fermions, the eigenstates are defined by the conditions

(/k +m)us(k⃗) = 0 , (A.58a)

(/k −m) vs(k⃗) = 0 , (A.58b)

with the spin index i, and for vector bosons, they are given by

ε†λ ελ′ = −δλλ′ , (A.59a)

ελ p = 0 , (A.59b)

with the polarization index λ.

A.5 Propagators and Full Set of States

The propagators in vacuum QFT – resulting e.g. from the path integral formalism –, ignoring the

difficulties arising from self-interacting massive vector bosons discussed in sections 2.3 and 2.4, are

given by

G(x) = lim
ϵ→0+

∫︂
dk

(2π)4
i

k2 −m2 + iϵ
e−ikx (A.60)

for scalar bosons,

SF (x) = lim
ϵ→0+

∫︂
dk

(2π)4
i(/k +m)

k2 −m2 + iϵ
e−ikx (A.61)

for spin-1/2 fermions,

Gµν(x) = lim
ϵ→0+

∫︂
dk

(2π)4

(︃
gµν −

kµkν
m2

)︃ −i
k2 −m2 + iϵ

e−ikx (A.62)

for massive vector bosons, and

Gab
µν(x) = lim

ϵ→0+

∫︂
dk

(2π)4

(︃
gµν − (1− ξ)

kµkν
k2

)︃ −iδab
k2 + iϵ

e−ikx (A.63)

for gauge bosons where ξ is an arbitrary constant which the time evolution does not depend on.
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In contrast, in Rξ gauge, the propagators of Goldstone bosons and the massive vector bosons are

given by

G(x) = lim
ϵ→0+

∫︂
dk

(2π)4
i

k2 − ξm2 + iϵ
e−ikx , (A.64a)

Gµν(x) = lim
ϵ→0+

∫︂
dk

(2π)4
i

(︃−gµν + kµkν/m
2

k2 −m2 + iϵ
− kµkν/m

2

k2 − ξm2 + iϵ

)︃
e−ikx

= lim
ϵ→0+

∫︂
dk

(2π)4

(︃
gµν − (1− ξ)

kµkν
k2 − ξm2

)︃ −i
k2 −m2 + iϵ

e−ikx . (A.64b)

In QFT a full set of states for one particle species i can be defined as

|S⟩ ⟨S|i =
(︄ ∞∑︂

n=0

1

n!

)︄⎛⎝ n∏︂
j=1

∫︂
dk̃i,j

⎞⎠⎛⎝ n∏︂
j=1

ai(k⃗j)

⎞⎠†

|0⟩ ⟨0|

⎛⎝ n∏︂
j=1

ai(k⃗j)

⎞⎠ , (A.65)

fulfilling the relation

|S′⟩ ⟨S′|S⟩ ⟨S|i =
(︄ ∞∑︂

m=0

1

m!

)︄(︄ ∞∑︂
n=0

1

n!

)︄(︄
m∏︂
l=1

∫︂
dk̃i,l

)︄⎛⎝ n∏︂
j=1

∫︂
dk̃i,j

⎞⎠
×
(︄

m∏︂
l=1

ai(k⃗l)

)︄†

|0⟩ ⟨0|
(︄

m∏︂
l=1

ai(k⃗l)

)︄⎛⎝ n∏︂
j=1

ai(k⃗j)

⎞⎠†

|0⟩ ⟨0|

⎛⎝ n∏︂
j=1

ai(k⃗j)

⎞⎠
=

(︄ ∞∑︂
m=0

1

m!

)︄(︄ ∞∑︂
n=0

1

n!

)︄(︄
m∏︂
l=1

∫︂
dk̃i,l

)︄⎛⎝ n∏︂
j=1

∫︂
dk̃i,j

⎞⎠⎛⎝ m∏︂
l=1

n∏︂
j=1

2Ei(k⃗l)δ
3(k⃗l − k⃗j)

⎞⎠
× δnm

(︄
m∏︂
l=1

ai(k⃗l)

)︄†

|0⟩ ⟨0|

⎛⎝ n∏︂
j=1

ai(k⃗j)

⎞⎠ = |S⟩ ⟨S|i . (A.66)

Moreover, considering multiple particle species, the full set of particles contains another product

over all particle species:

|S⟩ ⟨S| =
(︄∏︂

i

∞∑︂
ni=0

1

ni!

)︄⎛⎝∏︂
i

ni∏︂
j=1

∫︂
dk̃i,j

⎞⎠⎛⎝∏︂
i

ni∏︂
j=1

ai(k⃗i,j)

⎞⎠†

|0⟩ ⟨0|

⎛⎝∏︂
i

ni∏︂
j=1

ai(k⃗i,j)

⎞⎠ . (A.67)

A.6 Calculation of Matrix Elements Without Using the Residue

Theorem

The vacuum matrix-element including the action of two quantum field operators is proportional to

the propagator in momentum space:

M ∝
∫︂
dx ⟨0| T ψi(x+ y)ψ†

i (y) |0⟩ eipx , (A.68)
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with p being the sum over the incoming and outgoing external momenta, respectively. Using the

commutation or anticommutation relation given in equation (A.45) and (A.47), respectively, and

the normalization of the vacuum (⟨0|0⟩ = 1),

⟨0| T ψ(x+ y)ψ†(y) |0⟩ =
∫︂
dk̃
(︂[︁
f1(k⃗) + f2(k⃗)

]︁
Θ(t)e−ikx +

[︁
f1(k⃗)− f2(k⃗)

]︁
Θ(−t)eikx

)︂
(A.69)

is obtained with Θ(x) being the Heaviside step function defined in equation (D.9). Moreover, f1(k⃗)

and f2(k⃗) are functions depending on the particle species: f1(k⃗) = 1 and f2(k⃗) = 0 for scalar bosons,

cf. equation (2.27), f1(k⃗) = m− k⃗γ⃗ and f2(k⃗) = Ekγ
0 for spin-1/2 fermions, cf. equation (2.31), and

f1(k⃗) = −gµν+kµAkνA/m2
A and f2(k⃗) = 0 for massive vector bosons, cf. equation (2.34). Next, instead

of using the residue theorem, the spacetime integral in equation (A.68) can also be evaluated:∫︂
dx

∫︂
dk̃ ei(p⃗−k⃗)x⃗

(︂[︁
f1(k⃗) + f2(k⃗)

]︁
Θ(t)e−i(Ek−p0)t +

[︁
f1(k⃗)− f2(k⃗)

]︁
Θ(−t)ei(Ek+p0)t

)︂
=

1

2Ep

∫︂
dt
(︂[︁
f1(p⃗) + f2(p⃗)

]︁
Θ(t)e−i(Ep−p0)t +Θ(−t)

[︁
f1(p⃗)− f2(p⃗)

]︁
ei(Ep+p0)t

)︂
=

−i
2Ep

(︃
f1(p⃗) + f2(p⃗)

Ep − p0
+
f1(p⃗)− f2(p⃗)

Ep + p0

)︃
=

i

p20 − E2
p

(︃
f1(p⃗) + f2(p⃗)

p0
Ep

)︃
, (A.70)

where the well-known replacement Ep → Ep − iϵ is used to evaluate the time integral and the limit

ϵ → 0+ is evaluated after time integration. Hence, the introduction of ϵ enforces the integrand to

vanish at t→ ±∞3.

Solving the time integral instead of simply making use the residue theorem helps to understand

the appearance of off-shell states as a QM interference phenomenon. As can be seen from equation

(A.70), an off-shell propagator is in fact a superposition of the propagation of an on-shell particle

(Ep =
√︁
p⃗ 2 +m2) from x to y for x0 > y0 (the Θ(t) part) and of an on-shell antiparticle from y to

x for y0 > x0 (the Θ(−t) part).

Solving the time integral instead of using the residue theorem also works for loop contributions.

Considering e.g. a simple loop containing two scalar boson propagators, the corresponding matrix

element in the common form is given by

M = lim
ϵ→0+

∫︂
dx

∫︂
dk

(2π)4
dk′

(2π)4
i

k2 −m2
1 + iϵ

i

(k′)2 −m2
2 + iϵ

ei(p−k−k′)x

= lim
ϵ→0+

−
∫︂

dk

(2π)4
1

k20 − (Ek + iϵ)2
1

(k0 − p0)2 − (Ep−k + iϵ)2

= −i
∫︂

d3k

(2π)3

(︄
1

2Ek

1

(Ek − p0)2 − E2
p−k

+
1

(Ep−k + p0)2 − E2
k

1

2Ep−k

)︄

=

∫︂
dk̃

i

Ep−k

Ek + Ep−k

p20 − (Ek + Ep−k)2
, (A.71)

3The explanation for the substitution Ep → Ep − iϵ in physical processes is the assumed localization of particles

– usually described as Gaussian wave packets –, implying that the wave functions of the incoming and outgoing

particles in the limit t → ±∞ do not overlap. Consequently, the probability for producing an intermediate state

vanishes for large ∆t. Furthermore, the limit ϵ → 0+ leads to a good approximation as long as the time during

which the two wave packets overlap is large compared to 1/(p0 − Ep).
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where the energy integral is evaluated using the residue theorem. Solving the time integral similarly

to equation (A.70), instead, the same result is obtained:

