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Abstract

In this thesis, we study two di�erent Standard Model extensions involving neutral leptons aiming
to explain current anomalies in the neutrino sector, as well as to explain the �avor anomalies in
combination with the dark matter abundance in the universe. At �rst, we develop a model that
introduces additional sterile neutrino states featuring altered dispersion relations in order to
explain the longstanding short baseline neutrino oscillation anomalies and the gallium/reactor
anomalies, while also staying in accordance with high energy data from atmospheric and long
baseline accelerator experiments. Furthermore, we systematically analyze a model class of one-
loop solutions to the B-anomalies in the context of fermionic singlet dark matter candidates. We
study the dark matter phenomenology for both Dirac and Majorana fermions in all �ve models
that contain a fermionic singlet. In our analysis, we include di�erent hierarchies between the
new Yukawa couplings to Standard Model quarks and also examine di�erent mass ratios in the
dark sector. Our study shows that especially direct detection limits can probe such solutions
of the B-anomalies.

Zusammenfassung

In dieser Dissertation untersuchen wir zwei verschiedene Standardmodellerweiterungen mit neu-
tralen Leptonen, die darauf abzielen, die Anomalien im Neutrinosektor zu erklären, sowie eine
Erklärung der Flavoranomalien mit der Existenz Dunkler Materie im Universum zu verknüpfen.
Zunächst entwickeln wir ein Modell, das zusätzliche sterile Neutrinos mit veränderten Dis-
persionsrelationen einführt, um die Neutrino-Oszillationsanomalien, sowie die Gallium- und
Reaktoranomalien zu erklären, während es gleichzeitig mit den Hochenergie-Daten aus at-
mosphärischen aus Beschleuniger-Experimenten in Übereinstimmung steht. Darüber hinaus
präsentieren wir eine systematische Analyse einer Modellklasse von Ein-Schleifen-Lösungen
für die B-Anomalien im Kontext von fermionischen Dunkle-Materie-Kandidaten in der Eich-
Singulett-Darstellung. Wir untersuchen die Dunkle-Materie-Phänomenologie sowohl für Dirac-
als auch für Majorana-Fermionen in allen fünf Modellen, die ein fermionisches Eich-Singulett
enthalten. In unserer Analyse prüfen wir unterschiedliche Hierarchien zwischen den neuen
Yukawa-Kopplungen an die Standardmodell-Quarks und analysieren zudem verschiedene Massen-
verhältnisse im dunklen Sektor. Unsere Studie zeigt, dass besonders direkte Detektionsexperi-
mente solche Lösungen der B-Anomalien testen können.
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Chapter 1

Introduction

1.1 The Standard Model of Particle Physics

In this section, we brie�y review the Standard Model (SM) of particle physics. As this discussion
does not feature great detail in all calculations, we refer the reader to the standard literature,
e.g. References [3, 4, 5, 6, 7, 8], for in-depth information. The theory aims to describe the
non-gravitational interactions of fundamental particles within a mathematical framework of a
renormalizable gauge Quantum Field Theory (QFT), in which the gauge group is given by

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.1.1)

where SU(N) stands for the special unitary group of degree N , C stands for color, L for left-
handed and Y denotes the weak hypercharge. Here, SU(3)C represents the theory of Quantum
Chromodynamics (QCD) describing the strong interaction, whereas SU(2)L ⊗ U(1)Y is the
gauge group of the Electroweak (EW) theory. The former is the theory describing interactions
between quarks and gluons as well as dynamics of hadrons, which are bound states of these
particles enforced by a property called color con�nement. The latter is spontaneously broken to
the abelian symmetry group U(1)em of Quantum Electrodynamics (QED) at the EW scale via
so-called the Higgs mechanism, which will be discussed later in this chapter. This framework
is often referred to as Glashow-Weinberg-Salam (GWS) theory. Since the SM is a QFT, it also
respects the principles of special relativity and, therefore, entails invariance under the Lorentz
group, strictly speaking the proper orthochronous Lorentz group SO(3,1).

The �eld content of the SM can be broadly categorized into fermionic matter �elds and
bosonic force carriers with the exception of the Higgs �eld, which belongs into a category of its
own: the bosonic scalar �elds. The matter �eld content and the corresponding representations
under the SM gauge group are listed in Table 1.1. Matter �elds can be further divided into
two distinct categories: quark �elds Q = (uL, dL)

T , dR and uR, which are in the fundamental
representation of SU(3)C and can be categorized into up- (u) and down-type (d) quarks, as well
as lepton �elds L = (νL, lL)

T and lR, which are color-neutral and further divided into charged
leptons (l) and neutrinos (ν) after spontaneous symmetry breaking. It is important to note
that it was empirically discovered that each of these �elds comes in three di�erent versions, the
so-called generations. In the traditional counting scheme we consequently obtain six quarks
[up (u), down (d), charm (c), strange (s), top (t), bottom (b)] and six leptons [electron (e),
muon (µ), tau-lepton (τ) and the corresponding neutrinos νe, νµ, ντ ]. The index L/R denotes
a left-/right-handed chirality1. A spinor with pure chirality can be produced by acting the

1In the literature, right/left-handed sometimes refers to helicity instead of chirality. In this thesis, the term

1



Chapter 1. Introduction

Field SU(3)C SU(2)L U(1)Y

Q 3 2 1/6
uR 3 1 2/3
dR 3 1 −1/3
L 1 2 −1/2
lR 1 1 −1

Table 1.1: Matter �elds of the SM and their representations under the SM gauge groups.

left-/right-handed projector PL/R on a Dirac 4-spinor ψ as

PL/Rψ =
1∓ γ5

2
ψ ≡ ψL/R , (1.1.2)

where γ5 = iγ0γ1γ2γ3 is the �fth Dirac γ-matrix. The common γ-matrices are de�ned by the
Cli�ord anticommutation algebra

{γµ, γν} = γµγν + γνγµ = 2ηµν14×4 . (1.1.3)

With these prerequisites in mind, we can construct the kinetic part of a renormalizable,
Lorentz- and gauge-covariant Lagrangian as follows

Lkin =
∑︂

i∈fermions

ψi /Dψi +
1

4

(︁
W a
µνW

µν
a +BµνB

µν +GbµνG
µν
b

)︁
, (1.1.4)

where Gbµν is the gluon �eld strength tensor, W a
µν ,Bµν are the �eld strength tensors associated

with SU(2)L ⊗ U(1)Y . The �eld strength tensors are de�ned as

F iµν = ∂µF
i
ν − ∂νF

i
µ + gF

∑︂
j,k

f ijkF jµF
k
ν , (1.1.5)

where gF denotes the coupling constant and f ijk, de�ned via the commutation relation f ijktk =[︁
ti,tj

]︁
, are the structure constants of the corresponding Lie algebra. We require the introduction

of the covariant derivative

Dµ = ∂µ − igstaG
a
µ − igτbW

b
µ − ig′Y Bµ , (1.1.6)

with the SU(3)C/SU(2)L/U(1)Y generators ta/τb/Y , to render the Lagrangian covariant under
gauge transformations of the form

ψ(x) → ψ′(x) = exp

(︃
iαa(x)

λa

2

)︃
exp

(︃
iβb(x)

σb

2

)︃
· exp

(︃
i
γ(x)

Y
2

)︃
ψ(x) . (1.1.7)

The generators τa = σa/2, ta = λa/2 are expressed in terms of the Pauli matrices σa and
Gell-Mann matrices λa, respectively.

An important property of particles is the concept of mass. Since they are structured as
∼ mΨ̄Ψ, Dirac mass terms of fermions are generally forbidden as they violate SU(2)L gauge
invariance. Furthermore, gauge bosons as they are described above do not have any mass. Since
empirical observations clearly show that these particles in fact do have mass, there is a need for
a dynamic mechanism within this formulation of the SM that provides an explanation for this

right-/left-handed always refers to chirality.

2



1.1. The Standard Model of Particle Physics

phenomenon. The widely accepted realization of this is the Higgs mechanism and the concept
of Spontaneous Symmetry Breaking (SSB). Within the framework of Electroweak Symmetry
Breaking (EWSB), an SU(2)L-doublet complex scalar �eld H is introduced to the SM. We
describe the Higgs Lagrangian as

LHiggs ⊃ (DµH)
†
DµH − µ2H†H − λ

(︁
H†H

)︁2⏞ ⏟⏟ ⏞
:=V (H)

, (1.1.8)

where µ2 is the mass parameter, λ is the quartic coupling and V (H) is the so-called scalar
potential. If the parameters satisfy the conditions

µ2 < 0 ∨ λ > 0 , (1.1.9)

the potential obtains a shape often referred to as the Mexican hat or champagne bottle pro�le.

The Higgs �eld acquires a non-zero Vacuum Expectation Value (vev) of ⟨H⟩ = 1√
2

(︃
0
v

)︃
due

to the shape of the scalar potential V (H) and the vacuum state therefore breaks the SU(2)L
symmetry. The Higgs �eld can thus be written as an excitation around this vev, yielding2

H =
1√
2

(︃
0

v + h

)︃
, (1.1.10)

where v =
√︁

−µ2
/λ and h denotes the physical Higgs boson that describes the remaining degree

of freedom in the radial direction of the potential. Since the complex scalar Higgs �eld has four
degrees of freedom before EWSB, three degrees of freedom are attributed to the three Goldstone
bosons that arise due to the breaking of a continuous symmetry according to Goldstone's
theorem [9, 10]. Those Goldstone bosons are 'eaten' by three of the gauge bosons, giving them
additional polarizations and therefore non-zero masses. In the Higgs Lagrangian we �nd

LHiggs ⊃
1

2

[︃
−2λv2h2 +

v2g2

4

(︁
W 1
µW

1µ +W 2
µW

2µ
)︁
+
v2

4

(︁
−gW 3

µ + g′Bµ
)︁ (︁

−gW 3µ + g′Bµ
)︁]︃

,

(1.1.11)

from which we can infer that m2
h = 2λv2,M2

W = v2g2

4 ,M2
Z = (g2+g′

2
)v

2

4 andM2
A = 0, de�ning

the linear combinations

Zµ ≡ 1√︁
g2 + g′2

(︁
gW 3

µ − g′Bµ
)︁
,

Aµ ≡ 1√︁
g2 + g′2

(︁
gW 3

µ + g′Bµ
)︁
, (1.1.12)

W±
µ ≡ 1√

2
(W 1

µ ∓ iW 2
µ) .

A practical de�nition proves to be the Weinberg angle θW , which is de�ned as the orthogonal
rotation angle between the generator basis and the particle basis(︃

Zµ
Aµ

)︃
=

(︃
cos θW − sin θW
sin θW cos θW

)︃(︃
W 3
µ

Bµ

)︃
(1.1.13)

2Here, the vev is chosen to lie in the real direction of the complex plane, which can be achieved by choosing
a particular gauge transformation, �xing the gauge. The gauge chosen in this case is commonly called unitary
gauge.

3



Chapter 1. Introduction

with cos θW = g/
√
g2+g′2 and sin θW = g′/

√
g2+g′2 and thus

Aµ = cos θWW
3
µ + sin θWBµ ,

Zµ = cos θWW
3
µ − sin θWBµ . (1.1.14)

While we have shown that within the framework of EWSB the EW gauge boson and the
Higgs boson acquire their masses from a non-zero vev of the Higgs �eld, it is still left to show
how fermions acquire their mass. Writing down all renormalizable, Lorentz- and gauge-invariant
interaction terms in the Lagrangian, involving the newly introduced Higgs �eld and fermionic
�elds, yields

LYuk = −Y dijQ̄
i
HdjR − Y uij Q̄

i
H̃ujR − Y lijL̄

i
HljR + h.c. , (1.1.15)

where Y fij (f ∈ [u,d,l]) denote the up-type/down-type/leptonic Yukawa matrix elements with

the generation indices i,j and we de�ne H̃ ≡ iσ2H
∗ as the hypercharge conjugated Higgs �eld.

This type of interaction is called Yukawa interaction, involving two fermionic �elds and a scalar
at the vertex in question. After EWSB the Yukawa Lagrangian transforms to

LYuk = − v√
2

(︂
d̄
i
LY

d
ijd

j
R + ūiLY

u
iju

j
R + l̄

i
LY

l
ij l
j
R

)︂
+ h.c. , (1.1.16)

from which we can extract that the mass matrix has the form Mf
ij = vY fij/

√
2. In general,

this matrix is non-diagonal, which indicates a mismatch between the eigenbasis of the weak
interaction and the eigenbasis of physical mass. To obtain the masses of the physical quarks, we
must perform a bi-unitary diagonalization of the mass matrix introducing the unitary matrices
Vd,Vu,Ud and Uu as

LYuk ⊃ − d̄LV
†
d⏞ ⏟⏟ ⏞

≡d̄′L

VdM
dU†

d⏞ ⏟⏟ ⏞
≡M ′

d

UddR⏞ ⏟⏟ ⏞
≡d′R

− ūLV
†
u⏞ ⏟⏟ ⏞

≡ū′
L

VuM
uU†

u⏞ ⏟⏟ ⏞
≡M ′

u

UuuR⏞ ⏟⏟ ⏞
≡u′

R

+h.c. , (1.1.17)

where M ′
u/d are the diagonal mass matrices, carrying the physical quark masses on the main

diagonal and u′L/R as well as d′L/R denote quark mass eigenstates.
Using this language in the context of W±-mediated charged-current interactions we can

develop the equations that provide insight into the �avor changing nature of these interactions.
Writing down the part of the kinetic Lagrangian in the mass basis reads

Lkin ⊃W+
µ ū

′
L VuV

†
d⏞ ⏟⏟ ⏞

≡VCKM

γµd′R , (1.1.18)

where we de�ned the Cabbibo-Kobayashi-Maskawa (CKM) matrix

VCKM = VuV
†
d =

⎛⎝Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞⎠ . (1.1.19)

This shows that the SM exhibits a �avor-changing charged current (FCCC) already on tree-
level, since the o�-diagonal elements of the CKM matrix are known from experiment to be
non-zero. Note that the Z-mediated neutral current is left invariant by the change in basis
because of the spinor structure and the unitarity of the matrices Uu/d and Vu/d. This means
that on tree level there are no �avor-changing neutral currents (FCNCs) in the SM and this kind
of interaction can appear at the earliest on the one-loop level, which is obviously suppressed in
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1.2. The Cosmological Standard Model

Parameter Value Parameter Value

ga
ug
e gs 1.221

le
pt
on
s me 0.5109989461± 0.0000000031MeV

g 0.357 mµ 105.6583745± 0.0000024MeV
g′ 0.652 mτ 1.77686± 0.00012GeV

C
K
M

sin θ12 0.225± 0.001

qu
ar
ks

mu 2.16+0.49
−0.26MeV

sin θ13 0.003675± 0.000095 md 4.7+0.48
−0.17MeV

sin θ23 0.04200± 0.00059 ms 93+11
−5 MeV

δ 1.167± 0.035 mc 1.27+0.02
−0.02GeV

H
ig
gs mH 125.10± 0.14GeV mb 4.18+0.03

−0.02GeV
v 246.22GeV mt 172.76+0.30

−0.30GeV

Table 1.2: Basis of SM parameters including quark and lepton masses [8], CKM parameters [11],
gauge couplings.

perturbation theory. Due to its unitarity, the CKM matrix exhibits 32 = 9 real, independent
parameters that can be divided into three mixing angles and six phases. As each of the quark
�elds can be rede�ned and thus can absorb such a phase, and global phases are unphysical, it is
possible to reduce the parameters of the CKM matrix to three mixing angles and one physical
phase. The most common parametrization is given by

VCKM =

⎛⎝ c12c13 s12c13 s13 exp (−iδ)
−s12c23 − c12c23s13 exp (−iδ) c12c23 − s12s23s13 exp (−iδ) s23c13
s12s23 − c12c23s13 exp (−iδ) −c12s23 − s12c23s13 exp (−iδ) c23c13

⎞⎠ ,

(1.1.20)

where cij = cos θij and sij = sin θij are the (co)sines of the three mixing angles θ12,θ13,θ23 and
iδ is the complex CP -phase. This CP -phase is the only source of CP violation in the SM.

The leptonic part of the Yukawa Lagrangian in Eq. (1.1.16) has a similar, but not iden-
tical structure, as there is no right-handed leptonic SU(2)L singlet neutrino �eld in the SM.
This automatically renders neutrinos massless. Constructing the analogous mixing matrix for
leptons, we thus do not have to diagonalize two mass matrices M l and Mν , but rather only
M l. Drawing our attention to the kinetic part of the Lagrangian for leptons analogously to
Eq. (1.1.18), this leads to the fact that the mixing matrix Vlept = VνV

†
l can always be chosen

Vlept = 1, as Vν is unconstrained and can be chosen freely.
Altogether, the considerations of this chapter result in the astounding fact that the SM

features 18 parameters3, which cannot be predicted within the theory itself but rather have
to be measured by experiment. One of the most common notions of this set of parameters is
summarized in Table 1.2.

1.2 The Cosmological Standard Model

This section aims to outline the Cosmological Standard Model, sometimes also colloquially
dubbed Big Bang Theory, describing the history of the universe. This model relies on the two
corner stones of modern physics, the SM, describing the interactions of fundamental particles,
and the theory of General Relativity (GR), describing the dynamics of gravity. The cosmological
principle, which is the assumption that the universe is homogeneous and isotropic on large scales,
can be considered a third column of this theory. As we do not present the calculations in detail,

3In the literature, sometimes the so-called QCD theta-parameter θQCD ≈ 0 is added to this list. The
seemingly unnatural smallness of this parameter is often referred to as the strong CP problem.

5



Chapter 1. Introduction

we refer the reader to e.g. [12, 13] for information about GR and e.g. [8, 14, 15, 16, 17] for more
detailed information about Cosmology. This section is based on the aforementioned references.

1.2.1 The Cosmological Principle and the Expansion of the Universe

In this part of the section, we discuss the dynamics of the expansion of the universe and shortly
outline the basic concepts.

In order to begin with our discussion, we present the Einstein Field Equations (EFE) or
Einstein's equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.2.1)

where Rµν denotes the Ricci tensor, R = Rµνg
µν is the Ricci scalar, Λ is the cosmological

constant, G is Newton's constant and Tµν represents the stress energy tensor. The Ricci tensor
arises from the tensor contraction Rµν = Rκµκν = Rκµλνg

κλ of the Riemann curvature tensor

Rκµλν = ∂λΓ
κ
µν − ∂νΓ

κ
µλ + ΓσµνΓ

κ
σλ − ΓσµλΓ

κ
σν , (1.2.2)

which describes the curvature of (pseudo-)Riemannian manifolds with the help of the a�ne
connection or Christo�el symbol

Γκµν =
1

2
gκσ

(︃
∂gνσ
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)︃
. (1.2.3)

The a�ne connection describes the incremental change of a vector during parallel transport
along a smooth curve. Einstein's equations therefore describe the interplay of the geometry
of spacetime with momentum, mass and energy. These two aspects often motivate to write
down the EFE in the way they are presented in this work, partitioning the geometry-related
part (left-hand side) from the energy-related part (right-hand side). Mathematically, the EFE
are non-linear partial di�erential equations whose solutions are the components of the metric
tensor gµν , which e�ectively describe how distances in spacetime are measured according to the
line element

ds2 = gµνdx
µdxν . (1.2.4)

Confronted with the cosmological principle, the EFE can be solved and an exact solution, the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric, can be found4. It is most commonly
formulated as a line element in spherical polar coordinates

ds2 = dt2 − a(t)2
[︃

dr2

1− kr2
− r2dθ2 − r2 sin2 θdϕ2

]︃
, (1.2.5)

where a(t) is the Robertson-Walker scale factor of expansion and k is the curvature param-
eter. As a(t) factorizes completely, notions of proper distance and comoving distance can be
established. The proper distance is the distance of an object taking into account the expansion
factor, meaning that this distance is fundamentally time dependent. The comoving distance on
the other hand is the distance that factors out the expansion factor. Depending on the choice
of the curvature parameter, the spacetime geometry can take one of three forms,

k =

⎧⎨⎩ 1, spherical/closed
0, �at

−1, hyperbolic/open
. (1.2.6)

4Note that the general form of the metric can be derived by using only the cosmological principle. The
correct dynamic of the RW scale factor makes it a solution to the EFE.
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1.2. The Cosmological Standard Model

Note further that in general the equations of dynamics of the expansion of the universe depend
on an overall normalization factor for a(t). In the special case of a �at universe this dependence
is lifted and thus only the ratios of a(ti) are of physical importance.

Following the cosmological principle, we assume that the energy content of the universe
behaves like a perfect �uid, whose stress-energy tensor takes the form

(Tµν) = gµσTσν = diag(ρ(t),− p(t),− p(t),− p(t)) , (1.2.7)

where ρ(t) is the homogeneous energy density and p(t) denotes the pressure. To obtain the
dynamics of the scale factor, we apply the FLRW metric to the EFE and obtain the well-known
Friedmann equation

H2 =
8πG

3
ρ(t)− k

a(t)2
+

Λ

3
, (1.2.8)

as well as the acceleration equation

dH(t)

dt
+H(t)2 =

d2a(t)

dt2
= −4πG

3
(ρ(t) + 3p(t)) +

Λ

3
, (1.2.9)

where H(t) ≡ da(t)
dt /a(t) is the Hubble parameter. Note that Eqs. (1.2.8) and (1.2.9) are not lin-

early independent from the �uid equation that arises from requiring stress-energy conservation
as

DµT
µ
0 = 0 (1.2.10)

⇔ dρ(t)

dt
+ 3H(ρ(t) + p(t)) = 0 , (1.2.11)

where DµT
µ
ν = ∂µT

µ
ν+ΓµµλT

λ
ν+ΓλµνT

µ
λ is the covariant derivative of the stress-energy tensor.

Note also that this equation is invariant under the rede�nition

ρ(t) → ρ(t)− Λ

8πG
(1.2.12)

p(t) → p(t) +
Λ

8πG
, (1.2.13)

simplifying the Friedmann equation by absorbing the cosmological constant into the energy
density of the universe.

It is convenient to de�ne the density parameter Ω(t) via the critical density ρcrit(t) as

Ω(t) =
ρ(t)

ρcrit(t)
(1.2.14)

ρcrit(t) =
8πG

3H(t)2
(1.2.15)

and the curvature parameter

Ωk(t) = − k

H(t)2a(t)2
, (1.2.16)

as the Friedmann equation breaks down to

1 = Ω(t) + Ωk(t) . (1.2.17)
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Chapter 1. Introduction

Hence, the critical density is de�ned as the one energy density where the universe is �at, as
Ωk |k=0 = 0, whereas ρ(t) < ρcrit(t) leads to a hyperbolic and ρ(t) > ρcrit(t) to a spherical
universe.

We now shift our attention to the possible sources of energy density to determine the e�ect
on the dynamics of expansion in relation to the contents of the universe. In order to do this, we
must formulate an equation of state p = p(ρ) for each species of energy density: (non-)relativistic
matter and vacuum energy. As we applied the cosmological principle for the modeling of the
perfect �uid, it is possible to �nd an equation of state of the form

p = wρ , (1.2.18)

with a constant parameter wi that can be derived for each energy species i ∈ [m,r,Λ] (matter,
radiation, vacuum energy) via fundamental thermodynamical principles. Solving Eq. (1.2.11)
using Eq. (1.2.18) leads to

ρi(a(t)) = ρ0

(︃
a(t)

a0

)︃−3(1+wi)

, (1.2.19)

where a0 is an arbitrary normalization factor. Following these considerations, the dynamics of
the energy density of the di�erent species ρi(a(t)) yields

ρi(a(t)) ∼

⎧⎨⎩ a(t)−3, non-relativistic matter (wm = 0)
a(t)−4, relativistic matter/ radiation (wr = 1/3)
const, vacuum energy (wΛ = −1)

. (1.2.20)

It is quite intuitive that non-relativistic matter dilutes with the third power of the scale factor
in 3-dimensional space, while relativistic matter dilutes with one more power, as it is subject
to additional energy loss due to relativistic redshift. Vacuum energy, however, is not diluted
with the expansion of space5. This behavior also leads us to the ad-hoc assumption that the
early universe was in a radiation dominated phase, which was displaced by a matter domination
phase and ultimately ended in a vacuum energy dominated phase.

It proves to be convenient to formulate the Friedmann equation with the density parameters
for curvature, matter, radiation and vacuum energy measured today, which is possible using
the results from Eq. (1.2.20). The equation reads

H(t)2 = H2
0

[︄
Ωm,0

(︃
a(t)

a0

)︃−3

+Ωr,0

(︃
a(t)

a0

)︃−4

+ΩΛ,0

(︃
a(t)

a0

)︃0

+Ωk,0

(︃
a(t)

a0

)︃−2
]︄
, (1.2.21)

where the subscript 0 stands for an evaluation of the quantity today as per x0 ≡ x(t) |t=t0 .

1.2.2 Experimental Observations and a Very Short History of the

Universe

This part of the section deals with experimental evidence found to test the theory outlined
in Section 1.2.1. We also shortly discuss a possible history of the universe that is implied by
the Cosmological Constant - Cold Dark Matter (ΛCDM) model including the most important
events .

5Note that this behavior implies that total energy is not a conserved quantity as the universe expands.
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1.2. The Cosmological Standard Model

Parameter value
H0 (67.4± 0.5)km/s·Mpc

Ωm,0 0.3166± 0.0084
ΩΛ,0 0.6847± 0.0073
Ωk,0 0.0007± 0.0019
Ωr,0 5.38(15) · 10−5

Table 1.3: Experimental values of cosmological parameters provided by the Planck collaboration
[8, 18].

The most precise determinations for those basic cosmological parameters come from the
measurements of the Cosmic Microwave Background (CMB), performed by the Planck mi-
crowave telescope [18] built by the European Space Agency (ESA). The CMB is formed during
the epoch of recombination, which we shortly describe later in this section. Experimental values
for the cosmological parameters are summarized in Table 1.3. From these values, we can infer
that the universe must be remarkably �at (k = 0), since Ωk,0 is consistent with zero.

Turning back time in the ΛCDM model - which means scaling down a(t) - ultimately leads
to a point where all proper distances in the universe vanish. This hypothetical instance is
commonly called the Big Bang. We can estimate the age of the universe as tU ∼ 13.8 · 109
years. From a theoretical point of view, however, this event is highly debated, as one of the
cornerstones of the model, GR, breaks down at the Planck scale and there is no accepted theory
of quantum gravity to replace it at this stage. Additionally, the Big Bang model comes with a
series of problems like the horizon problem and the �atness problem. The horizon problem deals
with the question why the temperature �uctuations in the CMB are so miniscule throughout
although the distances between parts of the observable universe are bigger than their respective
causal horizons. This implies that these regions cannot have been in thermal contact with one
another and therefore there is no reason to assume that the temperature should be the same.
The �atness problem deals with the aforementioned fact that the universe is surprisingly �at,
although the dynamics of expansion suggest that the curvature term has a tendency to increase,
as Ω(t) decreases faster than a(t)2 increases6 and thus an unnatural initial �atness has to be
considered. These problems can be alleviated by introducing a di�erent kind of '�rst phase'
called in�ation [19].

In�ationary universes typically contain a scalar �eld ϕ called the in�aton responsible for a
phase of exponential expansion. For this expansion to be su�ciently long (typically 50-60 e-
folds), the scalar potential is required to have a certain shape, where ϕ̇≪ V (ϕ). The exponential
expansion explains why there was indeed thermal contact between seemingly distinct areas of
the universe and it also provides an explanation for the �atness due to the period of dominance of
vacuum energy. In�ation also gives a compelling argument for a facilitated structure formation,
as quantum �uctuations enlarged to macroscopic proportions act as gravitational seeds for the
formation of galaxies. The in�ationary phase typically ends with a phase called reheating,
where the in�aton decays completely to SM particles and repopulates the completely diluted
universe7.

Both in�ation and standard cosmology are in accordance that shortly after the respective be-
ginning of the universe, a phase dominated by relativistic matter began. Once the temperature
drops to T ∼ O(100GeV), the EW phase transition occurs and at around T ∼ O(1MeV) the
�rst atomic nuclei begin to form. At this point in time, the average kinetic energy of particles

6This is true only in a matter/radiation dominated universe, which can be assumed as true for most of our
universe's history.

7This dilution of particle species existent before the in�ationary phase is sometimes used in the literature to
explain the absence of topological defects.
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in thermal bath is not high enough to reionize a forming nucleus anymore, i.e. E ≲ O(MeV).
Within the framework of the ΛCDM model, precise predictions about the composition of light
elements in the universe can be made, which depend crucially on the ratio of protons and neu-
trons present at this point in time. This mechanism is called primordial nucleosynthesis or Big
Bang Nucleosynthesis (BBN).

As the temperature of the universe drops further, it eventually reaches the scale of the
binding energy of hydrogen at around O(10 eV). For similar reasons as for the formation of
nuclei, protons and electrons form electrically neutral hydrogen. At this point in the universes
history, called recombination, the average kinetic energy of electrons is low enough for them to
be captured by hydrogen nuclei and thus the amount of Thomson scattering of photons with
free charged particles is signi�cantly reduced for the universe to become transparent. This
process can be modeled with the help of the Saha ionization equation [20]. The CMB therefore
is the redshifted radiation that has been propagating ever since this epoch.

1.3 Evidence for New Physics Beyond the Standard Model

In Section 1.1, we discussed the foundations of the SM and hinted at some of the phenomeno-
logical consequences that they imply. In this section, however, we point out hints at possible
Beyond the Standard Model (BSM) physics as well as outright shortcomings of this theory.
In each subsection, we discuss the motivation behind the need for New Physics (NP) and we
will shortly outline the most important attempts of explaining these phenomena present in the
literature.

1.3.1 Neutrino Masses and Oscillation

An apparent shortcoming of the SM and therefore evidence for BSM physics is the existence of
the neutrino oscillation phenomenon. After the discovery of solar neutrinos by the Homestake
experiment, a 615t tetrachloroethylene tank buried in the Homestake mine designed to detect
neutrinos via the inverse β-decay νe+

37Cl −→37Ar+e− [21], and the emergence of other exper-
iments dedicated to neutrino detection like GALLEX, SAGE (radiochemical Gallium detection)
and Kamiokande (water Cherenkov experiment) the solar neutrino problem arose. The nature
of this problem was a de�cit of the measured neutrino �ux compared to the solar neutrino �ux
theoretically calculated within the standard solar model [22].

This de�cit can in principle be explained by neutrino oscillations [23], which are an e�ect of
non-trivial leptonic mixing analogous to the CKM mixing in the quark sector. The mechanism
describes a neutrino �avor conversion during propagation directly induced by quantum mechan-
ical superposition and dispersion. The de�cit is generated because a fraction of the νe-�ux is
converted to νµ or ντ , which eludes detection by early neutrino experiments [24, 25].

Today, neutrino oscillations are a well established experimental observation, �rst discovered
by SuperKamiokande (SK) [26] and the SNO [27], whose detector design also allows for the
reconstruction of νµ's.

For a more detailed discussion about the neutrino oscillilation formalism and some applica-
tions we direct the reader to Section 2.1.

There are e�orts to determine the absolute scale of neutrino masses, e.g. via direct measure-
ments performed with KATRIN or CMB measurements performed by the Planck collaboration.
KATRIN is an experiment dedicated to measuring the high energy tail of the tritium beta de-
cay spectrum and currently puts a bound of

∑︁
imi < 1.1 eV [28] on the sum of the masses of

the neutrino mass eigenstates. Planck is able to establish an even more competitive bound of∑︁
imi < 0.12 eV [18] from precision CMB measurements. Note here, that this bound, however,
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1.3. Evidence for New Physics Beyond the Standard Model

is relying on the assumptions made in ΛCDM model, while direct searches are generally model
independent.

1.3.2 Energy Content of the Universe

One of the most pressing bits of evidence for the SM not being the most fundamental theory of
nature is the energy content of the universe. The Planck measurement of the power spectrum of
the CMB suggests that ∼ 68.9% of the universe's energy density is made up of Dark Energy (see
Table 1.3), which is responsible for the current vacuum-energy dominated era of the universe.

There is currently no accepted explanation for what this Dark Energy is. The simplest
solution assumes Dark Energy to be largely comprised of the cosmological constant Λ and
thus a fundamental property of spacetime. In this context, however, a �ne-tuning problem
commonly referred to as cosmological constant problem arises, when the observed value of the
vacuum energy is confronted with theoretical predictions of vacuum energy contributions from
QFT [29].

The remaining∼ 31% of the energy density of the universe stem from non-relativistic matter,
as the energy density portions of curvature and radiation are vanishingly low.

