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Abstract

We present an approach for quantum impurity systems (QISs) that extends the

numerical renormalization group (NRG) to an open quantum system (OQS) formula-

tion. The continuous conduction band is divided into an arbitrary Wilson chain and a

set of reservoirs without affecting the local bath hybridization function. One reservoir

is coupled to each chain site and is treated by the Bloch-Redfield formalism (BRF),

which includes the Born-Markov approximation (BMA).

This open chain formalism (OCF) yields true thermalization in local time-dependent

non-equilibrium expectation values (TD-NEVs), as well as finite lifetime in local

equilibrium spectral functions (ESFs). It reproduces the t → ∞ steady-state predicted

by the NRG and the correct relaxation rates in the resonant level model (RLM).

By enlarging the Wilson chain, the accuracy of the BMA, especially with respect

to short-time dynamics, is increased. The formation of Hubbard-peaks and the

Kondo-resonance are reproduced for the single impurity Anderson model (SIAM).

The BMA in second order results in the persistence of finite-size oscillations to some

degree, which can be damped by the well-established procedure of z-averaging. We

find the BRF to be inadequate for interacting models, if the local Coulomb repulsion

exceeds the conduction bandwidth, and discuss several options to improve the OCF

for this parameter regime.

Since the motivation for this thesis is of pure methodological nature, we restrict

to the most simple quantum impurity models (QIMs) to benchmark our algorithm.

However, the OCF is as versatilely applicable to more complex models as the pure

NRG. Consequently, our approach can be adapted to e.g. multi-impurity models, as

well as simulate local transport properties in and out of equilibrium.
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Kurzfassung

Wir präsentieren einen Ansatz zur Behandlung von Quantenstörstellensystemen,

der die numerische Renormierungsgruppe (NRG) zu einem offenen-Quantensystem-

Formalismus erweitert. Das kontinuierliche Leitungsband wird in eine beliebige

Wilsonkette und einen Satz von Reservoirs aufgeteilt, ohne die lokale Badhybri-

disierungsfunktion zu beeinflussen. An jedes Kettenglied wird jeweils ein Reservoir

über den Bloch-Redfield Formalismus (BRF) angekoppelt, der eine Born-Markov-

Näherung (BMN) impliziert.

Dieser offene-Wilsonketten-Formalismus (OWF) garantiert eine echte Thermal-

isierung für lokale nicht-Gleichgewichtsdynamik, sowie eine endliche Lebenszeit für

lokale Gleichgewichtsspektralfunktionen. Der Ansatz reproduziert die von der NRG

vorhergesagten Gleichgewichtswerte für t → ∞ und die korrekten Relaxationsraten für

das Resonanzlevel-Modell. Durch Verlängerung der Wilsonkette wird die Genauigkeit

der BMN, speziell für die Kurzzeitdynamik, erhöht. Die Formierung der Hubbardhügel

und der Kondoresonanz können für das Einzelstörstellen-Anderson-Modell reproduziert

werden.

Die BMN in zweiter Ordnung ist nicht in der Lage, die Oszillationen, die durch

die Banddiskretisierung im Kontext der NRG entstehen, vollständig zu dämpfen, kann

jedoch durch die wohlbekannte z-Mittelung konstruktiv ergänzt werden. Es stellt sich

heraus, dass der BRF nicht effizient ist für wechselwirkende Systeme, in denen die lokale

Wechselwirkung die Bandbreite übersteigt. Hierzu diskutieren wir mehrere alternative

Optionen.

Die Motivation zu dieser Arbeit ist rein methodologischer Natur, weshalb wir uns

auf die einfachsten Quantenstörstellenmodelle beschränken. Der OWF ist allerdings

ebenso vielfältig einsetzbar wie die NRG selbst, und damit anwendbar auf z.B. Multi-

Störstellenmodelle oder lokalen Gleichgewichts- und Nicht-Gleichgewichts-Transport.



iii

Publication List

During the course of the work for this thesis the following article has been published.
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1. Introduction

Solid state physics is a materials science, that is intended to explain macroscopic be-

havior of crystalline solids, such as the conductivity of heat or electric current, by

understanding their properties on a microscopic, i.e. atomic level. On this scale, it is

often indispensable to consider quantum mechanical effects. A typical sample used in

experiments contains a particle number of the order of 1023. It is clearly impossible

to solve such a system, when considering all quantum mechanical particle interactions.