∫︂
dx ⟨0|Tϕ1(x+ y)ϕ2(x+ y)ϕ†1(y)ϕ

†
2(y) |0⟩ eipx

=

∫︂
dx

∫︂
dk̃

∫︂
dk̃

′(︂
Θ(t)e−i(k+k′)x +Θ(−t)ei(k+k′)x

)︂
eipx

=

∫︂
dk̃

i

Ep−k

Ek + Ep−k

p20 − (Ek + Ep−k)2
. (A.72)

A.7 Detailed Calculation of the Interaction Hamiltonian for

Self-Interaction Massive Vector Bosons

The Hamiltonian density corresponding to the Lagrangian density including two self-interacting

massive vector boson fields, cf. equations (A.18c) and (2.42),

L(x) = −1

4
FA,µν(x)F

µν
A (x) +

m2
A

2
AH,µ(x)A

µ
H(x)− 1

4
FB,µν(x)F

µν
B (x) +

m2
B

2
BH,µ(x)B

µ
H(x)

− Jµ
A(x)AH,µ(x)− Jµ

B(x)BH,µ(x)− Jµν(x)A
µ
H(x)Bν

H(x) , (A.73)

is determined by

Ĥ(x) = Πµ
A(x)[∂0AH,µ(x)] + Πµ

B(x)[∂0BH,µ(x)]− L(x)
= −Π⃗A[∂0A⃗L(x)]− Π⃗B[∂0B⃗L(x)]− L(x) . (A.74)

Using equations (2.43) and (2.46),

∂0A⃗L(x) = −Π⃗A(x) +∇A0
H(x) = −Π⃗A(x) +

1

m2
A

∇[∇Π⃗A(x) + J ′0
A (x)] and (A.75)

∂0B⃗L(x) = −Π⃗B(x) +∇B0
H(x) = −Π⃗B(x) +

1

m2
B

∇[∇Π⃗B(x) + J ′0
B (x)] (A.76)
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are obtained, meaning that the Hamiltonian density can be expressed as

Ĥ(x) = Π⃗A(x)
2 +

1

m2
A

[∇Π⃗A(x)][∇Π⃗A(x) + J ′0
A (x)] + Π⃗B(x)

2 +
1

m2
B

[∇Π⃗B(x)][∇Π⃗B(x) + J ′0
B (x)]

− 1

2
Π⃗A(x)

2 +
1

2
[∇× A⃗L(x)]

2 +
1

2
m2

AA⃗(x)
2 − 1

2
Π⃗B(x)

2 +
1

2
[∇× B⃗L(x)]

2 +
1

2
m2

BB⃗(x)2

− 1

2m2
A

[∇Π⃗A(x) + J ′0
A (x)]2 − J⃗A(x)A⃗L(x) +

1

m2
A

J0
A(x)[∇Π⃗A(x) + J ′0

A (x)]

− 1

2m2
B

[∇Π⃗B(x) + J ′0
B (x)]2 − J⃗B(x)B⃗L(x) +

1

m2
B

J0
B(x)[∇Π⃗B(x) + J ′0

B (x)]

+ J ij(x)Ai
H(x)Bj

H(x)− 1

m2
A

J0j(x)[∇Π⃗A(x) + J ′0
A (x)]Bj

H(x)

− 1

m2
B

J i0(x)Ai
H(x)[∇Π⃗B(x) + J ′0

B (x)] +
1

m2
Am

2
B

J00(x)[∇Π⃗A(x) + J ′0
A (x)][∇Π⃗B(x) + J ′0

B (x)]

=
1

2
Π⃗A(x)

2 +
1

2m2
A

[︁
∇Π⃗A(x)

]︁2
+

1

2

[︁
∇× A⃗L(x)

]︁2
+

1

2
m2

AA⃗(x)
2

+
1

2
Π⃗B(x)

2 +
1

2m2
B

[︁
∇Π⃗B(x)

]︁2
+

1

2

[︁
∇× B⃗L(x)

]︁2
+

1

2
m2

BB⃗(x)2

− J⃗A(x)A⃗L(x)− J⃗B(x)B⃗L(x) + J ij(x)Ai
H(x)Bj

H(x)− 1

2m2
A

[J ′0
A (x)]2 − 1

2m2
B

[J ′0
B (x)]2

+
1

m2
A

[︁
J0
A(x)− J0j(x)Bj

H(x)
]︁
[∇Π⃗A(x) + J ′0

A (x)]

+
1

m2
B

[︁
J0
B(x)− J i0(x)Ai

H(x)
]︁
[∇Π⃗B(x) + J ′0

B (x)]

+
1

m2
Am

2
B

J00(x)[∇Π⃗A(x) + J ′0
A (x)][∇Π⃗B(x) + J ′0

B (x)] . (A.77)

Next, changing from the Heisenberg to the interaction picture and using the definition (2.49), the

interaction part of equation (A.77) becomes

ĤI(x) = Jµ
A(x)Aµ(x) + Jµ

B(x)Bµ(x) + Jµν(x)Aµ(x)Bν(x)−
1

2m2
A

[︁
J ′0
A (x)

]︁2 − 1

2m2
B

[︁
J ′0
B (x)

]︁2
+

1

m2
A

[︁
J0
A(x) + J0ν(x)Bν(x)

]︁
J ′0
A (x) +

1

m2
B

[︁
J0
B(x) + Jµ0(x)Aµ(x)

]︁
J ′0
B (x)

+
1

m2
Am

2
B

J00(x) J ′0
A (x) J ′0

B (x)

= Jµ
A(x)Aµ(x) + Jµ

B(x)Bµ(x) + Jµν(x)Aµ(x)Bν(x)

+
1

2m2
A

[︁
J ′0
A (x)

]︁2
+

1

2m2
B

[︁
J ′0
B (x)

]︁2 − 1

m2
Am

2
B

J00(x) J ′0
A (x) J ′0

B (x) , (A.78)

where the relations

J ′0
A (x) = J0

A(x) + J0µ(x)Bµ(x) +
J00J ′0

B

m2
B

,

J ′0
B (x) = J0

B(x) + Jµ0(x)Aµ(x) +
J00J ′0

A

m2
A

, (A.79)
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are used to derive the final form.

Substituting J ′0
A (x) and J ′0

B (x), cf. equation (2.46), an interaction Hamiltonian density including an

infinite series of local interaction terms is obtained:

ĤI(x) = Jµ
A(x)Aµ(x) + Jµ

B(x)Bµ(x) + Jµν(x)Aµ(x)Bν(x)

+
1

2m2
A

(︃
J0
A(x) + J0ν(x)Bν(x)−

J00(x)

2m2
B

(︃
J0
B(x) + Jµ0(x)Aµ(x) +

J 0
0 (x)

2m2
A

. . .

)︃)︃2

+
1

2m2
B

(︃
J0
B(x) + Jµ0(x)Aµ(x)−

J00(x)

2m2
A

(︃
J0
A(x) + J0ν(x)Bν(x) +

J0
0(x)

2m2
B

. . .

)︃)︃2

− J00(x)

m2
Am

2
B

(︃
J0
A(x) + J0ν(x)Bν(x)−

J00(x)

2m2
B

(︃
J0
B(x) + Jµ0(x)Aµ(x) +

J 0
0 (x)

2m2
A

. . .

)︃)︃
×
(︃
J0
B(x) + Jµ0(x)Aµ(x)−

J00(x)

2m2
A

(︃
J0
A(x) + J0ν(x)Bν(x) +

J0
0(x)

2m2
B

. . .

)︃)︃
. (A.80)

Summarizing equivalent terms, the first elements of the infinite series of local interaction terms are

given by

ĤI(x) = Jµ
A(x)Aµ(x) + Jµ

B(x)Bµ(x) + Jµν(x)Aµ(x)Bν(x) +

[︁
J0
A(x)

]︁2
2m2

A

+

[︁
J0
B(x)

]︁2
2m2

B

+
J0
A(x)J

0ν(x)Bν(x)

m2
A

+
J0
B(x)J

µ0(x)Aµ(x)

m2
B

+
J0
A(x)J

00(x)J0
B(x)

m2
Am

2
B

+
(J0ν(x)Bν(x))

2

2m2
A

+
(Jµ0(x)Aµ(x))

2

2m2
B

+ . . . . (A.81)

Alternatively, using relation (A.79), one can also rewrite the interaction Hamiltonian as

ĤI(x) = J ′µ
A (x)Aµ(x) + Jµ

B(x)Bµ(x)−
1

2m2
A

[︁
J ′0
A (x)

]︁2 − 1

2m2
B

[︁
J ′0
B (x)

]︁2
+

1

m2
B

J0
B(x)J

′0
B (x)

+
1

m2
A

[︁
J0
A(x) + J0ν(x)Bν(x)

]︁
J ′0
A (x) +

1

m2
Am

2
B

J00(x) J ′0
A (x) J ′0

B (x)

= J ′µ
A (x)Aµ(x) + Jµ

B(x)Bµ(x) +
1

2m2
A

[︁
J ′0
A (x)

]︁2 − 1

2m2
B

[︁
J ′0
B (x)

]︁2
+

1

m2
B

J0
B(x)J

′0
B (x)

= J ′µ
A (x)Aµ(x) + Jµ

B(x)Bµ(x) +
1

2m2
A

[︁
J ′0
A (x)

]︁2
+

1

2m2
B

[︁
J0
B(x)

]︁2 − 1

2m2
B

[︁
J ′0
B (x)− J0

B(x)
]︁2
.

