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Abstract
In this thesis, the development and calibration of an algorithm used to identify jets from
strange quarks as well as a measurement constraining the CKM matrix elements |Vts| and |Vtd|
in top-quark decays are presented. The thesis considers data from proton-proton collisions
at the Large Hadron Collider at a center-of-mass energy of 13 TeV recorded by the ATLAS
Experiment during Run 2. First, the maximally achievable separation between jets from
strange quarks and jets from down quarks at hadron colliders given different idealized detector
designs is studied using recurrent neural networks containing Long Short-Term Memory layers.
Afterwards, an algorithm to select jets from strange quarks for the application at the ATLAS
Experiment is developed using deep neural networks. Its efficiency for these jets from strange
quarks and mis-tag rates for jets of other flavors is determined in semileptonic decays of
top-antitop pairs selected from data. The algorithm to identify jets from strange quarks is
then applied in events containing decays of top-antitop pairs with an electron and a muon
of opposite-sign electric charge in the final state in order to study its potential to constrain
the CKM matrix elements |Vts| and |Vtd| in the two-dimensional plane spanned by them. In
this study, limits of |Vts|2 + |Vtd|2 < 0.06, |Vts| < 0.21, and |Vtd| < 0.24 are derived at 95%
confidence level assuming unitarity of the CKM matrix.

Kurzfassung
Diese Dissertation befasst sich mit der Entwicklung und Kalibrierung eines Algorithmus zur
Identifikation von Jets aus strange-Quarks sowie einer Messung zur Bestimmung von oberen
Schranken auf die CKM-Matrixelemente |Vts| und |Vtd| in top-Quark-Zerfällen. In dieser Ar-
beit werden Daten aus Proton-Proton-Kollisionen am Large Hadron Collider, die bei einer
Schwerpunktsenergie von 13 TeV am ATLAS-Experiment während des Run-2 aufgenommen
wurden, verwendet. Zuerst wird die maximal mögliche Trennung von Jets aus strange-Quarks
und Jets aus down-Quarks an Hadronenkollidern unter der Annahme einer Nutzung von un-
terschiedlichen, idealisierten Detektordesigns untersucht. Hierfür werden Recurrent Neural
Networks verwendet, deren Hauptkomponente Long Short-Term Memory Layers sind. An-
schließend wird ein Algorithmus zur Selektion von Jets aus strange-Quarks zur Anwendung
am ATLAS-Experiment entwickelt, der Deep Neural Networks verwendet. Die Identifika-
tionseffizienz dieses Algorithmus in Bezug auf Jets aus strange-Quarks und die Wahrschein-
lichkeit, Jets eines anderen Ursprungs fehl zu identifizieren, werden in semileponischen Zer-
fällen von top-antitop-Paaren, die aus dem aufgenommenen Datensatz selektiert wurden, bes-
timmt. Schlussendlich wird der Algorithmus zur Identifikation von Jets aus strange-Quarks in
Ereignissen angewendet, die dileponischen Zerfällen von top-antitop-Paaren mit einem Myon
und einem Elektron im Endzustand beinhalten. Hierbei wird sein Potenzial in der Bestim-
mung von Schranken auf die CKM-Matrixelemente |Vts| und |Vtd| im zweidimensionalen Raum
untersucht. Daraus folgen Schranken von |Vts|2 + |Vtd|2 < 0.06, |Vts| < 0.21 und |Vtd| < 0.24
mit einem Konfidenzintervall von 95% unter der Annahme von CKM-Matrix-Unitarität.
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Chapter 1
Introduction

In science, the field of physics seeks to understand and explain the fundamental rules that
govern the universe. In particle physics, the smallest building blocks are studied: Elementary
particles which – to our knowledge – are indivisible as well as their interactions with each other.
The one description of both used primarily today is called the Standard Model of Particle
Physics (SM). It was developed throughout several decades in a joint effort of theorists and
experimentalists and allows making good predictions of particle-level interactions.

The further studies venture to smaller scales, the higher are the energies necessary to resolve
them. Today, the highest man-made energies per particle are reached by accelerating hadrons
in the Large Hadron Collider (LHC) at the CERN research facility in Switzerland. In their
collisions, interaction energies of up to several TeV are reached, allowing for the search of new
physics as well as the precise measurement of some parameters of the SM.

One of the particles studied at the LHC is the top quark. It is the heaviest known elementary
particle and was discovered in 1995 at the Tevatron [1, 2]. As described by the SM, at leading
order, it can only decay into a down, strange, or bottom quark by emitting a W boson. The
probabilities of the decays are proportional to the square of the respective elements of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix: Vtd, Vts, and Vtb. Due to the large differences
in the magnitude of these matrix elements, the top predominately decays into a W boson and
a bottom quark.

The branching ratio of this decay, Rb = BR(t → W+b)1, has been measured in decays of
top-antitop quark pairs [3–6]. The newest and most precise of these measurements [6] has a
result of |Vtb| = 1.007 ± 0.016 or a limit of |Vtb| > 0.975 at 95% confidence level assuming
|Vtb| < 1.0.

In an alternative approach, events containing single top quarks produced via t-channel in-
teractions with a W boson have been used to constrain the three CKM matrix elements
involving a top quark. Most measurements assume |Vts| and |Vtd| to be negligible to deter-
mine |Vtb| [7–23]. The most precise of these measurements and combinations quotes a value of
|Vtb| = 0.998±0.038 (exp.) ±0.016 (theo.) [17]. Due to the relation |Vtb|

2+ |Vts|2+ |Vtd|2 = 1,
both of these measurements offer a constraint on |Vts|2 + |Vtb|

2. A recent publication by the
CMS Experiment at the LHC [23] was able to derive a limit of |Vts|2 + |Vtd|2 < 0.057 at 95%
confidence level by considering single top quark production in the t-channel from strange and
down quarks as well as t → W+s and t → W+d decays while at the same time deriving a
lower limit of |Vtb| > 0.970 at 95% confidence level.

On the other hand, the matrix elements |Vts| and |Vtb| can be determined from the mass
differences of the mass eigenstates of B0

s and B0
s as well as B0 and B0 respectively, which can be

determined from their oscillations, cf. Reference [24] and references therein, e.g. References [25,
26]. Reference [24] e.g. quotes |Vtd| = (8.1 ± 0.5) · 10−3 and |Vts| = (39.4 ± 2.3) · 10−3 based
on their own averages. This extrapolation, however, relies on the use of form factors from

1Whenever in this thesis, a decay t → W+q is mentioned, the decay of its antiparticle, t → W −q, is implied
as well.
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1. Introduction

theoretical calculations (e.g. those in Reference [27]). A direct measurement of these matrix
elements in either the production or decay of top quarks would constitute a valuable addition
to the available measurements.

The direct measurement of |Vts| in tt decays at the ATLAS Experiment has been attempted
before. In Reference [28], tt decays including a t → W+s decay are selected and a limit of
|Vts| < 0.132 is set at 95% confidence level, however, assuming the background from t → W+d
decays to be negligible.

This thesis, on the other hand, aims at disentangling t → W+s and t → W+d decays for
an independent extraction of |Vts| and |Vtd| from top-quark decays at the ATLAS Experiment.
For this, an algorithm to distinguish between jets initiated by strange quarks and down quarks
is developed. This so-called s-tagging algorithm or s-tagger is the first s-tagger at the ATLAS
Experiment. While this s-tagger was developed independently, it is similar to the proposed s-
taggers described in Reference [29], exploiting both information of electrically charged particles
measured as tracks and energy deposits of both charged and neutral particles in calorimeters.

It is calibrated in semileptonic decays of top-antitop quark pairs with one lepton in the final
state. It is then applied to jets from dileptonic decays of top-antitop quark pairs with an
electron and a muon in the final state to extract a limit on |Vts| and |Vtd|.

Furthermore, the development of the s-tagger for the ATLAS Experiment is complemented
by an independent study on the maximal performance of s-taggers which is in principle achiev-
able. This study evaluates the potential of jet characteristics detectable by different detector
types such as calorimeters, trackers, or Cherenkov detectors to classify jets as strange or down
jets. In this study, neural networks including recurrent Long Short-Term Memory (LSTM)
layers are used, similar to what is used for the s-tagging algorithm proposed in Reference [30].

This thesis is structured as follows: In Chapter 2, a brief introduction into the SM is given.
Chapter 3 gives an overview over the ATLAS detector at the LHC. In Chapter 4, the objects
reconstructed from data collected with the ATLAS detector are described, while in Chapter
5.1, the dataset and all simulated samples used in the analysis are detailed. Chapter 6 covers
s-tagging algorithms. Within this chapter, in Section 6.2, the studies on the maximal perfor-
mance achievable in the classification of jets from strange and up/down quarks is described,
while Section 6.3 details the development of the s-tagging algorithm to be used for at the
ATLAS Experiment. The calibration of the s-tagging algorithm is detailed in Chapter 7. In
Chapter 8, it is then applied in a study on the measurement of |Vtd| and |Vts|. Lastly, Chapter
9 offers a summary of the thesis.
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Chapter 2
A Brief Introduction to the
Standard Model of Particle Physics

The SM is a theoretical description of all known elementary particles and their interactions.
Of the four fundamental interactions known in physics, it describes all except for gravity. A
schematic overview is given in Figure 2.1, showing all elementary particles and their quantum
numbers.
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Fig. 2.1: A graphical representation of all elementary particles described by the Standard
Model of Particle Physics. The graphic is based on Reference [31], while the cited
mass values are taken from Reference [24].

Since the SM is a quantum field theory, all particles are associated with fields and interactions
between particles are governed by underlying symmetries. There are three different types of
fields: spin-12 fermion fields, vector boson fields, and a scalar boson field.
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2. A Brief Introduction to the Standard Model of Particle Physics

Both quarks and leptons are spin-12 fermions and described by four-component spinor fields
containing both particles and antiparticles1. There are three electrically charged leptons (elec-
tron (e), muon (µ), tau (τ)), three electrically neutral neutrinos (νe, νµ, ντ ), and six quark
flavors (up (u), charm (c), top (t), down (d), strange (s) and bottom (b)) plus their antipar-
ticles which carry the opposite charge and are denoted with a dash (e.g. t). While up-type
quarks (u, c, t) carry an electric charge of +2

3e, the down-type quarks carry an electric charge
of −1

3e. There are a total of three fields associated with each quark flavor, each corresponding
to a different color charge. Besides their electrical charge, the fermions can be distinguished
either by their mass or their weak interaction. The former is done for quarks and charged
leptons and the latter for neutrinos since, in the SM, neutrinos are assumed to be massless.
However, it was observed that neutrino generations mix [32–34], which means their masses
must be non-zero.

Both the strong and the electroweak interaction’s force carriers are spin 1 particles, i.e. they
are described using vector fields.

The theoretical part of the SM describing the strong interaction is called quantum chromo-
dynamics (QCD). Since its underlying symmetry group is the SU(3)C where C stands for the
color charge, the gluon field consists of an octet, one for each generator of the symmetry. Their
structure of interaction results in a coupling between gluons and the color charged quarks as
well as a coupling between gluons and gluons. As a result, the coupling strength becomes
large for small energies (approximately ΛQCD ≈ 200 GeV). However, for energies significantly
larger than ΛQCD, the strong coupling becomes small and perturbative calculations are possi-
ble. Due to the nature of the strong interaction, quarks and gluons can only be observed in
color-neutral bound states called hadrons – most commonly baryons containing three quarks
or mesons containing a quark and an antiquark –, a phenomenon called confinement.

The underlying symmetry to the electroweak interaction is the SU(2)L × U(1)Y , where L
is the left-chirality and Y is the weak hypercharge. It has four vector fields associated with
it, one that couples to Y with the coupling strength g′ and three that couple to the left-chiral
component of other fields with the coupling strength g. Because the coupling of these fields
is different for different chiralities, any mass terms of fermionic fields containing both left-
chiral and right-chiral components of the field violate the SU(2)L symmetry. Additionally, the
observation of gauge boson masses implies a breaking of gauge symmetry.

Therefore, a scalar Higgs field is introduced to the SM. It has a symmetric mexican hat po-
tential and couples to all massive fermions via Yukawa-coupling. Additionally, the electroweak
gauge bosons couple to the Higgs field according to their gauge couplings. In a process called
sponaneous symmetry breaking (SSB), the Higgs field falls into a non-symmetric ground state,
breaking the SU(2)L × U(1)Y to a U(1)em symmetry. This generates mass terms for both
fermions and three of the four bosons.

Additionally, the four gauge fields of the electroweak interaction mix. Two of the resulting
bosons are the massive W bosons with opposite-sign electric charge (W+ and W −) which
couple to the left-chiral components of fields with a coupling strength proportional to g. One is
the massive and electrically neutral Z boson, which couples to both the left-chiral components
of fields and their hypercharge with a coupling strength proportional to −g′2Y + g2T 3, where
T 3 acts on the SU(2)L spinor doublets. The fourth one is the massless and electrically neutral
photon γ which couples to the left-chiral components of fields as well their hypercharge with
a coupling strength proportional to g′g(Y + T 3). It is useful to say that the photon couples

1For convenience, h̄ = c = 1.
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2.1. Properties of the Top Quark

to the electric charge, which is defined as Q = Y + T 3 and is the conserved quantity of the
U(1)em.

The existence of the Higgs field has been supported by the discovery of its resonant particle,
the Higgs boson [35, 36].

As a result of different Yukawa-couplings for each quark, the mass eigenstates of quarks
are different from their eigenstates with regard to their weak interaction. The resulting quark
mixing is described by the CKM matrix. Conventionally, the CKM matrix is written as

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1)

Due to its unitarity, it can be expressed using four parameters, all of which are free parameters
of the SM. The CKM matrix is almost diagonal, as can be seen in Equation 2, which cites
values of a global fit [24]:|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.97446 ± 0.00010 0.22452 ± 0.00044 0.00365 ± 0.00012

0.22438 ± 0.00044 0.97359+0.00010
−0.00011 0.04214 ± 0.00076

0.00896+0.00024
−0.00023 0.04133 ± 0.00074 0.999105 ± 0.000032


(2)

2.1. Properties of the Top Quark
The t quark was the last quark to be discovered in 1995 [1, 2]. Its most prominent property is its
mass of 173.34 ±0.27(stat)±0.71(syst) GeV [37] (current world combination of measurements),
which makes it the heaviest know elementary particle and roughly 35 times more massive than
the second heaviest quark, the b quark.

g

g

g

t

t

t

g

g

t

t

g

q

q

t

t

Fig. 2.2: tt production on tree level via the strong force.

At pp colliders, the two main production mechanisms for the t quark are tt pair production
via the strong force and single production via a weak flavor change. Figure 2.2 shows leading
order Feynman diagrams of the pair production. Due to its large mass, the t quark decays
before hadronizing with a lifetime of τ = (3.29+0.90

−0.63)·10
−25 s [24]. At tree level, it always decays

into a down-type quark by emitting a W boson. Experimentally, these decays are classed into
leptonic decays and hadronic decays, referring to whether the W boson decays into either an
electrically charged lepton and a neutrino or into a quark and an antiquark.

The probability for each flavor of the down-type quark the t quark decays into is given by
the square of the corresponding CKM matrix element. I.e. approximately 99.8% of all t quarks
decay into a b quark, while only approximately 0.16% decay into s quarks and 0.008% into a d
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2. A Brief Introduction to the Standard Model of Particle Physics

quark. Because of their small probabilities, the latter two decays have not been observed thus
far.
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Chapter 3
The Large Hadron Collider and the ATLAS
Detector

3.1. The Large Hadron Collider

The LHC [38] is a circular accelerator, storage ring, and collider for hadrons at the European
Council for Nuclear Research (CERN) in Geneva, Switzerland. It is part of the CERN ac-
celerator complex shown in Figure 3.1 and can accelerate charged nuclei to record energies:
up to of 6.5 TeV for protons, up to 2.51 TeV for lead ions, and up to 2.72 TeV for xenon ions
(cf. e.g. Reference [39]). Several other accelerators are used to pre-accelerate particles before
injecting them into the LHC. Protons e.g. are first accelerated in steps by the Linear Accele-
rator 2 (LINAC2), Proton Synchrotron Booster (BOOSTER), Proton Synchrotron (PS), and
Super Proton Synchrotron (SPS) to the injection energy of the LHC, 450 GeV.

Once injected into two separate beam pipes, the charged nuclei circle in opposite directions,
held on their trajectories using superconducting magnets. Once per turn, they are accelerated
in superconducting cavities, either keeping the particle beam at a given energy or increasing it
slowly.

The LHC has four interaction points at which the two counter-rotating beams can be put
to collision, providing four different detectors with either proton-proton (pp), lead-lead (Pb-
Pb), proton-lead (p-Pb), or xenon-xenon (Xe-Xe) collisions to record. These detectors are the
ALICE detector [41] specialized in the recording of collisions involving heavy ions, the LHCb
detector [42] with the primary focus on studying the b quark, and the two multi-purpose
detectors CMS [43] and ATLAS [44].

The LHC saw its first particle beam in 2008. So far, it was operated from 2009 to 2013
(Run 1) at a center-of-mass energy of

√
s = 7 TeV and 8 TeV and from 2015 to 2018 (Run 2)

at a center-of-mass energy of
√

s = 13 TeV for pp collisions. During the latter run, a peak
instantaneous luminosity (interactions per time and cross section) of L = 21.0 ·1033cm−2s−1 =
2.10 · 10−5fb−1s−1 was reached [45]. There was an intermediate upgrade period between 2013
and 2014 called Long Shutdown 1 (LS1) and another still ongoing upgrade period which started
2019 (LS2) before the LHC will recommence with Run 3 in 2022.

3.2. The ATLAS Detector

The ATLAS detector [44] is one of the particle detectors situated around a collision point of
the LHC. It is a 4π detector, i.e. it covers as much of the full solid angle as possible (excluding
the beam pipe and gaps necessary for the support structure and detector infrastructure) and
has a length of approximately 46 m and a diameter of approximately 25 m, as is illustrated
in Figure 3.2. Its geometry is commonly described using cylindrical coordinates, the origin
being the center of the detector. The radial coordinate r and the azimuthal angle φ span
the transverse plane (φ ∈ (−π, π], where φ = 0 points towards the center of the LHC), while
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Fig. 3.1: The LHC (dark blue line) as part of the CERN accelerator complex. For pro-
ton beams, LINAC2, BOOSTER, PS, and SPS are used as pre-accelerators for the
LHC [40].

the polar angle with respect to beam axis is most often expressed using the pseudorapidity
η = − ln tan

(
θ
2

)
, where positive values correspond to a direction clockwise around the LHC

if viewed from above. In this thesis, the distance between two objects ∆R =
√
∆φ2 +∆η2 in

the η–φ plane is commonly used.
The ATLAS detector consists of different detector components arranged in layers around

the collision point. They are described in the following.

3.2.1. The Inner Detector

The innermost part of the detector is the inner detector (ID) [46], which covers the range
|η| < 2.5 and is used for tracking charged particles. It consists of a silicon pixel tracker, a
silicon microstrip tracker, and a transition radition tracker and is illustrated in Figure 3.3.

The pixel detector consists of four layers (the innermost layer having been inserted during
the LS1 [47, 48]) arranged concentrically around the vertex area as barrel and three disks per
end-cap. It has the intrinsic resolution of 10 µm in azimuthal and radial direction and 115 µm
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3.2. The ATLAS Detector

Fig. 3.2: Cut-away overview of the ATLAS detector to illustrate all detector components [44].
The people are shown for scale comparison.

in the z (barrel) and radial direction (end-cap) and provides typically four measurement points
called hits per track.

The silicon microstrip tracker (SCT) is placed around the pixel detector. It has four double-
layers of small-angle stereo strips and nine disks per end-cap and typically provides four ad-
ditional hits per track. Its intrinsic resolution is 17 µm in azimuthal and radial direction and
580 µm in the z (barrel) and radial direction (end-cap).

For |η| < 2.0, both silicon trackers are surrounded by the transition radition tracker (TRT)
which consist of straw tubes filled with a gas mixture containing 70% xenon. It typically
provides a set of 36 measuring points per track and additionally offers information aiding
electron identification based on transition radiation.

The ID is surrounded by a superconducting solenoid magnet with a 2 T axial magnetic field
which bends the track of charged particles and therefore enables the reconstruction of the sign
of their electric charge and their transverse momentum pT.

3.2.2. The Calorimeter

The ATLAS calorimeter is a sampling calorimeter, i.e. it consists of dense absorber materials in
which energetic incoming particles produce particle showers, and active material in which those
shower particles produce ionization or photons as detectable signal. A key part of its design
is its density, optimized to absorb as much of the particles’ energies inside the calorimeter as
possible to allow for a good energy resolution even at large energies and to reduce the number
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3. The Large Hadron Collider and the ATLAS Detector

Figure 1: Sketch of the ATLAS inner detector showing all its components, including the new insertable B-layer
(IBL). The distances to the interaction point are also shown.

3

Fig. 3.3: Layout illustrating the scales of the inner detector components in the barrel region
of the ATLAS detector [46].

of particles exiting the calorimeter into the muon spectrometer.
Figure 3.4 gives an overview over its four components: the electromagnetic (EM) liquid-

argon (LAr) calorimeter, the hadronic LAr end-cap calorimeter, the hadronic tile calorimeter,
and the LAr forward calorimeter. The pseudorapidity ranges of each component can be found
in Table 3.1.

The EM LAr calorimeter is the innermost calorimeter. It is divided into a barrel with
a thickness of at least 22 radiation lengths X0 and two end-cap calorimeters with X0 > 24.
Overall, it consists of a thin LAr presampler and three layers made of lead as absorber material
and LAr as active material.

The two hadronic LAr end-cap calorimeter wheels are situated behind the EM end-cap
calorimeters. They have four layers built from copper plates as absorber and LAr as active
material.

The hadronic tile calorimeter is divided into a barrel and two extended-barrel calorimeters.
The barrel part is situated around the barrel part of the EM LAr calorimeter, while the
extended-barrel part is situated around the end-cap calorimeters. Both barrel and extend-
barrel tile calorimeter have three layers made of steel as absorber and scintillating tiles as
active material.

Finally, two forward calorimeters are situated around the beam pipe and between the end-cap
calorimeters. They have three layers, the first being built from copper and LAr and optimized
for electromagnetic measurements, and the second and third being built from tungsten and
LAr and optimized for hadronic measurements.

The entire instrumented calorimeter yields an interaction length λ of 9.7 in the barrel region
and 10λ in the end-cap region.

10



3.2. The ATLAS Detector

Fig. 3.4: Cut-away overview of the ATLAS calorimeter system [44].

Electromagnetic LAr Calorimeter
Barrel End-cap

presampler (PreSamplerB/E) |η| < 1.52 1.5 < |η| < 1.8

1st layer (EMB1/EME1) |η| < 1.475 1.375 < |η| < 3.2

2nd layer (EMB2/EME2) |η| < 1.475 1.375 < |η| < 3.2

3rd layer (EMB3/EME3) |η| < 1.35 1.5 < |η| < 2.5

Hadronic Tile Calorimeter
Barrel Extended barrel

1st layer (TileBar0/TileExt0) |η| < 1.0 0.8 < |η| < 1.7

2nd layer (TileBar1/TileExt1) |η| < 1.0 0.8 < |η| < 1.7

3rd layer (TileBar2/TileExt2) |η| < 1.0 0.8 < |η| < 1.7

Hadronic LAr End-cap Calorimeter
1st layer (HEC0) 1.5 < |η| < 3.2

2nd layer (HEC1) 1.5 < |η| < 3.2

3rd layer (HEC2) 1.5 < |η| < 3.2

4th layer (HEC3) 1.5 < |η| < 3.2

LAr Forward Calorimeter
1st layer (FCAL1) 3.1 < |η| < 4.83

2nd layer (FCAL2) 3.24 < |η| < 4.81

3rd layer (FCAL3) 3.29 < |η| < 4.75

Tab. 3.1: Pseudorapidities covered by all ATLAS calorimeter layers [44].
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3.2.3. The Muon Spectrometer
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Figure 1.4: Cut-away view of the ATLAS muon system.

1.4 Muon system

The conceptual layout of the muon spectrometer is shown in figure 1.4 and the main parameters
of the muon chambers are listed in table 1.4 (see also chapter 6). It is based on the magnetic
deflection of muon tracks in the large superconducting air-core toroid magnets, instrumented with
separate trigger and high-precision tracking chambers. Over the range |η |< 1.4, magnetic bending
is provided by the large barrel toroid. For 1.6 < |η | < 2.7, muon tracks are bent by two smaller
end-cap magnets inserted into both ends of the barrel toroid. Over 1.4 < |η |< 1.6, usually referred
to as the transition region, magnetic deflection is provided by a combination of barrel and end-cap
fields. This magnet configuration provides a field which is mostly orthogonal to the muon trajec-
tories, while minimising the degradation of resolution due to multiple scattering. The anticipated
high level of particle flux has had a major impact on the choice and design of the spectrome-
ter instrumentation, affecting performance parameters such as rate capability, granularity, ageing
properties, and radiation hardness.

In the barrel region, tracks are measured in chambers arranged in three cylindrical layers
around the beam axis; in the transition and end-cap regions, the chambers are installed in planes
perpendicular to the beam, also in three layers.

– 11 –

Fig. 3.5: Cut-away overview of the muon system of the ATLAS detector [44].

The outermost layer of the ATLAS detector is the muon spectrometer (MS). It consists of
toroidal magnets and separate chambers to trigger event read-out on high-momentum muons
and to measure the tracks of muons deflected in the magnetic field.

The barrel magnet system consists of eight long, superconducting air-core coils arranged to
form a toroidal magnetic field with a bending strength of 1.5 to 5.5 Tm surrounding the barrel
part of the detector. The monitored drift tubes (MDT) used to determine the muons’ tracks
are immersed in the magnetic field and therefore partially placed into the magnetic coils. For
|η| < 1.05, resistive plate chamber (RPC) are additionally used for dedicated muon triggers.

In the forward direction and per end-cap, the magnetic field is generated by eight smaller
coils situated between the coils of the barrel muon system and behind the end-cap calorimeters.
They generate a magnetic field with a bending power of 1 to 7.5 Tm. In contrast to the barrel
MS, the forward muon detectors are not immersed in the magnetic field of the small coils. The
small wheel built from cathode strip chambers (CSCs) is positioned in front of the magnets
and covers the high activity region of 2 < |η| < 2.7, while the large wheel consisting of thin gap
chambers (TGCs) and MDT, is positioned behind the magnets and covers 1.05 < |η| < 2.7.
The large wheel TGCs are used both for measuring muons and triggering on them.

3.2.4. Trigger System

Most collisions during Run 2 were recorded with a spacing of 25 ns between beam packages
called bunches. This corresponds to an event rate of 40 MHz1 to record if it were not for
dedicated filter systems called triggers, described in detail in Reference [49]. In a first step,

1The average event rate is smaller than 40 MHz because of gaps in the fill pattern of the LHC.
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3.2. The ATLAS Detector

the hardware trigger (Level-1 trigger, L1) reduces the event rate to 100 kHz. It determines
regions of interest (RoIs) based on coarse calorimeter information and input from those muon
chambers used for triggering. In a second step, a software trigger (high level trigger, HLT)
reduces the event rate to 1 kHz by running a simplified event reconstruction algorithm based
on the RoIs and detector information at full granularity.
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Chapter 4
Object Reconstruction

In analyses, object reconstruction is used to translate the raw information recorded by the
detector into objects that can be associated with either single particles (e.g. electrons, photons,
muons) or particle jets (e.g. from high-energy quarks).

The main objects in this thesis are electrons, muons, small radius jets, and missing transverse
momentum. Additionally, reconstructed tracks and KS and Λ0 reconstructed from tracks and
matched to jets are part of this thesis. All of these objects are reconstructed and calibrated
with the standard ATLAS methods using the Analysis Top framework version 21.2.147 [50].

4.1. Tracks

Charged-particle track reconstruction is described in References [51, 52].
In a first step, clusters of sensors in the ID (pixel detector and SCT detector) in which the

measured charge is above a given threshold are defined separately for each ID subsystem. They
are then converted to hits, i.e. measurements in three dimensions.

The track reconstruction algorithm starts with hits in the pixel and SCT detector. Seeds are
formed from combinations of three clusters. They are used in a combinatorial Kalman filter [53]
to determine multiple track candidates. An ambiguity resolver is applied to them, selecting
tracks based on a quality score and additional quality criteria. The ambiguity resolver is able to
handle clusters assigned to more than one track. A neural network helps to determine whether
a cluster was caused by one or multiple tracks. Those tracks that pass the ambiguity resolver
are then extended to the TRT. Finally, the tracks are fitted using all available information.

4.2. Electrons

Electron reconstruction, calibration, and identification is described in Reference [54].
They are reconstructed from superclusters, i.e. dynamic, variable-size clusters. These su-

perclusters use energy depositions in the EM and hadronic calorimeters that are topologically
connected (so-called topo-clusters [55]). They are calibrated and matched to reconstructed
tracks. Electrons and photons have a similar detector signature. They are reconstructed with
similar algorithms. In the final step of their reconstruction, they are classified as either un-
ambiguous electrons or photons or, if both are reconstructed, either one is retained or both
electron and photon are retained but marked as ambiguous. Afterwards, electrons are recal-
ibrated, considering additional information of the matched tracks. The energy calibration is
done in reconstructed Z → e+e− decays.

To ensure that the quality of the reconstructed electrons matches the requirements of the
analyses, additional identification and isolation criteria are utilized. Two different sets of iden-
tification criteria are applied in this analysis, one that is more stringent or tight (TightLH )
which is used for the main part of the analysis and one that is less stringent or loose (Loose-
AndBLayerLH ) which is used for a data driven estimate of fake electrons (most often caused by
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4.3. Muons

jets misidentified as electrons) described in Section 7.3. Both identification working points use
a likelihood defined to discriminate between real and fake electrons. In addition to that, the
loose identification requires at least one hit in the innermost layer of the pixel detector and all
tight electrons have to pass additional isolation requirements w.r.t. other high energy/momen-
tum objects such as energy depositions in the calorimeter and momentum of charged particles
not assigned to the electron. The isolation requirement applied in this thesis is called gradient
isolation. All efficiencies are derived via the tag-and-probe method in Z → e+e− decays.

All electrons used in this thesis are required to have a pT > 27 GeV and |η| < 1.37 or
1.52 < |η| < 2.47 which excludes the gap region of the EM calorimeter.

4.3. Muons

The reconstruction, identification, isolation, and calibration of muons is described in Refer-
ences [56, 57].

The muons used in this thesis are reconstructed using a combination of track segments in the
MS and tracks in the ID (combined muons). Both tracks in the MS and ID are reconstructed
independently and combined in a global refit. Most muons are reconstructed by extrapolating
tracks in the MS to the ID (outside-in), but a complementing inside-out extrapolation is used
as well. If it improves the fit quality, hits in the MS can be removed.

