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Abstract

The problem of constructing a simultaneous confidence band for the mean function of
a locally stationary functional time series {Xi,n(t)}i=1,...n is challenging as these bands can
not be built on classical limit theory. On the one hand, for a fixed argument t of the func-
tions Xi,n, the maximum absolute deviation between an estimate and the time dependent
regression function exhibits (after appropriate standardization) an extreme value behaviour
with a Gumbel distribution in the limit. On the other hand, for stationary functional data,
simultaneous confidence bands can be built on classical central theorems for Banach space
valued random variables and the limit distribution of the maximum absolute deviation is
given by the sup-norm of a Gaussian process. As both limit theorems have different rates of
convergence, they are not compatible, and a weak convergence result, which could be used
for the construction of a confidence surface in the locally stationary case, does not exist.

In this paper we propose new bootstrap methodology to construct a simultaneous con-
fidence band for the mean function of a locally stationary functional time series, which is
motivated by a Gaussian approximation for the maximum absolute deviation. We prove the
validity of our approach by asymptotic theory, demonstrate good finite sample properties by
means of a simulation study and illustrate its applicability analyzing a data example.

AMS subject classification: 62R10; 62M10; 62M20
Keywords and phrases: locally stationary time series, functional data, confidence bands, Gaussian
approximation
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1 Introduction
In the big data era data gathering technologies provide enormous amounts of data with complex
structure. In many applications the observed high-dimensional data exhibits certain degrees of
dependence and smoothness and thus may naturally be regarded as discretized functions. A major
tool for the statistical analysis of such data is functional data analysis (FDA) which has found
considerable attention in the statistical literature (see, for example, the monographs of Bosq,
2000; Ramsay and Silverman, 2005; Ferraty and Vieu, 2010; Horváth and Kokoszka, 2012; Hsing
and Eubank, 2015, among others). In FDA the considered parameters, such as the mean or the
(auto-)covariance (operator) are functions themselves, which makes the development of statistical
methodology challenging. Most of the literature considers Hilbert space-based methodology for
which there exists by now a well developed theory. In particular, this approach allows the appli-
cation of dimension reduction techniques such as (functional) principal components. On the other
hand, in many applications it is reasonable to assume that functions are at least continuous (see
also Ramsay and Silverman, 2005, for a discussion of the integral role of smoothness) and fully
functional methods can prove advantageous. More recently, Aue et al. (2018), Bucchia and Wendler
(2017) and Horváth et al. (2014) discuss fully functional methodology in a Hilbert space framework
and Dette et al. (2020); Dette and Kokot (2020) develop inference methods for functional data in
a Banach space framework.
In this paper we are interested in statistical inference regarding the mean functions of a not nec-
essarily stationary functional time series (Xi,n)i=1,...,n in the space L2[0, 1] of square integrable
functions on the interval [0, 1]. More precisely, we consider the model

Xi,n(t) = m( i
n
, t) + εi,n(t) , i = 1, . . . , n , (1.1)

where (εi,n)i=1,...,n is a centred locally stationary process (see Section 2 for a precise definition) and
m : [0, 1] × [0, 1] → R is a smooth mean function. This means that at each time point “i” we
observe a function t → Xi,n(t) with mean function t → m( i

n
, t), and our goal is a simultaneous

confidence surface for the (time dependent) mean function (u, t) → m(u, t) of the locally stationary
process {Xi,n(t)}i=1,...,n.
Locally stationary functional time series have found considerable interest in the recent literature
(see, for example, van Delft and Eichler, 2018; Aue and van Delft, 2020; Bücher et al., 2020; Kurisu,
2021a,b; van Delft and Dette, 2021). In the context of functional data analysis the “regression”
model (1.1) has been mostly investigated in the stationary case, where m(u, t) = m(t) (see, for
example, Berkes et al., 2009; Horváth et al., 2013; Dette et al., 2020, among many others). In
this case the model reduces to Xi(t) = m(t) + εi with a stationary error process (εi)i=1,...,n, and a
common approach is based on a functional central limit theorem of the form

√
n(m̂−m)⇝ G , (1.2)

where m̂ is an appropriate estimate of the mean function and G is a centered Gaussian process in
the space of continuous functions C[0, 1] (here the symbol⇝ denotes weak convergence in C[0, 1]).
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Several authors have used results of this type to construct (asymptotic) simultaneous confidence
bands under different model assumptions. For example, Degras (2011, 2017) and Cao et al. (2012)
assume that a random sample of functions is observed on a fine grid and define the band by{

f : [0, 1] → R
∣∣∣ sup

t∈[0,1]
| m̂(t)− f(t) |≤ q1−α√

n

}
where q1−α is an appropriate quantile (obtained from a weak convergence result of the form (1.2)
or by resampling). On the other hand Dette et al. (2020) assume that the full trajectory can
be observed and use the estimate m̂ = X̄n and multiplier bootstrap for this purpose. More
recently, alternative simultaneous confidence (asymptotic) bands have been constructed by Liebl
and Reimherr (2019); Telschow and Schwartzman (2022) using (1.2) and the Gaussian Kinematic
formula.
Alternatively, if the data in model (1.1) are no functions and do not depend on the variable t

we obtain the classical nonparametric regression model Xi,n = m( i
n
) + εi,n, where the problem

of constructing confidence bands for the regression function u → m(u) has a long history. Most
authors consider the case of independent identically distributed errors (see Konakov and Piterbarg,
1984; Xia, 1998; Proksch, 2014, among others) and a kernel estimate for the regression function.
The simultaneous (asymptotic) confidence band is based on a weak convergence result of the type√

abn log(bb−1
n ) sup

t∈[0,1]
| m̂(t)− E[m̂(t)] | −2 log(bb−1

n )
D−→ G (1.3)

where the symbol D−→ denotes convergence in distribution, G denotes a Gumbel distribution, bn
is the bandwidth of the nonparametric estimator and a, b are known constants (a depends on
the variance of the errors). Wu and Zhao (2007) develop a simultaneous confidence band for the
regression function in a model with a stationary series errors and Zhou (2010) derives a simultaneous
confidence band in quantile regression model with locally stationary errors. A similar extreme value
type result for the absolute maximum of a normalized deviation is used by Ma et al. (2012) and
Zheng et al. (2014) to develop a confidence band for sparse functional data.
As the limit theorems (1.2) and (1.3) are not compatible, a weak convergence result for the maxi-
mum absolute deviation between the estimate and the regression function in the locally stationary
case does not exist. As a consequence, the construction of simultaneous confidence surfaces for the
regression function (u, t) → m(u, t) in model (1.1) is more challenging. In this paper we propose a
general solution to this problem, which is not based on weak convergence results. As an alterna-
tive to “classical” limit theory (which does not exist in the present situation) we develop Gaussian
approximations for the maximum absolute deviation between the estimate and the regression func-
tion. These results are then used to construct a non-standard multiplier bootstrap procedure for
the construction of simultaneous confidence bands for the mean function of a locally stationary
functional time series. We prove the validity of our approach by asymptotic theory, demonstrate
good finite sample properties by means of a simulation study and illustrate its applicability an-
alyzing a data example. As a by-product of our approach, we also derive new confidence bands
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for the functions t → m(u, t) (for fixed u) and u → m(u, t) (for fixed t), which provide efficient
alternatives to the commonly used confidence bands for stationary functional data or real valued
locally stationary data, respectively.
The remaining part of the paper is organized as follows. The statistical model is introduced in
Section 2. In Section 3 and 4 we develop Gaussian approximations, use these results for the con-
struction of simultaneous confidence bands and prove the validity of our approach. The finite
sample properties are illustrated in Section 5 by means of a simulation study and a data example.
Finally, all technical proofs are deferred to Section B and C in the appendix, while Section A there
provides more details on further algorithms.

2 Locally stationary functional time series
Consider the model (1.1) with a smooth regression function m : [0, 1]2 → R. Note that there
are three types of simultaneous confidence bands/surfaces) which can be considered in the present
context.

(1) Simultaneous confidence bands for fixed t, which have the form

C(t) =
{
f : [0, 1] → R | L̂1(u, t) ≤ f(u) ≤ Û1(u, t) ∀u[0, 1]

}
, (2.1)

where L̂1 and Û1 are appropriate lower and upper bounds calculated from the data. As
t ∈ [0, 1] is fixed these bound can be derived using results of the type (1.3). An alternative
approach based on multiplier bootstrap is given in the online supplement to this paper (see
Section A).

(2) Simultaneous confidence bands for fixed u, which have the form

C(u) =
{
f : [0, 1] → R | L̂2(u, t) ≤ f(t) ≤ Û2(u, t) ∀t ∈ [0, 1]

}
, (2.2)

where L̂2 and Û2 are appropriate lower and upper bounds calculated from the data. Note that
these bounds can not be directly calculated using results of the type (1.2) as the expectation
of Xi,n varies with i.

(3) Simultaneous confidence surfaces, which have the form

C =
{
f : [0, 1]2 → R | L̂3(u, t) ≤ f(u, t) ≤ Û3(u, t) ∀u, t ∈ [0, 1]

}
(2.3)

where L̂3 and Û3 are appropriate lower and upper bounds calculated from the data.

In the theoretical part of this paper we develop (asymptotic) simultaneous confidence bands of the
form (2.2) and (2.3). Algorithms for confidence bands of the form (2.1) can be derived similarly,
and are given in Section A of the online supplement for the sake of completeness. Our approach is
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based on the maximum deviations

sup
t∈[0,1]

|m̂(u, t)−m(u, t)| (2.4)

for the simultaneous confidence band of the form (2.2) and

sup
t,u∈[0,1]

|m̂(u, t)−m(u, t)| (2.5)

for simultaneous confidence surface of the form (2.3), where

m̂(u, t) =
1

nbn

n∑
i=1

Xi,n(t)K
( i

n
− u

bn

)
(2.6)

=
1

nbn

n∑
i=1

m( i
n
, t)K

( i
n
− u

bn

)
+

1

nbn

n∑
i=1

εi,n(t)K
( i

n
− u

bn

)
denotes the common Nadaraya-Watson estimate with bandwidth bn. Other estimates as local linear
regression could be considered as well without changing our main theoretical results (note that we
consider a uniform design and therefore the local linear and Nadaraya Watson estimator behave very
similarly within the interval [bn, 1− bn]). In order to obtain quantiles for the maximum deviations
estimates (2.4) and (2.5) we will develop a bootstrap procedure for the stochastic expansion

√
nbn
(
m̂(u, ts)−m(u, ts)

)
≈ 1√

nbn

n∑
i=1

εi,n(ts)K
( i

n
− u

bn

)
(2.7)

at discrete time points t1, . . . , tp ∈ [0, 1], where p is increasing with the sample size such that the set
t1, . . . , tp is asymptotically dense in the interval [0, 1]. For this purpose we require several technical
assumptions which will be introduced next.

Assumption 2.1 (mean function). For each fixed t ∈ [0, 1] the function u → m(u, t) is four times
continuously differentiable with bounded fourth order derivative, that is

sup
t,u∈[0,1]

∣∣∣ ∂4

∂u4
m(u, t)

∣∣∣ ≤ M0

for some constant M0.

Note that for the consistency of the estimate in (2.7) at a given point u it is not necessary to assume
smoothness of the function m in the second argument. In fact, in Remark 3.1(ii) below we show
that the difference between m̂(u, t) and m(u, t) can be uniformly approximated by a weighted sum
of the random variables ε1,n(t), . . . , εn,n(t). As a consequence, a uniform approximation of the form
(2.7) for an increasing number of points {t1, . . . , tp} is guaranteed by an appropriate smoothness
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condition on the error process {εi,n(t)}i=1,...,n, which will be introduced next.

Assumption 2.2 (error process). The error process has the form

εi,n(t) = G( i
n
, t,Fi) , i = 1, . . . , n

where Fi = (. . . , ηi−1, ηi), (ηi)i∈Z is a sequence of independent identically distributed random
variables in some measurable space S and G : [0, 1] × [0, 1] × SZ → R denotes a filter with the
following properties

(1) There exists a constant t0 > 0 such that

sup
u,t∈[0,1]

E(t0 exp(G(u, t,F0))) < ∞. (2.8)

(2) Let (η′i)i∈N denote a sequence of independent identically distributed random variables which is
independent of but has the same distribution as (ηi)i∈Z. Define F∗

i = (. . . , η−1, η
′
0, η1, . . . , ηi)

and consider for some q ≥ 2 the dependence measure

δq(G, i) = sup
u,t∈[0,1]

∥G(u, t,Fi)−G(u, t,F∗
i )∥q. (2.9)

There exists a constant χ ∈ (0, 1) such that

δq(G, i) = O(χi) . (2.10)

(3) For the same constant q as in (2) there exists a positive constant M such that

sup
t∈[0,1],u1,u2∈[0,1]

∥G(u1, t,Fi)−G(u2, t,Fi)∥q ≤ M |u1 − u2|.

(4) The long run variance

σ2(u, t) :=
∞∑

k=−∞

Cov(G(u, t,F0), G(u, t,Fk)). (2.11)

of the process (G(u, t,Fi))i∈Z satisfies

inf
u,t∈[0,1]

σ2(u, t) > 0.

6



Assumption 2.2(2) requires that the dependence measure is geometrically decaying. Similar results
as presented in Section 3 and 4 of this paper can be obtained under summability assumptions
with substantially more intensive mathematical arguments and complicated notation, see Remark
3.1(ii) for some details. Assumption 2.2(3) means that the locally stationary functional time series
is smooth in u and is crucial for constructing simultaneous confidence surfaces of the form (2.3).

Assumption 2.3. The filter G in Assumption 2.2 is differentiable with respect to t. If G2(u, t,Fi) =
∂
∂t
G(u, t,Fi), G2(u, 0,Fi) = G2(u, 0+,Fi), G2(u, 1,Fi) = G2(u, 1−,Fi), we assume

(1) There exists a constant q∗ > 2 such that for some χ ∈ (0, 1)

δq∗(G2, i) = O(χi).

(2) For the same constant q∗ > 2 as in (1) there exists a constant M such that

sup
t∈[0,1],u∈[0,1]

∥G2(u, t,Fi)∥q∗ ≤ M.

Assumption 2.4 (kernel). The kernel K(·) is a symmetric continuous function which vanishes
outside the interval [−1, 1] and satisfies

∫
R K(x)dx = 1,

∫
R K(v)v2dv = 0. Additionally, the second

order derivative K ′′ is Lipschitz continuous on the interval (−1, 1).

We conclude this section discussing several examples for the error process, which are also used to
illustrate Assumption 2.2.

Example 2.1. Let (Bj)j≥0 denote a basis of L2
(
[0, 1]2

)
and let (ηi,j)i≥0,j≥0 denote an array of

independent identically distributed centred random variables with variance σ2. We define the error
process

ϵi(u, v) =
∞∑
j=0

ηi,jBj(u, v),

assume that
sup

u∈[0,1]

∫ 1

0

E(ϵ2i (u, v))dv = σ2 sup
u∈[0,1]

∞∑
s=0

∫
B2

s (u, v)dv < ∞.

Next, consider the locally stationary MA(∞) functional linear model

εi,n(t) =
∞∑
j=0

∫ 1

0

aj(t, v)ϵi−j(
i
n
, v)dv , (2.12)
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where (aj)j≥0 is a sequence of square integrable functions aj : [0, 1]
2 → R satisfying

∞∑
j=0

sup
u,v∈[0,1]

|aj(u, v)| < ∞.

Define Fi = (. . . , ηi−1, ηi), then we obtain from (2.12) the representation of the form εi,n(t) =

G( i
n
, t,Fi), where

G(u, t,Fi) =
∞∑
j=0

∫ 1

0

aj(t, v)
∞∑
s=0

ηi−j,sBs(u, v)dv.

Further, assume that ∥η1,1∥q < ∞ for some q > 2, then by Burkholder’s and Cauchy’s inequality
the physical dependence measure defined in (2.9) satisfies

δq(G, i) = sup
u,t∈[0,1]

∥∥∥ ∞∑
s=0

∫ 1

0

ai(t, v)Bs(u, v)dv(η0,s − η′0,s)
∥∥∥
q

= O
(

sup
u,t∈[0,1]

( ∞∑
s=0

(∫ 1

0

ai(t, v)Bs(u, v)dv
)2)1/2)

= O
(

sup
t∈[0,1]

[ ∫ 1

0

a2i (t, v)dv
]1/2)

.