(A.82)

Moreover, using

J ′0
B (x)− J0

B(x) = Jµ0(x)Aµ(x) +
1

m2
A

J00(x)J ′0
A (x) , (A.83)
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the interaction Hamiltonian can be rewritten into a form being useful for the investigation in the

path integral formalism:

ĤI(x) = J i
A(x)Ai(x) + J iµ(x)Ai(x)(Bµ(x) +

gµ0
m2

B

J0
B) + Jµ

B(x)Bµ(x) +
1

2m2
B

[︁
J0
B(x)

]︁2
+ J ′0

A (x)A0(x) +
1

2m2
A

[︁
J ′0
A (x)

]︁2 − 1

2m2
B

[︁
J00(x)

]︁2(︃
A0(x) +

1

m2
A

J ′0
A (x)

)︃2

= J i
A(x)Ai(x) + J ij(x)Ai(x)Bj(x) + J i

B(x)Bi(x) + J i0(x)Ai(x)

(︃
B0(x) +

1

m2
B

J0
B(x)

)︃
+
m2

B

2

(︃
B0(x) +

1

m2
B

J0
B(x)

)︃2

− m2
B

2
[B0(x)]

2

+
1

2

(︃
m2

A − 1

2m2
B

[J00(x)]2
)︃(︃

A0(x) +
1

m2
A

J ′0
A (x)

)︃2

− m2
A

2
[A0(x)]

2 . (A.84)

A.8 Supplementary Details to Renormalization

To regularize the momentum integral, an obvious approach is to introduce a cut-off scale Λcut-off

up to which the momentum integral is evaluated, meaning that the divergences appears in the

limit Λcut-off → ∞. However, this simple method breaks Lorentz invariance and gauge symmetry

so that other methods securing both are preferred. The typically used regularization method is

the dimensional regularization4 where the four-momentum integral is evaluated in 4− ϵ dimensions

instead, implying that the divergences appear as poles in ϵ. Because this trick reduces the mass

dimension of the momentum integral, an additional arbitrary energy scale µ2 is introduced to com-

pensate this.

fm2
1 (p2)

=

gm2
1 (p2)

+

δm2
1

Figure A.4: Division of the full loop integral (light gray) into a finite scale dependent part that

vanishes e.g. for on-shell particles (white) and the remaining constant part (dark gray)

Next, the regularized momentum integrals – which are functions of the external kinematic scales Λi

and additional unphysical parameters induced by the regularization λi – are divided into a scale-

dependent part gi (ΣiΛi) that e.g. vanishes at the renormalization scale Λj,R and the remaining

scale-independent part δi(Σiλi) containing the additional unphysical parameters, cf. figure A.4:

fn (ΣiΛi,Σjλj) := gn (ΣiΛi) + δn(Σiλi) , (A.85)

with gn (ΣiΛj,R)) = 0 and n being the order of the considered matrix element in perturbation

theory.

4Note that this procedure leads to other issues (e.g. defining chirality) but the result is gauge and Lorentz invariant

and methods have been developed to overcome the arising problems.
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Next, renormalization is used to absorb δn(Σiλi) into the Hamiltonian by redefining the parameters

of the theory accordingly. Consequently, the renormalized parameters at the renormalization scale

are given by the sum of the bare parameters and the scale-independent part of all diagrams of

the perturbation series. Choosing e.g. the renormalization scale for self-energy corrections – loop

corrections with only two external lines – to be the on-shell mass,

m2
on-shell = m2

0 +
∑︂
n

δm
2

n (Σiλi) , (A.86)

is obtained. With this, the parameters at a different scale are given by the renormalized parameters

added to the sum of all scale-dependent loop contributions:

m2
eff(p

2) = m2
on-shell +

∑︂
n

gm
2

n (p2) . (A.87)

Actually, the division of a matrix element into a scale-dependent and a scale-independent part is

not as simple as indicated here. The reason for that is that each loop isolated from the remaining

part of the matrix element can be divided accordingly but the hole amplitude cannot. However, this

is not a problem but allows the use of the renormalized parameters for calculating the contribution

of a diagram. This can be understood from the fact that exchanging any vertex or propagator of

a diagram of some perturbation series by any diagram of the perturbation series of this vertex or

propagator results in a diagram which is also part of the considered perturbation series.

For this reason, the divergent scale-independent contribution of any loop appearing in an amplitude

can be removed by subtracting the contribution which is already taken into account by using the

renormalized parameters for lower order diagrams. Consequently, the contribution of a loop in any

diagram is only given by its finite scale-dependent part.

Consequently, to calculate the finite scale-dependent contribution of a certain loop, the perturbation

series of each renormalized parameter is considered isolated from its appearance in amplitudes.

At one-loop order, the loop integral can simply be divided into a scale-dependent and a scale-

independent part as discussed before. For higher loop orders, the contribution – which is already

taken into account by using the renormalized parameters for the calculation of the lower order

diagrams – has to be subtracted. This can be done without difficulties because the contribution

which needs to be subtracted is known from the calculation of the lower order loop correction of the

considered parameter, cf. figure A.5 for an example. Thus, the scale-dependence of all renormalized

parameters can be calculated order by order.

Using this procedure e.g. for the calculation of the perturbation series of the quartic scalar coupling

(ĤI(x) =
λ
4!ϕ(x)

4), it can be estimated that the series converges if λ is not to large (λ ≲ 16π2). In this

case, the scale-dependence of λ can be approximated by only calculating lower order corrections.

Furthermore, considering larger scale shifts (Λi − Λi,R), the series converges slower and, for this

reason, higher order corrections become more important.
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= − − ×

− × − × ×

− × − × ×

Figure A.5: The finite scale-dependent contribution of a diagram being part of the perturbation

series of a renormalized parameter (white) is given by the full loop contribution (light

gray) subtracted by the non-scale-dependent contribution which is adsorbed into the

tree-level coupling (dark gray) and the sum of the contributions which are take into

account by using the renormalized parameters for the lower order diagrams (product of

lower order white and dark gray diagrams)

A.9 Renormalization Group Equations

For the SM, only taking into account the gauge couplings and the dominant Yukawa interactions

(top, bottom, and tau), the RGEs at one-loop order are given by [57]

dg′

d lnµ
=

(︃
4

3
Ng +

1

10

)︃
g′3

16π2
=

41

10

g′3

16π2
, (A.88a)

dg

d lnµ
=

(︃
4

3
Ng −

43

6

)︃
g3

16π2
= −19

6

g3

16π2
, (A.88b)

dgs
d lnµ

=

(︃
4

3
Ng − 11

)︃
g3s

16π2
= −7

g3s
16π2

, (A.88c)

dyt
d lnµ

=

(︃
−8g2s −

9

4
g2 − 17

20
g′2 +

9

2
y2t +

3

2
y2b + y2τ

)︃
yt

16π2
, (A.88d)

dyb
d lnµ

=

(︃
−8g2s −

9

4
g2 − 1

4
g′2 +

3

2
y2t +

9

2
y2b + y2τ

)︃
yb

16π2
, (A.88e)

dyτ
d lnµ

=

(︃
−9

4
g2 − 9

4
g′2 + 3y2t + 3y2b +

5

2
y2τ

)︃
yt

16π2
, (A.88f)

where Ng is the number of generations, which is 3 in the SM. Furthermore, considering the inert

Higgs model, cf. section 6.1, the RGEs at one-loop order for the Higgs self couplings are given by [34,
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10]

dλ1
d lnµ

=
1

16π2

[︃(︃
12λ1 − 9g2 − 9

5
g′2 + 12y2t + 12y2b + 4y2τ

)︃
λ1 + 4(λ3 + λ4)λ3 + 2λ24 + 2|λ5|2

+
9

4

(︃
g4 +

2

5
g2g′2 +

3

25
g′4
)︃
− 12y4t − 12y4b − 4y4τ

]︃
, (A.89a)

dλ2
d lnµ

=
1

16π2

[︃(︃
12λ2 − 9g2 − 9

5
g′2
)︃
λ2 + 4(λ3 + λ4)λ3 + 2λ24 + 2|λ5|2

+
9

4

(︃
g4 +

2

5
g2g′2 +

3

25
g′4
)︃]︃

, (A.89b)

dλ3
d lnµ

=
1

16π2

[︃(︃
6λ1 + 6λ2 + 4λ3 − 9g2 − 9

5
g′2 + 6y2t + 6y2b + 2y2τ

)︃
λ3

+ 2(λ1 + λ2)λ4 + 2λ24 + 2|λ5|2 +
9

4

(︃
g4 − 2

5
g2g′2 +

3

25
g′4
)︃]︃

, (A.89c)

dλ4
d lnµ

=
1

16π2

[︃(︃
2λ1 + 2λ2 + 8λ3 + 4λ4 − 9g2 − 9

5
g′2 + 6y2t + 6y2b + 2y2τ

)︃
λ4 + 8|λ5|2 +

9

5
g2g′2

]︃
,

(A.89d)

dλ5
d lnµ

=
1

16π2

(︃
2λ1 + 2λ2 + 8λ3 + 13λ4 − 9g2 − 9

5
g′2 + 6y2t + 6y2b + 2y2τ

)︃
λ5 . (A.89e)

Note that the other SM RGEs given in equation (A.88) are unaffected by the Higgs self interaction

and that the SM case is obtained by setting λ1 = λ and λ2 = λ3 = λ4 = λ5 = 0.

