
Synthesizing Realistic
Verification Tasks

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Marc Jasper

Dortmund

2021

Tag der mündlichen Prüfung:
15.07.2021

Dekan:
Prof. Dr.-Ing. Gernot A. Fink

Gutacher:
Prof. Dr. Bernhard Steffen
Prof. Dr. Stephen F. Siegel

Acknowledgments

First and foremost, I would like to thank my PhD advisor Bernhard Steffen and Stephen
F. Siegel very much for reviewing this thesis. I highly appreciate the continuous support
and mentoring by Bernhard Steffen, especially during the writing of attached publi-
cations. In addition, I would like to thank him and Markus Schordan at Lawrence
Livermore National Laboratory for having introduced me to the Rigorous Examination
of Reactive Systems (RERS) Challenge and the exciting domain of program verification.
I am very grateful to all my co-authors of scientific publications for the fruitful col-

laboration. It was a great joy to develop now published ideas together with mentors,
collegues, and peers. In the context of this PhD thesis, I would like to especially thank all
co-authors of attached publications, particularly Bernhard Steffen, Falk Howar, Stephen
F. Siegel, Jaco van de Pol, Alnis Murtovi, Malte Mues, Jeroen Meijer, Maximilian
Schlüter, and David Schmidt. Moreover, I appreciate all the submissions by partici-
pants of the RERS Challenge who attempted to solve the verification tasks that were
synthesized using the framework of this thesis.
My time at TU Dortmund University’s Chair of Programming Systems would have

not be the same without the friendly and motivating atmosphere among my colleagues.
I would like to especially thank my former office mate and good friend Frederik Gossen,
Alnis Murtovi, and those colleagues with whom I coordinated the freshman-year math
classes at our department of computer science. Furthermore, I am grateful for the
support of Maximilian Schlüter and David Schmidt whose work I supervised during the
three recent years and who have contributed to the success of this work.
Last but not least, I am very thankful to my parents Annette and Heinrich Jasper, my

brother Daniel Jasper, my girlfriend Stefanie Budde, and my friends for their continuous
support. Having them in my life means the world to me, and spending time with them
further motivated me to always continue pursuing my goals, including the writing of this
thesis.

i

ii

Abstract

This thesis by publications focuses on realistic benchmarks for software verification ap-
proaches. Such benchmarks are crucial to an evaluation of verification tools which helps
to assess their capabilities and inform potential users. This work provides an overview
of the current landscape of verification tool evaluation and compares manual and au-
tomatic approaches to benchmark generation. The main contribution of this thesis is
a new framework to synthesize realistic verification tasks. This framework allows to
generate verification tasks that target sequential or parallel programs.
Starting from a realistic formal specification, a Büchi automaton is synthesized while

ensuring realistic hardness characteristics such as the number of computation steps after
which errors occur. The resulting automaton is then transformed to a Mealy machine
to produce a sequential program in C or Java or to a parallel composition of modal
transition systems. A refinement of the latter is encoded in Promela or as a Petri net.
A task that targets such a parallel system requires checking whether or not a given

interruptible temporal property is satisfied or whether parallel systems are weakly bisim-
ilar. Temporal properties may include branching-time and linear-time formulas. For the
latter, it can be ensured that every parallel component matters during verification.
This thesis contains additional contributions that build on top of attached publica-

tions. These are (i) a generalization of interruptibility that covers branching-time prop-
erties, (ii) an improved generation of parallel contexts, and (iii) a definition of alphabet
extension on a semantic level. Alphabet extensions are a key part for ensuring hardness
of generated tasks that target parallel systems.
Benchmarks that were synthesized using the presented framework have been employed

in the international Rigorous Examination of Reactive Systems (RERS) Challenge during
the last five years. Several international teams attempted to solve the corresponding
verification tasks and used ten different tools to verify the newly added parallel programs.
Apart from the evaluation of these tools, this endeavor motivated participants of RERS
to conceive new formal techniques to verify parallel systems. The result of this thesis
thus helps to improve the state of the art of software verification.

iii

iv

Attached Publications

Parts of this dissertation were already published in cooperation with other scientists.
These publications with comments on my participation are listed below. Table 1.1 on
page 5 further classifies these publications according to their contribution and year of
publication.

I Falk Howar, Marc Jasper, Malte Mues, David Schmidt, and Bernhard Steffen.
The RERS challenge: towards controllable and scalable benchmark syn-
thesis.
International Journal on Software Tools for Technology Transfer, 2021.
https://doi.org/10.1007/s10009-021-00617-z

Cited as [HJM+21]AP

The presented ideas were discussed among all authors. I was the main author of
Sections 2.5 and 3 and co-authored other sections. The scalability study within
Sections 3.3.1 and 3.3.2 was performed by David Schmidt under my supervision.

II Marc Jasper, Maximilian Schlüter, David Schmidt, and Bernhard Steffen.
Every Component Matters: Generating Parallel Verification Bench-
marks with Hardness Guarantees.
In Proocedings of the 9th International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA): Tools and Trends. LNCS,
vol 12479, pages 241–262. Springer, 2021.
https://doi.org/10.1007/978-3-030-83723-5_16

Cited as [JSSS21]AP

The presented ideas were discussed among all authors. I was the main author of
this paper.

III Marc Jasper, Maximilian Schlüter, and Bernhard Steffen.
Characteristic invariants in Hennessy–Milner logic.

v

https://doi.org/10.1007/s10009-021-00617-z
https://doi.org/10.1007/978-3-030-83723-5_16

Acta Informatica, 57(3):671–687, 2020.
https://doi.org/10.1007/s00236-020-00376-5

Cited as [JSS20]AP

The presented ideas were discussed among all authors. I was the main author of
this paper. Bernhard Steffen was the main contributor to the introduction and
conclusion. Maximilian Schlüter contributed significantly to Section 5 in parallel
to his bachelor’s thesis which Bernhard Steffen and I supervised.

IV Bernhard Steffen and Marc Jasper.
Generating Hard Benchmark Problems for Weak Bisimulation.
In From Reactive Systems to Cyber-Physical Systems, LNCS, vol 11500, pages
126–145. Springer, 2019.
https://doi.org/10.1007/978-3-030-31514-6_8

Cited as [SJ19]AP

The presented ideas were discussed among both authors. I was the main author
of Sections 2 to 5.

V Marc Jasper, Malte Mues, Alnis Murtovi, Maximilian Schlüter, Falk Howar, Bern-
hard Steffen, Markus Schordan, Dennis Hendriks, Ramon Schiffelers, Harco Kup-
pens, and Frits W. Vaandrager.
RERS 2019: Combining Synthesis with Real-World Models.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol 11429, pages 101–115. Springer, 2019.
https://doi.org/10.1007/978-3-030-17502-3_7

Cited as [JMM+19]AP

I was the main author of Section 3 which contains additional contributions by Alnis
Murtovi. Furthermore, I co-authored Section 4.

VI Marc Jasper and Bernhard Steffen.
Synthesizing Subtle Bugs with Known Witnesses.
In ISoLA. LNCS, vol 11245, pages 235–257. Springer, 2018.
https://doi.org/10.1007/978-3-030-03421-4_16

Cited as [JS18]AP

The presented ideas were discussed among both authors. I was the main author
of this paper.

VII Marc Jasper, Malte Mues, Maximilian Schlüter, Bernhard Steffen, and Falk Howar.
RERS 2018: CTL, LTL, and Reachability.
In ISoLA. LNCS, vol 11245, pages 433–447. Springer, 2018.
https://doi.org/10.1007/978-3-030-03421-4_27

Cited as [JMS+18]AP

vi

https://doi.org/10.1007/s00236-020-00376-5
https://doi.org/10.1007/978-3-030-31514-6_8
https://doi.org/10.1007/978-3-030-17502-3_7
https://doi.org/10.1007/978-3-030-03421-4_16
https://doi.org/10.1007/978-3-030-03421-4_27

The presented ideas were discussed among all authors. I was the main author of
Section 3 and co-authored other sections of this paper.

VIII Bernhard Steffen, Marc Jasper, Jeroen Meijer, and Jaco van de Pol.
Property-Preserving Generation of Tailored Benchmark Petri Nets.
In 17th International Conference on Application of Concurrency to System Design
(ACSD), pages 1–8, IEEE, 2017.
https://doi.org/10.1109/ACSD.2017.24

Cited as [SJMvdP17]AP

The presented ideas were discussed among all authors. I was the main author of
Sections II to IV.

IX Bernhard Steffen and Marc Jasper.
Property-Preserving Parallel Decomposition.
In Models, Algorithms, Logics and Tools. LNCS, vol 10460, pages 125–145.
Springer, 2017.
https://doi.org/10.1007/978-3-319-63121-9_7

Cited as [SJ17]AP

The presented ideas were discussed among both authors. I was the main author
of Section 2 to 7, however all sections are the result of a collaborative effort.

X Marc Jasper, Maximilian Fecke, Bernhard Steffen, Markus Schordan, Jeroen Mei-
jer, Jaco van de Pol, Falk Howar, and Stephen F. Siegel.
The RERS 2017 Challenge and Workshop (Invited Paper).
In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on
Model Checking of Software, SPIN 2017, pages 11–20. ACM, 2017.
https://doi.org/10.1145/3092282.3098206

Cited as [JFS+17]AP

I was the main author of Sections 2, 3.1, 3.2, and 3.3 of this paper.

XI Maren Geske, Marc Jasper, Bernhard Steffen, Falk Howar, Markus Schordan, and
Jaco van de Pol.
RERS 2016: Parallel and Sequential Benchmarks with Focus on LTL
Verification.
In ISoLA. LNCS, vol 9953, pages 787–803. Springer, 2016.
https://doi.org/10.1007/978-3-319-47169-3_59

Cited as [GJS+16]AP

I was the main author of Sections 2.2, 3.3, and 4.2, and contributed to other
sections of this paper.

vii

https://doi.org/10.1109/ACSD.2017.24
https://doi.org/10.1007/978-3-319-63121-9_7
https://doi.org/10.1145/3092282.3098206
https://doi.org/10.1007/978-3-319-47169-3_59

viii

Abbreviations

AE alphabet extension

BA Büchi automaton

CE counterexample

CTL computational tree logic

DFA deterministic finite automaton

GC green contract

HML Hennessy–Milner logic

LTL linear temporal logic

LTS labeled transition system

MC modal contract

MM Mealy machine

MMM modal Mealy machine

MTS modal transition system

NAE nonconvergent alphabet extension

NFA nondeterministic finite automaton

ix

x

Contents

1 Introduction 1

1.1 Scientific Contributions . 3

1.2 Overview . 6

2 Evaluating Software Verification Tools 7

2.1 Current Landscape of Tool Evaluation . 8

2.2 Benchmark Design and Creation . 10

2.2.1 Useful Characteristics of Benchmarks 11

2.2.2 Realization of Useful Benchmark Characteristics 11

2.2.3 Manual vs. Automatic Benchmark Creation 13

2.3 New Synthesis Framework and its Impact 15

2.3.1 New Framework for Benchmark Synthesis 15

2.3.2 Impact on the Verification Community 18

2.3.3 Benefits for Participants of RERS 18

3 Preliminaries 21

3.1 Languages . 21

3.2 Models of a System . 22

3.2.1 Modal Transition Systems . 22

3.2.2 Parallel Composition . 23

3.2.3 Mealy Machines . 24

3.3 Action-based Linear Temporal Logic . 24

3.3.1 Linear-Time Properties . 25

3.3.2 Action-based LTL . 25

3.4 Property Preservation . 27

3.4.1 Modal Refinement . 27

3.4.2 Weak Modal Refinement, Bisimulation, and Convergence 28

xi

4 Realistic Verification Tasks 31
4.1 Verification Tasks . 31
4.2 Interruptible Temporal Properties . 32
4.3 Hardness Guarantees . 34

4.3.1 Large State Space . 34
4.3.2 Subtle Errors . 35
4.3.3 Relevant Parallel Context . 37

5 Synthesizing Realistic Tasks 41
5.1 Temporal-Logic Synthesis . 41
5.2 Rarely Occurring Errors . 42
5.3 Deeply Hidden Errors . 42

5.3.1 Language Manipulation . 42
5.3.2 Realization using Büchi Automata 43

5.4 Transformation to an MTS . 44

6 Generating Parallel Verification Tasks 45
6.1 Property-Preserving Parallel Decomposition 46

6.1.1 Green Contracts . 46
6.1.2 Red Contracts . 50
6.1.3 Modal Contracts . 52

6.2 Alphabet Extension . 54
6.2.1 Extending Bisimulation to Modal Transition Systems 55
6.2.2 (Nonconvergent) Alphabet Extension 56

7 Conclusion and Future Work 59
7.1 Future Work . 60

xii

1
Introduction

Automated verification has seen a number of success stories in the last decades, like the
verification of medical device transmission protocols [GCM09], industrial call-processing
software [CGP02], or the autonomous behavior of the Curiosity rover [CFL+20]. Nowa-
days, program verification and other systematic validation techniques are crucial for the
development of safety-critical systems [VM05, MWC10].

In order to apply verification in practice, it is vital to know the capabilities, strengths,
and weaknesses of existing tools. Moreover, verification tools need to be validated them-
selves as they may contain implementation errors. Due to a variety of supported pro-
gramming languages, specification formalisms, and applied techniques, it is quite a chal-
lenge to find the best-fitting verification tools for a given applications scenario [Ste17].

Benchmarks have therefore been established as a means to evaluate existing tools
in a comparable and sometimes also reproducible fashion. Numerous international
verification competitions and challenges attempt to advance the field, classify corre-
sponding tools, and validate the application profile of these tools based on bench-
marks [Bey12, KLB+12, HKM15, BFB+17, HIM+14, BdMS05, JLBRS12].

The main goal of this thesis is to create a new framework for the synthesis of realistic
verification tasks for such benchmarks that allows to generate both sequential and par-
allel programs. Key characteristics of the targeted framework are a known solution to
synthesized tasks, their scalability, and the fulfillment of specific hardness criteria.

One can distinguish three major approaches to establish a benchmark suite of verifica-
tion tasks. First, events like the Software Verification Competition (SV-COMP) [Bey12]
feature a central, incrementally expanded and consistently maintained benchmark repos-
itory that contains for example real-world Linux kernel software, and for which the cor-
rect answers to the contained verification tasks is publicly available. Second, property
extraction, as for instance used in the Model Checking Contest (MCC) [KLB+12], takes
manually selected systems, however (randomly) extracts properties in order to generate
a wide range of verification tasks. In some cases, the correct answer to such a task is
not known, and majority voting is applied during a corresponding competition. Third, a
property-preserving generation of verification tasks based on an initial system that is syn-

1

thesized from formal specifications—the topic of this thesis—allows for a fully automated
yet highly customizable creation of verification tasks. This third approach is employed
by the Rigorous Examination of Reactive Systems (RERS) Challenge [HJM+21]AP.
This thesis by publications discusses and presents highlights of the peer-reviewed pub-

lications of [HJM+21, JSSS21, JSS20, SJ19, JMM+19, JS18, JMS+18, SJMvdP17, SJ17,
JFS+17, GJS+16]AP that are attached to this work and revolve around the idea to syn-
thesize realistic verification tasks. Synthesizing tasks features the advantage that it
allows to

• guarantee that the solution to the generated task is known by construction,

• avoid an ‘overfitting’ of tools and approaches to certain benchmark suites, and

• tailor characteristics of the generated task, including (formal) hardness criteria, to
individual needs.

When synthesizing artificial verification tasks, the realism of those tasks is espe-
cially important: only tasks that feature realistic characteristics can provide insight
into whether or not a verification tool is actually capable of solving real-world problems.
The synthesis presented in this thesis therefore generates realistic verification tasks that

• are scalable in order to generate tasks that test the limits of state-of-the-art tools,

• feature realistic structural properties that resemble real-world programs, and

• ensure that parameterizable hardness criteria are fulfilled in order to generate not
just large, but also hard-to-solve tasks.

Errors in real-world systems can be subtle—especially when considering parallel pro-
grams—as shown by the August 2003 blackout in the northeastern US that was in part
triggered by a race condition and cost several billion US dollars [ZC09].1 Being able
to synthesize verification benchmarks with subtle property violations promotes the de-
velopment of tools that can detect such subtle yet often severe bugs. This subtlety of
incorrect behavior is one example of a criterion that makes a verification task hard to
solve. With the goal to generate realistic tasks, this thesis contributes new formal ap-
proaches to realize hard verification tasks by allowing to adjust the following parameters
mostly independently from one another:

• Rarity and depth of violations of linear-time properties, including error reachabil-
ity.

• Number of individual systems in a parallel composition such that different parallel
interleavings induce what is commonly referred to as “state explosion”.

• Number of parallel components that matter for analyzing a given property and
number of parallel components whose behavior it constrains.

In the following, Section 1.1 states the scientific contribution of this thesis while also
embedding attached publications into its larger context. Thereafter, Section 1.2 presents
an overview of the chapters in this dissertation.

1According to a news article [13], a spokesman of an involved company said: “This fault was so deeply
embedded, it took them weeks of poring through millions of lines of code and data to find it.”

2

1.1 Scientific Contributions

The main contribution of this thesis is a new framework for synthesizing realistic verifica-
tion tasks that advances the state of the art. This contribution consists of the following
three major parts.

1. New approaches to synthesize realistic verification tasks. These realize

a) Hard-to-detect counterexamples. Techniques to formally guarantee the hard-
ness of verification tasks by ensuring that counterexamples to linear-time
properties are rare [JS18]AP and deep [HJM+21]AP, the latter in the sense
that several computation steps need to be observed in order to be able to
identify a property violation.

b) Extraction of meaningful branching-time properties. A new result on charac-
teristic invariants [JSS20]AP in Hennessy-Milner logic (HML) [HM80] which
states that a labeled transition system can be fully characterized by an invari-
ant in HML. This result is useful for generating verification tasks because it
can also be used to characterize abstractions of a system, and thereby allows
to extract semantically meaningful yet small branching-time properties—even
from real-world systems [JMM+19]AP—in order to create realistic verification
tasks.

c) A unified synthesis centered around modifications of Büchi automata [Bü66]
which always creates a modal transition system (MTS) [Lar89]. On the one
hand, such an MTS can then be transformed to a Mealy machine [Mea55] that
serves as an intermediate specification of a sequential reactive system which is
later encoded in C or Java. On the other hand, the constructed MTS can be
the basis for generating a hard parallel task by using the following approach.

2. A new formal method for the generation of parallel verification tasks,
i.e., tasks that target parallel programs. This framework ensures

a) Property preservation and scalability. Local parallel decompositions of MTSs
result in an asynchronous parallel system such that interruptible temporal
properties, i.e., properties whose satisfaction is not influenced by finite inter-
ruptions of unobservable actions, are preserved. Key to this preservation is
convergent weak modal refinement. Technically, modal contracts, a specific
type of assume-guarantee contracts [BCN+18] that were specifically designed
for this decomposition, and alphabet extensions are employed [SJ17]AP.

b) Adjustable hardness of the generated verification task. For linear-time prop-
erties, it can be guaranteed that every component matters when trying to
solve the generated verification task [JSSS21]AP. Key is a propagation of
dependencies during local parallel decompositions which is centered around
so-called counterexample handles. This new approach also allows to generate
tasks where the given property only constrains a local parallel component.
Furthermore, it can be adjusted how many parallel components influence the
satisfaction or violation of the analyzed property.

3

c) Applicability to different types of tasks and program models. The generated
parallel tasks can be presented in a graph-based DOT format [8], encoded
in Promela [Hol11] (see [GJS+16]AP), and transformed to nested-unit Petri
nets [Pet81, Gar19] (see [JFS+17]AP). The formal framework ensures preser-
vation of interruptible temporal properties, be they specified in linear tempo-
ral logic (LTL) [Pnu77], computational-tree logic [CE81] (see [JMS+18]AP),
or the modal µ-calculus [Koz83]. Moreover, the same framework allows to
generate hard tasks for weak bisimulation checking [SJ19]AP.

3. A continuous emission and evaluation of the above-mentioned contributions
through the international Rigorous Examination of Reactive Systems (RERS)
Challenge. This endeavor led to

a) An implementation and automation of both the initial synthesis (see 1.) and
framework for generating parallel programs (see 2.). By using the Spot li-
brary [DLLF+16] for LTL synthesis and Büchi automaton transformations,
systems with hard-to-detect counterexamples can be generated automatically.
An extension of the AutomataLib [11] with modal contracts, alphabet ex-
tension, and the corresponding decomposition techniques allows to generate
parallel verification tasks with adjustable hardness criteria in a push-button
approach. I programmed initial versions of the overall framework, designed
corresponding algorithms, and supervised their implementation by two stu-
dent assistants at the Chair of Programming Systems at TU Dortmund Uni-
versity.

b) A constant evaluation of state-of-the-art verification tools and techniques.
The presented framework has been applied to generate verification tasks for
the RERS Challenge since 2016. Within the RERS tracks on parallel prob-
lems alone, albeit a new addition in 2016 that was steadily expanded, teams
from six different institutions from five countries have used (combinations
of) 10 different tools in order to solve the available verification tasks. I was
responsible for the automatic evaluation of corresponding results by partic-
ipants and analyzed their submission descriptions when deciding on future
steps for the generation of RERS benchmarks.

c) Fostered collaboration and the invention of new verification techniques.
Submissions to the RERS tracks on parallel programs included that of a
cross-institutional team of participants whose members are part of national
research institutes from different countries. Moreover, generated benchmarks
motivated scientific conversations about their characteristics and potential
verification techniques between benchmark generators and participants. The
new generation framework that this thesis contributes thus impacted other
researchers to conceive their own new contributions in the area of program
verification, especially new combinations of bisimulations [LMM20, LMM19]
and partial-order reduction for action-based systems [SY20].

