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Dynamic mean-field theory for dense spin systems at infinite temperature
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A dynamic mean-field theory for spin ensembles (spinDMFT) at infinite temperatures on arbitrary lattices
is established. The approach is introduced for an isotropic Heisenberg model with S = 1

2 and external field.
For large coordination numbers, it is shown that the effect of the environment of each spin is captured by a
classical time-dependent random mean field which is normally distributed. Expectation values are calculated
by averaging over these mean fields, i.e., by a path integral over the normal distributions. A self-consistency
condition is derived by linking the moments defining the normal distributions to spin autocorrelations. In this
framework, we explicitly show how the rotating-wave approximation becomes a valid description for increasing
magnetic field. We also demonstrate that the approach can easily be extended. Exemplarily, we employ it to
reach a quantitative understanding of a dense ensemble of spins with dipolar interaction which are distributed
randomly on a plane including static Gaussian noise as well.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) has been an extremely
important field for a long time. On the one hand, it constitutes
a powerful analytical technique in physical chemistry [1–4]
which helps to understand the structure of molecules on all
levels from their primary structure to their tertiary structure.
One the other hand, it is a technique which has enabled fun-
damental steps in quantum computing by taking spins S = 1

2
as quantum bits [5]. The latter development illustrates that the
dynamics of the spin degree of freedom has gained enormous
attention in particular in recent years. Closely related is the
rapid development of the field of quantum sensing based on
NV centers in diamond [6–13] which behave similarly to an
elementary spin [14].

A key phenomenon in this field is decoherence, i.e., the
loss of coherence of a small quantum system in contact with
a larger environment, often called bath. A generic approach to
small systems in weak contact with a large bath is the theory
of open quantum systems [15]. This is a powerful approach if
the energy scales of system and bath are very different. If the
bath correlations decay much faster than the system’s dynam-
ics, quantum master equations reliably capture the physics,
for example, in radiative decay processes. If, however, the
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separation of energy scales is not given and the back-action
of the system onto the bath cannot be neglected, a quantitative
description is notoriously difficult.

In the context of the coherent control of spins, the small
quantum system generically is a single spin. The decoherence
can result from a fluctuating environment, for instance, from
stray magnetic fields or from phonons which may be fast.
But, very often it results from surrounding spins of electronic
or nuclear origin. This is the case often relevant in NMR
and in sensing by NV centers. Then, the back-action of the
considered spin onto its neighboring spins is important and
cannot be neglected.

While we cannot provide a comprehensive review over
all techniques applicable to spin systems, we present a brief
overview of the most commonly used techniques. This allows
us to highlight differences to the approach we are proposing
in this paper.

For very small bath sizes of only a few spins the resulting
problem can be tackled by exact diagonalization (ED). The
Chebyshev polynomial expansion technique (CET) allows for
substantially larger but still comparably small finite bath sizes
[16,17]. If, however, the degrees of freedom of the bath are
too numerous, then brute force numerical approaches cannot
be applied due to the exponential growth of the Hilbert space
with the number of bath spins. For certain geometries such as
chains and stars, density-matrix renormalization [18,19] pro-
vides numerical alternatives. But, the maximum times which
can be reached are limited. For approximately starlike topolo-
gies, like the one of the central spin model, cluster expansions
[20,21] and related methods [22], linked-cluster expansions
[23,24], and cluster-correlation expansions [25–27] are promi-
nent approaches. But, these approaches become cumbersome
for lattices with many different bonds. In addition, they repre-
sent expansions in time so that the reachable maximum time is
limited by the complexity of the tractable maximum clusters.
The eminent problem with (occasionally constrained) Monte
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Carlo sampling methods [28–30] is that statistical errors can
become very substantial (see in particular Ref. [31] concern-
ing the effects for up to N = 48 nuclear spins). By means of
semiclassical or quantum mechanical master equations for the
density matrix of the whole system [32–35], an access to the
overall dynamics can be obtained which is typically easy to
realize, but potentially suffers from the drawbacks of mean-
field approaches if these are not based on small expansion
parameters.

Hence, alternative techniques are of significant interest.
One useful observation is that the dynamics of spins and
in particular the effect of a larger number of spins can be
captured fairly well by their classical equations of motion
[36–40]. This can be understood as an application of the
ideas of the truncated Wigner approximation [41,42] whose
foundations date back to the idea of Wigner that a part of the
quantumness is captured by averaging over distributions of
initial conditions [43]. But it is conceptually very difficult to
extend this approach systematically to take more and more
quantum effects into account. Apart from the smallness of
Planck’s constant h̄, no small parameter is apparent.

In this paper we deal with dense spin systems where
each spin interacts with a large number of other spins.
In the limit where this number of interaction partners be-
comes infinite we derive a dynamic mean-field theory for the
spin dynamics (spinDMFT) at infinite temperature, i.e., for
completely disordered spins. As in all mean-field theories,
spinDMFT comprises an effective single-site problem and a
self-consistency condition. Similar to the case of the estab-
lished fermionic dynamic mean-field theories [44] the time
dependence of the mean field is a crucial ingredient. It bears
similarities to the mean-field approach for the Sherrington-
Kirkpatrick quantum model in which spin-glass behavior has
been established [45–48]. A dynamic mean-field approach has
also been used for ordered magnetic phases [49] for which,
however, the couplings between the spins have to be scaled
differently.

After this introduction, we derive the spinDMFT in Sec. II
in consecutive steps for an isotropic Heisenberg model and
discuss details of the numerical implementation. Subse-
quently, we compare the results of spinDMFT for several
systems with results obtained by CET and iterated equations
of motion [50,51] in Sec. III. Section IV is devoted to the ap-
plication of spinDMFT to two-dimensional spin ensembles in
which the spins couple via dipolar interactions. In particular,
we can continuously show how the well-known rotating-wave
approximation (RWA) becomes more and more reliable for
increasing external magnetic field. In Sec. V we conclude the
paper and give an outlook to future directions of research. The
Appendixes provide technical details of the derivation and the
numerical implementation of spinDMFT including an analy-
sis of the achievable accuracy in the numerical simulations.

II. APPROACH

A. Model and definitions

For concreteness, we consider an isotropic Heisenberg
model for an ensemble of spins with S = 1

2 at infinite tem-
perature. The spins are subjected to a static and homogeneous

magnetic field aligned in the z direction so that the Hamilto-
nian reads as

H =
∑
i< j

Ji j �Si · �S j + γsB
∑

i

Sz
i . (1)

Here and henceforth we use bold symbols for quantum
mechanical operators and three-dimensional vectors are indi-
cated by the arrow above the symbol. The properties of the
underlying spin lattice are encoded in the couplings Ji j = Jji.
It is useful to introduce the operators of the local environments
of each spin

�V i :=
∑
j, j �=i

Ji j �S j . (2)

Using them the Hamiltonian can be expressed as

H = 1

2

∑
i

�Si · �V i + γsB
∑

i

Sz
i . (3)

The prefactor 1
2 occurs here to avoid double counting of the

couplings. For later purposes, we also introduce the moments
of the coupling constants

Jm,i :=
(∑

j

|Ji j |m
)1/m

(4)

and the effective coordination numbers depending on the
site i:

zi := J 2
1,i

J 2
2,i

, z′
i := J 4

2,i

J 4
4,i

. (5)

Note that we do not restrict the model to periodic lattices, but
include arbitrary clusters. Both coordination numbers assess
the number of spins that constitute the environment of site i.
Considering only constant nearest-neighbor (NN) interactions
both numbers zi and z′

i equal the number of nearest neighbors
zNN,i = zi = z′

i which is the usual coordination number.
A common property of mean-field approaches is that they

become exact in the limit z → ∞ [44]. Therefore, 1/z serves
as a control parameter allowing us to systematically neglect
terms in nonleading order in 1/z. Hence, we examine several
quantities with respect to their scaling with the effective coor-
dination numbers. We will show that the spinDMFT becomes
exact in the limit of infinite zi and z′

i.
As a consequence, the approach is not optimum for low-

dimensional systems. However, since we consider effective
coordination numbers instead of the standard one, not only
the dimensionality but also the overall behavior of the cou-
pling constants matters. Obviously, long-range couplings will
increase the effective coordination numbers at given, fixed
dimension. In Sec. IV, we demonstrate that in case of dipo-
lar couplings, i.e., for weakly decreasing couplings with the
distance, our approach is successful even in two dimensions.

We establish the dynamic mean-field theory for spins
(spinDMFT) for the introduced model. This is done in four
steps:

(i) We replace the local-environment operators by classi-
cal time-dependent random local mean fields.
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(ii) We argue that the dynamics of the local mean field at
site i does not depend on the dynamics of the single spin at
site i.

(iii) We show that the mean fields are normally dis-
tributed.

(iv) The defining moments of the normal distributions are
linked to spin autocorrelations yielding a closed set of self-
consistency equations.

Since we consider infinite temperature, the density opera-
tor is given by 1/d , where d is the dimension of the Hilbert
space. Thus, any quantum expectation values are given by

〈A〉 = 1

d
Tr(A) (6a)

and, consequently, any correlation by

〈A(t )B(0)〉 = 1

d
Tr(eitHAe−itHB), (6b)

where we have set h̄ = 1. In the next section, we undertake
the first and the second steps (i) and (ii).

B. From the spin ensemble to an effective single site

1. Step (i)

We justify the substitution of the local-environment opera-
tors �V i(t ) by classical fields. For this to hold, it is crucial that
the spin ensemble is dense so that quantum fluctuations of the
environment are negligible relative to the classical dynamics.
The argument is adapted from Ref. [19] and runs as follows.
We consider the Frobenius norm of an operator defined by

||A||2 = 1

d
Tr(A†A) (7)

and apply it to ∣∣∣∣V α
i

∣∣∣∣2 = J 2
2,i

4
(8)

for each component of the local-environment operator. To
assess the role of the coordination numbers, we assume that
the J2,i are of the same order of magnitude at every site.
They set the relevant energy scale which one should think of
being constant when scaling the coordination numbers, i.e.,
the individual couplings scale roughly like Ji j ∝ 1/

√
z.

For a classical variable, any commutator would vanish.
Hence, we study the commutators of the local-environment
operators and compare their norm to the one of the �V i them-
selves ∣∣∣∣[V α

i ,V β
i

]∣∣∣∣2 = J 4
4,i

4
= 1

4

J 4
2,i

z′
i

(9)

for α �= β; for α = β the commutator vanishes. Clearly, for
diverging effective coordination number z′

i → ∞ the commu-
tator vanishes relative to the norm of the operator. Hence, its
quantumness becomes negligible and the local-environment
operators can be replaced by classical mean fields �V i → �Vi.
Note that this is a very common phenomenon in quantum me-
chanics. Quantities which represent the collective properties
of a large number of constituents behave classically. We stress,
however, that this argument does not imply that the classical
field is static. Hence, we avoid this oversimplification and take

the mean fields as classical, but time dependent and dynamic.
A potential correlation between �Vi and �Si is not ruled out at
this stage.

2. Step (ii)

Here, the aim is to show that the dynamics of the individual
spin at site i does not influence the dynamics of �Vi in the
limit of zi → ∞. The basic idea is simple: a single spin
contributes only negligibly to the large sum defining �Vi. But, it
is not straightforward to cast this idea into a formal argument.
What we want to show is that the dynamics of �Si does not
influence the dynamics of �Vi, i.e., that no back-action needs to
be taken into account. Indeed, we show in Appendix A that
the correlation between the spin at site i and at an adjacent
site j scales like 1/z for the special case of a Bethe lattice
with NN interaction, where z = zi = z′

i ∀ i holds. Hence, the
correlation between the spin at site i and its local environment
�Vi scales like J ∝ 1/

√
z and becomes negligible for z → ∞.

The number of spins in �Vi scales like z compensating the factor
1/z from the correlations.

We stress that this conclusion is subtle. It is valid if the
dynamics of �Vi is induced by a process of order z0 because
the relative error then is indeed of order z−1/2. But, if there
is no process inducing a dynamics of order z0 this does not
hold true. Indeed, the central spin model (CSM) provides an
instructive example. In this model, a central spin is coupled to
a large number of bath spins, but the bath spins are not coupled
among themselves,

HCSM = �S0 ·
n∑

i=1

Ci�Si = �S0 · �P, (10)

wherein Ci are arbitrary coupling constants and �P denotes the
so-called Overhauser field. This looks like a perfect scenario
for replacing the �P by a classical Overhauser field �P with
a given dynamics imposed on the central spin. Yet, this ap-
proach fails [19,38,52] because the Overhauser field has no
dynamics if the central spin is taken out and treated separately.
This reasoning shows us that it is essential at this stage to
deal with a dense spin system where each spin interacts with
many others so that excluding one of them from the dynamics
hardly changes the dynamics of all others. This is the case if
the coordination number at each site is large. We point out
that this is clearly not the case in the CSM where excluding
the central spin brings all dynamics to a halt and where the
coordination number z for each bath spin is only 1.

On the basis of the above arguments, we replace each local-
environment field �V i in the Hamiltonian (3) by an a priori
given dynamic mean field �Vi(t ) so that the spin dynamics is
given by

Hmf(t ) =
∑

i

Hmf,i(t ), (11a)

Hmf,i(t ) = �Vi(t ) · �Si + γsBSz
i . (11b)

These mean-field Hamiltonians, labeled by the subscript
“mf”, only contain linear spin-operator terms so that the spin
dynamics at a given site is decoupled from the one at other
sites once the mean fields �Vi(t ) are given as function of
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time. In order to emphasize that not only single values �Vi(t )
are meant, but the whole time dependence we introduce the
shorthand �Vi for it. These time series are drawn from a so
far unknown probability functional p[ �V1, . . . , �VN ] which we
will determine in the next section. In conclusion, the original
2N -dimensional ensemble is mapped to N two-dimensional
quantum impurity systems, each capturing a single spin sub-
jected to a time-dependent mean field and the external field.

C. Distribution of the mean fields �Vi

Here we carry out steps (iii) and (iv) from the list in
Sec. II A.

1. Step (iii)

The central argument is again that two spins at site i and
j are only weakly correlated. This is difficult to show for an
arbitrary cluster with arbitrarily linked spins. But for the Bethe
lattice with NN interaction we demonstrate in Appendix A
that the correlation 〈Sα

i (t )Sβ
j (0)〉 scales like z−||i− j|| where

||i − j|| is the number of NN links needed to go from site i
to j. Moreover, we show that the correlation 〈V α

i (t )V β
j (0)〉 is

suppressed at least like 1/z for i �= j. Thus, we conclude that
the time series of the local mean fields �Vi are independent at
different sites

p[ �V1, . . . , �VN ] =
∏

i

pi[ �Vi]. (12)

This allows us to compute any local expectation value by

〈Ai(t )〉 =
∫

D �Vi pi[ �Vi] 〈U†
i (t, t0)AU i(t, t0)〉(sts)

�Vi
(13a)

= 1

2
Tr(A), (13b)

where 〈. . .〉(sts)
�Vi

stands for the expectation value for a given

single time series �Vi. This contribution is weighted by the
probability pi[ �Vi] to reach the total average. The unitary time
evolution U i(t, t0) is the solution of the Schrödinger equation

d

dt
U i(t, t0) = −iHmf,i(t )U i(t, t0) (14)

for the initial condition U i(t0, t0) = 1. For future use, it is
worth mentioning that the unitary evolution operator U i(t, t0)
only depends on the mean-field time series between t0 and
t and not on all times. Hence, the computation of a time-
dependent expectation value only requires to average over
mean-field time series within the relevant time interval.