As boundary conditions for the RGEs given in equation (A.88), the values of the couplings at the

Z-pole (µ = mZ) in the MS scheme are used [57]:

αY (mZ) =
g′(mZ)

2

4π
= 0.0169225± 0.0000039 , (A.90a)

αg(mZ) =
g(mZ)

2

4π
= 0.033735± 0.000020 , (A.90b)

αs(mZ) =
gs(mZ)

2

4π
= 0.11730± 0.00069 , (A.90c)

αt(mZ) =
yt(mZ)

2

4π
= 0.07514 , (A.90d)

αb(mZ) =
yb(mZ)

2

4π
= 2.064× 10−5 , (A.90e)

ατ (mZ) =
yτ (mZ)

2

4π
= 8.077× 10−6 , (A.90f)

(A.90g)

Furthermore, for the SM case, the boundary condition for λ can be extracted from the measured

Higgs boson mass and the VEV:

λ(mh) =
m2

h

v2
≈ 0.258 . (A.91)
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A.10 Standard Model Lagrangian

The SM Lagrangian density, describing the time evolution of the SM particle content, cf. section

2.8, in the Yukawa basis is given by

LSM(x) = ΨQi(x)
(︂
i/∂ + gst

a
3 /G

a
(x) + gt32 /W

3
(x) + g′YQi

/B(x)
)︂
ΨQi(x)

+ gΨQj (x)Vij

(︂
t12 /W

1
(x) + t22 /W

2
(x)
)︂
ΨQi(x) + ΨUi(x)

(︁
i/∂ + gst

a
3 /G

a
(x) + g′YUi

/B(x)
)︁
ΨUi(x)

+ ΨDi(x)
(︁
i/∂ + gst

a
3 /G

a
(x) + g′YDi

/B(x)
)︁
ΨDi(x) + ΨℓR,i

(x)
(︁
i/∂ + g′YℓR,i

/B(x)
)︁
ΨℓR,i

(x)

+ Ψℓi(x)
(︂
i/∂ + gtb2 /W

b
(x) + g′Yℓi(x) /B(x)

)︂
Ψℓi(x)−

[︂
yUiΨQi(x)H

cΨUi(x)

+ yDiΨQi(x)HΨDi(x) + yℓR,i
Ψℓi(x)HΨℓR,i

(x) + h.c.
]︂
− 1

4
Ga

µν(x)G
a,µν(x)

− 1

4
W b

µν(x)W
b,µν(x)− 1

4
Bµν(x)B

µν(x)−m2
HH

†(x)H(x)− λH
2

(︂
H†(x)H(x)

)︂2
+
[︂(︂
∂µ − igtb2W

b
µ(x)− ig′YHBµ(x)

)︂
H(x)

]︂† [︂(︂
∂µ − igtb2W

b
µ(x)− ig′YHBµ(x)

)︂
H(x)

]︂
, (A.92)

with Hc = iσ2H
∗. Moreover, the CKM matrix is defined as

Vij =

⎛⎜⎝1 0 0

0 cos θ23 sin θ23
0 − sin θ23 cos θ23

⎞⎟⎠
⎛⎜⎝ cos θ13 0 sin θ13e

−iδCP

0 1 0

− sin θ13e
iδCP 0 cos θ13

⎞⎟⎠
⎛⎜⎝ cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

⎞⎟⎠ ,

(A.93)

cf. equation (C.5), for the observed values of the four angles. Moreover, the field strength tensors,

cf. equation (A.21), associated to the SU(3)c, the SU(2)L, and the U(1)Y gauge symmetries are

given by

Ga
µν(x) = ∂µG

a
ν(x)− ∂νG

a
µ(x) + gsf

abc
3 Gb

µ(x)G
c
ν(x) , (A.94a)

W a
µν(x) = ∂µW

a
ν (x)− ∂νW

a
µ (x) + gfabc2 W b

µ(x)W
c
ν (x) , (A.94b)

Bµν(x) = ∂µB
a
ν (x)− ∂νB

a
µ(x) . (A.94c)

The SM Lagrangian density in the charge conjugated picture is determined by

Lc
SM(x) = −L∗

SM(x) = Ψc
Qi(x)

(︂
i/∂ − gst

a
3 /G

a
(x)− gt32 /W

3
(x)− g′YQi

/B(x)
)︂
Ψc

Qi
(x)

− gΨc
Qj (x)Vij

(︂
t12 /W

1
(x) + t22 /W

2
(x)
)︂
Ψc

Qi
(x) + Ψc

Ui(x)
(︁
i/∂ − gst

a
3 /G

a
(x)− g′YUi

/B(x)
)︁
Ψc

Ui
(x)

+ Ψc
Di(x)

(︁
i/∂ − gst

a
3 /G

a
(x)− g′YDi

/B(x)
)︁
Ψc

Di
(x) + Ψc

ℓR,i
(x)
(︁
i/∂ − g′YℓR,i

/B(x)
)︁
Ψc

ℓR,i
(x)

+ Ψc
ℓi(x)

(︂
i/∂ − gtb2 /W

b
(x)− g′Yℓi(x) /B(x)

)︂
Ψc

ℓi
(x)−

[︂
y∗Ui

Ψc
Qi(x)HΨc

Ui
(x)

+ y∗Di
Ψc

Qi(x)H
cΨc

Di
(x) + y∗ℓR,i

Ψc
ℓi(x)H

cΨc
ℓR,i

(x) + h.c.
]︂
− 1

4
Ga

µν(x)G
a,µν(x)

− 1

4
W b

µν(x)W
b,µν(x)− 1

4
Bµν(x)B

µν(x)−m2
HH

c†(x)Hc(x)− λH
2

(︂
Hc†(x)Hc(x)

)︂2
+
[︂(︂
∂µ + igtb2W

b
µ(x) + ig′YHBµ(x)

)︂
Hc(x)

]︂† [︂(︂
∂µ + igtb2W

b
µ(x) + ig′YHBµ(x)

)︂
Hc(x)

]︂
, (A.95)

meaning that all charges become negative and all Yukawa couplings complex conjugated.
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Systems

B.1 Introduction Into Basic Concepts of Thermodynamics

To quantify the distance between a state and its equilibrium state, it is convenient to define the

entropy, which is minimal when a system is in a defined state. Moreover, when the entropy is

maximal, a system is in its equilibrium state. Additionally, defining the entropy as an extrinsic

quantity – meaning that the entropy of a state of a joined system is given be the sum of the

entropies of the subsystems – the entropy can be defined as

Si = −
∫︂
ρi ln(ρi) (B.1a)

⇒ Si + Sj = −
∫︂
ρiρj(ln(ρi) + ln(ρj)) = −

∫︂
ρiρj ln(ρiρj) , (B.1b)

where ρ is the phase space density. Next, demanding an expectation value for a non-conserved

quantity,

⟨A⟩ =
∫︂
Aρ

!
= A , (B.2)

this additional condition can be taken into account by using the method of Lagrange multipliers:

S = −
∫︂
ρ ln(ρ)−

∑︂
i

λi

(︃∫︂
Aiρ−Ai

)︃
. (B.3)

Maximizing the entropy results in the equilibrium condition given by

ρ = exp

(︄
1−

∑︂
i

λiAi

)︄
. (B.4)

Considering e.g. a system which is thermally coupled to an environment – e.g. physically separated

systems in thermal contact or single particle (species) inside a medium –, due to energy exchange,

the entire system (system plus environment) equilibrates, meaning that the expectation value of

the energy per particle is equivalent for all subsystems. Thus, equilibration transfers energy and

therewith phase space from one system to another, where the phase space volume increases for

increasing energy. In case of only demanding an expectation value for the energy,

⟨E⟩ =
∫︂
Eρ

!
= E , (B.5)
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instead of fixing it, the additional condition alters the phase space density after equilibration:

ρ =
1

Z
e−βE , (B.6)

where the so called canonical partition function Z is determined by the normalization condition:∫︂
ρ = 1 ⇒ Z =

∫︂
e−βE . (B.7)

At this point, defining the entropy as an extrinsic parameter is useful because it can be considered

differentially in linear dependence to the energy which is also extrinsic:

dE = T dS , (B.8)

where the temperature T ≥ 0 is a factor of proportionality which is related to β:

⟨E⟩ =
∫︂
Eρ = − 1

Z

∂

∂β
Z = − ∂

∂β
ln(Z) , (B.9a)

S = −
∫︂
ρ ln(ρ) = − 1

Z

∫︂
e−βE [−βE − ln(Z)] = ln(Z)− β

∂

∂β
ln(Z) (B.9b)

⇒ dS

dE
= β

!
=

1

T
. (B.9c)

Together with equation (3.2), this implies that the average energy of a system in thermal equilibrium

is proportional to T .