This is why physicists reduce the complexity of the problem by concentrating on single

weakly or non-interacting electrons. However, this method fails to describe materi-

als, in which strong correlation effects play a dominant role. These materials show

unusual, and often technologically useful, electronic and magnetic properties such as

superconductivity [1, 2], Mott insulation [3, 4] or heavy fermion behavior [5, 6].

One example of a strong correlation effect was discovered in the 1930’s in a gold

sample contaminated with iron atoms [7]. At very low temperatures of a few Kelvin,

the sample displayed an increase of electrical resistivity upon further lowering the

temperature, which contradicted the traditional perspective at that time. In the 1960’s

Jun Kondo was able to explain the resistivity minimum by an interaction between the

magnetic moment of the iron impurities and the conduction band electron spins of

the gold atoms [8]. This so-called Kondo effect is not restricted to magnetic impurities

diluted in a host metal, but can also be observed in quantum dots (QDs) [9]. These are

artificial atoms that confine a localized charge in all space dimensions. The localized

spin of an electron can be used as a qubit and can be manipulated by coherent laser

pulses, which builds the foundation of quantum computing [10, 11, 12].

The basis of theoretically describing a QIS, such as the above mentioned localized

iron impurities coupled to the itinerant gold electrons, is the reduction of the complex

many-body interactions to an effective QIM. The SIAM [13, 14, 15] is a basic QIM,

which is capable of describing the Kondo effect and is connected to the Kondo model

by a Schrieffer-Wolff transformation [16]. It contains a single orbital hybridized with a

non-interacting band of conduction electrons. By the introduction of a local Coulomb
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repulsion between electrons of opposite spin, the SIAM is able to explain the formation

of a local magnetic moment and ultimately the Kondo effect itself. From the SIAM

one can derive even simpler models as the (interacting) RLM [17, 18].

A variety of methods has been applied to approximately solve QIMs in an analytical

and numerical manner1. A major challenge to those approaches is the applicability

over a wide range of energies, spanning from the width of the conduction band to the

exponentially small temperatures, at which the Kondo effect emerges. One of the most

successful approaches is the renormalization group (RG) [20, 21], which provides an

effective low-energy Hamiltonian by iteratively integrating out high-energy modes and

thus renormalizing the energy scales of the system. From the RG, Kenneth Wilson

developed the NRG in the 1970’s [22], with which he was able to solve the Kondo

model. The NRG is based upon a logarithmic discretization of the conduction band

energy spectrum. These discrete modes are iteratively coupled to the impurity to form

a so-called Wilson chain. The logarithmically decreasing coupling parameters embed

an energy hierarchy that reveals the RG character of this method and allows for a

truncation of high-energy states of the system. This truncation is the numerical aspect

of the NRG and allows to significantly increase the system size.

Since its development, the NRG has successfully been applied to calculate local

equilibrium and non-equilibrium quantities of QIMs [23, 24, 25]. The drawback of

this method are finite-size effects due to the band discretization [26, 27, 28], which

inevitably neglects modes from the energy continuum. In TD-NEVs, this translates to

back-reflections of charge along the Wilson chain [29, 30], due to the decreasing chain

parameters, as well as reflection at the end of the chain, which ultimately leads to

revival effects of charge at the impurity and prohibits a thermalization of the system

[31]. In ESFs the discretization of the band continuum prohibits a finite lifetime of

local excitations, which is a practical obstacle for the depiction of the spectrum [32].

