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An dieser Stelle möchte ich allen beteiligten Personen meinen großen Dank für die Un-
terstützung bei der Anfertigung meiner Dissertation aussprechen.

Mein ganz besonderer Dank gilt meinem Doktorvater Professor Franz-Joseph Barthold
für die ausgezeichnete Betreuung, enorme Unterstützung und Möglichkeit zur Umset-
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Kurzfassung

Im Bereich des konstruktiven Ingenieurbaus werden Bauwerke entwickelt und berechnet.
Dabei werden die aus mechanischen Lasten resultierenden Spannungen und Verformungen
ermittelt und die Tragwerke dimensioniert, um die Tragfähigkeit, Gebrauchstauglichkeit
und Dauerhaftigkeit gemäß internationaler Normen zu gewährleisten. Die Anwen-
dung der Strukturoptimierung ermöglicht die Erstellung von effizienten und ökonomis-
chen Bauwerksentwürfen, welche maximal zulässige Spannungen ausschöpfen können.
Allerdings werden bei genormten Berechnungen Umwelteinflüsse, wie zum Beispiel ein
chemischer Angriff, nur über sogenannte Expositionsklassen und daraus resultierenden
Tragfähigkeitsgrenzen berücksichtigt. Detaillierte Berechnungen zum Einfluss der Span-
nungen und Verformungen der Bauteile werden häufig vernachlässigt. Insbesondere
können zum Beispiel die aus der Optimierung resultierenden ausgeschöpften Spannungsre-
striktionen überschritten werden.

Diese Arbeit stellt ein numerisches Programm vor, welches eine effiziente Optimierung
mechanischer Strukturen ermöglicht, die aufgrund diffuser Konzentrationen zusätzlich von
Degradationsprozessen belastet sind. Dafür wird ein mechanisch-chemisch-degradations
gekoppeltes Modell entwickelt. Im Rahmen der klassischen Strukturmechanik ist
das entwickelte Materialverhalten unter Berücksichtigung von modifizierten physikalis-
chen Grundlagen der Kontinuumsmechanik zur Beschreibung von mechanisch-chemisch-
degradations gekoppelte Prozessen vorgestellt. Mithilfe der Grundlagen der Finiten El-
emente Methode (FEM) ist die Lösung des nichtlinearen Problems detailliert ausgear-
beitet. Weiterhin ist die entwickelte Strukturanalyse in einem mathematischen Algo-
rithmus einer gradientenbasierten Strukturoptimierung eingebettet. Die Optimierung
ermöglicht eine tiefergehende Analyse und Reduktion der schädlichen Auswirkungen in-
folge von Einflüssen aus einwirkenden chemischen Konzentrationen. Die Anwendung eines
variationellen Zugangs zur Strukturoptimierung liefert die gleichzeitige Integration einer
analytisch aufbereiteten Sensitivitätsanalyse mit der Strukturanalyse zur Einbettung der
kontinuumsmechanischen Formulierungen. Damit ist eine effiziente Strukturoptimierung
des eingeführten mechanisch-chemisch-degradations Modells umfassend dargestellt, die
numerische Umsetzung mit den benötigten Ableitungen sowie Diskretisierungen doku-
mentiert und in einem computerbasierten Modell umgesetzt.



Abstract

In the field of structural engineering, structures are developed and calculated. The stresses
and deformations resulting from mechanical loads are determined, and the structures are
dimensioned to ensure load-bearing capacity, usability and durability in accordance with
standards. The application of structural optimisation algorithms enables the develop-
ment of more efficient and economical building structures, whereby maximum permissible
stresses can be exhausted. However, standardised calculations take environmental influ-
ences, such as chemical impact, only via so-called exposure classes and resulting material
properties into account. Detailed calculations on the influence of stresses and deforma-
tions of the structures, especially due to the long-term chemical influence and resulting
material degradation, are often neglected. For example, specific stress constraints may be
exceeded.

Within the scope of the present work, a numerical programme is developed, enabling
an efficient optimisation of mechanical structures that are additionally burdened by
degradation processes due to diffusive concentrations. For this purpose, a mechanical-
chemical-degradation coupled model is developed. Within the framework of classical
structural mechanics, the developed material behaviour is presented, taking into account
modified physical principles of continuum mechanics to describe a mechanical-chemical-
degradation coupled processes. With the help of the fundamentals of the Finite Element
Method (FEM), the solution of the non-linear problem is outlined in detail. Further-
more, the developed structural analysis is embedded in a mathematical algorithm of
gradient-based structural optimisation. The optimisation allows a deeper analysis and
reduction of the harmful effects due to the influence of acting chemical concentrations.
A variational approach to structural optimisation provides the simultaneous integration
of analytically prepared sensitivity analysis with the structural analysis for embedding
the continuum mechanical formulations. Thus, efficient structural optimisation of the
introduced mechanical-chemical-degradation model is comprehensively presented. The
mathematical model with the required derivations as well as discretisation is documented
and implemented in a computer-based model.
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Nomenclature

This section provides an overview of frequently used abbreviations. The references to the
listed abbreviations are noted in the respective sections.

Abbreviations for Latin expressions

cf. confer compare
e.g. exempli gratia for example
i.e. id est that is
et al. et alii and others
vs. versus against

Abbreviations within the continuum model and optimisation framework

CAGD Computer-Aided Geometric Design
FE Finite Element
FEM Finite Element Method
FEA Finite Element Analysis
KKT Karush–Kuhn–Tucker
SQP Sequential Quadratic Programming
BFGS Broyden-Fletcher-Goldfarb-Shanno
FDM Finite Difference Method

Abbreviations within the mathematical solver

ns number of design parameters
nm number of material parameters
mh number of equality constraints
mg number of inequality constraints
mj number of objective functions
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Abbreviations within the numerical investigations

nel total number of elements
nn number of nodes per element
edof number of degrees of freedom per element
dof global number of degrees of freedom
dofm global number of mechanical degrees of freedom
dofc global number of chemical degrees of freedom
dofs global number of design parameters
dofp global number of material parameters
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1. Introduction

In this section, the motivation for this thesis is highlighted, and the objectives are pre-
sented. An overview of the sections, respectively, the outline of this work, serves as an
orientation for the reader.

1.1. Motivation

In this thesis, an optimisation algorithm is presented, which contributes to preventing pre-
mature failure, damage to building structures and the strengthening of durability. The
focus lies on structures contaminated by chemical substances, having strong destructive
effects on the material. A mathematical algorithm is developed to optimise a structure
exposed to chemical influences and assure the static load capacity. Therefore, a coupled
mechanical-chemical-degradation approach is embedded in a Finite Element (FE) frame-
work. A time-efficient optimisation algorithm is developed to provide a helpful simulation
tool that reduces long-term material degradation.

Engineering structures are dimensioned according to standards. The maximum exist-
ing stresses are evaluated and the material load-bearing capacity is examined, whereby
environmental influences are only marginally considered. However, negative influences
can also change the material composition and the mechanical load-bearing capacity over
time. Most changes in the internal structure of materials are associated with diffusion
processes. Examples in civil engineering where diffusion-driven degradation processes oc-
cur are, among others, the long-term effect of calcium leaching into concrete. Whereby

”pure water generates concentration gradients, which lead to the diffusion of Ca-ions from
the pore water and the subsequent degradation of the underground concrete“ [32]. Alter-
natively, the sulfuric acid attack, where ”degradation is dominated by the diffusion rate
of the acid“ [143]. Moreover, a numerical method model for simulating cementitious ma-
terials’ degradation under external sulphate attack is presented in [116]. The focus is on
providing a holistic model to describe the degradation process, considering ionic diffusion,
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1. Introduction

chemical equilibrium and the influence on the change of mechanical properties. Further
details are discussed in [117] and the usefulness of sensitivity analysis for the detection
of damaging factors in the context of sulphate attack and calcium leaching is presented.
The focus is on providing a holistic model to describe the degradation process, taking into
account ionic diffusion, chemical equilibrium and the influences on changes in mechanical
properties. However, the model cannot produce a spatial resolution of complex structures,
which is of particular interest for the concentrations’ spatial dispersion. Diffusion-driven
degradation processes can occur under different conditions, yet the general assumptions
are similar. Thus, structure degradation with associated changes in material properties
and the coupling of the chemical reaction and transport mechanisms must be addressed.
For this reason, this work presents a spatially and temporally resolved FE-model that can
be applied to various field applications so that environmental influences can be considered.

An essential point in civil engineering is the optimisation of load-bearing structures to
achieve maximum efficiency. This performance can be achieved by reducing material,
effort as well as money and still meet load-bearing behaviour requirements. Further-
more, optimisation processes can analyse the long-term development of a structure and
anticipate possible damage. For degradation processes, in particular, predictions on the
influences of various material parameters or changes in shape can lead to the reduction
of long-term damage and the maintenance of load-bearing capacity despite long-term
chemical exposure.

This work is based on continuum mechanics, which approximates the physical connections
of a continuous and macroscopic body. The main aspects are therefore, the kinematic
and kinetic description of a mathematical object as well as the balance equations for
the qualification of the specific physical processes. On this basis, a coupled mechanical-
chemical-degradation problem can be described mathematically as resulting in a set of
partial differential equations. Permeable structures are applied, which allow gradient-
based diffusion of concentrations. The chemical substances can cause material degradation
and modification of material properties due to various chemical reactions. A mechani-
cal degradation process is introduced that corresponds to negative growth, combining a
constitutive and kinematic approach. Since this is a space and time-dependent problem,
the material description is embedded in an FE-framework using an isoparametric concept
for space discretisation and a Newmark-beta approach for time integration. In addition
to the mechanical and physical conditions, continuum mechanics is based on differential
geometry, which plays an important role in this thesis since an efficient structural optimi-
sation framework can be integrated. By introducing a structural optimisation algorithm,
it is possible to calculate an optimal geometry that considers the damage of long-term ef-
fects caused by environmental influences. In detail, the structural optimisation framework
presents a shape optimisation with a gradient-based calculation, which contains informa-
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1.2. Objectives

tion about the sensitivities of the parameters that influence the mechanical behaviour.
Furthermore, a material parameter optimisation is developed to allow for the detection
of harmful parameters and thus, preventing the degradation process.

With this work, a numerical model is available, simulating material degradation triggered
by diffusion processes. The model contributes to the understanding, analysis and reduc-
tion of material degradation through optimisation procedures and ensures the long-term
sustainability of structures under harmful environmental influences. It is a theoretical
work illustrating the practical relevance with simple examples. The model is provided in
such a way that different problems can be considered and integrated. The thesis presents
a complete description of the structural analysis, sensitivity analysis, structural optimi-
sation as well as numerical implementation with required variations and discretisation of
a diffusion-driven degradation model.

1.2. Objectives

The objective of this work is the development of a simulation model for the optimisation
of diffusion-driven degradation processes in a permeable structure. Hence, such a model’s
practical relevance is particularly evident in the context of civil engineering. Structures
are tested for their stability, but yet gradually progressing environmental effects are ne-
glected. Nevertheless, diffusion processes and chemical impact, for example, can strongly
impair the material behaviour and thus, previously determined load-bearing capacities can
no longer be maintained. The combined approach of a mechanical-chemical-degradation
approach, which is embedded in an optimisation algorithm, makes it possible to con-
sider diffusion processes and optimise geometry or material to avoid insidious long-term
damage. The work serves as a basis and enables integrating specific chemical models to
calculate problems, such as calcium leaching or chemical attacks.

Several numerical approaches deal with the simulation of chemical-induced degradation
processes. In some cases, the chemical kinetics are in the foreground, others concentrate
on the aspect of mechanical degradation, or some approaches serve to couple both. In-
cluding an optimisation concept is an essential step towards understanding and avoiding
harmful processes. No work was discovered within the literature search that deals with
combined structural optimisation of chemical-induced degradation comprehensively and
above all time-efficient. A mathematical approach is chosen that embeds the kinemat-
ics of degradation with the common kinematic concept of structural optimisation. For
structural optimisation, a parameter space is considered that ensures the representation
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1. Introduction

of the material body independent of time or physical descriptions. Finally, a holistic ap-
proach for the simulation of coupled chemically induced mechanical degradation processes
is provided, which also considers efficient optimisation algorithms.

Besides its practical relevance, the work mainly deepens general, theoretical research ques-
tions. Thus, the theoretical treatment of growth or degradation processes in continuum
mechanics is an important objective. This work focuses on degradation processes, but
the explanations can be applied equivalently to growth processes. Degradation processes
are derived with a combined kinematic and constitutive approach. This aspect leads to
the task; to create a comprehensive kinematic model within the framework of contin-
uum mechanics. The model has to meet the requirements for structural mechanics and
degradation processes. In addition to the kinematic approach, a constitutive approach is
used to describe the degradation process. Chemical concentrations are introduced that
trigger the material degradation. Another objective is the thermodynamic consistent eval-
uation of the continuum mechanical model, including chemical diffusion processes. This
work provides an entirely consistent approach, considering mechanical and diffusion laws
derived based on physical balance equations. With a further goal involving the numer-
ical implementation of a coupled nonlinear and time-dependent problem, the structural
analysis can be completed.

Furthermore, this thesis combines the mechanical-chemical model with a structural opti-
misation algorithm. Biology inspires the solution to how to prevent damaging material
processes. In nature, evolutionary optimisation processes are pursued. For example, by
reorienting the structure or changing the material’s behaviour, a tree can prevent dying
sections from jeopardising its existence. This idea is applied to engineering structures,
thus, ensuring the load-bearing capacity despite negative environmental influences and,
therefore, degradation processes. The goal demands an efficient and fast optimisation
algorithm that combines optimisation with a degradation approach. This requirement is
met by an approach of variational sensitivity analysis within structural optimisation. In
particular, this approach’s efficiency is highlighted and compared to conventional methods.
A local convective parameter space supplements the kinematic to enable the variational
approach, allowing a mathematical separation of displacements and geometry. On this
basis, the continuous equations of the structural problem are established. Thus, within
the sensitivity analysis scope, the required variations are related to a changeable design
parameter (such as geometry parameters) can first be derived and then discretised. The
order of first varying and then discretising allows advantages, especially for the mathe-
matical approach to sensitivity analysis, see [6, 7]. The exact sequence is also used for the
structural analysis. Furthermore, due to the geometry-dependency within the shape opti-
misation, a parameterised concept for meshing must be made possible. For this purpose,
the software Gmsh is implemented and an automatic update of the design parameters is
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1.2. Objectives

applied within the optimisation iteration.

The work requires an efficient implementation that reduces the numerical computational
effort as much as possible and takes advantage of already existing, program-internal func-
tions. This goal is realised by the combined use of MATLAB and developed FORTRAN
functions. The numerical calculation program MATLAB, provided by Mathworks, en-
ables fast calculations of matrix-based mathematics and provides efficient toolboxes for
optimisation algorithms. It offers the possibility of embedding interfaces for functions
formulated, for example, in the FORTRAN programming language. Thus, in the scope
of this thesis, a MEX file is created, which contains a FORTRAN code that implements
the derived element and material formulation of the mechanical-chemical-degradation ap-
proach. The numerical effort is reduced due to the embedded interfaces because the
FORTRAN functions are mainly implemented via loop formulations known as a capacity
bottleneck in the program MATLAB. Thus, the advantages of MATLAB can be exploited
and the disadvantages of the slow programming environment for loop formulations can
be avoided.

The work is divided into three different main fields. Firstly, the structural analysis and
variation of a mechanical-chemical-degradation approach are established. Secondly, struc-
tural optimisation is introduced with consideration of shape and material optimisation for
the derived continuum. In the third topic, the optimisation algorithm of the developed
mechanical-chemical-degradation structural problem is presented and tested employing
illustrative examples. The work’s main research objectives can be assigned to these topics
as follows.

1. Structural analysis of a mechanical-chemical-degradation model
• Continuum model for a mechanical-chemical-degradation approach.
• Mechanical degradation with a combined kinematic and constitutive approach.
• Enhanced kinematics combining degradation and parameter space.
• Thermodynamically evaluation of a mechanical structure with chemical diffusion.
• FEM for a coupled single-phase solid mechanics and chemical concentrations.
2. Structural optimisation of a mechanical-chemical-degradation model
• Introduction of local convective parameter space.
• Variational sensitivity with an integrated continuum mechanical formulation.
• Efficient computational optimisation.
• Technical realisation of combining structural analysis with structural optimisation.
3. Examples
• Structural analysis examples, focusing on chemical-induced degradations.
• Structural optimisation examples, focusing on long-term degradation processes

that can be prevented by optimised shape or fitted material parameters.
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1. Introduction

1.3. Outline

An outline of the sections of the thesis is given. The topics addressed are briefly sum-
marised and the reader is given an overview. In total, the thesis comprises eleven sections.

1 Introduction. In this first section, the structural optimisation of diffusion-driven
degradation processes is introduced. Therefore, the motivation and objective of the work
are highlighted.

2 Preliminaries and Notation. The numerical model derived in this work is based
on tensor analysis’s mathematical foundations. For this purpose, the basic notation and
typography of the objects used are introduced. Furthermore, the applied program with
interfaces for implementing the numerical model is presented.

3 Continuum Model. The continuum mechanical description is outlined for a perme-
able body with penetrating concentrations leading to material degradation. The classical
continuum model of a body is extended by enhanced kinematics and additional material
laws due to diffusive chemical concentrations and a degradation approach.

4 Structural Analysis. The classical Finite Element Method (FEM) is applied to
the introduced continuum model. For this purpose, the weak formulations of the balance
equations and the necessary variation for the solution of the nonlinear coupled problem are
presented. The time integration method and spatial approximation concept are explained,
and the numerical implementation is introduced.

5 Structural Optimisation. The basics of structural optimisation are outlined. In par-
ticular, the process of optimisation is demonstrated and the mathematical background of
the constrained optimisation and nonlinear least-square problems are provided to address
shape and material optimisation. Furthermore, geometric parameterisation requirements
for the execution of shape optimisations are described.

6 Sensitivity Analysis. Sensitivity analysis is part of structural optimisation, where the
sensitivities of the objective functions and constraints of the optimisation task based on
the continuum mechanical quantities are calculated. In this thesis, the efficient variational
sensitivity analysis is employed and the required variations are comprehensively presented.

7 Numerical Investigations. In this section, the implemented model for the optimi-
sation of diffusion-driven degradation processes is tested by means of small examples.
In particular, the variations derived analytically within the framework of the variational
sensitivity analysis are compared with numerical approaches and the efficiency of the vari-
ational approach is highlighted. Furthermore, a convergence study is presented to control
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1.3. Outline

the time integration, and spatial approximations.

8 Examples of Structural Analysis. The developed continuum mechanical problem
is introduced for a permeable body loaded with mechanical forces and chemical concen-
trations. Boundary value problems are set up for this purpose to simulate the material
degradation and the resulting stress distributions in the body. Possible areas of applica-
tion for the simulation of the presented problem in the context of civil engineering are
shown.

9 Examples of Shape Optimisation. Shape optimisation is a fundamental task in the
field of civil engineering to enable the efficient use of materials while ensuring load-bearing
capacity. In this section, practical examples are presented to optimise the introduced
geometries. Furthermore, the optimisation results based on analytically determined gra-
dients are compared with numerical calculations and the efficiency of the optimisation
method used is highlighted.

10 Examples of Material Parameter Optimisation. For further optimisation and,
in particular, reduction of harmful degradation processes triggered by chemical concentra-
tions, material optimisation is presented. Examples are outlined that highlight the added
value of mathematical based structural optimisation applied to degradation processes.

11 Conclusion and Outlook. The final section summarises the work and highlights
the objectives achieved. Furthermore, an outlook is given to proceed with the topic in
the future and areas of application are suggested.
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2. Preliminaries and Notation

This section gives an introduction to the applied mathematical notation for physical
quantities. The general arithmetic operations between vectors and tensors of higher-
order are listed. Furthermore, an overview of the software used to implement the derived
problem follows.

2.0.1. Notation

Tensor algebra is an essential tool for the mathematical description of continuum mechan-
ics and, thus, for the physical specification of a macroscopic body, such as geometry, the
mapping between configurations or the stresses. The following Table 2.1 is introduced to
distinguish between different tensors’ orders with the notation used in this thesis.

Table 2.1.: Notation and typography.

Quantity Typographic style Examples
scalar non-bold, italic A, a, α
vector bold, italic A, a
tensor second-order bold A, a
tensor higher-order blackboard A, C
matrix, column matrix bold, sans-serif A, a
Voigt notation bold, sans-serif, underline A, a

Vectors a ∈ V , tensors A ∈ V ⊗ V and tensor higher-order
n

A ∈ V ⊗ V · · · ⊗ V (n-times)
are introduced; V denotes the vector space. The index notation follows with

a = ai ei, A = Aij ei ⊗ ej, A = Aijk ei ⊗ ej ⊗ ek , (2.1)

where a finite sum in ordered pairs of vectors with the dyadic product of two vectors, de-
noting a higher-ordered tensor. The index notation deals with components or coordinates
of vectors and tensors. The scalar product is illustrated by dots, a single contraction be-
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tween two vectors by one dot and a double contraction between two second-order tensors
by a colon, i.e.

a · b = ai b
i A : B = Aij B

ij . (2.2)

Furthermore, higher-ordered contraction between a fourth-order tensor and a second-order
tensor are also represented by a colon with

A : A = AijklAkl ei ⊗ ej . (2.3)

2.0.2. Mathematical Background for Variations and Derivatives

For this work, variations and derivatives play an important role in structural and sensi-
tivity analysis; further details on notation will follow in the corresponding sections. Nev-
ertheless, the general mathematical description of variations and derivatives is introduced
at this point.

First, the vector space V is introduced for all admissible state variables as well as their
test functions and the vector space S contains all admissible design parameters. The
Gateaux derivative for an arbitrary function f(ν) : V → R is a directional derivative of
the differential function with respect to the variables ν ∈ V , in the directions {η, µ} ∈ V ,
as follows

f ′ν(ν;η) := lim
ε→0

1
ε

[f(ν + εη) − f(ν)] = d
dε f(ν + εη)

∣∣∣∣∣
ε=0

f ′′ν,ν(ν;η,µ) := lim
ε→0

1
ε

[f ′ν(ν + εµ,η) − f ′ν(ν;η)] = d
dε f

′
ν(ν + εµ;η)

∣∣∣∣∣
ε=0

,

(2.4)

wherein f ′ν(ν;η) is the first directional derivative, which is linear with respect to η. And
f ′′ν,ν(ν;η,µ) is the second directional derivative, which is linear with respect to η and µ.
The variation of the function f(•) is equal to the directional derivative

δνf(ν; δν) = f ′ν(ν; δν) , (2.5)

this notation is used within this work. If the function depends on a second nonlinear
function s̃ ∈ S, so that f(ν, s̃) : V × S → R, the total variation of the function reads

δf = δνf(ν, s̃; δν) + δs̃f(ν, s̃; δs̃) , (2.6)

wherein δνf(ν, s̃; δν) and δs̃f(ν, s̃; δs̃) are the partial variations. In case of a direct
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2. Preliminaries and Notation

dependency of the parameters, e.g. ν(s̃), the total partial variation is defined as follows

Ds̃f(ν(s̃), s̃) = ∂f

∂s̃
+ ∂f

∂ν

dν
ds̃ . (2.7)

2.0.3. Software

This section outlines the technical implementation of the mathematical derived material
description for the mechanical-chemical-degradation approach, which is solved within the
framework of FEM and embedded in an optimisation algorithm. For this purpose, a
general overview of the programmatic implementation is given without details of the
equations. The final purpose is to develop a numerical program that can solve the following
problem:

”Optimisation of a boundary value problem coupled with mechanical and chemical
influences lead to material degradation.“

Figure 2.1.: Illustration of the algorithmic framework.
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The program can essentially be divided into formulations for the element and global level.
Firstly, the structural analysis is addressed. Therefore, a boundary value problem is gen-
erated, i.e. the finite mesh is created, the assembly of elements is implemented and the
solution algorithm is performed. The solution algorithm is implemented globally in the
MATLAB environment, wherein matrix formulations are applied. Secondly, mathemati-
cal optimisation is also performed globally, accessing the practical MATLAB toolboxes.
The element level, in turn, contains the developed coupled differential equations for the
description of a represented problem: the variational formulations with the discrete weak
forms and the derived gradients. Information on the element level is implemented via the
MEX interface, integrated into the MATLAB environment in a FORTRAN function. In
summary, the global program runs in MATLAB, while the information from the element
level is implemented in a FORTRAN code and embedded via MEX interfaces. The open
software Gmsh is integrated into the global program via a second interface. Gmsh is used
to generate the geometry and FE-mesh for the boundary value problem. The technical
implementation of the program, taking into account the interfaces mentioned above, is
illustrated in Figure 2.1.

MATLAB

The presented program is implemented and tested in MATLAB R2019b, wherein the
operating system is LINUX. The main code to be executed is the developed SOP3DP
(Structural Optimisation Program for Diffusion-Driven Degradation Process) and con-
tains all necessary sub-functions and interfaces. The solution process for calculating the
structural analysis is implemented in MATLAB, whereby the theoretical description is
given in Sec. 4. The optimisation algorithm is integrated into MATLAB; the algorithm
applies the MATLAB optimisation toolbox. Two different optimisation strategies are per-
formed. The first is the optimisation of non-linear constraints, where a defined objective
function is minimised under geometry change. In the second case, parameter optimisation
is used to adapt the material parameters to a given objective function with a least-square
problem. For the first optimisation strategy, the fmincon solver provided in the MATLAB
optimisation toolbox is used. For the second strategy, the MATLAB function lsqnonlin
is utilised to solve the least-squares problem. The preparation of the required objective
functions, constraints, derivatives as well as Hessian matrices are specified in section 5.
Further details on program implementation can be found in [92].
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2. Preliminaries and Notation

ParaView

”ParaView is an open-source, multi-platform scientific data analysis and visualisation
tool that enables analysis and visualisation of extremely large datasets“ [105]. In this
thesis, ParaView is utilised to post-process the structural and optimisation analysis. The
calculation data produced by MATLAB are transferred into ParaView via the VTK format
and can be displayed as contour images, videos, or other graphics.

Gmsh

The program Gmsh is an open-source program for the generation of FE-meshes. It can
be used for 2D and 3D meshes by creating geometries with a CAGD (Computer-Aided
Geometric Design) built-in engine and automatically meshing. Within the scope of this
work, Gmsh is used due to its easy handling, the possibility to integrate it into the MAT-
LAB code as well as the parametric input of the data. Overall, it enables the application
of the modules geometry, mesh, solver and post-processing. For more information, see
[54].

Program Interfaces

Interface: MEX file
The element and material formulations are implemented in the FORTRAN 77 program-
ming language. Various subfunctions provide the discrete element formulations for the
derived stiffness matrix, the pseudo-load matrix and other necessary derivatives. The
theoretical background of the deduced equations is presented in this thesis, cf. Sec. 4.
MATLAB uses a created gateway routine finterface.F as the entry point to the developed
FORTRAN functions. Thus, the embedded MEX files are generated by the MATLAB
command MEX, whereby the FORTRAN code is compiled with the GFortran compiler
from [1].