Next, systems with variable particle content can be considered. If an expectation value for the

number of particles is demanded,

⟨N⟩ =
∫︂
Nρ

!
= N , (B.10)

according to equation (B.4) this results in:

ρ =
1

Z e
−βE−γN , (B.11)

where the so called grand canonical partition function Z is again determined by the normalization

condition,

Z =

∫︂
e−βE−γN . (B.12)

Because the particle number is also an extrinsic parameter, it can be set differentially in linear

dependence to the energy:

dE = µdN , (B.13)

with the chemical potential µ. As for the temperature, a similar relation among the chemical

potential µ and γ can be found:

⟨N⟩ =
∫︂
Nρ = − ∂

∂γ
ln(Z) , (B.14a)

S = −
∫︂
ρ ln(ρ) = ln(Z)− β

∂

∂β
ln(Z)− γ

∂

∂γ
ln(Z) (B.14b)

⇒ dN

dE
=
dN

dS

dS

dE
=
β

γ

!
=

1

µ
. (B.14c)
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Using this, the grand canonical partition function in its common form is obtained:

⇒ Z =

∫︂
e−β(E+µN) . (B.15)

It might seem confusing to call µ chemical potential because only an expectation value for a particle

number is assumed. However, assuming an expectation value for a number density can be done for

various reasons. First of all, one can examining subsystems which can exchange particles with other

subsystems. Starting from considering two subsystems which are thermally coupled and are both in

an equilibrium state and assuming the particle densities of both subsystems to be different, particles

will diffuse from one subsystem to the other when particle exchange is allowed, meaning that the

particle densities of both subsystems becomes equivalent. Next, to obtain different particle densities

for both subsystems in thermal equilibrium, one of the subsystems has to be more attractive which

– according to equation (B.13) – is the case when the energy of a particle changes when it passes

between the subsystems. This is e.g. the case when the considered particle reacts chemically with

other particles whose densities are different in both subsystems and which are not exchanged. On

the other hand, also the number densities of the product and the reactant of a chemical reaction

can be considered. Because there is an energy difference between reactant and product, the reaction

evolves energy in one direction and resorbs energy in the other direction, implying that the number

densities of reactant and product are different in thermal equilibrium, cf. equation (3.4).

However, the chemical potential also appears in systems where an asymmetry between different

particles is settled by external conditions and secured by conserved quantities. In this case, the

chemical potential does not have a chemical origin, meaning that – allowing for a change of the

asymmetry – it equilibrates to zero.

Furthermore, the chemical potential is relevant when considering the distribution functions of a

system with constant particle number. In this case, the chemical potential is used to normalize the

distribution functions such that the correct number density is obtained.

Until now, only thermally coupled systems have been considered. However, volumes (V ) can be

exchanged between subsystems as well. This case is much more intuitive because one can easily

think of a movable wall separating two systems. The expectation value of the force that a system

puts on the wall results from elastic scattering processes where particles are reflected on the wall.

Consequently, the so called pressure p depends on the average energy (temperature) and the particle

density. If the pressure is different on both sides of the wall, there is a net force, resulting in

a motion of the wall. Due to the motion of the wall, reflected particles on the side with higher

pressure lose energy, while particles on the side with lower pressure gain energy. In addition, the

number densities change, implying that the pressure on both sides equilibrates. The differential

equation for the energy change is thereby given by dE = −p dV so that the well-known formula

dE = T dS − p dV + µi dNi , (B.16)

is obtained.

Next, to obtain the distribution functions for particles in thermal equilibrium, it has to be taken

into account that each eigenstate of a system can be either occupied or not. Consequently, the grand
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canonical partition function for bosons is

Zbi =
∞∑︂
n=0

e−nβ(E+µbi
) =

1

1− e−β(E+µbi
)
, (B.17)

where each state can be occupied multiple times. Hence, the corresponding distribution function is

given by the Bose-Einstein statistics:

f eqbi =
1

Zbi

∂

∂(βµbi)
Zbi =

1

eβ(E+µbi
) − 1

, (B.18a)

⇒ 1 + f eqbi = eβ(E+µbi
)f eqbi . (B.18b)

In contrast, for fermions, each state can only be occupied once resulting in the Fermi-Dirac statistics:

Zfi = 1 + e−β(E+µfi
) , (B.19a)

f eqfi =
1

Zf

∂

∂(βµfi)
Zfi =

1

eβ(E+µfi
) + 1

, (B.19b)

⇒ 1− f eqfi = eβ(E+µfi
)f eqfi . (B.19c)

Only in the limit of low occupation probabilities (β(E+µi) ≪ 1), both statistics become equivalent

to the Maxwell-Boltzmann statistics:

f eqi = e−β(E+µi) . (B.20)

For the Boltzmann statistics, the corresponding number density is given by, cf. equation (D.17),

ni(T ) = e−βµim3
i

K2(βmi)

2π2βmi

T≫mi≈ e−βµi
T 3

π2
, (B.21)

while the number densities for bosons and fermions in the limit µi,mi ≪ T become

nbi(T ) =
ζ(3)

π2
T 3 − µbi

6
T 2 , (B.22a)

nfi(T ) =
3ζ(3)

4π2
T 3 − µfi

12
T 2 . (B.22b)

B.2 Details on the Derivation of Boltzmann Equations

The time evolution of distribution functions is determined by the probability of annihilating a state

from the distribution function and the probability of creating a state, which are both determined by

equation (2.22). Consequently, the time evolution of the distribution function of a particle species i

can be written as:

2Ei
dfi
dt

= −
∫︂
(Πdk̃fi)(Πdk̃bi)(Πdk̃ff )(Πdk̃bf )(2π)

4δ(ki +Σkfi +Σkbi − Σkff − Σkbf )

×
[︂
|M |2ifi1 ...bi1 ···→ff1 ...bf1 ...

fi(Πffi)(Πfbi)(Π[1− fff ])(Π[1 + fbf ])

− |M |2ff1 ...bf1 ···→ifi1 ...bi1 ...
(Πfff )(Πfbf )(1± fi)(Π[1− ffi ])(Π[1 + fbi ])

]︂
:= C[fi] . (B.23)

146



B.2 Details on the Derivation of Boltzmann Equations

Furthermore, the time evolution of a thermal plasma in the early universe is also affected by the

expansion of the universe. Considering a single particle in an expanding isotropic and homogeneous

universe described by the Friedmann equations (A.5), its momentum is red shifted:

k⃗i = k⃗i(t0)
a(t0)

a(t)
= k⃗i(t0) exp

⎛⎝−
t∫︂

t0

H(t′)dt′

⎞⎠ . (B.24)

Thus, neglecting interaction terms, the distribution function is simply shifted to lower momenta,

implying that the time evolution of an isotropic and homogeneous distribution function fi(x, k⃗) =

fi(Ei, t) is given by

fi(Ei, t) = fi

⎛⎝√︄(︃k⃗i(t0) a(t)
a(t0)

)︃2

+m2
i , t0

⎞⎠ (B.25)

⇒ dfi
dt

=
1

a(t)

da(t)

dt

ki⃗
2

E

∂fi
∂E

= H(t)
ki⃗

2

E

∂fi
∂E

. (B.26)

Consequently, the time evolution of the distribution function in general is [47]:

dfi
dt

= H(t)
ki⃗

2

Ei

∂fi
∂E

+
1

2Ei
C[fi] . (B.27)

Next, the collision term C[fi] can be divided into one part Celastic[fi] containing all elastic scattering

processes which only change the particle momenta but not the particle species and one part Cinelastic[fi]

containing all inelastic scattering processes changing the particle species. In many cases, it can

be assumed that the elastic scattering processes are in thermal equilibrium, meaning that the

distribution functions are determined by the equilibrium distribution functions (Fermi-Dirac or Bose-

Einstein statistics). Under this assumption, the distribution function only depends on the particle

density, meaning that the equations of motion can be rewritten in terms of particle densities [47]:

dni(t)

dt
= −3H(t)ni(t) +

∫︂
dk̃iCinelastic[fi] , (B.28)

where the conservation of the particle number by elastic scattering processes is used:

dNi(t)

dt
= V (t)

dni(t)

dt
+
dV (t)

dt
ni(t)

!
= 0 (B.29)

⇒ dni(t)

dt
=

1

V (t)

dV (t)

dt
ni(t) = −3

1

a(t)

da(t)

dt

dni(t)

dt
= −3H(t)

dni(t)

dt
. (B.30)

By normalizing the number density to the entropy density1,

s = S/V = (ρ+ p)/T , (B.31)

with the energy density ρ and the pressure p, equation (B.28) can be further simplified to [47]

dYi(t)

dt
:=

d

dt

ni(t)

s(t)
=

1

s

(︃
dni(t)

dt
− 1

s

ds

dt
ni(t)

)︃
=

1

s

∫︂
dk̃iCinelastic[fi] , (B.32)

1for a derivation of this relation see [47, pp.65-66]
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where the conservation of the entropy S is used:

1

s

ds

dt
= V

d

dt

1

V
+

1

S

dS

dt
= V

d

dt

1

V
= a(t)3

d

dt

1

a(t)3
= −3

1

a(t)

da(t)

dt
= −3H(t) . (B.33)

In addition, Cinelastic[fi] can be simplified further as well since for the equilibrium densities, the

relations (B.18b) and (B.19c) can be used to obtain

Cinelastic[fi] = −
∫︂
(Πdk̃fi)(Πdk̃bi)(Πdk̃ff )(Πdk̃bf )(2π)

4δ(ki +Σkfi +Σkbi − Σkff − Σkbf )

×
[︂
|M |2ifi1 ...bi1 ···→ff1 ...bf1 ...

e
Σβµff

+Σβµbf − |M |2ff1 ...bf1 ···→ifi1 ...bi1 ...
eβµi+Σβµfi

+Σβµbi

]︂
× eβK

0
fi(Πffi)(Πfbi)(Πfff )(Πfbf ) , (B.34)

with K0 = k0i +Σk0fi +Σk0bi = Σk0ff +Σk0bf .