Moreover, many experimental observations point towards the existence of a form of non-
relativistic matter that does not interact via the electromagnetic force like 'ordinary', i.e. lu-
minous or baryonic8 matter. The purely gravitational e�ect of such non-luminous Dark Mat-
ter (DM) can e.g. be observed in rotation curves of galaxies.
According to classical mechanics, the tangential velocity of stars is expected to decrease with
increasing distance from the galactic center. Astronomical Doppler measurements, however,
show that the velocity �attens out with increasing distance [30, 31]. This can be explained by
a DM halo9 around the galaxy with a mass distribution ρ ∼ r−2.

A di�erent kind of evidence stems from comparisons between the mass distribution measured
in gravitational lensing experiments and optical telescopes. Gravitational lensing is an e�ect
predicted by GR [33] that describes the de�ection of the path of light in space by massive objects
in the vicinity. In the famous example of the Bullet Cluster (1E 0657-558), which consists of two
galaxy clusters colliding, optical telescopes register signi�cant X-ray emission from the collision
center, whereas gravitational lensing detects two halos of DM that passed through one another.
These observations hint towards the existence of DM with very weak interaction with baryonic
matter as well as weak self-interaction [34, 35].

The best evidence for DM, however, comes from the CMB, which also allows to di�erentiate
baryonic matter and dark matter. Fundamentally, this is possible because in the primordial
plasma of the early universe dark matter only interacts gravitationally, while baryonic matter
interacts both gravitationally and electromagnetically. Small anisotropies in the plasma con-
taining dark and baryonic matter attract more matter via the gravitational force leading to
overdense regions, whereas electromagnetic interactions of the baryonic part of the matter cre-
ate an outward pressure. These counteracting forces lead the plasma to perform the so called
Baryonic Acoustic Oscillations (BAO). When the CMB formed, shortly after recombination,
the electromagnetic pressure was released and the overdensities were e�ectively frozen at the
scales of the oscillation, which is still visible in the power spectrum of the CMB today.

Combined with the measurement of gravitational lensing e�ects of galaxies, Planck states a

8As opposed to particle physics, leptons also count as baryonic matter in cosmologists' terms.
9An alternative explanation of DM proposed to solve this problem is Modi�ed Newtonian Dynamics (MOND)

[32]. However, this framework has great di�culties to explain other phenomena commonly associated to DM.
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DM/baryonic matter distribution of [18]

Ωb ≈ 0.049, (1.3.1)

ΩCDM ≈ 0.261 . (1.3.2)

or sometimes expressed as

Ωbh
2 = 0.02233± 0.00015, (1.3.3)

ΩCDMh
2 = 0.11933± 0.00091, (1.3.4)

with the dimensionless Hubble Parameter h = H/
(︃
100 km

s·Mpc

)︃
= 0.6766± 0.042.

The baryon abundance in Eq. (1.3.3) can also be determined via the relative abundances of

light elements such as 2H, 3He, 4He and 7Li during the BBN [36]. The result is consistent with
the CMB measurement stated above, which is additional evidence that DM is non-baryonic.

Although its existence is a widely accepted fact, the exact nature of DM is still unknown
and subject to extensive e�orts in the scienti�c community. There is a plethora of particle
DM candidates including Weakly-Interacting Massive Particles (WIMPs) and e.g. Axion-like
Particles (ALPs) [37].

We review the topic in more detail in Section 2.3 for the case of WIMP-DM.

1.3.3 Lepton Flavor Universality and the RK Anomaly

As discussed in Section 1.1, lepton and quark �elds come in three generations in the SM,
which share the same quantum numbers. This property causes the fermionic �elds to couple
universally - meaning with the same coupling strength - to all gauge bosons. The only way to
distinguish the di�erent �avors is by their Yukawa interaction with the Higgs, i.e. their mass,
ultimately leading to mixing e�ects.

FCNCs are only realized on loop level in the SM and therefore possible NP contributions
can have sizable e�ects on the corresponding observables. For this reason, FCNCs provide
a good basis to test the universality of fermion couplings for example at the Large Hadron
Collider (LHC).

Particularly interesting due to recent experimental results are ratios of branching fractions
of B-meson decays into lighter hadrons and lepton pairs, as they possess small theoretical
uncertainties due to cancellations of hadronic e�ects. These observables are de�ned as [38]

RH ≡

∫︁ q2
max

q2
min

dq2 dΓ(B→Hµ+µ−)
dq2∫︁ q2

max

q2
min

dq2 dΓ(B→He+e−)
dq2

, (1.3.5)

where q2 is the invariant squared mass of the dilepton system and Γ(B → Hl+l−) is the partial
width of the B → Hl+l− decay. In the SM, predictions of these ratios generally lie within
O(1%) of unity [39] in the q2-region of 1.0GeV2 ≤ q2 < 6.0GeV2 for B meson decays to kaons.
This result is intuitive, since the only di�erence between the decays is the phase space occupied
by masses of the lepton pairs, which is small compared to the mass of the bottom quark. The
LHCb collaboration, however, reported on a 2.5σ deviation from the SM in the RK observable
of [40]

RK = 0.846+0.060
−0.054stat.

+0.016
−0.014sys. (1.3.6)
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in the 1.1GeV2 ≤ q2 < 6.0GeV2 region, which is a hint towards a violation of Lepton Flavor
Universality (LFU). This result was con�rmed by a more recent analysis [41]

RK = 0.846+0.042
−0.039stat.

+0.013
−0.012sys. , (1.3.7)

where the LHCb collaboration stated an improved 3.1σ signi�cance of the anomaly in the same
q2-region, therefore providing the �rst evidence for LFUV in a single measurement.

In recent years, there has been a range of NP models attempting to resolve this anomaly
including tree-level exchange of leptoquarks [42, 43, 44], Z ′ models [45, 46, 47] and also models
introducing NP contributions at one-loop [48].

In this thesis, we study one-loop solutions to the RK anomaly in more detail in Chapter 4
in the context of DM phenomenology.

1.3.4 Anomalous Magnetic Moment of the Muon

There are hints towards NP in the measurement of the magnetic moment of the muon performed
at Brookhaven National Laboratory [49] and, more recently, Fermilab [50].

The magnetic moment of a particle species i is de�ned by

µ⃗i = gi
qi
2mi

S⃗i , (1.3.8)

where S⃗i denotes the particle's spin, qi the electric charge, mi the mass and gi the spin g-
factor10 of the particle. Based on the non-relativistic version of the Dirac equation, the Pauli
equation, we can derive that for a fundamental, massive, electrically charged fermion that is
coupled to an external electromagnetic �eld the g-factor is gi = 2 (see e.g. [51, 52]). However,
quantum corrections to this quantity can lead to an increase of this number. This anomalous
magnetic moment is typically parametrized as

ai =
1

2
(gi − 2) (1.3.9)

and commonly dubbed (g − 2)i.
Within the SM, contributions to this anomalous magnetic moment, depicted in Fig. 1.1 for

the case of the muon, can arise from QED and weak processes at leading order on one-loop
level and also by hadronic processes.

While QED correction are shown to be of the order ∼ α/2π [53], generic corrections generated
by heavy states are typically of the form ai ∼ m2

i/Λ2 [52, 54], where Λ is the scale of the heavy
states, which can be e.g. the EW scale ∼ O(100GeV) or the scale of potential NP. Since they
are proportional to the mass mi of the particle, loop corrections from EW physics and beyond
are suppressed for electrons.

Muons, however, are experimentally interesting, since they possess a mass that is two orders
of magnitude larger than the electron mass. At the same time, the muon's mean lifetime is
approximately seven orders of magnitude larger than that of tau-leptons. These circumstances
make the muon the ideal lepton candidate for an experiment that measures the di�erence
between the cyclotron frequency ω⃗c = −qB⃗/mγ and the spin precession frequency ω⃗s = −g ·
qB⃗/2m− (1− γ) · qB⃗/γm of the muon in a storage ring with an external magnetic �eld B⃗. This
di�erence is thus proportional to the anomalous magnetic moment of the muon aµ as [49]

ω⃗c − ω⃗s = −aµ
qB⃗

mµ
. (1.3.10)
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Figure 1.1: Feynman diagram11that contributes to the magnetic moment of the muon.

The result obtained at Brookhaven shows a 2.2 - 2.7σ positive deviation from the SM pre-
diction, while the Fermilab result deviates by 3.3σ. Combined, the experimental measurement

∆aµ(Exp− SM) = (251± 59)× 10−11 (1.3.11)

di�ers from the SM predicition by 4.2σ [56].
This disagreement motivated extensive e�orts of BSM model building, e.g. two-Higgs-

doublet model (2HDM) solutions [57], leptoquark solutions [58, 59] and supersymmetry (SUSY)
solutions [60, 61, 62]. For a recent review on NP solutions to the (g−2)µ anomaly, see e.g. [63].

In Chapter 4, we address a possible one-loop solution to this anomaly [48] in the context of
DM.

1.3.5 Additional Problems

There are additional problems of the SM pointing towards its incompleteness that are not
addressed in this thesis. Note that the following (very short) list of shortcomings of the SM is
not ordered in any sense.

� Gravity:
As Section 1.1 suggests, the SM aims to describe all fundamental forces of nature as a
renormalizable gauge QFT. However, to this day there is no accepted quantum theory of
gravity, which renders the SM incomplete on a conceptual level.

� Grand Uni�cation:
Several theoretical hints such as e.g. the amount of free parameters in the SM and suc-
cessful uni�cation of the weak and electromagnetic forces point towards a possible Grand
Uni�ed Theory (GUT) at very high energies recovering the symmetry group of the SM
at low energies via symmetry breaking. The most famous propositions are the Georgi-
Glashow SU(5)-GUT [64], the Pati-Salam model [65] or the SO(10)-GUT [66], in which
the �rst two are included as subgroups. These variants predict unobserved phenomena
like proton decay (Georgi-Glashow) or magnetic monopoles (Pati-Salam).

� The Strong CP Problem:
The question why QCD seems to be CP -invariant is commonly called the Strong CP
Problem. In principle, there is no symmetry that forbids the CP -violating term LQCD ∼
θGµνG̃

µν
. However, measurements of the electric dipole moment of the neutron of |dn|≤

1.8 · 10−26e · cm [67] indicate that the CP -violating parameter θ < 10−10. The most
common propositions of an explanation for this problem invoke additional symmetries

10The g-factor is the dimensionless form of the gyromagnetic ratio, which is de�ned as the ratio of the magnetic
moment to its spin.
11All Feynman diagrams in this work are created with the TikZ-Feynman package [55].
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1.3. Evidence for New Physics Beyond the Standard Model

that naturally force the θ parameter to be small. The �rst and most prominent attempt
is the Peccei-Quinn model involving a global U(1)A that lead to the introduction of the
axion as a pseudo-Goldstone boson [68].

� The Baryon Asymmetry of the Universe:
A fundamental puzzle of cosmology is the question why there is more matter than an-
timatter. According to the Sakharov conditions [69], a source of CP -violation is needed
to generate an asymmetry from an initial symmetry of baryons and antibaryons. The
CP -violation found in the SM, however, is not su�cient to accommodate the measured
asymmetry parameter of η = (nB−nB̄)/nγ = (5.931±0.051)·10−10 [70]. Prominent theories
to alleviate this problem are e.g. GUT-baryogenesis and leptogenesis [71, 72].
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Chapter 2

Theoretical Groundwork Beyond

the Standard Model

In this chapter, we introduce the most important BSM concepts that are a prerequisite for
the Chapters 3 and 4. Most of the models and mechanisms presented here are used to solve
problems that arise in the SM, both experimentally and theoretically.

In Section 2.1, we discuss the formalism of neutrino oscillations in vacuo and in matter. We
also brie�y discuss the current anomalies in neutrino oscillation data. In Section 2.2, we review
the most popular neutrino mass generation mechanisms including the seesaw mechanism and
radiative neutrino masses. Finally, we review the theory of DM production and detection in
Section 2.3.

2.1 Neutrino Oscillations

In this section, we review the theory behind neutrino oscillations in vacuo as well as in matter.
First, we derive the general neutrino �avor transition probabilities in vacuo and shortly discuss
the experimental status. In the second part of the section, we aim to present the most important
concepts of neutrino oscillations in matter and derive the neutrino �avor transition probability
in a simpli�ed two-�avor setup. We also discuss the implications of these results for a more
realistic three-�avor scenario, taking into account the matter distribution of the Earth.

For in-depth discussions and comprehensible reviews about this topic see e.g. [73, 74, 75, 76].
Parts of this section loosely follow these reviews.

2.1.1 Neutrino Oscillations in Vacuo

As hinted in Section 1.3, neutrino oscillations are a direct consequence of leptonic mixing. As
outlined in Section 1.1, mixing of this type can only occur if neutrinos are massive1. In analogy
to the CKM matrix de�ned in Eq. (1.1.19), a leptonic mixing matrix, called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix, can be constructed if the Lagrangian contains a neutrino
mass term2.

1More elaborate scenarios can in principle get along without neutrino masses by invoking a certain kind of
Lorentz violation (see e.g. [77]).

2The generation of such a mass term is discussed in Section 2.2.
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The PMNS matrix is de�ned via the unitary mixing matrix

Vlept = VνV
†
l ≡ U†

PMNS , (2.1.1)

where the common parametrization can be adopted from Eq. (1.1.20). As only the rotation by
VνV

†
l can be considered physical, the individual choice of Vl and Vν is free as long as the other

is chosen accordingly. In the literature it is common to choose Vl = 1 and thus UPMNS = V †
ν .

This means that we implicitly interpret the charged leptons as mass eigenstates and interaction
eigenstates, while neutrinos can be rotated from the mass eigenbasis to the weak eigenbasis (or
�avor basis) with the help of UPMNS. States in the mass basis |νi(xµ)⟩ are eigenstates of the
free Hamiltonian and as such keep this property during propagation following

|νi(x⃗,t)⟩ = exp(−ipµxµ) |νi(0)⟩
pi≫mi≈ exp

(︃
−i
m2
i

2E
t

)︃
|νi(0)⟩ , (2.1.2)

using the plane wave solution3 and an expansion of the standard dispersion relation

Ei =
√︂
m2
i + p2 ≈ p+

m2
i

2p
≈ E +

m2
i

2E
. (2.1.3)

The phase factor exp (−iEt) is the the same for each neutrino mass eigenstate, since we adopt
the view point that the neutrino is created with a �xed energy in this formalism. An overall
phase, however, does not play a role in neutrino oscillation phenomenology, as only phase
di�erences are physical.

If we produce the neutrino in the weak eigenbasis e.g. via a decay of aW -boson, the neutrino
state |να(x⃗,t)⟩ is a superposition

|να(x⃗,t)⟩ =
∑︂
i

(UPMNS)αi |νi(x⃗,t)⟩ (2.1.4)

of di�erent mass eigenstates |νi(x⃗,t)⟩ and therefore the probability Pνα→να(L) to �nd it in the
same �avor state after some propagation distance L ≈ c · t is generally ≤ 1. In more detail, the
probability to �nd a neutrino that is initially in �avor state |να⟩ in a �avor state |νβ⟩ after a
baselength L is

Pα→β(L,E) = |⟨νβ |να(L)⟩|2

≈

⃓⃓⃓⃓
⃓∑︂
i

U∗
βiUαi exp

(︃
−i
m2
i

2E
L

)︃⃓⃓⃓⃓
⃓
2

≈
∑︂
i,j

(︄
U∗
αjUβjUαiU

∗
βi exp

(︄
−i
m2
j −m2

i

2E
L

)︄)︄
,

(2.1.5)

where we used Eqs. (2.1.2)-(2.1.4) and set U ≡ UPMNS for simplicity. As can be seen from
Eq. (2.1.5), the probability is not dependent on the overall mass scale, but rather on the mass
squared di�erences ∆m2

ji = m2
j −m2

i . This fact makes it conceptually impossible to extract an
absolute neutrino mass scale from oscillation experiments.

3The plane wave formalism is conceptually �awed, as it proposes non-normalizable wave functions and in�nite
coherence lengths. A more accurate way of deriving the transition probability uses the wave packet formalism,
where neither the momentum nor the energy of the initially created neutrino is �xed. This formalism is,
however, much more computation-intensive and does not lead to fundamentally di�erent results in the limit of
non-astronomical baselengths. Detailed discussions about this topic can be found in e.g. [78, 79].

18



2.1. Neutrino Oscillations

Parameter Value (NO) Value (IO)

∆m2
21 (7.42+0.21

−0.20) · 10−5 eV2 (7.42+0.21
−0.20) · 10−5 eV2

∆m2
13(23) (2.514+0.028

−0.027) · 10−3 eV2 (−2.497+0.028
−0.028) · 10−3 eV2

sin2 θ12 0.304+0.013
−0.012 0.304+0.013

−0.012

sin2 θ23 0.570+0.018
−0.024 0.575+0.017

−0.021

sin2 θ13 0.02221+0.00068
−0.00062 0.02240+0.00062

−0.00062

δCP (195+51
−25)

◦ (286+27
−32)

◦

Table 2.1: Best �t points for neutrino parameters in the 1σ range for NO and IO [80, 81].

Moreover, the probability features a dependence on the quotient L/E, since the PMNS matrix
elements do not feature any dependence on either of these quantities. Eq. 2.1.5 can be written
in a form, that is more evocative of an oscillation. We obtain

Pα→β(L,E) ≈ δαβ − 4
∑︂
j>i

ℜ(U∗
αjUβjUαiU

∗
βi) sin

2

(︄
∆m2

jiL

2E

)︄

+ 2
∑︂
j>i

ℑ(U∗
αjUβjUαiU

∗
βi) sin

(︄
∆m2

jiL

2E

)︄
,

(2.1.6)

where the constant values ∆m2
ji/2 can be interpreted as the oscillation frequencies for the argu-

ment L/E.
In the SM, we encounter three neutrino �elds and thus the three-�avor case is a special

consideration for a minimal extension. However, the equation for the three-�avor oscillation
probability is non-trivial and does not provide the reader with any intuition of the physical
e�ects. It is, however, advisable to consider the two-�avor case as limiting cases of a three-
�avor world, as experimental determinations of mixing angles θi and mass-squared di�erences
∆m2

ji (cf. Table 2.1) suggest that there are parameter hierarchies, which can be used to simplify
the equations for certain scenarios.

An obvious hierarchy lies e.g. in the mass-squared di�erences, where we observe⃓⃓
∆m2

21

⃓⃓2 ≪
⃓⃓
∆m2

31

⃓⃓2 ≈
⃓⃓
∆m2

32

⃓⃓2
. (2.1.7)

Note here that the signs of ∆m2
31 and ∆m2

32 are still unknown, while ∆m
2
21 is known to be pos-

itive. This means that there is still a possibility for two di�erent orderings of mass eigenvalues:
normal ordering (NO) (m3 > m2 > m1) and inverted ordering (IO) (m2 > m1 > m3), although
NO is favored by global �ts at ∼ 2.7σ [80]. The mass ordering can in principle be determined
at experiments using matter e�ects. We direct the reader to Section 2.1.2 for more detail.

The two-�avor oscillation probability can be expressed as

P 2×2
να→νβ

(L,E) = sin2 2Θ sin2
(︃
∆m2

4E
L

)︃
. (2.1.8)

This equation approximately applies when we use the hierarchy in Eq. (2.1.7) for experiments,
whose L/E does not compensate the smallness of ∆m2

21 and the equations for the �avor transi-
tions are dominated by contributions from ∆m2

31. In this limit, we do not see the modulation
because the ∆m2

21 'frequency' is too low and we obtain

lim
∆m2

21L/2E→0
Pνα→νβ (L,E) = 4|Uα3|2|Uβ3|2 sin2

(︃
∆m2

31L

4E

)︃
. (2.1.9)
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(a) Neutral current interaction
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(b) Charged current interaction

Figure 2.1: Neutrino scattering with ordinary matter via the weak interaction. (a) shows the interac-
tion of all ordinary matter particles with all active neutrino �avors via the neutral current interaction.
(b) shows the charged current interaction of electron neutrinos and electrons.

This behavior can be seen at e.g. atmospheric, reactor and accelerator experiments. The other
extreme case is the scenario, where ∆m2L/2E is large, leading to fast oscillations. Once these
oscillations become faster than the resolution of the experiment, an averaging e�ect occurs.
This is the case at e.g. solar neutrino experiments, as they typically work with a baseline of
L ≈ 1 astronomical unit (au) and energies at around ∼ 10MeV. The νe survival probability in
this case is [76]

Pνe→νe(L,E) ≈ cos4 θ13

(︃
1− sin2(2θ12) sin

2

(︃
∆m2

21L

4E

)︃)︃
+ sin4 θ13 . (2.1.10)

2.1.2 Neutrino Oscillations in Matter

Neutrino interactions with ordinary matter (protons, neutrons, electrons) are generally only
mediated by the weak force and thus typical cross sections are tiny. Furthermore, only coherent
(momentum-conserving) forward scattering contributes to neutrino oscillations. All neutrino
species scatter with ordinary matter via Z-boson exchange, while only νe's take part in W -
mediated charged current interactions (see Fig. 2.1). The reason for this is the absence of muons
and τ -leptons in ordinary matter, because of their higher mass and subsequent instability. As
mentioned in Section 2.1.1, only relative phases lead to physical e�ects in neutrino oscillations,
and thus neutral current interactions can be omitted from this discussion4, since it creates a
common phase for all neutrino species. The standard way of parametrizing matter e�ects in
neutrino oscillations is using a Schrödinger-like evolution equation and formulate the interaction
part as an additional e�ective potential in the Hamiltonian

i
d

dt

(︃
νe
νµ

)︃
= H

(︃
νe
νµ

)︃
,where H = Hvac + Ve� . (2.1.11)

When taking into account matter e�ects, it is recommendable to work in the weak eigenbasis,
as the e�ective potential Ve� is diagonal in this case. The e�ective charged current Hamiltonian

4In a scenario involving sterile neutrinos, neutral current interactions become important, as it creates a
relative phase between active and sterile neutrinos.
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for neutrino-electron scattering yields

HCC
e� =

GF√
2

[︁
ēγµ

(︁
1− γ5

)︁
νe
]︁ [︁
ν̄eγ

µ
(︁
1− γ5

)︁
e
]︁

=
GF√
2

[︁
ēγµ

(︁
1− γ5

)︁
e
]︁ [︁
ν̄eγ

µ
(︁
1− γ5

)︁
νe
]︁ (2.1.12)

in Fermi contact theory at low energies with the Fermi constant GF . The second line of
Eq. (2.1.12) can be obtained from the �rst line via a Fierz transformation5. In order to calculate
the e�ective potential from this Hamiltonian, we have to integrate out the electron background.
This leads to the form of the e�ective potential of [82]

V CC
e� =

√
2GFNeδei (2.1.13)

for electron neutrinos, where Ne is the electron number density and δei is the Kronecker delta,
�xing this potential to only electron neutrinos. This potential is added to the Hamiltonian in
the �avor basis as

H = UPMNSHmassU
†
PMNS + V CC

e� (2.1.14)

with Hmass =
1

2E
M†M ,

where the squared mass matrix M†M can be written as

M†M =

(︃
0 0
0 ∆m2

)︃
. (2.1.15)

Finding the neutrino �avor transition probability Pνα→νβ breaks down to �nding the eigenvalues
and eigenvectors of the Hamiltonian in Eq. (2.1.14)6. Using the eigenvalues and eigenvectors,
we map the probability function onto the vacuum probability in Eq. (2.1.8) and construct an
e�ective mixing angle and an e�ective mass-squared di�erence, yielding

sin2 2Θ̃ =
(∆m2)2(︁

∆m2 cos 2Θ− 2
√
2EGFNe

)︁2
+ (∆m2)2 sin2 2Θ

sin2 2Θ (2.1.16)

∆m̃2 = ∆m2

⌜⃓⃓⎷sin2 2θ +

(︄
cos 2θ − 2

√
2EGFNe
∆m2

)︄2

. (2.1.17)

In the e�ective parameters in Eqs. (2.1.16)-(2.1.17), we obtain a scaling of the vacuum amplitude
by an energy-dependent factor. It becomes apparent that the amplitude term sin2 2Θ̃ is maximal
when the condition

E =
∆m2 cos 2Θ

2
√
2GFNe

(2.1.18)

is ful�lled. This is known as the resonance condition for matter e�ects (sometimes called the
Mikheyev-Smirnov-Wolfenstein (MSW) condition), since the amplitude factor of the probability
function reaches 1 and the e�ective mixing is maximal. At this particular energy (and/or
electron number density), a resonant conversion of neutrino �avors is possible, even if the
initial (vacuum) mixing angle is small [83, 84].

5For a de�nition of and short discussion about Fierz transformations see Section 2.3.3.4.
6This statement is especially true for approximately constant matter densities.
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Figure 2.2: Density pro�les of the PREM and the MCM model. Distances are given relative to the
Earth's center.

Note that for antineutrinos, we have to make the shift V CC
e� → −V CC

e� . For this reason,
only either neutrinos or antineutrinos can experience resonant conversion in matter depending
on the sign of the mass-squared di�erence. Hence, matter e�ects can help determine the mass
ordering of neutrino mass eigenstates experimentally. long baseline (LBL) experiments with
underground neutrino beams like T2K, NOνA and future experiments like DUNE and JUNO
are able to test the mass hierarchy based on these foundations [85, 86].

In the case of experiments like SK and IceCube that measure neutrinos which are created
via showers of cosmic particles in the atmosphere, neutrinos experience a varying matter density
while traveling through the Earth. In this case, we rely on the Preliminary Reference Earth
Model (PREM) or the more simpli�ed Mantle-Core-Mantle (MCM) model of Earth's matter
density to be able to predict the oscillation probabilities for upward-going neutrinos (meaning
going upwards from the ground in the lab-frame, i.e. coming from the other side of the Earth).
Figure 2.2 shows the density in relation to the distance from the Earth's center in the PREM and
the MCMmodel. The PREM [87] is based on seismological data and interpolates Earth's density
pro�le within several layers with the help of polynomials. The MCM model is a simpli�ed
version of this density pro�le, where we perform an average over the individual mantle and
the core density pro�les. Comparison of numerically obtained oscillation probabilities show
that the main features of the oscillation probability are retained by the simpli�ed MCM model
[88]. Thus, we mainly use the MCM model in Chapter 3 for calculations of the oscillation
probabilities at atmospheric neutrino experiments.

2.1.3 Anomalies in Neutrino Oscillations

Although the three neutrino paradigm is generally well accepted and most of the data accu-
mulated by di�erent experiments a�rm this status quo, there are several anomalies suggesting
that this picture is incomplete. The most prominent anomalies are the short baseline anomaly
[89, 90, 91], Reactor Antineutrino Anomaly (RAA) [92] and the gallium anomaly [93, 94].

These anomalies, and especially the incompatibility of their commonly proposed solution
- active-sterile neutrino oscillations in a (3 + N)ν scenario - with other neutrino oscillation
experiments are the main motivation for the model discussed in Chapter 3.

We base this brief discussion on the reviews [95, 96, 97] and the references given above.
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2.1. Neutrino Oscillations

2.1.3.1 The Short Baseline Appearance Anomalies

The short baseline (SBL) neutrino experiments are designed to probe neutrino oscillation at
baselines L ∼ O(10 − 1000m). The most notable representatives of this kind of experiments
are LSND and MiniBooNE.

LSND at Los Alamos National Laboratory uses a proton-accellerator-based stopped-pion
source to generate muon antineutrinos via the reaction π+ → µ+νµ → ν̄µνµνee

+. The ∼ 30m
baseline to the 167 t mineral oil liquid scintillator detector is screened to let only the neutrinos
pass. The typical neutrino energies of this experiment range from 20−60MeV. This L/E design
makes LSND sensitive to comparably large mass-squared di�erences of ∆m2

LSND ∼ 1 eV2, while
the regular mass-squared di�erences∆m2

21 and∆m2
31 are negligible is this context. The analysis

of the experimental data found an excess of electron neutrino events at about E ∼ 25MeV,
which is commonly attributed to a non-standard neutrino oscillation of ν̄µ to ν̄e.

For the purpose of a cross check to the results found by LSND, the MiniBooNE collaboration
performs an experiment at Fermilab with a similar L/E ratio. This experiment uses the Booster
proton accelerator beam directed towards a beryllium target in front of a magnetic focusing
horn to produce a focused beam of π and K-mesons of either positive or negative electric
charge depending on the polarity of the horn. These mesons then decay in a 50m decay
pipe to (anti)neutrinos, which reach the 800 t mineral oil liquid scintillator detector located
541m away from the beryllium target. The energy range of the MiniBooNE experiment is ca.
200MeV ≤ E ≤ 3GeV. An analysis of the MiniBooNE data also found an excess of electron
(anti)neutrino appearance in the muon (anti)neutrino beam. The energy range of this excess,
however, lies at ∼ 200-500MeV.

2.1.3.2 The Reactor and Gallium Anomalies

Reactors have provided a reliable source of electron antineutrinos, which are created in beta-
decay of unstable nucleus isotopes with typical energies of ∼ O(MeV). Reactor experiments
typically feature detectors at comparably short baselines of O(10m − 1 km) 7, which detect
neutrinos from the reactor source via inverse beta decay and thus e�ectively measure the electron
antineutrino survival probability Pee 8.

Their primary goals are a precise measurement of the neutrino �uxes of the radioactive
isotopes and the measurement of PMNS mixing matrix elements, especially ∆m2

21,θ12 in the
case of e.g. KamLAND and ∆m2

31,θ13 in the case of the RENO, (Double-)Chooz and DayaBay
experiments. Analyses of the data collected in these experiments show that there is a disagree-
ment of the theoretically predicted �uxes and the measurements, which is commonly referred
to as the RAA [92].

Furthermore, gallium-based radio-chemical experiments that are designed to measure the
solar neutrino �ux like GALLEX at Gran Sasso National Laboratory and SAGE at Bak-
san Neutrino Observatory. The GALLEX detector, e.g. , is a tank �lled with 101 t gal-
lium trichloride/hydrochloric acid solution. A neutrino capture event triggers the reaction

νe +
71Ga →71Ge+ + e−, which implies that the e�ective counting of germanium atoms gives

the number of captured neutrinos.
However, these experiments were also run with arti�cial 51Cr and 37Ar radioactive sources

and a statistically signi�cant de�cit in the �ux of electron neutrinos has been detected. This
2.3 − 3σ disagreement between observation and theoretical prediction is commonly called the
Gallium Anomaly [93, 94].

7The most notable exception here is KamLAND, which is fueled by many power plants around the detector
at an average baselength of ∼ 180 km.

8Because of CPT -invariance, the oscillation probabilities Pee and Pēē are the same [98].

23



Chapter 2. Theoretical Groundwork Beyond the Standard Model

2.1.4 eV2-Scale Active-Sterile Neutrino Oscillations and its Problems

Individual analyses of reactor+gallium data as well as SBL appearance data suggest that sce-
nario involving an additional, sterile neutrino with a large, additional mass-squared di�erence
of ∼ 1 eV2 can provide a good �t and thus explain the anomalies presented in the sections
above. Additionally, spectral distortions in the data of new generation experiments like NEOS
and DANSS also hint towards an active-sterile oscillation [99]. In this section, we shortly review
the physics of neutrino oscillations in the presence of a sterile neutrino �avor which mixes with
the other neutrino states, commonly dubbed (3 + 1)ν scenario.

Any additional neutrino state is required to be sterile, since the measurement of the decay
width of the Z-boson at LEP and the SLC restricts the number of active neutrinos states to
be Nν = 3 [100]9. Additional evidence against a fourth lepton doublet is the non-existence of
a fourth charged lepton.