Throughout the years, several attempts have been made to improve the finite-size

effects of the NRG. One of the basic concepts to restore the continuum is z-averaging

proposed by Oliveira et al [33]. Here the results are averaged over several Wilson

chains, which differ by a shift of the discretization of the conduction band. Thus

finite-size oscillations in equilibrium [26] and non-equilibrium [29] quantities can be

reduced. However, a thermalization to the correct steady-state is not achieved. For

spectral functions it is customary to artificially broaden the spectrum with a Gaussian

[34] or a Lorentzian [32]. This renders satisfactory results for low-energies, but over-

1A detailed overview can be found in Ref. [19], Chap. 1.
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broadens the spectrum at higher energies. Furthermore, in the SIAM the ESF can be

slightly optimized by a correction of the self-energy [35]. However, a natural intrinsic

broadening is still not provided.

Güttge et al proposed a hybrid NRG+DMRG approach [36]. Here an effective tight-

binding chain is coupled to the end of a Wilson chain. The Wilson chain is treated

with the NRG, while in the tight-binding chain a truncation of high-energy states is

not possible. Thus, a density matrix renormalization group (DMRG) [37] is required,

which is more versatile, since it discards those states, which have a small contribution

to the ground state instead, and is thus applicable for arbitrary tight-binding chains.

A drawback of the DMRG is the fact, that it is basically restricted to ground state,

i.e. temperature T = 0 calculations. The NRG+DMRG approach has been shown

to produce accurate results for the interacting resonant level model (IRLM) [36], but

provides neither a true thermalization for longer times, nor a finite lifetime.

In this thesis we propose an OCF by hybridizing the NRG with a BRF [38, 39, 40].

To be precise, a Wilson chain with reservoirs coupled to each chain site is constructed

by a continued fraction expansion (CFE) [41]. This open Wilson chain (OWC) re-

sembles the exact continuum of the conduction band. The reservoir-chain coupling is

performed by a BRF, which is a coupling in second order of the hybridization strength.

This formalism includes dissipation, since the reservoirs absorb surplus charge and can

thus reduce back-reflections. Furthermore, the BRF includes a true thermalization to

the steady-state predicted by the NRG, as well as natural broadening of the local ex-

citations. In the limit of a small discretization parameter and a long Wilson chain, the

system becomes exact in the sense, that the reservoirs resemble a small perturbation

to the Wilson chain, which is approximately exact in second order.

Above we have introduced the reservoirs as a correction to the Wilson chain to

restore the full continuum. However, the opposite perspective is possible as well. At

the foundation of the BRF lies the BMA, which assumes the hybridization between the

local system (impurity) and the bath (conduction band) to be the smallest energy scale

of the total QIS. By extracting modes from the bath and coupling them to the impurity,

the local system is expanded and the remaining bath modes are re-coupled from the

impurity to the single chain sites. From that perspective, the Wilson chain acts as a

buffer zone [42, 43, 44] and the system becomes exact, if the energy levels of this buffer

zone are sufficiently dense, which is in accordance with the criterion above. Typical

approaches use an equidistant energy spacing, while we use a logarithmic spacing due

to the Wilson chain energy hierarchy.
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Dorda et al [45, 46] have used the auxiliary master equation approach (AMEA) as

an OQS approach, that is to some degree similar to our OCF formalism. In contrast,

an arbitrary system with few degrees of freedom (DOF) instead of a Wilson chain

is chosen as an auxiliary buffer zone between the impurity and the reservoirs. The

coupling is treated with a standard Lindblad formalism [47, 48], where all Lindblad,

as well as buffer zone, parameters are fitted to resemble the exact bath hybridization

function for the local Green’s function as accurately as possible. The group is able to

reproduce the SIAM spectral function well in both equilibrium and non-equilibrium. In

contrast, we rigorously derive the OWC parameters to obtain an exactly defined system.