Similarly, it follows for q ≥ 2 that

∥G(u, t,F0)∥2q ≤ Mq
∞∑
j=0

∞∑
s=0

(

∫ 1

0

aj(t, v)Bs(u, v)dv)
2∥η1,1∥2q

≤ Mq
∞∑
j=0

∫ 1

0

a2j(t, v)dv
∞∑
s=0

∫ 1

0

B2
s (u, v)dv∥η1,1∥2q (2.13)

for some sufficiently large constant M . Consequently, the filter G has finite moment of order q, if

∞∑
j=0

∫ 1

0

a2j(t, v)dv < ∞ . (2.14)

Furthermore, if there exists positive constants M0 and α such that ∥η1,1∥q ≤ M0q
1/2−α, Assumption

2.2(1) is also satisfied, because for any fixed t0, the sequence

tq0∥G(u, t,F0)∥qq
q!

= O
(Cqtq0q

q−αq

q!

)
= O

( 1√
2πq

(
Ct0e

qα
)q
)
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is summable, where

C = sup
t∈[0,1],u∈[0,1]

M0

√√√√M
∞∑
j=0

∫ 1

0

a2j(t, v)dv
∞∑
s=0

∫ 1

0

B2
s (u, v)dv.

Moreover, if bs(u, v) := ∂
∂u
Bs(u, v) exists for u ∈ (0, 1), v ∈ [0, 1], then it follows observing (2.13)

that Assumption 2.2(3) holds under (2.14) and

sup
u∈[0,1]

∞∑
s=0

∫
b2s(u, v)dv < ∞.

Finally, if ∥η1,1∥q∗ < ∞ and

sup
t∈[0,1]

[ ∫ 1

0

( ∂

∂t
ai(t, v)

)2
dv
]1/2

= O(χi) ,

it can be shown by similar arguments as given above that Assumption 2.3 is satisfied.

Example 2.2. For a given orthonormal basis (ϕk(t))k≥1 of L2([0, 1]) consider the functional time
series (G(u, t,Fi))i∈Z defined by

G(u, t,Fi) =
∞∑
k=1

Hk(u,Fi)ϕk(t) , (2.15)

where for each k ∈ N and u ∈ [0, 1] the random coefficients (Hk(u,Fi))i∈Z are stationary time series.
A parsimonious choice of (2.15) is to consider Fi = ∪∞

k=1Fi,k where {Fi,k}∞k=1 are independent
filtrations. In this case we obtain

G(u, t,Fi) =
∞∑
k=1

Hk(u,Fi,k)ϕk(t), (2.16)

and the random coefficients Hk(u,Fi,k) are stochastically independent. A sufficient condition for
Assumption 2.2(2) in model (2.16) is

sup
t∈[0,1]

∞∑
k=0

|ϕk(t)|δq(Hk, i) = O(χi) ,

where δq(Hk, i) := supu∈[0,1] ∥Hk(u,Fi,k)−Hk(u,F∗
i,k)∥q. The qth moment of the process G in (2.16)
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exists for q ≥ 2, if

∆q := sup
t∈[0,1],u∈[0,1]

∞∑
k=0

ϕ2
k(t)∥Hk(u,F0,k)∥2q < ∞.

If further ∆q = O(q1/2−α) for some α > 0, then similar arguments as given in Example 2.1 show
that Assumption 2.2(1) is satisfied as well. Finally, if the inequality

∞∑
k=0

ϕ2
k(t)
∥∥∥ ∂

∂u
Hk(u,F0,k)

∥∥∥2
q
< ∞

holds uniformly with respect to t, u ∈ (0, 1), Assumption 2.2(3) is also satsified.
On the other hand, in model (2.15) we have Hk(u,Fi) =

∫ 1

0
G(u, t,Fi)ϕk(t)dt, and consequently

the magnitude of ∥Hk∥q and δq(Hk, i) can be determined by Assumption 2.2. For example, if the
basis of L2([0, 1]) is given by ϕk(t) = cos(kπt) (k = 0, 1, . . .) and the inequality

∥G(u, 0,F1)∥q +
∥∥∥ ∂

∂t
G(u, 0,F1)

∥∥∥
q
+ sup

u∈[0,1]

∥∥∥ ∂2

∂t2
G(u, t,F1)

∥∥∥
q
< ∞,

holds for u ∈ [0, 1], it follows by similar arguments as given in Zhou and Dette (2020) that

sup
u∈[0,1]

∥∥Hk(u,Fk)
∥∥
q
= O(k−2), δq(Hk, i) = O

(
min(k−2, δG(i, q))

)
. (2.17)

Similarly, assume that the basis of L2([0, 1]) is given by the Legendre polynomials and that

sup
u∈[0,1]

max
s=1,2,3

∥∥∥∫ 1

−1

| ∂s

∂ts
G(u, t,F0)|√
1− x2

dx
∥∥∥
q
< ∞.

If additionally for every ε > 0, there exists a constant δ > 0 such that

∑
s=1,2

∑
k

∥∥∥ ∂s

∂ts
G (u, xk,Fi)−

∂s

∂ts
G (u, xk−1,Fi))

∥∥∥
q
< ε

for any finite sequence of pairwise disjoint sub-intervals (xk−1, xk) of the interval (0, 1) such that∑
k (xk − xk−1) < δ, it follows from Theorem 2.1 of Wang and Xiang (2012) that (2.17) holds as

well.
Finally, if

sup
t∈[0,1]

∞∑
k=0

|ϕ′
k(t)|δq∗(Hk, i) = O(χi)
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and
sup

t∈[0,1],u∈[0,1]

∞∑
k=0

ϕ
′2
k (t)∥Hk(u,F0,k)∥2q∗ < ∞,

it can be shown by similar arguments as given above that Assumption 2.3 is also satisfied.

3 Gaussian approximation and bootstrap
In this section we will develop a resampling procedure to approximate the quantiles of the distri-
bution of the the maximum deviations defined in (2.2) and (2.3). For this purpose we first derive
non-standard Gaussian approximations, which are the basis for the proposed bootstrap procedure.

3.1 Gaussian approximation
To be precise, define for 1 ≤ i ≤ n the p-dimensional vector

Zi(u) = (Zi,1(u), . . . , Zi,p(u))
⊤ (3.1)

= K
( i

n
− u

bn

)(
G( i

n
, 1
p
,Fi), G( i

n
, 2
p
,Fi), . . . , G( i

n
, p−1

p
,Fi), G( i

n
, 1,Fi)

)⊤
,

where K(·) and bn are the kernel and bandwidth used in the estimate (2.6), respectively. Next we
define the p-dimensional vector

Zi,l = Zi(
l
n
) = (Zi,l,1, . . . Zi,l,p)

⊤ , (3.2)

where
Zi,l,k = G( i

n
, k
p
,Fi)K

( i
n
− l

n

bn

)
(1 ≤ k ≤ p)

(note that all entries in the vector Zi,l will be zero if |i− l|/(nbn) ≥ 1). Define

∆(u, t) := m̂(u, t)−m(u, t)

as the difference between the regression function m and its estimate (2.6), then the following
theorem provides a Gaussian approximation for the maximum deviation of maxt |∆(u, t)| for fixed
u and is the basic tool for the development of a simultaneous confidence band of the form (2.2)
based on bootstrap. Throughout this paper we use the notation

Θ(a, b) = a
√
1 ∨ log((b/a))

for positive constants a, b, and |v|∞ = max1≤i≤k |vi| denotes the maximum norm of a k-dimensional
vector v = (v1, ..., vk)

⊤ (the dimension k will always be clear from the context). The notation a∨ b
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denotesmax(a, b).

Theorem 3.1. Let Assumptions 2.1 - 2.4 be satisfied and assume that the bandwidth in (2.6)
satisfies that n1+ab9n = o(1), na−1b−1

n = o(1) for some 0 < a < 4/5. For any fixed u ∈ (0, 1) there
exists a sequence of centred p-dimensional Gaussian vectors

(
Yi(u)

)
i∈N with the same covariance

structure as the vector Zi(u) in (3.1), such that

Pn(u) := sup
x∈R

∣∣∣P( max
0≤t≤1

√
nbn|∆(u, t)| ≤ x

)
− P

(∣∣∣ 1√
nbn

n∑
i=1

Yi(u)
∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn

(
b4n +

1

nbn

)
, p
)
+Θ

(
p

1−q∗
1+q∗ , p

))
for any sequence p → ∞ with p = O(exp(nι)) for some 0 ≤ ι < 1/11. In particular,

Pn(u) = o(1)

if p =
√
n and the constant q∗ in Assumption 2.3 is sufficiently large.

A Gaussian approximation for the maximum deviation maxu,t
√
nbn|∆(u, t)| is more intricate. We

recall the definition of the vector Zi,l in (3.2) and consider the (n−2⌈nbn⌉+1)p-dimensional vectors
Z̃1, . . . Z̃2⌈nb⌉−1 defined by

Z̃j =
(
Z⊤

j,⌈nbn⌉, Z
⊤
j+1,⌈nbn⌉+1, . . . , Z

⊤
n−2⌈nbn⌉+j,n−⌈nbn⌉

)⊤
. (3.3)

Note that Z̃2⌈nbn⌉ = 0 and that

max
1≤v≤p

⌈nbn⌉≤l≤n−⌈nbn⌉

∣∣∣ 1√
nbn

n∑
i=1

εi,n(
v
p
)K
( i

n
− l

n

bn

)∣∣∣ = ∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Z̃i

∣∣∣
∞
. (3.4)

Heuristically, we have by (2.6)

max
bn≤u≤1−bn,

0≤t≤1

√
nbn|∆(u, t)| ≈ max

1≤v≤p
⌈nbn⌉≤l≤n−⌈nbn⌉

∣∣∣ 1√
nbn

n∑
i=1

εi,n(
v
p
)K
( i

n
− l

n

bn

)∣∣∣,
and therefore the right hand side of (3.4) is an approximation of the maximum absolute deviation
maxu,t

√
nbn|∆(u, t)|. The following results makes this intuition rigorous.

Theorem 3.2. Let Assumptions 2.1 - 2.4 be satisfied and assume that n1+ab9n = o(1), na−1b−1
n =

o(1) for some 0 < a < 4/5, and n2/q∗

nbn
= o(1). There exists a sequence of centred (n− 2⌈nbn⌉+1)p-

dimensional centred Gaussian vectors Ỹ1, . . . , Ỹ2⌈nbn⌉−1 with the same auto-covariance structure as

12



the vector Z̃i in (3.3) such that

Pn := sup
x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn|∆(u, t)| ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn(b
4
n +

1

nbn
), np

)
+Θ

(
((np)1/q

∗
((nbn)

−1 + 1/p))
q∗

q∗+1 , np
))

for any sequence p → ∞ with np = O(exp(nι)) for some 0 ≤ ι < 1/11. In particular, for the choice
p =

√
n we have

Pn = o(1)

if the constant q∗ in Assumption 2.3 is sufficiently large.

Remark 3.1.

(i) A careful inspection of the proofs in Section B of the online supplement shows that it is
possible to prove similar results under alternative moment assumptions. More precisely,
Theorem 3.1 remains valid if condition (2.8) is replaced by

E
[
sup
0≤t≤1

(G(u, t,F0))
4
]
< ∞ . (3.5)

Similarly, Theorem 3.2 holds under the assumption

E
[

sup
0≤u,t≤1

(G(u, t,F0))
4
]
< ∞ . (3.6)

The details are omitted for the sake of brevity. Note that the sup in (3.5) and (3.6) appears
inside the expectation, while it appears outside the expectation in (2.8). Thus neither (2.8)
implies (3.5) and (3.6) nor vice versa.

(ii) Assumption 2.2(2) requires geometric decay of the dependence measure δq(G, i) and a careful
inspection of the proofs in Section B of the online supplement shows that similar (but weaker)
results can be obtained under less restrictive assumptions. To be precise, define ∆k,q =∑∞

i=k δq(G, i), ΞM =
∑∞

i=M iδ2(G, i) and consider the following assumptions.

(a)
∑∞

i=0 iδ3(G, i) < ∞.

(b1) There exist constants M = M(n) > 0, γ = γ(n) ∈ (0, 1) and C1 > 0 such that

(2⌈nbn⌉)3/8M−1/2l−5/8
n ≥ C1max{ln, l1/2n }

13



where ln = max(log(2⌈nbn⌉p/γ), 1).

(b2) There exist constants M = M(n) > 0, γ = γ(n) ∈ (0, 1) and C2 > 0 such that

(2⌈nbn⌉)3/8M−1/2l′n
−5/8 ≥ C2max{l′n, l′

1/2
n }

where l′n = max(log(2⌈nbn⌉(n− 2⌈nbn⌉+ 1)p/γ), 1).

Then, if the assumptions of Theorem 3.1 hold, where Assumption 2.2 (ii) is replaced by (a)
and (b1), we have

Pn(u) = O
(
ηn +Θ

(√
nbn(b

4
n +

1

nbn
), p
)
+Θ

(
p

1−q∗
1+q∗ , p

))
with

ηn = (nbn)
−1/8M1/2l7/8n + γ +

(
(nbn)

1/8M−1/2l−3/8
n

)q/(1+q) (
p∆q

Mq

)1/(1+q)

+Ξ
1/3
M (1 ∨ log (p/ΞM))2/3 .

Similarly under the conditions of Theorem 3.2 with Assumption 2.2 (ii) replaced by (a) and
(b2), we have

Pn = O
(
η′n +Θ

(√
nbn(b

4
n +

1

nbn
), np

)
+Θ

((
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np
))

with

η′n = (nbn)
−1/8M1/2l′

7/8
n + γ +

(
(nbn)

1/8M−1/2l′
−3/8
n

)q/(1+q) (
np∆q

M,q

)1/(1+q)

+Ξ
1/3
M (1 ∨ log (np/ΞM))2/3 .

3.2 Bootstrap
We will use Theorem 3.1 and 3.2 to construct simultaneous confidence bands and surfaces for the
regression function m. Therefore it is important to generate the Gaussian random vectors Ỹi with
the same auto-covariance structure as the vector Z̃i(u) in (3.1) or the vector Z̃i in (3.3). For this
purpose we consider (for fixed t) the local linear estimator of m with bandwidth dn > 0, that is

(
m̂dn(u, t),

∂̂
∂u
mdn(u, t)

)⊤
= argmin

β0,β1

n∑
i=1

(
Xi,n(t)− β0 − β1(

i
n
− u)

)2
H
( i

n
− u

dn

)
(3.7)
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where

H(x) = 0.75(1− x2)1(|x| ≤ 1) (3.8)

is the Epanechnikov Kernel. We define the residuals

ε̂i,n(t) = Xi,n(t)− m̂dn(
i
n
, t) , (3.9)

and the p-dimensional vector

Ẑi(u) = (Ẑi,1(u), . . . , Ẑi,p(u))
⊤ (3.10)

= K
( i

n
− u

bn

)(
ε̂i,n(

1
p
), ε̂i,n(

2
p
), . . . , ε̂i,n(

p−1
p
), ε̂i,n(1)

)⊤
.

as an analog of (3.1). Similarly we define the analog of (3.3) by

ˆ̃Zj =
(
Ẑ⊤

j,⌈nbn⌉, Ẑ
⊤
j+1,⌈nbn⌉+1, . . . , Ẑ

⊤
n−2⌈nbn⌉+j,n−⌈nbn⌉

)⊤
, (3.11)

where
Ẑi,l = Ẑi(

l
n
) = (Ẑi,l,1, . . . Ẑi,l,p)

⊤

(note that we replace Zi,l in (3.3) by Ẑi,l). We propose Algorithm 1 and 2 to calculate a simultaneous
confidence band and a simultaneous confidence surface for the regression function m.
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Algorithm 1:

Result: simultaneous confidence band for fixed u ∈ [bn, 1− bn] as defined in (2.2)
(a) Calculate the p-dimensional vectors Ẑi(u) in (3.10)

(b) For window size mn, let m′
n = 2⌊mn/2⌋, define the vectors Ŝ∗

jmn
(u) =

∑j+mn−1
r=j Ẑr(u),

Ŝjm′
n
(u) = Ŝ∗

j,⌊mn/2⌋(u)− Ŝ∗
j+⌊mn/2⌋,⌊mn/2⌋(u)

(c) for r=1, …, B do
- Generate independent standard normal distributed random variables {R(r)

i }⌊nu+nbn⌋
i=⌈nu−nbn⌉

- Calculate the bootstrap statistic

T (r)(u) =
∣∣∣ ⌊nu+nbn⌋−m′

n+1∑
j=⌈nu−nbn⌉

Ŝjm′
n
(u)R

(r)
j

∣∣∣
∞

end

(d) Define T⌊(1−α)B⌋(u) as the empirical (1− α)-quantile of the sample T (1)(u), . . . , T (B)(u) and

L̂1(u, t) = m̂(u, t)− r̂1(u) , Û1(u, t) = m̂(u, t) + r̂1(u)

where
r̂1(u) =

√
2T⌊(1−α)B⌋(u)√

nbn
√

m′
n(⌊nu+ nbn⌋ − ⌈nu− nbn⌉ −m′

n + 2)

Output:

Cn(u) =
{
f : [0, 1]2 → R | L̂1(u, t) ≤ f(u, t) ≤ Û1(u, t) ∀t ∈ [0, 1]

}
. (3.12)
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Algorithm 2:
Result: simultaneous confidence surface of the form (2.3)

(a) Calculate the (n− 2⌈nbn⌉+ 1)p-dimensional vectors ˆ̃Zi in (3.11)

(b) For window size mn, let m′
n = 2⌊mn/2⌋, define the vectors Ŝ∗

jmn
=
∑j+mn−1

r=j
ˆ̃Zr, and

Ŝjm′
n
= Ŝ∗

j,⌊mn/2⌋ − Ŝ∗
j+⌊mn/2⌋,⌊mn/2⌋ (3.13)

For a ≤ b let Ŝjm′
n,[a:b] be the (b− a+ 1)-dimensional sub-vector of the vector Ŝjm′

n
in (3.13)

containing its ath - bth components.