Interface: Gmsh
The geometry is defined based on the CAGD approach. Points, lines and areas are used to
create a geometry. The external program Gmsh combines the CAGD-based features with
an automatic mesh generation. In this thesis, Gmsh is used and accessed via MATLAB
to create a parameterised and structural mesh. To this effect, the program is applied via
ASCII text files using Gmsh’s programming language via .geo files to generate geometries
and meshes. The theoretical details are provided in Sec. 5.4.
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3. Continuum Model

This section outlines the development of a coupled mechanical-chemical-degradation con-
tinuum problem. In addition to introducing the fundamental assumptions and equations
for the continuum model, the primary literature is provided. In particular, the challenges
of this work are highlighted. The kinematic and the physical properties of a mechanical-
chemical-degradation problem are presented based on the balance equations and a ther-
modynamically consistent evaluation.

3.1. Introduction to the Continuum Model

In this thesis, an approach for calculating a coupled mechanical-chemical-degradation
process is presented. One focus of this work is the mechanical growth, respectively degra-
dation, which is approached by combining a kinematic and a constitutive strategy. On the
one hand, the kinematic approach serves a multiplicative decomposition of the deforma-
tion into an elastic and a degradation contribution. Thereby, the split of the deformation
is similar to the procedure for elastoplastic materials or similar damage mechanisms,
see e.g. [40, 122, 125, 98, 96, 57]. With the extended kinematic concept, the mapping
processes of a degraded continuum is represented. On the other hand, a constitutive for-
mulation of the mass exchange is formulated. For this purpose, a chemical concentration
is introduced as an additional degree of freedom that triggers the mass degradation of the
material body. The physical behaviour of the coupled mechanical-chemical-degradation
problem is derived, whereby, in particular, the properties of an open system must be
fulfilled. Thereby, both the mechanical impulse and the conservation of mass, including
diffusion processes, must be ensured. Coupled, nonlinear and partial differential equations
arise, which are solved within the framework of structural mechanics. The energy process
depends on the elastic strain and chemical concentrations. This work provides access to a
fully thermodynamically consistent evaluation of entropy inequality; thus, physical laws
for stress, mass sink and mass flux are derived.
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3. Continuum Model

In addition to the derivation of the continuum, the following section prepares the math-
ematical fundamentals for an inverse geometric approach. For this purpose, a parameter
space is applied within the framework of kinematics. Thus, this work represents an en-
hanced kinematic approach that combines classical kinematics with a complementary pa-
rameter space as introduced in [6, 7] and furthermore, integrates degradation kinematics.
The parameter space allows a description of the continuum independent of the geometry
and displacement and provides better access to variations of continuum mechanical quan-
tities. This access serves the basic for an efficient structural sensitivity approach in the
framework of an optimisation algorithm.

Model Assumptions

The model considers a body, allowing the diffusion of concentrations due to its permeable
structure. The body’s mass exchange only takes place via so-called sink terms, which
reduce the mass of the body. A mass flow of the macroscopic body is not considered.
The concentrations are assumed to have a sufficiently small mass contribution, so they do
not directly affect the density of the body. Indirectly, the concentrations trigger the mass
degradation of the body, i.e. the mass sink term of the macroscopic body is calculated
via the concentrations.

Body related assumptions Concentrations related assumptions
• Open system • Sufficiently small mass
• Permeable body • Gradient-based flow
• Chemical triggered degradation • Single concentration considered
• No in or out flux of mass
• Slow progression of degradation
• No consideration of acceleration terms
• No consideration of gravity forces
• Isothermal processes
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3.2. State-of-the-Art for Presumptions on Continuum
Model

3.2.1. Kinematics

The kinematics applied in this work are based on general definitions for the deformation of
a material body. Reference is made here to the standard literature, [2, 110, 56]. However,
in this thesis, two challenges are highlighted in the context of kinematics:

• Growth processes,
• Local convective approach,

which are sorted into the state-of-the-art in the following.

Remark: In this section, the term ’growth’ is mainly used. It is a common term in
the literature because ’growth’ and ’degradation’ only differ by an algebraic sign from a
kinematic point of view.

Growth processes are of particular importance in the field of biomechanics. Thomsen
shows already in 1917, that both the essential physical understanding and mathematical
models for growth processes, are influenced by observations of nature, see [132]. Menzel
et al. summarise in [97] growth and remodelling models for living structures. Mechanical
growth and remodelling can be modelled either with a constitutive approach, a kinematic
approach or a combination of both. Growth processes can be described by evaluating the
time-dependent change in mass, density or volume of a structure. On the one hand, the
constitutive approach concentrates on a thermodynamically consistent evaluation of the
mass source, respectively mass sink and the mass flux, which enables the calculation of
change in mass or density, see for instance [35, 61, 41, 80, 94]. The kinematic approach,
on the other hand, allows the calculation of the variable mass or volume by applying a
multiplicative decomposition of the deformation gradient, as applied in [114, 28, 3, 55, 95].
A useful alternative is the combination of the constitutive and kinematic approach, one
example for this combination is presented by Ganghoffer in [45], where the calculation of
surface growth in biological tissue is presented. He uses the multiplicative decomposition
of the deformation gradient, as initially presented by [114], and applies a thermodynami-
cally consistent approach to establish an evolutionary law for growth velocity. The multi-
plicative decomposition of the deformation gradient leads to a “growth tensor describing
the local addition of material and an elastic tensor characterizing the reorganization of
the body”, cf. [47]. Therefore, the development of the growth tensor, the so-called trans-
plant tensor, is introduced as a state variable in the framework of finite elasticity. The
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3. Continuum Model

numerical growth processes presented in biomechanics can be applied in the same way to
any kind of mechanical structure. For example, in [29] growth is calculated as swelling
and squeezing of an elastomeric gel in a continuum mechanical framework. Furthermore,
in [78] is the reduction of the structural stiffness or strength in concrete structures due
to chemical substances applied. In this thesis, the combination of the constitutive and
kinematic approach is followed.

Barthold introduces in [6, 7] the local convective approach of local coordinates to access
inverse geometry problems. This approach is based on fundamental concepts of the mate-
rial body with Noll’s intrinsic concept, presented in [102] respectively ongoing in [19, 58].
With the local convective approach, a kinematic separation of geometry and displacement
occurs, which is especially helpful in the context of sensitivity analysis, see [13, 9, 7], to
determine the required variations. This background is used to establish the extended
kinematic framework in this work.

3.2.2. Coupled Problems

Within the framework of continuum mechanics, physical conservation laws are relevant.
These material-independent balance equations establish the connection between changes
in a physical quantity, such as mass or momentum, and the flux over the boundary of the
body as well as internal production terms. To describe the full physical behaviour, besides
the material-independent equations, the material-dependent equations are required, which
are established in the context of thermodynamic evaluations. The introduction to the
balance equations and extension of the thermodynamic evaluation is part of the standard-
based procedure for the deformation of a continuum since 1960, presented in [133, 70, 34],
among others. Furthermore, reference is made to the standard literature on continuum
mechanics [15, 2, 110]. In principle, different, independent degrees of freedom can occur;
for example, electric, plastic, magnetic, mechanical or chemical fields can be described
as single-field problems or as coupled multi-field problems, cf. [20, 78]. In particular
multi-field problems, resulting in more complex numerical models. Thus, the particular
challenges of this work relate to:

• Mechanical-chemical coupling,
• Thermodynamic evaluation for open systems.

In this thesis, the multi-field phenomenon is considered in the extended environment
of structural mechanics as a result of a mechanical-chemical coupling. Comparative ap-
proaches that address mechanical-chemical coupling are numerous [79, 134, 50, 16]. In
particular, flux and production terms play an important role for mass exchange in the
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continuum, see [79, 78]. Furthermore, with the balance equations’ extension, the influence
on thermodynamics and the resulting statements on energy balance and entropy must be
considered. For instance, [46, 86, 29] present a thermodynamically consistent derivation
of mechanical-chemical coupled processes.

The method of classical thermodynamics can no longer be applied as soon as the mass
exchange is taken into account due to the fact, a closed system no longer exists. For this
reason, strategies for the thermodynamic evaluation of open systems must be applied.
The first approach to consider mass exchange for the description of bone remodelling
was introduced in 1976 by Cowin and Hegedus [35]. Furthermore, [81] presents the mass
and volume-related thermodynamic evaluation approach of open systems in general. A
detailed summary of the thermodynamics of these complex systems is given in [109].
Access via open systems has many similarities with mixture theory (cf. Truesdell and
Toupin [133], and Bowen [24]). With the mixture theory’s help, the interaction and
exchange of different materials can be described, whereby the components are locally
superimposed at any point in space. This theory is applied, for example, in the context of
the theory of porous media, which can be used to describe growth processes of multi-phasic
materials, e.g. [113].

With this background, this work provides both a mechanical-chemical coupled system and
an open system that can represent degradation processes. The continuum is regarded as
a single-phase open system.

3.3. Kinematics

3.3.1. Kinematic Concept

In this thesis, a comprehensive kinematic framework, providing a representation of the
continuum mechanical formulation based on differential geometry, is utilised and subse-
quently extended by embedding degradation kinematics. Furthermore, a complementary
parameters space is considered to access a variational sensitivity analysis. A graphical
illustration of the applied kinematic framework is presented in Figure 3.1. Therein, the
infinitesimal volume elements dV , dv, dVθ and dvd are assigned to a reference configura-
tion, an actual configuration, a parameter space and a degradation space. The parameter
space allows the representation of continuum mechanical quantities independent of ge-
ometry and displacement. Furthermore, the deformation state can be classified by a
multiplicative decomposition into an elastic and a degradation part due to the different
configurations. It is assumed that the mass density’s temporal development takes place
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in the reference configuration. The positions are introduced in the reference configuration
X, in the actual configuration x, in the degradation space xd and in the parameter space
θi, namely the convective coordinates. The Cartesian base Zi represents the parameter
vector space θ ∈ Z3. The mapping ϕt describes the connection between the reference
particles X to their spatial position x = ϕt(X, t). Furthermore, the mappings κ, µ
and υ link the parameter points θ to their position in the reference X = κ(θ), actual
configuration x = µ(θ, t), or in the degradation space xd = υ(θ, t), where t represents
time. The partial derivative of the mappings in relation to the coordinate lines lead to
convective tangent vectors Gi, gi and hi, i.e.

Gi = ∂κ

∂θi
gi = ∂µ

∂θi
hi = ∂υ

∂θi
, (3.1)

with i = 1, 2, 3. The contravariant basis vectors, that determine the dual basis, are
defined by Gi · Gj = δji , gi · gj = δji and hi · hj = δji . This introduces the important
two-point tensors that allow transformations between objects in relation to the respective
configurations, i.e. K, M, G and F

local geometry gradient : K = Gi ⊗Zi = GRADκ

local deformation gradient : M = gi ⊗Zi = GRADµ

local degradation gradient : G = hi ⊗Zi = GRADυ

deformation gradient : F = gi ⊗Gi = Gradϕt .

(3.2)

The kinematic concept basics are introduced according to [6, 7]. Thus, the reference
and actual configuration from classical mechanics are extended to include the parameter
space and the gradients, i.e. the local geometry and local deformation gradient are set up
according to the records of [6]. In this work, the kinematics are extended by a degradation
space and the associated gradients are introduced. The local degradation gradient G
connects the parameter space with the introduced degradation space.

Remark: The local degradation gradient G, with the corresponding mapping υ and the
following determinant JG, respectively, are introduced in the context of kinematics for the
sake of completeness and serve to clarify the transformations introduced. In the following
mathematical explanations of this thesis, the gradient can be dispensed for the time being.
However, the important role for further research is presented in the outlook, see Sec. 11.2.
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3.3. Kinematics

Figure 3.1.: Graphical illustration of the kinematic concept.

In general, the local gradients and divergence operators are described with GRAD and
DIV as well as the referential quantities with Grad and Div and the spatial quantities
with grad and div. The determinants of the introduced gradients follow straightforward,
with

J = det(Gradϕt) JM = det(GRADµ)

JK = det(GRADκ) JG = det(GRADυ) .
(3.3)

The commonly used deformation gradient F is related to the reference and actual config-
uration. Thus, mapping from reference to the actual configuration can be described by
the composition ϕt := µ◦κ−1. Furthermore, local and referential gradients can be trans-
formed by a local geometry gradient, respectively, deformation gradient. For an arbitrary
transformed vector with t̃X = t̃X(κ(θ)) = t̃θ(θ), respectively t̃x = t̃x(κ(θ)) = t̃θ(θ),
follows

Grad t̃X := ∂t̃X
∂θi
⊗Gi =

(
∂t̃X
∂θi
⊗Zi

) (
Zj ⊗Gj

)
= GRAD t̃θ K−1

grad t̃x := ∂t̃x
∂θi
⊗ gi =

(
∂t̃x
∂θi
⊗Zi

)
(Zj ⊗ gj) = GRAD t̃θ M−1 ,

(3.4)
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with the local gradient operator, i.e.

GRAD t̃θ := ∂t̃θ
∂θi
⊗Zi . (3.5)

A multiplicative decomposition of the deformation gradient F into an elastic part Fe and
a degradation part Fd is applied.

Degradation gradient : Fd = hi ⊗Gi

Elastic deformation gradient : Fe = gi ⊗ hi .
(3.6)

According to Lubarda and Hoger [87], an isotropic approach is used for the degradation
contribution to the deformation gradient with the stretch ratio ν, to be specific

F = Fe Fd with

Fd = ν 1 and ν = 3

√
ρ0

ρ∗0
,

(3.7)

whereby 1 denotes the second-order identity tensors. Within the kinematic concept, the
assumption is made that the density is maintained from the initial reference configuration
to the degradation space, i.e.

ρ∗0 = ρd . (3.8)

The mapping between the configurations, see Figure 3.1, leads to a change in volume,
whereas mass is not influenced by such mappings, i.e. using Eq. (3.8)

ρ0 = ρ∗0 Jd = ρd Jd = ρt J ; ρd = ρt Je . (3.9)

Moreover, Je = det Fe > 0 denotes the determinant of the elastic part of the deformation
gradient and J = det F > 0 as well as Jd = det Fd = ρ0

ρ∗0
> 0, cf. Eq. (3.7), follows by

analogy. With the introduced kinematics, the following line element yields with

dX = K dθ

dx = M dθ = F dX = Fe dxd

dxd = G dθ = Fd dX ,

(3.10)

22



3.3. Kinematics

the surface elements follow with

dA = det K K−T dAθ

da = det M M−T dAθ = det F F−T dA = det Fe (Fe)−T dad

dad = det G (G)−T dAθ = det Fd (Fd)−T dA ,

(3.11)

and finally the volume elements follow with

dV = det K dVθ

dv = det M dVθ = det F dV = det Fe dvd

dvd = det G dVθ = det Fd dV .

(3.12)

Table 3.1 shows exemplary the transformations for contravariant vectors {t̃x, t̃X , t̃θ, t̃d}
and tensors {T̃x, T̃X , T̃θ, T̃d} using the previously introduced illustrations and two-field
tensors.

Table 3.1.: Transformations for contravariant vectors and tensors with push-forward
and pull-pack operations, cf. Barthold [6]; with extensions for the trans-
formation from and to the degradation space.

From To Operation Vector Tensor
push-forward t̃X = K t̃θ T̃X = K T̃θ KT

T̃θ T̃X pull-back t̃θ = K−1 t̃X T̃θ = K−1 T̃X K−T

push-forward t̃x = M t̃θ T̃x = M T̃θ MT
T̃θ T̃x pull-back t̃θ = M−1 t̃x T̃θ = M−1 T̃x M−T

push-forward t̃x = F t̃X T̃x = F T̃X FT
T̃X T̃x pull-back t̃X = F−1 t̃x T̃X = F−1 T̃x F−T

push-forward t̃d = Fd t̃X T̃d = Fd t̃X FT
dT̃X T̃d pull-back t̃X = F−1

d t̃d T̃X = F−1
d t̃d F−T

d

push-forward t̃x = Fe t̃d T̃x = Fe t̃d FT
eT̃d T̃x pull-back t̃d = F−1

d t̃x T̃d = F−1
e t̃x F−T

e

push-forward t̃d = G t̃θ T̃d = G t̃θ GT
T̃θ T̃d pull-back t̃θ = G−1 t̃d T̃θ = G−1 t̃d G−T
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3. Continuum Model

The transformations are applied to arbitrary vectors and tensors in the following form

t̃x = t̃i gi T̃x = T̃ ik (gi ⊗ gk)

t̃X = t̃iGi T̃X = T̃ ik (Gi ⊗Gk)

t̃θ = t̃iZi T̃θ = T̃ ik (Zi ⊗Zk)

t̃d = t̃i hi T̃d = T̃ ik (hi ⊗ hk) .

(3.13)

3.3.2. Deformations

In the previous section, the deformations are described with the introduced gradients.
However, within the following continuum mechanical derivation, deformation measures
are needed, which do not contain rigid body movements. For this reason, the right Cauchy
Green tensor C, respectively the left Cauchy Green tensor B as well as the inverses C−1

and B−1, are introduced with

C = FT F = gijG
i ⊗Gj and C−1 = gijGi ⊗Gj

B = F FT = Gij gi ⊗ gj and B−1 = Gij g
i ⊗ gj .

(3.14)

Furthermore, the elastic right Cauchy Green tensor Ce, respectively left Cauchy Green
tensor Be as well as the inverses C−1

e respectively B−1
e can be introduced with the elastic

contribution to the deformation gradient as follows

Ce = FT
e Fe = gij h

i ⊗ hj and C−1
e = gij hi ⊗ hj

Be = Fe FT
e = hij gi ⊗ gj and B−1

e = hij g
i ⊗ gj .

(3.15)

The degradation part of the right Cauchy Green tensor Cd, respectively left Cauchy Green
tensor Bd, follow in the same way with

Cd = FT
d Fd = hijG

i ⊗Gj and C−1
d = hijGi ⊗Gj

Bd = Fd FT
d = Gij hi ⊗ hj and B−1

e = Gij h
i ⊗ hj .

(3.16)

Therein Gij = Gi · Gj, Gij = Gi · Gj, gij = gi · gj, gij = gi · gj, hij = hi · hj and
hij = hi·hj are the metric coefficients. Finally, the strain tensors for use in the constitutive
formulations are derived, again taking into account the decomposition into an elastic and
degradation component.

24



3.3. Kinematics

The Green-Lagrange strain tensor E is introduced with

E = 1
2 (C − 1) Ee = 1

2 (Ce − 1) Ed = 1
2 (Cd − 1) . (3.17)

In addition, the Almansi strain tensor A is illustrated with

A = 1
2 (1 − B−1) Ae = 1

2 (1 − B−1
e ) Ad = 1

2 (1 − B−1
d ) , (3.18)

and the Karni-Reiner strain tensor K̂ is stated as follows

K̂ = 1
2 (B − 1) K̂e = 1

2 (Be − 1) K̂d = 1
2 (Bd − 1) . (3.19)

3.3.3. Selected Variations of Kinematics

The variations of the kinematic quantities relevant for this work are introduced in this
section. Based on the presented configuration, which separates the geometry and displace-
ment mapping, these partial variations and the total variations are derived. The partial
variations of an arbitrary function f with respect to the virtual geometry field δX and
with respect to the virtual displacement field δu follow with δXf and δuf . Here, geome-
try X and displacement u are independent of each other. In addition to the kinematic
quantities, concentrations cγ are defined as independent degrees of freedom. The partial
variation of a function depending on these concentrations δcf becomes relevant for the
coupled problem. Thus, the total variation δf of an arbitrary function can be represented
as the sum of the partial variations as follows

δf = δXf + δuf + δcf . (3.20)

Variation of the Gradients

The variations of the gradients in the parameter space and reference configuration are
derived. First, the total variation of the local gradient operator applied on an arbitrary
physical quantity in the parameter space t̃θ follows with

δ(GRAD t̃θ) = GRAD δt̃θ . (3.21)

25



3. Continuum Model

The variation of the material gradient operator applied on a vector field in the reference
configurations results in

δ(Grad t̃X) = δ(GRAD t̃θ K−1) = δGRAD t̃θ K−1 + GRAD t̃θ δK−1 , (3.22)

wherein Eq. (3.4) is applied. The following equations illustrate a connection between the
local geometry gradient K and the identity tensor 1, i.e.

K K−1 = 1

δ(K K−1) = 0

δK−1 = −K−1 δK K−1 ,

(3.23)

wherein, the relation being pointed out, that

δK K−1 = δGi ⊗Gi = Grad δX . (3.24)

Taking Eq. (3.4) and the relation described above into account, the total variation from
Eq. (3.22) follows with

δ(Grad t̃X) = Grad δt̃X − Grad t̃X Grad δX . (3.25)

It can be noticed that the gradient operator is constructed from two terms; one refers to
the variation of the vector field t̃X and the other to the corresponding contravariant basis
Gi. For this reason, the variation of the local gradient in Eq. (3.21) refers only to the
vector field t̃θ, as the basis Zi is independent of geometry and displacement. Furthermore,
the total variation δ(Grad t̃X) can be split into the partial terms with

δc(Grad t̃X) = Grad δct̃X

δu(Grad t̃X) = Grad δut̃X

δX(Grad t̃X) = Grad δX t̃X − Grad t̃X Grad δX .

(3.26)
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3.3. Kinematics

Variation of the Deformation Gradient

Applying Eq. (3.26) on the deformation gradient F = Gradx results in

δc(Gradx) = Grad δcx = 0

δu(Gradx) = Grad δux = Grad δu

δX(Gradx) = Grad δXx − GradxGrad δX = −GraduGrad δX .

(3.27)

Wherein the connection x = X + u is applied and the material displacement gradient
is introduced with H = Gradu = F − 1. The concentrations are summarised in an
independent degree of freedom; thus, the partial variation disappears for kinematic related
quantities.

Variation of the Green-Lagrange Strain Tensor

Using the above described Eq. (3.27), the partial variations of the symmetric Green-
Lagrange strain tensor E follows with

δuE = sym(FT Grad δu)

δXE = sym(−FT GraduGrad δX) .
(3.28)

Variations of the Determinants

For structural analysis, the partial variations of the determinant of the deformation gra-
dient J = det F = det(C)1/2 are required, i.e.

δuJ = δEJ : δuE = J C−T : δuE

δXJ = δEJ : δXE = J C−T : δXE .
(3.29)

In connection with the sensitivity analysis, the partial variation of the local geometry
determinant δXJK with respect to the virtual geometry field is applied. Again, the inde-
pendence of the local base Zi can be utilised and the relation δK det K = det K K−T is
used. Thus, it follows

δXJK = det K K−T : δK = det K 1 : Grad δX = JK Div δX , (3.30)

wherein Eq. (3.24) is used.
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3. Continuum Model

Material Time Derivative

In addition to the kinematic quantities, which refer to local descriptions, time-
dependencies are also used to calculate velocities. Therefore, the material time derivative
of the elastic right Cauchy Green tensor from Eq. (3.15.1) is exemplary introduced at
this point with Ċe, i.e.

Ċe = (Ḟe)T Fe + FT
e Ḟe = FT

e lT Fe + FT
e l Fe = 2 FT

e d Fe , (3.31)

with

Ḟe = l Fe and d = 1
2 (lT + l) , (3.32)

where l = grad ẋ represents the spatial velocity gradient with its symmetrical component
d. Further, necessary variations are listed in the course of the work.

3.4. Degradation Approach

The degradation model is based on combining a kinematic and constitutive approach.
Therefore, the kinematic concept is presented in Sec. 3.3.1, where a decomposition of the
deformation gradient represents the volume change of the material body into an elastic
and a degradation part. The calculation of the degradation part Fd from Eq. (3.7.2)
depends on the mass densities, on an initial mass density ρ∗0 and on the reference mass
density ρ0. The referential mass density is evaluated by the mass exchange in the reference
configuration. Thus, the updated mass dm results from the initial mass dM and a mass
sink term R0 per unit volume, i.e.

dm = dM +
t∫

t0

R0 dt dV . (3.33)

This results in the time-dependent update of the initial mass density ρ∗0 to the resulting
referential mass density ρ0 with

ρ0 = ρ∗0 +
t∫

t0

R0 dt . (3.34)

The equation for the mass sink term follows in the framework of the constitutive law,
cf. Sec. 3.7. In principle, a connection between material degradation and concentrations
is postulated. The concentrations cγ are defined by corresponding molar density ργ and
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3.5. Stress Representations

molar mass Mγ, i.e.

cγ = ργ
Mγ

. (3.35)

Assuming that only one substance is considered, the degradation effect of the concentra-
tions follows with

ρ0 = ρ∗0 − cγMγ , (3.36)

whereby the Eq. (3.71) is anticipated. This thesis does not address more precise chemical
processes to allow a wide range of applications. Nevertheless, the concentrations have to
fulfil the balance of mass with∫

Ωt

ċγ dv = −
∫
Γt

grad jγ · n da , (3.37)

with the material time derivative of the concentrations ċγ and the flux of the concentra-
tions jγ. The concentrations entering a structure Ωt via a surface Γt are described by a
time-dependent process, whereby n is a normal unit vector on the actual configuration.
Therefore, the evolution of degradation depends on the history of the concentrations. In
the course of this work, the concentrations are introduced as additional degrees of freedom
within the framework of a coupled mechanical-chemical continuum model.

3.5. Stress Representations

Loads on the body lead to strain and stress; therefore, the stress is outlined below from
a geometric perspective. First, the fundamental Cauchy stress tensor T is introduced,
which refers to the actual configuration with

T = T ij gi ⊗ gj , (3.38)

wherein T ij are the contravariant coefficients of the second-order tensor. Using the surface
mapping from the actual configuration to the reference configuration, the so-called first
Piola-Kirchhoff tensor P, can be displayed, i.e.

P = J T F−T = J T ij gi ⊗Gj . (3.39)
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3. Continuum Model

The pull-back of the material first Piola-Kirchhoff tensor results in the second Piola-
Kirchhoff tensor SK with

SK = F−1 J T F−T = F−1 P = J T ijGi ⊗Gj , (3.40)

which refers entirely to the reference configuration. This tensor is helpful for numerical
applications due to its symmetrical characteristics with SK = ST

K .

The stress tensors can be displayed in all configurations using the introduced kinematic
concept from Sec. 3.3.1. For example, the first Piola-Kirchhoff tensor P can be represented
with the local geometry gradient K in the parameter space as follows

Pθ = JK P K−T = JM T ij gi ⊗Zj . (3.41)

3.5.1. First Principal Stress

For engineering complexities, such as maximum stress calculation, it often more logical
to calculate the extreme values of the normal stresses using the principal stresses. There-
fore, the first TI , respectively second TII , principal stress of the Cauchy stress tensor are
introduced for a two-dimensional case as follows

TI,II = IT
2 ±

√(
IT
2

)2
− IIT , (3.42)

with the first and second scalar-valued invariant IT , IIT and their variation with respect
to the Cauchy stress tensor T, i.e.

