
Gaussian Process Models and
Global Optimization with

Categorical Variables

by

Dominik Kirchhoff

Dissertation
in partial fulfillment of the requirements for the degree of

Doktor der Naturwissenschaften

presented to the

Faculty of Statistics
TU Dortmund University

Germany

Dortmund, 2021

Advisor and primary referee: Prof. Dr. Sonja Kuhnt
Secondary referee: Prof. Dr. Jörg Rahnenführer

Gaussian Process Models and Global Optimization with Categorical Variables
Dominik Kirchhoff
Dissertation
Faculty of Statistics, TU Dortmund University, Dortmund, Germany
Day of oral examination: April 20, 2021

Abstract

This thesis is concerned with Gaussian Process (GP) models for computer
experiments with both numerical and categorical input variables. The
Low-Rank Correlation kernel LRCr is introduced for the estimation of the
cross-correlation matrix – i.e., the matrix that contains the correlations of
the GP given different levels of a categorical variable. LRCr is a rank-r
approximation of the real but unknown cross-correlation matrix and provides
two advantages over existing parsimonious correlation kernels: First, it lets
the practictioner adapt the number of parameters to be estimated according
to the problem at hand by choosing an appropriate rank r. And second,
the entries of the estimated cross-correlation matrix are not restricted to
non-negative values.

Moreover, an approach is presented that can generate a test function
with mixed inputs from a test function having only continuous variables.
This is done by discretizing (or “slicing”) one of its dimensions. Depending
on the function and the slice positions, the slices sometimes happen to be
highly positively correlated. By turning some slices in a specific way, the
position and value of the global optimum can be preserved while changing
the sign of a number of cross-correlations.

With these methods, a simulation study is conducted that investigates the
estimation accuracy of the cross-correlation matrices as well as the prediction
accuracy of the response surface among different correlation kernels. Thereby,
the number of points in the initial design of experiments and the amount of
negative cross-correlations are varied in order to compare their impact on
different kernels.

We then focus on GP models with mixed inputs in the context of the
Efficient Global Optimization (EGO) algorithm. We conduct another sim-
ulation study in which the distances of the different kernels’ best found
solutions to the optimum are compared. Again, the number of points in the
initial experimental design is varied. However, the total budget of function
evaluations is fixed. The results show that a higher number of EGO iterations
tends to be preferable over a larger initial experimental design.

Finally, three applications are considered: First, an optimization of
hyperparameters of a computer vision algorithm. Second, an optimization
of a logistics production process using a simulation model. And third, a
bi-objective optimization of shift planning in a simulated high-bay warehouse,
where constraints on the input variables must be met. These applications
involve further challenges, which are successfully solved.

Contents

1 Introduction 1

2 Gaussian Process Models for Mixed Inputs 7
2.1 Gaussian Process Models for Numerical Inputs 7
2.2 Extensions to Mixed Inputs 14
2.3 Design of Experiments . 20
2.4 Model Diagnostics . 24

3 Low-Rank Correlation (LRC) Approach 27
3.1 Definition . 27
3.2 Illustrative Examples . 30
3.3 Implementation . 32

4 Development of Benchmark Functions 37
4.1 Motivation for Developing New Test Functions 37
4.2 Slicing of Continuous Test Functions 38
4.3 Turning of Slices . 41

5 Simulation Study on LRC in Estimation and Prediction 45
5.1 Test Functions . 45
5.2 Estimation of Cross-Correlations 49
5.3 Prediction of the Response Surface 56

6 Efficient Global Optimization for Mixed Inputs 63
6.1 The Efficient Global Optimization (EGO) Algorithm 63
6.2 Simulation Study on EGO . 65
6.3 Parameter Optimization of a Splat Detection Algorithm . . . 68
6.4 Optimization of a Logistics Production Process 75

vi CONTENTS

7 Optimization of Shift Planning in High-Bay Warehouse Op-
erations 85
7.1 Description of the Simulation Model 85
7.2 Bi-objective Optimization . 88
7.3 Execution of Simulation Experiment 89
7.4 Modeling the Objective Variables 91
7.5 EGO Iterations . 94

8 Summary and Outlook 97

Bibliography 106

A Implementation of Clustered Sliced LHDs 107
A.1 CSLHD . 107
A.2 OCSLHD . 108

Chapter 1
Introduction

Historically, statisticians focus on carefully designing physical experiments
that include a number of input variables and a stochastic response. Due to
the response’s stochastic nature, techniques like randomization, blocking,
and replication are important tools for increasing the validity of the physical
experiment.

In some cases, it is very expensive or even impossible to conduct a physical
experiment. This might be due to ethical reasons – e.g., when designing an
artifical hip joint for a specific patient, it is impossible to try out a number
of different choices. Other reasons could be that each run of the experiment
requires a large expenditure of materials, or the experimentation is literally
impossible – e.g., when the interest lies on the influences of different political
decisions on the environmental pollution over the next 100 years. A last
example in which it is hard to gain enough information for answering a
research question is when a large number of important input variables is
present.

The progress in computer hardware and computational methods of the
last decades enables the use of sophisticated differential equations and com-
plex simulation models that can produce adequate estimates for the outcome
of interest. Using such a model for experimentation is called a computer
experiment. Sacks et al. (1989) published a paper on the Design and Analysis
of Computer Experiments (DACE) that popularized the approach. In a
computer experiment, the relationship between inputs and outputs can typi-
cally not be tackled analytically as there is no closed form of the underlying
function, which is why it is referred to as a black-box function. Most of
the time, computer experiments are deterministic, which is why we focus
on this case here. For deterministic experiments, randomization, blocking,
and replication are unnecessary because the same input setting leads to the
same result, independently of the order of runs or how often it is evaluated.
Because of this, computer experiments require different types of experimental

2 CHAPTER 1. INTRODUCTION

designs than physical experiments.
Moreover, a single run of a computer experiment often takes a very long

time to evaluate – e.g., it is not unusual for a Finite Element (FE) simulation
to run for hours or even days. Especially when the goal is to conduct a
demanding task like optimization or sensitivity analysis with such a simulation
model, the number of needed runs can quickly become unfeasible. In this
scenario, a cheap-to-evaluate statistical model that serves as a surrogate of
the black-box function can help to more efficiently solve these tasks. There
are a variety of surrogate models, which are also called metamodels because
they are models of a simulation model, including standard regression models,
interpolating splines (Schoenberg, 1946a,b), Inverse Distance Weighting
(IDW, Shepard, 1968), and Gaussian Process (GP) models, also known as
Kriging models (Krige, 1951; Matheron, 1963). Some of these models are
smoothing models, i.e., they aim at minimizing the mean squared error
between predictions and true data points, which leads to a smooth prediction
curve. The other type of models is interpolating, i.e., the prediction of these
models runs exactly through the data points that were used for fitting the
model parameters. Since we focus on deterministic simulation models here,
an interpolating model is better-suited because the prediction in an already
evaluated point is the observed deterministic value. IDW, splines, and GP
models belong to the class of interpolation methods. Unlike IDW and spline
interpolation, GP models not only return a point prediction for a given input
but also an uncertainty measure of this prediction. This is a very valuable
feature for implementing sequential designs. Moreover, in many studies the
GP model has proven to be superior to IDW and splines (see, e.g., Voltz and
Webster, 1990; Gotway et al., 1996; or Laslett, 1994). For these reasons, we
focus on GP models in this work.

A GP model consists of a trend and a stationary GP, which is characterized
by its covariance function. The original GP model can deal with numerical
input variables only, as the covariance function depends on differences of
inputs. However, many applications also include at least one categorical
variable, which creates demand for extensions of the GP model. Over the past
decades, some approaches have been introduced to fill this gap. Gramacy and
Lee (2008) introduce Treed GPs, where the input space is partitioned and
in each subspace a separate GP model is fit. This approach is particularly
suitable for black-box functions that are assumed to be nonstationary. Zhang
and Notz (2015) introduce an approach that uses indicator variables for the
categorical inputs. Deng et al. (2017) consider additive GP models consisting
of a sum of GPs that depend on the numerical variables and exactly one
categorical variable per GP.

In this work, we focus on the most popular approach, where the covariance
function of the GP for the numerical variables is multiplied with a cross-
correlation term for the categorical variables (e.g., Joseph and Delaney,
2007; McMillan et al., 1999; Zhou et al., 2011). In order to ensure the

3

validity of the resulting covariance function for mixed inputs, the matrix
of cross-correlations has to fulfill the properties of a correlation matrix:
positive definitness, unit diagonal entries, symmetricity, and that all of its
entries are between -1 and 1. As these requirements cannot be plugged as
constraints into a standard nonlinear optimization method for estimating
a suitable cross-correlation matrix, parameterizations are used that map
a set of box-constrained parameters to a valid correlation matrix. Some
parameterizations make use of further assumptions, e.g., that the levels of
the categorical variables can be grouped (Roustant et al., 2020) or that
the categorical variable controls the fidelity of the output, i.e., one level of
the variable leads to an expensive but accurate output while other levels
produce less accurate but cheaper approximations (e.g., Huang et al., 2006;
Kennedy and O’Hagan, 2000; Poloczek et al., 2017). In this work, we
instead focus on general parameterizations without such assumptions. These
parameterizations are either unrestrictive (Zhou et al., 2011), i.e., can produce
any correlation matrix, but use many parameters, or they are parsimonious
(Joseph and Delaney, 2007; McMillan et al., 1999), which goes along with less
flexibility. Up to now, the parsimonious methods are restricted to generating
cross-correlation matrices with non-negative entries only. In this work, we
introduce a new parameterization that is both parsimonious and able to
estimate negative cross-correlations. Moreover, the new method called Low-
Rank Correlation (LRC) is flexible in that the practitioner can specify the
desired rank of the resulting correlation matrix. This makes it possible
to change the number of parameters needed for the estimation in order to
accomodate the problem at hand.

For comparing different parameterizations, test functions are an important
tool because the real surface to be predicted is cheap-to-evaluate such that
prediction errors can be computed on a large set of points. Moreover, test
functions usually provide information about the global optimum so that
the performances of an optimization can be assessed. For numerical inputs
only, there are many test functions available. However, for the case of mixed
input variables, often test functions are constructed using different sinusoidal
or polynomial functions for different levels of combinations of levels of the
categorical variables. Here, we propose a more systematic way to generate
mixed input test functions that works by discretizing one or more dimensions
of a continuous test function. We extend the method by the possibility to
turn slices in order to change the sign of some of the cross-correlations. The
proposed method preserves the position and the value of the global optimum
of the continuous test function.

The discussed correlation kernels are compared in simulation studies that
focus on the estimation of cross-correlation matrices and the accuracy of
the predicted surfaces, as well as the performance in a sequential global
optimization context. We examine two applications for single-objective
optimization problems: first, the optimization of hyperparameters of an image

4 CHAPTER 1. INTRODUCTION

processing algorithm, and second, the optimization of a logistics production
process using a simulation model. We moreover consider an application
with two objectives, which creates demand for adapting the procedure and
including methods for multi-objective metamodel-based optimization.

Some parts of this thesis have already been published or submitted to a
journal. Other parts build on previous work or investigate it from a different
point of view. Here, we list these publications, summarize their contents and
name the corresponding chapters of this work:

1) Kirchhoff, D. and Kuhnt, S. (2020). Gaussian process models with
low-rank correlation matrices for both continuous and categorical inputs.
Submitted, arXiv:201002574 [statML].

In Kirchhoff and Kuhnt (2020), the Low-Rank Correlation kernel is in-
troduced into the context of GP modeling. Also, the procedures of slicing
continuous test functions and turning some of the slices in order to get a
desirable cross-correlation structure is established. Moreover, a simulation
study on the estimation and prediction accuracy of the different categorical
correlation kernels is conducted. The corresponding chapters of this thesis
are Chapters 3, 4, and 5.

2) Kirchhoff, D., Kirberg, M., Kuhnt, S., and Clausen, U. (2020a). Metamodel-
based optimization of shift planning in high-bay warehouse operations. Sub-
mitted.

In Kirchhoff et al. (2020a), the bi-objective application of optimizing
a shift plan in high-bay warehouse operations using an event-discrete sim-
ulation model that depends on a number of ordinal and categorical input
variables is analyzed. One of the two response variables can be computed
deterministically from the inputs. Therefor, a GP model is only needed for
the expensive response variable. We use an LRC kernel for the categorical
inputs and sequentially add points to the initial design according to two
different bi-objective infill criteria. The corresponding chapter of this work
is Chapter 7.

3) Kirchhoff, D., Kuhnt, S., Bloch, L., and Müller, C. H. (2020b). De-
tection of circlelike overlapping objects in thermal spray images. Quality and
Reliability Engineering International, 36(8):2639–2659.

In Kirchhoff et al. (2020b), an algorithm for the detection of possibly
overlapping circlelike objects with variously distorted edges in greyscale
images is introduced. A number of associated hyperparameters are tuned in
order to maximize the performance on manually annotated so-called splat
images – i.e., scanning electron microscope images of a substrate that was
exposed to the spray jet of a thermal spray process for a very short amount
of time. In Section 6.3, the hyperparameter tuning is revisited using GP
modeling and LRC kernels.

5

4) Kuhnt, S., Kirchhoff, D., Wenzel, S., and Stolipin, J. (2020). Generating
logistic characteristic curves using discrete event simulation and response
surface models. Simulation Notes Europe, 30(3):95–104.

In Kuhnt et al. (2020), a discrete-event simulation model of a logistics
production process is analyzed. There, so-called logistic characteristic curves
between different key performance indicators are generated by means of
response surface models. In Section 6.4, we consider the same simulation
model. Instead of logistic characteristic curves, however, we aim at maxi-
mizing the average throughput of produced goods per hour here. This is
achieved using a GP model with LRC kernel.

This work is structured as follows: Chapter 2 contains an introduction
to Gaussian Process models for numerical inputs, shows how these models
can be extended to the mixed case, discusses some important designs of
experiments, and presents diagnostic plots for assessing model quality. In
Chapter 3, the new Low-Rank Correlation approach is introduced and put
in relation to other correlation kernels. The method for generating test
functions with mixed inputs from continuous test functions is described in
Chapter 4. Chapter 5 contains a simulation study on the performance of
the correlation kernels in estimation of cross-correlations and prediction of
the response surface. Chapter 6 focuses on efficient global optimization with
mixed inputs, which includes another simulation study and two applications.
Chapter 7 deals with a bi-objective shift planning problem in high-bay ware-
house operations. Finally, the results are summarized and an outlook is
given in Chapter 8.

Chapter 2
Gaussian Process Models for Mixed
Inputs

This chapter is concerned with existing approaches for the Design and
Analysis of Computer Experiments (DACE) with mixed input variables.
We therefore give an introduction on Gaussian Process models for purely
numerical variables in Section 2.1 and focus on extensions of these models that
are able to deal with mixed numerical and categorical inputs in Section 2.2.
Section 2.3 contains an overview of suitable experimental designs. Finally,
Section 2.4 deals with diagnostics that help assess the goodness of a given
model using cross-validation.

2.1 Gaussian Process Models for Numerical In-
puts

The most popular choice for modeling the outputs of computer experiments
is using Gaussian (Stochastic) Processes (GPs; Santner et al., 2003). These
stand out because of their flexibility, tractability, and interpolating features,
which makes them the common models for the study of computer experiments.

Definition A real-valued stochastic process {Z(x),x ∈ D ⊂ Rq}, is a
Gaussian process if all finite-dimensional marginal distributions are mul-
tivariate normal distributions. I.e., the vector Z = (Z(x1), . . . , Z(xn))

T

is multivariate normally distributed with mean vector µ = E(Z) and co-
variance matrix Σ = Cov(Z,Z) for n ≥ 1 and any choice of x1, . . . ,xn.
Gaussian stochastic processes are determined by their mean and covariance
functions

µ(Z(x)) = E(Z(x)), x ∈ D,

8 CHAPTER 2. GP MODELS FOR MIXED INPUTS

and
C(x1,x2) = Cov(Z(x1), Z(x2)), x1,x2 ∈ D,

respectively.
In the early 1950s, the South African mining engineer Danie G. Krige

began to apply methods of mathematical statistics to the valuation of new
gold mines using only a few boreholes (Krige, 1951). His aim was to estimate
the expected amount of gold in an “unseen” spot – depending on the distance
from that spot to the boreholes. The French mathematician Georges Math-
eron continued Krige’s work, developed the theoretical basis of his method,
and coined the term Kriging, which can be used interchangeably for the GP
model (Matheron, 1963).

Definition The GP model, also called the Universal Kriging model, views
the output y(·) (here, of a computer experiment), given a set of d numerical
inputs x ∈ D ⊂ Rq, as a realization of the stochastic process

Y (x) = fT(x)β+ Z(x), (2.1)

where f = (f1(·), . . . , fp(·))T is a vector of known regression functions,
β = (β1, . . . , βp)T is a vector of unknown regression coefficients, and Z(x)
is a stationary GP with mean E (Z(x)) = 0 and covariance function

Cov (Z(xi), Z(xj)) = σ2R(xi −xj). (2.2)

In Formula (2.2), σ2 is the unknown variance of Z(x) and R is a correlation
function. The functional form of R must be pre-defined. We discuss some
choices of the correlation function below.

Often, the regression terms are replaced by a constant term µ. The
resulting model is called Ordinary Kriging:

Y (x) = µ + Z(x). (2.3)

Jones et al. (1998) argue that this substitution is affordable, because modeling
the correlation structure of Z(x) is very powerful.

The correlation function, also called (correlation) kernel, is often chosen to
be of the following form, which is known as the power exponential correlation
function (Zhang, 2014):

Rpower(h) = exp
(
−

d∑
i=1

θi|hi|αi

)
, (2.4)

where h = x1 − x2, θi ≥ 0 and 0 < αi ≤ 2 ∀i ∈ {1, . . . , d}. The power
parameters αi determine the smoothness of y(·). The special case of the
power exponential correlation function with αi = 2 (∀i ∈ {1, . . . , d}) is called
Gaussian correlation function.

2.1 Gaussian Process Models for Numerical Inputs 9

0.00

0.25

0.50

0.75

1.00

-4 -2 0 2 4

h

R
(h
)

α = 0.05

0.00

0.25

0.50

0.75

1.00

-4 -2 0 2 4

h
R
(h
)

α = 1

0.00

0.25

0.50

0.75

1.00

-4 -2 0 2 4

h

R
(h
)

α = 2

Figure 2.1: Influence of the parameter α on the power exponential correlation
function R. Here, we examine the correlation function of the distance h of
two one-dimensional variables, h = x1 − x2, x1, x2 ∈ R, with a fixed value
of θ = 1. We consider three values of α: 0.05 (left panel), 1 (middle panel),
and 2 (right panel).

-3

-2

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00

x

Z
(x
)

α = 0.05

-3

-2

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00

x

Z
(x
)

α = 1

-3

-2

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00

x

Z
(x
)

α = 2

Figure 2.2: Influence of the parameter α on sample paths of a GP with power
exponential correlation function, σ2 = 1, and θ = 1. Again, we consider
α = 0.05 (left panel), α = 1 (middle panel), and α = 2 (right panel).

Figure 2.1 shows the effect of different values of α := α1 on the power
exponential correlation function R with d = 1 and θ := θ1 = 1. Of course,
the correlation of identical variables is always 1, independently of the power
parameter α. What it does influence is the overall appearance of the correla-
tion functions’ curves. While we have a bell-shaped curve for α = 2 with
the tails rapidly approaching 0 as |h| increases, a smaller α leads to a much
narrower peak around h = 0. Also, the tails do not drop as fast as with a
higher α. E.g., Rα=2(2) ≈ 0.018 < Rα=0.05(2 · 1011) ≈ 0.025.

Figure 2.2 shows sample paths of a GP Z(x), x ∈ R, with power
exponential correlation function and different values for α. As we can see,
the power parameter controls the smoothness of the resulting realizations
of the process: For 0 < α < 2, the sample paths are continuous but not
differentiable, whereas they are infinitely differentiable given α = 2 (Santner
et al., 2003).

Figure 2.3 shows sample paths of a GP with power exponential correlation
function for a fixed value of α = 2 and different θ’s. The parameter θ controls
the amount of local extrema. The lower the so-called scale parameter θ, the

10 CHAPTER 2. GP MODELS FOR MIXED INPUTS

-3

-2

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00

x

Z
(x
)

θ = 0.5

-3

-2

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00

x

Z
(x
)

θ = 5

-3

-2

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00

x

Z
(x
)

θ = 50

Figure 2.3: Influence of the parameter θ on sample paths of a GP with power
exponential correlation function, σ2 = 1, and α = 2. We consider θ = 0.5
(left panel), θ = 5 (middle panel), and θ = 50 (right panel).

higher the correlations for each pair of inputs and the less important Z(x)
gets. In the extreme case of θ = 0, the process would be constant zero (the
process mean). On the other hand, as θ increases, the correlation between
two inputs decreases, and even small changes in the inputs may lead to huge
differences in the output. Thus, the parameter θ sums up the importance of
a variable. Another important correlation function is the Matérn correlation
function:

Rmatérn(h) =
21−ν

Γ(ν)

(√
2ν|h|
θ

)ν

Kν

(√
2ν|h|
θ

)
, (2.5)

where Kν(·) is a modified Bessel function of order ν > 0 (see Abramowitz
and Stegun, 1965), and θ > 0 is a scale parameter (Rasmussen and Williams,
2006). Santner et al. (2003) give a closed form of Equation (2.5) for the
case that ν is a half integer, i.e., ν = n + 1/2 for an n ∈N. Note that we
have to multiply the parameter θ of Santner et al. (2003) by

√
2 in order to

be consistent with the definition given by Rasmussen and Williams (2006).
Thus, the multidimensional version of the Matérn correlation function is

Rmatérn(h) =
d∏

i=1
exp

(
−
√

2ν
|hi|
θi

)⎛⎝ n∑
j=0

bj

(|hi|√
2θi

)n−j
⎞⎠ , (2.6)

with

bj =

√
πν

n−j
2

4jΓ(ν)
(n + j)!

j!(n− j)!
,

where j = 1, . . . , n, and ν = n + 1/2.
Typically used values for ν are 3/2 and 5/2. The corresponding correla-

tion functions are

Rmatérn(h) =
d∏

i=1
exp

(
−
√

3 |hi|
θi

)(3|hi|
θi

+ 1
)

, (2.7)

2.1 Gaussian Process Models for Numerical Inputs 11

and

Rmatérn(h) =
d∏

i=1
exp

(
−
√

5 |hi|
θi

)(5|hi|2

3θ2
i

+

√
5|hi|
θi

+ 1
)

, (2.8)

respectively.
After a metamodel has been built, it can be used to predict the outcome

of the target variable at a new point x0. We denote the unknown value in
this point by Y0 = Y (x0) and the corresponding prediction by Ŷ0 = Ŷ (x0),
which depends on the vector of known responses y = (Y (x1), . . . , Y (xn)).
Further let F = (fj(xi)) denote the (n× p) matrix of regression functions
for the given sample.

We first discuss the Best Linear Unbiased Predictor (BLUP) for the GP
model in case the correlation function is fully specified. In practice, though,
a certain type of correlation function is typically assumed with one or more
unknown parameters. This case is treated thereafter.

If the correlation function is fully specified, the BLUP of Y (x0) is

Ŷ (x0) = fTβ̂+ rT
0R

−1
(
y−F β̂

)
, (2.9)

where β̂ =
(
F TR−1F

)−1
F TR−1y is the generalized least squares estimator

of β, r0 = (R(x0 −x1), . . . , R(x0 −xn))
T is the vector of correlations of

y with Y (x0), and R = (R(xi −xj)) is the (n× n) matrix of correlations
among the y (Santner et al., 2003).

Note that for the Ordinary Kriging model, the substitution of fTβ with
a constant mean, µ, implies f ≡ 1, β = µ, and F = 1n – the all-ones vector.
Accordingly, in this case, the BLUP can be simplified to

Ŷ (x0) = µ̂ + rT
0R

−1 (y− 1nµ̂) , (2.10)

with µ̂ =
(
1T

nR
−11n

)−1
1T

nR
−1y.