The three major contributions introduced above have been presented in peer-reviewed

4

conference and journal publications that have already been published or accepted. Ta-
ble 1.1 classifies these scientific publications according to both the major contribution
of this thesis to which they mostly belong to as well as their year of publication.

Contribution 2016 2017 2018

Synthesizing
[JS18]APrealistic tasks

rare property
Key contribution

violations (LTL)

Generating parallel
[SJ17, SJMvdP17]APverification tasks
property-preserving

Key contribution
parallel decomposition

Application in the
[GJS+16]AP [JFS+17]AP [JMS+18]APRERS Challenge

abstraction-based manual use of automated use of
Main new technique

property mining modal contracts modal contracts

Main new features
parallel tasks: LTL, hard parallel tasks, CTL properties
DOT & Promela Petri nets for parallel tasks

2019 2020 2021

Synthesizing
[JSS20]AP [HJM+21]APrealistic tasks
generation of deep property

Key contribution
HML invariants violations (LTL)

Generating parallel
[SJ19]AP [JSSS21]APverification tasks

hard tasks for hard parallel
Key contribution

weak bisimulation tasks (LTL)

Application in the
[JMM+19]AP (see [HJM+21]AP)RERS Challenge
CTL and LTL Büchi automata-based

Main new technique
extraction language reduction

Main new features
real-world deep property
models violations (LTL)

Table 1.1: Classification of attached publications based on the major contribution that
they belong to and their year of publication. Bold entries mark journal papers.

In addition to what is contained in the attached publications, this thesis contributes
the following new, previously unpublished results.

i. A more general definition of interruptible properties based on convergent weak
modal refinement (Section 4.2). This new definition is shown to be consistent with
the previous definition of interruptible linear-time properties [SY20] and character-

5

izes interruptibility for temporal properties in general, be they specified in linear
temporal logic, a branching-time logic, or the modal µ-calculus.

ii. An improved generation of the context component of a modal contract compared
to the versions of [SJ17]AP (Section 6.1). This improved version is shown to be
the coarsest context in case that the given contract is based on a deterministic
transition system. Furthermore, this thesis contains proofs of the correctness and
coarseness of generated context components.

iii. A revisited, now semantics-based definition of alphabet extensions, i.e., specific
modal transition systems used to expand the alphabet of a parallel composition
(Section 6.2) similar to the ideas of [FBU09]. Fundamental concepts of this new
definition are an extension of convergent weak bisimulation to MTSs and parallel
composition. This revised definition of alphabet extensions unifies and is consistent
with previous descriptions that were either more syntactical/constructive [SJ17,
SJMvdP17]AP or solely based on language equivalences [JSSS21]AP.

1.2 Overview

The following Chapter 2 positions the introduced framework for synthesizing realistic
verification tasks in the landscape of tool evaluation. That chapter provides an overview
of that landscape (Section 2.1), analyzes important characteristics of benchmarks, their
realization, and key differences between manual and automatic benchmark creation (Sec-
tion 2.2), and discusses the contributed synthesis framework and its impact (Section 2.3).
Following Chapter 3 that introduces formal preliminaries which are relevant for later
chapters, Chapter 4 discusses the types of verification tasks that are generated (Sec-
tion 4.1), what temporal properties they may feature (Section 4.2), and which hardness
characteristics they fulfill (Section 4.3).
Key steps during the synthesis of an initial system for the generated verification task

are summarized in Chapter 5. Thereafter, Chapter 6 focuses on new contributions
for the generation of parallel programs in addition to attached publications. The two
fundamental techniques of property-preserving parallel decomposition (Section 6.1) and
alphabet extension (Section 6.2) are explained and extended in a way that both unifies
and builds upon previous descriptions in attached publications. Chapter 7 concludes
this thesis and presents an outlook to future work.

6

2
Evaluating Software Verification Tools

Tools for automatic or semi-interactive software verification are nowadays widely used,
e.g., in [MWC10, dGRdB+15, VM05, GCM09, CGP02, CFL+20]. A corresponding eval-
uation of such tools—be it in practice or during research studies—helps to advance the
field of software verification. This evaluation to some degree sparked a research area
of its own [Bey21, PGG18, SBS18, ADKT11, HIM+14]. In addition, such an evalua-
tion can cover tools that detect errors in software, however not their absence, such as
fuzzy testing [SGA07, MFS90] or (active) automata learning [SHM11, IHS14, Ang87].
Constantly and thoroughly evaluating verification tools is important in order to ensure
their

• Correctness: Even if a software tool is based on a provably correct program anal-
ysis or verification technique, its implementation in some programming language
can still be an error-prone process. Especially for tools that should assert the
correctness of other software, it is crucial to always produce reliable results.

• Efficiency: For realistic systems, it is usually infeasible to statically analyze every
possible behavior explicitly during verification. Several advanced techniques have
been conceived to verify the behavior of large systems [KHHH+21], and many
are tailored to specific characteristics of the analyzed program [Bie21, CGJ+00,
GvLH+96]. It is thus imperative to assess the application profile and scalability of
verification tools in order to help potential users to decide which tool is the best
choice for their specific goal [Ste17].

• Usability: In order to increase the impact of a successful new verification tool, it is
important that this tool can be used effectively not just by the tool developers, but
by a larger audience of domain experts who are not necessarily (deeply) familiar
with the employed verification techniques [FMB21, HGM20]. The usability of a
tool is influenced by many factors, including its installation procedure, the avail-
ability of tutorials and exemplary use cases, the organization and understandability
of adjustable settings, and the interpretability of the tool’s output.

This thesis focuses on the evaluation of the correctness and efficiency of verification tools.

7

Since at least a decade, verification benchmarks—standardized sets of verification
tasks—have become increasingly popular as a means to evaluate the state of the art in
software verification [Bey12, KLB+12, HIM+14, BFB+17, LLA+17, HKG+12, JLBRS12].
Verification benchmarks are of relevance in multiple domains [OT08, HKP+19, Bey12]
and also useful in similar areas like conformance testing [NSVK19]. One can argue
that software verification is thereby following the line of other areas in computer sci-
ence where the use of benchmarks is an established way to measure the performance
of hardware or software, for example that of database management systems [NLW+09],
(heterogeneous) computing architectures [DMM+10], compiler optimizations [12], and
classification techniques in the domain of machine learning [Fis36].

In the following, Section 2.1 gives an overview of the current landscape of tool eval-
uation in which benchmarks play a central role. Thereafter, Section 2.2 discusses the
design and creation of verification benchmarks while comparing manual and automatic
approaches. Section 2.3 discusses the new framework to synthesize verification tasks—
the main contribution of this thesis—and its impact on the verification community.

2.1 Current Landscape of Tool Evaluation

When evaluating which tool is best suited for a specific category of tasks, it is crucial
to ensure that every tool is measured on the same scale: only if results are comparable,
it is possible to draw meaningful conclusions about which tool is the best choice. In
practice, this is typically achieved by confronting different tools with the same data set.
For verification tasks, tool performance is measured in the number of correctly solved
tasks [HJM+21]AP and sometimes also in terms of required resources such as time or
memory consumption [Bey12, KLB+12]. To facilitate this comparability, benchmarks are
designed as standardized sets of verification tasks—frequently from a specific category
of tasks [HKP+19, LLA+17] or accompanied by a corresponding classification [3].

In addition, tool evaluation is often concerned with the reproducibility [10] of re-
sults [Bey12, KLB+12]. The kind of reproducibility1 that current research in the area of
software verification mostly focuses on is of a methodological nature [GFI16]: researchers
provide an artifact that includes their tool and additional executable scripts if required—
sometimes pre-installed in a container [Boe15] or an image of a virtual machine—so that
others can rerun the verification on a different machine while comparing the results and
monitoring resource consumption [BLW19].

The extend to which the goals of comparability and reproducibility are fulfilled tends to
vary, also based on where the evaluation was performed. Tools are commonly evaluated

• within research papers that introduce new tools or approaches,

• in research papers whose goal is to independently compare the state of the art or
to introduce a benchmark suite, and

• during international verification competitions and challenges.

1See [Ple18] for a clarification of the various meanings of the term “reproducible”.

8

For research papers on individual techniques, the comparability of results depends on (i)
the chosen benchmark and on (ii) whether results of other approaches are just cited or
also (re)produced using identical hardware resources. The reproducibility of evaluation
results found in publications—no matter if they introduce individual approaches or ded-
icated comparative studies—depends on the availability of a supplementary evaluation
artifact. This reproducibility thereby also indirectly depends on an associated artifact
reviewing process which seems to not yet be mature everywhere [HWS20].

Just like research papers that report on a dedicated comparison of tools, competitions
and challenges intrinsically ensure the comparability of results by having participants
solve the same benchmark, i.e., the same set of verification tasks. Some competitions
focus on the reproducibility of results [Bey12, KLB+12] by enforcing resource constraints
whereas others omit this requirement in order to allow ‘freestyle’ solutions.
Whereas there exist plenty of evaluations by tool authors, independent comparative

studies exist too [LLA+17, PGG18] but are still rare [Ste17]. International verifica-
tion competitions and challenges however have become more prominent during the last
decade [BBB+19] and typically allow both tool authors and non-authors to participate
with a tool (combination) of their choice. These usually annual events provide a platform
for

• ranking verification approaches based on their performance while allowing experts
to obtain the best possible results with their tools,

• evaluating the improvement not just of an individual tool or approach, but of the
entire verification community at regular time steps, and

• exchanging scientific ideas and experiences from attempting to solve the given
tasks, both successful and not, with international peers.

Especially the reproduction of tool results requires a certain degree of automation
to be scalable. Figure 2.1 presents a qualitative classification of several verification
competitions and challenges according to the degree of automation both regarding the
competition execution itself and regarding the corresponding benchmark generation. The
latter automation will be discussed in Section 2.2. The automation of the competition
execution impacts the corresponding submission format and is discussed in the following.

A manual ranking of verification approaches requires the inspection of individual re-
sults. This type of ranking is typically used to assess not just the plain result to a
verification task, but also the submitted way of solving it. VerifyThis [HKM15] for in-
stance is an annual event where participants solve verification tasks on site. Participants
themselves can use semi-interactive tools and, e.g., manually provide loop invariants.
Their solution is manually evaluated in whichever way they produce it during the given
amount of time.
In contrast, an automatic ranking compares solution vectors and submission vec-

tors. In this scenario, the challenge is to be able to solve the tasks—regardless of
how this is achieved. The Rigorous Examination of Reactive Systems (RERS) Chal-
lenge [HJM+21]AP creates a ranking and awards achievements automatically based on

9

benchmark
generation

challenge
execution

VT

RERS

SV-COMP MCC

manual property
extraction

automatic

automatic
reproduction

automatic
ranking

manual
ranking

Figure 2.1: Qualitative classification of major competitions and challenges in the area of
software verification according to their degree of automation

submissions that are provided by participants. Only the winner of a so-called “Method
Combination Award” is selected by a jury.

An automatic reproduction of results is an automated evaluation of executable tools.
Instead of submitting result vectors in order to answer given verification tasks, the
used tools themselves are submitted. The Competition on Software Verification (SV-
COMP) [Bey12] and the Model Checking Contest (MCC) [KLB+12] reproduce the re-
sults of participants’ tools this way. These submitted tools are run by the competition
organizers while also monitoring resource constraints.

The new framework for synthesizing realistic verification tasks that is introduced by
this thesis has been applied to create benchmarks for the RERS Challenge during recent
years. Within RERS, tasks are usually bundled as ‘problems’ that consist of a system
and a set of properties, i.e., a set of verification tasks that feature the same program. A
detailed introduction of RERS can be found in Section 2 of [HJM+21]AP. Section 2.1 in
that publication features a detailed comparison of RERS to other major competitions
in the realm of software verification, namely MCC, SV-COMP, and VT.

2.2 Benchmark Design and Creation

Benchmarks are a key component of contemporary evaluations of software verification
tools. The following Section 2.2.1 discusses useful characteristics of such benchmarks, be-

10

fore Section 2.2.2 presents ways to realize these characteristics. Thereafter, Section 2.2.3
compares manual and automatic approaches to create verification benchmarks.

2.2.1 Useful Characteristics of Benchmarks

The main goal of a verification benchmark is to provide a way to evaluate how well ver-
ification tools can be applied in a practical scenario. A useful benchmark of verification
tasks should therefore

1. feature known solutions,

2. contain realistic programs and properties, and

3. include a wide variety of tasks and/or tasks of different scale and hardness.

Verification tasks can be distinguished based on the availability of its solutions: a solu-
tion can be unknown, known (in general), or known to the public. Known solutions—
regardless of whether this knowledge is public or kept secret by evaluators—ensure
that tools can be judged fair and without bias. This is based on the reason that if
a solution is instead unknown, measures like majority voting among tools have to be
taken [KHHH+21].

A solution that is known, however not publicly available, can avoid that tools ‘overfit’
to a benchmark by, e.g., hard-coding specific loop bounds until which all errors can be
found within the given benchmark. It further enables the possibility for an unmonitored
competition where participants can combine tools and approaches to their liking.
Realism of verification tasks is significant when drawing conclusions from an evaluation

based on a corresponding benchmark.
A diversity of contained tasks—be it by covering a wide range of different tasks or by

featuring different scales and hardness levels of similar tasks—further helps to identify
application profiles and test the limits of tools.
A collection of available academic examples, such as the dining philosophers problem

for deadlock detection, rarely suffices to constitute a useful benchmark. Solutions to such
examples are known by construction, however such problems typically resemble “toy
examples” that are either hardly scalable or lack realism. Finding available programs
with documented correctness properties, maybe even including a proof of why they are
satisfied or violated, can be difficult, likely also because many programs are proprietary.
Especially when it comes to more formal specifications such as linear-time or branching-
time properties, available real-world examples can be rare. Carefully designing useful
benchmarks is thus an important part of evaluating verification tools.

2.2.2 Realization of Useful Benchmark Characteristics

Several verification benchmarks exist and one can distinguish between different degrees
of automation within their creation process. Whereas many benchmarks are (i) designed
manually, some take a step towards an automatic generation by (ii) extracting properties
from given systems. In addition—and the primary focus of this thesis—benchmarks can
be (iii) generated fully automatically by using synthesis based on a given specification.

11

When discussing a manual creation of verification benchmarks, this thesis means a
manual collection and maintenance of contained tasks. Individual verification tasks
can be manually designed, e.g., by experts who can formally assert their correct so-
lution. Manually created benchmarks however often contain several existing programs
from industry or academia, including a few synthesized ones. An automatic genera-
tion of benchmarks is however tightly coupled with an automatic synthesis of contained
tasks. For this reason, the terms automatic synthesis of verification tasks and automatic
benchmark generation are used interchangeably in the following.

The horizontal axis of Figure 2.1 classifies verification competitions and challenges
according to their employed approach to benchmark generation, more specifically re-
garding the automation of the latter. The classification in Figure 2.1 is always based on
the “most automated” part of the used benchmark generation. Some competitions and
challenges feature several automation levels: MCC for example uses both pre-defined
properties and extracted properties [KHHH+21], and RERS also featured benchmarks
based on property extraction.

In the following, details are given on how different approaches to benchmark genera-
tion—with different degrees of automation—realize the three useful characteristics of
verification benchmarks that are described in Section 2.2.1.

Manually maintained verification benchmarks such as that of SV-COMP provide
known solutions mostly based on the sources that tasks were collected from. Such a
competition frequently includes (modified versions of) real-world programs along with
corresponding properties. Examples include open-source code from Linux driver kernels
together with reachable or unreachable violated assertions [Bey12]. The MCC also con-
tains manually collected tasks, and examples of realistic ones include a Petri net that
models the mass memory management system in a micro-satellite [2]. Different levels of
hardness can be achieved by providing a diverse set of programs. To some extent, col-
lecting tasks for such a repository and maintaining it can further serve as a classification
of common errors in programs and ways to detect them, a goal that is intensely studied
in the somewhat related area of computer security [GMBG20, BBYW15].

In addition to a collection of existing tasks from academia or industry, manually cre-
ated verification benchmarks can contain tasks that were manually designed by domain
experts. For data race detection, this is realized in [LLA+17] where dozens of artificial,
mostly small example programs are designed to cover a wide range of typical patterns
that cause data races in real-world applications. In that work, some of the contained
data race detection tasks feature an adjustable hardness that is realized via variable ar-
ray sizes. Verification tasks of VerifyThis are also designed manually, however organizers
gather ideas for future tasks from the community [DFH+21].

A step towards automatic benchmark generation is the extraction or mining of prop-
erties on chosen, potentially real-world systems. This is done in MCC [KHHH+21] for
temporal properties and certain upper bounds. Furthermore, property extraction was
used for some benchmarks of the RERS Challenge [GJS+16, JMM+19]AP. A solution to
tasks with extracted properties is known either based on choosing specific abstractions
that participants are unaware of [Jas18] or because an available and trusted verification

12

tool can assess it [KGH+18]. Some solutions remain unknown [KHHH+21]. Realism
is centered around the models from which properties are extracted, and the extraction
of realistic properties still requires additional effort [KGH+18]. Due to the random
generation of properties, verification tasks cover a wide variety of specifications, their
hardness however is only guaranteed in a very limited fashion by filtering out trivial
properties [KGH+18].

Synthesizing verification tasks—and thereby benchmarks—fully automatically, as pre-
dominantly applied in the RERS Challenge [HJM+21]AP, is in some way a dual approach
to property extraction. Realistic properties, based on common patterns [DAC99] or ex-
tracted from real-world models [JMM+19]AP, serve as a specification for the synthesis
of a task. In the case of RERS, Büchi automata are synthesized from linear tempo-
ral logic specifications before they are enlarged and transformed into programs in a
property-preserving fashion [HIM+14]. As a result, solutions to the generated tasks
are known, however initially not to the public, and providers of the benchmark can
decide when to make them publicly available. Realism of synthesized tasks is ensured
within a certain domain of programs. Sequential programs within RERS benchmarks
closely resemble programmable logic controllers (PLC) [Eri96], a type of program widely
used in industry [AA16] and for which verification approaches have been intensely stud-
ied [OAPÜ16, Moo94, RK98, GSF06, JS16]. Different hardness levels of verification
tasks are realized both through (i) formal hardness guarantees such as the depth2 of
occurring property violations or the relevance of parallel components, and (ii) a scalable
generation based on local transformations.

2.2.3 Manual vs. Automatic Benchmark Creation

The manual creation of verification benchmarks and their automatic generation are quite
different approaches. Table 2.1 presents major advantages and disadvantages that can
be associated with manual and automatic ways to create these benchmarks. For each of
the listed disadvantages, Table 2.1 further mentions feasible ways to mitigate respective
drawbacks.

When comparing manual and automatic benchmark creation according to Table 2.1,
the availability of solutions turns out to be one major difference between the two ap-
proaches. Even though VerifyThis features new manually designed benchmarks that con-
sist of a handful of verification tasks each year, such a complete and regular redesign is im-
practicable for large benchmarks. As a consequence, solutions to many tasks within man-
ually designed benchmarks—if they are known in general—are also known to those people
who intend to solve these tasks again using a specific tool [Bey12, LLA+17, KLB+12].
Verification competitions such as SV-COMP or MCC therefore require a centrally moni-
tored execution of tools. In contrast, the solution to automatically generated verification
tasks like those of RERS can be kept secret, allowing participants flexibility regarding
their approach to solve these tasks. Verification tasks of RERS are used in SV-COMP
and MCC, however such a reuse would thus not be feasible in the opposite direction.

2Here, depth means the number of computation steps after which a property violation can be detected.

13

manual creation automatic generation

pros + realism of existing programs + effortless generation of tasks with
+ categorization of real-world problems publicly unknown solutions
+ diverse tasks from various sources + highly parameterizable and scalable

+ comparable tasks in various
programming (sub)languages

cons − effort to collect and maintain tasks − generating realistic tasks requires care
− correct answer typically known − hard to imitate manually written code

to the public − type of program limited by the
− not trivial to adjust hardness used formal framework

mitiga- ◦ reducing individual effort ◦ using real-world models or structural
ted by through crowd-sourcing properties extracted from them

◦ centralized monitoring of tools ◦ the relevance of requirement-driven design
◦ including parameterizable or auto- and real-world use of compilation
generated tasks ◦ extending generation framework

to new domains

Table 2.1: Major advantages, disadvantages, and mitigations of the latter associated with
the manual creation and automatic generation of verification benchmarks

Furthermore, Table 2.1 states that manual and automatic approaches can show dif-
ferent aspects of realistic software verification. On the level of manually written code,
the realism of, e.g., the Linux kernels found in the SV-COMP benchmark is unmatched
by that of generated programs. This downside of automatically generated tasks is mit-
igated by the fact that real-world code such as that found in PLC controllers is often
auto-generated too [Sac05, EMIO07], [7]. Still, even within this domain, guaranteeing a
realistic hardness of the generated task requires care and additional formal approaches
such as the ones introduced in this thesis. Aside from the programs themselves, one
can argue that automatically generated benchmarks can be used for a more realistic
simulation of verification in practice because solutions to open verification problems are
in fact not publicly known.

Another characteristic where manual and automatic benchmark creation differ is the
diversity of contained tasks. Benchmarks like the one used in SV-COMP feature code
from several sources and thereby reflect different application scenarios of verification
tools. In contrast, automatically synthesized benchmarks have a certain common struc-
ture imbued into them based on the formal framework that was used during their gen-
eration, such as the Mealy machine model used for sequential programs of RERS. When
it comes to a group of programs from a specific domain, automatic generation enables
diversity by tailoring tasks to specific requirements [HIM+14]. Parameters include the
size of code, programming features that are used, different hardness criteria such as
the required exploration depth [HJM+21]AP, and even the programming language itself.
From an abstract point of view, one can argue that manually designed benchmarks tend
to be better at evaluating a single tool based on diverse scenarios. In contrast, synthe-
sized benchmarks can have an edge when it comes to (i) comparing as many tools as
possible based on the same task by supporting multiple programming languages and (ii)

14

measure tool performance based on fine-grained variations of the size and hardness of
tasks.