B.3 Thermal Masses

B.3.1 Second Order Thermal Self-Energy Correction

The thermal one-loop self-energy correction in ϕ4 theory (ĤI(x) =
λ
4!ϕ(x)

4) is given by

Π1
T (p

2) =
λ

2

∫︂
d4k

(2π)4

(︃
i

k2 −m2
+ 2π

(︁
f(Ek)Θ(Ek) + f(−Ek)Θ(−Ek)

)︁
δ(k2 −m2)

)︃
= −λ

2

A(m2)

16π2
+ λ

∫︂
dk̃ f(Ek) . (B.35)

where the divergent vacuum loop correction is completely canceled when the renormalization scale

is chosen to be the on-shell mass in the vacuum. Thus, at one-loop order, the thermal mass is only

determined by the remaining integral, which, in the limit T ≫ m, can be series expand in powers of

m/T (Π1
T ≈ λT 2/24 +O(m/T )), cf. equation (D.11).

For the two-loop self-energy correction, the contribution of the diagram which does not contain

thermal corrections to the propagator masses can be written as

Π2
T (p

2) = i
λ2

6

∫︂
d4k⃗

(2π)4

∫︂
d4k⃗

′

(2π)4

(︃
i

k2 −m2
+ 2π

(︁
f(Ek)Θ(Ek) + f(−Ek)Θ(−Ek)

)︁
δ(k2 −m2)

)︃
×
(︃

i

k′2 −m2
+ 2π

(︁
f(Ek′)Θ(Ek′) + f(−Ek′)Θ(−Ek′)

)︁
δ(k′2 −m2)

)︃
×
(︃

i

(p+ k + k′)2 −m2
+ 2π

(︁
f(E′)Θ(E′) + f(−E′)Θ(−E′)

)︁
δ((p+ k + k′)2 −m2)

)︃
.

(B.36)

As for the one-loop correction, the pure vacuum contribution is canceled by choosing the renorma-

lization scale to be the on-shell mass in the vacuum. Furthermore, the divergent contribution from
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the part with one distribution function and two vacuum propagators2:

Π2,1
T (p2) = i

λ2

2

∫︂
dk̃f(Ek)

∫︂
d4k⃗

′

(2π)4
i

k′2 −m2

×
(︃

i

(p+ k+ + k′)2 −m2
+

i

(p+ k− + k′)2 −m2

)︃
, (B.37)

is canceled by the vacuum one-loop vertex correction (≈ λ/(16π2)), meaning that this correction

partly takes into account vacuum one-loop corrections to λ for the thermal one-loop self-energy

correction.

The contribution with two distribution functions and one vacuum propagator is given by

Π2,2
T (p2) = i

λ2

4

∫︂
dk̃f(Ek)

∫︂
dk̃

′
f(Ek′)

(︃
i

(p+ k+ + k′+)2 −m2

+
i

(p+ k+ + k′−)2 −m2
+

i

(p+ k− + k′+)2 −m2
+

i

(p+ k− + k′−)2 −m2

)︃
. (B.38)

Considering pµ = (m, 0, 0, 0) this integral becomes

Π2,2
T (m2) ≈ λ2

64π4

1∫︂
−1

dx

∞∫︂
m

dEk Ekf(Ek)

∞∫︂
m

dEk′ Ek′f(Ek′)

(︃
1

m(Ek + Ek′ +m) + EkEk′(1− x)

+
2

m(Ek − Ek′ +m)− EkEk′(1 + x)
+

1

m(−Ek − Ek′ +m) + EkEk′(1− x)

)︃

=
λ2

64π4

∞∫︂
m

dEk f(Ek)

∞∫︂
m

dEk′ f(Ek′)

[︃
ln

(︃
m(Ek + Ek′ +m) + 2EkEk′

m(Ek + Ek′ +m)

)︃

− 2 ln

(︃
m(Ek − Ek′ +m)− 2EkEk′

m(Ek − Ek′ +m)

)︃
+ ln

(︃
m(−Ek − Ek′ +m) + 2EkEk′

m(−Ek − Ek′ +m)

)︃]︃
.

(B.39)

Calculating this integral in the limit T ≫ m, Π2,2
T (m2) ≈ λ2T 2/(32π2)T 2 ≈ 3λ/(2π2)Π1

T is obtained

for m ≪ T . Moreover, considering larger masses (e.g. m2 = 2Π1
T ≈ λT 2/12), Π2,2

T (p2) becomes

further Boltzmann suppressed.

Finally, the contribution with three distribution function is further suppressed. Moreover, as

discussed in section 3.3, it does not contribute to the thermal mass but contributes to the damping

in the generalized equation of motion, cf. equation (2.117).

In contrast, considering the thermal one-loop self-energy correction (m2 = 2Π1
T ≈ λT 2/12) for the

calculation of the thermal one-loop self-energy, the result is shifted by Π2′
T (p

2) ≈ −
√
3λ/(2π)Π1

T ,

cf. equation (D.11), which is by a factor π/
√
3λ less suppressed than Π2

T (p
2).

2The ± index of the momentum distinguishes between positive and negative energies.
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B.3.2 Leading Order Thermal Mass Corrections for the SM and Relevant Extensions

Within the SM, the thermal masses induced by the gauge interactions, the Higgs self coupling, and

the top Yukawa interaction before EWSB in the high temperature limit are given by [70, 30]

m2
H =

(︃
3g2 + g′2

16
+
y2t
4

+
λ

4

)︃
T 2 , (B.40a)

m2
ℓi
=

3g2 + g′2

32
T 2 , (B.40b)

m2
ℓR,i

=
g′2

8
T 2 , (B.40c)

m2
Qi

=

(︃
g2s
6

+
3g2

32
+
g′2

288
+ δi3

y2t
16

)︃
T 2 , (B.40d)

m2
Ui

=

(︃
g2s
6

+
g′2

18
+ δi3

y2t
8

)︃
T 2 , (B.40e)

m2
Di

=

(︃
g2s
6

+
g′2

72

)︃
T 2 , (B.40f)

m2
G =

11g2s
12

T 2 , (B.40g)

m2
W =

11g2

12
T 2 , (B.40h)

m2
B =

11g′2

12
T 2 . (B.40i)

Extending the SM by right-chiral neutrinos – transforming as singlets under all SM gauge groups –,

the induced thermal masses in the high temperature limit are

m2
H =

(︃
3g2 + g′2

16
+
y2t
4

+
λ

4

)︃
T 2 +

∑︂
i,j

|yij |2
12

T 2 , (B.41a)

m2
ℓj
=

3g2 + g′2

32
T 2 +

∑︂
i

|yij |2
16

T 2 , (B.41b)

m2
νRi

=
∑︂
j

|yij |2
8

T 2 . (B.41c)

Considering the inert Higgs model, the thermal masses of the Higgs particles in the high temperature

limit are given by [50]:

m2
H =

(︃
3g2 + g′2

16
+
y2t
4

+
3λ1 + 2λ3 + λ4

12

)︃
T 2 , (B.42a)

m2
ϕ =

(︃
3g2 + g′2

16
+

3λ2 + 2λ3 + λ4
12

)︃
T 2 . (B.42b)
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B.4 Thermal Rate for the Production of Left-Chiral Neutrinos After

EWSB

The thermal interaction rate of active neutrinos can be approximated by the thermal decay rate

of the SU(2)L and U(1)Y gauge bosons whose thermal masses are sufficiently large, cf. figure 3.1.

The corresponding decay width can be calculated similarly to the decay width of the scalar boson

considered in section 5.1. The corresponding matrix element is given by

iMAµ→νiℓi
= −ig′ϵµλvℓiγµLuνi (B.43)

⇒ |MAµ→νiℓi
|2 = (g′)2

3

(︃
−gµν − pµAp

ν
A

m2
A

)︃
Tr
[︂
(/pℓi

−mℓi)γµL/pνi
γν

]︂
=

2

3
(g′)2

[︃
pℓipνi +

1

m2
A

2(pℓipA)(pApνi)

]︃
, (B.44)

with (g′)2 = g2/2 and mA = mW for the decay of the W± boson and (g′)2 = (g2 + g′2)/4 and

mA = mZ for the Z boson decay. Note that here, the decay of W± and Z bosons is considered

because the focus is on the thermal decay rate after EWSB.