The BLUPs (2.9) and (2.10) consist of two terms. The first one is the
generalized least squares (GLS) estimator. This prediction incorporates
the correlation structure of the data. Figure 2.4 examplarily illustrates the
difference between the arithmetic mean and the generalized least squares
estimator of the mean using the Gaussian correlation function with θ = 20.
There, the GLS estimator of the mean value is very close to the underlying
process’s real mean value of 0, which is achieved by incorporating the (in this
case known) correlation structure of the five points. The artihmetic mean,
however, is very biased because it ignores the fact that the four points lying
close to each other are highly correlated.

The second term of Equations (2.9) and (2.10) makes the BLUPs inter-
polate the known points. To see this, we consider the case x0 = x1 without
loss of generality. Then, the vector rT

0 = (0, R(x1 −x2), . . . , R(x1 −xn)) is

12 CHAPTER 2. GP MODELS FOR MIXED INPUTS

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y arithmetic mean
GLS estimator

Figure 2.4: The intuition why the GLS estimator is a better estimator of the
mean than the arithmetic mean in the context of GPs.

the first row of R. Thus, rT
0R

−1 = (1, 0, . . . , 0) is the first row of the (n×n)
unit matrix, and Equation (2.10) simplifies to

Ŷ (x1) = µ̂ + (1, 0, . . . , 0)(y− 1nµ̂)

= µ̂ + Y (x1)− µ̂

= Y (x1)

The same applies for the Universal Kriging predictor (2.9), where the second
term simplifies to Y (x1)− fTβ̂.

If the correlation function is unknown, we have to estimate R and r0.
Here, we focus on estimating the parameters for a given correlation function.
For the power exponential correlation function Rpower(h) = Rpower(h|ψ),
for example, we would have to find an appropriate setting for the parameter
vector ψ = (θ1, . . . , θd, α1, . . . , αd).

The so-called Empirical Best Linear Unbiased Predictor (EBLUP) is
obtained by substituting R and r0 in Equation (2.9) with their estimates R̂
and r̂0, respectively:

Ŷ (x0) = fTβ̂+ r̂T
0 R̂

−1 (
y−F β̂

)
, (2.11)

where β̂ =
(
F TR̂

−1
F
)−1

F TR̂
−1
y.

One very useful property of the GP model is that the conditional variance
of the predictor in point x0 given the sample, Var (Y (x0)|y), can be expressed
in a closed formula, which is given by the Mean Squared Error (MSE) (Sacks
et al., 1989):

MSE
(
Ŷ (x0)

)
= σ2

⎛⎝1−
(
fT r̂T

0

)(0 F T

F R

)−1(
f

r̂0

)⎞⎠ . (2.12)

This variance of the predictor is bounded by
[
0, σ2] – it is 0 for x0 ∈

{x1, . . . , xn} and σ2 for r̂T
0 → 0. In the first case of considering a point that

2.1 Gaussian Process Models for Numerical Inputs 13

is a part of the sample, the exact value of the deterministic simulation is
already known. As shown above, the BLUP is then equal to this known
function value. In consequence, the variance of 0 makes perfect sense, as there
is no uncertainty in the prediction. The second case, where the correlations
between x0 and {x1, . . . , xn} approach 0, means that the new point lies far
away (subject to the form of the correlation function) from the design points.
Intuitively, the knowledge of the function values of the design points does
not inform the prediction of the new point except for the trend fTβ̂, which
is the BLUP in this case. Then, it also makes sense that the variance of the
prediction is maximal in such a point.

There are a number of different methods for the estimation of the param-
eter vector ψ. Here, we focus on the maximum likelihood (ML) estimate.
For other methods, see Santner et al. (2003).

We assume that the sample, conditionally given β, σ2, and ψ, is normally
distributed: [

y|β, σ2,ψ
]
∼ Nn

[
Fβ, σ2R

]
,

where σ2 is the variance of the GP in the model (cf. Equation (2.2)). Then,
the log-likelihood is

ℓ(β, σ2,ψ) = −1
2

[
n log σ2 + log(det(R)) +

1
σ2 (y−Fβ)

TR−1(y−Fβ)
]

,
(2.13)

up to an additive constant (Santner et al., 2003).
Given ψ, the ML estimate of β is the generalized least squares estimate

β̂ =
(
F TR−1F

)−1
F TR−1y (2.14)

and the ML estimate of σ2 is

σ̂2 =
1
n

(
y−F β̂

)T
R−1

(
y−F β̂

)
(2.15)

(Santner et al., 2003). Plugging Equations (2.14) and (2.15) in the log-
likelihood (2.13) yields

ℓ(β̂, σ̂2,ψ) = −1
2
[
n log σ̂2 + log(det(R)) + n

]
, (2.16)

which only depends on ψ. The ML estimate chooses ψ̂ to maximize (2.16),
and can be written equivalently as

arg min
ψ

n log σ̂2 + log(detR). (2.17)

14 CHAPTER 2. GP MODELS FOR MIXED INPUTS

2.2 Extensions to Mixed Inputs

From now on, we will focus on the case of d mixed inputs w = (xT,vT)T =
(x1, . . . , xq, v1, . . . , vm)T. In other words, we have q ≥ 1 numerical and m ≥ 1
categorical inputs, where the i-th categorical input vi has mi levels. For the
time being, we will consider a single output Y . There are methods for dealing
with more than one output, which will be discussed later. For reference,
Table 2.1 contains the notation used throughout this thesis.

Notation Description

x = (x1, . . . , xq)T numerical inputs
v = (v1, . . . , vm)T categorical inputs
w = (xT,vT)T = (w1, . . . , wd)

T all inputs
y = (Y1(w), . . . , Yk(w))T ∈ Rk outputs
ml, l = 1, . . . , m number of levels of factor vl

s =
∏m

l=1 ml number of level combinations
D ⊆ Rq space of numerical inputs
V = {1, . . . , m1} × · · · × {1, . . . , md} space of categorical inputs
F = D×V space of mixed inputs
d = q + m dimension of mixed space F

Table 2.1: Notation used throughout this thesis.

In this section, we review approaches from the literature that adapt
the GP model to mixed inputs. Some of these approaches only take the
combinations of levels of the categorical variables into account. For these
methods, the categorical inputs v might as well be merged into a single
input v first, which does not lead to a loss of information. In order to do
this, a lookup table can be generated that assigns each combination of levels
of v an integer from 1 to s, where s =

∏m
i=1 mi is the number of possible

combinations of levels.
Table 2.2 shows a lookup table for an example with two variables having

two levels each (“piano”, “guitar”; “male”, “female”). The resulting encoding
is then used to merge the set of categorical variables into a single one, which
can be retransformed using the lookup table.

As for some of the approaches to be introduced, the variables cannot be
merged without changing the model, we will alternate between the vector of
variables v and the merged input v as needed. For simplicity, we assume that
the levels of the variables in v are – like the levels in v – integers starting
from 1. Also, we suppose that the data set is ordered as given above; i.e., the
numerical variables are the first q variables in w. Additionally, we assume

2.2 Extensions to Mixed Inputs 15

v1 v2 v

piano male 1
piano female 2
guitar male 3
guitar female 4

Table 2.2: An exemplary lookup table for merging the categorical variables.

that for each level of v there is at least one observation, which must be
perconceived when designing the experiments.

A very simple way to deal with a categorical variable is to split the data
set into s sub-data sets, one for each level of v, which is then constant within
each sub-data set and can be removed consequently. GP models can then be
fitted to the purely numerical sub-data sets individually without the need of
any adjustments to the models (see, e.g., Qian et al., 2008).

This method is called Individual Kriging (IK) and might yield good
results if the data set is big enough relative to the number of parameters to
be estimated. In case of an expensive experiment, however, the number of
affordably generatable observations is very limited. Further, dividing the
data set into sub-data sets reduces each data set’s size even more. When
fitting a GP model, only the observations of the sub-data set are used,
whereas all the other observations remain unutilized for this specific model.
In practice, IK is therefore often not an option.

Another possibility to model the correlation of a process with mixed
inputs is to split the correlation of two residuals into a product of one factor
for the numerical and the categorical variables each:

Cov(Z(wi), Z(wj)) = σ2φ1(xi,xj)φ2(vi,vj) (2.18)

The correlation function for the numerical inputs, φ1(xi,xj), can be modeled
as usual (cf. Section 2.1), while we need a different take for φ2(vi,vj). We
will introduce some approaches in this subsection.

In general, there are two popular forms of modeling φ2(vi,vj) (Huang
et al., 2016). With the first form,

φ2(vi,vj) = τci,cj , (2.19)

where ci ∈ {1, . . . , s} represents the level-combination of the categorical vari-
ables in vi, each pair of two level combinations (ci, cj) gets a cross-correlation
parameter τci,cj . As long as the (s× s) matrix P = (τci,cj) is a positive
definite matrix with unit diagonal elements (PDUDE), Equation (2.19) is a
valid correlation function.

16 CHAPTER 2. GP MODELS FOR MIXED INPUTS

The second form,

φ2(vi,vj) =
m∏

l=1
τ (l)

vil,vjl
, (2.20)

where each Pl = (τ
(l)
u,v) (u, v = 1, . . . , ml) is a PDUDE, considers the cate-

gorical variables separately and thus assumes that the cross-correlation of vi

and vj does not depend on interactions of two or more categorical variables.
We will discuss some approaches of modeling the cross-correlations in

the next paragraphs and we will also take the corresponding number of
parameters to be estimated in each of the both forms into account.

Joseph and Delaney (2007) use a constant value to model cross-corre-
lations. Their approach is called the Exchangeable Correlation (EC)
function:

τci,cj = c, 0 < c < 1,∀i ̸= j, (2.21)

for the first form (Equation (2.19)), or

τ (l)
u,v = cl, 0 < cl < 1,∀u, v ∈ {1, . . . , ml}, u ̸= v, (2.22)

for the product form (Equation (2.20)), respectively.
Thus, we have one parameter c in the first case and m parameters cl in

the latter case for the cross-correlations of the categorical variables.
McMillan et al. (1999) introduce the so-called Multiplicative Correla-

tion (MC) function. Using correlation form (2.19), it is defined as follows:

τci,cj = exp{−(ϕi + ϕj)I(i ̸= j)}, (2.23)

where ϕi, ϕj > 0 for all i, j ∈ {1, . . . , s}. With form (2.20), we have

τ (l)
u,v = exp{−(ϕ(l)

u + ϕ(l)
v)I(u ̸= v)}, (2.24)

where ϕ
(l)
i , ϕ

(l)
j > 0 for all l ∈ {1, . . . , m} and u, v ∈ {1, . . . , ml}.

Following from this, there are s =
∏m

l=1 ml parameters ϕi in the first,
and

∑m
l=1 ml parameters ϕ

(l)
u in the second case.

Zhou et al. (2011) use the hypersphere decomposition and a spherical
coordinate system to facilitate the problem of achieving a valid correlation
matrix, i.e., a PDUDE. First, we consider form (2.19). A Cholesky de-
composition is applied to the (s× s) cross-correlation matrix of all level
combinations, P = (τci,cj), which is given by

P = LLT,

where L is a lower triangular matrix with strictly positive diagonal elements.
The nonzero part of each row vector of L, (li,1, . . . , li,i), is then modeled as

2.2 Extensions to Mixed Inputs 17

a point on the i-dimensional unit hypersphere: For i = 1, let l1,1 = 1 and
for i = 2, . . . , s, the spherical coordinate system is defined as follows:

li,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cos (θi,1) for j = 1

cos (θi,j)
j−1∏
k=1

sin (θi,k) for 2 ≤ j < i

j−1∏
k=1

sin (θi,k) for i = j

(2.25)

where θi,j ∈ (0, π) and t ∈ {2, . . . , r− 1}.
This approach is called the hypersphere decomposition-based Un-

restrictive Correlation (UC) function.
One can see that there is one “new” parameter θr,t for every pair r, t ∈

{1, . . . , s} with r > t. Thus, there is a total of 1/2 · (s2 − s) parameters.
Now we have a look at the UC model with the product correlation form

(2.20): Here, r ∈ {1, . . . , ml}, so there are 1/2 · (m2
l −ml) parameters for

each categorical variable vl, which makes a total of 1/2 ·
∑m

l=1(m
2
l −ml)

parameters.
Halstrup (2016) introduces a correlation function that is inspired by

the Gower distance (Gower, 1971). The kernels of the all-numerical GP
model like (2.4), (2.7), or (2.8) depend on the differences hi = |x1i − x2i|,
i ∈ {1, . . . , q}, between two vectors of observations. As for categorical
variables, this difference is not defined. Therefore, Halstrup (2016) proposes
to use the following definition instead:

hGK
i :=

⎧⎪⎪⎨⎪⎪⎩
|w1i−w2i|

range of i-th parameter , if i ≤ q

0, if i > q and w1i = w2i

1, if i > q and w1i ̸= w2i,

for i ∈ {1, . . . , d}. By substituting hi with hGK
i for all i, any regular correla-

tion function can be used for the case of mixed numerical and categorical
inputs. We call the resulting correlation function Gower Kriging correla-
tion function.

Within the correlation function, the “differences” between the categorical
variables as defined above are treated like differences between numerical
variables. Because of this, the same parameters are to be estimated, inde-
pendently of the type of the variable. This is why in this case, merging the
categorical inputs would result in a different model with less parameters.
When Gower Kriging is used with the Matérn correlation function, we call
the resulting kernel the Gower-Matérn correlation kernel.

Proposition The Gower Kriging correlation function is a special case of
the EC function.

18 CHAPTER 2. GP MODELS FOR MIXED INPUTS

Proof Let RGK
ψ (w1,w2) :=

d∏
i=1

Rψi
(hGK

i) be the Gower Kriging kernel,
where ψi contains all parameters of an arbitrary correlation kernel R that
correspond to the i-th variable. Consider two vectors with mixed inputs:

w1 = (w11, . . . , w1d)
T = (x1, v1)

T

and, analogously, w2 = (x2, v2)T.
Let us recall the correlation structure of the EC model when using the

product form first (cf. Equations (2.20) and (2.22)):

φ2(v1,v2) =
m∏

j=1
τ (j)

v1j ,v2j
, (2.26)

where τ
(j)
v1j ,v2j =

{
1, if v1j = v2j

cj , if v1j ̸= v2j

.

Now we show that the Gower Kriging correlation function can be split
into a product of φ1(x1,x2) and φ2(v1,v2), where φ1(·, ·) models the corre-
lation of the numerical variables, while φ2(·, ·) models the correlation of the
categorical variables and also fulfills Equation (2.26):

RGK
ψ (w1,w2) =

d∏
i=1

Rψi

(
hGK

i (w1i, w2i)
)

=
q∏

i=1
Rψi

(
hGK

i (w1i, w2i)
)

  
numerical variables

d∏
j=q+1

Rψj

(
hGK

j (w1j , w2j)
)

  
categorical variables

=
q∏

i=1
Rψi

(
hGK

i (x1i, x2i)
)

  
=:φ1(x1,x2)

m∏
j=1

Rψj

(
hGK

j (v1j , v2j)
)

  
=:φ2(v1,v2)

,

where Rψj

(
hGK

j (v1j , v2j)
)

with a fixed parameter vector ψj depends only
on hGK

j , which is constant for different levels of the j-th categorical variable:

Rψj

(
hGK

j (v1j , v2j)
)
=: cj (v1j ̸= v2j). (2.27)

In the case of equal levels of the j-th categorical variable, v1j = v2j , the
distance hGK

j = 0. In this case, Rψj
(hGK

j) = 1 because every correlation
kernel R must be 1 for a distance of 0. Thus, φ2(v1,v2) fulfills Equation
(2.26) and Gower Kriging is a special case of the EC model with the product
correlation form, where the constant correlation between different levels of a
categorical variable, cj , is as defined in Equation (2.27).

2.2 Extensions to Mixed Inputs 19

Merged Form (2.19) Product Form (2.20)

EC 1 m

MC s
m∑

l=1
ml

UC s2 − s

2
m∑

l=1

m2
l −ml

2
Gower-Matérn 1 m

Table 2.3: Total number of parameters associated with the correlation kernels
for categorical variables.

Of course, the same argumentation holds when the d categorical variables
are merged into a single one. Thus, the proposition is also true for correlation
form (2.19). ■

Table 2.3 contrasts the number of parameters for all approaches intro-
duced in this section. Note that they do not include the parameters of the
numerical correlation kernel, which would increase the numbers by the same
additive term – e.g., q for the Gaussian or Matérn correlation kernels.

The values of Table 2.3 for form (2.19) show that the EC kernel has
exactly one parameter, independently of s, the MC kernel has one parameter
per combination of levels of the categorical variables, thus growing linearly
with s, and the UC kernel grows quadratically with s as there is one parameter
per element of the lower diagonal matrix of the cross-correlation matrix.
The number of parameters of the Gower Kriging kernel, on the other hand,
depends on the choice of the numerical correlation kernel the Gower distance
is plugged into. As this number is constant per variable, the number of
parameters of the categorical kernel is also constant for the case of merged
categorical variables, or it grows linearly in the number of categorical variables
for the product correlation form. In Table 2.3, as an example the Gower-
Matérn kernel is assumed, which leads to the same number of parameters
as with EC. Correlation form (2.20), considers each categorical variable
independently, which raises EC’s parameters slightly but can decrease the
number of parameters of MC and UC considerably. For example, assume that
there are m = 5 categorical variables with ml = 2 levels each. Then, MC has,
depending on the correlation form, s =

∏5
l=1 ml = 25 = 32 or

∑m
l=1 ml = 10

parameters. UC’s number of parameters is s2 − s

2 =
322 − 32

2 = 496 with

the first correlation form but only
∑m

l=1
m2

l −ml

2 = 5 with the second one.
Thus, a careful choice of the correlation form and kernel is important and
should be made considering the manageable maximum number of parameters
to be estimated.

20 CHAPTER 2. GP MODELS FOR MIXED INPUTS

2.3 Design of Experiments
Most of the time, computer experiments are used to investigate a black-box
function, i.e., a function that cannot be analyzed analytically as the functional
relationship between in- and outputs is unknown. Since the evaluation of a
single run might be very expensive, the maximum number of feasible design
points is typically small. In this scenario of very little information, it is
sensible to choose a space-filling design that gives us a rough outline of how
the black-box function behaves over the whole domain.

As we focus on deterministic simulations, replication is unnecessary.
Moreover, computer experiments can involve many input variables with only
a few important ones. Because of this, the design should be noncollapsing
such that the projection of the design onto the subspace of the important
variables is also free of replications (cf. Santner et al., 2003; Fang et al.,
2005). Latin Hypercube Designs (LHDs) are a popular choice for computer
experiments with only numerical input variables that satisfies these properties.
In the following, we will look at designs for computer experiments with both
numerical and categorical inputs.

Qian (2012) introduces a method to generate an LHD that can be
partitioned into a certain number of smaller LHDs, the so-called slices.
Therefore, this design is called the Sliced Latin Hypercube Design
(SLHD).

Huang et al. (2016) propose an SLHD with clustered points, the Clus-
tered Sliced Latin Hypercube Design (CSLHD). Each of the clusters
contains exactly one point per level combination of the categorical variables.
Figure 2.5 shows a CSLHD with 6 slices (one for each level of the categorical
variable v), 4 points per slice, and 2 numerical variables (x and y). We
can see the four clusters of six points for all levels of v. The clustering
of points from different level combinations might increase the ability to
estimate cross-correlations because the distance of the points in the space
of the numerical variables is small. CSLHDs, however, fill this space better
than if the same LHD was replicated for all the level combinations and thus
serve as a trade-off between filling the space as good as possible and the
ability of detecting cross-correlations as good as possible. See Appendix A.1
for an implementation in R.

Huang et al. (2016) also propose a method to generate an Optimal
CSLHD (OCSLHD) by using simulated annealing (Kirkpatrick et al.,
1983; Černỳ, 1985) to minimize the centered L2-discrepancy (CL2), a well-
known space-filling criterion, which is defined for a design D as

CL2(D) =

(13
12

)q

− 2
n

n∑
k=1

q∏
l=1

{
1 + 1

2 |dkl − 0.5| − 1
2 |dkl − 0.5|2

}

+
1
n2

n∑
k=1

n∑
j=1

q∏
i=1

{
1 + 1

2 |dki − 0.5|+ 1
2 |dji − 0.5| − 1

2 |dki − dji|
}

,

2.3 Design of Experiments 21

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

v
● 1

2
3
4
5
6

Figure 2.5: An exemplary CSLHD with 6 slices, 4 points per slice, and 2
numerical variables.

where n is the number of rows of D, q is the number of numerical variables,
i.e., the number of columns of D, and dij ∈ [0, 1) (∀i, j).

Simulated annealing is a metaheuristic for approximating a global opti-
mum which is inspired by a heat treatment (annealing) in metallurgy for the
purpose of increasing the workability of a material. In our application, the
intuition of the simulated annealing is to consider an adjacent design of a
current design, compare their centered L2-discrepancies, and proceed with
the new design if its CL2 is lower (i.e., the adjacent design is more space-
filling than the old one) or even if it is worse with a probability that depends
on both the difference in the two CL2 values and the current “temperature”.
A high temperature results in a high probability of temporarily accepting
designs with worse values of CL2, which makes it possible to escape a local
minimum. The temperature is reduced using a cooling parameter after a
specified number of designs have been examined, thus also stepwise reducing
the probability of accepting a worse design. Adjacent designs are defined by
the column-exchange approach (Li and Wu, 1997; Ye et al., 2000; Fang et al.,
2005). For an implementation of the CL2 criterion, the column-exchange
approach, and the simulated annealing approach in R, see Appendix A.2.

Algorithm 1 contains the pseudocode of the simulated annealing algorithm
used for the optimization. The arguments of the algorithm are the number
of points, n, for each of the s slices, the inital temperature init.temp, the
number of iterations numb.temp.changes, the number of designs consid-
ered per temperature, numb.designs.per.temp, and the cooling parameter

22 CHAPTER 2. GP MODELS FOR MIXED INPUTS

cooling.par.

Algorithm 1 Simulated Annealing
1: procedure getOCSLHD(n, s, q, init.temp, numb.temp.changes,

numb.designs.per.temp, cooling.par)
2: design ← getCSLHD(n, s, q)
3: temp ← init.temp
4: temp.changes ← 0
5: h.old ← getCL2(design)
6: while temp.changes ≤ numb.temp.changes do
7: temp.changes ← temp.changes + 1
8: numb.designs ← 0
9: while numb.designs ≤ numb.designs.per.temp do

10: numb.designs ← numb.designs + 1
11: design.new ← getAdjacentDesign(design, n, s)
12: h.new ← getCL2(design.new)
13: h.delta ← h.new - h.old
14: if h.delta < 0 or with probability exp(-h.delta/temp) then
15: design ← design.new
16: h.old ← h.new
17: end if
18: end while
19: temp ← cooling.par · temp
20: end while
21: return design
22: end procedure

Figure 2.6 shows an OCSLHD with 6 slices (v), 4 points per slice, and
2 numerical variables (x and y). The CSLHD in Figure 2.5 served as the
initial design for the simulated annealing algorithm. Here, we used a starting
temperature of 100, 30 temperature changes, 50 designs per temperature, and
a cooling parameter of 0.5. The initial CSLHD has a centered L2-discrepancy
of 0.0044 while the OCSLHD’s value is 0.0025. When comparing Figures 2.5
and 2.6, we can see that the OCSLHD is indeed more uniformly spreaded
across the two-dimensional domain than the CSLHD.

Lekivetz and Jones (2015) introduce Fast Flexible Filling (FFF) de-
signs. There, a large number of points in the design space defined by the
numerical variables is generated. Then, these points are clustered into k
clusters, which in turn are clustered into s sub-clusters, where k is the number
of design points for each of the s combinations of levels of the categorical
inputs. This method is especially suitable for constrained design spaces as
the points to be clustered can be generated using rejection sampling.