This gives a physical justification of our method, which goes beyond the argument of

rendering adequate results. The NRG allows us to efficiently calculate large systems,

where the Bloch-Redfield tensor (BRT) can be solved exactly by including the secular

approximation. Furthermore, the BRF is more complex than the Lindblad formalism,

which is the reason, why the group could not reproduce the SIAM results for a single

chain system with the AMEA.

This thesis is organized as follows: In Chap. 2 we introduce the relevant QIMs of

this thesis and review their most important features. In Chap. 3 the NRG is derived

in the canonical way and is adapted to the calculation of TD-NEVs and ESFs. Also

the finite-size properties of the Wilson chain are discussed, which are the motivation

for our OCF. The BRF is reviewed in Chap. 4 and the implications of the BMA are

illustrated for the atomic RLM and SIAM, respectively. In Chap. 5 we present the

CFE, which is then used to extend the system Hamiltonian by a Wilson chain and

thus to construct an OWC. Exemplarily for the RLM, we illustrate how the BMA is

improved by the Wilson chain or how the OQS formulation of the BRF introduces true

relaxation and broadening to the Wilson chain. The OCF is adapted to the NRG in

Chap. 6, by introducing several approximations for a truncation of high-energy states

in the OWC that do not corrupt the fundamental properties2 of the time-dependent

density matrix. In Chap. 7 the OCF is tested for interacting QIMs, i.e. the IRLM

and the SIAM, respectively. Especially, we extend the investigations of Chap. 4 with

respect to the suitability of the formalism for all energy ranges of the local Coulomb

repulsion in relation to the bandwidth of the conduction band. Finally, in Chap. 8 we

conclude the findings of the thesis and propose ideas regarding a further application

and extension of the OCF.

Throughout this thesis we presume ~ = 1 and kB = 1. Consequently, frequencies

2i.e. positive semi-definiteness, hermiticity and the conservation of the trace for all times
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and temperatures are interpreted as energies and time is an effective inverse energy.

We will denote D as the bandwidth of the conduction band for the sake of convenience,

although, strictly speaking, it is the half bandwidth. The Fermi-energy ǫF is defined

as zero in this thesis and the hybridization Γ will be our favored energy scale, since it

is invariant under poor man’s scaling.





2. Quantum Impurity Models

In the middle of the last century researchers began to discover that impurities in metal

alloys can have interesting impacts on physical properties of the host material. Since

those days, theorists developed several models to describe impurities on a quantum

level, i.e. QIMs, as well as versatile methods to solve those models analytically and

numerically. Impurities can influence transport properties of the host material. One

of the most important impurity effects is the modification of electrical resistivity at

low temperatures, which was discovered in 1934 [7]. This effect was explained by Jun

Kondo in 1964 [8], although it took another 10 years to find a satisfying theoretical

treatment of the Kondo effect, until Wilson developed the NRG [22]. Nowadays, several

experimental realizations of the Kondo effect are possible (see Sec. 2.6), spanning from

magnetic adatoms on non-magnetic surfaces to localized electrons serving as QDs.

In a QIM, the impurity is described as a small subsystem with a finite number of

DOF. An example could be a single energy level in the outer orbital of a 3d or 4f atom.

An electron can be localized in this orbital, but in comparison to the other electrons

of the atom, it is confined less strongly and can thus hybridize with the environment

of the impurity. Furthermore, if the spin of this level is not compensated by another

electron of the atom, an effective magnetic moment is generated, which makes the

impurity magnetic. The distribution of impurities in a real material can be assumed to

be random. In this thesis we concentrate on simple metals as the host material, which

are characterized by a broad conduction band of s or p states. We approximate those

(itinerant) conduction electrons as non-interacting particles moving within a periodic

potential. For that reason, it is convenient to express the conduction band by the

one-particle Hamiltonian

HB =
∑

k,σ

ǫ
k
c†
k,σck,σ, (1.0.1)

with c
(†)
k,σ annihilating (creating) a free conduction electron of wave-vector k and spin

σ with an associated energy ǫk. The free electron gas HB is mathematically simple
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and thus many physical properties are trivially known, which simplifies calculations.