In the rest frame of the decaying particle (EA = mA and |p⃗A| = 0), cf. equation (D.4), the decay

width, cf. equation (2.25), is

ΓAµ→νiℓi
=

2(g′)2(pνipℓi + 2EνiEℓi)

24π

|p⃗νi |
m2

A

=
g2mA

48π

(︄
2− m2

νi

m2
A

−
m2

ℓi

m2
A

−
(m2

νi −m2
ℓi
)

m4
A

)︄
λ

(︄
1,
m2

νi

m2
A

,
m2

ℓi

m2
A

)︄
. (B.45)

Thus, the corresponding thermal rate, cf. equation (3.27), becomes

γ
W+

µ →νiℓ
2
i
≈ g2m3

WT

192π3

(︄
2− m2

νi

m2
W

−
m2

ℓi

m2
W

−
(m2

νi −m2
ℓi
)

m4
W

)︄
λ

(︄
1,
m2

νi

m2
W

,
m2

ℓi

m2
W

)︄
K1

(︂mW

T

)︂
, (B.46a)

γZµ→νiνi ≈
(g2 + g′2)m3

ZT

384π3

(︄
2− m2

νi

m2
Z

−
m2

ℓi

m2
Z

−
(m2

νi −m2
ℓi
)

m4
Z

)︄
λ

(︄
1,
m2

νi

m2
Z

,
m2

ℓi

m2
Z

)︄
K1

(︂mZ

T

)︂
.

(B.46b)

Using this, the order of the thermal interaction rate of active neutrinos after EWSB can be approximated

as:

Γνi ≈
6

T 3

(︂
3γ

W+
µ →νiℓ

2
i
+ 3γZµ→νiνi

)︂
=

3

32π3

[︄
g2m3

W

T 2

(︄
2− m2

νi

m2
W

−
m2

ℓi

m2
W

−
(m2

νi −m2
ℓi
)

m4
W

)︄
λ

(︄
1,
m2

νi

m2
W

,
m2

ℓi

m2
W

)︄
K1

(︂mW

T

)︂
+

(g2 + g′2)m3
Z

2T 2

(︄
2− m2

νi

m2
Z

−
m2

ℓi

m2
Z

−
(m2

νi −m2
ℓi
)

m4
Z

)︄
λ

(︄
1,
m2

νi

m2
Z

,
m2

ℓi

m2
Z

)︄
K1

(︂mZ

T

)︂]︄
. (B.47)

This production rate in the region of interest (TSph ≲ T ≲ Tc) is shown in figure B.1. Thus, the

thermal interaction rate for active neutrinos is roughly of the order Γνi ∼ T × 10−3.
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Figure B.1: Approximate thermal interaction rate of neutrinos normalized with respect to the

temperature as a function of the temperature.
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C Relevant Measured Observables

The measured masses of the Higgs and the massive gauge bosons are given by [76]:

mW = 80.379± 0.012 GeV , (C.1)

mZ = 91.1876± 0.0021 GeV , (C.2)

mh = 125.10± 0.14 GeV . (C.3)

The neutrino mass differences observed in neutrino oscillation experiments are [76]:

∆m2
atm = ∆m2

32 = (−2.546+0.034
−0.040)× 10−3eV2 inverted order , (C.4a)

∆m2
atm = ∆m2

32 = (2.453± 0.034)× 10−3eV2 normal order , (C.4b)

∆m2
sol = ∆m2

21 = (7.53± 0.18)× 10−5eV2 . (C.4c)

The measured angles of the CKM matrix are [76]:

sin2(Θ12) = 0.22650± 0.00048 , (C.5a)

sin2(Θ13) = 0.00361+0.00011
−0.00009 , (C.5b)

sin2(Θ23) = 0.04053+0.00083
−0.00061 , (C.5c)

δCP = 1.196+0.045
−0.043 , (C.5d)

and for the PMNS matrix [76]:

sin2(Θ12) = 0.307± 0.013 , (C.6a)

sin2(Θ13) = (2.18± 0.07)× 10−2 , (C.6b)

sin2(Θ23) = 0.547± 0.021 inverted order , (C.6c)

sin2(Θ23) = 0.545± 0.021 normal order , (C.6d)

δCP = (1.36± 0.17)× π . (C.6e)

The bound on the sum of all active neutrino masses at 95 % CL is given by [2]1∑︂
mν < 0.12 eV . (C.7)

The observed relic baryon and DM abundance for the base-ΛCDM model at 68 % CL are [2]2

ΩBh
2 = (2.242± 0.014)× 10−2 , (C.8a)

ΩDMh
2 = 0.11933± 0.00091 . (C.8b)

The measured temperature of the CMB is [22]

T0 = (2.72548± 0.00057)K . (C.9)

1The strongest bound from combining multiple measurements taken from p. 48 of reference [2].
2The values for ΩBh

2 and ΩDM are taken from Table 2 of reference [2].
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D.1 Kinematics of 2 → 2 Scattering Processes

The Mandelstam variables are defined as

s = p2s := (p1 + p2)
2 = (p3 + p4)

2 , (D.1a)

t = p2t := (p1 − p3)
2 = (p4 − p2)

2 , (D.1b)

u = p2u := (p1 − p4)
2 = (p3 − p2)

2 , (D.1c)

and fulfill the relation

s+ t+ u = p21 + p22 + p23 + p24 = m2
1 +m2

2 +m2
3 +m2

4 . (D.2)

In the limit of negligible small masses (m2
1+m

2
2+m

2
3+m

2
4 ≪ s, t, u), all relevant kinematic variables

can be expressed in terms of s and x = cos θ:

t = −s
2
(1− x) , (D.3a)

u = −s
2
(1 + x) , (D.3b)

p1p2 = p3p4 =
s

2
, (D.3c)

p1p3 = p2p4 =
s

4
(1− x) , (D.3d)

p1p4 = p2p3 =
s

4
(1 + x) , (D.3e)

with θ being the angle between p⃗1 and p⃗3.

On the other hand, considering sizable masses, the energies and momenta of the single particles in

the center-of-mass frame are given by

E1,2 =
s+m2

1,2 −m2
2,1

2
√
s

, E3,4 =
s+m2

3,4 −m2
4,3

2
√
s

, (D.4a)

|p⃗1| = |p⃗2| =
λ[s,m2

1,m
2
2]

2
√
s

, |p⃗3| = |p⃗4| =
λ[s,m2

3,m
2
4]

2
√
s

, (D.4b)

with

λ [a, b, c] =
√︁
a2 + b2 + c2 − 2ab− 2ac− 2bc . (D.5)

If both incoming and both outgoing particles have the same masses (m1 = m2 = mi and m3 = m4 =

mf ), this further simplifies to

E1 = E2 = E3 = E4 =

√
s

2
|p⃗1| = |p⃗2| =

1

2

√︂
s− 4m2

i , |p⃗3| = |p⃗4| =
1

2

√︂
s− 4m2

f , (D.6)
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and

t = (p1 − p3)
2 = m2

i +m2
f − 1

2

(︃
s−

√︂
s− 4m2

i

√︂
s− 4m2

f x

)︃
, (D.7a)

u = (p1 − p4)
2 = m2

i +m2
f − 1

2

(︃
s+

√︂
s− 4m2

i

√︂
s− 4m2

f x

)︃
, (D.7b)

is obtained.

Considering m1 = m3 and m2 = m4 instead, t simplifies to

t = (p1 − p3)
2 = 2m2

1 −
1

2s

(︁
(s+m2

1 −m2
2)

2 − λ[s,m2
1,m

2
2]
2x
)︁
= −λ[s,m2

1,m
2
2]
2 (1− x)

2s
. (D.8)

D.2 Integrals and Functions

The Heaviside function is defined as

Θ(x) :=

{︄
0 , for x < 0

1 , for x ≥ 0
. (D.9)

The series expansion of the contribution of a single particle to the free energy density in powers of

the particle masses divided by the temperature for vanishing chemical potentials is given by[20]:

Fboson

V
= T

∫︂
d3k

(2π)3
ln

[︃
1− exp(−

√︂
k2 +m2

i /T )

]︃
≈ −π

2T 4

90
+
m2

iT
2

24
− m3

iT

12π
− m4

i

64π2

[︃
ln

(︃
m2

i

T 2

)︃
+ 2γ − 3

2
− 2 ln(4π)

]︃
, (D.10a)

Ffermion

V
= T

∫︂
d3k

(2π)3
ln

[︃
1 + exp(−

√︂
k2 +m2

i /T )

]︃
≈ 7π2T 4

720
− m2

iT
2

48
− m4

i

64π2

[︃
ln

(︃
m2

i

T 2

)︃
+ 2γ − 3

2
− 2 ln(π)

]︃
, (D.10b)

with the Euler-Mascheroni constant γ ≈ 0.577. Using this, the following integral occurring in thermal

self-energy corrections is given by∫︂
dk̃i fi(Ek) =

d

dm2
i

F

V
=

⎧⎨⎩
T 2

24 − mT
8π − m2

32π2

[︂
ln
(︂
m2

T 2

)︂
+ 2γ − 1− 2 ln(4π)

]︂
for bosons

T 2

48 − m2

32π2

[︂
ln
(︂
m2

T 2

)︂
+ 2γ − 1− 2 ln(π)

]︂
for fermions .