Based on Table 2.1 and its above discussion, it becomes clear that manual and auto-
matic benchmark creation have very different characteristics. The creation of verification
benchmarks is clearly unlike other areas where automation allowed to replace manual
efforts: it is not the goal of the presented automatic benchmark synthesis to replace the
collection of real-world tasks and the monitoring of this process by scientists. Instead,
it is a different approach to the problem of benchmark design and creation, one that
justifies its relevance based on (i) the merits of providing new tasks whose solution can
be kept secret, (ii) the use of requirement-driven development in real life [JSSS21]AP,
and (iii) the lack of sufficient—and sufficiently adjustable—verification tasks that are
publicly available. Considering these very different profiles, it seems likely that both
approaches, the manual creation of verification benchmarks as well as their automatic
synthesis based on realistic specifications, will continue to coexist.

2.3 New Synthesis Framework and its Impact

The new framework to synthesize realistic verification tasks that this thesis contributes
is discussed in this section, along with its impact on the verification community. First,
Section 2.3.1 shows how the benchmark generation framework of RERS was extended by
the work of this thesis and presents achieved hardness criteria. Section 2.3.2 summarizes
the impact of the synthesized tasks on the verification community as a whole, before
Section 2.3.3 details benefits for participants of the RERS Challenge.

2.3.1 New Framework for Benchmark Synthesis

This thesis contributes a new framework for the automatic synthesis of verification bench-
marks that is used in the RERS Challenge. Figure 2.2 illustrates this new framework
and its modular, extensible structure.

Starting from a pattern for linear temporal logic (LTL) properties, some formulas from
that pattern are selected and the presented framework synthesizes a corresponding Büchi
automaton (BA). For a verification task with a verifiable property, a regular synthesis
suffices. For a task with a refutable property, the new framework allows to modify a BA
in a way such that realistic hardness characteristics of the generated task are ensured,
namely the rarity or depth of counterexamples to linear-time properties. This is an
addition to the generation framework that was previously used for RERS: before the
work of this thesis, violated LTL properties were extracted using property mining (see
Section 2.2.2), a procedure that lacks control over specific counterexamples. The new
framework always transforms the resulting BA to a modal transition system (MTS).

Such an MTS serves as a unifying intermediate representation: both the generation
of sequential programs and that of parallel programs are based on this behavioral spec-
ification within the new framework [JS18]AP. Furthermore, this representation can be
used to extract computational tree logic (CTL) properties either based on patterns that

15

LTL
patterns

Φverifiable
LTL Φrefutable

LTL

BA

BA with rare
counterexamples

BA with deep
counterexamples

MTS

MMM parallel MTSs

MM parallel LTSs

C Java

se
qu
en

ti
a
l

pa
ra
ll
el

DOT Promela Petri net

CTL
patterns

ΦCTL

Patterns for
logical formulas

Logical formulas

Büchi automata
(languages)

Modal transition systems

Modal Mealy machine or
parallel composition

Mealy machine
or parallel composition

Program or
graph description

Representations Framework

Figure 2.2: Overview of the new framework for synthesizing verification tasks. Solid
arrows indicate new contributions and dotted arrows represent previous work.

are syntactically similar to the used LTL formulas [JMS+18]AP or according to the more
semantics-driven ideas centered around weakened characteristic invariants [JSS20]AP.

When synthesizing sequential programs, the MTS is transformed to a modal Mealy
machine (MMM) that specifies input-output behavior of a reactive system. The existing
modalities allow flexibility w.r.t. a refining (non-modal) Mealy machine (MM), and this
chosen MM is encoded as a C or Java program [HIM+14].

In order to generate parallel programs, the development of the new framework in-
volved the conception of specific assume-guarantee contracts [SJ17, SJMvdP17]AP for
parallel decomposition (Section 6.1). In addition to the synthesis of verification tasks, a
modification allows to reuse this parallel decomposition to generate hard tasks for weak
bisimulation checking [SJ19]AP. As presented in [JFS+17]AP, the communication pattern
of a generated parallel system can be obfuscated drastically through an additional post-

16

processing based on partial evaluations of the given parallel composition. Modalities
again allow flexibility w.r.t. a final implementation, and an LTS component refinement
chooses such a final model. This final model is either represented by a DOT graph [8],
encoded in Promela [GJS+16]AP, or transformed to a Petri net [JFS+17, SJMvdP17]AP.
Key characteristics of this new framework are illustrated in Figure 2.3.

Hardness

state explosion
- encoding as program
- alphabet extension

rare/deep errors
- counterexample handles
- language reduction

relevant context - dependency propagation

Scalability

local expansion

- (convergent weak)
modal refinement

- parallel decomposition
- alphabet extension

Known Solution

property-preserving
transformations

- LTL synthesis
- (convergent weak)

modal refinement
- compositionality

Figure 2.3: Key characteristics of the new framework for synthesizing verification tasks.
For each characteristic (bold text), the text below briefly states which con-
cepts (left side) and techniques (right side) are used to achieve it.

A known solution to synthesized tasks is guaranteed on the basis of property-preserving
transformations. Whereas the LTL synthesis step is explained in Chapter 5, (convergent
weak) modal refinement is presented in Section 3.4. Compositionality ensures that local
transformations preserve properties at a global scope, as shown in Section 4.2.
Scalability is accomplished based on local expansions. The mentioned modal refine-

ment relations allow to check if an expanding transformation is still property-preserving.
Parallel decomposition (Section 6.1) is used to ‘split’ individual parallel components and
thereby locally expand a parallel system. Alphabet extensions (Section 6.2) allow to
expand the size of a parallel component through new actions.
Directly linked to scalability is the supported hardness criteria of state explosion—

meaning that the program which needs to be verified has an exponential number of

17

reachable program states compared to its description. Section 4.3.1 compares encoding-
based and interleaving-based ways to achieve state explosion.

Hardness criteria w.r.t. violated linear-time properties are the rarity of counterexam-
ples or their depth, meaning the number of computation steps after which an error can
be detected. The former is realized using so-called counterexample handles [JS18]AP

(Sections 4.3.2 and 5.2), whereas the latter utilizes intersections of Büchi automata to
reduce a given language [HJM+21]AP (Section 5.3).

When considering parallel programs, the relevance of the generated parallel context
(Section 4.3.3) can be ensured based on dependency propagation such that every parallel
component matters during verification [JSSS21]AP.

2.3.2 Impact on the Verification Community

Using the presented synthesis framework during each of the recent iterations of RERS
impacted the verification community because it allowed to annually evaluate state-of-
the-art verification tools [9]. RERS enables not just a ranking of participants according
to their capability of correctly solving provided tasks, but also a further analysis of
submissions. Section 2 of [JMM+19]AP for instance identifies that participating tools in
the sequential tracks of RERS 2018 were more successful at identifying refutable linear-
time properties than verifiable ones. Other competitions such as MCC demonstrate that
such an evaluation can be taken a step further by statistically analyzing their data set
of answers to verification tasks with the goal to identify hard-to-verify properties and
successful analysis techniques [KHHH+21].

Some verification tasks of RERS have been adopted by SV-COMP since 2014 [4] and
the Sequence PredIction ChallengE (SPiCe) [BEL+17] in 2016. Verification tasks of
RERS 2017 that feature parallel systems [JFS+17]AP—tasks that were generated based
on the introduced framework—are also part of the MCC benchmark since 2018 [5].

Participants of RERS’ tracks that feature parallel programs conceived new verification
techniques whose discovery was motivated by their participation. Major new techniques
are a combination of bisimulations [LMM20, LMM19] and partial-order reduction for
state-based systems [SY20]. As presented in Section 2.6 of [HJM+21]AP, RERS has
influenced many other scientific contributions and motivated the combination of verifi-
cation methods.

2.3.3 Benefits for Participants of RERS

For individual participants, the benchmarks of RERS and a submission to the challenge
can have several benefits. First, the provided benchmarks serve as convenient test cases
for tool developers. Especially when participating in the tracks on linear temporal logic
properties that have to hold during every feasible program execution, a correct answer
can serve the role of a ‘checksum’ for the correct implementation of a verification tool.
RERS benchmarks are therefore used as part of regression tests: CodeThorn [JS16], a
tool based on the ROSE compiler infrastructure [Qui00], has integrated the verification of

18

RERS benchmarks into its build pipeline [6]. This regularly tests not only the employed
model checking library, but also parts of the compiler frontend used for C programs.

Second, obtained scores and earned achievements3 provide participants with feedback
on how well their approach performed. Individual result vectors indicate what worked
and which tasks require additional effort in the future. As the results of each iteration of
RERS are available online [9], a successful participation can further serve as positive pub-
licity for the corresponding tool, backed by the credibility of a long-running international
verification event. Moreover, RERS motivated a special section of peer-reviewed journal
papers that allowed participants to report on their experiences [HIM+14]. Nowadays,
RERS takes steps in a direction similar to SV-COMP regarding an option for regular
submission of tool papers [1]. RERS thus supports tool developers by facilitating the
discovery of successful approaches and research prototypes.
Third, RERS features a forum for the exchange of results and ideas: most partici-

pants of RERS attend the corresponding annual event. During this event, ranking and
achievement results are announced, approaches are presented during scientific talks by
both participants and benchmark generators, and future directions of the challenge are
discussed among everyone involved in that year’s challenge.

3See Section 2.5 in [HJM+21]AP for a detailed description of the reward structure of RERS.

19

20

3
Preliminaries

Important definitions and propositions that will be used in later chapters are introduced
in the following. In Section 3.1, the formal details of words and languages are stated as
used within this thesis. Section 3.2 presents the formal models that are used as interme-
diate representations to generate verification tasks. Thereafter, Section 3.3 introduces
action-based linear temporal logic and corresponding model checking, before Section 3.4
presents important notions and basic results w.r.t. property-preserving transformations.

3.1 Languages

This thesis focuses on linear-time properties that reason about words—mostly as label
sequences in transition systems—and about corresponding languages [HJM+21]AP.

Definition 1 (Words). Given a finite alphabet Σ, a word over Σ is a (possibly empty
or infinite) sequence of symbols from Σ. The alphabet of symbols that occur in w can be
accessed as Σ(w). Given an integer n ∈ N and a finite word w = a1a2 . . . an, |w| denotes
the length n of w. An infinite word is a function w : N ↦→ Σ such that wi := w(i) is the
i-th symbol of this word and has the length |w| = ∞. Given any word w = a1a2 . . . and
any integer i ∈ N such that i ≤ |w|, w≤i denotes the prefix of w of length i. Similarly,
w≥i = aiai+1 . . . denotes the suffix of w starting at index i.

Definition 2 (Languages). Given a finite alphabet Σ, a language (over Σ) is a set of
words over Σ. For a given n ∈ N, the language Σn consists of all words w = a1a2, . . . an
of length |w| = n such that ai ∈ Σ for all i ∈ 1 . . n. For any n ∈ N, Σ≤n :=

⋃n
i=1Σ

i,
and additionally Σ∗ :=

⋃
i∈NΣi. A language L is finite iff |L| ∈ N and infinite otherwise.

Σω denotes the language that contains all infinite words over Σ.
Moreover, L is a language of finite words iff L ⊆ Σ∗, and a language of infinite words

iff L ⊆ Σω. The set of prefixes of a language L with length at most k is denoted by
L≤k := {w≤i | w ∈ L ∧ i ≤ k}. The concatenation of words extends naturally to
languages: given a language L ⊆ Σ∗ and any language L′, their concatenation is defined
as LL′ := {ww′ | w ∈ L ∧ w′ ∈ L′}. For any word w and any language L, wL := {w}L.

21

A later chapter further employs traditional concepts based on regular languages,
specifically non-deterministic finite automata (NFAs) and deterministic finite automata
(DFAs). It is assumed that the reader is familiar with those concepts and corresponding
transformations.

3.2 Models of a System

This section covers the program models that verification tasks within this thesis are
based on. Section 3.2.1 describes modal transition systems which serve as an interme-
diate representation for parallel program specifications within this thesis. Their parallel
composition is explained in Section 3.2.2. Section 3.2.3 introduces Mealy machines which
are used to generate sequential programs.

3.2.1 Modal Transition Systems

Modal transition systems [Lar89] allow to distinguish between behavior that must be fea-
sible and one that may be feasible. The following definitions are taken from [JSSS21]AP

with only minor adjustments.

Definition 3 (Modal Transition System). Let S be a set of states and Σ a finite alphabet
of action symbols. M = (S, s0,Σ, 99K,−→) is called a (rooted) modal transition system
(MTS) with root s0 ∈ S iff the following condition holds:

−→ ⊆ 99K ⊆ (S × Σ× S)

Elements of 99K are called may transitions and those of −→ must transitions. The syntax

s
a

99K s′ and s
a−→ s′ is used to denote transitions (s, a, s′) ∈ 99K and (s, a, s′) ∈ −→,

respectively. Furthermore, the operator Σ(M) := Σ accesses the alphabet of M and

is overloaded to access labels of transitions, i.e., Σ(s
a

99K s′) := a for any s
a

99K s′ and
Σ(T) :=

⋃
t∈T {Σ(t)} for any T ⊆ 99K.1

Throughout this thesis, two MTSs are presumed to be identical if they are isomorphic.

Definition 4 (Path, Reachability, and Access Sequences). Let (S, s0,Σ, 99K,−→) be an

MTS. Then a path is a sequence π = s0
a1
99K s1

a2
99K s2 · · · of transitions that starts in

s0 with i ranging from 0 to either a positive integer or infinity. Set notation is used to

refer to the transitions of a path, e.g. s0
a1
99K s1 ∈ π. The word w induced by the label

sequence a1a2 . . . is denoted as w(π).

A state s ∈ S is reachable iff a path exists that ends in s. For any reachable
state s ∈ S, the label sequences of words that lead to s are defined as access(s,M) :=
{w(π) | there exists a path π in M that ends in s}.
1Note that not every alphabet symbol has to occur as a transition label, meaning that Σ(M) = Σ(99K)
is not guaranteed in general.

22

An MTS can be seen as an extension of a traditional (rooted) labeled transition system
(LTS), which allows the following definition:

Definition 5 (Labeled Transition Systems). A labeled transition system (LTS) is an
MTS M = (S, s0,Σ, 99K,−→) with 99K = −→. Components four and five are thus joined
in case of LTSs.

For the model checking of linear-time properties, the minimal and maximal languages
defined by an MTS M are important, which are based on the must and may LTS of M ,
respectively:

Definition 6 (Must and May LTS). Given an MTS M = (S, s0,Σ, 99K,−→), the LTSs
L⊥(M) := (S, s0,Σ,−→) and L⊤(M) := (S, s0,Σ, 99K) are called must and may LTS of
M , respectively.

Definition 7 (Minimal and Maximal Language). The language L(L) of words in an
LTS L equals the label sequences of all paths in L. Infinite words in a language L are
denoted by Lω. Given an MTS M ,

1. L⊥(M) := L(L⊥(M)) is called the minimal language and

2. L⊤(M) := L(L⊤(M)) the maximal language

of M , respectively. This definition propagates to subsets of infinite words.

Obviously, it holds that L⊥(M) ⊆ L⊤(M) because of −→ ⊆ 99K.

3.2.2 Parallel Composition

The parallel composition operator for MTSs used within this thesis, as presented in [SJ17]AP

and, e.g., also used in [JSSS21]AP, is reminiscent of CSP [Hoa78] with synchronization
of components on their common alphabets:

Definition 8 (Parallel MTS Composition). Given MTSs M1 = (S1, s
1
0,Σ1, 99K1,−→1)

and M2 = (S2, s
2
0,Σ2, 99K2,−→2), the parallel composition

M1 ||M2 := (S1 × S2, (s
1
0, s

2
0),Σ1 ∪ Σ2, 99K,−→)

is defined as a commutative and associative operation satisfying the following operational
rules where ⇀ identifies the type of transition and is once instantiated to represent may
transitions and once to represent must transitions:2

p
a
⇀1 p

′ q
a
⇀2 q

′

(p, q)
a
⇀ (p′, q′)

p
a
⇀1 p

′ a /∈ Σ2

(p, q)
a
⇀ (p′, q)

It follows directly that parallel composition can only reduce the minimal and maximal
languages of an MTS if a shared communication alphabet exists [JSSS21]AP.

2Please note that every must transition is also a may transition.

23

Proposition 1 (Orthogonal Composition). LetM,M ′ be MTSs with Σ(M)∩Σ(M ′) = ∅.
Then both L⊥(M) ⊆ L⊥(M ||M ′) and L⊤(M) ⊆ L⊤(M ||M ′) hold.

For any alphabet Σ, there exists a simple LTS that always has an outgoing transition
for every alphabet symbol a ∈ Σ and is therefore neutral w.r.t. parallel composition.

Definition 9 (Neutral Element of Composition). Let Σ be an alphabet. The one-state
LTS NΣ with transitions for every a ∈ Σ is called the composition-neutral Σ-LTS:

NΣ := ({s}, s,Σ, {s} × Σ× {s})

Proposition 2 (Neutrality). Let M be an MTS. Then M || NΓ = M holds for any
Γ ⊆ Σ(M).

3.2.3 Mealy Machines

Mealy machines [Mea55] are the formal specification based upon which sequential pro-
grams are generated within this thesis.

Definition 10 (Mealy Machine). A Mealy machine (MM) is a tupleM = (S, s0,Σ,Λ, δ, λ)
where

1. S is a finite set of states with initial state s0 ∈ S,

2. Σ,Λ are finite input and output alphabets, respectively, and

3. δ : S × Σ ⇀ S,λ : S × Σ ⇀ Λ are partial transition and output functions, respec-
tively, such that δ(s, a) is defined iff λ(s, a) is defined for all s ∈ S, a ∈ Σ.

A MM induces a corresponding LTS when input and output are viewed as alternating
actions [vdPM19].

Definition 11 (LTS of a MM). Let M = (S, s0,Σ,Λ, δ, λ) be a MM. Furthermore, let
T := {(s, i) | λ(s, i) is defined } and f : T ↦→ ST be a bijection to a new set of states
disjoint from S. Then the LTS L(M) := (S ⊎ ST ,Σ ⊎ Λ,−→) of M3 is defined with

−→ := {s i−→ f(s, i) | (s, i) ∈ T} ⊎ {f(s, i) o−→ s′ | λ(s, i) = o ∧ δ(s, i) = s′}

A modal Mealy machine (MMM) can be defined analogously to an MTS by featuring
separate transition and output functions for may and must behavior.

3.3 Action-based Linear Temporal Logic

The verification tasks considered in this thesis each feature an action-based temporal
property: the task is to check whether the given program (or model thereof) satisfies
that property. Setion 3.3.1 briefly covers linear-time properties and corresponding model
checking of MTSs. Thereafter, Section 3.3.2 presents action-based linear temporal logic
(LTL) as a means to describe linear-time properties.

3The operator ⊎ describes the disjoint union of two sets.

24

3.3.1 Linear-Time Properties

Linear-time properties specify behavior of infinite sequences. When not expressed in
some logic, a linear-time property is frequently represented by a language of infinite
words [SY20, BK08].

Definition 12 (Linear-Time Property). A language L over an alphabet Σ is a linear-
time property iff L ⊆ Σω. A word w satisfies L iff w ∈ L.

Interesting subsets of linear-time properties include safety and liveness [BK08].

Definition 13 (Safety and Liveness). A linear-time property L over some alphabet Σ
is a safety property iff for every word w ∈ Σω with w /∈ L, there exists a finite prefix
wp ∈ Σ∗ of w such that for all w′ ∈ Σω, wpw

′ /∈ L holds.

Moreover, L is a liveness property iff every finite word w ∈ Σ∗ can be extended to a
word ww′ ∈ Σω such that ww′ ∈ L.

Model checking a linear-time property means to decide which of the following three
possibilities hold [JSSS21]AP:

4

Definition 14 (Satisfaction/Violation Between MTSs and Linear-Time Properties). Let
M be an MTS and L a linear-time property. Then M satisfies L (denoted as M |= L) iff
Lω
⊤(M) ⊆ L. Similarly, M violates L (denoted as M ̸|= L) iff Lω

⊥(M) ̸⊆ L. Moreover,

M is indecisive concerning L (denoted as M
?|= L) iff M neither satisfies nor violates L.

A Mealy machine M satisfies, violates, or is indecisive concerning L iff the same holds
for its LTS L(M) (Def. 11). This propagation extends to modal Mealy machines.

3.3.2 Action-based LTL

The following definitions which are taken from [JSSS21]AP specify linear temporal logic
(LTL) [WVS20, BK08], more precisely, action-based LTL [SY20, GM03]:

Definition 15 (Syntax of Action-based Linear Temporal Logic (LTL)). Let Σ be an
alphabet of actions and a ∈ Σ. The syntax of (action-based) LTL is defined using the
following grammar in Backus-Naur form:

φ ::= ⊤ | a | φ ∧ φ | ¬φ | Xφ | (φ U φ)

LTL is the set of formulas φ that can be constructed this way.

The operator X (or “next”) describes behavior that has to hold at the next time
step. A formula φ1 U φ2 describes that φ2 has to hold eventually and that φ1 has to be
satisfied until φ2 holds in a word. The formal semantics of LTL is based on a satisfaction
relation between infinite words and LTL formulas [BK08]:

4Compared to [JSSS21]AP, this definition was generalized from LTL to arbitrary linear-time properties.