Similar to electrons, identification criteria are applied to muons in order to ensure the quality
of their reconstruction. In this thesis, all muons have to fulfill criteria with medium strictness
which minimize the uncertainties associated with the reconstruction and calibration. These
criteria use requirements on the hits in the MDT as well as on the significance of the measured
ratio between charge and momentum, q/p.

The muons used in the nominal selections in this thesis are additionally required to be
isolated following the isolation requirement FCTight_FixedRad. It requires the transverse
energy of topological cell clusters in a cone of the size ∆R = 0.2 around the position of the
muon, Etopocone20

T , divided by the pT(µ) of the muon to be smaller than 15%. Additionally,
requirements on the scalar sum of the transverse momenta of ID tracks with pT > 1 GeV
associated with the primary vertex1 in a cone with radius ∆R = 0.2 (called pcone20

T ) or in
a cone with ∆R = min(10 GeV/pµ

T, 0.3) (called pvarcone30
T ) are applied. If the muon has a

pT(µ) < 50 GeV, this requirement is pcone20
T /pT(µ) < 0.04, otherwise it is pvarcone30

T /pT(µ) <
0.04. Further details on the definition of these variables is given in Reference [57].

The muons used in the estimate of fake muons are not required to fulfill any isolation
requirements.

The muons’ momenta are calibrated by comparing data and simulation in Z → µ+µ− events
and scale factors for the scale and resolution are extracted [57].

In this thesis, all muons are required to have a pT > 27 GeV and an |η| < 2.5.

4.4. Jets

Particle jets are the result of high-energy quarks or gluons showering and hadronizing. Because
of momentum conservation, in the detector, jets appear as groups of energy depositions, which

1The primary vertex (PV) is the vertex with the highest
∑

p
2
T, where the sum includes all tracks fulfilling

certain quality criteria and criteria matching them to that vertex. Details are described in Reference [58].
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4. Object Reconstruction

can be clustered into objects. The anti-kT algorithm [59] used to cluster all jets used in this
thesis is infrared and collinear safe, i.e. low-energy and collinear radiation does not change the
resulting jets. With this clustering algorithm in particular, the resulting jets tend to have a
circular shape. The radius parameter used for the clustering is R = 0.4 which is equivalent to
the jets’ maximum radius.

In this thesis, jets are clustered from topological calorimeter clusters [55] calibrated to the
electromagnetic scale [60].

After the clustering, the jets are calibrated in four steps as described in Reference [61]. In
an initial step, the momentum of jets is corrected w.r.t. the pileup condition of their recording.
Afterwards, the energy scale is corrected based on Monte Carlo (MC) simulations. Thereafter,
a global sequential calibration is applied which e.g. corrects for differences between the jets’
response for different jet flavors (quark or gluon). In this step, a correction for punch throughs2

is applied as well. The jets are then calibrated in situ in dijet events, multijet events, and
Z/γ+jets events.

All jets are required to have a pT > 25 GeV. Additional requirements on the jets’ pT will be
discussed in the context of the use of b-tagging algorithms in the following section.

During each bunch crossing, a number of proton pairs interact. The softer interactions that
happen simultaneously to a hard interaction that is recorded are referred to as pileup. To
reduce the number of jets from these pileup interactions, a cut on the jet-vertex tagger (JVT)
discriminator [62] is required, which selects jets based on whether tracks matched to them
originate in the PV. If the jet has a pseudorapidity of |η| < 2.4 and a pT < 120 GeV, a value
greater than 0.59 is required, and if |η| > 2.4 and pT < 120 GeV, a value greater than 0.11 is
required.

4.5. b-Tagging

b-tagging algorithms are used to identify jets that originate from b quarks.
Most B hadrons, i.e. hadrons containing a b quark, such as B±, B0, B0

S , etc., have a lifetime
of τ ≈ 1.5 ps [24] and therefore – at energies typical for collisions at the LHC – tend to
traverse a few millimeters inside the detector before decaying. The resulting decay vertices
– also called secondary vertices (SVs) – can be reconstructed because of the precise tracking
resolution provided by the ID.

In this thesis, the MV2c10 algorithm discussed in References [63, 64] is used for the identifi-
cation of jets from b quarks. It uses a boosted decision tree with inputs from other algorithms
(JetFitter, IP3D, and SV1), each of which is specialized in the reconstruction of particular
characteristics of b-jets such as the decay chain of B hadrons, the impact parameter (IP) of
tracks, and SVs. A working point with an 85% efficiency for b-jets and a rejection rate for
non-b-jets of 1/εlight = 28 is chosen. It has the smallest rejection rate for non-b-jets of all
calibrated working points and hence the largest purity of non-b-jets if jets are required not to
be b-tagged3.

Two kinds of b-tagger calibrations are used in different parts of this thesis. In the s-tag-
ger calibration described in Chapter 7, the b-tagging calibration detailed in Reference [63] is
applied. The calibration of b-jets is done in a likelihood fit in dileptonic tt decays and assumes
|Vtb| = 1.0. Therefore, this calibration is biased in such a way that it cannot be used for the

2Punch through means that a jet is not fully contained in the calorimeter but leaks into the MS.
3For the selection of t → W

+
s decays, it is of great interest to reject b-jets from t → W

+
b decays.
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measurement of |Vts| and |Vtd| described in Chapter 8. Thus, in this measurement, a different
b-tagger calibration is applied. It uses the prel

T method which is described in Reference [65]
and makes use of b-jets containing µ, which occur in roughly 20% of B hadron decays. The
contribution of each jet flavor is fitted in the distribution of the momentum of these µ relative
to the jet axis, prel

T . An ATLAS internal documentation of the calibration for Run-2 data can
be found in Reference [66]4. The resulting scale factors for b-tagged b-jets are compatible with
one and have an uncertainty between 2 and 8%. For Run-2 data, currently, the prel

T calibration
is limited to jet pT < 140 GeV, while for Run 1, the limit of this calibration was pT < 200 GeV.
For this reason, a requirement of pT < 200 GeV was originally imposed on all jets used in this
thesis. This requirement is kept for the calibration of the s-tagger. For the measurement of
|Vts| and |Vtd|, however, the stricter criterion of pT < 140 GeV is applied to all jets.

4.6. c-Tagging

Similar to b-tagging algorithms, c-tagging algorithms are used to identify jets that originate
from c quarks. In comparison to B hadrons, the lifetimes of D hadrons 5 are smaller, e.g. 1.0 ps
for D± and 0.4 ps for D0 [24]. If they are highly boosted, however, they can still traverse
millimeters before decaying, which allows for the use of similar tagging techniques as for b-jets.

The c-tagger employed in this thesis is called DL1 [63] and uses the same input variables
as the MV2c10 algorithm but a deep neural network instead of a boosted decision tree. It is
applied at the tight working point, which has a c-jet efficiency of 17%, and in combination with
an anti-b-tag of the MV2c10 b-tagger at a b-tagging working point that has a 70% efficiency
for b-jets. This combination of taggers and its calibration was developed specifically for the
search of the process V H(→ cc) [67]. It is described in detail in an internal documentation,
cf. Reference [68]. Scale factors are derived for b-jets, c-jets, light jets, and τ -jets. For b-jets,
this is done in a likelihood fit in a sample enriched with b-jets based on a selection of dileptonic
tt decays. The uncertainty on the scale factors of b-jets is mostly below ±5% for pT < 200 GeV.
Scale factors for c-jets are derived by considering the two jets from the hadronically decaying W
boson in semileptonic tt decays, of which one is required to be c-tagged and the other is required
not to be c-tagged. The resulting scale factors have an uncertainty of approximately ±10%
for pT < 200 GeV. These scale factors for c-jets are additionally used in an extrapolation
of scale factors for τ -jets, which have a resulting uncertainty of approximately ±22%. The
extraction of scale factors for light jets makes use of an alternative version of the DL1 tagger
(DL1Flip), which uses similar input variables as the original tagger. However, some of these
input variables are flipped, such as e.g. the sign of the tracks’ IPs. This results in a similar
efficiency for light jets (their IPs tend to have positive and negative signs with roughly equal
probability), while the efficiency is lower for heavy flavor jets (their IPs tend to be positive more
often). Details on the procedure can be found in Reference [69]. For the MV2c10 tagger used
in this combination of taggers, the standard version and not the flipped version was used for
the calibration of light jets. The resulting scale factors have an uncertainty of approximately
±15% for pT < 200 GeV.

4The scale factors derived by this calibration are not yet fully approved by the ATLAS Collaboration. They
are applied in this thesis to allow for an estimation of their impact on the measurement of |Vts| and |Vtd|.

5
D hadrons contain at least one c quark and no b quarks.
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4.7. Overlap Removal
Since the reconstruction algorithms are applied independently, it might happen that different
objects are reconstructed in the same detector region. The following algorithm is used to
resolve the overlap by removing all but one of the objects:

First, electrons that share tracks with muons are removed. Second, if jets fall into the
reconstruction radius of an electron (∆R < 0.2), they are removed. Third, all electrons that
are closer than ∆R < 0.4 to a jet are removed. Finally, all muons with a distance ∆R < 0.4
to a jet are removed.

4.8. Missing Transverse Momentum
The cross section of any neutrino interaction is very small, which means they cannot be
detected with the ATLAS detector. However, since the momentum of the protons accelerated
by the LHC is very small in the transverse plane of the detector, i.e. perpendicular to the beam
axis, it is possible to reconstruct the momentum carried away by neutrinos in this direction.
This missing transverse momentum, Emiss

T , is the negative vectorial sum of all reconstructed
and calibrated objects plus unclustered soft energy estimated from low-pT tracks matched to
the primary vertex, cf. Reference [70].

4.9. KS and Λ0 Reconstruction
Strange hadrons are hadrons that contain at least one s quark and neither c nor b quarks.

One type are kaons, which are mesons containing an s (s) quark and a u or d (u or d) quark.
While K0 =̂ ds and K

0
=̂ ds are eigenstates of their flavor content, experimentally, it is handy

to consider them in the eigenstates of the weak interaction, KS =̂ ds−ds√
2

and KL =̂ ds+ds√
2

.
KS are more short lived and mostly decay into two pions6 (π+π− or π0π0), while KL are more
long lived and mostly decay into three particles (e.g. π+π−π0 or π0π0π0).

Another type of strange hadrons are Λ0 (Λ0) baryons containing an s, d, and u (s, d, and
u) quark. They mostly decay into either p+π− or n+π0 (p+π+ or n+π0). In the following,
both Λ0 and their antiparticles Λ0 will be considered simultaneously and both will be referred
to as Λ0.

KS decaying to π+π− and Λ0 decaying to p+π− are reconstructed using the InDetV0Finder
Tool [71] which considers reconstructed tracks, all of their uncertainties, and their correlations.
Parts of the description of the algorithm are based on Reference [72].

In the used algorithm setup, only tracks reconstructed from hits in the silicon tracker (pixel
detector and SCT) with a pT > 400 MeV, a longitudinal IP |z0| < 250 mm, and a transverse
IP divided by its significance d0/σ(d0) > 2 are considered. For each fit, two tracks are selected
as input if they carry opposite-sign electric charge. When a track is assumed to be a pion, its
mass is set to mπ = 139.57 MeV, and when it is assumed to be a proton, the mass is set to
mp = 938.272 MeV.

For the reconstruction, at first, a three-dimensional vertex fit without any constraints on the
mass or direction of the decaying particle is carried out. To enter the fit, at least one invariant
mass of the two tracks – permuting the assumptions of the tracks being pions and protons – is

6Pions are mesons consisting either of ud, ud, uu, or dd.
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required to be in the following ranges: 400 MeV < m(ππ) < 600 MeV or 1000 MeV < m(pπ) <
1200 MeV or 1000 MeV < m(πp) < 1200 MeV. The fit projects the helical trajectories of the
two tracks into the (r, ϕ) plane in cylindrical coordinates and approximates them as circles. If
the two circles intersect, the helices are extrapolated to the two intersections and the one with
the smaller z difference of the helices is chosen as the vertex. If the circles do not intersect,
the point of closest approach is chosen as the approximation for the vertex.

If the invariant mass of the resulting vertex is either 400 MeV < m(ππ) < 600 MeV or
1000 MeV < m(pπ) < 1200 MeV or 1000 MeV < m(πp) < 1200 MeV and the cumulative χ2

probability is larger than 0.0001, the vertices are further constrained in a fit of the same type
but under KS and Λ0 mass hypotheses (mKS

= 497.672 MeV and mΛ = 1115.68 MeV). The
mass-constrained vertices are retained if the cumulative χ2 probability of the vertex fit is larger
0.0001, which means that the χ2 value is smaller than 15.
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Chapter 5
Data and Monte Carlo Simulation

5.1. Data
The data studied in this thesis corresponds to the full Run-2 dataset taken by the ATLAS
detector during the LHC runs with pp collisions at

√
s = 13 TeV and a bunch spacing of

25 ns between 2015 and 2018. It corresponds to an integrated luminosity of 139 fb−1 with an
uncertainty of 1.7% [73].

5.2. Monte Carlo Simulation
The following description of simulated samples is based on Reference [74].

The generation of MC simulated events is done in three steps.
First, using perturbation theory, events of a certain process are simulated on parton level

according to the process’ probability given by its matrix element (ME), folded with the proba-
bility of the initial particles of the process described by the parton distribution function (PDF)
of two protons colliding at a center-of-mass energy of 13 TeV. Then, the hadronization of all
resulting strongly interacting particles is simulated using so-called parton shower algorithms.
A detailed description of the software and settings used for this step and for each considered
process is given below.

Second, all events are passed through a detailed simulation [75] of the ATLAS detector
implemented within the Geant 4 toolkit [76]. This produces so-called hits, i.e. energy deposits
in sensitive detector volumes, which are converted into digits (e.g. digitized voltages or currents
in the detector) in a step called digitization. During the digitization step, the simulated hard-
scattering events, i.e. the pp collisions that produces the processes of interest, are overlaid
with a number of minimum-bias events, i.e. softer pp collisions that have a large cross section,
to account for multiple interactions in the same and neighboring bunch crossings (pileup).
These minimum-bias events are simulated using the event generator Pythia8.186 [77] with
the NNPDF2.3LO PDF set [78] and the tuned parameters from the A3 tune [79].

And third, all events are passed through the same reconstruction algorithms also used for
data described in Section 4.

In a procedure called pileup reweighting, all MC events are reweighted w.r.t. their distribution
of the simulated number of interactions per bunch crossing, µ, to reproduce the distribution
of average interactions per bunch crossing, 〈µ〉, observed in data. Before, the 〈µ〉 in data is
divided by 1.03±0.07, a scale factor based on the measurement of the cross section of inelastic
pp collisions [80], to increase the agreement between the number of pileup vertices in data and
simulation.

5.2.1. Pair-Produced Top Quarks

The production of t quark pairs (tt) is simulated at next-to-leading order (NLO) accuracy in
the strong coupling constant αs using the ME generator PowhegBox v2 [81–84] with the
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5.2. Monte Carlo Simulation

NNPDF3.0NLO [85] PDF set. The t quark mass is set to mt = 175 GeV and the hdamp
parameter1 is set to 1.5mt.

The t quark decay simulated at leading order (LO) is handled by MadSpin [86, 87] in order
to preserve all spin correlations and to allow for the simulation of decays to s and d quarks.
The parton shower and hadronization is simulated with the Pythia8.230 [77] generator, using
the tuned parameters from the A14 set [88] and the NNPDF2.3LO PDF set [78]. Bottom and
charm hadron decays are simulated with the EvtGen v1.6.0 program [89]. The nominal
tt sample contains the decay t

(
→ W+b

)
t

(
→ W −b

)
and will be referred to as tt(WbWb)

in this thesis. Dedicated signal samples contain either the decays t
(
→ W+s

)
t

(
→ W −b

)
and t

(
→ W+d

)
t

(
→ W −b

)
with a ratio of 3:1 or the decays t

(
→ W+b

)
t

(
→ W −s

)
and

t
(
→ W+b

)
t

(
→ W −d

)
with a ratio of 3:1. For simplicity, these decays will be referred to as

tt(WsWb) and tt(WdWb) in this thesis.
The cross section of all tt samples is corrected to

σ(tt)NNLO+NNLL = 832 ± 51 fb ,

the theory prediction computed with the Top++2.0 program [90–96] at next-to-next-to-
leading order (NNLO) accuracy in QCD, including the resummation of next-to-next-to-leading
logarithmic (NNLL) soft gluon terms.

Kinematic distributions of both t and t quark are corrected to the NNLO predictions of their
pT and rapidities and the mass and rapidity of the tt system given in Reference [97]. This is
done using the TTbarNNLOReweighter package described in Reference [98].

For samples generated with an alternative parton shower, Pythia8.230 is exchanged with
Herwig7.04 [99, 100]. It uses the H7UE tune [100] and the MMHT2014 LO PDF set [101].

5.2.2. Singly-Produced Top Quarks

The weak production of single t quarks (via t-channel, s-channel, and associated Wt produc-
tion) is modeled using the PowhegBox v2 [82–84, 102] in the production, MadSpin [86, 87]
for the decay of the t quarks, Pythia8.230 [77] for the hadronization and the EvtGen v1.6.0
program [89] for the decay of bottom and charm hadrons.

For the associated Wt and the s-channel production, the five-flavor scheme and therefore the
NNPDF3.0NLO [85] PDF set is used. The t-channel production is simulated using the four-
flavor scheme with the NNPDF3.0NLOnf4 [85] PDF set. The t quark mass, the renormalization
and factorization scale as well as the sets of tuned variables in the shower and hadronization
is the same as in the production of tt. To treat interference between Wt and tt, the diagram
removal scheme described in Reference [103] is applied.

The inclusive cross sections of all three production processes are corrected to their theory
predictions, which are

σ(t, t-channel)NLO = 136.02+5.40
−4.57 pb and σ(t, t-channel)NLO = 80.95+4.06

−3.61 pb

for t-channel production,

σ(t, s-channel)NLO = 6.35+0.23
−0.20 pb and σ(t, s-channel)NLO = 3.97+0.19

−0.17 pb
1This parameter regulates the momentum of the first additional emission against which the tt system recoils.
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5. Data and Monte Carlo Simulation

for s-channel production, and

σ(tW )NLO+NNLL = 71.7 ± 3.8 pb (3)

for associated Wt production. They are calculated at NLO in QCD (with NNLL soft gluon
corrections in case of tW production) [104–107].

5.2.3. W +Jets, Z+Jets, and Diboson Production

The ME generation, hadronization, and parton shower for the production of W and Z bosons
in association with additional QCD radiation (W+jets and Z+jets, together called V +jets)
as well as the production of two bosons called diboson production (WW ,WZ, and ZZ) is
simulated with the Sherpa v2.2 [108] generator using the NNPDF3.0NNLO PDF set [85]
and parton-shower tunes provided by the SHERPA authors.

The V +jets samples are of NLO accuracy for up to two parton radiations and of LO accuracy
for up to four additional partons in the ME. The V +jets cross section is normalized to a
differential prediction [109] with a normalization uncertainty of ±5%. Additional information
on V +jets production is provided in Reference [110].

The diboson samples are of NLO accuracy for up to one additional parton radiation and of
LO accuracy for up to three additional partons. Their normalization uncertainty of ±6% is
derived by varying the QCD factorization scale [111]. Additional information on the diboson
production can be found in Reference [112].

22



Chapter 6
An s-Tagging Algorithm

The identification of s-jets, i.e. jets from s quarks, called s-tagging is a relatively new effort at
LHC experiments. A promising approach is the use of neural networks (NNs), which is already
common for flavor tagging algorithms in use today, cf. e.g. the c-tagging algorithm described
in Section 4.6. NNs can learn small differences in and correlations between input variables,
which is useful as the fragmentation of u, d, and s quarks and hence the resulting jets are very
similar.

In the past, at the SLD at the Stanford Linear Accelerator Center (SLAC) and Delphi
Experiments at the Large Electron-Positron Collider (LEP) [113], s-jets were analyzed by
selecting K± mesons which were identified with the help of Cherenkov detectors1 [114, 115].

During this thesis project, two papers on s-tagging based on NNs were published: One
explored the use of NNs to process track information for s-tagging [30], while the other used
both track and calorimeter information [29] as input to multivariate methods.

This chapter covers the development of s-tagging algorithms in the context of this thesis.
In the first section, the used NN structures and training methods are described in detail. The
second section features a study exploring an upper bound on the performance of an s-tagger
assuming a number of simplified detector scenarios. And in the third section, the development
of an s-tagger for the use at the ATLAS Experiment is presented.

6.1. Deep Neural Networks

In this chapter, two different types of NNs are considered. One is a fully-connected feed-
forward deep neural network (DNN) structure and the other is a recurrent structure (RNN)
using Long Short-Term Memory (LSTM) layers. All NNs in this thesis are trained using the
TensorFlow library for machine learning [116] interfaced by the Keras library [117].

6.1.1. Fully-Connected Feed-Forward Neural Networks

NNs consist of interconnected units called nodes. Commonly, they are organized into distinct
layers. In a feed-forward NN, information is always passed in one direction. If a NN is fully
connected, it means that each node in one layer is connected to all nodes in the following layer.

Each DNN consists of an input layer, several hidden layers, and an output layer. The first
layer consists of n nodes, where n is the number of input variables. The hidden layers contain
an arbitrary number of nodes. However, for the DNNs trained in this thesis, the number of
nodes in each hidden layer is chosen to be a power of two, the number of nodes in the first
hidden layer defining the width (w) of the NN, and each following hidden layer contains half
as many nodes as the previous hidden layer. The output layer is chosen to contain exactly one
node, which is sufficient for a two class (signal vs. background) classification. Figure 6.1 is a
graphical representation of what a small-scale example of such a DNN could look like.

1The functionality of Cherenkov detectors will briefly be discussed in Section 6.2.3.
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6. An s-Tagging Algorithm

Input 1

Input 2

Input 3

Output

Hidden
Layers

Input
Layer

Output
Layer

Bias
Nodes

weights wij

Fig. 6.1: Small-scale example of the structure of the deep neural networks trained for the
identification of s-jets. Each circle visualizes a node; all circles aligned vertically
correspond to a layer. The bottom row shows bias nodes initialized with the value
one, each one being connected to the nodes in a hidden layer or the output layer.
The weights between nodes are visualized by arrows, their opacity corresponding to
the numerical value of the weight and the arrows represent the flow of information.
The graphic is based on Reference [118].

The connection between each node i in one layer and another node j in the following layer
is characterized by a weight wij . In addition to the input nodes, there are a number of bias
nodes containing the value one connected to the nodes of the hidden layers via connection
weights bj . With this, the numerical input value to each node j in the hidden layers and the
output layer is

Ij =
∑

i

wijOi + bj , (4)

where Oi is the output value of the node i in the previous layer. The bias weights bj shift the
input values Ij for more flexibility in the model built by the NN. In the input layer, the value
of each node is the value of the corresponding input variable.

Within each node i, an activation function f(x) is used to transform the input value Ii to
the output value Oi. In each hidden layer, a rectifier

f(x) = max(0, x) =

{
x if x > 0

0 if x ≤ 0
(5)

is used as activation function because it is non-linear (i.e. it can be used to model non-linear
characteristics), it has an easy-to-calculate derivation, and it avoids the problem of vanishing
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6.1. Deep Neural Networks

gradients if the DNN is too large [119]. Each node in the hidden layer is called a rectified
linear unit (ReLU). The node in the output layer uses a sigmoid function

f(x) =
1

1 + e−x =
ex

ex + 1
(6)

as activation. It is monotonic and maps values from (−∞, ∞) to (0, 1), the selected range of
the output values of the NN. Both activation functions are shown in Figure 6.2.
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Fig. 6.2: The activation functions used in the neural networks trained for s-tagging, a rectifier
used in the nodes of the hidden layers (left), a sigmoid function used in the output
node (middle), and a hyperbolic tangent used in the recurrent connections of Long
Short-Term Memory layers (right) .

6.1.2. Recurrent Neural Networks Using Long Short-Term Memory

In RNNs, an additional dimension is added to the input of the NN, which in most contexts is
referred to as time steps. By adding this additional dimension, input sequences of arbitrary
length (i.e. containing arbitrary number of time steps) can be processed. During the first time
step, a recurrent layer calculates its output only based on the input of the first time step.
During the following time steps, in addition to the new inputs of the time step, the output of
the layer from the previous time step is fed back into the layer. An illustration of this process
is shown in Figure 6.3. If the recurrent layer is followed by another recurrent layer, the output
of the earlier recurrent layer is passed to the next layer for each time step. If the following
layer is not recurrent, only the output of the last time step is passed forward.

There are a variety of ways to take the information from the previous time step into account
when processing information in the following time step. LSTM layers [120] do so in a sequence
of four steps which enable them to carry information both long-term (i.e. through an arbitrary
number of time steps) and short-term (i.e. through a single time step). A node in an LSTM
layer can also be called a cell, following an analogy of circuit boards. The central component of
LSTMs are cell states associated to each node, which can be thought of as the layer’s memory.
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First Time Step Second Time Step Third Time Step

Input
Layer

Recurrent
Layer

Output
Layer

Fig. 6.3: Illustration of a recurrent neural network. Each circle visualizes a node; all circles
aligned horizontally correspond to a layer. The weights between nodes are visualized
using arrows, showing the flow of information. Red arrows indicate output values
being carried to the next time step, while blue arrows indicate the forward feeding of
information. For simplicity, no bias nodes are shown.

These cell states are modified during each time step based on the information passed to them.
This is done using gates, which connect the inputs via a predefined function to a single output.

An LSTM layer consists of n units, each containing a cell state Ct−1 calculated during the
previous time step, which can be written as ~Ct−1, a vector of length n. Per time step t, it
receives an input vector ~xt of length m. The following operations take place per time step:

In the first step, the per-cell values ft ∈ [0, 1] for the forget gate are calculated based on the
output ~ht−1 of the previous time step and the input ~xt of the current time step, deciding how
much information residing in the previous cell state is going to be retained:

~ft = σ(Wf~xt + Uf
~ht−1 +~bf ) , (7)

where σ is the sigmoid function applied to each element of its input vector, Wf is a matrix of
dimension n × m, UF is a matrix of dimension n × n and ~bf are n values corresponding to the
weights of bias nodes.

In the second step, the values it ∈ [0, 1] of the input gate are calculated, deciding how much
new information will be stored in the cell state during this time step:

~it = σ(Wi~xt + Ui
~ht−1 +~bi) , (8)

In the third step, the cell state is updated with a temporary cell states

~̃Ct = tanh(Wc~xt + UC
~ht−1 +~bC) , (9)

and the new cell states of the cell is set to

~Ct = ~ft � ~Ct−1 +~it � ~̃Ct , (10)
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6.1. Deep Neural Networks

in which the forget gate and the input gate are applied to the old and the new cell state by
using element-wise multiplication �.

In the fourth step, the output of each cell is calculated as

~ht = ~ot � tanh(Ct) , (11)

with
~ot = σ(Wo~xt + Uo

~ht−1 +~b0) . (12)

One LSTM layer consists of four W matrices, four U matrices, and four bias vectors ~b, which
makes for a total number or 4(mn + n2 + n) free parameters to be trained.

6.1.3. Preprocessing

For the training of the NNs, the available simulated sample is split into a training sample, a
validation sample used to evaluate the performance of the NN during the training, and a test
sample used to evaluate the performance once the training is finished, with a ratio of 3:1:1.

The input variables are preprocessed to have similar magnitudes, which increases the speed
and stability of the training process. The preprocessing uses scikit-learn’s [121] RobustScaler
and is done according to the distribution of the training sample. In a first step, all values of
an input variable are shifted so that the mean of this variable in the training sample becomes
zero. Afterwards, all values are scaled to

xi → xi − q25(x)

q75(x) − q25(x)
, (13)

where q25(x) and q75(x) are the value at the 25th and 75th percentile of the variable in the
training sample.

The same preprocessing is applied to any sample before feeding it into a NN.

6.1.4. Training

During the training of a NN, the weights wij and bj (or in case of LSTM layers all weights
given by the elements of all matrices W and U and the bias vectors ~b) are adjusted to minimize
the loss function, which evaluates the classification done by the NN. In this thesis, the binary
cross entropy

L
(
ypredicted|ytrue

)
= −

[
ytrue log

(
ypredicted(wij , bj)

)
+ (1 − ytrue) log

(
1 − ypredicted(wij , bj)

)]
(14)

is chosen as a loss function as it is computationally efficient and provides sufficiently large
gradients during the training [122]. Here, ytrue is the jet label in the simulation (0 for d-jets,
i.e. background jets from d quarks, and 1 for s-jets) and ypredicted is the label predicted by the
NN.

The adjustment of the weights is done by an optimizer algorithm, namely the ADAM al-
gorithm [123], which is based on stochastic gradient descent. One iteration of the algorithm
is done using a subset of all training events, a so-called batch. First, the gradient of the loss
function, i.e. a vector of all partial derivatives w.r.t. all weights, is calculated for each event in
the batch and then averaged over these events. Second, this gradient is used to update moving
moment estimators which average the mean and variance of the gradient over all iterations,
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6. An s-Tagging Algorithm

using decay rates β1 and β2 to slowly move the moment estimators away from the initial val-
ues and towards the terminal values. Third, based on these moving averages, the weights are
updated, the step size α moderating the change between the old weights and the new weights
in one iteration. Additionally, in one iteration of the optimizer, the step size α is changed in
order to slowly decrease. The iteration over all events in the entire training sample is called
an epoch.

All parameters defining the model that are set before the training are called hyperparameters.
For the NNs trained in this chapter, the hyperparameters assumed to have the largest impact
are the width and the number of hidden layers of the NNs. Additional hyperparameters are
the batch size, the initial step size αinitial (also called learning rate), and the exponential decay
rates β1 and β2.

Once a NN configuration is found which has a capacity that is large enough to model the
differences between the two classes it is supposed to distinguish, it is necessary to ensure
that the effective capacity is not too large and that no features from the training sample are
learned that cannot be generalized (overfitting). This can be done using a mechanism called
regularization.

There are several possible regularization techniques. The two highlighted here are the L1
and L2 regularization, which both penalize large connection weights wij between layers. The
loss function of a regularized NN is

Lregularized = L(wij , bj) + λ
∑
i,j

|wij |a, (15)

where j are all nodes in the one layer and i are the nodes in the adjacent layer and L(wij , bj)
is the loss function without regularization. a = 1 for L1 regularization and a = 2 for L2
regularization, while λ is the regularization strength that can be adjusted. The difference
between both types of regularization can be found when considering different magnitudes for
the weights wij . If a weight is small (wij < 1.0), the penalty term in L1 regularization is larger
than in L2 regularization. This means L1 regularization can be used to further reduce the
impact of already small weights [124]. If a weight is relatively large (wij > 1.0), the penalty
term in L2 regularization is larger than in L1 regularization. The quadratic behavior causes
large penalty terms for large weights, therefore reducing the importance of single weights and
features. For this reason, L2 regularization is applied to reduce overfitting.