For the case in (13), it turns out that no averaging over time
series is necessary at all. Since we assume that the system is
completely disordered at t0, i.e., the density matrix is propor-
tional to the identity, the unitary evolution cancels out and one
arrives at the second line (13b). Averaging actually does not
matter here.

For correlations, the evolution in time does matter and
hence does the averaging over the time series. We consider

〈Ai(t1)Bi(t2)〉(mf) :=
∫

D �Vi pi[ �Vi]〈U†
i (t1, t0)Ai U i(t1, t0)U†

i (t2, t0)Bi U i(t2, t0)〉(sts)
�Vi

(15a)

=
∫

D �Vi pi[ �Vi]〈U†
i (t1, t2)Ai U i(t1, t2)Bi〉(sts)

�Vi
(15b)

which clearly only depends on the time interval [t1, t2]. Note
that temporal homogeneity is not given for a single time
series, but it holds on average so that 〈Ai(t1)Bi(t2)〉(mf) =
〈Ai(t1 − t2)Bi(0)〉(mf) holds.

The next, important conclusion is that each local envi-
ronment �Vi is the sum of a large number of essentially
independent spins (2). This number becomes infinite for di-
verging coordination number so that the central limit theorem
applies and we conclude that the �Vi are normally distributed.
This means that we need only two moments, the first and
second, to determine the distribution. This brings us to the
fourth and final step.

2. Step (iv)

We establish self-consistency conditions which link the
first and second moments of the normal distribution to quan-
tum expectation values and correlations.

For the first moment, it is straightforward to see from
Eq. (13) that it vanishes

〈V α
i (t )〉 = 1

2 Tr
(
V α

i

) = 0 (16)

for all sites i, all components α ∈ {x, y, z}, and all times t
because we start from the disordered, T = ∞ case where the

expectation values of all spin operators vanish. Hence, we
conclude that the distribution pi( �V ) is a normal distribution
with vanishing first moments

V α
i (t ) :=

∫
D �V pi[ �V]V α = 0. (17)

This is the first self-consistency condition which is easy to
fulfill. The spinDMFT can also be extended to include nonva-
nishing first moments and even time-dependent moments, but
this is not the scope of this paper.

For the second moments, we consider〈
V α

i (t1)V β
i (t2)

〉 = ∑
j,k �=i

J jiJki
〈
Sα

j (t1)Sβ

k (t2)
〉

(18a)

=
∑
k �=i

J2
ki

〈
Sα

k (t1)Sβ

k (t2)
〉(mf)

(18b)

=
∑
k �=i

J2
ki

〈
Sα

k (t1 − t2)Sβ

k (0)
〉(mf)

, (18c)

where the second line results from the fact that the spin-
spin correlations between different sites vanish in the limit
of infinite coordination number. The third line, finally, re-
sults from (15) on average. Self-consistency requires that the
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second moment computed above equals the correlations of the
local mean fields, i.e.,

V α
i (t1)V β

i (t2)
!=
∑
k �=i

J2
ki

〈
Sα

k (t1 − t2)Sβ

k (0)
〉(mf)

(19a)

= V α
i (t1 − t2)V β

i (0). (19b)

This closes the set of self-consistency conditions. If the sec-
ond moments only depend on the time difference t1 − t2 the
resulting two-time spin expectation values only depend on
t1 − t2. Hence, solutions homogeneous in time exist. Whether
they are the only conceivable solutions is an additional ques-
tion which we do not study in this paper and leave for future
research.

At this stage, we observe the interesting feature that the
resulting mean-field theory is the same that one would obtain
for classical spins of the same average length. This is so since
the effective single-site problem in Eq. (11) only contains the
spin operator linearly. According to the Ehrenfest theorem,
the quantum mechanical expectation values behave identical
to classical variables. We conclude that the classical and quan-
tum mechanical spin systems converge to the same spinDMFT
for infinite coordination number. We emphasize, however, that
for spins larger than 1

2 nonlinear local terms may arise, for
instance, from quadrupolar couplings [53]. Then, there is a
difference between the quantum and the classical spinDMFT.

Henceforth, we use the term “autocorrelation” to denote
the local spin-spin correlation 〈Sα

i (t1)Sβ
i (t2)〉. Later, when nu-

merical results are presented, we will also distinguish between
diagonal autocorrelations (α = β) and cross autocorrelations
(α �= β).

The message of Eq. (15) is that one can compute the
autocorrelations at each site if one knows the moments
V α

i (t )V β
i (0) defining the normal distribution of �Vi. In return,

Eq. (19) tells us that the knowledge of the autocorrelations
of the spins linked to site i yields the second moments of
�Vi. It is to be expected that this closed set of self-consistency
equations can be solved iteratively and our numerical results
confirm that this is true. Numerical aspects will be discussed
in the next section.

In this paper, we do not intend to use spinDMFT for
problems with spatial dependence even though the general
formalism derived so far allows for such spatial dependencies.
But, the concomitant numerical task is quite demanding. Our
goal here is first to introduce the approach of spinDMFT and
to illustrate its performance. To this end, we opt to consider
homogeneous spin ensembles where each site is equivalent to
every other site. Certainly, this is the case for periodic lattices
but it can also hold for dense random spin ensembles where
each spin is interacting on average with the same number
of spins and with the same interaction strength. Then, all
autocorrelations are the same and hence all second moments
of the local mean fields. Then, the self-consistency condition
(19) simplifies considerably because the autocorrelations on
the right-hand side can be taken out of the sum. The site-
independent second moments read as

V α (t )V β (0) = J 2
2 〈Sα (t )Sβ (0)〉(mf)

. (20)

mean-field
moments

spin
correlations

initial
mean-field
moments

self-consistent
equations

expectation values via
path integral

FIG. 1. Scheme of the iteration procedure.

Since all sites are equivalent, no site indices need to be de-
noted. Interestingly, the only energy constant governing the
spin dynamics aside from the external magnetic field is the
root-mean square J2 of the couplings.

D. Numerical implementation

Our aim is to implement a numerical procedure by which
the mean-field moments determined by the self-consistent
equations can be evaluated. The basic idea is to start with
some arbitrary initial function and to converge iteratively to
the solution. In each iteration step, one computes the auto-
correlations for a single spin via the path integral (15b) and
subsequently the mean-field moments via the self-consistent
equations (20). This scheme is illustrated in Fig. 1.

The computation of the path integral constitutes the nu-
merical challenge. First, we need to discretize the time so that
the number of second moments becomes finite. Henceforth,
we set t0 = 0 and choose an equidistant discretization [t0 =
0, . . . , tL], i.e., tl = lδt . The numerical error resulting from
the discretization is discussed and analyzed in Appendix B 2.
We obtain a [3(L + 1) × 3(L + 1)]-dimensional covariance
matrix M of which the matrix elements are

Mα,β
t1,t2 = V α (t1)V β (t2). (21)

No site label i occurs because we treat a homogeneous spin
ensemble so that the covariance matrix is the same at each
site. But, a possible generalization to a spatial dependence is
obvious. If M is known the corresponding normal distribution
reads as

p
[ �V] = 1√

det2πM
exp

(
−1

2
�V�M−1 �V

)
. (22)

To be specific, the vector-matrix-vector product in the argu-
ment of the exponential function stands for

�V�M−1 �V =
∑
α,β

∑
t1,t2

V α (t1)(M−1)α,β
t1,t2V

β (t2). (23)

Second, we use a Monte Carlo method to carry out the
path integral: we draw a time series �V from the distribution
function, compute the expectation value for each time series,
and finally calculate the arithmetic mean of the results. This
is done sufficiently often to achieve a small enough statistical
error which is studied in detail in Appendix B 1. The strategy
to determine the mean-field moments is set up as follows:
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(1) Choose arbitrary functions for the initial second mo-
ments of the mean fields in the studied time interval.

(2) Construct the [3(L + 1) × 3(L + 1)]-dimensional co-
variance matrix as in Eq. (21).

(3) Draw a large number of time series for the mean-field
according to the distribution (22).

(4) Compute the time-evolution operator U (tl , 0) at all
times for the drawn time series. This allows one to calculate
the individual spin autocorrelations 〈Sα (tl )Sβ (tl ′ )〉(sts)

�V for each
time series and all pairs of tl , tl ′ . If one assumes homogeneity
in time, only the time difference matters and one can set tl ′ =
0. Numerical issues arising for this assumption are clarified in
Appendix B 4.

(5) Determine the autocorrelations by averaging over the
individual autocorrelations computed in the previous step.

(6) Evaluate the iterated mean-field moments from the
self-consistency conditions (20) and return to step 2 or stop
if convergence of the second-order mean-field moments is
achieved within a given tolerance.

For step 2, it is convenient to set up the covariance matrix
in blocks depending on the spin components α, β ∈ {x, y, z}:

M =

⎛⎜⎝Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

⎞⎟⎠. (24)

Spin symmetries of the system can easily be exploited to
reduce the numerical effort. For instance, for zero magnetic
field any block with α �= β vanishes, so that the covariance
matrix becomes block diagonal. Furthermore, we stress that
M is symmetric. This is actually required for a covariance
matrix. Here, it results from the physics at infinite tempera-
ture: the quantum expectation values and hence the mean-field
moments are symmetric

〈V α (t1)V β (t2)〉 = 〈V β (t2)V α (t1)〉 (25)

due to the cyclic invariance of the trace. Another crucial prop-
erty of covariance matrices is their positive semidefiniteness.
In Appendix B 5 we show that M is automatically positive
definite because it results from the quantum expectation val-
ues of Hermitian operators. In Appendix B 4 we explain how
including time-translation invariance in the algorithm reduces
the numerical effort further.

Another algorithmic issue is the sampling procedure in
step 3. Since the covariance matrix is generally nondiagonal,
the mean fields at different times cannot be drawn indepen-
dently of each other. Hence, it is indicated to first change
basis such that M is diagonal in the new basis. In this basis,
for each vector component an independent random variable
can be drawn from a one-dimensional normal distribution.
Subsequently, we transform back into the original basis ob-
taining the desired autocorrelation in time. We recommend the
following strategy:

(a) Diagonalize the symmetric, non-negative covariance
matrix by the orthogonal transformation O:

D = O�M O. (26)

(b) Sample a 3(L + 1)-dimensional vector �R of uncor-
related Gaussian random numbers in the diagonal basis. Each

component has a zero average and a variance given by the cor-
responding eigenvalue of M, i.e., the corresponding diagonal
element of D.

(c) Transform the random vector �R to the original basis

�V = O �R. (27)

The diagonalization needs to be performed only once in
each iteration step since all drawn time series belong to the
same covariance matrix. In contrast, steps b and c have to be
performed for each drawn time series.

To compute the time evolution operator, or propagators, in
step 4 numerically we split it into a product of propagators
over the short-time interval between consecutive tl , i.e., over
δt = tl+1 − tl :

U (tl , 0) = U (tl , tl−1) . . .U (t2, t1)U (t1, t0). (28)

These propagators can be computed efficiently by
commutator-free exponential time propagation (CFET)
[54]. Since we do not have information about H (mf) at
times between two consecutive tl , any integral can only be
approximated by trapezoidal rule. Therefore, the error of
each propagator is at best of order δt3 so that CFETs of
orders larger than two appear pointless. From our numerical
experience, we recommend a second-order and an optimized
fourth-order CFET [54]

U (2)
CF(tk, tk−1) = eA1 (29a)

U (4Opt)
CF (tk, tk−1) = e

11
40 A1+ 20

87 A2+ 7
50 A3

× e
9

20 A1− 7
25 A3 e

11
40 A1− 20

87 A2+ 7
50 A3 , (29b)

where

A j = −i(2 j − 1)
δt

2
(H (tk ) − (−1) jH (tk−1)). (29c)

In step 6, one requires an exit condition to decide when
a sufficiently converged result has been found. A possible
choice is to compute the deviation between the results of
current and previous iterations and compare it to a chosen
tolerance threshold. If the deviation falls below the tolerance
threshold, the iteration is stopped. We discuss the definition of
the deviation and the choice of the tolerance in Appendix B 3.
In general, when we graphically show numerical results of
spinDMFT, we choose the numerical parameters such that the
resulting errors are not larger than the thickness of the lines,
if not explicitly discussed otherwise. As mentioned before,
Appendix B provides a closer insight into the error sources. In
the following sections, we examine the validity of spinDMFT
by comparing its results to the ones of established numerical
techniques.

III. COMPARISON OF SPINDMFT TO OTHER
APPROACHES

Before applying the advocated spinDMFT to various phys-
ical systems it is advisable to compare results of spinDMFT
with results of different well-established methods. Since the
main idea of spinDMFT is based on a large number of inter-
action partners, we expect the agreement to become the better
the larger the coordination number of the spin ensemble is.
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A. Methods for comparison

Below, we use two methods to obtain results for compar-
ison. The first method is the Chebyshev expansion technique
[16,17] (CET), the second method is the iterated equations
of motion (iEoM) approach [50,51]. The CET is numerically
exact up to a systematically controlled error threshold. The
iEoM approach is an approximate approach controlled by the
number m of iterations performed.

To obtain the time dependence O(t ) of an observable us-
ing CET we expand the unitary time-evolution operator U =
e−iHt in terms of Chebyshev polynomials defined recursively
by

T0(x) = 1, T1(x) = x, (30a)

Tn+1(x) = 2xTn(x) − Tn−1(x). (30b)

All polynomials Tn are defined on the closed interval I =
[−1; 1]. To ensure that the energy spectrum of a given Hamil-
tonian H lies in I we rescale the Hamiltonian according
to H → H ′ = (H − b)/a. Then, the Chebyshev polynomials
can be used as an orthogonal functional basis. In order to
perform the rescaling an estimate of the extremal eigenvalues
[55–57] of H is needed to obtain a = (Emax − Emin)/2 and
b = (Emax + Emin)/2. Rough estimates in the form of upper
(lower) bounds for Emax (Emin) are sufficient because the
rescaling only has to ensure that the rescaled eigenvalues lie
within I . Subsequently, the expanded time-evolution operator
reads as

U =
∞∑

n=0

αn(t )Tn(H ′), (31a)

αn(t ) = (2 − δn,0)ine−ibt Jn(at ), (31b)

where the time-dependent coefficients contain the Bessel
functions of first kind Jn(at ). Given an initial state |ψ0〉 its
time evolution reads as

|ψ (t )〉 = U |ψ0〉 =
∞∑

n=0

αn(t ) Tn(H ′)|ψ0〉︸ ︷︷ ︸
=: |φn〉

. (32)

Here, the basis states of the expansion are |φ0〉 :=|ψ0〉, |φ1〉 :=
H ′|ψ0〉, and |φn+1〉 := 2H ′|φn〉 − |φn−1〉.