IT = tr T
∂IT
∂T

= 1

IIT = 1
2 (I2

T − tr T2) ∂IIT
∂T

= IT 1 − TT .

(3.43)

3.5.2. Surface Stress

The overall stress contribution F∗ of a body can be illustrated in the different configura-
tions as follows

F∗ =
∫
Γ0

t∗X dA =
∫
Γt

t∗x da =
∫
Γθ

t∗θ dAθ , (3.44)
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3.6. Balance Equations

with the surface tensions t∗X , t∗x, t∗θ and the surfaces Γ0,Γt,Γθ. Applying the so-called
Cauchy theorem, the surface stresses are connected via normal unit vectors N ,n,N θ to
the stress tensors, i.e.

t∗X = PN ∀ X ∈ Γ0

t∗x = Tn ∀ x ∈ Γt

t∗θ = PθN θ ∀ θ ∈ Γθ .

(3.45)

3.6. Balance Equations

The balance equations are established for the coupled mechanical-chemical-degradation
problem. Therefore, the classical balance equations are updated about additional terms
caused by the mass exchange.

3.6.1. Balance of Mass

Due to the mass exchange of the material body via chemical concentrations, both the
balance of mass for the macroscopic body and the balance of mass for the concentrations
are introduced. The sink term of the mass in the reference configuration leads to a change
of mass with dṁ = R0 dV , see Eq. (3.33), and therefore, the balance of mass is referred
to Eq. (3.34).

The balance of mass of the chemical concentrations contains the material time derivative
of the concentrations ċγ and the flux of the concentrations jγ is introduced in Eq. (3.37)
and applies in the actual configuration with∫

Ωt

(ċγ + div jγ) dv = 0 . (3.46)

3.6.2. Balance of Linear Momentum

The balance of linear momentum is based on assuming that no volume forces act and no
accelerations are considered. Therefore, the balance of linear momentum is only dependent
on the Cauchy stress T with∫

Ωt

div T dv = 0 , (3.47)
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3. Continuum Model

in the actual configuration. Furthermore, it is emphasised that no additional momentum
needs to be taken into account due to the mass exchange, as the degradation proceeds
very slowly.

3.6.3. Balance of Moment of Momentum

The balance of moment of momentum, respectively angular momentum, is not listed.
From this balance follows the statement that the Cauchy stress tensor T is symmetrical
with

T = TT . (3.48)

3.6.4. Balance of Energy

The energy balance is composed of the time derivative of the internal energy Ė and the
kinetic energy K̇, which correspond to the mechanical change dW , the thermal change
dQ and the chemical flux on the surface Ecγ . Hence, the equation follows

Ė + K̇ = dW + dQ + Ecγ∫
Ωt

ė dv =
∫
Ωt

(d : T + r − div q) dv −
∫
Γt

µγ jγ · da ,
(3.49)

with the derivative of the volume-specific internal energy ė, the volume-specific heat source
r, the heat flux density q, the chemical potential µγ and the spatial outward unit surface
vector n, which connects da = n da. The time derivative of the kinetic energy does not
influence the balance of energy because the acceleration is neglected and the progression
of the degradation is slow. Moreover, the surface part can be restated to the following∫

Γt

µγ jγ · da =
∫
Ωt

div (µγ jγ) dv , (3.50)

with the connection

div (µγ jγ) = jγ · gradµγ + µγ div jγ . (3.51)

The local form of the balance of energy reads

−r + div q = − ė + d : T − jγ · gradµγ + µγ ċγ , (3.52)
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3.7. Constitutive Formulations

using the balance of mass of the chemical concentrations as given in Eq. (3.46).

3.6.5. Balance of Entropy

Based on thermodynamics’ second law, entropy never decreases in a closed system. This
statement results in the requirement that entropy increases or remains constant. In this
context, the entropy inequality follows with

∫
Ωt

ṡ dv ≥
∫
Ωt

1
Θ r dv −

∫
Γt

1
Θ q · da , (3.53)

where ṡ refers to the material time derivative of the volume-specific entropy and Θ denotes
the absolute temperature. The surface part can be reformulated, i.e.

∫
Γt

1
Θ q · da =

∫
Ωt

div
(

1
Θ q

)
dv , (3.54)

and the following equation is converted to

div
(

1
Θ q

)
= q · grad

(
1
Θ

)
+ 1

Θ div q = − 1
Θ2 q · grad Θ + 1

Θ div q . (3.55)

Substituting the reformulation into the entropy inequality (3.53) yields

0 ≤ Θ ṡ − r − 1
Θ q · grad Θ + div q . (3.56)

The isothermal conditions, i.e. q = 0 as well as Θ̇ = 0, are established. Thus, from the
local form of the energy balance, cf. Eq. (3.52), follows the constraint with

0 ≤ Θ ṡ − ė + d : T − jγ · gradµγ + µγ ċγ , (3.57)

this results in the so-called Clausius-Planck representation of entropy inequality.

3.7. Constitutive Formulations

In order to fully understand the physical behaviour of the introduced mechanical-
chemically coupled degradation problem, a thermodynamically consistent evaluation and
the introduction of the constitutive equations are outlined. From a thermodynamic per-
spective, an open system is regarded as a single-phase. The mechanical and chemical
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properties of the body are coupled using volume-specific access. As a result, constitutive
equations for the stress, the sink term of mass exchange and the concentrations’ flux term
can be established.

3.7.1. Evaluation of the Entropy

Using the method of Coleman and Noll [34], the Clausius-Planck representation of the
entropy inequality from Eq. (3.57) can be evaluated. The thermodynamic consistency
is ensured and the necessary constitutive equations can be established. According to
Helmholtz, free energy ψ is a thermodynamic potential and can be obtained from a
thermodynamic system at constant temperature and volume with

ψ̇ = ė − Θ ṡ . (3.58)

By inserting the Helmholtz free energy into the entropy inequality in Eq. (3.57) and
selecting the elastic right Cauchy Green tensor and the concentrations to derive the energy
process with ψ(Ce, cγ), the following restriction is obtained

− ∂ψ

∂Ce

: Ċe + d : T − ∂ψ

∂cγ
ċγ + µγ ċγ − jγ · gradµγ ≥ 0 , (3.59)

whereby the last part [− jγ · gradµγ] is irreversible and the other parts of the equation
are reversible. The set of energy functions can be separated into a mechanical ψM and
chemical ψC part with their respective dependencies,

ψ(Ce, cγ) = ψM(Ce) + ψC(cγ) . (3.60)

In order to ensure the entropy inequality, the reversible contributions are evaluated and
the Cauchy stress T as well as the chemical potential µγ are determined as follows

T = 2 Fe
ψM

∂Ce

FT
e

µγ = ∂ψC

∂cγ
,

(3.61)

wherein Eq. (3.31) is applied. The irreversible part of the entropy inequality motivates
the flux of the concentrations jγ. Thus, the constitutive equation is based on the classical
diffusion equation, the so-called Fick’s law, so that

jγ = −D grad cγ . (3.62)
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3.7. Constitutive Formulations

D is introduced as a diffusion coefficient. The transformation from the material flux to
the spatial flux reads as follows

Jγ = jγ cof(F) = −J DGrad cγ C−1 , (3.63)

wherein the cofactor is applied with cof(F) = J F−T.

3.7.2. Invariant Representations

Within the thermodynamic evaluation framework, the principle of material objectivity
must be fulfilled, i.e. the constitutive equations must be independent of the state of
motion. The chosen mechanical energy requires an independent representation within
the coupled mechanical-chemical model, which is invariant to superimposed rigid body
motions. As the elastic right Cauchy Green tensor is set as an independent process
variable, the invariant and their variations follow with

ICe = tr Ce
∂ICe
∂Ce

= 1

IICe = 1
2 (I2

Ce − tr C2
e)

∂IICe
∂Ce

= ICe 1 − CT
e

IIICe = det (Ce)
∂IIICe
∂Ce

= IIICe C−T
e .

(3.64)

3.7.3. Specifications of Energy Contributions

The mechanical energy is described by applying the hyperelastic Neo-Hooke material ψNeo,
to be specific

ψM = ρt ψ
Neo

ψNeo = 1
ρ∗0

[
1
2 λ (
√
IIICe − 1)2 − µ ln

√
IIICe + 1

2 µ (ICe − 3)
]
.

(3.65)

This representation provides a form depending on the invariant given in Eq. (3.64) and
contains material parameters µ and λ. Additionally, the parameters E and ν are intro-
duced, representing the modulus of elasticity and the Poisson’s ratio.
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These are related to the material parameters as follows

µ = E

2 (1 + ν)

λ = E ν

(1 + ν) (1 − 2 ν) .
(3.66)

In addition, a chemical part contribution to the energy is introduced with ψC as follows

ψC = cγ µ
0
γ + RΘ (−cγ + cγ ln cγ

c0
γ

) , (3.67)

with the constant standard potential µ0
γ and concentration c0

γ from the reference condition.
Additionally, the absolute temperature and a gas constant are illustrated with Θ and R.
Inserting the mechanical and chemical Helmholtz energy ansatz into Eq. (3.61) results,
first, in the constitutive equation for the Cauchy stress

T = ρt
ρ∗0

Fe

[
λ (Je − 1)Je (Ce)−T − µ (Ce)−T + µ1

]
FT
e

= ρt
ρ∗0

[
λ (Je − 1)Je 1 + 2µ K̂e

]
,

(3.68)

with the elastic part of the Karni-Reiner strain tensor from Eq. (3.19.2). Under consid-
eration of the deformation decomposition from Eq. (3.7) and the mapping of the Cauchy
stress tensor within Eq. (3.40) follows the first and the second Piola-Kirchhoff stress
tensor with

P = ρ0

ρ∗0

[
µFe F−T

d − [µ − λ (Je − 1) Je] 1 F−T
]

SK = ρ0

ρ∗0

[
µC−1

d − [µ − λ (Je − 1) Je] C−1
]
.

(3.69)

Secondly, the constitutive equation for the chemical potential follows with

µγ = µ0
γ + RΘ ln cγ

c0
γ

. (3.70)

Taking the model assumptions into account, the constitutive formulation for the mass
sink term R0 is postulated, based on the assumptions from Sec. 3.4, resulting in

R0 = −ρ̇γ , (3.71)

wherein the chemical concentrations trigger the material degradation.
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Based on the derived constitutive equations, the mechanical-chemical-degradation model
is dependent on material parameters; these are summarised in the material parameters
vector m with

m :=
[
µ λ ρ∗0 Mγ c0

γ D
]T

, (3.72)

whereby µ and λ are the first and second Lamé constants, ρ∗0 is the initial mass density,
Mγ is the molar mass, c0

γ is the initial concentration and D is the diffusion coefficient.

3.8. Concluding Remarks for the Continuum Model

A coupled mechanical-chemical-degradation model is developed in this section and the
necessary fundamentals are presented. Furthermore, the following insights are gained.

• The classical kinematics are extended by a degradation space and a parameter space.
Thus, a mathematical basis for continuum mechanical derivations is formulated.

• Important tensors for the description of deformations, stresses as well as several
necessary variations are introduced.

• The development of a degradation model is presented.
• The complete description of the thermodynamically consistent, material-independent

and material-dependent equations of the mass-degrading system, i.e. open system,
is available.
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4. Structural Analysis

This section presents the numerical implementation of the mechanical-chemical-
degradation continuum model. To solve the structural-mechanical problem, the FEM
is applied. Due to the nonlinear dependencies, the bilinear form for the tangential stiff-
ness is determined for the solution of the structural analysis.

4.1. Introduction to Structural Analysis

A set of coupled partial differential equations follow from the mechanical-chemical-
degradation continuum model, which is time-dependent and highly nonlinear. This section
presents the application of the standard-based FEM to the coupled mechanical-chemical-
degradation approach. In particular, the Bubnov-Galerkin method is utilised and there-
fore, spatial discretisation and time integration as well as an iterative procedure to solve
the multi-field problem are required. Due to the widespread utilisation of the FEM, refer-
ence is made to the standard literature, e.g. [145, 14, 128, 140], respectively the literature
is cited in the appropriate contexts. Thus, a detailed introduction to the FEM is not re-
quired. However, the required equations for applying the FEM are listed in detail, and the
weak formulations of the balance equations are introduced. Moreover, the FEM uses the
Newton-Raphson method to determine the solution of the nonlinear problem, and thus
the linearised weak formulations are derived. Since the mechanical-chemical-degradation
problem contains both spatial and temporal dependencies, the spatial discretisation and
time integration approaches are outlined. The linearisation and discretisation order is se-
lected based on the chosen variational sensitivity analysis in the structural optimisation.
Thus, all continuous equations are first varied and then discretised. On this basis, the
essential matrix representations from the discrete formulations are provided for numerical
implementation. The nomenclature introduced in this work with the abbreviation for the
continuum model listed therein and the numerical investigations are utilised.
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4.2. Weak Formulation in the Reference Configuration

The FEM is applied to solve the coupled mechanical-chemical-degradation model. In
the framework of the numerical solution, the Bubnov-Galerkin method is applied, where
the balance equations are presented in their weak form and weighted by independent
test functions. In detail, the set of unknown primary variables R = {u, cγ} include the
displacement u = x −X and the concentrations cγ. The weak formulation R can be
divided into a mechanical Ru and a chemical Rcγ part, i.e.

R(u, cγ, η, γ) = Ru(u, cγ, η) + Rcγ (u, cγ, γ) . (4.1)

On the one hand, the mechanical part of the weak form is derived by the weighted
balance of momentum with a test function for the displacement η yet, on the other hand,
the chemical part of the weak form is derived by the weighted balance of mass of the
concentrations with a test function for the concentrations γ. All admissible test functions
are introduced in the vector space S. In order to complete the boundary value problem,
either Dirichlet (first-type) boundary conditions ΓD0 = {Γu0 ,Γ

cγ
0 } or Neumann (second-

type) boundary conditions ΓN0 = {Γt0,Γ
Jγ
0 } are provided and prescribed within the given

weak formulation. They can be identified by the corresponding surface integral. The
Dirichlet boundary conditions are specified directly from the displacements, respectively
concentrations. It should be noted that the Dirichlet and Neumann boundaries satisfy
Γ0 = ΓN0 ∪ ΓD0 and ∅ = ΓN0 ∩ ΓD0 .

Weak Formulation for Balance of Momentum in the
Reference Configuration

The mechanical part of the weak form is represented by the balance of momentum and
follows in the reference configuration with

Ru(u, cγ, η) =
∫

Ω0

P : Gradη dV −
∫
Γ0

PN · η dA

=
∫

Ω0

SK : δuE dV −
∫
Γ0

t∗X · η dA ,
(4.2)

therein the mapping of the stress tensor is applied, which is presented in Sec. 3.5. Due to
the scalar product with the symmetric second Piola-Kirchhoff tensor SK , the symmetric
part of the variation of the Green-Lagrange strain tensor δuE from Eq. (3.28) can also be
used. The boundary conditions of the weak formulation are provided by either Dirichlet
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4. Structural Analysis

Γu0 or Neumann Γt0 boundary conditions, i.e

u = u∗ ∀ X ∈ Γu0

PN = t∗X ∀ X ∈ Γt0 .
(4.3)

Weak Formulation for Balance of Mass in the Reference
Configuration

The chemical part of the weak form refers to the balance of mass of the concentrations;
this is given in the reference configuration by

Rcγ (u, cγ, γ) =
∫

Ω0

(ċγ J γ − jγ · grad γ J)dV −
∫
Γ0

jγ · γ J F−TN dA

=
∫

Ω0

(ċγ J γ − Jγ · Grad γ )dV −
∫
Γ0

Jγ · γN dA ,
(4.4)

wherein the transformation from the material flux to the spatial flux is applied from Eq.
(3.63) and the connection grad γ F = Grad γ are utilised. The Dirichlet boundary condi-
tions on Γcγ0 are introduced directly by the concentrations, and the Neumann boundary
conditions are determined by a concentration flux Jγ into the direction of the material
normal unit vector N on the surface ΓJγ0 , i.e.

cγ = c∗γ ∀ X ∈ Γcγ0

Jγ · N = J∗γ ∀ X ∈ ΓJγ0 ,
(4.5)

with the initial condition cγ(t0) = c0
γ.

4.3. Linearisation of the Weak Formulation

The solution of the nonlinear coupled problem is determined by applying the Newton-
Raphson method, see referring literature in, e.g. [23, 67, 140]. This numerical approach
meets the requirement that the weak form equals zero. The weak formulation is a continu-
ously differentiable function dependent on the introduced primary variables and their time
derivative, which is approximated by a linear function using the Taylor series. Overall,
the iterative solution process allows a quadratic convergence close to the solution. There-
fore, the directional derivative (the variation of the weak form in the direction of the
field variables) must be provided in each iteration point. Thus, the required multi-linear
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4.3. Linearisation of the Weak Formulation

representation of the weak formulation follows with

δR = δuR + δcγR = 0 , (4.6)

with the partial variation δuR and δcγR referring to the primary variables, the displace-
ments u respectively concentrations cγ. Thus, it follows

δuR = k(η, γ; δu)

δcγR = kγ(η, γ; δcγ) + dγ(η, γ; δċγ) .
(4.7)

The form k and kγ describe the mechanical and chemical tangent stiffness resulting from
the variation of the weak form in the direction of the virtual displacement δu and the
virtual concentration change δcγ. Furthermore, dγ is the chemical tangential damping
which becomes relevant with the variation of the weak form in the direction of the virtual
velocity change of the concentration δċγ. Since no mechanical damping and no mass
inertia are generated in the course of this work, these parts are not listed here. An
effective tangent stiffness is introduced, including the mechanical and chemical stiffness
as well as the chemical damping with

keff = k + kγ + dγ . (4.8)

The following partial variations are based on the variations introduced in Appendix A.1.
First, the tangential stiffness k and kγ follow with

δuR = δuRu + δuRcγ and δcγR = δcγRu + δcγRcγ , (4.9)

which are composed of the partial variations regarding the mechanical part Ru and chem-
ical part Rcγ of the weak form. The partial variations of the mechanical part of the weak
formulation lead to δuRu and δcγRu, i.e.

δuRu =
∫

Ω0

[δuSK : δuE + SK : δ2
uE] dV

=
∫

Ω0

[[C : sym(FT Grad δu)] : sym(FT Gradη)

+ SK : sym(Grad T δuGradη)] dV

δcγRu =
∫

Ω0

δcγSK : δuE dV

=
∫

Ω0

Cγ δcγ : sym(FT Gradη) dV ,

(4.10)

41



4. Structural Analysis

wherein Eq. (3.28) and Appendix A.1.2 are considered. The partial variations of the
weak formulation for the balance of mass are also introduced. First, with respect to the
concentrations δcγRcγ , which is derived with

δcγRcγ =
∫

Ω0

(J δcγ ċγ γ − δcγJγ · Grad γ) dV

=
∫

Ω0

(J ∂ċγ
∂cγ

δcγ γ + J DGrad δcγ C−1 · Grad γ) dV .
(4.11)

Applying Eq. (A.31). Second, with respect to the displacements δuRcγ , i.e.

δuRcγ =
∫

Ω0

(δuJ ċγ γ − δuJγ · Grad γ) dV ,

=
∫

Ω0

(J C−T : FT Grad δu ċγ γ − [A : FT Grad δu] · Grad γ) dV ,
(4.12)

with reference to Eq. (3.28), Eq. (3.29) and Appendix A.1.4.

4.4. Spatial Discretisation

The Bubnov-Galerkin method is used to transform the introduced continuum into a dis-
crete problem. Therefore, the FE approach follows with

R(uh, chγ , ηh, γh) = 0 , (4.13)

wherein uh and chγ are the approximate solutions. The discretisation of the domain Ω is
realised by a subdivision into finite elements Ωe

Ω ≈ Ωh := ⋃
Ωe ∈Ωh

Ωe Γh := ⋃
Γe ∈Γh

Γe , (4.14)

with ⋃ describing the union of the elements. Thus, a general function f in the reference
configuration is approximated by

∫
Ω0

fdV =
nel∑
e=1

∫
Ωe

fe dV , (4.15)

where nel denotes the number of elements.
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4.4. Spatial Discretisation

The space discretisation is realised by the isoparametric concept, which is based on ap-
proximating geometry Xh, displacement uh and concentrations chγ by the same set of
ansatz functions hI (ξ), so that

Xh :=
nn∑
I=1

hI (ξ) XI uh :=
nn∑
I=1

hI (ξ) uI chγ :=
nn∑
I=1

hI (ξ) cIγ , (4.16)

wherein ξ represents the local coordinates. The Gaussian quadrature integration scheme
is used to calculate the integrals as the standard for the FEM. Literature on the isopara-
metric concept can be taken from, e.g. [131]. The discrete form of the test functions for
displacement ηh and for concentrations γh as well as for discrete variations δuh and δchγ ,
result in

ηh :=
nn∑
I=1

hI (ξ)ηI γh :=
nn∑
I=1

hI (ξ) γI

δuh :=
nn∑
I=1

hI (ξ) δuI δchγ :=
nn∑
I=1

hI (ξ) δcIγ .
(4.17)

In this thesis, the numerical solution is determined by elements with eight nodes, i.e.
two-dimensional Serendipity elements, see e.g. [21, 68], under plane strain conditions and
nine Gauss points.

Furthermore, the definitions of the matrices applied in the discretisation process follow.
First, the matrix LI is introduced, it organises the variations of the ansatz function as
follows

LI :=
hI,1
hI,2

 . (4.18)

The well-known Voigt notation principles are applied, marked by [•], to reduce the ma-
trices to corresponding column matrix representations. Therefore, the symmetric part of
the Green-Lagrange strain tensor E is transformed into matrix description E and into
Voigt notation E with

E :=
E11 E12

E21 E22

 E :=
[
E11 E22 2E12

]T
. (4.19)

Analogue result the matrices SK and SK from the symmetric second Piola-Kirchhoff tensor
SK in

SK :=
S11 S12

S21 S22

 SK :=
[
S11 S22 S12

]T
. (4.20)
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The following B-matrices are introduced to illustrate the approximation of the strain
variations. Then, BI

u results from the variation with respect to the displacements δuE,
i.e.

BI
u :=


F11 h

I
,1 F21 h

I
,1

F12 h
I
,2 F22 h

I
,2

F11 h
I
,2 + F12 h

I
,1 F21 h

I
,2 + F22 h

I
,1

 , (4.21)

and the B-matrix BI
o results in the approximation of the strain variations with respect to

the geometry δXE with

BI
o :=


b1 h

I
,1 b2 h

I
,1

b3 h
I
,2 b4 h

I
,2

b1 h
I
,2 + b3 h

I
,1 b2 h

I
,2 + b4 h

I
,1

 , (4.22)

wherein

b1 = F11 u1,1 + F21 u2,1 b3 = F12 u1,1 + F22 u2,1

b2 = F11 u1,2 + F21 u2,2 b4 = F12 u1,2 + F22 u2,2 .
(4.23)

The partial variations of the second Piola-Kirchhoff stress tensor δuSK and δXSK include
the fourth-order elasticity tensor Cijkl, as introduced in the continuous form in Appendix
A.1.2. The tensor is symmetric in the index pairs (i,j) and (k,l); thus, it can be organised
in the following matrix C

C :=


C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

 :=


C11 C12 C13

C21 C22 C23

C31 C32 C33

 . (4.24)

The same procedure is used for the third-order diffusion tensor Ajkl, which is introduced
in Appendix A.1.4. Applying the Voigt notation and considering the symmetric index
pair (k,l) leads to the following matrix A

A :=
A111 A122 A112

A211 A222 A212

 :=
A11 A12 A13

A21 A22 A23

 . (4.25)

The second-order tensors Cγ and Cn include the partial variations of the stress with respect
to the concentration δcγSK , respectively, to the material parameters δmSK , as introduced
in Appendix A.1.2. Related to the symmetry of the second Piola-Kirchhoff stress, the
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Voigt notation results in

Cγ :=


Cγ11

Cγ22

Cγ12

 ; Cn :=


Cn11

Cn22

Cn12

 with n ∈ {1, 2, 3, 4, 5} . (4.26)

In addition to this, the matrix Aγ refers to the second-order tensor Aγ and contains the
variation of the concentration flux with respect to the geometry derived in Appendix
A.1.4. Thus, the Voigt notation follows with

Aγ :=


Aγ11

Aγ22

Aγ12

 . (4.27)

4.5. Time Integration Method

The time integration is implemented using the Newmark-beta method. Within the cou-
pled problem, the concentrations are time-dependent. In the current time step, the
concentration, the velocity of the concentrations and the acceleration of the concentra-
tion are represented with {cγ, ċγ, c̈γ}, whereas in the previous time step, the notation
{cγN, ċγN, c̈γN} are used. Within the considered time interval, a constant average accel-
eration of the concentrations c̈β is introduced with

c̈β := 1
2 (c̈γN + c̈γ) , (4.28)

with the acceleration to be approximated in the present time step c̈γ and the previous
acceleration of the concentrations c̈γN. The Newmark-beta method states that the ap-
proximations of the velocity ċγ and acceleration c̈γ are based on

ċγ = ċγN + ∆t c̈β

cγ = cγN + ∆t ċγN + 1
2 ∆t2 c̈β ,

(4.29)

where ∆t is the time increment. Finally, the approximation of the velocity for the con-
centrations ċγ in the present time step can be derived with

ċγ = 2
∆t (cγ − cγN) − ċγN . (4.30)
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The coupled model in this work is independent of acceleration processes. Thus, the
required partial variations of the Newmark-beta approach read

∂ċγ
∂cγ

= 2
∆t ,

∂ċγ
∂cγN

= − 2
∆t and ∂ċγ

∂ċγN
= −1 . (4.31)

Furthermore, the element history field column matrix h̃e ∈ R72 is introduced at this point.
The history field contains information about the primary variables as well as the velocity
and acceleration of the primary variables from the previous time step so that the following
column matrix is defined with

h̃e :=
nn∑
I=1

[
uIN cIγN u̇IN ċIγN üIN c̈IγN

]T
. (4.32)

4.6. Discretisation of the Weak Formulations

In the following, the approximations of Sec. 4.5 are introduced into the weak form referring
to Eq. (4.2). For this reason, the weak formulation of the balance of momentum follows
with

Rh
u =

nn∑
I=1

(ηI)T
[∫
Ωe

(BI
u)T SK dV − FIe

]
=

nn∑
I=1

(ηI)T RI
u , (4.33)

wherein the external load is introduced in a column matrix with FIe ∈ R2 containing nodal
forces. The sub-column matrix RI

u ∈ R2 is introduced. Furthermore, the discretisation of
the weak formulation of the balance of mass for the concentration, cf. Eq. (4.4), follows
with

Rh
cγ =

nn∑
I=1

γI
[∫
Ωe

(hI ċγ J − (LI)T Jγ) dV − J Iγe

]
=

nn∑
I=1

γI Rcγ , (4.34)

including the external scalar J Iγe, which contains the nodal flux term. The components
are gathered together in the scalar RI

cγ and the element residuum Re ∈ R24 results after
summation of the nodes in

Re =
nn∑
I=1

RI
u

RI
cγ

 , (4.35)

assuming eight nodes per element. The external contribution of the flux and forces are
assumed to be deformation and concentration-independent.
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4.7. Discrete Tangential Stiffness

The effective tangential stiffness from Eq. (4.8) is required to solve the structural prob-
lem using the Newton-Raphson method. Therefore, the effective stiffness matrix Ke is
successively assembled from the sub-matrices KIJ

1 ,KIJ
2 ,KIJ

3 and KIJ
4 . First, KIJ

1 ∈ R2×2

is derived from the variation of the mechanical part of the weak formulation with respect
to the displacement from Eq. (4.10.1) in the discrete form, i.e.