6.1.5. Evaluation

In order to evaluate the classification power of the trained NNs, so-called receiver operating
characteristic (ROC) curves are used. An example can be found in Figure 6.4. It illustrates
the relation between the signal efficiency εsignal and background mis-tag rate εbackground when
applying a selection to a dataset by requiring an NN output score larger than a given value. In
the chosen representation, the x-axis shows the signal efficiency, while the y-axis shows 1−εbkg,
both corresponding to the fraction of correctly classified events of the signal and background
class. The area under the curve (AUC) is employed as a metric of the NN’s performance
during the training and optimization process. It is calculated using scikit-learn’s [121] ROC
AUC score and takes on a value between 0.5 (no separation) and 1.0 (perfect separation).

For better visualization, at times, modified ROC curves, which show the rejection rate 1/εbkg
on the y-axis, are used. However, if an AUC value is quoted, it always refers to the AUC of
the standard ROC curve.
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Fig. 6.4: Examples of receiver operating characteristic (ROC) curves and modified ROC curves,
illustrating the relation between the efficiency εsignal of signal and mis-tag rate
εbackground of background when applying a selection to a dataset by requiring an
output score larger than a given value. The grey area represents the area under
the ROC curve as it is calculated in the AUC score. The shown blue curves with
separation have the same underlying distribution separating signal and background.

To evaluate the performance of the NNs, the epoch with the best AUC value on the validation
sample is used. The statistical uncertainty associated with the AUC score calculated on the
validation or test sample is estimated as the standard deviation of the AUC score calculated
by considering 100 samples of the same size as the sample used for the evaluation. These
100 samples are each sampled from the initial evaluation sample using replacement, a process
called bootstrapping.

In some instances, the accuracy, which is defined as the fraction of correctly classified events,
an s-jet efficiency or a d-jet rejection rate are quoted in this thesis. If not mentioned otherwise,
these values are defined by requiring an NN output score larger than 0.5.

6.2. Considerations on How to Approach s-Tagging

In this section, first, basic notions on the identification of s-jets are presented. Following this,
a study on the maximally achievable separation between s-jets and d-jets at hadron colliders
for a variety of ideal detector scenarios is presented. This study uses simulated particles as
input to recurrent neural networks and can be found in Reference [125]2.

Using b- and c-tagger such as those introduced in Sections 4.5 and 4.6, it is possible to
distinguish s-jets from b- and c-jets. With the help of so-called quark-gluon taggers (cf. Refer-
ences [126–138]), it is in principle possible to distinguish between s-jets and jets from gluons.
The distinction between jets from the lighter quarks (u, d, and s), on the other hand, remains
challenging because they are very similar in their hadronization patterns.

In this thesis, only the separation between s- and d-jets is considered as it is most relevant
in the determination of the CKM matrix element |Vts| and |Vtd| in t → W+s and t → W+d

2This paper was written together with Johannes Erdmann and Olaf Nackenhorst, who supported me as su-
pervisors and editors.
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decays. Additionally, s and d quarks carry the same electric charge of −1
3e, making them in

a way more similar to each other than s and u quarks, the latter carrying an electric charge
of +2

3e. Hence, it is acceptable to only consider s- and d-jets for studies of the maximally
achievable separation.

The section is structured as follows: In Subsection 6.2.1, the MC samples produced for
studies on s-tagging performance independent of the ATLAS Experiment are described. Sub-
section 6.2.2 illustrates properties of s-jets that can be used in the distinction of s- and d-jets
and in Subsection 6.2.3, the studies on the estimates of the maximum performance of s-tagging
are presented.

6.2.1. Jet Samples Without Detector Simulation

The MC samples used for the studies presented in Section 6.2 contain diquark production in
pp collisions at a center-of-mass energy of

√
s = 13 TeV. The ME of the process is simulated

with MadGraph_aMC@NLO version 2.6.7 [139] at LO in αS using the NNPDF2.3LO PDF
set [78]. The parton shower and hadronization is simulated with Pythia8.2.35 [77] and no
detector simulation is applied3.

All particles that are an output of Pythia and have a lifetime τ > 0 are clustered with
the anti-kT algorithm [59] with a jet radius parameter of R = 0.4 using FastJet [141]. To
determine the flavor of the jets, ghost matching [142] is used4: The s and d quark from the
ME generation are included as input to the clustering; if one of these quarks is clustered into a
jet, the jet’s flavor is determined by the corresponding quark, and the quark is removed from
the list of jet constituents.
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Fig. 6.5: Kinematic distributions of s- and d-jets before their reweighting. The lower panel
shows the ratio of the two distributions.

The jets’ four-momenta are calculated as the sum of the four-vectors of their constituents
which have their origin in the primary vertex. After requiring all jets to have a pT > 25 GeV,

3The samples used were generated by Nils Julius Abicht [140].
4Ghost matching is a procedure in which “infinitely soft” (and therefore ghost-like) particles are included as

input to the clustering input. As they do not carry momentum, they do not change the properties of the
resulting jets but can be used to determine e.g. the jets’ flavor or dimensions [142].
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6.2. Considerations on How to Approach s-Tagging

2.2 million s- and d-jets are available in the study. Figure 6.5a shows the pT distribution of s-
and d-jets. It decreases for increasing pT as expected for jets from diquark production. The
difference between the distributions is small. The jet η distribution shown in Figure 6.5b, on the
other hand, shows a significant difference between s-jets and d-jets, with s-jets being produced
more centrally. To remove these kinematic differences, which should not be learned by the
s-tagger, all d-jets are reweighted in their pT and η distributions to match the distributions of
s-jets.

6.2.2. Characteristics of s-Jets

Due to the different flavors of the initial quarks, the primary difference between s-jets and
d-jets is their hadron content. One expects the most energetic (leading) hadron in an s-jet to
contain an s quark and the leading hadron in a d-jet to contain a d quark. Figure 6.6 shows
the ”mass spectrum” of the leading hadrons inside of s- and d-jets. The leading hadron in
s-jets tends to be a kaon, either electrically charged (K±) or electrically neutral (KS or KL).
In a d-jet, the leading hadron tends to be a pion, either electrically charged (π±) or electrically
neutral (π0). In comparison to s-jets, the number of d-jets with a proton p or neutron n as
leading particle is significantly larger as well; however, their overall number is small.
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Considering these differences, four approaches to s-tagging can be formulated:

1. As they belong to the most prevalent leading particles, the identification of π± and K±

can be used to distinguish d- and s-jets, respectively. This approach has been taken at
the SLD and Delphi Experiment [114, 115]. However, it relies on the use of Cherenkov
detectors that are not available or foreseen for multi-purpose collider detectors such as
ATLAS and CMS.
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2. It is possible to reconstruct KS → π+π− decays from tracks measured in a tracking
detector, cf. e.g. the description of such a reconstruction in Section 4.9. Reconstructed
KS can then be used to identify s-jets. However, only approximately 25% of all kaons
produced in jets are KS , and only 69% decay to π+π− [24].

3. KL, however, have a lifetime that is too long (τ ≈ 5·10−8 s) to observe their decays with a
collider detector at typical LHC energies. As neutral hadrons, they deposit most of their
energy in the hadronic calorimeter (HCAL). π0, on the other hand, are more prevalent
in d-jets and decay prominently into two photons, depositing most of their energy in the
electromagnetic calorimeter (ECAL). Figure 6.7 shows the fraction of energy carried by
either photons or electrons for s-jets and d-jets. As expected, it tends to be larger for
d-jets than for s-jets. Thus, it is possible to use the fraction of energy deposited in the
ECAL to distinguish s-jets and d-jets.

Besides the flavor of the leading hadron, a number of different jet properties can be consid-
ered for the distinction of jet types as well. Figure 6.8a e.g. shows distribution of the pT of
the leading constituent particle. For s-jets, the leading particle tends to carry slightly more
momentum than in d-jets, as kaons produced in pp collisions tend to have larger transverse
momenta than pions, cf. the fragmentation functions determined at a center-of-mass energy of
13 TeV in Reference [143].

Differences can also be seen in overall jet properties. Figure 6.8b illustrates the jet width
defined as

width =

∑
i

pi
T ∆R(i, jet)∑

i
pi

T
, (16)

where i runs over all constituent particles and

∆R(i, jet) =
√(

φjet − φi

)2
+

(
ηjet − ηi

)2
(17)

is the distance in the plane spanned by the azimuthal angle φ perpendicular to the beam axis
and the pseudorapidity η. It illustrates that s-jets tend to be narrower than d-jets, offering
another handle to distinguish between s-jets and d-jets.

6.2.3. Estimation of the Maximally Achievable s-Tagging Performance

The performance of any s-tagger will depend on the detector used to record the jets and on
the information available to the classification algorithm. When developing an s-tagger for a
real collision experiment, it is useful to have an estimate of how much separation between s-
and d-jets is in principle achievable. If this estimate is derived as an upper bound, this can
be done without considering effects such as detector resolution or noise contamination, which
would degrade the separation performance. Applying no specific detector simulation (such as
a simulation of the ATLAS detector) to the simulated samples used to derive estimates of the
performance allows for a cross-experimental interpretation.

Nonetheless, the principles of particle detection have to be considered for a general picture
of the achievable performance of s-taggers. Hence, in this section, six s-taggers are trained for
six different types of detectors. The detectors are implemented by imposing detector-specific

32



6.2. Considerations on How to Approach s-Tagging

0.008
0.016
0.024
0.032
0.040
0.048
0.056
0.064
0.072

nu
m

be
r o

f j
et

s (
no

rm
al

ize
d) s = 13 TeV

 anti-kT, R = 0.4
d-jets
s-jets

0 20 40 60 80
leading particle pT [GeV]

0.75
1.00
1.25

d-
je

ts
/

s-
je

ts

(a) Distribution of the pT of the jets’ constituent
particle leading in energy.

1.5

3.0

4.5

6.0

7.5

9.0

10.5

nu
m

be
r o

f j
et

s (
no

rm
al

ize
d) s = 13 TeV

 anti-kT, R = 0.4
d-jets
s-jets

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
jet width

0.5

1.0

1.5

d-
je

ts
/

s-
je

ts

(b) Distribution of the jets’ width.

Fig. 6.8: Distributions characterizing s-jets and d-jets. The lower panel shows the ratio of the
distributions for s-jets and d-jets.

selections on the jet constituents. To emulate e.g. a tracking detector, only charged constituent
particles are used as input to an s-tagger.

In the following, all considered detector scenarios are briefly described. In addition, Table 6.1
shows the selection criteria imposed on the jets’ constituent particles and the variables used
in the training of the s-taggers.

Universal Collider Detector To estimate the maximum upper bound on the performance
of an s-tagger, an ideal detector is considered which is able to detect all types of particles
created in pp collisions with perfect accuracy. This detector (called a perfect universal collider
detector) can identify particles without ambiguity and measure their kinematic properties with
infinite precision. In this detector scenario, no selection is imposed on the jet constituents used
as input to the s-tagger.

All spatial and kinematic particle properties are expressed in a coordinate system given by
(r, φ, η), where r is the radial distance from the collision vertex, φ is the azimuthal angle in
the plane perpendicular to the beam axis, and η is the pseudorapidity. Nine variables are
chosen as particle level input features to fully describe the particles. The particles’ types5 and
kinematics are given by the four-momentum consisting of the energy E, the pseudorapidity η,
the azimuthal angle φ, and the mass m. The trajectories of the particles are fully described
by the point of creation (r0, η0, φ0), the aforementioned four-momentum, and the lifetime τ
as measured in the laboratory system. Lastly, the charge q is used as an input feature as well.

Optimistic Collider Detector When considering a specific type of detector, in the simpli-
fied scenarios, it is necessary to make some assumptions. The typical multi-purpose collider
detector e.g. found at the LHC is approximately cylindrical and consists of a tracking detector

5Given that in the simulation used, the mass of particles does not follow a Breit-Wigner distribution but
is given as one central value, it is possible to identify almost all particles by their mass and charge. An
exceptions to this are neutrinos and neutral hadrons and their antiparticles.
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Name Selection Criteria Input Variables
universal detector τ > 0 E, η, φ, m (4-momentum),

r0, η0, φ0 (origin),
q (charge),
τ (lifetime in lab system)

optimistic collider detector τ > 0, E, η, φ, (4-momentum minus mass),
rf (charged particle) > 10mm, ri, ηi, φi (initial measurement),
rf (neutral particle) > 1m, q (charge)
no ν

tracking detector τ > 0, p, η, φ (4-momentum minus mass),
rf > 10mm, ri, ηi, φi (initial measurement),
q 6= 0 τ (lifetime in lab system),
r0 < 1m q (charge)

Cherenkov detector τ > 0, p, η, φ, m (4-momentum),
rf > 10mm, ri, ηi, φi (initial measurement),
q 6= 0, τ (lifetime in lab system),
r0 < 1m q (charge)

calorimeter without τ > 0, E, η, φ (3-momentum)
ECAL/HCAL separation r0 < 1m,

rf > 1m,
no ν

calorimeter with τ > 0, E, η, φ (3-momentum),
ECAL/HCAL separation r0 < 1m, particle category (γ/e, µ, other)

rf > 1m,
no ν

Tab. 6.1: List of all considered ideal detector scenarios. The second column shows the selec-
tion requirements imposed on the constituent particles used as input to the neural
networks, where τ is the lifetime of the particles, r0 is the radial distance between
the primary vertex and the point where the particle is created, and rf is the radial
distance between the primary vertex and the decay vertex. The third column de-
scribes the variables that are used as input features to the neural network. If the
variable carries a subscript 0, it refers to the space point of creation, and if it carries
a subscript i, it refers to the space point of initial measurement.

immediately surrounding the beam pipe, a calorimeter positioned around the tracking detec-
tor, and a muon system surrounding the calorimeter. This means that charged particles can
only be detected once they reach the tracking detector, neutral particles can only be detected
once they reach the calorimeter, and neutrinos cannot be detected at all as the probability for
them interacting with the detector is negligible. At the LHC, the radius of the innermost in-
strumentation is 8 mm at the LHCb detector [42], 29 mm at the CMS detector [144], 33.25 mm
at the ATLAS detector [46], and 39 mm at the ALICE detector [41]. The calorimeters are
positioned at a radius of 2.56 m for the ATLAS detector [44], 6 m for the CMS detector [43],
and 4.6 m for the ALICE detector [145]. Approximating these scales in a conservative way, in
the following, if a selection emulating a tracking detector is applied, this tracking detector is
assumed to cover a cylindrical volume with a radius of 10 mm < r < 1 m, while calorimeters
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are assumed to be positioned at a distance of r = 1 m from the collision vertex.
In the optimistic collider detector scenario used to train a second s-tagger, the combined use

of tracking detectors and calorimeters as found at multi-purpose collider detectors is emulated
accordingly. This scenario is based on the universal collider detector scenario. However, all
electrically charged particles decaying before they reach r = 10 mm and all electrically neutral
particles decaying before reaching r = 1 m are removed from the list of input particles. For all
remaining particles, instead of the point of creation, the point of initial detection is used as
input feature and the lifetime is removed from the input features as it is typically difficult to
reconstruct. This scenario constitutes an optimistic collider detector as it neglects limitations
given by the detector structure (such as layers in the tracking detector), reconstruction and
identification inefficiencies, and resolution effects.

Tracking Detector Tracking detectors are used to reconstruct the trajectories (tracks) of
charged particles. They detect a signal (hit) when a charged particle passes through one of
its components; these components are geometrically arranged in such a way that it is possible
to reconstruct a three-dimensional trajectory by connecting these hits. If a tracking detector
is embedded in a known magnetic field, it is possible to infer the electric charge and the
momentum of the particle from the curvature of the trajectory.

To emulate the characteristic detection abilities of a tracking detector in a third scenario,
only charged constituent particles are used as input of the s-tagger. All tracks are assumed
to be perfectly measured, i.e. there is neither a limit to spatial resolution, nor noise, nor any
inefficiency in the track reconstruction. The particles’ three momenta (p, η, φ), the points of
initial detection (ri, ηi, φi), the sign of their charge q – which is either +1 or −1 –, and the time
τ it takes the particles to traverse the detector are used as input. In case the particle leaves the
tracking detector before decaying, a large default value is used for τ . As the tracking detector
is assumed to cover 10 mm < r < 1 m, all particles that decay before reaching r = 10 mm or
that are created at r > 1 m are removed from the input.

Because tracks of opposite-sign electrically charged particles can be used to reconstruct KS

and Λ0, in a separate scenario, the use of these reconstructed strange hadron is emulated by
replacing two particles of opposite-sign charge with an origin at the same space-time point by a
neutral particle. The neutral particle’s kinematic properties as well as its mass are determined
by adding the four-vectors of the two charged particles.

Cherenkov Detector If the momentum of a charged particle is measured – e.g. by recon-
structing its curved trajectory in a known magnetic field – Cherenkov detectors can be used to
calculate its mass from the angle of its Cherenkov radiation w.r.t. its axis of momentum. At
both the SLD Experiment at SLAC and Delphi Experiment at LEP, this was used to identify
K± in order to identify s-jets [114, 115]. The use of a Cherenkov detector for particle iden-
tification is limited for large particle momenta and small particle masses as the angles of the
Cherenkov radiation become more similar. However, since in all considered detector scenarios,
resolution effects are neglected, the Cherenkov detector scenario is simply an extension of the
tracking detector scenario in which the particle’s mass is used as an additional input feature.

Calorimeters With and Without Separation Into ECAL and HCAL Components
Calorimeters are used to determine the energy of both electrically neutral and electrically
charged particles except for neutrinos. From a practical point of view, additional detector
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components are necessary for the determination of the energy or momentum of muons because
they tend to be minimally ionizing at energies prevalent in TeV hadron collisions and therefore
do not deposit all of their energy in the calorimeters.

Particles deposit their energy inside calorimeters by producing particle showers. These
showers are grouped into two categories: Electromagnetic showers initialized by a photon or
electron and hadronic showers initialized by hadrons. Most calorimeters are divided into two
successive layers, an ECAL optimized for the detection of electromagnetic showers and an
HCAL optimized to absorb and measure the energy of hadrons. This separation can be used
for s-tagging as π0 are more prevalent in d-jets, decay in approximately 99% of all decays into
two γ, and have a relatively short lifetime of approximately 0.085 fs. Thus, on average, the
energy fraction carried by γ is larger for d-jets than for s-jets, as can be seen in Figure 6.7,
showing the fraction of energy per jet carried by photons and electrons as measured at a radius
of r = 1 m.

Besides the fraction of energy measured in the ECAL, the geometrical distribution of energy
inside the jet cone (substructure) can provide information to discriminate between s- and d-jets.

In order to consider both types of information, two different calorimeter scenarios are con-
sidered. Both can determine the energy and position of all particles (except neutrinos) in the
η–φ plane at a radius of r = 1 m perfectly. The first calorimeter scenario has no separation
between an ECAL and HCAL and therefore can only use the substructure of the jet to dis-
criminate between s- and d-jets. This means that the s-tagger only uses E, η, and φ as input
features. The second calorimeter scenario has a separation into an ECAL and an HCAL. This
separation is implemented by using an additional input variable for the s-tagger which encodes
the type of the particle detected: 1 for electrons and photons, 2 for muons, and 0 for all other
particles, foremost hadrons but also tau leptons.

The performance of both calorimeter scenarios is compared against the separation provided
by the fraction of jet energy that would be deposited in the ECAL, cf. Figure 6.7. This
distribution covers a range of [0.0, 1.0] similar to the output range of the NNs trained as s-
taggers, but on average, d-jets have larger values than s-jets. Hence, to determine a ROC
curve, the distribution of one minus the fraction of energy in the ECAL is used.

6.2.3.1. Implementation

The s-tagging algorithms in this section are implemented using NNs containing LSTM layers
as they are able to build a model based on variable numbers of input particles and to relate
information provided both close to each other and far-apart in the particle input.

The distribution of the number of constituent particles for s- and d-jets as well as their pT

dependency is shown in Figure 6.9. Most jets contain less than 30 constituent particles. Their
number is similar for s- and d-jets and increases slightly for larger jet pT .

For the training, all jet constituents are ordered according to their energy (largest to small-
est). For computational reasons, the number of particles considered in the training has to be
limited. Therefore, if a jet contains more than 50 particles, the additional particles with the
smallest energies are removed. If a jet contains less than 50 particles, a mask is applied to
the input, effectively removing all empty input particles from the training. To check if the
particle ordering has an impact on the performance, an alternative ordering by the radius of
the particles’ origin is considered for the universal detector scenario.

Prior to the training of the NNs, the available simulated jets are divided into a training
sample, a validation sample, and a test sample and all input features are preprocessed as
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Fig. 6.9: Number of constituent particles per jet for s- and d-jets.
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dense layer, 32 nodes

input nodes for
constituent variables

input nodes for jet variables

LSTM layer, 64 nodes

LSTM layer, 32 nodes

Fig. 6.10: Visualization of the chosen neural network architecture. Circles represent input
and output nodes and boxes represent both LSTM and dense layers. The number of
connections between layers represented as lines does not represent the actual number
of connections.
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described in Section 6.1.3. For the training of all NNs, an initial learning rate of 0.001 and a
batch size of 1024 jets is chosen.

Figure 6.10 illustrates the NN structure used for all detector scenarios. It combines both
LSTM and feed-forward dense layers and has two input layers. The first input layer has as
many input nodes as there are input features associated with the jets’ constituent particles.
In the second input layer, the NN is additionally provided with the jets’ pT , η, and φ.

The particle level input layer feeds into a set of LSTM layers. Their output – together with
the input from the second input layer containing the jet level input features – then feeds into
a set of feed-forward dense layers. Their output in turn feeds into a single output node.

The structure was optimized using the input of the universal detector scenario as this sce-
nario is the one with the most complex input. Both the number of layers as well as the number
of nodes in the layers are varied. To keep the variation as simple as possible, each hidden NN
layer contains half as many nodes as the previous layer.
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Fig. 6.11: Comparison of the AUC scores of neural networks trained using the input of the uni-
versal detector scenario and varying the neural network structure. The AUC scores
are determined on the validation sample and the uncertainties are the statistical
uncertainty.

Figure 6.11 compares the AUC scores achieved for the universal detector scenario with
different NN structures. In Figure 6.11a, the number of LSTM layers and the number of nodes
therein are varied, while the structure of the dense layers is not varied. It can be seen that the
classification performance increases when the number of LSTM layers is increased from one
to two, but the performance does not improve by adding a third LSTM layer. The variation
of the number of nodes in the LSTM layers does not have a significant impact. Figure 6.11b
shows a similar variation of the structure of dense layers while retaining the structure of the
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LSTM part of the NN. Both the variation of the number of dense layers as well as their width
has no impact on the separation performance.

Following this, a structure containing two LSTM layers with 64 and 32 nodes and two
feed-forward layers with 64 and 32 nodes, respectively, was chosen.

The structure of the NNs chosen, however, has a capacity that is too large for the classifi-
cation problem at hand, which means that the NNs show signs of overfitting during the initial
training without regularization applied. In Figure 6.12, e.g. an increasing difference between
the AUC score of the training and validation sample during the training can be observed.
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Fig. 6.12: Comparison of the AUC scores of the neural network of the universal detector sce-
nario during the training as evaluated on the training and validation sample. For this
particular plot – due to technicalities in the training – the AUC value is calculated
without considering the weights of the jets.

In a first step, to reduce the overfitting, the training of the NNs is always stopped once
the AUC as evaluated on the validation sample does not increase by more than 0.0001 for 20
consecutive epochs.

Furthermore, to reduce the capacity of the NNs, L2 regularization is applied in each layer.
For all layers, the regularization strength parameter λL2 is set to the same value which is
optimized for each detector scenario. The aim of this optimization is to reduce the difference
between the output for the training and the test sample without reducing the AUC score
as evaluated on the validation sample. Figure 6.12 illustrates this for the universal detector
scenario: When applying a regularization strength of λL2 = 4 · 10−5, the increasing difference
between the AUC score for the training and the validation sample during the training is
significantly reduced. Increasing the regularization strength further to λL2 = 5 ·10−5, however,
decreases the AUC value for both the training and the validation sample. Therefore, the
regularization strength λL2 = 4 · 10−5 is used.

The regularization strength used for each scenario is given in Table 6.2.
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Scenario Regularization Strength
universal collider detector 4 · 10−5

typical collider detector 3 · 10−5

tracking detector 3 · 10−5

tracking detector + KS reconstruction 5 · 10−5

Cherenkov detector 8 · 10−5

calorimeter with separation 1 · 10−5

calorimeter without separation 8 · 10−6

Tab. 6.2: Detector scenarios and the strength of the L2 regularization applied to each layer.

6.2.3.2. Results

The following discussion of performances of the s-taggers trained for all different detector
scenarios is divided into three parts: First, the universal collider detector and the optimistic
collider detector are compared. Second, the tracking detector and the Cherenkov detector
scenario are discussed. And third, the calorimeter scenarios are presented.
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Fig. 6.13: Neural network output distributions for s- and d-jets in the training sample and the
independent test sample (top panel) as well as their ratio (bottom panel).

Universal and Optimistic Collider Detector Figure 6.13a shows the output distribution
of the NN in the universal collider detector scenario. The NN is able to separate s-jets and
d-jets well: most s-jets receive a score closer to 1 and most d-jets receive a score closer to 0. To
quantify overfitting, the output distributions of the training and test sample are compared for
both jet flavors. For both s-jets and d-jets, the χ2 per degrees of freedom (DOF) are calculated
according to

χ2 =
∑

i

(ti − Ti)
2

Ti
, (18)

where ti is the number of jets of the test sample in bin i and Ti is the number of jets of the
training sample in bin i. The DOF are the number of bins of the output distributions shown.
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While the values of χ2/DOF = 3.5 for s-jets and χ2/DOF = 6.0 for d-jets do not imply good
agreement between both samples, the ratios of the output distribution for the training sample
and the test sample do not show a trend, which means that after applying L2 regularization,
no strong overfitting can be observed.

Figure 6.13b shows the output distribution of the NN trained with the input of the opti-
mistic collider detector scenario. In this scenario, the separation between s-jets and d-jets is
significantly reduced compared to the universal detector scenario as both jet flavors have an
average output score that lies much closer to 0.5. The χ2/DOF values of 7.2 for s- and 7.5 for
d-jets are slightly larger than for the universal detector scenario and in the ratio between the
training and the test sample, slightly larger deviations are visible for both jet flavors. However,
these deviations mainly occur in those bins containing fewer jets.
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Fig. 6.14: Modified ROC curves illustrating the classification power of neural networks of the
universal detector scenario and the optimistic detector scenario. The efficiencies
are determined on the test sample and the uncertainties of the AUC scores are the
statistical uncertainties. The ratio beneath the ROC curves shows the efficiency for
d-jets in the optimistic collider detector scenario divided by the efficiency of d-jets
in the universal detector scenario.

Figure 6.14 shows the modified ROC curves for the universal collider detector scenario as well
as the optimistic collider detector scenario. The AUC score for the universal detector scenario
is 0.940 ± 0.001, which means that if the type and kinematic properties of all constituent
particles in a jet were detectable, very good separation between s- and d-jets could be achieved.
However, in the optimistic collider detector that is an optimistic version of a typical multi-
purpose detector, the separation is significantly reduced. It has an AUC score of 0.643±0.001,
which can be interpreted as a high upper limit on the achievable performance of an s-tagger
at collider detectors such as ATLAS and CMS.

Figure 6.15a illustrates the pT dependency of the separation in the universal detector sce-
nario. The separation increases up to a pT of 80 GeV as more particles move into the jet cone
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(a) Universal detector scenario.
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(b) Optimistic detector scenario.

Fig. 6.15: pT dependencies of the AUC scores as well as the s-jet efficiencies and d-jet mis-tag
rates requiring a classification value greater than 0.5.

because the initial quark becomes more boosted. For larger jet pT , the separation decreases
as the number of particles increases. Figure 6.15b shows the pT dependency of the output
of the optimistic detector scenario. In this scenario, the achievable separation decreases for
increasing jet pT as the number of particles in the jets increases.
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(b) Cherenkov detector scenario.

Fig. 6.16: Neural network output distributions for s- and d-jets in the training sample and the
independent test sample (top panel) as well as their ratio (bottom panel).

Tracking and Cherenkov Detectors Figure 6.16a shows the output distribution of the
NN trained with the input of the tracking scenario. The ratio between the training and test
sample of the output distributions of s- and d-jets shows no significant trends, indicating
little overfitting after applying the optimized L2 regularization. The output distributions for
both s- and d-jets are narrow, have large overlap, and both peak around 0.5, which means
that the separation is relatively small and significantly reduced w.r.t. what is e.g. seen in
the optimistic detector scenario. In contrast, the NN output distributions of the Cherenkov
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detector scenario shown in Figure 6.16b cover the entire range of NN output scores and show
better separation than what is seen in the optimistic detector scenario. There is a small peak at
values of approximately 0.5, which indicates that there are some jets that cannot be classified
in this scenario. These jets are found to contain only low momentum (pT < 5 GeV) particles,
suggesting that in these jets, the leading particle was either not electrically charged or not
clustered into the jet.

Figure 6.17 shows the modified ROC curves of both scenarios as well as their AUC values. For
the Cherenkov detector scenario, an AUC score of 0.783± 0.001 is reached, while the tracking
detector has an AUC score of 0.574 ± 0.001. The plot additionally shows a scenario in which
neutral particles decaying to two particles with opposite electrical charge are reconstructed
before handing them to the neural network. This scenario has an AUC score of 0.572± 0.001,
which means that the performances of this and the tracking detector scenario agree within
the statistical uncertainty. Therefore, it can be concluded that the NN is able to reconstruct
decays such as KS → π+π− without the use of an external reconstruction algorithm.
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Fig. 6.17: Modified ROC curves illustrating the classification power of the neural networks of
the tracking detector, the tracking detector with preceding KS reconstruction, and
the Cherenkov tracking detector. The efficiencies are determined on the test sample
and the uncertainties of the AUC scores are the statistical uncertainties. The ratio
beneath the ROC curves shows the efficiencies for d-jets for all illustrated scenarios
divided by the efficiency for d-jets in the Cherenkov detector scenario.

Figure 6.18 illustrates the jet pT dependency of the classification in the tracking detector
scenario. The AUC score decreases continuously for increasing jet pT as the number of particles
in the jet increases. This behavior is expected to be amplified in a real detector as the pT

resolution of tracks worsens for larger pT . A similar decrease in the classification power can
also be assumed for the Cherenkov detector scenario as the quality of the particle identification
decreases for increasing particle momenta.