(c) for r=1, …, B do

- Generate independent standard normal distributed random variables {R(r)
i }i∈[1,n−m′

n],
and define the (2⌈nbn⌉ −m′

n)-dimensional random vectors

V
(r)
k = (V

(r)
k,1 , . . . , V

(r)
k,2⌈nbn⌉−m′

n
)⊤ := (R

(r)
k , . . . , R

(r)
k+2⌈nbn⌉−m′

n−1)
⊤ . (3.14)

- Calculate

T
(r)
k =

2⌈nbn⌉−m′
n∑

j=1

Ŝjm′
n,[(k−1)p+1:kp]V

(r)
k,j , k = 1, . . . , n− 2⌈nbn⌉+ 1, (3.15)

T (r) = max
1≤k≤n−2⌈nbn⌉+1

|T (r)
k |∞.

end

(d) Define T⌊(1−α)B⌋ as the empirical (1− α)-quantile of the bootstrap sample T (1), . . . , T (B) and

L̂2(u, t) = m̂(u, t)− r̂2 , Û2(u, t) = m̂(u, t) + r̂2

where
r̂2 =

√
2T⌊(1−α)B⌋√

nbn
√
m′

n(2⌈nbn⌉ −m′
n).

Output:

Cn =
{
f : [0, 1]2 → R | L̂2(u, t) ≤ f(u, t) ≤ Û2(u, t) ∀u ∈ [bn, 1− bn] ∀t ∈ [0, 1]

}
. (3.16)
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Remark 3.2. We would like to point out that there is a substantial difference between Algorithm
2 and existing bootstrap methods for inference by simultaneous confidence bands in other con-
texts (see Zhou and Wu, 2010; Wang et al., 2020; Karmakar et al., 2021, among others). Note
that for a given k the random variables V

(r)
k,j in Algortihm 2 are independent standard normally

distributed. However, the Gaussian random vector V
(r)
k and V

(r)
k′ defined by (3.14) are not in-

dependent if the indices k and k′ are close. For example, most of the elements of the vectors
V1 = (R1, R2, ..., Ri+p−m′

n
)⊤ and V2 = (R2, R3, ..., Ri+p−m′

n
, Ri+p−m′

n+1)
⊤ are the same. This is nec-

essary to mimic the structure of the vectors Z̃i in (3.3), which appear in the Gaussian approximation
provided by Theorem 3.2. For example, we have Z̃1 =

(
Z⊤

1,⌈nbn⌉, Z
⊤
2,⌈nbn⌉+1, . . . , Z

⊤
n−2⌈nbn⌉+1,n−⌈nbn⌉

)⊤,
Z̃2 =

(
Z⊤

2,⌈nbn⌉, Z
⊤
3,⌈nbn⌉+1, . . . , Zn−2⌈nbn⌉+2,n−⌈nbn⌉)

⊤, and therefore most of the elements of the vec-
tors Z̃1 and Z̃2 coincide as well.

We have the following theorem regarding the validity of the bootstrap simultaneous confidence
band Cn(u) and the surface Cn defined in Algorithms 1 and 2, respectively.

Theorem 3.3. Assume that the conditions of Theorem 3.2 hold, and that nd3n → ∞, nd6n = o(1).
Define

ϑ′
n =

log2 n

mn

+
mn

nbn
+

√
mn

nbn
p4/q , and ϑn =

log2 n

mn

+
mn

nbn
+

√
mn

nbn
(np)4/q.

(i) If p → ∞ such that p = O(exp(nι)) for some 0 ≤ ι < 1/11 and

(ϑ′)1/3n

{
1 ∨ log

( p

ϑ′
n

)}2/3

+Θ
((√

mn log p
( 1√

ndn
+ d2n

)
p

1
q

)q/(q+1)

, p
)
= o(1),

then the simultaneous confidence band (3.12) in Algorithm 1 satisfies

lim
n→∞

lim
B→∞

P(m(u, ·) ∈ Cn(u) | Fn) = 1− α

in probability.

(ii) If p → ∞ such that np = O(exp(nι)) for some 0 ≤ ι < 1/11 and

ϑ1/3
n

{
1 ∨ log

(np
ϑn

)}2/3

+Θ
((√

mn log np
( 1√

ndn
+ d2n

)
(np)

1
q

)q/(q+1)

, np
)
= o(1),

then the simultaneous confidence band (3.16) in Algorithm 2 satisfies

lim
n→∞

lim
B→∞

P(m ∈ Cn | Fn) = 1− α

in probability.
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Remark 3.3. Several authors consider (stationary) functional data models with noisy observation
(see Cao et al., 2012; Chen and Song, 2015, among others) and we expect that the results presented
in this section can be extended to this scenario. More precisely, consider the model

Yij = Xi,n(
j
N
) + σ( j

N
)zij, 1 ≤ i ≤ n, 1 ≤ j ≤ N ,

where Xi,n is the functional time series defined in (1.1), {zij}i=1,...,n,j=1,...,N is an array of centred
independent identically distributed observations and σ(·) is a positive function on the interval [0, 1].
This means that one can not observe the full trajectory of {Xi,n(t) | t ∈ [0, 1]}, but only the function
Xi,n evaluated at the discrete time points 1/N, 2/N, . . . , (N−1)/N, 1 subject to some random error.
If N → ∞ as n → ∞, and the regression function m in (1.1) is sufficiently smooth, we expect that
we can construct simultaneous confidence bands and surfaces by applying the procedure described
in this section to smoothed trajectories. A similar comment applies to the confidence regions
developed in the following section.
For example, we can consider the smooth estimate

m̃(u, ·) = argmin
g∈Sp

⌈nu+
√
n⌉∑

i=⌊nu−
√
n⌋

N∑
j=1

(
Yi,j − g( j

N
)
)2

, (3.17)

where Sp denotes the set of splines of order p, which depends on the smoothness of the function
t → m(u, t). We can now construct confidence bands applying the methodology to the data
X̃i,n(·) = m̃( i√

n
, ·), i = 1, . . . ,

√
n due to the asymptotic efficiency of the spline estimate (see

Proposition 3.2-3.4 in Cao et al., 2012).
Alternatively, we can also obtain smooth estimates t → X̌i,n(t) of the trajectory using local polyno-
mials, and we expect that the proposed methodology applied to the data X̌1,n, . . . , X̌n,n will yield
valid simultaneous confidence bands and surfaces, where the range for the variable t is restricted
to the interval [cn, 1− cn] and cn denotes the bandwidth of the local polynomial estimator used in
smooth estimator of the trajectory.

4 Confidence bands and surfaces with varying width
The confidence bands and surfaces in Section 3 have a constant width and do not reflect the
variability of the estimate m̂ at the point (u, t). In this section we will construct simultaneous
confidence bands and surfaces adjusted by the long-run variance defined in (2.11) (more precisely
by an appropriate estimator). Among others, this approach has been proposed by Degras (2011)
and Zheng et al. (2014) for repeated measurement data from independent subjects where a variance
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estimator is used for standardization. It has also been considered by Zhou and Wu (2010) who
derived a simultaneous confidence tube for the parameter of a time varying coefficients linear model
with a (real-valued) locally stationary error process. In the situation considered in the present paper
this task is challenging as a uniformly consistent estimator of the long-run variance σ2 in (2.11)
is required. For the sake of brevity we will restrict ourselves to the construction of simultaneous
confidence surfaces of the form (2.3), but similar results can be obtained for the bands (2.1) and
(2.2) as well. For these types of confidence bands the corresponding algorithms are given in Section
A of the appendix.
If the long-run variance in (2.11) would be known, Algorithm 2 can easily be modified to obtain a
confidence band of the form{

f : [0, 1]2 → R | m̂(u, t)− σ(u, t)ĉn,1−α ≤ f(u, t) ≤ m̂(u, t) + σ(u, t)ĉn,1−α ∀u, t ∈ [0, 1]
}
,

(4.1)

where ĉn,1−α is the empirical quantile calculated by bootstrap. We will investigate a Gaussian
approximation in this case first and discuss the problem of variance estimation afterwards. For
this purpose we consider the “normalized” maximum deviation of

∆σ(u, t) =
m̂(u, t)−m(u, t)

σ(u, t)
.

We define for 1 ≤ i ≤ n the p dimensional vector

Zσ
i (u) = (Zσ

i,1(u), . . . , Z
σ
i,p(u))

⊤

= K
( i

n
− u

bn

)(
Gσ( i

n
, 1
p
,Fi), G

σ( i
n
, 2
p
,Fi), . . . , G

σ( i
n
, p−1

p
,Fi), G

σ( i
n
, 1,Fi)

)⊤
,

where Gσ( i
n
, t,Fi) = G( i

n
, t,Fi)/σ(

i
n
, t). Similarly as in Section 3 we consider the p-dimensional

vector
Zσ

i,l = Zσ
i (

l
n
) = (Zσ

i,l,1, . . . Z
σ
i,l,p)

⊤ ,

where
Zσ

i,l,k = Gσ( i
n
, k
p
,Fi)K

( i
n
− l

n

bn

)
(1 ≤ k ≤ p).

Finally, we define the (n− 2⌈nbn⌉+ 1)p-dimensional vectors Z̃σ
1 , . . . Z̃

σ
2⌈nb⌉−1by

Z̃σ
j =

(
Zσ,⊤

j,⌈nbn⌉, Z
σ,⊤
j+1,⌈nbn⌉+1, . . . , Z

σ,⊤
n−2⌈nbn⌉+j,n−⌈nbn⌉

)⊤ (4.2)

and obtain the following result.

Theorem 4.1. Let the Assumptions of Theorem 3.2 be satisfied and assume that the partial deriva-
tive ∂2σ(u,t)

∂u∂t
exists and is bounded on (0, 1)2. Then there exist (n−2⌈nbn⌉+1)p-dimensional centred
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Gaussian vectors Ỹ σ
1 , . . . , Ỹ

σ
2⌈nbn⌉−1 with the same auto-covariance structure as the vector Z̃σ

i in
(4.2) such that

Pσ
n := sup

x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn|∆σ(u, t)| ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn(b
4
n +

1

nbn
), np

)
+Θ

((
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np) + Θ
(
b

q−2
q+1
n , np

))
for any sequence p → ∞ with np = O(exp(nι)) for some 0 ≤ ι < 1/11. In particular, for the choice
p =

√
n we have

Pσ
n = o(1)

if the constant q∗ in Assumption 2.3 is sufficiently large.

In practice, the long-run variance function in (4.1) is unknown and has to be replaced by a uniformly
consistent estimator. For this propose recall the definition of the Epanechnikov kernel H in (3.8),
and define for some bandwidth τn ∈ (0, 1) the weights

ω̄(t, i) = H
( i

n
− t

τn

)/ n∑
i=1

H
( i

n
− t

τn

)
.

Let Sk,r(·) =
∑r

i=k Xi,n(·) denote the partial sum of the data Xk,n(·), . . . , Xr,n(·) (note that these
are functions) and define for w ≥ 2

∆j(t) =
Sj−w+1,j(t)− Sj+1,j+w(t)

w
.

An estimator of the long-run variance in (2.11) is then defined by

σ̂2(u, t) =
n∑

j=1

w∆2
j(t)

2
ω̄(u, j), (4.3)

if u ∈ [w/n, 1 − w/n]. For u ∈ [0, w/n) and u ∈ (1 − w/n, 1] we define to be constant, that is
σ̂2(u, t) = σ̂2(w/n, t) and σ̂2(u, t) = σ̂2(1 − w/n, t), respectively. Our next result establishes the
uniform consistency of this estimator.

Proposition 4.1. Let the assumptions of Theorem 3.2 be satisfied and assume that the partial
derivative ∂2σ(u,t)

∂2u
exists on the square (0, 1)2, is bounded and is continuous in u ∈ (0, 1). If
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w → ∞, w = o(n2/5), w = o(nτn), τn → 0 and nτn → ∞ we have that

∥∥∥ sup
u∈[γn,1−γn]

t∈(0,1)

|σ̂2(u, t)− σ2(u, t)|
∥∥∥
q′
= O

(w5/2

n
τ−1/q′

n + w1/2n−1/2τ−1/2−4/q′

n + w−1 + τ 2n

)
,

∥∥∥ sup
u∈[0,γn)∪(1−γn,1]

t∈(0,1)

|σ̂2(u, t)− σ2(u, t)|
∥∥∥
q′
= O(gn) ,

where
gn =

w5/2

n
τ−1/q′

n + w1/2n−1/2τ−1/2−4/q′

n + w−1 + τn , (4.4)

γn = τn + w/n, q′ = min(q, q∗) and q, q∗ are defined in Assumptions 2.2 and 2.3, respectively.

To state the bootstrap algorithm for a simultaneous confidence surface of the form (2.3) with
varying width, we introduce the following notation

Ẑ σ̂
i (u) = (Ẑ σ̂

i,1(u), . . . , Ẑ
σ̂
i,p(u))

⊤

= K
( i

n
− u

bn

)( ε̂i,n(1p)
σ̂( i

n
, 1
p
)
,
ε̂i,n(

2
p
)

σ̂(
i
n
,
2
p
)
, . . . ,

ε̂i,n(
p−1
p

)

σ̂(
i
n
,
p−1
p

)
,
ε̂i,n(1)

σ̂(
i
n
,1)

)⊤
and consider the empirical analog

ˆ̃Z σ̂
j =

(
Ẑ σ̂,⊤

j,⌈nbn⌉, Ẑ
σ̂,⊤
j+1,⌈nbn⌉+1 . . . , Ẑ

σ̂,⊤
n−2⌈nbn⌉+j,n−⌈nbn⌉

)⊤ (4.6)

of the vector Z̃σ
j in (4.2), where Ẑ σ̂

i,l = Ẑ σ̂
i (

l
n
) = (Ẑ σ̂

i,l,1, . . . Ẑ
σ̂
i,l,p)

⊤ .

Theorem 4.2. Assume that the conditions of Theorem 3.3(ii), Proposition 4.1 and Theorem 4.1
hold and that there exists a sequence ηn → ∞ such that

Θ
(√

mn log np(gnηn)(np)
1
q
)q/(q+1)

, np) + η−q′

n = o(1) ,

where γn and gn are defined by (4.4) and q′ and l are the constants in Proposition 4.1 and Theorem
3.3, respectively. Then the simultaneous confidence surface (4.5) in Algorithm 3 satisfies

lim
n→∞

lim
B→∞

P(m ∈ Cσ̂
n | Fn) = 1− α

in probability.