25

Definition 16 (LTL Semantics). Let Σ be an alphabet of action symbols. The satis-
faction relation |= ⊆ (Σω × LTL) is defined as the minimal relation that adheres to the
following rules for any w ∈ Σω and φ,ψ ∈ LTL:

1. w |= ⊤
2. w |= a iff w1 = a

3. w |= (φ ∧ ψ) iff w |= φ and w |= ψ

4. w |= ¬φ iff w ̸|= φ

5. w |= Xφ iff w≥1 |= φ

6. w |= (φ U ψ) iff ∃k ∈ N : w≥k |= ψ and ∀i ∈ N<k : w≥i |= φ

The semantics of a formula φ ∈ LTL is given by JφK := {w ∈ Σω | w |= φ}.
An MTS M satisfies, violates, or is indecisive concerning φ iff the same holds for the

linear-time property JφK, respectively.

The terms “LTL formula” and “LTL property” are used interchangeably within this
thesis. The former term has a more syntactical meaning whereas the latter focuses on
semantics. Common abbreviations in LTL include Fφ := ⊤ U φ which expresses that
φ will eventually become true and its dual operator Gφ := ¬F¬φ which claims that φ
is generally true, meaning that it holds at every symbol of a word.
As LTL is frequently used to specify behavior of state-based systems, LTL semantics

is commonly introduced such that ‘characters’ in a word are sets of atomic propositions
A ∈ 2AP instead of individual actions a ∈ Σ. Action-based LTL can be formally seen as
a subset of LTL based on sets of atomic propositions. The underlying reason is that it is
possible to enforce that only individual atomic propositions occur in a word by adding
an LTL invariant called singleton filter to a formula [JS18]AP.

Every LTL property φ can be decomposed into two properties φs and φl in a way
that JφsK is a safety property and JφlK a liveness property such that JφK = JφsK ∩ JφlK
holds [AS87, MDB14].5 If an LTL property φ is said to feature a safety part within this
thesis, then JφK is not a liveness property.

As known since the early days of LTL model checking, one can synthesize a Büchi
automaton B from an LTL formula φ such that L(B) = JφK holds [PR89].6

Definition 17 (Büchi Automaton). Let B = (S,Σ, ∆, s0, F) be a finite automaton with
a set S of states and a finite alphabet Σ. State s0 ∈ S represents the initial state and
F ⊆ S a set of accepting states. The relation ∆ ⊆ (S × Σ × S) represents transitions
between states in S. The syntax p

a−→ q denotes a (p, a, q) ∈ ∆.

A path is a sequence π = s0
a1−→ s1

a2−→ s2 · · · of transitions that starts in s0 with an
index that ranges from 0 to either a positive integer or infinity. Path π spells the word
w = a1a2

5Note that for LTL, the definition of safety and liveness relies on the use of action-based LTL: when
allowing sets of atomic propositions and therefore using the mentioned singleton filter, there would not
exist liveness properties because the singleton filter itself is an invariant and thus a safety property.

6Note again that a singleton filter can be used to synthesize Büchi automata for action-based LTL.

26

Given these definitions, B is called a Büchi automaton if it adheres to Büchi accep-
tance, meaning that it accepts infinite words w ∈ Σω based on the following criteria:

1. There exists a path p in B that starts in s0 and that spells w

2. This path p visits a state in F infinitely often

The set L(B) := {w ∈ Σω | B accepts w} defines the language of B.

Büchi automata are strictly more expressive than LTL [Wol83]. Examples of Büchi
automaton synthesis from LTL properties can be found in [JS18, JSSS21]AP.

3.4 Property Preservation

Key to the presented synthesis of verification tasks are property-preserving transforma-
tions. The fundamental concepts that this preservation is based on are modal refinement
and bisimulation. Section 3.4.1 covers modal refinement, before weak refinement, bisim-
ulation, and the notion of convergence are introduced in Section 3.4.2.

3.4.1 Modal Refinement

The following notion of refinement allows to regard certain LTSs as implementations of
MTSs [Lar89] (see also [JSSS21]AP

7).

Definition 18 (MTS Refinement). Let M1 = (S1, s
1
0,Σ1, 99K1,−→1), M2 = (S2, s

2
0,Σ2,

99K2,−→2) be MTSs. A relation ≲ ⊆ (S1 × S2) is called a refinement iff the following
hold for all (p, q) ∈ ≲:

1.) ∀p a
99K1 p

′, ∃q a
99K2 q

′ : p′ ≲ q′

2.) ∀q a−→2 q
′, ∃p a−→1 p

′ : p′ ≲ q′

M1 refines M2, written as M1 ≲M2, iff there exists a refinement ≲ with s10 ≲ s20.

Because every must transition is also a may transition, every reachable state of M1

needs to occur in a refinement:

Proposition 3 (States Contained in a Refinement). Let M1 = (S1, s
1
0,Σ1, 99K1,−→1),

M2 = (S2, s
2
0,Σ2, 99K2,−→2) be two MTSs. Then for any refinement ≲ ⊆ (S1×S2) with

s10 ≲ s20, the following holds: for any state s1 ∈ S1 that is reachable in M1, there exists
a state s2 ∈ S2 such that s1 ≲ s2.

The following observation explains why modal refinement preserves linear-time prop-
erties [JSSS21]AP (see also Section 3.3).

Proposition 4 (Language Monotonicity I). Let M,M ′ be two MTSs such that M ′ ≲M .
Then it holds that L⊥(M) ⊆ L⊥(M

′) and L⊤(M
′) ⊆ L⊤(M).

7In contrast to the definition in [JSSS21]AP, M1 and M2 are allowed to have different alphabets here in
order to support alphabet extensions (Section 6.2) in the setting of weak refinement (Section 3.4.2).

27

Parallel components are relevant during model checking if they cannot be abstracted
to their weakest specification [Lar90] (see also [SJ17]AP):

Definition 19 (Weakest Modal Specification). Let Σ be an alphabet. The one-state MTS
UΣ with may transitions for every a ∈ Σ is called the weakest modal Σ-specification:

UΣ := ({s}, s,Σ, {s} × Σ× {s}, ∅)

The following proposition follows from the semantics of parallel composition (Def. 8).

Proposition 5 (Unconstrained Behavior). Let M be an MTS and UΣ the weakest modal
Σ-specification for some alphabet Σ. Then M ≲M || UΣ.

3.4.2 Weak Modal Refinement, Bisimulation, and Convergence

With the goal to define weak modal refinement, the common notion of hiding is intro-
duced as in [SJ17]AP:

Definition 20 (Label Hiding). Let M = (S, s0,Σ, 99K,−→) be an MTS and Γ ⊆ Σ.
Then in the Γ-hiding

hideΓ(M) := (S, s0, (Σ \ Γ) ∪ {τ}, hideΓ(99K), hideΓ(−→))

of M , all transitions t of M with Σ(t) ∈ Γ are replaced with the (unobservable) special
symbol τ and therefore features the following transition relations for all ⇀ ∈ {99K,−→}:

hideΓ(⇀) = {p τ
⇀ q | ∃a ∈ Γ : p

a
⇀ q} ⊎ {p a

⇀ q | a ∈ Σ \ Γ}

In order to compare two MTSs based on a certain alphabet Γ, it helps to express that
all of their symbols are hidden which are not in Γ [SJ19]AP:

Definition 21 (Alphabet View of an MTS). Let M = (S, s0,Σ, 99K,−→) be an MTS
and Γ ⊆ Σ. Then [M]Γ := hideΣ(M)\Γ(M).

Throughout this thesis, the special symbol τ only occurs when hiding or view operators
are used, unless explicitly stated otherwise. For every MTS M without hiding or a view
applied to it or a note that its alphabet may contain τ , one can assume that τ /∈ Σ(M).
A view has no effect if the viewed alphabet contains all symbols of the given MTS.

Proposition 6 (Neutral View). Let M be an MTS and Σ an alphabet with Σ(M) ⊆ Σ.
Then [M]Σ =M holds.

A view can be applied before or after parallel composition if the viewed alphabet
contains all symbols based on which synchronization can occur.

Proposition 7 (Commutativity I). Let M,M ′ be two MTSs and Σ an alphabet with
Σ(M) ∩ Σ(M ′) ⊆ Σ. Then [M]Σ || [M ′]Σ = [M ||M ′]Σ.

28

Just like [M]Γ views an MTSM w.r.t. a certain alphabet Γ, the same concept is useful
for languages [JSSS21]AP.

Definition 22 (Alphabet View of a Language). For any languages Σ,Γ and any word
w over Σ, [w]Γ is defined as the word that results from skipping all symbols in w that do
not exist in Γ. This definition extends naturally to languages.

Based on hiding, the (standard) definition of weak MTS refinement is prepared by
defining the usual observational relation of a transition relation as in [SJ17]AP:

Definition 23 (Observational Relation). Given states S, let ⇀ ⊆ S × (Σ∪ {τ})× S be
a transition relation between states in S and p, p′, q, q′ ∈ S. Furthermore, let ϵ /∈ Σ be
a special symbol representing a sequence of invisible actions. The observational relation
obs(⇀) of ⇀ is then recursively defined as follows:

p
ϵ

=⇒ p
p

τ
⇀ p′ p′

ϵ
=⇒ q

p
ϵ

=⇒ q

p
ϵ

=⇒ p′ p′
a
⇀ q′ q′

ϵ
=⇒ q

p
a

=⇒ q

where a ∈ Σ holds and p
a

=⇒ p′ denotes a transition (p, a, p′) ∈ obs(⇀).

An observational MTS is now simply defined by replacing its original transition rela-
tions with their observable counterparts [SJ17]AP:

Definition 24 (Observational MTS). Let M = (S, s0,Σ, 99K,−→) be an MTS. The
observational MTS obs(M) ofM is based on the observational expansion of its transition
relations:

obs(M) := (S, s0, (Σ \ {τ}) ∪ {ϵ}, obs(99K), obs(−→))

Some refinements are insensitive to divergence, i.e., the possibility that a system en-
gages in an infinite τ sequence, and therefore do not preserve liveness properties [SJ17]AP.
The major part of this thesis therefore focuses on convergent systems.

Definition 25 (Convergence). An MTS M is called convergent iff for every path π in
M , the word w(π) only contains finite τ -sequences.

This is sufficient to introduce (convergent) weak modal refinement [HL89] (see [SJ17]AP):

Definition 26 ((Convergent) Weak Refinement). Let M,M ′ be two MTSs. Then M ′

weakly refines M , denoted as M ′ ⪅ M , iff obs(M ′) ≲ obs(M). If M ′ is furthermore

convergent, then M ′ is called convergent weak refinement of M , denoted as M ′ c⪅M .

It is straightforward to establish that parallel composition preserves modal refinement
for both operands when they have the same alphabets [SJ17]AP. The same holds for
weak refinement [BMSH10], and convergence does not influence this preservation.
When allowing different alphabets of involved MTSs however, compositionality does

require an additional guarantee w.r.t. these alphabets.8 This is based on the fact that

8See also Propositions 6 and 7 in [JSSS21]AP for the required guarantees in the linear-time setting.

29

refinement is in some cases insensitive to the alphabets of MTSs: there exist MTSs
M,M ′ with M ≲M ′ such that Σ(M) ̸= Σ(M ′) holds. Altering the alphabet of an MTS
might however modify synchronization constraints with a parallel context and thereby
hinder refinement compositionality.

Proposition 8 (Compositional Refinement). Let M,M ′,M ′′ be three MTSs where M
and M ′ may contain τ in their alphabets and such that9 (Σ(M)△Σ(M ′))∩Σ(M ′′) = ∅.
Then for any ⪯∈ {≲,⪅,c⪅}, ⪯ is preserved by parallel composition:

M ⪯M ′ implies (M ||M ′′) ⪯ (M ′ ||M ′′)

Note that due to the commutativity of operator ||, Proposition 8 holds for both com-
ponents of a composition.
The frequently used concept of (weak) bisimulation can be derived from the notion of

(weak) refinement [SJ19]AP such that it coincides with the traditional definition [Par81].

Definition 27 ((Convergent, Weak) Bisimulation). Let L,L′ be two LTSs. Then L is
bisimilar to L′, denoted as L ∼ L′, iff L ≲ L′. In addition, L is weakly bisimilar to
L′, denoted as L ≈ L′, iff L ⪅ L′. Furthermore L and L′ are convergent and weakly

bisimilar, denoted as L
c
≈ L′, iff both L and L′ are convergent and L ≈ L′.

Bisimulation of Mealy machines is based on the corresponding LTS views (see Sec-
tion 3.2.3).

9The operator △ stands for the symmetric difference between sets.

30

4
Realistic Verification Tasks

This chapter introduces the different types of verification tasks that can be synthe-
sized using the new framework (see Section 2.3.1) on a formal level. Section 4.1 defines
these different types of tasks. Thereafter, Section 4.2 clarifies what is meant by inter-
ruptible properties—such properties are part of synthesized tasks which target parallel
programs—and presents a new result by generalizing the notion of interruptibility as
presented in [SY20] to temporal properties from various logics. This chapter closes with
a discussion of realized hardness criteria (see also Figure 2.3).

4.1 Verification Tasks

On the one hand, Mealy machines are chosen within this thesis as the intermediate
representation of sequential programs, the latter implementing reactive systems. On
the other hand, parallel compositions of labeled transition systems represent parallel,
asynchronous programs. A verification task combines such a model with a temporal
property, i.e., a property that can be expressed in the modal µ-calculus [Koz83].

Definition 28 (Verification Task). A model M of a system and a temporal property φ
specify a verification task V (M,φ) that is a positive verification task iff M |= φ and a
negative verification task iff M ̸|= φ.

If M is a MM, then V (M,φ) is called sequential (positive or negative) task. If M is
a parallel composition M = (L1 || · · · ||Ln) of LTSs, then V (M,φ) is called parallel task.

As an intermediate representation during the generation of verification tasks, MTSs
(Def. 3) are used within this thesis. Hardness criteria that are introduced in Section 4.3
are therefore sometimes specified based on MTSs. For a parallel task, the parallel com-
position of LTSs is obtained by means of component-wise modal refinement (Def. 18).

Definition 29 (LTS Component Refinement). Let M = (M1 || · · · ||Mn) be a parallel
composition of n MTSs. A parallel composition L = (L1 || · · · || Ln) of n LTSs is called
LTS component refinement of M iff Li ≲Mi holds for each i ∈ 1 . . n.

31

In addition to verification tasks—which are inherently model checking queries as de-
fined above—the synthesis framework presented in this thesis can also be used to create
tasks for weak bisimulation checking [SJ19]AP.

Definition 30 (Bisimulation Task). Let L1 = (L11 || ... ||L1n) and L2 = (L21 || ... ||L2n)
be two parallel compositions of LTSs and Σ ⊆ Σ(L1) ∩ Σ(L2). Then B = (L1, L2,Σ) is
called a weak bisimulation checking task, or just bisimulation task.
The correct answer to B is ‘equivalent’ iff [L1]Σ ≈ [L2]Σ holds and ‘nonequivalent’

otherwise (see Definitions 21 and 27).

4.2 Interruptible Temporal Properties

Convergent weak modal refinement will be ensured by all transformations applied during
the construction of a parallel task (see Chapter 6). Intuitively speaking, the presented
generation of (hard) parallel tasks interleaves finite interruptions by artificial new action
symbols with the actions of an initial system. As a consequence, the approach presented
in this thesis to generate parallel tasks is constrained to interruptible temporal properties.

Definition 31 (Interruptible Temporal Property). Let φ be a temporal property. Then
φ is interruptible iff the following holds for all MTSs M,ME:

[ME]Σ(M)
c⪅M implies both1 M |= φ =⇒ ME |= φ and M ̸|= φ =⇒ ME ̸|= φ

Convergent weak modal refinement based on hiding as used in Definition 31 is com-
positional if the alphabet of ME is a superset of that of M and does not introduce
additional synchronization potential with parallel components.

Theorem 1 (Compositionality of Property Preservation). LetM,M ′, andM ′′ be MTSs.

Then a satisfaction of the two following conditions2 implies [M ′ ||M ′′]
Σ(M||M′′)

c⪅M ||M ′′:

1. [M ′]
Σ(M)

c⪅M

2. (Σ(M)△Σ(M ′)) ∩ Σ(M ′′) = ∅

Proof. Applying set theory and the second condition in Theorem 1 yields the equality
Σ(M) ∩ Σ(M ′′) = Σ(M ′) ∩ Σ(M ′′). Combined with Proposition 7, this results in (i):

[M ′ ||M ′′]
Σ(M||M′′) = [M ′]

Σ(M||M′′) || [M
′′]

Σ(M||M′′)

Because of Proposition 6, it holds that (ii) [M ′′]
Σ(M||M′′) = M ′′. According to the

definition of an alphabet view, [M ′]
Σ(M||M′′) = hideΣ(M ′)\Σ(M ||M ′′)(M

′). It holds that

Σ(M ||M ′′) = Σ(M) ∪ Σ(M ′′) and again based on set theory also the following:

Σ(M ′) \ Σ(M ||M ′′) = (Σ(M ′) \ Σ(M)) \ Σ(M ′′)

1Note that an MTS may neither satisfy nor violate a given temporal property.
2Operator △ again stands for the symmetric difference between alphabets.

32

The outer set difference can be omitted due to the second condition in Theorem 1, thus
it holds that (iii) [M ′]

Σ(M||M′′) = hideΣ(M ′)\Σ(M)(M
′) = [M ′]

Σ(M)
. Now it follows that

[M ′ ||M ′′]
Σ(M||M′′) = [M ′]

Σ(M)
||M ′′

because of (i), (ii), and (iii). Combining Condition 1 and Proposition 8 finally yields:

[M ′ ||M ′′]
Σ(M||M′′) = [M ′]

Σ(M)
||M ′′ c⪅ M ||M ′′

Theorem 1 serves as the formal foundation for property preservation when combining
parallel decomposition and alphabet extension (see Chapter 6).

For linear-time properties, interruptibility can be expressed directly on the level of
languages [SY20] (see also [JSSS21]AP), as shown by relying on the following lemmas.

Lemma 1 (Consistency of Alphabet Views). Let L be an LTS and Γ an alphabet such
that [L]Γ is convergent. Then Lω(obs([L]Γ)) = [Lω(L)]Γ holds.

Proof. Let w′ ∈ Lω(obs([L]Γ)). Then there exists an infinite path π in obs([L]Γ) with
w(π) = w′. There further exists an infinite path π′ in L that (i) traverses the same
sequence of states as π does because [L]Γ is convergent, and (ii) such that for all positive
integers i, the i-th transition in π is labeled a ∈ Γ iff the i-th transition of π′ is labeled
identically, because of the two leftmost rules in the definition of observational transition
relations (Def. 23). The word that results from skipping symbols in word w(π′) ∈ Lω(L)
that are not in Γ is thus identical to w′.

Let w′ ∈ [Lω(L)]Γ . Then there exists an infinite path π in L with w′ = [w(π)]Γ . In
[Lω(L)]Γ , all transitions in π labeled with a symbol not in Γ are replaced by τ , and again
by ϵ in obs([Lω(L)]Γ) due to the two above-mentioned rules of observational transition
relations. As a result, there exists an infinite path π′ in obs([L]Γ) with w(π′) = w′.
Because [L]Γ is convergent, w(π′) has to be an infinite word, and thus w′ ∈ Lω(obs([L]Γ)).

Modification to an individual transition relation such as (i) hiding and (ii) a trans-
formation to an observable transition relation are independent from managing different
transition relations. As a consequence, the following propositions hold.

Proposition 9 (Commutativity II). For any MTS M and any alphabet Γ, the following
hold:

L⊤([M]Γ) = [L⊤(M)]Γ and L⊥([M]Γ) = [L⊥(M)]Γ

Proposition 10 (Commutativity III). For any MTS M , the following hold:

L⊤(obs(M)) = obs(L⊤(M)) and L⊥(obs(M)) = obs(L⊥(M))

Combining Lemma 1 with Propositions 9 and 10 allows to show the following.

33

Lemma 2 (Language Monotonicity II). Let M,M ′ be MTSs with [M ′]
Σ(M)

c⪅M . Then
Lω
⊥(M) ⊆ [Lω

⊥(M
′)]

Σ(M)
and [Lω

⊤(M
′)]

Σ(M)
⊆ Lω

⊤(M).

Proof. Let M,M ′ be two MTSs such that [M ′]
Σ(M)

c⪅ M . Because of τ /∈ Σ(M),
it follows that Lω

⊥(obs(M)) = Lω
⊥(M). As [M ′]

Σ(M)
⪅ M holds, it is known that

obs([M ′]
Σ(M)

) ≲ obs(M), which implies Lω
⊥(M) = Lω

⊥(obs(M)) ⊆ Lω
⊥(obs([M

′]
Σ(M)

))
according to Proposition 4. Propositions 9 and 10 yield

Lω
⊥(M) ⊆ Lω

⊥(obs([M
′]
Σ(M)

)) = Lω(L⊥(obs([M
′]
Σ(M)

))) = Lω(obs([L⊥(M
′)]

Σ(M)
)),

and applying Lemma 1 now results in Lω
⊥(M) ⊆ [Lω(L⊥(M

′))]
Σ(M)

= [Lω
⊥(M

′)]
Σ(M)

.
The proof of the second statement, [Lω

⊤(M
′)]

Σ(M)
⊆ Lω

⊤(M), is analogous.

Based on Lemma 2, it can now be proven that Definition 31 is a generalization of the
definition of interruptibility that is introduced in [SY20].

Theorem 2 (Sufficient Condition for Linear-Time Interruptibility). Let L be a linear-
time property over an alphabet Σ. Then L is interruptible if for any alphabet ΣE and
any infinite words w ∈ Σω, wE ∈ Σω

E, the following holds:

[wE]Σ = w implies (wE ∈ L ⇐⇒ w ∈ L)

Proof. Let L be an arbitrary linear-time property over some alphabet Σ and assume that

L satisfies the premise in Theorem 2. Let M,ME be any MTSs with [ME]Σ(M)
c⪅ M .