As derived in Eq. (2.1.6), the general neutrino oscillation probability of fully relativistic
(light) neutrinos can be described by a sum of oscillatory sine (squared) terms weighted by a
combination of mixing matrix elements. This is true for any (3+N)ν scenario. In the (3+ 1)ν
case, this mixing matrix is not the PMNS matrix, but a unitary 4 × 4 matrix which contains
the 3× 3 PMNS matrix

U4×4 =

⎛⎜⎜⎝ UPMNS

Ue4
Uµ4
Uτ4

Us1 Us2 Us3 Us4

⎞⎟⎟⎠ . (2.1.19)

Neglecting potential CP violation, we can drop the imaginary part in Eq. (2.1.6). As suggested
by the anomalies discussed above, the additional mass-squared di�erence ∆m2

41 ≈ ∆m2
42 ≈

∆m2
43 ≡ ∆m2

SBL is orders of magnitude larger than ∆m2
21, ∆m

2
31 and ∆m2

32 and thus it is
possible to express the oscillation probability as

Pα→β(E,L) = δαβ − 4

3∑︂
j

ℜ
(︁
U∗
α4Uβ4UαjU

∗
βj

)︁
sin2

(︄
∆m2

4jL

4E

)︄

= δαβ − 4

3∑︂
j

Uα4Uβ4UαjUβj⏞ ⏟⏟ ⏞
≡−1/4 sin2 2θαβ , α ̸=β

· sin2
(︃
∆m2

SBLL

4E

)︃
,

(2.1.20)

where the unitarity condition
∑︁3
j UαjUβj + Uα4Uβ4 = δαβ applies for U . The e�ective ampli-

tudes sin2 2θαβ for appearance and disappearance read [101]

sin2 2θαβ =

{︃
4|Uα4|2|Uβ4|2 , α ̸= β appearance

4|Uα4|2(1− |Uα4|2) , α = β disappearance
(2.1.21)

and thus, for |Uα4|2≪ 1 ∧ |Uβ4|2≪ 1, the disappearance amplitude simpli�es to sin2 2θαα ≈
4|Uα4|2 and thus we can relate appearance and disappearance via

sin2 2θαβ ≈ 1

4
sin2 2θαα · sin2 2θββ . (2.1.22)

9Since this is measured via the decay of the Z-boson, this statement is only true for all neutrinos with masses
below the Z-boson mass.
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2.2. Neutrino Mass Generation

As the data of e.g. LSND and MiniBooNE suggests, a signi�cant appearance amplitude sin2 2θeµ
is required to explain these anomalies with (3+1)ν neutrino oscillation, while LBL atmospheric
and accelerator data (e.g. of SK, IceCube and T2K) suggests that there is no signi�cant dis-

appearance in either
(−)
νe→

(−)
νe or

(−)
νµ→

(−)
νµ . This contradiction shows that a (3 + 1)ν model is

unable to explain the world neutrino data10. In fact, global analyses of neutrino oscillation
data suggest that there is a strong tension between appearance and disappearance experiments
in a 3+ 1ν scenario. For this reason, global �ts are often performed in a 'pragmatic' approach,
neglecting e.g. the MiniBooNE excess [99, 103].

The appearance-disappearance relation in Eq. (2.1.22) is dependent on the mixing matrix
elements being constants with respect to L and E. The strategy of the model proposed in Chap-
ter 3 is lifting this condition by introducing an energy-dependent potential and thus e�ectively
utilizing the fact that the experiments operate at di�erent energy and baselength scales.

2.2 Neutrino Mass Generation

This section deals with the generation of neutrino masses that are consistent with the experi-
mental data. As pointed out in Sections 1.3.1, the existence of neutrino oscillations necessitates
neutrino masses, which are absent in the SM. In this work, we discuss the concepts of Dirac
mass terms, Majorana mass terms and also radiative neutrino masses as possible solutions to
the neutrino mass puzzle. All of these explanations for a non-zero neutrino mass require the
introduction of additional degrees of freedom to the SM. This section is based on the review
articles [8, 73, 104, 105, 106].

2.2.1 The Dirac Mass Term

Perhaps the simplest way to generate neutrino masses is to adopt the Higgs mechanism described
in Section 1.1. In order to do this, we have to add right-handed neutrinos to the particle content,
yielding a Yukawa interaction term

LYuk ⊃ −(Y ν)ijL̄
i
H̃νjR + h.c. , (2.2.1)

leading to a Dirac mass matrix

(Mν)ij =
v√
2
(Y ν)ij (2.2.2)

after EWSB. For this term to be gauge-invariant, we require the right-handed neutrinos to to
transform as a singlet under the SM gauge group νR = (1,1,0).

Despite the simplicity of this mechanism, there are obvious questions that can be asked when
taking a look at the experimental data. While the Yukawa couplings of the other fermions of
the SM range from O(10−6) to O(1) , the neutrino Yukawa couplings have to be O(10−13) to
explain the masses of ≲ O(0.1 eV). This discrepancy roughly seven orders of magnitude to the
next smallest Yukawa coupling of the electron has sparked suspicions that the origin of the
neutrino masses could be di�erent. Furthermore, the fermion masses within a generation are
usually within 1-2 orders of magnitude and the introduction of neutrinos completely changes
this dynamic.

Moreover, as νR is a gauge singlet, there is no theoretical reason not to include a term
∼ (Mν

M )ijνR
i((νR)

C)j in the Lagrangian, since it is both Lorentz- and gauge-invariant. This

10Actually, this problem generally exists in (3 +N)ν models [102].
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Figure 2.3: Feynman diagram for the type-I seesaw mechanism.

term is commonly referred to as the Majorana mass term. This consideration, however, leads to
a di�erent kind of mechanism, the so-called type-I seesaw mechanism, presented in Section 2.2.2.

Despite all these considerations, the Higgs mechanism for the generation of Dirac neutrino
masses is a perfectly valid and indeed technically natural approach11.

2.2.2 The Type-I Seesaw Mechanism

Additionally to the operator presented in Eq. (2.2.1), the introduction of a right-handed gauge
singlet �eld allows for another Lorentz- and gauge-invariant term in the Lagrangian

Lmass ⊃ −(Mν)ijνL
iνjR − 1

2
(Mν

M )ijνR
i((νR)

C)j + h.c. , (2.2.3)

where (νR)
C = C νR

T is the charge conjugate of νR and Mν
M is the so-called Majorana mass

matrix. In the following, we derive an explicit expression for the active neutrino masses, which
are induced by the Feynman diagram depicted in Figure 2.3.

For further details on the transformation properties of the charge conjugation operator C
see Appendix A.2. The Majorana mass term is trivially gauge invariant, since the right-handed
neutrino is a gauge singlet12 and it is also Lorentz-invariant because (νR)

C is e�ectively a left-

handed �eld. Writing this in a more compact way using the composite vector ν⃗ =

(︃
ν⃗L
ν⃗CR

)︃
,

matrix notation and suppressing �avor indices, we arrive at

Lmass ⊃ −1

2
ν⃗CM ν⃗ + h.c. , (2.2.4)

with M =

(︃
0 (Mν)T

Mν Mν
M

)︃
, (2.2.5)

where ν⃗L is a three-dimensional vector with the generation entries νiL and ν⃗CR is an n-dimensional
vector with the entries ((νR)C)j for each generation, e�ectively rendering ν⃗ a (3+n)-dimensional
vector. A diagonalization of the matrix M leads to the identi�cation of the neutrino mass
eigenstates νim and the corresponding mass eigenvaluesmν

i . Since we requireM to be hermitian,
we can always diagonalize it with a unitary matrix Uν such that

(Uν)†ν⃗ ≡ ν⃗m . (2.2.6)

To better illustrate the principles of the seesaw mechanism, we present the simple one-plus-
one-generational case in the following, in which we assume the Majorana massMν

(M) to be real.

11Technical naturalness, as de�ned by 't Hooft [107], is a property of a small parameter, which, when taken
to zero, restores a higher symmetry of the theory. Sometimes, this rule is also reformulated as 'The β-function
of a technically natural parameter is proportional to the parameter itself'.
12This property leads to the term 'sterile' sometimes used in the literature.
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2.2. Neutrino Mass Generation

In this simple case, the unitary rotation matrix can be parametrized as

U =

(︃
cos θ sin θ
− sin θ cos θ

)︃
(2.2.7)

with the mixing angle θ given by

tan 2θ =
2Mν

Mν
M

(2.2.8)

and the mass eigenvalues are

mν
1,2 =

1

2
Mν
M ∓

√︄(︃
Mν
M

2

)︃2

+ (Mν)2 . (2.2.9)

Rewriting Eq. (2.2.3) (or Eq. (2.2.4) for that matter), we obtain

Lmass ⊃ −1

2

(︂
mν

1 (ν
1
m)Cν1m +mν

2 (ν
2
m)Cν2m

)︂
. (2.2.10)

In this equation it becomes apparent that both masses mν
1 and mν

2 are Majorana masses. This
means that conversely to the mechanism presented in Section 2.2.1, the light neutrino masses
are of the Majorana type.

In the limit Mν
M ≫ Mν , which is the reason for the name seesaw mechanism, we approxi-

mately obtain the results

θ ≈ Mν

Mν
M

, (2.2.11)

mν
1 ≈ − (Mν)2

Mν
M

, (2.2.12)

mν
2 ≈Mν

M , (2.2.13)

where the mixing angle θ is small and thus the mass eigenstates are either predominantly active
(left-handed) or predominantly sterile (right-handed). mν

1 belongs to the light, predominantly
active neutrinos because of the suppression by the heavy Majorana mass, while mν

2 belongs to
the heavy, predominantly sterile neutrinos.

Since the Majorana mass Mν
M is not protected by any symmetry because the right-handed

neutrinos νiR are gauge singlets, quantum corrections are expected to be proportional to the
scale of NP particles running in the loop, e.g. the GUT scale at ∼ O(1016GeV) or even the
Planck scale MPl. This is a good justi�cation for the seesaw condition, but it also allows the
neutrino Yukawa couplings Y νij to be of order unity.

2.2.3 Beyond Type-I Seesaw

In ignorance of a ultraviolet (UV) realization, a neutrino mass term can e.g. be constructed
from the dimension-5 Weinberg operator

Ldimension−5 =
Cij

Λ

(︂
LCi H̃

∗)︂(︂
H̃

†
Lj

)︂
(2.2.14)

in an E�ective Field Theory (EFT) approach, where Λ is the scale of NP and Cij are the Wilson
coe�cients, which encompass the information about the UV-theory. Note that the Weinberg
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Figure 2.4: Feynman diagrams for the type-II and type-III seesaw mechanisms.

operator violates lepton number by two units (∆L = 2). However, the global U(1)L symmetry
is only an accidental symmetry in the SM and thus lepton number violation does not violate
the fundamental principles of a QFT.

In fact, the type-I seesaw mechanism presented in Section 2.2.2 is the most minimal UV
realization of this operator, adding a fermionic singlet to the SM �eld content. Moreover,
there are two more minimal realizations on tree-level, where only one additional �eld has to be
added to the SM �eld content. These models are commonly called type-II and type-III seesaw.
Loop-induced neutrino masses are shortly discussed in Section 2.2.4. In the case of the type-II
seesaw, a heavy scalar SU(2)L-triplet ∆ is introduced, whereas in the type-III seesaw case a
fermionic SU(2)L-triplet Σ is introduced. Figure 2.4 shows the Feynman diagrams responsible
for neutrino mass generation in these models.

The Yukawa part of the Lagrangian in the type-II seesaw reads [108, 109]

LYuk = −
(︁
Y ∆
)︁
ij
LC

i
iσ2∆L

j + h.c. , (2.2.15)

where ∆ =

(︃
∆+
/
√
2 ∆++

∆0 −∆+
/2

)︃
is the newly introduced scalar triplet �eld with hypercharge 1.

Since this model has an extended scalar sector, the scalar potential obtains additional terms

V (H,∆) ⊃+M2
∆ Tr(∆†∆) + (µHT iσ2∆

†H + h.c.) + λ1H
†H Tr(∆†∆)

+ λ2(Tr(∆
†∆))2 + λ3 Tr((∆

†∆)2) + λ4(H
†∆)(∆†H) ,

(2.2.16)

where the couplings λ1,2,3,4, µ can be w.l.o.g. assumed to be real. Once EWSB occurs and ∆
and H acquire the non-zero vevs v∆ and vH in the neutral components, the neutrinos obtain a
mass of [109]

mν ≈ Y ∆
√
2v∆ ≈ Y ∆µv2

M2
∆

. (2.2.17)

Note that in general the EW vev v is a pythagorean sum of the vevs of H and ∆. However,
v∆ is constrained to be less than a few GeV, since it otherwise spoils the ratio of the gauge
boson masses, sometimes parametrized with ρ = M2

W/cos2 θWM2
Z ≈ 1.

As Eq. (2.2.17) suggests, the neutrino mass is suppressed by two powers of the triplet scalar's
mass, hence the label of a seesaw model.

In contrast to the type-I seesaw scenario, this model predicts charged scalars beyond the SM
Higgs boson, which could in principle be produced at colliders. Depending on the magnitude
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2.2. Neutrino Mass Generation

of the vev v∆, signatures like same-sign dilepton decay channels (Y ∆ ∼ O(1)) or lepton �avor
violation (LFV), e.g. µ→ 3e, can become observable [108].

The type-III seesaw mechanism is structurally similar to the type-I seesaw presented in
Section 2.2.2, since the singlet and triplet fermions both induce the mass via virtually the
same Feynman diagram, but with di�erent couplings. The Lagrangian responsible for the mass
generation reads

Lmass = −
(︁
Y Σ
)︁
ij

Σ
i√

2H̃
†
Lj − 1

2
Tr
(︁
ΣMΣΣ

C
)︁
+ h.c. , (2.2.18)

where Σ =

(︃
Σ0
/
√
2 Σ+

Σ− −Σ0
/2

)︃
is the triplet fermion with vanishing hypercharge and MΣ is the

Majorana mass.
Because the mechanism is the same, the light neutrino mass follows the same pattern as in

Eq. (2.2.12)

mν ≈ − (Mν)2

MΣ
. (2.2.19)

Since the triplet, conversely to the singlet fermions in the type-I seesaw, does directly interact
with the gauge bosons due to it's non-trivial representation under SU(2)L, Σ particles could
e.g. be directly produced at the colliders [110, 111, 112]. This way, the parameters in this model
can be constrained more tightly than in the type-I seesaw. The current lower limits at 95%
con�dence level on the heavy lepton mass is 790GeV set by the ATLAS collaboration [113].

2.2.4 Radiative Neutrino Masses

In the previous sections, we focused the discussions on tree-level realizations of the Weinberg
operator given in Eq. (2.2.14). However, neutrino masses can also be generated on loop-level.
This class of models is often called radiative neutrino mass models. In these models, the
smallness of the neutrino masses is partly explained by a loop suppression. A detailed review
of radiative neutrino mass models can e.g. be found in [104].

One famous representative of these models is the scotogenic model [114]. In this model, the
additional �elds are three generations of fermionic gauge singlets Ni as well as a scalar SU(2)L-
doublet η with hypercharge 1/2. All newly introduced �eld are also oddly charged under a
discrete Z2 symmetry, whereas all SM �elds are evenly charged. This symmetry forbids the
standard Yukawa couplings with the SM Higgs �eld, hence preventing neutrinos from picking
up a tree-level generated mass. The fermionic Lagrangian of the scotogenic model reads

L ⊃ −
(︁
Y N
)︁
ij
N
i
ηLj − 1

2
(MN )iN

C
i
N i + h.c. (2.2.20)

and the scalar potential yields

V (H,η) = −m2
HH

†H +m2
ηη

†η +
λ1
2

(︁
H†H

)︁2
+
λ2
2

(︁
η†η
)︁2

+ λ3
(︁
H†H

)︁ (︁
η†η
)︁

+ λ4
(︁
H†η

)︁ (︁
η†H

)︁
+
λ5
2

[︂(︁
H†η

)︁2
+
(︁
η†H

)︁2]︂
.

(2.2.21)

The neutrino masses, which are radiatively generated via the Feynman diagram depicted in
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Figure 2.5: Feynman diagram for the neutrino mass generation in the scotogenic model.

Figure 2.5 in this model are given by

(Mµ)ij =
∑︂
k

(︁
Y N
)︁
ki

(︁
Y N
)︁
kj

32π2
(MN )k

×

[︄
m2
η0

m2
η0 − (MN )2k

ln

(︄
m2
η0

(MN )2k

)︄
−

m2
η′0

m2
η′0

− (MN )2k
ln

(︄
m2
η′0

(MN )2k

)︄]︄
,

(2.2.22)

where mη0 and mη′0 are the masses of the neutral scalar degrees of freedom that can expressed
as

m2
η0 = m2

η +
v2

2
(λ3 + λ2 + λ5)

m2
η′0 = m2

η +
v2

2
(λ3 + λ2 − λ5) .

(2.2.23)

Furthermore, note that Eq. (2.2.23) suggests that the neutral scalar masses are degenerate for
a vanishing λ5, which in turn leads to vanishing neutrino masses following Eq. (2.2.22). This
is due to the cancellation of the diagrams involving η0 and η′0, which contribute with opposite
sign.

In the case where m2
η0 −m2

η′0 ≪ m2
η0 +m2

η′0 ∧m
2
η0 +m2

η′0 ≈ (MN )2k, we obtain

(Mν)ij ≈
λ5v

2

2 · 16π2

∑︂
k

(︁
Y N
)︁
ki

(︁
Y N
)︁
kj

(MN )k
, (2.2.24)

where m2
η0 −m2

η′0 = λ5v
2.

The neutrino masses in Eq. (2.2.24) exhibit the same behavior as a type-I(III) seesaw mecha-
nism, with an additional typical loop suppression factor. Due to this factor the viable parameter
space is enlarged to with regards to the Yukawa couplings.

Note that there is a link between neutrino masses and DM in the scotogenic model13. The
Z2 symmetry imposed in the model does not only prohibit tree-level Yukawa couplings with the
SM Higgs, but it also stabilizes the lightest Z2-odd particle so that it quali�es as a potential
DM candidate.

Besides others, radiative neutrino mass models that have generated interest of the commu-
nity are e.g. the Zee model [115, 116] (one-loop, two additional scalars), the Zee-Babu model

13In fact, the scotogenic model received its name from the greek words σκóτoς (scotos, eng.: darkness) and
γενής (genes, eng.: o�spring, kind), meaning generated by darkness.
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[117, 118] (two-loop, two additional scalars) and the Krauss-Nasri-Trodden model [119] (three-
loop, two scalars and one fermionic singlet). We do not, however, discuss the details of these
models in this work.

2.3 Dark Matter Theory

In this section, we present the fundamentals of WIMPs as a class of DM candidates. We discuss
details of thermal production in the early universe as well as the physics of detection via direct
and indirect searches of such a DM candidate.

2.3.1 Early Universe Thermodynamics

First of all, we introduce the important concepts of thermodynamics in the early universe
to be able to formulate expressions for the production of DM. We base this discussion on
[16, 120, 121, 122, 123, 124].

When speaking about the thermodynamics of the early universe, we need to de�ne some
characteristic quantities that su�ciently describe the state of the universe at any given point
in time. Besides the temperature T , we also require a measure for the abundance of particles
of a certain species. We therefore de�ne the phase space density f(x⃗,t,p⃗,E) 14. In the case of
kinetic equilibrium, i.e. for e�cient energy transfer between particles in the plasma, this density
can be approximated by their respective equilibrium distribution

f eq(E,t) =
1

exp
(︂
E−µ
T

)︂
± 1

(2.3.1)

where +1 denotes Fermi-Dirac distribution (fermions) and −1 denotes Bose-Einstein (bosons)
distribution and µ denotes the chemical potential, which usually is associated with a particular
charge. Additionally, the number density nk of a particle species k and its �rst moment, the
density ρk are de�ned as

nk =
gk

(2π)3

∫︂
d3pk fk(Ek,t) , (2.3.2)

ρk =
gk

(2π)3

∫︂
d3pk E fk(Ek,t) , (2.3.3)

where gk are the internal degrees of freedom of the particle species in question. Using the
de�nitions of the Fermi-Dirac and Bose-Einstein distributions from Eq. (2.3.1) and a coordinate
transformation into spherical coordinates dp3 → dp dΩ p2, the number density and mass-energy
density yield

nk = gkT
3 ·
{︃

ζ(3)/π2 Bose-Einstein
3ζ(3)/4π2 Fermi-Dirac

(2.3.4)

ρk = gkT
4 ·
{︃

π2
/30 Bose-Einstein

7π2
/8·30 Fermi-Dirac

(2.3.5)

for relativistic matter, where ζ(x) denotes the Riemann ζ-function. The assumption E ≫ mk

is justi�ed in a radiation-dominated era, which is guaranteed before and during the formation

14Since we assume a FLRW universe, the phase space density f must be spacially homogeneous and isotropic
and therefore does not depend on x⃗ and p⃗.
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of the CMB in standard cosmological history. Note that based on Eq. (2.3.5) the number of
relativistic degrees of freedom g∗ can be de�ned as

g∗(T ) =
∑︂

b∈bosons

gb
T 4
b

T 4
+

7

8

∑︂
f∈fermions

gf
T 4
f

T 4
, (2.3.6)

where T is the temperature of the thermal bath and Ti the temperature of the individual
species. The relations in Eqs. (2.3.4) and (2.3.5) additionally rely on thermal equilibrium,
which is achieved if kinectic equilibrium and chemical equilibrium∑︂

i∈initial states

µi =
∑︂

f∈�nal states

µf , (2.3.7)

are simultaneously attained. In all models described in Chapter 4, this criterion is trivially
ful�lled, as all chemical potentials are negligible due to the absence of particle asymmetries.
Furthermore, we can de�ne the Boltzmann distribution

f eq(E,T ) = exp

(︃
−E − µ

T

)︃
, (2.3.8)

which approximates both the Fermi-Dirac and Bose-Einstein distributions in the limit (E−µ)/T ≫
1. This limit applies to a good degree, as according to the equipartition theorem the average
energy is ⟨E⟩ ∼ 3T . This enables us to neglect the slight di�erences of fermions and bosons
from this point on. Due to the implications of the discussion of the chemical potential above,
we can further approximate Eq. (2.3.8) to

f eq(E,t) = exp

(︃
−E
T

)︃
. (2.3.9)

In general, we are particularly interested in the evolution in time of the quantities mentioned
above, which are governed by the Boltzmann equations. These equations are generally written
as

L̂[fk] = Ĉ[f ] , (2.3.10)

where

L̂ = pαk∂α − Γαβγp
β
kp
γ
k

∂

∂pα

⇒ L̂[fk] = Ek ∂tfk(Ek,t)−H(t)|p⃗k|2∂Ekfk(Ek,t)
(2.3.11)

is the Liouville operator for the FLRW spacetime and Ĉ is the collision operator. Generally,
the Liouville operator takes into account the spacetime e�ects on the change of phase space
distribution, whereas the collision operator takes into account all changes from potential particle
interactions. Note here that fk is the phase space distribution of the species k in question,
whereas f entails the phase space distributions for all particles that appear in collisions. Using
the de�nition in Eq. (2.3.2), dividing by Ek, and integration by parts, a more evocative form
can be formulated

dnk(t)

dt
+ 3H(t)nk(t) =

gk
(2π)3

∫︂
d3pk

Ĉ[f ]

Ek
. (2.3.12)
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It becomes apparent that in the case where no collisions take place, the number density is diluted
due to the expansion of the universe, while the absolute number of particles is a conserved
quantity as

0 =
dnk(t)

dt
+ 3H(t)nk(t)

=
dnk(t)

dt
a(t)3 + 3nk(t)

da(t)

dt
a(t)2 =

d(a(t)3nk(t))

dt

=
dNk
dt

.

(2.3.13)

The Friedmann Equation (1.2.8) allows us to write the Hubble parameter H in terms of the
mass-energy density as

H =

√︃
8πG

3
ρ =

√︄
8π3

90
· g∗(T )
M2

Pl

· T 2 , (2.3.14)

where MPl = 1/
√
G ≈ 1.2 · 1019GeV is the Planck mass.

Neglecting e�ects such as Pauli blocking and stimulated emission, the collision term on the
right hand side of Eq. (2.3.12) can be written as

gk
(2π)3

∫︂
dp3k

Ĉ[f ]

Ek
= −

∫︂
gk

(2π)3
d3pk
2Ek

∏︂
a∈all

ga
(2π)3

d3pa
2Ea

×(2π)4δ(4)

(︄
pk +

∑︂
i∈initial

pi −
∑︂

f∈�nal

pf

⎞⎠ |Mprocess|2
⎛⎝fk ∏︂

i∈initial

fi −
∏︂

f∈�nal

ff

⎞⎠ ,

(2.3.15)

for the CP conserving process k +
∑︁
i∈initial states i →

∑︁
f∈�nal states f , where the initial states

are counted excluding the particle k in question15. Within Eq. (2.3.15), the delta distribution
δ(4) takes care of momentum conservation. Note here that potential symmetry factors are
absorbed into the matrix element M, while, conversely to a collider setup, both initial and �nal
spin states are summed over.

As our primary concern is the time evolution of particle densities in a comoving volume, it
is bene�cial to de�ne a quantity describing the particle density while not being a�ected by the
expansion of the universe. For this purpose, we de�ne the yield as

Yk ≡ nk
s
, (2.3.16)

where s is the entropy density

s =
2π2g∗s(T )

45
T 3 . (2.3.17)

The entropy degrees of freedom g∗s are de�ned analogously to the number of relativistic degrees
of freedom (cf. Eq. (2.3.6)) as

g∗s(T ) =
∑︂

b∈bosons

gb
T 3
b

T 3
+

7

8

∑︂
f∈fermions

gf
T 3
f

T 3
. (2.3.18)

15The more general form assuming Fermi-Dirac/Bose-Einstein distributions and potential CP non-
conservation are described in [120, 16].
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Furthermore, it is convenient for numerical calculations to de�ne a dimensionless variable
x that acts as a measure of time in the Boltzmann equation. The typical de�nition of this
quantity is

x ≡ mk

T
, (2.3.19)

where mk is the mass of the particle in question16.
In order to rewrite the Boltzmann equation in these variables, we use the conservation of

entropy

dS

dt
=

d(sa3)

dt
⇒ ds

dt
= −3Hs (2.3.20)

⇒ dt =
1

−3Hs

ds

dT
dT , (2.3.21)

and also

dT = −mk

x2
dx , (2.3.22)

which leads to a formulation of the Boltzmann equation given by

dYk
dx

= − mk

3Hs2x2
ds

dT

∫︂
gk

(2π)3
d3pk
2Ek

∏︂
a∈all

ga
(2π)3

d3pa
2Ea

×(2π)4δ(4)

(︄
pk +

∑︂
i∈initial

pi −
∑︂

f∈�nal

pf

⎞⎠ |Mprocess|2
⎛⎝fk ∏︂

i∈initial

fi −
∏︂

f∈�nal

ff

⎞⎠ .

(2.3.23)

2.3.2 Thermal Production of Dark Matter

In this section, we aim to calculate an expression for the DM yield today.
For all interaction rates Γ that are higher than the rate of the universe's expansion H, DM

stays in strong thermal contact with the plasma and thus follows its equilibrium distribution.
For the relic abundance to not be vanishingly small, DM must decouple from the thermal plasma
as soon as x ≈ O(10), as the equilibrium density in the non-relativistic limit is exponentially
suppressed and the density thus depletes strongly if DM is kept in thermal equilibrium for
longer. The decoupling from the thermal plasma is commonly called freeze out and typically
occurs when the interaction rate drops below the Hubble rate

Γ < H . (2.3.24)

For simplicity, we focus on 2-body annihilation processes in the following discussion, where
two DM particles χ annihilate into two SM particles ψ (χ̄χ↔ ψ̄ψ). In this case, it is a very good
assumption that all SM particles are in thermal equilibrium fψ = f eqψ . Moreover, we assume
kinetic equilibrium fχ = α · f eqχ for χ. The energy conservation enforced by the δ function
within the collision term of the Boltzmann equation leads to the so-called principle of detailed
balance

fψ̄fψ = f eq
ψ̄
f eqψ = exp

(︃
−
Eψ̄ + Eψ

T

)︃
= exp

(︃
−Eχ̄ + Eχ

T

)︃
= f eqχ̄ f

eq
χ . (2.3.25)

16Note that in the case of multiple coupled Boltzmann equations, we de�ne x with the mass scale of one of
the particles in questions (typically the DM mass).
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2.3. Dark Matter Theory

With these premises, we can write the r.h.s. of Eq. (2.3.23) as

dYk
dx

= − mk

3Hx2
ds

dT
⟨σv⟩

(︁
Y 2
k − (Y eq

k )2
)︁

(2.3.26)

= −
√︃

π

45

MPlmk g
1
2

∗,e�

x2
⟨σv⟩

(︁
Y 2
k − (Y eq

k )2
)︁
, (2.3.27)

where

g
1
2

∗,e� ≡ g∗,s√
g∗

(︃
1 +

T

3g∗,s

dg∗,s
dT

)︃
(2.3.28)

is a combined function of the energy degrees of freedom g∗ and the entropy degrees of freedom
g∗,s. Furthermore, ⟨σv⟩ is the thermally averaged annihilation cross section

⟨σv⟩ ≡ 1

(neqχ )2

∫︂
gχ̄

(2π)3
d3pχ̄
2Eχ̄

· gχ
(2π)3

d3pχ
2Eχ

·
gψ̄

(2π)3
d3pψ̄
2Eψ̄

· gψ
(2π)3

d3pψ
2Eψ

× (2π)4δ(4)
(︁
pχ̄ + pχ − pψ̄ − pψ

)︁
|M|2f eq

ψ̄
f eqψ .

(2.3.29)

In this context, the velocity v = vMøller =
√︁
|v⃗1 − v⃗2|2+|v⃗1 × v⃗2|2 is the Møller velocity, which

is de�ned so that the product vMøllern1n2 is Lorentz-invariant.
Note that in the general case, where the particle pair ψ̄ψ is a large set, we simply replace

the single-process annihilation cross section with the total annihilation cross section.
In its temperature dependent form, ⟨σv⟩ can be written as

⟨σv⟩(T ) =
∫︁
dp3χ̄dp

3
χσv exp (−(Eχ̄+Eχ)/T)∫︁

dp3χ̄dp
3
χ exp (−(Eχ̄+Eχ)/T)

=
1

8m4
χTK

2
2

(︁mχ
T

)︁ ∫︂ ∞

4m2
χ

ds σ(1− 4m2)
√
sK1

(︃√
s

T

)︃
,

(2.3.30)

where
√
s is the center of mass energy and Ki(x) is the modi�ed Bessel function of order i.

As mentioned in the beginning of this section, we are mainly interested in freeze out temper-
atures at ∼ x = O(10), meaning that the DM particles can be considered cold (non-relativistic).
In this case, we can expand σv in powers of v2, which can be related to an expansion of the
thermally averaged cross section in powers of 1/x as

⟨σv⟩ =
⟨︁
a+ bv2 + cv4 +O

(︁
v6
)︁⟩︁

= a+
3

2
b · 1
x
+

15

8
c · 1

x2
+O

(︃
1

x3

)︃
. (2.3.31)

The thermally averaged annihilation cross section is often approximated by its leading order
contribution ⟨σv⟩ ∼ σ0x

−n, where n = 0 corresponds to s-wave annihilation, n = 1 to p-wave,
n = 2 to d-wave and so forth.

At this point, the Boltzmann equation can be solved numerically, e.g. with solvers such as
micrOMEGAs [125, 126], which we use in Chapter 4, or MadDM [127]. In order to solve
the resulting Boltzmann equation analytically to obtain parametric estimates, we assume the

entropy degrees of freedom g∗,s to be constant so that g
1
2

∗,e� = g∗,s/√g∗ and parametrize the
departure from equilibrium as

∆ ≡ Y − Y eq . (2.3.32)
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Inserting these premises into Eq. (2.3.27), we obtain

d∆

dx
= −dY eq

dx
− λx−n−2(∆2 + 2Y eq∆) , (2.3.33)

where λ ≡
√︁

π
45

MPlmχg∗s√
g∗

σ0. It is justi�ed to assume that at times x ≪ xf before the freeze

out, the DM yield follows its equilibrium distribution and thus ∆2 and d∆/dx are small. We
obtain

∆ ≈ −dY eq

dx
· x

n+2

Y eq2λ
(2.3.34)

d/dxY eq≈−Y eq⇒ ∆f ≈
xn+2
f

2λ
. (2.3.35)

For times x≫ xf after the freeze-out time, the departure from equilibrium can be well approx-
imated as the yield itself, since the equilibrium yield is exponentially suppressed and therefore
small. We thus obtain

d∆

dx
≈ −λx−n−2∆2 , (2.3.36)

which can be solved via separation of variables and subsequent integration. Using the expression
for ∆f from Eq. (2.3.35), we arrive at

Y∞ ≈ ∆∞ ≈
(︃

λ

n+ 1
x−n−1
f + 2λx−n−2

)︃−1

. (2.3.37)

The literature result [16]

Y∞ ≈n+ 1

λ
xn+1
f (2.3.38)

ΩDMh
2 ≈mχY∞s0h

2

ρcrit
(2.3.39)

for the relic yield Y∞ and the relic density ΩDMh
2 can be obtained by the approximation of

a small ∆f , which is justi�ed for typical freeze-out times xf ∼ 20. We de�ne the freeze-out
time xf as the time when ∆ becomes roughly of the order of the equilibrium yield Y eq itself,
indicating a signi�cant deviation from equilibrium. We obtain the condition

∆(xf ) = k · Y eq , (2.3.40)

where k is a constant of O(1). Numerical solutions have shown that a result within 5% accuracy
can be reached with the choice of k(k + 2) = n+ 1 and we obtain

xf = ln

[︃
0.038(n+ 1)

gχMPlmχσ0√
g∗

]︃
−
(︃
n+

1

2

)︃
ln

[︃
ln

(︃
0.038(n+ 1)

gχMPlmχσ0√
g∗

)︃]︃
.