Remark 4.1. The methodology presented so far can be extended to construct a simultaneous
confidence band for the vector of mean functions of a multivariate locally stationary functional
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Algorithm 3:
Result: simultaneous confidence surface of the form (2.3)

(a) Calculate the the estimate of the long-run variance σ̂2 in (4.3)

(b) Calculate the (n− 2⌈nbn⌉+ 1)p-dimensional vectors ˆ̃Z σ̂
i in (4.6)

(c) For window size mn, let m′
n = 2⌊mn/2⌋,define the vectors Ŝσ̂,∗

jmn
=
∑j+mn−1

r=j
ˆ̃Z σ̂
r , and

Ŝσ̂
jm′

n
= Ŝσ̂,∗

j,⌊mn/2⌋ − Ŝσ̂,∗
j+⌊mn/2⌋,⌊mn/2⌋

For a ≤ b let Ŝσ̂
jm′

n,[a:b]
be the (b− a+ 1)-dimensional sub-vector of the vector Ŝσ̂

jm′
n

containing its ath - bth components.

(d) for r=1, …, B do

- Generate independent standard normal distributed random variables {R(r)
i }i∈[1,n−m′

n]

and define the random vectors V
(r)
k = (V

(r)
k,1 , . . . , V

(r)
k,2⌈nbn⌉−m′

n+1)
⊤ by (3.14)

- Calculate

T
σ̂,(r)
k =

2⌈nbn⌉−m′
n∑

j=1

Ŝσ̂
jm′

n,[(k−1)p+1:kp]V
(r)
k,j , k = 1, . . . , n− 2⌈nbn⌉+ 1,

T σ̂,(r) = max
1≤k≤n−2⌈nbn⌉+1

|T σ̂,(r)
k |∞.

end

(e) Define T σ̂
⌊(1−α)B⌋ as the empirical (1− α)-quantile of the sample T σ̂,(1), . . . , T σ̂,(B) and

L̂σ̂
3 (u, t) = m̂(u, t)− r̂3(u, t), Û σ̂

3 (u, t) = m̂(u, t) + r̂3(u, t),

where

r̂3(u, t) =
σ̂(u, t)

√
2T σ̂

⌊(1−α)B⌋√
nbn
√
m′

n(2⌈nbn⌉ −m′
n)

Output:

Cσ̂
n =

{
f : [0, 1]2 → R | L̂σ̂

3 (u, t) ≤ f(u, t) ≤ Û σ̂
3 (u, t) ∀u ∈ [bn, 1− bn] ∀t ∈ [0, 1]

}
. (4.5)
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time series. For simplicity we consider a 2-dimensional series of the form(
X1

i,n(t)

X2
i,n(t)

)
=

(
m1(

i
n
, t)

m2(
i
n
, t)

)
+

(
ε1i,n(t)

ε2i,n(t)

)
, (4.7)

and define for a = 1, 2

Ẑa,σ̂
i (u) = (Ẑa,σ̂

i,1 (u), . . . , Ẑ
a,σ̂
i,p (u))

⊤

= K
( i

n
− u

bn

)( ε̂ai,n(
1
p
)

σ̂a(
i
n
, 1
p
)
,

ε̂ai,n(
2
p
)

σ̂a(
i
n
,
2
p
)
, . . . ,

ε̂ai,n(
p−1
p

)

σ̂a(
i
n
,
p−1
p

)
,

ε̂ai,n(1)

σ̂a(
i
n
,1)

)⊤
,

where ε̂ai,n(t) = Xa
i,n(t) − m̂a,dn(

i
n
, t) and m̂a,dn(

i
n
, t) is the local linear estimator of the function

ma(
i
n
, t) in (4.7) with bandwidth dn (see equation (3.7) for its definition) and σ̂2

a(
i
n
, t) is the esti-

mator of long-variance of εai,n(t) defined in (4.3). Next we consider the 2(n− 2⌈nbn⌉+ 1)p vector

ˆ̃Z σ̂
j =

(
Ẑ σ̂,⊤

j,⌈nbn⌉, Ẑ
σ̂,⊤
j+1,⌈nbn⌉+1 . . . , Ẑ

σ̂,⊤
n−2⌈nbn⌉+j,n−⌈nbn⌉

)⊤
where Ẑ σ̂

i,l = Ẑ σ̂
i (

l
n
) = (Ẑ1,σ̂

i,l,1, Ẑ
2,σ̂
i,l,1 . . . Ẑ

1,σ̂
i,l,p, Ẑ

2,σ̂
i,l,p)

⊤ contains information from both components.
Define for a = 1, 2

L̂σ̂
3,a(u, t) = m̂a(u, t)− r̂3,a(u, t), Û σ̂

3,a(u, t) = m̂a(u, t) + r̂3,a(u, t)

where

r̂3,a(u, t) =
σ̂a(u, t)

√
2T σ̂

⌊(1−α)B⌋√
nbn
√

m′
n(2⌈nbn⌉ −m′

n)

and T σ̂
⌊(1−α)B⌋ is generated in the same way as in step (e) of Algorithm 3 with p replaced by 2p,

m̂a(u, t) is the kernel estimator of ma(u, t) defined in (2.6). Further, define for a = 1, 2 the set of
functions

Cσ̂
a,n =

{
f : [0, 1]2 → R | L̂3,a(u, t) ≤ f(u, t) ≤ Û3,a(u, t) ∀u ∈ [bn, 1− bn] ∀t ∈ [0, 1]

}
.

Suppose that the mean functions and error processes of X1
i,n(t) and X2

i,n(t) satisfy the conditions
of Theorem 4.2, then it can be proved that

lim
n→∞

lim
B→∞

P(m1 ∈ Cσ̂
1,n,m2 ∈ Cσ̂

2,n | Fn) = 1− α

in probability.
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5 Finite sample properties
In this section we study the finite sample performance of the simultaneous confidence bands and
surfaces proposed in the previous sections. We start giving some more details regarding the general
implementation of the algorithms. A simulation study and a data example are presented in Section
5.2 and 5.3, respectively.

5.1 Implementation
For the estimator of the regression function in (2.6) we use the kernel (of order 4)

K(x) = (45/32− 150x2/32 + 105x4/32)1(|x| ≤ 1) ,

and for the bandwidth we choose bn = 1.2dn. Here, for the confidence band in (2.3), the parameter
dn is chosen as the minimizer of

MGCV (b) = max
1≤s≤p

∑n
i=1(m̂b(

i
n
, s
p
)−Xi,n(

s
p
))2

(1− tr(Qs(b))/n)2
, (5.1)

p = ⌈
√
n⌉ and Qs(b) is an n× n is the matrix defining the local linear estimator in (3.7), that is

(
m̂b(

1
n
, s
p
), m̂b(

2
n
, s
p
), . . . , m̂b(1,

s
p
)
)⊤

= Qs(b)
(
X1,n(

s
p
), ..., Xn,n(

s
p
)
)⊤

.

For the simultaneous confidence band (for a fixed u ∈ (0, 1)) in (2.2) dn is defined similarly, where
the loss function in (5.1) is replaced by

MGCV (b) = max
1≤s≤p

∑⌊nu+nbn⌋
i=⌈nu−nbn⌉(m̂b(

i
n
, s
p
)−Xi,n(

s
p
))2

(1− tr(Qs(b, u))/(2nb))2
. (5.2)

and (
m̂b(

⌈nu−nbn⌉
n

, s
p
), ..., m̂b(

⌊nu+nbn⌋
n

, s
p
)
)⊤

= Qs(b, u)
(
X⌈nu−nbn⌉,n(

s
p
), ..., X⌊nu+nbn⌋,n(

s
p
)
)⊤

,

The criteria (5.1) and (5.2) are motivated by the generalized cross validation criterion introduced
by Craven and Wahba (1978) and will be called Maximal Generalized Cross Validation (MGCV)
method throughout this paper.
For the estimator of the long-run variance in (4.3) we use w = ⌊n2/7⌋ and τn = n−1/7 as recom-
mended in Dette and Wu (2019). The window size in the multiplier bootstrap is then selected
by the minimal volatility method advocated by Politis et al. (1999). For the sake of brevity, we
discuss this method only for Algorithm 3 in detail (the choice for Algorithm 1 and 2, and for the
algorithms in the online supplement is similar). We consider a grid of window sizes m̃1 < . . . < m̃M

(for some integer M). We first calculate Ŝσ̂
jm̃s

defined in step (c) of Algorithm 3 for each m̃s. Let
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Ŝσ̂,⋄
m̃s

denote the (n− 2⌈nbn⌉+ 1)p dimensional vector with rth entry defined by

Ŝσ̂,⋄
m̃s,r

=
1

m̃s(2⌈nbn⌉ − m̃s)

2⌈nbn⌉−m̃s∑
j=1

(Ŝσ̂
jm̃s,r)

2 ,

and consider the standard error of {Ŝσ̂,⋄
m̃s,r

}k+2
s=k−2, that is

se
(
{Ŝσ̂,⋄

m̃s,r
}k+2
s=k−2

)
=
(1
4

k+2∑
s=k−2

(
Ŝσ̂,⋄
m̃s,r

− 1

5

k+2∑
s=k−2

Ŝσ̂,⋄
m̃s,r

)2)1/2
Then we choose m′

n = m̃j where j is defined as the minimizer of the function

MV (k) =
1

(n− 2⌈nbn⌉+ 1)p

(n−2⌈nbn⌉+1)p∑
r=1

se
(
{Ŝσ̂,⋄

m̃s,r
}k+2
s=k−2

)
.

5.2 Simulated data
We consider two regression functions

m1(u, t) = (1 + u)(6(t− 0.5)2 + 1),

m2(u, t) = (1 + u2)(6(t− 0.5)2(1 + 1(t > 0.3)) + 1)

(note that m2 is discontinuous at the point t = 0.3). For the definition of the error processes let
{εi}i∈Z be a sequence of independent standard normally distributed random variables and {ηi}i∈Z
be a sequence of independent t-distributed random variables with 8 degrees of freedom. Define the
functions

a(t) = 0.5 cos(πt/3), b(t) = 0.4t, c(t) = 0.3t2,

d1(t) = 1 + 0.5 sin(πt), d2,1(t) = 2t− 1, d2,2(t) = 6t2 − 6t+ 1,

and F1
i = (. . . , εi−1, εi), F2

i = (. . . , ηi−1, ηi). We consider the following two locally stationary time
series models defined by

G1(t,F1
i ) = a(t)G1(t,F1

i−1) + εi,

G2(t,F2
i ) = b(t)G2(t,F2

i−1) + ηi − c(t)ηi−1.

Note that G1 is a locally stationary AR(1) process (or equivalently a locally stationary MA(∞)
process), and that G2 is a locally stationary ARMA(1, 1) model. With these processes we define
the following functional time series model (for 1 ≤ i ≤ n, 0 ≤ t ≤ 1)

(a) Xi,n(t) = m1(
i
n
, t) +G1(

i
n
,F1

i )d1(t)/3.
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Figure 1: 95% simultaneous confidence bands of the form (2.1) (fixed t = 0.5) for the regression
function in model (a) from n = 800 observations. Left panel: constant width (Algorithm A.4);
Right panel: varying width (Algorithm A.5).

(b) Xi,n(t) = m1(
i
n
, t) +G1(

i
n
,F1

i )d2,1(t)/2 +G2(
i
n
,F2

i )d2,2(t)/2

(c) Xi,n(t) = m2(
i
n
, t) +G1(

i
n
,F1

i )d1(t)/3 .

(d) Xi,n(t) = m2(
i
n
, t) +G1(

i
n
,F1

i )d2,1(t)/2 +G2(
i
n
,F2

i )d2,2(t)/2.

We begin displaying typical 95% simultaneous confidence bands obtained from one simulation run
for model (a) with sample size n = 800. Figure 1 shows the confidence bands of the form (2.1) (for
fixed t) with constant and variable width (calculated by Algorithm A.4 and A.5, see Section A of
the online supplement). In Figure 2 we display the simultaneous confidence bands of the form (2.2)
(for fixed u) with constant width (Algorithm 1) and variable width (Algorithm A.6, see Section
A of the online supplement for details), while Figure 3 shows the simultaneous confidence surface
of the form (2.3) calculated by Algorithm 2 and 3 described in Section 3 and 4, respectively. We
observe that in all cases there exist differences between the bands (surfaces) with constant and
variable width, but they are not substantial.
We next investigate the coverage probabilities of the different confidence bands constructed in this
paper for sample sizes n = 500 and n = 800. All results presented in the following discussion are
based on 1000 simulation runs and B = 1000 bootstrap replications. In all tables the left part
shows the coverage probabilities of the bands with constant width while the results in the right part
correspond to the bands with varying width. In Table 1 we give some results for the confidence
bands of the form (2.1) (for fixed t = 0.5) with constant and variable width (Algorithm A.4 and
Algorithm A.5 in Section A of the online supplement), while we present in Table 2 the simulated
coverage probabilities of the simultaneous confidence bands of the form (2.2), where u = 0.5 is
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Figure 2: 95% simultaneous confidence band of the form (2.1) (fixed u = 0.5) for the regression
function in model (a) from n = 800 observations. Left panel: constant width (Algorithm 1); Right
panel: varying width (Algorithm A.6).

Figure 3: 95% simultaneous confidence surface of the form (2.3) for the regression function in model
(a) from n = 800 observations. Left panel: constant width (Algorithm 2); Right panel: varying
width (Algorithm 3)
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fixed (Algorithm 1 and Algorithm A.6 in the online supplement). Corresponding results for the
simultaneous confidence surfaces of the form (2.3) can be found in Table 3 (Algorithm 2 (constant
width) and 3 (varying width)). We observe that the simulated coverage probabilities are close to
their nominal levels in all cases under consideration, which illustrates the validity of our methods
for finite sample sizes.

constant width varying width
model (a) model (b) model (a) model (b)

level 90% 95% 90% 95% 90% 95% 90% 95%
n = 500 90.4 % 94.9% 89.8 % 95.9% 90.1.5 % 96.3% 89.9 % 94.6%
n = 800 89.3 % 94.5 % 90.0 % 95.5 % 89.4 % 95.0 % 90.3 % 95.6 %

model (c) model (d) model (c) model (d)
level 90% 95% 90% 95% 90% 95% 90% 95%

n = 500 90.1 % 95.9% 90.4 % 96.0% 90.4 % 95.3% 91.0 % 96.4%
n = 800 90.6 % 95.6 % 90.0 % 95.4 % 88.9 % 94.9 % 89.3 % 95.1 %

Table 1: Simulated coverage probabilities of the simultaneous confidence band of the form (2.1) for
fixed t = 0.5 calculated by Algorithm A.4 (constant width) and A.5 (varying width).

constant width varying width
model (a) model (b) model (a) model (b)

level 90% 95% 90% 95% 90% 95% 90% 95%
n = 500 87.8 % 92.3% 88.5 % 93.6% 88.5 % 93.3% 88.1 % 92.5%
n = 800 88.7 % 93.9 % 89.0 % 94.4 % 90.8 % 94.3 % 88.2 % 93.9 %

model (c) model (d) model (c) model (d)
level 90% 95% 90% 95% 90% 95% 90% 95%

n = 500 87.4 % 92.4% 88.0 % 93.1% 88.1 % 93.3% 89.6 % 94.6%
n = 800 88.9 % 93.6 % 88.7 % 94.5 % 89.6 % 93.8 % 89.9 % 95.2 %

Table 2: Simulated coverage probabilities of the simultaneous confidence band of the form (2.2) for
fixed u = 0.5 calculated by Algorithms 1 (constant width) and A.6 (varying width).

5.3 Real data
In this section we illustrate the proposed methodology analyzing the implied volatility (IV) of the
European call option of SP500. These options are contracts such that their holders have the right
to buy the SP500 at a specified price (strike price) on a specified date (expiration date). The
implied volatility is derived from the observed SP500 option prices, directly observed parameters,
such as risk-free rate and expiration date, and option pricing methods� and is widely used in the
studies of quantitative finance. For more details, we refer to Hull (2003).
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constant width varying width
model (c) model (d) model (c) model (d)

level 90% 95% 90% 95% 90% 95% 90% 95%
n = 500 90.1 % 95.1% 89.1 % 95.1% 90.3 % 95.6% 89.5 % 95.3%
n = 800 89.6 % 94.8 % 90.5 % 95.0 % 90.4 % 95.0 % 89.4 % 94.8 %

model (c) model (d) model (c) model (d)
level 90% 95% 90% 95% 90% 95% 90% 95%

n = 500 88.9 % 94.8% 89.7 % 95.4% 91.0 % 95.7% 88.3 % 94.3%
n = 800 90.1 % 95.1 % 90.8 % 95.5 % 90.1 % 95.8 % 89.7 % 95.5 %

Table 3: Simulated coverage probabilities of the simultaneous confidence band of the form (2.3)
calculated by Algorithm 2 (constant width) and Algorithm 3 (varying width).