Furthermore, assume that M |= L, meaning that Lω
⊤(M) ⊆ L (Def. 14). Based on

Lemma 2, [Lω
⊤(ME)]Σ(M)

⊆ Lω
⊤(M) holds. Combined with the satisfied condition in

Theorem 2, it thus follows that ME |= L. The other case, assuming that M ̸|= L holds,
is analogous.

4.3 Hardness Guarantees

The different hardness criteria that can be guaranteed using the new framework of this
thesis are discussed in the following. The structure of this section can also be found
in Figure 2.3. Section 4.3.1 first introduces two variants of state explosion, followed by
Section 4.3.2 which clarifies the meaning of rare and deep counterexamples w.r.t. linear-
time properties. Thereafter, Section 4.3.3 is dedicated to a relevant parallel context and
relies on the notion that all components of a parallel composition are relevant when
solving a given task.

4.3.1 Large State Space

When generating realistic verification tasks or bisimulation tasks, one should be able
to confront verifiers with what is commonly referred to as state explosion: the number
of reachable explicit program states is exponential in the syntactic size of the program.
This thesis distinguishes between two types of state explosion. On the one hand, using a

34

bisimulation-preserving encoding of a model—for example a MM—in some programming
language allows to generate code that features a number of reachable program states
that is exponential in that of the underlying model. This approach is the topic of
[HIM+14, Sch21] and not further discussed in this thesis. For parallel tasks on the other
hand, another type of state explosion exists based on multiple parallel interleavings:

Definition 32 (Interleaving-based State Explosion). Let L = (L1 || · · · ||Ln) be a parallel
composition of n LTSs. Then L is interleaving-hard iff the expanded composition of L
contains at least 2n reachable states.

Encoding-based state explosion is used to generate hard sequential tasks within the
RERS Challenge [HIM+14], whereas interleaving-based state explosion is utilized to
produce hard parallel tasks. Note that a parallel composition of LTSs can also be
encoded as a program in, e.g., Promela [GJS+16]AP. Therefore, an encoding-based
expansion could further be employed to enlarge individual components of a parallel
composition.

4.3.2 Subtle Errors

A hardness criterion that solely applies to negative verification tasks is subtlety : In
practice, errors (“bugs”) in programs are frequently (i) rare and (ii) deep in the sense
that an error can only be detected after a certain number of computation steps [JS18]AP.
Thus, a generator for realistic verification tasks should be able to control the subtlety
of errors (property violations) in order to produce relevant benchmarks. This thesis
discussed subtle errors in the context of LTL properties, which subsume error reachability
such as violated assertions.

Rarity

For LTL properties which constrain infinite paths (see Def. 16), rarity of counterexamples
cannot easily be expressed, e.g., in terms of a quotient of the number of paths that
violate or satisfy a given property, respectively, because there usually exist infinitely
many infinite paths in a system. Instead, this thesis uses the notion of a counterexample
handle which all counterexamples to an LTL property in a given system have to traverse.

Definition 33 (Counterexample Handle). Let M be a transition system and φ an LTL
property such that M ̸|= φ. A transition t in M is called a counterexample handle
(CE-handle) for φ in M iff the removal of t results in M |= φ.

Note that ifM is an MTS, then a CE-handle has to be a must transition (see Def. 14).
A CE-handle imposes a certain rarity of violation witnesses if most states of M can be
reached without traversing it. In addition, such a handle is very useful for controlling the
satisfaction of φ in M , an aspect that the generation of hard parallel tasks as presented
in [JSSS21]AP heavily relies on.

35

Depth

For the purpose of evaluating verification tools, it is helpful to be able to adjust the
depth at which counterexamples can be detected. Here, the goal is to set an interval
(m,n] of positive integers m,n with m < n such that no path of m states or less gives
away a property violation, however such that there exists a path of at most n states
which does. The following pattern is used to generate corresponding verification tasks:
starting from a small model, paths that indicate a property violation and are deemed too
short are rendered infeasible, before a subsequent check ensures that one such violating
path of length at most n still exists. A depth interval (m,n] for the violation of an LTL
property φ in a model M can be stated in at least two ways such that it is relevant for
model checking:

1. Guarantee that every counterexample path to φ in M contains at least m distinct
states, however that one exists which contains at most n distinct states.

2. Ensure that every word of length less or equal to m can in general be extended to
a word that satisfies φ, however also that there exists a word of length at most n
for which all possible continuations violate φ.

These two perspectives on depth intervals have different impact on the hardness of a
negative verification task, and the second one is apparently only applicable to properties
that feature a safety part (see Def. 13). The first option ensures for example that
an explicit-state analyzer which proceeds in a breadth-first search cannot determine a
property violation before having reached depth m. The underlying reason is that a state
has to be observed twice on the same path to obtain an infinite word. For properties
that feature a safety part however, this does not exclude the possibility that a path of
less than m states already indicates the violation of φ if it can be continued to some
infinite path. If such an “early indicator” prefix of a path exists, a smart search heuristic
for counterexamples might prioritize the exploration of its successor states. This type
of monitorability is excluded by the second of the above-listed options. Please note that
neither of the above guarantees implies the other, and that both can be combined.

The first guarantee of at least m distinct states is comparably easy to accomplish
and has been used to generate benchmarks for the RERS Challenge since at least
2016 [GJS+16]AP: by iteratively unrolling a simple cycle that the shortest counterex-
ample to φ in M traverses (in terms of distinct states), one can retrieve a bisimilar
model M ′ where this counterexample has been prolonged. A check for a violating path
of at most n states then ensures the upper bound of the hardness interval and frequently
succeeds when using incremental loop unrolling. This first type of depth interval is thus
not further discussed in this thesis.

In contrast, realizing the second type of depth interval—especially prohibiting that
an LTL monitor is able to detect that a short word can no longer satisfy φ—is more
involved and has only recently been used for RERS benchmarks [HJM+21]AP. The
following definitions are taken from [HJM+21]AP and formally introduce this hardness-
related depth guarantee on the level of languages of infinite words.

36

Definition 34 (Violating Prefix). Let w ∈ Σ∗. Then w violates φ iff the following holds:

∀w′ ∈ Σω. ww′ ̸|= φ

An infinite word w ∈ Σω k-violates φ iff its prefix w≤k violates φ. A language L′ ⊆ Σω

k-violates φ iff there exists a word w ∈ L which k-violates φ.

Intuitively speaking, a finite word violates φ if it cannot be extended to a word that
satisfies φ (see also Def. 13). The following proposition follows straightforwardly:

Proposition 11 (Monotonicity). If a word w ∈ Σω k-violates φ, then for all k′ ∈ N
with k′ ≥ k, w also k′-violates φ.

This monotonicity property allows to specify (m,n]-depth simply based on the bound-
aries of this integer interval.

Definition 35 (Counterexample Depth). A language L ⊆ Σω is called (m,n]-deep w.r.t.
φ iff the following hold:

1. L does not m-violate φ

2. L n-violates φ

Note that if L is (m,n]-deep w.r.t. φ, then it is also (m′, n′]-deep for any positive
integers m′, n′ with m′ ≤ m and n ≤ n′. As a consequence, there always exists a
minimal depth interval if one exists in general.

4.3.3 Relevant Parallel Context

Parallel verification tasks give rise to additional hardness criteria due to the existence
of multiple parallel components. Even if a parallel task V (L,φ) is interleaving-hard
(Def. 32), one might be able to abstract from a large subset—in the worst case all but
one—parallel components of L while still being able to correctly analyze whether or not
L satisfies φ. The following definitions are mostly taken from [SJ17, JSSS21]AP and
are used for a hardness criterion that excludes the possibility to easily solve even an
interleaving-hard task by abstracting from entire components.

Definition 36 (Component Abstraction). Let M = (M1 || · · · ||Mn) be a parallel com-
position of MTSs, Σi = Σ(Mi) the alphabet of the i-th component of M , and UΣi the
weakest modal Σi-specification (see Def. 19). Then the parallel MTS composition

α(M, i) := (M1 || · · · ||Mi−1 || UΣi ||Mi+1 || · · · ||Mn)

is called the i-th component abstraction of M .

Definition 37 (φ-Lossy Generalization). Let M be an MTS and φ a temporal prop-
erty such that M either satisfies or violates φ. Then any MTS M ′ that is indecisive
concerning φ is called a φ-lossy generalization of M .

37

System sensitivity guarantees that all components of a parallel composition are rele-
vant for the verification/refutation of a considered property φ.

Definition 38 (System-Sensitive Properties). Let M = (M1 || · · · ||Mn) be a parallel
composition of MTSs and φ a temporal property. We call φ M -sensitive iff the following
holds:

∀i ∈ 1 . . n : α(M, i) is a φ-lossy generalization of M

As a consequence of the above definition, a parallel task V (L,φ) such that φ is L-
sensitive is a task where every component matters for the verification or refutation of
φ (see [JSSS21]AP). Together with interleaving-based state explosion, this constitutes
what is called a hard parallel task within this thesis:

Definition 39 (Hard Parallel Task). Let V (L,φ) be a parallel task such that L contains
n parallel components. Then V (L,φ) is called n-hard iff the following hold:

1. L is interleaving-hard

2. Property φ is L-sensitive

In [JSSS21]AP, an approach to generate hard parallel tasks for any interruptible LTL
property is introduced. That approach can further be easily modified to produce parallel
tasks where many but not all components matter when analyzing if φ is satisfied, meaning
that the relevance of a given parallel context can be adjusted. Moreover, it allows to
ensure property locality.

Definition 40 (Property Locality). In a parallel task V (L,φ), property φ is k-local in
L iff it only contains symbols of k different parallel components of L.

Locality is not necessarily related to hardness as some approaches to solve a task might
benefit from knowing that a property only constrains one (or a few) parallel components,
whereas other, likely compositional approaches might benefit from non-local properties.

However, it should be stated that certain hard parallel tasks can likely be solved easily
by compositional model checking [CLM89] if their property is not local. As an example,
one could generate a positive verification task which features an LTL property by

1. synthesizing n LTSs such that each Li satisfies an LTL property φi,

2. defining φ :=
⋀

i∈1. .n φi, and

3. choosing L := (L1 || · · · || Ln).

Because parallel composition can only reduce the language of an LTS w.r.t. its own
alphabet (see Proposition 5 in [JSSS21]AP), L satisfies φ. Generating the different Li

such that L is interleaving-hard is trivial as the alphabets of the Li have not been
constrained by the sketched construction: they might even be pairwise-disjoint. In that
case, every non-trivial φi would contain a symbol unique to Li, rendering φ L-sensitive.

38

A compositional model checker could verify that Li |= φi holds for every i ∈ 1 . . n
and then deduce that L |= φ holds without ever computing the expanded LTS of L. In
addition, property φ would likely be quite lengthy and therefore not necessarily realistic.

Based on the above example, it becomes apparent that it is desirable to—at least
optionally—feature a certain locality of properties in a parallel task. This does not only
allow to generate tasks that test the limits of state-of-the-art tools for compositional
model checking, but also allows to better simulate the scenario of a relevant parallel
context : the correctness of a single component is of interest, however its behavior is
(directly or indirectly) influenced by communication with other parallel components.

39

40

5
Synthesizing Realistic Tasks

The starting point for synthesizing a verification task according to the new framework
(Section 2.3.1) is presented in this section. Regardless of whether or not the generated
task is sequential or parallel, the presented approach always starts with LTL synthesis
(Section 5.1) to construct a Büchi automaton [Bü66] B that features realistic behavior.
In order to fulfill realistic hardness criteria for negative verification tasks as discussed
in Section 4.3.2, the subsequent Section 5.2 presents how such a constructed automaton
B can be altered to realize rarely occurring property violations based on a CE-handle
(Def. 33), before Section 5.3 shows how B can be modified to ensure deep counterexam-
ples (Def. 35). Afterwards, Section 5.4 sketches how automaton B can be transformed
to an MTS, and thereby paves the way for the parallel decomposition that will be the
topic of Section 6.

As illustrated in Figure 2.2, a generated MTS can further be transformed to a (modal)
Mealy machine [JS18]AP and then encoded as a sequential C or Java program along the
lines of [HIM+14]. Details of the transformation to a Mealy machine are omitted here.

5.1 Temporal-Logic Synthesis

As a starting point for synthesizing realistic verification tasks, patterns for interesting
LTL properties are used within this thesis. Such a pattern can reflect realistic scenar-
ios [DAC99] or ensure, e.g., that properties are interruptible (see Theorem 2). From
this pattern, both the LTL property φ that has to be analyzed in the generated task
V (M,φ) as well as structural LTL properties Φ are (randomly) selected. Property φ
will either be satisfied or violated by the generated system, depending on the desired
solution. Structural properties are always satisfied in M as their intend is to imbue
additional meaningful temporal behavior into an otherwise randomly generated sys-
tem. These structural properties can for example be the result of property mining on
real-world systems (see also [JMM+19]AP). During this step, it is furthermore possible
to enforce an alternation between input and output symbols in order to ease a later

41

property-preserving transformation to a Mealy machine.

In order to transform logical formulas into transition-based systems, LTL synthesis is
employed to generate a corresponding Büchi automaton (see Section 3.3).

5.2 Rarely Occurring Errors

As an approach to generate positive verification tasks V (M,φ), one can combine φ
and chosen structural properties Φ by means of conjunction in order to synthesize a
corresponding Büchi automaton B with L(B) = Jφ ∧ ΦK. A naive analogous procedure
for negative verification tasks would be to simply omit φ during synthesis: as long as the
formula ¬φ∧Φ is satisfiable, there will exist a counterexample to φ in the generated Büchi
automaton B′ with L(B′) = JΦK. This way, L(B′) can contain words that satisfy φ and
some that violate φ, however in an unknown ratio. In order to generate tasks with rare
counterexamples or even CE-handles (Def. 33), a different approach is thus required. The
following high-level construction sketch is such an approach and inserts a counterexample
for φ with CE-handle into a Büchi automaton that satisfies φ [JSSS21]AP:

1. Synthesize a Büchi automaton B with language L(B) = JφK.
2. Choose a counterexample lasso h with w(h) ∈ J¬φK.
3. Merge h into B while heuristically aiming for a long shared prefix between h and
B.

4. The first transition after this shared prefix is then a CE-handle for φ.

Note that the lasso needed for the second step can be retrieved by choosing an accepting
word from a synthesized Büchi automaton B′ with L(B′) = J¬φK. Details of a heuristic
to obtain a long shared prefix for LTL properties that feature a safety part (see Def. 13)—
including an example—are given in [JS18]AP.

5.3 Deeply Hidden Errors

This section presents a method that is introduced in [HJM+21]AP to generate (m,n]-
deep tasks as defined in Def. 35 for LTL properties that feature a safety part. A notion
of an abstract verification task whose model is a language of infinite words or a Büchi
automaton is used in this section. Note that such models again entail two-valued model
checking as opposed to the three-valued version that has to be used when inspecting the
behavior of MTSs. The following presentation is based on [HJM+21]AP.

Given some alphabet Σ and a language L ⊆ Σω, one can deduce a constructive ap-
proach to generate the maximal sub-language of L that is (m,n]-deep w.r.t. φ.

5.3.1 Language Manipulation

First, the maximal sub-language Lm
φ of L that does not m-violate φ (Def. 34) is con-

structed before it is then checked whether or not Lm
φ n-violates φ. If it does, V (Lm

φ , φ)

42

is an (m,n]-deep verification task. Otherwise, it follows that no (m,n]-deep verification
task exists for L and φ, in which case one can continue by heuristically modifying the
parameters.

The remainder of this section is therefore dedicated to the construction of Lm
φ and the

subsequent check whether it n-violates φ.

Definition 41 (Violating Prefixes). Let L ⊆ Σω and k ∈ N. Given a φ ∈ LTL,
VP(L, φ, k) := L≤k \ JφK≤k are the violating prefixes of φ in L with length at most k.

It is straightforward to prove that the above characterization is correct (see Def. 34):

Proposition 12 (Correct Definition of Violating Prefixes). Let k ∈ N. Then VP(L, φ, k)
consists of all words w ∈ L≤k that violate φ.

The following theorems follow straightforwardly from Propositions 11 and 12:

Theorem 3. Lm
φ = L \ (VP(L, φ,m)Σω)

Theorem 4. L ⊆ Σω n-violates φ iff VP(L, φ, n) ̸= ∅

Complementation of Büchi automata is a very expensive operation. The following
theorem guarantees that this operation can be avoided and instead be replaced by one
that executes in quadratic time:

Theorem 5. Lm
φ = L ∩ (JφK≤mΣω)

A proof of Theorem 5 can be found in [HJM+21]AP. The next section presents the
Büchi automaton-based realization of Lm

φ in the way that it is used in this thesis to
generate verification tasks.

5.3.2 Realization using Büchi Automata

As discussed in Section 5.1, the initial languages L used to generate verification tasks
are of the form L = JΦK where Φ is a set of structural LTL properties. Thus, the goal is
to construct Lm

φ = JΦKmφ . According to Theorem 5 this means that one has to compute

L′ = JΦK ∩ (JφK≤mΣω).

This can be done by means of well-known technology for Büchi automata as follows:

1. Compute L = JΦK and JφK. The Spot library [DLLF+16] is used for this purpose.

2. Concatenate the prefix tree of depth m for JφK with Σω to obtain a Büchi automa-
ton for JφK≤mΣω. Essentially, this means to add an accepting Σω-loop at the end
of each leaf of this prefix tree.

3. Compute the intersection of the two Büchi automata constructed in steps 1 and 2.
This is again accomplished using the Spot library.

43

4. Heuristically minimize the Büchi automaton that results from step 3, again based
on the Spot library. This is important for the scalability of later transformation
steps and helps to obfuscate the tree expansion in step 2.

In order to be sure that (L′, φ) is indeed an (m,n]-deep verification task, it remains to
be shown that L′ n-violates φ (cf. Def. 35). This can be done simply by means of an
emptiness check for

L′ \ (JφK≤nΣ
ω)

If it fails, a violating prefix that is longer than m but shorter than or equal to n is
guaranteed to exist. Otherwise, it follows that no (m,n]-deep verification task exists for
JΦK and φ, and one continues by heuristically modifying the parameters. An example of
using this approach and a corresponding scalability study can be found in [HJM+21]AP.

5.4 Transformation to an MTS

As the model expansion that will be detailed in Section 6 works on MTSs, a property-
preserving transformation from a Büchi automaton B to an MTS M is required. The
following paragraphs briefly summarize such a transformation. Details—including an
example—can be found in [JS18]AP.
An important step towards an MTS is to discard the acceptance condition of B: an

MTS does not possess such a condition because all infinite paths within an MTS are
relevant for the validity of an LTL property (see Def. 14). Therefore, to preserve LTL
properties, all infinite paths π in B with w(π) /∈ L(B) have to be rendered infeasible
during the transformation to an MTS. This is achieved by removing a transition on every
non-accepting simple cycle1 in B. Note that for the result B′ of this transition pruning,
it holds that L(B′) ⊆ L(B).

Afterwards, all transitions in B′ are perceived as may transitions, before every coun-
terexample path that should be preserved during later transformations is added as must
transitions. For a negative verification task V (M,φ), only one counterexample path
that violates φ needs to be preserved. It is thus always possible to ‘protect’ transitions
on such a counterexample path when removing transitions during the previous step.
In [JS18]AP, a method is presented that furthermore accomplishes to preserve multiple,
so called orthogonal counterexamples.

1Simple cycles are also called elementary circuits [Joh75].

44

6
Generating Parallel Verification Tasks

The synthesis of verification tasks that target parallel programs is a key aspect of this
thesis, especially that of hard parallel tasks [JSSS21]AP. This chapter presents new
contributions regarding the corresponding transformation from an MTS to a parallel
composition of MTSs (see Figure 2.2). This transformation revolves around iterated,
modal contract-based, and property-preserving parallel decompositions as illustrated in
Figure 6.1.

M I1

M1
s

M1
c I2

M2
s

M2
c

...

(M1
s || UΓ1)

?|= φ

(UΣ1 ||M1
c)

?|= φ

(M1
s ||M2

s || UΓ2)
?|= φ

(M1
s || UΣ2 ||M2

c)
?|= φ

(UΣ1 ||M2
s ||M2

c)
?|= φ

M |= φ

(M1
s ||M1

c) |= φ

(M1
s ||M2

s ||M2
c) |= φ

contract
sys

tem

context
contract

sys
tem

context
contract

Figure 6.1: Sketch of iterated parallel decompositions during the generation of a hard
parallel task. A satisfied property cannot be verified if one abstracts from
an entire component [SJ17, JSSS21]AP.

An important part of this contract-based decomposition is the generation of admissi-
ble context components. Section 6.1 presents an improved generation of these contexts
compared to the approaches of [SJ17]AP and [Jas18]. That section furthermore dis-
cusses the coarseness of generated contexts in terms of modal refinement and provides
corresponding proofs for both correctness and coarseness.

In addition to generating additional parallel components, the concept of alphabet

45

extension is employed in order to achieve interleaving-based state explosion. Besides
(convergent weak) modal refinement itself, this is the main method to enlarge the state
space of a generated parallel system. Section 6.2 contributes a new result by lifting
the notion of alphabet extension to a semantic level reminiscent of contracts. This is
accomplished by extending the concept of bisimulation to MTSs while viewing may and
must transitions as different entities.