Suppose we want a design with a total of n points, such that each level
of the categorial variable gets k = n

s points. First, a large number of random

2.3 Design of Experiments 23

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

v
● 1

2
3
4
5
6

Figure 2.6: An exemplary OCSLHD with 6 slices, 4 points per slice, and 2
numerical variables.

points is generated within the numerical design space. These points are then
clustered into k primary clusters using a Fast Ward algorithm, after which in
each cluster s sub-clusters are formed. For each primary cluster, one design
point xi = (xi1 . . . , xiq) per sub-cluster, i = 1, . . . , s, is selected, such that
within the primary cluster the “MaxPro” criterion

CMaxPro =

⎛⎜⎜⎜⎝ 1
(s

2)

s−1∑
i=1

s∑
j=i+1

⎡⎢⎢⎢⎣ 1
q∏

l=1
(xil − xjl)

2

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

1
q

(2.28)

is minimized. The resulting design points are assigned to the s levels ran-
domly.

Note that in JMP R⃝, the MaxPro criterion CMaxPro (Equation (2.28)) is
computed without the factor 1/(s

2) and without the exponent 1/q.
Figure 2.7 shows an FFF design generated using JMP R⃝ with 6 slices, 4

points per slice, and 2 numerical variables. In contrast to the CSLHD and
the OCSLHD shown above, the FFF design is not characterized by clusters
of points for the different levels of the categorical variable. Instead, its focus
lies primarily on filling the space of the numerical variables.

24 CHAPTER 2. GP MODELS FOR MIXED INPUTS

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

v
● 1

2
3
4
5
6

Figure 2.7: An exemplary FFF design with 6 slices, 4 points per slice, and 2
numerical variables.

2.4 Model Diagnostics

In this section, some diagnostics are introduced that help assess the quality
of a model. If the diagnostics indicate that the model at hand is not
valid, often an appropriate transformation of the objective variable can
improve the fit. This is because the transformed variable might resemble
the realization of a GP more closely. Besides checking a model’s fit and
considering a transformation of the objective variable, another important
area of application is model selection: Comparing the diagnostic plots of a
number of candidate models can help in finding the most promising one.

Assume we have observed a vector y of outputs of a computer experiment
for a set of inputs w1, . . . ,wn: y = (y(w1), . . . , y(wn))

T.
Since the GP models considered in this thesis are interpolating models,

it makes no sense to look at the residuals of a model in the same points
used for its fit. Instead, we use Leave-One-Out (LOO) cross-validation: The
model is fit on all points except for wi, i ∈ {1, . . . , n}. Then, this model
is used to compute a prediction ŷ−i(wi) and the corresponding uncertainty
ŝ−i(wi) in the point not used for training. This process is repeated n times
such that every point has been left out once.

In practice, it is often assumed that – unless n is very small or there
are majore outliers – the estimated parameters of the model do not change
significantly when they are re-estimated on n− 1 observations (Jones et al.,
1998). Then, the refitting of the model can be skipped – only the predictions

2.4 Model Diagnostics 25

are computed using the smaller sample by adjusting the correlation matrix
R̂ and the vector r̂0.

With the cross-validated predictions, the following diagnostic plots can
be generated (Schonlau, 1997):

1. The predictions ŷ−i(wi) versus the true values y(wi). Ideally, these
points lie on a straight line going through the origin with slope 1.

2. The standardized residuals

ei =
y(wi)− ŷ−i(wi)

ŝ−i(wi)

versus the predicted values ŷ−i(wi). This plot shows the errors with
respect to the corresponding prediction uncertainties. Intuitively, a
higher error is not as bad in a point with a high uncertainty as in a point
with a low uncertainty. Schonlau (1997) states that the standardized
residuals should not lie far outside [−2, 2], or [−3, 3] if many points
are considered. By plotting the standardized residuals against the
predictions, one can check if the standardized residuals are particularly
small for smaller predictions. In a minimization problem, this is the
most interesting area in which predictions that are well in accordance
with their prediction uncertainties are a promising starting point.

3. A quantile-quantile (QQ) plot of the ordered standardized residuals
versus the theoretical quantiles from the standard normal distribution.
If the standardized residuals are well-represented by the standard
normal distribution, the plotted points are close to the line passing
through the origin with slope 1.

All of the plots named above can be generated for mixed inputs without
further changes. This is because using an extended GP model yields all
necessary values just like the original GP model does for purely numerical
inputs.

The R package kergp (Deville et al., 2019) offers the first three of these
diagnostic plots by running the plot function on a mixed GP model. The
standardized residuals, however, are plotted against the indices i ∈ {1, . . . , n}
instead of the predicted values ŷ−i(wi). This takes away the chance to
check if low predicted values have particularly low standardized residuals.
However, in addition to depicting the range of the standardized residuals,
possible structures can be detected with this plot, which might be mitigated
by adjusting the model’s trend. The LOO cross-validation of the kergp
package is done without re-estimation of the model’s parameters. One could
consider the plots named above that compare the values with and without
re-estimation. Of course, this is more time-consuming since the model must
be fitted n + 1 times (n times within the cross-validation and one time with

26 CHAPTER 2. GP MODELS FOR MIXED INPUTS

all the data) but it shows how stable the parameter estimation is – ideally,
the values do not change much when the parameters are re-estimated. If
they do vary drastically, one might consider using a bigger design and/or a
more parsimonious model.

Chapter 3
Low-Rank Correlation (LRC)
Approach

In this chapter, we introduce a new approach for extending Kriging models
to the case of mixed numerical and categorical inputs. Section 3.1 presents
the new method. In Section 3.2, we show how a cross-correlation matrix
is generated using different kernels in order to illustrate similarities and
differences of the methods. Finally, Section 3.3 contains details on how the
new kernel has been implemented in R.

Large parts of Section 3.1 have already been submitted as the following
publication:

Kirchhoff, D. and Kuhnt, S. (2020). Gaussian process models with
low-rank correlation matrices for both continuous and categorical inputs.
Submitted, arXiv:201002574 [statML].

In Kirchhoff and Kuhnt (2020), the author of this dissertation is respon-
sible for all essential elements, such as the method’s definition (Section 3.1),
some parts of its implementation (Section 3.3), and the details of the simula-
tion study, including the set of test functions (Chapters 4 and 5).

Note that the following definition has already been adopted in Roustant
et al. (2020).

3.1 Definition
One way to obtain a symmetric and positive semidefinite (s× s) matrix is
to multiply an arbitrary real (s× r) matrix Q with its transpose. Here, r
can be chosen arbitrarily. This approach can be used to model the cross-
correlation matrix, where the elements of Q have to be parameterized such
that the diagonal elements of QQT are equal to 1 and all other elements

28 CHAPTER 3. LOW-RANK CORRELATION (LRC) APPROACH

are in [−1, 1]. Here, we consider the case of r being as small as possible.
Since the rank of QQT is equal to the rank of Q, we have chosen the name
Low-Rank Correlation (LRC). For r = 1, QQT has unit diagonal entries if
and only if Q = (1, . . . , 1)T, but then QQT is the all-ones matrix. In the
following definition, we therefore focus on the case of r = 2 and use a simple
parameterization to generate Q.

We denote the columns of Q by l1 and l2, which are real column vectors
of length s.

P = QQT = (l1, l2)(l1, l2)T (3.1)

is symmetric and positive semidefinite. Since P must have unit diagonal
entries, we get the condition

l21i + l22i = 1 ∀i ∈ {1, . . . , s},

which is obviously fulfilled for l1i = sin (θi) and l2i = cos (θi) for any
θ ∈ [0, 2π]s.

Also, the entries τi,j of P simplify to

τi,j = sin (θi) sin (θj) + cos (θi) cos (θj)

= cos (θi − θj) ,
(3.2)

which means that

τi,j ∈ [−1, 1] ∀i, j ∈ {1, . . . , s}.

In order to ensure the invertibility of P , we add a small value, say 1 · 10−4, to
the diagonal elements, which makes any positive semidefinite matrix positive
definite. We then have to rescale the whole matrix such that τi,i = 1 again,
by dividing the matrix by 1 + 1 · 10−4. Then, P is a valid correlation matrix
with the parameterization defined above.

Rapisarda et al. (2007) derive a very similar parameterization from
a geometrical point of view, motivated by applications in finance. They
introduce a rank-r decomposition of a correlation matrix C for a general
rank 2 ≤ r < s, i.e.,

C ≃ QQT, (3.3)

where Q = (qi,j) is an (s× r) matrix with q1,1 = 1 and

qi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos (θi,1) for j = 1

cos (θi,j)
j−1∏
k=1

sin (θi,k) for 2 ≤ j < min(i, r)

j−1∏
k=1

sin (θi,k) for j = min(i, r)

0 for min(i, r) < j ≤ s.

(3.4)

3.1 Definition 29

Note that now the first row of the matrix Q always is (1, 0)T, thus saving
one parameter. In fact, when looking at Equation (3.2) it is obvious that
only the differences between the parameters have an impact on the cross-
correlation matrix rather than their actual values. Therefore, even for the
rank-2 approximation of the cross-correlation matrix, we will continue with
the definition in Equation (3.4), which we will call the Low-Rank Correlation
function (LRCr). Here, the subscript r denotes the rank of the approximation.

Of course, the LRCr kernel can also be used with the product correlation
form (Equation (2.20)). However, in this case the rank must fulfill 2 ≤ r <
min

l
(ml), which means that each categorical variable must have at least three

levels.
When comparing the definitions of LRCr and UC (Equations (3.4) and

(2.25), respectively), it is obvious that they are very similar to each other.
In fact, LRCr is a special case of UC, obtained by setting θi,r = 0 for each
i > r. Subsequent parameters θi,r+1, . . . , θi,i−1 then do not influence the
resulting correlation matrix because they only appear in products where they
are multiplied with sin (θi,r) = 0. Thus, they can be chosen freely.

Moreover, UC is an unrestrictive parameterization with a one-to-one
correspondence between a PDUDE matrix and the parameter vector θ. That
is, an arbitrary PDUDE matrix can be parameterized using a certain θ and
each θ results in a PDUDE matrix (Zhou et al., 2011). Therefore, each
matrix genereated by EC and MC (and any other method for generating
PDUDEs) can also be obtained with UC using a particular θ. However, the
relationships are much more complex than setting some of the θ’s to 0 such
that EC and MC cannot be viewed as special cases of UC. For instance,
consider s = 3. In order to obtain the matrix given by EC,

P =

⎛⎜⎜⎝
1
c 1
c c 1

⎞⎟⎟⎠ ,

one has to solve the following system of equations,

cos (θ2,1) = c

cos (θ3,1) = c

cos (θ2,1) cos (θ3,1) + sin (θ2,1) sin (θ3,1) cos (θ3,2) = c,

resulting in θ2,1 = cos−1 (c), θ3,1 = cos−1 (c), and θ3,2 = cos−1
(

c
c+1

)
.

MC’s matrix

P =

⎛⎜⎜⎝
1

exp (− (ϕ2 + ϕ1)) 1
exp (− (ϕ3 + ϕ1)) exp (− (ϕ3 + ϕ2)) 1

⎞⎟⎟⎠

30 CHAPTER 3. LOW-RANK CORRELATION (LRC) APPROACH

Merged Form (2.19) Product Form (2.20)

EC 1 m

MC s
m∑

l=1
ml

LRC2 s− 1
m∑

l=1
(ml − 1)

LRC3 2s− 3
m∑

l=1
(2ml − 3)

LRCr (r− 1)(s− r
2)

m∑
l=1

(
(r− 1)(ml − r

2)
)

UC s2 − s

2
m∑

l=1

m2
l −ml

2

Table 3.1: Numbers of parameters needed for modeling the categorical inputs.

leads likewise to

θ2,1 = cos−1 (exp (− (ϕ2 + ϕ1))) ,
θ3,1 = cos−1 (exp (− (ϕ3 + ϕ1))) , and

θ3,2 = cos−1

⎛⎝exp (− (ϕ3 + ϕ2))− exp (− (ϕ2 + ϕ1)) exp (− (ϕ3 + ϕ1))√
1− exp (− (ϕ2 + ϕ1))

2
√

1− exp (− (ϕ3 + ϕ1))
2

⎞⎠ .

Of course, these relationships get even more complicated with growing s.
These examples show that EC, MC, and UC are systematically different

approaches in the sense that there are no simple mappings between the
parameters of EC and MC to UC (and thus LRC, too).

Table 3.1 contrasts the numbers of parameters that each of the approaches
named above uses for modeling the cross-correlations of the categorical input.
We can see that the number of parameters of both LRCr is linear in s or∑m

l=1 ml, depending on the correlation form. Moreover, the rank r influences
the number of parameters, which enables the practitioner to choose it such
that the resulting number of parameters is acceptable.

3.2 Illustrative Examples

Assume we have m = 2 categorical variables v1 and v2 with m1 = m2 = 2
levels per variable. We want to go through the models using the EC, MC,
UC, LRC2, and LRC3 kernels for this example. If only the elements of a
lower triangular matrix are stated, the matrix is intended to be symmetric.

3.2 Illustrative Examples 31

EC Depending on which correlation form is used, we have either

P =

⎛⎜⎜⎜⎜⎜⎝
1
c 1
c c 1
c c c 1

⎞⎟⎟⎟⎟⎟⎠ ,

with one parameter c or

P1 =

(
1
c1 1

)
and P2 =

(
1
c2 1

)
,

with the two parameters c1 and c2.

MC Using the multiplicative correlation function and correlation form
(2.19), we obtain

P =

⎛⎜⎜⎜⎜⎜⎝
1

exp{−(ϕ1 + ϕ2)} 1
exp{−(ϕ1 + ϕ3)} exp{−(ϕ2 + ϕ3)} 1
exp{−(ϕ1 + ϕ4)} exp{−(ϕ2 + ϕ4)} exp{−(ϕ3 + ϕ4)} 1

⎞⎟⎟⎟⎟⎟⎠ ,

with four parameters ϕ1, . . . , ϕ4. Using the product correlation form (2.20),
the two PDUDEs look as follows:

P1 =

⎛⎝ 1
exp{−(ϕ(1)

1 + ϕ
(1)
2)} 1

⎞⎠ and P2 =

⎛⎝ 1
exp{−(ϕ(2)

1 + ϕ
(2)
2)} 1

⎞⎠ ,

having four parameters as well. In this special case, using the product
correlation form restricts the model but does not reduce the number of
parameters, which is why one would probably opt for the first, more general
variant here.

UC With correlation form (2.19), the correlation matrix is decomposed
into P = LLT, where

L =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

cos(θ2,1) sin(θ2,1) 0 0
cos(θ3,1) sin(θ3,1) cos(θ3,2) sin(θ3,1) sin(θ3,2) 0
cos(θ4,1) sin(θ4,1) cos(θ4,2) sin(θ4,1) sin(θ4,2) cos(θ4,3) sin(θ4,1) sin(θ4,2) sin(θ4,3)

⎞⎟⎟⎟⎟⎟⎠ .

L has the six parameters θ2,1, θ3,1, θ3,2, θ4,1, θ4,2, and θ4,3.
Using the product correlation form (2.20), there are two correlation

matrices P1 = L1L1
T and P2 = L2L2

T, where

L1 =

⎛⎝ 1 0
cos(θ(1)2,1) sin(θ(1)2,1)

⎞⎠ and L2 =

⎛⎝ 1 0
cos(θ(2)2,1) sin(θ(2)2,1)

⎞⎠ ,

32 CHAPTER 3. LOW-RANK CORRELATION (LRC) APPROACH

with the two parameters θ
(1)
2,1 and θ

(2)
2,1 .

LRC2 For the LRCr kernels, we only consider the merged correlation form
(2.19) because the size of the correlation matrix must be higher than the
rank of the LRCr kernel. Also, r must be higher than 2 such that the
product correlation form is not applicable in this example. With LRC2, the
correlation matrix is decomposed into P = QQT, where

Q =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

cos(θ2,1) sin(θ2,1) 0 0
cos(θ3,1) sin(θ3,1) 0 0
cos(θ4,1) sin(θ4,1) 0 0

⎞⎟⎟⎟⎟⎟⎠ .

LRC3 With LRC3, the matrix Q changes to

Q =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

cos(θ2,1) sin(θ2,1) 0 0
cos(θ3,1) sin(θ3,1) cos(θ3,2) sin(θ3,1) sin(θ3,2) 0
cos(θ4,1) sin(θ4,1) cos(θ4,2) sin(θ4,1) sin(θ4,2) 0

⎞⎟⎟⎟⎟⎟⎠ .

3.3 Implementation

The results in this work have been obtained using the free statistical software
package R (R Core Team, 2019). In this section, we show how the methods
have been implemented.

A popular R package with tools for Kriging models for numerical variables
only is called DiceKriging (Roustant et al., 2012). This package provides all
functions needed in order to fit a model, plot its diagnostics, predict outcomes
for new inputs, and sample paths from the posterior of Y (x) given the data.
The associated package DiceOptim (Picheny et al., 2016) makes functions
for running the so-called Efficient Global Optimization (EGO) algorithm
(Jones et al., 1998) with such a Kriging model available, e.g., function EI
for computing the Expected Improvement (EI) in a given location. See
Chapter 6 for details on the EGO algorithm for mixed input variables.

The relatively new package kergp (Deville et al., 2019) enables the user
to define and input their own covariance kernels into the model building
process. There, already a few categorical kernels have been implemented:

• q1Diag – use the identity matrix as the correlation matrix

• q1CompSymm – Method EC

• q1LowRank – Method LRCr

3.3 Implementation 33

• q1Symm – Method UC

Each of these functions basically generates a new S4 object of class covQual,
which has the slots shown in Table 3.2.

Internally, each of these q1* functions constructs a new object of class
covQual and fills in all the information. Many of the slots can be filled
generically from the given inputs. Only the number of parameters as well
as their names, ranges, and defaults differ between the methods. Moreover,
another function, corLev*, is called, which computes the cross-correlation
matrix. This matrix is then plugged in the slot covLevMat. Thus, in order
to incorporate a new method into kergp, we have to implement the two
functions named above.

Since the MC kernel is missing, we first implement the function q1Multi
with arguments factor, input, and cov. The first argument contains the
levels of the categorical variable, the second one provides its name, and cov
can take one of the values "corr", "homo", or "hete", defining whether the
result is a correlation kernel or a homoscedastic or heteroscedastic covariance
kernel. Here, we focus on correlation kernels. In q1Multi, s parameters,
phi1, phi2, . . . , phis, are initialized with the ranges set to [0,∞) and the
defaults set to 1.

The crucial part of corLevMulti is the computation of the cross-correla-
tion matrix given the vector par containing the parameter settings. This is
done by the following chunk of code:

1 vec = exp(-par)
2 R = vec %*% t(vec)
3 diag(R) = 1
4 return(R)

At the time the analysis of the application in Chapter 7 has been carried
out, LRC had not yet been implemented in kergp. Therefore, in that
chapter the following chunk of code has been used for the computation of
the correlation matrix:

1 l1 = sin(par)
2 l2 = cos(par)
3 Q = cbind(l1, l2)
4 P.star = Q %*% t(Q)
5 P = 1/(1 + 1e-4) * (P.star + 1e-4 * diag(1, nlevels))
6 return(P)

Note that this is the LRC2 method which is based on Equation (3.1) rather
than Equations (3.3) and (3.4).

We can now connect one of the kernels for the categorical variable v with
a kernel for the numerical inputs. The following example shows how to do
this for a single numerical input x with the Matérn

(
3
2

)
kernel and the LRC3

34 CHAPTER 3. LOW-RANK CORRELATION (LRC) APPROACH

Slot Type Description

covLevels function(1) Correlation or covariance function
for all levels.

covLevMat matrix(s× s) Matrix of cross-covariances or
cross-correlations.

hasGrad boolean(1) If TRUE, covLevels is able to return
an analytical gradient.

acceptLowerSqrt boolean(1) If TRUE, covLevels is able to return
the lower Cholesky root of the
correlation matrix.

label character(1) Name of the method.

d integer(1) Number of dimensions.

inputNames character(d) Input names.

nlevels integer(1) Number of levels of the categorical
input.

levels list(1) List of one character vector.
comprising the labels of the levels.

parN integer(1) Number of parameters.

parLower numeric(parN) Lower bounds of parameters.

parUpper numeric(parN) Upper bounds of parameters.

par numeric(parN) Parameter setting.

kernParNames character(parN) Names of parameters.

Table 3.2: The slots of class covQual.

3.3 Implementation 35

kernel for a categorical variable with 6 levels:

1 matern = kMatern(d = 1, nu = 3/2)
2 inputNames(matern) = "x"
3 lrc = q1LowRank(factor(levels = 1L:6L), input = "v", cov = "corr",

rank = 3)
4 kernel = covComp(formula = ~ matern() * lrc())

Of course, this can easily be extended to more than one numerical input
by using the argument d of the kernel function kMatern and by passing a
vector of names to inputNames(matern). The combination of kernels is done
using the function covComp with a formula stating that the kernels should
be multiplied (see line 4 of the code chunk above).

If the kernel is to be used in the EGO algorithm, we need to be able
to calculate some infill criterion, e.g., the EI. Function EI from package
DiceOptim has originally been implemented for purely numerical Kriging
models of the S4 class km to serve this purpose. Mixed inputs Kriging
models, however, are built with the function gp, resulting in an object of the
S3 class gp. Thus, we have to rewrite EI, which can be quite easily done
by changing the way the necessary information is extracted from the model
object. We call the new function getEI in order to prevent name clashes.
Since the changes from EI to getEI are trivial, we omit the code in this
place.

Chapter 4
Development of Benchmark
Functions

In this chapter, we develop a way of systematically generating test functions
with mixed numerical and categorical inputs. Section 4.1 provides a moti-
vation for the new approach, which is presented in Section 4.2. Section 4.3
contains an extension of the procedure with which the signs of some of the
cross-correlations of the mixed test function can be changed.

Large parts of this chapter have already been submitted and published
as a preprint (Kirchhoff and Kuhnt, 2020).

4.1 Motivation for Developing New Test Functions
In most papers concerning the design and analysis of computer experiments
with mixed inputs, the test functions are often a composition of relatively
simple continuous functions for different levels of the categorical variable.
Zhou et al. (2011), e.g., use two test functions composed of three sinoidal
and three polynomials of order 2, respectively, where all functions depend
on only one continuous variable. They also consider a data set from a data
center computer experiment that is used for predicting airflow and heat
transfer in the electronic equipment of an air-cooled data center. In this
example, there are five quantitative and three qualitative inputs with 24
combinations of levels. In the last example of their paper, they consider the
so-called Borehole function, a function that models the flow of water through
a borehole. Since this function has purely continuous inputs, three of the
variables were discretized so that only three values for each of these inputs
were considered.

In this chapter, we generalize their approach with the Borehole function
by using an arbitrary single-objective continuous test function with at least
two dimensions and then discretize one of its dimensions. Here, we call this

37

38 CHAPTER 4. BENCHMARK FUNCTIONS

procedure “slicing”. The approach is described in detail in the following
section.

4.2 Slicing of Continuous Test Functions

For continuous optimization problems, there are a variety of test functions
with known positions and values of the optima. Jamil and Yang (2013)
list a set of 175 benchmark functions with continuous inputs and review
the functions’ properties (e.g., modality and separability). Another testbed
containing many of such test functions is the Black-Box Optimization Bench-
marking (BBOB) set of noiseless test functions of the COCO (“COmparing
Continuous Optimizers”) platform (Hansen et al., 2011). Here, we take
advantage of these test functions by systematically turning them into test
functions for mixed input variables. We use the R package smoof (Bossek,
2017), which is an interface to many different Single- and Multi-Objective
Optimization test Functions (SMOOF) that are frequently used in the litera-
ture. However, the procedure described below can be used with any function
that has at least two real input dimensions such that one of these dimensions
can be discretized, or “sliced”. We will call such a function a “continuous
test function” – the term “continuous”, however, only refers to the type of
the input variables. The function itself does not have to be continuous, yet
the vast majority of smoof’s test functions are.

A continuous test function can be sliced in various ways. The most
straightforward way is to slice the dimension to be sliced between its bounds
equidistantly, i.e., if l and u are the lower and upper bounds, respectively,
the slice positions are posi = l + (i − 1) u−l

s−1 . Another way of defining
slice positions is by using an arbitrary quantile function of a continuous
distribution. Algorithm 2 shows how this can be done: For s slice positions,
the 1

s+1 , 2
s+1 through s

s+1 quantiles are obtained using the quantile function
qdist. These are then rescaled so that the lowest slice position is the lower
border of the domain, l, and the highest slice position is the upper border,
u.