(2.3.41)

The results presented in Eq. (2.3.38)-(2.3.41) are good approximations for most phenomeno-
logical applications in thermal DM models. However, if a model contains additional unstable
dark sector particles, the annihilation cross section can be severely enhanced if the mass of these
particles is within ∼ 20% of the DM mass. This e�ect is known as coannihilation [128, 129]
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and is an important feature of the model classes discussed in Chapter 4 17. Considering N
dark sector species χi, i = 0,1,2,...,N − 1 , where χ0 is the DM candidate, the types of number
changing processes can be

a) χiχj → ψψ′ annihilation,
b) χi + ψ → χj + ψ′ conversion,
c) χi̸=0 → χj + ψ decay,

(2.3.42)

where ψ and ψ′ are SM particles. In general, this leads to a coupled system of N Boltzmann
equations, describing the evolutions with one equation for each dark sector species. However,
we focus on the special case where the lightest dark sector particle, the DM candidate χ0, is
protected by a stabilizing symmetry. In this case, it is su�cient to monitor the sum of the
densities (or yields) Ỹ =

∑︁N
i Yi of all dark sector particles in one e�ective Boltzmann equation,

since all of them eventually decay into χ0. Also, conversions and decays as shown in Eq. (2.3.42)
do not need to be considered for the calculation of ⟨σv⟩, as they are not number changing. They
can, however, in�uence the number densities of the dark sector particles. Typically, conversions
are e�cient during freeze out and beyond, since the scattering with a relativistic SM particle
from the thermal bath is not Boltzmann-suppressed compared to annihilations with a non-
relativistic dark sector particle. This way, the individual number densities of the coannihilating
particles remain the equilibrium distributions and we can calculate the thermally averaged
annihilation cross section via

⟨σv⟩ =
∑︂
i,j

⟨σijvij⟩
Y eq
i Y eq

j

Ỹ
eq
Ỹ
eq , (2.3.43)

if e�cient conversion are assumed.
It becomes apparent from Eq. (2.3.43) that only small mass gaps can lead to signi�cant

contributions, since the equilibrium distributions Y eq
i ∼ (mi)

3/2 exp (−mi/T) are exponentially
suppressed with the mass of the particle χi.

2.3.3 Direct Detection

In this section, we discuss the direct detection (DD) of DM particles via scattering with heavy
nuclei. This scattering is induced by Earth's trajectory through the DM halo of the galaxy.
The experimental strategy of detecting this scattering is measuring the nuclear recoil of such an
interaction. To this date, an ever increasing number of experimental collaborations are collecting
and analyzing data searching for WIMP DM with dedicated detectors like liquid noble gas (Xe,
Ar) detectors (e.g. XENON [130, 131] and LUX [132]), superheated phonon detectors (e.g.
PICO60 [133]) or cryogenic solid state detectors (e.g. CRESST [134] or SuperCDMS [135]).
The IceCube collaboration also performs DM searches with its multi-functional detector [136].

2.3.3.1 Fundamentals of Direct Detection

The expected rate of nuclear recoil events is given by [137]

dR

dENR
=

ρ0M

mN ′mχ

∫︂ vmax

vmin

dv v f(v⃗ + v⃗Earth)
dσ

dENR
, (2.3.44)

17There are two additional caveats: threshold e�ects and resonance e�ects. Threshold e�ects can play a role
if there are annihilation products heavier than DM. Resonance e�ects play a role if the center of mass energy of
the annihilation process is in the vicinity of an s-channel resonance. In this work, we neglect these e�ects. For
more details see e.g. [120, 128].
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where ENR = q2/2mN′ is the nuclear recoil energy, mN ′ is the mass of the nucleus, M is the
target detector total mass and ρ0 = 0.3GeVc−2cm−3 is the local DM energy density. The
function f(v) is the normalized velocity distribution, e.g. a Maxwell-Boltzmann distribution

f(v) ∼ v2 exp

(︄
− 3v2

2
√︁

3/2 · vc(R)

)︄
, (2.3.45)

in the case of the standard halo model18, where vc(R) is the circular velocity of objects in the
frame of the galactic center and vc(RGC-Sun) ≈ 220km/s. Additionally, Earth's rotation around

the Sun, which is an ∼ O(10%) e�ect since vSun-Earth ≈ 15km/s · cos
(︂

2π
yr t
)︂
, has to be taken into

account.
The maximal velocity vmax ≈ 544km/s [140] of a WIMP is the escape velocity of the Milky

Way, meaning that the WIMP is not gravitationally bound to the galaxy if v ≥ vmax. The
minimal velocity vmin, however, is the smallest velocity required to transfer the energy ENR to
the nucleus. This amounts to [141]

vmin =

√︄
ENRmN ′

2µ2
χN ′

, (2.3.46)

where µχN ′ = (mχ+mN′ )/mχmN′ is the reduced mass of the DM-nucleus system.
In this thesis, we do not further discuss the astrophysical details of DD, but concentrate more

on the particle physics aspect, i.e. the di�erential cross section. This cross section is typically
parametrized as a linear combination of a spin-independent (SI) and spin-dependent (SD) part,
yielding [142]

dσ

dENR
=

mN ′

2µ2
χN ′v2

[︁
σSI0 F

2
SI(Eeq) + σSD0 F 2

SD(Eeq)
]︁
, (2.3.47)

where v is the relative velocity in the detector frame and FSI/SD are form factors. Note here that

the spin-(in)dependent cross section σSI/SD0 is evaluated at zero momentum transfer, since the
momentum transfer dependence is shifted into the form factors. The strength of the interaction
of a WIMP with a nucleon/nucleus is fundamentally dependent on its interaction with the
nucleon's constituent particles: quarks and gluons. The nature of this interaction determines
whether it contributes to the SI or SD cross section.

In the following section, we discuss how we obtain the WIMP-nucleon cross section from
the fundamental interactions determined by a Lagrangian of a model. The discussion is pri-
marily focused on interactions with fermionic singlet DM. Since DM is non-relativistic and the
scattering occurs at low momentum transfer, we apply an EFT approach. This discussion is
largely based on [143, 144].

Typical t-channel DD interactions with bosonic mediators have a the structure

LDD ⊃ODMΠmedOq

q2≪m2
med→

(︃
1

m2
med

ODM

)︃
ON

→
(︃

1

m2
med

ODM

)︃
ON ′

with ODM,i = χ̄Γi χ , Oq,j = q̄ Γj q ,

(2.3.48)

18Note that in the literature, also modi�cations of the standard halo model and subsequent modi�cations of
the velocity distribution f(v⃗) are discussed, e.g. in the case of the Navarro-Frenk-White pro�le [138, 139].
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describing an e�ective four-fermion interaction, where ODM/q/N/N' are the bilinear DM/quark/
nucleon/nucleus operators and Πmed is the propagator of the mediator. The matrix Γi ∈
[1,γ5,γµ,γµγ5,σµν ] is part of the basis of 4 × 4 matrices, representing scalar (s), pseudoscalar
(p), vector (v), axial vector (a) and tensor (t) interactions respectively. Note that in this work,
we choose an analysis for t-channel DD interactions, as DM and SM operators strictly factorize,
as indicated in Eq. (2.3.48). Possible s-channel interactions can be related to this analysis via
Fierz transformations.

A summation over the parton content of the nucleon is necessary, since we are interested
in the interaction with protons and neutrons rather than quarks and gluons on their own. To
obtain the description of an interaction of DM with the whole nucleus N ′, another summation
over all nucleons N = p,n is required. In an analysis of these operators, using that in the
non-relativistic limit the fermion spinors can be expanded in small momenta as

u(p) =

(︃√
pµσµξf√
pµσ̄µξf

)︃
=

1√︁
2mf

(︃
(2mf − p⃗ · σ⃗)ξf
(4mf + p⃗ · σ⃗)ξf

)︃
+O(p⃗2) ,

(2.3.49)

we �nd that di�erent combinations of operators ODM,iOq/N/N ′,j lead to di�erent types of
interaction, which are SI and SD interactions with di�erent kinds of kinematic suppression
factors. A detailed pedagogical derivation is shown in e.g. [145] on the nucleus level.

Interactions that are SD, as the name suggests, crucially depend on the spin of the nucleus
JN and the constituent particles SN , but not on the overall mass of the target. As SI interactions
are not sensitive to the nucleus' spin, we can simply sum over the nucleons and �nd that

OSI
N ′ = ZOp + (A− Z)On , (2.3.50)

OSD
N ′ =

(︃
⟨Sp⟩
JN ′

Op +
⟨Sn⟩
JN ′

On

)︃
⟨JN ′⟩ , (2.3.51)

where Z is the atomic number and A is the total number of nucleons in the nucleus. In
the following, we shortly present the transition from quark to nucleon operator for scalar,
pseudoscalar, vector and axial vector interactions.

The scalar current Oq ⊃ f̃q q̄q → ON ⊃ f̃N N̄N ≡ OSI,s leads to a contribution to the SI
cross section, where the nucleon coe�cient reads

f̃N = mN

∑︂
q=u,d,s

fNTq
f̃q
mq

+
2

27
mN

⎛⎝1−
∑︂

q=u,d,s

fNTq

⎞⎠ ∑︂
q=c,b,t

f̃q
mq

, (2.3.52)

where fNTq = 1/mN · ⟨N |mq q̄q|N⟩ are coe�cients describing the quark content contributions to
the nucleon mass. Their numerical values can be obtained from lattice calculations and can be
extracted from Table 2.2.

The pseudoscalar current Oq ⊃ t̃q q̄γ
5q → ON ⊃ t̃N N̄γ

5N ≡ OSD,p on the other hand
contributes to the SD cross section and the coe�cients can be written as19

t̃N =
∑︂

q=u,d,s

t̃q
mN

mq
f (5N)
q , (2.3.53)

neglecting the sum over heavy quarks and gluons, as their contributions to the spin content of
the nucleons are small.
19The pseudoscalar coe�cients can also be related to the axialvector coe�cients [146].
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scalar
coe�cients

proton
fpTu fpTd fpTs
0.20 0.026 0.043

neutron
fnTu fnTd fnTs
0.026 0.20 0.043

pseudoscalar
coe�cients

proton
f
(5p)
u f

(5p)
d f

(5p)
s

0.43 −0.84 −0.50

neutron
f
(5n)
u f

(5n)
d f

(5n)
s

−0.42 0.85 −0.08

axial vector
coe�cients

proton
∆

(p)
u ∆

(p)
d ∆

(p)
s

0.84 −0.43 −0.09

neutron
∆

(n)
u ∆

(n)
d ∆

(n)
s

−0.43 0.84 −0.09

Table 2.2: Numerical values of scalar, pseudoscalar and axial vector form factors [146, 147].

In the case of a vector current b̃q q̄γµq → b̃N N̄γµN ≡ OSI,v, which leads to an SI contribution,
only valence quarks contribute to the interaction. The coe�cients are thus simply added up
according to the nucleon's valence quark content

b̃p = 2b̃u + b̃n , b̃n = b̃u + 2b̃n . (2.3.54)

The axial vector current d̃q q̄γµγ5q → ãN N̄γµγ
5N ≡ OSD,a gives a contribution to the SD

cross section. As is the case for the pseudoscalar current, heavy quarks and gluons can be
neglected and therefore we only sum over the light quarks. The coe�cients are

ãN =
∑︂

q=u,d,s

d̃q∆
(N)
q . (2.3.55)

In the following, we discuss the SI/SD DM-nucleon cross section for di�erent bosonic me-
diators. We choose to present the DM-nucleon cross section, since most DD experiments put
bounds on this quantity in their analyses for both SI and SD interactions. In our analysis made
in Chapter 4, we focus only on fermionic DM and we thus do not discuss scalar or vector DM
here.

2.3.3.2 Fermionic Matter and Scalar Mediator

In the fermionic DM and scalar mediator case, the Lagrangian yields

L ⊃
[︃(︃

1

2

)︃
χ̄(λχs + λχpiγ

5)χ+ q̄(λqs + λqpiγ
5)q

]︃
A , (2.3.56)

where the factor of 1/2 is applied in the case of χ being a Majorana fermion. In this type of
interaction, the combinations (s,s), (s,p), (p,s) and (p,p) between the DM and the nucleon op-
erators ODM and ON arise. First, we turn our attention to the SI results, i.e. the combinations,
which have a scalar interaction with the nucleus. After integrating out of the mediator, the
corresponding SI DM-nucleus cross section reads

σN
′,SI

s,s ≈
µ2
χN ′λ2χs
πm4

A

(︂
Zf̃p + (Z −A)f̃n

)︂2
(2.3.57)

σN
′,SI

p,s ≈
µ2
χN ′v2

2m2
χ

µ2
χN ′λ2χp
πm4

A

(︂
Zf̃p + (Z −A)f̃n

)︂2
, (2.3.58)
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where f̃p/n are the coe�cients de�ned in Eq. (2.3.52). In order to obtain the DM-nucleon cross
section, we average over all nucleons of the nucleus and obtain

σN,SIs,s ≈
µ2
χN ′λ2χs
πm4

A

(︄
Zf̃p + (Z −A)f̃n

A

)︄2

(2.3.59)

σN,SIp,s ≈
µ2
χN ′v2

2m2
χ

µ2
χN ′λ2χp
πm4

A

(︄
Zf̃p + (Z −A)f̃n

A

)︄2

. (2.3.60)

For the SD DM-nucleus cross sections, we obtain

σN
′,SD

s,p ≈
2µ2

χN ′v2

4m2
N ′

4µ2
χN ′λ2χs
πm4

A

JN ′(JN ′ + 1)

(︃
⟨Sp⟩
JN ′

t̃p +
⟨Sn⟩
JN ′

t̃n

)︃2

(2.3.61)

σN
′,SD

p,p ≈ 4

3

(︄
2µ2

χN ′v2

4mχmN ′

)︄2
4µ2

χN ′λ2χp
πm4

A

JN ′(JN ′ + 1)

(︃
⟨Sp⟩
JN ′

t̃p +
⟨Sn⟩
JN ′

t̃n

)︃2

. (2.3.62)

and thus for the DM-nucleus cross section

σN,SDs,p ≈
2µ2

χN ′v2

4m2
N ′

4µ2
χN ′λ2χs
πm4

A

(︃
SN (SN + 1)

J2
N ′

t̃
2
NJN ′(JN ′ + 1)

)︃
(2.3.63)

σN,SDp,p ≈ 4

3

(︄
2µ2

χN ′v2

4mχmN ′

)︄2
4µ2

χN ′λ2χp
πm4

A

(︃
SN (SN + 1)

J2
N ′

t̃
2
NJN ′(JN ′ + 1)

)︃
. (2.3.64)

Note that these results are obtained under the assumption that χ is a Dirac fermion. The
Majorana results, however, are form-invariant with the substitution λ→ λ/2.

Note here that the SI (s,s) cross section is the only contribution that is not suppressed by
powers of the small relative velocity v. Whereas the mixed terms (p,s) and (s,p) are suppressed
by two powers of v, the diagonal term (p,p) is even suppressed with v4. We thus �nd that the
(s,s) contribution is dominant for scalar mediated SI DD, while for SD the (p,s) contribution
is dominant.

2.3.3.3 Fermionic DM and Vector Mediator

In the case of a vector boson mediator Vµ, the Lagrangian reads

L ⊃
[︃(︃

1

2

)︃
χ̄γµ(gχv + gχaγ

5)χ+ q̄γµ(gqv + gqaγ
5)q

]︃
Vµ , (2.3.65)

where the factor 1/2 is applied in the Majorana case. In addition, the vector current vanishes
for a Majorana fermion, resulting in gχv = 0 (see Appendix A.2). In the Dirac case, we obtain

σN,SIv,v ≈
µ2
χN ′g2χv
πm4

V

(︄
Z(2b̃u + b̃d) + (Z −A)(b̃u + 2b̃d)

A

)︄2

(2.3.66)

σN,SIa,v ≈
2µ2

χN ′v2

m2
χ

µ2
χN ′

µ2
χN

µ2
χN ′g2χa
πm4

V

(︄
Z(2b̃u + b̃d) + (Z −A)(b̃u + 2b̃d)

A

)︄2

(2.3.67)

σN,SDv,a ≈
µ2
χN ′

µ2
χN

2g2χvv
2

πm4
v

(︃
JN ′(JN ′ + 1)

SN (SN + 1)

J2
N ′

ã2N

)︃
(2.3.68)

σN,SDa,a ≈
4µ2

χN ′g2χa
πm4

V

(︃
JN ′(JN ′ + 1)

SN (SN + 1)

J2
N ′

ã2N

)︃
. (2.3.69)

41



Chapter 2. Theoretical Groundwork Beyond the Standard Model

As it becomes apparent from Eqs. (2.3.66)-(2.3.69), the dominant SI contribution originates
from (v,v), which is velocity unsuppressed. Analogously, the unsuppressed (a,a) contribution
provides the leading order contribution to the SD DD cross section over (v,a).

Again, in the Majorana case, we have to make the substitution g → g/2. It is worth noting
at this stage that in the case where χ is a Majorana fermion the vector current χ̄γµχ vanishes
and therefore the velocity suppressed (a,v) contribution becomes the dominant SI contribution.
In these cases, it is possible that the SD limits are more stringent than the otherwise more
constraining SI limits. This is an important feature in some model classes studied in Chapter 4.

2.3.3.4 s-channel Lagrangian and Fierz Identities

In the case of s-channel-type DM-quark interactions, the DM and quark/nucleon/nucleus oper-
ators do not factorize and the treatment according to Eq. (2.3.48) does not directly apply here.
In this scenario, Fierz transformations can be used to relate the s-channel-type Lagrangian with
a t-channel-type one. The Fierz identities can be expressed as [148]

(ΓiI)ab(ΓiI)cd =
∑︂
K

CIK(ΓjK)ad(ΓKj)cb

with CIJ =
1

16NJ
Tr
(︁
ΓJkΓ

i
IΓ

k
JΓIi

)︁
,

(2.3.70)

where NJ is the total number of Dirac matrices in each Γ (Ns = Np = 1, Nv = Na = 4,
Nt = 6). This allows us to rewrite products of bilinears made of two distinct spinors as a linear
combination of products of bilinears of the same type20.

In two of the three model classes presented in Chapter 4, s-channel scalar mediated DD
interactions are present and can be described by the e�ective Lagrangian [149]

L ⊃ −χ̄(λs − λpγ
5)qA− q̄(λ∗s + λ∗pγ

5)χA† (2.3.71)

⇒ Le� ⊃∼
1

m2
A

[︁
|λs|2(χ̄q)(q̄χ)− |λp|2(χ̄γ5q)(q̄γ5χ)

+λsλ
∗
p(χ̄q)(q̄γ

5χ)− λ∗sλp(χ̄γ
5q)(q̄χ)

]︁
.

(2.3.72)

A manipulation with Fierz transformations yields

Le� ⊃∼
1

4m2
A

[︃
(|λs|2−|λp|2)(q̄qχ̄χ+

1

2
q̄σµνqχ̄σµνχ)

+(|λs|2+|λp|2)(q̄γµqχ̄γµχ− q̄γµγ5qχ̄γµγ
5χ)

]︃
,

(2.3.73)

where velocity suppressed combinations are neglected. Eq. (2.3.73) suggests that in the limit
|λs|= |λp|, the (s,s) and (t,t) operators vanish completely.

The e�ective DM-nucleon cross sections can hence be calculated for every contribution
according to Section 2.3.3.2.

Note also that in the case of χ being a Majorana fermion, both (v,v) and (t,t) contributions
vanish.

20In fact, Fierz transformations can be used to express any kind of quadrilinears in terms of other orderings.
Further details can also be found in [148].
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2.3.4 Indirect Detection

Astrophysical searches for secondary particles created in DM annihilations or decays are sum-
marized as indirect detection (ID). ID searches focus on large astrophysical structures, where
an accumulation of DM is denser, such as the galactic center or the dwarf spheroidal satellite
galaxies (dSphs) of the Milky Way, and DM interactions are thus more likely.

The nature of these secondary particles can be manifold and can in principle involve any
kind of SM particle. However, only stable particles like leptons, protons and photons end up
reaching Earth to induce a certain signal signature. This emission of stable particles can either
occur via a cascade of decays of the initially induced heavy particles or via direct annihilation
into these particles.

Standing out from the pool of possibilities are photons, as they can travel to the Earth on
their straight path without being diverted by possible magnetic or electric �elds21. This makes
it easier to determine the place of their origin and therefore enhances the background estimate.
This situation motivates experimental collaborations like Fermi-Large Area Telescope (LAT)
[150] or HESS [151] to perform dedicated searches for DM in gamma ray signals from astrophys-
ical sources. Fermi-LAT covers an energy range from 30MeV − 300GeV, while HESS covers
the high energy range of 300GeV− 10TeV.

For annihilations of DM to photons (or similarly neutrinos), the expected �ux can be
parametrized as [150]

ϕ(∆Ω,Emin,Emax) =
1

4π

⟨σv⟩
2m2

χ

∫︂ Emax

Emin

dNγ
dEγ

dEγ

×
∫︂
∆Ω

∫︂
l.o.s.

ρ2(r⃗(l))dldΩ⏞ ⏟⏟ ⏞
≡J

,
(2.3.74)

where the so called J-factor encompasses the astrophysical parameters like the density pro�le,
and dNγ/dEγ is the di�erential gamma ray photon spectrum summed over all �nal states. Note
that as a general rule of thumb, observations of dwarf spheroidal galaxies have less uncertainty
in the J-factor, since the they involve integration over most of the dwarf galaxy's volume so
that the details of the density pro�le are averaged out to a higher degree than in observations
of the galactic core [152].

As becomes apparent in Eq. (2.3.74), the photon �ux is directly proportional to the thermally
averaged annihilation cross section ⟨σv⟩ and thus limits on this quantity can be posed by ID
experiments. The most stringent bounds involving photon-rich �nal state products generally
come from the dSphs observed by Fermi-LAT, where bounds on the annihilation χ̄χ→ b̄b/τ+τ−

are derived [150, 152, 153]. Especially models that feature unsuppressed s-wave annihilation
into these particles can be constrained. Since the velocity of DM particles today is much smaller
than during the time of thermal freeze out, the velocity suppression is more severe in ID. For
example typical WIMP models with strong annihilations into these channels, DM masses of
≲ 100GeV are excluded22.

The gamma ray spectrum created by the cascade-like annihilations described above is broad
and smooth. Conversely, direct annihilations of DM into photons create monochromatic pho-
tons, which leads to a line-like feature in the spectrum near the kinematical endpoint. This

21Photon geodesics can in principle also be curved by galaxies, as observed by gravitational lensing experi-
ments. However, this e�ect is orders of magnitude weaker than diversion of charged particles by the electromag-
netic force.
22Note that for these kind of searches, it is generally unimportant if these models feature coannihilations, since

the observations of the dSphs occur at times long after freeze-out, so that all coannihilation partner particles
must have decayed already.
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f̄χ̄

χ f

f̄χ̄

χ f

f̄χ̄

χ f

1

Figure 2.6: Feynman diagrams contributing to the amplitude of the three-body annihilation at leading
order in an example with a scalar mediator.

signature is unexpected to originate from any astrophysical source and is thus considered to
be a smoking gun for detection of DM. However, these direct annihilations are typically loop-
suppressed and thus, they are expected to only make up a fraction of the total annihilation cross
section of DM. The Fermi-LAT reports the 95%C.L. upper limits on ⟨σv⟩γγ for di�erent density
pro�les from gamma ray searches from the galactic center region [154]. Furthermore, all-sky
Fermi-LAT data has been analyzed and found to be weaker by up to one order of magnitude
[155].

Another interesting, almost line-like spectral feature can be induced by DM annihilations
into the three-body �nal states χ̄χ→ f̄fγ. Figure 2.6 shows the Feynman diagrams contribut-
ing to the three-body annihilation. The kind of interaction that drives the spectral feature is
often referred to as virtual internal bremsstrahlung (VIB)23, which is an e�ect that can occur
in models with electrically charged (virtual) mediators. Note that the diagrams in Fig. 2.6
also contribute to the soft collinear �nal state radiation (FSR) and a clear distinction is only
meaningful in an expansion of ⟨σv⟩ in v and mf [156]. Although this is a next-to-leading-order
process in QED yielding a suppression by αem, it is not loop-suppressed like the χ̄χ → γγ
annihilation. It has been shown that the contribution can become as important - or even more
so - than the annihilation into a pair of SM fermions because it can lift the helicity suppres-
sion a ∼ (mf/mχ)2 of the s-wave annihilation that is e.g. present in Majorana-DM models.
This is especially true for relatively small mass gaps of DM and the mediator mmed/mχ ≲ 1.2
[156, 157, 158, 159, 160, 161, 162, 163], which coincides with the coannihilation region described
in Section 2.3.2. Limits from Fermi-LAT and HESS on VIB and line-like signals for DM models
coupling to light fermions are derived in [164] for di�erent mass gaps < 2 and applied to the
Majorana-DM-type models presented in Chapter 4.

23Sometimes this phenomenon is called internal bremsstrahlung (IB) instead in the literature. The nomencla-
ture is not consistent throughout the literature and sometimes includes �nal state radiation (FSR) and sometimes
does not.
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Chapter 3

Neutrino Oscillations with Altered

Dispersion Relations as an

Explanation for Neutrino Anomalies

In this chapter, we present a model that aims to solve the problems outlined in Section 2.1.3 with
non-standard active-sterile neutrino oscillations. We base this chapter on the results published
in [1]1.

In addition to the three active neutrinos, we introduce a number of sterile neutrinos featuring
an altered dispersion relation (ADR). This means that the usual Hamiltonian is extended by
an additional potential term, e�ectively altering the relationship between energy, momentum
and mass of a certain particle.

As outlined in Section 2.1.4, the standard (3+N)ν active-sterile neutrino oscillation scenarios
cannot explain the current neutrino anomalies, due to the strong disagreement between SBL
and high-energy LBL experiments. The fundamental problem is the rigid dependence of the
oscillation probability Pνα→νβ on the quotient L/E. This dependence can, however, be lifted in
the presence of an ADR and subsequently energy-dependent mixing matrix entries.

The outline of the chapter is as follows: In Section 3.1, we present the general setup of the
model. In Sections 3.2, we discuss speci�cally why a (3+1)ν version of this model cannot achieve
the aim of the model. We discuss a (3+3)ν version of the model and present a phenomenological
analysis in Section 3.2. Finally, we summarize our results in Section 3.4.

3.1 General Model Setup

The most widely-known example for such an ADR is induced by neutrino interactions with
matter, where the dispersion relation of electron neutrinos is e�ectively altered and an e�ective
potential is induced in the Hamiltonian. Due to the nature of the charged current interaction,
this potential is independent from the neutrino energy. For more details on matter e�ects in
neutrino oscillations, see Section 2.1.2.

In scenarios where the sterile neutrino ADR is induced by fundamental Lorentz violation,
e�ective potentials in neutrino oscillations arise independently from the matter distribution and
do not di�erentiate between neutrinos and anti neutrinos.

1Parts of the results presented in this thesis are also published in my collaborator's PhD thesis [165].
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The ADR that is required for the realization of our model can e.g. be generated by setups
similar to the model discussed in a series of papers [166, 167, 168, 169, 170, 171]. This model
features one additional sterile neutrino and an asymmetrically warped2 extra dimension [172,
173, 174] in a brane world scenario. The ADR is generated by an e�ective 'runtime di�erence'
between active and sterile neutrinos. This can be pictured semi-classically in the following way:
The sterile neutrino follows a geodesic in the bulk, oscillating around the brane and picking
up a relative runtime advantage ε := δt/t through the e�ectively higher velocity in the warped
space, while the gauge-charged neutrino is tied to the SM-brane.

In such a scenario, the sterile neutrino Hamiltonian picks up a potential that is negatively
proportional to this relative time di�erence ε, called the shortcut parameter. Conversely to
matter e�ects, this potential also depends on the neutrino energy E [166, 167]. The shortcut
parameter and the energy dependence of the potential depend on the spacetime geometry of
the extra dimension, as discussed in [166, 175].

3.2 (3 + 1)ν Model

In the spirit of the model �rst presented in [166], we �rst introduce one additional sterile
neutrino with an ADR. The mass of this neutrino lies at the eV-scale can e.g. be generated by
a variant of the seesaw mechanism introduced in Sections 2.2.2 - 2.2.3 [176, 177, 178, 179, 180].
The resulting Hamiltonian in �avor space yields

HF =
1

2E
U

⎛⎜⎜⎝
m2

1 0 0 0
0 m2

2 0 0
0 0 m2

3 0
0 0 0 m2

4

⎞⎟⎟⎠U† − E

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ε

⎞⎟⎟⎠

≈

⎛⎜⎜⎝ V
0
0
0

0 0 0 1

⎞⎟⎟⎠×

×

⎡⎢⎢⎣ 1

2E

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0

R340 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ∆m2

SBL

⎞⎟⎟⎠
⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0

RT340 0

⎞⎟⎟⎠− Eε

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎠
⎤⎥⎥⎦×

×

⎛⎜⎜⎝ V †
0
0
0

0 0 0 1

⎞⎟⎟⎠ ,

(3.2.1)

where E denotes the neutrino energy, ε the shortcut parameter, and

U =

⎛⎜⎜⎝ V
0
0
0

0 0 0 1

⎞⎟⎟⎠×

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0

R340 0

⎞⎟⎟⎠ , (3.2.2)

2This terminus refers to a warping, where bulk and time coordinates are warped non-factorizably. As opposed
to symmetrically warped extra dimension, as in the the case of the Randall-Sundrum model, asymmetrically
warped spacetimes are not vacuum solutions of the EFE and require an energy source.
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the full 4× 4 unitary mixing matrix. In the step from the �rst to the second line in Eq. (3.2.1),
we used the approximations m2

1/2/3 ≈ 0, m2
4 ≈ m2

SBL. The 3 × 3 matrix V corresponds to the
standard PMNS matrix and R34 is the orthogonal rotation matrix

R34 =

(︃
cos θ34 sin θ34
− sin θ34 cos θ34

)︃
, (3.2.3)

which generates mixing in the 3-4 plane3.
The eigenvalues of the Hamiltonian are [167]

λ1 = λ2 = 0,

λ± =
∆m2

SBL

4E

⎛⎜⎝1− cos 2θ34

(︃
E

ER

)︃2

±

⌜⃓⃓⎷sin2 2θ34 + cos2 2θ34

[︄
1−

(︃
E

ER

)︃2
]︄2⎞⎟⎠ ,

(3.2.4)

where

ER =

√︃
∆m2

SBL cos 2θ34
2ε

. (3.2.5)

is the resonance energy, where the level crossing of the neutrino eigenstates occurs.
Further following [167], we obtain the transition and survival probabilities Pνα→νβ and

Pνα→να for active �avors α,β as

Pνα→νβ =4U2
α3U

2
β3 ·

[︃
− sin2

(︃
L(λ+ − λ−)

2

)︃
sin2 θ̃ cos2 θ̃

+ sin2
(︃
L(λ+)

2

)︃
sin2 θ̃ + sin2

(︃
L(λ−)

2

)︃
cos2 θ̃

]︃
,

(3.2.6)

Pνα→να =1− 4U2
α3 ·

[︃
sin2

(︃
L(λ+ − λ−)

2

)︃
sin2 θ̃ cos2 θ̃ U2

α3

+ sin2
(︃
L(λ+)

2

)︃
sin2 θ̃

(︁
1− U2

α3

)︁
+ sin2

(︃
L(λ−)

2

)︃
cos2 θ̃

(︁
1− U2

α3

)︁]︃
,

(3.2.7)

where θ̃ is the e�ective mixing angle de�ned via

sin2 2θ̃ =
sin2 2θ34

sin2 2θ34 +
(︂
cos 2θ34 − 2E2ε

∆m2
SBL

)︂2 . (3.2.8)

We note from Eq. (3.2.4) that the eigenvalue λ+ vanishes at energies far above the resonance, as
does cos2 θ̃, while sin2 θ̃ and λ− are non-vanishing4. However, this limit is only meaningful in sce-
narios where L/E is comparably small. Comparing e.g. the setups of SBL experiments (L/E|SBL≈
O(10-1000m)/O(1MeV-1GeV)) and atmospheric experiments (L/E|atm≈ O(107 m)/O(0.1-1GeV)) we �nd
that there are several orders of magnitude between these quantities and we can thus not ap-
ply the limit in every scenario. Rather than the eigenvalue of the Hamiltonian, the relevant
quantity is the resulting mass-squared di�erence

m2
± = 2E · λ± (3.2.9)

3Note that this setup can be formulated in terms of a rotation with θ14 or θ24 analogously. However, if more
than one of these angles is non-zero, the analytic formalism presented here is not applicable and we require a
numerical analysis.