Without loss of generality, we define the absolute conduction band excitation energies

as limited by an upper bound D, called bandwidth. Due to the large number of free

electrons at O(1023), the band can be treated as a continuous spectrum.

Charge transfer between the impurity (local system) and the band is mediated by a

hybridization Vk via the term

HSB =
∑

k,σ

Vk(d†σck,σ + c†
k,σdσ), (1.0.2)

with a local operator d
(†)
σ and a conduction band operator c

(†)
k,σ. The normalization

factor of 1/
√
N is absorbed in the definition of Vk, where N is the total number of

conduction band electrons and goes to infinity for a continuous band. The spectral

coupling function is given as

Γ(ω) = π
∑

k

V 2
k
δ(ω − ǫk). (1.0.3)

We can define

V c0,σ =
∑

k

Vkck,σ (1.0.4)

with c
(†)
0,σ annihilating (creating) a Wannier state localized at the impurity. V is the

k-independent hybridization, defined by V 2 =
∑

k
V 2
k

, which follows from the normal-

ization of the band operators. If the bandwidth D is the dominant energy scale of the

system, we can assume the wideband limit D ≫ Γ. Furthermore we approximate the

conduction band density of states (DOS) as a flat band

ρ0(ω) =
1

2D
Θ(|D| − ω). (1.0.5)

The spectral coupling function (1.0.3) then reduces to

Γ(ω) = ΓΘ(|D| − ω), (1.0.6)

where Γ = πV 2ρ0(ǫF = 0) = πV 2

2D
can serve as the energy scale of the system. The

flat-band assumption is thus valid, since we are not interested in the influence of an

energy dependent coupling function Γ(ω) onto the local dynamics.



2.1. Kondo Effect 9

If the local impurity potential is strong enough, i.e. Γ ≫ D, a bound state with

an itinerant electron below the conduction band can likely occur, meaning that its

wave-function falls off fast with the distance to the impurity. If the potential is not

sufficiently attractive, still a so-called virtual bound state is possible. Here the free

electron is localized for a finite time in the vicinity of the impurity, and the wave-

function has a narrow peak at the impurity site, called virtual bound state resonance.

However, this state is not a real bound state, since the wave-function becomes a Bloch

state far from the impurity.

2.1. Kondo Effect

In 1934, de Haas et al found that impure gold wires have a resistivity minimum at low

temperatures [7]. To this point, resistivity was believed to entirely stem from electron-

phonon and electron-electron scattering, which would predict it to monotonously de-

crease with temperature [49], plus a residual contribution of the impurities, which

results in a constant resistivity for T → 0. The resistivity minimum was later found to

be contributed to magnetic impurities in a non-magnetic metal. In 1964, Jun Kondo

was able to theoretically describe the origin of the resistivity minimum on the basis of

the s-d model (see Sec. 2.2). He realized that at low temperatures the effective interac-

tion between the localized impurity electron spin and the conduction band electrons is

increased. In this case higher order perturbation terms are important to electron scat-

tering. Kondo calculated second order terms, i.e. two-step electron scattering, which

yield a contribution ∝ −cimpJ lnT to the resistivity, with J being the Heisenberg ex-

change coupling, cimp the concentration of impurities and T being the temperature.

This finding explained the resistivity minimum for J > 0 (anti-ferromagnetic case),

but implied a divergence for T → 0. In contrast, real materials exhibit a resistivity

plateau below a certain temperature, called Kondo temperature TK. It was shown, that

including higher order terms did not help and that any perturbative approach breaks

down below TK.

Understanding the origin of the resistivity plateau while simultaneously including

the phenomenon of the resistivity minimum is called the ”Kondo problem”. It turned

out, that the cause of this plateau lies in the fact, that the local spin is screened more

and more by itinerant electrons, when the temperature is lowered [22], i.e. the impurity

spin forms a quasi-particle together with a free electron state of opposite spin [50]. This

special fragile state can only be formed, if the thermal energy is sufficiently low to not
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let kinetic processes break up the bond. The increase in resistivity, observed in real

materials by lowering the temperature below TK, is attributed to the so-called Kondo

resonance. It is expressed as a peak in the local impurity density of states around the

Fermi level.