δuR
h
u =

nn∑
I=1

nn∑
J=1

(ηI)T
[∫
Ωe

((LI)T SK LJ 1 + (BI
u)T C BJ

u) dV
]
δuJ

=
nn∑
I=1

nn∑
J=1

(ηI)T KIJ
1 δuJ .

(4.36)

Additionally, the discretisation for the mechanical weak formulation with respect to the
concentrations referring to Eq. (4.10.2) leads to the column matrix KIJ

2 ∈ R2, such that

δcγR
h
u =

nn∑
I=1

nn∑
J=1

(ηI)T
[∫
Ωe

(BI
u)T Cγ h

J dV
]
δcJγ

=
nn∑
I=1

nn∑
J=1

(ηI)T KIJ
2 δcJγ .

(4.37)

However, the row matrix KIJ
3 ∈ R1×2 results from the partial variation of the chemical

weak formulation with respect to the displacements from Eq. (4.12) with

δuR
h
cγ =

nn∑
I=1

nn∑
J=1

γI
[∫
Ωe

(hI J ċγ (LJ)T C−T FT − (LI)T A BJ
u) dV

]
δuJ

=
nn∑
I=1

nn∑
J=1

γI KIJ
3 δuJ .

(4.38)

Herein, the index notation is used to clarify the connections, i.e.

(δuRh
cγ )o =

nn∑
I=1

nn∑
J=1

γI
[∫
Ωe

(hI J ċγ LJ,pC−1
np Fon + LI,t L

J
,nAtpn Fop) dV

]
δuJo . (4.39)

The discretisation of the partial variation of the chemical weak formulation with respect
to the concentrations, derived in Eq. (4.11), is illustrated with

δcγR
h
cγ =

nn∑
I=1

nn∑
J=1

γI
[∫
Ωe

(hI J 2
∆t h

J + (LI)T J D C−1 LJ) dV
]
δcJγ

=
nn∑
I=1

nn∑
J=1

γI KIJ
4 δcJγ ,

(4.40)
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wherein the partial variation from the Newmark-beta approach, cf. Eq. (4.31.1), is used
with the time increment ∆t. The scalar KIJ

4 can be evaluated with one entry per node.
Therefore, the effective element stiffness matrix Ke ∈ R24×24 results with

Ke =
nn∑
I=1

nn∑
J=1

KIJ
1 KIJ

2

KIJ
3 KIJ

4

 . (4.41)

The summation refers to eight nodes per element and three degrees of freedom.

4.8. Numerical Implementation for Structural Analysis

The numerical applications of the discrete formulations for the residuals and tangents,
derived in this section, are illustrated in the Algorithm 1. The matrices are represented
at the element level so that an assembly must take place within the framework of numerical
implementation, i.e.

R =
nel⋃
e=1

Re and K =
nel⋃
e=1

Ke , (4.42)

wherein nel denotes the total number of elements. Moreover, the dimensions R ∈ Rdof

and K ∈ Rdof×dof result with dof referring to the global number of degrees of freedom.
The algorithm illustrates the calculation of the primary variables applying the iterative
Newton-Raphson method. The primary variables are summarised in the global column
matrix ν ∈ Rdof with

ν =
[
u cγ

]T
, (4.43)

u ∈ Rdofm includes the overall nodal displacements and cγ ∈ Rdofc describes the overall
nodal concentrations with dofm describing the global number of mechanical degrees of
freedom and dofc referring to the global number of chemical degrees of freedom.
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4.9. Concluding Remarks for the Numerical Model

In this section, all necessary equations for the structural analysis problem’s implementa-
tion and solution are provided. The concept for the numerical solution can be summarised
in the following key points:

• Weak forms of the balance equations, including the constitutive laws, are outlined.
• Linearisation of the weak form is derived for the nonlinear problem’s solution via

the Newton-Raphson method.
• Spatial discretisation: with the Bubnov-Galerkin method, the introduced continuum

is transferred into a discrete problem. The isoparametric concept enables the same
ansatz to approximate the mechanical and chemical equations with an element de-
scription of eight nodes. The Gaussian quadrature integration scheme is utilised.

• Time integration method: The Newmark-beta method approximates the time-
dependent evolution of the concentrations.

• Preparation of the essential matrix representations for the numerical implementation
of the structural analysis problem.
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This section presents how the developed continuum mechanical model is linked to the well-
known mathematical structural optimisation methods. Therefore, this section introduces
structural optimisation. Both the insight into the literature is given as well as an outline
of the approaches relevant for this work. An overview of structural optimisation is given
with further details of the parameterised geometric representation and the mathematical
solver needed for the applied shape and material parameter optimisation.

5.1. Introduction to Structural Optimisation

Optimisation problems can occur in various fields, e.g. production processes can be
optimised, the shortest possible distance between locations can be found, or the most
favourable price of a product can be determined. Structural optimisation refers to optimis-
ing mechanical structures and defining mathematical problems solved by simulation-based
calculations. The task of structural optimisation can be formulated as follows: specific
modifications of certain parameters can find the best possible solution for a structural-
mechanical problem. Mathematical algorithms are applied to get optimal solutions, thus
determining the change of parameters via iteration loops and ascertain the structural
response. In order to set up a structural problem, some basic expressions are introduced:

• Objective function J̃

The objective function is a mathematical function that describes the structural
optimisation problem, e.g. volume, stiffness of a structure as well as stress or dis-
placement functions.

• Design parameters s̃
The design parameters are the alterable variables of the structure, where the number
of independent design parameters determines the dimension of the optimisation
problem.
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• Constraints g̃
The constraints restrict the optimisation solution with equality or inequality con-
straints. For example, equilibrium, stress and displacement conditions as well as
stability conditions, can be introduced.

Shape optimisation is one focus of this work. Geometric design parameters are intro-
duced to optimise the initial shape of the structure. This minimises the defined objective
function while maintaining the given boundary conditions and provides new design pa-
rameters. Within the framework of structural analysis, the Computer-Aided Geometric
Design (CAGD) approach is then used to create the FE-mesh. Thus, the parameterised
structure geometry can be updated in each optimisation step. Further to this, parameter
optimisation is then used to calculate the mechanical-chemical-degradation model’s ma-
terial parameters that lead to a desired result. For example, it is possible to determine
the material parameters that reduce material degradation to a maximum permissible level
within a defined period.

Both optimisation approaches, shape and material parameter optimisation are presented
in this thesis for the proposed mechanical-chemical-degradation model. This model is
then integrated into an optimisation algorithm. The mathematical optimisation is based
on algorithms for structural optimisation, i.e. nonlinear constrained optimisation prob-
lems or nonlinear least-square problems. By integrating the derived structural analysis
and sensitivity analysis of diffusion-driven and time-dependent degradation processes cou-
pled with a mechanical structure: the harmful effects of chemical concentrations and the
associated degradation processes can be redefined and the structure optimised.

5.2. State-of-the-Art for Presumptions on Structural
Optimisation

5.2.1. Types of Structural Optimisation

The following types of structural optimisation (that are to be considered in combination)
can fundamentally be named as:

• Size optimisation,
• Shape optimisation,
• Topological optimisation,
• Parameter identification.
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A survey on the different variants of optimisation, the state-of-the-art technology, as well
as a comparison between the different mathematical programming methods, is given in
the literature, e.g. [33, 119, 5, 100]. Within the context of this thesis, it should be noted
that shape optimisation is addressed to optimise the geometry and that a curve-fitting
algorithm, which is often used for parameter identifications, is applied to optimise material
parameters.

Size optimisation maintains the structure’s shape and topology and can be described as
the most direct approach to optimal solutions. Only a few parameters are defined as
design parameters that can change: cross-sections, wall thickness or the thickness of the
FEs. As a result, the calculation of sensitivities is more straightforward to realise than an
optimisation problem in the framework of shape or topology optimisation. Examples for
recent applications can be found, e.g. in [38, 44, 39, 74], where dimensioning problems
are primarily used in combination with different types of structural optimisation.

Within the framework of shape optimisation, an initial shape is optimised by changing the
outer contour to reduce weight or volume, for instance. Thereby the demanding task of
mesh adaptation during the iteration process must be considered. In particular, problems
can occur due to the destruction of the mesh, jagged boundaries or a considerable number
of design parameters. To avoid the problems, a strategy for updating the geometric
modelling must be selected accordingly. The first publications from the 1950s deal with
weight reduction in aerospace, presented by Hemp [64] and Cox [36]. Presently, shape
optimisation is still a widespread field of research, particularly regarding research related
to the aerospace and automotive industry striving for improved approaches for shape
optimisation. Current works are, e.g. [144, 141, 71].

Topology optimisation includes design parameters that describe the location and arrange-
ment of structural elements, e.g. number, size, shape and the position of holes and
inclusions. The optimal combination of material areas as well as the global shape can
be determined during this optimisation. An introduction to topology optimisation can
be found, for example, in [18, 17]. Michell developed the first topological optimisation
problem in 1904, see [93], where he calculated the optimum arrangement of tension and
compression members in a mechanical structure. As the result of his findings, analytical
optimal procedures were then able to be further developed in the 1980s within the frame-
work of topology optimisation [111]. The difficulty of topology optimisation lies mainly
in the high number of design parameters, chequerboard patterns and mesh dependen-
cies. This field, therefore, remains a predominant field of study where many techniques
continue to be developed to solve such challenges, to name a few [104, 112, 121, 4].
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Parameter identification, a mathematically inverse problem, involves determining param-
eters that can optimally simulate a measured process. The parameter identification can
be used to achieve the desired result by applying curve-fitting algorithms and adjusting
the established differential equations’ parameters. As a result, this process can optimise
material parameters. This method is often applied in different research topics. It is ad-
vantageous in the context of flow and transport processes to understand and influence flow
characteristics (see [59]). Parameter identification is additionally used for machine con-
trol, as the accuracy of the machine parameters has a considerable influence on efficiency
[103]. It can be applied to dynamic processes, such as the simulation of the 2019-nCoV
eruption, by reconstructing parameters needed to predict the process, see [27]. Applica-
tions of parameter identification within the framework of structural analysis are published
in the following publications [89, 76, 90].

5.2.2. Geometric Modelling

The strategy of parameterisation in shape optimisation is an important aspect, for which
a brief insight into the literature is given below. Thus, the strategy has a considerable
influence on the choice of design parameters and should be chosen depending on the
optimisation task. Common approaches are:

• CAGD-based parametrisation,
• Mesh-based parametrisation,
• Parameter-free technique,

for detailed explanations see, e.g. [119]. The CAGD-based shape optimisation is applied
in the framework of this thesis. Nevertheless, the state-of-the-art alternative methods are
mentioned here, i.e. mesh-based parametrisation and parameter-free techniques.

Computer-Aided Geometric Design (CAGD) is a mathematical approach for describing
geometric objects and their transfer to computer graphics. Curves, surfaces and volumes,
are applied and algorithms are generated to create, analyse and manipulate geometric
structures. The origins of the CAGD date back to the 1960s. The theory of Bézier lines
was developed independently by P. de Casteljau and P. Bézier and has been further studied
over the years. Farin present in [42] a detailed overview of the application of CAGD, the
theoretical origin and further developments. Moreover, Knez et al. provide an overview
of the current status of CAGD applied to geometric designs, see [77]. The integration of
CAGD into the shape optimisation process offers high flexibility for modifications with low
utilisation of design parameters, as Braibant et al. show in [25] using B-Splines as design
parameters. Furthermore, the parametrisation of shape optimisation is demonstrated on

53



5. Structural Optimisation

airfoils and 3D wind turbine blades by the adaptive composition of low order Bézier curves
and surfaces to complex geometries, see [137].

The CAGD-based parametrisation is an efficient method that provides a basis for selecting
design parameters, such as control points or dimensions, such as lengths of lines and axes
of ellipses and circles. However, the FE-mesh has to be re-meshed in every iteration step.
In order to ensure fully automated shape variation, automatic meshing with the transfer
of the updated design parameters must be implemented.

An alternative approach to achieve parametric shape optimisation is mesh-based param-
eterisation, in which an existing FE-mesh is manipulated. The so-called ’morphing tech-
nology’ enables a smooth variation of the FE-nodes. Initially, the idea of morphine derived
from visual effects in film and television with smooth transitions between digital images, an
overview of image morphine is presented in [139]. The idea of rapid image change is trans-
ferred to the parameterisation of existing FE-meshes in the context of shape optimisation,
see [107]. With the commonly used box-morphing approach, the modifiable nodes are po-
sitioned within a predefined box. Using CAGD objects, such as B-Splines, this method
can be applied to define the Box. A mapping algorithm is used to calculate the change
of the FE-nodes depending on the design parameters. In [52], the inverse calculation of
FE-nodes based on such mapping functions is explained and examples of the application
of morphing-box based parameterisation for shape optimisation are shown. Further ap-
plications of the morphing-box approach can be found in the literature, [73, 115, 66, 88].
In regards to complex models, morphine is notably a more powerful alternative to the
CAGD-based approach. It combines the advantage of requiring fewer design parameters
and no re-meshing. The advantages are pointed out in [26, 127].

With the parameter-free technique the coordinates of the FE-mesh are selected as design
parameters. Thus, the approach does not require integrating the CAGD and only requires
the standard post-processing tools within the Finite Element Analysis (FEA) framework.
This approach’s obvious disadvantage is a high number of design parameters, causing
difficulties such as jagged boundaries or destroyed FE-meshes. Those drawbacks are
outline among others in [60]. Subsequently, Scherer et al. avoid the problems of jagged
edges by applying a fictive energy approach, see [118]. Relative works show the efficiency of
filter techniques, which improve the FE-mesh quality in free-form optimisation processes,
e.g. [43, 22]. More publications [53, 82, 118] prove the successful application of the
parameter-free optimisation.
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5.2.3. Structural Optimisation of Degradation Processes

Structural optimisation, often applied to growth or degradation processes, is traditionally
solved by evolutionary optimisation algorithms; see [123] for details. The evolution
models are based on the concept of gradually removing inefficient material from a
structure. The disadvantage of the evolutionary concepts is that optimisation starts
from one defined reference configuration and that the result quickly ends in local
minima. Resulting in the inability to find an optimal solution with a single evolutionary
algorithm, see [136]. The application of mathematical based structural optimisation to
growth or degradation processes could help solve the problem; however, it has not yet
been sufficiently investigated. Similar to the embedding of a growth approach in an
optimisation algorithm, shape and topology optimisations are applied to damage models.
For example, an optimal damage distribution is computed with a shape optimisation
algorithm that embeds an isotropic gradient enhanced damage model, see [57]. [130]
present a topology optimisation method connected to a fatigue model. The model enables
the computation of optimised topologies, taking fatigue at high cycles as a limiting
condition into account. [101] develop a level set-based topology optimisation framework
to reduce damage in the context of structural design.

5.3. Procedure for Structural Optimisation

In general, the process of structural optimisation is identical for all types of optimisation
and is schematically illustrated in Figure 5.1. The structural optimisation process used
in this thesis is described in more detail in the following section.

In the first step, the boundary value problem and the optimisation problem are initialised.
Signifying that the geometry model with the FE-mesh, material parameters, boundary
conditions and loads must be transferred and that the objective function, constraints
and design parameters are defined. The geometry parameters are specified as design
parameters within the scope of shape optimisation. For this reason, the geometry model
is structured parametrically with a CAGD-based approach.

The structural analysis of the mechanical-chemical-degradation approach is carried out
using the numerical approximation method FEM with the given once inputted. Within
this given information, the deformation of the body, stresses and concentration distribu-
tions are calculated and the variational sensitivity analysis is thus, carried out. In the
context of the sensitivity analysis, the derivatives of the objective function and constraints
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with respect to design changes are calculated. The variational sensitivity analysis pro-
vides first the gradients of the continuous problem according to the design parameters.
It then offers discretisation in space and time according to the numerical approximation
method. Thus, structural analysis and sensitivity analysis can be performed concurrently
with the integrated continuum mechanical formulation. For this purpose, the continuum
mechanical quantities must be extended by the dependency of the design parameters, e.g.
geometry parameters.

The information from the sensitivity analysis provides the objective function, the con-
straints, their derivatives are therefore, passed on to the mathematical optimiser. In
this thesis, the MATLAB toolbox is used to perform the mathematical optimisation, i.e.
minimising the defined objective function while maintaining the given constraints and
providing new design parameters.

initialisation structural
and optimisation problem

structural analysis — sensitivity analysis

mathematical optimisationupdate
model

convergence?

optimal design

no

yes

Figure 5.1.: Process of the optimisation problem.

With the new design parameters, the mechanical model is updated and the quality of
the structure is examined. The criteria specified by the user is checked. Finally, the
continuum’s balance is ensured for the new design parameters. If the criteria are not
met, the CAGD model is automatically updated and the algorithm repeats itself until the
desired quality of the structure is achieved. The algorithm provides an improved design.
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5.4. Parameterised Geometry

In this thesis, CAGD is applied to generate the FE-mesh of the desired geometry re-
quired for structural analysis and select design parameters as the coordinates of control
points for shape optimisation. In this mathematical approach, geometries are described
by lines, curves and surfaces. Approximation methods for curves and surfaces enable
soft and smooth geometries. The standard approximation methods of curves are named.
Thus, Bézier lines, rational curves, B-Splines and NURBS are approximation methods
for polygons. The Bézier lines approximate control polygons with n+1 control points by
a curve of degree n. The same applies to rational curves, whereby a weighting value is
assigned to the control polygon points so that the course of the curve can be influenced.
The B-splines compose the curve by segments and thus, enable local changes of the pa-
rameters; the curve’s degree is arbitrary. The strategy behind NURBS is similar to the
B-Splines, yet here again, the individual control nodes’ weighting value can be used. It
should be mentioned that the same methods are used to generate surfaces, only with
higher dimensions.

Figure 5.2.: a) CAGD geometry via points, lines, key points (KPn) and B-Splines.
b) FE-mesh in dependency of parametric key points.

In this thesis, the program Gmsh is applied to create the geometries based on these
approximations and generate an FE-mesh. The control nodes are set as design parameters
for shape optimisation. Therefore, CAGD-based access enables parameterised geometry
with mesh manipulation. The advantage of an approach with a relatively small number
of design parameters becomes visible in Figure 5.2. The CAGD geometry is created by
defined points, lines and a B-spline function for the lower edge of the structure. The
B-spline function is dependent on the given control points (KPn), the design parameters,
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to create a curve for the lower edge of the structure. A change of these design parameters
leads to the manipulation of the FE-mesh.

5.5. Mathematical Optimisation

Due to the widespread use of mathematical optimisation, a more precise literary clas-
sification is not given here and therefore, only a few references are mentioned, such as
[100, 48, 100]. This thesis addresses restricted optimisation problems. As a result, the
solution method of Sequential Quadratic Programming (SQP) for such problems is intro-
duced. Where an inverse analysis for the optimisation of material parameters is derived,
the mathematical method of nonlinear least-squares is presented. In the following subsec-
tions, reference is made to the nomenclature introduced in this thesis and the abbreviation
listed therein are applied for the mathematical solver.

5.5.1. Nonlinear Constrained Optimisation Problems

The mathematical description of a general restricted minimisation problem follows with

min J̃(s̃) subject to h̃j(s̃) = 0 with j ∈ {1, . . . ,mh}
s̃ ∈ Rns g̃k(s̃) ≤ 0 with k ∈ {1, . . . ,mg}

s̃li ≤ s̃i ≤ s̃ui with i ∈ {1, . . . , ns} ,
(5.1)

wherein the following quantities correspond to

J̃ : Rns → R objective function
h̃j : Rns → R, j ∈ {1, . . . ,mh} equality constraints
g̃k : Rns → R, k ∈ {1, . . . ,mg} inequality constraints,

(5.2)

as well as

s̃ =
[
s̃1, . . . , s̃ns

]T
design parameters

with
s̃li, s̃

u
i , i ∈ {1, . . . , ns} lower and upper bounds .

(5.3)

A finite number of equality and inequality constraints as well as upper and lower design
parameters, are introduced in the following notation, which may also be presented as
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empty depending on the given problem,

h̃(s̃) =


h̃1(s̃)

...
h̃mh(s̃)

 , g̃(s̃) =


g̃1(s̃)

...
g̃mg(s̃)

 , s̃l =


s̃l1
...
s̃lns

 and s̃u =


s̃u1
...
s̃uns

 . (5.4)

The mathematical formulation follows in the compact notation for the general nonlinear
constrained minimisation problem from Eq. (5.1), i.e.

min J̃(s̃) subject to h̃(s̃) = 0
s̃ ∈ Rns g̃(s̃) ≤ 0

s̃l ≤ s̃ ≤ s̃u .

(5.5)

SQP is applied to solve the nonlinear optimisation problem. Within this approach, a
sequence of sub-problems is formulated under consideration of optimal conditions and
application of the Newton approximation. Therefore, the nonlinear restricted optimisation
problem is presented using a Lagrange formulation. For this purpose, the inequality
restrictions are transformed into equality restrictions applying commonly named ’slack
variables’. Besides, a complementary slackness condition is introduced as it is a necessary
optimal criterion derived from the inequality constraints, i.e.

µk g̃k(s̃) = 0, k ∈ {1, . . . ,mg} , (5.6)

wherein µk is a Lagrange parameter. According to these conditions, the Lagrange function
(L : Rns × Rmh × Rmg → R) follows with

L(s̃,λ,µ) := J̃(s̃) +
mh∑
j=1

λj h̃j(s̃) +
mg∑
k=1

µk g̃k(s̃) , (5.7)

wherein λj is another Lagrange parameter. The optimality conditions, including the
complementary slackness condition, reads as

∇s̃L(s̃,λ,µ) = 0
h̃j(s̃) = 0, j ∈ {1, . . . ,mh}
g̃k(s̃) ≤ 0, k ∈ {1, . . . ,mg}
µk ≥ 0, k ∈ {1, . . . ,mg}
µk g̃k = 0, k ∈ {1, . . . ,mg} .

(5.8)

These specified, and necessary, optimal conditions are called Karush–Kuhn–Tucker (KKT)
conditions and a point (s̃∗,λ∗,µ∗) that complies with these conditions is called a KKT
point. The total derivative of the Lagrange function ∇L(s̃,λ,µ) can be approximated
by Newton’s method resulting in the representation of the following sub-problem i in the
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iteration point (s̃i,λi,µi), with

min J i(∆s̃) subject to hi(∆s̃) = 0
∆s̃ ∈ Rns gi(∆s̃) ≤ 0

(s̃l − ∆s̃i) ≤ s̃ ≤ (s̃u − s̃i) .
(5.9)

Therein, a quadratic approximation of the objective function and a linearisation of the
constraints are applied, i.e.

J i(∆s̃) = 1
2 ∆s̃T∇2

s̃s̃L(s̃i,λi,µi) ∆s̃ + ∇J(s̃i)T ∆s̃
hi(∆s̃) = h̃(s̃i) + ∇h̃(s̃i)T ∆s̃
gi(∆s̃) = g̃(s̃i) + ∇g̃(s̃i)T ∆s̃ .

(5.10)

With the solution of the quadratic sub-problem, the design parameters can be updated
as follows

s̃i+1 = s̃i + ∆s̃i . (5.11)

The approximations for the quadratic sub-problem, cf. Eq. (5.10), contain the deriva-
tives of the objective function ∇J̃(s̃i), the equality constraints ∇h̃(s̃i) and inequality
constraints ∇g̃(s̃i) with respect to the design parameters. In addition to this, the Hes-
sian matrix of the Lagrange function ∇2

s̃s̃L, is required, the derivative second-order. In
this thesis, the SQP algorithm is executed by the MATLAB function fmincon from the
MATLAB optimisation toolbox. fmincon enables numerical access to calculate these
derivatives via an application of finite differences. Thus, the user only has to provide
the objective function and constraints. However, the application of the Finite Difference
Method (FDM) is a precise though time-consuming method. For this reason, the required
derivatives are determined in the course of this work. They are transferred to the mathe-
matical optimiser in the framework of FEM. In contrast, the Hessian matrix is provided
by the fmincon function using an iterative update, where the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) formulation is used. The BFGS procedure guarantees a positive definite
Hessian matrix to fulfil the sufficient optimisation condition for a local minimum, see
[120].
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5.5.2. Nonlinear Least-Square Problems

The mathematical description of a general nonlinear least-square curve-fitting problem
follows with

min
mj∑
j=1

J̃j(m)2 with j ∈ {1, . . . ,mj}
m ∈ Rnm

subject to
ml
i ≤ mi ≤ mu

i with i ∈ {1, . . . , nm} .

(5.12)

Thereby, the problem at this point relates to a material fitting problem. Thus, the
following quantities correspond to the

J̃j : Rns → R j ∈ {1, . . . ,mj} objective function , (5.13)

with a vector-valued objective function applied as J̃ =
[
J̃1, . . . , J̃mj

]T
. Additionally, the

material parameters and limits are specified with

m =
[
m1, . . . ,mnm

]T
material parameters

with
ml
i, m

u
i ∈ {1, . . . , nm} lower and upper bounds .

(5.14)

Solving the least-squares problem provides the values of the parameters for the requested
function that best match the data. The Levenberg-Marquardt method is applied to solve
the minimisation problem. This gradient-based optimisation strategy applies the trust-
region strategy to calculate the next iteration step and uses a Hessian approximation,
i.e. ∇2J̃ ≈ ∇J̃T∇J̃ , to reduce the computational effort. The trust-region is one of
two possible strategies; the alternative is the line search method; to calculate the next
iteration step of a defined sub-problem. Mathematical background to the methods can
be found in the literature, e.g. [100]. Given these backgrounds, the required sub-problem
can be summarised in each iteration point mi as follows

min ||∇J̃(mi)p + J̃(mi)||22 with ||p|| ≤ ∆
p ∈ Rdofp

subject to

(∇J̃(mi)T∇J̃(mi) + λ1)p = −∇J̃(mi)T J̃(mi)

λ (∆ − ||p||) = 0 .

(5.15)

The notation || • ||22 denotes the sum of the squares, and dofc refers to the global number
of material parameters. p is the descent direction vector, ∆ is the trust-region radius and
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λ is a scalar value. If pi∗ is a feasible solution of the sub-problem, and λ ≥ 0, the design
parameters can be updated as follows

mi+1 = mi + pi∗ . (5.16)

The MATLAB Optimisation toolbox is used to solve the least-squares problem. In detail,
the function lsqnonlin is utilised, which applies the Levenberg-Marquardt method.