The performance of the tracking detector scenario can be compared to the performance
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Fig. 6.18: pT dependency of the AUC score as well as the s-jet efficiency and d-jet mis-tag rate
requiring a classification value greater than 0.5 for the tracking detector scenario.

reached in Reference [30] in which a NN based on LSTMs is trained to separate s- and d-
jets using tracks as input. For this, a simplified detector simulation using Delphes [146] and
realistic pile-up conditions is used. A comparison of the d-jet rejection rates for fixed s-jet
efficiencies is shown in Table 6.3. For this more realistic tracking detector scenario, for an
s-jet selection efficiency of 30%, the rejection rate decreases by roughly 8% compared to the
perfect tracking detector scenario, while for an s-jet selection efficiency of 70%, the rejection
rate decreases by 2.5%. This suggests that the largest limitation to s-tagging based on tracks
is the lack of information about the particles’ type; detector effects such as reconstruction
efficiencies, on the other hand, play a smaller role.

s-Jet Efficiency d-Jet Rejection
tracking detector scenario 30% 4.9

70% 1.6
Reference [30] 30% 4.5

70% 1.56

Tab. 6.3: Comparison of s-jet efficiencies and d-jet rejection rates of neural networks trained
in the ideal tracking detector scenario and using a more realistic tracking detector
simulation, cf. Reference [30].

Calorimeters Figure 6.19 shows the output distribution of the NN trained in the calorimeter
scenario that includes a separation into ECAL and HCAL. No strong overfitting is observed
since there is no trend visible in the ratio of the output distributions of the training and the test
sample. The output distributions for both s- and d-jets have large overlap and peak around
0.5 but have a larger width than the output distributions of the tracking detector scenario.

Figure 6.20 illustrates the jet pT dependency of the classification in the calorimeter scenario
that includes a separation into ECAL and HCAL. The AUC score decreases only slightly for
increasing jet pT , suggesting that the use of a calorimeter with a separation into ECAL and
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Fig. 6.19: Neural network output distribu-
tions of the calorimeter scenario
with a separation into ECAL and
HCAL for s- and d-jets in the train-
ing sample and the independent
test sample (top panel) as well as
their ratio (bottom panel).
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Fig. 6.20: pT dependency of the AUC score as
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jet mis-tag rate requiring a classifi-
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Fig. 6.21: Modified ROC curves illustrating the classification power of neural networks in the
calorimeter scenarios without and with a separation into ECAL and HCAL com-
ponents, and for the distribution of the fraction of energy deposited in the ECAL.
The efficiencies are determined on the test sample and the uncertainties of the AUC
scores are the statistical uncertainties. The ratio beneath the ROC curves shows the
efficiencies for d-jets for all illustrated scenarios divided by the efficiency for d-jets
in the calorimeter scenario with a separation into ECAL and HCAL components.
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HCAL for the classification of s- and d-jets can be especially beneficial for larger jet pT .
In Figure 6.21, the modified ROC curves of both calorimeter scenarios - a calorimeter without

separation into ECAL and HCAL and a calorimeter with such a separation - as well as a ROC
curve based on the fraction of the jet energy carried by electrons and photons are shown.

The separation power given by the jets’ substructure corresponds to the separation power of
the calorimeter scenario without a separation into ECAL and HCAL. Its NN has an AUC score
of 0.559 ± 0.001. By adding the separation into ECAL and HCAL, the AUC score increases
slightly to 0.602±0.001. The AUC of the ROC curve given by the fraction of energy carried by
electrons and photons is 0.582±0.001. This shows that the jets’ substructure – as is resolvable
by a high-resolution calorimeter – has a separation power smaller than the separation given
by the fraction of energy deposited in the ECAL.

6.2.4. Subsummary

In this section, it was found that the main difference between s- and d-jets is given by the
flavor of their constituent particles. If there were detectors that could identify the particle type
of both charged and uncharged particles and additionally determine their kinematic properties
perfectly, it would be possible to distinguish both jet flavors well. An AUC score of 0.940 can
be used as an estimate for the absolute upper bound on the achievable separation between s-
and d-jets.

Considering several detector scenarios, it was found that the most promising approach to
s-tagging is the use of Cherenkov detectors to identify K±. With Cherenkov detectors, the
maximally achievable separation was estimated to have an AUC score of 0.783.

At multi-purpose detectors as they are currently used at the LHC, an s-tagger will have
an AUC score smaller than 0.643. For such detectors, the information from the tracking
detectors and calorimeters – especially the fraction of energy deposited in the ECAL – should
be considered when constructing an s-tagger as they both can contribute to the classification
of s- and d-jets.

6.3. An s-Tagging Algorithm for the ATLAS Experiment
In this section, an s-tagger for the use at the ATLAS Experiment is developed. The NN
structure chosen for the s-tagger is a DNN because they are suited to learn complex correlations
and small differences between the input variables. The use of RNNs is not necessary because
the input variables used are not jet constituents but jet attributes.

The NNs are trained on two different sets of input variables.
The first set of variables are related to reconstructed KS and Λ0 that are matched to jets.

These strange hadrons are the most abundant strange hadrons in pp collisions that can be
reconstructed with the ATLAS detector. The training of a NN with input features purely
based on KS and Λ0 matched to jets is described in Section 6.3.2.1. Since not all s quarks
hadronize into either of these two strange hadrons and they do not exclusively decay into
charged hadrons, and since furthermore, the efficiency of their reconstruction is not very large,
the efficiency of an algorithm purely based on reconstructed strange hadrons matched to jets
is expected to be rather small.

The second set of input variables consists of jet attributes characterizing small differences in
the shower shape of jets inside the calorimeter as well as properties related to tracks associated
with the jets. Since these differences are empiric, they are able to cover a wide range of
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6.3. An s-Tagging Algorithm for the ATLAS Experiment

hadronization scenarios. An additional advantage is the availability of these variables for
every reconstructed jet and not only those that have a reconstructed strange hadron matched
to them. A NN with these input variables is optimized in Section 6.3.2.2.

In a third NN optimization presented in Section 6.3.2.3, both sets of of input variables are
combined to train an s-tagger that will be used in the measurement of |Vts| and |Vtd|.

6.3.1. Training Samples

For the training of the NNs, jets from MC simulations of semileptonically decaying tt as
described in Section 5.2.1 are used. If the hadronically decaying W boson decays into an s quark
(and an additional c quark) and this s quark is found inside of the jet cone (∆R(s, jet) < 0.4),
this jet is used as a signal jet. Similarly, if the W boson decays into a d quark (and an
additional u quark) and this d quark is found inside of the jet cone (∆R(d, jet) < 0.4), this jet
is used as a background jet. The training sample consists of 12 million s-jets and 12 million
d-jets.

For the small differences in the spectrum of the pT of these jets, which can be seen in
Figure 6.22a, all d-jets are reweighted so that their distribution in pT matches the distribution
of s-jets. The jets are nor reweighted in their η distribution, which is shown in Figure 6.22b
and shows only small differences between s-jets and d-jets. Both of these variables plus the
azimuthal angle φ of the jets are always used as inputs to the NNs.
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Fig. 6.22: Distributions of kinematic properties of s- and d-jets.

The discrimination strength of all input variables is evaluated by calculating the separation
power in normalized histograms according to

S =

√√√√1

4

Nbins∑
i

(si − bi)
2

si + bi
, (19)

where si is the fraction of s-jets (signal) in bin i and bi is the fraction of d-jets (background)
in bin i [147].
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The first set of input variables is based on KS and Λ0 reconstructed as described in Sec-
tion 4.9. These hadrons are matched to jets via the requirement ∆R(KS or Λ0, jet) ≤ 0.4. In
case two strange hadrons are matched to the same jet and the hadron whose reconstructed
mass is closest to the theoretical mass of the strange hadron is chosen.

1 million s-jets and 0.9 million d-jets in the training sample have a reconstructed KS matched
to them, while 316 000 s-jets and 364 000 d-jets have a Λ0 matched to them. Approximately
0.04% of the s-jets and 0.05% of d-jets contain both a KS and a Λ0. Requiring at least one
KS or Λ0 matched to a jet has an efficiency of 11.1 % for s-jets and 10.2 % for d-jets.

A list of all 12 input variables based on reconstructed KS and Λ0 can be found in Table 6.4.
Plots of all input variables are presented and discussed in Appendix A.

Separation Power [%]
Input Variable For Jets Containing KS For Jets Containing Λ0

pT(KS or Λ0)/pT(jet) 10.79 ± 0.04 4.07 ± 0.05

pT(KS or Λ0) 8.88 ± 0.04 1.69 ± 0.07

∆R(KS or Λ0, jet) 5.88 ± 0.04 3.25 ± 0.07

jet contains Λ0 4.57 ± 0.04

Rxy(KS or Λ0) 4.41 ± 0.04 2.92 ± 0.07
jet contains KS 4.43 ± 0.04

τ(KS or Λ0) 3.58 ± 0.04 2.87 ± 0.07

prel
T (KS or Λ0) 3.14 ± 0.04 4.83 ± 0.06

pT(jet) 2.77 ± 0.04 1.44 ± 0.07

χ2(KS or Λ0) 2.58 ± 0.04 0.96 ± 0.07
η(jet) 2.36 ± 0.04 3.20 ± 0.07

m(KS or Λ0) 2.11 ± 0.04 4.22 ± 0.07

Tab. 6.4: A list of all input variables that describe KS and Λ0 matched to a jet. The sec-
ond column shows the separation power and its statistical uncertainty if the hadron
matched to the jet is a KS , while the third column shows the separation power and
its statistical uncertainty if the matched hadron is a Λ0. They are calculated using
the training, validation, and test sample.

The most discriminating variable for jets with a KS matched to them is the pT of the KS

divided by the pT of the jet. Its distribution is shown in Figure 6.23a and is on average larger
for KS matched to s-jets than KS matched to d-jets.

For jets with a Λ0 matched to them, the most discriminating variable is the momentum of
the Λ0 relative to the jet axis, prel

T , shown in Figure 6.23b. It is larger for jets from an s quark
because a Λ0 baryon contains a u and d quark in addition to an s quark. These u and d quarks
can be both valence and sea quarks of the colliding protons. As valence quarks tend to carry
larger momentum, they can contribute more to the momentum of the Λ0 w.r.t. the jet axis
than sea quarks. If the jet originates from a d quark that then hadronizes into a Λ0, while the
additional u quark can still be a valance or sea quark of the protons, the additional s quarks
has to be a sea quark which tends to carry less momentum and hence contributes less to the
momentum of the Λ0.

The second set of input variables are more general jet attributes. They can be divided
into three categories: the fraction of energy the jet deposits in each calorimeter layer, the
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Fig. 6.23: Distributions of dependencies between the momenta of reconstructed strange
hadrons and jets for s- and d-jets.
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Fig. 6.24: Distributions of jet attributes of s-jets and d-jets.

geometrical moments of the jets’ constituent clusters, and characteristics derived from tracks
associated with the jets. A list of all 32 variables and their separation powers can be found in
Table 6.5. Plots and descriptions of all jet attributes used as input variables can be found in
Appendix B.

The most discriminating subset of variables are the sampling fractions, i.e. the energy frac-
tions deposited in one (or several) calorimeter layer(s). The variable with the largest overall
separation power is the sampling fraction of the EM calorimeter shown in Figure 6.24a. It
is larger for d-jets than for s-jets because d-jets contain more π0 decaying into γγ than s-
jets which contain more KL. Since the sampling fractions overall have the largest separation
powers, all sampling fractions are included as input variables in the training.

The second subset of variables are topological cluster moments, which are described in
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Type Variable Separation Power
sampling fractions (in) EM calorimeter 9.22 ± 0.01

PreSamplerB 3.82 ± 0.01
EMB1 6.65 ± 0.01
EMB2 5.10 ± 0.01
EMB3 3.01 ± 0.01

PreSamplerE 0.88 ± 0.01
EME1 2.92 ± 0.01
EME2 2.71 ± 0.01
EME3 1.42 ± 0.01
HEC0 1.98 ± 0.01
HEC1 2.14 ± 0.01
HEC2 1.16 ± 0.01
HEC3 0.97 ± 0.01

TileBar0 4.70 ± 0.01
TileBar1 4.17 ± 0.01
TileBar2 2.05 ± 0.01
TileGap1 1.32 ± 0.01
TileGap2 0.39 ± 0.01
TileGap3 0.96 ± 0.01
TileExt0 2.22 ± 0.01
TileExt1 2.31 ± 0.01
TileExt2 1.39 ± 0.01

maximal sampling fraction 4.46 ± 0.01

shower shape λleading cluster 7.65 ± 0.01

〈r2〉 6.16 ± 0.01

〈λ2〉 5.65 ± 0.01
centroid R 5.61 ± 0.01

track related ghost-matched tracks pT 2.78 ± 0.01
number of ghost-matched tracks 2.78 ± 0.01

charge 1.31 ± 0.01

jet kinematics η 0.22 ± 0.01
pT 0.00 ± 0.01

Tab. 6.5: Jet attributes used as input variables to the NNs. The first column groups the vari-
ables listed in the second column into categories. The third column names their
separation power and its statistical uncertainty as calculated on all jets in the train-
ing, validation, and test sample.

Reference [148]. Figure 6.25 helps to illustrate their construction. It shows a jet’s principle
axis ~s, the vector ~c to the jet’s geometrical center, and the vector ~xi to any cluster i in the
jet, as well as how the longitudinal distance λi and the lateral distance ri between any cluster
i and the jet center is defined. The jet moments used as input variables are the longitudinal
distance between the cluster with the largest energy (leading cluster) and the jet’s geometrical
center, λleading cluster, shown in Figure 6.24b, the variance of the energy distribution in the
lateral dimension r of the jet, 〈r2〉, the variance of the energy distribution in the longitudinal
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dimension, λ, 〈λ2〉, and the radial distance R between the primary vertex and the jet’s centroid
(i.e. the barycenter weighted in E), called centroid R. All of these quantities are larger
for s- than for d-jets since s-jets tend to deposit their energy further down the calorimeter
(more energy in the hadronic calorimeter in comparison to d-jets) and therefore have a larger
extension.

x

z

y

~c

~s

~xi

λi

ri

Fig. 6.25: Graphical representation of the jet geometry considered in the calculation of topo-
logical cluster moments. ~c is the vector to the geometrical center of the jet, ~s is
the jet’s principal axis, and ~xi is the vector to a cluster i within the jet. λi is the
longitudinal distance between the cluster i and the jet center, and ri is the radial
distance between the cluster and the jet axis. The image is based on the descriptions
in Reference [148].

The final subset of input variables are related to reconstructed tracks which are associated
with the jet via ghost-matching [142]: These variables are the total number of tracks associated
to the jet, the pT carried by these tracks, and their pT-weighted charge defined as

Q =

∑
i∈tracks

qi · pTi∑
i∈tracks

pTi

. (20)

The absolute value of all of these variables is slightly larger for d-jets, but their separation
power is relatively small.
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6.3.2. Optimization of the Neural Networks Used for s-Tagging

6.3.2.1. An s-Tagging Algorithm Based on Reconstructed KS and Λ0

This section covers the training and optimization of the NN based on reconstructed KS and
Λ0 matched to jets. To reduce the computational resources necessary for the training, all jets
which do not have such a strange hadron matched to them are removed from the input samples
instead of using default values for the input features if no strange hadrons are matched to the
jets.

For the sake of simplicity, during the hyperparameter optimization, only the width of the
NN and its depth are varied. The other hyperparameters remain constant: The batch size is
set to 1024 events, the initial learning rate is αinitial = 10−4, and the exponential decay rates
are set to β1 = 0.9 and β2 = 0.999. The metric evaluated during the training is the AUC
score. The training is stopped once the AUC score calculated on the validation sample does
not improve over 30 epochs. The final NN weights are set to those of the epoch with the best
AUC score as evaluated on the validation sample.

For the optimization, the following NN structures are considered: The input layer always
contains 12 input nodes corresponding to the input variables, while the width w of the NN
(i.e. the number of nodes in the first hidden layer) is either 128, 256, 512, 1024, or 2048, and
the depth d (i.e. the number of hidden layers) is varied between two, three, and four.

The aim of the first step of the optimization is to find a NN configuration which has a
capacity that is large enough to make use of all information available in the input variables
and their correlations for the best possible discrimination. The majority of the configurations
that have such a capacity are actually too large and will show signs of overfitting during the
training and evaluation. This overfitting can e.g. be observed as an increase of the loss or a
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decrease of the AUC score of the validation sample during the training.
Figure 6.26 shows the AUC score during the training of the NN configurations with three

hidden layers for the training and the validation sample. The AUC score of the validation
sample per epoch looks very similar for all NNs but starts to decrease slightly throughout
the training, especially for those NNs with a larger width. The AUC score calculated on the
training sample, on the other hand, increases more quickly during the training for an increasing
width of the NNs. Both the increasing difference between the AUC scores of the training
and validation sample and that the AUC score of the validation sample is not increasing
significantly are signs of overfitting during the training, which means that all of the considered
NN structures have a sufficient capacity.

A summary plot comparing the maximal AUC score during the training calculated using
the NN output distribution of the validation sample for each NN configuration is shown in
Figure 6.27. This comparison of AUC scores shows that there are only small differences in
the performance of the different NN structures; all fluctuations are covered by the statistical
uncertainties. For the following studies, the NN with the largest AUC as calculated on the
validation sample is chosen. It has two hidden layers and 512 nodes in the first hidden layer.

λL2 Accuracy AUC Score
5 · 10−6 0.550 ± 0.002 0.5771 ± 0.0006

1 · 10−5 0.551 ± 0.002 0.5773 ± 0.0006

5 · 10−5 0.550 ± 0.002 0.5772 ± 0.0006

1 · 10−4 0.551 ± 0.002 0.5770 ± 0.0006

Tab. 6.6: Accuracy and AUC score of the validation sample for the neural network based on
KS and Λ0 when varying λL2 applied in the L2 regularization. The neural network
has two hidden layers and 512 nodes in the first hidden layer. The uncertainties are
the statistical uncertainties.

Because the best chosen NN model shows signs of overfitting, it is regularized using L2
regularization to find the optimal effective capacity for this classification problem. This is
done by adding L2 regularization to every hidden layer of the NN as described in Section 6.1.4.
Table 6.6 shows the considered regularization strength values λL2 and their impact on the
accuracy and the AUC score of the NN. Following this table, λL2 = 1 · 10−5 is chosen for
the regularization of the NN as it is the largest of the considered regularization strengths that
does not degrade the performance of the NN.

To evaluate the impact of the remaining overfitting, the NN output distributions for s- and
d-jets are compared for the training and the independent test sample in Figure 6.28. Differences
in the output of the two samples are only visible in the ratio between the two samples and lie
within 1% except in those bins containing small numbers of jets. The NN output distribution
has a large peak around 0.5, which means that there are a significant number of jets which
cannot be distinguished based on strange hadrons, even if they are reconstructed and matched
to the jets.

The variable with the highest correlation to the NN output is the transverse momentum
fraction of the reconstructed strange hadrons, pT(KS or Λ0)/pT(jet). It has a correlation
coefficient of 0.8 for s-jets and 0.6 for d-jets as it has the largest separation power for jets with
a KS matched to them. Figure 6.29 compares the modified ROC curves of the NN output
and pT(KS or Λ0)/pT(jet). It shows that the use of the NN yields an improvement in the
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Fig. 6.28: Output distribution of the neural network based on KS and Λ0 with two hidden
layers, a width of 512 nodes in the first hidden layer, and with regularization. The
comparison shows the output for s- and d-jets for the training and test sample (top
panel) and their ratio for both jet flavors (bottom panel).
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Fig. 6.29: Modified ROC curve of the neural network based on KS and Λ0 with two hidden
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by the strange hadron. All modified ROC curves are based on the test sample of jets
with a matched reconstructed strange hadron and the uncertainties on the AUCs
are the statistical uncertainties.
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classification across all s-jet efficiencies and the AUC increases by 59% compared to the use
of pT(KS or Λ0)/pT(jet). Figure 6.29 also shows that the regularization does not degrade the
NN performance but instead slightly improves the AUC score as evaluated on the test sample.

6.3.2.2. An s-Tagging Algorithm Based on Jet Attributes

In the following, a second NN based on jet attributes is optimized. For this s-tagger setup,
NN depths d of two, three, and four hidden layers are compared, additionally varying the
widths w to 128, 256, 512, and 1024 nodes respectively. In the first step of the optimization,
no regularization is applied. The batch size is again set to 1024 events, the initial learning rate
is αinitial = 10−4, and the exponential decay rates are set to β1 = 0.9 and β2 = 0.999.
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Figure 6.31 shows the maximal AUC score achieved during the training as evaluated on the
validation sample. Similarly to what is seen in Figure 6.26, the differences between different
NN configurations appear to be statistical fluctuations. However, the fluctuations increase for
larger NN depths. The NN with a depth of four hidden layers and a width of 1024 nodes in
the first hidden layer e.g. has a relatively low AUC score. Taking a look at Figure 6.30 which
shows the AUC scores of several NNs configurations with four hidden layers, it becomes visible
that for this particularly large NN configuration, the AUC scores of the training and validation
sample start to diverge very early in training. This means that the NN starts to learn features
that cannot be generalized.

In the following, the configuration with the best AUC score evaluated on the validation
sample is used. This NN had a depth of four hidden layers and a width of 512 nodes in the
first hidden layer. To reduce the effective capacity of this NN configuration, L2 regularization
is applied in all hidden layers. A regularization strength of λL2 = 5 · 10−6 was found to be
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Fig. 6.32: Output distribution of the neural network based on jet attributes with four hidden
layers, a width of 512 nodes in the first hidden layer, and with regularization. The
comparison shows the output for s- and d-jets for the training and test sample (top
panel) and their ratio for both jet flavors (bottom panel).
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Fig. 6.33: Modified ROC curve of the neural network based jet attributes with four hidden
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regularization, and the modified ROC curves of the optimized NN based on recon-
structed KS and Λ0 is shown. All modified ROC curves are based on the full test
sample and the uncertainties on the AUCs are the statistical uncertainties.
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optimal, maximizing the AUC score as evaluated on the validation sample.
Figure 6.32 shows the output distributions of the optimized NN for s- and d-jets and for

the training and the independent test sample. Except in bins with small numbers of jets, the
distributions of the training and the test sample agree well and no trend can be observed in
the ratio of the distributions of both samples. Compared to the NN based on KS and Λ0, the
NN distribution is significantly broader, which means that there are fewer jets that look very
similar based on their input variables. However, the output distributions of s- and d-jets have
a large overlap, i.e. it is not possible to clearly distinguish these jets. The ROC curves shown in
Figure 6.33 illustrate the difference between the use of the two different sets of input variables,
the one based on strange hadrons and the one based on jet attributes. This figure accounts
for the loss of efficiency due to the requirement of matched KS and Λ0, which significantly
reduces the discrimination power of the NN based on strange hadrons. Figure 6.33 also shows
that the used regularization does not degrade the performance of the NN.

6.3.2.3. s-Tagging Algorithm Combining Inputs

For an even better classification performance, the input variables based on reconstructed KS

and Λ0 and based on jet attributes are combined.
The setup for the optimization of the hyperparameters of the NN is identical to the opti-

mization of the NN based on the jet attributes.
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Fig. 6.34: Comparison of the maximal AUCs of the validation sample for neural networks based
on jet attributes and reconstructed strange hadrons with different numbers of nodes
in the first hidden layer (widths) and different numbers of hidden layers d. The
uncertainties are the statistical uncertainties.

Figure 6.34a shows the maximal AUC scores of all NN structures for the validation sample
during the training without the use of any regularization. It can be observed that the AUC
score decreases for larger capacities of the NN. This is similar to what is observed for the
NN with a width of 1024 nodes and four hidden layers trained with the input of jet attributes
only and can be interpreted as overfitting. Because the overfitting has such a large impact
on the NN output distribution of the validation sample, it is difficult to estimate which NN
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Fig. 6.35: Output distribution of the neural network based on jet attributes and reconstructed
strange hadrons with four hidden layers, a width of 1024 nodes in the first hidden
layer, and with regularization. The comparison shows the output for s- and d-jets for
the training and test sample (top panel) and their ratio for both jet flavors (bottom
panel).
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Fig. 6.36: Modified ROC curves of the neural network based on jet attributes and reconstructed
strange hadrons with four hidden layers, a width of 1024 nodes in the first hidden
layer, and with regularization, the modified ROC curves of the optimized NN based
on jet attributes only, and the modified ROC curves of the optimized NN based on
reconstructed KS and Λ0 is shown. All modified ROC curves are based on the full
test sample and the uncertainties on the AUCs are the statistical uncertainties.
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has a capacity that is large enough for the classification of s- and d-jets. Thus, to find the
optimal effective capacity, L2 regularization with different strengths λL2 is applied to NNs of
all structures. As can be seen in Figure 6.34b, this leads to increased AUC scores for those NNs
that have small scores without regularization and similar scores for those of the NNs which
achieved better performance without regularization. Overall, the best AUC scores of every
NN structure achieved when applying L2 regularization (in most cases, the best regularization
strength lies between λL2 = 5 · 10−6 and 1 · 10−5) agree within their statistical uncertainties.
The network configuration chosen for further studies has four hidden layers, 1024 nodes in the
first hidden layer, and L2 regularization with a strength of λL2 = 1 · 10−5 applied in every
layer.

Figure 6.35 shows the output distribution of the final NN used for s-tagging both evaluated
on the training sample and an independent test sample. No significant trend in the ratio
of both distributions can be observed, neither for s- nor for d-jets, which means that no
significant amounts of overfitting remain after the regularization is applied. Overall, the output
distribution looks very similar to what is shown in Figure 6.32, which means that the additional
information provided by the reconstructed strange hadrons does not yield large additional
separation power.

Figure 6.36 shows the modified ROC curves of the optimized NNs based on all three sets
of input variables. It illustrates that adding information about reconstructed strange hadrons
improves the classification power of the NN based on jet attributes across all efficiencies. How-
ever, this improvement is very small, mostly because the overall classification power provided
by reconstructed strange hadrons itself is small due to the limited number of reconstructed
KS and Λ0 matched to jets.
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Chapter 7
Efficiency Measurement and Calibration of
the s-Tagger

When a flavor tagging algorithm – such as the s-tagger described in the previous chapter – is
trained on simulated events, there is always some uncertainty on how its discrimination power
transfers to data. Due to limited precision in the simulation, there are differences between data
and simulation both in the distributions of the input variables and their correlations. While the
modeling of both can be checked in control regions, it is not obvious whether some differences
between simulation and data will add up in the NN used for the tagger, while others might
balance each other out. It is therefore necessary to quantify the difference between tagger
responses of data and simulation and adjust the simulation to provide a better description
of data. This is done by first determining the signal jet efficiency and the mis-tag rates for
background jets both in simulation and data. Following this step, scale factors (SFs) that
map the efficiency of simulated events to the efficiency measured in data are derived. The
uncertainties of these SFs can then be propagated to any analysis, quantifying the uncertainty
associated with its use of the tagger.

This chapter will give an overview of how the efficiency and mis-tag rates for the afore-
mentioned s-tagger are determined and how the SFs for MC simulations used at the ATLAS
Experiment are derived. In Section 7.1, different options to define the flavor of a jet are dis-
cussed. Section 7.2 illustrates the event selections used to select semileptonic tt decays and to
enrich five different jet samples with different flavors. In Section 7.3, the data-driven estimate
used to predict the background contribution of events containing fake leptons is shown. Sec-
tion 7.4 summarizes the method used for the calibration of the s-tagger. Finally, in Section 7.5,
the determined efficiencies and mis-tag rates of the s-tagger together with the resulting SFs
are presented.

7.1. Flavor Definition

One conceptual challenge of the calibration of an s-tagger is the definition of the jets’ true
flavor. Ideally, such a flavor label corresponds to the flavor of the one parton the jet results
from. However, because of confinement, jets are never the result of only one parton hadronizing;
this idea can only in some cases be a good approximation if an initial parton has a relatively
large energy contribution to the jet [149]. Therefore, the flavor label of a jet is always an
approximation and has to be chosen in the context of its use. While there have been ideas on
how to solve this issue, cf. References [149, 150], the flavor labels proposed in these references
need to be determined during the clustering of the jets, which is done early in the analysis
chains used at the ATLAS Experiment and not easily changed. Therefore, the considerations
on flavor labels presented here are limited to the information available after the jet clustering.

One option is the use of parton labels to determine the jet’s flavor. For this, partons from
the ME generation step of the MC simulations (stored in a tree-like truth record) are ghost-
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Fig. 7.1: Distributions of kinematic properties of the leading strange hadron matched to a jet
requiring ∆R(jet, hadrons) < 0.3 and pT(hadron) > 5 GeV. The shower generator
used is Pythia. The plots distinguish between jets which have a strange quark, a light
quark (up or down), or a gluon ghost-matched to them. The error bars indicate the
statistical uncertainty of the sample used.

matched [142] to the jet and the jet flavor is defined as the flavor of the parton with the
highest energy matched to the jet. This flavor definition has the advantage of being able to
distinguish between all quark flavors and gluons, which is beneficial if the tagger is sensitive to
gluon-initiated jets1. However, it has plenty of disadvantages: Because of confinement, partons
cannot be observed on their own and can therefore not be considered to be accurately modeled
physical objects. Since they are purely conceptual objects in the simulation process and as the
simulation is limited to the finite number of Feynman diagrams it considers, it is possible that
partons of the same ”type“ stored in the truth record of the simulated events do not have the
same properties across different MC generators.

Another disadvantage is that it is not possible to assign a label to a jet if no parton is
matched to it, which means a small number of jets will not be labeled at all.

The most common hadron-based flavor definition used for the flavor definition of b-jets
and c-jets at the ATLAS Experiment makes use of B and D hadrons. If a B hadron with
pT > 5 GeV is matched to the jet (∆R(jet, hadron) < 0.3), this jet is called a b-jet. If no B
hadron is matched to the jet, but instead a D hadron with a pT > 5 GeV, the jet is called a c-
jet. This definition of b- and c-jets is retained in the following discussions about hadron-based
flavor labels for all remaining jets.

In principle, this flavor definition could simply be extended to s-jets: A jet would be defined
as an s-jet if neither B nor D hadrons are matched to it but instead a strange hadron with
pT > 5 GeV. All other jets would then be called light jets or l-jets.