4Note that θ̃ is de�ned in the second octant for energies E > ER and thus there is a common root of sin2(2θ̃)
and cos2 θ at π/2.
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Figure 3.1: E�ective squared masses as a function of the energy E in the (3 + 1)ν+ADR model for a
BSM parameter choice of sin2 θ34, ∆m

2
SBL and ε = 5 · 10−17.

giving rise to the oscillatory term sin2(∆m
2
±L/2E).

As the limit of the mass-squared di�erence, conversely to the eigenvalue, does not approach
zero but a constant value

lim
E→∞

m2
+ = ∆m2

SBL · 1− cos 2θ43
2

, (3.2.10)

atmospheric experiments can in principle still detect an oscillation of this frequency. This is
especially the case when the size of ∆m2

SBL is large enough to compensate the suppression of a
small mixing angle θ34.

Fig. 3.1 sketches the behavior of the e�ective squared masses with increasing energy. At the
resonance energy ER, we �nd the characteristic level crossing where maximal mixing occurs
and the mass eigenstates swap their �avor content. At energies above the resonance, one of the
squared masses diverges while the others approach a constant value.

While the deviations caused by the (3 + 1)ν+ADR setup discussed above might elude de-
tection by accelerator experiments like MINOS due to the relatively narrow energy spectrum,
atmospheric neutrino experiments like IceCube and SK have high statistics at energies ≳ 1GeV
and are thus able to rule out the deviation.

3.3 (3 + 3)ν Model

3.3.1 (3 + 3)ν Model with a Universal Potential

An e�ective mass-squared di�erence at energies far above the resonance emerging in the (3 +
1)ν+ADR model can be averted in a setup with three instead of one sterile neutrino. In this
model, we assume that each sterile state mixes with one of the predominantly active mass eigen-
states, respectively. We also assume all sterile neutrinos to feature the same ADR. A universal
potential for all sterile neutrinos leaves the mass-squared di�erences between the predominantly
active neutrinos intact across the energy scales and no additional ∆m2 is generated as opposed
to the (3 + 1)ν+ADR model.

The 6× 6 mixing matrix can be parametrized as5

U6×6 = U23U13U12U14U25U36 . (3.3.1)

5Note that the ordering of the sterile neutrino mixing matrices does not coincide with the usual parametriza-
tion.
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We parametrize the bare squared masses as

∆m2
41 = ∆m2

SBL ,

∆m2
51 = ∆m2

SBL +∆m2
21 → ∆m2

52 = ∆m2
SBL ,

∆m2
61 = ∆m2

SBL +∆m2
31 → ∆m2

63 = ∆m2
SBL .

(3.3.2)

Since we assume a universal potential, meaning the same ε in all sterile neutrino potentials, the
resonance energy ER is universal. The e�ective potential reads

Veff =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 εE 0 0
0 0 0 0 εE 0
0 0 0 0 0 εE

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.3.3)

Since each mass eigenstate ν1,2,3 features an admixture with its own sterile state, the results
from [167] discussed in Section 3.2 remain applicable. The mass eigenvalues are denoted by
m2

4±,m
2
5±,m

2
6±, which correspond to them

2
± mass eigenstates in Section 3.2. These eigenvalues

are

m2
4± ≈ ∆m2

SBL

2

⎛⎜⎝1− cos 2θ14

(︃
E

ER,4

)︃2

∓

⌜⃓⃓⎷sin2 2θ14 + cos2 2θ14

[︄
1−

(︃
E

ER,4

)︃2
]︄2⎞⎟⎠ , (3.3.4)

m2
5± ≈ ∆m2

SBL

2

⎛⎜⎝1− cos 2θ25

(︃
E

ER,5

)︃2

∓

⌜⃓⃓⎷sin2 2θ25 + cos2 2θ25

[︄
1−

(︃
E

ER,5

)︃2
]︄2⎞⎟⎠ , (3.3.5)

m2
6± ≈ ∆m2

SBL

2

⎛⎜⎝1− cos 2θ36

(︃
E

ER,6

)︃2

∓

⌜⃓⃓⎷sin2 2θ36 + cos2 2θ36

[︄
1−

(︃
E

ER,6

)︃2
]︄2⎞⎟⎠ , (3.3.6)

with the corresponding resonance energies

ER,4 =

√︃
∆m2

SBL cos 2θ14
2ε

, ER,5 =

√︃
∆m2

SBL cos 2θ25
2ε

, ER,6 =

√︃
∆m2

SBL cos 2θ36
2ε

. (3.3.7)

The squared masses ∆m2
i− decouple in the high energy limit E ≫ ER,i and thus we study

the high energy behavior of ∆m2
i+. We �nd

lim
E→∞

m2
4+ ≈ 1

2

(︁
∆m2

LSND · cos 2θ14
)︁
, (3.3.8)

lim
E→∞

m2
5+ ≈ 1

2

(︁
∆m2

LSND · cos 2θ25
)︁
, (3.3.9)

lim
E→∞

m2
6+ ≈ 1

2

(︁
∆m2

LSND · cos 2θ36
)︁
. (3.3.10)

49



Chapter 3. Neutrino Oscillations with Altered Dispersion Relations

Therefore, the non-divergent mass-squared di�erences far above the resonance are

m2
5+ −m2

4+ ≈ ∆m2
LSND

2
(cos 2θ14 − cos 2θ25) , (3.3.11)

m2
6+ −m2

4+ ≈ ∆m2
LSND

2
(cos 2θ14 − cos 2θ36) , (3.3.12)

m2
6+ −m2

5+ ≈ ∆m2
LSND

2
(cos 2θ25 − cos 2θ36) . (3.3.13)

Eqs. (3.3.11) - (3.3.13) suggest that the additional oscillation mode at high energies arising
in the (3 + 1)ν+ADR model can be avoided if we require the mixing angles to be equal to one
another, i.e. θ14 = θ25 = θ36 ≡ θ. We call this scenario 'democratic mixing'. This mechanism
allows the oscillations at very high energies to remain the way they are predicted in the standard
3ν model. This behavior is illustrated in Fig. 3.2, where we schematically show the evolution
of the �avor content of the mass eigenstates in terms of the neutrino energy E.

νμνe ντ νs1

νs2

νs3

ν1

ν5

ν4

ν3

ν2

ν6

.

.

.

Δm21
2

Δm31
2

ΔmLSND
2

E

m2

E = 0 E→∞

Figure 3.2: Schematic overview of mass eigenstates and their �avor content depending on the neutrino
energy E.

Despite its desirable high energy limits, the (3+3)ν+ADR model with a universal potential
and democratic mixing is not able to solve the SBL anomalies. A major �aw of this setup is a
vanishing appearance amplitude for the excess region in the MiniBooNE experiment.

The general electron neutrino appearance probability in a muon neutrino beam in the case
of CP conservation is given by

Pνµ→νe = −4
∑︂
k>j

ŨµjŨµkŨejŨek sin
2

(︃
∆m̃2

kj

L

2E

)︃
, (3.3.14)
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where Ũ and m̃2 can be replaced with U and m2 below the resonance.
Since SBL experiments like LSND and MiniBooNE are designed to probe the high ∆m2

region, only terms where ∆m2 ≈ ∆m2
SBL must be considered. According to Eq. (3.3.2), these

mass-squared di�erences are ∆m2
4i,∆m

2
5i and ∆m2

6i, where i ∈ [1,2,3]. We can thus expand
and simplify the probability given in Eq. (3.3.14) and obtain the factorized form

Pνµ→νe ∼ −4 sin2
(︃
∆m2

SBL

L

2E

)︃⎛⎝ ∑︂
i=1,2,3

UµiUei

⎞⎠ ⎛⎝ ∑︂
j=4,5,6

UµjUej

⎞⎠ . (3.3.15)

For simplicity, we write the mixing matrix U in terms of U0, which is the 6× 6 enlargement

U0 =

(︃
USBL
3×3 03×3

03×3 13×3

)︃
(3.3.16)

of the unitary 3× 3 PMNS matrix, as

U6×6 = (U12U13U23)⏞ ⏟⏟ ⏞
U0

(U14U25U36)

= U0 ·

⎛⎜⎜⎜⎜⎜⎜⎝
cθ 0 0 sθ 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−sθ 0 0 cθ 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 cθ 0 0 sθ 0
0 0 1 0 0 0
0 0 0 1 0 0
0 −sθ 0 0 cθ 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 cθ 0 0 sθ
0 0 0 1 0 0
0 0 0 0 1 0
0 0 −sθ 0 0 cθ

⎞⎟⎟⎟⎟⎟⎟⎠
= U0 ·

(︃
cθ · 13×3 sθ · 13×3

−sθ · 13×3 cθ · 13×3

)︃
=

(︃
cθ · UPMNS

3×3 sθ · UPMNS
3×3

−sθ · 13×3 cθ · 13×3

)︃
, (3.3.17)

where cθ, sθ are the (co)sine functions of the universal mixing angle θ.
Besides the overall unitarity condition

∑︁6
k UµkUek = 0, the PMNS matrix UPMNS

3×3 is unitary
itself in the sense that

∑︁3
k U

PMNS
µk UPMNS

ek = 0 and thus both brackets in Eq. (3.3.15) vanish6.
In conclusion of the results obtained in this section, the (3 + 3)ν+universal ADR model

can avoid oscillations far above the resonance in a democratic mixing setup. However, the
same setup generates vanishing appearance probability at SBL experiments, which contradicts
the experimental data and nulli�es the main feature of the model. A realistic model therefore
requires a di�erent approach. In Section 3.3.2, we show that the issue of vanishing probability
can be resolved by assuming di�erent ADRs for each sterile neutrino.

3.3.2 (3 + 3)ν Model with Individual Potentials

Instead of assigning the same potential to all sterile neutrinos, there is a possibility to assign
individual potentials to each sterile neutrino7. This leads to di�erent resonance energies for dif-
ferent transitions. In the energy regime far above (or below) the resonances, however, the limits

6The bracket term is cos2 θ (U
PMNS,(µ row)
3×3 · UPMNS,(e row)

3×3 = 0), while the second bracket is

sin2 θ (U
PMNS,(µ row)
3×3 · UPMNS,(e row)

3×3 = 0).
7In the extra dimensional setup mentioned in Section 3.1, this is possible by binding each sterile neutrino to

a di�erent extra dimension.
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are independent of the resonance energies and the important features of the (3+3)ν+ADRmodel
are recovered. Further, we expect a non-vanishing transition probability at SBL experiments
due to the lack of exact unitarity cancellations in this setup.

We parametrize the e�ective, ubiquitous sterile neutrino potential as

Veff =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 η · εE 0 0
0 0 0 0 κ · εE 0
0 0 0 0 0 ξ · εE

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.3.18)

where η, κ and ξ are dimensionless scaling factors, controlling the relative size of the potentials.
Since one of these factors can in principle be absorbed into the de�nition of ε, we e�ectively
count two additional parameters compared to the setup in Section 3.3.1.

3.3.3 Below the Resonance

Additionally to the discussion about the high energy behavior of the model in Section 3.3.1,
we brie�y expand on the low energy limit in this section. This limit is especially interesting in
the context of reactor experiments, which use low energy electron anti neutrinos from nuclear
decays. Analogously to Eq. (3.3.15), we obtain

Pνe→νe ≈ 1− 4 sin2
(︃
∆m2

SBL

L

2E

)︃⎛⎝ ∑︂
i=1,2,3

U2
ei

⎞⎠ ⎛⎝ ∑︂
j=4,5,6

U2
ej

⎞⎠
≈ 1− 4 sin2

(︃
∆m2

SBL

L

2E

)︃
cos2 θ sin2 θ

≈ 1− sin2
(︃
∆m2

SBL

L

2E

)︃
sin2 2θ .

(3.3.19)

for the survival probability far below the resonance. This is the same expression obtained in
Eq. (2.1.20) for the minimal (3+1)ν scenario discussed in Section 2.1.4. Indeed, there are hints
in the data towards this kind of extra oscillation at low energies as suggested in Section 2.1.4
(see e.g. [99]).

Note, however, that this behavior only applies to energies far below the resonance. In the
intermediate ranges, where the e�ective ∆m2s are not relaxed to their respective limiting cases,
additional visible oscillation modes can in principle appear. This also applies to the high energy
behavior and is highly dependent on the choice of resonance energies.

In our phenomenological analysis in Section 3.3.4, we include a discussion about the oscil-
lation picture at short baseline reactor experiments like NEOS and DANSS and also the long
baseline reactor experiment KamLAND, comparing the numerically obtained oscillation prob-
ability of the (3+3)ν+ADR model with the simple (3+1)ν best �t oscillation probability from
global �ts.

3.3.4 Phenomenological Analysis

In this section, we present a numerical study of several benchmark points (BMPs) and show the
phenomenological features of the (3+3)ν+ADR model. We brie�y describe the behavior of the
e�ective mass-squared di�erences as a function of the neutrino energy for each BMP, allowing
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3.3. (3 + 3)ν Model

BSM Parameter BMP1 BMP2 BMP3 BMP4
∆m2

SBL 1.5 eV2 1.3 eV2 30 eV2 30 eV2

sin2 2θ 1 · 10−2 2 · 10−3 1 · 10−4 1 · 10−4

ε 8 · 10−18 1.5 · 10−17 3 · 10−16 3 · 10−16

η 1 10.9 10.1 100.9
κ 150 10.7 10 100.7
ξ 150 1 1 1

Table 3.1: Overview of the selection of BMPs chosen in this thesis.

us to extract intuitive information about the oscillation modes present in each energy regime.
Moreover, we focus mainly on the SBL appearance experiments LSND and MiniBooNE, the low-
energy disappearance experiments DANSS, NEOS and KamLAND, and the LBL accelerator
experiment T2K. We also look at probabilities at KARMEN as well as at general atmospheric
neutrino experiments (e.g. represented by IceCube and SK).

For the numerical analysis, we adopt the NO best-�t values from Table 2.1 for the standard
3ν PMNS parameters and mass-squared di�erences:

∆m2
21 = 7.42× 10−5eV2 , ∆m2

31 = 2.514× 10−3eV2 ,

sin2 θ12 = 0.304 , sin2 θ13 = 0.0222 , sin2 θ23 = 0.570. (3.3.20)

Throughout this analysis, we neglect CP -violating phases and matter e�ects for all SBL exper-
iments. However, we include them for LBL experiments and atmospheric experiments as they
tend to play a more pronounced role in these setups.

Interpreting the MiniBooNE excess found as a resonance at E ∼ O(100MeV), di�erent
combinations of three BSM parameters can accomplish ER ∼

√︁
cos 2θ∆m2

/ε. In this work, we
present a selection of four BMPs where ∆m2 = O(1 eV2) and ∆m2 = O(10 eV2). We discuss
phenomenological features of BMPs, aiming to provide the reader with an intuition of the
parameter space available. We present BMPs that both can and cannot provide a possible
explanation of the anomalies discussed in Section 2.1.38. Note that in the case of one of
the anomalies being a statistical �uctuation, an underestimation of a systematic error or not
well enough understood nuclear physics e�ects, this model might still be able provide a good
explanation for the global oscillation picture.

The BSM parameter choices of these BMPs are summarized in Table 3.1. Even though the
BMPs are far from exhausting the �ve-dimensional parameter space of the model presented,
they illustrate characteristic features and point out strategies to obtain a good �t to at least
some of the neutrino anomalies. A �t to global neutrino data requires access to proprietary
data of the experimental collaborations, which is beyond the scope of this work.

3.3.4.1 Oscillations at ∆m2
SBL

= O(1 eV2)

As indicated in Section 2.1.4, 1 eV2-oscillations are indicated individually by analyses of the
SBL and Gallium anomalies as well as the RAA. We present two BMPs and discuss their
viability.

8The authors of [181] study this scenario and illustrate that it is generally not easy to �nd a good �t by
hand. However, their analysis is restricted to a subset of the parameter space available.
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Benchmark Point 1 The BSM parameters of this BMP are listed in Table 3.1 and the
corresponding resonance energies are

ER,η = 303.1MeV,

ER,κ = 24.7MeV,

ER,ξ = 24.7MeV .

(3.3.21)

Figs. 3.4 and 3.3 show the oscillation probabilities for BMP 1 at SBL experiments KARMEN,
LSND and MiniBooNE plotted against the neutrino energy. We plot the probabilities of both
the standard 3ν paradigm (black) as well as the (3 + 3)ν+ADR model (red).
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Figure 3.3: Appearance (a) and disappearance (b) probabilities at MiniBooNE for BMP 1.
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Figure 3.4: LSND (a) and KARMEN (b) oscillation probabilities for BMP 1.

The oscillation probability at LSND features a resonant behavior, which we also �nd at
KARMEN. However, the amplitude of the resonance is one order of magnitude smaller than
the one featured at LSND. Since LSND reported on an excess whereas KARMEN did not,
this feature is expected from the . At MiniBooNE, a broad resonance at ∼ 250MeV is visible.
The suppression of νµ → νe appearance probability due to the decoupling of the sterile states
can be observed at energies ≳ 400MeV. Furthermore, MiniBooNE is not able to access lower
energies than 200MeV and thus the experiment cannot determine the broadness of the resonance
extending to lower energies.

While BMP 1 possibly provides a good �t to both LSND and MiniBooNE, it is already
excluded by reactor experiments such as KamLAND. As can be seen in Fig. 3.5, the main
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3.3. (3 + 3)ν Model

oscillation mode of the (3 + 3)ν+ADR model (red) di�ers heavily from the standard ∆m2
21

in the 3ν model (black), which is con�rmed by experimental data. It also di�ers from the
oscillation probability in the best �t, simple (3 + 1)ν scenario (blue), which features a slight
modulation with the additional ∆m2 = 1.3 eV2.

A better understanding of the oscillation modes present at each energy scale can be gained
from plotting all relevant mass-squared di�erences against the neutrino energy. In Fig. 3.6, we
present a logarithmic plot from low energies of 10−2MeV up to very high energies of 100GeV,
so that all relevant experiments are covered. We highlight the di�erent energy regions of the
experiments with a color code. The red region corresponds to the energy range of reactor and
gallium experiments, the yellow region represents LSND, while the green and purple regions
represent MiniBooNE and long baseline experiments, respectively.
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Figure 3.5: Disappearance probabilities at NEOS (a), KamLAND (b) and Daya-Bay (c) for BMP 1.
The blue curve shows the global best �t point for a 3+1-scenario for reactor and gallium experiments
found by [99] with ∆m2

BF = 1.3 eV2 and sin2 2θ14 = 0.01.

Although the equations developed in the Section 3.3.3 still hold at low energies, Fig. 3.6
shows that the e�ective mass-squared di�erences have not fully converged at E ∼ O(1MeV).
This is mainly due to the speci�c choice of resonance energies. However, an undesired kind of
level crossing occurs in this scenario, where the e�ective ∆m2 drops to zero and the convergence
behavior is signi�cantly disturbed.

55



Chapter 3. Neutrino Oscillations with Altered Dispersion Relations

10
-2

10
-1

1 10 10
2

10
3

10
4

10
5

E in MeV

10
3

10
2

10

1

10
-1

10
-2

10
-3

10
-4

10
-5

Dm
2

in eV
2

ÈDm21

2
È

ÈDm31

2
È

ÈDm41

2
È

ÈDm45

2
È

ÈDm56

2
È

ÈDm64

2
È

ÈDm42

2
È

ÈDm43

2
È

ÈDm52

2
È

ÈDm53

2
È

ÈDm62

2
È

ÈDm63

2
È

Figure 3.6: E�ective ∆m2 depending on the neutrino energy E for BMP 1. The colored regions
correspond to the energy ranges of certain experiments: red represents reactor and gallium experiments,
yellow represents LSND, green represent MiniBooNE and purple represents long baseline experiments.
The dashed black horizontal lines correspond to the standard ∆m2

21 and ∆m2
31 in the 3ν model.

This issue can be cured by re-ordering of the relative ADR parameters. In the case where
η > κ > ξ, a ∆m2 = 0 can be avoided at all energies and the convergence behavior can be
improved signi�cantly as can be seen in Fig. 3.7. On the other hand, Fig. 3.7 shows that BMP 1
is still not viable with re-ordered parameters, as convergence to the high and low energy limits
does not occur su�ciently fast. In order to increase the convergence, the mixing angle can e.g.
be decreased or the resonance energies can be chosen close to each other.
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Figure 3.7: E�ective ∆m2 depending on the energy E for BMP 1 with re-ordered ADR parameters
η > κ > ξ.

Benchmark Point 2 BMP 2 features the BSM parameters listed in Table 3.1 and the cor-
responding resonance energies are

ER,η = 62.9MeV,

ER,κ = 63.5MeV,

ER,ξ = 207.8MeV .

(3.3.22)

The corresponding |∆m2
ij(E)| are presented in Fig. 3.8.

This set of BSM parameters involves a mixing angle that is smaller by about one order of
magnitude compared to BMP 1. The oscillation probabilities at the reactor experiments shown
in Fig. 3.9 suggest that the (3 + 3)ν+ADR model replicates the (3 + 1)ν modulation favored
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Figure 3.8: E�ective ∆m2 depending on the energy E for BMP 2.

by gallium and reactor experiments because of the choice of ∆m2
SBL = ∆m2

BF@Ga/Reactor. This

is indicated by the results presented in Fig. 3.8, as ∆m2
21 completely converges to the standard

solar mass-squared di�erence in the reactor regime (red region) and thus the considerations
made in Section 3.3.3 apply.

At MiniBooNE, the resonance of the oscillation probability presented in Fig. 3.10, although
at the correct position at ∼ 250MeV, is heavily suppressed due to the small mixing angle and
the subsequently low sterile-to-active conversion rate. The probability at LSND resembles the
3ν model in this scenario, as shown in Fig. 3.11.
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Figure 3.10: Appearance (a) and disappearance (b) probabilities at MiniBooNE for BMP 2.

57



Chapter 3. Neutrino Oscillations with Altered Dispersion Relations

1 5 10
E in MeV

0.92

0.94

0.96

0.98

1.00
Pee

(a) Pνe→νe@NEOS

1 5 10
E in MeV

0.2

0.4

0.6

0.8

1.0
Pee

(b) Pνe→νe@KamLAND

5 10

E in MeV

0.85

0.90

0.95

1.00

Pee

3Ν

3+1ΝBF�Ga�Reactor

6Ν+ADR

(c) Pνe→νe@Daya-Bay

Figure 3.9: Disappearance probabilities at NEOS (a), KamLAND (b) and Daya-Bay (c) for BMP 2.
The blue curve shows the global best �t point for a 3+1-scenario for reactor and gallium experiments
found by [99] with ∆m2

BF = 1.3 eV2 and sin2 2θ14 = 0.01.
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Figure 3.11: LSND (a) and KARMEN (b) oscillation probabilities for BMP 2.

These considerations lead to the conclusion that BMP 2 cannot provide an explanation to
the SBL anomalies. However, this set of parameters can still function as a viable candidate for
a solution to the Ga/reactor anomaly, since Fig. 3.8 indicates that it is able to reconcile the low
energy (3 + 1)ν oscillation with the high energy 3ν oscillation pattern. We aim to verify this
claim by plotting the oscillation probability at LBL experiments like atmospheric experiments
as well as accelerator experiments such as T2K. In Figs. 3.12 and 3.13, we present both
appearance and disappearance probabilities. We employ the MCM density pro�le described in
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3.3. (3 + 3)ν Model

Section 2.1.2 for atmospheric upward-going neutrinos and a constant density pro�le of Earth's
crust with ρ ≈ 2.8 g/cm3.
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Figure 3.12: Disappearance and appearance probabilities of upward going neutrinos at atmospheric
experiments for BMP 2 , where L ∼ dEarth.

We �nd the oscillation probabilities of upward-going neutrinos at atmospheric experiments
to be in agreement with the 3ν paradigm. The T2K experiment, however, has an increased
potential to detect deviations of the ADR model from standard 3ν oscillations. This is due to
the comparably low peak energy of the accelerator's neutrino energy spectrum at E ∼ 600MeV.
Since we are inclined to locate the resonance energies at O(100MeV) by design of this model,
the convergence behavior of the mass-squared di�erence at these energies is best constrained by
the T2K experiment. The upper row of Fig. 3.13 shows a signi�cant deviation on the level of
the oscillation probability at T2K. However, the probability is not directly accessible because
of the discrete energy resolution of the experiments. Within the �nite energy bins, one typically
encounters an averaging e�ect. We provide a plot of energy-binned versions T2K with a bin size
of 200MeV in the second row of Fig. 3.13. The individual bins do not show a strong deviation
of the (3+ 3)ν+ADR model from the standard 3ν one. This is especially true when we remind
ourselves that the statistics of accelerator neutrinos with energies below the peak energy is
strongly diminished. We argue that the averaging e�ect opens an interesting window for an
interpretation of results but we acknowledge that a dedicated �t of this model to the T2K data
is necessary to place �nal judgment on this issue.
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Figure 3.13: Disappearance a) and appearance b) probabilities at T2K for BMP 2 and their corre-
sponding binned versions c) and d) with a bin-size of 200MeV. The grey line indicates the peak energy
of the accelerators neutrino spectrum.

3.3.4.2 Oscillations at ∆m2
SBL

= O(10 eV2)

In this section, we study the regime where ∆m2 = O(10 eV2). We present two BMPs, which
provide a resonance at MiniBooNE while simultaneously aiming to respect bounds of LBL and
low energy disappearance experiments. To ensure that the resonance energy for MiniBooNE
stays at ∼ 250MeV, the mixing angle θ is chosen smaller than in Section 3.3.4.1 according to
Eq. (3.3.7).

Benchmark Point 3 The BSM parameters of BMP 3 are listed in Table 3.1 and the resonance
energies in this scenario are

ER,η = 70.3MeV,

ER,κ = 70.7MeV,

ER,ξ = 223.6MeV .

(3.3.23)

The corresponding mass-squared di�erences are shown in Fig. 3.14.
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Figure 3.14: E�ective ∆m2 depending on the energy E for BMP 3.

In this scenario, all level crossings happen considerably fast in comparison with ∆m2 ∼
O(1eV2) due to the small mixing angle, leading to a steep slope of |∆m2(E)| around the res-
onance energies. This behavior thus induces very distinct resonance peaks of the oscillation
probability at SBL appearance experiments at these level crossings. Note that the BMP pre-
sented here does not aim to solve the LSND anomaly as the resonance energies are not in the
required energy range but slightly above (see Fig. 3.16). However, at MiniBooNE we �nd a
distinct resonance with signi�cant amplitude at E ∼ 220MeV (see Fig. 3.15).
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Figure 3.15: Appearance (a) and disappearance (b) probabilities at MiniBooNE for BMP 3.
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Figure 3.16: LSND (a) and KARMEN (b) oscillation probabilities for BMP 3.
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The bounds on the mixing matrix element |Ue4| are respected as suggested by the oscillation
probabilities at reactor experiments plotted in Fig. 3.17. Generally, the (3+3)ν+ADR scenario
behaves like a (3 + 1)ν scenario with weak mixing as is expected from Fig. 3.14. At NEOS
and Daya-Bay, the 'extra' oscillation is hardly di�erentiable from the 3ν scenario because of
the small amplitude of the modulation. Since KamLAND o�ers a larger base length, the
di�erences between the (3 + 3)ν+ADR and 3ν models is slightly more pronounced.
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Figure 3.17: Disappearance probabilities at NEOS (a), KamLAND (b) and Daya-Bay (c) for BMP 3.
The blue curve shows the global best �t point for a 3+1-scenario for reactor and gallium experiments
found by [99] with ∆m2

BF = 1.3 eV2 and sin2 2θ14 = 0.01.

The upward-going neutrino channel at atmospheric experiments, depicted in Fig. 3.18, is in
good agreement with the standard 3ν oscillation probability. This is a similar trait compared
to BMP 2. Another similarity is that averaging e�ects at T2K are able to conceal the e�ects
of the ADR in the energy region 200 ≲ E ≲ 600MeV. This can be seen in Fig. 3.19.
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Figure 3.18: Disappearance and appearance probabilities of upward going neutrinos at atmospheric
experiments for BMP 3 , where L ∼ dEarth.
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Figure 3.19: Disappearance a) and appearance b) probabilities at T2K for BMP 3 and their corre-
sponding binned versions c) and d) with a bin-size of 200MeV. The grey line indicates the peak energy
of the accelerators neutrino spectrum.

Benchmark Point 4 For BMP 4, we choose the BSM parameters listed in Table 3.1 and the
corresponding resonance energies are

ER,η = 22.3MeV,

ER,κ = 22.3MeV,

ER,ξ = 223.6MeV .

(3.3.24)
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The mass-squared di�erences obtained in this scenario are shown in Fig. 3.20.
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Figure 3.20: E�ective ∆m2 depending on the energy E for BMP 4.

Conversely to BMP 3, this scenario features a resonance energy in the LSND range as well
as MiniBooNE. KARMEN, as discussed for BMP 1, mirrors the narrow resonance behavior of
LSND with ca. 10% of the amplitude. The oscillation probabilities of the SBL experiments are
presented in Figs. 3.22 and 3.21. Moreover, the resonance at MiniBooNE is also narrow due to
the miniscule mixing angle.
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Figure 3.21: Appearance (a) and disappearance (b) probabilities at MiniBooNE for BMP 4.
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Figure 3.22: LSND (a) and KARMEN (b) oscillation probabilities for BMP 4.
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Due to the level crossing at E ∼ 25MeV, the convergence in the range of E ∼ 5 -10MeV is not
as unobstructed as it is in BMP 3. Thus, the oscillation probabilities at reactor experiments,
shown in Fig. 3.23, do not closely resemble the simple (3 + 1)ν scenario. At Daya-Bay, for
example, the (3 + 3)ν+ADR average follows the (3 + 1)ν average. This way, a simple (3 + 1)ν
scenario can be mimicked at an experiment like Daya-Bay and KamLAND, while the 3ν is
resembled e.g. at NEOS.
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Figure 3.23: Disappearance probabilities at NEOS (a), KamLAND (b) and Daya-Bay (c) for BMP 4.
The blue curve shows the global best �t point for a 3+1-scenario for reactor and gallium experiments
found by [99] with ∆m2

BF = 1.3 eV2 and sin2 2θ14 = 0.01.

The behavior at T2K and atmospheric experiments is the same as in the case of BMP 3.
While atmospheric oscillations are the same as they are in the 3ν model, the T2K probability
features fast oscillations which are averaged over the size of an energy bin. The numerical
results are shown in Figs. 3.24 and 3.25.
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Figure 3.24: Disappearance and appearance probabilities of upward going neutrinos at atmospheric
experiments for BMP 4 , where L ∼ dEarth.
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Figure 3.25: Disappearance a) and appearance b) probabilities at T2K for BMP 4 and their corre-
sponding binned versions c) and d) with a bin-size of 200MeV. The grey line indicates the peak energy
of the accelerators neutrino spectrum.

3.3.5 Open Questions

In Section 3.3.4 we discussed that the proposed (3 + 3)ν+ADR model recovers 3ν oscillations
far above the resonance energies. However, due to the resonance at around 200MeV inspired
by the MiniBooNE result, the convergence of the e�ective mass-squared di�erences in the
sub-GeV range at LBL experiments is not completed entirely. Thus, slight deviations from
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Figure 3.26: Probabilities for downward-going neutrinos at atmospheric neutrino experiments that
highlight the Sub-GeV to ∼ 100GeV region.

the 3ν oscillation pattern can potentially arise. While the upward-going neutrino channels at
atmospheric neutrino experiments like IceCube and SK are unperturbed due to the relatively
strong matter e�ects within the earth that push the ∆m2s towards faster convergence, the
downward-going neutrinos do not experience such e�ects.

The oscillation probabilities in this energy regime are presented in Fig. 3.26 for the BMPs
3 and 4. We show both the disappearance and appearance probabilities in comparison to each
other. Due to the nature of fast oscillations, we also present a binned version of Fig. 3.26
in Fig. 3.27. The (3 + 3)ν+ADR model indeed deviates from the simple 3ν pattern in the
low sub-GeV range. However, at this stage, we contain ourselves from judging about whether
the predicted oscillation patterns are excluded by current experiments. The exclusion limits
proposed in the literature concerning the simple (3 + 1)ν model, analyzed in e.g. [182, 183],
cannot be congruently applied for this model. Moreover, the energy spectra of neutrinos from
recent analyses (e.g. [184]) indicate that there is very little statistics in the energy range below
200MeV at SK. Additionally, a recent IceCube analysis [185] found hints towards an additional
∆m2 ∼ 8 eV2 oscillation. This might represent a slight indication of a deviation from the 3ν
picture in the present data. Whether or not this model �ts the atmospheric and accelerator
data as well as the 3ν model in the sub-GeV region can be determined in a dedicated �t to the
collaborations' data.