Algorithm 2 Generate Slice Positions
1: procedure getSlicePos(qdist, s, l, u)
2: pos ← qdist

(
1

s+1 , . . . , s
s+1

)
3: pos ← (pos - pos[1])/(pos[s] - pos[1])
4: pos ← pos · (u - l) + l
5: return pos
6: end procedure

Figure 4.1 shows the two-dimensional Ackley function (the semi-trans-
parent surface), rescaled to the domain [0, 1]2, with seven slices in the first

4.2 Slicing of Continuous Test Functions 39

dimension x1 (the black lines). On the left panel, the slice positions were
generated using the continuous uniform distribution U(0, 1). On the right
panel, the slice positions were generated by the standard normal distribution
N (0, 1). With the uniform distribution, the slices spread equidistantly across
the domain. With the normal distribution, the distances between the slices
are smaller in the middle of the domain than next to the borders.

Figure 4.1: Ackley function with seven slices generated using the uniform
(left panel) and the standard normal distribution (right panel).

In Figure 4.1, the middle slice contains the global minimum regardless of
the quantile function used to generate the slice positions. This is because
both distributions are symmetric, the number of slices is uneven, and the
global optimum of the Ackley function is exactly in the middle of the domain.
The procedure in Algorithm 2, however, ignores the position of the global
optimum such that the global optimum of the sliced function is not the same
as the global optimum of the original function in general. Since it can be
crucial to know its exact position and value for benchmarking purposes, one
can exchange one of the slice positions with the position of the optimum,
thus ensuring that the optimum of the continuous function still exists in the
sliced version of it – regardless of the quantile function, domain, number of
slices, and characteristics of the function.

This is done as follows: Let x∗ = (x∗
1, . . . , x∗

q)
T be the position of the

global optimum of a q-dimensional continuous function. Furthermore, let
pos = (pos1, . . . , poss)

T be the vector of s slice positions generated with
Algorithm 2. W.l.o.g., we assume that the first dimension of the con-
tinuous function is to be sliced. Then we exchange the i-th initial slice
position posi with x∗

1, where i = arg mini |posi − x∗
1|. In the case that i

is ambiguous, i.e., two values in pos have the same distance to the first
dimension’s position of the global optimum, only the lower of the two corre-
sponding slice positions is swapped. This leads to the final slice positions

40 CHAPTER 4. BENCHMARK FUNCTIONS

pos = (pos1, . . . , posi−1, x∗
1, posi+1, . . . , poss)

T.
Figure 4.2 shows the Ackley function with six slices generated by the

quantile function of the standard normal distribution, where the position of
the optimum has been fixed using the procedure described above.

Figure 4.2: Ackley function with six slices generated using the uniform
distribution, where one of the slices has been moved such that it contains
the global minimum.

Figure 4.3 shows further examples of sliced test functions: the bird
function (Mishra, 2006), the Branin function (Branin, 1972), the Goldstein-
Price function (Goldstein and Price, 1971), and the Zettl function (Schwefel,
1993). All slices have been generated using the standard normal distribution
and the positions of the global optima have been fixed. We can see that the
resulting test functions have various properties.

Of course, there are different approaches to generating slice positions
than the ones introduced in this chapter. For example, one does not have
to fix the borders as two of the slices. Also, the slice positions could be
generated randomly or be set manually so they fulfill some desired properties.
However, in this work we focus on the methods described above.

41

(a) Bird function (b) Branin function

(c) Goldstein-Price function (d) Zettl function

Figure 4.3: Different sliced test functions with seven slices each and fixed
global optima. The slice positions were generated using the standard normal
distribution.

4.3 Turning of Slices

In the simulation studies of this dissertation, there is a strong focus on
including both positive and negative cross-correlations for a fair comparison
of the different correlation kernels. Sometimes the cross-correlations between
the slices of a continuous test function, however, turn out to be solely positive.
In this section, we show how in such a case slices of a sliced function can be
turned such that negative cross-correlations are introduced.

This could be done by just negating all the values of the slices to be
turned. Here, we introduce a more sophisticated approach that ensures that
the global optimum of the original function remains the global optimum
in the manipulated function. For a minimization problem, we do this as

42 CHAPTER 4. BENCHMARK FUNCTIONS

follows: The idea is to take the function value in the global optimum, y∗,
and add a function that is strictly positive. Assume that we want to turn
the i-th slice, i ∈ {1, . . . , s}, and that the global optimum is in a different
slice. First, we take the function value of the original sliced function, f(i, ·, ·),
and subtract it from the maximum function value of the slice, ymax

i . This
difference is in

[
0, ymax

i − ymin
i

]
. Since we do not know ymax

i , we have to
estimate it by running a nonlinear optimization method, returning ŷmax

i .
Then, z(i,x) := (ŷmax

i − f(i,x)) ∈
[
ŷmax

i − ymax
i , ŷmax

i − ymin
i

]
. Because

ŷmax
i ≤ ymax

i , z(i,x) might take negative values. To prevent this from
happening, we multiply z(i,x) with the cumulative density function of the
exponential distribution with λ = 0.5 in z(i,x), which smoothly sets negative
values to zero. Since we want the global optimum to be unique, we add an
arbitrary, strictly positive number, in this case a tenth of ŷmax

i (assuming
ŷmax

i > 0). All in all, we get as the function value in the turned i-th slice in
point x:

y∗ + z(i,x) · (1− exp (−0.5 · z(i,x))) + ŷmax
i

10 , (4.1)

which is in
[
y∗ +

ŷmax
i
10 , y∗ + ŷmax

i − ymin
i +

ŷmax
i
10

]
.

Figure 4.4 shows the Ackley function, where the first, second, and fourth
slice have been turned using Equation (4.1). The function value of the global
optimum is y∗ = 0 such that the lower bounds of the turned slices are ŷmax

i
10 in

this case. If the average function values of the turned slices should be more
similar to those of the other slices, these lower bounds could be increased.
However, in the simulation studies of the following chapters, ŷmax

i
10 has been

used, which potentially makes it harder for an optimization algorithm to
find the global optimum and not one of the local minima of the turned slices,
which are only slightly higher.

Above, we have shown that slices of a sliced test function can be turned
without changing the position and value of the function’s global optimum.
This is useful in order to introduce negative cross-correlations to a sliced
test function that would otherwise have none or only a few. However,
the procedure does not determine how many slices should be turned. To
answer this question, let us assume for the sake of simplicity that the cross-
correlations between our s slices are +1 without exception. Further, we
assume that the turning of a slice changes the sign of the cross-correlations
between this slice and any of the other s− 1 slices. This is not necessarily true
because the procedure in Equation (4.1) might decrease the perfect correlation
very slightly due to the multiplication with a cumulative density function.

However, this effect should be negligible. Let ncorr :=
s(s− 1)

2 be the number
of cross-correlations, which equals the number of elements below (or above)
the main diagonal of the cross-correlation matrix. Let n

(t)
plus and n

(t)
minus be

the number of positive and negative cross-correlations after turning t of the s

4.3 Turning of Slices 43

Figure 4.4: Ackley function with six slices generated using the uniform
distribution, where one of the slices has been moved such that it contains
the global minimum and the first, second, and fourth slice have been turned.

slices, i.e., n
(t)
corr = n

(t)
plus + n

(t)
minus. Then, before turning any slices n0

plus equals
n
(0)
corr and n

(0)
minus is 0. After turning one slice, all s− 1 cross-correlations

between this slice and every other slice are switched, i.e. n
(1)
minus = s− 1.

When another slice is turned, again s− 1 cross-correlations are switched. The
cross-correlation between the slice that was turned in the first step and the one
that is turned now has already been switched to negative and is now switched
back to +1. This means that the number of negative cross-corrleations is
increased by s− 3 instead of s− 1: n

(2)
minus = (s− 1) + (s− 3). This scheme

continues such that n
(t)
minus =

t∑
i=1

(s− (2i− 1)) = st− t(t + 1) + t = t(s− t)

for t ∈ {1, 2, . . . , s}. The first derivative d
dt

n
(t)
minus = s− 2t is 0 for t =

s

2,

and the second derivative d2

dt2 n
(t)
minus = −2 is negative, which means that

the maximum of n
(t)
minus is in t =

s

2. If s is uneven, the resulting t is not an

integer. In this case, t =
s− 1

2 and t =
s + 1

2 both yield the same number

of negative cross-correlations due to the parabolic functional shape of n
(t)
minus:

n
(s−1

2)
minus =

s− 1
2

(
s− s− 1

2

)
=

s2 − 1
4 =

s + 1
2

(
s− s + 1

2

)
= n

(s+1
2)

minus .
Thus, the highest number of negative cross-correlations can be introduced

into a sliced function with only positive cross-correlations by turning half of
the slices. Thereby, the slice that contains the global optimum should not
be turned in order to preserve it.

Chapter 5
Simulation Study on LRC in
Estimation and Prediction

In this chapter, we would like to compare the performance of the Low-Rank
Correlation kernels with different ranks, LRCr, to the parsimonious kernels
EC and MC as well as the unrestrictive kernel UC. We therefore generate a
set of sliced test functions and train GP models with the different kernels
on a number of CSLHDs in order to assess the accuracy of cross-correlation
estimates and predictions over the whole domain.

In Section 5.1, this set of test functions is introduced. Section 5.2 contains
the comparison of the estimation accuracies of the cross-correlation matrices.
Section 5.3 focuses on the response surfaces predicted by the different models.
Large parts of this chapter have already been submitted and published as a
preprint (Kirchhoff and Kuhnt, 2020).

5.1 Test Functions

As test functions we take the Ackley, the Alpine N. 1, the Deflected Cor-
rugated Spring, and the Double-Sum function, which are included in the
R package smoof (Bossek, 2017). All of these test functions are three-
dimensional, have been sliced in the first dimension equidistantly, and one
of the slices has been swapped with the position of the global optimum as
described in Chapter 4. Moreover, this choice of test functions offers different
properties concerning multimodality, differentiability, and separability. A
d-dimensional function is called separable if it can be expressed as a sum of
d functions that depend on a single variable each (Hadley, 1964). Table 5.1
shows the characteristics of the selected test functions.

The first function is the Ackley function, also known as Ackley’s path

46 CHAPTER 5. SIMULATION STUDY ON LRC

Test Function Multimodal Differentiable Separable

Ackley yes yes no
Alpine N. 1 yes no yes
Defl. Corr. Spring yes yes no
Double-Sum no yes no

Table 5.1: Properties of the test functions.

function (Ackley, 2012):

fAck(w) =− 20 · exp

⎛⎝−0.2 ·

√1
2

(
posv +

2∑
i=1

xi

)⎞⎠−
exp

(
1
2

(
cos (2πposv) +

2∑
i=1

cos (2πxi)

))
,

(5.1)

where x ∈ [−32.768, 32.768]2 and posv is the v-th slice position of the vector

pos =
{
(−32.77, 0, 10.92, 32.77)T , for s = 4
(−32.77,−19.66, 0, 6.55, 19.66, 32.77)T , for s = 6.

The global minimum of this function has the value 0 and lies in

(posv, x1, x2)
T = (0, 0, 0)T .

The second function is the Alpine N. 1 function (Rahnamayan et al.,
2007):

fAlpN1(w) = |posv sin(posv) + 0.1posv|+
2∑

i=1
|xi sin(xi) + 0.1xi| , (5.2)

where x ∈ [−10, 10]2 and posv is the v-th slice position of the vector

pos =
{
(−10, 0, 3.33, 10)T , for s = 4
(−10,−6, 0, 2, 6, 10)T , for s = 6.

The global minimum of this function has the value 0 and lies in

(posv, x1, x2)
T = (0, 0, 0)T .

The third function is the Deflected Corrugated Spring function (Al-Roomi,
2015):

fDCS(w) = 0.1
(
(posv − 5)2 +

2∑
i=1

(xi − 5)2
)
−

cos

⎛⎝5

√(posv − 5)2 +
2∑

i=1
(xi − 5)2

⎞⎠ ,
(5.3)

5.1 Test Functions 47

where x ∈ [0, 10]2 and posv is the v-th slice position of the vector

pos =
{
(0, 5, 6.67, 10)T , for s = 4
(0, 2, 5, 6, 8, 10)T , for s = 6.

The global minimum of this function has the value -1 and lies in

(posv, x1, x2)
T = (5, 5, 5)T .

The fourth function is the Double-Sum function, also known as the
rotated hyper-ellipsoid function (Schwefel, 1993):

fDS(w) =
2∑

i=0

⎛⎝posv +
i∑

j=1
xj

⎞⎠2

, (5.4)

where the empty sum
0∑

j=1
xj := 0, x ∈ [−65.536, 65.536]2, and posv is the

v-th slice position of the vector

pos =
{
(−65.54, 0, 21.85, 65.54)T , for s = 4
(−65.54,−39.32, 0, 13.11, 39.32, 65.54)T , for s = 6.

The global minimum of this function has the value 0 and lies in

(posv, x1, x2)
T = (0, 0, 0)T .

For each of the sliced functions, we compute pairwise empirical correlation
coefficients for all pairs of two slices. This is done using a grid of 100× 100
equidistant values spanning the whole domain of the two numerical variables
of the test function. Then, the function values in these points are computed
for all slices in order to estimate the cross-correlations. Figure 5.1 shows
these empirical cross-correlations. It turns out that all the slices of the Ackley,
Alpine N. 1, and the Deflected Corrugated Spring function are positively
correlated. The slices of the Alpine N. 1 function are perfectly correlated
without exception because the function is separable, which means that the
categorical variable only changes an additive term that is independent of the
numerical variables. Only the Double-Sum function also has some negative
correlations between some of its slices.

A high positive or negative cross-correlation between two slices means
that information from one slice can be beneficial for the model and prediction
accuracy in the other slice and vice versa.

Since many of the empirical cross-correlations of the selected test functions
are positive, and some kernels are expected to be better at estimating positive
over negative correlations, the set of test functions might not be suitable
for a fair comparison as is. For this reason, we also consider versions with

48 CHAPTER 5. SIMULATION STUDY ON LRC

●

●

●
●

●

●

●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

1 2 3 4
Test Function

P
ai

rw
is

e
C

or
re

la
tio

ns Test Function
●

●

●

●

1 Ackley
2 Alpine N. 1
3 Deflected Corrugated Spring
4 Double−Sum

s
● 4

6

Figure 5.1: Empirical cross-correlations of the test functions with 4 and 6
slices, respectively.

inserted negative cross-correlations of the functions that originally have only
positive cross-correlations. This is done by turning half of the slices. We
randomly choose to turn slices one and three of the functions for s = 4,
and slices one, two, and four for s = 6, making sure not to select the slice
containing the global minimum.

Figure 5.2 shows that the versions with turned slices indeed contain many
negative cross-correlations, resulting in a more evenly spreaded correlation
structure of the slices.

49

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

1 2 3
Turned Test Function

P
ai

rw
is

e
C

or
re

la
tio

ns Turned Test Function
●

●

●

1 Ackley
2 Alpine N. 1
3 Deflected Corrugated Spring

s
● 4

6

Figure 5.2: Empirical cross-correlations of the turned test functions with 4
and 6 slices, respectively.

5.2 Estimation of Cross-Correlations
We first compare the estimated cross-correlation values to the pairwise
empirical correlation coefficients obtained in Section 5.1. We generate 100
random CSLHDs with n = 4 or n = 8 points per slice, respectively. The
generation of the CSLHDs has been implemented in R according to the
algorithm given in Huang et al. (2016) (see Section A.1 of Appendix A for
the code). The EC, MC, UC, and LRCr models are fitted to the resulting
values for each of the sliced functions. Since the rank r of LRCr must be lower
than s, we consider LRC2 and LRC3 for s = 4 while for s = 6 also LRC4
and LRC5 are considered. Table 5.2 contrasts the number of parameters that
have to be estimated for the categorical variable using the different models.

The goodness of the estimation is measured using the RMSE between
estimated cross-correlations τ̂ij and the empirical correlation coefficients τ̃ij :

RMSE (τ̂ , τ̃) =

√ s∑
i=2

∑
j<i

(τ̂ij − τ̃ij)
2.

Thus, a good estimation of the cross-correlations would result in low RMSEs.
Figure 5.3 shows the boxplots of the RMSEs for the Ackley function

with s = 4 slices. For the original function, the cross-correlation matrices
of the EC model exhibit the smallest RMSEs followed by MC while LRC2,
LRC3, and UC have larger errors. These models, however, improve to a much
greater extent when a bigger design is used. Then, UC has the lowest median

50 CHAPTER 5. SIMULATION STUDY ON LRC

Model Number of Parameters

s = 4 s = 6

EC 1 1
LRC2 3 5
MC 4 6
LRC3 5 9
LRC4 – 12
LRC5 – 14
UC 6 15

Table 5.2: Numbers of parameters needed for modeling the categorical inputs.

of RMSEs but still a higher variance than EC. With turned slices, LRC3 and
UC are distinctly better than EC and MC. LRC2 has a high variance for
n = 4. For n = 8, the variance is heavily reduced and it performs almost
identically good as LRC3 and even UC.

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●

●
●

●

original function turned slices

EC LRC2 MC LRC3 UC EC LRC2 MC LRC3 UC

0.0

0.5

1.0

1.5

model

R
M

S
E n

4
8

Figure 5.3: RMSEs of the cross-correlation estimates of the Ackley function
with s = 4 slices.

For s = 6 slices, the results are similar, as can be seen in Figure 5.4. EC
performs best on the original function, followed by MC, the LRCr models
with r in an ascending order, and UC. Unlike with s = 4, here the models
with a higher number of parameters do not improve as much when the design
size is doubled. Presumably, an even larger number of points in the design
is needed for the models to show their strengths. With turned slices and

5.2 Estimation of Cross-Correlations 51

n = 8, most model fits of LRC3, LRC4, LRC5, and UC perform similarly well.
However, LRC3 and LRC4 have some outliers with high RMSEs and also
the high variance for n = 4 makes LRC5 and UC the overall most accurate
models with this function.

●

●
●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●
●

original function turned slices

EC LRC2 MC LRC3 LRC4 LRC5 UC EC LRC2 MC LRC3 LRC4 LRC5 UC

0.0

0.5

1.0

model

R
M

S
E n

4
8

Figure 5.4: RMSEs of the cross-correlation estimates of the Ackley function
with s = 6 slices.

The RMSEs of the Alpine N. 1 function with s = 4 and s = 6 are shown
in Figures 5.5 and 5.6, respectively. For s = 4, again EC and MC performed
better on the unmanipulated function. The rest of the models perform
similarly well and improve greatly when n = 8 points per slice are in the
design. For the function with turned slices, EC and MC are distinctly worse
than the LRCr and UC models. For n = 4, UC performs best, followed by
the LRCr kernels, which are better the higher their number of parameters is.
For n = 8, on the other hand, it is the other way around: LRC2 outperforms
LRC3 and UC. For s = 6 slices, the results are very similar on the original
function, with the exception of LRC2, which performs comparably well as
MC for n = 8. For the manipulated function and n = 8, LRCr with a
medium rank between 3 and 5 performs the best, while UC is slightly worse
and LRC2 is only a little better than MC.

Figure 5.7 shows the results for the Deflected Corrugated Spring function
with 4 slices. On the original function, EC performs best once more, inde-
pendently from the size of the design. The LRCr and UC models are better
the higher the number of parameters and the higher the number of design
points are, but they do not get as good as MC and EC for the considered
values of n. On the manipulated function, the LRCr and UC models this
time seem to need bigger designs to display their advantage in the estimation
of negative cross-correlations as their performances are not clearly better

52 CHAPTER 5. SIMULATION STUDY ON LRC

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●●

●

original function turned slices

EC LRC2 MC LRC3 UC EC LRC2 MC LRC3 UC

0.0

0.5

1.0

1.5

model

R
M

S
E n

4
8

Figure 5.5: RMSEs of the cross-correlation estimates of the Alpine N. 1
function with s = 4 slices.

than those of EC and MC for n = 4. For n = 8, however, they are. Also,
the RMSEs of EC and MC are bounded at above 0.6 while the other models
produce many RMSEs lower than that.

The boxplots in Figure 5.8 look very similar to those in Figure 5.7. Here,
LRC2 has higher RMSEs than EC and MC, even for n = 8. The other LRCr

models and UC, however, outperform EC and MC on the function with
turned slices.

The results of the Double-Sum function with s = 4 and s = 6 are shown
in Figures 5.9 and 5.10, respectively. With s = 4 slices and n = 4 design
points per slice, the median performance of MC is best and the variance of
the RMSEs is the smallest. LRCr and UC are slightly worse, while with
these models a lower number of parameters seems to result in somewhat
smaller RMSEs. The EC model, however, produces the worst results. For
n = 8, LRC2 performs slightly better than MC, closely followed by LRC3
and UC. With s = 6 slices, MC is also the best for n = 4. When the design
size is bigger, the LRCr and UC models improve so that LRC3 through LRC5
and UC perform better.

Recapitulating this section, the EC and MC models seem the best choice
when no or not many negative cross-correlations are assumed to be present.
Else, LRCr models with a medium to high r (e.g., LRC3, LRC4) seem to
display solid results on functions with many negative cross-correlations.

5.2 Estimation of Cross-Correlations 53

●
●

●●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

original function turned slices

EC LRC2 MC LRC3 LRC4 LRC5 UC EC LRC2 MC LRC3 LRC4 LRC5 UC

0.0

0.5

1.0

1.5

model

R
M

S
E n

4
8

Figure 5.6: RMSEs of the cross-correlation estimates of the Alpine N. 1
function with s = 6 slices.

●
●

●

●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●
●

●
●
●
●●
●

●

●

original function turned slices

EC LRC2 MC LRC3 UC EC LRC2 MC LRC3 UC

0.0

0.5

1.0

1.5

model

R
M

S
E n

4
8

Figure 5.7: RMSEs of the cross-correlation estimates of the Deflected Corru-
gated Spring function with s = 4 slices.

54 CHAPTER 5. SIMULATION STUDY ON LRC

●
●●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●
●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●
●
●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

original function turned slices

EC LRC2 MC LRC3 LRC4 LRC5 UC EC LRC2 MC LRC3 LRC4 LRC5 UC

0.0

0.5

1.0

model

R
M

S
E n

4
8

Figure 5.8: RMSEs of the cross-correlation estimates of the Deflected Corru-
gated Spring function with s = 6 slices.

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

0.0

0.5

1.0

EC LRC2 MC LRC3 UC

model

R
M

S
E n

4
8

Figure 5.9: RMSEs of the cross-correlation estimates of the Double-Sum
function with s = 4 slices.

5.2 Estimation of Cross-Correlations 55

●
●

●

●

●

●●●
●
●
●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

1.25

EC LRC2 MC LRC3 LRC4 LRC5 UC

model

R
M

S
E n

4
8

Figure 5.10: RMSEs of the cross-correlation estimates of the Double-Sum
function with s = 6 slices.

56 CHAPTER 5. SIMULATION STUDY ON LRC

5.3 Prediction of the Response Surface
In this section, we compare the accuracies of the response surfaces predicted
by the different models. For this purpose, we generate a random LHD
with 1000 points. This design is – adjusted for the bounds of the different
functions’ domains – repeated for every level of the categorical variable and
then used to determine the true function values.

We consider the same models, CSLHDs, and functions as in the previous
section. The models’ predicted values are compared to the true ones using
the Q2 criterion:

Q2 = 1−
∑

i (yi − ŷi)∑
i (yi − ȳ)

,

where yi is the i-th true function value, ŷi is the model’s prediction in the
same point, and ȳ is the mean of all observations on the test design. A
negative value of Q2 indicates that the predictions are "‘worse than the
mean"’, i.e., we would have had a better Q2 score of 0 if we just used ȳ as
the prediction at each point of the domain. The closer Q2 gets to 1, the
closer the predictions are to the true values.