We collect the implied volatility and the strike price from the ‘optionmetrics‘ database and the
SP500 index from the CRSP database. Both databases can be accessed from Wharton Research
Data Service (WRDS). We calulate the simultaneous confidence band for the implied volatility
surface, which is a two variate function of time (more precisely time to maturity) and moneyness,
where the moneyness is calculated using strike price divided by SP500 indices. The options are
collected from December 21, 2016 to July 19, 2019, and the expiration date is December 20, 2019.
Therefore the length of time series is 647. Within each day we observe the volatility curve, which
is the implied volatility as a function of moneyness.
Recently, Liu et al. (2016) models IV via functional time series. Following their perspective, we
shall study the IV data via model (1.1), where Xi,n(t) represents the observed volatility curve at
a day i, with total sample size n = 647. We consider the options with moneyness in the range of
[0.8, 1.4], corresponding to options that have been actively traded in this period (note that, our
methodology was developed for functions on the interval [0, 1], but it is obvious how to extend this
to an arbitrary compact interval [a, b]). The number of observations for each day varies from 34 to
56, and we smooth the implied volatility using linear interpolation and constant extrapolation.
To study the well documented volatility smile, we calculate confidence bands of the form (2.2)
for fixed u = 0.5, by Algorithm 1 (constant width) and Algorithm A.6 (varying width). The
parameter selection procedure proposed in Section 5.3 yields bn = 0.216 and mn = 18, and the
resulting simultaneous confidence bands of the form (2.2) are presented in Figure 4. We observe
that both 95% simultaneous confidence bands indicate that the implied volatility is a quadratic
function of moneyness, which supports the well documented phenomenon of ’volatility smile’. In
Figure 5 We also display 95% simultaneous confidence bands of the form (2.1) for fixed t = 0.5

(which corresponds to Moneyness=1.1). We observe that the volatility changes with time when
moneyness (or equivalently, the strike price and underlying asset price) is specified. We observe
that the differences between the bands with constant and variable width are rather small.
In practice it is important to determine whether the volatility curve changes with time� i.e., to
test H0 : m(u, t) ≡ m(t). As pointed out by Daglish et al. (2007), the volatility surface of an asset
would be flat and unchanging if the assumptions of Black–Scholes (Black and Scholes, 1973) hold.
In particular, Daglish et al. (2007) demonstrate that for most assets the volatility surfaces are
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Figure 4: 95% simultaneous confidence bands of the form (2.2) (fixed u = 0.5) for the IV surface.
Left panel: constant width (Algorithm 1); Right panel: variable width (Algorithm A.6).

not flat and are stochastically changing in practice. We can provide an inference tool for such a
conclusion using the simultaneous confidence bands and surfaces developed in Section 3 and 4. For
example, note, that by the duality between confidence regions and hypotheses tests, an asymptotic
level α test for the hypothesis H0 : m(u, t) ≡ m(t) is obtained by rejecting the null hypothesis,
whenever the surface of the form m(u, t) = m(t) is not contained in an (1 − α) simultaneous
confidence surface of the form (2.3).
Therefore we construct the 95% simultaneous confidence surface for the regression function m with
constant and varying width using Algorithms 2 and Algorithm 3, respectively. The parameter
chosen by procedures in Section 5.3 are bn = 0.12 and mn = 18. The results are depicted in
Figure 6 (for a better illustration the z-axis shows 100× implied volatility). We observe from both
figures that simultaneous confidence bands do not contain a surface of the form m(u, t) = m(t)

and therefore reject the null hypothesis (at significance level 0.05%).

Online Supplemental Material: the online supplemental material contains further algorithms
of confidence bands of type (2.1), and of type (2.2) with varying width. It also provides all the
detailed technical proofs.
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Figure 5: 95% simultaneous confidence bands of the form (2.2) (fixed t = 0.5). Left panel: constant
width (Algorithm A.4); Right panel: variable width (Algorithm A.5).

Figure 6: 95% simultaneous confidence band of the form (2.3) for the IV surface. Left panel:
constant width (Algorithm 2); Right panel: variable width (Algorithm 3).
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Supplemental for ‘Confidence surfaces for the mean of locally
stationary functional time series’

Section A of the supplemental material contains algorithms for the simultaneous confidence bands
of the form (2.1) and for the confidence surface of the form (2.3) with varying width. Section B.1
provides proofs of our theoretical results in Sections 3 and 4 of the main article, while Section C
provides further auxiliary results.

A Further algorithms
In this section we provide the remaining algorithms for the calculation of the simultaneous con-
fidence bands of the form (2.1) (fixed t) and for a simultaneous confidence surface of the form
(2.3) with varying width. Recall the definition of the residuals ε̂i,n(t) in (3.9) and of the long run
variance estimator σ̂ in (4.3) in the main article.
We begin with the simultaneous confidence bands for a fixed t ∈ [0, 1] defined in (2.1) and define

Ẑi(u, t) = K
(

i
n
−u

bn

)
ε̂i,n(t), Ẑi,l(t) = Ẑi(

l
n
, t),

Ẑ σ̂
i (u, t) = K

(
i
n
−u

bn

)
ε̂i,n(t)

σ̂(
i
n
,t)
, Ẑ σ̂

i,l(t) = Ẑ σ̂
i (

l
n
, t).

Next we consider the (n− 2⌈nbn⌉+ 1)-dimensional vectors

ˆ̃Zj(t) =
(
Ẑj,⌈nbn⌉(t), Ẑj+1,⌈nbn⌉+1(t), . . . , Ẑn−2⌈nbn⌉+j,n−⌈nbn⌉(t)

)⊤
, (A.3)

ˆ̃Z σ̂
j (t) =

(
Ẑ σ̂

j,⌈nbn⌉(t), Ẑ
σ̂
j+1,⌈nbn⌉+1(t), . . . , Ẑ

σ̂
n−2⌈nbn⌉+j,n−⌈nbn⌉(t)

)⊤ (A.4)

(1 ≤ j ≤ 2⌈nbn⌉ − 1), then a simultaneous confidence band for fixed t ∈ [0, 1] can be generated by
the following algorithms A.4 (constant width) algorithm A.5 (varying width). The proof is omitted
for the sake of brevity.
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Theorem A.1. Assume that the conditions of Theorem 3.2 hold. Define

ϑ†
n =

log2 n

mn

+
mn

nbn
+

√
mn

nbn
n4/q.

(i) If ϑ†,1/3
n {1∨ log( n

ϑ†
n
)}2/3+Θ(

(√
mn log n(

1√
ndn

+ d2n)(n)
1
q
)q/(q+1)

, n) = o(1) we have that for any
α ∈ (0, 1)

lim
n→∞

lim
B→∞

P(m ∈ Cn(t) | Fn) = 1− α

in probability.

(ii) If further the conditions of Theorem 4.1 and Proposition 4.1 hold, then

lim
n→∞

lim
B→∞

P(m ∈ Cσ̂
n(t) | Fn) = 1− α

in probability.

Next we present a detailed algorithm to estimate simultaneous confidence band for a fixed u (of
the form (2.2)) with varying width. For this purpose we define the p-dimensional vector

Ẑ σ̂u
i (u) = (Ẑ σ̂u

i,1 (u), . . . , Ẑ
σ̂u
i,p (u))

⊤ (A.6)

= K
( i

n
− u

bn

)( ε̂i,n(
1
p
)

σ̂(u,
1
p
)
,
ε̂i,n(

2
p
)

σ̂(u,
2
p
)
, . . . ,

ε̂i,n,(
p−1
p

)

σ̂(u,
p−1
p

)
,
ε̂i,n(1)

σ̂(u,1)

)⊤
.

We present the following Algorithm A.6 which gives out an asymptotic correct simultaneous con-
fidence band with varying width. The validity of the algorithm can be proved in a similar way to
the proof of Theorem 4.2. The details are omitted for the sake of brevity.
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Algorithm A.4:
Result: simultaneous confidence band of the form (2.1) with fixed width

(a) Calculate the the (n− 2⌈nbn⌉+ 1)-dimensional vector ˆ̃Zj(t) in (A.3);

(b) For window size mn, let m′
n = 2⌊mn/2⌋, define vectors Ŝ∗

jmn
(t) =

∑j+mn−1
r=j

ˆ̃Zr(t), and

Ŝjm′
n
(t) = Ŝ∗

j,⌊mn/2⌋(t)− Ŝ∗
j+⌊mn/2⌋,⌊mn/2⌋(t) (A.5)

Let Ŝjm′
n,k(t) be the kth component of Ŝjm′

n
(t) .

(c) for r=1, …, B do

- Generate independent standard normal distributed random variables {R(r)
i }i∈[1,n−m′

n]

and (2⌈nbn⌉ −m′
n)-dimensional random vectors

V
(r)
k = (V

(r)
k,1 , . . . , V

(r)
k,2⌈nbn⌉−m′

n
)⊤ := (R

(r)
k , . . . , R

(r)
k+2⌈nbn⌉−m′

n−1)
⊤ .

- Calculate

T
(r)
k (t) =

2⌈nbn⌉−m′
n∑

j=1

Ŝjm′
n,k(t)V

(r)
k,j , k = 1, . . . , n− 2⌈nbn⌉+ 1,

T (r)(t) = max
1≤k≤n−2⌈nbn⌉+1

|T (r)
k (t)|.

end

(d) Define T⌊(1−α)B⌋(t) as the empirical (1− α)-quantile of the sample T (1)(t), . . . , T (B)(t) and

L̂4(u, t) = m̂(u, t)− r̂4(t) , Û4(u, t) = m̂(u, t) + r̂4(t)

where
r̂4(t) =

√
2T⌊(1−α)B⌋(t)√

nbn
√
m′

n(2⌈nbn⌉ −m′
n)

Output: Cn(t) =
{
f : [0, 1]2 → R | L̂4(u, t) ≤ f(u, t) ≤ Û4(u, t) ∀u ∈ [0, 1]

}
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Algorithm A.5:
Result: simultaneous confidence band of the form (2.1) with varying width

(a) Calculate the estimate of the long-run variance σ̂2 in (4.3)

(b) Calculate the (n− 2⌈nbn⌉+ 1)-dimensional vectors ˆ̃Z σ̂
j (t) in (A.4)

(c) For window size mn, let m′
n = 2⌊mn/2⌋, define the vectors Ŝσ̂,∗

jmn
(t) =

∑j+mn−1
r=j

ˆ̃Z σ̂
r (t) and

Ŝσ̂
jm′

n
(t) = Ŝσ̂,∗

j,⌊mn/2⌋(t)− Ŝσ̂,∗
j+⌊mn/2⌋,⌊mn/2⌋(t)

Let Ŝσ̂
jm′

n,k
(t) be the kth component of Ŝσ̂

jm′
n
(t) .

(d) for r=1, …, B do

- Generate independent standard normal distributed random variables {R(r)
i }i∈[1,n−m′

n]

and define V
(r)
k = (V

(r)
k,1 , . . . , V

(r)
k,2⌈nbn⌉−m′

n+1)
⊤ by (3.14)

- Calculate

T
σ̂,(r)
k (t) =

2⌈nbn⌉−m′
n∑

j=1

Ŝσ̂
jm′

n,k
(t)V

(r)
k,j , k = 1, . . . , n− 2⌈nbn⌉+ 1,

T σ̂,(r)(t) = max
1≤k≤n−2⌈nbn⌉+1

|T σ̂,(r)
k (t)|.

end

(e) Define T σ̂
⌊(1−α)B⌋(t) as the empirical (1−α)-quantile of the sample T σ̂,(1)(t), . . . , T σ̂,(B)(t) and

L̂σ̂
5 (u, t) = m̂(u, t)− r̂5(u, t), Û σ̂

5 (u, t) = m̂(u, t) + r̂5(u, t)

where

r̂5(u, t) =
σ̂(u, t)

√
2T σ̂

⌊(1−α)B⌋(t)√
nbn
√
m′

n(2⌈nbn⌉ −m′
n)

Output:

Cσ̂
n(t) =

{
f : [0, 1]2 → R | L̂σ̂

5 (u, t) ≤ f(u, t) ≤ Û σ̂
5 (u, t) ∀u ∈ [0, 1]

}
.
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Algorithm A.6:

Result: simultaneous confidence band of the form (2.2) with varying width.
(a) For given u ∈ [bn, 1− bn], calculate the the estimate of the long-run variance σ̂2(u, ·) in (4.3)

(b) Calculate the vector Ẑ σ̂u
i (u) in (A.6);

(c) For window size mn, let m′
n = 2⌊mn/2⌋ and define the p-dimensional random vectors

Ŝσ̂u,∗
jmn

(u) =
∑j+mn−1

r=j Ẑ σ̂u
r (u),

Ŝσ̂u

jm′
n
(u) = Ŝσ̂u,∗

j,⌊mn/2⌋(u)− Ŝσ̂u,∗
j+⌊mn/2⌋,⌊mn/2⌋(u)

(d) for r=1, …, B do

- Generate independent standard normal distributed random variables {R(r)
i }⌊nu+nbn⌋

i=⌈nu−nbn⌉
- Calculate the bootstrap statistic

T σ̂u,(r)(u) =
∣∣∣ ⌊nu+nbn⌋∑
j=⌈nu−nbn⌉−m′

n+1

Ŝσ̂u

jm′
n
(u)R

(r)
j

∣∣∣
∞

end

(e) Define T σ̂u

⌊(1−α)B⌋(u) as the empirical (1− α)-quantile of the sample T σ̂u,(1)(u), . . . , T σ̂u,(B)(u)
and

L̂σ̂u
6 (u, t) = m̂(u, t)− r̂σ̂u

6 (u, t) , Û σ̂u
6 (u, t) = m̂(u, t) + r̂σ̂u

6 (u, t),

where

r̂σ̂u
6 (u, t) =

σ̂(u, t)
√
2T σ̂u

⌊(1−α)B⌋(u)√
nbn
√

m′
n(⌊nu+ nbn⌋ − ⌈nu− nbn⌉ −m′

n + 2)

Output: Cσ̂u
n (u) =

{
f : [0, 1]2 → R | L̂σ̂u

6 (u, t) ≤ f(u, t) ≤ Û σ̂u
6 (u, t) ∀u ∈ [bn, 1− bn]

}
.
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B Proofs
In the following proofs, for two real sequence an and bn we write an ≲ bn, if there exists a universal
positive constant M such that an ≤ Mbn. Let 1(·) be the usual indicator function.

B.1 Proof of Theorem 3.1 and 3.2

B.1.1 Gaussian approximations on a finite grid

The proofs of Theorem 3.1 and 3.2 are based on an auxiliary result providing a Gaussian approxi-
mation for the maximum deviation of the quantity

√
nbn|∆(u, tv)| over the grid of {1/n, ..., n/n}×

{t1, ..., tp} where tv =
v
p

(v = 1, . . . , p).

Proposition B.1. Assume that n1+ab9n = o(1), na−1b−1
n = o(1) for some 0 < a < 4/5, and let

Assumptions 2.1, 2.2 and 2.4 be satisfied.

(i) For a fixed u ∈ (0, 1), let Y1(u), . . . , Yn(u) denote a sequence of centred p-dimensional Gaus-
sian vectors such that Yi(u) has the same auto-covariance structure of the vector Zi(u) defined
in (3.1). If p = O(exp(nι)) for some 0 ≤ ι < 1/11, then

Pp,n(u) := sup
x∈R

∣∣∣P( max
1≤v≤p

√
nbn|∆(u, tv)| ≤ x

)
− P

(∣∣∣ 1√
nbn

n∑
i=1

Yi(u)
∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn

(
b4n +

1

nbn

)
, p
))

(ii) Let Ỹ1, . . . , Ỹ2⌈nbn⌉−1 denote independent (n − 2⌈nbn⌉ + 1)p-dimensional centred Gaussian
vectors with the same auto-covariance structure as the vector Z̃i in (3.3). If np = O(exp(nι))

for some 0 ≤ ι < 1/11, then

Pp,n := sup
x∈R

∣∣∣P( max
⌈nbn⌉≤l≤n−⌈nbn⌉,1≤v≤p

√
nbn|∆( l

n
, tv)| ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn

(
b4n +

1

nbn

)
, np
))

Proof of Proposition B.1. Using Assumptions 2.1, 2.4 and a Taylor expansion we obtain

sup
u∈[bn,1−bn],t∈[0,1]

∣∣∣E(m̂(u, t))−m(u, t)− b2n

∫
K(v)v2dv

∂2

∂u2
m(u, t)/2

∣∣∣ ≤ M
( 1

nbn
+ b4n

)
(B.1)
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for some constant M . Notice that for u ∈ [bn, 1− bn],

m̂(u, t)− E(m̂(u, t)) =
1

nbn

n∑
i=1

G( i
n
, t,Fi)K

( i
n
− u

bn

)
(B.2)

=
1

nbn

⌊n(u+bn)⌋∑
i=⌈n(u−bn)⌉

G( i
n
, t,Fi)K

( i
n
− u

bn

)
.