5.6. Remarks on Objective, Constraints and Design
Parameters

The following section provides a short overview of continuum mechanical quantities, which
are applied as objective functions or constraints in the course of this work. This proposal
predominantly applies two different optimisation problems; the nonlinear constrained op-
timisation problems and the least-square problems. The constrained optimisation prob-
lems minimise structural-mechanical quantities as a scalar value objective function and
the design parameters have geometrical characteristics. Within the framework of the
applied nonlinear least-squares problems, the objective function can represent arbitrary
structural-mechanical quantities. Specification of the discussed objective functions, con-
straints and design parameters are shown in Table 5.1. The design parameters are material
parameters of the mechanical-chemical problem. Details for solving the optimisation tasks
follow in the corresponding sections.

Table 5.1.: Specification of the discussed objective functions, constraints and design
parameters within the scope of this thesis.

Objective function Constraint Design parameters
stress area geometry
area stress geometry
deformation material parameters
concentrations material parameters
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5.7. Concluding Remarks for the Optimisation

In addition to a general introduction to the terminology of structural optimisation, the
following insights can be obtained from this section.

• Shape optimisation and material parameter optimisation are addressed in this thesis.
• Knowledge about the process and the connections of the structural optimisation with

a continuum mechanical problem.
• Strategy for geometric modelling by referring to CAGD-based parametrisation and

insights into the implementation.
• Mathematical foundations for the nonlinear constrained optimisation problem as a

mathematical solver for shape problems.
• Mathematical foundations for the nonlinear least-square problem as a mathematical

solver for parameter optimisation.
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This section introduces the applied sensitivity analysis and presents the obtained sensitivi-
ties of the continuum mechanical quantities. This section aims to introduce the tangential
sensitivity using the same methodology as for the derivation of the tangential stiffness in
the structural analysis. Additionally, this section elaborates on the required variations of
the objective functions and constraints required in the optimisation process.

6.1. Introduction to Sensitivity Analysis

The sensitivity analysis is an important component in structural optimisation, in which
the derivations of the objective functions and constraints are determined. However, the
determination of derivatives has proven to be a complex and indeed extensive task. A
special feature of this work is that a complex continuum mechanical, coupled and time-
dependent problem exists. A time-efficient and accurate strategy to determine sensitivities
is used. Therefore, the access via the variation of continuum mechanical quantities within
the variational sensitivity approach is applied. The sensitivity analysis is based on the
same numerical approximation method, i.e. FEM, as the underlying structural analysis,
see [13]. Both structural analysis and sensitivity analysis can be implemented simultane-
ously, maximising the efficiency of the computational effort in comparison to numerical
approaches. The efficiency of this ansatz is highlighted among others in [10, 12, 52, 73, 91].
Due to the chemical concentrations, a path-dependent design behaviour becomes present
and the history of the deformation is influenced. A nonlinear behaviour must be taken
into account in the sensitivity analysis. Therefore, the history field is included in the
gradient calculations. Similar procedures are used in [85] referring to plastic structures
or [57] referring to damage models.

In this section, the required variations of the continuous equations are first described, fol-
lowed by the outline of the discretisation with an analogous procedure as presented before
for the structural analysis. Due to the fact, both geometry and material related changes
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are considered, they are therefore, both presented. The CAGD-based FE-formulation
allows for introducing a so-called design velocity field, which transforms the geometrical
sensitivities to a chosen design space. Finally, the derivations of selected objective func-
tions and constraints of an optimisation task can be introduced on this basis. This thesis
addresses the first principal stress and area changes as objective functions and constraints.

However, a short overview of different strategies for the structural sensitivity analysis in
the literature is first presented.

6.2. State-of-the-Art for Presumptions on Sensitivity
Analysis

In the structural sensitivity analysis, the change of an arbitrary problem function is cal-
culated based on selected structural parameters. Structural optimisation involves the
derivatives of objective functions and constraints with respect to design parameters. A
good overview of different sensitivity analysis approaches is provided by, e.g. [135]. Nev-
ertheless, three different possibilities for the calculation of sensitivities are discussed in
the following:

• Global finite differences,
• Continuum variations,
• Discrete derivatives.

In order to determine global finite differences, the structural analysis is repeatedly calcu-
lated while perturbing the design parameters. Thus, the numerical procedure of the FEM
can be applied to determine the derivatives. However, due to the repeated calculations
and the need to select perturbation parameters, the task results in an onerous method.
Thus, this approach can be used to verify analytically determined derivatives. The global
finite difference approach is then applied, e.g. in [142, 108, 75]. This strategy is in this
work only used to validate the implementation of the analytically derived equations.

The continuum variations are calculated within the framework of the variational sensi-
tivity analysis. In this approach, first, the gradients of the continuous equations that
determine the structural behaviour are calculated with respect to the design parameters.
Then, the continuous sensitivities are discretised in space and time according to the nu-
merical approximation methods of structural analysis. This continuum mechanical-based
approach is introduced in [13], where an integrated formulation of all necessary variations,
linearisation and derivatives of the sensitivity analysis for a continuum are presented.
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Barthold presents in [6] the basic principles of design changes necessary for structural
optimisation and their effects on the structural response on a continuum. A convective
approach with local coordinates is introduced, derived from a differentiable manifold.
Furthermore, Barthold emphasises this approach’s importance for obtaining information
about the kinematic relation required for numerical methods such as the FEM and CAGD.
The sensitivity analysis is based on the works of the material derivation approach, see
among others [30, 124, 31], and the domain parameterisation approach, see [63, 58]. Re-
cent works applying the variational sensitivity approach are, e.g. [52, 91, 73, 85]. This
efficient strategy is also pursued in this work and derived for the current problem.

The discrete derivatives are determined by obtaining the discrete formulations of the
structural-mechanical problem with respect to the design parameters. Therefore, the
discretisation of the continuum mechanical problem is carried out first and then the
derivatives are established. A more detailed overview is provided by [135]. As a particular
case, the discrete sensitivity analysis can be combined with the FDM. In such a semi-
analytical approach, as presented in [72, 62], only the global quantities are determined
analytically, whereas finite differences obtain the local quantities.

6.3. Weak Formulation in the Parameter Space

The weak formulation in the reference configuration introduced in Sec. 4.2 is transformed
into the parameter space with the help of the kinematics presented in Sec. 3.3.1. Due to
the representation in the convective coordinates of the parameter space, the integration
domain is independent of the geometry, deformations and chemical concentrations. This
allows an easier variation of the weak form and enables access to the partial variations
within the framework of the sensitivity analysis.

Weak Formulation for Balance of Momentum in the Parameter
Space

First, the mechanical contribution of the weak formulation follows in the parameter space
with

Ru(u, cγ, η) =
∫

Ωθ

SK : δuE JK dVθ −
∫
Γθ

t∗θ · η dAθ , (6.1)

with the test functions for the displacements η.
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Weak Formulation for Balance of Mass in the Parameter Space

Secondly, the weak formulation of the balance of mass for the concentrations follows in
the parameter space with the test functions for the concentrations γ, i.e.

Rcγ (u, cγ, γ) =
∫

Ωθ

(ċγ J γ − Jγ · Grad γ )JK dVθ −
∫
Γθ

Jγ θ · γN θ dAθ , (6.2)

wherein the connection between the spatial and local flux of the concentration is applied
with Jγ θ = JK Jγ K−T.

6.4. Total Variation of the Weak Formulation

The variation of the weak formulation from Eq. (4.6) is not only the basis for the solu-
tion of the structural problem; it also leads to the requirement of the sensitivity analysis.
Within the framework of structural optimisation, the continuum can change both geo-
metrical and material parameters to optimise the structural response. As a result, the
multi-linear representation of the variation of the weak formulation is extended as a result,
cf. [138, 6], so that

δR = δXR + δmR + δuR + δcγR + δhR = 0 . (6.3)

In other words, the condition for solving the structural problem should also be met if the
geometry, the material parameters or the history of the evolutionary problem changes.
On this basis, the additional partial variations, cf. Eq. (4.7), result in

δXR = pX(η, γ; δX)

δmR = pm(η, γ; δm)

δhR = h(η, γ; δh) .

(6.4)

The forms p(•) are the tangential sensitivities of the system with the index referring to a
change of geometry pX or a change of material parameters pm. Analogous to the procedure
for calculating the sensitivity of plastic structures, the path-dependent history variables
must be considered, cf. [85]. The path dependence in this work is due to the chemical
concentrations. Thus, the form h corresponds to the concentration history. Here again,
the following partial variations are based on the derivations outlined in Appendix A.1.
The partial variation of the weak formulation with respect to the geometry is decomposed
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into the mechanical δXRu and chemical δXRcγ part of the weak formulation so that

δXR = δXRu + δXRcγ . (6.5)

The partial variation of the mechanical weak formulation follows in detail with

δXRu =
∫

Ω0

[δXSK : δuE JK + SK : δXδuE JK + SK : δuE δXJK ] dVθ

=
∫

Ω0

[δXSK : δuE + SK : δXδuE + SK : δuE Div δX] dV

=
∫

Ω0

[[−C : sym(FT GraduGrad δX)] : sym(FT Gradη)

−SK : sym(GraduGrad δX Gradη − FT GradηGrad δX)

+ SK : sym(FT Gradη) Div δX] dV ,

(6.6)

wherein Eq. (3.28), Eq. (3.29), Eq. (3.30) and Appendix A.1.2 are utilised. The trans-
port from the reference configuration into the parameter space is performed as presented
in Eq. (6.1), since the integration area in the parameter space is independent of the ge-
ometry. Consequently, the variation of the local geometry determinant δXJK , derived in
Eq. (3.30), is applied.

The same procedure is used for the variation of the weak formulation for the balance of
mass referred to the concentrations, based on Eq. (6.2), which results in

δXRcγ =
∫

Ω0

[δXJ ċγ γ + J δX ċγ γ − δXJγ · Grad γ − Jγ · δXGrad γ

+ (J ċγ γ − Jγ · Grad γ) Div δX] dV

=
∫

Ω0

[−J C−1 : sym(FT GraduGrad δX) ċγ γ − J ċγ 1 Grad δX γ

+ [A : sym(FT GraduGrad δX)] · Grad γ

−DGrad cγ Grad δX J C−T · Grad γ + Jγ · Grad γGrad δX

+ J ċγ Grad δX · 1 − Jγ · Grad γGrad δX · 1 ] dV ,

(6.7)

with reference to the Eq. (3.28), Eq. (3.29), Eq. (3.30) and Appendix A.1.4.

The variation of the weak formulation with respect to the material parameters δmR follows
with

δmR = δmRu + δmRcγ , (6.8)
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wherein the mechanical part δmRu leads to

δmRu =
∫

Ω0

δmSK : δuE dV . (6.9)

Here, reference is made to Appendix A.1.2 and the second-order tensor Cn is applied with

Cn = {C1,C2,C3,C4,C5} with n ∈ {1, 2, 3, 4, 5} , (6.10)

so that the partial variation of the mechanical weak formulation follows with utilisation
of Eq. (3.29), i.e.

δmRu =
∫

Ω0

Cn : sym(FT Gradη) dV. (6.11)

Furthermore, the chemical part of the variation of the weak formulation with respect to
the material parameters δmRcγ results in

δmRcγ =
∫

Ω0

−C6 · Grad γ dV , (6.12)

wherein reference is made to Appendix A.1.4.

Finally, the chemical part of the weak formulation depends on the evolution of the con-
centrations δhRcγ , so that

δhRcγ =
∫

Ω0

(J δhċγ γ ) dV . (6.13)

6.5. Discrete Tangential Sensitivity

6.5.1. Discrete Tangential Sensitivity for Geometry Parameters

The summary of the tangential sensitivities follows analogous to the discrete representa-
tion of the stiffness matrix and is based on the previously introduced discretisation, cf.
Sec. 4.4. First, the so-called pseudo-load matrix Pe

X is derived from the tangential sensi-
tivities with respect to the geometry sensitivity. Here again, sub-matrices PIJ

X1 and PIJ
X2

are introduced, referring to the evaluation per node. The discrete form of the mechanical
part is based on the variation in Eq. (6.6).
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6. Sensitivity Analysis

Therefore, it follows

δXR
h
u =

nn∑
I=1

nn∑
J=1

(ηI)T
[∫
Ωe

(−(BI
u)T C BJ

o − Grad u (LI)T SK LJ

− (BJ
u)T SK LI + (BI

u)T SK LJ ) dV
]
δXJ

=
nn∑
I=1

nn∑
J=1

(ηI)T PIJ
X1 δXJ .

(6.14)

Here, the introduced B-matrices for the variation of the Green-Lagrange tensor are applied
with respect to the displacement BI

u in Eq. (4.21) and with respect to the geometry
BJ
o in Eq. (4.22). The terms result in the sub-matrix PIJ

X1 ∈ R2×2. Furthermore, the
discretisation of the chemical part from Eq. (6.7) refers to the row matrix PIJ

X2 ∈ R1×2,
i.e.

δXR
h
cγ =

nn∑
I=1

nn∑
J=1

γI
[∫
Ωe

(−hI J ċγ (LJ)T C−T FT Grad u − hI J ċγ (LJ)T

− (LI)T C−T LJ DJ Grad cγ + (LI)T A BI
o

+ Jγ LJ (LI)T + hI J ċγ (LJ)T − (LJ)T Jγ (LI)T) dV
]
δXJ

=
nn∑
I=1

nn∑
J=1

γI PIJ
X2 δXJ .

(6.15)

The pseudo-load matrix Pe
X ∈ R24×16 is the sum of eight nodes in each element and follows

with

Pe
X =

nn∑
I=1

nn∑
J=1

PIJ
X1

PIJ
X2

 . (6.16)

6.5.2. Discrete Tangential Sensitivity for Material Parameters

This section outlines the composition of the pseudo-load matrix Pe
m, which depends

on the sensitivity due to a change of material parameters. The sub-column matrices
PI
m1,PI

m2,PI
m3,PI

m4,PI
m5 ∈ R2 result from the variation of the mechanical part of the

weak formulation from Eq. (6.11).
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6.5. Discrete Tangential Sensitivity

The matrices have the same dimension and are listed as follows

δµR
h
u =

nn∑
I=1

(ηI)T
[∫
Ωe

(BI
u)T C1 dV

]
=

nn∑
I=1

(ηI)T PI
m1

δλR
h
u =

nn∑
I=1

(ηI)T
[∫
Ωe

(BI
u)T C2 dV

]
=

nn∑
I=1

(ηI)T PI
m2

δρ0R
h
u =

nn∑
I=1

(ηI)T
[∫
Ωe

(BI
u)T C3 dV

]
=

nn∑
I=1

(ηI)T PI
m3

δMγR
h
u =

nn∑
I=1

(ηI)T
[∫
Ωe

(BI
u)T C4 dV

]
=

nn∑
I=1

(ηI)T PI
m4

δct=0
γ
Rh
u =

nn∑
I=1

(ηI)T
[∫
Ωe

(BI
u)T C5 dV

]
=

nn∑
I=1

(ηI)T PI
m5 .

(6.17)

Whereas the chemical part of the variation of the weak formulation referring to Eq. (6.12)
results only in one dependency with

δDR
h
cγ =

nn∑
I=1

γI
[∫
Ωe

(LI)T C6 dV
]

=
nn∑
I=1

γI P I
m6 , (6.18)

with the scalar P I
m6. Therefore, the discrete pseudo-load matrix Pe

m ∈ R24×6 follows by
summation of the nodes and refers to the material sensitivity, so that

Pe
m =

nn∑
I=1

PI
m1 PI

m2 PI
m3 PI

m4 PI
m5 0

0 0 0 0 0 P I
m6

 . (6.19)

6.5.3. Discrete Tangential Sensitivity for the History Field

The history field matrix from Eq. (4.32) contains information about the displacement,
the concentrations, the velocity and acceleration of both primary variables referring to the
previous time step. In the following, the partial variations of the weak formulations with
respect to the history field are derived. The displacements depend only on the actual time
step, so that the partial variations of the weak formulations with respect to the history
field are not applicable, so that

δuNR
h
u =

nn∑
I=1

nn∑
J=1

(ηI)T
[∫
Ωe

0 dV
]
δuJN =

nn∑
I=1

nn∑
J=1

(ηI)T ZIJ
1a δuJN = 0

δcγNR
h
u =

nn∑
I=1

nn∑
J=1

(ηI)T
[∫
Ωe

0 dV
]
δcJγN =

nn∑
I=1

nn∑
J=1

(ηI)T ZIJ
2a δc

J
γN = 0 ,

(6.20)
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6. Sensitivity Analysis

wherein only the variations with respect to the primary variables of the previous time
step are listed, for the displacements ZIJ

1a = 0 ∈ R2×2, respectively for the concentrations
ZIJ

2a = 0 ∈ R2. The same procedure is applied for the variation of the mechanical part of
the weak formulation with respect to the velocity δu̇NR

h
u and acceleration δüNR

h
u terms,

which lead to the empty matrices with the dimensions ZIJ
1b ,ZIJ

1c ∈ R2×2. Furthermore, the
variation with respect to the velocity δċγNR

h
u and acceleration δc̈γNR

h
u of the concentration

results in the empty sub-matrices ZIJ
2b ,ZIJ

2c ∈ R2. Analogue considerations follow for
the partial variation of the chemical part of the weak formulation with respect to the
displacement, i.e.

δuNR
h
cγ =

nn∑
I=1

nn∑
J=1

γI
[∫
Ωe

0 dV
]
δuJN =

nn∑
I=1

nn∑
J=1

γI ZIJ
3a δuJN = 0 . (6.21)

Thus, the empty sub-matrices follow from the chemical part with respect to the mechan-
ical primary variables and can be summarised with ZIJ

3a ,ZIJ
3b ,ZIJ

3c = 0 ∈ R1×2. Finally,
the partial variation of the chemical part of the weak formulation with respect to the
concentrations, respectively velocity and acceleration of the concentrations are derived
from Eq. (6.13) and result in

δcγNR
h
cγ =

nn∑
I=1

nn∑
J=1

γI
[∫
Ωe

− J 2
∆t dV

]
δcJγN =

nn∑
I=1

nn∑
J=1

γI ZIJ
4a δc

J
γN

δċγNR
h
cγ =

nn∑
I=1

nn∑
J=1

γI
[∫
Ωe

− J dV
]

δċJγN =
nn∑
I=1

nn∑
J=1

γI ZIJ
4b δċ

J
γN

δc̈γNR
h
cγ =

nn∑
I=1

nn∑
J=1

γI
[∫
Ωe

0 dV
]

δc̈JγN =
nn∑
I=1

nn∑
J=1

γI ZIJ
4c δc̈

J
γN ,

(6.22)

with the scalars ZIJ
4a , Z

IJ
4b , Z

IJ
4c and the partial variation δhċγ from Eq. (4.31.2), i.e.

∂ċγ
∂cγN

= − 2
∆t ,

∂ċγ
∂ċγN

= −1 and ∂ċγ
∂c̈γN

= 0 . (6.23)

The discretisation of the tangential history matrix follows with the summation of the
nodes with

He =
nn∑
I=1

nn∑
J=1

ZIJ
1a ZIJ

2a ZIJ
1b ZIJ

2b ZIJ
1c ZIJ

2c

ZIJ
3a ZIJ

4a ZIJ
3b ZIJ

4b ZIJ
3c ZIJ

4c

 , (6.24)

so that He ∈ R24×72.
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6.5. Discrete Tangential Sensitivity

6.5.4. Numerical Implementation for the Sensitivity Analysis

Algorithm 1: Illustration of newton update.
Result: ν
initialisation;

convergence = 0 ; TOL ; % tolerance

time step ; ∆t ; % time increment

ν = zeros(dof, 1) ; edof; dof ; % degrees of freedomelement; global

while convergence 6= 1 do
element level (MEX interface) with input νe = ν(edof) ;
Newmark-update;
if time step=1 then

νeN = 0; ν̇eN = 0;

end

ν̇e = 2
∆t (νe − νeN) − ν̇eN

νeN = νe, ν̇eN = ν̇e

residuum and tangent information’s;
Re(νe, ν̇e) , Ke(νe, ν̇e)
Pe
X(νe, ν̇e) , Pe

m(νe, ν̇e) , He(ν̇e)

global level ;
assembly;

R =
nel⋃
e=1

Re , K =
nel⋃
e=1

Ke

PX =
nel⋃
e=1

Pe
X , Pm =

nel⋃
e=1

Pe
m , H =

nel⋃
e=1

He

if |R| ≤ TOL then
convergence = 1;
further computations of sensitiviy informations with PX , Pm and H;

else
linearisation ;

∆ν = K−1 R
ν = ν + ∆ν

end
end
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6. Sensitivity Analysis

In analogy to the discrete formulations of the tangents in the context of the structural
analysis, see Sec. 4.8, the matrices derived at element level are assembled as follows

PX =
nel⋃
e=1

Pe
X , Pm =

nel⋃
e=1

Pe
m , H =

nel⋃
e=1

He , (6.25)

wherein nel denotes the total number of elements and the so-called pseudo-load matrices
PX ∈ Rdof×dofm, Pm ∈ Rdof×6 and H ∈ Rdof×3 dof result. At this point, the global column
matrix with the history field is defined with h̃ ∈ R3 dof , i.e.

h̃ =
[
ν ν̇

]T
. (6.26)

An overview of the implementation is provided by the Algorithm 1.

6.6. Sensitivity Matrices

6.6.1. Update of the History Variation

The primary variables are stored as internal variables in the history field matrix h̃, cf.
Eq. (6.26). After each time step, the total variation of the residuum has to be updated
by the information’s from the previous time step, see Algorithm 1. The tangential history
matrix, with respect to a change of the geometry HX ∈ R dof×dofm as well as with respect
to a change of the material parameters Hm ∈ R dof×6, are derived as follows

HX = ∂R
∂h̃

dh̃
dX = H SH

X

Hm = ∂R
∂h̃

dh̃
dm = H SH

m ,

(6.27)

wherein the global tangential history matrix H from Eq. (6.25) is applied. The partial
variation of the history with respect to the geometry, respectively with respect to the
material parameters, includes the sensitivity information of the previous time step SH

X ∈
R3 dof×dofm and SH

m ∈ R3 dof×6, i.e.

SH
X = dh̃

dX =
[
SXN

2
∆t SXN 0

]T
; SH

m = dh̃
dm =

[
SmN

2
∆t SmN 0

]T
. (6.28)

The partial variations from the Eq. (4.31) are applied and SXN, respectively SmN, are
the sensitivity matrices of the previous time step. The equations are independent of
accelerations.
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6.6. Sensitivity Matrices

It should be noted that the matrices SXN and SmN correspond to zero matrices in the
first time step with

SXN = 0 ∈ R3 dof×dofm

SmN = 0 ∈ R3 dof×6 .
(6.29)

Remark: In the context of the sensitivity analysis, the sensitivity information is introduced
using the matrices SH

X ,SmN,SXN,SmN,SX and Sm. This notation is not to be confounded
with the matrix SK for the description for the second Piola-Kirchhoff tensor.

6.6.2. Sensitivity Matrix for Geometric Changes

Assuming a fixed set of material parameters, yet with a differentiable set of geometry
parameters for the initial design, results in the following total partial variation of the
weak formulation in global matrix representation, i.e.

δR = ∂R
∂X δX + ∂R

∂u δu + ∂R
∂cγ

δcγ + ∂R
∂h̃

dh̃
dX δX = 0

= [PX + HX ] δX + K
 δu
δcγ

 ,
(6.30)

based on the multi-linear form from Eq. (6.3). The stiffness matrix K, respectively the
pseudo-load matrix PX , refers to the assembly in Eq. (4.42) and Eq. (6.25). Furthermore,
the matrix HX is the sensitivity history matrix with respect to the geometry, which is
evaluated in Sec. 6.6.1, cf. Eq. (6.27.1). The total variation of the primary variables
ν with respect to a change of the geometry, leads to the following sensitivity matrix
SX ∈ Rdof×dofm

SX = dν
dX = −K−1 [PX + HX ] . (6.31)
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6. Sensitivity Analysis

6.6.3. Sensitivity Matrix for Material Changes

In addition to examining possible geometric changes, the sensitivity of the material pa-
rameters is studied in this thesis. Therefore, the geometry parameters are fixed and the
variation of the residuum includes the partial variation of the residuum with respect to a
change of the material parameters, i.e.

δR = ∂R
∂m δm + ∂R

∂u δu + ∂R
∂cγ

δcγ + ∂R
∂h̃

dh̃
dm δm = 0

= [Pm + Hm] δm + K δν ,

(6.32)

wherein the material parameters are stored in the column matrix form m ∈ R6, cf.
Eq. (3.72), with a total of 6 material parameters containing mechanical and chemical
components. Analogue to the sensitivity of geometry change, the sensitivity history matrix
with respect to the material parameters is referred to Hm in Eq. (6.27.2). Moreover, the
applied tangential matrices refer to Eq. (4.42) and Eq. (6.25). The sensitivity matrix
Sm ∈ Rdof×6 follows with

Sm = dν
dm = −K−1 [Pm + Hm] . (6.33)

6.7. Design Velocity Matrix

The sensitivity analysis determines how sensitive the objective functions and constraints
are and monitors their reaction to changes made to the design parameters. Thereby, the
continuum mechanical quantities of the objective functions and constraints depend on the
FE-nodes. Due to the parameterised CAGD description, cf. Sec. 5.4, the FE-nodes are
in turn dependent on the geometric design parameters; the chain rule is applied and the
multiplication follows from two parts. The first being that the derivatives relate to the
FE-nodes and the second, the derivatives relate to the design parameters. The last part
represents the design velocity field, which is introduced in Eq. (6.34). The design velocity
matrix v ∈ Rdofm×dofs connects the nodal parameters X ∈ Rdofm to the design parameters
s̃ ∈ Rdofs with dofs describing the global number of design parameters, i.e.

v = ∂X
∂s̃ . (6.34)
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6.8. Sensitivity of Continuum Mechanical Quantities

The open-source software Gmsh is used to generate the mesh in the context of FEM pre-
processing. Thereby, the design velocity matrix is determined numerically according to
the central difference scheme, which follows as

v = X(̃s, ε+) − X(̃s, ε−)
2 ε . (6.35)

Where ε− and ε+ are the negative and positive perturbation variables.

The numerical evaluation of the design velocity field is implemented in a sensitivity rou-
tine, see Listing 6.1, which demonstrates the computation of the design velocity matrix
for the CAGD geometry referring to Figure 5.2. The basic geometries applied in this
work do not increase the numerical effort. However, it should be noted that a numerical
determination in more complex geometries can lead to higher computational costs. In
[73, 52] analytical calculations of the design velocity field are described.