In 1974, Kenneth Wilson developed the NRG (see Chap. 3), which is a non-

perturbative approach, capable of solving the Kondo problem.

2.2. Kondo Model

Experimental data [51] suggested that the depth of the resistivity minimum was pro-

portional to the concentration cimp of magnetic impurities in the sample. Based upon

that finding, Jun Kondo realized that the minimum can be attributed to independent

impurities. For that reason, he used the s-d exchange model to explain the resistance

behavior at low temperatures. This model describes the local magnetic moment in the

d-shell of a single impurity coupled to s-like electrons of the conduction band via a

spin-spin Heisenberg interaction. In the context of the Kondo effect this model is also

called the ”Kondo model”. The isotropic version of the s-d model is given by

Hsd = HB + JSimp · S. (2.2.1)

Here the first term is the conduction band part of Eq. (1.0.1). The second term

accounts for an effective Heisenberg interaction J between the local impurity spin Simp

and the total conduction electron spin

S =
1

2N

∑

k,k′

∑

σ,σ′

c†
k,σσσσ′ck′,σ′ . (2.2.2)

σ is a vector comprising the three Pauli matrices, and ↑ (↓) accounts for the first

(second) index of those matrices. For an anti-ferromagnetic interaction (J > 0) the

conduction band electron spins align anti-parallelly to the impurity spin. This enables

spin-flip scattering processes between two degenerate states. With Eq. (2.2.1) Kondo

perturbatively calculated contributions to the resistivity ρ by considering all possible

scattering processes 〈k′, σ′|T |k, σ〉 [8]1. The second order term in J yielded the already

known potential scattering contribution Rimp, which is constant in the temperature T .

1T is the T-matrix, which is a sum of terms that include Hsd, as well as the retarded Green’s function
of the free electrons in increasing order. The state |k, σ〉 refers to the wave vector k and the spin
component σ of a conduction band electron. For details see [6].
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By going to third order in J , spin-flip terms need to be considered, leading to

ρ(T ) = Rimp

(

1 − 4Jρ0(ǫF) ln

(

kBT

D

)

+ ...

)

. (2.2.3)

The logarithmic term arises from conduction band spins scattering at the local mo-

ment, and is present in analog calculations for quantities like the local magnetization

or entropy as well [6]. Kondo showed [8], that (2.2.3) is already in good agreement

with experimental data of dilute Fe in Au for low temperatures. However, in the limit

T → 0 the resistivity diverges to infinity, which is unphysical. Kondo’s perturbative

calculations are no longer valid below a certain temperature, i.e. the Kondo tempera-

ture TK. Finding a theory for the physical behavior of magnetic alloys in this regime

is referred to as the ”Kondo problem”.

2.3. Kondo Problem

Following Kondo’s publication in 1964, many researchers were inspired to solve the

Kondo problem. As it turned out, higher order terms could not cancel the divergence.

Abrikosov [52] improved Kondo’s theory to find second order terms proportional to
(

1 + 2Jρ0(ǫF) ln
(

kBT
D

))−1
. He was able to resolve the divergence for T → 0, but in the

anti-ferromagnetic case J > 0, he obtained a singularity at

TK =
D

kB
e−1/(2Jρ0), (2.3.4)

which is here identified as the Kondo temperature. In quantum-field theories, such a

logarithmic singularity is called an infra-red problem.

A fruitful approach was developed by Anderson [53], referred to as ”poor man’s

scaling”. He realized, that the divergence is generated by terms of the type ln(ǫ/D).