Figure 7.1a shows the pT of the leading matched strange hadron matched to a jet that
is neither a b- nor c-jet divided by the jet pT. It peaks around 0.2 for jets with a parton
label of a light quark or gluon (l- or g-jets) because their strange hadrons tend to be the

1The s-tagger trained in this thesis contains input variables that are used for quark/gluon tagging,
cf. Reference [151].
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Fig. 7.2: s-Tagger output of jets with different parton labels simulated using Pythia as shower
generator. The percentages given in the legend illustrate the fraction of jets of the
given parton flavor included under the label of the given matched hadron. The error
bars indicate the statistical uncertainty of the sample used.
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(a) s-Tagger output of jets containing neither a B
nor a D and the leading hadron is not a strange
hadron.
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(b) s-Tagger output of jets containing neither a B,
nor D hadron, but a leading strange hadron.

Fig. 7.3: s-Tagger output of jets with different parton labels simulated using Pythia as shower
generator. The percentages given in the legend illustrate which fraction of jets of the
given parton flavor is included under the label based on the leading matched hadron.
The error bars indicate the statistical uncertainty of the sample used.

result of radiation processes prior to the hadronization; the relative pT of the strange hadron
peaks around 0.35 for jets with a strange parton label (s-jets). Figure 7.1b shows the distance
between the leading strange hadron and the jet axis, ∆R, in the η–φ plane. Because of gluon
splitting (g → ss), for g-jets, this distance is larger than for s- and l-jets.

These different kinematic properties of the strange hadrons w.r.t. the jet have an impact
on the s-tagger response. This can be seen in Figure 7.2, showing the s-tagger output for jets
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7.1. Flavor Definition

that are neither b- nor c-jets and depending on whether they have a strange hadron matched
to them or not. Especially for those jets with a strange hadron matched to them, it can be
seen that the s-tagger response varies for different parton labels, the largest difference being
the difference between jets with a strange parton label and jets with a gluon parton label.

Therefore, it seems necessary to consider the strange hadrons’ kinematic properties (espe-
cially the fraction of the jet pT it carries) when defining a hadron-based flavor label.

One option to do this is to only consider the flavor of the leading hadron matched to a jet
to define its flavor. There are, however, two issues with this approach. One is that for g-jets
in which the gluon splits into ss, the momentum of the gluon is split between the two quarks,
resulting in strange hadrons which, while carrying relatively low momentum, can still have the
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(a) s-Tagger output of jets containing neither a
B or D hadron but a strange hadron with
pT(strange hadron)/pT(jet) ≥ 0.4.
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(b) s-Tagger output of jets containing neither a B,
nor D hadron, but strange hadron with 0.4 >
pT(strange hadron)/pT(jet) ≥ 0.15
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(c) s-Tagger output of jets containing neither
a B nor D and no strange hadron with
pT(strange hadron)/pT(jet) ≥ 0.15.

Fig. 7.4: s-Tagger output for jets of different parton labels simulated using Pythia as shower
generator. Additional selections are applied to these jets, requiring them to fulfill
the criteria for a hadron-based flavor definition. The percentages given in the legend
illustrate which fraction of jets of the given parton flavor passes the hadron-label
selection. The error bars indicate the statistical uncertainty of the sample used.
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7. Efficiency Measurement and Calibration of the s-Tagger

largest momentum of all hadrons in the jet. On the other hand, even if the jet is from an s
quark, the resulting strange hadron might not be the hadron carrying the largest momentum
in the jet. In this case, the jet would be classified as a light jet, even if it contains a strange
hadron with relatively large momentum. The impact of both of these caveats on the s-tagger
response can be observed as different responses for jets of different parton labels in Figure 7.3.

These observations suggest that it would be good to define the flavor according to the
relative momentum of the matched strange hadron. Ideally, one would define an arbitrary
number of flavors using intervals of its distribution shown in Figure 7.1a, thereby reducing the
variance in the s-tagger for jets with one hadron label output w.r.t. different parton labels.
Figure 7.4 shows such a flavor definition for which the distribution of the relative pT was
divided into three bins, [0.0, 0.15), [0.15, 0.4), and [0.4, 1.0]. If the leading strange hadron
carries a transverse momentum fraction smaller than 0.15, the jet is classed as an l-jet along
those jets without a strange hadron matched to them. If the momentum fraction is larger
than 0.15 but smaller than 0.4, the jets are classed as ambiguous jets, which have an s-tagger
response that is relatively flat. Only if the strange hadron carries a momentum fraction larger
than 0.4, it is classed as an s-jet. This flavor definition reduces the variance of the s-tagger
responses for jets of different parton labels significantly. However, in the context of this thesis,
this definition cannot be used since for the calibration, the topology of tt decays is exploited
to enrich calibration regions with specific jet flavors. As the group of ambiguous jets consist
of jets from all three light quarks (u, d, s) as well as gluons, it is not possible to define a
topology that would enrich a sample in ambiguous jets. Additionally, jets from s quarks are
split between two labels (s-jets and ambiguous jets), meaning that a region enriched with
s-jets, even if would consist of 50% s-jets as defined by the parton label, would only contain
20% s-jets as defined by this hadron label.
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(a) s-Tagger output of jets neither containing a B,
D, nor a strange hadron with a relative trans-
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(b) s-Tagger output of jets containing neither a B,
nor D hadron, but a strange hadron with a
relative transverse momentum ≥ 0.25.

Fig. 7.5: s-Tagger output of jets with different parton labels simulated using Pythia as shower
generator. Additional selections are applied to these jets, requiring them to fulfill
the criteria for a hadron-based flavor definition. The percentages given in the legend
illustrate which fraction of jets of the given parton flavor are included under the
definition of the hadron-based label. The error bars indicate the statistical uncertainty
of the sample used.
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The final considered option is an approach that divides the distribution of the momentum
fraction of the strange hadron into two bins. This is done for the hadron label shown in
Figure 7.5. Here, a matched strange hadron with a pT fraction larger 0.25 is required for a jet
to be classified as s-jet. Jets with no strange hadron matched to them or if the strange hadron
matched to them carries less 25% of the momentum of the jet are classified as l-jets. This pT
requirement was chosen to reduce the variance of the s-tagger output for jets of different parton
labels. It was checked that this variance does not increase when using a different s-tagging
working point (WP), i.e. a different binning of the s-tagger output distribution.

7.2. Jet Flavor Enriching Selections
For the calibration of the s-tagger, five regions are defined, each enriched with a certain parton-
based jet flavor. Their selections are based on the kinematic reconstruction of semileptonic tt
decays2.

t

t̄

W −

W+

g
b̄

ν̄`

`−

b

q

q

Fig. 7.6: Exemplary Feynman diagram of leading-order tt production and a semileptonic decay.

An exemplary Feynman diagram of this decay is shown in Figure 7.6. In the preselection
applied to all calibration regions, the following criteria are applied:

• exactly one reconstructed lepton (muon or electron) with pT > 27 GeV matched to the
single-lepton trigger used to select the event for read-out

• exactly four jets with 25 GeV < pT < 200 GeV

• Emiss
T > 30 GeV and either mT(W ) > 30 GeV if the lepton is an electron or mT(W ) +

Emiss
T > 60 GeV if the lepton is a muon, where

mT(W ) =

√
2

(
pT(`)E

miss
T − ~pT ~Emiss

T
)

. (21)

This preselection results in a relatively clean sample of events containing tt decays. Figure 7.7
shows the pT of the jet leading in pT. The main background is the associated production of
W bosons and jets as well as events containing fake leptons.

2The definition of the flavor region was done in cooperation with Egor Evsenin during his master thesis
project [152].
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Fig. 7.7: pT distribution of the jet leading in pT after applying the preselection in the calibra-
tion regions, selecting mainly events containing semileptonic tt decays. The hashed
band represents both the statistical and systematic uncertainties. The bottom panel
shows the ratio between data and prediction.

The event topology given by one t quark decaying hadronically and the other decaying
leptonically is reconstruction with the KLFitter tool [153] by considering the kinematic in-
formation of the lepton, the four jets, and Emiss

T . It determines the best matches between
reconstructed jets and the quarks in the tt decay by maximizing a likelihood consisting of
Breit-Wigner functions of the t quark and W boson mass distributions and transfer functions
describing the energy response of the ATLAS detector. Further information on the algorithm
can be found in Reference [153]. In the setup used, the t mass is fixed to 172.5 GeV and no
b-tagging information is considered. In the following, the jet matched to the b quark of the
leptonically decaying t quark will be called jlep

b , the jet matched to the b quark of the hadron-
ically decaying t quark will be called jhad

b , and the jets matched to the quarks from the W
boson decay will be called jq1 and jq2, where jq1 is the jet with the higher pT of the two.

The logarithm of the highest likelihood per event given the best permutation is shown in
Figure 7.8, the histograms being subdivided according to the parton-label flavors of jq1 and
jq2. In both figures, the expected ratio of 2:1:1 for l-, s-, and c-jets as given by the CKM
matrix elements moderating the W boson decays can be observed. The additional g- and
b-jets are the result of imperfect reconstruction of the tt topology for some events. As b-jets
from t decays tend to have larger momenta, they are more often found contributing to the
distribution of the jets with the larger pT matched to the quarks from the W boson, while the
g-jets contribute more to the distribution of jets with the smaller pT matched to the quarks
from the W decay.

In selections striving to enrich the sample of jets with jets originating from quarks, to
increase the probability that the jets matched to the quarks from the W boson are matched
correctly, the logarithm of the likelihood of the kinematic fit is required to be larger than
−48, which increases the overall number of jq1 from light, s, and c quarks in these jets. In
contrast, jq2 is likely to be a g-jet if it was wrongly matched to a quark from the W boson
decay. Therefore, a requirement on the logarithm of the likelihood to be smaller than −57
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jets associated with the decay of the W boson
in semileptonic tt decays that have the larger
pT.
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(b) The flavors shown are the parton labels of the
jets associated with the decay of the W boson
in semileptonic tt decays that have the smaller
pT.

Fig. 7.8: Logarithm of the likelihood of the best jet permutation calculated using the KLFit-
ter tool after applying the preselection for the calibration region selecting mainly
events with semileptonic tt decays. The hashed band represents both the statistical
and systematic uncertainties. The bottom panel shows the ratio between data and
prediction.

is applied in the selection used to enrich a sample with jets from g. Both requirements are
illustrated in Figure 7.9, showing that the first requirement yields a mass distribution for the
reconstructed hadronically decaying W boson which is centered around the actual mass of the
W boson, while the second requirement rejects the larger part of events with a reconstructed
hadronically decaying W boson in the same mass range. This strategy is inspired by the
strategy used in Reference [154] which uses the same requirements on the logarithm of the
likelihood (log(likelihood) > −48) to increase the number of c-jets in semileptonic tt decays.

In the following, all additional selection requirements for the five flavor regions are described.
A summary is given in Table 7.1.

Enriched Region
Light Strange Charm Bottom Gluon

log(likelihood) > −48 > −48 > −48 > −48 < −57

jlep
b b-tagged b-tagged b-tagged b-tagged b-tagged

jhad
b b-tagged b-tagged b-tagged b-tagged b-tagged
jq1 not b-tagged not b-tagged c-tagged
jq2 not c-tagged c-tagged not b-tagged not b-tagged

Tab. 7.1: Selection requirements applied in order to enrich the selected jets in the flavors given
in the top row of the table. The jets which are selected for the flavor enriched region
are highlighted in bold cursive print.

67



7. Efficiency Measurement and Calibration of the s-Tagger

0 25 50 75 100 125 150 175
mhad

W  [GeV]
90

80

70

60

50

40

lo
g(

lik
el

ih
oo

d)

s = 13 TeV

100

101

102

Fig. 7.9: Mass of the reconstructed hadronically decaying W boson and the logarithm of the
likelihood value of the best permutation in the kinematic likelihood fit used to match
jets to quarks in the event topology of semileptonically decaying tt in data.

7.2.1. Bottom-Enriched Region

In the region enriched in b-jets, both of the jets matched to b quarks from a t quark decay are
required to be b-tagged. No further requirements are imposed on the other jets. Both b-tagged
jets are used for calibration in the bottom-enriched calibration region.
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Fig. 7.10: Kinematic distribution of the jets in the region enriched with jets from b quarks.
The hashed band represents both the statistical and systematic uncertainties. The
bottom panel shows the ratio between data and prediction.

Figures 7.10a and 7.10b show the pT and η distributions, respectively, of the jets in the
region enriched with b-jets. For the pT distribution, the parton label is used to group the jets,
while for the η distribution, the hadron label is used to give an impression of the similarities
and differences between these two labels in the bottom-enriched region. The majority of jets
are b-jets, with small contributions from c- and g-jets. In these two distributions, data and
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prediction agree well within the statistical and systematic uncertainties, which even appears
to be overestimated.

7.2.2. Charm-Enriched Region

In the charm-enriched calibration region, both jhad
b and jlep

b are required to have a b-tag. jq1 is
required to be c-tagged, while jq2 is required not to have b-tag. In the charm-enriched region,
only the c-tagged jq1 is used for the calibration. If an event is part of the charm-enriched
region, it will not be part of the other calibration regions to ensure orthogonality between the
regions.
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Fig. 7.11: Kinematic distribution of the jets in the region enriched with jets from c quarks.
The hashed band represents both the statistical and systematic uncertainties. The
bottom panel shows the ratio between data and prediction.

Figures 7.11a and 7.11b illustrate the pT and η distributions, respectively, of the jets in the
region enriched in c-jets. The majority of jets in this region are c-jets, however, the contribution
of jets of other flavors is significantly larger than in the region enriched in b-jets. The largest
background contribution is given by l-jets and b-jets. In both distributions shown, data and
prediction agree within the statistical and systematic uncertainties.

7.2.3. Strange-Enriched Region

In the strange-enriched calibration region, both jhad
b and jlep

b are required to have a b-tag.
While the probe jet jq1 is required to have no b-tag, jq2 is required to have a c-tag, making use
of the fact that most hadronically decaying W bosons decay either as W+ → cs or W+ → ud.

Figures 7.12a and 7.12b show the pT and η distributions, respectively, of the jets in the
region enriched in s-jets. The selection ensures that the majority of jets are parton-labeled
s-jets. However, the region contains considerable amounts of l-jets and g-jets as well. When
considering the hadron label, the number of jets classified as s-jets is significantly smaller. In
both distributions, data and prediction agree within statistical and systematic uncertainties.
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(b) Pseudorapidity of jets grouped by their hadron
labels.

Fig. 7.12: Kinematic distribution of the jets in the region enriched with jets from strange
quarks. The hashed band represents both the statistical and systematic uncertain-
ties. The bottom panel shows the ratio between data and prediction.

7.2.4. Light-Enriched Region

In the region enriched with l-jets, again, both jhad
b and jlep

b are required to have b-tags. Addi-
tionally, the probe jet jq1 is required not to be b-tagged and jq2 is required not to be c-tagged,
attempting to reject W+ → cs decays.
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(b) Pseudorapidity of jets grouped by their hadron
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Fig. 7.13: Kinematic distribution of the jets in the region enriched with jets from up or down
quarks. The hashed band represents both the statistical and systematic uncertain-
ties. The bottom panel shows the ratio between data and prediction.

Figures 7.13a and 7.13b show the pT and η distributions, respectively, of the jets in the
region enriched in l-jets. While in this region, the jet flavor with the largest contribution
is the light flavor, it does not account for the absolute majority of all jets, especially when
considering the parton label. The second largest contributions are given by s-jets and c-jets,
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followed by a considerable amount of g-jets, especially for lower pT. Again, for both pT and η
distributions, data and prediction events agree within statistical and systematic uncertainties.

7.2.5. Gluon-Enriched Region

In the gluon-enriched region, jq2 is considered as the probe jet since the subleading jet matched
to a quark from the W boson is more likely to stem from gluon radiation. Both jhad

b and jlep
b

are required to have a b-tag, while the probe jet jq2 is required not to be b-tagged. No b-tagging
requirement is applied to jq1.
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(b) Pseudorapidity of jets grouped by their hadron
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Fig. 7.14: Kinematic distribution of the jets in the region enriched with jets from gluons.
The hashed band represents both the statistical and systematic uncertainties. The
bottom panel shows the ratio between data and prediction.

Figures 7.14a and 7.14b show the pT and η distributions, respectively, of the jets in the region
enriched in g-jets. In this region, the majority of jets have a gluon parton label. However, in
this region, there is a significant contribution of events without a determined jet flavor. These
jets stem either from events containing a fake lepton whose contribution is estimated using a
data-driven method, or they are simulated but do not have a parton label. In this region, the
majority of jets have a relatively low pT compared to the other regions. The overall number
of jets, however, is large compared to the number of jets in the regions enriched with s- and
c-jets. In both distributions, the difference between data and prediction is covered well by the
combination of statistical and systematic uncertainties.

7.3. Data Driven Background Estimates

In rare cases, events only containing jets can be misreconstructed to contain electrons or muons.
This happens either because the properties of a jet resemble those of an electron, or because
non-prompt muons from decays inside the jet are reconstructed as prompt muons. While
the rejection of such misreconstructed objects using the identification criteria of electrons and
muons is very effective, due to the large cross section of hadronic processes in pp collisions, a
background contribution from events containing fake leptons is almost inevitable. However, be-
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7. Efficiency Measurement and Calibration of the s-Tagger

cause the rejection rates are large, such background contributions usually become significantly
smaller with every lepton required. Hence, in this analysis, an estimate of this background is
only necessary for the calibration requiring one lepton and not for the measurement of |Vts|
and |Vtd| requiring two leptons.

The efficient rejection of fake leptons necessary for most analyses makes the estimation of
this background from simulation almost impossible, since most events generated would be
rejected, leading to an almost impossible large number of simulation events necessary for a
sound background estimation.

This issue is most often circumvented by using data-driven estimates instead. The method
applied in this thesis is the matrix method [155]. It makes use of different grades of identifi-
cation: Loose identification has a larger efficiency for both real and fake leptons but a smaller
purity of real leptons; tight identification has a smaller efficiency for both real and fake leptons
but a larger purity for real leptons. Therefore, if loose identification criteria are applied on a
sample, the number of fake leptons is increased. It is then possible to determine the number
of leptons passing tight identification criteria based on the number of leptons passing loose
criteria (cf. e.g. Reference [156]).

The number of all events with loose leptons N l and with tight leptons N t can be split into
those events containing real leptons Nr and those containing fake leptons Nf :

N l = N l
r + N l

f , (22)
N t = N t

r + N t
f , (23)

= εrN l
r + εf N l

f , (24)

with the efficiencies

εr =
N t

r

N l
r

and εf =
N t

f

N l
f

(25)

for tightening the requirements on the leptons from loose to tight. These equations can be
rearranged to express the number of fake leptons that fulfill the tight criteria by the total
number of loose and the total number of tight leptons and the efficiencies εr and εf :

N t
f =

εf

εr − εf

(
εrN l − N t

)
. (26)

In practice, to estimate the background contribution from fake leptons, all data events passing
the loss selection criteria are used, and a weight

w =
εf

εr − εf
(εr − δ) (27)

is applied to them, where δ is either 1 for events that additionally pass the tight selection
criteria or 0 otherwise.

The critical point of the matrix method is the determination of the efficiencies, especially
the fake efficiencies, which depend on the region in which the matrix method is applied. The
exact definition of loose and tight leptons was described previously in Section 4.

The real efficiencies are determined in simulated samples of Z+jets and tt events. These
events are required to contain at least two electrons or muons, respectively, both having oppo-
site electric charge and pT > 27 GeV. Their invariant mass is required to lie within a window
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Fig. 7.15: Efficiencies (loose → tight) of electrons as used in the fake estimate.

of 10% to the left and right of the Z mass. One lepton (the tag) is required to fulfill the
tight criteria, while the other lepton (the probe) is required to fulfill the loose criteria and to
trigger a trigger used in the selection of semileptonic tt decays. Additionally, four jets with
pT > 25 GeV have to be present and at least two jets have to be b-tagged.

The fake efficiencies are determined in data. However, since data contains real contributions
as well, these are subtracted as given in simulations (tt, single t, V +jets, diboson, tt + X).
The selection applied to both data and MC simulations requires one lepton (either electron or
muon), Emiss

T < 10 GeV, at least four jets with pT > 25 GeV and exactly two of them being
b-tagged. This selection is similar to the preselection applied for the calibration, however, the
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7. Efficiency Measurement and Calibration of the s-Tagger

alternative requirement on the Emiss
T increases the number of fake leptons as events containing

only jets tend to be balanced in their pT because they do not contain neutrinos detected as
Emiss

T .
Figure 7.15 shows the efficiencies for real and fake electrons as used in the calibration and

Figure 7.16 shows them for muons. The real and fake efficiencies are typically determined in
bins of |η| and pT. However, because the number of fake muons is much smaller than the
number of fake electrons, the muon efficiencies are only binned in pT. Because of the small
number of fake muons for high pT and because the modeling of the real contributions is not
good enough, it is not possible to derive fake efficiencies for a muon pT > 50 GeV. Therefore,
as an approximation, the efficiency derived in the adjacent bin 35 GeV < pT < 50 GeV is used.

7.4. The Calibration Method
In this section, the method used for the calibration of the s-tagger is discussed. First, profile-
likelihood fits, which are used to estimate the flavor composition of jets with and without an
s-tag, are introduced in Section 7.4.1. After that, in Section 7.4.2, the strategy to measure the
efficiencies and mis-tag rates of the s-tagger for all jet flavors is discussed. In Section 7.4.3,
the systematic uncertainties considered in the calibration are described.

7.4.1. Profile-Likelihood Fits

In this thesis, so-called profile-likelihood fits are used to estimate parameters of a given model,
such as e.g. the flavor composition of the jets used in the calibration of the s-tagger. Profile-
likelihood fits are especially suitable for this task as they are able to include systematic un-
certainties in the form of nuisance parameters in the fit. In some cases, if enough data points
are provided, the fit can even constrain these uncertainties given the available data, effectively
reducing the uncertainty on the estimated parameters.

If ~θ are the parameters of interest in a statistical analysis and f(x|~θ) is the probability
density function to measure x given the values ~θ, then L is the likelihood of the parameters ~θ
given the measured value x, defined as

L(~θ|x) = fθ(x) . (28)

For more than one measured value xi, i ∈ 1, 2, . . . , together denoted as ~x, the likelihoods of
each measurement multiply so that

L(~θ|~x) =
N∏

i=0

f(xi|~θ) . (29)

The most probable values of the parameters of interest ~θ considering the measured values ~x
can be found by maximizing the likelihood. If the estimators are unbiased, the uncertainty
of all fitted parameters is given by a covariance matrix, which is the inverse of the Hessian
of the Lagrangian. Alternatively, assuming that the likelihood follows a Gaussian distribution
around its maximum, the uncertainties of the parameters are given by its standard deviation
σ and fulfill ln L(θmax ± σ) = 1

2 ln L(θmax).
Uncertainties on the model can be taken into account during the optimization by including

nuisance parameters (NPs) in the likelihood, as will be discussed in the following.
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7.4. The Calibration Method

In this thesis, all profile-likelihood fits are implemented using the HistFactory software pack-
age [157] interfaced by the TRExFitter software package version 4.12 [158]. The likelihood
implemented in it has a form of

L(φf , αp, γi|ni, ap) =
∏

i

Pois(mi|γiτi)Pois

ni

∣∣∣∣∣∣γi

∏
f

φf ηf (~α)σi,f (~α)νi

 ∏
p

Gaus(ap|αp) ,

(30)
where ni is the number of data events in bin i and ap are the values used to parameterize
the probability of the NPs. φf , αp, and γi are the free parameter of the profile-likelihood fit:
φf are either free-floating parameters of interest or constant normalization parameters of a
subgroup of processes f , αp are the values the NPs take on, and γi are normalization factors
of bin i.

The latter γi are primarily necessary because the number of simulated events available are
finite, which means that the actual number of unweighted simulated events mi per bin i is
expected to take on any value according to the probability of a Poisson distribution with the
central value γiτi

3. For lack of better knowledge, τi is set to mi, assuming that the number of
MC events is sufficiently large to not be significantly biased [159]. The number of unweighted
events is extracted from the relative statistical uncertainty of the nominal MC estimate νi in
bin i, mi =

(
δi
νi

)2
, with δi being the absolute uncertainty.

The number of events per bin i in data, ni, are expected to be Poisson distributed around
the true value which is supposed to be estimated by the fitted model. The number of events
in each bin as described by the model is given by

γi

∏
f

φf ηf (~α)σi,f (~α)νi ,

where ηf (αp) and σi,f (αp) parameterize the uncertainties.
All uncertainties are separated into an overall normalization component ηf (αp) and a per-bin

shape component σi,f (αp). The shape component is interpolated linearly such that

σi,f (αp) = σ0
i,f + Ii,f,lin with Ii,f,lin =

{
αp(I

+
i,f − I0i,f ) αp ≥ 0

αp(I
0
i,f − I−

i,f ) αp < 0
. (31)

I0i,f , I+i,f , and I−
i,f are the nominal yield, the yield of the up, and the yield of the down vari-

ation, respectively. The normalization component is interpolated using a combination of an
exponential form and a polynomial form:

ηf (αp) = If,exp with If,exp =


(I+f /I0f )

αp αp ≥ 1

1 +
6∑

k=1
akαk

p

∣∣αp

∣∣ < 1

(I−
f /I0f )

−αp αp ≤ −1

. (32)

The ak are determined by matching dη/dαp

∣∣
αp=±ap

and d2η/dα2
p

∣∣∣
αp=±ap

to the exponential

interpolations. Details on both interpolations can be found in Reference [157].
3To be precise, this normalization factor γi would have to be derived per simulated sample. However, to reduce

computational overhead, this simplification looking only at the overall number of simulated events is used
unless stated otherwise.
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7. Efficiency Measurement and Calibration of the s-Tagger

The probabilities of the NPs αp are set to follow a Gaussian distribution Gaus(ap|αp) with
the center at 0 and a width ap = 1.

To minimize the profile likelihood, the MIGRAD algorithm [160] is used. It is based on the
minimization approach developed by Davidon [161], Fletcher [162], and Powell [163] in which
an iterative search for a function’s minimum is performed along the direction of its gradient.
The covariance matrix, initially assumed to be unitary, is used in and adjusted during the
minimization process. With the final covariance matrix, the fit provides an estimate of the
correlations between the parameters of the function.

7.4.2. Measurement of Flavor Compositions and Efficiency Calculation

For the measurement of the s-tagging efficiencies and mis-tag rates, the five flavor-enriched
regions are divided into 11 bins, two |η| bins (|η| ∈ [0.0, 1.5] and (1.5, 2.5]) times either seven
pT bins (pT ∈ [25, 50], (50, 60], (60, 70], (70, 90], (90, 120], (120, 150], and (150, 200]GeV) in
the central region and four pT bins in the forward region (pT ∈ [25, 50], (50, 70], (70, 120], and
(120, 200]GeV). The |η| bins were chosen to depict the split between barrel and end-cap in the
calorimeters situated roughly at |η| = 1.5 as can be seen in Figure 7.17.
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Figure 5.2: Cumulative amount of material, in units of interaction length, as a function of |η |, in
front of the electromagnetic calorimeters, in the electromagnetic calorimeters themselves, in each
hadronic layer, and the total amount at the end of the active calorimetry. Also shown for complete-
ness is the total amount of material in front of the first active layer of the muon spectrometer (up
to |η | < 3.0).

5.2 Electromagnetic calorimetry

5.2.1 Accordion geometry

An accordion geometry has been chosen for the absorbers and the electrodes of the barrel and end-
cap electromagnetic calorimeters (see figures 5.3 and. 5.4). Such a geometry provides naturally a
full coverage in φ without any cracks, and a fast extraction of the signal at the rear or at the front
of the electrodes. In the barrel, the accordion waves are axial and run in φ , and the folding angles
of the waves vary with radius to keep the liquid-argon gap constant (see figures 5.4 and 5.5). In the
end-caps, the waves are parallel to the radial direction and run axially. Since the liquid-argon gap
increases with radius in the end-caps, the wave amplitude and the folding angle of the absorbers
and electrodes vary with radius (see figure 5.6). All these features of the accordion geometry lead
to a very uniform performance in terms of linearity and resolution as a function of φ . As can be
seen from figure 5.3, the first layer is finely segmented along η , as for example in the barrel where
there are eight strips in front of a middle cell. One can note however the coarser granularity of the
first layer in the edge zones of the barrel and end-caps, as explicitly given in table 1.3. The second
layer collects the largest fraction of the energy of the electromagnetic shower, and the third layer
collects only the tail of the electromagnetic shower and is therefore less segmented in η .

– 112 –

Fig. 7.17: Distribution of the material in the ATLAS detector in |η|, particularly in the
calorimeter layers [44].

The pT bins were chosen to even out varying numbers of jets across the pT distributions of
all flavor-enriched regions. For central η, this demands a larger pT bins for low pT due to the
small numbers of jets in the light-, strange-, and charm-enriched regions, and also for larger
pT due to the small number of jets in the gluon-enriched region. For more forward η, to reduce
statistical fluctuations in the resulting calibration, it was necessary to merge the higher-pT
bins pairwise, resulting in only four pT bins.

The measurement is done independently in each pT and |η| bin and follows roughly the
same strategy the prel

T calibration method uses [65]. It considers the momentum component of
muons reconstructed inside a jet that is perpendicular to the jet axis in order to determine the
contribution of each jet flavor. Similarly, in this calibration, the distribution of flavors across
all flavor-enriched regions is used to determine the flavor composition of the samples.

For this, it is assumed that the number of jets in each region i in data, Ni, is the sum over
the number of jets of a given flavor f in this region multiplied by a flavor-dependent correction
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Fig. 7.18: Distribution of s-tagged jets arranged by their hadron-based flavors in all flavor-
enriched calibration regions for 25 GeV < pT < 50 GeV and |η| ≤ 1.5, pre- and post-
fit. The distributions show data and prediction normalized to the data yields in each
bin. The hashed bands represent both the statistical and systematic uncertainties
of the prediction.

factor cf that is the same across all regions:

Ni =
∑

j∈flavors
cjnj

i . (33)

This correction factor can be determined for both tagged and untagged jets using profile-
likelihood fits described in the previous section. Figure 7.18 illustrates the use of distribution
of jet flavors across the flavor-enriched regions in the determination of normalization factors. It
shows the distributions before and after fitting data in an exemplary pT and η bin for s-tagged
jets in that bin. The fit is able to adjust the flavor fractions for a better agreement between
data and prediction and to reduce the total uncertainty.