6.1 Property-Preserving Parallel Decomposition

Modal contracts [SJ17]AP have been introduced in order to decompose an MTS into two
parallel ones, called system and context, respectively, such that temporal properties are
preserved by their parallel composition. These contracts are a specific type of assume-
guarantee contracts [GL94, RBB+11, BDH+12, BC17, BCN+18]. Intuitively speaking,
transitions that are feasible in the resulting parallel composition based on synchroniza-
tion are colored green, whereas transitions that the system supports, however the context
prohibits, are colored red.
Formally, modal contracts are reminiscent of MTS quotient problems [LX90, BDF+13],

however with a constrained synchronization alphabet. Given two MTS M and Ms,
the quotient M/Ms describes the coarsest MTS Mc w.r.t. modal refinement such that
Ms ||Mc ≲ M holds. For a property-preserving parallel decomposition, it suffices to
select some MTS M ′

c ≲ Mc. Because parallel tasks constructed in this thesis consist of
compositions of LTSs and hence do not feature modalities, the sole purpose of a coarse
MTS during a corresponding generation is to be flexible w.r.t. a final implementation.

6.1.1 Green Contracts

The following definition introduces green contracts as a subset of modal contracts with-
out red transitions [JSSS21]AP.

Definition 42 (Green Contract). Let M = (S, s0,Σ, 99K,−→) be an MTS and Γ ⊆ Σ.
The green contract (GC) I = (M,Γ) specifies a set of context MTSs Mc(I) such that
for every Mc ∈ Mc(I), it holds that Σ(Mc) = Γ and M || Mc ≲ M . Furthermore,
G(I) := {s a−→ s′ | a ∈ Γ} and transitions of G(I) are colored green. The GC I is
deterministic iff M is deterministic.

In the context of parallel decomposition,M is referred to as the system of I. Intuitively
speaking, a green contract specifies a set of must transitions for which a corresponding
context component always has to guarantee synchronization.

Definition 43 (Coarsest Context). For any GC I, the maximal element of Mc(I) w.r.t.
modal refinement (if existing) is called coarsest context of I.

Note that in general, MTSs are not closed under the quotient operation [BDF+13],
and the question of whether a coarsest GC context always exists is left open for future
research here. In the following, a construction of a context is shown which is the coarsest

46

context for deterministic GCs. To ease the description of that construction, the following
concept of may-completion is used.

Definition 44 (May-Completion). Let M = (S, s0,Σ, 99K,−→) be an MTS. Then M is
may-complete iff

T := {(s, a) | ∄s′ ∈ S : s
a

99K s′} = ∅.

The may-completion M ′ of M is defined as M = (S ⊎{sΣ}, s0,Σ, 99K′,−→) where sΣ is
a new ‘sink’ state not in S and

99K′ := 99K ⊎ {s a
99K sΣ | (s, a) ∈ T} ⊎ {sΣ

a
99K sΣ | a ∈ Σ}.

The concepts of may-completion and alphabet views allow to define a specific context
Mg

c (I) of a GC I by utilizing traditional operations based on finite automata.

Definition 45 (Green Context Construction). Let I = (M,Γ) be a GC that contains
the MTS M = (S, s0,Σ, 99K,−→). Then Mg

c (I) is defined as the result of the following
construction based on the may-completion M ′ of M :

1. Regard [M ′]Γ as a prefix-closed τ -NFA N by disregarding must transitions and
viewing all states as accepting.

2. Determinize N using the traditional powerset construction, resulting in a DFA D.

3. Transform D to the MTS Mg
c (I) by

a) disregarding the acceptance condition,

b) viewing all transitions as may transitions, and

c) afterwards adding the following set of must transitions:

{P a−→ P ′ | P, P ′ are states in D ∧ ∃p ∈ P, p′ ∈ P ′ : p
a−→ p′}

The just-presented construction always yields a context:

Lemma 3 (Green Context Admissibility). For any GC I, Mg
c (I) ∈ Mc(I) holds.

Proof. Let all identifiers be defined as in Def. 45 and Mg
c (I) = (Sc, s

c
0,Γ, 99Kc,−→c).

Given the parallel compositionMpc := (M ||Mg
c (I)) = (Spc, s

pc
0 ,Σ, 99Kpc,−→pc), it needs

to be shown thatMpc ≲M holds. It is therefore proven that the following relation based
on the concept that a state of M is contained in each corresponding state of M ||Mg

c (I),

≲r:= {(p, q) | ∃pc ∈ Sc : p = (q, pc) ∧ p is reachable in Mpc} ⊆ Spc × S,

is a refinement with spc0 ≲r s0. The latter obviously holds because spc0 = (s0, s
c
0) according

to the definition of parallel composition. Let (p, q) with p = (q, pc) be an arbitrary but
fixed element of ≲r. Both conditions in the definition of modal refinement are satisfied:

Case 1: Let p
a

99Kpc p′ with p′ = (q′, p′c) be an arbitrary outgoing may transition of p
in Mpc. Based on the definition of parallel composition, there exists a transition

q
a

99K q′ because Γ ⊆ Σ holds. Obviously, p′ = (q′, p′c) ≲r q
′ follows.

47

Case 2: Let q
a−→ q′ be an arbitrary outgoing must transition of q. If a /∈ Γ, then

component M of Mpc will proceed alone according to the definition of parallel

composition, i.e., (q, pc)
a−→pc (q

′, pc), and nothing remains to be shown because
p′ ≲r q

′. If a ∈ Γ, then all that remains to be shown is that there exists a transition

pc
a−→c p

′
c for some p′c ∈ Sc.

Note that because of the powerset construction to createMg
c (I) (step 2 in Def. 45)

and because a reachable state in a parallel composition requires a common access
sequence to its elements, q ∈ pc ⊆ S holds. Again due to the powerset construction,
q ∈ pc and the existence of q

a−→ q′ imply that there has to exist a state p′c ∈ Sc

with pc
a

99Kc p′c and q
′ ∈ p′c. Because of p ∈ q, p′ ∈ q′, there also exists a transition

pc
a−→c p

′
c according to step 3.c during the construction of Mg

c (I). Thus, p′ ≲r q
′.

Because ≲r⊆ Spc × S is a refinement with spc0 ≲r s0, Mpc =M ||Mg
c (I) ≲M holds.

The MTS Mg
c (I) is the coarsest context if I is deterministic. In order to show this, it

helps to first understand that the following holds:

Lemma 4 (Unmatched Transition if not Refining). Let M1 = (S1, s
1
0,Σ1, 99K1,−→1),

M2 = (S2, s
2
0,Σ2, 99K2,−→2), be two MTSs with M1 ̸≲ M2. Then there exist states

p ∈ S1, q ∈ S2 such that at least one of the following holds:

1. There exists a transition p
a

99K1 p′, however no transition q
a

99K2 q′

2. There exists a transition q
a−→2 q

′, however no transition p
a−→1 p

′

Proof. M1 ̸≲ M2 means that no refinement relation ≲′ ⊆ S1 × S2 with s10 ≲′ s20 exists.
This implies that the following relation based on existing common access sequences1

≲a:= {(p, q) | access(p,M1) ∩ access(q,M2) ̸= ∅} ⊆ S1 × S2

is not a refinement. Therefore, there exist states p ∈ S1, q ∈ S2 which are reachable
via the same label sequence in their respective MTS, however such that they violate
the first or second condition in the definition of modal refinement (Def. 18). Due to
the definition of ≲a, this violation is directly based on the lack of a matching transition
because continuing with the same label from both p and q would again result in a
common access sequence to their successor states.

Lemma 4 allows to prove that the desired coarseness for deterministic GCs is ensured:

Lemma 5 (Coarsest Context of a Deterministic GC). For any deterministic GC I,
Mg

c (I) is the coarsest context of I.

Proof. Let all identifiers be defined as in Definition 45. Assume that the constructed
MTS Mc :=Mg

c (I) = (Sc, s
c
0,Γ, 99Kc,−→c) is not the coarsest context of I. Then there

exists an MTS Mf = (Sf , s
f
0 ,Γ, 99Kf ,−→f) with Mf ∈ Mc(I) and Mf ̸≲ Mc. Let

p ∈ Sf , q ∈ Sc be the states that exist according to Lemma 4 because of Mf ̸≲Mc.

1These access sequences have been defined in Def. 4.

48

a a

b b

≲
a a

b b

∥

a

b

b

a

a, b

a, b ̸≲
a

b

b

a

a, b

a, b

context

Figure 6.2: Example of a GC I = (M, {a, b}) (top right) for whichMg
c (I) (bottom right)

is not the coarsest context. A truly coarser context Mc exists (bottom left).
A refinement between the corresponding composition M ||Mc (top left) and
M is illustrated through colored states.

Case 1: There exists a transition p
a

99Kf p′, however no transition q
a

99Kc q′. This is a
contradiction to the fact that Mc is may-complete.

Case 2: There exists a transition q
a−→c q

′, however no transition p
a−→f p

′. Because

of q
a−→c q

′, there has to exist a must transition s
a−→ s′ in M with s ∈ q ⊆ S

because of steps 2 (powerset construction) and 3.c during the construction of Mc.

Let w ∈ access(p,Mf) ∩ access(q,Mc). For every state s′′ ∈ q ⊆ S, the subset
relation access(q,Mc) ⊆ access(s′′, [M]Γ) holds due to the powerset construction
used to create Mc. Thus, w ∈ access(s, [M]Γ) follows.

In combination with the fact that Γ ⊆ Σ holds, w ∈ access(s, [M]Γ) implies that
the parallel composition M ||Mf contains a reachable state (s, p) that does not
feature an outgoing must transition labeled a, whereas M itself does at state s.

Because M is deterministic and due to Proposition 3, (s, p) ≲′ s has to hold for
any refinement ≲′ with spc0 ≲′ s0. Thus, M ||Mf ̸≲ M follows, contradicting the
assumption that Mf ∈ Mc(I).

As each case results in a contradiction, Mg
c (I) has to be the coarsest context of I.

In case of a non-deterministic GC I, Mg
c (I) is not always the coarsest context, as

illustrated in Figure 6.2. Intuitively, non-deterministic branching enables choice when
trying to find a refinement relation, and a successful choice cannot be identified locally.

49

The determinization of an NFA can in general produce a DFA that is exponentially
larger, hence this step in the construction of Mg

c (I) is a limiting factor for its efficiency.

Corollary 1 (Efficiency of Green Context Construction). The efficiency of constructing
the coarsest context of a GC I = (M,Γ) depends on the efficiency of the traditional
powerset determinization of [M]Γ.

6.1.2 Red Contracts

In order to fully harness the potential of the presented decomposition approach, modal
contracts that include both green and red transitions are utilized. The following presen-
tation focuses on the red aspect of such a contract, before both green and red transitions
are employed thereafter.

Definition 46 (Modal Contract). Let M = (S, s0,Σ, 99K,−→) be an MTS, Γ ⊆ Σ,
R ⊆ S × Γ× S with R ∩ 99K = ∅, and Ms := (S, s0,Σ, 99K∪R,−→∪R). Then the tuple
I = (M,Γ, R) is a modal contract (MC) of M with communication alphabet Γ iff

MC(I) := { Mc | Ms ||Mc ≲M ∧ Σ(Mc) = Γ } ≠ ∅.

Moreover, G(I) := {s a−→ s′ | a ∈ Γ}. Transitions of G(I) are colored green and transi-
tions of R red. The MTS Ms(I) := Ms is called the system of I and any Mc ∈ MC(I)
a context of I. MC I is deterministic iff M is deterministic, and I is also called red
contract iff G(I) = ∅.

The coarsest context of an MC I is defined analogously to that of a GC (Def. 43).
A path in I is allowed to traverse red transitions. For any alphabet Σ′, the view [I]

Σ′

propagates to its MTS and is equivalent to [M]
Σ′ with the additional transitions2 in R.

Intuitively speaking, (only) green transitions enforce the presence of certain must
transitions in a context Mc ∈ Mc(I)—just like they do in a GC—whereas (only) red
transitions prohibit the existence of some may transitions in Mc. Note that for the
attribute of being deterministic, red transitions in an MC are irrelevant.
If there exist no green transitions, then an empty MTS without any transitions is

always an admissible context. Therefore, the following sufficient condition can be stated.

Proposition 13 (Red Contract Always Exists). Tuple I in Def. 46 is an MC if G(I) = ∅.

Because an MTS without transitions is generally not the coarsest context, the following
construction is used [SJ17]AP.

Definition 47 (Red Context Construction). Let I = (M,Γ, R) be an MC, LR the
language of words w ∈ Γ∗ for which a path in [I]Γ exists that contains a red transition
t ∈ R, and D the minimal DFA that describes the prefix-closed language Γ∗ \ LR. Then
M r

c (I) is defined as the result of the following construction based on D:

2Labels of transitions in R are also affected by the applied view. Within this chapter, such an effect
does however not occur because the communication alphabet Γ is viewed and Σ(R) ⊆ Γ holds.

50

1. Remove all incoming and outgoing transitions of the unique non-accepting sink
state together with this sink state itself.

2. Consider all remaining transitions as may transitions.

3. Disregard the acceptance condition.

The construction of M r
c (I) always produces a context for red contracts:

Lemma 6 (Red Context Admissibility). For any MC I with G(I) = ∅, M r
c (I) ∈ Mc(I)

holds.

Proof. Let all identifiers be defined as in Def. 47 with Ms(I) = (Ss, s
s
0,Σ, 99Ks,−→s)

and Mc := M r
c (I) = (Sc, s

c
0,Γ, 99Kc,−→c). It needs to be shown that Mpc ≲ M holds

where Mpc := (Ms(I) ||M r
c (I)) = (Spc, s

pc
0 ,Σ, 99Kpc,−→pc). It is therefore proven that

≲r:= {(p, q) | ∃pc ∈ Sc : p = (q, pc) ∧ p is reachable in Mpc} ⊆ Spc × S

is a refinement with spc0 ≲r s0. The latter obviously holds. Let (p, q) with p = (q, pc) be
an arbitrary but fixed element of ≲r. Both conditions of modal refinement are satisfied:

Case 1: Let p
a

99Kpc p′ with p′ = (q′, p′c) be an arbitrary outgoing may transition of p.

If q
a

99Ks q′ also exists in 99K, then there is nothing to show because Γ ⊆ Σ and

thus p′ ≲r q
′. Otherwise, q

a
99Ks q′ would have to be a red transition in R. This is

however a contradiction to the construction ofMc: because q
′ and p′c are reachable

via the same access sequence when only viewing symbols in Γ, L⊤(Mc) would
contain a word for which a path exists in [I]Γ that traverses a red transition.

Case 2: Let q
a−→ q′ be an arbitrary outgoing must transition of q. It follows that a /∈ Γ

because otherwise, there would exist a green transition in I. Therefore, component
Ms(I) of Mpc will proceed alone, i.e., (q, pc)

a−→pc (q
′, pc), and nothing remains to

be shown because Ms(I) contains all must transitions of M and thus p′ ≲ q′ holds.

As ≲r⊆ Spc × S is a refinement with spc0 ≲r s0, Mpc =Ms(I) ||M r
c (I) ≲M holds.

In contrast to the presented context construction for green contracts, M r
c (I) is the

coarsest context also for non-deterministic red contracts.

Lemma 7 (Coarsest Red Context). For any MC I with G(I) = ∅, M r
c (I) is the coarsest

context of I.

Proof. Let all identifiers be defined as in Def. 47. Assume that the constructed MTS
Mc :=M r

c (I) = (Sc, s
c
0,Γ, 99Kc,−→c) is not the coarsest context of I. Then there exists

an MTS Mf = (Sf , s
f
0 ,Γ, 99Kf ,−→f) with Mf ∈ Mc(I) and Mf ̸≲ Mc. Let p ∈ Sf ,

q ∈ Sc be the states that exist according to Lemma 4 because of Mf ̸≲Mc.

51

Case 1: There exists a transition p
a

99Kf p′, however no transition q
a

99Kc q′. Choose any
w ∈ access(p,Mf) ∩ access(q,Mc). Due to the construction of Mc, there exists a
path π in [I]Γ with word w(π) = wa that traverses a red transition in R. Let s ∈ S
be the state in which this red transition starts.

BecauseMs(I) contains all transitions ofM and also red transitions in R, it follows
that wa ∈ [L⊤(Ms(I) ||Mf)]Γ . As w ∈ [access(s,M)]Γ holds and because M and
Ms(I) are identical except for red transitions, there exist reachable states (s, p)
in Ms(I) ||Mf and s in M such that (s, p) has an outgoing transition labeled a
whereas s does not. Thus, Ms(I) ||Mf ̸≲ M holds, contradicting the assumption
that Mf is a context of I.

Case 2: There exists a transition q
a−→c q

′, however no transition p
a−→f p

′. This is
impossible because Mc does not contain must transitions.

As each case results in a contradiction, M r
c (I) has to be the coarsest context of I.

The following efficiency statement is analogous to that of Corollary 1.

Corollary 2 (Efficiency of Red Context Construction). Given an MC I = (M,Γ, R)
with G(I) = ∅, the efficiency of constructing the coarsest context of I depends on an
efficient determinization of [I]Γ.

6.1.3 Modal Contracts

Given context constructions for both green and red contracts, MTS conjunction is used
to combine these approaches into a context construction for any modal contract [SJ17]AP.

Definition 48 (MTS Conjunction). Given two MTSs M1 = (S1, s
1
0,Σ1, 99K1,−→1) and

M2 = (S2, s
2
0,Σ2, 99K2,−→2), the conjunction

M1 ∧M2 =def (S1 × S2, (s
1
0, s

2
0),Σ, 99K,−→)

of M1 and M2 is then defined as a commutative and associative operation satisfying the
following operational rules:3

p
a−→1 p

′ q
a

99K2 q′

(p, q)
a−→ (p′, q′)

p
a

99K1 p′ q
a

99K2 q′

(p, q)
a

99K (p′, q′)

p
a−→1 p

′ q ̸ a99K2 q′

error

Whenever an error occurs, the conjunction of Mp and Mq is undefined.

Intuitively speaking, MTS conjunction gives both must transitions and non-existing
transitions precedence over may transitions. Conjunction guarantees that a refining
MTS refines both components [SJ17]AP:

3This definition depends on the fact that each must transition is also a may transition.

52

Proposition 14 (Conjunction of Refinement Constraints). Let M,M ′,M ′′ be three
MTSs. If M ′ ∧M ′′ is defined, then the following holds:

M ≲M ′ ∧M ′′ iff M ≲M ′ and M ≲M ′′

Definition 49 (Context Construction). Let I = (M,Γ, R) be an MC and Ig = (M,Γ)
the corresponding GC. Then Mc(I) :=Mg

c (Ig) ∧M r
c (I).

Note that despite the monotonicity of composition w.r.t. refinement (Proposition 8),
Proposition 14 does not immediately imply that Mc(I) is a context because M and
Ms(Ir) can be different. Nonetheless, the above definition of Mc(I) yields an admissible
context.

Theorem 6 (Context Admissibility). For any MC I, Mc(I) is defined and it holds that
Mc(I) ∈ Mc(I).

Theorem 6 can be shown straightforwardly by combining the proofs of Lemmas 3
and 6 because must transitions and non-existing transitions from conjunct MTSs are
propagated to their conjunction. A corresponding proof is therefore omitted here.
The construction of Mc(I) based on conjunction produces a coarsest context in case

that I is deterministic. In order to show this, it is helpful to first inspect the compo-
sitionality of green and red transitions in a coarsest context, as done in the following.
Because red transitions in an MC I = (M,Γ, R) are disjoint from may transitions in M ,
they never affect the reachability of green transitions in G(I). In combination with the
fact that the coarsest context of a GC is may-complete, it is apparent that, given the
coarsest context of I, one can extend it to that of the GC (M,Γ) by filling in missing may
transitions that were prohibited by R. Similarly, one can retrieve the coarsest context
for only the red “aspect” of I by simply omitting all must transitions. The following
proposition formally summarizes these statements.

Proposition 15 (Coarsest Context Decomposition). Let Mc = (Sc, s
c
0,Γ, 99Kc,−→c) be

the coarsest context of an MC I = (M,Γ, R). Then

1. The may-completion of Mc is the coarsest context of the GC I = (M,Γ), and

2. the MTS M r
c = (Sc, s

c
0,Γ, 99Kc, ∅) is the coarsest context of the MC Ir = (Mr,Γ, R)

with Mr = (S, s0,Σ, 99K, ∅).

By relying on Proposition 15, one can show that MTS conjunction preserves the
attribute of being the coarsest context:

Theorem 7 (Coarsest Context of a deterministic MC). For any deterministic MC I,
Mc(I) is the coarsest context of I.

Proof. Let all identifiers be defined as in Def. 49. Assume that the constructed MTS
Mc :=Mc(I) = (Sc, s

c
0,Γ, 99Kc,−→c) is not the coarsest context of I. Then there exists

an MTS Mf = (Sf , s
f
0 ,Γ, 99Kf ,−→f) with Mf ∈ Mc(I) and Mf ̸≲ Mc. Let p ∈ Sf ,

q ∈ Sc be the states that exist according to Lemma 4 because of Mf ̸≲ Mc. This time,
state q itself is a pair q = (qg, qr) of states in M

g
c (I) and M r

c (I), respectively.

53

Case 1: There exists a transition p
a

99Kf p′, however no transition q
a

99Kc q′. Because
every state in Mg

c (Ig) features an outgoing may transition for every label a ∈ Γ, it
follows that qr does not have an outgoing transition labeled a due to the definition
of MTS conjunction.

The MTSM r
f = (Sf , s

f
0 ,Γ, 99Kf , ∅) however contains the transition p

a
99Kf p′, which

implies that M r
f ̸≲ M r

c (I). Because M r
f is the coarsest context of Ir = (M r

f ,Γ, R)
according to Proposition 15.2, this contradicts the fact that M r

c (I) is the coarsest
context of Ir according to Lemma 7.

Case 2: There exists a transition q
a−→c q

′, however no transition p
a−→f p

′. Because
M r

c (I) does not contain must transitions, state qg has to feature an outgoing must
transition labeled a in Mg

c (Ig), again based on the definition of MTS conjunction.