Therefore, observing the definition of Zi(u) in (3.1) we have (notice that Zi(u) is a vector of zero
if | i

n
− u| ≥ bn)

max
1≤v≤p

√
nbn|m̂(u, tv)− E(m̂(u, tv))| =

∣∣∣ 1√
nbn

⌊n(u+bn)⌋∑
i=⌈n(u−bn)⌉

Zi(u)
∣∣∣
∞
.

We will now apply Corollary 2.2 of Zhang and Cheng (2018) and check its assumptions first. By
Assumption 2.2(2) and the fact that the kernel is bounded it follows that

max
1≤l≤p

sup
i

∥Zi,l(u)− Z
(i−j)
i,l (u)∥2 = O(χj),

where for any (measurable function) g = g(Fi), we define for j ≤ i the function g(j) by g(j) =

g(F (j)
i ), where F (j)

i = (. . . , ηj−1, η
′
j, ηj+1, . . . , ηi) and {η′i}i∈Z is an independent copy of {ηi}i∈Z

(recall that Fi = (η−∞, ..., ηi)). Lemma C.3 in Section C shows that condition (9) in the paper of
Zhang and Cheng (2018) is satisfied. Moreover Assumption 2.2(1) implies condition (13) in this
reference. Observing that for random vector v = (v1, ..., vp)

⊤ and all x ∈ R

{|v|∞ ≤ x} =
{
max
1≤i≤p

(v1, ..., vp,−v1, ...,−vp) ≤ x
}

we can use Corollary 2 of Zhang and Cheng (2018) and obtain

sup
x∈R

∣∣∣P(∣∣∣ 1√
nbn

n∑
i=1

Yi(u)
∣∣∣
∞

≤ x
)
− P

( 1√
nbn

∣∣∣ n∑
i=1

Zi(u)
∣∣∣
∞

≤ x
)∣∣∣ = O((nbn)

−(1−11ι)/8). (B.3)

Therefore part (i) of the assertion follows from (B.1), (B.3) and Lemma C.1 in Appendix C.
For part (ii), note that by the definition of the vector Z̃i in (3.3) we have that

max
1≤v≤p

max
⌈nbn⌉≤l≤n−⌈nbn⌉

|Wn(
l
n
, tv)| = max

⌈nbn⌉≤l≤n−⌈nbn⌉

∣∣∣ 1√
nbn

n∑
i=1

Zi(
l

n
)
∣∣∣
∞

=
∣∣∣ 1√

nbn

2⌈nbn⌉−1∑
i=1

Z̃i

∣∣∣
∞

,
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where we use the notation

Wn(u, t) =
√

nbn
(
m̂(u, t)− E(m̂(u, t))

)
=

1√
nbn

n∑
i=1

G( i
n
, t,Fi)K

( i
n
− u

bn

)
(B.4)

for the sake of brevity. Let Z̃i,s denote the sth entry of the vector Z̃i defined in (3.3) (1 ≤ s ≤
(n− 2⌈nbn⌉+ 1)p). By Assumption 2.2(2) it follows that

max
1≤s≤(n−2⌈nbn⌉+1)p

sup
i

∥Z̃i,s − Z̃
(i−j)
i,s ∥2 = O(χj).

By Lemma C.3 in Section C we obtain the inequality

c1 ≤ min
1≤j≤(n−2⌈nbn⌉+1)p

σ̃j,j ≤ max
1≤j≤(n−2⌈nbn⌉+1)p

σ̃j,j ≤ c2

for the quantities

σ̃j,j :=
1

2⌈nbn⌉ − 1

2⌈nbn⌉−1∑
i,l=1

Cov(Z̃i,j, Z̃l,j).

Therefore condition (9) in the paper of Zhang and Cheng (2018) holds, and condition (13) in this
reference follows from Assumption 2.2(1). As a consequence, Corollary 2.2 in Zhang and Cheng
(2018) yields

sup
x∈R

∣∣∣P( max
⌈nbn⌉≤l1≤n−⌈nbn⌉

1≤l2≤p

|Wn(
l1
n
, l2
p
)| ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣ = O((nbn)

−(1−11ι)/8).

(B.5)

Consequently part (ii) follows by the same arguments given in the proof of part (i) via an application
of Lemma C.1 in Section C. ♢

B.1.2 Proof of Theorem 3.1

The proof of the first assertion is similar (but simpler) than the proof of Theorem 3.2. Therefore
details are omitted. The second assertion follows from the bandwidth condition such that

√
nbn(b

4
n+

1
nbn

) = o(n−a/2).

B.1.3 Proof of Theorem 3.2

For p ∈ N define by tv = v
p
, (v = 0, . . . , p) an equidistant partition of the interval [0, 1] and let M

be a sufficiently large generic constant which may vary from line to line. Recalling the notation of
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Wn(u, t) in (B.4) we have by triangle inequality∣∣∣ sup
bn≤u≤1−bn,0≤t≤1

|Wn(u, t)| − max
⌈nbn⌉≤l1≤n−⌈nbn⌉

1≤s≤p

|Wn(
l1
n
, s
p
)|
∣∣∣ ≤ W̃n ,

where

W̃n = max
⌈nbn⌉≤l1≤n−⌈nbn⌉,1≤s≤p,

|u− l1
n
|≤1/n,|t− s

p
|≤1/p,u,t∈[0,1]

|Wn(u, t)−Wn(
l1
n
, s
p
)|.

By Assumption 2.3, Burkholder’s inequality and similar arguments as given in the proof of Propo-
sition 1.1 of Dette and Wu (2020) we obtain

sup
u,t∈[0,1]

∥∥∥ ∂

∂u
Wn(u, t)

∥∥∥
q∗

≤ M

bn
, sup

u,t∈[0,1]

∥∥∥ ∂

∂t
Wn(u, t)

∥∥∥
q∗

≤ M,

sup
u,t∈[0,1]

∥∥∥ ∂2

∂u∂t
Wn(u, t)

∥∥∥
q∗

≤ M

bn
.

(B.6)

Note that we have for τs > 0, s = 1, 2 and x, y ∈ [0, 1),∥∥∥∥∥∥ sup
0≤t1≤τ1
0≤t2≤τ2

|Wn(t1 + x, t2 + y)−Wn(x, y)|

∥∥∥∥∥∥
q∗

≤
∫ τ1

0

∥∥∥∥ ∂

∂u
Wn(x+ u, y)

∥∥∥∥
q∗
du+

∫ τ2

0

∥∥∥∥ ∂

∂t
Wn(x, y + v)

∥∥∥∥
q∗
dv +

∫ τ1

0

∫ τ2

0

∥∥∥∥ ∂2

∂x∂t
Wn(x+ u, y + v)

∥∥∥∥
q∗
dudv.

Therefore, (B.6) and similar arguments as in the proof of Proposition B.2 of Dette et al. (2019)
show

∥W̃n∥q∗ = O((np)1/q
∗
((nbn)

−1 + 1/p)). (B.7)

Observing (B.5) in the proof of Proposition B.1, Lemma C.1 in Section C and (B.7) it therefore
follows that

Pn ≲ (nbn)
−(1−11ι)/8 +Θ

(√
nbn

(
b4n +

1

nbn

)
, np
)
+Θ(δ, np) + P(W̃n > δ)

≲ (nbn)
−(1−11ι)/8 +Θ

(√
nbn

(
b4n +

1

nbn

)
, np
)
+Θ(δ, np)

+
(
(np)1/q

∗
((nbn)

−1 + 1/p)/δ
)q∗

.
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Solving δ =
(
(np)1/q

∗
((nbn)

−1 + 1/p)/δ
)q∗ we get δ =

(
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 and the asser-
tion of the theorem follows.

B.2 Proof of Theorem 3.3
We only show part (ii), part (i) follows by similar arguments. Let Tk denote the statistic generated
by (3.15) in one bootstrap iteration of Algorithm 2 and define for integers a, b the quantities

T ⋄
ap+b =

2⌈nbn⌉−m′
n∑

j=1

Ŝjm′
n,(a−1)p+bVk,j, a = 1, ...n− 2⌈nbn⌉+ 1, 1 ≤ b ≤ p

T ⋄ := ((T ⋄
1 )

⊤, . . . , (T ⋄
(n−2⌈nbn⌉+1)p)

⊤)⊤ =
(
T1

⊤, . . . , Tn−2⌈nbn⌉+1
⊤)⊤

T = |T ⋄|∞ = max
1≤k≤n−2⌈nbn⌉+1

|Tk|∞

It suffices to show that the following inequality holds

sup
x∈R

∣∣∣P(|T ⋄/
√

m′
n(2⌈nbn⌉ −m′

n)|∞ ≤ x|Fn)− P
( 1√

2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣

= Op

(
ϑ1/3
n {1 ∨ log(

np

ϑn

)}2/3 +Θ
((√

mn log np
( 1√

ndn
+ d2n

)
(np)

1
q

)q/(q+1)

, np
))

. (B.8)

If this estimate has been established, assertion (ii) of Theorem 3.3 follows from Theorem 3.2, which
shows that the probabilities P

(
maxbn≤u≤1−bn,0≤t≤1

√
nbn|∆(u, t)| ≤ x

)
can be approximated by the

probabilities P
(

1√
2nbn

|
∑2⌈nbn⌉−1

i=1 Ỹi|∞ ≤ x
)

(uniformly with respect to x ∈ R).

For a proof of (B.8) we assume without loss of generality that mn is even so that m′
n = mn. For

convenience, let
∑b

i=a Zi = 0 if the indices a and b satisfy a > b. Given the data, it follows for the
conditional covariance

mn((2⌈nbn⌉ − 1)−mn + 1)σT ⋄

(k1−1)p+j1,(k2−1)p+j2
:= E(T ⋄

(k1−1)p+j1
T ⋄
(k2−1)p+j2

|Fn) (B.9)

= E
( 2⌈nbn⌉−mn∑

r=1

Ŝrmn,(k1−1)p+j1Vk1,r

2⌈nbn⌉−mn∑
r=1

Ŝrmn,(k2−1)p+j2Vk2,r

∣∣∣Fn

)
=

2⌈nbn⌉−mn−(k2−k1)∑
r=1

Ŝ(r+k2−k1)mn,(k1−1)p+j1Ŝrmn,(k2−1)p+j2 .

where 1 ≤ k1 ≤ k2 ≤ (n−2⌈nbn⌉+1), 1 ≤ j1, j2 ≤ p, and Ŝrmn,j is the jth entry of the vector Ŝrmn .
Here, without generality, we assume k1 ≤ k2. Define T̃ ⋄, S̃∗

j,mn
and S̃jmn in the same way as T ⋄,

Ŝ∗
jmn

and Ŝjmn in (3.15) and (3.13), respectively, where the residuals ˆ̃Zi defined in (3.11) and used
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in step (a) of Algorithm 2 have been replaced by quantities Z̃i defined in (3.3).Then we obtain by
similar arguments

mn((2⌈nbn⌉ − 1)−mn + 1)σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
:= E(T̃ ⋄

(k1−1)p+j1
T̃ ⋄
(k2−1)p+j2

|Fn)

=

⌈2nbn⌉−mn−(k2−k1)∑
r=1

S̃(r+k2−k1)mn,(k1−1)p+j1S̃rmn,(k2−1)p+j2 . (B.10)

Recall the definition of the random variable Ỹj in Proposition B.1 and denote by Z̃j,i, Ỹj,i the ith
component of the vectors Z̃j and Ỹj, respectively (1 ≤ i ≤ (n− 2⌈nbn⌉+ 1)p, 1 ≤ j ≤ 2⌈nbn⌉ − 1).
Then we obtain

σỸ
(k1−1)p+j1,(k2−1)p+j2

:= E
( 1

2⌈nbn⌉ − 1

2⌈nbn⌉−1∑
i1=1

Ỹi1,(k1−1)p+j1

2⌈nbn⌉−1∑
i2=1

Ỹi2,(k2−1)p+j2

)
=

E(
∑2⌈nbn⌉−1

i1=1 Z̃i1,(k1−1)p+j1

∑2⌈nbn⌉−1
i2=1 Z̃i2,(k2−1)p+j2)

2⌈nbn⌉ − 1

=
E(
∑2⌈nbn⌉−1

i1=1 Zi1+(k1−1),⌈nbn⌉+(k1−1),j1

∑2⌈nbn⌉−1
i2=1 Zi2+(k2−1),⌈nbn⌉+(k2−1),j2)

2⌈nbn⌉ − 1
, (B.11)

where Zi1+(k1−1),⌈nbn⌉,j1 is the j1th entry of the p−dimensional random vector Zi1+(k1−1),⌈nbn⌉,j1 and
Zi2+(k2−1),⌈nbn⌉,j2 is defined similarly. We will show at the end of this section that∥∥∥ max

k1,k2,j1,j2
|σỸ

(k1−1)p+j1,(k2−1)p+j2
− σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2

∥∥∥
q/2

= O(ϑn). (B.12)

If (B.12) holds, it follows from Lemma C.3 in the appendix that there exists a constant η0 > 0

such that

P
(

min
1≤k≤(n−2⌈nbn⌉+1),

1≤j≤p

σT̃ ⋄

(k−1)p+j,(k−1)p+j ≥ η0

)
≥ 1−O(ϑq/2

n ).

Then, by Theorem 2 of Chernozhukov et al. (2015), we have

sup
x∈R

∣∣∣P( |T̃ ⋄|∞√
m′

n(2⌈nbn⌉ −mn)
≤ x

∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣

= Op(ϑ
1/3
n {1 ∨ log(

np

ϑn

)}2/3). (B.13)

Since conditional on Fn,
(
T̃ ⋄ − T ⋄) is a (n − 2⌈nbn⌉ + 1)p dimensional Gaussian random vector

we obtain by the (conditional) Jensen inequality and conditional inequality for the concentration
of the maximum of a Gaussian process (see Chapter 5 in Appendix A of Chatterjee, 2014, where
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a similar result has been derived in Lemma A.1) that

E(|T̃ ⋄ − T ⋄|q∞|Fn) ≤ M |
√
log np

(n−2⌈nbn⌉+1)p
max
r=1

( 2⌈nbn⌉−m′
n∑

j=1

(Ŝjm′
n,r − Sjm′

n,r)
2
)1/2

|q (B.14)

for some large constant M almost surely. Observing that

max
1≤i≤n

|Zi|l ≤
∑

1≤i≤n

|Zi|l for any l > 0, n ∈ N (B.15)

and using a similar argument as given in the proof of Proposition 1.1 in Dette and Wu (2020) yields

1√
mn(2⌈nbn⌉ −mn)

∥∥∥ (n−2⌈nbn⌉+1)p
max
r=1

( ⌈2nbn⌉−m′
n∑

j=1

(Ŝjm′
n,r − Sjm′

n,r)
2
)1/2∥∥∥

q
= O

(√
mn

( 1√
ndn

+ d2n

)
(np)

1
q

)
,

(recall that dn is the bandwidth of the local linear estimator (3.7)) and combining this result with
the (conditional version) of Lemma C.1 in Appendix C and (B.14) yields

sup
x∈R

∣∣∣P( |T ⋄|∞√
mn(2⌈nbn⌉ −mn)

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

> x
)∣∣∣

≤ sup
x∈R

∣∣∣P( |T̃ ⋄|∞√
mn(2⌈nbn⌉ −mn)

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

> x
)∣∣∣

+P
( |T̃ ⋄ − T ⋄|∞√

mn(2⌈nbn⌉ −mn)
> δ
∣∣∣Fn

)
+O

(
Θ(δ, np)

)
≤ sup

x∈R
|P
( |T̃ ⋄|∞√

mn(2⌈nbn⌉ −mn)
> x

∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

> x
)∣∣∣

+Op

(
δ−q
(√

mn log np
( 1√

ndn
+ d2n

)
(np)

1
q
)q)

+O
(
Θ(δ, np)

)
, (B.16)

where we have used the Markov’s inequality. Taking δ =
(√

mn log np(
1√
ndn

+ d2n)(np)
1
q
)q/(q+1) in

(B.16), and combining this estimate with (B.13) yields (B.8) completes the proof.