Furthermore, the CMB measurement is able to put bounds on the presence of eV-scale
sterile neutrinos in the early universe in the framework of standard cosmology. As discussed in
Section 2.3.1, the relativistic degrees of freedom g∗(T ) present during the radiation dominated
era change the Hubble parameter H ∼

√︁
g∗(T ). More signi�cantly, they can consequently

in�uence the ratio abundances of light elements, which is well modeled by the standard theory
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Figure 3.27: Probabilities for downward-going neutrinos at atmospheric neutrino experiments with
�nite energy resolution. Bin size is 200MeV.

of BBN. Another constraint from the CMB measurement is the sum of the neutrino masses∑︁
imi < 0.12 eV, which is one order of magnitude below the eV scale.

As proposed in [166] and further studied in [171, 186], ADR scenarios e�ectively suppress
the mixing of active and sterile neutrinos at energies above the resonance. This can act as
a suppression mechanism of sterile neutrinos populations in the early universe. However, in
the simplest resonance suppression scenario the resonance energies discussed in this work are
too large in order to avoid a sterile neutrino population at the energy scales relevant for BBN
and neutrino decoupling. Besides these concerns, it is conceivable that the ADR depends on
temperature and density, as e.g. in extra-dimensional ADR models where the entries of the
stress-energy tensor in the EFE obtain additional terms due to the large radiation density
in the early universe. The resulting modi�cations in the metric can ultimately in�uence the
dispersion relation and may help suppress the production of sterile neutrinos below the MeV
scale. This mechanism is, however, strongly model dependent and not discussed in more detail
in this thesis.

Furthermore, it was shown that large relic neutrino asymmetries of Lν = (Nν−Nν̄)/Nγ ≳ 10−5

in the early universe can reconcile the simple sterile neutrino hypothesis with BBN bounds [187].
This is also consistent with the naïve bound of Lν ≲ 103 from the upper limit on the universe's
total energy density. Combining this mechanism with an ADR suppression mentioned above
can possibly open large parts of the parameter space without obstructing successful BBN.
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3.4. Summary

BMP MiniBooNE LSND Ga/Reactor Consistency with HE constraints
BMP1 ✓ ✓ ✗ ✗
BMP2 ✗ ✗ ✓ ✓
BMP3 ✓ ✗ ✗ ✓
BMP4 ✓ ✓ ? ✓

Table 3.2: Overview of the phenomenological achievements of the BMPs chosen in this thesis. Ticks
indicate that the BMP possess the main feature for a solution and crosses indicate that the model is
ruled out.

3.4 Summary

In this work, we developed a (3+ 3)ν framework with an altered dispersion relation in order to
explain combinations of the LSND, MiniBooNE, Reactor and Gallium anomalies.

We discussed the fatal �aws in the constructions of (3+1)ν+ADR and (3+3)ν++universal
ADR models, leading to the proposed (3 + 3)ν+individual ADRs model.

In a (3 + 1)ν+ADR model, a relic oscillation at high energies persists although the pre-
dominantly sterile state decouples far above the resonance, ruling out the model due to non-
observation of such a fast oscillation at atmospheric and LBL accelerator experiments.

To cure the issue of high energy relic oscillations, we �rst presented a (3 + 3)ν model with
a universal ADR for all sterile states. We chose the respective mass di�erences of the six mass
eigenstates to lie within two sets of the same mass di�erences found in the 3ν model. We found
that no relic oscillation at high energy occurs if a democratic mixing scenario is employed,
where the mixing angles θ41, θ52, θ63 are chosen to be the same. Due to an e�ective symmetric
�avor swapping between the set of mass eigenstates that are predominantly sterile and the set
of predominantly active mass eigenstates at the resonance, the 3ν mass-squared di�erences are
preserved and the standard oscillation pattern re-emerges.

However, the main motivation for this work, a resonant neutrino oscillation solution of the
SBL anomalies, is unattainable in such a scenario, since the oscillation probability at these
experiments is miniscule due to unitarity cancellations. This fact led us to a modi�cation of the
model, allowing individual potentials for each sterile state. Subsequently, the modi�cation led
to di�erent resonance energies, e�ectively lifting unitarity conditions that induce the vanishing
of the amplitude at SBL experiments. The (3 + 3)ν+ individual ADRs model possesses the
same behavior far above the resonances and thus does not su�er from the �aws of the (3 + 1)ν
model. It can also mimic a simple (3 + 1)ν model at low energies, which proves to be favored
by current global �ts to low energy reactor and gallium experiments.

We presented di�erent BMPs that point out characteristic features of the model in the ex-
tended parameter space. While we did not present a parameter con�guration which can explain
all anomalies at once, resigning either the Ga-/Reactor-, LSND- or MiniBooNE anomaly can
complete the rest of the picture. The achievements of each BMP are summarized in Table 3.2.

While it is possible that the various neutrino anomalies are due to our limited understanding
of experimental backgrounds, this BSM scenario is testable by the upcoming MicroBooNE
experiment, and may be observed �rst in sub-GeV atmospheric neutrino data.
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Chapter 4

Fermionic Singlet Dark Matter in

One-Loop Solutions to the RK
Anomaly: A Systematic Study

In this chapter, we present a systematic study of the DM phenomenology of the model class
proposed in Reference [48], addressing the RK (and also (g − 2)µ) anomaly at one-loop level.
We focus on models with fermionic singlet DM candidates and examine the compatibility of
a solution to the RK anomaly with bounds from DD and achieving the observed DM relic
density (RD). The results of this work are published in [2] 1.

We structure this chapter in the following way: In Section 4.1, we review the model class
presented in [48] and discuss constraints on the relevant couplings in Section 4.2. In Section 4.3,
we brie�y discuss the DM phenomenology of this model. We present the results of the numerical
study in Section 4.4 and summarize them in Section 4.5.

4.1 The Model

Reference [48] analyzes a class of models introducing three new BSM �elds that contribute to
b → sµµ transitions at one-loop level. These new �elds can also add sizable contributions to
the anomalous magnetic moment of the muon ((g − 2)µ). The authors �nd that 48 di�erent
charge assignments can be made for the BSM �eld, allowing gauge group representations as far
as the adjoint representation. The BSM particle content is implemented in two di�erent ways.
Realization a contains two scalars, ϕQ and ϕL, and one vector-like fermion ψ. Realization b on
the other hand features one scalar �eld ϕ and two vector-like fermionic �elds, ψQ and ψL. The
indices Q and L indicate that these �elds couple directly only to quarks or leptons, respectively,
while the indexless �elds have couplings to both types of SM fermions. The Lagrangians of both
model realizations read

La
int = ΓQiQ̄iPRψϕQ + ΓLiL̄iPRψϕL + h.c. (4.1.1)

Lb
int = ΓQiQ̄iPRψQϕ+ ΓLiL̄iPRψLϕ+ h.c. , (4.1.2)

1Two of the ten model studies presented in this work were also published in one of my collaborators' PhD
thesis [188].
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Figure 4.1: Box diagram contributions to O9/O10. a and b denote the di�erent model realizations
described by the Lagrangians in Eq. (4.1.1) and 4.1.2.

where Li and Qi are the left-handed lepton/quark doublets and i denotes the �avor index. Note
that the Lagrangians in Eqs. (4.1.1) and (4.1.2) indicate that the BSM �elds only couple to
left-handed fermions of the SM. This feature is motivated by the fact that a scenario, where
the Wilson coe�cients C9 and C10 of the operators

O9 = (s̄γνPLb)(µ̄γνµ), O10 = (s̄γνPLb)(µ̄γνγ
5µ) (4.1.3)

ful�ll the requirement C9 = −C10, is one of the scenarios preferred by global �ts to LFUV data
(see e.g. [189, 190]). The operators are part of the operator basis that makes up the e�ective
Hamiltonian

Hb→sµµ
e� = −4GF√

2
VtbV

∗
ts

αem
4π

∑︂
CiOi . (4.1.4)

This condition corresponds to a vector−axial-vector structure reproduced by couplings that are
proportional to the left-handed chiral projector PL. In this model, the operators obtain their
main contribution from box diagrams depicted in Fig. 4.1. The contributions of photon penguin
diagrams are demonstrated to be small in [48], so that C9 ≈ Cbox

9 .
An important part of the coupling structure are the gauge group representations of the BSM

�elds. Table 4.1 presents all possible charge assignments up to the adjoint representation. Apart
from the above mentioned realization type, which is denoted by a lower case Latin letter a or
b, a model is classi�ed by a roman numeral I-VI, which describes the SU(2)L-representations
of the BSM �elds and a capital Latin letter A-D specifying the representations under SU(3)C .
For example, the model aIA contains the �elds ψ = (1,1)X , ϕL = (1,2)−X−1/2, ϕ = (3,2)−X+1/6.
The possible combinations of these categories thus amount to 2 × 6 × 4 = 48 di�erent charge
assignments.

Regarding the U(1)Y charge, Table 4.1 contains a free parameter X, which is de�ned as the
hypercharge of ψ in model realization a or the negative hypercharge of ϕ in realization b. This
parameter is w.l.o.g. chosen in units of 1/6 in the interval X ∈ [−1,1].

Since we are only interested in models containing a single particle DM candidate, which
has to be colorless and electrically neutral, the SU(3)C-representations of the categories C and
D can be omitted from our analysis, since they do not contain a singlet representation. This
requirement therefore e�ectively halves the number of viable models. Table 4.2 lists all models
that contain a possible singlet DM candidate2. Since the fermionic singlet can either have Dirac
or Majorana nature, 5 × 2 = 10 di�erent models are studied in this work. Note that all BSM
particles are assigned an odd charge under a discrete, DM-stabilizing Z2 symmetry, while SM
particles are even.

2The model only contains a singlet if the parameter X is chosen such that the hypercharge of the DM
candidate vanishes.
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SU(2)L ϕQ,ψQ ϕL,ψL ψ,ϕ

I 2 2 1

II 1 1 2

III 3 3 2

IV 2 2 3

V 3 1 2

VI 1 3 2

SU(3)C
A 3 1 1

B 1 3 3

C 3 8 8

D 8 3 3

Y
1/6 ∓X −1/2 ∓X ±X

Table 4.1: All possible choices for the combinations of representations of the BSM particles. The
upper sign of ± belongs to a-type models, the lower to b-type models. The electric charge can be
determined via Q = T3 + Y , where T3 is the third component of the weak isospin.

fermionic singlet scalar singlet
aIA aIIA
bIIA aIIB
bIIB aVA
bVA aVIB
bVIB bIA

Table 4.2: Models containing a singlet DM candidate. Only the models containing a fermionic singlet
DM candidate, highlighted in red, are considered in this thesis.

4.2 Constraints on Couplings

In this section, we discuss the constraints on the couplings introduced in this model class. We
consider the implications of the RK and (g−2)µ observables on the BSM Yukawa couplings ΓQi
and ΓLi as well as constraints for parameters of the extended scalar potential from requirements
of vacuum stability and perturbativity.

4.2.1 Constraints on the BSM Yukawa

First of all, we assume that BSM Yukawa couplings Γd and Γe to the �rst generation are
negligibly small3. This is a phenomenologically-driven feature, as it facilitates the explanation
of RK while simultaneously weakening mass bounds on BSM particles from colliders. Further
following [48], we �nd the Wilson coe�cients from the box diagram to be

Cbox,a/b9 = −Cbox,a/b10 ∼ ΓsΓ
∗
b |Γµ|2

M2
ψ/ϕ

. (4.2.1)

3Note that the couplings Γd,s,b are understood in the mass eigenbasis, while the couplings in Eqs. (4.1.1)
and (4.1.2) are de�ned in the weak eigenbasis and can therefore be related via CKM rotations.
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Figure 4.2: Box diagram contributions to B-B̄ mixing. a and b denote the di�erent model realizations.

The full expressions for the Wilson coe�cients can be found in Appendix B. Global EFT �ts
[190] to the LFUV data constrain C9 = −C10 to be

C9 = −C10 ∈ [−0.46,− 0.29] (4.2.2)

at the 2σ level. However, additional constraints on the couplings come from B-B̄ meson mixing,
which also receives contributions from box diagrams shown in Fig. 4.2 in this model. As this
process does not involve leptons, the Wilson coe�cient CBB̄ , which is de�ned as the coe�cient
of the only operator of

He�
BB̄ = CBB̄ (s̄αγ

νPLbα) (s̄βγνPLbβ) , (4.2.3)

is only proportional to the quark BSM Yukawas as

Ca/b
BB̄

∼ (ΓsΓ
∗
b)

2

M2
ψ/ϕ

, (4.2.4)

where the current bounds at 2σ are [191]

CBB̄ ∈ [−2.1,0.6] · 10−5TeV−2 . (4.2.5)

With these premises, we can place an upper bound on the product of the quark Yukawas
ΓsΓ

∗
b from B-B̄ mixing and use this to construct a lower bound on the leptonic coupling Γµ.

These constraints are of the form

ΓsΓ
∗
b ≤ Bmodel

bs (κ)
MDM

GeV
, (4.2.6)

Γµ ≥ Bmodel
µ (κ)

√︃
MDM

GeV
, (4.2.7)

where Bmodel
µ/bs (κ) are model dependent coe�cient functions. These functions are listed in Table 2

in Appendix B for each model .
Additionally, this model can induce sizable contributions to ∆aµ = (g−2)µ/2 via the diagrams

depicted in Fig. 4.3 4. These contributions generally scale like

∆aa/bµ ∼
m2
µ|Γµ|2

M2
ψ/ϕ

. (4.2.8)

4Models that are similar to this setup can overcome parts of suppression with the small lepton mass e.g. by
introducing a fourth BSM �eld ψ′/ϕ′ that mixes with ψ/ϕ and induces a chirality �ip in the loop [192].
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Figure 4.3: Loop diagram contributions to (g− 2)µ in this model. a and b denote the di�erent model
realizations.

Recently, the g − 2 collaboration reported on a combined 4.2σ deviation of the measurements
at Fermilab and BNL from the theoretical value obtained in the SM, where the di�erence
∆aµ ≡ ∆aExpµ −∆aSMµ amounts to [56]

∆aµ = (251± 59) · 10−11 . (4.2.9)

This automatically translates into a DM mass dependent bound on the muon BSM Yukawa
coupling Γµ. These bounds are also model dependent and are summarized in Table 3 in Ap-
pendix B.

We assume the non-DM BSM particles to be mass degenerate and we further introduce the
dimensionless mass gap parameter

κ =

⎧⎨⎩
MϕQ/Mψ = MϕL/Mψ, in a-type models
MψQ/MψL

= Mϕ/MψL
, in ψL-DM b-type models

MψL/MψQ
= Mϕ/MψQ

, in ψQ-DM b-type models ,
(4.2.10)

which quanti�es the the ratio between non-DM BSM- and DM particles in the model. As we
mentioned earlier, our focus is on single-component fermionic singlet DM. To achieve this, we
require the non-DM BSM particles to decay su�ciently fast. Therefore, the decay rate of these
particles has a lower bound, which in turn translates to the condition [193]

(κ− 1)MDM > mπ . (4.2.11)

4.2.2 Constraints on Parameters of the Scalar Potential

Depending on the model realization, the scalar sector of the SM is extended by one (b) or two (a)
scalar �elds. With this extension, the scalar potential obtains additional mass and interaction
terms, which introduce new mass parameters µi and quartic couplings λi. To preserve the DM
stabilizing Z2-symmetry, we assume that no other scalar �eld than the SU(2)L-doublet scalar
�eld H acquires a vev. Throughout all our calculations, we demand perturbativity of all quartic
couplings, which leads to

|λi|≤ (4π)2 . (4.2.12)

We also restrict ourselves to models that respect vacuum stability at tree-level. This condition,
however, is dependent on the �eld content of the model and thus we have to carry out a case
analysis regarding the model realizations a and b.
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a-Type Models Compared to the SM, a-type models feature two additional scalar �elds.
The most general scalar potential in this scenario is therefore

Vscalar =µ
2
HH

†H + µ2
ϕQϕ

†
QϕQ + µ2

ϕLϕ
†
LϕL

+ λH
(︁
H†H

)︁2
+ λϕQ

(︂
ϕ†QϕQ

)︂2
+ λϕL

(︂
ϕ†LϕL

)︂2
+ λϕQ,H,1

(︂
ϕ†QϕQ

)︂ (︁
H†H

)︁
+ λϕL,H,1

(︂
ϕ†LϕL

)︂ (︁
H†H

)︁
+ λϕQ,H,2

(︂
ϕ†QH

)︂ (︁
H†ϕQ

)︁
+ λϕL,H,2

(︂
ϕ†LH

)︂ (︁
H†ϕL

)︁
+ λϕL,ϕQ,1

(︂
ϕ†LϕL

)︂(︂
ϕ†QϕQ

)︂
+ λϕL,ϕQ,2

(︂
ϕ†LϕQ

)︂(︂
ϕ†QϕL

)︂
+

[︃
λϕQ,H,3

(︂
ϕ†QH

)︂2
+ h.c.

]︃
+

[︃
λϕL,H,3

(︂
ϕ†LH

)︂2
+ h.c.

]︃
+

[︃
λϕL,ϕQ,3

(︂
ϕ†QϕL

)︂2
+ h.c.

]︃
.

(4.2.13)

Adopting the limits from [194], the vacuum stability bounds at tree-level for this kind of po-
tential read

λH ,λϕQ ,λϕL > 0 (4.2.14)

λϕL,ϕQ,1 + λϕL,ϕQ,2 > −2
√︂
λϕQλϕL

λϕL,H,1 + λϕL,H,2 > −2
√︁
λHλϕL

λϕQ,H,1 + λϕQ,H,2 > −2
√︂
λϕQλH⃓⃓

λϕL,ϕQ,3
⃓⃓
< |λα| , |λα,β,i| (4.2.15)

where α ∈ [ϕQ, ϕL, H] and i ∈ [1,2,3]. Note that the assumption of mass degeneracy in the
non-DM dark sector requires the Higgs portal couplings λϕL,H,2 and λϕQ,H,2 to vanish, as they
contribute unevenly to the masses of the scalar degrees of freedom after EWSB. Moreover,
for the Z2-symmetry to be intact after EWSB, we require the other Higgs portal couplings to
satisfy the condition

λϕL,H,1, λϕQ,H,1 <
2

v2
κ2M2

DM . (4.2.16)

b-Type Models In b-type models, there exists another scalar doublet ϕ in addition to H.
The most general form of the scalar potential in this realization is consequently

Vscalar =µ
2
HH

†H + µ2
ϕϕ

†ϕ+ λH
(︁
H†H

)︁2
+ λϕ

(︁
ϕ†ϕ

)︁2
+ λϕ,H,1

(︁
ϕ†ϕ

)︁ (︁
H†H

)︁
+ λϕ,H,2

(︁
ϕ†H

)︁ (︁
H†ϕ

)︁
+
[︂
λϕ,H,3

(︁
ϕ†H

)︁2
+ h.c.

]︂
.

(4.2.17)

We apply the vacuum stability limits of [195, 196], leading to the conditions

λϕ,λH > 0,

λϕ,H,1 > −2
√︁
λϕλH ,

λϕ,H,1 + λϕ,H,2 − |2λϕ,H,3| > −2
√︁
λϕλH . (4.2.18)
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Similarly to a-type models, we require the Higgs portal couplings to allow for mass degen-
eracy of the non-DM BSM particles and preserve the DM-stabilizing Z2. We obtain

λϕ,H,1 <
2

v2
κ2M2

DM (4.2.19)

λϕ,H,2 = 0 . (4.2.20)

Note that since the Higgs portal term that is proportional to λϕ,H,3 vanishes in all models of our
setup, we cannot create neutrino masses via the scotogenic radiative mass mechanism discussed
in Section 2.2.4.

4.3 Dark Matter Phenomenology

In this section, we discuss estimates for DM observables in this model class. We can subdivide
the models into three classes by their couplings to the SM particles: leptophilic, quarkphilic
and amphiphilic. The full numerical results obtained with micrOMEGAs 5.0 are presented in
Section 4.4.

4.3.1 Relic Density

As indicated in Eq. (2.3.39), the dark matter relic density (DMRD) is related to the e�ective
annihilation cross section σe� of DM5. This cross section can be characterized solely by direct
annihilations of DM particles or can alternatively receive large contributions from coannihila-
tions of heavy dark sector particles, sometimes called coannihilation partners, in the case of a
mass gap κ ≲ 1.2. In some parts of the parameter space, these coannihilations can even become
the dominant annihilation channels. If we assume that conversions among dark sector particles
are e�cient during freeze out and non-DM dark sector particles decay fast enough, it is possible
to reduce the system of coupled Boltzmann equations to a single, e�ective Boltzmann equation.

dYDM
dx

= −
√︃

π

45

MPlMDM g
1
2

∗,e�

x2
⟨σe�v⟩

(︂
Ỹ

2 − (Ỹ
eq
)2
)︂
, (4.3.1)

which is of the form described in Eq. (2.3.27) and where the overall yield Ỹ is de�ned as

Ỹ
eq

=

{︄ ∑︁
i=ϕL,ϕQ,ψ

Y eq
i , for a-type models∑︁

i=ψL,ψQ,ϕ
Y eq
i , for b-type models ,

(4.3.2)

depending on the particle content of the model. The individual equilibrium yields can be
expressed as

Y eq
DM =

90

(2π)
7
2

gDM
g∗s

x
3
2 exp (−x) , (4.3.3)

Y eq
non-DM =

90

(2π)
7
2

gnon-DM
g∗s

(κx)
3
2 exp (−κx) , (4.3.4)

5Since the main interest of this work is the compatibility of DM with the RK results, we require the muon
BSM Yukawa coupling to be relatively large and thus DM is necessarily thermally produced via the freeze out
mechanism.
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where g(non-)DM is the sum of degrees of freedom of (non-)DM particles. The e�ective thermally
averaged cross section ⟨σe�v⟩ is described by the sum of the averaged cross sections of the
various annihilation channels weighted by the ratio of the individual equilibrium densities and
the summed equilibrium densities (see Eq. (2.3.43)).

In general, the DMRD is calculated numerically by solving the e�ective Boltzmann equa-
tion described in Eq. (4.3.1). In our setup, the heavier dark sector particles can have all
sorts of representations under the SM gauge groups and can thus interact e.g. with gluons,
EW vector bosons and the Higgs. These interactions can contribute to a large degree in coan-
nihilation scenarios. In this work, we calculate the DMRD via the C++-based package mi-
crOMEGAs [125, 126], which in turn calculates all particle physics matrix elements with the
inbuilt calcHEP package [197]. The calcHEP model �les are created with the calcHEP
interface of FeynRules [198, 199].

However, in the simple case where there are there are only negligible contributions from
coannihilations, the DMRD can be estimated from the leading order velocity contribution of
the annihilation cross section of direct annihilations of DM6. Since we only consider fermionic
singlet DM candidates, these direct annihilations are mediated by Yukawa interactions, which
involve the new BSM Yukawa couplings Γi. Assuming that the DM particle is heavier than
SM fermion pair that it annihilates into, we can express the leading order contribution to the
thermally averaged cross section as

σe�,0 =
1

4πM2
DM

1

(1 + κ2)
2

[︂
Cml Γ4

µ + 3Cmq
(︁
Γ2
b + Γ2

s

)︁2]︂
×
{︃ 1

4 , for Dirac DM(︁
1 + κ4

)︁ (︁
1 + κ2

)︁−2
, for Majorana DM ,

(4.3.5)

where σe�,0 is de�ned as the leading order coe�cient of an expansion of ⟨σe�v⟩ in inverse powers
of x (as discussed in Section 2.3.2) and Cml/q are model dependent coe�cients. The coe�cients

CbIIB
l , CbVIB

l , CbIIA
q , and CbVA

q vanish, while the remaining six coe�cients are equal to 1.
Requiring the generation of the observed DMRD, we �nd the expression

[︂
Cml Γ4

µ + 3Cmq
(︁
Γ2
b + Γ2

s

)︁2]︂ ≈ 1.65 · 10−7

(︃
MDM

GeV

)︃2

×

{︄ (︁
1 + κ2

)︁2
, for Dirac DM

5.6
(︁
1 + κ4

)︁−1 (︁
1 + κ2

)︁4
, for Majorana DM .

(4.3.6)

Examining the properties of these considerations for di�erent models, we �nd three di�erent
subclasses, leptophilic, quarkphilic and amphiphilic which can be characterized as the following

1. Leptophilic DM (bIIA,bVA)
In this scenario Eq. (4.3.6) results in a scaling behavior Γµ = BmRD (κ)

√︁
MDM/GeV, where

BmRD (κ) is a model-dependent coe�cient function. A comparison of this result with the
lower bound on Γµ for a successful explanation of the RK anomaly, given in Eq. (4.2.7),
leads to a lower bound on the mass gap parameter κ > κm0 for a possible simultaneous
explanation of RK and DM of

κbIIA,Dir0 ≈ 11.8 , κbIIA,Maj
0 ≈ 4.7 , κbVA,Dir0 ≈ 26.5 , κbVA,Maj

0 ≈ 10.9 (4.3.7)

6Note further that in the case of Dirac DM, the relic density is given by the sum of particle and antiparticle
contributions
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2. Quarkphilic DM (bIIB,bVIB)
In this subclass, the observed DMRD is achieved for

(︁
Γ2
s + Γ2

b

)︁
∼ BmRD (κ)MDM/GeV. The

product of Γs and Γb is constrained from above by B − B̄-mixing, given in Eq. (4.2.6).
The annihilation cross section is proportional to the sum Γ2

s + Γ2
b and can therefore not

be constrained from B-B̄ mixing, since either the second or third generation coupling
can be chosen arbitrarily small. However, we obtain an upper bound on the annihilation
cross section by setting Γs ∼ 0 and Γb = 4π at its perturbative limit 7. We �nd MDM ≤
16π2 · [BmRD (κ)]

−1 GeV. For the four di�erent con�gurations we �nd

MbIIB
DM,max =MbVIB

DM,max ≈ 674TeV

1 + κ2
, MbIIB,Maj

DM,max =MbVIB,Maj
DM,max ≈ 254TeV

√
1 + κ4

(1 + κ2)
2

(4.3.8)

3. Amphiphilic8 DM (aIA)
In this subclass, both couplings to leptons an quarks are present. We can apply the results
derived in the two scenarios above if Γµ ≫ Γq or Γq ≫ Γµ.

4.3.2 Direct Detection

The discussion in this section deals with the direct detection observables a�ected by the particles
introduced in this model. We brie�y discuss how we apply the limits set by DD experiments to
our numerical analysis.

4.3.2.1 General Procedure

Depending on the subclass, tree-level contributions to the DM-nucleon cross section can arise
(quarkphilic, amphiphilic) or be absent (leptophilic). However, these contributions are sup-
pressed by parton distribution functions (PDFs), since the coupling to the �rst generation
quarks tiny9.

In all subclasses of models, DM-quark interactions mediated by t-channel-type interactions
arise on one-loop level. Figure 4.4 schematically shows the interaction of the DM particle χ
and quarks via t-channel exchange of the fundamental SM bosons.

In this work, we use FeynRules [198, 199] and its interface with FeynArts [200] and
FormCalc [201] and/or FeynCalc to calculate e�ective vertices of the form χ̄ (H/Zµ/Aµ)χ
in the zero-outer-momentum limit. For this, we use the explicit expressions for Passarino-
Veltman integrals de�ned in [202]. We include these e�ective vertices in the calcHEP �les,
which are used by micrOMEGAs to calculate contributions to DM-nucleon cross sections up
to one-loop level.

The estimates for the SI and SD DM-nucleon cross section can be extracted from Sec-
tion 2.3.3.

The experimental bounds on the SI and SD DM-nucleon cross sections are stated under the
assumption that the DM candidate in question constitutes all of the observed DMRD ΩDMh

2.
Therefore, if the produced RD Ωχh

2 of the DM candidate χ is smaller than the observed DMRD,
the bounds have to be rescaled according to

σDD ≤ ΩDM

Ωχ
Bound(mχ) (4.3.9)

7Note that the second generation BSM quark Yukawa coupling Γs cannot be chosen arbitrarily large, as it is
constrained from D-D̄ mixing.

8From Greek άµφί (amphi) eng.: on both sides and φιλία (philia) eng.: love, a�ection
9Even though Γd is assumed to vanish in this setup, a very small Γu is generated via CKM-rotations.

79



Chapter 4. Fermionic Singlet DM in One-Loop Solutions to the RK Anomaly

χ

QQ

χ

−→
H

χχ

QQ

+
Z/γ

χχ

QQ

+
g

χχ

QQ

10

Figure 4.4: Schematic overview of several t-channel diagrams contributing to the DM-nucleon cross
section.

to be consistent with the DD bounds presented by the experimental collaborations. As the
rescale factor ΩDM/Ωχ is > 1 for underproduced χ-DM, the DD bounds get relaxed. Note that
technically, we tighten the DD bounds for overproduced DM with this de�nition of the rescaling.
However, we do not regard parameter space that features overabundant DM as viable and thus
the DD results in this region are of little interest in the �rst place10.

4.3.2.2 Twist-2 Contributions to the SI DM-Nucleon Cross Section

In models where there is no unsuppressed contribution to the SI cross section from quark oper-
ators at leading order, twist-2 operators become important. While the twist-2 quark operators
originate from a higher order expansion of the propagator of tree-level quark diagrams, gluonic
twist-2 operators generated by the box-diagrams shown in Fig. 4.5 have to be considered.

The SI cross section receives additional contributions from these diagrams. The Wilson
coe�cients and the subsequent SI DM-nucleon cross section is derived in e.g. [204]. The DD
phenomenology package of micrOMEGAs automatically takes the contributions of box dia-
grams to the SI DM-nucleon cross section into account.
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.

The contributions play an important role in the SI direct detection procedure in quarkphilic/amphiphilic
DM Majorana models, since they feature a strong suppression of the SI DM-quark interactions,
10Conversely to micrOMEGAs, some program packages like MadDM have an inbuilt rescaling of this kind.

However, they do not tighten the bounds but rather use a step function [203]

80



4.3. Dark Matter Phenomenology

Q

φ

φ

φ

ψQ ψQ

g g

φ

Q

Q

Q

ψQ ψQ

g g

Q

φ

φ

Q

ψQ g

g ψQ

Q

φ φ

ψQ ψQ

gg

9

Figure 4.5: Leading order diagrams for DM-gluon scattering.

which are more severely constrained by experiments, and simultaneously feature direct vertices
of DM and quarks and therefore also scalar particles that carry color charge.

4.3.3 Indirect Detection

We brie�y address possible constraints on the parameter space from indirect detection in this
section.

As described in Section 2.3.4, models that feature unsuppressed s-wave annihilation can be
best constrained by photon searches from dSphs. In our set of models, this only applies to
models with a Dirac-type DM candidate. The interesting parameter space of these models, i.e.
the regions where a solution to RK can potentially reside, is however already excluded by DD
bounds. Conversely, models with Majorana-type DM candidates exhibit p-wave annihilation
of DM σ(χ̄χ → f̄f) ∼ v2 and thus cannot be constrained by broad photon spectrum searches
from dSphs. Therefore, we do not consider these limits in Section 4.4.

However, we apply the limits found in searches for VIB spectral features in the photon
spectrum, since the velocity suppression of DM annihilation is lifted in the channel χ̄χ→ f̄fγ
in Majorana models. We employ the limits on the thermally averaged cross section ⟨σv⟩f̄fγ +
2⟨σv⟩γγ obtained by [164] in an analysis of Fermi-LAT and HESS data. The authors present
these limits in scenarios, where the mass ratio of DM and other dark sector particles is κ =
1.01, 1.1, 2. For κ larger than 2, VIB quickly becomes negligible since the cross section is
proportional to κ−4. We therefore do not investigate its impact on non-coannihilation scenarios.

Similarly to the DD case, we rescale the experimental constraints with the ratio of the
observed DMRD and the RD of the DM candidate χ as

σID ≤
(︃
ΩDM

Ωχ

)︃2

Bound(mχ) . (4.3.11)

In this case, however, this ratio is squared, since the event rate of annihilations is proportional
to the square of the number density of DM. This is intuitive, since the annihilation diagram
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features two DM particles in the initial state.
The results of our analysis show that the relevant parameter space cannot be constrained

by VIB even for coannihilation scenarios. This is mainly due to the quadratic RD rescaling of
the bounds. For large couplings Γ to SM fermions, the DM annihilation cross section can be
sizable. However, the corresponding parameter points usually feature a strongly underproduced
RD of the DM candidate in question, so that the bounds from ID via VIB are relaxed to a large
degree. For the relevant plots, see Appendix C.