By definition, the may-completion Mg
f of Mf contains the same set of must transi-

tions as Mf itself. Therefore, Mg
f also lacks an outgoing must transition labeled a

at state p, which implies that Mg
f ̸≲ Mg

c (Ig). Because Mg
f is the coarsest context

of Ig according to Proposition 15.1, this contradicts the fact that Mg
c (Ig) is the

coarsest context of Ig.

As each case results in a contradiction to the definitions of M r
c (I) and M

g
c (Ig), respec-

tively, Mc(I) has to be the coarsest context of I.

Note that the above proof of Theorem 7 does not rely on determinism and instead only
requires the fact that Mg

c (Ig) and M
r
c (I) are coarsest contexts. As a result, MTS con-

junction can also be used to produce a coarsest context for non-deterministic contracts
in case that a coarsest green context is given.
Because MTS conjunction can only result in a quadratic number of states w.r.t. its

arguments, the efficiency of the presented context construction again depends on that
of NFA determinization.

Corollary 3 (Efficiency of Context Construction). The efficiency of constructing the
coarsest context of an MC I = (M,Γ, R) depends on the efficiency of determinizing [I]Γ.

An example of a context construction can be found in [SJMvdP17]AP. Theorem 7 has
implications for the identification of an MC: it guarantees that a successful construction
of context Mc(I) during the MTS conjunction not only serves as a sufficient, but also as
a necessary requirement that a deterministic I is an MC.

Corollary 4 (MC Identification). Let I = (M,Γ, R) such that M = (S, s0,Σ, 99K,−→)
is an MTS, Γ ⊆ Σ, and R ⊆ S × Γ× S with R ∩ 99K = ∅. If Mc(I) exists, then I is an
MC. If M is deterministic and Mc(I) does not exist, then I is not an MC.

6.2 Alphabet Extension

The parallel decomposition based on modal contracts as introduced in the previous
section can be used to generate parallel tasks with many components, however does not

54

scale the reachable state space of the corresponding parallel composition [SJ17]AP. In
order to incorporate interleaving-based state explosion into the generation of verification
tasks, the concept of alphabet extension is used: finite interruptions by new symbols
are added through a parallel composition with another MTS such that properties are
preserved [SJ17, SJ19, JSSS21]AP.

6.2.1 Extending Bisimulation to Modal Transition Systems

With the goal to capture the property preservation during alphabet extensions precisely,
the notion of bisimulation is extended to MTSs in the following. For this extension, an
MTS is viewed as an LTS that contains may and must transitions as separate entities.

Definition 50 (LTS View). Let M = (S, s0,Σ, 99K,−→) be an MTS and µ /∈ Σ a new

symbol. Then L(M) := (S, s0,Σ ⊎ µΣ, 99K ⊎ {s µa−→ s′ | s a−→ s′}).

Whenever the special symbol ϵ (see Def. 23) is transformed to µϵ, the latter is perceived
as an individual character and not reduced to µ, however both ϵ and µϵ are still perceived
as the empty word. Based on the concept of LTS views, bisimulation can now be extended
to MTSs.

Definition 51 ((Convergent, Weakly) Bisimilar MTSs). Let M,M ′ be MTSs. M is
bisimilar to M ′, short M ∼ M ′, iff L(M) ∼ L(M ′). Moreover, M is weakly bisimilar
to M ′, denoted as M ≈M ′, iff L(obs(M)) ∼ L(obs(M ′)). Furthermore, M and M ′ are

convergent and weakly bisimilar, denoted as M
c
≈M ′, iff both M and M ′ are convergent

and M ≈M ′.

Because both the behavioral structure and the different transition relations are fully
preserved when two MTSs are bisimlar, the following proposition follows immediately.

Proposition 16 (Refinement and Individual Bisimulation Implied). LetM,M ′ be MTSs
with M ∼M ′. Then M ≲M ′, M ′ ≲M , L⊤(M) ∼ L⊤(M

′), and L⊥(M) ∼ L⊥(M
′).

Due to the definition of ≈ for MTSs, the above proposition directly implies:

Corollary 5 (Refinement and Individual Bisimulation Implied, Part II). Let M,M ′ be
two MTSs such that M ≈ M ′. Then M ⪅ M ′, M ′ ⪅ M , L⊤(M) ≈ L⊤(M

′), and
L⊥(M) ≈ L⊥(M

′). The same hold for the convergent variants.

Note that as defined above, bisimulation between MTSs is a truly finer equivalence
relation than the one induced by MTSs that modally refined each other. Figure 6.3
illustrates a corresponding example.
The following is analogous to Proposition 8, and again holds for both components of

a composition.

Proposition 17 (Bisimulation Preservation). Let M,M ′, and M ′′ be MTSs. Then for

any ∽ ∈ {∼,≈,
c
≈}, ∽ is preserved by parallel composition:

M ∽M ′ implies (M ||M ′′) ∽ (M ′ ||M ′′)

55

a a

b c

a

b
≲

̸∼

≳
a a

b c

a

c

Figure 6.3: Example of two MTSs that modally refine each other, however which are not
bisimilar when may and must transitions are viewed as different entities.

6.2.2 (Nonconvergent) Alphabet Extension

The extension of (convergent) weak bisimulation now allows to define alphabet extensions
in a requirement-driven fashion akin to the definition of modal contracts in Section 6.1.

Definition 52 (Alphabet Extension). Let M,ME be MTSs such that the condition
ΣE := Σ(ME) \ Σ(M) ̸= ∅ is satisfied. Then ME is called ΣE-alphabet extension (ΣE-

AE) of M iff [M ||ME]Σ(M)

c
≈ M . Similarly, ME is called nonconvergent ΣE-alphabet

extension (ΣE-NAE) of M iff [M ||ME]Σ(M)
≈M .

A version of alphabet extension similar to the above-defined NAE has been studied
in [FBU09]. Because neither the size of ME nor the size of ΣE is bound by any means,
alphabet extensions allow to incorporate interleaving-based state explosion into a parallel
composition, as illustrated by the example in [SJMvdP17]AP.

If ME is a ΣE-alphabet extension of M according to Definition 52, then it is also such
an extension according to Definition 24 in [JSSS21]AP. This is a direct consequence of
the following theorem. The above definition is thus an extension of the corresponding
one in [JSSS21]AP from language equivalences to a relation that also preserves other
temporal properties.

Theorem 8 (Preserved Languages). LetM,M ′ be MTSs such that [M ′]
Σ(M)

c
≈M . Then

[Lω
⊥(M

′)]
Σ(M)

= Lω
⊥(M) and [Lω

⊤(M
′)]

Σ(M)
= Lω

⊤(M) hold.

The proof of Theorem 8 is based on Corollary 5 which ensures that [M ′]
Σ(M)

c
≈ M

implies both L⊤(M) ≈ L⊤([M
′]
Σ(M)

) and L⊥(M) ≈ L⊥([M
′]
Σ(M)

). From there on, the
proof is analogous to that of Lemma 2 and is therefore omitted here.

The following sufficient condition for identifying (nonconvergent) alphabet extensions
can be used for their efficient construction.

Lemma 8 (Sufficient Condition for Alphabet Extensions). Let M,ME be MTSs such
that ΣE := Σ(ME) \ Σ(M) ̸= ∅, Γ := Σ(M) ∩ Σ(ME), and [ME]Γ ≈ NΓ. Then ME is

ΣE-NAE of M . If [ME]Γ
c
≈ NΓ holds, then ME is a ΣE-AE of M .

56

Proof. Let all identifiers be defined as in Lemma 8 and ∽ ∈ {≈,
c
≈}. Because of Proposi-

tion 2, M =M || [ME]Γ holds and therefore apparently alsoM ∽M || [ME]Γ . Due to the
fact that symbols in Σ(M)\Γ do not exist inME , this yieldsM ∽M ||[ME]Σ(M)

. Because
of M = [M]

Σ(M)
, Proposition 7 thus yields M ∽M || [ME]Σ(M)

∽ [M ||ME]Σ(M)
.

An automatic and potentially randomized generation of (nonconvergent) alphabet ex-
tensions can be accomplished based on the following constructions introduced in [SJ19]AP

and [SJ17]AP, respectively.

Theorem 9 (NAE Construction). Let M be an MTS, ΣE a new alphabet, meaning
ΣE ∩Σ(M) = ∅, and Γ ⊆ Σ(M). Any MTS ME = (S, s0,Γ⊎ΣE , 99K,−→) is a ΣE-NAE
of M if it adheres to the following two constraints:

1. The directed graph (S, {(s, s′) | s a−→ s′ ∧ a ∈ ΣE}) is strongly connected

2. ∀a ∈ Γ. ∃s, s′ ∈ S : s
a−→ s′

A detailed proof of Theorem 9 is tedious and therefore omitted here. The intuition
behind such a proof is that [ME]Γ ≈ NΓ holds because ME can never ‘block’ transitions
inM if composed with it due to the following reasons: (i) the alphabet ΣE only occurs in
ME and (ii) within ME , one can always reach every state by traversing must transitions
with labels from ΣE . This construction of an NAE is rather unconstrained and allows
for a variety of possible choices, as illustrated in [SJ19]AP.
In order to also preserve convergence and thereby guarantee liveness properties, Floyd-

like cut points that enforce an eventual synchronization are used to construct an AE, as
presented in [SJ17, SJMvdP17]AP.

Theorem 10 (AE Construction). Let M be an MTS, ΣE a new alphabet, meaning
ΣE ∩ Σ(M) = ∅, and Γ ⊆ Σ(M). Any MTS ME with Σ(ME) = ΣE such that

i. ME restricted to its must transitions is free of deadlocks and

ii. each state of ME is reachable via must transitions

is a ΣE-AE of M after it has been modified according to the following two steps:

1. Select a set T of transitions with the property that every infinite path in ME visits
a state in S infinitely often.

2. Replace each s
a

99K s′ ∈ T (and the corresponding s
a−→ s′, if existing) by the set

of must transitions {s b−→ s′ | b ∈ Γ}.

The correctness of Theorem 10 is based on the fact that [ME]Γ
c
≈ NΓ holds and can

be shown by relying on the two following observations. On the one hand, the Floyd-like
interruption of every cycle ensures that [ME]Γ is convergent, and on the other hand,
an outgoing must transition exists for every a ∈ Γ at every state of the corresponding
observable MTS obs([ME]Γ). Again, a detailed proof is omitted in this thesis.

57

58

7
Conclusion and Future Work

This thesis presents a new framework for the synthesis of realistic verification tasks. The
associated automatic generation of (software) verification benchmarks features charac-
teristics that are very different from those of a manual benchmark creation. For example,
this generation provides an efficient way to ensure that solutions are known, however not
necessarily to the public. This characteristic can be beneficial for a meaningful evalua-
tion of verification tools: when attempting to solve real-world problems, the solution is
not yet known either. Due to their different profiles, it is likely that manually maintained
and automatically synthesized benchmarks will continue to coexist.
This work has led to new ways to use existing synthesis libraries like Spot [DLLF+16]

for a generation of automata with (orthogonal) counterexample handles [JS18]AP and
for a manipulation of these automata to remove short counterexamples [HJM+21]AP.
Moreover, it motivated the implementation of modal contracts—along with the associ-
ated parallel decomposition—and alphabet extensions in the AutomataLib [11]1.
These implementations have been constantly extended and applied to automatically

generate verification benchmarks for several iterations of the international Rigorous Ex-
amination of Reactive Systems (RERS) Challenge. Using these available benchmarks,
several participants of RERS have applied many (combinations of) tools to solve the con-
tained verification tasks, and were thereby inspired to conceive new formal verification
techniques [SY20, LMM20, LMM19].
This thesis has therefore accomplished its main goals. On the one hand, it provides

a framework for the synthesis of realistic verification tasks that are scalable and fulfill
realistic hardness criteria. On the other hand, this framework contains a new method for
synthesizing tasks that target parallel programs and which realizes parallelism-specific
hardness guarantees. The entire framework can synthesize verification tasks fully auto-
matically for several program representations and property specifications. As demon-
strated by its use in the RERS Challenge, it provides developers of verification tools with
tailored benchmarks and thereby valuable feedback on their tool’s performance. Thus,
the result of this work helps to advance the state of the art of program verification.

1Support for modal contracts is planned to be made publicly available with the next release (0.11).

59

7.1 Future Work

The introduced generation framework involves clearly defined intermediate representa-
tions and preservation guarantees that are associated with individual transformations.
This framework is therefore modular and it would be interesting to see further applica-
tions and extensions thereof. First of all, the extraction of abstraction-based CTL prop-
erties using the state-distinguishing formulas of [JSS20]AP has not yet been applied in
RERS due to time constraints. Similarly, a RERS track on weak bisimulation checking is
planned but was not yet released. A full implementation of generating hard parallel tasks
for LTL properties [JSSS21]AP based on the AutomataLib is on schedule to be used dur-
ing RERS 2021. In addition, it is planned to employ a new encoding of Mealy machines
for the sequential programs of RERS2 based on algebraic decision diagrams [BFG+97]—
an approach similar to the compilation method presented in [GJMS19].
The list of hardness criteria that the introduced framework ensures can be extended.

An apparent extension is the combination of counterexample handles with deep coun-
terexamples, and further hardness guarantees are conceivable. A generation of parallel
verification tasks V (M,φ) such that φ is a CTL property which isM -sensitive—meaning
that all parallel components are required to correctly verify or refute φ on M—is left as
an apparent yet uncompleted addition to this work. Furthermore, another extension of
the formal framework would be to support sets Φ of properties such that every φ ∈ Φ
is M -sensitive. A relaxation of the clearly defined transition labeling within alphabet
extensions could provide a useful tool to proceed in this direction.
Synthesizing additional types of programs can expand the impact of the introduced

framework. Supporting state-based systems in addition to action-based systems was
identified as a welcome addition by participants of the Model Checking Contest (MCC)
because many verification tasks in the MCC benchmark contain state-based properties.
Moreover, an extension from handshake synchronization to buffered communication as
found in distributed computing would add further application scenarios to the introduced
synthesis. Because the presented parallel decomposition is inherently relying on the used
CSP-like composition, such an extension to distributed systems will likely require deeper
modifications to the framework or an explicit modeling of buffers as processes.
Key features of the presented overall approach are that (i) new verification benchmarks

can be generated with the push of a button and that (ii) verification tasks can be
tailored to individual hardness profiles by adjusting parameters like program size, the
number of computation steps after which errors occur, and the number of (relevant)
parallel components. Future work should therefore involve a publicly available generation
tool which makes the presented framework directly available to every developer of a
verification tool. To ease its use and allow for design flexibility, such a benchmark
generator could include graphical editing [NLKS18] of, e.g., modal contracts. With
adjustable verification tasks ready for generation, developers of verification tools could
directly inspect strength and weaknesses of their tools during development.

2This work is based on a recent bachelor’s thesis by David Schmidt [Sch21] that Bernhard Steffen and
I supervised.

60

References

[AA16] Ephrem Ryan Alphonsus and Mohammad Omar Abdullah. A review on
the applications of programmable logic controllers (PLCs). Renewable and
Sustainable Energy Reviews, 60:1185–1205, 2016.

[ADKT11] Jade Alglave, Alastair F. Donaldson, Daniel Kroening, and Michael
Tautschnig. Making software verification tools really work. In Automated
Technology for Verification and Analysis, pages 28–42. Springer, 2011.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and computation, 75(2):87–106, 1987.

[AS87] Bowen Alpern and Fred B Schneider. Recognizing safety and liveness.
Distributed computing, 2(3):117–126, 1987.

[BBB+19] Ezio Bartocci, Dirk Beyer, Paul E. Black, Grigory Fedyukovich, Hubert
Garavel, Arnd Hartmanns, Marieke Huisman, Fabrice Kordon, Julian
Nagele, Mihaela Sighireanu, Bernhard Steffen, Martin Suda, Geoff Sut-
cliffe, Tjark Weber, and Akihisa Yamada. TOOLympics 2019: An overview
of competitions in formal methods. In TACAS, pages 3–24. Springer, 2019.

[BBYW15] Paul E Black, Irena Bojanova, Yaacov Yesha, and Yan Wu. Towards a
periodic table of bugs. In 15th High Confidence Software and Systems
Conference (HCSS), 2015.

[BC17] Albert Benveniste and Benôıt Caillaud. Synchronous interfaces and as-
sume/guarantee contracts. In Models, Algorithms, Logics and Tools, vol-
ume 10460 of LNCS, pages 233–248. Springer, 2017.

[BCN+18] Albert Benveniste, Benôıt Caillaud, Dejan Nickovic, Roberto Passerone,
Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-
Vincentelli, Werner Damm, Thomas A. Henzinger, and Kim G. Larsen.

61

Contracts for system design. Foundations and Trends in Electronic De-
sign Automation, 12(2-3):124–400, 2018.

[BDF+13] Nikola Beneš, Benôıt Delahaye, Uli Fahrenberg, Jan Křet́ınský, and Axel
Legay. Hennessy-Milner logic with greatest fixed points as a complete be-
havioural specification theory. In CONCUR 2013 – Concurrency Theory,
pages 76–90. Springer, 2013.

[BDH+12] Sebastian S Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand
Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Moving from
specifications to contracts in component-based design. In International
Conference on Fundamental Approaches to Software Engineering, volume
7212 of LNCS, pages 43–58. Springer, 2012.

[BdMS05] Clark Barrett, Leonardo de Moura, and Aaron Stump. SMT-COMP: Sat-
isfiability modulo theories competition. In Computer Aided Verification,
pages 20–23. Springer, 2005.

[BEL+17] Borja Balle, Rémi Eyraud, Franco M. Luque, Ariadna Quattoni, and Sicco
Verwer. Results of the sequence prediction challenge (SPiCe): a compe-
tition on learning the next symbol in a sequence. In Proceedings of The
13th International Conference on Grammatical Inference, volume 57 of
Proceedings of Machine Learning Research, pages 132–136. PMLR, 05–07
Oct 2017.

[Bey12] Dirk Beyer. Competition on Software Verification. In TACAS, volume
7214 of LNCS, pages 504–524. Springer, 2012.

[Bey21] Dirk Beyer. Software verification: 10th comparative evaluation (SV-
COMP 2021). In TACAS, pages 401–422. Springer, 2021.

[BFB+17] Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo,
Normann Decker, Klaus Havelund, Yogi Joshi, Felix Klaedtke, Reed
Milewicz, Giles Reger, et al. First International Competition on Run-
time Verification: rules, benchmarks, tools, and final results of CRV 2014.
International Journal on Software Tools for Technology Transfer, pages
1–40, April 2017.

[BFG+97] R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams
and their applications. Formal methods in system design, 10(2):171–206,
1997.

[Bie21] Armin Biere. Bounded model checking. In Handbook of Satisfiability, pages
739–764. IOS Press, 2021.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
press, 2008.

62

[BLW19] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking:
Requirements and solutions. International Journal on Software Tools for
Technology Transfer, 21(1):1–29, February 2019.

[BMSH10] Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hennicker.
On weak modal compatibility, refinement, and the MIO Workbench. In
TACAS, pages 175–189. Springer, 2010.

[Boe15] Carl Boettiger. An introduction to Docker for reproducible research.
SIGOPS Oper. Syst. Rev., 49(1):71–79, January 2015.

[Bü66] J. Richard Büchi. Symposium on decision problems: On a decision method
in restricted second order arithmetic. In Logic, Methodology and Philos-
ophy of Science, volume 44 of Studies in Logic and the Foundations of
Mathematics, pages 1 – 11. Elsevier, 1966.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Logics of
Programs, Workshop, Yorktown Heights, New York, USA, May 1981, vol-
ume 131 of LNCS, pages 52–71. Springer, 1981.

[CFL+20] Rafael C. Cardoso, Marie Farrell, Matt Luckcuck, Angelo Ferrando, and
Michael Fisher. Heterogeneous verification of an autonomous Curiosity
rover. In NASA Formal Methods, pages 353–360. Springer, 2020.

[CGJ+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In Computer Aided
Verification, pages 154–169. Springer, 2000.

[CGP02] S. Chandra, P. Godefroid, and C. Palm. Software model checking in prac-
tice: an industrial case study. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002, pages 431–441, 2002.

[CLM89] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model check-
ing. In Proceedings of the Fourth Annual Symposium on Logic in Computer
Science, pages 353–362, 1989.

[DAC99] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 21st Inter-
national Conference on Software Engineering (IEEE Cat. No.99CB37002),
pages 411–420, May 1999.

[DFH+21] Claire Dross, Carlo A. Furia, Marieke Huisman, Rosemary Monahan, and
Peter Müller. VerifyThis 2019: a program verification competition. Inter-
national Journal on Software Tools for Technology Transfer, 2021.

63

[dGRdB+15] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner
Hähnle. Openjdk’s java.utils.collection.sort() is broken: The good, the bad
and the worst case. In Computer Aided Verification, volume 9206 of LNCS,
pages 273–289. Springer, 2015.

[DLLF+16] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud
Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 — a framework for
LTL and ω-automata manipulation. In Proceedings of the 14th Interna-
tional Symposium on Automated Technology for Verification and Analysis
(ATVA’16), volume 9938 of LNCS, pages 122–129. Springer, October 2016.

[DMM+10] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith,
Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The
scalable heterogeneous computing (SHOC) benchmark suite. GPGPU-3,
page 63–74, New York, NY, USA, 2010. ACM.

[EMIO07] E. Estevez, M. Marcos, N. Iriondo, and D. Orive. Graphical modeling
of PLC-based industrial control applications. In 2007 American Control
Conference, pages 220–225, 2007.

[Eri96] K. T. Erickson. Programmable logic controllers. IEEE Potentials,
15(1):14–17, Feb 1996.