Figure 5.11 shows the values of Q2 for the Ackley function with s = 4
slices. The left hand side of the figure shows the values for the original
function. For the smaller CSLHD, the medians of all functions are close to 0,
i.e., no more than half of the repetitions per model resulted in a model whose
predictions are better than the mean. In general, UC and LRC2 followed
by MC perform better than the other two models on these repetitions. For
n = 8 points per slice in the CSLHDs, all medians but the one of EC are
increased. UC shows still the best results. Here, MC is slightly better than
LRC2 and LRC3, which perform similarly well.

When two of the slices are turned such that more negative cross-corre-
lations are present, UC is the only model with very good results for both
values of n. LRC2 performs somewhat better than LRC3 for n = 4. For
n = 8, however, LRC3 shows better results. Most repetitions of fitting EC
and MC models yielded results around 0, yet there are some with (very) high
values of Q2.

Figure 5.12 shows the results for the same function with s = 6 slices.
Here, the same seems to apply as before: For the original function, n = 4
points per slice seem to be insufficient for accurate model fits. Yet, LRC2
and UC achieve higher scores of the Q2 criterion than the other models. EC
performs especially bad, with some values reaching down to below -2. For
n = 8, LRC5 has the highest median of Q2 values but the other models
(except for EC) perform similarly well. When half the slices are turned,
EC and MC are worst, and UC, LRC5, and LRC3 are the best models.
Here, a higher rank r seems to improve the model accuracy of LRCr with
a dip in performance at LRC4. This might be because not every low-rank
approximation can approximate each correlation matrix equally well – there

5.3 Prediction of the Response Surface 57

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●●●

●
●

●

●

●

●

●●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

original function turned slices

EC LRC2 MC LRC3 UC EC LRC2 MC LRC3 UC

−1.0

−0.5

0.0

0.5

1.0

model

Q
2

n
4
8

Figure 5.11: Q2 values of the Ackley function with s = 4 slices.

might be a structure in the estimated correlation matrices implied by the
LRC4 method that does not fit to the matrix of empirical correlations as
good as the structure of, e.g., LRC3.

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●
●
●
●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●
●
●

●
●
●
●●
●

●●
●
●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●●●●●●●●●
●●
● ●

●
●●●
●
●

●

●●●

●●

●●●●●
●

●●

●

●

●

●

●

original function turned slices

EC LRC2 MC LRC3 LRC4 LRC5 UC EC LRC2 MC LRC3 LRC4 LRC5 UC

−2

−1

0

1

model

Q
2

n
4
8

Figure 5.12: Q2 values of the Ackley function with s = 6 slices.

Figure 5.13 shows the Q2 values for the Alpine N. 1 function with s = 4.
For the original function and the small designs with n = 4, the median
performances are higher the higher the number of parameters is. With the
bigger designs, MC shows the biggest improvement and is even better than
the UC model. When half of the function’s slices are turned, the overall
performance of the models gets better. UC and the LRCr models deal

58 CHAPTER 5. SIMULATION STUDY ON LRC

slightly better with fewer points than the other models. For the bigger
designs, interestingly, the medians of MC and EC are close to the median of
UC while LRC2 and LRC3 are worse.

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●
●
● ●

●●

● ●

●

●

original function turned slices

EC LRC2 MC LRC3 UC EC LRC2 MC LRC3 UC

0.0

0.5

1.0

model

Q
2

n
4
8

Figure 5.13: Q2 values of the Alpine N. 1 function with s = 4 slices.

For s = 6 slices on the unmanipulated function, MC is the best model
for both values of n, as can be seen in Figure 5.14. For the function with
turned slices and n = 4, more parameters tend to lead to better results while
the median performance of MC is between LRC3 and LRC4. For n = 8, EC
and MC improve drastically and show even better results than UC. This
could not have been expected from the results of the previous section as the
higher-rank LRCr and UC models show a much more accurate estimation of
the correlation matrix than EC and MC (see Figure 5.6). One explanation
might be that EC and MC estimate the cross-correlations to be 0 because
they are unable to capture the correlations of -1, which in turn leads to
models that ignore the points of the other levels of the categorical variable.
In this case, obviously, these individual models outperform the methods that
use slightly inaccurate estimates of the cross-correlations.

Figures 5.15 and 5.16 show the results for the Deflected Corrugated
Spring function. On the original functions for both s = 4 and s = 6, MC is
the best model with the smaller design size. With n = 8, EC, MC, and UC
are similarly good and better than LRCr, which is better the higher the rank
r. With turned slices, LRC3 and LRC5 for s = 4 and s = 6, respectively,
UC, and MC perform comparably well. Interestingly, the values of Q2 of all
models are lower with the turned slices than with the original function.

The results obtained from fitting the models to the Double-Sum function
are the worst among the functions considered in this simulation study. Figure
5.17 shows the boxplots for s = 4. For n = 4, almost all Q2 values are

5.3 Prediction of the Response Surface 59

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●
●

●

●

●

●●

●

●●

●
●●

●●

●

●

original function turned slices

EC LRC2 MC LRC3 LRC4 LRC5 UC EC LRC2 MC LRC3 LRC4 LRC5 UC

0.0

0.5

1.0

model

Q
2

n
4
8

Figure 5.14: Q2 values of the Alpine N. 1 function with s = 6 slices.

negative – only LRC2 and LRC3 achieve some values distinctly greater than
0. For n = 8, the results are better, and again the ones from the LRC models
are better than those of MC and EC. Still, UC displays better accuracies.

Finally, Figure 5.18 contains the boxplots for the Double-Sum function
with s = 6 slices. For n = 4, LRC2 shows the most positive values of Q2

among the considered models. With a higher r, the models get weaker,
while LRC5 is about as good as MC. For n = 8, LRC3 and UC perform
slightly better than the other LRC models. The medians of MC and EC are
approximately 0.

In summary, it can be said that UC shows the overall best results,
which comes at the cost of estimating a number of parameters that grows
quadratically with the number of levels of the categorical variable. MC
performs remarkably well despite its weak ability to estimate cross-correla-
tion matrices with negative elements. The LRCr models perform reasonably
well most of the time and are an alternative to UC and MC especially when it
is assumed that many negative cross-correlations are present and the number
of parameters of UC is not manageable. The EC model sometimes achieves
surprisingly good results but in most of the cases it cannot keep up with the
other models.

60 CHAPTER 5. SIMULATION STUDY ON LRC

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●

●●●●

●

●

●●

●

●

●

●

●

original function turned slices

EC LRC2 MC LRC3 UC EC LRC2 MC LRC3 UC

−0.5

0.0

0.5

1.0

model

Q
2

n
4
8

Figure 5.15: Q2 values of the Deflected Corrugated Spring function with
s = 4 slices.

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●

●

●●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

original function turned slices

EC LRC2 MC LRC3 LRC4 LRC5 UC EC LRC2 MC LRC3 LRC4 LRC5 UC

0.0

0.5

1.0

model

Q
2

n
4
8

Figure 5.16: Q2 values of the Deflected Corrugated Spring function with
s = 6 slices.

5.3 Prediction of the Response Surface 61

●
●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●●

●●●0.00

0.25

0.50

0.75

1.00

EC LRC2 MC LRC3 UC

model

Q
2

n
4
8

Figure 5.17: Q2 values of the Double-Sum function with s = 4 slices.

●

●

●

●

●
●

●

●

●●

●

●

●
●
●●

●

●●

●

●

●●●●

●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●0.00

0.25

0.50

0.75

1.00

EC LRC2 MC LRC3 LRC4 LRC5 UC

model

Q
2

n
4
8

Figure 5.18: Q2 values of the Double-Sum function with s = 6 slices.

Chapter 6
Efficient Global Optimization for
Mixed Inputs

The GP models introduced in the previous chapters are often used as sur-
rogates of an expensive simulation model. This is because they provide
quick predictions at points in which the simulation model has not been
evaluated yet. GP models also give a complete predictive distribution since
the marginal distribution in the new point is Gaussian with known mean
and variance (see Section 2.1). Section 6.1 shows how this property of GP
models can be utilized for the efficient global optimization of a black-box
function. In Section 6.2, the performance of the correlation kernels for cat-
egorical variables in the context of the EGO algorithm are compared in a
simulation study. In Sections 6.3 and 6.4, the procedure is applied to two
applications: first, a hyperparameter tuning of an object detection algorithm
and second, the optimization of the throughput of a simulation model of a
logistics production process.

6.1 The Efficient Global Optimization (EGO) Al-
gorithm

Jones et al. (1998) introduce the so-called Efficient Global Optimization
(EGO) algorithm – an optimization procedure where points are added to an
initial design sequentially. In this section, we revisit this algorithm for the
case of a mixed input space.

First, an appropriate space-filling design is evaluated. Then, a GP model
is built on the resulting data. This step might include a transformation
of the objective variable (e.g., the log transformation, ln(y), or the inverse
transformation, − 1

y), and/or a model selection step. Diagnostic plots (see
Section 2.4) are a helpful tool in this early stage in order to ensure that a

64 CHAPTER 6. EGO FOR MIXED INPUTS

satisfactory model is used, which is very important for the whole procedure.
With the model, the so-called Expected Improvement (EI) can be computed
in any unseen point w∗:

E (I(w∗)) = E (max (ymin − Y (w∗), 0)) ,

where ymin is the current best value of the target variable, and Y (w∗) is a
normally distributed random variable with mean and standard deviation
given by the model in point w∗. Then, the true (but at the moment unknown)
value of the black-box function, y(w∗), can be viewed as a realization of
Y (w∗), and E (I(w∗)) is indeed the expected value of the amount y(w∗)
may improve our current minimum.

The EI can also be expressed in closed form:

E (I(w∗)) = (ymin − ŷ)Φ
(

ymin − ŷ

ŝ

)
+ ŝϕ

(
ymin − ŷ

ŝ

)
,

where Φ is the standard normal cumulative distribution function, ϕ is the
standard normal density, ŷ := ŷ(w∗) is the prediction, and ŝ := ŝ(w∗) the
respective standard deviation of the model.

In the EGO framework, the point w∗ that maximizes the EI is evaluated,
the model is refit, and another point maximizing the EI is searched. These
steps are repeated until a stop criterion is met. Jones et al. (1998) stop as
soon as the EI is less than 1% of the untransformed current best function
value. Another stop criterion often used in applications is to stop when a
pre-defined number of function evaluations is reached. The latter one can
help reduce the total time spent for the optimization, especially when the
black-box function is very expensive to evaluate and the goal is to find a
“good” solution (not necessarily the optimal solution) in a reasonable amount
of time.

Additionally to the diagnostic plots introduced in Section 2.4, there is
another plot that is especially suitable in the context of the EGO algorithm:
The Expected Improvements resulting from the LOO cross-validation, i.e.,
E (I (wi)) based on ŷ−i (wi) and ŝ−i (wi), versus the true function values
y(wi). In a minimization task, a good model should tend to yield high EIs
for low function values and low EIs for high function values.

Besides the Expected Improvement, there are other infill criteria like the
Lower Confidence Bound (LCB) or the Probability of Improvement (PoI).
See Jones (2001) for details on these infill criteria.

The original EGO algorithm focuses on purely numerical inputs rather
than mixed input variables. However, with the extended GP models con-
sidered in this work, the procedure can be generalized with only minor
adjustments. This is because the extended GP models specify the predictive
distributions in an unseen point the same way the original GP model does.
The predictive distribution along with the current best found function value

65

are all that is needed in order to compute the corresponding expected im-
provement or other infill criteria. The only adjustment has to be made when
optimizing the infill criterion as the search space now contains both numerical
and categorical variables. When the categorical inputs are decoded as inte-
gers as done in this work, this kind of optimization problem is referred to as a
Mixed Integer Nonlinear Programming (MINLP) problem. MINLP problems
can be handled in different ways. For a relatively low number of combinations
of the categorical variables, s, it is feasible to run a standard nonlinear solver
like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm with
box constraints (L-BFGS-B, Byrd et al., 1995) for all of these combinations
separately, if necessary with a number of restarts using different initial points.
If some or all of the numerical variables are discrete rather than continuous, it
is necessary to internally transform a possible solution into a feasible variable
setting, e.g., by rounding to the next integer, before evaluating the infill
criterion. Another possibility is to use a genetic algorithm (see, e.g., Mebane
Jr and Sekhon, 2011), which can be particularly helpful for a higher s or
with solely discrete variables – in this case no transformations of solutions
are required (see Section 7.5 for an example). Genetic algorithms can also be
applied with continuous inputs when an internal mapping between a set of
integers to values in the continuous domain is implemented. Then, however,
the search is rather coarse and it does not utilize approximations to the
black-box function’s gradient. In general, the use of separate L-BFGS-B runs
is preferable as this method works with finite-difference approximations to
the gradient, which lead to a more efficient search towards a local minimum,
and any value on the continuous scale can be considered instead of a rather
small number of points.

If an optimization problem involves more than one objective variable to
optimize simultaneously, it is called a multi-objective optimization problem.
There are different approaches on how to extend the EGO framework for this
case. We will not go into detail here since these methods can be applied on
mixed numerical and categorical input variables by using the extended Kriging
models introduced in this work without further adjustments. Chapter 7,
however, deals with an exemplary multi-objective minimization task in the
context of shift planning in logistic high-bay warehouse operations. In that
chapter, we give details on how the problem at hand has been solved.

6.2 Simulation Study on EGO

This section is concerned with a comparison of the kernels for the categorical
variable in the context of the EGO algorithm. Therefor, we consider the
distance of the best value found after a fixed number of EGO iterations to the
exact value of the global optimum, using a specific kernel and a pre-defined
number of points in the initial design. Just like with the simulation study

66 CHAPTER 6. EGO FOR MIXED INPUTS

●

●

●
●
●

●

●

●

●

●

●

●

0

5

10

15

EC LRC2 MC LRC3 UC

Model

D
is

ta
nc

e

n
4
8

Figure 6.1: Distances from the best found function values to the exact global
minimum on the Ackley function with s = 4 slices.

in Chapter 5, we use many different CSLHDs as the initial designs for both
n = 4 and n = 8 points per slice – here, we consider 50 different instances.
The number of slices is s = 4 and s = 6, respectively. For s = 4, the EC,
MC, UC, LRC2, and LRC3 kernels are compared. With s = 6, also LRC4
and LRC5 are considered. For a fair comparison, the total budget of function
evaluations for every optimization is set to 10 · s – i.e., a lower n allows for
more EGO iterations than a higher n. For every function considered in this
study, there are many model fits involved ((50 optimizations) · (2 values
for s) · (values for n) · (up to 7 kernels) · (up to 36 EGO iterations) · (2
versions of the function (original/turned slices))) and each EGO iteration
includes another five optimization runs for every slice of the function in order
to maximize the EI. Because of this, we focus on the Ackley function and its
version with turned slices as described in Chapter 5.

Figure 6.1 shows boxplots of the distances between the minimal found
function values ŷ∗i of the 50 optimizations with different initial CSLHDs and
the global minimum y∗ = 0. For all kernels, the distances with n = 4 points
per slice are smaller than with n = 8. This means that here a higher number
of EGO iterations based on a smaller initial design yields better results than
vice versa. The MC kernel gives the overall highest distances while LRC3
shows the best results. The other kernel are almost as good as LRC3. These
results are quite surprising since in Chapter 5, we showed that the RMSEs
of the estimated cross-correlations of LRC3 and UC were the highest of the
considered kernels on this function – in particular, they were much higher
than MC’s RMSEs (compare Figure 5.3).

Figure 6.2 shows the results for the Ackley function with s = 6 slices.
Here, the differences between the smaller and the bigger initial designs are
less pronounced. The best results are achieved with n = 4 and MC, LRC4,
and LRC5, where the LRC kernels have a smaller variance. Again, there

6.2 Simulation Study on EGO 67

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

EC LRC2 MC LRC3 LRC4 LRC5 UC

Model

D
is

ta
nc

e

n
4
8

Figure 6.2: Distances from the best found function values to the exact global
minimum on the Ackley function with s = 6 slices.

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.21

2.23

2.25

2.27

EC LRC2 MC LRC3 UC

Model

D
is

ta
nc

e

n
4
8

Figure 6.3: Distances from the best found function values to the exact global
minimum on the Ackley function with s = 4 and two turned slices.

is no apparent interrelationship between the goodness of the estimation of
cross-correlations shown in Figure 5.4 and the outcome of the optimization
runs.

In Figure 6.3, the results for the Ackley function with s = 4 and two
turned slices are shown. Here – in contrast to the results on the unmanipu-
lated Ackley function – all medians and variances except for UC are lower
with n = 8. The best results, however, are obtained by the UC kernel with
n = 4. This fits to the low RMSEs of the estimation of the cross-correlations
shown on the right side of Figure 5.3. Thereby, the slightly lower accuracy of
the estimation for n = 4 is compensated by the accompanying higher number
of EGO iterations.

For s = 6 and three turned slices, as shown in 6.4, again a lower number
of points in the initial designs with a higher number of EGO iterations is
favorable. Once more, the UC kernel shows the smallest distances to the

68 CHAPTER 6. EGO FOR MIXED INPUTS

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

2.22

2.24

2.26

2.28

EC LRC2 MC LRC3 LRC4 LRC5 UC

Model

D
is

ta
nc

e

n
4
8

Figure 6.4: Distances from the best found function values to the exact global
minimum on the Ackley function with s = 6 and three turned slices.

global optimum. The next best kernels here are EC and MC, which could not
be expected from the RMSEs shown on the right side of Figure 5.4, where
EC and MC yielded the highest errors.

Concluding, we can say that in almost all cases, a higher number of
EGO iterations should be preferred over a bigger initial design and fewer
EGO iterations. The UC kernel performed best overall. However, the
parsimonious kernels achieved competing results. Counterintuitively, LRCr

with a high r performed well on the original function with only positive
cross-correlations while the EC and MC kernels showed slightly better results
on the functions with turned slices, where their accuracy of the estimation
of the cross-correlations was rather poor.

6.3 Parameter Optimization of a Splat Detection
Algorithm

One important area of application for the mixed numerical and categorical
EGO algorithm is the tuning of hyperparameters of an algorithm or machine
learning method. In this section, we consider one example for which we
optimize the set of mixed hyperparameters.

In Kirchhoff et al. (2020b), an algorithm for the automatic detection
of circlelike objects in noisy grayscale images was presented. This work
was motivated by the time-consuming task of analyzing Scanning Electron
Microscope (SEM) images of a substrate after a small time of being coated
by a High Velocity Oxygen Fuel (HVOF) spray process. In HVOF processes,
a metal powder is fed into a jet, gets accelerated and heated up by means
of a mixture of oxygen and fuel, and finally deposits as coating upon a
substrate. If this process is stopped after a short amount of time, only some
droplets of molten metal hit the substrate and form possibly overlapping,

6.3 Parameter Optimization of a Splat Detection Algorithm 69

almost circular so-called splats. Five hyperparameters of the algorithm were
tuned in Kirchhoff et al. (2020b) by applying the EGO algorithm with a
random forest as the metamodel on a set of ten handmarked images using
a measure of the closeness between detected and handmarked splats as the
target variable. This measure is weighted with the ratio of handmarked splats
that were detected and with the ratio of detections that actually matched a
handmarked splat. For example, consider the case that the algorithm puts
out many circles such that every pixel in the whole image is covered by
at least one of them. Then, every handmarked splat is detected (the first
ratio is 1) whereas only a small fraction of output circles actually matched
a handmarked splat (the second ratio and so the target variable are very
small). For the optimization, an LHD with 28 points served as the initial
design. The ’optimal’ parameter setting resulting after ten EGO iterations
was validated on five different handmarked images.

In this section, we revise this optimization and incorporate some im-
provements. We therefore tune the same parameters as in Kirchhoff et al.
(2020b): size, min.size.cluster, ratio.thresh, estimator, kernel, and
use.fill.hull. In Kirchhoff et al. (2020b), only six values were considered
for the size of the median filter (size ∈ {0, 2, 4, 6, 8, 10}), only three values
for the minimum number of connected foreground pixels to be processed by
the algorithm (min.size.cluster ∈ {200, 400, 600}), and only three values
for the threshold of the ratio between foreground and background pixels in a
candidate circle to be detected as a splat (ratio.thresh ∈ {0.6, 0.65, 0.7}).
Here, we allow these parameters to vary freely within the ranges defined in
Table 6.1.

Variable Range

size {0, 1, . . . , 10}
min.size.cluster {200, 201, . . . , 600}
ratio.thresh [0.5, 1]

Table 6.1: Domains of ordinal and continuous variables considered during
the optimization.

The parameters estimator and kernel determine how edge points
are extracted from the images. For estimator, the possible settings are
”median”, ”M_median”, and ”M_mean”. The parameter kernel can take
the values ”mean” and ”gauss”. For estimator = ”median”, kernel is
always set to ”mean” in the underlying edge detection algorithm. Because of
this, estimator = ”median” in combination with kernel = ”gauss” yields
the same result as estimator = ”median” in combination with kernel =
”mean”. In the optimization in Kirchhoff et al. (2020b), this hierarchical
dependency of the two parameters was not accounted for, which leads to

70 CHAPTER 6. EGO FOR MIXED INPUTS

a less efficient handling of the categorical variables. Here, this problem is
solved by merging the two variables into one categorical variables with five
levels.

Instead of a regular LHD with 28 runs, we use an OCSLHD with 30 runs
(3 runs for each of the 10 combinations of levels of the categorical variables).
In order to achieve the same total number of runs, here, we only make 8
EGO iterations instead of 10. We also use a Kriging-based approach in
combination with an LRCr kernel rather than a random forest since the
Expected Improvement was founded on the assumption that a Gaussian
predictive distribution is supplied. The random forest can technically be used
along with the EI but its prediction uncertainty is computed by comparing
the predictions of the individual trees of the random forest, which may lead to
points proposed in steep slopes of the objective function and to less proposed
points near the optimum and close to the boundaries1.

The rank of the LRCr kernel is determined by comparing the diagnos-
tic plots for different values of r and choosing the one that seems most
appropriate.

In the original optimization, a so-called Focus Search was applied in order
to maximize the EI. There, a large LHD is generated for computing the EIs
of the corresponding points. Then, the parameter space is shrunk around the
point with maximum EI. This procedure is repeated altogether five times.
Here, we take a simpler approach and run the L-BFGS-B algorithm with five
random starting values for every combination of the levels of the categorical
variables separately. Then, the point with the maximum EI of all runs is
added to the design.

Instead of a single optimization on ten images and its validation on five
different images, we repeat this process on three different splits here such
that every image is used two times for an optimization and one time for a
validation in a cross-validation manner. In each of these optimizations, the
same OCSLHD is used as the initial design. Also, the rank of the LRCr

kernel is determined in each of the optimizations by comparing the diagnostic
plots for different values of r, based on the evaluated initial design on the
considered images, and choosing the rank that seems most appropriate. In
this case, the main difference between the diagnostic plots is the magnitude
of the standardized residuals. Therefore, the model selection consists of
selecting the kernel with the lowest maximum absolute standardized residual.

For optimizations on the first two splits, LRC7 was used as a kernel while
LRC9 showed the lowest standardized residuals on the last split.

Table 6.2 contains the three parameter settings that yielded the best
values of the objective variable.

Surprisingly, two of the three separate optimizations lead to a setting
where no median filter is applied in the preprocessing step of the algorithm.

1https://mlrmbo.mlr-org.com/articles/supplementary/mixed_space_optimization.html

6.3 Parameter Optimization of a Splat Detection Algorithm 71

Optimization
Parameter 1 2 3

size 0 6 0

min.size.cluster 273 200 273

ratio.thresh 0.8250 0.6853 0.8250

estimator ”M_median” ”M_mean” ”M_median”

kernel ”gauss” ”gauss” ”gauss”

use.fill.hull TRUE TRUE TRUE

measure 0.4312 0.4407 0.4288

Table 6.2: Optimal parameter settings obtained by the three optimizations
after eight iterations of the EGO algorithm each.

This step was intended to smoothen the image in order to filter out some of
the noise, which turns out to be not always needed here.

The minimum size of the clusters is relatively low in all three optimal
settings. The ratio threshold shows a higher variability with values of under
0.7 and more than 0.8.