4.3.4 Collider Searches

In this section, we brie�y review collider searches for particles contained in this work. Although
the results of existing searches cannot be directly applied to the setup studied in this work,
we can extract indications of the parameter space that is possibly exlcuded. We stress that in
our analysis, we concentrate mainly on the DM observables and do not perform an extensive
collider study on our own, as it is considered beyond the scope of this work.

In theory, b-type models that feature color-charged fermions can be constrained by displaced
vertex (DV) + ETmiss searches at colliders, if the values of the BSM Yukawa couplings Γi are
small enough for these particles to be su�ciently long-lived on collider scales. Results of such
searches [205] can be recast into limits on the mass and lifetime of the long-lived particle [206]
(see Figure 6 of this reference). We translated the bounds in the M -cτ -plane to limits in the
M -Γ-plane by calculating the decay width of the long-lived particle depending on the Yukawa
coupling Γ. The results of this analysis, however, suggests that we can only rule out Yukawa
couplings in the range Γ ∈

[︁
10−5, 10−2

]︁
and masses up to 1.8TeV. This due to the fact that the

ATLAS detector has a �nite size (lower limit on Γ) and also a �nite resolution to detect a DV
(upper limit on Γ). This region of BSM Yukawa couplings, however, proves to be uninteresting,
as solutions for the RK and (g−2)µ typically require couplings O(10−1) (in amphiphilic models)
or larger.

The most interesting collider signatures of leptophilic DM models involve decays of colored
BSM particles that can be e.g. pair produced e�ciently via gluon fusion. The process depicted
in Fig. 4.6 can e.g. constrained by LHC searches for dilepton + jets + ETmiss [207, 208]. The
authors of Reference [209] e.g. suggest that masses of MψL ≲ 600 GeV for MψQ ≲ 800 GeV can
be ruled out by dilepton searches.

In quarkphilic scenarios, ψQ-DM particles can be produced, besides other processes, by
quark annihilation via a t-channel process mediated by the color-charged scalar ϕ. These sce-
narios can be constrained by LHC searches for monojet + ETmiss signatures [210, 211]. Diagrams
that induce such signatures in the quarkphilic DM subclass are shown in Fig. 4.7. A translation
of these bounds to our model rules out a sizable area in the Mϕ-MψQ -plane at ΓQ = 1, where
the highest ruled-out DM mass corresponds to the point (MψQ ,Mϕ) ≈ (650GeV, 700GeV),
which corresponds to a coannihilation scenario with a mass gap of ∼ 8%. The highest con-
strained Mϕ can be found at Mϕ ≈ 1.7TeV for very low DM masses, corresponding to a highly
non-coannihilating scenario. For more details, see Figure 8 in Reference [211].

The only amphiphilic model that features a fermionic singlet DM candidate ψ, aIA, can also
be constrained by the monojet + ETmiss searches used to constrain the quarkphilic models, as
it also features a color-charged scalar ϕQ. Thus, similar limits on the masses are expected.

4.4 Results

In this section, we present the results of our numerical analysis. At �rst, we discuss our analysis
strategy before we address each model's results individually. We begin with the subclass of
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Figure 4.6: Possible detection channel in leptophilic DM models.

leptophilic models, proceed with quarkphilic models and end with amphiphilic models. We
present the Dirac and Majorana versions of each model distinctly.

4.4.1 Analysis Strategy

The number of additional parameters in this model, which can vary between realizations a and
b, is vast. We therefore have to make assumptions about a set of parameters in order to obtain
useful results.

� We present all plots in the MDM-Γµ plane. We scan logarithmically over 104 parameter
sets in the [100GeV, 40TeV]× [10−5, 4π] intervals.

� We require parameter set to not break the DM stabilizing symmetry and satisfy the
vacuum stability conditions as well as perturbativity bounds discussed in Section 4.1. We
do not, however, regard the bounds on RK and (g − 2)µ realizations as stringent, since
we perform scans over the whole DM mass and muon Yukawa coupling range.

� The product ΓsΓ
∗
b is assumed to be at the upper bound (see Eq. 4.2.6). If the bound

on Γµ set by RK is exceeded, ΓsΓ∗
b is scaled down accordingly. This choice of parameter

combination facilitates a solution to the RK anomaly, since a smaller Γµ still tends to
su�ce in these constellations.

We distinguish between two choices of coupling structures for the BSM quark Yukawas:
democratic and hierarchical. In the democratic scenario, we choose the second and third
generation couplings Γs and Γb to be almost identical11, which implies that Γs ≈ Γb ≈√︂
Bmodel
bs (κ) ·MDM/GeV.

In the hierarchical choice, we enforce the most extreme �avor structure. We choose Γb
to be at its perturbative limit, which subsequently forces the coupling Γs to comply

11We choose the di�erence of these couplings to be as small as allowed by the constraints on Γs from D-D̄
mixing. Typically, the di�erence is within O(1%).
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Figure 4.7: Diagrams inducing the monojet + ETmiss signature in quarkphilic/amphiphilic DM models.

and �t the product ΓsΓ
∗
b to be at the upper limit. Thus, we obtain Γb = 4π ∧ Γs =

Bmodelbs (κ)/4π ·MDM/GeV.

These two choices portray the most extreme scenarios regarding the �avor structure.
Every other possible scenario lies on the spectrum between these two cases.

� Concerning the mass gaps, we present constellations where there is a 1% and 10% mass
gap between DM and non-DM dark sector particles (κ = 1.01, 1.1). These scenarios
feature strong coannihilations. We also present scenarios where those e�ects are absent
(κ = 5, 15).

� We �x all Higgs portal couplings that are not required to vanish to ensure that mass
degeneracy is upheld to 0.1, since they do not a�ect the DM phenomenology to a large
degree.

All plots in this chapter show areas allowed by direct detection (DD,blue), RK (gray), and
muon g − 2 (∆aµ, green). This in turn means that areas that are left blank do not satisfy the
bounds of these observables. The orange lines correspond to the observed relic density (RD)
ΩDMh

2 = 0.120±0.001 in the universe12. The parameter space to the left of these lines features
an underproduced RD, whereas the region to the right of the line features overproduction of
DM and is therefore excluded.

12To be precise, the correct relic density is not only a line but a band, since it given with an experimental
error. This band, however, is very narrow due to the relative error of ∼ 0.8% and it is therefore reasonable to
refer to a line in this case.
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4.4.2 bIIA

Reminding ourselves of the model classi�cation in Table 4.1, the representations of the BSM
�elds under (SU(3)C ,SU(2)L)U(1)Y in bIIA are

ψL = (1,1)0, ψQ = (3,1)2/3, ϕ = (1,2)−1/2

EWSB⇒ ψL → ψ0
L, ψQ → ψ

+2/3
Q , ϕ→

(︄
1√
2

(︂
ϕ0 + ϕ0

′
)︂

ϕ−

)︄
. (4.4.1)

Since ψL is the fermionic singlet DM candidate, this model quali�es as a leptophilic DM model.

4.4.2.1 Dirac DM

This section summarizes the results obtained for bIIA with a Dirac DM candidate. The nu-
merical scan over the parameter space described in Section 4.4.1 yields the results summarized
in Figure 4.813.

Most of the RD and RK lines possess the same slope, meaning that they have the same
scaling Γµ ∼

√︁
MψL/GeV. This particular scaling is suggested by the RK bounds in Eq. (4.2.7),

while we show in Section 4.3.1 that the RD also scales like this in the case where DM annihi-
lations into SM leptons dominate. While the mass scaling causes the lines to be parallel in the
log-log plot, we can estimate the 'height' of the RD lines from the model dependent coe�cient
functions Bmodel

RD (κ).
The assumption of a dominant direct annihilation of DM into leptons is clearly valid in the

case of non-coannihilation scenarios κ = 5, 15, but also for scenarios where κ = 1.1 or even
κ = 1.01 when the muon BSM Yukawa is large (O(1)) and the DM mass is well above a certain
threshold. This threshold, which is clearly visible in Fig. 4.8, marks a smaller mass under which
a successful generation of the observed DMRD is not possible. It stems from coannihilations
of the color-charged ψQ via the quark BSM Yukawa interaction and into gluons interacting via
the strong gauge coupling g3. Also, interactions of ϕ via the Higgs portal contribute as well.
Note that even if e.g. the quark BSM Yukawas and the Higgs portal coupling are chosen to be
negligibly small, the threshold still exists since the gauge coupling constribution always exists.
As suggested by the di�erence in lower mass thresholds between κ = 1.1 and κ = 1.01, the
mass splitting in the dark sector κ strongly impacts the lower mass threshold since the e�ciency
of coannihilations is suppressed by the typical factor of exp (−2xfκ) (see Eqs. (4.3.3)-(4.3.4),
(2.3.43)). The subsequent decrease of ⟨σv⟩ directly leads to an increase of the RD and the mass
threshold thus shifts towards lower masses for an increasing κ.

In a hierarchical scenario, where the the BSM Yukawa coupling to the third generation Γb is
at its perturbative limit, the mass thresholds of the coannihilation scenarios are shifted towards
signi�cantly higher DM mass values. This is due to the fact that the annihilation cross section
into quarks scales like ⟨σv⟩ ∼ Γ4

b +2Γ2
bΓ

2
s+Γ4

s, which is maximized for a Γb at the perturbative
limit.

As suggested in Eq. (4.3.7), only the non-coannihilation scenario κ = 15 > κbIIA,Dir0 could in
principle produce the correct RD and solve the RK anomaly at once in the bIIA Dirac model.
This is con�rmed by the numerical results in Fig. 4.8, where only the solid RD line lies within
the gray RK-area.

Furthermore, note that the RD lines of the coannihilation scenarios do not behave as ex-
pected from Eq. (4.3.5)14. In order to understand this behavior, we have to consider the e�ect

13Note that the legend displayed in Fig. 4.8 is valid for all forthcoming plots of this kind in this thesis and
will not be repeated for the sake of saving space.
14Eq. (4.3.6) suggests a simple proportionality of the leptonic Yukawa coupling Γµ with regards to the mass

gap parameter κ. By simple proportionality we mean that Γµ is a monotonically ascending function in κ.
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Figure 4.8: Summary plot for Dirac DM in bIIA. The plot provides all information about the RK (RK)
and the anomalous magnetic moment of the muon (∆aµ), as well as the DM observables relic density
(RD) and direct detection (DD) for κ = 1.01 (dashed line), κ = 1.1 (dotted line), κ = 5 (dot-dashed
line) and κ = 15 (solid line). The orange lines describe a correctly generated ΩDM. Parameter regions
to the left of these lines feature underproduced DM, whereas regions to the right overproduce DM. The
gray area covers the region where the RK anomaly can be solved at 2σ. Areas that show a green band
are parameter regions where ∆aµ can be reproduced at 1σ. The area above the green bands lead to
overly large contributions to ∆aµ and is therefore excluded. The blue region indicates the parameter
space that is in agreement with direct detection bounds. Both SI and SD DM-nucleon cross section
constraints are taken into account here.

of e�cient conversions of dark sector particles. A discussion about this e�ect and the relevant
values of κ can be found in Appendix D

In the following, we discuss the phenomenology of direct detection in this model, which is
mediated at leading order on one-loop level by the processes depicted in Figure 4.9. First of all,
note that the box diagram in Fig. 4.9 contains an additional heavy BSM particle propagator
compared to any of the penguin diagrams. Moreover, it is also suppressed due to the vanishing
�rst generation quark coupling and smaller fractions of second and third generation quark
PDFs.

The results presented in Fig. 4.8 suggest that a simultaneous solution of RK and DM is
excluded in this model, as the allowed regions from DD and RK are completely disjoint in both
democratic and hierarchical versions. The statement can be formulated even more strictly, as
the DD limits also rule out models that explain RK with underproduced DM.

For coannihilation scenarios, there is open parameter space in regions where Γµ is small
(Γµ ≲ 10−1 in democratic, Γµ ≲ 0.5 in hierarchical), so that the observed DMRD can be
reproduced while DD bounds are also respected.

The tightness of the DD constraints stems mainly from the large contributions of the e�ective
vector coupling of ψL to the Z-boson in relation to the tight limits on the SI DM-nucleon cross
section given by the XENON1T experiment.

Note that the DD constraint is weaker in coannihilation scenarios by ∼ 1-2 orders of mag-
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Figure 4.9: Leading order DM-quark diagrams contributing to the DD cross section of ψL DM.

nitude. In principle there are two e�ects acting in opposite directions. On the one hand, the
e�ective ψ̄LZµψL-coupling decreases with increasing κ because the masses of the BSM particles
in the loops of the processes depicted in Fig. 4.9 increase proportional to κ, which leads to
an alleviation of the bounds. On the other hand, an increasing κ also increases ΩDMh

2 by
enhancement of the mass suppression in the thermally averaged annihilation cross section ⟨σv⟩.
This in turn alters the DD limits for ψL-DM. As the experimental limits are rescaled with the
fraction of ψL-DM compared in the observed DM density according to Eq. (4.3.9), the bounds
are ultimately tightened15.

Di�erences between the DD limits in the hierarchical and democratic implementations of
bIIA Dirac are driven mainly by RD rescaling, as only the box diagram exhibits a Γs/b de-
pendence. This diagram, as discussed above, is subdominant. Coannihilation scenarios involve
channels that feature a Γs/b-dependence and thus exhibit stronger underproduction of ψL-DM.
This in turn leads to substantial relaxation of the DD limits.

Lastly, the region that signi�es a solution of the (g−2)µ anomaly exhibits a scaling behavior
Γµ ∼MψL indicated by Eq. (4.2.8) and subsequently Table 3. In this model, all of the relevant
parameter space is excluded by DD and thus no solution to the (g − 2)µ anomaly can be
constructed.

4.4.2.2 Majorana DM

We summarize the results of the scan over the parameter space in the Majorana model (bIIAMaj)
in Fig. 4.10.

In this version of bIIA, a simultaneous solution of RK and RD can be achieved at smaller κ
values, as suggested by κbIIA, Maj

0 ≈ 4.7 derived in Eq. (4.3.7). This manifests itself in Fig. 4.10,

15Because of these competing e�ects, a �ip of the hierarchy observed in Fig. 4.8 (DD(κ1) > DD(κ2), κ1 < κ2)
of the size of the limit is expected with increasing κ.
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Figure 4.10: Summary plot for Majorana DM in bIIA. The legend and an explanation of the color
scheme are given in Fig. 4.8.

where the RD of κ = 5 lies within the allowed RK region. This is a consequence of the p-
wave suppression of the annihilation cross section in Majorana models compared to the more
e�cient s-wave annihilations found in Dirac models. Subsequently, Majorana models require
larger couplings to the muon in order to still achieve the observed DMRD, which causes the
RD lines to enter the allowed RK regions at smaller κ.

Note at this point that the RD lines in the coannihilation scenarios do not feature the
intersecting behavior found in the Dirac version, which is mainly due to the change in the
internal degrees of freedom of Majorana DM particles compared to Dirac DM and the p-wave
nature of the direct annihilations compared to the s-wave nature of the coannihilations. The
discussion in Appendix D contains more details about this topic.

Compared to the Dirac version of bIIA, the DD bounds on the muonic Yukawa coupling
are relaxed by approximately one order of magnitude. This feature is plausible because the
e�ective vector coupling of ψL to the Z-boson, which contributes to a large degree in the Dirac
model is forbidden is the Majorana case, as demonstrated in Appendix A.2.

Here, the largest contribution comes from the SD DM-nucleon cross section generated by the
axial vector current contribution to the ψ̄Zµψ vertex. This is an especially interesting feature,
since the experimental limits on the SD DM-nucleon cross section are ∼ 6 orders of magnitude
weaker than the limits on the SI DM-nucleon cross section.

The most stringent bounds on the DM-proton cross section come from XENON [131], while
the best bounds for the DM-proton cross section are presented by IceCube [136] in the mass
range studied here. The smaller masses are typically constrained by the DM-neutron cross
section in the region up to ∼ 300GeV, whereas larger masses are often more constrained by the
DM-proton cross section bounds from IceCube. In our analysis, we apply the strongest limits
at any given mass16.

Since the bounds are weakened by a large degree, there is signi�cant overlap of RK and DD
regions and thus an explanation of RK is potentially possible in this model. This, again, only
holds for coannihilation scenarios, since they feature signi�cantly weaker DD limits.

In the democratic scenario, we �nd an overlapping region at MψL ≲ 180GeV, whereas in
the hierarchical setup we �nd the mass window to extend to masses approximately one order
of magnitude larger. In the case of κ = 1.1, DM masses range up to ∼ 420GeV, while they

16In the discussion of the upcoming models, the mass regions where the aforementioned experiments are most
constraining can vary slightly. However, we always apply the most stringent bounds automatically.
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extend up to ∼ 1000GeV for κ = 1.01. Note, however, that these solutions always come with
underprodcued DM, so that an additional, completely separate dark sector is required to solve
the problem of the DMRD.

Furthermore, a solution of (g − 2)µ is also possible. As in the case of RK , a distinct
�avor hierarchy Γb ≫ Γs is needed for the DM masses to be able to exceed ∼ 100GeV. In
the hierarchical setup, we �nd that the DM masses range up to ∼ 170GeV for κ = 1.1 and
∼ 290GeV in the case of κ = 1.0117.

4.4.3 bVA

Following Table 4.1, the representations of the dark sector particles in bVA are

ψL = (1,1)0, ψQ = (3,3)2/3, ϕ = (1,2)−1/2

EWSB⇒ ψL → ψ0
L, ψQ →

⎛⎜⎝ψ
+5/3
Q

ψ
+2/3
Q

ψ
−1/3
Q

⎞⎟⎠ , ϕ→

(︄
1√
2

(︂
ϕ0 + ϕ0

′
)︂

ϕ−

)︄
. (4.4.2)

This model is related with bIIA in the sense that it contains BSM �elds with exactly the
same set of representations under the SM gauge groups except ψQ being a triplet under SU(2)L
instead of a singlet. This also quali�es bVA as a leptophilic DM model, for which we expect
results similar to the ones obtained in bIIA.

4.4.3.1 Dirac DM

We summarize the numerical results of bVA Dirac in Fig. 4.11. Comparisons between the results
of bIIA Dirac and this model (Figs. 4.8 and 4.11) show that there is no di�erence between the
RDs in non-coannihilation scenarios. This is the case since the di�erence between the models
lies in the coannihilation partner ψQ and thus, a change is only expected in the coannihilation
scenarios.

Compared to bIIA, the e�ective annihilation cross section is enhanced and thus bVA features
stronger underproduction of DM. At the same time, this also means that bVA exhibits larger
mass thresholds than bIIA for both κ = 1.1 and κ = 1.01.

Regarding a simultaneous solution to the RK anomaly and DM, this model requires a very
large mass gap of κbVA,Dir0 ≈ 26.5. This is due to the additional contributions to b → sl−l+-
transitions and B-B̄ mixing.

Since the RD is more depleted in comparison to bIIA Dirac, the rescaling of the DD bounds
according to Eq. (4.3.9) is more severe. The overall contributions to the DM-nucleon cross
section, on the other hand, are not signi�cantly altered since ψQ is only present in the suppressed
box diagram depicted in Fig. 4.9. Overall, the e�ect on the DD limits is ∼ O(10%).

Combining the �ndings about the RK , (g− 2)µ and DD regions in this models, we �nd that
not even a single solution to either of the anomalies can be found, since DD rules out all of the
potentially viable parameter space. This conclusion mirrors the one obtained for bIIA Dirac.

17Note that these mass regions are potentially excluded by colliders, as mentioned in the estimates made in
Section 4.3.4. However, we require a fully dedicated collider analysis of this setup to make this statement with
certainty.
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Figure 4.11: Summary plot for Dirac DM in bVA. The legend and an explanation of the color scheme
are given in Fig. 4.8.

4.4.3.2 Majorana DM

The results of the scan over the parameter space in Majorana version of bVA are shown in
Fig. 4.12. This model, also being a leptophilic Majorana DM model, possesses most features
that are already discussed in the context of bIIAMaj.

As discussed in Section 4.4.3.1, the region where a potential solution to the RK anomaly can
be achieved shrinks in this model compared to bIIA and thus the regions where a simultaneous
solution is possible also decrease. The upper bound on the DM mass in this case is ∼ 260GeV
for κ = 1.1 and ∼ 410GeV for κ = 1.01. Note that these regions are still underproducing RD.

Another minor but noteworthy e�ect in this model is that the RD lines of the coannihilation
scenarios κ = 1.1 and κ = 1.01 intersect, although they do not intersect in bIIAMaj. This can be
understood by taking into account the alteration of the degrees of freedom of the color-charged
fermion. This in turn a�ects the number density of the non-DM BSM particles. For more
details on this topic see Appendix D.
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Figure 4.12: Summary plot for Majorana DM in bVA. The legend and an explanation of the color
scheme are given in Fig. 4.8.

4.4.4 bIIB

Following Table 4.1, the representations of the dark sector particles in bIIB are

ψL = (3̄,1)−2/3, ψQ = (1,1)0, ϕ = (3,2)1/6

EWSB⇒ ψQ → ψ0
Q, ψL → ψ

−2/3
L , ϕ→

(︃
ϕ+2/3

ϕ−1/3

)︃
. (4.4.3)

The model bIIB quali�es as a quarkphilic DM models since the DM candidate ψQ couples
directly to quarks. A notable consequence of this behavior and a signi�cant di�erence to
leptophilic models is that there are tree-level contributions to the DM-nucleon cross section.

4.4.4.1 Dirac DM

Figure 4.13 summarizes the results obtained for bIIB Dirac.

Since in this model, DM direct annihilation into SM particles proceeds via the Yukawa
interaction with quarks, the muonic BSM Yukawa coupling only a�ects coannihilation scenarios.
For both coupling structures, democratic and hierarchical, the non-coannihilation scenarios
κ = 5 and κ = 15 are not able to generate the observed DMRD for MψQ > 100GeV. This is
the case because the BSM Yukawa interaction with quarks alone is insu�cient to keep ψQ in
thermal equilibrium long enough to deplete the RD to the observed value.

In coannihilation scenarios, however, the exponential suppression factor exp (−xfκ) is suf-
�ciently small so that Γµ can contribute in the democratic model to the annihilation cross
section. In the hierarchical scenario, the direct annihilation into b-quarks is so strong that Γµ
does not play a role.

The shift of the mass threshold described in Section 4.4.2.1 is also visible in this model. We
can compare the estimates MbIIB

DM,max ≈ 674TeV/1+κ2 made in Eq. (4.3.8) with the numerically
obtained results in the hierarchical setup and remark that the obtained numbers ≈ 26TeV for
κ = 5 and ≈ 3TeV for κ = 15 prove to be good estimates for all practical purposes.
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Figure 4.13: Summary plot for Dirac DM in bIIB. The legend and an explanation of the color scheme
are given in Fig. 4.8.
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Figure 4.14: Tree-level (a) and one-loop (b) DM-quark diagrams contributing to the DD cross section
of ψQ DM. The legend and an explanation of the color scheme are given in Fig. 4.8.

All diagrams contributing to the DM-nucleon cross section up to one-loop level are depicted
in Fig. 4.14. Although there are tree-level contributions, the SI DM-nucleon cross section is
dominated by the vector current contribution to the e�ective ψ̄QZψQ vertex. This is the case
because the tree-level diagrams are PDF-suppressed. Moreover, the Higgs mediated diagrams
contribute to a larger degree than in the leptophilic DM models, since the top quark Yukawa
yt ∼ 1 is signi�cantly larger than the Yukawas of the leptons. Note here that the Higgs portal
diagram is still suppressed by the additional heavy propagator.
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In summary, the complete parameter space studied is excluded by DD and thus no solution
to the RK and (g − 2)µ anomalies or DM can be found in this model.

4.4.4.2 Majorana DM

In Fig. 4.15, we present the results of the numerical scan in bIIBMaj.
In both Dirac and Majorana versions of bIIB, the RD results are similar in shape with the

exception of a larger mass threshold for coannihilation scenarios and a lower mass threshold
for non-coannihilation scenarios in the Majorana model. The lower mass threshold for non-
coannihilation scenarios simply stems from the less e�cient p-wave annihilation compared to
the Dirac version's s-wave annihilation, since we encounter dominant direct annihilation into
quarks. Coannihilations, on the other hand, are more e�cient because the non-DM BSM
particles occupy a larger percentage of the number density in the dark sector due to the reduced
internal degrees of freedom of Majorana DM. Subsequently, DM is produced more e�ciently
by coannihilations than in the Dirac model and the mass threshold is shifted towards larger
masses.

The estimates made in Eq. (4.3.8) for the Majorana model, MbIIB,Maj
DM,max ≈ 254TeV

√
1+κ4

(1+κ2)2 ,
can also be compared to the numerical results. We obtain ≈ 9.4TeV for κ = 5 and ≈ 1.1TeV
for κ = 15, which are also very useful estimates for the mass thresholds.

In stark contrast to the Dirac version, bIIBMaj o�ers viable parameter space regarding DD.
In this model, the twist-2 operator contributions to the SI DM-nucleon cross section described
in Section 4.3.2.2 become important. The reason for this is that the main contribution to the
SI DM-nucleon cross section, which comes from the vector current contribution to the Z-boson-
DM vertex, vanishes due to the Majorana nature of ψQ. Also the tree-level diagrams shown in
Fig. 4.14 do not provide unsuppressed contributions to the SI DM-nucleon cross section. This is
because both Feynman diagrams are of the s-channel structure ((ψ̄QQ)(Q̄ψQ)) so that according
to Section 2.3.3.4 a Fierz transformation yields (v,v), (v,a), (a,v) and (a,a) contributions, of
which the (v,v) contribution vanishes.

The e�ectively inverse scaling of the SI DM-nucleon cross section with the DM mass, esti-
mated by using Eq. (4.3.10), and the XENON1T limit's approximately linear softening ∼MψQ

for masses MψQ ≳ 30GeV means that the SI twist-2 contributions generally provide stronger
constraints in the lower mass regions. Concerning the behavior in κ, we �nd that the SI DM-
nucleon cross section decreases with increasing κ, e�ectively dragging the DD threshold to
smaller masses.

The mirrored shape of the excluded region in Fig. 4.15(a) originates from the RD rescaling
e�ect, which is stronger at large Γµ and thus relaxes the limits with an increasing Γµ.

The complementarity of the bounds observed in Fig. 4.15 is, to a large extent, an e�ect
of the positive rescaling of the DD bounds with the RD in an interplay with the di�erent SI
and SD DM-nucleon cross section scaling with the DM mass. In regions where the MψQ is
large, we tend to �nd parameter space with overproduced ψQ-DM, leading to a rescale factor
ΩDM/ΩψQ < 1, which tightens the bounds. The SD contributions coming from the one-loop
diagrams are large enough to overcome the level of the tightened bounds and thus we observe
an SD exclusion at masses beyond the RD line.

However, this parameter space is deemed uninteresting due to the overproduced RD. This
is also the case for non-coannihilation scenarios, which are completely ruled out due to over-
production of DM.

The model possesses an interesting parameter space region at MψQ ≳ 1.5TeV ∧ Γµ ≳ 3 for
κ = 1.1, since we �nd a simultaneous solution of the RK anomaly and DM in this particular
window18. Note, however, that this region is strongly dependent on the mass gap parameter κ,
18Note that in a setup that involves color-charged coannihilation partners there can potentially arise corrections
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Figure 4.15: Summary plot for Majorana DM in bIIB. The legend and an explanation of the color
scheme are given in Fig. 4.8.

as both smaller and larger values of κ studied in this work lead either lead to exclusion via DD
and RD (κ = 5) or underproduces DM (κ = 1.01).

A simultaneous solution to (g−2)µ and RK is principally possible in the κ = 1.1 scenario in
the region 150GeV ≲ MψQ ≲ 500GeV (and 400GeV ≲ MψQ ≲ 550GeV for κ = 1.01 ). Then
again, this part of the parameter space underproduces DM. The solution is also unstable in κ,
as smaller and larger values of κ tend to be excluded via DD.

The hierarchical scenario is completely ruled out. One the one hand, overproduction of the
RD leads SD bounds to become more stringent after the mass threshold is surpassed. On the
other hand, SI contributions from twist-2 operators are dependent on the BSM quark Yukawa
couplings (see Fig. 4.5), of which Γb is at the perturbative limit in this setup. This leads
the region to be excluded by SI limits to completely overlap with the region excluded by SD,
subsequently rendering the complete parameter space studied unavailable. We also do not
observe the relaxation of the SI bound in the Γµ direction, since it does not play a role in
non-coannihilation scenario and Γb mediated interactions dominate severely.

4.4.5 bVIB

Following Table 4.1, the representations of the dark sector particles in bVIB are

ψL = (3̄,3)−2/3, ψQ = (1,1)0, ϕ = (3,2)1/6

EWSB⇒ ψQ → ψ0
Q, ψL →

⎛⎜⎝ψ
+1/3
L

ψ
−2/3
L

ψ
−5/3
L

⎞⎟⎠ , ϕ→
(︃
ϕ+2/3

ϕ−1/3

)︃
. (4.4.4)

The coannihilation partner ψL undergoes the same SU(2)L-singlet → triplet shift from bIIB
to bVIB that ψQ does from bIIA to bVA. This is why we consider bVIB the 'sibling' model to
bIIB and expect similar results. Due to this fact, we can fall back on some explanations already
established in Sections 4.4.3.1.

to the RD from non-perturbative e�ects such as Sommerfeld enhancement and bound state formation, e.g.
described in [212]. As these features are not considered in micrOMEGAs 5.0, we consider an inclusion of them
beyond the scope of this work.
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Figure 4.16: Summary plot for Dirac DM in bVIB. The legend and an explanation of the color scheme
are given in Fig. 4.8.

4.4.5.1 Dirac DM

The results of the scan over the parameter space in bVIB are presented in Fig. 4.16.
As already elaborated in Section 4.4.3.1, the singlet to triplet shift leads the mass thresholds

in coannihilation scenarios to the increase from (bIIA Dirac to bVA Dirac) bIIB Dirac to bVIB
Dirac. It also alters the contributions to the Wilson coe�cients C9 and CBB̄ according to
Table 1, which leads to more stringent bounds on Γµ for a solution of the RK anomaly.

We �nd strong similarities between the Dirac versions of bIIB and bVIB with respect to
DD limits, as both models are completely ruled out for the parameter space studied in this
work and the slight relaxation e�ects of the singlet-triplet shift does not su�ce to open up any
parameter space.

4.4.5.2 Majorana DM

We summarize the results of the parameter scan for the Majorana version of bVIB in Fig. 4.17.
In general, many features of this model are shared with bIIBMaj. The parameter space is
excluded entirely in the hierarchical setup, which is again a feature of the overlap of SI and RD
boosted SD limits.

The DD exclusion limits in the democratic setup are similar to bIIBMaj, however, it does
feature some di�erences. Note that the allowed area regarding DD for κ = 5 reaches values
up to ∼ 120GeV, which is due to the larger mass threshold for non-coannihilation scenarios
compared to bIIBMaj, where this threshold was just below the 100GeV mark.

This has an e�ect on the feasibility of (g − 2)µ solutions for non-coannihaltion scenarios,
which, mind a dedicated collider study, principally enter the mass range O(100GeV). The
allowed regions for a (g− 2)µ solution (with underproduced DM) in the coannihilation scenario
κ = 1.1 are 350GeV ≲MψQ ≲ 970TeV and Γµ ≳ 3.2.

Conversely to bIIB, we do not �nd any viable windows for a simultaneous solution of the RK
anomaly and DM. The reason for this is that the allowed RK region decreases substantially
and the RD lines of the coannihilation scenarios do not extend into these regions anymore.
This means that any viable solution to the RK anomaly found in this model study exhibits
underproduced DMRD.
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Figure 4.17: Summary plot for Majorana DM in bVIB. The legend and an explanation of the color
scheme are given in Fig. 4.8.

4.4.6 aIA

The representations of the dark sector particles in aIA according to Table 4.1 are

ψ = (1,1)0, ϕL = (1,2)−1/2, ϕQ = (3,2)1/6

EWSB⇒ ψ → ψ0, ϕL →

(︄
1√
2

(︂
η0 + η0

′
)︂

η−

)︄
, ϕQ →

(︃
σ+2/3

σ−1/3

)︃
. (4.4.5)

This model is the only representative of the amphiphilic DM subclass as far as fermionic
DM models are concerned. This is the case because aIA is the only a-type model that contains
a singlet ψ �eld, which couples to both leptons and quarks via a BSM Yukawa interaction.