The flavor fraction for the flavor j in each region i after solving the equation is

f i
j =

cjnj
i

Ni
. (34)

The tagging efficiency for each flavor is derived in its name-sake region, where, in principle,
this flavor is most abundant. The efficiency/mis-tag rate of a flavor j is defined as

εdata
j =

f tag
j N tag

data

f tag
j N tag

data + f�
�tag

j N��tag
data

. (35)

The SFs to be applied to all jets in MC simulations when applying the s-tagger are deter-
mined by dividing the efficiency in data by the efficiency in MC simulations:

κj =
εdata

j

εMC
j

. (36)
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7. Efficiency Measurement and Calibration of the s-Tagger

7.4.3. Estimation of Systematic Uncertainties

The systematic uncertainties associated with the calibration are usually estimated in simula-
tions and present themselves as either two-sided (up and down) or one-sided variation with
respect to the nominal input. They are taken into account as NPs in the previously dis-
cussed profile-likelihood fit. Since for them, a Gaussian probability distribution is assumed,
the variations per bin i are symmeterized according to

σsymmetric
i =


1
2

(∣∣∣xup
i − xnominal

i

∣∣∣ + ∣∣∣xdown
i − xnominal

i

∣∣∣) for a two-sided variation and∣∣∣xvariation
i − xnominal

i

∣∣∣ for a one-sided variation,
(37)

where xnominal
i is the process’s nominal bin content and xup

i , xdown
i , and xvariation

i are the bin
content of a given variation. The resulting symmetric variations are

xup, symmetric
i = xnominal

i + sign(xup/variation
i − xnominal

i )σsymmetric
i , (38)

xdown,symmetric
i = xnominal

i − sign(xup/variation
i − xnominal

i )σsymmetric
i , (39)

were the sign of the variation (up or down) w.r.t. to other bins is preserved. The uncertainties
are symmeterized before they are split into a normalization and shape component.

As no continuous distributions are considered in the calibration, no smoothing is applied
to the input. In each region, normalization components that have a variation that is smaller
than 1% of the nominal event yield and shape components that have a variation smaller than
1% are removed (pruned) prior to the fit. All uncertainties are detailed in the following.

7.4.3.1. Modeling Uncertainties

There are several different uncertainties associated with the modeling of simulated processes.
Their description here follows Reference [74].

The cross sections of all simulated processes (except for diboson production) are corrected
to a theoretical value of better accuracy than what is used in the ME calculation of their
MC simulation. The uncertainties of all cross sections are given in Section 5.2 and used as
uncertainties on the processes’ normalization.

The uncertainty on the proton’s PDF is estimated by evaluating all 100 variations of the
NNPDF3.0 [85] PDF set. These 100 variations are gathered into a single two-sided uncertainty
by determining the standard deviation of all 100 variations in each bin. This variation is applied
in the analysis by varying the nominal sample up and down by this standard deviation.

The uncertainty on the shower generation is only evaluated in the tt(WbWb) samples and by
exchanging the shower generator from Pythia8.230 [77] to Herwig7.04 [99, 100] and using
the resulting distributions as one-sided variation.

Effects of scale variations in tt and single t production are studied by simultaneously vary-
ing the factorization and renormalization scale, the hdamp parameter, and the hadronization
tune. The variations are described in Reference [164]. The up variation increases the hdamp
parameter by a factor of two to 3mt, sets µr = µf = 0.5 w.r.t. the nominal renormalization
and factorization scale in the ME, and uses the Var3cUp tune [88] which increases the αISR

s

coupling in the parton shower of the initial-state radiation (ISR). The down variation uses
the same value for hdamp as the nominal sample (1.5mt) while setting µr = µf = 2.0 w.r.t. the
nominal scales and using the Var3cDown tune [88] which decreases αISR

s in the parton shower
of the ISR.
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7.4. The Calibration Method

The uncertainty of the final-state radiation (FSR) in tt and single t production is evaluated
by varying the renormalization scale for final-state QCD emissions (αFSR

s ) by a factor of 0.5
and 2.0, respectively.

For V +jets and diboson processes, the renormalization and factorization scale are set to
same value of µr,f = 0.5 or µr,f = 2.0 w.r.t. the nominal value at the same time or one to
µr,f = 0.5 and the other to µr,f = 2.0. In each bin, the maximal and minimal number of events
of all four variations is used as up and down variation, respectively.

Because a reweighting is applied to the tt samples to alter the kinematic properties of the
t quarks from what is simulated in NLO accuracy to what it was predicted at NNLO accu-
racy [97], the kinematic distributions without the reweighting are used as one-sided systematic
uncertainty w.r.t. to the reweighted distributions used as nominal input.

7.4.3.2. Object Uncertainties

Object uncertainties are the uncertainties associated with the reconstruction and identification
of any object used in the analysis.

The systematic uncertainties of electrons have two components. One is the uncertainty on
the determination of their energy, i.e. both the correction of the nominal energy value by a scale
factor and the energy resolution given by the detector. They are both determined in Z → e+e−

decays as described in Reference [54]. The other uncertainty is the uncertainty on the efficiency
of the electrons used. This efficiency is split into four different efficiencies, the trigger efficiency,
the reconstruction efficiency, the isolation efficiency, and the identification efficiency. They
are derived in Z → e+e− as described in References [54, 165]. All six uncertainties are
independently included in the fit.

For muons, the uncertainties on the momentum measurement are divided into six sub-
components. The pT of simulated muons is corrected by applying a scale correction as well
as a smearing [56]. The nominal values of the corrections are determined in Z → µ+µ−

decays [56] and the uncertainty on these corrections are given by independently varying the
scale correction, the smearing of the ID tracks used for the reconstruction, and the smearing
of the MS tracks. Additionally, charge-dependent uncertainties on the scale of the momentum
are applied, both for the bias of the sagitta measurement due to misalignment of the MS and
for the overall resolution of the sagitta measurement [166]. The uncertainty on the muons’
total efficiency is divided into five efficiencies: the reconstruction efficiency, the identification
efficiency, the isolation efficiency, the trigger efficiency, and the uncertainty on the track-to-
vertex association. All of them are determined in Z → µ+µ− decays [57, 167]. The latter two
are combined into one uncertainty. All are split into a systematic and a statistical uncertainty,
which are included in the fit independently.

The Emiss
T is calculated from all reconstructed and calibrated objects and additional soft

energy contributions. The uncertainties of the reconstructed objects are propagated to Emiss
T .

The additional uncertainty of the soft energy contributions has two components. A two-sided
variation of the scale of soft contributions is estimated in events without any expected Emiss

T
(Z+0 jets events) by looking at the Emiss

T component parallel to the pT of the hardest object
(Z). Two one-sided variations of the resolution are derived in the same events by considering
the variance of the Emiss

T components parallel or perpendicular to the hardest object. Further
details can be found in Reference [70].

To describe the uncertainties of the calibration of jets, a total of 30 up and down variations
are used as uncertainties. Details on them can be found in Reference [61] and the references

79



7. Efficiency Measurement and Calibration of the s-Tagger

therein, but the calibration process and the resulting subcategories of uncertainties will be
briefly discussed here: Four variations are used as uncertainty for the initial correction of the
jets’ momenta w.r.t. to pile-up conditions. In the following global sequential calibration pro-
cedure [61, 168, 169], another uncertainty w.r.t. to punch-through corrections arises, as well
as three uncertainties in the context of the flavor composition (quark or gluon) of the jets.
As the flavor composition of jets varies per analysis, the flavor composition was specifically
derived in tt simulations for both the calibration and the measurement of |Vts| and |Vtd| after
the preselection was applied. This composition was then propagated to the application of the
correction factors. The resulting uncertainties have a component for the overall flavor compo-
sition and response as well as an additional uncertainty for b-jets. Another six uncertainties
arise in the context of the η intercalibration of forward jets in dijet events. The 98 uncertainty
components of the remaining in-situ calibration are reduced in the global reduction scheme
to a total of 8 effective up and down variations of the jet energy scale (JES) and jet energy
resolution (JER).

The uncertainty on the use of the JVT algorithm used for pile-up suppression [170] is the
uncertainty of its calibration and provided as one two-sided variation.

The SFs for the application of b-tagging and c-tagging algorithms [63, 68] described in
Sections 4.5 and 4.6 are applied per jet. Their variations are given as eigenvariations for the
different jet flavors (b, c, and light) and applied separately for each tagger but simultaneously
to all jets tagged by it. There are three variations for c-jets, four variations for light jets, nine
variations for b-jets, and one variation for τ -jets.

7.4.3.3. Experimental Uncertainties

All uncertainties associated with the conditions of the pp collisions are summarized as experi-
mental uncertainties here.

All simulated events are reweighted to agree in their distribution of the number of pile-up
events with the profile observed in data. The uncertainty associated with this procedure is
given by the variation of the additional scaling applied to data described in Section 5.2.

The uncertainty on the determination of the integrated luminosity as given in Section 5.1 is
applied as a variation of the overall normalization of the event prediction.

7.4.3.4. Uncertainties Specific to the s-Tagger Calibration

While requiring b-tags for the jets jlep
b and jhad

b reduces the contribution of tt(WsWb) and
tt(WdWb) decays in the calibration to O(10−3) and O(10−6), respectively, it is still necessary
to assume values of |Vts| and |Vtd|. For this, the nominal value and the 1σ variations are chosen
according to Equation 2.

For the estimate of the background induced by fake leptons, an overall normalization uncer-
tainty of 50% is assumed, which results in good agreement between the background estimate
and data within this uncertainty plus the statistical uncertainty. This rough approach is justi-
fiable as fake induced background has only a relatively minor contribution. To account for the
extrapolation of the fake efficiency of muons from 35 GeV < pT < 50 GeV to pT > 50 GeV, an
additional 50% uncertainty on said efficiency in the high-pT bin of the fake efficiency of muons
is applied and propagated to the calibration.

An additional uncertainty on the shape of the s-tagger output is applied. This is done
because it cannot be ensured that the selections of the flavor-enriched regions – especially the
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use of b- and c-taggers – does not bias the s-tagger response, and because there is an inherent
variance in the definition of the jets flavors. This uncertainty is derived by comparing the
s-tagger distributions of the jet flavor in each region.
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(a) s-Tagger response of c-jets for 1.5 < |η| < 2.5
and 60 GeV < pT < 70 GeV.
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(b) s-Tagger response of s-jets for 1.5 < η < 2.5
and 150 GeV < pT < 200 GeV.

Fig. 7.19: Exemplary s-tagger responses after the preselection and in the different flavor-
enriched regions. The error bars indicate the statistical uncertainty of the distri-
bution in the given region. All regions enriched in a certain flavor are orthogonal to
each other and a subset of the preselection region.

Figure 7.19 shows two example comparisons, one of an s-tagger response of c-jets with very
little variation between regions and one response of s-jets on the other end of the spectrum,
displaying a large variance in the observed responses. For all flavors, the largest absolute
difference between the responses across all regions is taken as systematic uncertainty. To
reduce the influence of statistical fluctuation, regions that contain less than ten simulated jets
of the given flavor are not included.

7.5. Efficiencies, Mis-Tag Rates, and Scale Factors
In the following, the derived efficiencies of selecting s-jets and the mis-tag rates, i.e. the
efficiency for all other jet flavors, when requiring an s-tagger output larger than 0.55 are
discussed. The choice of this working point in light of the measurement of |Vts| and |Vtd| is
described in Chapter 8.2.

Figure 7.20 shows the efficiencies for s-jet and mis-tag rates for l-, c-, and b-jet for |η| ≤ 1.5.
The s-jet efficiency lies in a range between 25% and 50%, increases for increasing pT, and has

an absolute uncertainty between 6% and 15%. For pT < 60 GeV, it is significantly smaller than
the efficiency seen in simulation. The mis-tag rate for l-jets is relatively constant across all pT
and lies in the order of 20%. It is very similar to the mis-tag rate determined in simulation
and has an absolute uncertainty of up to 10%. Only for pT < 50 GeV, it is slightly larger than
simulations suggest. The mis-tag rates for c-jets and b-jets lie in a range between 18% and
31%. They have an absolute uncertainty of up to 10% for c-jets and up to 4% for b-jets.

Overall, the distribution of the efficiencies and mis-tag rates across different jet pT are
relatively smooth, which suggests that the choice of bins is able to reduce the influence of
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Fig. 7.20: Mis-tag rates for l-, c-, and b-jets and efficiencies of selecting s-jets when requiring
an s-tagger output score larger than 0.55 for jets with |η| ≤ 1.5. The efficiencies and
mis-tag rates shown are determined both in MC simulated jets and in data. The
error bars represent the statistical uncertainty and the green band represents both
the statistical and systematic uncertainties.

statistical fluctuation in the determination of the efficiencies. For low pT, the s-tagger is not
able to distinguish between s-jets and jets of other flavors because of differences between data
and the simulations used for the training of the s-tagger. For pT & 60 GeV, however, the
efficiencies of s-jets and mis-tag rates of jets of the other flavors are distinguishable.

Derived from the efficiencies and mis-tag rates, Figure 7.21 illustrates the SFs that will be
applied to all jets with |η| ≤ 1.5 if they are s-tagged. All SFs are compatible with one within
statistical and systematic uncertainties except for those that are applied to s-jets with a low
pT.

Especially for s-jets and l-jets, the statistical uncertainty dominates the uncertainties for
efficiencies, mis-tag rates, and SFs. This uncertainty can mainly be attributed to the lack of
purity of jet flavors in the regions enriched with g-, s-, and l-jets and the limited number of
flavor-enriched regions used in the calibration, resulting in the fit’s inability to prediction the
flavor composition across all regions.

The systematic uncertainties with the largest overall impact on the efficiencies and mis-tag
rates are the uncertainty on the bias of the NN output due to the used flavor definition and
selection criteria, as well as the uncertainties on c-tagging because of it is application in the
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Fig. 7.21: Scale factors for l-, c-, b-, and s-jets with |η| ≤ 1.5 and an s-tagger output score
larger than 0.55. The error bars represent the statistical uncertainty and the green
band represents both the statistical and systematic uncertainties.

definition of three of the five flavor-enriched regions.
Figure 7.22 shows the efficiencies for s-jets and mis-tag rates for jets of all other flavors for

jet |η| > 1.5. The s-jet efficiency lies between 30% and 50% across the entire pT spectrum,
with absolute uncertainties of up to 20%. The mis-tag rates for l-jets lie in a range between
17% and 28% and have absolute uncertainties between 5% for low pT and 16% for high pT.
For c-jets, the mis-tag rates lie between 24% and 31% with absolute uncertainties of up to 8%
in the lower pT regions and a large uncertainty of 26% for pT > 120 GeV. The mis-tag rates
of b-jets lie in a range between 22% and 28% and have the smallest absolute uncertainties of
all flavors of up to 5%. All efficiencies and mis-tag rates are compatible with the efficiencies
seen in simulation within their statistical and systematic uncertainties.

For jets with |η| > 1.5, the difference between the efficiencies for s-jets and jets of all other
flavors are not significant, especially because the uncertainties of the s-jet efficiencies are large.
Nonetheless, the central values of the mis-tag rates for l- and b-jets are smaller than the central
values of the efficiencies for s-jets. c- and s-jets, on the other hand, do not have efficiencies
and mis-tag rates that show any separation between them.

Figure 7.23 illustrates the SFs calculated from to the previously shown efficiencies and mis-
tag rates for jets with |η| > 1.5. While they are compatible with one in all bins, due to the
large uncertainties in the efficiencies and mis-tag rates, the uncertainties of the SFs reach up
to 100%.
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Fig. 7.22: Mis-tag rates for l-, c-, and b-jets and efficiencies of selecting s-jets when requiring
an s-tagger output score larger than 0.55 for jets with |η| > 1.5. The efficiencies and
mis-tag rates shown are determined both in MC simulated jets and in data. The
error bars represent the statistical uncertainty and the green band represents both
the statistical and systematic uncertainties.

Again, especially for s-jets and l-jets, the statistical uncertainty dominates. The systematic
uncertainties with the largest impact overall are the uncertainty of the bias of the NN output
as well as the uncertainty on the c-tagging used.

Because the uncertainties on the SFs are so large, it becomes very important to properly
include correlations between the SFs when applying them in any analysis. These correlations
will be discussed in the following section.
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Fig. 7.23: Scale factors for l-, c-, b-, and s-jets with |η| > 1.5 and an s-tagger output score
larger than 0.55. The error bars represent the statistical uncertainty and the green
band represents both the statistical and systematic uncertainties.

7.5.1. Correlations Between Scale Factors

The normalization factors determined for each flavor in the profile-likelihood fits are corre-
lated. One type of correlations are the correlations of the normalization factors of each flavor
between tagged and untagged jets. This correlation is given due to an overall correction of
the normalization that applies to the jets of one flavor independent of their s-tag, hence the
normalization of tagged and untagged jets of one flavor is correlated. These correlations are
already taken into account and propagated to the uncertainties shown in Figures 7.20-7.23.
The other type of correlations are the correlations of the normalization factors between jets of
different flavors. As an estimate for the total number of jets of all flavors can be fitted from
the number of jets in data, an up variation of one flavor contribution (e.g. s-jets) implies a
down variation of sum of jets that have a different flavor. One can understand this correlation
as a lack of knowledge on the real flavor composition that remains after the profile-likelihood
fit.

Figure 7.24a shows an example of the correlations between the normalization factors for jets
with 25 GeV < pT < 50 GeV and |η| ≤ 1.5 as estimated by the profile-likelihood fit including
all uncertainties. All of the normalization factors between tagged and untagged jets of the
same flavor are positively correlated as expected, the largest correlation being 31% for the
correlation between the normalization factors of charm jets and 15% for the correlation of
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(a) Full profile-likelihood fit including all system-
atic uncertainties.
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(b) Profile-likelihood fit including only statistical
uncertainties using the nominal samples with
Pythia as shower generator.
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(c) Profile-likelihood fit including only statistical
uncertainties using the shower variation sample
with Herwig as shower generator.

Fig. 7.24: Correlations [%] between the normalization factors derived for jets with 25 GeV <
pT < 50 GeV and |η| ≤ 1.5 for different configurations used in the profile-likelihood
fits.

bottom jets. Also, as suggested previously, the normalization factors for light and strange
jets are significantly anti-correlated (-18% for tagged and -20% for untagged jets), as it is not
possible to fully determine the flavor composition in the light-, strange-, and gluon-enriched
flavor regions.

To verify that the correlations determined during the profile-likelihood fit are stable for
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different flavor compositions, the fit is repeated including only statistical uncertainties in order
to compare the impact of the use of two different shower generators, Pythia (used in nominal
sample) and Herwig (used in the shower variation sample). The resulting correlation matrices
are shown in Figures 7.24b and 7.24b. While the derived correlations are different w.r.t. the
fit including the full set of systematic uncertainties, it holds that normalization factors of the
same flavor are correlated for tagged and untagged jets. As the correlations are very similar
for both shower generators used, it can be assumed that the flavor composition of the samples
has no significant impact on the correlations.

Figure 7.25 shows the correlations between the normalization factors of different flavors for
tagged and untagged jets. Their distribution is relatively flat across different pT and η bins that
are fitted independently, which suggests that the correlations derived in the profile-likelihood
fit are trustworthy.
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Fig. 7.25: Pair correlations between the normalizations of jet flavors derived in the profile-
likelihood fit. The plots show the relative stability of the correlations for each η and
pT bin and for all combinations of hadron flavors.

In order to take all correlations properly into account, eight eigenvariations of the normaliza-
tion factors are determined by diagonalizing the covariance matrix for each pT and η bin. Using
these eigenvariations, the uncertainties are then propagated to the SFs and can be applied in
any analysis using the s-tagger.
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Chapter 8
Studies On Constraining |Vtd| and |Vts|

The calibrated s-tagger is applied in a study on constraining the t-quark-related CKM matrix
elements |Vtd| and |Vts|. The relative probabilities of the decays tt(WbWb), tt(WsWb), and
tt(WdWb) are proportional to |Vtb|

2, |Vts|2, and |Vtd|2, respectively. It is therefore possible to
simultaneously constrain each of these CKM matrix elements in a profile-likelihood fit. Because
the contribution of tt(WsWb) and tt(WdWb) decays is expected to be small, it is reasonable
to additionally consider a procedure to determine exclusion limits on the branching fractions
BR(t → W+s) and BR(t → W+d) from which limits on |Vts| and |Vtd| can be deduced.

In the first part of this chapter, a mathematical prescription used to derive exclusion limits is
introduced. Section 8.2 illustrates the data selections used to distinguish between the different
tt decays. Section 8.3 discusses the composition of the background from tt(WbWb) decays as
well as a means to control this composition. In Section 8.4, the systematic uncertainties and
the modeling of the simulated event prediction are discussed. In Section 8.5, the sensitivity to
the relative contributions of t → W+s and t → W+d decays is discussed and in Section 8.6,
the results of the measurement are presented.

8.1. Hypothesis Testing
One mathematical formalism used to derive limits on |Vts| and |Vtd| is called hypothesis testing.
In this thesis, the frequentist CLs method introduced in Reference [171] is used.

In general, the compatibility of a hypothesis with an observation can be quantified by a p-
value, which is the cumulative probability of equal or less compatibility between the observation
and the hypothesis. Assuming that the hypothesis follows a Gaussian probability distribution,
one can convert the p-value into a significance

Z = Φ−1(1 − p) , (40)

where Φ−1(x) is the inverse of the probability density function of the Gaussian distribution.
In particle physics, hypotheses are most often either background-only (B-only) hypotheses,

i.e. the prediction of background is hypothesized to describe the observation, or signal-plus-
background (S+B) hypothesis, i.e. a combination of the predicted background and a predicted
signal is hypothesized to describe the observation.

It is important to note that a hypothesis cannot be confirmed because it is always possible
that an observation could also be described by another hypothesis. However, a hypothesis can
be falsified if it is rejected by an observation.

In particle physics, an observation is required to be incompatible with a hypothesis (e.g. a
B-only hypothesis) with a significance of Z = 3σ in order to claim evidence, where σ is the
standard deviation of the Gaussian distribution function, while a significance of Z = 5σ is
required to claim a discovery.

The rejection of an S+B hypothesis can be used to exclude a signal prediction. If an
observation has a p-value smaller 0.05 w.r.t. a S+B hypothesis, i.e. it is incompatible with
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the hypothesis at a confidence level (CL) of at least 95%, this S+B hypothesis is said to be
excluded by the observation at 95% CL.

If a predicted signal is variable, e.g. if its characteristics depend on one or more parameters,
the rejection of S+B hypotheses can be used to exclude ranges of these parameters. Most
often, the signal strength µ is such a parameter. It quantifies the overall magnitude of the
signal contribution w.r.t. a nominal value.

To test hypotheses, so-called test statistics are used, which condense the distributions char-
acterizing the hypotheses into single values. In this thesis, the test statistic suggested by
Pearson and Neyman [172] is used because it has the largest possible statistical power. It is
based on the ratios of likelihoods

λ(µ) =
L

(
µ,

~̂
θ(µ)

)
L

(
µ̂,

~̂
θ(µ̂)

) , (41)

where µ is the parameter of interest and ~θ are all other parameters in the likelihood. L(µ,
~̂
θ(µ))

is the conditional maximum-likelihood, i.e. ~̂
θ(µ) are the values of ~θ that maximize L for a fixed

value µ. L(µ̂,
~̂
θ(µ̂)) is the unconditional likelihood, were both µ̂ and ~̂

θ(µ̂) take on those values
maximizing L. For the likelihoods, the definition in Section 7.4.1 is used. The test statistic is
defined as [171]

q0 =

{
−2 ln λ(0) µ̂ ≥ 0,

0 µ̂ < 0,
=


−2 ln

L
(
0,

~̂
θ(0)

)
L

(
µ̂,

~̂
θ(µ̂)

) µ̂ ≥ 0,

0 µ̂ < 0,

(42)

for the B-only hypothesis and

q̃µ =



−2 ln
L

(
µ,

~̂
θ(µ)

)
L

(
0,

~̂
θ(0)

) µ̂ < 0

−2 ln
L

(
µ,

~̂
θ(µ)

)
L

(
µ̂,

~̂
θ(µ̂)

) 0 ≤ µ̂ ≤ µ

0 µ ≤ µ̂

, (43)

for the S+B hypotheses. Larger values of q0 or q̃µ correspond to a greater incompatibility
between data and the hypothesis. The cases for different µ̂ are used to handle data with a
value of µ̂ < 0, even though µ ≥ 0 is required by the physics model. The p-value for a given µ
is defined as

pµ =

∞∫
qobserved

f(qµ|µ)dqµ , (44)

where f(qµ|µ) is the probability density function of the test statistic, µ is the parameter
of interest of the hypothesis, qµ are the possible values the data can express for the test
statistic, and qobserved are the observed values. Figure 8.1a illustrates the distribution of two
test statistics (B-only and S+B hypothesis) and an observed value that is in good agreement
with the B-only hypothesis and in less agreement with the S+B hypothesis.
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Asimov values of q1 and q̃1 assuming a strength parameter µ′ = 0. These lines correspond to
estimates of the median values of the test statistics assuming µ′ = 0. The areas under the
curves f(q1|1) and f(q̃1|1) to the right of this line give the median p-values.
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Figure 5: (a) The pdfs f(q1|1) and f(q1|0) for the counting experiment. The solid curves show the
formulae from the text, and the histograms are from Monte Carlo using s = 6, b = 9, τ = 1. (b)
The same set of histograms with the alternative statistic q̃1. The oscillatory structure evident in the
histograms is a consequence of the discreteness of the data. The vertical line indicates the Asimov
value of the test statistic corresponding to µ′ = 0.

For the example described above we can also find the distribution of the statistic q =
−2 ln(Ls+b/Lb) as defined in Sec. 3.8. Figure 6 shows the distributions of q for the hypothesis
of µ = 0 (background only) and µ = 1 (signal plus background) for the model described above
using b = 20, s = 10 and τ = 1. The histograms are from Monte Carlo, and the solid curves
are the predictions of the asymptotic formulae given in Sec. 3.8. Also shown are the p-values
for the background-only and signal-plus-background hypotheses corresponding to a possible
observed value of the statistic qobs.
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Figure 6: The distribution of the statistic
q = −2 ln(Ls+b/Lb) under the hypotheses
of µ = 0 and µ = 1 (see text).

5.1.1 Counting experiment with known b

An important special case of the counting experiment above is where the mean background b
is known with negligible uncertainty and can be treated as a constant. This would correspond

25

(a) Distributions of two distinctly different test
statistics for a background-only and a signal-
plus-background hypotheses [171].

ps+b = P (q ≥ qobs|s + b) =

∫
∞

qobs

f(q|s + b) dq . (1)

In a similar way, one takes the p-value of the background-only hypothesis to be

pb = P (q ≤ qobs|b) =

∫ qobs

−∞

f(q|b) dq . (2)

In what is called the “CLs+b” method, one carries out a standard statistical test of the
s + b hypothesis based on its p-value, ps+b. The signal model is regarded as excluded at a
confidence level of 1 − α = 95% if one finds

ps+b < α , (3)

where, e.g., α = 0.05. A confidence interval at confidence level CL = 1−α for the rate of the
signal process can be constructed from those values of the rate s (or cross section) that are
not excluded, and the upper limit sup is the largest value of s not excluded. By construction,
the interval [0, sup] will cover s with a probability of at least 95%, regardless of the value of
s.

The problem with the CLs+b procedure is that one will exclude, with probability close to
α (i.e, 5%) hypotheses to which one has little or no sensitivity. This corresponds to the case
where the expected number of signal events is much less than that of background. Such a
scenario is illustrated in Fig. 2, and corresponds to having the distributions of q under both
the b and s + b hypotheses almost overlapping with each other.

If, for example, the expected numbers of signal and background events are s and b,
respectively, and one has s ≪ b, then if the observed number of events has a sufficient
downward fluctuation relative to s + b (which is approximately equal to b), then this value
of s will be excluded. In the limit where s ≪ b, one might want intuitively this exclusion
probability to go to zero, but in fact in the CLs+b procedure it approaches α = 5%. Given
that one carries out many tests for different signal models, it is not desirable that one out of
twenty searches where one has no sensitivity should result in exclusion.
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Figure 2: Distributions of the test vari-
able q under the s + b and b hypotheses in
an example where one has very little sen-
sitivity to the signal model.

To protect against excluding models to which one has little or no sensitivity, in the CLs

procedure a signal model is regarded as excluded if one finds

2

(b) Distributions of two very similar test statis-
tics for a background-only and a signal-plus-
background hypotheses [173].

Fig. 8.1: Distributions of the test statistics for background-only hypotheses (right Gaussians)
and signal-plus-background hypotheses (left Gaussians). Given the observed value
qobs, the p-value for the background-only hypothesis corresponds to the yellow area,
while the p-value of the signal-plus-background hypothesis corresponds to the green
area.

As Reference [173] illustrates, if the signal contribution is small compared to the background
contribution, the B-only hypothesis and the S+B hypothesis can be too similar, resulting in
the exclusion of values of µ for which the analysis actually has no sensitivity. This is illustrated
in Figure 8.1b, where there is large overlap between the distributions of the test statistics of
the B-only hypothesis and a S+B hypothesis. To mitigate this effect, the CLs method [174] is
used for setting exclusion limits. It combines the p-value of both B-only (pb) and S+B (ps+b)
hypothesis to

CLs :=
ps+b

1 − pb
. (45)

With this definition, signal contributions can be excluded at 95% CL if CLs < 0.05.
For a large number of events N [175],

− 2 ln λ(µ) =
(µ − µ̂)2

σ2 + O
(

1√
N

)
, (46)

the test statistic can be approximated as [171]

q0 ≈
{

µ̂2/σ2 µ̂ ≥ 0,

0 µ̂ < 0
(47)
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and

q̃µ ≈


µ
2

σ
2 − 2µµ̂

σ
2 µ̂ < 0,

(µ−µ̂)
2

σ
2 0 ≤ µ̂ ≤ µ,

0 µ̂ > µ,

(48)

respectively. Assuming µ = 0 realized in data, this asymptotic approximation is used to
estimate the expected exclusion limits1.

Whenever the performance and stability of any statistical methods are tested, an Asimov
dataset is created. It is a stand-in for real data and is built from the available predictions such
that the estimators for all parameters yield the true parameter as given by the prediction [171].

All statistical methods described above are used as implemented in the TRExFitter software
package version 4.12 [158], based on the RooFit package [176].

8.2. Signal Region Selection

In order to constrain the t-quark-related CKM matrix elements, a dileptonic event selection is
chosen, which requires an electron and a muon of opposite-sign electric charge in the final state.
Figure 8.2 shows an exemplary Feynman diagram of tt production and a subsequent dileptonic
decay, also depicting all flavor combinations for the quarks in the final state as allowed on
tree-level by the SM. The eµ selection yields very few background events from processes
other than tt since the requirement of two leptons reduces the background contribution of W
boson production in association with jets and the requirement of two leptons of different flavors
reduces the background contribution of Z boson production in association with jets. To reduce
the contribution of background from hadronic resonances decaying to leptons, additionally, an
invariant mass m(eµ) > 15 GeV is required.

t

t̄

W −

W+

g

b̄,s̄,d̄

ν̄µ

µ−

b,s,d

e+

νe

Fig. 8.2: Exemplary Feynman diagram of leading-order tt production and decays in the dilep-
tonic channel. All possible flavor combinations of the quarks in the final state are
shown.