Within the optimal settings for the categorical variables,

(estimator = ”M_median”, kernel = ”gauss”, use.fill.hull = TRUE)

and

(estimator = ”M_mean”, kernel = ”gauss”, use.fill.hull = TRUE),

the only difference is the starting value of the M-estimator in the edge
detection procedure.

Now the algorithm is applied to the validation images that were not
used in the respective optimization using the optimal parameter settings.
Table 6.3 contains the mean, the minimum, and the maximum values of the
measure of the results.

The minimal results of the optimizations 2 and 3 are distinctly better
while the one from optimization 1 is only slightly better than the minimum
value of 0.22 obtained in Kirchhoff et al. (2020b). The mean values are even
closer to their value of 0.41.

72 CHAPTER 6. EGO FOR MIXED INPUTS

Validation
1 2 3

min 0.2423 0.3408 0.3033
mean 0.4097 0.4324 0.4145
max 0.6338 0.5666 0.4753

Table 6.3: Cross-validation results.

Now, we consider only the minimal validated measures. Because the
exact values are not very interpretable, we look at the validation images with
the algorithm’s outputs that produced these values. Figures 6.5, 6.6, and
6.7 show these “worst” validation images for each of the three optimizations.
Note that the same parameter settings were found in the first and the third
optimization. However, different images were used for validation in each split
so that Figures 6.5 and 6.7 do not show identical images.

Detecting splats that extend beyond the edges of the image seems to
be one of the tasks the algorithm struggles with. For example, in the top
right corner of Figure 6.6, a splat has not been detected. These kinds of
splats have only been handmarked, however, when the assumed position of
the approximating circle’s center was within the boundaries of the image.
Therefore, these splats probably do not contribute much to the bad value of
the performance measure. A second problem, which is apparent at the top of
Figure 6.6 is what we call systematic noise here: In this case an arc-shaped
scratch on the substrate across the whole width of the image. As a result, a
rather small frackle at around (500, 400) is falsely detected as a splat and
the radius of the circular approximation is far too large. The algorithm
in Kirchhoff et al. (2020b) was not designed to deal with systematic noise.
Therefore it should not be applied to images having a high amount of such
noise. In this case, however, the effect of this noise is limited to the one
false detection named above and thus rather negligible. A third source of
incorrect detections is splats that overlap a great part of each other. There
are some instances in the three validation images that fall into this category.
Some of them are clearly incorrect, e.g., in the cluster at around (250, 50) in
Figure 6.7, where a small splat has not been detected. In other cases, it is
not possible to identify if there are one or more splats in a cluster, let alone
determine their positions. For example, the cluster at around (330, 130) in
Figure 6.5 could be a single splat with very distorted edges, or a number of
splats that overlap each other very much. Overall, even these worst results
look acceptable because of a relatively low number of clear mistakes.

The validation results show that the approach taken here for optimizing
the algorithm’s parameters leads to a setting with which acceptable results

6.3 Parameter Optimization of a Splat Detection Algorithm 73

100 200 300 400 500 600

10
0

20
0

30
0

40
0

1:640

1:
48

0

Figure 6.5: The validation image of the first cross-validation split on which
the algorithm using the corresponding optimized parameter setting produced
the worst performance.

100 200 300 400 500 600

10
0

20
0

30
0

40
0

1:640

1:
48

0

Figure 6.6: The validation image of the second cross-validation split on which
the algorithm using the corresponding optimized parameter setting produced
the worst performance.

74 CHAPTER 6. EGO FOR MIXED INPUTS

100 200 300 400 500 600

10
0

20
0

30
0

40
0

1:640

1:
48

0

Figure 6.7: The validation image of the third cross-validation split on which
the algorithm using the corresponding optimized parameter setting produced
the worst performance.

are achieved on images that have not been used for tuning the parameters.
In order to find the best possible parameter setting, we conduct another
optimization – but this time on all fifteen images. Here, LRC3 was the
kernel for the categorical inputs with the lowest standardized residuals. The
parameter setting with the highest mean measures after running eight EGO
iterations, is

(size = 3, min.size.cluster = 206, ratio.thresh = 0.7417,
estimator = ”M_median”, kernel = ”gauss”, use.fill.hull = TRUE).

This setting is well in accordance with the two parameter settings found
before: The size of the window of the median filter as well as ratio.thresh
lie between the values given in Table 6.2 and min.size.cluster is again low.
Moreover, the combination of the categorical levels leaded to good results in
each of the three cross-validation optimizations. Interestingly, this parameter
setting is very similar to the one found in Kirchhoff et al. (2020b). The only
major difference is that there the parameter size was much higher with a
value of 8.

In order to find an even better parameter setting, one could also consider
to tune (some of) the fixed parameters. Also, using a bigger design and
more EGO iterations than here could probably improve the results. Another
possible enhancement could be to use many synthetic images rather than

75

real splat images. This would deal with the problem that splat images
have to be handmarked elaborately and that some decisions are ambiguous.
Kirchhoff et al. (2020b) have already introduced a procedure to cheaply
generate synthetic images that resemble different characteristics of splat
images, where also a list of true center points and radii is provided. The
most difficult part here would be to generate the images in such a way that
they reflect the distribution of real splat images as good as possible.

6.4 Optimization of a Logistics Production Pro-
cess

Another important area of application for the EGO algorithm are computer
experiments, where the goal is to find a set of input variables such that the
corresponding ouput of a simulation model is optimal. In this section, we
analyze an exemplary simulation model of a logistics production process.

In Kuhnt et al. (2020), response surface models are used for the generation
of logistic characteristic curves for this application. Here, we use GP models
for the global optimization of the target variable. We first introduce the
simulation model along with its parameters. Then, the design of experiments
is generated and the model selection takes place using different diagnostic
plots. Finally, the optimization is conducted using the EGO algorithm.

The simulation model is the finished version of the basic model that is
introduced in the tutorial of the discrete-event simulation software DOSIMIS-
3 (SDZ GmbH, 2020). In the simulated process, consumer goods for the
electricity industry are manufactured. Figure 6.8 shows the elements of the
simulation model. The source generates two types of parts with exponentially
distributed intermediate arrival times. On average, 65 parts per hour of
simulation time are generated in the source. Thereby, the types of the
generated parts are random with equal probability.

The parts are transported via queues and a shuttle to one of two work-
stations, depending on their types – type 1 is exclusively processed by the
upper workstation and type 2 by the lower one. The velocity of all queues
is the same, only the maximum velocity of the shuttle might differ. With
probability 0.15, in the workstations, the type of the processed part changes
from 1 to 10 or from 2 to 20, respectively, indicating that it is faulty. The
parts are transported to a combining station that leads the parts according
to a right-of-way strategy to a quality control in which the faulty parts are
rerouted to a bulk conveyor while the faultless ones are allowed to leave the
simulation model at the sink.

As soon as a certain number of faulty parts – according to the so-called
batch size – is queued on the bulk conveyor, these parts can be picked up
by the shuttle that also transports parts from the source. The order in
which queued parts are processed by the shuttle is determined by another

76 CHAPTER 6. EGO FOR MIXED INPUTS

SOURCE

QUEUE

SH
U
TTLE

UPPER
WORK-
STATION

LOWER
WORK-
STATION

QUEUE

QUEUE

BULK
CONVEYOR

QUALITY
CONTROL

COMBINING
STATION

QUEUE

QUEUE

SINK
Q
U
EU

E

Figure 6.8: The DOSIMIS-3 simulation model.

right-of-way strategy.
Whenever a faulty part follows a faultless part or vice versa, the worksta-

tion must be retooled, which requires a certain amount of set-up time. A
faulty part is always faultless after it is reprocessed.

In this application, the goal is to find optimal settings for the parameters
mentioned above: the velocity xvel of the conveyor belts in the queues,
the maximum velocity of the shuttle xvelShuttle, the batch size of the
bulk conveyor xbatch, and the two right-of-way strategies of the shuttle
and the combining station, vshuttle and vcs, respectively. Table 6.4 shows
the domains of the continuous and ordinal variables. Table 6.5 contains
the considered right-of-way strategies and their transformation to a single
categorical variable v. Thereby, one of the shuttle’s possible strategies is
“First In – First Out” (“FIFO”), which prioritizes the parts according to the
time they arrive at one of the two entrances to the shuttle. Note that parts
from the bulk conveyor are regarded only when the batch size is met – thus,
as soon as the last part needed to reach the batch size queues in the bulk
conveyor, the shuttle transports the parts from the correction route and the
source according to their arrival times at the entrances to the shuttle. After
the last part of the bulk conveyor has been transported away, the correction
route is ignored until the batch size is reached again.

The other strategy is “Prioritize correction route” (“Prio Corr.”), which

6.4 Optimization of a Logistics Production Process 77

always prioritizes the entrance of the bulk conveyor as soon as the batch
size is reached. Then, all queuing parts are transported one after the other
from the bulk conveyor to the workstations. We omitted the third possible
strategy “Prioritize receipt of goods”, which prioritizes parts coming from
the source, since this right-of-way strategy inevitably leads to a deadlock of
the system. This is because more parts are coming from the source than
from the correction route. Prioritizing the new parts means that the parts
from the bulk conveyor cannot be transported away from the bulk conveyor
fast enough. Then, the parts queue back and block first the exits of the
workstations and then the entrances of the queues in front of the workstations,
which finally results in the deadlock.

Variable Range

xvel [0.1, 0.5]
xvelShutle [0.5, 2]
xbatch {1, 2, . . . , 8}

Table 6.4: Domains of numerical variables considered during the optimization.

v vshuttle vcs

1 FIFO FIFO
2 Prio Corr. FIFO
3 FIFO Prio Entr. 1
4 Prio Corr. Prio Entr. 1
5 FIFO Prio Entr. 2
6 Prio Corr. Prio Entr. 2

Table 6.5: Levels of the categorical variables vshuttle and vcs with their
transformation v.

The right-of-way strategies of the combining station are similar. We
consider “FIFO” and priority to one of its entrances. Here, with “Prio Entr.
1” the parts from the upper workstation have priority while “Prio Entr. 2”
prioritizes the parts from the lower workstation.

The sizes of the queues are not varied in the optimization, instead they
are fixed to 10 places behind the source, 10 places at the upper workstation,
6 places at the lower workstation, and 2 places before the sink. These values
have proven to be sufficiently large in a preliminary analysis.

We use an OCSLHD with n = 8 points for each of the 6 slices, which totals
48 runs. The simulated annealing algorithm for optimizing the CSLHDs is

78 CHAPTER 6. EGO FOR MIXED INPUTS

carried out with an initial temperature of 100, a cooling parameter of 0.5,
50 designs per temperature, and 30 temperature changes. The centered L2
criterion is 0.0088 before, and 0.0034 after the optimization.

Here, we view the simulation model as a deterministic one. For this
purpose, we add a variable containing the seeds of the random number
generator to the resulting design. The seeds are drawn from a discrete
uniform distribution from 10,000 to 100,000 and are used only to ensure that
rerunning an already evaluated point yields the same value of the objective
variable.

The simulations are run for five days simulation time after a lead time
of four hours. Then, the total throughput, i.e., the number of parts that
exited the simulation model at the sink during the five days, are divided by
5 days · 24 hours/day = 120 hours in order to get the average throughput
per hour, which should be close to the expected mean input of 65 parts
per hour. Note that the average throughput can be slightly higher than 65
when many parts that enter the model during the four-hour lead time are
processed after the end of the lead time.

Figure 6.9 shows a scatterplot of the maximum velocity of the shuttle
versus the corresponding average throughput obtained by the evaluation of
the inital design. For a low maximum velocity of the shuttle, the average
throughput grows almost linearly, independently of the batch sizes and
strategies used. In the higher half of the considered maximum velocities of
the shuttle, the average throughput stagnates and varies for most points
between 55 and 60. Only six points achieve a higher average throughput
than 60. These points all have a v ∈ {2, 4, 6}, which are the combinations
of the categorical variables where vshuttle = “Prio Corr.”. In other words, it
seems to be very important that the shuttle prioritizes the parts coming from
the correction route. However, this strategy only achieved the high values
of the target variable together with a high batch size and a high maximum
velocity of the shuttle.

Figure 6.10 shows that there is no such clear relationship between the
velocity of the conveyor belts and the average throughput. Some of the
clusters, especially with batch sizes 3 and 7, perform distinctly worse than
other clusters. This, however, probably results from settings of the other
variables, particularly from the low maximum velocity of the shuttle, rather
than the batch size or the velocity of the conveyor belts.

Now, we move on to the selection of an appropriate model for the EGO
procedure. As mentioned in Section 2.4, the diagnostic plots of the R package
kergp are produced using a single fit of the model on all the data. I.e., the
model’s parameters are not re-estimated in the LOO cross-validation. The
validity of this procedure relies on the assumption that the model’s parameters
do not change significantly when the model is fitted on n− 1 observations
rather than on all n. Here, we first check if the standard diagnostics are
reasonably close to the ones with re-estimation of the parameters. For this,

6.4 Optimization of a Logistics Production Process 79

●

●

●

●

●

●

●

●40

50

60

0.5 1.0 1.5 2.0
Max. Velocity of Shuttle

A
ve

ra
ge

 T
hr

ou
gh

pu
t

v
● 1

2
3
4
5
6

Batch Size
●

●

●

●

●

●

●

●

1
2
3
4
5
6
7
8

Figure 6.9: The simulation results of the OCSLHD in dependence of the
maximum velocity of the shuttle, the batch size, and the categorical variables.

●

●

●

●

●

●

●

●40

50

60

0.1 0.2 0.3 0.4 0.5
Velocity of Conveyor Belts

A
ve

ra
ge

 T
hr

ou
gh

pu
t

v
● 1

2
3
4
5
6

Batch Size
●

●

●

●

●

●

●

●

1
2
3
4
5
6
7
8

Figure 6.10: The simulation results of the OCSLHD in dependence of the
velocity of the conveyor belts, the batch size, and the categorical variables.

80 CHAPTER 6. EGO FOR MIXED INPUTS

we compare the standardized residuals of both alternatives for GP models
with different kernels, no trend, and without transformation of the objective
variable. We use the original values of the design, i.e., all input variables are
in [0, 1]. Table 6.6 shows the minimum and maximum standardized LOO
residuals with and without re-estimation of the model’s parameters.

Kernel Without Re-estimation With Re-estimation

min max min max

LRC2 -3.2974 1.9613 -17.2447 9.0202
MC -2.7168 1.7277 -4.7439 3.1004
LRC3 -2.4062 1.3941 -22.5819 10.4656
LRC4 -2.4062 1.3941 -27.6848 11.5121
LRC5 -2.4062 1.3941 -18.2030 32.0895
UC -2.4062 1.3941 -6.1678 3.2897

Table 6.6: Minimum and maximum standardized LOO residuals with and
without re-estimation during the cross-validation.

The values without re-estimation are almost identical between the different
kernels. This is because in this case all models starting from LRC3 produce
constant predictions. The standardized residuals create the impression of
a working uncertainty quantification, as they are not far away from [−2, 2].
The standardized residuals with re-estimation of the models’ parameters,
however, are much higher – this indicates that the standard deviations of the
predictive distributions are in fact far too small. The discrepancy between
the left and the right side of Table 6.6 shows that we cannot rely on the
diagnostic values without re-estimation in this application. Therefore, the
model selection is carried out using the LOO values with re-estimation only.
The corresponding standardized residuals of Table 6.6 are far outside the
desired interval [−2, 2], which means that we need to find a better suited
model by including a trend or transforming the objective variable.

Table 6.7 contrasts the maximum absolute standardized LOO residuals
of different kernels fit to a logarithmic or square root transformed target
variable. The models have either no trend, i.e., the trend is constant, or all
main effects including dummy variables for the categorical variable have been
considered for the trend. The models’ parameters have been re-estimated
during the LOO cross-validation. Two models show promising standardized
residuals, namely MC with logarithmic transformed target variable and main
effects trend, and MC with square root transformed target variable and
constant trend.

Figure 6.11 shows the exact values vs the predictions of the target variable.

6.4 Optimization of a Logistics Production Process 81

Kernel Logarithmic Transform Square Root Transform

No Trend Main Effects No Trend Main Effects

LRC2 5.2367 7.2087 7.5962 5.2627
MC 2.7089 2.1188 1.7477 2.4782
LRC3 5.1869 5.5338 5.5400 8.4742
LRC4 5.4908 11.3415 7.0739 7.0938
LRC5 3.4057 5.5710 2.6007 5.5051
UC 4.0497 9.3169 3.1329 7.2200

Table 6.7: Maximum absolute standardized LOO residuals without and with
trend for square root and logarithmic transformed target variable. Model
parameters have been re-estimated during the LOO cross-validation.

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●40

60

80

40 50 60
Exact Values

F
itt

ed
 V

al
ue

s

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●40

60

80

40 50 60
Exact Values

F
itt

ed
 V

al
ue

s

Figure 6.11: Exact values vs. LOO predictions of the model with MC kernel
for the categorical variables. The left panel shows the model with main
effects trend and logarithmic transformed target variable while the right
panel shows the model with constant trend and sqauae root transformed
target variable. The scales have been re-transformed for better comparability.

The values have been re-transformed for better comparability across the two
transformations. The dark grey ribbon shows ± 2 standard deviations of the
predictive distributions and the light grey ribbon ± 3 standard deviations
around the predictions. That means, e.g., that if all standardized residuals are
in [−2, 2], the straight line lies completely in the dark grey ribbon, indicating
a good fit. Both scatter plots show that the predictions are reasonably close
to the exact values. The uncertainty estimation on the left side of the figure
seems to be less stable than on the right side.

Figure 6.12 shows the cross-validated Expected Improvements of the two
candidate models. Both of them assign high EIs only to points that have
a relatively high value of the target variable. The model with logarithmic
transformation and trend, however, looks slightly worse as it returns an EI

82 CHAPTER 6. EGO FOR MIXED INPUTS

●

●

●

●● ●● ●

●

●

●

●● ●● ● ●●

●

●● ●● ●

●

●

●

●
●

●

● ● ●● ●●● ●● ●

●

●
●●●

●

● ●0.000

0.005

0.010

0.015

0.020

40 50 60
System Load

E
xp

ec
te

d
Im

pr
ov

em
en

t

●●

●

●● ●● ●

●

●

●

●

●

●

● ● ●●

●

●●

●

● ●

●

●

●

●

●

●

● ● ●●

●

●●

●

● ●

●

●

●

●

●

●

● ●0.000

0.005

0.010

0.015

0.020

40 50 60
System Load

E
xp

ec
te

d
Im

pr
ov

em
en

t

Figure 6.12: System Load vs. LOO Expected Improvement of the model
with MC kernel for the categorical variables. The left panel shows the
model with main effects trend and logarithmic transformed target variable
while the right panel shows the model with constant trend and square root
transformed target variable. The target variable has been re-transformed for
better comparability.

●
●

● ● ● ●
●

● ● ● ●●
●●●●

●●
●

●
●

●●●
●

●●●
●●

●●

●
●●●●●

●
● ● ● ● ●

●
●

●

●

−3

−2

−1

0

1

2

3

−2 −1 0 1 2
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
● ●

●
●

● ●
● ● ●

●●●

●●
●●●

●●●●●
●●●●

●
●●●

●
●●

●
●

●● ●
●

● ●
●

●

●
●

●

●

−1

0

1

−2 −1 0 1 2
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 6.13: QQ plots based on LOO cross-validation of the model with MC
kernel for the categorical variables. The left panel shows the model with
main effects trend and logarithmic transformed target variable while the
right panel shows the model with constant trend and square root transformed
target variable.

very close to 0 even to some of the good points.
Finally, Figure 6.13 shows the QQ plots of the two models. Here, in

contrast to the left side, the points on the right plot are very close to the line,
except for two points at the bottom left. All of the considered diagnostic
plots indicate a good fit of the MC model with constant trend and square
root transformed target variable, which is why this model is selected for the
sequential optimization procedure in the next section.

We apply the EGO algorithm using the model selected in the previous
section. The simulational budget, i.e., the number of iterations, is fixed to
20. Ideally, the optimization yields one or more input settings that lead to
an average throughput of 65 – in this case all parts put into the system can
be processed in time.

6.4 Optimization of a Logistics Production Process 83

Here, points with maximum EI were searched for by running a separate
optimization for each combination of the levels of the categorical variables.
The optimization was carried out using the L-BFGS-B algorithm, which was
started five times with different random initial values. The maximum EIs
found in the five runs for each combination of levels were compared and
the maximum of these values was proposed as the next point for simulation.
Again, a random seed was added afterwards in order to ensure reproducibility.

Table 6.8 contains the points proposed by the EGO algorithm along with
the corresponding average throughputs. Interestingly, vshuttle = “FIFO” is
completely disregarded. This makes sense because “Prio Corr.” leads to
faulty parts being processed one directly after the other, which reduces the
number the workstations have to be retooled, avoiding unnecessary set-up
times. Moreover, the EGO algorithm proposed only points (except for the
last one) with xbatch = 8 and a relatively high maximum velocity of the
shuttle xvelShuttle. These values fit to the results of the descriptive analysis
earlier in this section. For xvel and ccs, the whole domain was searched. Most
average throughputs of the proposed points perform relatively well. All the
values are higher than 60 with an average of 63.57. The point proposed in
iteration 17 even has an average throughput higher than 65, which means
that all the parts put in the system could be processed without any problems.
This point has a medium velocity of the conveyor belts of 0.262 m/s, the
highest maximum velocity of the shuttle of 2 m/s, and parts from the upper
workstation are prioritized in the combining station, which makes sense since
there is no buffer behind the upper workstation in contrast to the lower
workstation.

84 CHAPTER 6. EGO FOR MIXED INPUTS

No. xbatch xvel xvelShuttle vshuttle vcs AT

1 8 0.342 2.000 Prio Corr. Prio Entr. 2 64.192
2 8 0.352 1.747 Prio Corr. FIFO 64.067
3 8 0.266 1.837 Prio Corr. Prio Entr. 2 63.267
4 8 0.100 2.000 Prio Corr. Prio Entr. 2 61.792
5 8 0.346 1.902 Prio Corr. Prio Entr. 1 63.850
6 8 0.153 2.000 Prio Corr. Prio Entr. 1 64.025
7 8 0.500 2.000 Prio Corr. FIFO 63.108
8 8 0.240 1.859 Prio Corr. Prio Entr. 1 64.217
9 8 0.500 1.854 Prio Corr. Prio Entr. 2 64.208
10 8 0.237 1.902 Prio Corr. FIFO 64.358
11 8 0.100 2.000 Prio Corr. FIFO 61.375
12 8 0.500 1.578 Prio Corr. Prio Entr. 2 64.350
13 8 0.395 1.891 Prio Corr. Prio Entr. 2 63.808
14 8 0.282 2.000 Prio Corr. Prio Entr. 1 64.208
15 8 0.500 1.549 Prio Corr. Prio Entr. 1 63.150
16 8 0.215 1.870 Prio Corr. Prio Entr. 1 64.025
17 8 0.262 2.000 Prio Corr. Prio Entr. 1 65.250
18 8 0.500 1.519 Prio Corr. FIFO 64.275
19 8 0.500 1.744 Prio Corr. FIFO 63.633
20 5 0.331 1.475 Prio Corr. Prio Entr. 2 62.250

Table 6.8: Points in the order they were proposed by the EGO algorithm
with their average throughputs (AT).

Chapter 7
Optimization of Shift Planning in
High-Bay Warehouse Operations

In this chapter, we consider a bi-objective minimization task with constraints
on the inputs using a logistics simulation model. In Section 7.1, the simulation
model is described. Section 7.2 contains an introduction on how the EGO
framework can be extended to bi-objective optimization problems. The
results of the initial design points are given in Section 7.3, whereas in
Section 7.4 the model selection takes place. Finally, the EGO algorithm is
applied and the final results are discussed in Section 7.5.

Large parts of this chapter have already been submitted:

Kirchhoff, D., Kirberg, M., Kuhnt, S., and Clausen, U. (2020a). Metamodel-
based optimization of shift planning in high-bay warehouse operations. Sub-
mitted.