In the numerical implementation, the infinite series (32)
must be terminated at some finite value Nc < ∞. The time
dependence of the prefactors is essentially determined by the
time dependence of the Bessel functions Jn(t ) [58]. The higher
the order n, the longer it takes the Bessel function Jn(t ) to
contribute noticeably to the series. Given the cutoff Nc of the
series the truncation error of the CET series is estimated by

ε �
(

at e

2Nc

)Nc

. (33)

Note that the truncation error is not only related to the cutoff
Nc, but also depends on the maximum time up to which results
are calculated as well as on the parameter a which equals half
the width of the energy spectrum. The important property of
the CET is that Nc, required to keep the error low, increases
only linearly with the time t up to which one intends to
compute the evolution.

TABLE I. Local operator basis for a two-dimensional local
Hilbert space. All operators are orthonormal with respect to the
operator scalar product (39).

1i σ z
i

√
2σ+

i

√
2σ−

i

The second method we employ for comparison is the iEoM
approach [50,51] which approximates the time dependence
of an operator in the Heisenberg picture. Starting with an
arbitrary operator A1 one expands

A(t ) =
∑

i

hi(t )Ai, (34)

where all time dependence is incorporated in the complex
prefactors hi(t ). The constant operators Ai form an operator
basis {Ai}. The expansion (34) is unique if the Ai are linearly
independent. For a Hamiltonian constant in time the Heisen-
berg equation of motion reads as

d

dt
A(t ) = i[H (t ), A(t )] =: iL(A(t )) (35)

with the Liouville superoperator L. Expanding the result of
L(Ai ) in terms of the chosen basis {Ai} by means of

L(Ai ) =
∑

j

Li jA j (36)

leads to the Liouvillian matrix L, also called dynamic ma-
trix. For a compact notation, the time-dependent prefactors
hi(t ) are combined to a vector �h(t ) of which the dynamics is
obtained by inserting both expansions (34) and (36) in (35)
yielding

d

dt
�h(t ) = iL�h(t ). (37)

The Liouvillian matrix is most easily computed for an
orthonormal operator basis {Ai} (ONOB) so that each matrix
element is given by

Li j = (Ai|L(A j )). (38)

As previously argued [50,51], it is crucial to achieve Hermitic-
ity of L to avoid exponentially diverging solutions which are
unphysical. The Hermiticity of L is equivalent to the self-
adjointness of L which depends on the used operator scalar
product. A convenient choice is the Frobenius scalar product

(A|B) := 1

d
Tr(A†B). (39)

Due to the invariance of the trace under cyclic permutations
L is indeed self-adjoint and thus L is sure to be Hermitian
[50,51].

The ONOB is found iteratively by applying the Liouville
superoperator m times which is called the loop order. Starting
from a spin operator at a given site, the application of L
creates more and more increasingly complicated expressions
which are sums of operator monomials, i.e., sums of products
of local operators. The number of such monomials is finite for
all m, but grows exponentially for increasing m. For a spin
S = 1

2 the site local operators are those given in Table I. After
m iterations monomials involving up to m + 1 sites occur. This
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means that in these monomials Pauli matrices at up to m + 1
sites can occur. The identity operator is trivial and does not
need to be tracked. If A = A1 is the initial spin operator the
initial vector �h has the components

hi(0) =
{

1 if i = 1,

0 otherwise.
(40)

B. Observables and symmetries

Since we consider infinite temperature, any expectation
value of a single-time observable is actually time independent
[see Eq. (13)]. Therefore, the primarily interesting observ-
ables are the spin autocorrelations which we denote by

gαβ (t ) := 〈Sα (t )Sβ (0)〉. (41)

There are nine different autocorrelations of the above type due
to the choices for α, β ∈ {x, y, z}. However, the symmetries of
the Hamiltonian imply a number of relations between them so
that only a small number needs to be considered. We briefly
discuss the symmetries of the system in the following.

The original Hamiltonian (1) is invariant under any spin
rotation around the z axis, in particular about the angle π/2
implying

Sx
i → Sy

i , Sy
i → −Sx

i . (42)

As a consequence, any correlation between the transversal and
longitudinal spin components disappear:,

gαz(t ) = gzα (t ) = 0, ∀ α �= z (43)

while the transversal cross autocorrelations gxy and gyx fulfill

gxy(t ) = −gyx(t ). (44)

By means of cyclic permutations in the trace and homogeneity
in time we additionally derive

gxy(t ) = −gxy(−t ), (45a)

gyx(t ) = −gyx(−t ). (45b)

The transversal diagonal autocorrelations are equal

gxx(t ) = gyy(t ). (46)

In case of zero magnetic field, the system is also invariant
under time reversal because the Hamiltonian is bilinear in spin
operators which implies

gxy(t ) = gyx(t ) = 0, (47)

so that all cross autocorrelations vanish in this case. Fur-
thermore, the diagonal autocorrelations gαα are equal due to
complete isotropy of the model.

A first validation of spinDMFT consists of the success-
ful check that the derived symmetry relations hold in the
framework of spinDMFT. The results of the self-consistency
problem (20) for zero and finite magnetic field are depicted
in Figs. 2 and 3. The spinDMFT fulfills the symmetry rela-
tions for both cases. Moreover, the Larmor precession with
frequency ωL = γs B is clearly visible in the transversal com-
ponents for finite magnetic field.

For short times and zero magnetic field, a Gaussian fit
describes gαα very well in the linear plot in Fig. 2. Some
deviation is discernible from intermediate times onwards. To

0 1 2 3 4 5 6

t units of 1
2

0.0

0.2

0.4

0.6

0.8

1.0

4g
α
β

Gaussian
gzz

gyy

gxx

gαβ, α �= β

FIG. 2. spinDMFT results for the isotropic Heisenberg model
with zero magnetic field. The Gaussian fit for short times is best with
a standard deviation σ = 1.46/J2.

analyze this deviation in more detail, the functions are plotted
in Fig. 4 on a logarithmic scale vs t2. Interestingly, the di-
agonal autocorrelations appear to show Gaussian behavior at
short and at long times, but with different standard deviations.
For longer times, the decay is slowed down.

C. Comparison to results of other approaches

We compare results from the spinDMFT to results from
exact diagonalization (ED), iterated equations of motion
(iEoM), and Chebyshev expansion technique (CET). ED is
a very well-known technique and the latter two approaches
have been explained above. A conceptual difficulty lies in the
fact that these alternative techniques work best for small and
low-dimensional systems while spinDMFT is rather justified
in large, high-dimensional systems. But comparing results
from spinDMFT to these alternatives is the best option at
hand. Note that such comparisons are particularly challenging
for spinDMFT.

Considering the self-consistency problem (20), we stress
that all lattice properties are embodied in a single coupling

0 1 2 3 4 5 6

t units of 1
2

−1.0

−0.5

0.0

0.5

1.0

4g
α
β

gzz

gyy

gxx

gxy

gyx

gαz, α �= z

FIG. 3. spinDMFT results for the isotropic Heisenberg model
with finite magnetic field γsB = 5.0J2.
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0 20 40 60 80 100

t2 units of 1
2
2

10−9

10−7

10−5

10−3

10−1

4g
α
α

Gaussian
gαα

FIG. 4. Diagonal autocorrelations on a logarithm scale for zero
magnetic field compared to the Gaussian short-time fit as functions
of t2.

constant, namely, the root-mean square J2. No site index
appears because we deal with homogeneous systems. Time
is naturally measured in units of 1/J2. First, we consider one-
dimensional (1D) spin chains with S = 1

2 . For finite pieces of
chains with N sites, periodic boundary conditions (PBC) are
taken. The Hamiltonian in the isotropic case reads as

H1D = J
N∑

i=1

�Si · �Si+1, (48)

which entails

J2 =
√

2J. (49)

Figure 5 compares the results from the above-mentioned
methods to the data obtained from spinDMFT. The ED data
are taken from Ref. [59]. The results from ED and CET co-
incide very nicely in the considered time interval. Moreover,
no finite-size effects are discernible in this interval. For not

0 2 4 6 8 10

t units of 1
2

0.0

0.2

0.4

0.6

0.8

1.0

4g
z
z

CET 1D-PBC N = 16
CET 1D-PBC N = 18
iEoM 1D (m = 13) N = ∞
ED 1D-PBC N = 16
spinDMFT

FIG. 5. Results for the isotropic diagonal autocorrelation in the
1D Heisenberg chain as calculated by ED, CET, and iEoM compared
to the data of spinDMFT. We emphasize that the CET operates on
finite cluster systems with periodic boundary conditions (PBC) only.
The number of sites considered here is denoted by N . The relative
error tolerance (33) of each CET time evolution is ε = 1 × 10−3.

0 2 4 6 8 10

t units of 1
2

0.0

0.2

0.4

0.6

0.8

1.0

4g
z
z

CET 1D-PBC N = 18
CET 2D-PBC N = 16
CET 2D-PBC N = 18
iEoM 2D (m = 7) N = ∞
spinDMFT

FIG. 6. Results for the isotropic diagonal autocorrelation in the
2D Heisenberg square lattice as calculated by CET and iEoM com-
pared to the data of spinDMFT. PBC stands for periodic boundary
conditions and N is the number of sites. The relative error tolerance
(33) of each CET time evolution is ε = 1 × 10−3.

too long times, the iEoM result also matches very well. It
has the advantage to consider the infinite system by construc-
tion. These results almost coincide with the spinDMFT data
until roughly t ≈ 3/J2. The subsequent deviations can be
attributed to the small coordination number of the 1D chain
with z = 2 which, obviously, is a challenge for a mean-field
approach.

The spinDMFT shows quick and rather complete deco-
herence while the genuine 1D results show weak coherent
revivals at t ≈ 5/J2 and t ≈ 9/J2. This is not surprising
because the integrable 1D system is strongly constrained in its
dynamics due to its extensive number of conserved quantities
[60].

Figure 6 compares the results of CET and iEoM in 2D, i.e.,
for the isotropic Heisenberg model on the square lattice

H2D = J
∑
〈i, j〉

�Si · �S j (50)

with NN coupling J to the data obtained from spinDMFT. In
this case, J2 = 2J holds. The agreement between CET and
iEoM is good up to t ≈ 3.5/J2; then, the effects of finite loop
order m kick in. In 2D, it is unfortunately not possible to reach
larger values of m. Up to this range, the spinDMFT is in nice
agreement with the other approaches as well. What is even
more interesting is to see the evolution from 1D to 2D. To
this end, we include the CET result in 1D. Clearly, passing
from 1D to 2D improves the agreement between the genuine
numerical results and spinDMFT. This is exactly what one had
to expect in view of the derivation of spinDMFT as mean-field
theory which becomes exact for infinite coordination number.
Hence, this observation constitutes a good confirmation of the
validity of spinDMFT.

In order to corroborate the foundation of spinDMFT fur-
ther we consider the Heisenberg model on complete graphs,
i.e., graphs where each site is connected to all other sites

HCG =
∑
i< j

Ji j �Si · �S j . (51)
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CET CG N = 10
CET CG N = 12
CET CG N = 14
CET CG N = 16
CET CG N → ∞
spinDMFT

FIG. 7. CET results of the isotropic diagonal autocorrelation in
the random Heisenberg model on various complete graphs compared
to the data of spinDMFT. N is the number of sites. In addition, the
extrapolation to N = ∞ is shown. The relative error tolerance (33)
of each CET time evolution is ε = 1 × 10−3.

Such graphs or clusters are called infinite-range clusters in
the physical literature. The Heisenberg model on such graphs
is highly symmetric if the coupling is the same for all links.
This leads to rather special autocorrelations. In order to avoid
features from nongeneric high symmetries, we consider a
random model where the couplings are drawn from a Gaussian
distribution. Then, they are normalized, i.e., multiplied by a
suitable constant λ j , such that

J 2
2 =

∑
i

J2
i j (52)

holds for all j. The results for the autocorrelations are aver-
aged over 100 sets of random couplings. Figure 7 compares
the CET results to the data from spinDMFT for various values
of N . The symbols display the data extrapolated to N = ∞ by
a linear fit in 1/N3/2 of the data for the three largest values
of N . This particular power-law fit is chosen in view of the
scaling of each Ji j ∝ 1/

√
N stemming from the normalization

(52). This suggests to use power-law fits ∝1/N p/2 with some
integer p. We found that p = 3 is most robust.

The obvious trend is that the data for finite N appear to
converge to the spinDMFT. This observation again justifies
the systematic derivation of the advocated dynamic mean-field
theory.

Finally, we mention that the Ising model on complete
graphs

HCG,Ising = J
∑
i< j

Sz
i S

z
j (53)

in the limit N → ∞ has the autocorrelations [61]

4gxx = e− 1
8 J 2

2 t2
, (54a)

4gzz = 1. (54b)

The energy scale is J2 = √
N − 1J . These results are re-

produced by spinDMFT; we refrain from displaying them

because the graphs coincide perfectly. Due to the spin
anisotropy the self-consistency conditions are changed to

V α (t1)V α (t2) = J2〈Sα (t1)Sα (t2)〉, α = x, y (55a)

V z(t1)V z(t2) = J2〈Sz(t1)Sz(t2)〉, (55b)

V α (t1)V β (t2) = 0, α �= β. (55c)

On the basis of the above results, we conclude that
spinDMFT is a systematically controlled dynamic mean-field
approach to disordered spin systems at infinite temperature
which becomes exact for infinite coordination number. It is
designed to provide quantitative information of the local spin
dynamics. It is a valid approximation for finite coordination
numbers which nicely captures essential physics such as rapid
decoherence, spin anisotropies, and Larmor precession. Due
to the required moderate computational resources it is an
attractive tool to understand spin dynamics in various setups.
We illustrate this last point by applying spinDMFT to a spin
ensemble with dipolar interactions.

IV. APPLICATION TO A DIPOLAR SURFACE
SPIN ENSEMBLE

In this section, we want to show that spinDMFT can be
adapted to models which describe experimental setups or
are very close to experimental questions. We illustrate that
spinDMFT can be applied to complex physical situations
because of its flexibility and, furthermore, that the resulting
numerical task is feasible and does not require excessive com-
pute resources.

The model which we will address is motivated by intensive
studies of localized defect spins of electronic origin with
S = 1

2 and a g factor of g ≈ 2 on diamond surfaces which
are observed by NV centers [7,11,13]. These spins were seen
and examined in recent studies [12,62,63]. The precise origin
of the defect spins is still a matter of debate although recent
progress indicates that they are formed by trapped electrons
very close to the surface [64]. They appear to be inhomoge-
neously distributed over the surface [7,13,65]. Driving these
spins reduces decoherence in shallow NV centers [66]. The
surface spins interact with one another and they are subject
to additional, slow noise. The origin of the latter is not yet
clarified: nuclear proton spins are candidates [11,67] which
agree with the importance of the precise chemical and mor-
phological conditions at the surface [65]. A second candidate
is phonons which also play a role [63]. In addition, NV
centers can also measure the dynamics of 13C nuclear spin
baths which are distributed three dimensionally in the bulk of
diamonds [68].