1It can also be used to derive the expected significance by assuming µ = µ
′, where µ

′ is the expected signal
strength.
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Moreover, the selection requires at least two jets with 25 GeV < pT < 140 GeV; the lower
bound on the pT is a standardized cut used in analyses targeting processes involving t quarks
at the ATLAS Experiment, while the upper bound is placed because of the use of the b-tagging
SFs derived by the prel

T calibration, which is only valid up to jet pT < 140 GeV.
To constrain |Vts| and |Vtd|, the unitarity of the CKM matrix, i.e. |Vtb|

2 + |Vts|2 + |Vtd|2 = 1
is assumed. The input distributions considered in the analysis should provide at least three
DOF, one for the overall normalization of tt decays, and two for the branching fractions
BR(t → W+s) and BR(t → W+d).
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(a) The number of jets without a b-tag with
25 GeV < pT < 140 GeV.
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(b) Invariant mass of the leading jet without a b-
tag and the lepton that minimizes m(`1, b)2 +
m(`2, j1)

2.

Fig. 8.3: Distributions illustrating the event yields of background processes and the agreement
between prediction and data in the signal region selection requiring one b-tagged jet.
The hashed bands show the combined statistical and systematic uncertainties. The
signal processes tt(WsWb) and tt(WdWb) are overlaid, assuming |Vts| = 0.041 and
|Vtd| = 0.009 and scaling them by a factor 500 and 10000, respectively. The lower
panel shows the ratio between data and prediction.

As the CKM matrix element |Vtb| is known to be close to unity, only tt decays with at least
one b quark in the final state are considered; decays such as tt(WsWs) and tt(WdWd) and
decays involving flavor-changing neutral currents that occur on loop level and are suppressed
are neglected.

Two signal region (SR) selections are defined:
In the first SR selection, in order to select tt decays with one b quark and one s or d quark

in the final state (tt(WsWb) and tt(WdWb)), exactly one b-jet is required. Figure 8.3a shows
the resulting number of jets without a b-tag. Because this distribution of the jet multiplic-
ity is similar for both the signal tt decays, tt(WsWb) and tt(WdWb), and the background
tt(WbWb) decay, no further requirements are imposed on the number of jets without a b-tag.
Approximately half of all events contain only one jet without a b-tag; however, for the other
half of events, it is necessary to find the jet without a b-tag that has the highest probability
to originate from a t decay as the s-tagger classification of this jet will yield the main dis-
crimination between tt(WsWb) and tt(WdWb) events in this analysis. A trend in the ratio
between data and prediction in Figure 8.3a indicates that the modeling of these jets is not
ideal and that the number of jets not b-tagged is underestimated for large jet multiplicities.
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The modeling will be further discussed in Section 8.4.
To match one of the jets without a b-tag to a t quark, three approaches are considered. In

all of these scenarios, the jet with a b-tag is assumed to be a decay product of one of the t
quarks.

• The leading jet (i.e. the jet with the largest pT) without a b-tag, j1, is assumed to be the
jet from the second t decay as jets from tt decays tend to have larger momentum than
jets from additional radiation or pile-up. To pair the jets with and without a b-tag each
to one lepton in the final state, i.e. to find the pairs of jets and leptons that have their
origin in the same t quark, the permutation minimizing m(`1, b)2 + m(`2, j1)

2 is chosen.

• Alternatively, m(`1, b)2 + m(`2, ji)
2 is evaluated for each jet ji without a b-tag and all

possible pairings of leptons and jets. The jet ji that provides the smallest m(`1, b)2 +
m(`2, ji)

2 and the corresponding lepton overall are assigned to the t quark decay without
a b quark. This association tends to pair leptons and jets that are close in proximity, as
leptons and jets originating from t quark decays tend to be closer together when the t
quark carries large momentum.

• In a third considered approach, the jet without a b-tag that minimizes ∆R(`1, b) +
∆R(`2, ji), where the ji are all jets without a b-jet and all permutations of leptons
and jets are allowed, is chosen. Similarly to the previous type of association, this one
selects lepton and jets pairs that are close in proximity, while, however, neglecting the
momentum of the jets and the leptons in the consideration.

Assuming that the t quark has no intrinsic width and neglecting the masses of both the
lepton and the quark from its decay, one finds that the kinematic limit of the invariant mass
of the jet and lepton from a t decay, m(`, j), is

max(m(`, j)) =
√

m2
t − m2

W ≈ 153 GeV , (49)

where mt is the mass of the t quark and mW is the mass of the W boson. However, as the t
quark has an intrinsic width and mainly because the detector resolution needs to be considered
as well, a requirement of m(`, j) < 175 GeV is imposed on the invariant masses of both lepton
and jet pairs. This requirement has been used in other analyses involving dileptonic tt decays,
cf. e.g. the previously mentioned calibration of the b-tagging algorithm [63]. Figure 8.3b shows
the distribution of the invariant mass of the leading jet without a b-tag and the lepton assigned
to it, m(`, j1). The distributions are relatively similar for all tt decays independent of the flavor
of the quarks, which means that m(l, j1) cannot be used to distinguish between tt(WbWb) and
tt(WsWb)/tt(WdWb) decays. Within its statistical and systematic uncertainty, the simulated
prediction for m(l, j1) agrees well with the observed distribution.

As only jets with pT < 140 GeV can be tested for their b-tag due to the limitations of the
prel

T calibration, b-tagged jets with pT > 140 GeV could slip through the selection. Therefore,
it is additionally tested if the SR selection is improved when all events containing jets with
pT > 140 GeV are rejected.

In the second SR selection, to select events enriched with tt(WbWb) decays, the selection for
tt(WsWb) and tt(WdWb) decays is adapted accordingly. First of all, a minimum of two jets,
exactly two of them being b-tagged, are required. The leptons and b-tagged jets are paired by
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s-Tagger Jet Classified Using the s-Tagger
Classification Threshold Leading Minimizing

∑
m(`, j)2 Closest to Lepton

0.50 0.00386 0.003861 0.003881
(0.00411) (0.004125) (0.00414)

0.55 0.003820 0.003832 0.00385
(0.0041074) (0.004096) (0.00411)

0.60 0.003829 0.003853 0.00387
(0.0041072) (0.004112) (0.00408)

Tab. 8.1: Expected exclusion limits on BR(t → W+s) calculated using the CLs method for dif-
ferent choices of values for the s-tagger classification and different ways of associating
jets to t decays. The fit assumes |Vtd| = 0.009 and |Vts| = 0.0 (no signal injection)
and only statistical uncertainties are used. For the values given in parentheses, all
events containing jets with pT > 140 GeV are rejected.

minimizing m(`1, bi)
2 + m(`2, bj)

2, i, j = 1, 2, and both individual values m(`, b) are required
to be smaller than 175 GeV.

To evaluate the performance of the three approaches for the selection and association of
the non-b-tagged jet used with the s-tagger, a fit with a simple input and including only the
statistical and no systematic uncertainties is considered. It uses three bins: One contains the
event yield of the SR selection requiring two b-tagged jets and two contain the event yields
of the SR selection requiring one b-tagged jet depending on whether the jet without the b-tag
that was assigned to a t decay has an s-tag or not. This way, each bin is enriched in tt(WbWb),
tt(WdWb), and tt(WsWb) decays, respectively, which makes it a simplified version of the fit
used to constrain the CKM matrix elements |Vtd| and |Vts| later on.

For this fit, no s-tagging SFs are applied, yet, because it is additionally used to choose a WP
for the s-tagging calibration2. The fit does not consider data but estimates the performance
based on the Asimov data. Using the CLs method, it derives an expected upper limit at 95%
CL on BR(t → W+s), assuming |Vts| = 0.0, |Vtd| = 0.009, and |Vtb| ≈ 1.0. The resulting limits
are shown in Table 8.1. The best expected limit is found if the leading jet without a b-tag is
selected as input to the s-tagger and if 0.55 is used as classification threshold of the s-tagger.
Table 8.1 also shows the resulting limits on BR(t → W+s) if all events containing jets with
pT > 140 GeV are rejected. As these limits are larger for all considered s-tagger WPs and jet
assignments, events containing jets with pT > 140 GeV will be allowed to pass the selection,
but these jets will not be evaluated with the b-tagger.

The s-tagger output distribution of the leading jet without a b-tag is shown in Figure 8.4a.
It shows that the discrimination between all types of tt decays is small. It additionally be-
comes clear that the number of available tt(WsWb) and tt(WdWb) events is not ideal as the
discrimination between the two types of signal is not statistically significant and that for a
proper measurement, an extension of the signal sample is necessary.

To increase the stability of the fits used in the statistical analysis and to enhance the dis-
crimination power, the s-tagger output distribution of the subleading jet without a b-tag is
included in the analysis as well. This is useful as it is possible for jets from t decays to carry
less momentum than jets from additional radiation or pile-up. The distribution of the s-tagger

2This step in the optimization was done prior to the s-tagging calibration, hence this optimization was kept
deliberately simple.
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(a) s-Tagger output of the leading jet without a
b-tag.
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(b) s-Tagger output of the subleading jet without
a b-tag.

Fig. 8.4: s-Tagger output of the two leading jets without a b-tag in the signal region requiring
one b-tagged jet. The background of tt(WbWb) decays if divided into subcategories
according to whether the jet without a b-tag assigned to a t decay was mistagged as
non-b-jet or misassigned to a t decay. The hashed bands show the combined statistical
and systematic uncertainties. The signal processes tt(WsWb) and tt(WdWb) are
overlaid, assuming |Vts| = 0.041 and |Vtd| = 0.009 and scaling them by a factor 500
and 11000, respectively. The lower panel shows the ratio between data and prediction.
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(a) pT of the leading jet without a b-tag.
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(b) pT of the subleading jet without a b-tag.

Fig. 8.5: pT distribution of the two leading jets without a b-tag in the signal region requiring
one b-tagged jet. The hashed bands show the combined statistical and systematic
uncertainties. The signal processes tt(WsWb) and tt(WdWb) are overlaid, assum-
ing |Vts| = 0.041 and |Vtd| = 0.009 and scaling them by a factor 500 and 10000,
respectively. The lower panel shows the ratio between data and prediction.

output of these subleading jets is shown in Figure 8.4b. Similar to the distribution for leading
jets without a b-tag, the discrimination between all tt decays is small and lacks statistical
significance.

Figure 8.5 shows the pT distribution of both the leading and the subleading jet without a
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b-tag. For these distributions, the ratio between data and prediction shows a significant trend,
which will be discussed in Section 8.4. For the leading jet, there is a significant difference in the
pT distribution between tt(WbWb) decays and tt(WsWb) and tt(WdWb) decays, the latter
two having a larger average pT. For the subleading jet, no significant differences are observed.
Considering these distributions, six bins are defined based on the SR selection requiring one
b-tagged jet:

• Two bins of the s-tagger output distribution for leading jets without a b-tag and
pT ≤ 50 GeV

• Two bins of the s-tagger output distribution for leading jets without a b-tag and
pT > 50 GeV

• Two bins of the s-tagger output distribution for the subleading jet without a b-tag

These six bins are complemented by two additional bins. The seventh bin contains the event
yield of the selection requiring two b-tagged jets targeting tt(WbWb) decays as it was previously
used for the optimization of the SR selection. Figure 8.6a shows the pT distribution of the
leading b-jet that passes this selection. It shows overall excellent agreement between data
and prediction. The eighth bin is a control region (CR) bin used to analyze and constrain
effects that allow for background events containing tt(WbWb) decays to pass the SR selection
requiring only one b-tagged jet and is discussed in detail in the following section.
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(b) Distribution of the invariant mass of the lead-
ing jet without a b-tag and the lepton paired
with it in the control region dedicated to con-
straining the contribution of tt(WbWb) back-
ground induced by the misassignment of a jet
to a t quark decay.

Fig. 8.6: Distributions illustrating the agreement between data and prediction used in two
of the eight bins of the analysis. The hashed bands show the combined statistical
and systematic uncertainties and the lower panel shows the ratio between data and
prediction.
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8.3. Background Composition in the Signal Region

The main background to the tt(WsWb) and tt(WdWb) decays selected in the SR are events
containing tt(WbWb) decays. By including a region requiring two b-tagged jets in the analysis,
the overall fraction of t → bW+ decays can be constrained. The background from tt(WbWb)
decays can be further divided into classes depending on whether a jet is mistagged by the
b-tagger or whether an additional light jet is misassigned to a t quark decay. Four different
combinations of misassignment and mistagging are possible; they are listed – together with
their absolute event yields – in Table 8.2. In the SR requiring one b-tag, 31% of the selected
tt(WbWb) decays pass the selection because one of the two b-jet is not b-tagged. 67% of the
selected tt(WbWb) decays pass the selection because only one of the two b-jets is reconstructed
and/or b-tagged and an additional jet without a b-tag is misassigned to a t decay. The re-
maining 2% of the selected tt(WbWb) events pass the selection with two mistags (a non-b-jet
that is misassigned to a t quark decay is additionally wrongly b-tagged and a b-jet correctly
assigned to a t decay is wrongly not b-tagged) or because two additional jets were misassigned
to the two t decays and one of them is wrongly b-tagged. In the following, all events containing
tt(WbWb) are classed as ”mistagged“ if they contain at least one mistagged jet (this includes
the latter three types of misselections), or else they are classed as tt(WbWb) including a mis-
assigned jet. Figures 8.4a and 8.4b illustrate the relative contributions of these two types of
tt(WbWb) background in the SR.

Type of tt(W bW b) Background Signal Region, Control Region
1 b-Tagged Jet Misassignment

Light jet misassigned 130000 ± 10000 19000 ± 2000
to top-quark decay

b-jet from top-quark decay without a b-tag 61000 ± 15000 340 ± 90

Light jet mistagged as b-jet and 2400 ± 400 340 ± 70
both jets misassigned to top-quark decay

Both jets assigned to top quarks are mistagged 1400 ± 400 55 ± 20

Tab. 8.2: Number of events containing tt(WbWb) decays passing the signal region selection
requiring one b-tagged jet, divided by the reason for their selection as listed in the first
column. The number of events are either the sum of the events in all bins containing
events passing the signal region selection requiring one b-tagged jet (middle column)
or the number of events passing the selection of a control region dedicated to the
constraint of background contributions due to jet misassignment (right column). The
uncertainties correspond to the statistical and systematic uncertainties and event
yields are rounded to significant digits.

The uncertainty on the SR contribution of tt(WbWb) decays passing the selection due to
a mistagged jet should be equivalent to the b-tagging uncertainty. It is, on the other hand,
not evident that the contribution of background induced by misassigning a jet to a t decay is
correctly modeled in simulations. Therefore, in order to verify and correct the number of such
events passing the selection, a dedicated control region is defined.

This region uses the same selection requirements as the SR selection detailed in the previous
section. However, to increase the fraction of events containing misassigned jets, the require-
ment on the invariant mass m(`, j1) is inverted to m(`, j1) > 175 GeV, where j1 is the leading
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jet without a b-tag and ` is the lepton assigned to it by minimizing m(`1, j1)
2 + m(`2, b)2 for

the two possible permutations of lepton and jet pairs. Figure 8.6b shows the resulting distri-
bution of m(`, j1) with an overall good agreement between data and simulation, which means
that corrections to the normalization of the background contribution due to misassignment
will be small. While the overall event yield in the CR is significantly smaller than in the bins
containing events passing the SR selection requiring one b-tagged jet, the fraction of events
included because of a misassigned jet is significantly increased to 96%. A single bin containing
all events passing the selection of this CR is included in the fit to constrain the background
contribution due to jet misassignment.

In principle, the amplitude of both the production and decay of single t quarks involve CKM
matrix elements. Single t quark decaying to a W boson and an s or d quark, however, do not
have a significant event contribution in this analysis since at least one b-tagged jet is required
in the selection. For smaller |Vtb| and larger |Vts| or |Vtd|, in principle, both cross sections
and kinematics of singly produced t quarks would be altered. As single t quark production
involving the latter two CKM matrix elements is not available in simulations at this point,
these effects were neglected in this analysis, assuming a fixed value of |Vtb| = 1.0 for single t
quark production.

8.4. Systematic Uncertainties

Most systematic uncertainties described in 7.4.3 that are applied in the s-tagger calibration
described in Chapter 7 are included in the fit used to constrain |Vts| and |Vtd| as well. Those
uncertainties not applied in the measurement are the uncertainties on the SFs of the c-tagger
(which is not used in this measurement), the uncertainties related to the estimation of back-
ground from lepton fakes (which has a negligible impact in this measurement), and the uncer-
tainties on the biases imposed on the output of the s-tagger due to the selection of the flavor
enriched regions (because this uncertainty is specific to the calibration of the s-tagger).

In the measurement of |Vts| and |Vtd|, the b-tagging SFs derived by the calibration using the
prel

T method are applied to b-jets. These SFs are varied according to the up and down variation
available and are for now assumed to not be correlated to the b-tagging SFs of the other jet
flavors.

The only additional uncertainty included in the measurement is the uncertainty on the
application of the s-tagger as derived in Chapter 7. The eight eigenvariations are applied to all
jets evaluated with the s-tagger and simultaneously for jets of all pT and η. The eigenvariation
with the largest impact on the analysis imposes an up to 9% variation on the normalization
of jets with and without an s-tag.

As previously mentioned, the number of simulated events in the samples of tt(WsWb) and
tt(WdWb) decays is relatively small, which leads to a considerable impact of the statistical
uncertainty of these simulated samples on the measurement. This statistical uncertainty is
included as a separate uncertainty for both tt(WsWb) and tt(WdWb) decays.

Both the multiplicity (Figure 8.3a) and the pT distributions of jets without a b-tag (Fig-
ures 8.5a and 8.5b) show significant trends that are, however, mostly covered by systematic
uncertainties. Several observations indicate an issue in the b-tagging SFs for b-jets without a
b-tag (i.e. mistagged jets) as derived by the prel

T calibration, which has not been fully approved
by the ATLAS Collaboration yet. First of all, the disagreement between data and prediction
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Fig. 8.7: Absolute (top panel) and relative (bottom panel) impact of the up and down vari-
ations of the b-tagging scale factors derived by the prel

T calibration. The plots show
the up and down variation of this uncertainty (labeled as modified) for tt(WbWb) de-
cays passing the signal region selection requiring one b-tagged jet w.r.t. the nominal
prediction (labeled as original).

is prominent in regions that contain significant contributions of mistagged b-jets like the SR
requiring one b-tagged jet, while there is almost perfect agreement in the SR requiring two
b-tagged jets and the CR for misassignment. It is notable that the SFs of untagged jets are
calculated from the SFs of tagged jets using

κb(untagged jets) = 1 − κb(tagged jets)εb

1 − εb
, (50)

where κb are the b-tagging SFs for tagged and untagged b-jets, respectively, and εb is the
efficiency for b-jets. Due to this relation, small variations of the SFs of tagged jets yield
large variations for the SFs of untagged jets. And lastly, it is found that the down variation
of the b-tagging SFs is able to account for the larger part of the deviations observed in the
Figures 8.3a, 8.5a, and 8.5b, as can be seen in Figure 8.7.

Figure 8.8 supports all of the above arguments. It shows the distribution of the leading
jet without a b-tag in the SR requiring one b-tagged jet. However, for this figure, not the
b-tagging SFs for b-jets derived by the prel

T calibration, but the standard b-tagging scale factors
derived in tt decays are used. With these alternative SFs, the trend in the pT distribution is
significantly reduced. However, as previously mentioned, this calibration cannot be used in
the measurement of |Vts| and |Vtd|, as it makes assumptions on these CKM matrix elements.

In principle, the profile-likelihood fits used in this analysis are able to compensate for the
discrepancies between data and prediction by shifting the nominal value of a systematic un-
certainty according to the up or down variation of this uncertainty, which is referred to as
pull. Since several systematic variations can have the same impact on the input distribution
of the fit, a pull does not necessarily reflect the reason for the discrepancy between data and
prediction. The up variation of the scale variation of the tt(WbWb) sample e.g. shows a sim-
ilar behavior as the down variation of the uncertainty on the b-tagging SFs, as can be seen
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in Figure 8.9. Furthermore, even if a potential fault in the prel
T calibration could be compen-

sated by pulls on the systematic uncertainty, one needs to keep in mind that the systematic
uncertainties have a Gaussian constraint and therefore will most likely not be pulled enough
to compensate the effect fully. Hence, the measurement of |Vts| and |Vtd| will likely be biased
towards larger values.

8.5. Expected Sensitivity

The main objective of this thesis is the separation of t → W+s and t → W+d decays using an
s-tagger. Figure 8.10 summarizes all bins used in the analysis. It illustrates that tt(WbWb)
decays and the decays to tt(WsWb) and tt(WdWb) can be separated well and that the dif-
ference between tt(WsWb) and tt(WdWb) decays is small. In the following, the sensitivity of
the analysis setup is explored.

In addition to employing the CLs method to derive exclusion limits on |Vts| and |Vtd|, the
branching fractions BR(t → W+s) and BR(t → W+d) are determined in a profile-likelihood
fits as introduced in Section 7.4.1. As BR(t → W+q) ∝ |Vtq|2 ∝ tt(WqWb) and |Vtb|

2 +

|Vts|2 + |Vtd|2 = 1 is assumed, the contribution of tt(WbWb) decays is scaled down if the
contribution of tt(WsWb) or tt(WdWb) decays is scaled up and vice versa. Additionally,
the overall normalization of tt(WbWb) background due to the misassignment of a light jet
to a t decay is included as a free parameter in the fit. All other backgrounds (including the
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Fig. 8.10: Illustration of all bins used in the measurement of |Vts| and |Vtd|. The tt(WbWb)
background induced by one light jet misassigned to t decays is shown separate from
other tt(WbWb) background as its contribution is constrained in the dedicated con-
trol region bin. The hashed bands show the combined statistical and systematic
uncertainties and the lower panel shows the ratio between data and prediction. The
signal processes tt(WsWb) and tt(WdWb) are overlaid, assuming |Vts| = 0.041 and
|Vtd| = 0.009. The lower panel shows the ratio between data and prediction.

background contribution of single t quark decays) are only varied according to the impact of
the previously described systematic uncertainties and remain constant otherwise. The fits are
parameterized in terms of BR(t → W+s) + BR(t → W+d) and BR(t → W+d)/(BR(t →
W+s) + BR(t → W+d)), both to increase the stability of the fit and to increase legibility of
the results.

Figure 8.11 shows the likelihood profiles of profile-likelihood fits to Asimov data that were
done to determine the sensitivity of the analysis to tt(WsWb) and tt(WdWb) decays. They
are calculated by fixing BR(t → W+s) + BR(t → W+d) and BR(t → W+d)/(BR(t →
W+s) + BR(t → W+d)) to each value represented in the plot and minimizing the negative
logarithm of the likelihood. The smallest resulting negative logarithm of the likelihood overall
is then subtracted from all resulting negative logarithm of the likelihood values; this −∆ ln(L)
is shown as heatmap in the figure and is used to define both one-sided and two-sided confidence
intervals assuming that the likelihood follows a Gaussian distribution around the minimum.

In Figure 8.11a, the expected sensitivity of the presented measurement strategy when as-
suming |Vts|2 + |Vtd|2 = 0.00213 and a ratio of 9 : 1 for |Vts|2 : |Vtd|2 is shown. Especially
for large BR(t → W+d)/(BR(t → W+s) + BR(t → W+d)), the sensitivity is limited by the
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(b) Expected likelihood profile including a statis-
tical uncertainty associated with the simulated
samples of tt(WsWb) and tt(WdWb) decays
reduced by 50%.
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statistical uncertainty associated with the sim-
ulated samples of tt(WsWb) and tt(WdWb)
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cays and scaling the expected background events
to 4.5% of the nominal contribution.

Fig. 8.11: Expected two-dimensional likelihood profiles in the plane spanned by BR(t →
W+s) + BR(t → W+d) and BR(t → W+d)/(BR(t → W+s) + BR(t → W+d)).
The difference between the negative logarithm of the likelihood for each point and its
global minimum is illustrated as a heatmap. The fit assumed |Vts|2+|Vtd|2 = 0.00213
and a ratio of 9 : 1 for |Vts|2 : |Vtd|2. The confidence intervals correspond to 1 and
2σ variations from the best fit value.
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available number of simulated tt(WdWb) decays, resulting in a large 95% confidence interval
covering values of BR(t → W+s) + BR(t → W+d) < 0.075.

To determine the impact of the statistical uncertainty of the prediction of tt(WsWb) and
tt(WdWb) decays, this uncertainty is artificially reduced by 50% for both decays (i.e. assuming
the availability of signal samples that are four times larger), the resulting likelihood profile
being shown in Figure 8.11b, and removed altogether, resulting in the expected likelihood
profile shown in Figure 8.11c. Both of these estimates assume that the few available simulated
tt(WsWb) and tt(WdWb) decays are a good representation of a larger number of tt(WsWb)
and tt(WdWb) decays. An increase of 300% of the simulated tt(WsWb) and tt(WdWb)
decays available to construct the prediction reduces the impact of the statistical uncertainty
of the prediction significantly; the resulting 95% confidence interval covers values of BR(t →
W+s) + BR(t → W+d) < 0.036. However, even when the statistical uncertainty of the signal
samples is removed completely, it is not possible to distinguish tt(WsWb) and tt(WdWb)
decays.

Figure 8.11d shows that the total background contribution of tt(WbWb) and other processes
would have to be reduced by 95.5% or more so that the 89% confidence interval would not
cover the entire range of BR(t → W+d)/(BR(t → W+s) + BR(t → W+d)) when assuming
|Vts|2 + |Vtd|2 = 0.00213 and a ratio of 9 : 1 for |Vts|2 : |Vtd|2. As the main background of
tt(WbWb) is induced by misassignment of an additional jet to t quark decays, the reduction
of this background could be the starting point of further improvements of the analysis strat-
egy. However, as dileptonic tt decays have two neutrinos in their final states, a kinematic
reconstruction of the decay is difficult and will, most likely, not enable a 95.5% background
reduction.

Based on the studies presented in Chapter 6.2, it can be assumed that the construction of an
s-tagger with increased classification power at the ATLAS Experiment is not likely because the
capacity for particle identification is limited. However, the calibration of the s-tagger might be
improved by reconsidering or extending the calibration strategy (e.g. by introducing additional
regions to it), by including an improved c-tagging calibration if it becomes available, or by
including a larger set of data when it becomes available.

8.6. Constraints On |Vts| and |Vtd|

While it is not possible to determine |Vts|2 + |Vtd|2 or the ratio of |Vts|2 and |Vtd|2 in this
analysis, it is possible to constrain them.

In a first step, a profile-likelihood fit as described in the previous section is done using data.
Figure 8.12 summarizes the constraints and pulls on all uncertainties used in this fit.

The uncertainty of the SFs of the prel
T calibration is pulled towards the down variation and

the scale uncertainty of the tt(WbWb) sample is pulled towards larger values. These pulls are
expected based on the previous discussion on the modeling of the simulated prediction. The
uncertainty on the prel

T calibration is constrained, which means that the fit is able to reduces
the uncertainty of the b-tagging SFs used because the input distributions – comprised of bins
containing b-jets with and without a b-tag – provide it with sensitive to these b-tagging SFs.

The largest pull and the third largest constraint is observed in the uncertainty of the cross
section of tt production. It occurs because the fit is able to distinguish between tt events and
background from other processes based on their different multiplicities of b-tagged jets and
their relative fractions of the leading and subleading jets included in the SR. The resulting
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Fig. 8.12: Pull plot of all systematic uncertainties that have either a normalization or shape
component with an impact larger than 1%. This plot is the result of a profile-
likelihood fit to find the best fit values of |Vts| and |Vtd| using data.

central value for the cross section of tt production still lies within the uncertainty of the theory
prediction.

The second largest constraint is observed for the uncertainty on the shower generator used
for tt(WbWb) samples. The shower uncertainty is constrained because the fit is sensitive to
the different flavor compositions of jets that are the result of using different shower generators.
However, the shower variation used as input to the fit is not founded on physical principles; it is
based on the symmeterized one-sided variation given by exchanging the shower generator from
the nominally used generator Pythia to Herwig. Therefore, a constrained shower uncertainty
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Fig. 8.13: Two-dimensional likelihood profiles derived in data. The difference between the neg-
ative logarithm of the likelihood for each point and its global minimum is illustrated
as a heatmap. The confidence intervals correspond to 1 and 2σ variations from the
best fit value.

means that the analysis is sensitive to quantities that are potentially not well modeled, which
needs further investigation in the future.

All other pulls and constraints shown in Figure 8.12 are not significant compared to the
previously mentioned nuisance parameters.

When interpreting the results presented in the following, all previously described caveats of
the analysis strategy have to be kept in mind.

Figure 8.13a shows the likelihood profile in the plane spanned by BR(t → W+s) + BR(t →
W+d) and BR(t → W+d)/(BR(t → W+d) + BR(t → W+s)) derived in data. The 89%
confidence interval is shifted towards larger values of BR(t → W+s) compared to the likelihood
profile based on Asimov data because there is relatively more data in bins including jets with
an s-tag than in those bins including jets without an s-tag. The 89% confidence interval
is additionally shifted to larger values of BR(t → W+d) + BR(t → W+s), because of the
bias of the b-tagging SFs. The best-fit value for BR(t → W+s) + BR(t → W+d) is found
to be approximately 0.01. This value is roughly one order of magnitude larger compared
to the value expected based on the values of |Vts| and |Vtd| derived in a global fit of the
CKM matrix [24]. The 95% confidence interval is shifted slightly towards lower values of
BR(t → W+d) + BR(t → W+s) compared to the likelihood profile based on Asimov data
because, in the fit to data, larger BR(t → W+s) are preferred. Based on this result, a
constraint of |Vts|2 + |Vtd|2 < 0.06 can be given at a 95% CL.

Figure 8.13b shows the likelihood profile transformed into the plane spanned by |Vts| and
|Vtd|. While the fit is still not sensitive to the ratio of |Vts| and |Vtd|, it shows that |Vts| < 0.21
and |Vtd| < 0.24 at 95% CL.
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8. Studies On Constraining |Vtd| and |Vts|

In an alternative approach, because both tt(WsWb) and tt(WdWb) decays are not in the
reach of observation, 95% CLs on BR(t → W+s)+BR(t → W+d)are derived. This is done for
21 equidistant values of BR(t → W+d)/(BR(t → W+s)+BR(t → W+d)) ∈ [0.0, 1.0]. Similar
to the setup of the profile-likelihood fits, for the 95% CLs method, the background contribution
of tt(WbWb) decays is adjusted according to the different contributions of tt(WsWb) and
tt(WdWb) included in the hypothesis test in order to preserve the unitarity of the CKM matrix.
The contribution of tt(WbWb) background due to jet misassignment is adjusted to the value
determined in the profile-likelihood fit. All other backgrounds are only varied according to the
impact of the previously described systematic uncertainties and remain constant otherwise.