4.4.6.1 Dirac DM

The results for aIA Dirac are shown in Figure 4.18.
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Figure 4.18: Summary plot for Dirac DM in aIA. The legend and an explanation of the color scheme
are given in Fig. 4.8.
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Figure 4.19: Tree-level (a) and one-loop (b) DM-quark diagrams contributing to the DD cross section
of ψQ DM.

In the democratic setup, the behavior of the RD closely resembles that of leptophilic DM
models like bIIA and bVA (see Figs. 4.8 and 4.11). Non-coannihilation scenarios are dominated
by the leptonic BSM Yukawa coupling and therefore we observe the characteristic lines that
follow Γµ ∼

√︁
Mψ/GeV. Coannihilation scenarios feature the same scaling at large masses,

whereas they also feature the mass threshold below which every parameter point underproduces
DM. The hierarchical scenario exhibits the typically quarkphilic vertical RD lines in the non-
coannihilation scenarios, also to be seen in Figs. 4.13 and 4.16. This hints towards the fact
that direct annihilations into quarks dominate, as Γµ does not play a signi�cant role in the RD
generation.

In the Dirac version of this model, DD excludes all of the parameter space studied and thus
the amphiphilic Dirac DM model shares this trait with quarkphilic DM models bIIB and bVIB.
The principal reason for this is, again, the large contribution from the Z vector current that is
allowed in Dirac DM models. Additionally, aIA also contains tree-level contributions. Fig. 4.19
shows all diagrams that contribute to DD cross sections in this model.
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4.4.6.2 Majorana DM

The results of the scan over the parameter space in aIA Majorana are condensed in Fig. 4.20.
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Figure 4.20: Summary plot for Majorana DM in aIA. The legend and an explanation of the color
scheme are given in Fig. 4.8.

For the reasons outlined in the Dirac version of this model, the RD structure in aIA Majorana
resembles a leptophilic DM model in the democratic setup and a quarkphilic DM model in the
hierarchical setup. The mass tresholds are shifted due to the p-wave DM annihilation at leading
order, which is also an e�ect explained in earlier sections.

The allowed RK region in aIAMaj changes compared to the Dirac version. In our study, this
is a feature that is unique to aIA, since it is the only model to allow for additional contributions
from crossed box diagrams involving Majorana fermions to b → sl+l− transitions and B-B̄
mixing (see Fig. 1). This causes the ordering of the RK regions to deviate from the usual
RK(κ1) > RK(κ2) for κ1 > κ2 and we �nd that the RK bounds on Γµ of κ = 1.01 is more
stringent than the one on κ = 15, while the bounds on κ = 5 and κ = 1.1 are the lowest bounds
within an O(1%) range of each other. We brie�y review this e�ect in Appendix B.

Ignoring DD at �rst, potential solutions of RK with the observed RD are conceivable for
non-coannihilation scenarios in the democratic setup (see Fig. 4.20). In the hierarchical setup,
only the non-coannihilation scenarios are potentially able to reproduce the observed ΩDM within
the parameter space studied.

Concerning the DD results, aIAMaj exhibits an interesting behavior induced by a dynamic
interplay between leptophilic and quarkphilic characteristics.

From the perspective of a leptophilic DM model, regions in which Γµ becomes large are
generally excluded because the e�ective axial-vector-type vertex of DM with the mediator in
question leads to contributions that push the SD DM-nucleon cross section beyond the allowed
limits. In this mode, however, the regions allowed by DD are bounded from above and below.
There are two major e�ects at play that induce this behavior.

Firstly, contributions to the SD DM-nucleon cross section from one-loop diagrams are prone
to destructive interference between quark and lepton loop contributions because of a relative
sign. This relative sign can be explained by the di�erent hypercharge structures of these par-
ticles, leading to a di�erent coupling with the SU(2)L × U(1)Y gauge bosons (the left-handed
quark doublet has a weak hypercharge of Y = 1/6 and the left-handed lepton doublet has a weak
hypercharge of Y = −1/2 according to Table 1.1). Conversely to purely quarkphilic/leptophilic
models, this means that the contributions from both quark and lepton loops do not necessarily

98



4.5. Summary

increase the DM-nucleon cross section but can also reduce it in some regions of the parameter
space.

Secondly, the RD rescaling is severely altered by the additional direct annihilations of DM
into quarks. In contrast to loops in DD diagrams, these additional contributions are additive
due to the distinct �nal states. Due to this enhanced rescaling e�ect, the DD exclusion is more
aligned to the RD in comparison to the purely leptophilic DM models. The visible blue DD
areas in Fig. 4.20 are a product of a dynamic interplay between these e�ects.

Furthermore, contributions to the SI DM-nucleon cross section can also arise in this model.
As described in Sections 4.4.4.2 and 4.4.5.2, these contributions exclude masses below a certain
threshold due to the speci�c inverse mass scaling. In coannhihilation scenarios, this threshold
extends into the DM mass range MDM ∼ O(100GeV-1TeV) so that the allowed regions exhibit
a visible lower bound. In the hierarchical setup, the threshold for κ = 1.1 exceeds the mass at
which of the region allowed by the SD bounds reaches the perturbative limit so that no viable
parameter space is left for this mass gap.

We do not �nd any solutions to the (g− 2)µ anomaly in the parameter space studied in aIA
Majorana for both coupling structures, democratic and hierarchical. This includes potential
solutions that underproduce DM, as DD excludes the whole (g − 2)µ regions.

Although there are only small windows, both coannihilation and non-coannihilation sce-
narios provide windows for a solution to DM. However, only the non-coannihilation scenario
can also solve the RK anomaly. For κ = 5 we �nd a mass range of Mψ ≲ 200GeV (which
might be further constrained by a collider analysis) and for κ = 1.1 we �nd a small window at
1.22TeV ≲Mψ ≲ 1.32TeV.

4.5 Summary

In this chapter, we analyzed a class of models addressing the RK anomaly at one-loop level with
regards to its DM phenomenology. The model class extends the SM by three BSM �elds, one
vector-like fermion and two scalars in realization a or one scalar and two vector-like fermions in
realization b. We restricted ourselves to models that contain a fermionic singlet DM candidate
and assumed all BSM �elds to be charged oddly under a discrete Z2-symmetry in order to
stabilize the lightest BSM particle against a potential decay.

For our analysis, we chose parameter con�gurations that allowed to solve RK anomaly at
smaller BSM Yukawa couplings to muons Γµ by choosing the product of BSM quark Yukawa
couplings ΓsΓ

∗
b to be at its upper limit set by B-B̄ mixing. Additionally, we assumed mass

degeneracy between the two non-DM BSM particles, which are heavier than the DM candidate
by a factor κ and required vacuum stability of the scalar potential at tree level and perturbativity
for all parameter sets studied.

We found �ve con�gurations of SM gauge group charge assignments up until the adjoint
representation that contain a fermionic singlet. For each of these con�gurations, we analyzed the
parameter space in case of the fermionic singlet being a Dirac/Majorana particle. We further
distinguished between two di�erent �avor structures for the BSM quark Yukawa couplings:
democratic (Γs ≈ Γb) and hierarchical (Γb ≫ Γs). Further, we investigated di�erent mass
hierarchies in the BSM sector including both coannihilation scenarios (κ = 1.01, 1.1) and non-
coannihilation scenarios κ = 5, 15.

Moreover, we examined whether these con�gurations can also account for the (g − 2)µ
anomaly.

The results of this analysis are summarized in Tables 4.3 and 4.4. Table 4.3 summarizes the
models' ability to provide simultaneous solutions to more than one of the problems (observed
RD, RK , (g − 2)µ), while Table 4.4 summarizes solutions to a single problem only.
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RD + RK + ∆aµ RD + RK RD + ∆aµ

le
pt
op
hi
lic

bIIA ✗ ✗ ✗

bIIAMaj ✗ ✗ ✗

bVA ✗ ✗ ✗

bVAMaj ✗ ✗ ✗

qu
ar
kp
hi
lic

bIIB ✗ ✗ ✗

bIIBMaj ✗ dem.: MψQ ≳ 1.5TeV |κ=1.1 ✗

bVIB ✗ ✗ ✗

bVIBMaj ✗ ✗ ✗

am
ph

i-
ph

ili
c aIA ✗ ✗ ✗

aIAMaj ✗ dem.: Mψ ≲ 200GeV |κ=5 ✗

Table 4.3: Allowed mass regions for simultaneous solutions to RD, RK and ∆aµ for each model.

Our study showed that we can further distinguish between three di�erent subclasses of
models, namely leptophilic, quarkphilic and amphiphilic DM models, depending on the direct
DM vertices with SM fermions.

According to our analysis, all Dirac DM models are completely excluded by DD in the
parameter space viable for an RK or (g − 2)µ solution. We found that the principal reason
for this exclusion is the kinematically unsuppressed (v,v)-type interaction in t-channel Z-boson
interactions.

Majorana DMmodels, conversely to Dirac DMmodels, do not exhibit this kind of interaction
due to the vanishing vector currents χ̄γµχ and are thus not as tightly constrained. These
models provide potential for solutions of the aforementioned problems in di�erent regions of
the parameter space depending on the subclass.

We included an analysis of limits from ID and did not �nd any constraints on the parameter
space of the Majorana models. Even characteristic features that can stem from s-wave DM
annihilation in VIB processes do not not constrain our setup because of severe RD rescaling.

Leptophilic models have the potential to solve the RK anomaly in the MψL ≲ 1000GeV
region, while (g−2)µ can be principally solved in the regionMψL ≲ 290GeV. These statements
are valid for for coannihilation scenarios with underproduced DMRD. In these models, we
found that the correct RD can only be achieved if the BSM Yukawa coupling is chosen to be
very small in coannihilation scenarios. This statement is also uniquely true for leptophilic Dirac
DM models as opposed to quark- and amphiphilic Dirac DM models.

In the quark and amphiphilic DM cases, we found that Majorana DM models have the
potential to o�er parameter space for simultaneous solutions of the observed RD and RK .

The amphiphilic model aIAMaj provides a solution in the region Mψ ≲ 200GeV for a non-
coannihlation scenario. A small sweet spot in the region 1.22TeV ≲Mψ ≲ 1.32TeV for κ = 1.1
can also accommodate the observed DMRD, while not being able to solve the RK anomaly. We
also �nd several single solutions to the RK anomaly with underproduced RD in both democratic
and hierarchical scenarios. However, not one amphiphilic model setup could reproduce the
required contributions to (g − 2)µ.

We showed that democratic, coannihilating, quarkphilic Majorana DM models are relatively
versatile in producing individual solutions to each of the problems addressed in this chapter.
This is well documented by the entries for bIIBMaj and bVIBMaj in Table 4.4. In addition
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Chapter 4. Fermionic Singlet DM in One-Loop Solutions to the RK Anomaly

to that, we also found a promising window at MψQ ≳ 1.5TeV for κ = 1.1 in bIIBMaj, which
produces the observed ΩDM and contributes correctly to RK .

Many models feature the most interesting parameter windows in the TeV range or below,
as summarized in Tables 4.3 and 4.4. Most of these scenarios include color-charged particles in
the TeV range and earlier collider studies have shown that similar setups can be constrained
up to TeV scale DM masses. A dedicated collider analysis beyond the content of Section 4.3.4
of the parameter space of interest is thus motivated by our DM phenomenology analysis.

Such a detailed collider analysis has been conducted e.g. in [213], where a similarly systematic
study of this model class has been performed19. In their work, the authors choose an approach
of presenting their results, which is complementary to the one chosen in this thesis. While
they scan the available parameter space using assumptions that are more suitable for collider
studies, e�ects of the �avor structure and coannihilation are not focused on as much as in this
work.

Potential future work could also extend this study to di�erent kinds of DM candidates apart
from the fermionic singlet.

19This research article was published as a preprint just a few days before the article that this chapter is
based on ([2]). The two independent articles discuss mainly the same topic but with fundamentally di�erent
approaches with regards to the analysis strategy. The authors study a di�erent slice of the parameter space and
perform a dedicated collider analysis with MadGraph, Pythia 8, DELPHES and CheckMATE. However,
SD DD limits for Majorana models and RD rescaling of the DD bounds are not employed in their work. Another
notable di�erence is that [213] does not thoroughly focus on fermionic singlet DM.
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Chapter 5

Summary and Conclusion

In this thesis, we addressed current anomalies and inconsistencies of the SM such as hints
towards LFUV in the B-meson decays, the existence of DM and anomalies in the neutrino
sector in the context of BSM model building with additional neutral leptons.

In Chapter 1, we gave a brief overview of the existing frameworks of the SM and ΛCDM
standard cosmology. Furthermore, we shortly outlined anomalies in the experimental data and
possible shortcomings of these theories. In Chapter 2, we reviewed the theoretical frameworks
of neutrino oscillations, neutrino mass generation, early universe thermodynamics and the pro-
duction and detection of WIMP DM.

In Chapter 3, we introduced a model with additional sterile neutrinos and ADRs addressing
the long-standing SBL anomalies as well as the Reactor- and Gallium anomalies. The ADR is
introduced as a ubiquitous potential for the sterile neutrino state, potentially stemming from
e.g. extradimensional setups.

We reviewed di�erent approaches to constructing such a model. We discussed a (3 +
1)ν+ADR model, a (3 + 3)ν+universal ADR model and �nally a (3 + 3)ν+individual ADRs
model. We showed that these models can in principle emulate an e�ective (1 + 1)ν model
at low energies. Furthermore, we illustrated that both the (3 + 1)ν+ADR model and the
(3 + 3)ν+universal ADR model are �awed in terms of their behavior at LBL disappearance
experiments at high energies in combination with a non-vanishing oscillation amplitude at SBL
experiments. The (3 + 1)ν+ADR model always features a residual oscillation mode at high
energies, which is not observed by atmospheric disappearance experiments. This issue can be
avoided in a (3 + 3)ν+ADR setup with democratic mixing. However, the (3 + 3)ν+universal
ADR model predicts a vanishing appearance probability at SBL experiments due to unitarity
cancellations in this case. A (3 + 3)ν+individual ADRs model does not su�er from this issue.

We explored the parameter space of the (3+3)ν+individual ADRs model using four BMPs,
pointing out characteristic imprints of the choices of the additional mass-squared di�erence
∆m2

SBL, the mixing angle θ and the set of ADR parameters ε, η, κ and ξ in the oscillation
probabilities at several experiments. We found that the strongest constraints come from LBL
accelerator experiments like T2K, which operate at energies E ∼ O(100MeV-1GeV), and sub-
GeV data of atmospheric experiments like SK and IceCube. A potential �t to the world neutrino
data and the forthcoming results of the MicroBooNE SBL experiment at Fermilab can provide
a robust test for this model.

In Chapter 4, we studied a class of one-loop solutions to the B-anomalies and (g − 2)µ in
the context of fermionic singlet DM phenomenology. This model class introduces three BSM
�elds, either one scalar and two vector-like fermions or vice versa. These particles interact with
the SM quarks and leptons via Yukawa interactions, where couplings to the �rst generation
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Chapter 5. Summary and Conclusion

are assumed to be negligible. The models are classi�ed in terms of their representations under
the SM gauge group up to the adjoint representation. Out of the 48 possible combinations we
identi�ed �ve setups with a fermionic singlet, which can be of either Dirac or Majorana nature.

We assume all BSM �elds to be charged oddly (and SM particles evenly) under a Z2-
symmetry in order to stabilize the DM candidate against a decay. We categorized these models
in terms of the DM candidate's coupling to the SM, yielding four leptophilic, four quarkphilic
and two amphiphilic DM models. For each of the ten di�erent models, we studied the DM
phenomenology for both democratic and hierarchical coupling structures in the quark sector.
Furthermore, we investigated di�erent mass di�erences in the dark sector including coannihila-
tion and non-coannihilation scenarios. For our numerical scans, we took into account vacuum
stability of the scalar potential and constraints on BSM Yukawas from B-B̄-mixing.

Our results show that all Dirac models are ruled out by DD in the parameter space relevant
for the solution of the B-anomalies and (g − 2)µ due to the strong e�ective interaction with
the Z-boson. In Majorana models, we found several windows in the parameter space where
individual solutions to the B-anomalies, DM or (g − 2)µ are allowed by DD. This is mainly
due to vanishing vector current interaction in the e�ective DM-Z-boson vertex. We also found
that VIB ID constraints are not su�ciently stringent to rule out these scenarios. In quarkphilic
and amphiphilic DM models, we found a window for a simultaneous solution of DM and the
B-anomalies. However, most of the parameter space viable in terms of DM phenomenology is
located in the rangeMDM ≲ 1TeV, which could be in the range of current colliders. This result
motivates future work on this topic including a dedicated collider study of this setup.
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Appendix

A Useful Identities of Dirac Matrices, Spinors and Bilin-

ears

A.1 Dirac Matrix Identities

A useful identity for Dirac matrices is

γ0γµγ0 = (γµ)† , (A.1)

which relates the Dirac matrices γµ with their hermitian conjugates. This is e�ectively a change
of basis, since the the time-like Dirac matrix γ0 is an involution, as

γ0γ0 = 14 . (A.2)

This in turn means that γ0 is hermitian: γ0 = (γ0)†. It also means that the description of the
Dirac matrices γµ and their hermitian conjugates (γµ)† is equivalent, as they are connected via
a similarity transformation of the form AγµA−1 = (γµ)† and thus they can be shown to obey the
same Cli�ord algebra. Using Eq. (A.1) and the de�nition of the Cli�ord algebra {γµ, γν} = 2ηµν

made in Section 1.1, we �nd that the space-like Dirac matrices are anti-hermitian: γµ = −(γµ)†.
Another important similariy transformation for Dirac matrices is one, which involves the

charge conjugation matrix C (which is more precisely de�ned in Section A.2) with

CγµC−1 = −(γµ)T . (A.3)

This transformation shows that the negative transposed matrices −(γµ)T also obey the same
Cli�ord algebra.

A.2 Identities Involving Charge Conjugations

In this appendix we review some spinor identities following Section 3 in [73]. Let us assume
that ψ is a four-component spinor. The charge conjugation is then de�ned as

ψC = Cψ̄
T
= iγ2γ0ψ∗ =

(︃
0 −iσ2

−iσ2 0

)︃
ψ∗ (A.4)

in Dirac representation, so that C is antisymmetric, unitary and real, yielding

C−1 = −C = CT = C† , CγµC−1 = −(γµ)T . (A.5)

Based on these properties of C, it can be shown that

ψC = ψTC (A.6)
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and that the charge conjugation is an involution

(ψC)C = ψ . (A.7)

Useful properties of bilinears involving charge conjugation are

ψ1ψ
C
2 = ψC2 ψ1 , (A.8)

ψ1Aψ2 = ψC2 (CA
TC−1)ψC1 , (A.9)

where A is an arbitrary 4× 4 matrix.
Using Eqs. (A.9) and (A.3) it can be shown that the vector bilinear of a Majorana spinor

vanishes

ψ̄γµψ = ψCγµψC = −ψCγµψC

⇒ ψ̄γµψ = 0 ,
(A.10)

where we used that the Majorana spinor obeys the Majorana equation

ψ = ψC . (A.11)

Furthermore, [7] suggests also that the number operator
∫︁
d3xψ̄γ0ψ vanishes for Majorana

particles.

B Wilson Coe�cients and Loop Functions

Following [48], the b→ sµµ transition and B-B̄ Wilson coe�cients read

Cbox,a9 = −Cbox,a10 =

√
2

4GFVtbV ∗
ts

ΓsΓ
∗
b |Γµ|2

32παemM2
ψ

(χηF (xQ,xL) + 2χMηMG(xQ,xL)) , (B.1)

Cbox,b9 = −Cbox,a10 = −
√
2

4GFVtbV ∗
ts

ΓsΓ
∗
b |Γµ|2

32παemM2
ϕ

(χη − χMηM )F (yL,yL) , (B.2)

CaBB̄ =
(ΓsΓ

∗
b)

2

128π2M2
ψ

(︁
χBB̄ηBB̄F (xQ,xQ) + 2χMBB̄η

M
BB̄G(xQ,xQ)

)︁
, (B.3)

CbBB̄ =
(ΓsΓ

∗
b)

2

128π2M2
ϕ

(︁
χBB̄ηBB̄ − χMBB̄η

M
BB̄

)︁
F (yQ,yQ) , (B.4)

where xQ/L = M2
ϕQ/L/M2

ψ and yQ/L = M2
ψQ/L/M2

ϕ. F and G are the dimensionless loop-functions

F (x,y) =
1

(1− x)(1− y)
+

x2 lnx

(1− x)2(1− y)
+

y2 ln y

(1− x)(1− y)2
, (B.5)

G(x,y) =
1

(1− x)(1− y)
+

x lnx

(1− x)2(1− y)
+

y ln y

(1− x)(1− y)2
. (B.6)

The SU(2/3)-factors η(M)

(BB̄)
,χ

(M)

(BB̄)
can be extracted from Table 1.
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Figure 1: Crossed box-diagram contributions to (a) B-B̄-mixing and (b) b → s l+l− in the case
of ψ being a Majorana fermion.
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Figure 1: Crossed box-diagram contributions to (a) B-B̄-mixing and (b) b → s l+l− in the case of ψ
being a Majorana fermion.

SU(2)L η ηM ηBB̄ ηM
BB̄

ηaµ η̃aµ
I 1 1 1 1 −1∓X ±X
II 1 0 1 0 − 1

2 ∓X − 1
2 ±X

III 5
16 0 5

16 0 − 7
8 ∓ 3

4X
1
8 ± 3

4X

IV 5
16

1
16

5
16

1
16 − 1

4 ∓ 3
4X − 1

2 ± 3
4X

V 1
4 0 5

16 0 − 1
2 ∓X − 1

2 ±X

VI 1
4 0 1 0 − 7

8 ∓ 3
4X

1
8 ± 3

4X

SU(3)C χ χM χBB̄ χM
BB̄

χaµ
A 1 1 1 1 1

B 1 0 1 0 3

Table 1: SU(2) and SU(3) factors entering Wilson coe�cients Cbox9 and CBB̄ [48]. X is de�ned as the
(negative) weak hypercharge of ψ (ϕ).

We present the constraints on the Yukawa couplings ΓsΓ
∗
b and Γµ from B-B̄ and LFUV

variables in Tables 2 and 3.
In the case of the model aIAMaj, there are additonal diagrams that contribute to the Wilson

coe�cients in C9 and CBB̄ , as indicated in Table 1. These diagrams are depicted in Fig. 1.
As a consequence, the RK bound is not monotonous in the mass ratio κ as opposed to all
other models presented in this work. In Fig. 2, we show the RK bound as a function of κ at
an exemplary DM mass of Mψ = 100GeV. We can see that at κmin ≈ 1.777, the function is
minimal and therefore gives the weakest constraint. Furthermore, for the values chosen in this
work, the hierarchy of the bounds reads

BoundRK (1.01) > BoundRK (15) > BoundRK (1.1) ≈ BoundRK (5) . (B.7)
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Figure 2: The RK bound as a function of the mass ratio κ at Mψ = 100GeV for aIAMaj. The
minimum lies at κ ≈ 1.777.

The contribution to aµ = (g−2)µ/2, which is de�ned via the e�ective operator

He� = −aµ
e

4mµ
(µ̄σνρµ)Fνρ (B.8)

yields

∆aaµ =
m2
µ |Γµ|

2

8π2M2
ψ

χaµ

[︂
ηaµF7(xL)− η̃aµ F̃ 7(xL)

]︂
, (B.9)

∆abµ =
m2
µ |Γµ|

2

8π2M2
ϕ

χaµ

[︂
η̃aµ F̃ 7(yL)− ηaµF7(yL)

]︂
, (B.10)

where the group factors η̃aµ/ηaµ and χaµ can be extracted from Table 1 and the functions F7(x)

and F̃ 7 are characterized as

F7(x) =
x3 − 6x2 + 6x log (x) + 3x+ 2

12(x− 1)4
, F̃ 7(x) =

F7(
1
x )

x
. (B.11)

The constraints on Γµ from (g − 2)µ are summarized in Table 3.
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C Relevant Plots of the DM Indirect Detection Results

In this appendix, we show the corresponding plots for the ID results from VIB discussed in
Section 4.3.3. Figs. 3-7 show scans over the Γµ-MDM-plane of the thermally averaged DM
annihilation cross section into a fermion pair and an additional photon normalized by the
bounds from Fermi-LAT/HESS [164]. In the scan, we make all assumptions about the model
parameters stated in Section 4.4.1. In these �gures, we include the RD rescaling according to
Eq. (4.3.11) into the bound. Green-shaded points indicate that the VIB cross section is below
the bounds and thus not excluded, whereas and purple-shaded areas are excluded.
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Figure 3: The thermally averaged VIB annihilation cross section normalized to the bound from Fer-
mi-LAT and HESS ⟨σv⟩f̄fγ/⟨σv⟩Bound in the Γµ-MDM-plane for the democratic scenario in bIIA Majorana.
The ID bound is RD-rescaled. The color code indicates the exclusion of the parameter set, where green
shades indicate non-exclusion and purple shades indicate excluded points. Since no purple areas exist
in this setup, no constraints on the parameter space can be derived.
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(b) κ = 1.1

Figure 4: The thermally averaged VIB annihilation cross section normalized to the bound from Fer-
mi-LAT and HESS ⟨σv⟩f̄fγ/⟨σv⟩Bound in the Γµ-MDM-plane for the democratic scenario in bVAMajorana.
The ID bound is RD-rescaled according to Eq. (4.3.11). The color code indicates the exclusion of the
parameter set, where green shades indicate non-exclusion and purple shades indicate excluded points.
Since no purple areas exist in this setup, no constraints on the parameter space can be derived.
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(b) κ = 1.1

Figure 5: The thermally averaged VIB annihilation cross section normalized to the bound from Fer-
mi-LAT and HESS ⟨σv⟩f̄fγ/⟨σv⟩Bound in the Γµ-MDM-plane for the democratic scenario in bIIB Majorana.
The ID bound is RD-rescaled according to Eq. (4.3.11). The color code indicates the exclusion of the
parameter set, where green shades indicate non-exclusion and purple shades indicate excluded points.
Since no purple areas exist in this setup, no constraints on the parameter space can be derived.

The stripy pattern imprinted in all �gures stems from the normalization to the mass-
dependent limits from Fermi-LAT/HESS.

All �gures show that the searches for VIB line-like signatures in the photon spectrum cannot
place any constraints onto the parameter space. This is mainly due to the quadratic RD
rescaling of the ID bound. Note that hierarchical scenarios tend to underproduce DM because
of the large couplings to third generation quarks and the subsequently late freeze out. Thus,
the ID bound for parameter points in a hierarchical scenario undergo an even more severe RD
scaling than in democratic scenarios, which therefore become most constraining with regards
to ID.
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(b) κ = 1.1

Figure 6: The thermally averaged VIB annihilation cross section normalized to the bound from
Fermi-LAT and HESS ⟨σv⟩f̄fγ/⟨σv⟩Bound in the Γµ-MDM-plane for the democratic scenario in bVIB
Majorana. The ID bound is RD-rescaled according to Eq. (4.3.11). The color code indicates the
exclusion of the parameter set, where green shades indicate non-exclusion and purple shades indicate
excluded points. Since no purple areas exist in this setup, no constraints on the parameter space can
be derived.
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(a) κ = 1.01
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Figure 7: The thermally averaged VIB annihilation cross section normalized to the bound from Fer-
mi-LAT and HESS ⟨σv⟩f̄fγ/⟨σv⟩Bound in the Γµ-MDM-plane for the democratic scenario in aIA Majorana.
The ID bound is RD-rescaled according to Eq. (4.3.11). The color code indicates the exclusion of the
parameter set, where green shades indicate non-exclusion and purple shades indicate excluded points.
Since no purple areas exist in this setup, no constraints on the parameter space can be derived.
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D Estimation of the DMRD in Coannihilation Scenarios

In addition to the discussion about the estimate for the relic density in the case of dominant
direct annihilations in Section 4.3, we expand this discussion by giving a rough estimate of the
RD in coannihilation scenarios (κ ≲ 1.2) in this appendix.

Even in the scenario where only the direct annihilation of DM is relevant for the annihilation
cross section, e�cient conversions of dark sector particles can in�uence the e�ective annihilation
cross section and thus the relic density signi�cantly in the case of small mass splittings. This
is done via an alteration of the ratio of equilibrium densities in Eq. (2.3.43).

Given the way we present the results in this work, we are most interested in the Yukawa
coupling Γi required to produce the observed relic density for each ratio κ ≲ 1.2.

Considering only the thermally averaged cross section of the direct annihilation of DM in
Eq. (4.3.5), an increase in κ directly corresponds to a decrease of the cross section. As this is
true for both Majorana and Dirac DM candidates. This is an intuitive result, since the non-
DM BSM particle acts as a mediator of the annihilation diagram, for which an increasing mass
implies a lower cross section.

However, if the ratio of equilibrium densities at the time of thermal freeze-out is considered,
the κ dependence of the e�ective thermally averaged annihilation cross sectionis given by

⟨σe�v⟩ ≈
1

(1 + κ2)
2

[︃
1 +

gnon-DM
gDM

κ
3
2 exp (−κxf + xf )

]︃−2

×

×
{︃

1/8, for Dirac DM(︁
1 + κ4

)︁ (︁
1 + κ2

)︁−2
, for Majorana DM

. (D.1)

This function is, conversely to Eq. (4.3.5) not monotonous in κ and develops a maximum at a
�nite κmax. This means that there might be a value of κmax, in whose case the observed relic
density can be reproduced by the smallest Yukawa coupling Γ.

This e�ect can lead to the reversal of hierarchies of RD lines in a MDM-Γµ diagram, since
there can be a set of κ values, which require smaller Yukawa couplings than naïvely expected.

For example in the case of bIIA Dirac, the maximum of ⟨σe�v⟩ is reached at κmax ≈ 1.15.
The corresponding behavior of the RD lines is shown in Fig. 4.8, where it is evident that
the RD line of the κ = 1.01 scenario requires a larger Γµ than the κ = 1.1 scenario. A similar
behavior can be observed in the results of the bVA and aIA Dirac scenarios, where the results are
summarized in Figs. 4.11 and 4.18, respectively. Note that for purely quarkphilic DM scenarios,
this e�ect cannot be observed in our analysis because the annihilation of DM into SM particles
is dominated by annihilation into quark via Γs/b. However, we present our analysis in the
MDM-Γµ-plane and thus only the subdominant contribution of the coannihilation channels can
be monitored directly.

In Majorana DM models, additional e�ects come into play. While DM direct annihilations
are p-wave suppressed, coannihilations of the other BSM particles are s-wave and thus unsup-
pressed by velocity. Thus, in some parts of the parameter space, coannihilations can become
dominant and Eq. (D.1), where we only consider DM direct annihilations, does not accurately
describe the scenario anymore. Instead, the sum in Eq. (2.3.43) must be carried out entirely
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including coannihilations, yielding e.g.

⟨σe�v⟩ ≈ ⟨σannv⟩
(YDM)

2

(YDM + Ynon-DM)
2

+ ⟨σcoann,ϕQv⟩
(︁
YϕQ

)︁2
(YDM + Ynon-DM)

2 + ⟨σcoann,ϕLv⟩
(YϕL)

2

(YDM + Ynon-DM)
2

+ ⟨σcoann,ϕQ,ϕLv⟩
YϕQYϕL

(YDM + Ynon-DM)
2 ,

(D.2)

for a-type models, while b-type models are analogous.
In the case of leptophilic DM scenarios, e.g. , we �nd that for very a small mass splitting

κ = 1.01 annihilations of the scalar doublet ϕ into SM leptons via Γµ is dominant. However,
for a larger mass gap of κ = 1.1, direct annihilations of DM are again mainly responsible for
setting the DMRD.

It is important to note that in the case of Majorana DM, the internal degrees of freedom of
the fermionic singlet are halved compared to the Dirac case. This changes the relative composi-
tion of number densities in the dark sector, since the number density is directly proportional to
gi. Similarly, models that contain an SU(2)L-triplet fermionic coannihilation partner have dif-
ferent internal degrees of freedom and subsequently a di�erent composition of number densities
than their SU(2)L-singlet counterparts. So even in the case of dominant DM direct annihila-
tions, this e�ect can a�ect the prediction of the DMRD via e�ective conversion, as discussed
above.

In an exemplary comparison of bIIAMaj and bVAMaj, where the color-charged fermion ψQ
makes the singlet → triplet shift, we can observe that the e�ective cross section of bIIAMaj

scales monotonically, while the one of bVAMaj features a maximum in κ. As described above,
this fact leads to the reordering of the RD line hierarchy.
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