Here, we do not aim at describing one of the above ex-
citing experiments in detail, but to address a generic model
comprising the essential features. To this end, we consider a
random ensemble of localized electronic spins S = 1

2 on a pla-
nar surface interacting by dipolar couplings. Aside from these
interactions, the spins are subjected to a global magnetic field
as well as to local static magnetic field noise. The latter can be
viewed as being generated by slowly fluctuating nuclear spins
stemming, for instance, from protons.
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A. Model and definitions

We consider an ensemble of spins S = 1
2 distributed ran-

domly over a planar surface which interact via dipole-dipole
interaction. Each spin is subjected to an external magnetic
field �B whose direction defines the z direction which forms an
angle ϑ with the normal �n of the plane. Additionally, the spins
see local random magnetic noise, i.e., local magnetic fields
�bi with zero average. While the system is inhomogeneous we
assume that the random distribution is such that each spin sees
the same environment on average, i.e., the system behaves
on average like a homogeneous system. This means that the
average quantities do not depend on the site.

The Hamiltonian is given by

H =
∑
i< j

J (Ri j )

[
(�Si · �S j ) − 3

R2
i j

( �Ri j · �Si )( �Ri j · �S j )

]

+ γsB
∑

i

Sz
i + γs

∑
i

�bi · �Si, (56)

where

J (R) = μ0γ
2
s

4πR3
(57)

is the dipolar coupling. We apply spinDMFT which relies on
average dynamic mean fields. Since we want to treat the ran-
dom local magnetic fields �bi in addition we have to distinguish
three types of averages: (i) the one from spinDMFT which we
denote by an overline as before, (ii) the one solely due to the
average over the local magnetic fields which we denote by
an overline with index “n” for “noise,” and (iii) the complete
average comprising (i) and (ii) which we denote by an overline
with index “c” for “complete.”

For simplicity, we assume that the local magnetic fields
are distributed isotropically according to a normal distribution
defined by the moments

bα
i

n = μN = 0,
(
bα

i

)2n

= σ 2
N, ∀ i, α (58)

FIG. 8. Sketch of the considered dipolar spin ensemble on a
planar surface. The magnetic field B (red) defines the z direction;
the isotropic random local magnetic fields �bi (blue) vary in strength
and direction from site to site.

and

bα
i bβ

j

n
= δi jδαβσ 2

N. (59)

The latter implies that the local fields are independent from
one another. The distribution reads as

pn
(�bi
) =

∏
α

1√
2πσ 2

N

exp

(
− (bα

i )2

2σ 2
N

)
. (60)

As mentioned above, we allow for an angle ϑ between
the surface normal �n and the external magnetic field �B. We
introduce the in-plane polar coordinates Ri j, ϕi j to express the
distance vectors between sites i and j by

�Ri j = Ri j

⎛⎜⎝ cos (ϕi j )

sin (ϕi j ) cos(ϑ )

sin (ϕi j ) sin(ϑ )

⎞⎟⎠. (61)

The complete system is sketched in Fig. 8 including the vari-
ous introduced quantities.

B. spinDMFT

As motivated in the previous section where we introduced
spinDMFT we define local operators describing the environ-
ments of the spins

�V i =
∑
j �=i

J (Ri j ) D(ϕi j, ϑ )�S j, (62)

where the anisotropies are incorporated in the matrix

D(ϕi j, ϑ ) =

⎛⎜⎝ 1 − 3 cos2(ϕi j ) −3 cos(ϕi j ) sin(ϕi j ) cos(ϑ ) −3 cos(ϕi j ) sin(ϕi j ) sin(ϑ )

−3 cos(ϕi j ) sin(ϕi j ) cos(ϑ ) 1 − 3 sin2(ϕi j ) cos2(ϑ ) −3 sin2(ϕi j ) cos(ϑ ) sin(ϑ )

−3 cos(ϕi j ) sin(ϕi j ) sin(ϑ ) −3 sin2(ϕi j ) cos(ϑ ) sin(ϑ ) 1 − 3 sin2(ϕi j ) sin2(ϑ )

⎞⎟⎠. (63)

With their help, the Hamiltonian can be rewritten

H = 1

2

∑
i

�Si · �V i + γsB
∑

i

Sz
i + γs

∑
i

�bi · �Si, (64)

where a factor 1
2 is introduced to avoid double counting.

From the derivation of spinDMFT in Sec. II we know that
large coordination numbers provide the justification for this
dynamic mean-field theory. Thus, we consider the effective

coordination numbers z and z′ defined in (5) for various lat-
tices and dipolar coupling (57) (see Table II).

As expected, the long range of dipolar interactions in-
creases the effective coordination number to considerably
larger values compared to the NN coupling (see for instance
the triangular lattice). This effect is larger for z than for z′
because the sums for higher moments converge faster than
those for the second or first moment. We point out that the
first moment “just” converges like

∫
RdR
R3 ∝ 1

R .
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TABLE II. Effective coordination numbers for various two-
dimensional lattices and dipolar coupling ∝ R−3. The effective
coordination numbers were computed taking 4 × 106 unit cells into
account. The conventional coordination number zNN equals the num-
ber of nearest neighbors at each lattice site. For comparison, we
include rectangular lattices with the ratios 2 : 3 (A) and 1 : 2 (B) of
their lattice constants in x and y direction, respectively.

Lattice z z′ zNN

Triangular 19.1 6.8 6
Square 17.5 5.3 4
Hexagonal 13.1 3.6 3
Rectangular (A) 12.0 2.8 2
Rectangular (B) 7.8 2.2 2

For randomly distributed spins the issue is more compli-
cated and depends on how the spins are located on the surface.
In case of random positions without any restrictions, the effec-
tive coordination numbers are fairly small because there is a
high probability for each spin to have a single neighbor close
to it which dominates z and z′. We found for completely ran-
dom distributions z ≈ 1–10. Then, this close partner governs
the dynamics and the application of spinDMFT is not well jus-
tified. However, considering restrictions for the location of the
spins, in particular a minimum distance between the spins, the
effective coordination numbers increase substantially to about
the values of the triangular lattice which is the closest-packed
lattice in two dimensions. We found z ≈ 5–15. We emphasize
that such restrictions are very plausible: a minimum distance
can result from the surface structure which does not allow the
spin-carrying adatoms to be located very close to one another.
In addition, a local repulsion between them would also ensure
a minimum distance between the spins. We conclude that the
lattice is dense enough so that spinDMFT is justified.

Next, we replace the local-environment fields by dynamic
mean fields

�V i → �Vi(t ) (65)

considering the local mean-field model

Hmf,i(t ) = �Vi(t ) · �S + γsBSz + γs�bi · �S. (66)

The self-consistency conditions need to be complemented by
the effect of the random noise fields �bi. Averaging has to be
done over the random time series for �Vi and the random local
magnetic fields. We perform this in a single step and thus pass
to combined fields

�Wi(t ) = �Vi(t ) + γs�bi (67)

and perform a single average over the combined distribution

pi[ �Wi] = 1√
det2πM

i

e− 1
2

�W�
i M−1

i
�Wi , (68)

where the modified covariance matrix is given by

Mαβ
i (t1, t2) = W α

i (t1)W β
i (t2)

c
(69a)

= V α
i (t1)V β

i (t2) + γ 2
s bα

i bβ
i

n
. (69b)

Then, the noise leads only to an offset in the second moments
which is constant in time.

The self-consistency condition of the first moment is still
trivial

W α
i (t )

c = 〈V α
i (t )〉 + γsbα

i
n = 0, ∀ α, i. (70)

For the second moments we consider the self-consistency

V α
i (t1)V β

i (t2) = 〈V α
i (t1)V β

i (t2)
〉
, (71)

and thus the complete self-consistency reads as

W α
i (t1)W β

i (t2)
c
= γ 2

s bα
i bβ

i

n
+
∑
k �=i

∑
ργ

J2(Rik )

× Dαρ (ϕik, ϑ )Dβγ (ϕik, ϑ )

× 〈Sρ

k (t1)Sγ

k (t2)
〉(mf)

. (72)

This equation still constitutes a challenging numerical issue
because it amounts up to a self-consistency condition for each
spin. But, as stated at the beginning of Sec. IV A, we assume
that the system is dense enough to be treated on average
as a homogeneous system. Essentially, this means that J2,i

takes the same value at each site i. Then, the site indices
can be omitted and we obtain much simpler self-consistency
conditions

W α (t1)W β (t2)

= J 2
∑
ργ

χαβ
ργ (ϑ )〈Sρ (t1)Sγ (t2)〉(mf) + δαβγ 2

s σ 2
N. (73)

The constants J and χαβ
ργ embody the energy scale and the

spin anisotropies. The key idea is to approximate the discrete
sums in the self-consistency conditions by integrals assuming
a continuous distribution of spins with density n0 = 1/r2

min. Of
course, this is not exact, but it provides a well-justified quan-
titative relation between the dipolar interaction in Eq. (57)
and the prefactors of the self-consistency condition (72). We
replace the sum by the integration∑

k �=i

≈ n0

∫ ∞

rmin

dR R
∫ 2π

0
dϕ (74)

yielding

J 2 = 2πn0

∫ ∞

rmin

dR RJ2(R) = μ2
0γ

4
s

32πr6
min

, (75a)

χαβ
ργ (ϑ ) = 1

2π

∫ 2π

0
dϕ Dαρ (ϕ, ϑ )Dβγ (ϕ, ϑ ). (75b)

Since we are dealing with a system constant in time we
study self-consistent solutions which depend only on the time
difference t1 − t2. Hence, from now on we only consider cor-
relation functions with t1 = t and t2 = 0,

gαβ (t ) := 〈Sα (t )Sβ (0)〉(mf), (76a)

wαβ (t ) := W α (t )W β (0). (76b)

In the remainder of this section, we specialize the above
general equations to the case of a perpendicular mag-
netic field, i.e., ϑ = 0, for simplicity. From Eq. (75b)
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we obtain

χ xx
xx = χ yy

yy = 11
8 , (77a)

χ xy
xy = χ yx

yx = − 7
8 , (77b)

χ xx
yy = χ yy

xx = χ xy
yx = χ yx

xy = 9
8 , (77c)

χ xz
xz = χ yz

yz = χ zx
zx = χ zy

zy = − 1
2 , (77d)

χ zz
zz = 1, (77e)

by straightforward analytic calculation while the other coeffi-
cients vanish.

For a brief symmetry discussion, we consider the original
Hamiltonian (56). Since ϑ = 0, the transversal x and y spin
components lie in the plane of the surface. Thus, the dipo-
lar interaction term and the magnetic-field term are invariant
under a rotation in spin and real space about the angle π/2
around the z axis. This does not hold true for the noise term
∝ �bi. But the noise distribution (60) is isotropic so that on av-
erage this term also remains invariant and we have a rotational
symmetry of the total system. In particular, this implies

gxx(t ) = gyy(t ), (78a)

gxy(t ) = −gyx(t ), (78b)

gxz(t ) = gzx(t ) = gyz(t ) = gzy(t ) = 0. (78c)

Summarizing, we obtain the self-consistency equations

wxx(t ) = wyy(t ) = 5
2J

2gxx(t ) + γ 2
s σ 2

N, (79a)

wxy(t ) = −wyx(t ) = −2J 2gxy(t ), (79b)

wxz(t ) = wzx(t ) = wyz(t ) = wzy(t ) = 0, (79c)

wzz(t ) = J 2gzz(t ) + γ 2
s σ 2

N. (79d)

It is worth mentioning that the noise explicitly appears in
these equations because we included it in the mean field �W .
The magnetic field, on the other hand, enters the physical
problem in the Hamiltonian (66). Another important obser-
vation is that the transversal and longitudinal equations (79a)
and (79d) show different prefactors. Certainly, this leads to
different behavior of the corresponding autocorrelations. For
zero magnetic field, where the cross autocorrelations gxy =
−gyx vanish due to time-reversal symmetry, we expect gxx =
gyy to decay slower than gzz since the transversal mean field is
stronger so that the z components are more strongly precess-
ing.

Henceforth, we measure the time in units of 1
J and it

makes sense to define a dimensionless noise strength and a
dimensionless magnetic field

C := γ 2
s σ 2

N

J 2
, (80a)

B̃ := γsB

J . (80b)

Figure 9 shows the numerical results of the self-consistent
equations (79) for various noise strengths and zero magnetic
field. Considering C = 0.0, we observe a clear difference be-
tween the transversal and longitudinal signal. This anisotropy
is expected due to the different prefactors in (79a) and (79d) as
mentioned before. For C = 1.0, the difference is still present,

0 2 4 6 8 10
t units of 1

0.0

0.2

0.4

0.6

0.8

1.0

4g
α
β

C = 10.0, stat
gxx, C = 10.0
gxx, C = 1.0
gxx, C = 0.0

FIG. 9. Numerical results of the self-consistency problem (79)
for zero magnetic field and various noise strengths. The transversal
diagonal autocorrelations gxx (solid line, filled markers) as well as the
longitudinal autocorrelations gzz (dashed-dotted line, open markers)
are depicted. Moreover, we plotted the analytical result (81) for C =
10.0 where only the static noise (with subscript “stat”) is considered
without spin-spin coupling.

however, both curves show a similar trend: a local minimum at
the beginning followed by a rather slow decay. As we increase
C, the anisotropy further diminishes because the isotropic
noise contributions in (79a) and (79d) dominate more and
more over the dipolar terms. In case of a very large noise
strength, the mean-field contributions can be neglected and
the remaining dynamics can be solved analytically [19,69]:

4gαα
stat(t ) = 1

3

(
1 + 2[1 − t2CJ 2]e− 1

2 t2CJ 2)
. (81)

Inspecting Fig. 9, the data approach the curve (81) for large
values of C and short times. At larger times, i.e., beyond
the local minimum, the dynamics due to the dipolar cou-
plings makes itself felt and the signal decays below the
analytical plateau. This is not surprising since the analytical
consideration only includes static noise neglecting any mean-
field dynamics. The corresponding coupling may be weak
compared to the noise, but it certainly affects the long-time
behavior of the signals.

Figures 10 and 11 show numerical results for finite mag-
netic field. What catches the eye is that the transversal
autocorrelations in both figures show typical Larmor preces-
sions with ωL = γsB. For C = 0.0, the precession persists
until the transversal signals have decayed completely. For C =
10.0, in contrast, the oscillations of gxx disappear very early
although the signal is still finite. Subsequently, this correlation
shows a slow long-time decay without discernible preces-
sion. We attribute this behavior to the presence of transversal
noise stabilizing gxx = gyy. This noise component is certainly
weakened by the longitudinal magnetic field, but it appears
to be still strong enough to keep the signal finite for quite a
while. Remarkably, the combination of noise and magnetic
field causes a slowdown of the longitudinal autocorrelation.
This behavior is studied in detail in the next section where
we use the RWA to tackle the problem for considerably larger
magnetic fields. Since the transversal noise vanishes for such
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FIG. 10. Numerical results of the self-consistency problem (79)
for C = 0.0, B̃ = 5.0.

large fields, we expect the transversal long-time signal to
vanish very quickly.