The resulting limits are shown in Figure 8.14a. The main difference between considering a
likelihood profile and the CLs method to derive limits on BR(t → W+s) + BR(t → W+d) is
that the CLs method only uses the nominal values provided by the simulated prediction to
derive limits. The uncertainties, especially the large statistical uncertainties of the samples
containing tt(WsWb) and tt(WdWb) decays, only become apparent as large uncertainty bands
for the expected CLs limit. The observed 95% CLs limit lies within the 1σ confidence interval
of the expected upper limit for almost all ratios of BR(t → W+s) and BR(t → W+d). It is
slightly larger for large BR(t → W+s) but still well contained in the 2σ confidence interval.
The maximum observed 95% CLs limit excludes BR(t → W+s) + BR(t → W+d) > 0.06.
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Fig. 8.14: Expected and observed 95% CLs limits. 1 and 2σ variations from the expected value
are shown as green and yellow bands.

In Figure 8.14b, the 95% CLs limits are transformed to be represented in the two-dimensional
plane spanned by |Vts| and |Vtd|. At 95% CL, |Vts| > 0.23 and |Vtd| > 0.18 are excluded.
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8.6. Constraints On |Vts| and |Vtd|

The constraints on |Vts| and |Vtd| derived in the presented study are quantitatively slightly
worse than the most stringent value obtained by an Rb measurement, which is |Vtb|

2 > 0.95
at 95% CL [6]. They are similar to the limit of |Vts|2 + |Vtd|2 < 0.057 at 95% CL derived in
single t quark productions [17].

However, with a limit of |Vts| < 0.132 at 95% CL assuming |Vtd| = 0.0, Reference [28] is able
to set a much stricter limit on |Vts| than the study presented in this thesis because its main
focus is the reduction of background from t → W+b decays. In this thesis, on the other hand,
the separation of t → W+s and t → W+d decays was the main objective.

It is also apparent that the limits on |Vts| and |Vtd| derived in t decays, while being indepen-
dent of the use of hadronic form factors from theory calculations, cannot yet compete with the
measurements of |Vts| and |Vtd| in B0

s –B0
s and B0–B0 oscillations [24], which have a per-mill

precision.
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Chapter 9
Summary and Conclusion

In this thesis, an algorithm for the identification of jets from strange quarks – a so-called
s-tagger – was developed, calibrated, and applied in a measurement constraining the CKM
matrix elements |Vts| and |Vtd| in top-quark decays at the ATLAS experiment.

The attainable performance of an s-tagger at hadron colliders was explored in a study
considering different idealized detector designs. For this, simulated particles were used as input
to recurrent neural networks including Long Short-Term Memory layers to derive estimates
on the achievable discrimination power between jets from strange and down quarks. This
study revealed that the main difference between these jets are the types of the most energetic
constituent particles. Hence, detectors that enable particle identification – such as Cherenkov
detectors – allow for the best separation of jets from strange and down quarks. If particle
identification is not available, the combined use of information from tracking detectors as well
as electromagnetic and hadronic calorimeters is most promising to separate the two jet flavors.

The presented studies support the results of the other available publications on s-tagging
and can be used as a reference for the performance of s-taggers at actual collider detectors.
Should future detectors desire to the identification of jets from strange quarks, the studies can
also be used in the consideration of different detector setups.

The first s-tagger at the ATLAS Experiment was built with the aim of being able to dis-
tinguish between jets from t → W+s and t → W+d decays. It uses a deep neural network to
combine information from reconstructed KS and Λ0, from energy deposited in the calorimeters,
and from reconstructed tracks. For an identification efficiency for jets from strange quarks of
40%, it provides a rejection rate of 4.0 for jets from down quarks.

The s-tagger was calibrated in dependence of the jets’ transverse momentum and pseu-
dorapidity using semileptonic tt decays including a hadronically decaying W boson. Using
dedicated selections, five regions were defined, each enriched with jets from either bottom,
charm, strange, or light quarks or from gluons. The relative contributions of jets of different
flavors in each region were determined from data for jets with and without an s-tag by using a
profile-likelihood fit. The tagging efficiency for jets from strange quarks and the mis-tag rates
for all other jet flavors were determined for a working point with an efficiency of 40% for jets
from strange quarks. The derived uncertainties of these efficiencies and mis-tag rates reach up
to 50% for jets with a pseudorapidity |η| ≤ 1.5 and up to 100% for jets with a pseudorapidity
|η| > 1.5. For their reduction, it is necessary to extend the calibration strategy to be more
sensitive to the flavor composition of jets from light quarks.

It was found that for jet with a pseudorapidity |η| ≤ 1.5, the s-tagger has the ability to
separate between s-jets and jets of other flavors, while for |η| > 1.5, the large uncertainties
degrade the separation. Based on the measured efficiencies and mis-tag rates, scale factors to
adjust the s-tagger response of simulated jets to match the response of jets in data were cal-
culated, which allow for its application in data analyses. Thus, it provides a valuable addition
to the flavor tagging algorithms already in use at the ATLAS Experiment.
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The calibrated s-tagger was applied in an analysis setup designed to constrain the CKM
matrix elements |Vts| and |Vtd| in top-quark decays. This setup uses events containing pair-
produced top quarks decaying leptonically with an electron and a muon of opposite-sign electric
charge in the final state. It was demonstrated that, in principle, it is possible to disentangle
t → W+s and t → W+d decays using an s-tagger, which can be used to individually determine
or constrain |Vts| and |Vtd| in top-quark decays. However, because |Vtb| is close to unity, in the
presented analysis setup, the background from t → W+b decays is so large that the sensitivity
of the s-tagger is not sufficient to determine the ratio of the branching fractions of t → W+s
and t → W+d decays.

Nonetheless, assuming unitarity of the CKM matrix, it was possible to derive a limit of
|Vts|2 + |Vtd|2 < 0.06 at 95% confidence level. This limit has a similar size as other constraints
on the top-quark related CKM matrix elements derived in top-quark decays. Using the s-
tagger, it was also newly possible to derive limits on |Vts| and |Vtd| in the two-dimensional
plane spanned by them. These limits can be interpreted as individual limits on |Vts| and |Vtd|
without making any additional assumptions on the CKM matrix except for its unitarity. |Vts|
and |Vtd| are found to be smaller than 0.21 and 0.24 at 95% confidence level, respectively.

For a better sensitivity to t → W+s and t → W+d decays, future attempts to determine
or constrain |Vts| and |Vtd| in top-quark decays using an s-tagger will have to focus on the
reduction of background from t → W+b decays.
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Acronyms

AUC area under the curve
BOOSTER Proton Synchrotron Booster
CERN European Council for Nuclear

Research
CKM Cabibbo-Kobayashi-Maskawa
CL confidence level
CR control region
CSC cathode strip chamber
DNN deep neural network
DOF degrees of freedom
ECAL electromagnetic calorimeter
EM electromagnetic
FSR final-state radiation
HCAL hadronic calorimeter
ID inner detector
IP impact parameter
ISR initial-state radiation
JER jet energy resolution
JES jet energy scale
JVT jet-vertex tagger
LAr liquid-argon
LEP Large Electron-Positron Collider
LHC Large Hadron Collider
LINAC2 Linear Accelerator 2
LO leading order
LS1 Long Shutdown 1
LS2 Long Shutdown 2
LSTM Long Short-Term Memory

MC Monte Carlo
MDT monitored drift tubes
ME matrix element
MS muon spectrometer
NLO next-to-leading order
NNLL next-to-next-to-leading logarithmic
NNLO next-to-next-to-leading order
NN neural network
NP nuisance parameter
PDF parton distribution function
PS Proton Synchrotron
PV primary vertex
QCD quantum chromodynamics
ReLU rectified linear unit
RNN recurrent neural network
ROC receiver operating characteristic
RoI region of interest
RPC resistive plate chamber
SCT silicon microstrip tracker
SF scale factor
SLAC Stanford Linear Accelerator Center
SM Standard Model of Particle Physics
SPS Super Proton Synchrotron
SR signal region
SSB sponaneous symmetry breaking
SV secondary vertex
TGC thin gap chamber
TRT transition radition tracker
WP working point
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Appendix A
s-Tagger Input Variables Based on
Reconstructed KS and Λ0

This chapter of the appendix gives an overview over the variables based on reconstructed KS

and Λ0 which are used as input features of the s-tagger trained for the ATLAS Experiment.
All distributions are shown twice, once for jets containing at least one reconstructed KS and
once for jets containing at least one reconstructed Λ0.

The most prominent physical differences between KS and Λ0 are their lifetimes (τ(KS) =
0.08954± 0.000 04 ns, τ(Λ0) = 0.2632± 0.000 20 ns [24]) and their masses (m(KS) = 497.611±
0.013 MeV, m(Λ0) = 1115.683 ± 0.006 MeV [24]).
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Fig. A.1: Distributions of the masses of the reconstructed strange hadrons for d-jets and s-jets.

Figure A.1a and A.1b show the reconstructed mass of KS and Λ0 matched to s- and d-jets.
Both mass distributions peak around the central mass value of each hadron. For s-jets, the
peaks are slightly more pronounced since these jets should contain fewer fake KS and Λ0. The
width of the mass peaks is dominated by the resolution of the detector.

Figures A.2a and A.2b illustrate the quality of the reconstruction of KS and Λ by showing
the χ2 value of the reconstruction. For s-jets, χ2 tends to be smaller which, again, hints at
fewer fake KS and Λ0 matched to s-jets than to d-jets.

Figures A.3a and A.3b show the reconstructed decay times τ of the KS and Λ0 in their inertial
frame. All curves show an exponential behavior in line with the expected lifetimes. However,
there are so-called turn-on effects for small decay times, i.e. an inefficiency of reconstruction for
those KS or Λ0 that decay too early to be reconstructed. Since in s-jets, the strange hadrons
tend to be more energetic, on average, smaller decay times can be reconstructed.

Figures A.4a and A.4b illustrate that strange hadrons inside of s-jets have higher pT than
those reconstructed in d-jets. Similar behavior can be seen for the fraction of pT of an s- or
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Fig. A.2: Distributions of the χ2 of the reconstructed strange hadrons matched to d-jets and
s-jets.
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Fig. A.3: Distributions of the decay times of the reconstructed strange hadrons in their inertial
frame for strange hadrons matched to either s-jets or d-jets. The decay time is
calculated from their reconstructed transverse momentum and the radial distance of
the decay vertex from the primary vertex.

d-jet that is carried by a KS or Λ0, cf. Figures A.4c and A.4d.

Now taking a look at the kinematic distributions of the s- and d-jets, it is found that the
selection of jets with either KS or Λ0 matched to them changes the distributions of the pT and
η of these jets. Figures A.5a and A.5b show the η distributions for jets containing KS and Λ0,
respectively. The η distribution of jets containing KS are almost as isotropically distributed as
all s- and d-jets from W decays available for the training of the NN (cf. Figure 6.22b), which
means that the lifetime of the KS is short enough and their momentum is large enough to not
see large effects of decay lengths in the detector. The reconstruction of Λ0, however, is more
efficient in the forward direction (i.e. for large |η|), because in this direction, the decay length
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A. s-Tagger Input Variables Based on Reconstructed KS and Λ0
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a reconstructed KS .
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Fig. A.4: Distributions of the transverse momenta of the reconstructed strange hadrons
matched to s- and d-jets and their relative contributions to the jet momenta for
both s- and d-jets.

covered by the inner detector is larger.

Generally, s-jets are more central than d-jets if they contain a reconstructed strange hadron,
most likely because they contain more strange hadrons from the isotropic hard scattering
process and less from underlying processes can be observed in the more forward direction.
The same trend can be seen in the pT distributions of the s-and d-jets containing strange
hadrons, where d-jets tend to have larger transverse momenta, cf. Figures A.6a and A.6b.

Rxy, the radial distance between the primary vertex and the reconstructed decay vertex of
the KS or Λ0, is shown in Figures A.7a and A.7b. The maximal measured value Rxy is 500 mm
and corresponds to the radius of the outermost layer of the ID, and the peak structure visible
in the distribution corresponds to the layers of the ID. Λ0 tend to decay farther away from
the primary vertex than KS due to their larger lifetime. For KS , Rxy tends to be shifted
to higher values for those KS matched to s-jets since they typically have higher momenta.
However, reconstructed Λ0 in s-jets seem to be reconstructed slightly closer to the primary
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Fig. A.5: Distributions of the pseudorapidity of s- and d-jets with a given reconstructed strange
hadron matched to them.
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Fig. A.6: Distributions of the transverse momentum of s-jets and d-jets with a given strange
hadron matched to them.

vertex than those in d-jets, which is the result of the complex interplay between kinematics
and reconstruction efficiencies in different regions of the detector.

The momentum of the reconstructed KS or Λ0 perpendicular to the jet axis, prel
T , as well as

the angular distance between KS or Λ0 and the jet axis (∆R) are shown in Figures A.8a-A.9b.
For both KS and Λ0, prel

T is larger for s-jets than for d-jets. One can reason that, if the
original high-momentum quark is an s-quark, for hadronization to result in a KS , one u quark
is needed in addition to the s quark, while for Λ0, a u- and a d-quark are needed. These
additional quarks add momentum in a direction different to the jet axis and cause a larger
∆R. Since u and d quarks from the colliding protons can be both valence and sea quarks,
they can add a large momentum relative to the jet direction. However, if the original high-
momentum quark is a d quark, the s quarks necessary in production of a strange hadron cannot
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Fig. A.7: Radial distance between the primary vertex and the reconstructed decay vertex of
the matched strange hadron for both s-jets and d-jets.
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Fig. A.8: Momentum component of the reconstructed strange hadrons to the axis of the s-jet
or d-jet they are matched to.

be a valence quark and therefore tends to add less momentum transverse to the jet axis. This
explains the difference of the shapes of prel

T for s-and d-jets.
For KS , the ∆R of s-jets is smaller than for d-jets, as it is expected for a particle which

carries a large part of the jets’ momentum. For Λ0 matched to s-jets, however, ∆R is larger
than for d-jets, most likely because here, the relative momentum transverse to the jet axis has
a larger impact on ∆R.
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Fig. A.9: ∆R between the reconstructed strange hadron and the axis of the s- or d-jets they
are matched to.
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Appendix B
Jet Attributes Used as s-Tagger Input
Variables

This chapter of the appendix illustrates the jet attributes used to train the s-tagger for the
ATLAS Experiment. They are based on either energies measured in the calorimeters or tracks
associated to the jets and can be split into three categories: The energies a jet deposits in
each calorimeter layer, the dimensions of the jets’ shower in the detector (i.e. the geometrical
moments), and their composition of electrically charged and neutral particles.
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Fig. B.1: Distributions of jet attributes for s-jets and d-jets.

The sampling fractions are the energy per jet measured in one calorimeter layer divided
by the total energy of the jet. All of them can be seen in Figures B.2 and B.3. Jets are
only included in the plots if they could have deposited any energy in the calorimeter layer
based on the direction of their jet axis in. Most sampling fraction distributions peak around
0.0 because there are only a few layers in which every jet deposits energy, such as the very
first calorimeter layer called presampler. It is remarkable that small negative energy entries
can occur. This is due to statistical fluctuations in the energy measurement the calibration
cannot fully take into account. While some sampling fractions show larger separation power
than others, all separations are larger than statistical fluctuations. The largest separation
power given by sampling fractions can be found for jets in the barrel region, and mainly in the
sampling fractions of the presampler, the layers of the EM calorimeter as well as the first two
layers of the tile calorimeter. d-jets tend to deposit slightly more energy in the presampler and
the first two layers of the EM calorimeter, while s-jets tend to deposit slightly more energy in
the third layer of the EM calorimeter and the tile calorimeter.

The most discriminating variable overall is the energy fraction deposited in all layers of the
EM calorimeter shown in Figure B.1a.
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To provide the s-tagger with a full picture of the jets’ showers in the calorimeter, all sampling
fractions are included as inputs to the NN. Additionally, the maximal fraction of energy
deposited in a single layer is used as an input variable. It is shown in Figure B.1b and tends
to be smaller for d-jets.

Another group of input variables are the jet moments, described in detail in Reference [148].
They include the longitudinal distance between the cluster with the largest energy (leading
cluster) in the jet and the jet’s geometrical center λleading cluster shown in Figure B.4a, the
average of the square of the lateral distance between the jet axis and the jet’s clusters 〈r2〉
shown in Figure B.5a, the average of the longitudinal distance between the jet’s geometric
center and the jet’s clusters 〈λ2〉 shown in Figure B.4b, as well as the radial distance R
between the primary vertex and the jet’s centroid (i.e. barycenter weighted in E), shown in
Figure B.5b. All of these quantities tend to be larger for s-jets than for d-jets since s-jets tend
to deposit their energy further down the calorimeter (more energy in the hadronic calorimeter
in comparison to d-jets) and therefore have a larger extension.

The final subset of input variables are related to the tracks associated with the jet via ghost
matching [142]. It includes the number of tracks associated to the jet shown in Figure B.5c,
the total pT carried by these tracks shown in Figure B.5d, and the pT -weighted charge of the
jet calculated via

Q =

∑
i∈tracks

qi · pT i∑
i∈tracks

pT i

. (51)

All of these variables are larger (in their absolute value) for d-jets, which means that for d-jets,
more momentum is carried by charged particles than for s-jets.
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B. Jet Attributes Used as s-Tagger Input Variables
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Fig. B.2: Distribution of the fraction of the total energy of the jet deposited in each calorimeter
layer for both s- and d-jets. Only jets that geometrically touch the given calorimeter
layers are included.
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Fig. B.3: Distribution of the fraction of the total energy of the jet deposited in each calorimeter
layer for both s- and d-jets. Only jets that geometrically touch the given calorimeter
layers are included.
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Fig. B.4: Distributions of jet attributes for s-jets and d-jets.
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Fig. B.5: Distributions of jet attributes for s-jets and d-jets.
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Appendix C
s-Tagger Feature Selection

In this chapter, the option to remove features from the NN trained with both strange hadron
features and jet attributes for an s-tagger at the ATLAS Detector is discussed.

The s-tagger setup that was found to be optimal in Section 6.3.2.3 is used as a baseline. To
determine the contribution each variable has to the NN output, L1 regularization is applied
in the input layer only. The regularization strength λL1 is gradually turned up until the AUC
score of the NN evaluated on the validation sample decreases. A regularization strength of
λ1 = 7 ·10−6 is the strongest regularization that does not result in a decrease of the AUC score.
For a NN with L1 regularization of this strength, the connection weights between the input
layer and the first hidden layer were evaluated. For this, the mean of the absolute value of all
connecting weights between an input node and all nodes in the first hidden layer is calculated.
Table C.1 shows the derived order of importance of the input features using these average
weights.

To remove the influence of the less important variables in the NN on the output, one by one,
the weights between an input node and the first hidden layer are set to zero, starting with those
weights connected to the input variable with the smallest contribution to the neural network
and then continuing towards those weights of the input nodes with larger contributions. Table
C.2 shows the resulting accuracy, separation power, and AUC scores as evaluated on the
validation sample. Both statistical uncertainty on the accuracy and AUC scores are derived
by bootstrapping the validation sample. The uncertainty on the separation power is derived
in a binned distribution of the NN output and assuming the number of jets in each bin to be
Poisson distributed. It can be seen that only the sampling fraction in the EME3 calorimeter
can be removed without impacting the performance of the NN. Since the full jet kinematics
are supplied to the NN, it is able to reconstruct the sampling fraction of a single calorimeter
layer from the sampling fractions in all other calorimeter layers.

In an additional step, the NN is retrained after removing variables from the input cumula-
tively, once again starting from the variable with the smallest contribution. Table C.3 shows
the resulting values for the accuracy, separation power, and AUC score. Once again, only one
variable can be removed without seeing an impact on the performance. All other variables
contribute to the classification power of the s-tagger.
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C. s-Tagger Feature Selection

Variable Weights Relative Weights Correlation to NN Output
Signal Background

Sampling fraction in EME3 0.000019 1.01 · 10−5 0.068 0.105
∆R(KS or Λ0, jet) 0.000020 1.06 · 10−5 -0.127 -0.071

Sampling fraction in HEC0 0.000020 1.10 · 10−5 0.111 0.15
pT (jet) 0.000023 1.23 · 10−5 0.049 -0.012

Sampling fraction in EMB3 0.000025 1.34 · 10−5 0.163 0.217
jet contains KS 0.000026 1.42 · 10−5 0.140 0.117

Sampling fraction in EMB2 0.000056 3.02 · 10−5 -0.233 -0.265
Sampling fraction in TileGap1 0.000068 3.69 · 10−5 0.073 0.081
Sampling fraction in TileBar1 0.000127 6.87 · 10−5 0.295 0.312
Sampling fraction in TileExt1 0.000209 1.13 · 10−4 0.158 0.17

Rxy(KS or Λ0) 0.000861 4.67 · 10−4 0.084 0.028
Sampling fraction in TileExt2 0.001700 9.23 · 10−4 0.115 0.119

χ2(KS or Λ0) 0.002706 1.47 · 10−3 -0.116 -0.081
pT (KS or Λ0)/pT (jet) 0.003614 1.96 · 10−3 0.131 0.084

jet contains Λ0 0.003752 2.03 · 10−3 -0.039 -0.049
m(KS or Λ0) 0.004184 2.27 · 10−3 0.057 0.026

Sampling fraction in TileExt0 0.004919 2.67 · 10−3 0.141 0.165
pT (KS or Λ0) 0.006863 3.72 · 10−3 0.192 0.099

Sampling fraction in EME2 0.007352 3.99 · 10−3 -0.078 -0.082
prel

T (KS or Λ0) 0.007709 4.18 · 10−3 0.129 0.105
Sampling fraction in HEC3 0.011791 6.40 · 10−3 0.057 0.055
Sampling fraction in HEC2 0.012443 6.76 · 10−3 0.099 0.102
Sampling fraction in HEC1 0.013005 7.06 · 10−3 0.134 0.156

η(jet) 0.013524 7.34 · 10−3 -0.006 0.001
Sampling fraction in TileGap3 0.021911 1.19 · 10−2 0.059 0.077

Sampling fraction in EME1 0.033682 1.83 · 10−2 -0.136 -0.135
Sampling fraction in TileGap2 0.037186 2.02 · 10−2 0.054 0.058

〈r2〉 0.038149 2.07 · 10−2 0.305 0.363
centroid R 0.045042 2.44 · 10−2 0.166 0.174

Sampling fraction in PreSamplerB 0.048505 2.63 · 10−2 -0.261 -0.224
Sampling fraction in EM calorimeter 0.050015 2.71 · 10−2 -0.606 -0.647
Sampling fraction in PreSamplerE 0.058469 3.17 · 10−2 -0.09 -0.077

Maximal sampling fraction 0.069258 3.76 · 10−2 -0.252 -0.367
number of ghost-matched tracks 0.082644 4.49 · 10−2 -0.198 -0.163
Sampling fraction in TileBar0 0.102472 5.56 · 10−2 0.281 0.323

Sampling fraction in EMB1 0.109051 5.92 · 10−2 -0.368 -0.379
Sampling fraction in TileBar2 0.110464 6.00 · 10−2 0.141 0.141

λleading cluster 0.119074 6.46 · 10−2 0.432 0.464
ghost-matched tracks pT 0.156317 8.49 · 10−2 0.000 0.000

〈λ2〉 0.161973 8.80 · 10−2 0.280 0.326
charge 0.191738 1.04 · 10−1 0.000 0.000

τ(KS or Λ0) 0.309544 1.68 · 10−1 -0.019 -0.018

Tab. C.1: Input features of the neural network combining information about reconstructed KS and
Λ0 as well as jet attributes, sorted by their importance (lowest to highest). The second
column shows the mean of the absolute values of the weights connecting the input node of
the variable named in the first column and all nodes in the first hidden layer. The third
column shows the relative contribution these average absolute weights have w.r.t. all other
variables. The fourth and fifth column quotes the correlation between the distribution of
the input variables and the output distribution of the neural network both in signal and
background.
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Variable Removed (Cumulative) Accuracy Separation [%] Validation AUC
none 0.5761 ± 0.0002 13.86 ± 0.02 0.6106 ± 0.0002

Sampling fraction in EME3 0.5763 ± 0.0002 13.90 ± 0.02 0.6106 ± 0.0002

∆R(KS or Λ0, jet) 0.5757 ± 0.0002 13.77 ± 0.02 0.6099 ± 0.0002
Sampling fraction in HEC0 0.5756 ± 0.0002 13.77 ± 0.02 0.6099 ± 0.0002

pT (jet) 0.5757 ± 0.0002 13.78 ± 0.02 0.6099 ± 0.0002
Sampling fraction in EMB3 0.5756 ± 0.0002 13.78 ± 0.02 0.6099 ± 0.0002

jet contains KS 0.5756 ± 0.0002 13.77 ± 0.02 0.6099 ± 0.0002
Sampling fraction in EMB2 0.5755 ± 0.0002 13.76 ± 0.02 0.6097 ± 0.0002

Sampling fraction in TileGap1 0.5755 ± 0.0002 13.75 ± 0.02 0.6097 ± 0.0002
Sampling fraction in TileBar1 0.5753 ± 0.0002 13.73 ± 0.02 0.6095 ± 0.0002
Sampling fraction in TileExt1 0.5750 ± 0.0002 13.71 ± 0.02 0.6094 ± 0.0002

Rxy(KS or Λ0) 0.5750 ± 0.0002 13.70 ± 0.02 0.6093 ± 0.0002
Sampling fraction in TileExt2 0.5737 ± 0.0002 13.60 ± 0.02 0.6084 ± 0.0002

χ2(KS or Λ0) 0.5737 ± 0.0002 13.60 ± 0.02 0.6084 ± 0.0002

pT (KS or Λ0)/pT (jet) 0.5738 ± 0.0002 13.62 ± 0.02 0.6085 ± 0.0002

jet contains Λ0 0.5736 ± 0.0002 13.58 ± 0.02 0.6082 ± 0.0002

m(KS or Λ0) 0.5686 ± 0.0002 12.94 ± 0.02 0.6032 ± 0.0002
Sampling fraction in TileExt0 0.5637 ± 0.0002 12.28 ± 0.02 0.5978 ± 0.0002

pT (KS or Λ0) 0.5650 ± 0.0002 12.37 ± 0.02 0.5986 ± 0.0002
Sampling fraction in EME2 0.5642 ± 0.0002 12.34 ± 0.02 0.5984 ± 0.0002

prel
T (KS or Λ0) 0.5629 ± 0.0002 11.55 ± 0.03 0.5932 ± 0.0002

Sampling fraction in HEC3 0.5611 ± 0.0002 11.47 ± 0.03 0.5925 ± 0.0002
Sampling fraction in HEC2 0.5577 ± 0.0002 11.22 ± 0.03 0.5902 ± 0.0002
Sampling fraction in HEC1 0.5585 ± 0.0002 11.32 ± 0.03 0.5911 ± 0.0002

η(jet) 0.5595 ± 0.0002 12.19 ± 0.02 0.5964 ± 0.0002
Sampling fraction in TileGap3 0.5557 ± 0.0002 10.81 ± 0.02 0.5851 ± 0.0002

Sampling fraction in EME1 0.5470 ± 0.0002 10.63 ± 0.02 0.5839 ± 0.0002
Sampling fraction in TileGap2 0.5509 ± 0.0002 11.83 ± 0.02 0.5933 ± 0.0002

〈r2〉 0.5509 ± 0.0002 11.69 ± 0.02 0.5921 ± 0.0002
centroid R 0.5487 ± 0.0002 11.64 ± 0.02 0.5916 ± 0.0002

Sampling fraction in PreSamplerB 0.5471 ± 0.0002 11.30 ± 0.02 0.5886 ± 0.0002
Sampling fraction in EM calorimeter 0.5467 ± 0.0002 10.86 ± 0.03 0.5858 ± 0.0002
Sampling fraction in PreSamplerE 0.5439 ± 0.0002 10.70 ± 0.03 0.5852 ± 0.0002

Maximal sampling fraction 0.5437 ± 0.0002 10.23 ± 0.03 0.5809 ± 0.0002
number of ghost-matched tracks 0.5395 ± 0.0002 10.19 ± 0.02 0.5792 ± 0.0002
Sampling fraction in TileBar0 0.5473 ± 0.0002 10.58 ± 0.03 0.5838 ± 0.0002

Sampling fraction in EMB1 0.5405 ± 0.0002 9.62 ± 0.03 0.5774 ± 0.0002
Sampling fraction in TileBar2 0.5348 ± 0.0002 9.37 ± 0.03 0.5751 ± 0.0002

λleading cluster 0.5371 ± 0.0002 8.17 ± 0.03 0.5669 ± 0.0002
ghost-matched tracks pT 0.5269 ± 0.0002 6.95 ± 0.03 0.5570 ± 0.0002

〈λ2〉 0.5298 ± 0.0002 5.55 ± 0.03 0.5508 ± 0.0002
charge 0.4994 ± 0.0002 0.14 ± 0.03 0.5014 ± 0.0002

τ(KS or Λ0) 0.5000 ± 0.0002 0.00 ± 0.03 0.5000 ± 0.0002

Tab. C.2: Accuracy, separation power and AUC scores of the s-tagger after setting the connec-
tion weights between the input nodes and the first hidden layer to zero. Setting the
weights to zero is done cumulatively starting from the top of the list of variables.
Both statistical uncertainty on the accuracy and AUC scores are derived by boot-
strapping the validation sample. The uncertainty on the separation power is derived
in a binned distribution of the NN output and assuming the number of jets in each
bin to be Poisson distributed.
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C. s-Tagger Feature Selection

Variable Removed (Cumulative) Accuracy Separation [%] Validation AUC
none 0.5761 ± 0.0002 13.82 ± 0.02 0.6106 ± 0.0002

Sampling fraction in EME3 0.5762 ± 0.0002 13.83 ± 0.02 0.6106 ± 0.0002

∆R(KS or Λ0, jet) 0.5761 ± 0.0002 13.81 ± 0.02 0.6100 ± 0.0002
Sampling fraction in HEC0 0.5761 ± 0.0002 13.80 ± 0.02 0.6100 ± 0.0002

pT (jet) 0.5733 ± 0.0002 13.12 ± 0.02 0.6048 ± 0.0002
Sampling fraction in EMB3 0.5732 ± 0.0002 13.09 ± 0.02 0.6045 ± 0.0002

Tab. C.3: Accuracy, separation power and AUC scores of the s-tagger after retraining without
the variables in the given line and all variables in the lines above. Both statisti-
cal uncertainty on the accuracy and AUC scores are derived by bootstrapping the
validation sample. The uncertainty on the separation power is derived in a binned
distribution of the NN output and assuming the number of jets in each bin to be
Poisson distributed.
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