(D.11)

Using the Boltzmann approximation and equation (D.16), the thermal decay rate can by evaluated

analytically:

γi→f1···fn = γf1···fn→i =

∫︂
dk̃i(Πdk̃fi)(2π)

4δ(ki − Σkfi)|M |2i→f1···fne
−βEi

=

∫︂
dk̃i 2miΓi→f1...fne

−βEi =
m2

i

2π2
√︁
aΓi→f1...fn

∞∫︂
mi

dEi

√︂
E2

i −m2
i e

−βEi

=
m4

i

2π2
√︁
aΓi→f1...fn

∞∫︂
1

dx
√︁
x2 − 1 e−zx =

m4
i

2π2
√︁
aΓi→f1...fn

K1(z)

z
, (D.12)
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where equation (2.23) and the Lorentz invariance of dk̃fi is used to rewrite the thermal rate in terms

of the decay width Γi→f1...fn . Moreover, using equation (2.24), the thermal rate for 2 → 2 scattering

processes can be expressed as

γi1i2→f1f2 =

∫︂
dk̃i1dk̃i2dk̃f1dk̃f1(2π)

4δ(ki1 + ki2 − kf1 − kf2)|M |2i1i2→f1f2e
−βk0

=

∫︂
dk

(2π)4
dk̃i1dk̃i2(2π)

4δ(k − ki1 − ki2)
σ̂i1i2→f1f2

λ
[︁
1,

mi1
s ,

mi2
s

]︁e−βk0

=
1

8π

∫︂
dk

(2π)4
σ̂i1i2→f1f2e

−βk0 , (D.13)

which, in case of a reduced cross section only depending on the Mandelstam variable s, further

simplifies to

γi1i2→f1f2 =
1

64π4

∞∫︂
smin

ds σ̂(s)

∞∫︂
0

d|k⃗| k⃗
2√︂

s+ k⃗
2
e−β

√
s+k⃗

2

=
m2

i

64π4

∞∫︂
umin

du σ̂(u)u

∞∫︂
1

dx
√︁
x2 − 1 e−z

√
ux

=
m4

i

64π4

∞∫︂
umin

du
√
u σ̂(u)

K1 (
√
uz)

z
. (D.14)

The non-Lorentz invariant part of the massive vector boson propagator can be rewritten as

−
∫︂

dk

(2π)4
kµAk

ν
A

m2
A

i

k2 −m2
A

e−ikx =

∫︂
dk

(2π)4

[︃
kµkν − kµAk

ν
A

m2
A

− kµkν

m2
A

]︃
i

k2 −m2
A

e−ikx

= i

∫︂
dk

(2π)4

[︃
(k20 − E2

k)g
µ0gν0 − (k0 − Ek)k

i(gµ0gνi + gµigν0)

m2
A(k

2
0 − E2

k)
− kµkν

m2
A

1

k2 −m2
A

]︃
e−ikx

= i

∫︂
dk

(2π)4

[︃
gµ0gν0

m2
A

− kµkν

m2
A

1

k2 −m2
A

]︃
e−ikx . (D.15)

Further integrals used in this thesis are

∞∫︂
1

dx
√︁
x2 − 1 e−ax = K1(a) , (D.16)

∞∫︂
0

dxx2e−a
√
1+x2

=
K2(a)

a
, (D.17)

1∫︂
−1

dx
1

a+ bx
=

1

b
ln

(︃
a− b

a+ b

)︃
, (D.18)

x2∫︂
x1

dx
1

x2 + a
=

1√
a

[︃
arctan

(︃
x2√
a

)︃
− arctan

(︃
x1√
a

)︃]︃
. (D.19)
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MA thesis: Fakultät Physik, Technische Univerität Dortmund.

[75] Clarence Zener, Nonadiabatic crossing of energy levels,

Proc. Roy. Soc. Lond. A137 (1932) p. 696.

[76] P.A. Zyla et al., Review of Particle Physics, PTEP 2020 (2020) p. 083C01.

161

http://dx.doi.org/10.1070/PU1991v034n05ABEH002497
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1103/PhysRevD.9.3357
http://dx.doi.org/10.1103/PhysRevD.7.2887
http://dx.doi.org/10.1103/PhysRevD.26.2789
http://dx.doi.org/10.1103/PhysRevD.28.2007
http://dx.doi.org/10.1103/PhysRevD.81.092004
https://arxiv.org/abs/1002.3471
http://dx.doi.org/10.1103/PhysRevD.17.2369
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1093/ptep/ptaa104

	Introduction
	Quantum Field Theory in the Vacuum
	Introduction Into Relativistic Quantum Mechanics
	Introduction Into the Basic Concepts of Quantum Field Theory
	Essentials of Quantum Field Theory
	Calculation of Transition Rates in Quantum Field Theory

	Derivation of Propagators and Loops in Time-Dependent Perturbation Theory
	Propagators for Scalar Bosons and Spin-1/2 Fermions and Introduction of Loop Contributions
	Derivation of the Massive Vector Boson Propagator
	Detailed Investigation of Transition Amplitudes Involving Self Interactions of Massive Vector Bosons
	Implications on Loop Contributions Involving Multiple Massive Vector Bosons
	Implications on Massless Vector Bosons

	Path Integral for Quantum Field Theory
	Path Integral for Quantum Mechanics
	Common Extension of the Path Integral in Quantum Field Theory
	Subtleties of the Path Integral for Quantum Field Theory

	Renormalization and Renormalization Group Equations
	Renormalization Group Equations

	Introduction Into Gauge Theories
	Essentials of Gauge Theories
	The Gauge-Fixing Procedure

	Spontaneously Broken Symmetries
	Essentials of Spontaneous Symmetry Breaking
	Equations of Motion for Goldstone Bosons and Massive Vector Bosons

	The Standard Model of Particle Physics
	Flavor Oscillation
	Decaying Particles and CP violation
	Effective Free Equation of Motion of Decaying Particles
	CP Violation


	Description of Many-Particle Systems
	Introduction to the Basic Concepts of Thermodynamics and Thermal Equilibrium
	Derivation of the Boltzmann Equations
	Introduction to Thermal Field Theory
	Approximation of Thermal Masses
	Matter Effects on Flavor Oscillation
	Details on Thermal Equilibrium
	Thermal Equilibrium of the Dominant Yukawa Interactions
	Implication of the Equilibrium Condition


	Violation of Baryon and Lepton number
	Rate of B and L Violation Induced by Sphaleron Transitions
	Diversity of Baryogenesis Models
	Interplay of Sphaleron Transitions and B-L Violating Interactions

	Introduction of Right-Handed Majorana Neutrinos
	Thermal Rate of Two-Body Decays Involving Majorana Fermions
	Thermal Rate of Majorana Fermion Mediated Fermion Number Violating 2→2 Scattering Processes
	CP Violation in the Two-Body Decay of Majorana Fermions and Thermal Leptogenesis

	Investigation of an Extended Higgs Sector With Focus on the Inert Higgs Model
	The Inert Higgs Model
	The Scotogenic Model
	Thermal Corrections to the Effective Higgs Potential

	L Violation Assisted GUT Baryogenesis
	Interplay of Sphaleron Transitions and L Violation Induced by Right-Handed Majorana Neutrinos
	Approximation of the Thermal Rates of L Violation Induced by Right-Handed Majorana Neutrinos
	L Violation Induced by One Right-Handed Majorana Neutrino
	L Violation Induced by Two Right-Handed Majorana Neutrinos
	L Violation Induced by One Right-Handed Majorana Neutrino Within the Scotogenic Model

	Thermal Aspects of Leptogenesis
	Thermal Leptogenesis With Enlarged Yukawa Couplings
	Leptogenesis With Degenerated Masses Induced by Thermal Corrections
	Thermal Degeneracy of Right-Chiral Neutrino Masses
	Thermal Degeneracy of Left-Handed Neutrino Masses
	Thermal Degeneracy of Left- and Right-Chiral Neutrino Masses


	Conclusion
	Supplementary Details to Quantum Field Theory in the Vacuum
	Spacetime Geometry
	Details on Relativistic Quantum Mechanics
	Perturbation Theory for Quantum Mechanics
	Time-Dependent Perturbation Theory
	Diagrammatic Visualization of the Perturbation Series in QFT
	Time-Independent Perturbation Theory

	Detailed Introduction of Quantum Field Operators
	Propagators and Full Set of States
	Calculation of Matrix Elements Without Using the Residue Theorem
	Detailed Calculation of the Interaction Hamiltonian for Self-Interaction Massive Vector Bosons
	Supplementary Details to Renormalization
	Renormalization Group Equations
	Standard Model Lagrangian

	Supplementary Details to the Description of Many Body Systems
	Introduction Into Basic Concepts of Thermodynamics
	Details on the Derivation of Boltzmann Equations
	Thermal Masses
	Second Order Thermal Self-Energy Correction
	Leading Order Thermal Mass Corrections for the SM and Relevant Extensions

	Thermal Rate for the Production of Left-Chiral Neutrinos After EWSB

	Relevant Measured Observables
	Kinematics and Integrals
	Kinematics of 2 →2 Scattering Processes
	Integrals and Functions

	Bibliography