C. Strong-field regime and RWA

In the preceding section, we treated a general external
magnetic field of arbitrary strength, weak or strong, but per-
pendicular to the plane. In this respect, the situation was
specific. In this section, we choose the angle ϑ of the external
field with the surface normal in an arbitrary way, but consider
a strong field so that the RWA is valid.

First, we switch from the laboratory frame to the frame
rotating with the Larmor frequency of precession

ωL = γsB. (82)

This leads to a time-dependent effective Hamiltonian with
oscillating terms. They oscillate the faster the stronger the
magnetic field is. The RWA consists in averaging these fast
oscillations yielding an effective time-independent Hamil-
tonian again. The spinDMFT is applied to this effective
time-independent Hamiltonian. This requires to solve a closed

0 2 4 6 8 10
t units of 1
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FIG. 11. Numerical results of the self-consistency problem (79)
for C = 10.0 and B̃ = 5.0.

set of self-consistency equations capturing the spin dynamics
in the rotating frame.

In order to consider the system in the Larmor rotating
frame, one has to rotate any observables of the laboratory
frame backwards by the unitary evolution operator

UZ(t, t0) := eiHZ(t−t0 ), (83)

where the Zeeman term is the last-but-one term in Eq. (56):

HZ := γsB
∑

i

Sz
i . (84)

The spin operators are given in the rotating frame by

Sα
i,rot(t ) = U†

Z(t, t0)Sα
i,lab(t )UZ(t, t0) (85a)

= U†
Z(t, t0)U†(t, t0)Sα

i (t0)U (t, t0)UZ(t, t0).

(85b)

The full time evolution in the rotating frame results from the
complete time-evolution operator

U rot(t, t0) := U (t, t0)UZ(t, t0). (86)

Its Schrödinger equation is derived by inserting (86) in the
original Schrödinger equation

i∂tU rot(t, t0) = H rot(t )U rot(t, t0) (87)

with the Hamiltonian

H rot(t ) = UZ(t, t0)(H − HZ)U†
Z(t, t0). (88)

Clearly, the Zeeman term HZ in H is canceled in this way,
which was the goal of this transformation.

The remaining terms, i.e., the dipole interaction and the
noise, are rotated by UZ. As a consequence, the Hamiltonian
H rot(t ) is strongly time dependent comprising fast oscillating
terms such as cos(ωLt ) or sin(ωLt ) which are averaged in the
sense of a Magnus expansion [70] in first order. The neglected
terms are smaller by a factor 1/ωL. Put simply, the larger the
Larmor frequency ωL is relative to the typical dipolar inter-
action frequency ωDD = J /h̄, the better the RWA is justified.
Thus, the strong-field regime is realized for

B � BDD = γsωDD. (89)

In this regime, one replaces all fast oscillating terms in the
Hamiltonian by their average values, i.e.,

cos(ωLt ), sin(ωLt ) → 0, (90a)

cos(2ωLt ), sin(2ωLt ) → 0. (90b)

In our case, we obtain

H rot = 1

2
J (Ri j )

∑
i< j

[1 − 3 sin2(ϕi j ) sin2(ϑ )]

× (2Sz
i S

z
j − Sx

i Sx
j − Sy

i Sy
j

)+ γs

∑
i

bz
i S

z
i , (91)

which is again time independent by construction. Note that
the transversal components of the magnetic field noise are
eliminated while the longitudinal component remains un-
changed. Therefore, one expects growing differences between
transversal and longitudinal autocorrelations upon increasing
the noise strength σN.
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Next, spinDMFT is applied to the Hamiltonian (91). We
only highlight expressions which differ from the previous ap-
plication. Expressed in local-field operators, the Hamiltonian
reads as

H rot = 1

2

∑
i

�Si · �V i + γs

∑
i

bz
i S

z
i , (92a)

�V i =
∑
j, j �=i

J (Ri j ) Drot(ϕi j, ϑ )�S j, (92b)

where Drot is given by

Drot(ϕi j, ϑ ) = [3 sin2(ϕi j ) sin2(ϑ ) − 1]

⎛⎝ 1
2 0 0

0 1
2 0

0 0 −1

⎞⎠.

(93)

Replacing the local-field operators by the corresponding mean
fields leads to the local mean-field Hamiltonian

H rot
mf,i = �Vi(t ) · �S + γsb

z
i S

z (94)

and we again combine noise and mean field in

�Wi(t ) = �Vi(t ) + γs�ezb
z
i (95)

since both follow from Gaussian distributions. While the first
moment is still zero, the second moments obey

wαβ (t1 − t2) : = W α (t1)W β (t2) (96a)

= δαβδαzγ
2
s σ 2

N

+
∑
ργ

J 2(χ rot )αβ

ργ (ϑ )〈Sρ (t1)Sγ (t2)〉(mf).

(96b)

The coupling J is given by Eq. (75a) and the coefficients χ rot

result from Eq. (75b) with D replaced by Drot.
Defining the function of the polar angle ϑ

I (ϑ ) := 1

2π

∫ 2π

0
dϕ [1 − 3 sin2(ϕ) sin2(ϑ )]2 (97a)

= 27

8
sin4(ϑ ) − 3 sin2(ϑ ) + 1, (97b)

we can express the prefactors concisely by

(χ rot )xx
xx = (χ rot )yy

yy = 1
4 I (ϑ ), (98a)

(χ rot )xy
xy = (χ rot )yx

yx = 1
4 I (ϑ ), (98b)

(χ rot )xz
xz = (χ rot )yz

yz = − 1
2 I (ϑ ), (98c)

(χ rot )zx
zx = (χ rot )zy

zy = − 1
2 I (ϑ ), (98d)

(χ rot )zz
zz = I (ϑ ). (98e)

Any other coefficient vanishes because Drot is diagonal.
We reconsider the symmetries of the underlying system

to be able to formulate the minimum set of self-consistency
conditions. The original rotating-frame Hamiltonian (91) is
invariant under spin rotation around the z axis by construc-
tion: all transversal spin components only occur in pairs. The
dipolar part is invariant under time reversal. While this does

not hold for the noise term for each individual �bi, their distri-
bution remains unchanged under time reversal. Spin-rotation
symmetry and time-reversal symmetry allow us to conclude

gxx(t ) = gyy(t ), (99a)

gαβ (t ) = 0, α �= β. (99b)

This enables us to reduce the general self-consistency con-
ditions (96) to

wxx(t ) = wyy(t ) = 1
4J

2I (ϑ )gxx(t ), (100a)

wαβ (t ) = 0, α �= β (100b)

wzz(t ) = J 2I (ϑ )gzz(t ) + γ 2
s σ 2

N. (100c)

Note that there is a natural anisotropy between the transver-
sal and longitudinal equations again, but this time by a factor
of 4. Furthermore, the noise only acts in the z direction.
Considering the results of the previous section, we expect even
bigger differences between the autocorrelations here. Hence-
forth, we no longer use the terms “diagonal” and “cross”
because no cross autocorrelations appear in the RWA dipole
model. If not stated otherwise, we set ϑ to the so-called magic
angle

ϑmagic := arcsin

√
2

3

I (ϑmagic) = 1

2

in our numerical calculations.
Figures 12 and 13 show our numerical findings for the

solutions of the self-consistent equations. Analyzing them, we
conclude two important facts:

(i) Because of the natural anisotropy and the noise,
the longitudinal signal decays considerably slower than the
transversal signal. Increasing the noise strength amplifies this
difference.

(ii) The transversal signal decays very accurately follow-
ing a Gaussian, while the longitudinal decay is weaker than
exponential.
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FIG. 12. Transversal RWA results of the self-consistency prob-
lem (100) for various noise strengths.
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FIG. 13. Longitudinal RWA results of the self-consistency prob-
lem (100) for various noise strengths.

Considering the results, the first statement is rather ob-
vious. For C = 0.0, the longitudinal signal already survives
significantly longer than the transversal one due to the
anisotropic factors in (100). Increasing the noise strength
causes the spin to precess more and more quickly and ran-
domly about the z axis. As a result, the transversal spin
components experience an even stronger decoherence than
before and the corresponding autocorrelations decay faster.
In contrast, the z component of the spin is stabilized by the
additional rotations about the z axis so that the longitudinal
signal relaxes only very slowly. Figure 14 schematically illus-
trates the behavior of the spins.

To corroborate the statement (ii), Fig. 15 shows the
transversal signal in double logarithm vs logarithm represen-
tation for various noise strengths. All of the results show a
linear behavior with a small upward curvature at the end.
A closer observation of the curvature reveals that the auto-
correlations fall slightly below zero just before they finally
converge to zero. We emphasize that this negative dip is only
very small, ∝10−3, and hence not visible in the provided
figures. Still, we ensured that it does not result from numerical

S

noise b

∝ √
C

pn(b)

z

FIG. 14. Illustration of a spin subjected to a Gaussian noise in
the z direction. As the speeds of rotation of the transversal compo-
nents fluctuate more strongly upon increasing noise strength

√
C the

transversal components vanish more rapidly. In return, this weakens
the processes which destroy the longitudinal component so that it is
stabilized.
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FIG. 15. Logarithmic representation of the transversal RWA re-
sults for various noise strengths.

inaccuracies. Interestingly, its height decreases upon increas-
ing the noise width.

The clearly linear behavior in the plot has a slope r = 2 so
that it clearly indicates Gaussian behavior. Hence, we use the
fit function

4gxx
Gauss(t ) = e− t2

2σ2 (101)

to extract the standard deviation σ as function of the noise
strength displayed in Fig. 16.

This behavior can be understood by an analytical consider-
ation [19,69]. We consider purely static noise neglecting the
mean-field contributions in the RWA Hamiltonian (94):

H = γsb
z
i S

z. (102)

The analytical averaging yields the transversal signal

4gxx
N (t ) = e− t2

2σ (C)2 , (103a)

σ (C) = 1

J
√

C
, (103b)
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s
of

1

data
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FIG. 16. Standard deviations obtained from fitting the transver-
sal signals versus the noise strengths. The dashed blue line is the
analytical prediction based on purely static noise [see Eq. (103)]. The
orange line results from a data fit according to (104).
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FIG. 17. Logarithmic representation of the longitudinal corre-
lation for various noise strengths. The blue dashed-dotted lines
correspond to exponential functions with f (t ) = Ae−αt . They illus-
trate that the correlations show a positive curvature and thus decay
weaker than exponentially.

which explains the Gaussian behavior of the transversal signal
for large values of C. The analytical standard deviation is
also depicted in Fig. 16 as blue dashed line. For increasing
noise strength it describes the fitted data better and better.
This is expected because the larger the static noise is rel-
ative to the mean fields, the better the static noise model
captures the dynamics. For small values of C and in particular
for C = 0.0, the transversal signal still follows a Gaussian
to good accuracy. The mean-field contribution changes the
standard deviations; quite unexpectedly, the mean fields ap-
pear to counteract the static noise partly reducing the standard
deviation. It turns out that this effect is well captured by the fit

σfit(C) = 1

J
√

C + R
(104)

as can be seen in Fig. 16 with

R = 0.159(1). (105)

This quantifies the contribution of the mean fields to the
transversal spin dynamics.

The behavior of the longitudinal autocorrelations is more
complex; Fig. 17 shows that the decay is weaker than ex-
ponentially as we stated before. We refer to Sec. IV E for a
detailed examination of the behavior.

D. Transition from weak to strong external magnetic field

If we consider the case of a surface perpendicular to the
external magnetic field, i.e., ϑ = 0, we can compare the re-
sults from Sec. IV B for arbitrarily strong magnetic fields to
the results from the previous Sec. IV C based on the RWA.
This allows us to study how well the RWA reproduces the
exact result. In particular, we can determine above which
magnetic fields the RWA is reliable and to which extent.
First, we compute the results of the self-consistency problem
in the laboratory frame (exact spinDMFT) [Eq. (79)] and in
the Larmor rotating frame using RWA (RWA spinDMFT)
[Eq. (100)]. Then, we transform the exact spinDMFT results
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FIG. 18. Comparison of the RWA spinDMFT results (solid line,
filled markers) with the exact spinDMFT results (dashed-dotted line,
open markers) for a small dimensionless magnetic field B̃ = 2.0 in
the rotating frame at zero static noise C = 0.0.

to the Larmor rotating frame via

gxx
rf (t ) = gxx(t ) cos(ωLt ) − gxy(t ) sin(ωLt ), (106a)

gxy
rf (t ) = gxy(t ) cos(ωLt ) + gxx(t ) sin(ωLt ), (106b)

gzz
rf (t ) = gzz(t ), (106c)

so that a quantitative comparison is possible.
In Fig. 18 (C = 0.0, B̃ = 2.0), we observe considerable

deviations between both approaches, especially in gxy and gzz:
due to the moderately large magnetic field, the exact results
show deflections and shifts which are not present in RWA.
Considering Fig. 19 (C = 0.0, B̃ = 10.0), these deviations
clearly shrink upon increasing magnetic field. The deviations
from the RWA are difficult to discern. They appear most
strongly in gxy. As we raise B̃ further (see Fig. 20) (C = 0.0,
B̃ = 50.0), the deviations due to RWA are not visible any-
more. The tiny shift between both results for the longitudinal
autocorrelation only stems from the discretization of time. It
is a purely numerical effect which grows with B̃.
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FIG. 19. Same as Fig. 18 for moderate dimensionless magnetic
field B̃ = 10.0.
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FIG. 20. Same as Fig. 18 for large dimensionless magnetic field
B̃ = 50.0.

If static noise is included (see Fig. 21 for C = 10.0, B̃ =
2.0), we observe large deviations for all autocorrelations, even
more than what we showed in Fig. 18. The exact transversal
results strongly oscillate in contrast to the RWA results and
a huge shift between the two curves for the longitudinal au-
tocorrelations occurs. This implies that the presence of static
noise requires larger magnetic fields for the RWA to be jus-
tified. Figures 22 (C = 10.0, B̃ = 10.0) and 23 (C = 10.0,
B̃ = 50.0) confirm this conclusion displaying better and better
agreement between the results of both approaches. We argue
that this behavior is physically highly plausible because the
RWA is justified if the energy scale of the magnetic field is
larger than the energy scales of any other interaction in the
system, including the static noise.

E. Long-time behavior

Now, we come back to the long-time behavior of the lon-
gitudinal autocorrelation. This is an interesting issue because
various ideas exist on the origin of the rather slow decay and
its functional form [71].