Proof of (B.12). To simplify the notation, write

Gj,i,k = G( i+k−1
n

, j/p,Fi+k−1), Gj,i,k,u = G( i+k−1+u
n

, j/p,Fu)
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Without loss of generality, we consider the case k1 ≤ k2. We calculate σỸ
(k1−1)p+j1,(k2−1)p+j2

observing
the representation

Zi1+(k1−1),⌈nbn⌉+(k1−1),j1 = Gj1,i1,k1K
(

i1−⌈nbn⌉
nbn

)
.

By Lemma C.2 it follows that

E
[
Zi1+(k1−1),⌈nbn⌉+(k1−1),j1Zi2+(k2−1),⌈nbn⌉+(k2−1),j2

]
= O(χ|i1−i2+k1−k2|). (B.17)

uniformly for 1 ≤ i1, i2 ≤ 2⌈nbn⌉ − 1, 1 ≤ j1, j2 ≤ p, 1 ≤ k1, k2 ≤ n − 2⌈nbn⌉ + 1. We first show
that (B.12) holds whenever k2 − k1 > 2⌈nbn⌉ − mn. On the one hand, observing and (B.9) and
(B.10) that if 2⌈nbn⌉ −mn − (k2 − k1) < 0 then

σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
= 0 a.s. (B.18)

Moreover, by (B.11) and (B.17), straightforward calculations show that

σỸ
(k1−1)p+j1,(k2−1)p+j2

=
1

2⌈nbn⌉ − 1
O
( 2⌈nbn⌉−1∑

i1=1

2⌈nbn⌉−1∑
i2=1

χ|i1−i2+k1−k2|
)
= O

(mn

nbn

)
. (B.19)

Combining (B.18), (B.19) and by applying similar argument to k1 ≥ k2, we obtain∥∥∥ max
k1,k2,j1,j2

|k2−k1|>2⌈nbn⌉−mn

|σỸ
(k1−1)p+j1,(k2−1)p+j2

− σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2

∥∥∥
q/2

= O
(mn

nbn

)
. (B.20)

Now consider the case that k2−k1 ≤ 2⌈nbn⌉−mn. Without generality we consider k1 ≤ k2. Again
by (B.11)

E
( k2−k1∑

i1=1

Zi1+(k1−1),⌈nbn⌉+(k1−1),j1

2⌈nbn⌉−1∑
i2=1

Zi2+(k2−1),⌈nbn⌉+(k2−1),j2

)

= O
( k2−k1∑

i1=1

2⌈nbn⌉−1∑
i2=1

χ|i2−i1+k2−k1|
)
= O

( k2−k1∑
i1=1

2⌈nbn⌉−1∑
i2=1

χi2−i1+k2−k1
)
= O(1),

E
( 2⌈nbn⌉−1∑

i1=1

Zi1+(k1−1),⌈nbn⌉+(k1−1),j1

2⌈nbn⌉−1∑
i2=2⌈nbn⌉−(k2−k1)

Zi2+(k2−1),⌈nbn⌉+(k2−1),j2

)

= O
( 2⌈nbn⌉−1∑

i1=1

2⌈nbn⌉−1∑
i2=2⌈nbn⌉−(k2−k1)

χ|i2−i1+k2−k1|
)
= O

( 2⌈nbn⌉−1∑
i1=1

2⌈nbn⌉−1∑
i2=2⌈nbn⌉−(k2−k1)

χi2−i1+k2−k1
)
= O(1).

Let a = ⌊M log n⌋ for a sufficiently large constant M . Using (B.11), it follows (considering the lags
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up to a) that

σỸ
(k1−1)p+j1,(k2−1)p+j2

= 1
2⌈nbn⌉−1

E
( 2⌈nbn⌉−1∑

i1=k2−k1+1

Zi1+(k1−1),⌈nbn⌉+(k1−1),j1

2⌈nbn⌉−(k2−k1)−1∑
i2=1

Zi2+(k2−1),⌈nbn⌉+(k2−1),j2

)
+O((nbn)

−1)

= 1
2⌈nbn⌉−1

E
( 2⌈nbn⌉−(k2−k1)−1∑

i1,i2=1

Gj1,i1,k2K( i1+k2−k1−⌈nbn⌉
nbn

)Gj2,i2,k2K( i2−⌈nbn⌉
nbn

)
)
+O((nbn)

−1)

= A+B +O(nbnχ
a + (nbn)

−1), (B.21)

where the terms A and B are defined by

A := 1
(2⌈nbn⌉−1)

2⌈nbn⌉−(k2−k1)−1∑
i=1

Ai, (B.22)

Ai = E(Gj1,i,k2,0Gj2,i,k2,0)K( i+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

)

B = 1
(2⌈nbn⌉−1)

a∑
u=1

(B1,u +B2,u),

B1,u =

2⌈nbn⌉−(k2−k1)−1−u∑
i=1

B1,u,i, (B.23)

B2,u =:

2⌈nbn⌉−(k2−k1)−1−u∑
i=1

B2,u,i. (B.24)

and

B1,u,i = E(Gj1,i,k2,uGj1,i,k2,0)K( i+u+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

))

B2,u,i = E(Gj1,i,k2,0Gj2,i,k2,u)K( i+k2−k1−⌈nbn⌉
nbn

)K( i+u−⌈nbn⌉
nbn

)

Therefore, by (B.21), we have that

σỸ
(k1−1)p+j1,(k2−1)p+j2

=
1

2⌈nbn⌉ − 1

( 2⌈nbn⌉−1−(k2−k1)∑
i=1

Ai +
a∑

u=1

2⌈nbn⌉−1−(k2−k1)−u∑
i=1

(B1,u,i +B2,u,i)
)

+O(nbnχ
a + (nbn)

−1).

(B.25)
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Now for the term in (B.10) we have

S̃(r+k2−k1)mn,(k1−1)p+j1S̃rmn,(k2−1)p+j2 =
( r+k2−k1+mn/2−1∑

i=r+k2−k1

−
r+k2−k1+mn∑

i=r+k2−k1+mn/2

)
Zi+k1−1,⌈nbn⌉+k1−1,j1

×
( r+mn/2−1∑

i=r

−
r+mn∑

i=r+mn/2

)
Zi+k2−1,⌈nbn⌉+k2−1,j2

=
( r+mn/2−1∑

i=r

−
r+mn∑

i=r+mn/2

)
Gj1,i,k2K( i+k2−k1−⌈nbn⌉

nbn
)

×
( r+mn/2−1∑

i=r

−
r+mn∑

i=r+mn/2

)
Gj2,i,k2K( i−⌈nbn⌉

nbn
).

By Lemma C.2, it follows that uniformly for |k2 − k1| ≤ 2⌈nbn⌉ −mn and 1 ≤ r ≤ ⌈2nbn⌉ −mn −
(k2 − k1),

ES̃(r+k2−k1)mn,(k1−1)p+j1S̃rmn,(k2−1)p+j2

=
r+mn∑
i=r

E(Gj1,i,k2Gj2,i,k2)K( i+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

)

+
a∑

u=1

( r+mn−u∑
i=r

(
E(Gj1,i,(k2+u)Gj2,i,k2)K( i+u+k2−k1−⌈nbn⌉

nbn
)K( i−⌈nbn⌉

nbn
)

+ E(Gj2,i,(k2+u)Gj1,i,k2)K( i+k2−k1−⌈nbn⌉
nbn

)K( i+u−⌈nbn⌉
nbn

)
))

+O(mnχ
a + a2), (B.26)

where the the term mnχ
a corresponds to the error of omitting terms in the sum with a large

index a, and the term a2 summarizes the error due to ignoring different signs in the product
S̃(r+k2−k1)mn,(k1−1)p+j1S̃rmn,(k2−1)p+j2 (for each index u, we omit 2u). Furthermore, by Assumption
2.4 and 2.2(3) it follows that uniformaly for |u| ≤ a

1

mn

r+mn∑
i=r

E(Gj1,i,k2Gj2,i,k2)K( i+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

) = Ar +O(
mn

nbn
), (B.27)

1

mn

r+mn−u∑
i=r

E(Gj1,i,(k2+u)Gj2,i,k2)K( i+u+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

) = B1,u,r +O(
mn

nbn
+

a

mn

), (B.28)

1

mn

r+mn−u∑
i=r

E(Gj2,i,(k2+u)Gj1,i,k2)K( i+k2−k1−⌈nbn⌉
nbn

)K( i+u−⌈nbn⌉
nbn

) = B2,u,r +O(
mn

nbn
+

a

mn

)
)
, (B.29)

where terms Ar, B1,u,r and B2,u,r are defined in equations (B.22), (B.23) and (B.24), respectively.
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Notice that (B.10) and expressions (B.26), (B.27), (B.28) and (B.29) yield that

EσT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
=

1

2⌈nbn⌉ −mn

{ 2⌈nbn⌉−mn−(k2−k1)∑
r=1

(Ar +O(
mn

nbn
))

+
a∑

u=1

2⌈nbn⌉−mn−(k2−k1)∑
r=1

(B1,u,r +B2,u,r +O(
mn

nbn
+

a

mn

))
}
+O

(
χa +

a2

mn

)
. (B.30)

Lemma C.2 implies
max

1≤r≤2⌈nbn⌉−(k2−k1)−1,
1≤k1≤k2≤(n−2⌈nbn⌉+1),s=1,2

Bs,u,r = O(χu),

which yields in combination with equations (B.25), (B.30) and a similar argument applied to the
case that k1 ≥ k2,

max
1≤k1,k2≤(n−2⌈nbn⌉+1)

|k2−k1|≤2⌈nbn⌉−mn,1≤j1,j2≤p

∣∣∣EσT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
− σỸ

(k1−1)p+j1,(k2−1)p+j2

∣∣∣ = O
( log2 n

mn

+
mn

nbn

)
.

(B.31)

Furthermore, using (B.15), the Cauchy-Schwartz inequality, a similar argument as given in the
proof of Lemma 1 of Zhou (2013) and Assumption 2.2(2) yield that

∥∥∥ max
1≤k1≤k2≤(n−2⌈nbn⌉+1),

1≤j1,j2≤p

|EσT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
− σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
|
∥∥∥
q/2

= O
(√mn

nbn
(np)4/q

)
.

(B.32)

Combining (B.31) and (B.32), we obtain

∥∥∥ max
k1,k2,j1,j2

|k2−k1|≤2⌈nbn⌉−mn

|σỸ
(k1−1)p+j1,(k2−1)p+j2

− σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2

∥∥∥
q/2

= O
( log2 n

mn

+
mn

nbn
+

√
mn

nbn
(np)4/q

)
.

(B.33)

Therefore the estimate (B.12) follows combining (B.20) and (B.33).

48



B.3 Proof of the results in Section 4

B.3.1 Proof of Theorem 4.1

Similarly to (B.1) and (B.2) in the proof of Theorem B.1 we obtain

sup
u∈[bn,1−bn]

t∈[0,1]

1

σ(u, t)

∣∣∣E(m̂(u, t))−m(u, t)
∣∣∣ ≤ M

( 1

nbn
+ b4n

)
(B.34)

for some constant M , where we have used the fact that, by Assumption 2.4,
∫
K(v)v2dv = 0.

Moreover, by a similar but simpler argument as given in the proof of equation (B.7) in Lemma B.3
of Dette et al. (2019) we have for the quantity

m̂(u, t)− E(m̂(u, t))

σ(u, t)
= Ψσ(u, t) :=

1

nbn

n∑
i=1

G( i
n
, t,Fi)

σ(u, t)
K
( i

n
− u

bn

)
the estimate ∥∥∥ sup

u∈[bn,1−bn],t∈(0,1)

√
nbn|Φσ(u, t)−Ψσ(u, t)|

∥∥∥
q
= O(b1−2/q

n ), (B.35)

where

Φσ(u, t) =
1

nbn

n∑
i=1

G( i
n
, t,Fi)

σ( i
n
, t)

K(
i
n
− u

bn
).

Following the proof of Theorem 3.2 we find that

sup
x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn
∣∣Φσ(u, t)

∣∣ ≤ x
)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
((

(np)1/q
∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np
))

.
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Combining this result with Lemma C.1 (with X = maxbn≤u≤1−bn,0≤t≤1

√
nbn
∣∣Φσ(u, t)

∣∣, Y = 1√
nbn

∑2⌈nbn⌉−1
i=1 Ỹ σ

i ,
X ′ = maxbn≤u≤1−bn,0≤t≤1

√
nbn
∣∣Ψσ(u, t)

∣∣ with a sufficiently large constant M) and (B.35) gives

sup
x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn
∣∣Ψσ(u, t)

∣∣ ≤ x
)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ(
(
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np)

+P
(

sup
u∈[bn,1−bn],t∈(0,1)

√
nbn|Φσ(u, t)−Ψσ(u, t)| > δ

)
+Θ(δ, np)

)
= O

(
(nbn)

−(1−11ι)/8 +Θ(
(
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np) + Θ(δ, np) +
bq−2
n

δq

)
. (B.36)

Taking δ = b
q−2
q+1
n we obtain for the last two terms in in (B.36)

Θ(δ, np) +
bq−2
n

δq
= O

(
Θ(b

q−2
q+1
n , np)

)
.

On the other hand, (B.34), (B.36) and Lemma C.1 (with X = maxbn≤u≤1−bn,0≤t≤1

√
nbn
∣∣Ψσ(u, t)

∣∣,
Y = 1√

nbn

∑2⌈nbn⌉−1
i=1 Ỹ σ

i , X ′ = maxbn≤u≤1−bn,0≤t≤1

√
nbn
∣∣∆σ(u, t)

∣∣ and δ = M
√
nbn(

1
nbn

+ b4n) with a
sufficiently large constant M) yield

sup
x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn
∣∣∆σ(u, t)

∣∣ ≤ x
)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x)
∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
((
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np
))

+Θ
(√

nbn(b
4
n +

1

nbn
), np

)
+Θ(b

q−2
q+1
n , np)

)
.

B.3.2 Proof of Proposition 4.1

Define S̃k,r(t) =
∑r

i=k G(i, t,Fi), and define for u ∈ [w/n, 1− w/n]

∆̃j(t) =
S̃j−w+1,j(t)− S̃j+1,j+w(t)

w
, σ̃2(u, t) =

n∑
j=1

w∆̃2
j(t)

2
ω̄(u, j)

as the analogs of ∆j(t) defined in the main article and the quantities in (4.3), respectively. We
also use the convention σ̃2(u, t) = σ̃2(w/n, t) and σ̃2(u, t) = σ̃2(1 − w/n, t) if u ∈ [0, w/n) and
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u ∈ (1− w/n, 1], respectively. Assumption 2.1 and the mean value theorem yield

max
w≤j≤n−w

sup
0<t<1

|∆̃j(t)−∆j(t)| = max
w≤j≤n−w

sup
0<t<1

∣∣∣ j∑
r=j−w+1

m(r/n, t)−
j+w∑

r=j+1

m(r/n, t)
∣∣∣ = O(w/n).