6.8. Sensitivity of Continuum Mechanical Quantities

6.8.1. Sensitivity of the First Piola-Kirchhoff Stress

The sensitivity of the First Piola-Kirchhoff Stress δXP ∈ R4×nel×9×dofm follows by taking
into account a change of the geometry X. The multidimensional array refers to the entries
in P (4), the global number of elements (nel), nine Gauss points and the global number
of mechanical degrees of freedom (dofm). It follows with

δXP =
[
∂P
∂X + ∂P

∂u
du
dX + ∂P

∂cγ
dcγ
dX

]
δX

=
[
∂P
∂X + ∂P

∂ν

dν
dX

]
δX =

[
∂P
∂X + ∂P

∂ν
SX
]
δX ,

(6.36)

with the partial variations ∂P
∂X as well as the sensitivity matrix SX . The partial variation

∂P
∂ν

contains the dependency of the primary variables ν, i.e.

∂P
∂ν

=
[
∂P
∂u

∂P
∂cγ

]
. (6.37)
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A detailed outline of the variations is presented in Appendix A.1.1. With the introduced
design velocity matrix v from Eq. (6.34), the geometric sensitivity matrix of the first
Piola Kirchhoff stress can be transformed into a defined and reduced design field, i.e.

δsP =
[
∂P
∂X + ∂P

∂ν
SX
]

v δs̃ , (6.38)

so that δsP ∈ R4×nel×9×dofs.

6.8.2. Sensitivity of the Second Piola-Kirchhoff Stress

The sensitivity of the second Piola-Kirchhoff stress δXSK ∈ R3×nel×9×dofm with respect to
a change of the nodal coordinates X is determined. Whereby the symmetry of the second
Piola-Kirchhoff stress reduces the dimension. The total partial variation follows with

δXSK =
[
∂SK
∂X + ∂SK

∂u
du
dX + ∂SK

∂cγ
dcγ
dX

]
δX

=
[
∂SK
∂X + ∂SK

∂ν

dν
dX

]
δX =

[
∂SK
∂X + ∂SK

∂ν
SX
]
δX ,

(6.39)

with

∂SK
∂ν

=
[
∂SK
∂u

∂SK
∂cγ

]
. (6.40)

The partial variations ∂SK
∂X , ∂SK

∂ν
and ∂SK

∂cγ
can be found in Appendix A.1.2. Here again,

the design velocity matrix v from Eq. (6.34) is applied to transform the introduced matrix
into a defined and reduced design field δsSK ∈ R3×nel×9×dofs, as follows

δsSK =
[
∂SK
∂X + ∂SK

∂ν
SX
]

v δs̃ . (6.41)

6.8.3. Sensitivity of the First Principal Stress

In the context of optimisation problems within this thesis, the first principal stress of the
Cauchy stress tensor TI is considered as an objective function and as a constraint. Thus,
the total variation of the first principal stress δsTI ∈ R1×nel×9×dofm is required and follows
with

δsTI = ∂TI
∂T δsT , (6.42)
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6.8. Sensitivity of Continuum Mechanical Quantities

wherein the variation of the Cauchy stress with respect to the design parameters follows
analogue to the sensitivity of the first and second Piola-Kirchhoff stress with

δsT =
[
∂T
∂X + ∂T

∂ν
SX
]

v δs̃ , (6.43)

and the dimension δsT ∈ R4×nel×9×dofs. Furthermore, the equation contains the partial
variation of the Cauchy stress with respect to the primary variables the following compo-
nents

∂T
∂ν

=
[
∂T
∂u

∂T
∂cγ

]
. (6.44)

Whereby reference is made to the variations in Appendix A.1.3. Moreover, the partial
variation of the first principal stress from Eq. (3.42) with respect to the Cauchy stress in
Voigt notation results in

∂TI
∂T = 1

2 1 +
−1

4 IT 1 + TT√(
IT
2

)2
− IIT

. (6.45)

6.8.4. Sensitivity of the Area

Within the framework of structural optimisation, the sensitivity of the area is a helpful
measure for the objective functions or the constraints. Thus, the area depends on the
change of the coordinates, respectively, the chosen design parameters. The area can be
calculated by the sum of the total element areas, i.e.

A =
nel⋃
e=1

nn∑
I=1

∫
Ωe

dA . (6.46)

The variation of the area with respect to the design parameters δsA ∈ R1×dofs follows with
the variations of the ansatz functions, cf. Eq. (4.18), so that

δsA =
nel⋃
e=1

nn∑
I=1

∫
Ωe

LI dA . (6.47)
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6.9. Concluding Remarks for the Sensitivity Analysis

This section presents the time-efficient strategy of the variational sensitivity analysis.
Considering the equilibrium conditions from the structural analysis, the requirements for
the sensitivity of geometry, material and history can be obtained in this section. Based
on this, the following equations are provided:

• The tangential matrices are derived analogously to the structural analysis first via the
partial variations of the weak forms and finally discretised with the same approaches.
In the process, the pseudo-load, history field and sensitivity matrices are derived for
geometric and material changes.

• The design velocity matrix provides the transfer from geometrical sensitivities to
the dependency of chosen design parameters. Due to the design velocity field, the
sensitivity evaluation can be reduced to the most relevant geometric changes, which
leads to a very time-efficient method.

• Sensitivity of the second Piola-Kirchhoff stress.
• Sensitivity of the first principal stress.
• Sensitivity of the area.
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6.9. Concluding Remarks for the Sensitivity Analysis

� �
2 function [ v]= sensidX ( lc ,mesh , X)
3 % dofm o v e r a l l number FE−c o o r d i n a t e s
4 % ε p e r t u b a t i o n
5 % l c mesh s i z e
6 % X=[X1 ; X2 ; X3 ; X4=X3 ] d e s i gn parameters

8 % mesh = s t r u c t u r e array wi th :
9 % coord : [ dofm doub le ] matrix FE−node c o o r d i n a t e s

11 % i n i t i a l i s a t i o n
12 ε=10ˆ( −4);
13 v=zeros ( s ize (mesh . coord , 1 ) × 2 , 3 ) ;

15 % s t a r t f i n i t e d i f f e r e n c e loop
16 for t =1:3
17 X a=X ;
18 X b=X ;
19 X a ( t)=X( t)+ε ;
20 X b ( t)=X( t)−ε ;

22 % new FE−nodes c o o r d i n a t e s : mesh . c o o r d v e c a
23 [mesh]=Mesh( lc , X a ) ;
24 mesh . c oo rd vec a=zeros ( s ize (mesh . coord , 1 ) × 2 , 1 ) ;
25 p=1;
26 for i =1: s ize (mesh . coord , 1 )
27 for k=1:2
28 mesh . c oo rd vec a (p)=mesh . c oo rd vec a (p)+mesh . coord ( i , k ) ;
29 p=p+1;
30 end
31 end

33 % new FE−nodes c o o r d i n a t e s : mesh . c o o r d v e c b
34 [mesh]=Mesh( lc , X b ) ;
35 mesh . coord vek b=zeros ( s ize (mesh . coord , 1 ) × 2 , 1 ) ;
36 p=1;
37 for i =1: s ize (mesh . coord , 1 )
38 for k=1:2
39 mesh . coord vec b (p)=mesh . coord vec b (p)+mesh . coord ( i , k ) ;
40 p=p+1;
41 end
42 end

44 % d es i gn v e l o c i t y matrix
45 v ( : , t ) = (mesh . c oo rd vec a − mesh . coord vec b )/(2 × ε ) ;
46 % end f i n i t e d i f f e r e n c e loop
47 end� �

Listing 6.1: Sensitivity routine for design velocity matrix v
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7. Numerical Investigations

In this section, the properties of the proposed diffusion-controlled degradation model
are discussed. Using small examples, the presented model is assessed for plausibility,
sensitivities are controlled and convergence behaviour is examined.

7.1. Introduction to Numerical Investigations

The objective of this section is to examine the mechanical-chemical-degradation model for
plausibility with the use of representative examples. The general coupling between the
diffusion of concentrations and the mechanical response is analysed. Therefore, structural
analysis is used to assess a boundary value problem. This also deals with the verification
of the analytically derived and implemented sensitivities, as well as the convergence of
the solutions determined by structural analysis is examined.

7.2. Coupled Boundary Value Problem

In the following, the correlations between mechanical impact and diffusion-driven degra-
dation processes are investigated based on an example including one element and two
different sets of boundary conditions as shown in Figure 7.1. The example is calculated
with a given x-displacement of ∆u = −0.2 cm at the left edge using Dirichlet boundary
conditions, see Figure 7.1a, and further a constant line load is applied as shown in Figure
7.1b. The line load is a result of the given nodal loads over the Neumann boundary. To
start from an identical deformation state, the force is set to a value of F = −0.45 MN,
so that a displacement of −0.2 cm occurs. Besides the mechanical boundary conditions,
concentrations are applied via the left Dirichlet edge. For both examples, a quadratic
increase over time of the concentration c0

γ is assumed as shown in Figure 7.2. Thus, the
degradation process, triggered by the concentrations, is identically established for both
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7.2. Coupled Boundary Value Problem

Figure 7.1.: a) Dirichlet boundary conditions ∆u and b) Neumann boundary con-
ditions F .

examples. The applied material parameters are shown in Table 7.1. The example is
simulated over 25 days with a time increment of ∆t = 0.02 d for the time integration
scheme. Nevertheless, the total deformation behaves differently due to the two boundary

Figure 7.2.: Dirichlet boundary condi-
tion for the concentration
with the quadratic func-
tion cγ(t) = 0.005t2 +
0.005t + 1 over time.

Table 7.1.: Material and geometry
parameters.

E = 2 MN cm−2

ν = 0.2
ρ∗0 = 300 kg cm−3

Mγ = 10 kg mol−1

D = 30 cm2 d−1

c0
γ = 1 mol cm−3

a = 1 cm
b = 1 cm

conditions. First, the observations on the boundary value problem referring to Figure
7.1a with given displacements follow. The total deformation represented by J is constant,
as the boundary condition does not allow shrinkage. The elastic deformation changes
inversely so that the kinematic condition Je = [Jd]−1J is fulfilled. As a result, the stress
Txx increases because the deformation is fixed, whereas the degradation decreases.
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Furthermore, the observations on the second boundary value problem illustrated in Figure
7.1b with given loads continues. As a result, the total deformation gradient decreases over
time, whereas the stress is constant. Nevertheless, the elastic deformation increases since
the concentrations change the density and thus, the material behaviour.

Figure 7.3.: Evaluation of the boundary condition related to Figure 7.1a with black
line and related to the boundary condition in Figure 7.1b with green line
with a time slot of 25 days. a) Determinant of the elastic contribution
to the deformation gradient Je over time. b) Determinant of the total
deformation gradient J over time. c) Determinant of the degradation
contribution to the deformation gradient Jd. d) Cauchy stress in x-
direction Txx in MN cm−2 over time.

Overall, the example shows a reasonable mechanical correlation between the loads, de-
formations and stresses. The evaluation illustrates that the split of the deformation into
an elastic and degradation contribution allows a deeper insight into the effects of the
concentrations. Thus, in this example it becomes clear that the density and the material
behaviour are affected by the concentrations.

84



7.3. Investigations on Sensitivity Matrix for Geometric Changes

7.3. Investigations on Sensitivity Matrix for Geometric
Changes

The design sensitivity matrix shows the impact of geometry changes on the displacement
and concentrations in the structure, resulting from the FEM investigation. The matrix
can be determined with two approaches, either a numerical or an analytical approach.
The analytical calculation is summarised in Sec. 6.6.2, which introduces the sensitivity
matrix SX . In this section, the numerical approach is investigated using the FDM. The
following approaches can determine the numerical derivatives

Scd = u(X, ε+) − u(X, ε−)
2 ε central difference

Sfd = u(X, ε+) − u(X)
ε

forward difference

Sbd = u(X) − u(X, ε−)
ε

backward difference.

(7.1)

The approximations are calculated by difference quotients with a selected perturbation ε.
In the following, the numerical approximations are derived with different perturbation fac-
tors to achieve the highest precision for the numerical approximation of the gradients and
prove the correct implementation of the derived gradients for the analytical approach. For
this purpose, the boundary value problem presented in Figure 7.1b is used to determine
the sensitivity matrix with the analytical and numerical approaches. The material param-
eters listed in Table 7.1 are used for the calculation; however, only the first five days of
concentration exposure as shown in Figure 7.2 are simulated. This boundary value prob-
lem is chosen to activate both the chemical and mechanical influence. Thus, the numerical
approach can be used to verify whether an inhomogeneous, time-dependent and coupled
problem determines the appropriate sensitivities of displacement and concentration with
respect to changes in geometry. The analytical calculation provides the sensitivity of the
concentration and displacements by modifications of the node coordinates, summarised
in the sensitivity matrix SX . Table 7.2 shows the relative error between the analytical
derived design sensitivity matrix SX and the numerical sensitivity matrix using different
perturbation variables and different FDM approaches (Scd, Sfd , Sbd), whereby the Euclidean
norm is utilised. The perturbations in the range 10−7 to 10−8 lead to the smallest relative
errors between the numerical and analytical sensitivity matrix. Nevertheless, it is clear
that the central difference FDM scheme determines the most robust comparison matrix.
The FDM offers a simple way to calculate the sensitivity of the parameters, yet causing a
very high computational effort, the computational time required is outlined in Sec. 9.2.4.
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Table 7.2.: Calculation of the relative error between the analytical design sensitivity
matrix SX and the numerical sensitivity matrix using different perturba-
tion variables and different FDM approaches (Scd, Sfd , Sbd). The framed
area shows optimal perturbations.

||Scd − SX ||
||SX ||

||Sfd − SX ||
||SX ||

||Sbd − SX ||
||SX ||

ε

1.96× 10−4 1.78× 10−2 1.78× 10−2 1× 10−2

1.96× 10−6 1.78× 10−3 1.78× 10−3 1× 10−3

1.04× 10−7 1.78× 10−4 1.78× 10−4 1× 10−4

1.04× 10−7 1.78× 10−5 1.78× 10−5 1× 10−5

1.04× 10−7 1.78× 10−6 1.78× 10−6 1× 10−6

1.04× 10−7 1.76× 10−7 1.76× 10−7 1× 10−7

1.08× 10−7 1.31× 10−7 1.18× 10−7 1× 10−8

4.65× 10−7 8.78× 10−7 1.10× 10−6 1× 10−9

Furthermore, due to the small relative errors in all procedures, it can be shown that the
analytical solution is properly implemented.

7.4. Investigations on Sensitivity Matrix for Material
Changes

The sensitivity matrix regarding material parameters shows the influence of a material
modification on the primary variables, i.e. displacements and concentrations, which are
the results of the structural analysis. As in the previous section, the example presented
in Figure 7.1b is used to compare the numerical and analytical derived sensitivity ma-
trix. The analytical sensitivity matrix Sm is evaluated in Sec. 6.6.3 and the numerical
approximations follow with

Scm = u(m, ε+) − u(m, ε−)
2 ε central difference

Sfm = u(m, ε+) − u(m)
ε

forward difference

Sbm = u(m) − u(m, ε−)
ε

backward difference.

(7.2)

In Table 7.3, it can be concluded that the smallest relative error occurs in the perturba-
tion range of 10−6 to 10−7. Due to the low deviation, the analytically derived material
sensitivity matrix can be assumed to be correctly calculated and implemented.
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Table 7.3.: Calculation of the relative error between the analytical material sensitiv-
ity matrix Sm and the numerical sensitivity matrix using different per-
turbation variables and different FDM approaches (Scm, Sfm, Sbm). The
framed area shows optimal perturbations.

||Scm − Sm||
||Sm||

||Sfm − Sm||
||Sm||

||Sbm − Sm||
||Sm||

ε

6.72× 10−5 7.99× 10−3 8.13× 10−3 1× 10−2

6.73× 10−7 8.05× 10−4 8.07× 10−4 1× 10−3

3.33× 10−8 8.06× 10−5 8.06× 10−5 1× 10−4

3.26× 10−8 8.06× 10−6 8.06× 10−6 1× 10−5

3.25× 10−8 8.05× 10−7 8.07× 10−7 1× 10−6

3.25× 10−8 8.58× 10−8 7.98× 10−8 1× 10−7

1.08× 10−7 1.66× 10−7 1.63× 10−7 1× 10−8

6.67× 10−7 2.00× 10−6 1.31× 10−6 1× 10−9

7.5. Investigations on Convergence

The coupled mechanical-chemical-degradation model applies both time and space discreti-
sation. In the following section, the convergence of the solutions, the displacements and
concentrations are analysed depending on the number of elements and on the number of
time steps. Therefore, the boundary value problem printed in Figure 7.4 is evaluated.

Figure 7.4.: Boundary value problem with a nodal force F and Dirichlet boundary
conditions for the concentration cγ(t) on the left edge of the structure.
Here, the structure is meshed with 100 elements.

The material parameters listed in Table 7.1 are used for the calculation; however, only the
first day of concentration exposure, as shown in Figure 7.2, is simulated. Furthermore, the
force is set to a value of F = −0.01 MN. In order to see the effects of the discretisation,
the example is calculated with different time steps and number of elements. Table 7.4
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shows the solution of the concentrations and Table 7.5 shows the x-displacement, both
values are evaluated in the middle point of the structure, i.e. (0.5 a, 0.5 b). The solutions
are determined using different meshes; the applied number of elements and time steps
vary. The blue area shows the range in which the solution variables can be evaluated as

Table 7.4.: Solution of the concentrations [mol cm−3] in the middle point of the
structure, i.e. (0.5 a, 0.5 b) for different space and time increments.

Convergence concentrations
spatialtime [d] 4 elements 16 elements 36 elements 64 elements 100 elements

1 4.962× 10−3 4.961× 10−3 4.962× 10−3 4.962× 10−3 4.962× 10−3

0.1 4.988× 10−3 4.986× 10−3 4.987× 10−3 4.987× 10−3 4.987× 10−3

0.02 4.983× 10−3 4.981× 10−3 4.982× 10−3 4.982× 10−3 4.982× 10−3

0.01 4.983× 10−3 4.981× 10−3 4.982× 10−3 4.982× 10−3 4.982× 10−3

0.005 4.983× 10−3 4.981× 10−3 4.982× 10−3 4.982× 10−3 4.982× 10−3

0.001 4.983× 10−3 4.981× 10−3 4.982× 10−3 4.982× 10−3

sufficiently accurate under consideration of computational time effort and accuracy of the
solution. It is clear that the convergence of concentrations is predominantly dependent on
temporal discretisation yet, the convergence of displacement depends mainly on spatial
discretisation since only the evolution of the concentration is considered in the structural
problem. However, since the processes are coupled, both the spatial discretisation and

Table 7.5.: Solution of the x-displacement in the middle point of the structure, i.e.
(0.5 a, 0.5 b) for different space and time increments.

Convergence displacements
spatialtime [d] 4 elements 16 elements 36 elements 64 elements 100 elements

1 −1.59× 10−3 −1.79× 10−3 −1.80× 10−3 −1.79× 10−3 −1.79× 10−3

0.1 −1.59× 10−3 −1.79× 10−3 −1.80× 10−3 −1.79× 10−3 −1.79× 10−3

0.02 −1.59× 10−3 −1.79× 10−3 −1.80× 10−3 −1.79× 10−3 −1.79× 10−3

0.01 −1.59× 10−3 −1.79× 10−3 −1.80× 10−3 −1.79× 10−3 −1.79× 10−3

0.005 −1.59× 10−3 −1.79× 10−3 −1.80× 10−3 −1.79× 10−3 −1.79× 10−3

0.001 −1.59× 10−3 −1.79× 10−3 −1.80× 10−3 −1.79× 10−3 −1.79× 10−3

the time increments for the time integration scheme must be selected small. In this
example, 36 elements with a time increment of 0.02 d achieve a converged result. With
the convergence study at hand, the mesh sizes for the coming examples are selected. Both
convergence studies are illustrated in Figure 7.5.
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Figure 7.5.: Graphical illustration of the spatial and temporal convergence.

7.6. Concluding Remarks on the Numerical Investigations

The correlation between the degradation and the established kinematics as well as the
stresses can be evaluated as plausible. This statement is based on the evaluations of the
coupled problem in Sec. 7.2. In particular, the influence of degradation can be clarified
with the help of the multiplicative decomposition of the deformation gradient into an
elastic and a growth part. Thus, the deformation caused by degradation processes can
be quantified using the determinant of the degradation contribution to the deformation
gradient Jd.

Furthermore, the analytically determined sensitivities can be evaluated as accurately im-
plemented for the sensitivity of the design and the sensitivity of the material parameters,
cf. Sec. 7.3 and Sec. 7.4. The analytical approach represents a considerable time efficiency
for the application of optimisation tasks for the further course of this work.

In addition, Sec. 7.5 provides an estimation of mesh resolution for spatial discretisation
and the time steps for the time integration. On this basis, the discretisation chosen for
the following examples is as efficient as possible.
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In this section, the coupled effects of diffusion leading to the degradation of material are
discussed. To outline the possible use of such a model, common material degradation
processes that occur particularly in the building industry are referred.

8.1. Introduction to Examples of Structural Analysis

The broadly chosen model approach makes it possible to address different application areas
with mechanical-chemical induced degradation processes. However, within the following,
two fields of possible applications in the framework of civil engineering are explained in
more detail. In the construction industry, the use of cement as a binder for the produc-
tion of mortar or concrete is common. The material properties depend on the strength
development during the hydration process, whereby in particular calcium silicate hydrate,
the so-called C-H-S phase, is produced, see [126]. Two common occurring problems in the
building industry, characterised by diffusion-driven material degradation, are addressed
in a short overview of the state-of-the-art:

• Calcium leaching,
• Chemical attack.

The mechanism of calcium dissolution from the hardened cement paste is called calcium
leaching. In this process, C-H-S phases are decalcified and thus, serious changes in the
material properties can occur. For example, long-term exposure to water, with a lower
calcium concentration than the equilibrium concentration, can trigger calcium hydroxide
crystals. As a result of leaching, materials degrade and the pore volume increases, as
published among others in [65]. Pores in the range of 100 nm to 1 µm can occur, see
[78], thus having a considerable influence on the mechanical properties of the concrete. A
number of publications demonstrate the use of a diffusion-controlled chemically coupled
model to simulate calcium leaching, see [51, 83, 146]. In [49], a simplified numerical model
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of calcium leaching is presented, which concentrates on the chemical state variable calcium
and the kinetics of the leaching process. This model considers time-dependent chemical
processes and gives an outlook on the possibility of a simple coupling in an FE-algorithm.
[78] presents a chemo-mechanical model for the numerical simulation of calcium leaching
in concrete. He emphasises the effects of the chemical degradation on the pore volume and
the mechanical stability of concrete. A damage function is used for constitutive modelling
of the chemo-mechanically degraded material.

A common chemical attack can occur for example within wastewater environments. Hy-
drogen sulfide (H2S) releases from the wastewater and biodegradable element sulfur is
absorbed into the bio-film covering the surface of the wastewater components. Bacte-
ria are formed leading to a reduction of the pH-value. Elementary sulfur and a low
pH-value are ideal living conditions for so-called sulfur-oxidising bacteria (Thiobacillus
thiooxidans). These bacteria produce sulfuric acid (H2S04), causing a powerful attack on
concrete and cement mortar. The chemical attack on concrete triggered by bacteria re-
sults in bio-degradation and thus, to structural damage. The process of chemical attacks
on concrete is well-known, see e.g. [106, 69, 99]. [143] presents a model for degradation
of concrete triggered by sulfuric acid attack wherein a coupling between chemical reac-
tions and the diffusion of different species are implemented. Further publications, which
present models for degradation by biogenic organic acids, can be found, e.g. [37, 129].

In the context of this work, diffusion processes of chemical concentrations causing material
degradation are considered in a coupled mechanical model. A general approach is chosen
to address different fields. This work, therefore, provides a basis for possible applications
of specific chemical processes, such as calcium leaching or chemical attacks. The boundary
problem is motivated by the concept of analysing the chemical influence on hollow concrete
blocks since concrete is a permeable medium that allows the inflow of concentrations and
is susceptible to chemical degradation, such as in calcium leaching processes.

8.2. Structure with a Hole

The objective of this example is the investigation on the mechanical effects triggered by
chemical concentrations in a structure with a hole. The boundary value problem is illus-
trated in Figure 8.1a. The material degradation takes place gradually. Hence, the calcula-
tion is accelerated by applying the diffusion rate per day and thus, the evaluation per day
[d]. The computation runs over 40 d in total. The discretisation is chosen fine to generate
accurate results, as outlined in Sec. 7.5. Therefore, the mesh is created with 72 elements
as shown in Figure 8.1a and a time increments of 0.02 d is applied for the time integration.
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Table 8.1.: Material and geometry
parameters.

E = 2 MN cm−2

ν = 0.2
ρ∗0 = 300 kg cm−3

Mγ = 10 kg mol−1

D = 30 cm2 d−1

c0
γ = 1 mol cm−3

a = 5 cm
b = 5 cm

A concentration inflow is considered on the left
side of the structure, and the chemicals are in-
creasing over the days as printed in Figure 8.1c.
On the right side of the structure the concentra-
tion outflow is set to a constant Dirichlet bound-
ary condition with the value of the initial con-
centration c0

γ. The concentration contour plot of
the last time step is shown in Figure 8.1b. Fixed
displacements enable a stable mechanical environ-
ment, cf. Figure 8.1a. No specific chemical pro-
cess is described in this example; however, the
material parameters used in Table 8.1 are based
on common values for the concrete and the orders of magnitude for chemical diffusion
processes. In Figure 8.2a the deformation induced by the concentrations is evaluated and

Figure 8.1.: a) Dirichlet boundary conditions and mesh of a structure with a hole. b)
Contour plot of the concentrations in the last time step. c) Illustration
of the concentrations cγ(t) over 40 d with a linear increase in the applied
Dirichlet boundary conditions.

the determinant of the degradation contribution to the deformation gradient, Jd = ρ0

ρ∗
,

is represented. The deformation causes stresses in the structure as the first principal
stress of the Cauchy stress TI shows in a contour plot in Figure 8.3a. The main material
degradation occurs near the inlet area due to the material degradation triggered by a
high concentration of chemicals. Nevertheless, as a result of the shape, the maximum
stress is in marked point A, the area close to the hole. Both the degradation and the first
principal stress are evaluated in this point A over time, see Figures 8.2b and 8.3b. This
example shows the coupling between a diffusion process and deformations and illustrates
the harmful effects of chemical substances. Especially long-term exposure to diffusion
processes can cause gradual damage.
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Figure 8.2.: a) Contour plot of degradation Jd in the last time step. b) Evaluation of
the degradation Jd in point A over time triggered by the concentration
cγ.

Figure 8.3.: a) Contour plot of first principal Cauchy stress TI in the last time step.
b) Evaluation of the first principal Cauchy stress TI in point A over
time triggered by the degradation Jd.

8.3. Concluding Remarks on the Structural Analysis
Examples

In this section, an example for the application of the developed diffusion-driven degra-
dation model is presented. The purpose of this section is to simulate a time-dependent
problem due to environmental influences and, in particular, to illustrate the mechanical
effects in the form of stresses. The aim of the example is to illustrate how environmen-
tal influences can gradually change the stresses in a structure and demonstrate how the
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load-bearing behaviour may no longer be guaranteed.