Figure 17 shows that the autocorrelations do not decay
in a Gaussian fashion at all. Such decay would have led to
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FIG. 21. Same as Fig. 18 for finite static noise C = 10.0 and
small dimensionless magnetic field B̃ = 2.0.
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FIG. 22. Same as Fig. 18 for finite static noise C = 10.0 and
moderate dimensionless magnetic field B̃ = 10.0.

a negative curvature downwards. Instead, we discern a posi-
tive curvature upwards which implies that the decay is even
slower than exponential. The question arises which functional
dependencies describe this decay. Considering this, our most
successful fitting attempt is a power law according to

4gzz
fit:B(t ) = Bt−m (107)

with parameters B and m. We checked also stretched exponen-
tials since these were suggested in Ref. [71]. But, we did not
achieve satisfactory fits for an ansatz according to

4gzz
fit:A(t ) = Ae−αtν

(108)

with parameters A, α, and the exponent ν. The longitudinal
results including the power-law fits can be seen in Fig. 24.
Note that much longer times are not easily accessible for
two reasons. First, the numerical effort increases as t2 for
the Monte Carlo simulation and as t3 for the diagonalization.
Second, the smaller the autocorrelation is, the more difficult it
becomes to determine it with good relative accuracy in view
of the statistical way of computing it. This is also the reason
why we cannot go to longer times for C ≈ 0.
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FIG. 23. Same as Fig. 18 for finite static noise C = 10.0 and
large dimensionless magnetic field B̃ = 50.0.
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FIG. 24. Numerical long-time results of the longitudinal auto-
correlations in RWA for various noise strengths in logarithm vs
logarithm representation. The blue dashed-dotted lines correspond
to power-law fits as in (107).

The exponent m displays a pronounced dependence on the
relative noise strength C as depicted in Fig. 25. The depen-
dence m(C) can be described heuristically by

mfit(C) = m0 + k

Cr
. (109)

This fit works surprisingly well in spite of the divergence for
C → 0. Limited by the numerical accuracy, we can hardly say
if we actually obtain this divergence or if it can be truncated,
e.g., by replacing C → C + C0 in (109). This issue is associ-
ated to the question if the power-law behavior solely results
from the presence of the noise or if it is a valid feature of
spinDMFT.

All in all, these results provide evidence that the longitu-
dinal autocorrelations are relatively long lived. Clearly, their
long-time behavior poses an interesting question which calls
for further research, both numerical and analytical.

0 1 2 3 4 5
C
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2.5
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3.5
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FIG. 25. Fitted exponent m from the fit of the longitudinal au-
tocorrelations (107) vs the noise strength and a fit (orange) as in
(109). The estimated parameters are m0 = 1.15(2), k = 0.35(2) and
r = 0.87(3).

V. CONCLUSIONS

In this paper, we introduced and justified a mean-field
theory designed to capture the spin dynamics in disordered
dense spin systems. The key idea is that it is not sufficient to
introduce a static mean field but that the mean field is dynamic
itself so that we call it “spin dynamic mean-field theory”
(spinDMFT). As usual, this approach becomes exact if each
site has an infinite number of interaction partners, i.e., the
coordination number becomes infinitely large. Historically,
the same limit led to the introduction of the fermionic dynamic
mean-field theory [44,72].

For spins, we established that the important correlations
are the autocorrelations and that these define the dynamic
mean fields to which each spin is subjected. These mean
fields are normally distributed and the dynamic variances of
these normal distributions are given by the autocorrelations.
This constitutes the self-consistency problem which has to
be solved for spinDMFT. We showed how this can be done
stochastically.

If the effective single-site problem is linear in the spin
operators, it does not matter whether we consider classical
spins averaged over all directions or a quantum spin given
that the average length is scaled to be the same. In this sense,
the quantum spin system and the classical spin system have
the same spinDMFT. For spin 1

2 this has to be the case since
locally only linear spin operators can appear. For larger spins,
however, higher powers may arise such as anisotropies of
various kinds. Then, the quantum spinDMFT and the classical
spinDMFT are different.

We gauged the advocated spinDMFT against numerical
results for isotropic spin systems obtained by other methods,
namely, exact diagonalization, iterated equations of motion,
and Chebyshev expansion. This can only be done for rather
small spin clusters in low dimensions so that the reproduction
of the results by spinDMFT is particularly challenging. Nev-
ertheless, encouraging agreement could be established.

Subsequently, we applied spinDMFT to a two-dimensional
ensemble of spins with dipolar interactions including local
static noise, i.e., fluctuations of magnetic fields. This under-
lines that spinDMFT is capable of dealing with anisotropic
interactions of long range as well. We studied the case of an
arbitrary external magnetic field perpendicular to the plane
of spins and the RWA for a large tilted magnetic field. For
zero tilt, we compared both approaches quantitatively. This
allowed us to show quantitatively to which extent the RWA
is justified and above which magnetic field it yields reliable
results.

We showed that the transversal autocorrelations behave
essentially like Gaussians in time. The longitudinal autocor-
relations, however, display a more complex behavior with a
rather slow decay towards long times. Evidence for power-law
behavior is found. This certainly calls for further investiga-
tions.

We are confident that spinDMFT can be applied suc-
cessfully to many more physical systems aside from the
ones that we mentioned so far. Ample applications can be
found for nuclear magnetic resonance (NMR), electron spin
resonance (ESR), quantum information storage and process-
ing based on spins in solid-state systems, in particular in
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nanostructures, and for all phenomena related to spin diffusion
in such systems.

Conceptually, further issues to be addressed are the treat-
ment of explicitly time-dependent Hamiltonians and spatially
inhomogeneous solutions with distributions of mean fields
which vary along the samples. Both extensions are of greatest
interest, for example, in the coherent control of spin degrees
of freedom.

A third fascinating issue consists in an extension of
spinDMFT to finite temperatures. So far, we derived the
approach for disordered ensembles. But, in view of related
developments for spin glasses [47,48] and the general anal-
ogy between real and imaginary times, a dynamic mean-field
theory for spins at finite temperatures should also exist. Its
development would enhance the applicability of spinDMFT
even further.
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APPENDIX A: DYNAMIC SPIN CORRELATIONS ON
A BETHE LATTICE AT INFINITE TEMPERATURE

The aim of this Appendix is to derive the scaling of the
correlations as function of the coordination number. This is
a tremendous task on arbitrary lattices, even at infinite tem-
perature. Therefore, we consider the Bethe lattice [73] with
nearest-neighbor coupling between spins S = 1

2 , i.e., a Cayley
tree of infinite depth, so that each site has the same envi-
ronment and the system is homogeneous. The coordination
number is z and hence the so-called branching ratio is z − 1.
First, we consider the spin-spin correlation. Second, we de-
duce further correlations. We take the results for the Bethe
lattice as representative for more general lattices including
long-range interactions leading to large effective coordination
numbers.

1. Spin-spin correlations

We want to show that the two-time pair correlation func-
tions 〈Sα

i (t1)Sβ
j (t2)〉 for i �= j are suppressed for z → ∞. This

property is required to justify the use of the central limit theo-
rem in Sec. II C and to treat the dynamics of the local fields as
independent from the dynamics of a single spin. Mostly, we
set j = 0 and t2 = 0 without loss of generality. The advantage

of considering the Bethe lattice is that the shortest distance
between any pair of sites is unique because the lattice does
not have any loops except self-retracing paths. We consider
the general Hamiltonian

HBL = 1√
z

∑
〈i, j〉

∑
αβ

JαβSα
i Sβ

j (A1)

with arbitrary couplings Jαβ = Jβα allowing for spin
anisotropy. The factor z− 1

2 is denoted separately to explicitly
keep track of the scaling with z. It must be chosen in this
way to keep the energy scale of the dynamics, J2 in Eq. (4),
constant for z → ∞.

The argument runs as follows. First, we use the Heisenberg
equations of motion to set up a system of differential equa-
tions for the temporal evolution of the correlation functions.
Second, we postulate the scaling of the correlations. Third,
we show that the postulated scaling is consistent with the
initial conditions and with the differential equations, i.e., the
scaling is fulfilled by the initial conditions at t = 0 and by the
differential equations. As starting point, we calculate the time
derivative of the general pair correlation function

d

dt

〈
Sρ

k (t )Sγ

0 (0)
〉 = i

〈
LSρ

k (t )Sγ

0 (0)
〉

(A2a)

= −1√
z

∑
j,〈 j,k〉

∑
αβϕ

Jαβεβρϕ

〈
Sα

j (t )Sϕ

k (t )Sγ

0 (0)
〉
, (A2b)

where the Levi-Civita tensor occurs due to the spin alge-
bra. The complexity of the expectation value is increased by
the Liouville operator L which consists in the commutation
with the Hamiltonian. This leads to an an additional time-
dependent spin operator in the expectation value.

The same behavior is observed for higher derivatives: the
application of L results in expectation values with incre-
mented or decremented number of spin operators by one. The
decrement occurs if the additionally generated spin operator
hits an already present spin operator at the same site and of
the same component due to (Sα )2 = 1

4 . The quickly growing
number of products of spin operators makes the bookkeeping
tedious. A solution consists in considering the correlation
function of a general cluster at time t with a single spin at
time 0 and site 0:

gγ (C, t ) := 〈C(t )Sγ

0 (0)〉. (A3)

Here, C denotes an arbitrary product of spin operators at
different sites

C := C(c, α) =
∏
r∈c

Sαr
r , (A4)

where c is a set of lattice sites r ∈ {0, . . . , N} and α is a set of
components αr ∈ {x, y, z}. The time derivative of such cluster
correlations (A3) reads as

d

dt
gγ (C, t ) = 1√

z

∑
C′

J (C,C′)gγ (C′, t ), (A5)

where the sum runs over all clusters C′ that can be reached
from C by one application of the Liouville operator. All fac-
tors that are independent of the coordination number, e.g., the
couplings Jαβ and factors 1

4 from products of the same spin
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FIG. 26. Cutout of a Bethe lattice with z = 3. As an example, we
consider a cluster of four spin operators situated at the filled dots
representing occupied sites. The open dots represent empty sites;
their number defines κ2(c) = 3. The covering of the cluster is defined
by the green links; their number defines κ1 = 6 so that κ = 9.

operators, are collected in J (C,C′). Hence, this generalized
coupling J (C,C′) does not contribute to the scaling which we
want to determine.

By (A5) we have formally defined the system of dif-
ferential equations describing the dynamics of all cluster
correlation functions. The starting conditions read as

gγ (C, 0) = 0, ∀ C �= Sγ

0 (A6a)

gγ (Sγ

0 , 0) = 1
4 . (A6b)

It is challenging to keep track of the more and more com-
plex clusters. To this end, we define a measure of the cluster
size or complexity and link it to the scaling. Since S = 1

2 , at
each site r of a cluster the active operator can be the identity
or one of the three spin components. All products with more
factors can be reduced to this case. We call a site “occupied”
if one of the three spin components is present at this site.
Otherwise, we call it “unoccupied”. We introduce the measure
κ (c) which consists of two components

κ (c) := κ1(c) + κ2(c). (A7)

The first term κ1(c) measures the overall size of the cluster c.
Consider a covering of the minimum number of bonds needed
to link all sites in c and the origin 0 (see the green bold links
in Fig. 26). We stress that this covering is unique, i.e., there
is only one such covering due to the properties of the Bethe
lattice where two sites are linked by one specific path. There
are no loops except self-retracing paths. The second term
κ2(c) counts the number of empty, unoccupied sites which are
touched by this covering.

We show below that κ (c) is a lower bound for the mini-
mum number n(C) of applications of the Liouville operator L
needed to generate C(c, α) from an initial cluster C0({0}, α0)
with a single-spin operator Sα0

0 at the origin. For the sake of
completeness, we mention that in the exceptional cases

C = Sρ
0 , ρ �= γ (A8)

n = κ (c) + 2 = 2 holds for reaching Sρ
0 from Sγ

0 . From the
assertion n(C) � κ (c) and the starting conditions (A6) we
deduce

dn

dtn
gγ (C, t )

∣∣∣
t=0

= 0, ∀ n < κ (c). (A9)

FIG. 27. Possible link processes for a single application of L and
their effect on the occupation of the involved sites.

This motivates our central assertion that the cluster correlation
functions are scaling with z according to

gγ (C, t ) ∝ z− κ (c)
2 . (A10)

Obviously, this agrees with the starting conditions

gγ (Sγ

0 , 0) = 1
4 ∝ z0, (A11)

while all other cluster correlation functions vanish at t = 0.
To validate the claim (A10) for arbitrary times, we show

that it is consistent with the equations of motion (A5). A
single application of the Liouville operator L to a cluster C
generates a sum of multiple clusters C′. Since we consider
nearest-neighbor interaction, each of these clusters C′ differs
from C only at one link (i, j) where i and j are adjacent.
Therefore, it is sufficient to study the possible processes on
this link

C(i, j)
L−→ C′

(i, j), (A12)

where we denote the subcluster of C or C′ on this link by C(i, j)

and C′
(i, j), respectively.

Figure 27 shows how the effect of L on the link

[HBL,(i, j),C(i, j)] =
∑

C′
(i, j) (A13)

can be categorized in three different types. The relevant com-
mutators read as [

Sα
i Sβ

j , Sρ
i

] = iεαρωSω
i Sβ

j , (A14a)[
Sα

i Sβ
j , Sρ

i Sβ
j

] = i

2
εαρωSω

i , (A14b)[
Sα

i Sβ
j , Sρ

i Sδ
j

] = 0. (A14c)

Interestingly, the last commutator yields zero for S = 1
2 , so

that this process does not contribute. The remaining two pro-
cesses (a) and (b) are analyzed further. Since κ (c) depends on
the covering of c, we distinguish whether the considered link
(i, j) is part of this covering or not. This leads to two subcases
for processes (a) and (b) as shown in Fig. 28.

As an example, we derive that the first process (a.i) pre-
serves the asserted scaling. The extension of the covering by
one link leads to

κ1(c′) = κ1(c) + 1 (A15)

while the number of unoccupied sites remains the same

κ2(c′) = κ2(c). (A16)

In order to assess the complete scaling, one has to count how
often a process can occur. We call this its multiplicity m(c, z).
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FIG. 28. Relevant link processes for a single application of L
including the effect on the covering which is shown in green.

The multiplicity of process (a.i) can be bounded from above
by counting at maximum z neighbors of each occupied site in
c. There are κ1(c) − κ2(c) + 1 of such sites so that

m(c, z) � z[κ1(c) − κ2(c) + 1] (A17)

holds. The indicators κi depend on the size of the cluster, but
not on the coordination number so that the scaling resulting
from the differential equation (A5) is

gγ (C(a.i), t ) ∝ z− 1
2 m(c, z)z− κ (c′ )

2 (A18a)

∝ z− κ (c)
2 (A18b)

∝ gγ (C, t ), (A18c)

where gγ (C(a.i), t ) denotes the sum of the contributions of the
clusters C′ to the correlation of cluster C via the link process
(a.i). Clearly, the asserted scaling of gγ (C, t ) is confirmed.
Note that the first factor z− 1

2 in (A18a) stems from the overall
scaling on the right-hand side of Eq. (A5). In conclusion, we
showed that the first process is consistent with the claimed
scaling (A10).