In Kirchhoff et al. (2020a), the author of this thesis is responsible for the
statistical analysis including the necessary implementations of the methods
as well as the corresponding documentation.

7.1 Description of the Simulation Model

This application deals with a discrete-event simulation model of a high-bay
warehouse of a German drugstore chain, which is modeled using the commer-
cial software Enterprise Dynamics (INCONTROL Simulation Software, 2011).
The model consists of two inbound areas, one outbound area, high shelves
that offer space for up to 40,000 pallets, and 12 forklift trucks. Inbound
storage and outbound retrieval tasks are determined by system load data
that represents a working week with an above-average number of orders to
be processed. Thus, the simulation model is deterministic.

86 CHAPTER 7. OPTIMIZATION OF SHIFT PLANNING

The number of active forklifts at a certain time of the week is controlled
by a shift plan that determines how many employees work in one of three
shifts. Thereby, the early shift starts at 6:00 a.m., the late shift starts at
2:00 p.m., and an additional middle shift starts between 10:00 and 12:00 a.m.
The numbers of employees working in the early or late shifts are the same
at each day for the whole week, i.e., there are two variables for the number
of employees in the early shift and the late shift that specify these numbers
for the whole week. The numbers of employees in the middle shift, however,
can vary for each day of the week, i.e., there are five variables for Monday
through Friday. Moreover, the start times of the middle shifts are not fixed
and can be 10:00, 10:15, . . . , or 12:00 a.m. Also, the length of the middle
shift can be 4 or 8 hours for the whole week. Each employee that is active
according to the shift plan controls one of the forklift trucks. Because of this,
a maximum of 12 coworkers can be employed at the same time. The forklift
trucks have two main jobs: To store newly arrived pallets from the inbound
area and to pick and transport pallets that are to be forwarded from the
high shelves to the outbound area. These tasks are assigned to free forklift
trucks according to two strategies: The storage strategy determines where
a pallet is stored. This can be “CHAOS”, which means that a random free
slot is used, or “ABC”, which classifies the products on the pallets into groups
A, B, and C according to their stock turn rate and chooses a slot accordingly.
The latter ensures that frequently outbound pallets are stored closer to
the outbound area than pallets that typically stay longer in the warehouse.
The second strategy is the assignment strategy, which determines which
pallet is picked by which free forklift truck. Here, we consider four different
assignment strategies:

• First In First Out (“FIFO”):
The tasks are processed according to their time of arrival.

• Shortest Laden Journey (“SLJ”):
Tasks with the shortest distance from the pick-up location to the
destination are prioritized.

• Shortest Empty Journey (“SEJ”):
Tasks with the shortest distance from the current position of the forklift
to the pick-up location are prioritized.

• Shortest Total Journey (“STJ”):
Tasks with the shortest total distance from current position of the
forklift to the destination are prioritized.

Apart from these rules, all strategies prioritize tasks that need to be
completed within the next two hours. Thereby, these time-critical retrievals
have the highest priority as the shipping trucks must meet their departure
times.

7.1 Description of the Simulation Model 87

Table 7.1 contains an overview over all input variables that are taken into
account along with their respective domains. In total, there are 15 variables
– 13 of which are ordinal and the other 2 are categorical.

Variable Domain
Number of personnel employed

Early shift (whole week) {1, 2, . . . , 12}
Late shift (whole week) {1, 2, . . . , 12}
Intermediate shift (monday) {0, 1, . . . , 11}
...

...
Intermediate shift (friday) {0, 1, . . . , 11}

Begin of intermediate shifts
Monday {10:00, 10:15, . . . , 12:00}
...

...
Friday {10:00, 10:15, . . . , 12:00}

Duration of intermediate shifts
Whole week {4, 8}

Strategies
Storage {CHAOS, ABC}
Task assignment {FIFO, SLJ, SEJ, STJ}

Table 7.1: Input variables

The aim of this application is to simultaneously minimize two objective
variables: First, the total tardiness of tasks, which is defined as the sum
of pallet-related delays, i.e., the time elapsed after the cut-off time for all
processed outbound pallets. Second, the total cost of energy and wages
for the whole week, which is solely determined by the number of hours the
personnel is employed. For this, we assume that each forklift truck consumes
in average 3.6 kWh per hour during operation, that one kWh is purchased
at 0.149 e and that one employee hour costs 12.63 e. These assumptions
result in costs of 13.1664 e/h.

The two objectives are assumed to compete – the more employees, the
higher the cost and the less delay there is on tasks and vice versa. That
means that we will not be able to find a solution that minimizes both targets
at the same time. We therefore have to find a trade-off solution that has
both an acceptable tardiness and a relatively low cost. The methods needed
for approaching this bi-objective optimization problem are introduced in the
next section.

88 CHAPTER 7. OPTIMIZATION OF SHIFT PLANNING

7.2 Bi-objective Optimization
The target variables will be denoted by Y1 = Y1(w) and Y2 = Y2(w),
Y1, Y2 ∈ O, where the objective space O is a subspace of R2. We assume
that we have observed the results

Y = Y (W) =

⎛⎜⎜⎝
Y1(w1) Y2(w1)

...
...

Y1(wn) Y2(wn)

⎞⎟⎟⎠ of n inputs W =

⎛⎜⎜⎝
w1
...
wn

⎞⎟⎟⎠ .

In multi-objective optimization, the objectives may compete with each other,
i.e., some points in the objective space can only be improved with respect to
one target variable by worsening another target variable. If this applies to a
point, it is called Pareto-optimal. For a bi-objective optimization task where
both targets should be minimized, this can be written as:

y = (y1, y2) ∈ O Pareto-optimal
⇔∄y′ ∈ O : y′

1 < y1 and y′
2 < y2.

If, on the other hand, for a point y another point y′ can be found that has
a better value in one objective and is at least equally good in the other
objective, we say that y′ Pareto-dominates y:

y′ ≺ y (y′ Pareto-dominates y)
⇔∀k ∈ {1, 2} : y′

k ≤ yk and ∃l ∈ {1, 2} : y′
l < yl.

The Pareto-optimal points are minimal in this dominance relation (Beume
et al., 2007). All Pareto-optimal points form the so-called Pareto front P =
{y|y Pareto-optimal}. Often, the exact Pareto front cannot be determined.
For this application, this is the case because neither the black-box function
for the target variable tardiness can be analyzed directly nor the search
space can be evaluated completely. Therefore, our focus is on finding a good
approximation of the Pareto front based on Y .

In the context of multi-objective optimization tasks, usually for each
objective variable a separate GP model is built. One infill criterion that
is an extension of the Expected Improvement (EI) to the multi-objective
case is the Expected Hypervolume Improvement (EHI; Emmerich et al.,
2011), which strives to find points that maximize the expected increase of
the hypervolume of the current Pareto front when the new point is added.
The hypervolume H of a Pareto front approximation Λ = (Λ1, Λ2) is

H(Λ) = Vol
(
{y ∈ R2|∃y′ ∈ Λ : y′ ≺ y and y ≺ r}

)
,

where r = (r1, r2) is a reference point. Here, we use

ri = max (Λi) + 0.2 · (max (1, max (Λi)−min (Λi))) .

89

The hypervolume-based improvement of the Pareto front approximation
when a new point y is added is

I(y, Λ) = H(Λ ∪ {y})−H(Λ),

and the expected hypervolume improvement at a point w is

EIH(w, Λ) =
∫

R2
I(y, Λ) · fw(y) dy,

where fw is the probability density function of the prediction in w (Emmerich
et al., 2011).

Another infill criterion is the S metric selection (SMS) criterion (Pon-
weiser et al., 2008; Wagner et al., 2010), which basically aims to select the
point whose predictive distribution’s lower confidence bound improves the
hypervolume of the Pareto front the most when added.

The lower confidence bound of a prediction ŷ is ŷLCB = ŷ−αŝ, where ŝ
is the vector of the prediction’s standard deviations and α is computed for
a given probability level p, e.g., p = 0.5, as α(p) = −Φ−1(0.5√p) (Wagner
et al., 2010).

Ponweiser et al. (2008) and Wagner et al. (2010) apply additive ϵ-
dominance (Zitzler et al., 2003) rather than standard Pareto-dominance:

y′ ⪯ϵ y (y′ ϵ-dominates y) ⇔ ∀k ∈ {1, 2} : y′
k + ϵ ≤ yk,

with ϵ =
max Λ−min Λ

|Λ|
+ c · nleft, where Λ is the current Pareto front

approximation, c is a correction factor, and nleft is the number of remaining
EGO iterations. In the remainder of this chapter, we set the correction factor
c = 0.

For a ŷLCB that is not ϵ-dominated by any point in Λ, the SMS criterion
is the contribution to the hypervolume by updating Λ with ŷLCB. If, on the
other hand, ŷLCB is ϵ-dominated by at least one point in Λ, a vector ψ is
computed whose negative maximum value is returned as a penalty:

ψ =

⎧⎪⎨⎪⎩−1 +
2∏

k=1

(
1 +

(
ŷLCB,k − y

(i)
k

))
for y(i) ∈ Λ and y(i) ⪯ϵ ŷLCB

0 otherwise
.

7.3 Execution of Simulation Experiment
In this application, we must regard the constraint of having a maximum
number of 12 coworkers deployed at the same time. Fast Flexible Filling
(FFF) designs are suitable for both numerical and categorical inputs as well
as for constraints on the inputs. Therefore, they are an appropriate choice
for this application.

90 CHAPTER 7. OPTIMIZATION OF SHIFT PLANNING

We generate the initial FFF design with a total number of 150 runs using
the software JMP R⃝ (SAS Institute Inc., 2020). For the generation of the
design, we transform the starting times of the middle shift to ordinal values
in {0, 1, . . . , 8}, where 0 corresponds to 10:00 o’clock, 1 to 10:15 o’clock, . . . ,
and 8 to 12:00 o’clock. The indicator if the middle shifts’ length is 4 or 8
hours is also treated like an ordinal variable with values 0 and 1, where 0
means the middle shifts are 4 hours long. The categorical variables for the
storage and assignment strategies are transformed to a single integer variable
in {1, 2, . . . , 8}. Table 7.2 contains the mapping between the coded variable
and the original strategies.

Value Assignment strategy Storage strategy

1 FIFO ABC
2 SLJ ABC
3 SEJ ABC
4 STJ ABC
5 FIFO CHAOS
6 SLJ CHAOS
7 SEJ CHAOS
8 STJ CHAOS

Table 7.2: Coded values of the merged categorical variable and the corre-
sponding original values of the two strategies.

Figure 7.1 shows the results from the initial design. We can see that a
higher cost (which means a higher number of employed coworkers) generally
leads to a better adherence to cutoff times. However, there are big differences
in tardiness, especially for low and medium costs. In the region around
2500 e, it looks like the Pareto front might be extended by interesting values
with a relatively low tardiness. We will continue with the modeling of the
objective variables in order to get closer to this goal.

91

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●●●

● ●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●
●

●

●●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

0 2500 5000 7500 10000
Cost

Ta
rd

in
es

s

Figure 7.1: The objective values of the initial design.

7.4 Modeling the Objective Variables
In this application, we have the special case that the objective “cost” (denoted
by Y1) can be computed deterministically from the inputs since it only
depends on the total number of hours the coworkers are employed in that
week:

Y1(x) = 13.1664 e/h · (40 h · (xES + xLS) + (4 h + xMS_dur · 4 h) · xMS) ,
(7.1)

where xES and xLS are the numbers of coworkers employed in the early
and the late shift, respectively. The total number of coworkers in the middle
shifts is represented by xMS , and xMS_dur is the duration of the middle
shifts (0 =̂ 4 h, 1 =̂ 8 h). The factor 13.1664 e/h sums up both labor and
average energy costs for operating a forklift truck.

Because we know this deterministic relationship, we only need a GP
model for the objective variable “tardiness” (Y2). In this model, we used the
Matérn

(
5
2

)
kernel for the numerical variables (Equation (2.8)) and the LRC2

kernel for the estimation of the categorical cross-correlations (Equation (3.1)).
See Section 3.3 for details about the implementation.

Figure 7.2 shows the diagnostic plots of an Ordinary Kriging model
(see Equation (2.3)) without any transformation of the objective variable.
Especially from the first plot, we can see that the model does not produce
useful predictions as they are far from the correct values and appear almost
constant. The standardized residuals are roughly in [−200,000, 800,000],
which means that the uncertainty estimation also does not work here.

Figure 7.3 shows the diagnostic plots of the same model, where the
objective has been transformed using the natural logarithm. The predictions

92 CHAPTER 7. OPTIMIZATION OF SHIFT PLANNING

● ● ●●●● ● ●● ●● ●●●● ●● ●● ●● ●● ● ●●●● ● ●●● ● ●● ● ●●●● ●●●● ●● ●●●●● ●● ●●● ● ●●● ● ●● ●●● ● ●●●● ●● ●● ●●● ● ● ●●● ●● ●●● ●● ● ●● ●●●●● ● ●● ●● ●● ● ●● ●●●● ●● ●● ●●● ●●● ●●●● ●● ● ● ●● ● ● ●●● ●●●●● ●●● ●●● ●●

0e+00 1e+06 2e+06 3e+06 4e+060e
+

00
3e

+
06

Leave−one−out

Exact values

F
itt

ed
 v

al
ue

s

●

●

●

●
●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●●●

●

●●
●

●

●
●●●

●●

●

●

●●

●●

●

●
●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●●

●

●

●●
●

●
●●

●

●

●●●

●

●●
●

●

●●

●

●

●

●

●●●

●

●
●

●

●

●
●

●
●

●●

●

●
●●●

●

●●

●
●

●

●

●

0 50 100 150−
2e

+
05

4e
+

05

Standardized residuals

Index

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●
●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

● ● ●

●

●●
●

●

●
● ●●

●●

●

●

●●

●●

●

●
●

●●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●● ●

●

●

●●
●

●
● ●

●

●

●●●

●

● ●
●

●

●●

●

●

●

●

● ● ●

●

●
●

●

●

●
●

●
●

●●

●

●
● ●●

●

●●

●
●

●

●

●

−2 −1 0 1 2−
2e

+
05

4e
+

05

Normal QQ−plot of standardized residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 7.2: Diagnostic plots of the Ordinary Kriging model without transfor-
mation of the objective variable.

are still almost constant, but in contrast to the untransformed objective, the
points are vertically centered in the plot here. The standardized residuals
are in [−1.5, 1.5], which indicates a working uncertainty estimation, and the
points in the QQ plot are somewhat closer to the diagonal than before, which
is why we keep the transformation.

Figure 7.4 shows the diagnostic plots of a Universal Kriging model (see
Equation (2.1)), where the total costs are incorporated as the trend of the
model. This seems reasonable because the costs are a function of the number
of employee hours, and thus the level of costs likely has a strong impact on
the total tardiness. From the figure, it is obvious that the step of including
the trend is crucial for improving the predictive accuracy as the predictions
lie much closer to the exact values than before. The standardized residuals
are still in an acceptable interval and the normal QQ plot looks best among
the models considered. Because of this, we will use this model for the EGO
iterations in Section 7.5.

7.4 Modeling the Objective Variables 93

● ● ●●●● ● ●● ●● ●●●● ●● ●● ●● ●● ● ●●●● ● ●●● ● ●● ● ●●●● ●●●● ●● ●●●●● ●● ●●● ● ●● ● ● ●● ●●● ● ●●●● ●● ●● ●●● ● ● ●●● ●● ●●● ●● ● ●● ●●●●● ● ●● ●● ●● ● ●● ●●●● ●● ●● ●●● ●●● ●●●● ●● ● ● ●● ● ● ●●● ●●● ●● ●●● ●●● ●●

11 12 13 14 15

11
13

15

Leave−one−out

Exact values

F
itt

ed
 v

al
ue

s

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 50 100 150

−
1.

5
0.

0
1.

5

Standardized residuals

Index

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−
1.

5
0.

0
1.

5

Normal QQ−plot of standardized residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 7.3: Diagnostic plots of the Ordinary Kriging model with logarithmic
transformation of the objective variable.

●

●

●

●●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●

●

●●
●

●
●●

●

●

●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●
● ●●

●

●

●

9 10 11 12 13 14 15

9
11

13
15

Leave−one−out

Exact values

F
itt

ed
 v

al
ue

s

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●
●●

●
●●

●
●●

●

●●
●

●●

●
●

●

●

●

●●

●●
●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

0 50 100 150

−
2

0
1

Standardized residuals

Index

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●
●

●

●

●
● ●

●
●●

●
●●

●

● ●
●

●●

●
●

●

●

●

●●

● ●
●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

−2 −1 0 1 2

−
2

0
1

Normal QQ−plot of standardized residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 7.4: Diagnostic plots of the Universal Kriging model with total costs
as the trend and logarithmic transformation of the objective variable.

94 CHAPTER 7. OPTIMIZATION OF SHIFT PLANNING

7.5 EGO Iterations

In Section 6.1, we briefly introduced two infill criteria, the Expected Hyper-
volume Improvement (EHI) and the S Metric Selection (SMS) criterion. In
this application, we use both criteria in each iteration. That means that,
unless both criteria propose the same point or one criterion fails to propose
a new point, two points are evaluated and added to the design. The model
is then updated using all points, i.e., we do not build separate models for
the two criteria.

We use both criteria because it reduces the risk that no new point can
be proposed in an iteration due to a failing criterion. The EHI is more
susceptible to numerical issues than the SMS since it includes the numerical
integration of the expected value of the improvement on the hypervolume.
SMS, on the other hand, only uses the lower confidence bound of a candidate
point and thus is more robust. Another reason is that in this setup, where
the optimization of the infill criteria and the evaluation of the points with
the simulation model are carried out by different people, it seems like a more
efficient strategy to propose two new points at the same time that can be
simulated in a row as the back and forth can be time-consuming.

The R package GPareto (Binois and Picheny, 2019) contains methods for
multi-objective optimization with GP models. We use it for the computation
of the EHI and SMS criteria.

Since one of the objectives can be computed deterministically, we only
have one predictive distribution. That means for the EHI that the expected
value is not computed over both objective dimensions but only over the
tardiness. Similarly, the lower confidence bound of the SMS is only considered
for the tardiness. The known cost of the candidate point still has to be
incorporated into the criteria since it also influences the amount the current
approximation of the Pareto front can be improved. In GPareto, such a
deterministic function can be included by passing it to the method that
optimizes a given infill criterion, crit_optimizer, using option cheapfn.
This method has been implemented to take a GP model of class km for
numerical variables only from the R package DiceKriging (Roustant et al.,
2012) as an argument. Here, we are working with mixed GP models of class
gp from the package kergp. However, a wrapper function can easily be
implemented that extracts all the elements needed from an object of class
gp correctly.

Within this wrapper function, which we called crit_optimizer_gp, the
optimization is carried out using the genetic optimization procedure genoud
(Mebane Jr and Sekhon, 2011). The ordinal variables of the application have
been viewed as numerical by the model. However, by passing data.type.int
= TRUE to genoud, only integer values within the domain are considered such
that no transformation of these variables is necessary.

In crit_optimizer_gp, we also check if the constraint is violated. This

7.5 EGO Iterations 95

is done by computing the maximum number of coworkers deployed at the
same time for a given input vector. If this exceeds 12, we return a very high
penalty instead of the value of the infill criterion in the genetic optimization
procedure.

Figure 7.5 shows the results of the first ten iterations of the EGO algo-
rithm. Both infill criteria proposed points in the upper left or lower right
corner of the domain, where the SMS criterion covered a somewhat wider
area than the EHI criterion. The new points either have a cost that is almost
maximal, or a tardiness higher than 2,000,000 minutes.

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●●●

● ●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●
●

●

●●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

0 2500 5000 7500 10000
Cost

Ta
rd

in
es

s

Figure 7.5: First ten iterations of the EGO algorithm. Points proposed by
the EHI criterion are plotted as boxes, whereas crosses correspond to the
SMS criterion.

For practical use, points with a low or medium cost and a nevertheless
small tardiness are of interest. To speed up the process of finding such points,
we carry out five more iterations and restrict the search domain more and
more each iteration. For the 11th iteration, only points with a cost ≥ 3000
are considered. In the 12th iteration, the cost must be ≥ 3250, and so on
until in the 15th iteration the cost is ≥ 4000.

Figure 7.6 shows the points obtained by iterations 11 through 15. Note
that the range of the x-axis is smaller than in the previous figures. Many of
the points of these iterations extend the Pareto front approximation. The
approximation after all iterations is given in Table 7.3. The first 9 points
come from the initial FFF design, whereas the remaining 8 points have been
added by running the EGO algorithm. Only 3 of these 8 points result from
the first 10 iterations, while 5 points of the last 5 iterations extended the
Pareto front approximation.

96 CHAPTER 7. OPTIMIZATION OF SHIFT PLANNING

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0

500000

1000000

1500000

3000 3500 4000 4500
Cost

Ta
rd

in
es

s

Figure 7.6: Iterations 11 through 15 of the EGO algorithm. Points proposed
by the EHI criterion are plotted as boxes, whereas crosses correspond to the
SMS criterion.

No. Cost Tardiness Iteration Infill Criterion

1 1053.312 3662694.05 2 both
2 1369.306 3108205.81 10 SMS
3 1895.962 2395732.84 8 SMS
4 2106.624 2389739.49 0 –
5 2369.952 1293765.78 0 –
6 3265.267 742855.18 0 –
7 3317.933 473357.82 12 SMS
8 3370.598 402048.58 0 –
9 3528.595 242751.28 13 EHI

10 3686.592 139360.20 13 SMS
11 3897.254 87448.74 0 –
12 4160.582 47555.63 14 EHI
13 4318.579 42911.30 0 –
14 5055.898 40246.80 0 –
15 6214.541 37804.58 0 –
16 6951.859 36451.91 0 –
17 9374.477 36328.15 8 EHI

Table 7.3: Points forming the Pareto front approximation, sorted by cost.
Points with iteration = 0 were in the initial design.

Chapter 8
Summary and Outlook

This thesis is concerned with Gaussian Process (GP) models for both numeri-
cal and categorical input variables, which are an important tool for analyzing
and optimizing expensive black-box functions. The so-called Low-Rank Cor-
relation kernel LRCr is introduced. LRCr is a rank-r approximation of the
real but unknown cross-correlation matrix – i.e., the matrix that contains the
correlations of the GP given different levels of a categorical variable. This ap-
proximation provides a parsimonious way of estimating the cross-correlation
matrix whose number of parameters can be changed by choosing the rank
r. Another advantage is that, in contrast to other parsimonious methods,
LRCr is not restricted to non-negative cross-correlations.

Also, a systematic approach of generating test functions with mixed input
variables is introduced. Thereby, one or more dimensions of a test function
with continuous inputs are discretized (“sliced”). Depending on the function
and the slice positions, the slices sometimes happen to be highly positively
correlated. By turning some slices in a specific way, the position and value
of the global optimum can be preserved while changing the sign of a number
of cross-correlations.

With these methods, a simulation study is conducted that investigates
the estimation accuracy of the cross-correlation matrices as well as the
prediction accuracy of the response surface among different correlation
kernels. Examining some test functions with only positive cross-correlations
and their counterparts with half of the slices turned enables us to analyze
how well the kernels can deal with negative cross-correlations. Additionally,
two sizes of the initial designs are considered – four and eight points per
slice, respectively.

First, the Root Mean Squared Errors (RMSEs) between the vector of em-
pirical cross-correlations and the ones estimated using the correlation kernels
are considered. For the test functions without negative cross-correlations
analyzed here, overall the EC and MC kernels perform best. When many

98 CHAPTER 8. SUMMARY AND OUTLOOK

negative cross-correlations are present, the LRCr kernels and UC perform
better. A medium to high r seems the best choice for LRCr.

Next, the accuracy of predicting the response surface is analyzed. This
is done by comparing the Q2 criterion. Here, the UC kernel performs best.
Interestingly, MC shows good results even on functions with many negative
cross-correlations despite its weaknesses in estimating these correlations. The
LRCr kernels perform reasonably well and are an alternative to UC and
MC especially when it is assumed that many negative cross-correlations are
present and the number of parameters of UC is not manageable.