The example simulates a structure with a hole with a chemical diffusion. The concentra-
tions lead to material degradation and deformations, which in turn trigger the stresses in
the structure and create stress peaks at the area of the hole. This example is used as the
basis for a subsequent optimisation task.
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The developed model of a diffusion-driven degradation model, which is embedded in an
algorithm for the calculation of structural shape optimisation, is applied. The examples
provided have a practical reference and are optimised under the influence of chemical
concentrations.

9.1. Introduction to the Examples of Shape Optimisation

Shape optimisation of structures can provide a better understanding of mechanical re-
quirements and repeated efficiency. For this reason, examples of shape optimisation of
the diffusion-driven degradation model are presented in this section. The first example
refers to an unfilled structure, similar to a hollow concrete block, loaded with chemical
substances. Whereby the optimised shape of the brick is evaluated in such a way that the
maximum stress caused by the concentrations is reduced, though still no additional ma-
terial needs to be used. A further bridge-like structure is analysed regarding an optimised
shape, where materials are saved and the load-bearing capacity is still fulfilled.

With the help of the following examples, it is shown that the shape plays a relevant role in
fulfilling the mechanical requirements, even when diffused concentrations are taken into
account. The examples serve to illustrate possible practical applications. Finally, the ana-
lytically determined gradients, which are applied in the context of structural optimisation,
can be verified employing comparative numerical results.

9.2. Optimisation of a Structure with a Hole

The shape optimisation of the structure with a hole from Sec. 8.2 is discussed in detail
in the following sections. The objective of the optimisation task is to reduce the stress

95



9. Examples of Shape Optimisation

resulting from the degradation processes. Hence, the maximum first principal stress in

Figure 9.1.: Shape optimisation.

Table 9.1.: Input parameters for the
optimisation algorithm.

threshold Ā 0.005
s̃u [1.3; 0.8]

limit values s̃l [0.7; 0.2] cm

initial design s̃ [1; 0.5] cm
geometric values a = b 5 cm

the Gauss point is applied as the objective function. The restriction is defined in such a
way that the area is not allowed to change significantly. Therefore, the objective function
J̃ (̃s,ν (̃s)) and constraint g̃(̃s,ν (̃s)) are established as follows

J̃ (̃s,ν (̃s)) = Tmax
I

g̃(̃s,ν (̃s)) =
∣∣∣∣∣∣A

ini − A

Aini

∣∣∣∣∣∣− Ā ,
(9.1)

wherein Tmax
I is the maximal first principal stress in the Gauss points, Aini is the initial

area, A is the actual area and Ā is a defined threshold. Both the objective function and
the constraint must be calculated using the solutions of the structural analysis as they
are dependent on the field variables ν, cf. Sec. 8.2. Furthermore, the optimisation task
depends on the design parameters, the axes of the ellipse (s1, s2) as printed in Figure 9.1,
which are altered to minimise the objective function. The optimisation problem reads

min J̃ (̃s,ν (̃s)) : g̃ ≤ 0 inequality constraint

s̃ ∈ Rdofs, ν ∈ Rdof s̃l ≤ s̃ ≤ s̃u limit values.
(9.2)

The parameters of the hole are the design parameters s̃ =
[
s1 s2

]T
, with defined upper

limit values s̃u =
[
su1 su2

]T
and lower limit values s̃l =

[
sl1 sl2

]T
. The optimisation

algorithm applies the input parameters listed in Table 9.1.
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9.2.1. Parameter Calibration Sensitivity of the Objective Function

For the solution to the optimisation task, the variations of the objective function and
the inequality constraint with respect to the design parameters are required, as described
in Sec. 5.5.1. Both gradients can be calculated either analytically or numerically. The
maximum first principal stress is used as the objective function and the change of the area
is used as the inequality constraint. Therefore, Eq. (6.42) and Eq. (6.47) are applied for
the analytical derived gradients ∇J̃ and ∇g̃, i.e.

∇J̃ = δsT
max
I

∇g̃ =
∣∣∣∣∣∣ −1
Aini

∣∣∣∣∣∣ δsA .
(9.3)

However, the numerical gradients are determined using the FDM, whereby the following
central difference approximations are applied for the objective function ∇J̃c and for the
constraint ∇g̃c, i.e.

∇J̃c = J̃ (̃s,ν (̃s), ε+c ) − J̃ (̃s,ν (̃s), ε−c )
2 εc

∇g̃c = g̃(̃s,ν (̃s), ε+c ) − g̃(̃s,ν (̃s), ε−c )
2 εc

,

(9.4)

with the perturbation εc.

The objective of this subsection is to compare the analytical gradients with the numerical
approaches, whereby the relative errors are determined. However, the influence of the
selected perturbation value ε, which are required to determine the design velocity matrix
v, cf. Eq. (6.35), is examined in detail. For this purpose, different values are applied
for the perturbation values ε and the perturbation values εc. The calculations are based
on the hollow structure, see Sec. 8.2, with the same material and geometry parameters
as introduced in Table 8.1. To accelerate the calibration, however, the discretisation
in space and time are applied more roughly, i.e. the structure is approximated with
eight elements and a time increment of 0.2 d. The results become more accurate with
finer discretisation. It is therefore, assumed, that if a coarser approximation leads to
verification of the analytical variation, the same statement is also permissible for finer
approximation strategies. The assumption for a coarser discretisation is only applied
in the context of calibration; the following optimisation in Sec. 9.2.2 is based on the
previously introduced fine approximations for time and space. Table 9.2 contains the
relative errors between the analytical ∇J̃ and numerical ∇J̃c approach for the gradients
of the objective function, whereby the Euclidean norm is applied.
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Table 9.2.: Calculation of the relative error between the analytical derivation ∇J̃
and the numerical derivation ∇J̃c with respect to different perturbation
values εc for the numerical access of the gradient and with respect to
different perturbation values ε for the design velocity matrix.

Design velocity perturbation
ε = 1× 10−2 ε = 1× 10−3

||∇J̃c − ∇J̃ ||
||∇J̃ ||

εc
||∇J̃c − ∇J̃ ||
||∇J̃ ||

εc

1.8036× 10−4 1× 10−2 1.9518× 10−4 1× 10−2

4.8634× 10−5 1× 10−3 1.8282× 10−6 1× 10−3

6.6722× 10−5 1× 10−4 5.6384× 10−5 1× 10−4

3.9663× 10−4 1× 10−5 3.8015× 10−4 1× 10−5

Design velocity perturbation
ε = 1× 10−4 ε = 1× 10−5

||∇J̃c − ∇J̃ ||
||∇J̃ ||

εc
||∇J̃c − ∇J̃ ||
||∇J̃ ||

εc

2.2974× 10−4 1× 10−2 3.705 64× 10−4 1× 10−2

5.5958× 10−5 1× 10−3 3.7952× 10−4 1× 10−3

1.4750× 10−6 1× 10−4 3.5544× 10−4 1× 10−4

3.5569× 10−4 1× 10−5 1.4686× 10−6 1× 10−5

Table 9.3 presents relative errors between the analytical ∇g̃ and numerical ∇g̃c approach
for the gradients of the constraints. Both tables highlight the rows, resulting in the
smallest error. Resulting in a more visible identical application, it becomes apparent that
an identical perturbation value for the design velocity matrix ε and for the numerical
investigation of the gradients εc lead to the smallest error.

Due to the very small relative errors, it can be stated that the analytically derived variants
of the objective function and constraints are implemented correctly. Furthermore, it
becomes clear that the numerical approaches depend on the choice of the perturbation
factors. An efficient optimisation process can be guaranteed overall with the analytical
approaches.

9.2.2. Optimal Solution

The solution of the nonlinear constrained optimisation problem is carried out with the help
of a mathematical solver. The function fmincon, available in the MATLAB optimisation
toolbox, is used to determine the optimised design parameters with the ’active-set’ algo-
rithm. This algorithm is based on the solution method of SQP, cf. Sec. 5.5.1. Providing
the defined objective function, the constraint and its analytical derived gradients.
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Table 9.3.: Calculation of the relative error between the analytical derivation ∇g̃
and the numerical derivation ∇g̃c with respect to different perturbation
values εc for the numerical access of the gradient and with respect to
different perturbation values ε for the design velocity matrix.

Design velocity perturbation
ε = 1× 10−2 ε = 1× 10−3

||∇g̃c − ∇g̃||
||∇g̃||

ε
|∇g̃c − ∇g̃||
||∇g̃||

ε

6.7779× 10−6 1× 10−2 2.6020× 10−6 1× 10−2

4.4967× 10−6 1× 10−3 6.8041× 10−8 1× 10−3

4.3730× 10−6 1× 10−4 1.7184× 10−7 1× 10−4

3.5957× 10−6 1× 10−5 2.6036× 10−6 1× 10−5

Design velocity perturbation
ε = 1× 10−4 ε = 1× 10−5

||∇g̃c − ∇g̃||
||∇g̃||

ε
||∇g̃c − ∇g̃||
||∇g̃||

ε

2.5740× 10−6 1× 10−2 3.7988× 10−6 1× 10−2

1.9396× 10−7 1× 10−3 2.6316× 10−6 1× 10−3

9.3693× 10−10 1× 10−4 2.4382× 10−6 1× 10−4

2.4382× 10−6 1× 10−5 1.0387× 10−9 1× 10−5

The diagram in Figure 9.2 shows the iteration course of the mathematical solver, which
minimises the objective function. In the last iteration step the maximum first principal
stress Tmax

I achieves a value of 0.077 MN cm−2 in the Gauss point. The solver requires
a total of 5 iterations until it calculates a local minimum that satisfies the constraints.
The mathematical optimisation is completed due to the solver being able to decrease
the objective functions whilst the first-order optimality approaches zero with a value of
7.2233× 10−9 in the last iteration step, see Figure 9.3. The first-order optimality is a
measure, which includes the underlying KKT conditions from Eq. (5.8), and determines
how close a point is to optimal. The optimisation leads to the optimal point, the new
design parameters, i.e.

s̃ =
[
0.7 0.7676

]T
. (9.5)

The contour plot of the first principal stress in Figure 9.4 shows that the change of the
hole parameters leads to an overall decrease in stress. This example illustrates how the
shape has a major influence on the stress distribution in the structure. This observation
is supported by Figure 9.4, which shows the temporal course of the first principal stress
Tmax
I in the maximum loaded point A for the new shape, printed with a green line, and

the initial shape, printed with a black line. Due to the shape optimisation, the overall
stress can be reduced. The influence of degradation can also be slightly reduced, as shown
in Figure 9.5. However, with a value of Jd = 0.9563 in the new design and Jd = 0.9561
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9. Examples of Shape Optimisation

Figure 9.2.: Iteration of the optimisation solver, which records the decrease of the
objective function, i.e. the first principal stress TI . In the last iteration
step, a minimised first principal stress of 0.077 MN cm−2 is present.

Figure 9.3.: Iteration of the optimisation solver, which records the decrease of the
first-order optimality measure. In the last iteration step, a first-order
optimality of 7.2233× 10−9 is present.

´

in the initial design after the last time step, the difference is minimal. To further reduce
the material degradation, the material parameters must be optimised. Nevertheless, this
example shows a strong coupling between the chemical concentrations and the mechanical
stresses.
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9.2. Optimisation of a Structure with a Hole

Figure 9.4.: a) Contour plot of first principal stress TI in the last time step with
the new design. b) Evaluation of the first principal stress Tmax

I in point
A over time with green line referred to the new design and black line
referred to the initial design.

Figure 9.5.: a) Contour plot of degradation Jd in the last time step with the new
design. b) Evaluation degradation Jd in point A over time with green
line referred to the new design and black line referred to the initial
design.

9.2.3. Optimal Solution Algorithm

The mathematical optimisation is solved utilising the MATLAB function fmincon,
which calculates the minimum of a constrained nonlinear multi-variable function. The
MATLAB user can choose between different algorithms to solve the problem whereby
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9. Examples of Shape Optimisation

the mathematical background of the solvers may differ and influence the optimisation
result. For this reason, the influence of the solution algorithm on the optimised result
is investigated more closely in this subsection. In detail, the algorithm ’sqp-legacy’,
’active-set’ and ’interior-point’ are applied to solve the introduced optimisation task, cf.
Eq. (9.1). The algorithms ’sqp-legacy’ and ’active-set’ are based on the SQP method pre-
sented in this thesis. SQP is developed using Newton’s method whilst taking inequality
constraints into account. Nevertheless, the two algorithms differ in their implementation,
e.g. they use alternative definitions for strict feasibility regarding bounds or the choice of
solution algorithm for the sub-problems. In contrast, the ’interior-point’ algorithm first
converts the inequality-constrained problem into an equality constrained problem. It
then solves it with Newton steps or conjugate gradient steps depending on the solution
of each iteration step. For more information, see [92]. The solutions are identical for all

Table 9.4.: Comparison of different solution algorithms.

Algorithm Number
of iterations

Time
in seconds

Optimisation
result

First-order
optimality measure

’sqp-legacy’ 5 9205 [0.7; 0.7676] 3.06× 10−7

’active-set’ 5 7525 [0.7; 0.7676] 7.22× 10−9

’interior-point’ 31 221412 [0.7; 0.7676] 2.62× 10−6

approaches, i.e. the efficiency can be assessed based on the number of iterations and
calculation time. Table 9.4 compares the efficiency of the algorithms on this basis and
demonstrates how the algorithm, ’active-set’, runs most efficiently, as the solution is
obtained after five iterations, respectively after 7525 s.

9.2.4. Efficiency of the Variational Approach

As mentioned above, the required gradients of the objective function and constraints can
be determined numerically with FDM as well as analytically. Thus, the analytical solution
of the previously described optimisation problem is compared with the solution using
FDM, whereby the most efficient ’active-set’ algorithm is utilised. Applying the central
FDM with a perturbation factor of εc = 1× 10−4 leads to the identical iteration process
and design parameters. However, there is a big difference in the amount of computational
time required, the analytically predefined gradients take 7525 s and the numerical derived
gradients take 37 673 s. The time efficiency is due to the variational method and the
analytical gradients are determined simultaneously within the FEM calculation. Where
the numerical method approximates the gradients by repeating calculation loops with
altered design parameters. Due to this time efficiency, the added value of the presented
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variation approach becomes apparent.

9.3. Optimisation of a Bridge-like Structure

The example is inspired by a bridge with mechanical loading under environmental condi-
tions, such as calcium leaching. Calcium leaching can occur under long-term exposure to
pure water, with calcium ions being released due to concentration differences. The equal-
isation of concentrations takes place via the diffusion of the particles. In this example, a
description is provided of a concentration’s general diffusion process, which as discussed,
consequentially leads to material degradation. Figure 9.6a displays the applied bound-
ary value problem. The symmetry of the structure is exploited to save computing time.
The calculation is therefore, performed on half of the system with symmetry boundary
conditions on the right side.

Figure 9.6.: a) Mechanical and chemical boundary conditions and mesh of a bridge-
like structure. b) Contour plot of the concentrations in the last time
step. c) Illustration of the concentrations cγ(t) over 10 d with a linear
increase in the applied Dirichlet boundary conditions.

The bridge is loaded by a line load with 2 kN m−1 and a concentration, which increases
during the simulation time up to 0.001 mol m−3, as shown in Figures 9.6b and 9.6c.
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9. Examples of Shape Optimisation

Table 9.5.: Material and geometry
parameters.

E = 3000 kN m−2

ν = 0.2
ρ∗0 = 1000 kg m−3

Mγ = 10 000 kg mol−1

D = 0.1 m2 d−1

c0
γ = 0.0001 mol m−3

The boundary value problem is discretised with
64 elements and with a time increment of 0.02 d,
whereby a total of 10 d is simulated. Table 9.5
presents the applied material and geometry pa-
rameters. The objective of this example is to in-
vestigate how the long-term effect of concentra-
tions can influence the optimisation of a mechan-
ically loaded structure. Of particular interest is
the evaluation of the optimisation result during
different times of the simulation. The task speci-
fies the area A of a bridge-like structure as the objective function J̃ (̃s,ν (̃s)), so that the
material costs can be reduced. Hereby, Eq. (6.46) is applied for a plane strain setting.
Furthermore, the constraint is defined by a column matrix g̃(̃s,ν (̃s)), which contains a
restriction to a maximum first principal stress in all Gauss points. Thus, the optimisation
problem is defined as follows

J̃ (̃s,ν (̃s)) = A

g̃(̃s,ν (̃s)) = TI − T̄I 1 ,
(9.6)

with a column matrix containing the solution of the first principal stresses in the Gauss
points TI ∈ R576, a all-ones column matrix 1 ∈ R576 and the defined threshold T̄I .
Respectively, the total optimisation problem follows with, i.e.

min J̃ (̃s,ν (̃s)) : g̃ ≤ 0 inequality constraint

s̃ ∈ R s̃l ≤ s̃ ≤ s̃u limit values ,
(9.7)

whereby the design parameters are defined with

s̃ =
[
x1 x2 x3 x4

]T
, s̃u =

[
xu1 xu2 xu3 xu4

]T
, s̃l =

[
xl1 xl2 xl3 xl4

]T
. (9.8)

The design parameters are the control points of a B-spline function: they describe the

Figure 9.7.: Design parameters for the structural optimisation.

lower edge of the structure as outlined in Figure 9.7 allowing for vertical displacement.

104



9.3. Optimisation of a Bridge-like Structure

Accordingly, the two-column matrices s̃u and s̃l contain the upper and lower values of the
design parameters. Due to the assumed symmetry, the design parameters must fulfil the
requirement that a horizontal geometry is maintained at the lower right support. There-
fore, the condition x3 = x4 is introduced. The parameters for the optimisation algorithm
are shown in Table 9.6. The nonlinear constrained optimisation problem is evaluated at

Table 9.6.: Input parameters for the optimisation algorithm.

threshold T̄I 60 kN m−2

s̃u [1.0; 1.0; 1.0; 1.0]
limit values s̃l [−1.0; −1.0;−1.0;−1.0] m

initial design s̃ [0; 0; 0; 0] m

three simulation times, the optimisation is carried out after 1 d, 5 d and 10 d. As a result,
the influence of the time-dependent chemical concentration becomes visible. Here again,
the MATLAB fmincon function is utilised to solve the mathematical optimisation and
the gradients for the objective function and the constraints are provided. The analytical
derived objective function ∇J̃ is obtained with Eq. (6.47) and the analytical constraint
∇g̃ is calculated under consideration of Eq. (6.42), whereby the gradient of the area and
of the first principal stress are derived, i.e.

∇J̃ = δsA

∇g̃ = δsTI .
(9.9)

Figure 9.8 shows the iteration course of the objective function, the area of the structure,
during the optimisation. Here, the optimisation for the three different simulation times
are printed, i.e. the red line demonstrates the iteration for structural optimisation after
1 d, the second, blue represents 5 d and finally the green line shows the iteration after 10 d.
For all three examples, the optimisation solver stopped after six iterations because the
predicted change in the objective function is less than a tolerance of 1× 10−6. However,
the curves converge to different values: it becomes clear that with longer environmental
influence the area can only be reduced to a lesser extent in order to fulfil the constraints,
i.e. the solution converges for a simulation time including 1 d to area of 14.70 m2, 5 d to
an area of 15.05 m2 and 15 d to a area of 15.78 m2. The corresponding design parameters
follow with

1 day : s̃ =
[
9.85× 10−1 1.00; 1.18× 10−1 1.18× 10−1

]T
5 days : s̃ =

[
9.01× 10−1 1.00 7.85× 10−2 7.85× 10−2

]T
10 days : s̃ =

[
7.50× 10−1 1.00 −1.95× 10−2 −1.95× 10−2

]T
,

(9.10)
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9. Examples of Shape Optimisation

Figure 9.8.: Iteration of the optimisation solver, which records the decrease of the
objective function, i.e. the area A. The red line refers to the simulations
time after 1 d, the blue line after 5 d and the green line after 10 d.

and they are printed in Figure 9.9. The design parameters show that the greatest saving
occurs in the area of the least stress, where neither compressive nor tensile stresses are
present. As well as this, it is also noted that more material is needed in the centre of
the beam to ensure load-bearing capacity. The calculation times for the mathematical

Figure 9.9.: Solution for the design parameters s̃ = [x1; x2; x3; x4]. The red line
refers to the simulations time after 1 d, the blue line after 5 d and the
green line after 10 d.

optimisation are 285 s, 1365 s and 2731 s for the optimisation including 1 d, 5 d and 10 d.
The contour plot in Figure 9.10 represents the first principal stress in the optimised and
initial design, whereby the optimisation design taking into account 10 d is referred. With
this example, the material is saved, yet a defined load capacity can still be guaranteed.
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Figure 9.10.: Evaluation of the first principal stress in the Gauss points induced by
mechanical load. a) Initial structure with Tmax

1 = 55.9 kN m−2 vs.
b) optimal structure with Tmax

1 = 60 kN m−2.

Even the slightest penetration of chemical concentrations influences the stresses in the
structure and thus, also the optimisation results. Without taking environmental influences
into account, no reliable calculation of efficient shapes can be guaranteed. In particular,
the simulation time and the exposure time must be taken into account. Figure 9.11
shows the development of the maximum first principal stress in the bridge over time. The
curves refer to the evaluation using the initial design with a black line. In the evaluation,
the three optimal solutions are marked by different colours depending on the simulation
times taken into account; red refers to 1 d, blue to 5 d and green to 10 d. The desired
load-bearing capacity of Tmax

1 = 60 kN m−2 can only be fulfilled by the optimal design
evaluated with a simulation time of 10 d.

9.4. Concluding Remarks on the Shape Optimisation
Examples

In this section, two examples of the application of the developed model of structural
shape optimisation of diffusion-driven degradation processes are presented. The aim of
these optimisation tasks is to improve the shape of the structures, yet not exceed the
maximum possible stresses and ensure load-bearing capacity.

The first example is used for a closer analysis of the optimisation procedure. The op-
timisation criterion is explained in more detail and the different solution algorithms are
compared. Furthermore, the efficiency of the analytically provided gradients is highlighted
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Figure 9.11.: Evaluation of the maximum first principal stress Tmax
1 over time in-

duced by mechanical loads. The black line represents the maximum
first principal stress evaluated with the initial design; the red, blue
and green lines refer to the maximum first principal stress in the op-
timised design considering 1 d, 5 d and 10 d calculation time.

and compared with the numerical approach. A clear acceleration of the calculation time
using the analytical approach becomes apparent.

In the second example, the practical reference focuses on simulating a bridge-like struc-
ture under harmful environmental influences. In particular, the influence of chemical
concentrations is highlighted, whereby exposure time plays an essential role. It can be
shown that influences from the environment, such as diffusion processes, must be taken
into account; otherwise, the load-bearing capacity may be exceeded.
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10. Examples of Material Parameter
Optimisation

In the following sections, examples of the material parameter optimisation with the con-
tinuum mechanical-chemical-degradation model follow. The nonlinear least squares curve-
fitting is applied to optimise material parameters and reduce material degradation.

10.1. Introduction to Examples of Material Parameter
Optimisation

The previously presented shape optimisation enables efficient forms while taking mechan-
ical requirements, such as stress restrictions, into account. However, the impact of the
chemical substances cannot be prevented completely. For this reason, material parameter
optimisation is implemented. The goal is to identify and adjust the parameters that lead
to material degradation. In this section, first an example is given to illustrate the influ-
ence of the material parameters. The objective is to reduce material degradation caused
by chemical concentrations. Moreover, the introduced example of a bridge-like structure
is investigated in regards to optimised material parameters. The example shows how
particularly high-risk areas can be protected from the attack of chemical concentrations.

10.2. Material Fitting

The nonlinear curve-fitting problem is demonstrated with the following example. This
boundary value problem leads to a nonlinear concentration inflow cγ(t) on the left corner
of the structure. The chemicals result in material degradation and thus, to an increase of
displacement. The Dirichlet boundary conditions for the displacements and the applied
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10. Examples of Material Parameter Optimisation

concentrations as well as a contour plot of the concentration in the last time step, after
5 d, are shown in Figure 10.1. Table 10.1 provides the initial material parameters.

Figure 10.1.: a) Dirichlet boundary conditions and mesh. b) Contour plot of the
concentrations in the last time step. c) Illustration of the concentra-
tions over 5 d with a quadratic function of cγ(t) = 0.05 t2 + 0.05 t in
the applied Dirichlet boundary conditions.

Table 10.1.: Initial material and geometry parameters for the boundary value prob-
lem.

µ = 0.833 MN cm−2

λ = 0.556 MN cm−2

ρ∗0 = 200 kg cm−3

Mγ = 10 kg mol−1

D = 0.1 cm2 d−1

c0
γ = 0 mol cm−3

a = 1 cm
b = 1 cm

For the optimisation settings, defined displacements are the objective function, i.e. the
objective function consists of a column matrix umax ∈ R13×1 containing the maximal
x-displacements in the nodes on the left side of the structure, so that

J̃(m,ν(m)) = umax . (10.1)

Furthermore, the material parameters represent the alterable design and the nonlinear
least-square problem follows with

min ||J̃(m,ν(m))||22 : ml ≤ m ≤ mu limit values .

m ∈ Rdofs, ν ∈ Rdof
(10.2)
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In the application example, the parameter set m is fitted to minimise the deformation due
to material degradation, wherein lower ml and upper mu material parameters are defined
with

m =



µ

λ

ρ∗0

Mγ

D


ml =



0.733 MN cm−2

0.456 MN cm−2

100 kg cm−3

5 kg mol−1

0.05 cm2 d−1


mu =



1.333 MN cm−2

0.856 MN cm−2

300 kg cm−3

15 kg mol−1

0.15 cm2 d−1


. (10.3)

The parameters are composed of the mechanical Lamé parameters µ and λ, the initial
density ρ∗0, the molar mass Mγ and the diffusion parameter D. The mathematical

Figure 10.2.: Iteration of the optimisation solver, which records the decrease of the
norm of residuals, i.e. the norm of the maximal x-displacements with
a minimum value of 2.662 48× 10−5.

optimisation is performed with the MATLAB function lsqnonlin and the required
gradient for the objective function is provided analytically, cf. Eq. (6.33). Figure 10.2
displays the iteration of the norm of residuals, wherein the residuals are the values of
the objective function at the solution, thus the x-displacements on the left side of the
structure. It becomes clear that the maximum displacement on the left side of the
structure approaches zero. Within 355 s and six iterations, the algorithm leads to the
optimised material parameters set, see Table 10.2. The material degradation triggers the
maximum displacement at the upper entry point of the concentration. With the help of
material optimisation, the parameters are adjusted and the displacement and material
degradation are significantly reduced. The influence of the optimised parameters on
the displacement is shown in Figure 10.3. The comparison of the evaluation using the
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Table 10.2.: Initial material parameters on the left vs. fitted material parameters
on the right.

m Initial material parameters Fitted material parameters
µ 0.833 MN cm−2 1.333 MN cm−2

λ 0.556 MN cm−2 0.456 MN cm−2

ρ∗0 200 kg cm−3 300 kg cm−3

Mγ 10 kg mol−1 5 kg mol−1

D 0.1 cm2 d−1 5× 10−2 cm2 d−1

initial material parameters (black line) vs. the optimised material parameters (green
line) is shown. The example shows that the nonlinear curve-fitting problem can be used

Figure 10.3.: Evaluation of the maximal displacement umax over time with green
line referred to the new material parameters and black line referred to
the initial material parameters.

to prevent the negative effects of chemical concentrations and the resulting material
degradation.