[FBU09] Dario Fischbein, Victor Braberman, and Sebastian Uchitel. A sound ob-
servational semantics for modal transition systems. In Theoretical Aspects
of Computing - ICTAC 2009, pages 215–230. Springer, 2009.

[Fis36] Ronald A Fisher. The use of multiple measurements in taxonomic prob-
lems. Annals of eugenics, 7(2):179–188, 1936.

[FMB21] Alessio Ferrari, Franco Mazzanti, and Davide Basile. Systematic evaluation
and usability analysis of formal tools for railway system design. arXiv
preprint arXiv:2101.11303, 2021.

[Gar19] Hubert Garavel. Nested-unit Petri nets. Journal of Logical and Algebraic
Methods in Programming, 104:60 – 85, 2019.

[GCM09] N. Goga, S. Costache, and F. Moldoveanu. A formal analysis of ISO/IEEE
P11073-20601 standard of medical device communication. In 3rd Annual
IEEE Systems Conference, pages 163–166, 2009.

[GFI16] Steven N Goodman, Daniele Fanelli, and John PA Ioannidis. What
does research reproducibility mean? Science translational medicine,
8(341):341ps12–341ps12, 2016.

[GJMS19] Frederik Gossen, Marc Jasper, Alnis Murtovi, and Bernhard Steffen. Ag-
gressive aggregation: a new paradigm for program optimization. arXiv
preprint arXiv:1912.11281, 2019.

64

[GJS+16] Maren Geske, Marc Jasper, Bernhard Steffen, Falk Howar, Markus Schor-
dan, and Jaco van de Pol. RERS 2016: Parallel and sequential benchmarks
with focus on LTL verification. In ISoLA, volume 9953 of LNCS, pages
787–803. Springer, 2016.

[GL94] Orna Grumberg and David E Long. Model checking and modular ver-
ification. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(3):843–871, 1994.

[GM03] Dimitra Giannakopoulou and Jeff Magee. Fluent model checking for
event-based systems. ACM SIGSOFT Software Engineering Notes,
28(5):257–266, 2003.

[GMBG20] Carlos Cardoso Galhardo, Peter Mell, Irena Bojanova, and Assane Gueye.
Measurements of the most significant software security weaknesses. In
Annual Computer Security Applications Conference, pages 154–164, 2020.

[GSF06] V. Gourcuff, O. De Smet, and J. M. Faure. Efficient representation for
formal verification of plc programs. In 2006 8th International Workshop
on Discrete Event Systems, pages 182–187, July 2006.

[GvLH+96] Patrice Godefroid, Jan van Leeuwen, Juris Hartmanis, Gerhard Goos, and
Pierre Wolper. Partial-order methods for the verification of concurrent sys-
tems: an approach to the state-explosion problem, volume 1032 of LNCS.
Springer, 1996.

[HGM20] Marieke Huisman, Dilian Gurov, and Alexander Malkis. Formal meth-
ods: From academia to industrial practice. a travel guide. arXiv preprint
arXiv:2002.07279v1, 2020.

[HIM+14] F. Howar, M. Isberner, M. Merten, B. Steffen, D. Beyer, and C. Păsăreanu.
Rigorous examination of reactive systems. The RERS challenges 2012 and
2013. International Journal on Software Tools for Technology Transfer,
16(5):457–464, 2014.

[HJM+21] Falk Howar, Marc Jasper, Malte Mues, David Schmidt, and Bernhard
Steffen. The RERS challenge: towards controllable and scalable bench-
mark synthesis. International Journal on Software Tools for Technology
Transfer, 2021.

[HKG+12] Hossein Hojjat, Filip Konečný, Florent Garnier, Radu Iosif, Viktor Kun-
cak, and Philipp Rümmer. A verification toolkit for numerical transition
systems. In FM 2012: Formal Methods, pages 247–251. Springer, 2012.

[HKM15] Marieke Huisman, Vladimir Klebanov, and Rosemary Monahan. Ver-
ifyThis 2012. International Journal on Software Tools for Technology
Transfer, 17(6):647–657, Nov 2015.

65

[HKP+19] Arnd Hartmanns, Michaela Klauck, David Parker, Tim Quatmann, and
Enno Ruijters. The quantitative verification benchmark set. In TACAS,
volume 11427 of LNCS, pages 344–350. Springer, 2019.

[HL89] Hans Hüttel and Kim G Larsen. The use of static constructs in a model
process logic. In International Symposium on Logical Foundations of Com-
puter Science, pages 163–180. Springer, 1989.

[HM80] Matthew Hennessy and Robin Milner. On observing nondeterminism and
concurrency. In Automata, Languages and Programming, 7th Colloquium,
Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings, pages
299–309, 1980.

[Hoa78] Charles Antony Richard Hoare. Communicating sequential processes. In
The origin of concurrent programming, pages 413–443. Springer, 1978.

[Hol11] Gerard Holzmann. The SPIN Model Checker: Primer and Reference Man-
ual. Addison-Wesley Professional, 1st edition, 2011.

[HWS20] Ben Hermann, Stefan Winter, and Janet Siegmund. Community expecta-
tions for research artifacts and evaluation processes. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, page 469–480. ACM, 2020.

[IHS14] Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm:
A redundancy-free approach to active automata learning. In Runtime
Verification, pages 307–322. Springer, 2014.

[Jas18] Marc Jasper. Benchmarks for the verification of parallel programs: Guar-
anteed properties, hardness, and scalability. Master’s thesis, TU Dortmund
University, 2018.

[JFS+17] Marc Jasper, Maximilian Fecke, Bernhard Steffen, Markus Schordan,
Jeroen Meijer, Jaco van de Pol, Falk Howar, and Stephen F. Siegel. The
RERS 2017 challenge and workshop (invited paper). In 24th SIGSOFT
Intl. SPIN Symp. on Model Checking of Software, pages 11–20. ACM, 2017.

[JLBRS12] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon.
The international SAT solver competitions. AI Magazine, 33(1):89–92,
Mar. 2012.

[JMM+19] Marc Jasper, Malte Mues, Alnis Murtovi, Maximilian Schlüter, Falk
Howar, Bernhard Steffen, Markus Schordan, Dennis Hendriks, Ramon
Schiffelers, Harco Kuppens, and Frits W. Vaandrager. RERS 2019: Com-
bining synthesis with real-world models. In TACAS 2019, volume 11429
of LNCS, pages 101–115. Springer, 2019.

66

[JMS+18] Marc Jasper, Malte Mues, Maximilian Schlüter, Bernhard Steffen, and
Falk Howar. RERS 2018: CTL, LTL, and reachability. In ISoLA. LNCS,
vol 11245, pages 433–447. Springer, 2018.

[Joh75] Donald B Johnson. Finding all the elementary circuits of a directed graph.
SIAM Journal on Computing, 4(1):77–84, 1975.

[JS16] Marc Jasper and Markus Schordan. Multi-core model checking of large-
scale reactive systems using different state representations. In ISoLA,
volume 9952 of LNCS, pages 212–226. Springer, 2016.

[JS18] Marc Jasper and Bernhard Steffen. Synthesizing subtle bugs with known
witnesses. In ISoLA, volume 11245 of LNCS, pages 235–257. Springer,
2018.

[JSS20] Marc Jasper, Maximilian Schlüter, and Bernhard Steffen. Characteris-
tic invariants in Hennessy–Milner logic. Acta Informatica, 57(3):671–687,
2020.

[JSSS21] Marc Jasper, Maximilian Schlüter, David Schmidt, and Bernhard Steffen.
Every component matters: Generating parallel verification benchmarks
with hardness guarantees. In ISoLA, volume 12479 of LNCS, pages 241–
262. Springer, 2021.

[KGH+18] Fabrice Kordon, Hubert Garavel, Lom Messan Hillah, Emmanuel Paviot-
Adet, Löıg Jezequel, Francis Hulin-Hubard, Elvio Amparore, Marco Bec-
cuti, Bernard Berthomieu, Hugues Evrard, Peter G. Jensen, Didier Le Bot-
lan, Torsten Liebke, Jeroen Meijer, Jǐŕı Srba, Yann Thierry-Mieg, Jaco
van de Pol, and Karsten Wolf. MCC’2017 – the seventh model checking
contest. In Transactions on Petri Nets and Other Models of Concurrency
XIII, volume 11090 of LNCS, pages 181–209. Springer, 2018.

[KHHH+21] Fabrice Kordon, Lom Messan Hillah, Francis Hulin-Hubard, Löıg Jezequel,
and Emmanuel Paviot-Adet. Study of the efficiency of model checking
techniques using results of the MCC from 2015 to 2019. International
Journal on Software Tools for Technology Transfer, 2021.

[KLB+12] Fabrice Kordon, Alban Linard, Didier Buchs, Maximilien Colange, Sami
Evangelista, Kai Lampka, Niels Lohmann, Emmanuel Paviot-Adet, Yann
Thierry-Mieg, and Harro Wimmel. Report on the Model Checking Contest
at Petri Nets 2011. In Transactions on Petri Nets and Other Models of
Concurrency VI, volume 7400 of LNCS, pages 169–196. Springer, 2012.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Com-
puter Science, 27(3):333–354, 1983. Special Issue Ninth International Col-
loquium on Automata, Languages and Programming (ICALP) Aarhus,
Summer 1982.

67

[Lar89] Kim Guldstrand Larsen. Modal specifications. In International Conference
on Computer Aided Verification, pages 232–246. Springer, 1989.

[Lar90] Kim Guldstrand Larsen. Ideal specification formalism= expressivity+
compositionality+ decidability+ testability+... In International Confer-
ence on Concurrency Theory, pages 33–56. Springer, 1990.

[LLA+17] Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and Ian
Karlin. DataRaceBench: A benchmark suite for systematic evaluation of
data race detection tools. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC
’17. ACM, 2017.

[LMM19] Frédéric Lang, Radu Mateescu, and Franco Mazzanti. Compositional ver-
ification of concurrent systems by combining bisimulations. In Formal
Methods – The Next 30 Years, pages 196–213. Springer, 2019.

[LMM20] Frédéric Lang, Radu Mateescu, and Franco Mazzanti. Sharp congruences
adequate with temporal logics combining weak and strong modalities. In
TACAS, volume 12079 of LNCS, pages 57–76. Springer, 2020.

[LX90] Kim Guldstrand Larsen and Liu Xinxin. Equation solving using modal
transition systems. In Proceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science, pages 108–117. IEEE, 1990.

[MDB14] Grgur Petric Maretić, Mohammad Torabi Dashti, and David Basin.
LTL is closed under topological closure. Information Processing Letters,
114(8):408–413, 2014.

[Mea55] George H. Mealy. A method for synthesizing sequential circuits. The Bell
System Technical Journal, 34(5):1045–1079, 1955.

[MFS90] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of
the reliability of UNIX utilities. Commun. ACM, 33(12):32–44, December
1990.

[Moo94] I. Moon. Modeling programmable logic controllers for logic verification.
IEEE Control Systems, 14(2):53–59, April 1994.

[MWC10] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer. Software
model checking takes off. Commun. ACM, 53(2):58–64, February 2010.

[NLKS18] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard Stef-
fen. Cinco: a simplicity-driven approach to full generation of domain-
specific graphical modeling tools. International Journal on Software Tools
for Technology Transfer, 20(3):327–354, 2018.

68

[NLW+09] Raghunath Othayoth Nambiar, Matthew Lanken, Nicholas Wakou, For-
rest Carman, and Michael Majdalany. Transaction processing performance
council (TPC): Twenty years later – a look back, a look ahead. In Perfor-
mance Evaluation and Benchmarking, volume 5895 of LNCS, pages 1–10.
Springer, 2009.

[NSVK19] Daniel Neider, Rick Smetsers, Frits Vaandrager, and Harco Kuppens.
Benchmarks for automata learning and conformance testing. In Models,
Mindsets, Meta: The What, the How, and the Why Not?, volume 11200
of LNCS, pages 390–416. Springer, 2019.

[OAPÜ16] Tolga Ovatman, Atakan Aral, Davut Polat, and Ali Osman Ünver. An
overview of model checking practices on verification of PLC software. Soft-
ware & Systems Modeling, 15(4):937–960, 2016.

[OT08] William L. Oberkampf and Timothy G. Trucano. Verification and valida-
tion benchmarks. Nuclear Engineering and Design, 238(3):716–743, 2008.

[Par81] David Park. Concurrency and automata on infinite sequences. In Theo-
retical computer science, pages 167–183. Springer, 1981.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall PTR, 1981.

[PGG18] Christian R. Prause, Rainer Gerlich, and Ralf Gerlich. Evaluating auto-
mated software verification tools. In 2018 IEEE 11th International Con-
ference on Software Testing, Verification and Validation (ICST), pages
343–353, 2018.

[Ple18] Hans E. Plesser. Reproducibility vs. replicability: A brief history of a
confused terminology. Frontiers in Neuroinformatics, 11:76, 2018.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57. IEEE Computer Society, 1977.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
Conference Record of the Sixteenth Annual ACM Symposium on Principles
of Programming Languages, Austin, Texas, USA, January 11-13, 1989,
pages 179–190. ACM Press, 1989.

[Qui00] Dan Quinlan. Rose: Compiler support for object-oriented frameworks.
Parallel processing letters, 10(02n03):215–226, 2000.

[RBB+11] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benôıt Caillaud,
Axel Legay, and Roberto Passerone. A modal interface theory for
component-based design. Fundamenta Informaticae, 108(1-2):119–149,
2011.

69

[RK98] M. Rausch and B. H. Krogh. Formal verification of PLC programs. In
Proceedings of the 1998 American Control Conference. ACC, volume 1,
pages 234–238, 1998.

[Sac05] Krzysztof Sacha. Automatic code generation for PLC controllers. In Com-
puter Safety, Reliability, and Security, pages 303–316. Springer, 2005.

[SBS18] Markus Schordan, Dirk Beyer, and Stephen F. Siegel. Evaluating tools
for software verification (track introduction). In ISoLA, volume 11245 of
LNCS, pages 139–143. Springer, 2018.

[Sch21] David Schmidt. Mealy-machine based program synthesis using algebraic
decision diagrams. Bachelor’s thesis. TU Dortmund University, 2021.

[SGA07] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force
vulnerability discovery. Pearson Education, 2007.

[SHM11] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active
automata learning from a practical perspective. In Formal Methods for
Eternal Networked Software Systems: 11th International School on For-
mal Methods for the Design of Computer, Communication and Software
Systems, SFM 2011. Advanced Lectures, volume 6659 of LNCS, pages 256–
296. Springer, 2011.

[SJ17] Bernhard Steffen and Marc Jasper. Property-preserving parallel decompo-
sition. In Models, Algorithms, Logics and Tools, volume 10460 of LNCS,
pages 125–145. Springer, 2017.

[SJ19] Bernhard Steffen and Marc Jasper. Generating hard benchmark prob-
lems for weak bisimulation. In From Reactive Systems to Cyber-Physical
Systems. LNCS, vol 11500, pages 126–145. Springer, 2019.

[SJMvdP17] Bernhard Steffen, Marc Jasper, Jeroen Meijer, and Jaco van de Pol.
Property-preserving generation of tailored benchmark Petri nets. In 17th
Intl. Conf. on Appl. of Concurrency to Sys. Design, pages 1–8. IEEE, 2017.

[Ste17] Bernhard Steffen. The physics of software tools: SWOT analysis and
vision. International Journal on Software Tools for Technology Transfer,
19(1):1–7, 2017.

[SY20] Stephen F. Siegel and Yihao Yan. Action-based model checking: Logic,
automata, and reduction. In Computer Aided Verification, volume 12225
of LNCS, pages 77–100. Springer, 2020.

[vdPM19] Jaco van de Pol and Jeroen Meijer. Synchronous or alternating? InModels,
Mindsets, Meta: The What, the How, and the Why Not?, volume 11200
of LNCS, pages 417–430. Springer, 2019.

70

[VM05] Willem Visser and Peter Mehlitz. Model checking programs with Java
PathFinder. In International SPIN Symposium on Model Checking of Soft-
ware, volume 3639 of LNCS, pages 27–27. Springer, 2005.

[Wol83] Pierre Wolper. Temporal logic can be more expressive. Information and
Control, 56(1):72 – 99, 1983.

[WVS20] J. Stanley Warford, David Vega, and Scott M. Staley. A calculational
deductive system for linear temporal logic. ACM Computing Surveys,
53(3), 2020.

[ZC09] M. Zhivich and R. K. Cunningham. The real cost of software errors. IEEE
Security Privacy, 7(2):87–90, March 2009.

71

72

Online References

[1] Various authors. Competition contributions written by participants of SV-COMP
2019. https://rd.springer.com/book/10.1007/978-3-030-17502-3?page=1#

toc, 2019. Accessed: May 31st, 2021.

[2] Frédéric Cristini and Silvano Dal Zilio. Model “SatelliteMemory” from
the Model Checking Contest benchmark. https://mcc.lip6.fr/pdf/

SatelliteMemory-form.pdf, 2020. Accessed: May 29th, 2021.

[3] Dirk Beyer et al. 10th Competition on Software Verification (SV-COMP
2021): Benchmark verification tasks. https://sv-comp.sosy-lab.org/2021/

benchmarks.php. Accessed: May 23rd, 2021.

[4] Dirk Beyer et al. Benchmark verification tasks of SV-COMP 2014. https://

sv-comp.sosy-lab.org/2014/benchmarks.php, 2014. Accessed: May 29th, 2021.

[5] Fabrice Kordon et al. Benchmark of the 2018 edition of the Model Checking Contest.
https://mcc.lip6.fr/2018/models.php, 2018. Accessed: May 31st, 2021.

[6] Markus Schordan et al. Codethorn, a tool for program analysis and ver-
ification. https://github.com/rose-compiler/rose/tree/master/projects/

CodeThorn, 2012. Accessed: May 31st, 2021.

[7] Philip Zweihoff et al. EasyDelta: Industrial program-
ming by example. https://cinco.scce.info/applications/

easy-delta-industrial-programming-by-example/, 2015. Accessed: May
31st, 2021.

[8] Stephen North et al. Graphviz - graph visualization software. https://graphviz.
org/doc/info/lang.html. Accessed: May 21st, 2021.

73

https://rd.springer.com/book/10.1007/978-3-030-17502-3?page=1#toc
https://rd.springer.com/book/10.1007/978-3-030-17502-3?page=1#toc
https://mcc.lip6.fr/pdf/SatelliteMemory-form.pdf
https://mcc.lip6.fr/pdf/SatelliteMemory-form.pdf
https://sv-comp.sosy-lab.org/2021/benchmarks.php
https://sv-comp.sosy-lab.org/2021/benchmarks.php
https://sv-comp.sosy-lab.org/2014/benchmarks.php
https://sv-comp.sosy-lab.org/2014/benchmarks.php
https://mcc.lip6.fr/2018/models.php
https://github.com/rose-compiler/rose/tree/master/projects/CodeThorn
https://github.com/rose-compiler/rose/tree/master/projects/CodeThorn
https://cinco.scce.info/applications/easy-delta-industrial-programming-by-example/
https://cinco.scce.info/applications/easy-delta-industrial-programming-by-example/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

[9] Bernhard Steffen et al. Falk Howar. Results of previous iterations of the RERS
challenge. http://www.rers-challenge.org/<insert-year-here>/index.php?

page=results. Accessed: May 31st, 2021.

[10] Association for Computing Machinery. Artifact review and badg-
ing version 1.1. https://www.acm.org/publications/policies/

artifact-review-and-badging-current. Accessed: May 23rd, 2021.

[11] Members of the Chair of Programming Systems at TU Dortmund University. Au-
tomatalib. https://learnlib.de/projects/automatalib/. Accessed: May 21st,
2021.

[12] Louis-Noël Pouchet et al. Polybench: The polyhedral benchmark suite. http:

//web.cs.ucla.edu/~pouchet/software/polybench/, 2012. Accessed: May 29th,
2021.

[13] Kevin Poulsen. Software bug contributed to blackout. https://www.

securityfocus.com/news/8016. Accessed: May 21st, 2021.

74

http://www.rers-challenge.org/<insert-year-here>/index.php?page=results
http://www.rers-challenge.org/<insert-year-here>/index.php?page=results
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://learnlib.de/projects/automatalib/
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
https://www.securityfocus.com/news/8016
https://www.securityfocus.com/news/8016

	Introduction
	Scientific Contributions
	Overview

	Evaluating Software Verification Tools
	Current Landscape of Tool Evaluation
	Benchmark Design and Creation
	Useful Characteristics of Benchmarks
	Realization of Useful Benchmark Characteristics
	Manual vs. Automatic Benchmark Creation

	New Synthesis Framework and its Impact
	New Framework for Benchmark Synthesis
	Impact on the Verification Community
	Benefits for Participants of RERS

	Preliminaries
	Languages
	Models of a System
	Modal Transition Systems
	Parallel Composition
	Mealy Machines

	Action-based Linear Temporal Logic
	Linear-Time Properties
	Action-based LTL

	Property Preservation
	Modal Refinement
	Weak Modal Refinement, Bisimulation, and Convergence

	Realistic Verification Tasks
	Verification Tasks
	Interruptible Temporal Properties
	Hardness Guarantees
	Large State Space
	Subtle Errors
	Relevant Parallel Context

	Synthesizing Realistic Tasks
	Temporal-Logic Synthesis
	Rarely Occurring Errors
	Deeply Hidden Errors
	Language Manipulation
	Realization using Büchi Automata

	Transformation to an MTS

	Generating Parallel Verification Tasks
	Property-Preserving Parallel Decomposition
	Green Contracts
	Red Contracts
	Modal Contracts

	Alphabet Extension
	Extending Bisimulation to Modal Transition Systems
	(Nonconvergent) Alphabet Extension

	Conclusion and Future Work
	Future Work