(B.37)

On the other hand, Assumption 2.2 and Assumption 2.3 and similar arguments as given in the
proof of Lemma 3 of Zhou and Wu (2010) give

max
j

∥∆̃j(t)∥q′ = O(
√
w), max

j

∥∥∥ ∂

∂t
∆̃j(t)

∥∥∥
q′
= O(

√
w). (B.38)

Moreover, Proposition B.1. of Dette et al. (2019) yields

max
j

∥∥∥ sup
t

|∆̃j(t)|
∥∥∥
q′
= O(

√
w). (B.39)

Now we introduce the notation Cj(t) = ∆̃j(t)−∆j(t) (note that this quantity is not random) and
obtain by (B.37) the representation

σ̃2(u, t)− σ̂2(u, t) =
n∑

j=1

w(2∆̃j(t)− Cj(t))Cj(t)

2
w̄(u, j)

=
n∑

j=1

w∆̃j(t)Cj(t)ω̄(u, j) +O(w3/n2) (B.40)

uniformly with respect to u, t ∈ (0, 1)2. Furthermore, by (B.37) we have

sup
t∈(0,1)

∣∣∣ n∑
j=1

w∆̃j(t)Cj(t)ω̄(u, j)
∣∣∣ ≤ W ⋄(u) := M(w/n)

n∑
j=1

w sup
t∈(0,1)

|∆j(t)|ω̄(u, j) , (B.41)

where M is a sufficiently large constant. Notice that W ⋄(u) is differentiable with respect to the
variable u. Therefore it follows from the triangle inequality, (B.39) and Proposition B.1 of Dette
et al. (2019), that

∥∥∥ sup
u∈[γn,1−γn]

|W ⋄(u)|
∥∥∥
q′
= O

(w5/2

n
τ−1/q′

n

)
. (B.42)
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Combining (B.40) and (B.42), we obtain

∥∥∥ sup
u∈[γn,1−γn]

t∈(0,1)

|σ̃2(u, t)− σ̂2(u, t)|
∥∥∥
q′
= O

(w5/2

n
τ−1/q′

n + w3/n2
)
. (B.43)

By Burkholder inequality (see for example Wu, 2005) in Lq′/2 norm, (B.38) and similar arguments
as given in the proof of Lemma 3 in Zhou and Wu (2010) we have

sup
u∈[γn,1−γn]

t∈(0,1)

∥∥σ̃2(u, t)− E(σ̃2(u, t))
∥∥
q′/2

= O
(
w1/2n−1/2τ−1/2

n

)
,

sup
u∈[γn,1−γn]

t∈(0,1)

∥∥∥ ∂

∂t
(σ̃2(u, t)− E(σ̃2(u, t)))

∥∥∥
q′/2

= O
(
w1/2n−1/2τ−1/2

n

)
,

sup
u∈[γn,1−γn]

t∈(0,1)

∥∥∥( ∂

∂u
+

∂2

∂u∂t

(
σ̃2(u, t)− E(σ̃2(u, t))

)∥∥∥
q′/2

= O
(
w1/2n−1/2τ−1/2−1

n

)
. (B.44)

It can be shown by similar but simpler argument as given in the proof of Proposition B.2 of Dette
et al. (2019) that these estimates imply

sup
u∈[γn,1−γn]

t∈(0,1)

∥∥σ̃2(u, t)− E(σ̃2(u, t))
∥∥
q′/2

= O
(
w1/2n−1/2τ−1/2−4/q′

n

)
. (B.45)

Moreover, it follows from the proof of Theorem 4.4 of Dette and Wu (2019) that

sup
u∈[γn,1−γn]

t∈(0,1)

∣∣∣Eσ̃2(u, t)− σ2(u, t)
∣∣∣ = O

(√
w/n+ w−1 + τ 2n

)
,

sup
u∈[0,γn)∪(1−γn,1]

t∈(0,1)

∣∣∣Eσ̃2(u, t)− σ2(u, t)
∣∣∣ = O

(√
w/n+ w−1 + τn

)
(B.46)

and the assertion is a consequence of (B.43), (B.45) and (B.46).

B.3.3 Proof of Theorem 4.2

Recall that gn = w5/2

n
τ
−1/q′
n + w1/2n−1/2τ

−1/2−4/q′
n + w−1 + τn and let ηn be a sequence of positive

numbers such that ηn → ∞ and gnηn → 0 (note that gn is the convergence rate of the estimator
σ̂2 in Proposition 4.1). Let T σ̂

k denote the statistic T
σ̂,(r)
k in step (d) of Algorithm 3 generated by
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one bootstrap iteration and define for integers a, b the quantities

T σ̂,⋄
ap+b =

2⌈nbn⌉−m′
n∑

j=1

Ŝσ̂
jm′

n,(a−1)p+bVk,j, a = 1, ...n− 2⌈nbn⌉+ 1, 1 ≤ b ≤ p

T σ̂,⋄ := ((T σ̂,⋄
1 )⊤, . . . , (T σ̂,⋄

(n−2⌈nbn⌉+1)p)
⊤)⊤ =

(
T σ̂
1

⊤
, . . . , T σ̂

n−2⌈nbn⌉+1

⊤)⊤
and therefore

T σ̂ = |T σ̂,⋄|∞ = max
1≤k≤n−2⌈nbn⌉+1

|T σ̂
k |∞

We recall the notation (4.2), introduce the (n− 2⌈nbn⌉+ 1)p-dimensional random vectors Ŝσ,∗
jmn

=∑j+mn−1
r=j Z̃σ

r , and

Ŝσ
jm′

n
= Ŝσ,∗

j,⌊mn/2⌋ − Ŝσ,∗
j+⌊mn/2⌋+1,⌊mn/2⌋ ,

and consider

T σ
k =

2⌈nbn⌉−m′
n∑

j=1

Ŝσ
jm′

n,[(k−1)p+1:kp]Vk,j , k = 1, . . . , n− 2⌈nbn⌉+ 1,

T σ,⋄ := ((T σ,⋄
1 )⊤, . . . , (T σ,⋄

(n−2⌈nbn⌉+1)p)
⊤)⊤ =

(
T σ
1
⊤, . . . , T σ

n−2⌈nbn⌉+1
⊤)⊤ ,

where T σ,⋄ is obtained from T σ̂,⋄ by replacing σ̂ by σ. Similar arguments as given in the proof of
Theorem 3.3 show, that it is sufficient to show the estimate

sup
x∈R

∣∣∣P(|T σ̂,⋄/
√

m′
n(2⌈nbn⌉ −m′

n)|∞ ≤ x|Fn)− P
( 1√

2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= Op

(
ϑ1/3
n {1 ∨ log(

np

ϑn

)}2/3 +Θ
(√

mn log np(
1√
ndn

+ d2n)(np)
1
q
)q/(q+1)

, np
)

+Θ
((√

mn log np(gnηn)(np)
1
q
)q/(q+1)

, np
)
+ η−q′

n

)
, (B.47)

where ϑn and dn are defined in Theorem 3.3. The assertion of Theorem 4.2 then follows from
Theorem 4.1.
Now we prove (B.47). By the first step in the proof of Theorem 3.3 it follows that

sup
x∈R

∣∣∣P(|T σ,⋄/
√

m′
n(2⌈nbn⌉ −m′

n)|∞ ≤ x|Fn)− P
( 1√

2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= Op

(
ϑ1/3
n {1 ∨ log(

np

ϑn

)}2/3 +Θ
((√

mn log np(
1√
ndn

+ d2n)(np)
1
q
)q/(q+1)

, np
))

. (B.48)
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Define the Fn measurable event

An =
{

sup
u∈[0,1],t∈(0,1)

|σ̂2(u, t)− σ2(u, t)| > gnηn

}
,

then Proposition 4.1 and Markov’s inequality yield

P(An) = O
(
η−q′

n

)
. (B.49)

By similar arguments as given in the proof of Theorem 3.3 we have

E
(
|T σ,⋄ − T σ̂,⋄|q∞1(An)

∣∣Fn

)
≤ M

∣∣∣√log np
(n−2⌈nbn⌉+1)p

max
r=1

( ⌈2nbn⌉−m′
n∑

j=1

(Ŝσ
jm′

n,r
− Ŝσ̂

jm′
n,r

)21(An)
)1/2∣∣∣q

(B.50)

for some large constant M almost surely, and the triangle inequality, a similar argument as given
in the proof of Proposition 1.1 in Dette and Wu (2020) and (B.15) yield

1√
mn(2⌈nbn⌉ −mn)

∥∥∥ (n−2⌈nbn⌉+1)p
max
r=1

( ⌈2nbn⌉−m′
n∑

j=1

(Ŝσ
jm′

n,r
− Ŝσ̂

jm′
n,r

)21(A)
)1/2∥∥∥

q
= O

(√
mngnηn(np)

1
q
)
.

This together with the (conditional version) of Lemma C.1 and (B.50) shows that

sup
x∈R

∣∣∣P( |T σ̂,⋄|∞√
mn(2⌈nbn⌉ −mn)

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

> x
)∣∣∣

≤ sup
x∈R

∣∣∣P( |T σ,⋄|∞√
mn(2⌈nbn⌉ −mn)

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

> x)
∣∣∣

+P
( |T ⋄,σ − T ⋄,σ̂|∞√

mn(2⌈nbn⌉ −mn)
> δ
∣∣∣Fn

)
+O

(
Θ(δ, np)

)
≤ sup

x∈R

∣∣∣P( |T σ,⋄|∞√
mn(2⌈nbn⌉ −mn)

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

> x
)∣∣∣

+Op

(
δ−q
(√

mn log np(gnηn)(np)
1
q
)q)

+O
(
Θ(δ, np) + η−q′

n

)
,

where we used Markov’s inequality and (B.49). Taking

δ =
(√

mn log np(gnηn)(np)
1
q
)q/(q+1)

and observing (B.48) yields (B.47) and proves the assertion.
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C Some auxiliary results
This section contains several technical lemmas, which will be used in the proofs of the main results
in Section B.

Lemma C.1. For any random vectors X,X ′, Y , and δ ∈ R, we have that

sup
x∈R

|P(|X ′| > x)− P(|Y | > x)| ≤ sup
x∈R

|P(|X| > x)− P(|Y | > x)|+ P(|X −X ′| > δ)

+2 sup
x∈R

P(|Y − x| ≤ δ). (C.1)

Furthermore, if Y = (Y1, ..., Yp)
⊤ is a p-dimensional Gaussian vector and there exist positive

constants c1 ≤ c2 such that for all 1 ≤ j ≤ p, c1 ≤ E(Y 2
j ) ≤ c2, then

sup
x∈R

|P(|X ′| > x)− P(|Y |∞ > x)| ≤ sup
x∈R

|P(|X| > x)− P(|Y |∞ > x)|+ P(|X −X ′| > δ)

+CΘ(δ, p), (C.2)

where C is a constant only dependent on c1 and c2.

Proof of Lemma C.1. By triangle inequality, we shall see that

P(|X ′| > x)− P(|Y | > x) ≤ P(|X ′ −X| > δ) + P(|X| > x− δ)− P(|Y | > x), (C.3)

P(|X ′| > x)− P(|Y | > x) ≥ −P(|X ′ −X| > δ) + P(|X| > x+ δ)− P(|Y | > x). (C.4)

Notice that right-hand side of (C.3) is

P(|X ′ −X| > δ) + P(|X| > x− δ)− P(|Y | > x− δ) + P(|Y | > x− δ)− P(|Y | > x).

The absolute value of the above expression is then uniformly bounded by

P(|X ′ −X| > δ) + sup
x∈R

|P(|X| > x)− P(|Y | > x)|+ 2 sup
x∈R

P(|Y − x| ≤ δ). (C.5)

Similarly, the absolute value of right-hand side of (C.4) is also uniformly bounded by (C.5), which
proves (C.1). Finally, (C.2) follows from (C.1) and an application of Corollary 1 in Chernozhukov
et al. (2015). Note that in this result the constant C is determined by max1≤j≤p E(Y 2

j ) ≤ c2 and
min1≤j≤p E(Y 2

j ) ≥ c1. ♢

The following result is a consequence of of Lemma 5 of Zhou and Wu (2010).
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Lemma C.2. Under the assumption 2.2(2) , we have that

sup
u1,u2,t1,t2∈[0,1]

|E(G(u1, t,Fi)G(u2, t2,Fj))| = O(χ|i−j|).

Lemma C.3. Define

σj,j(u) =
1

nbn

n∑
i,l=1

Cov(Zi,j(u), Zl,j(u))

where Zi,j are the components of the vector Zi(u) defined in (3.1). If bn = o(1), logn
nbn

= o(1) and
Assumption 2.4 and Assumption 2.2 are satisfied, there exist positive constants c1 and c2 such that
for sufficiently large n

0 < c1 ≤ min
1≤j≤p

σj,j(u) ≤ max
1≤j≤p

σj,j(u) ≤ c2 < ∞.

for all u ∈ [bn, 1− bn]. Moreover, we have for

σ̃j,j :=
1

2⌈nbn⌉ − 1

2⌈nbn⌉−1∑
i,l=1

Cov(Z̃i,j, Z̃l,j), (C.6)

the estimates

c1 ≤ min
1≤j≤(n−2⌈nbn⌉+1)p

σ̃j,j ≤ max
1≤j≤(n−2⌈nbn⌉+1)p

σ̃j,j ≤ c2.

Proof of Lemma C.3. By definition,

σj,j(u) =
1

nbn

n∑
i,l=1

E
(
G( i

n
, tj,Fi)K

( i
n
− u

bn

)
G( l

n
, tj,Fl)K

( l
n
− u

bn

))
.

Observing Assumption 2.2 and Lemma C.2, we have

E(G( i
n
, tj,Fi)G(

l

n
, tj,Fl)−G(u, tj,Fi)G(u, tj,Fl)) = O

(
min(χ|l−i|, bn)

)
uniformly with respect to u ∈ [bn, 1− bn], | in − u| ≤ bn and | l

n
− u| ≤ bn. Consequently, observing

Assumption 2.4 it follows that

σj,j(u) =
1

nbn

n∑
i,l=1

E
(
G(u, tj,Fi)K

( i
n
− u

bn

)
G(u, tj,Fl)K

( l
n
− u

bn

))
+O(−bn log bn) (C.7)
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On the other hand, if rn is a sequence such that rn = o(1) and nbnrn → ∞, A(u, rn) := {l : |
l
n
−u

bn
| ≤

1− rn, u ∈ [bn, 1− bn]} we obtain by (C.7) and Lemma C.2 that

σj,j(u) =
1

nbn

n∑
l=1

n∑
i=1

1(|i− l| ≤ nbnrn)E
(
G(u, tj,Fi)K

( i
n
− u

bn

)
G(u, tj,Fl)K

( l
n
− u

bn

))
+O(−bn log bn + χnbnrn)

=
1

nbn

n∑
l=1

K2
( l

n
− u

bn

) ∑
1≤i≤n,

|i−l|≤nbnrn

E
(
G(u, tj,Fi)G(u, tj,Fl)1

(∣∣∣ i
n
− u

bn

∣∣∣ ≤ 1
))

+O(−bn log bn + χnbnrn + rn)

=
1

nbn

∑
1≤l≤n,

l∈A(u,rn)

K2
( l

n
− u

bn

) ∑
1≤i≤n,

|i−l|≤nbnrn

E
(
G(u, tj,Fi)G(u, tj,Fl)1

(∣∣∣ i
n
− u

bn

∣∣∣ ≤ 1
))

+O(−bn log bn + χnbnrn + rn) (C.8)

uniformly for j ∈ {1, . . . , p}. We obtain by the definition of the long-run variance σ2(u, t) in
Assumption 2.2(4) and Lemma C.2 that

∣∣∣ n∑
i=1

E
(
G(u, tj,Fi)G(u, tj,Fl)1

(∣∣∣ i
n
− u

bn

∣∣∣ ≤ 1, |i− l| ≤ nbnrn

))
− σ2(u, tj)

∣∣∣ = O(χnbnrn) (C.9)

uniformly with respect to l ∈ A(u, rn) := {l : |
l
n
−u

bn
| ≤ 1 − rn, u ∈ [bn, 1 − bn]} and j ∈ {1, . . . , p}.

Combining (C.8) and (C.9) and using Lemma C.2 yields

σj,j(u) =
1

nbn

n∑
l=1

K2
( l

n
− u

bn

)
σ2(u, tj) +O(−bn log bn + χnbnrn + rn)

= σ2(u, tj)

∫ 1

−1

K2(t)dt+O
(
− bn log bn + χnbnrn + rn +

1

nbn

)
. (C.10)

Let rn = a logn
nbn

for some sufficiently large positive constant a, then the assertion of the lemma
follows in view of Assumption 2.2(4)).
For the second assertion, consider the case that j = k1p+ k2 for some 0 ≤ k1 ≤ n− 2⌈nbn⌉− 1 and
1 ≤ k2 ≤ p. Therefore by definition (3.3) in the main article,

Z̃i,k1p+k2 = G( i+k1
n

, k2
p
,Fi+k1)K( i−⌈nbn⌉

nbn
),
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which gives for the quantity in (C.6)

σ̃k1p+k2,k1p+k2 =
1

2⌈nbn⌉ − 1

2⌈nbn⌉−1∑
i,l=1

E
(
G( i+k1

n
, k2

p
,Fi+k1)K( i−⌈nbn⌉

nbn
)G( l+k1

n
, k2

p
,Fl+k1)K( l−⌈nbn⌉

nbn
)
)

Consequently, putting i+ k1 = s1 and i+ k2 = s2 and using a change of variable, we obtain that

σ̃k1p+k2,k1p+k2 = σk2,k2

(
k1+⌈nbn⌉

nbn

)
, (C.11)

which finishes the proof. ♢
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