We do not repeat the line of argument for the processes
(a.ii), (b.i), and (b.ii). Their effects on the scaling are summa-
rized in Table III. While the processes (a.ii) and (b.i) yield the
same scaling as (a.i), the last process (b.ii) is even suppressed
by an additional factor z− 1

2 . Hence, we have derived that
none of the processes violate the asserted scaling. Since this
scaling holds initially [see Eq. (A11)], we deduce by con-
tinuous induction via the differential equations (A5) that the
scaling (A10) holds at all times on the Bethe lattice at infinite
temperature. As mentioned in the beginning, we assume that
this behavior is generic, i.e., that it applies to general lattices
and clusters. This justifies the application of spinDMFT for

TABLE III. Induced scaling of the contributions of the link
process to the differential equation for C. The numbers −1, 0, +1
indicate the increments in κ1 and κ2. The entries of the column of the
multiplicity provide the scaling factors in m(c, z). The last column
shows the resulting scaling of the contribution of C′ to C.

Process (x.y) κ1 κ2 m(c, z) ∝ gγ (C(x.y), t ) ∝
(a.i) +1 0 z z−κ (c)/2

(a.ii) 0 −1 1 z−κ (c)/2

(b.i) −1 0 1 z−κ (c)/2

(b.ii) 0 +1 1 z−(κ (c)+1)/2

dense systems by which we mean systems with large effective
coordination numbers.

A direct corollary applies to the two-time pair autocorre-
lations 〈Sα

i (t1)Sβ
j (t2)〉. In this particular case, the cluster reads

as

C = Sα
i (A19)

so that only the site i belongs to c and

κ1(c) = κ2(c) = ‖i − j‖, (A20)

where one must keep in mind that the site j needs to be con-
nected to a link as well without being occupied. This implies

κ (c) = κ1(c) + κ2(c) = 2‖i − j‖, (A21)

where ‖i − j‖ is the taxicab distance between i and j, i.e., the
number of links required to reach i from j. Then the general
scaling (A10) reads as〈

Sα
i (t1)Sβ

j (t2)
〉 ∝ z−‖i− j‖, (A22)

which entails that the two-time pair correlations (i �= j) are
suppressed at least by z−1 relative to the autocorrelations.
Hence, any pair of spins is uncorrelated in the limit z → ∞.
We used this insight to justify the application of the central
limit theorem in Sec. II C.

2. Correlations of the local-environment fields

Here we draw further conclusions from the scaling derived
in the preceding section. We recall definition (2) of the local-
environment fields which take the form

V α
i = 1√

z

∑
k,〈k,i〉

∑
γ

Jαγ Sγ

k (A23)

on the Bethe lattice. Their autocorrelation reads as

〈
V α

i (t1)V β
i (t2)

〉 = 1

z

∑
γ ρ

(Jαγ Jβρ )2
∑

k,〈k,i〉
l,〈l,i〉

〈
Sγ

k (t1)Sρ

l (t2)
〉

(A24a)

= 1

z

∑
γ ρ

(Jαγ Jβρ )2
∑

k,〈k,i〉

(〈
Sγ

k (t1)Sρ

k (t2)
〉+ ∑

l,〈l,i〉
l �=k

〈
Sγ

k (t1)Sρ

l (t2)
〉)

(A24b)

= 1

z

∑
γ ρ

(Jαγ Jβρ )2
∑

k,〈k,i〉

(〈
Sγ

k (t1)Sρ

k (t2)
〉+ O(z−1)

)
, (A24c)
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where in the last line we neglected the second term in the
brackets because it is suppressed by the factor 1/z‖k−l‖ = z−1

relative to the first term. We emphasize that the total auto-
correlation is not suppressed since the summation and the
factor z−1 compensate each other. Equation (A24c) is vital to
simplify the self-consistency problem in Sec. II C 2.

Similarly, we analyze possible correlations of the local
fields at different sites. Inserting the definitions into the pair
correlation functions one obtains〈

V α
i (t1)V β

j (t2)
〉 = 1

z

∑
γ ρ

(Jαγ Jβρ )2
∑

k,〈k,i〉
l,〈l, j〉

〈
Sγ

k (t1)Sρ

l (t2)
〉

(A25)

for i �= j. Inspecting the Bethe lattice, one sees that the above
double sum consists of three types of terms with different
multiplicity m:

(1) ‖k − l‖ = ‖i − j‖ − 2, m ∝ 1,
(2) ‖k − l‖ = ‖i − j‖, m ∝ z,
(3) ‖k − l‖ = ‖i − j‖ + 2, m ∝ z2.
Figure 29 visualizes these cases. The first case occurs if k

and l are neighbors of i and j and both are part of the direct
path connecting i with j. The second case occurs if one index
k or l stands for a neighbor that is not part of this path while
the other one lies on the path linking i and j. The third case,
finally, occurs if both indices k or l stand for neighbors that
are not part of the path connecting i with j. The scalings stem
from the fact that there are always z − 1 ∝ z ways to choose a
neighbor that is not on the path while there is only one unique
neighbor on the path. In the special case ‖i − j‖ = 1 the first
case modifies to ‖k − l‖ = ‖i − j‖ = 1 with m = 1.

Using the above multiplicities in combination with the
scaling of the spin-spin correlations (A22) we obtain that the
pair correlations scale like

〈V α
i (t1)V β

j (t2)〉 ∝
{

z−1 if ‖i − j‖ = 1,

z−‖i− j‖+1 if ‖i − j‖ > 1,
(A26)

FIG. 29. Sketch to visualize the three cases occurring in the
double sum in Eq. (A25). The distance between the red dots k and l
defines the scaling of the expectation value in the double sum. The
green zigzag lines indicate that the corresponding adjacent sites are
connected via arbitrarily many bonds. By the green dashed lines with
open red dots we indicate that there are multiple options for the sites
k or l .

FIG. 30. Sketch to visualize the two cases occurring in the site
sum in Eq. (A28). The distance between the red dots k and i defines
the scaling of the expectation value on the right-hand side. The
green zigzag lines indicate that the corresponding adjacent sites are
connected via arbitrarily many bonds. By the green dashed lines we
indicate that there are multiple options for the site k.

so that they are suppressed by at least the factor z−1. Hence, no
correlations between the local-environment fields need to be
accounted for. By self-consistency, this extends to the second
moments of the local mean fields.

In a similar fashion, we show that the spin dynamics of �Si is
uncorrelated to its corresponding local-environment field �V i:

〈
Sα

i (t1)V β
i (t2)

〉 = 1√
z

∑
γ

Jβγ

∝z︷︸︸︷∑
k,〈k,i〉

〈
Sα

i (t1)Sγ

k (t2)
〉︸ ︷︷ ︸

∝z−1

(A27a)

∝ z− 1
2 , (A27b)

as well as to any other local-environment field �V j ( j �= i):〈
Sα

i (t1)V β
j (t2)

〉 = 1√
z

∑
γ

Jβγ
∑

k,〈k, j〉

〈
Sα

i (t1)Sγ

k (t2)
〉

(A28a)

∝ z−‖i− j‖+ 1
2 , (A28b)

which both tend to 0 for z → ∞. For the last conclusion, one
has to distinguish two cases again (see Fig. 30). First, site i can
be nearer to j than to k. Second, site i can be nearer to k than
to j. The latter case is dominant with a multiplicity of m ∝ 1
and a scaling of ∝z−‖ j−1‖+1. Together with the prefactor 1/

√
z

this yields the provided scaling.

APPENDIX B: ERROR ANALYSES

In this Appendix, we discuss numerical errors and is-
sues which arise in evaluating the mean-field moments.
An assessment of the errors resulting from statistics, fi-
nite discretization, and convergence by iteration is provided.
Subsequently, we explain how the numerical effort can be
reduced by exploiting time-translation invariance and we dis-
cuss the definiteness of the covariance matrices.

1. Statistical error

By the self-consistent equations derived in Sec. II C 2 the
moments of the mean fields are linked to spin expectation
values which are calculated by path integrals averaged over
the distribution of the mean-field time series �V . Numerically,
we estimate the path integrals using a Monte Carlo method.
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FIG. 31. Numerical result for the standard deviations
σ (gαβ

�V (t, 0)) as function of t for the isotropic Heisenberg model
without any magnetic field. For t = 0, the autocorrelations are fixed
and hence their standard deviation vanishes. For large t it converges
apparently to 1/4

√
3, indicated by the dashed line.

The autocorrelations

gαβ

�V (t1, t2) := 〈Sα (t1)Sβ (t2)〉(sts)
�V (B1)

are computed for M time series �V and averaged

gαβ
M (t1, t2) := 1

M

∑
�V

gαβ

�V (t1, t2) (B2)

which converges to gαβ (t1, t2) for M → ∞. Since the time
series are drawn independent of each other, the variance of
gαβ

M (t1, t2) is given by the variance of a single time series
divided by M,

σ 2
(
gαβ

M (t1, t2)
) = 1

M
σ 2
(
gαβ

�V (t1, t2)
)
, (B3)

where σ 2(. . . ) denotes the variance of the quantity in the
brackets.

The standard deviation σ of a single time series depends
on many parameters and cannot be calculated analytically
in a simple way. But, it is clear that its value is bounded
by the maximum value of the autocorrelations, i.e., by 1

4 .
Figures 31–33 show generic time dependencies of σ com-
puted for different physical situations. Interestingly, we find
that all of them converge to the value 1/(4

√
3) for t → ∞.

The rapidity of this convergence depends on the actual decay
of the corresponding autocorrelation. This behavior can be
understood by the following argument. The autocorrelations
vanish for large t . Hence, the variance equals the quadratic
mean

lim
t→∞ σ 2(gαβ (t, 0)) = lim

t→∞ ((gαβ (t, 0))2. (B4)

In a next step, we consider the vector-valued signal

�gβ

�V (t, 0) := 〈U†(t, 0)�S(0)U (t, 0)Sβ (0)〉(sts)
�V (B5a)

= 〈(
R �V (t, 0)�S(0)

)
Sβ (0)

〉(sts)
(B5b)

= 1
4 R �V (t, 0)�eβ, (B5c)
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FIG. 32. Same as Fig. 31 for the dipole model in the laboratory
frame with ϑ = 0 at B̃ = 5.0.

where R �V (t, 0) denotes the orthogonal rotation matrix which
describes the rotation of the initial spin vector due to its tem-
poral evolution subjected to the fluctuating time series �V (t ).
Obviously, the square of �gβ

�V (t, 0) is constant

(�gβ (t, 0))2 = 1
16 (B6)

before and, thus, also after averaging.
Next, it is plausible and in accord with all previous results

that the decoherence is sufficiently strong to have the spin
vector R �V (t, 0)�S(0) lose all information about its initial di-
rection. If it points in the z direction at t = 0 it will point into
any direction of the unit sphere after sufficiently long time.
Therefore, each component α of the rotated spin vector has
the same variance for t → ∞ and contributes equally to the
squared vector in (B6). This allows us to conclude

lim
t→∞ σ (gαβ (t, 0)) = lim

t→∞

√
(�gβ (t, 0))2/3 = 1

4
√

3
(B7)
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FIG. 33. Same as Fig. 31 for the dipole model in the rotating
frame in RWA and various noise strengths.
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in perfect agreement with the numerical findings. This enables
us to derive the reliable estimate

σ
(
gαβ

M (t1, t2)
) ≈ 1

4
√

3M
(B8)

for the statistical error from averaging over M times series. It
becomes even exact for t → ∞.

2. Discretization error

The goal of this Appendix is to estimate the error resulting
from the discretization of time, i.e., the error resulting from
working with a finite time step δt > 0 instead of taking δt →
0. Certainly, this error will depend on details of the model.
We discuss it for both the isotropic Heisenberg model and the
dipole model without and with RWA.

We consider the discretization error of the diagonal auto-
correlations α = β up to some maximum time tmax which we
determine such that

|gαα (tmax)| ≈ 1

100
(B9)

holds, i.e., the autocorrelation has decreased to 1
25 of its initial

value. For simplicity, we focus on the autocorrelation that
decays slowest in each physical scenario since it is most
susceptible to the discretization error which accumulates in
the course of its temporal evolution. Mostly this is the longi-
tudinal autocorrelation.

To be specific, we compute gαα (t ) on the time interval t ∈
[0, tmax] for various step widths

δt (ν) = δt (0)2−ν, ν ∈ [0, 1, 2, . . . , νmax]. (B10)

The results for gαα (t ) for ν < νmax are compared to the “best”
solution for νmax, i.e., the solution from the finest discretiza-
tion which is used as reference. We define the discretization
error

�q(ν) =
L(ν)∑
l=0

∣∣gαα
νmax

(lδt (ν)) − gαα
ν (lδt (ν))

∣∣
L(ν) + 1

, (B11)

where L(ν) = tmax/δt (ν) is the number of time steps. We
stress that the input data for �q(ν) are not exact, but subjected
also to the statistical error discussed in the previous section.

Figures 34–36 show the results for the three different mod-
els investigated in the main text. The qualitative behavior is
very similar. For small values of δt the deviation �q is clearly
dominated by the statistical error. Hence, the curves level off
displaying roughly plateaus with some fluctuations. For large
values of δt the curves also level off displaying a plateau. This
stems from errors so large that the deviations are of order
2
4 because the fluctuating diagonal autocorrelations gαα are
bounded by 1

4 .
Thus, the relevant regime is at intermediate time steps be-

tween these two plateaus. Here the effect of the discretization
can be discerned. The double-logarithmic plots are consistent
with the conclusion �q ∝ δt2 as can be read off by comparing
to the straight lines resulting from the quadratic power law.
This can be easily understood by the approximation we have
to use for the unitary time-evolution operators which propa-
gate the system from t to t + δt . The employed second-order
CFET and the trapezoidal rule entail a discretization error

10−1 100

δt units of 1
2

10−5

10−4

10−3

10−2

10−1

Δ
q

Δq (1A)

Δq (1B)

Δq (2A)

Δq (2B)

FIG. 34. Numerical analysis of the time discretization error for
the isotropic model. Data are shown for zero magnetic field (1) and
for finite magnetic field γsB = 5.0J2 (2) and, furthermore, for M =
4 × 105 (A) and for M = 6.4 × 106 (B) time series, respectively.
The dashed line (A) and the dashed-dotted line (B) represent the
statistical errors σ for the corresponding M. The thin orange lines
follow δt2 and are given for comparison.

scaling like δt3. But since this error accumulates over time
one has to multiply this scaling by the number of steps from
t = 0 to t = tmax so that we obtain

�q ∝ Lδt3 ∝ δt2. (B12)

This explains the observed quadratic scaling of the discretiza-
tion error with the time-step size δt .