We then focus on the Efficient Global Optimization (EGO) algorithm
for mixed input variables and analyze the kernels’ performances in this
context with another simulation study. For this, one sliced test function
and its version with turned slices are thoroughly investigated. Again, two
differently sized initial designs are considered whereas the total number of
function evaluations is fixed. After this budget is exhausted, the differences
of the optimization runs’ best found values to the exact value of the global
minimum are compared. We find out that in general a higher number of
EGO iterations seems to be preferable over a bigger initial design and fewer
EGO iterations. Again, the UC kernel performs best overall. However, the
parsimonious kernels achieve competing results. Counterintuitively, LRCr

with a high r performs well on the original function with only positive cross-
correlations while the EC and MC kernels show slightly better results on the
functions with turned slices, where their accuracy of the estimation of the
cross-correlations is rather poor.

Subsequently, a number of different applications are analyzed using the
LRCr kernels. The first two applications are single-objective optimizations – a
hyperparameter tuning of an object detection algorithm and the optimization
of the throughput of a simulated logistics production process. In both
applications, very good results are achieved using only low numbers of
function evaluations. The third application is a bi-objective optimization
of shift planning in simulated logistic high-bay warehouse operations. This
application demands more adjustments than the ones before because there
are a number of special cases to be handled: First, there are constraints on
the input variables because the maximum number of simultaneously active
forklift trucks is limited to 12. Second, there are two objective variables,
one of which can be computed deterministically from the inputs. This
requires the computation of bi-objective infill criteria for the EGO algorithm,
where the prediction of one of the objective variables is an exact formula
with zero uncertainty. Third, it turns out that the proposed points by the
EGO algorithm focus on extending the Pareto front approximation at the
borders of the objective domain, where the corresponding solutions are not
satisfactory for practice. To overcome this problem, we penalize solutions
with the deterministic (and thus cheap-to-evaluate) objective lying outside
an interval that gets narrower and narrower around a desired target region.

99

This procedure leads to a substantially extended Pareto front approximation
with different trade-off solutions.

To speed up the sequential optimization process in future applications,
several points could be proposed at once by maximizing the joint Expected
Hypervolume Improvement of these points (Daulton et al., 2020). Moreover,
numerical kernels can be adjusted to better account for ordinal or integer-
valued variables (Garrido-Merchán and Hernández-Lobato, 2020).

Besides these suggestions, there are several interesting future directions
and open questions. As the simulation studies suggest, there is no clear
relationship between a kernel’s capability of accurately estimating cross-
correlations and its prediction and optimization accuracy. In order to see
why this is, it would be interesting to compare the estimates of the numerical
kernel’s parameters. One would expect them to be similar when using different
categorical kernels but there may be an interaction. In the optimization
study, the estimation accuracy of the cross-correlations was measured directly
after the initial design was evaluated. One could examine how the parameter
and cross-correlation estimates change by sequentially adding points to the
designs. Do they converge?

Another open question is how to choose the number of points in the
initial experimental design for a specific problem at hand. Of course, in
the context of an expensive black-box function, it is desirable to evaluate
as few points as necessary. A design that could be extended by a number
of points (e.g., one point per slice) while preserving a good space-fillingness
would enable the practitioner to first evaluate a low number of points and
to sequentially add points to the design – without the need to rely on a
GP model for selecting these new points – until the model diagnostics are
satisfactory. Taking a small subset of a large Optimal Clustered Sliced Latin
Hypercube Design (OCSLHD) that shows a low centered L2 criterion could
be an interesting starting point for such an extendable design.

In practice it is not feasible to conduct an optimization with many
different kernels because it increases the number of expensive function values.
It is therefore important to have heuristics that help decide which kernel to
choose. In the future, this should be focussed more closely: Can we predict
which kernel will produce the best approximation to the global optimum
using diagnostics from the initial design? The model diagnostics can also be
viewed for each combination of levels of the categorical variables separately.
This might reveal imbalances in the slices that are not visible otherwise.

The LRCr kernel can be obtained from the UC kernel by setting θi,r =
0, i > r. A slightly different approach would be to restrict the number of
parameters of UC by setting a number of its parameters (but not neces-
sarily θi,r, i > r) to 0. This would make it possible to set the number of
parameters to any value k ∈

{
1, . . . , s2−s

2

}
. However, this approach would

require to determine which parameters are set to 0. Since there are (
s2−s

2
k

)

100 CHAPTER 8. SUMMARY AND OUTLOOK

different possibilities, comparing the model diagnostics of all of these different
parameterizations is typically not feasible for a given problem. Instead, a pa-
rameterization should be searched that has a high flexibility and can be used
for any application. This could be done as follows: Generate a large number
of random correlation matrices. Select k of UC’s parameters that are set
to 0 randomly. Given this restrictive parameterization, iterate through the
matrices and find values for the remaining parameters in order to resemble
the generated correlation matrix as good as possible – i.e., minimize some
distance to the target matrix. With the resulting distances, a measure of the
structure’s flexibility can be defined, e.g., in terms of the mean distance. An
unflexible structure will have a high mean distance while a flexible structure
will be able to get close to many target correlation matrices. Find the most
flexible structure, e.g., by using a genetic algorithm.

Bibliography
Abramowitz, M. and Stegun, I. A., editors (1965). Handbook of mathematical

functions: with formulas, graphs, and mathematical tables, volume 55 of
National Bureau of Standards Applied Mathematics Series. U.S. Govern-
ment printing office, Washington, D.C.

Ackley, D. (2012). A connectionist machine for genetic hillclimbing, volume 28
of The Springer International Series in Engineering and Computer Science.
Springer, New York.

Al-Roomi, A. R. (2015). Unconstrained single-objective benchmark func-
tions repository. https://www.al-roomi.org/benchmarks/unconstrained.
Dalhousie University, Halifax, Nova Scotia, Canada.

Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA: Multiob-
jective selection based on dominated hypervolume. European Journal of
Operational Research, 181(3):1653–1669.

Binois, M. and Picheny, V. (2019). GPareto: An R package for Gaussian-
process-based multi-objective optimization and analysis. Journal of Statis-
tical Software, 89(8).

Bossek, J. (2017). smoof: Single- and multi-objective optimization test
functions. The R Journal, 9(1):103–113.

Branin, F. H. (1972). Widely convergent method for finding multiple solu-
tions of simultaneous nonlinear equations. IBM Journal of Research and
Development, 16(5):504–522.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory
algorithm for bound constrained optimization. SIAM Journal on Scientific
Computing, 16(5):1190–1208.

Černỳ, V. (1985). Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimization
Theory and Applications, 45(1):41–51.

Daulton, S., Balandat, M., and Bakshy, E. (2020). Differentiable expected hy-
pervolume improvement for parallel multi-objective Bayesian optimization.
arXiv:2006.05078 [stat.ML].

Deng, X., Devon Lin, C., Liu, K.-W., and Rowe, R. K. (2017). Additive
gaussian process for computer models with qualitative and quantitative
factors. Technometrics, 59(3):283–292.

Deville, Y., Ginsbourger, D., Roustant, O., and Durrande, N. (2019). kergp:
Gaussian process laboratory. R package version 0.5.0.

102 BIBLIOGRAPHY

Emmerich, M. T., Deutz, A. H., and Klinkenberg, J. W. (2011). Hypervolume-
based expected improvement: Monotonicity properties and exact computa-
tion. In 2011 IEEE Congress of Evolutionary Computation (CEC), pages
2147–2154, New Orleans, LA. IEEE.

Fang, K.-T., Li, R., and Sudjianto, A. (2005). Design and modeling for
computer experiments. Chapman & Hall/CRC, New York.

Garrido-Merchán, E. C. and Hernández-Lobato, D. (2020). Dealing with
categorical and integer-valued variables in bayesian optimization with
Gaussian processes. Neurocomputing, 380:20–35.

Goldstein, A. A. and Price, J. F. (1971). On descent from local minima.
Mathematics of Computation, 25(115):569–574.

Gotway, C. A., Ferguson, R. B., Hergert, G. W., and Peterson, T. A. (1996).
Comparison of kriging and inverse-distance methods for mapping soil
parameters. Soil Science Society of America Journal, 60(4):1237–1247.

Gower, J. C. (1971). A general coefficient of similarity and some of its
properties. Biometrics, 27(4):857–871.

Gramacy, R. B. and Lee, H. K. H. (2008). Bayesian treed gaussian process
models with an application to computer modeling. Journal of the American
Statistical Association, 103(483):1119–1130.

Hadley, G. (1964). Nonlinear and dynamics programming. Addison Wesley,
Reading, MA.

Halstrup, M. (2016). Black-box optimization of mixed discrete-continuous
optimization problems. PhD thesis, TU Dortmund University.

Hansen, N., Finck, S., and Ros, R. (2011). COCO – Comparing continuous
optimizers: The documentation. INRIA, Research Report RT-0409.

Huang, D., Allen, T., Notz, W. I., and Miller, R. (2006). Sequential kriging
optimization using multiple-fidelity evaluations. Structural and Multidisci-
plinary Optimization, 32(5):369–382.

Huang, H., Lin, D. K. J., Liu, M.-Q., and Yan, J.-F. (2016). Computer ex-
periments with both qualitative and quantitative variables. Technometrics,
58(4):495–507.

INCONTROL Simulation Software (1997–2011). Enterprise Dynamics (8.2).
Utrecht, Netherlands.

Jamil, M. and Yang, X.-S. (2013). A literature survey of benchmark functions
for global optimisation problems. Journal of Mathematical Modelling and
Numerical Optimisation, 4(2):150–194.

BIBLIOGRAPHY 103

Jones, D. R. (2001). A taxonomy of global optimization methods based on
response surfaces. Journal of Global Optimization, 21(4):345–383.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global opti-
mization of expensive black-box functions. Journal of Global Optimization,
13(4):455–492.

Joseph, V. R. and Delaney, J. D. (2007). Functionally induced priors for the
analysis of experiments. Technometrics, 49(1):1–11.

Kennedy, M. C. and O’Hagan, A. (2000). Predicting the output from a
complex computer code when fast approximations are available. Biometrika,
87(1):1–13.

Kirchhoff, D., Kirberg, M., Kuhnt, S., and Clausen, U. (2020a). Metamodel-
based optimization of shift planning in high-bay warehouse operations.
Submitted.

Kirchhoff, D. and Kuhnt, S. (2020). Gaussian process models with low-rank
correlation matrices for both continuous and categorical inputs. Submitted,
arXiv:2010.02574 [stat.ML].

Kirchhoff, D., Kuhnt, S., Bloch, L., and Müller, C. H. (2020b). Detection
of circlelike overlapping objects in thermal spray images. Quality and
Reliability Engineering International, 36(8):2639–2659.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598):671–680.

Krige, D. G. (1951). A statistical approach to some basic mine valuation
problems on the Witwatersrand. Journal of the Chemical, Metallurgical
and Mining Society of South Africa, 52(6):119–139.

Kuhnt, S., Kirchhoff, D., Wenzel, S., and Stolipin, J. (2020). Generating
logistic characteristic curves using discrete event simulation and response
surface models. Simulation Notes Europe, 30(3):95–104.

Laslett, G. M. (1994). Kriging and splines: An empirical comparison of their
predictive performance in some applications. Journal of the American
Statistical Association, 89(426):391–400.

Lekivetz, R. and Jones, B. (2015). Fast flexible space-filling designs for
nonrectangular regions. Quality and Reliability Engineering International,
31(5):829–837.

Li, W. W. and Wu, C. F. J. (1997). Columnwise-pairwise algorithms with
applications to the construction of supersaturated designs. Technometrics,
39(2):171–179.

104 BIBLIOGRAPHY

Matheron, G. (1963). Principles of geostatistics. Economic Geology,
58(8):1246–1266.

McMillan, N. J., Sacks, J., Welch, W. J., and Gao, F. (1999). Analysis of
protein activity data by Gaussian stochastic process models. Journal of
Biopharmaceutical Statistics, 9(1):145–160.

Mebane Jr, W. and Sekhon, J. (2011). Genetic optimization using derivatives:
The rgenoud package for R. Journal of Statistical Software, 42(11).

Mishra, S. K. (2006). Global optimization by differential evolution and
particle swarm methods: Evaluation on some benchmark functions. SSRN
Electronic Journal.

Picheny, V., Ginsbourger, D., Roustant, O., Binois, M., Chevalier, C.,
Marmin, S., and Wagner, T. (2016). DiceOptim: Kriging-based optimization
for computer experiments. R package version 2.0.

Poloczek, M., Wang, J., and Frazier, P. I. (2017). Multi-information source
optimization. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 30, pages 4291–4301, Red
Hook, NY. Curran Associates, Inc.

Ponweiser, W., Wagner, T., Biermann, D., and Vincze, M. (2008). Multiob-
jective optimization on a limited budget of evaluations using model-assisted
S-metric selection. In Rudolph, G., Jansen, T., Lucas, S., Poloni, C., and
Beume, N., editors, International Conference on Parallel Problem Solving
from Nature – PPSN X, pages 784–794, Berlin, Heidelberg. Springer.

Qian, P. Z. G. (2012). Sliced Latin hypercube designs. Journal of the
American Statistical Association, 107(497):393–399.

Qian, P. Z. G., Wu, H., and Wu, C. F. J. (2008). Gaussian process mod-
els for computer experiments with qualitative and quantitative factors.
Technometrics, 50(3):383–396.

Rahnamayan, S., Tizhoosh, H. R., and Salama, M. M. A. (2007). A novel
population initialization method for accelerating evolutionary algorithms.
Computers & Mathematics with Applications, 53(10):1605–1614.

Rapisarda, F., Brigo, D., and Mercurio, F. (2007). Parameterizing correla-
tions: a geometric interpretation. IMA Journal of Management Mathe-
matics, 18(1):55–73.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for
machine learning. The MIT Press, Cambridge, MA.

BIBLIOGRAPHY 105

R Core Team (2019). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Roustant, O., Ginsbourger, D., and Deville, Y. (2012). DiceKriging, DiceOp-
tim: Two R packages for the analysis of computer experiments by Kriging-
based metamodeling and optimization. Journal of Statistical Software,
51(1).

Roustant, O., Padonou, E., Deville, Y., Clément, A., Perrin, G., Giorla, J.,
and Wynn, H. P. (2020). Group kernels for gaussian process metamodels
with categorical inputs. SIAM/ASA Journal on Uncertainty Quantification,
8(2):775–806.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and
analysis of computer experiments. Statistical Science, 4(4):409–423.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The design and
analysis of computer experiments. Springer, New York.

SAS Institute Inc. (1989–2020). JMP R⃝. Cary, NC.

Schoenberg, I. J. (1946a). Contributions to the problem of approximation
of equidistant data by analytic functions. Part A—On the problem of
smoothing or graduation. A first class of analytic approximation formulae.
Quarterly of Applied Mathematics, 4(1):45–99.

Schoenberg, I. J. (1946b). Contributions to the problem of approximation
of equidistant data by analytic functions. Part B—On the problem of
osculatory interpolation. A second class of analytic approximation formulae.
Quarterly of Applied Mathematics, 4(2):112–141.

Schonlau, M. (1997). Computer experiments and global optimization. PhD
thesis, University of Waterloo.

Schwefel, H.-P. P. (1993). Evolution and optimum seeking: the sixth genera-
tion. John Wiley & Sons, Inc., New York.

SDZ GmbH (2020). DOSIMIS-3 tutorial – part 1 & 2. Retrieved April 2020
from https://www.sdz.de/downloads/.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-
spaced data. In Blue, R. B. and Rosenberg, A. M., editors, Proceedings
of the 1968 23rd ACM National Conference, pages 517–524, New York.
Association for Computing Machinery.

Voltz, M. and Webster, R. (1990). A comparison of kriging, cubic splines
and classification for predicting soil properties from sample information.
Journal of Soil Science, 41:473–490.

106 BIBLIOGRAPHY

Wagner, T., Emmerich, M., Deutz, A., and Ponweiser, W. (2010). On
expected-improvement criteria for model-based multi-objective optimiza-
tion. In Schaefer, R., Cotta, C., Kołodziej, J., and Rudolph, G., editors,
Parallel Problem Solving from Nature – PPSN XI – Part I, pages 718–727,
Berlin, Heidelberg. Springer.

Ye, K. Q., Li, W., and Sudjianto, A. (2000). Algorithmic construction
of optimal symmetric Latin hypercube designs. Journal of Statistical
Planning and Inference, 90(1):145–159.

Zhang, Y. (2014). Computer experiments with both quantitative and qualita-
tive inputs. PhD thesis, The Ohio State University.

Zhang, Y. and Notz, W. I. (2015). Computer experiments with qualitative and
quantitative variables: A review and reexamination. Quality Engineering,
27(1):2–13.

Zhou, Q., Qian, P. Z. G., and Zhou, S. (2011). A simple approach to
emulation for computer models with qualitative and quantitative factors.
Technometrics, 53(3):266–273.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Grunert da
Fonseca, V. (2003). Performance assessment of multiobjective optimizers:
An analysis and review. IEEE Transactions on Evolutionary Computation,
7(2):117–132.

Appendix A
Implementation of Clustered Sliced
LHDs

At the moment, there is no R package that offers the generation of CSLHDs
and OCSLHDs. Here, we show our implementation of the algorithms of
Huang et al. (2016), involving the centered L2-discrepancy (see Section 2.3)
and the simulated annealing as described by Fang et al. (2005) for the
optimization of OCSLHDs.

A.1 CSLHD

The following code shows how a random CSLHD(n, s, q) with N = ns total
runs is generated, where n is the number of design points for each of the
s level combinations of the categorical variables and q is the number of
real-valued variables. The method returns an (N× q) matrix D containing
values in [0, 1) for the numerical variables. The first n rows belong to the
first slice, the second n rows to the second slice, and so on.

1 getCSLHD = function(n, s, q) {
2 ## total number of runs in the design
3 N = n * s
4

5 ## STEP 1
6 i = 1:n
7 g = t(sapply(i, function(x) (x - 1) * s + 1:s)) # g_i = g[i,]
8

9 ## STEPS 2 & 3
10 G = replicate(q, {
11 u = sample(1:n, n, replace = FALSE)
12 gstar = t(sapply(u, function(x) sample(g[x,], s, replace =

FALSE)))
13 h = reshape2::melt(gstar)$value

108 APPENDIX A. IMPLEMENTATION OF CSLHDS

14 })
15

16 ## STEP 4
17 D = (G - matrix(0.5, nrow = N, ncol = q))/N
18

19 return(D)
20 }

A.2 OCSLHD

For the construction of an optimal CSLHD, we first need to implement the
criterion to be optimized. In this case, this criterion is the centered L2-
discrepancy CL2 of a design with the same structure as given by getCSLHD:

1 getL2Discrepancy = function(design) {
2 N = nrow(design)
3 q = ncol(design)
4

5 first.term = sum(apply(t(apply(design, 1, function(d) {
6 1 + 0.5 * abs(d - 0.5) - 0.5 * abs(d - 0.5)^2
7 })), 1, prod))
8

9 second.term.array = array(dim = c(q, N, N))
10 for (k in 1:N) {
11 for (j in 1:N) {
12 for (i in 1:q) {
13 second.term.array[i, j, k] = 1 +
14 0.5 * abs(design[k, i] - 0.5) +
15 0.5 * abs(design[j, i] - 0.5) -
16 0.5 * abs(design[k, i] - design[j, i])
17 }
18 }
19 }
20 second.term.array = apply(second.term.array, c(2, 3), prod)
21 second.term = sum(second.term.array)
22 return((13/12)^q - 2/N * first.term + 1/(N^2) * second.term)
23 }

The second component is the implementation of the column-exchange
approach getAdjacentDesign in order to get a design in the neighborhood
of an initial design:

1 getAdjacentDesign = function(design, n, s) {
2 N = nrow(design)
3 q = ncol(design)
4

5 if (N != n * s) {

A.2 OCSLHD 109

6 stop("Number of rows in the design mismatch
7 values of n and s.")
8 }
9 col = sample(q, 1)

10 d = design[, col]
11 E = matrix(d, nrow = n, ncol = s)
12

13 uv = sort(sample(n, 2))
14

15 E2 = E
16 E2[uv[1],] = E[uv[2],]
17 E2[uv[2],] = E[uv[1],]
18 E = E2
19

20 i1i2 = sort(sample(s, 2))
21 E2[uv[1], i1i2[1]] = E[uv[1], i1i2[2]]
22 E2[uv[1], i1i2[2]] = E[uv[1], i1i2[1]]
23

24 design[, col] = as.numeric(E2)
25 return(design)
26 }

Then, the simulated annealing getOCSLHD(init.design = NULL, n, s,
init.temp = 100, cooling.par = 0.5, numb.designs.per.temp = 30,
numb.temp.changes = 15, info = TRUE) for the minimization of the CL2
can be implemented as follows. Here, the arguments are an optional initial
design init.design, the number of points n for each of the s slices, the inital
temperature init.temp, the cooling parameter cooling.par, the number
of designs considered per temperature, numb.designs.per.temp, and the
number of iterations numb.temp.changes. Only if no initial design is passed
to the function, the number of real-valued variables q has to be specified.
Furthermore, parameter info can be set to TRUE in order to print the current
temperature, the number of designs that have already been considered for
this temperature, and the CL2 of the most recent design to the console.

1 getOCSLHD = function(init.design = NULL, n, s, q = NULL,
2 init.temp = 100, cooling.par = 0.5, numb.designs.per.temp = 30,
3 numb.temp.changes = 15, info = TRUE) {
4

5 if (is.null(init.design)) {
6 design = getCSLHD(n, s, q)
7 } else {
8 design = init.design
9 }

10

11 ## initialize parameters
12 temp = init.temp
13 alpha = cooling.par

110 APPENDIX A. IMPLEMENTATION OF CSLHDS

14 temp.changes = 0
15 h.first = h.old = getL2Discrepancy(design)
16

17 while (temp.changes <= numb.temp.changes) {
18 temp.changes = temp.changes + 1
19 numb.designs = 0
20 while (numb.designs <= numb.designs.per.temp) {
21 numb.designs = numb.designs + 1
22 ## get design in the neighbourhood of ’design’
23 design.new = getAdjacentDesign(design, n = n, s = s)
24

25 ## compare differences in CL_2 values of both designs
26 h.new = getL2Discrepancy(design.new)
27 h.delta = h.new - h.old
28

29 ## if new design is more space-filling than old one
30 ## or with a probability depending on difference in CL_2
31 ## and current temperature, continue with new design
32 ## else continue with old design
33 if (h.delta < 0 || exp(-h.delta/temp) > runif(1)) {
34 design = design.new
35 h.old = h.new
36 if (info) {
37 cat(sprintf("Temperature: %g, Design %i,
38 L2-Discrepancy: %g\n", temp, numb.designs, h.new))
39 }
40 }
41 }
42 ## update temperature using the cooling parameter
43 temp = alpha * temp
44 }
45 if (info) {
46 cat(sprintf("Initial L2-Discrepancy: %g,
47 New L2-Discrepancy: %g\n", h.first, h.old))
48 }
49 return(design)
50 }

	Introduction
	Gaussian Process Models for Mixed Inputs
	Gaussian Process Models for Numerical Inputs
	Extensions to Mixed Inputs
	Design of Experiments
	Model Diagnostics

	Low-Rank Correlation (LRC) Approach
	Definition
	Illustrative Examples
	Implementation

	Development of Benchmark Functions
	Motivation for Developing New Test Functions
	Slicing of Continuous Test Functions
	Turning of Slices

	Simulation Study on LRC in Estimation and Prediction
	Test Functions
	Estimation of Cross-Correlations
	Prediction of the Response Surface

	Efficient Global Optimization for Mixed Inputs
	The Efficient Global Optimization (EGO) Algorithm
	Simulation Study on EGO
	Parameter Optimization of a Splat Detection Algorithm
	Optimization of a Logistics Production Process

	Optimization of Shift Planning in High-Bay Warehouse Operations
	Description of the Simulation Model
	Bi-objective Optimization
	Execution of Simulation Experiment
	Modeling the Objective Variables
	EGO Iterations

	Summary and Outlook
	Bibliography
	Implementation of Clustered Sliced LHDs
	CSLHD
	OCSLHD