10.3. Material Fitting for a Bridge-like Structure

In this example, the influence of different material parameters on the directional and time-
dependent diffusion of the concentrations is investigated. The suggestion is to protect,
for example, a bridge from environmentally induced damage mechanisms. In practice,
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the penetration of harmful and diffusive carbon dioxide or chemical concentrations is
reduced by using coatings. This can prevent the chemicals from reaching and attacking
the reinforcements.

The boundary value problem is introduced in Figure 10.4a, whereby the same dimensions,
as well as the time increment and spatial discretisation, are applied as outlined in Sec. 9.3.
In Figure 10.4b is the applied Dirichlet boundary condition of the concentration depicted
over time. The simulation runs over 10 d with a quadratic increase of the concentrations
up to a value of 0.0056 mol m−3. The bridge-like structure is intended to be attacked with

Figure 10.4.: a) Dirichlet boundary conditions and mesh of a bridge-like structure.
b) Illustration of the concentrations over 10 d with a quadratic func-
tion of cγ(t) = 5× 10−5 t2 +5× 10−5 t in the applied Dirichlet bound-
ary conditions.

concentrations on the underside as shown in Figure 10.4a. The objective is to reduce
the diffusion of the concentrations so that the more damageable surface is protected.
For this purpose, the material parameters in the lower part of the structure are to be
optimised (material 1). Thus, the structure is divided into two sections with different sets
of material parameters, as printed in Figure 10.5. In order to reduce the application of
a more cost-intensive permeability-reducing material, the use is optimised and the still
permissible amount of chemical concentrations that reach the surface is exhausted. The
initial material and geometry parameters for the boundary value problem refer to Table
9.5. The optimisation follows with

J̃(m,ν(m)) = (cγ − c̄γ 1) , (10.4)

wherein cγ refers to the concentrations reaching the surface of the structure (Y = 2), see
the blue line in Figure 10.5, and a all-ones column matrix 1 ∈ R33×1 connects to a defined
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Figure 10.5.: Division of the bridge into two sections with different sets of material
parameters to assess the concentrations cγ(t) arriving at the surface
of the structure.

threshold of c̄γ = 0.0003 mol m−3. The nonlinear least-square problem results in

min ||J̃(m,ν(m))||22 : ml ≤ m ≤ mu limit values ,

m ∈ Rdofs, ν ∈ Rdof
(10.5)

whereby the parameters for material 1 are restricted to the lower ml and upper mu set
with

m =



µ

λ

ρ∗0

Mγ

D


ml =



662.79 kN m−2

1105.75 kN m−2

500 kg m−3

5000 kg mol−1

0 m2 d−1


mu =



1662.79 kN m−2

2105.75 kN m−2

1500 kg m−3

15 000 kg mol−1

0.3 m2 d−1


. (10.6)

The iteration of the optimisation solver is shown in Figure 10.6, using the MATLAB
function lsqnonlin with the analytically derived gradient for the objective function. The
norm of the residuals refers to the concentrations on the top of the bridge-like structure
and the iteration shows the fitting process for the concentrations to converge to the
defined values. Thereby the norm converges to a value of 2.077 85× 10−12. The fitted
material parameters resulting from the optimisation process are compared with the initial
parameters in Table 10.3. Figure 10.7 illustrates the influence of the diffusion parameter

Table 10.3.: Initial material parameters on the left vs. fitted material parameters
on the right.

m Initial material parameters Fitted material parameters
µ 1162.79 kN m−2 1290.53 kN m−2

λ 1605.75 kN m−2 1455.76 kN m−2

ρ∗0 1000 kg m−3 1138.55 kg m−3

Mγ 10 000 kg mol−1 8614.51 kg mol−1

D 0.1 m2 d−1 0.068 42 m2 d−1

on the structure, demonstrating the increase in concentration over time at the surface.
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Figure 10.6.: Iteration of the optimisation solver, which records the decrease of the
norm of residuals, i.e. the norm of the maximal concentrations on the
surface, which converges to a minimum value of 2.077 85× 10−12.

The evaluation is investigated for different diffusion parameters, especially using the op-
timised and initial parameter. This shows that a high diffusion parameter leads to a
fast flow of the concentrations. Taking into account the optimised parameter, the re-
quired threshold 0.0003 mol m−3 can be fulfilled. This optimisation process ensures that
even long-term effects of chemical substances can be controlled and predicted to prevent
destructive effects on the building structure.
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Figure 10.7.: Evaluation of the concentration cγ on the surface of the bridge over
time evaluated for different diffusion parameters.

10.4. Concluding Remarks on the Material Parameter
Optimisation

Material optimisation is presented using two examples. In both, the fitting of mate-
rial parameters is applied to reduce the harmful effect of chemical concentrations in a
mechanical structure. Thus, the displacement resulting from chemically induced degra-
dation processes can be reduced, or the distribution of concentrations can be controlled.
For instance, more sensitive areas of structures can be protected from chemical attacks.
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11. Conclusion and Outlook

In this section, the objectives of this work are briefly summarised and an outlook for
future work is presented.

11.1. Conclusion

This thesis achieves the goal of implementing a simulation model that enables

”Structural Optimisation of Diffusion-Driven Degradation Processes“.

Providing a numerical model that can perform an efficient structural optimisation of chem-
ically controlled degradation processes of a mechanical structure. Firstly, the thesis has
proven that shape can be optimised by taking into account long-term chemical concen-
trations as well as maintaining load-bearing capacity. Further to this, the optimisation of
material parameters can control the diffusion of concentrations and the associated degra-
dation process. In this way, particularly exposed areas of structures can be preserved.

The sub-objectives include the development of the structural analysis of the mechanical-
chemical-degradation model and structural optimisation of the mechanical-chemical-
degradation model as well as the merging of both topics with the presentation of examples.

A complete derivation of the structural analysis of a mechanical-chemical-degradation for
a permeable structure is provided. Based on solid mechanics, a continuum is proposed in
Sec. 3 which allows the coupling of mechanical-chemical and degradation processes. The
mechanical degradation process is realised with a combined kinematic and constitutive
approach. For this, an extended kinematic formulation for the description of degradation
is introduced, using a multiplicative decomposition of the deformation gradient, as shown
in Figure 3.1. A consistent thermodynamic evaluation provides the necessary material
equations for the sink term of mass exchange, the flux of the chemical concentrations and
the mechanical stresses. Sec. 4 contains a detailed representation of the numerical imple-
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mentation. In conclusion, the required variations of the continuum mechanical quantities
are outlined and the discretisation in space and time is introduced. Thus, all necessary
equations for the nonlinear numerical implementation are provided.

The achievement of the second sub-objectives is provided along with a general introduc-
tion to structural optimisation in Sec. 5. Therein, the mathematical basics for structural
shape and material parameter optimisation are given with the evaluation of nonlinear
constrained optimisation and least-square problems. The sensitivity analysis required
within the optimisation framework is pursued in this work with a variational approach
and is outlined in Sec. 6. As a result, the required variations of the continuum mechani-
cal quantities for calculating the derivative of the objective function and constraints are
integrated based on a differential geometric consideration. For this purpose, a local con-
vective parameter space is considered in the kinematics; see Figure 3.1. This allows the
variation to be split into parts of the displacement, the concentrations and the geometry.
Analogous to continuum mechanics, the continuous equations are first varied and then
discretised, see Sec. 4. Thus, the discretised tangential stiffness for solving the structural
analysis and the tangential sensitivities for solving the sensitivity analysis are provided
simultaneously. The analytical derived tangential sensitivities with respect to a change
of geometrical design parameters and material design parameters are comprehensively
verified in Sec. 7.3 and Sec. 7.4 with numerical comparisons to ensure correct imple-
mentation. Furthermore, the verification illustrates, in particular, the time efficiency of
the applied variational approach. Finally, the requirements for the integration of history-
dependent sensitivities, which have to be taken into account due to the time-dependent
concentrations, are fulfilled by introducing a tangential sensitivity for the history field in
Sec. 6.6.1.

The combination and programming implementation of the structural analysis and struc-
tural optimisation are presented in Sec. 2.0.3 at the beginning of the work to provide
a better overview. A simulation tool is developed in MATLAB, which interfaces with
a FORTRAN code and the Gmsh software. With this, the numerical fundamentals of
the structural analysis of a mechanical-chemical-degradation model are integrated into
a mathematical optimisation algorithm for shape and material parameter optimisation.
Due to the provision of analytically derived variations and the exploitation of the pro-
gram’s technical advantage, a fast, efficient and at the same time reliable optimisation can
be achieved. The CAGD-based features of the interface Gmsh provide a parameterised
structural mesh for the automatic update of geometrical design parameters.

The last sub-objective is fulfilled at the end of the thesis. The numerical investigations
listed in Sec. 7 serve to elaborate the coupling of the mechanical-chemical-degradation
model and to give a state of proof. In particular, the implementation of the derived sensi-
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tivities with respect to design changes and material changes is checked through numerical
comparative calculations. Convergence studies considering spatial and temporal approx-
imation are presented to ensure sufficiently accurate results of the structural analysis.
Finally, a practical reference of the developed mechanical-chemical-degradation model is
presented in Sec. 8. Here, a boundary value problem is calculated, which reminds of a
hollow concrete block suffering under chemical impact such as in calcium leaching pro-
cesses. The examples show the time-dependent deterioration of the block due to material
degradation triggered by concentration. Shape optimisation of the hollow block in Sec.
9 enables a reduction in the influence of the concentrations on the mechanical stresses.
The optimisation task is evaluated in detail and compared with numerical calculations to
prove the implementation of the analytical derived optimisation solution. Another exam-
ple of shape optimisation is reminiscent of a bridge and the goal is a material saving that
still maintains the maximum load-bearing capacity. However, chemical concentrations are
taken into account in addition to mechanical loads. In particular, considering the time-
dependent exposure of the concentrations is highlighted to illustrate that the influence of
the concentrations occurs gradually over time and can lead to a serious loss of bearing
capacity over a longer period. The presented optimisation algorithm takes the temporal
degradation into account and enables a reliable optimisation. Sec. 10 gives examples of
how to optimise the material parameters. The aim is to reduce and control chemical reac-
tions and the associated material degradation by modifying the material parameters. In
the first example, the displacement resulting from chemical concentrations is minimised.
In the second example, the material parameters of the bridge-like structure are adjusted
in such a way, where the more vulnerable area of the bridge is less affected by the diffusive
chemical concentrations.

Both shape and material parameter optimisation are presented to control and optimise
the harmful effects of chemicals and other long-term influences. In all examples, the
numerical comparisons serve to validate the results and to illustrate the time efficiency of
the provided variational (analytical) approach.

11.2. Outlook

This thesis presents a general model for the optimisation of diffusion-driven degradation
processes. On a theoretical as well as on a practical level, the work offers further research
aspects.

One open research topic is an alternative application of the introduced degradation space
referred to the parameter vector space. Within the framework of this work, the degra-
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dation implementation is realised with a combined kinematic and constitutive approach.
The kinematic representation using a split of the deformation gradient into an elastic
and a degradation part is a well-established approach. However, this work still offers
the possibility of an alternative approach to consider degradation on a kinematic level.
In [8] this alternative approach is presented by separating all fundamental quantities on
the kinematic level and taking into account the evolution of the body. Additionally, the
growth/degradation space is pulled back to the parameter space. In this way, growth
processes (analogous to degradation processes) can be integrated, taking into account the
changing quantity of substances (such as atoms, molecules or ions). This means that
the classical material body in the reference configuration is not dependent on a constant
mass. To apply this approach, the gradient operators and tangent mappings are needed
to guarantee transport between the configurations. Related to this work, the introduced
local degradation gradient G can be applied to ensure the transformation from the pa-
rameter space to the degradation space. The decomposition of the deformation gradient
can be illustrated with the local gradients as follows

Fd = G K−1 = (hi ⊗Zi) (Zj ⊗Gj) = hi ⊗Gi

Fe = M G−1 = (gi ⊗Zi) (Zj ⊗ hj) = gi ⊗ hi .
(11.1)

Related to the practical application of the work, investigations can be carried out to
compare and validate the structural analytical model with experimental data. Therefore,
the model can be prepared to be used for problems such as calcium leaching or chemical
attack in the context of problems in civil engineering structures. However, it must be taken
into account that the complexity of the approximate value problems will increase with a
closer connection to practical tasks. An alternative approach to the applied CAGD-based
shape optimisation should be considered for more complex boundary value problems.
For example, the mesh-based parameterisation approach manipulates an existing FE-
mesh. As outlined in [73], the shape optimisation requires fewer design parameters and
re-meshing is not necessary. In addition, a design exploration approach could be used to
investigate design alternatives for complex tasks with a high number of design parameters
and identify optimal performance parameters. A singular value decomposition (SVD)
could provide insight into sensitivity analysis and identify the design parameters with the
greatest influence on structural response, see e.g. [52, 84, 11].
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A.1. Variations of Certain Continuum Mechanical
Quantities

The present model problem is a coupled nonlinear system of differential equations to be
solved by numerical methods. For this reason, the required variations of the continuum
mechanical values, which are needed in the framework of the structural analysis and the
sensitivity analysis, are determined. The required variations are derived in this section
and are used for the application of the following sections.

For the structural analysis and the structural optimisation, variations of continuum me-
chanical values are required. Within the structural analysis, the variation of the weak
formula with respect to the state variables are applied. Therefore, the following parame-
ters are introduced with ν{u, cγ} ∈ V , wherein the displacements u and concentrations
cγ are the state variables of the structural problem. The total variation of an arbitrary
function f(ν) : V → R reads,

δf = δuJ(u, cγ; δu) + δcγJ(u, cγ; δcγ) . (A.1)

In the framework of the structural optimisation problem, the geometry X and further-
more, the material parameters m are considered as design parameters, which can change
in order to optimise the solution. It must be noted that both state variables depend
directly on the geometry of the structure ν(X). Therefore, an exemplary total partial
variation of an arbitrary function J(ν,X) : V × S → R with respect to the geometry,
respectively material, is composed of the following partial variations, i.e.

Dsf(ν(X),X) = ∂f

∂X
+ ∂f

∂u

du
dX + ∂f

∂cγ

dcγ
dX

Dmf(ν(m),m) = ∂f

∂m
+ ∂f

∂u

du
dm + ∂f

∂cγ

dcγ
dm .

(A.2)
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Thus, this section prepares the partial variations of the relevant quantities for both, the
structural analysis and structural optimisation solution, i.e. δX(•), δu(•), δcγ (•) and δm(•).
The total variations follow as this work proceeds.

A.1.1. Partial Variations of the First Piola-Kirchhoff Stress

In the following, the partial variations of the first Piola-Kirchhoff tensor P from Eq.
(3.69.1) with respect to the geometry δXP and the displacement δuP are introduced,

δXP = ∂P
∂F

: δXF = P : δXF

δuP = ∂P
∂F

: δXF = P : δuF ,
(A.3)

wherein the partial variations of the deformation gradient from Eq. (3.27.2) and (3.27.3)
are applied. For the partial variation with respect to the deformation gradient a tensor
of fourth-order P is applied with

P := ∂P
∂F

, (A.4)

which results in the component representation with

Pijkl = ∂Pij

∂Fkl
= ρ0

ρ∗0

[
µ
∂Feio
∂Fkl

(Fdjo)−1 + λ
∂(J2

e − Je)
∂Fkl

F−1
ji + [−µ + λ (J2

e −Je)]
∂F−1

ji

∂Fkl

]
.

(A.5)

Therein the following connections are derived with

∂Feio
∂Fkl

(Fdjo)−1 = 1ik C−1
lj := Uijkl

∂F−1
ji

∂Fkl
= −F−1

li F−1
jk := Wijkl .

(A.6)

Furthermore, the partial variation of the determinant of the elastic part of the deformation
gradient with respect to the deformation gradient results in

∂Je
∂F

= Je F−T , (A.7)

so that the fourth-order P follows with

P = ρ0

ρ∗0

[
µU + λ (2 J2

e − Je) F−T ⊗ F−T + [−µ + λ (J2
e − Je)]W

]
. (A.8)

122



A.1. Variations of Certain Continuum Mechanical Quantities

Moreover, the partial variation of the first Piola-Kirchhoff is dependent on the chemicals,
so that the partial derivative is introduced with δcγP. Dependencies on the concentrations,
i.e. the referential density ρ0(cγ), the elastic deformation gradient Fe(cγ), the determinant
of the elastic deformation gradient Je(cγ) and the growth part of the right Cauchy Green
tensor Cd(cγ) become relevant with

∂ρ0

∂cγ
= −Mγ ,

∂Fe

∂cγ
= 1

3

(
ρ0

ρ∗0

)−4/3
Mγ

ρ∗0
F

∂Je
∂cγ

= Je
ρ0
Mγ and ∂C−1

d

∂cγ
= 2

3

(
ρ0

ρ∗0

)−5/3
Mγ

ρ∗0
1 .

(A.9)

Therefore, the partial variation follows with

δcγP = Mγ

ρ∗0

[
− µFe F−T

d + [µ + λ J2
e ] 1 F−T + 2

3

(
ρ0

ρ∗0

)−2/3

µF 1
]
δcγ . (A.10)

A.1.2. Partial Variations of the Second Piola-Kirchhoff Stress

The partial variations of the second Piola-Kirchhoff tensor SK from Eq. (3.69.2) is intro-
duced with respect to the geometry δXSK and displacement δuSK ,

δXSK = ∂SK
∂E

: δXE = 2 ∂SK
∂C

: δXE = C : δXE

δuSK = ∂SK
∂E

: δuE = 2 ∂SK
∂C

: δuE = C : δuE .

(A.11)

Therein, the fourth-order tensor C, which play an important role in continuum mechanics
appearing as elasticity, can be introduced, i.e.

C := ∂SK
∂E

= 2 ∂SK
∂C

, (A.12)

respectively, the component representation reads as

Cijkl = 2 ∂Sij
∂Ckl

= 2 ρ0

ρ∗0

[
λ
∂(J2

e − Je)
∂Ckl

C−1
ij + [−µ + λ (J2

e − Je)]
∂C−1

ij

∂Ckl

]
. (A.13)

Therein the following connections come into play

∂Cij

∂Ckl

= 1
2 (δik δjl + δil δjk)

∂C−1
ij

∂Ckl

= −1
2 (C−1

ik C−1
jl + C−1

il C−1
jk ) := Vijkl ,

(A.14)
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and the partial variation of the elastic deformation gradient Je with respect to the right
Cauchy Green tensor C is used with

∂Je
∂C

= 1
2 Je C−T . (A.15)

With this at hand, the elasticity tensor results in

C = ρ0

ρ∗0

[
λ (2 J2

e − Je) C−1 ⊗C−T + 2 [−µ + λ (J2
e − Je)]V

]
. (A.16)

Furthermore, the partial variation of the stress with respect to the concentrations δcγSK
follows, applying the derivatives from Eq. (A.9), with

δcγSK = Mγ

ρ∗0

[
− µC−1

d + [µ + λ J2
e ] C−1 + 2

3

(
ρ0

ρ∗0

)−2/3

µ1
]
δcγ , (A.17)

wherein the second-order tensor Cγ is introduced, i.e.

Cγ := Mγ

ρ∗0

[
− µC−1

d + [µ + λ J2
e ] C−1 + 2

3

(
ρ0

ρ∗0

)−2/3

µ1
]
. (A.18)

As the weak formulation is represented as a function of the second Piola-Kirchhoff stress,
the sensitivity with respect to the material parameters δmSK is also calculated at this
point. Therefore, the material vector m, referred to Eq. (3.72), is utilised and a vector
including the partial variations with respect to the material parameters δmSK is following
with

δmSK =
[
∂SK
∂µ

∂SK
∂λ

∂SK
∂ρ∗0

∂SK
∂Mγ

∂SK
∂ct=0

γ

0
]
. (A.19)

Therein, the second-order tensors C1,C2,C3,C4 and C5 are introduced as

C1 := ∂SK
∂µ

= ρ0

ρ∗0
[(Cd)−1 − C−1]

C2 := ∂SK
∂λ

= ρ0

ρ∗0
[(J2

e − Je) C−1] ,
(A.20)

whereby the partial derivative of the first Lamé constant µ and of the second Lamé
constant λ are illustrated. Furthermore, the stress is influenced by the initial density ρ∗0,
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the molar mass Mγ and the initial concentration c0
γ, i.e.

C3 := ∂SK
∂ρ∗0

= ρ0

ρ∗0

[
ρ∗0 − ρ0

ρ∗0 ρ0
[µ (Cd)−1 − (µ − λ (Je − 1) Je) C−1]

− 2
3 (ρ0

ρ∗0
)−5/3 ρ

∗
0 − ρ0

(ρ∗0)2 1 + λ (2 Je − 1) J (ρ0 − ρ∗0
ρ2

0
) C−1

]

C4 := ∂SK
∂Mγ

= − cγ
ρ∗0

[
µ (Cd)−1 − [µ − λ (Je − 1) Je] (C−1)

]

+ 1
ρ0
λ (2 Je − 1) J cγ C−1 + µ

2
3 (ρ0

ρ∗0
)−2/3 cγ

ρ∗0
1

C5 := ∂SK
∂ct=0

γ

= Cγ
∂cγ
∂ct=0

γ

.

(A.21)

A.1.3. Partial Variations of the Cauchy Stress

The Cauchy stress tensor T from Eq. (3.68) can be derived by the mapping T = J−1 P FT.
Thus, the partial variation with respect to the geometry δXT results in

δXT = δXJ
−1 P FT + J−1 δXP FT + J−1 P δXFT

= (−J−1 F−T : δXF) P FT + J−1 δXP FT + J−1 P δXFT ,
(A.22)

and is composed of the partial variations δXF and δXP, cf. Eq. (3.27.3) and (A.3.1).
Moreover, the partial variation with respect to the displacement δuT follows with

δuT = δuJ
−1 P FT + J−1 δuP FT + J−1 P δuFT

= (−J−1 F−T : δuF) P FT + J−1 δuP FT + J−1 P δuFT ,
(A.23)

with reference to the Eq. (3.27.2) and (A.3.2). Finally, the partial variation with respect
to the concentration δcγT results in

δcγT = J−1 δcγP FT , (A.24)

and δcγP from Eq. (A.10).
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A.1.4. Partial Variations of the Concentration Flux

In addition to the variations of the stresses, the concentration flux Jγ from Eq. (3.63) is
a relevant vector that influences the structural analysis and optimisation solution. There-
fore, the total partial variation with respect to the geometry δXJγ and the partial variation
with dependency of the displacement δuJγ are derived as follows

δXJγ = ∂Jγ
∂X

+ ∂Jγ
∂E

: δXE = ∂Jγ
∂X

+ 2 ∂Jγ
∂C

: δXE

δuJγ = ∂Jγ
∂E

: δuE = 2 ∂Jγ
∂C

: δuE ,

(A.25)

again, the geometric variations δXE and δuE from Eq. (3.28) can be utilised. Moreover,
the partial variation of the material flux with respect to the right Cauchy Green tensor
C follows with

A := 2 ∂Jγ
∂C

= −2DGrad cγ
∂J

∂C
C−1 − 2DGrad cγ J

∂C−1

∂C
. (A.26)

The third-order tensor A is introduced. Under consideration of the partial variation of
the deformation gradient J with respect to the right Cauchy Green tensor as

∂J

∂C
= 1

2 J C−T , (A.27)

and the connection from Eq. (A.14.2), the component illustration follows, i.e.

Ajkl = −J D (Grad cγ)i
[
C−1
lk C−1

ij − C−1
ik C−1

jl − C−1
il C−1

jk

]
. (A.28)

Due to the direct dependency of the flux on the geometry, the partial variation ∂Jγ
∂X

is
derived via the following second-order tensor Aγ,

Aγ := ∂Jγ
∂X

= DGrad cγ Grad δX J C−1 . (A.29)

The partial variations of the concentration flux can be summarised as follows

δXJγ = Aγ + A : δXE and δuJγ = A : δuE . (A.30)

Moreover, the partial variation of the concentration flux with respect to the concentration
δcγJγ is derived as

δcγJγ = − J DGrad δcγ C−1 . (A.31)
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Finally, the partial variations with respect to the material parameters δmJγ are required,
whereby only the partial variation of the flux according to the diffusion parameter D
becomes relevant, i.e.

δmJγ =
[
0 0 0 0 0 ∂Jγ

∂D

]
, (A.32)

wherein the following vector C6 is introduced as follows

C6 := ∂Jγ
∂D

= − J Grad cγ C−1 . (A.33)
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[16] C. L. Bellégo, B. Gérard, and G. Pijaudier-Cabot. Chemo–Mechanical Effects in Mortar
Beams Subjected to Water Hydrolysis. Journal of engineering mechanics, 126(3):266–272,
2000. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(266).

[17] M. P. Bendsøe. Optimization of Structural Topology, Shape, and Material. Springer, 1995.
http://dx.doi.org/10.1007/978-3-662-03115-5.

[18] M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods, and Applica-
tions. Springer, 2004. http://dx.doi.org/10.1007/978-3-662-05086-6.
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[77] M. Knez, M. Peternell, and J. G. Alcázar. From theoretical to applied geometry–recent
developments. Computer Aided Geometric Design, 2020. https://doi.org/10.1016/j.
cagd.2020.101912.

[78] D. Kuhl. Modellierung und Simulation von Mehrfeldproblemen der Strukturmechanik.
Shaker Verlag, 2005.

[79] D. Kuhl, F. Bangert, and G. Meschke. Coupled chemo–mechanical deterioration of ce-
mentitious materials. Part I: Modeling. International Journal of Solids and Structures,
41:15–40, 2004. https://doi.org/10.1016/j.ijsolstr.2003.08.005.

[80] E. Kuhl, A. Menzel, and P. Steinmann. Computational modeling of growth. Computational
Mechanics, 32(1–2):71–88, 2003. https://doi.org/10.1007/s00466-003-0463-y.

[81] E. Kuhl and P. Steinmann. Mass–and volume–specific views on thermodynamics for open
systems. Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 459(2038):2547–2568, 2003. https://doi.org/10.1098/rspa.
2003.1119.

[82] C. Le, T. Bruns, and D. Tortorelli. A gradient–based, parameter–free approach to shape
optimization. Computer Methods in Applied Mechanics and Engineering, 200(9-12):985–
996, 2011. https://doi.org/10.1016/j.cma.2010.10.004.
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