Aside from the above discussed scaling further conclusions
on the influence of the discretization can be drawn. Inspecting
Figs. 34 and 35 shows that a finite magnetic field increases
�q. The reason is that the Larmor precessions need to be re-
solved. If the step size δt is too long, approaching the Larmor
period, sizable discretization errors occur. As a rule of thumb,
δt should be at maximum a tenth of the Larmor precession

10−1 100

δt units of 1

10−4

10−3

10−2

10−1

Δ
q

Δq, C = 0.0, B̃ = 0.0

Δq, C = 10.0, B̃ = 0.0

Δq, C = 0.0, B̃ = 5.0

Δq, C = 10.0, B̃ = 5.0

FIG. 35. Numerical analysis of the time discretization error for
the laboratory frame dipole model with ϑ = 0 for various magnetic
fields B̃ and noise widths C. The dashed line corresponds to the
statistical error σ for the sample size M = 4 × 105. The thin orange
lines follow δt2 and are given for comparison.
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FIG. 36. Numerical analysis of the time discretization error for
the RWA dipole model for various noise widths C. The dashed line
corresponds to the statistical error σ for the sample size M = 4 ×
105. The thin orange lines follow δt2 and are given for comparison.

period

T = 2π

γsB
. (B13)

Since the time discretization error accumulates over time,
longer lasting correlations imply larger discretization errors.
This can be seen for instance in Fig. 36 where the dipole
model is studied in RWA. The error �q increases with the
noise strength because the decay of the longitudinal autocor-
relation is slowed down upon increasing C. Finally, we point
out that a small discretization error is desirable. But, in view
of the efficiency of the total algorithm it does not pay to reduce
the discretization error below the statistical error. Hence, the
parameters should be set such that �q ≈ σ (g) holds.

3. Termination condition for the iteration

We determine the solution of the self-consistency condi-
tions iteratively. If the algorithm is stable, the autocorrelation
functions gαβ

(i) (t ) of the iteration i converge to the exact results
for i → ∞. In practice, it is necessary to define a termination
condition to decide when the iterations can be stopped. For
this we use

�Iαβ (i) = 1

L + 1

L∑
l=0

∣∣gαβ

(i) (tl ) − gαβ

(i−1)(tl )
∣∣. (B14)

This quantity measures the difference between the results of
iteration j + 1 and j, where j � 1 . The execution of the code
is stopped if �Iαβ (i) falls below a certain threshold. Since the
iteration error itself is limited by the statistical accuracy, this
threshold cannot be chosen smaller than the statistical error.
It needs to be set above the statistical standard deviation to
achieve reliable termination. In our numerics, it turned out that

�Ithreshold = 2σ
(
gαβ

M (t1, t2)
) = 1

2
√

3M
(B15)

is a reasonable choice. It avoids unnecessary iterations while
it is strict enough to yield sufficient convergence.

1 2 3 4 5 6 7 8 9 10
iteration i

10−3

10−2

10−1

Δ
I

z
z

threshold
(A)
(B)

FIG. 37. Iteration error 4�Izz as function of the iteration number
i. Case (A) starts from an exponential initial diagonal autocorrelation
and case (B) from a Gaussian initial diagonal autocorrelation. The
error threshold (B15) is displayed as horizontal dashed line for M =
1 × 105 time series. The termination condition is fulfilled at i = 5 for
case (A) and at i = 4 for case (B).

Figure 37 depicts the iteration error of gzz for the isotropic
Heisenberg model without magnetic field. The iterations
started from two different initial diagonal autocorrelations gαα

while the cross autocorrelations gαβ with α �= β are set to
zero. The iteration error decreases very fast in the beginning.
At about the fourth iteration it reaches the magnitude of the
threshold. Beyond the fourth iteration, statistical fluctuations
stemming from the averaging over M time series occur and
dominate the iteration error �Ixx. For optimum computational
efficiency, the code should terminate before the statistical
fluctuations take over.

We emphasize that the “converged” results obtained in
this way are independent of the initially chosen autocorre-
lations. The deviation between the iterated results from the
exponential and the Gaussian initial autocorrelation is of the
same magnitude as the error threshold (B15). For this reason,
we consider the chosen iterative algorithm robust enough to
determine physically meaningful solutions.

4. Time-translation invariance

For both the isotropic and the dipolar spin systems we con-
sidered a time-independent Hamiltonian so that the systems
are invariant under time translation

U (t2, t1) = e−iH (t2−t1 ) = U (t2 − t1, 0) (B16)

and so are all two-time spin autocorrelations

〈Sα (t1)Sβ (t2)〉 = 〈Sα (t1 − t2)Sβ (0)〉. (B17)

Applying spinDMFT, the situation is slightly more com-
plicated. The autocorrelations with respect to a single time
series �Vi are not time-translation invariant because the mean
field is dynamic, i.e., it depends on time. But, the physically
meaningful expectation values are obtained by averaging over
the distribution of possible mean fields. In the path integral
the mean field �Vi can be shifted in time so that the time-
evolution operators and the distribution functional p[ �Vi] are
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shifted. Time-translation invariance is ensured if and only if
the distribution remains unchanged by this shift. Specifically,
this is equivalent to the condition

V α (t1)V β (t2) = V α (t1 − t2)V β (0), (B18)

for the second moments of the mean fields, i.e., they are time-
translation invariant themselves. As stated in the main text, the
time invariance of the moments and hence of the distribution
implies time-translation invariance of the spin-spin autocor-
relations. So time-translational self-consistent solutions are
possible, but it cannot be excluded that solutions exist which
are not time-translationally invariant. Here, we do not con-
sider them because they cannot occur in a quantum system at
infinite temperature although time-crystalline behavior cannot
be excluded generally for specific situations.

In practice, the averaging based on Monte Carlo sampling
allows for small unphysical violations of time-translational in-
variance due to the finite statistical error: the self-consistently
computed moments and autocorrelations may not be exactly
time-translation invariant, even though the initially inserted
moments have this property. To avoid violations of time-
translational invariance, we enforce it in each iteration step.
A simple implementation consists in setting

t1 = �t, t2 = 0, for t1 > t2, (B19a)

t2 = �t, t1 = 0, for t2 > t1, (B19b)

where �t = |t1 − t2|, instead of considering all pairs of times
t1, t2.

The reduced set of data together with the assumption of
time-translation invariance provides all required information.
Due to the time-translational invariance the covariance matrix
has constant matrix elements on all diagonals

Mαβ =

⎛⎜⎜⎜⎝
a b c

b̃ a b . . .

c̃ b̃ a . . .
. . .

. . .
. . .

⎞⎟⎟⎟⎠, (B20)

where

a = V α (0)V β (0), (B21a)

b = V α (0)V β (δt ), b̃ = V α (δt )V β (0), (B21b)

c = V α (0)V β (2δt ), c̃ = V α (2δt )V β (0). (B21c)

This procedure has two advantages: (i) time-translation invari-
ance is built in by construction; (ii) the autocorrelations need
only be computed at the time differences �t . Hence, the effort
of steps 4 and 5 of the numerical procedure is reduced from
O(L2) to O(L) where L is the number of time steps.

5. Definiteness of the covariance matrix

In the self-consistency conditions the two-time correlations
are taken as matrix elements of a covariance matrix. The phys-
ical justification is given in Sec. II. In addition, we discuss
whether this identification is mathematically possible. To this
end, the quantum correlations must provide (i) real symmetric
matrix elements and the resulting matrix must be (ii) positive
semidefinite.

In Sec. II D we already showed property (i) at infinite
temperature. Property (ii) is equivalent to∑

αβ

∑
t,t ′∈I

〈
V α

i (t )V β
i (t ′)

〉
λα

t λ
β

t ′ � 0, (B22)

for arbitrary real coefficients λα
t and t ∈ I where I is an

arbitrary set of time instants. By shifting the sums into the
expectation value we find〈(∑

α

∑
t∈I

V α
i (t )λα

t︸ ︷︷ ︸
:=B

)2〉
� 0. (B23)

Since B is a Hermitian operator, its square is a non-negative
operator and thus any of its expectation values are non-
negative. This proves the required positive semidefiniteness
and applies to the expectation values of the path integral (15)
and extends to the averages (B2).

There is, however, a subtlety in the implementation
described in the previous section. We guaranteed time-
translation invariance by using

1

M

∑
�V

gαβ

�V (t1, t2) ≈ 1

M

∑
�V

gαβ

�V (�t, 0). (B24)

For M = ∞ this relation holds exactly true. But the sta-
tistical fluctuations at finite M imply that the covariance
matrix computed by Eq. (B20) need not be non-negative. If
we refrained from setting all matrix elements on a diagonal
constant, but used the two-time autocorrelations, L would
be non-negative. Enforcing time-translation invariance breaks
the positive semidefiniteness to the extent of the statistical
standard deviation. Since we keep this deviation low, the
computed covariance matrices are very close to being non-
negative. Due to the Monte Carlo approach to the averaging
all numerical results are subjected to the statistical error so
that the statistical inaccuracies of the approximate covariance
matrix are no source of additional deviations.

Practically, we diagonalize the approximate covariance
matrix and set the eigenvalues which are negative to zero for
the next iteration step. We stress that the modulus of these
negative eigenvalues is of the order of the statistical error,
i.e., small in a systematically controlled way. Therefore, the
employed procedure provides consistent physical solutions
for the dynamic autocorrelations within the discussed errors.
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[57] J. Kuczyński and H. Woźniakowski, Estimating the Largest
Eigenvalue by the Power and Lanczos Algorithms with a Ran-
dom Start, SIAM J. Matrix Anal. Appl. 13, 1094 (1992).

[58] NIST Digital Library of Mathematical Functions, edited by
F. W. J. Olver, A. B. O. Daalhuis, D. W. Lozier, B. I. Schneider,
R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders
(Cambridge University Press, Cambridge, 2019).

[59] K. Fabricius, U. Löw, and J. Stolze, Dynamic correlations of
antiferromagnetic spin- 1

2 XXZ chains at arbitrary temperature
from complete diagonalization, Phys. Rev. B 55, 5833 (1997).

[60] H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigen-
funktionen der linearen Atomkette, Z. Phys. 71, 205 (1931).

[61] R. Dekeyser and M. H. Lee, Nonequilibrium statistical me-
chanics of the spin- 1

2 van der Waals model. II. Autocorrelation
function of a single spin and long-time tails, Phys. Rev. B 43,
8131 (1991).

[62] B. A. Myers, A. Das, M. C. Dartiailh, K. Ohno, D. D.
Awschalom, and A. C. Bleszynski Jayich, Probing Surface
Noise with Depth-Calibrated Spins in Diamond, Phys. Rev.
Lett. 113, 027602 (2014).

[63] Y. Romach, C. Müller, T. Unden, L. J. Rogers, T. Isoda,
K. M. Itoh, M. Markham, A. Stacey, J. Meijer, S. Pezzagna,
B. Naydenov, L. P. McGuinness, N. Bar-Gill, and F. Jelezko,
Spectroscopy of Surface-Induced Noise Using Shallow Spins
in Diamond, Phys. Rev. Lett. 114, 017601 (2015).

[64] A. Stacey, N. Dontschuk, J.-P. Chou, D. A. Broadway, A.
Schenk, M. J. Sear, J.-P. Tetienne, A. Hoffman, S. Prawer,
C. I. Pakes, A. Tadich, N. P. de Leon, A. Gali, and L. C. L.
Hollenberg, Evidence for primal sp2 defects at the diamond
surface: Candidates for electron trapping and noise sources,
Adv. Mater. Interface 6, 1801449 (2019).

[65] S. Sangtawesin, B. L. Dwyer, S. Srinivasan, J. J. Allred,
L. V. H. Rodgers, K. De Greve, A. Stacey, N. Dontschuk, K. M.
O’Donnell, D. Hu, D. A. Evans, C. Jaye, D. A. Fischer, M. L.
Markham, D. J. Twitchen, H. Park, M. D. Lukin, and N. P. de
Leon, Origins of Diamond Surface Noise Probed by Correlating
Single-Spin Measurements with Surface Spectroscopy, Phys.
Rev. X 9, 031052 (2019).

[66] D. Bluvstein, Z. Zhang, C. A. McLellan, N. R. Williams, and
Ania C. Bleszynski Jayich, Extending the Quantum Coherence
of a Near-Surface Qubit by Coherently Driving the Param-
agnetic Surface Environment, Phys. Rev. Lett. 123, 146804
(2019).

[67] T. Staudacher, N. Raatz, S. Pezzagna, J. Meijer, F. Reinhard, C.
Meriles, and J. Wrachtrup, Probing molecular dynamics at the
nanoscale via an individual paramagnetic centre, Nat. Commun.
6, 8527 (2015).

[68] A. Laraoui, F. Dolde, C. Burk, F. Reinhard, J. Wrachtrup,
and C. A. Meriles, High-resolution correlation spectroscopy
of 13C spins near a nitrogen-vacancy centre in diamond, Nat.
Commun. 4, 1651 (2013).

[69] I. A. Merkulov, A. L. Efros, and M. Rosen, Electron spin
relaxation by nuclei in semiconductor quantum dots, Phys. Rev.
B 65, 205309 (2002).

[70] S. Blanes, F. Casas, J. Oteo, and J. Ros, The Magnus expansion
and some of its applications, Phys. Rep. 470, 151 (2009).

[71] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig,
H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y.
Yao, and M. D. Lukin, Critical Thermalization of a Disordered
Dipolar Spin System in Diamond, Phys. Rev. Lett. 121, 023601
(2018).

[72] W. Metzner and D. Vollhardt, Correlated Lattice Fermions in
d = ∞ Dimensions, Phys. Rev. Lett. 62, 324 (1989).

[73] E. N. Economou, Green’s Functions in Quantum Physics, Solid
State Sciences (Springer, Berlin, 1979), Vol. 7.

043168-29

https://doi.org/10.1088/1367-2630/ab354d
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1088/0022-3719/13/24/005
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.80.389
https://doi.org/10.1103/PhysRevLett.85.840
https://doi.org/10.1103/PhysRevB.88.024427
https://doi.org/10.1140/epjb/e2017-80063-2
https://doi.org/10.1103/PhysRevA.98.033602
https://doi.org/10.1016/j.jcp.2011.04.006
https://doi.org/10.6028/jres.045.026
https://doi.org/10.1090/qam/42792
https://doi.org/10.1137/0613066
https://doi.org/10.1103/PhysRevB.55.5833
https://doi.org/10.1007/BF01341708
https://doi.org/10.1103/PhysRevB.43.8131
https://doi.org/10.1103/PhysRevLett.113.027602
https://doi.org/10.1103/PhysRevLett.114.017601
https://doi.org/10.1002/admi.201801449
https://doi.org/10.1103/PhysRevX.9.031052
https://doi.org/10.1103/PhysRevLett.123.146804
https://doi.org/10.1038/ncomms9527
https://doi.org/10.1038/ncomms2685
https://doi.org/10.1103/PhysRevB.65.205309
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1103/PhysRevLett.121.023601
https://doi.org/10.1103/PhysRevLett.62.324