If the system was renormalized in a way, that D is reduced, the occurrence of the

divergence could be successively shifted to smaller energies ǫ. A smaller bandwidth D

corresponds to the highest bath excitations being eliminated. Anderson chose a more

general version of (2.2.1), i.e. the anisotropic Kondo model (AKM)

HAKM = HB + JzS
z
impS

z +
1

2
J⊥
(

S+
impS

− + S−
impS

+
)

, (2.3.5)

with anisotropic coupling parameters J⊥ and Jz. Here Jz determines, whether the cou-
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pling is ferromagnetic or anti-ferromagnetic and J⊥ ≥ 0. Anderson applied a perturba-

tive RG procedure, yielding an effective low-energy model with renormalized coupling

parameters. In lowest order these parameters satisfy the simple flow equations

dJ⊥
d lnD

= −2ρ0J⊥Jz,
dJz

d lnD
= −2ρ0J

2
⊥. (2.3.6)

It is convenient to plot the solutions of Eq. 2.3.6 in a diagram with Jz on the horizontal

and J⊥ on the vertical axis. The flow for decreasing D is then depicted as arrows.

Depending on the initial values for the coupling parameters, different fixed points of

the flow can be reached by lowering D. For Jz < −J⊥ we reach a ferromagnetic fixed

point with J⊥ = 0. Here spin-flip processes are suppressed, leading to the formation

of a stable local magnetic moment. For that reason it is called the local moment fixed

point (LMFP). In all other cases, the couplings diverge to positive infinity, which is

the strong coupling fixed point (SCFP). The line |J⊥| = −Jz represents a transition

of the Kosterlitz-Thouless type.

In the isotropic case, for weak coupling ρ0J ≪ 1 and for a constant DOS of the

conduction band, the Kondo temperature (2.3.4) is found to be constant under the

flow of D. By applying the poor man’s scaling in third order, one obtains an improved

version of (2.3.4) as

TK =
D

kB

√

2ρ0De−1/(2Jρ0). (2.3.7)

With poor man’s scaling the Kondo problem can be solved in higher order perturbations

due to the down-scaling of D. The ferromagnetic case is exactly solvable this way.

However, in the physically more relevant anti-ferromagnetic case, the coupling diverges

when lowering D, as mentioned above. For that reason, a perturbative treatment is no

longer possible and calculations are restricted to D ≈ max{kBT, kBTK}.

Numerous attempts have been made in the 60’s and early 70’s to tackle the Kondo

problem perturbatively, however, all approaches failed for anti-ferromagnetic coupling

between the local moment and the conduction band. In 1974, K. G. Wilson [22] was able

to solve the Kondo problem for the s-d model by applying a logarithmic discretization

to the conduction band. The relevant energies of the Kondo problem span from the

bandwidth D to small temperatures kBT ≪ D, leading to the divergence of ln(kBT
D

)

(see Eq. (2.2.3)). Wilson discretized this energy spectrum in a way, that the natural

logarithmic function is divided into a finite number of identical terms. Hence each

energy scale contributes equally to the expression. Upon that idea, Wilson developed
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the NRG approach to the Kondo problem, which is non-perturbative and thus avoids

the infra-red divergencies. In 1980, Wilson’s numerical results were later confirmed by

analytical calculations [54, 55] using the Bethe-ansatz technique [56]. As the NRG is

the foundation of our OQS approach, it is discussed in detail in Chap. 3.

2.4. Single Impurity Anderson Model

Anderson introduced the SIAM Hamiltonian

HSIAM = HS + HSB + HB (2.4.8)

HS = ǫd
∑

σ

d†σdσ + Ud†↑d↑d
†
↓d↓. (2.4.9)

to explain the formation of local magnetic moments in a metallic environment. This

model comprises a free electron bath HB of Eq. (1.0.1), coupled via the hybridization

term HSB of Eq. (1.0.2) to the local impurity HS. This impurity has an energy level

ǫd and an on-site Coulomb repulsion U , if the impurity site is doubly occupied. In

that sense, the SIAM can be interpreted as an atomic Hubbard model [57]. For the 3d

electrons of transition metals, as well as the 4f electrons of rare earth elements, the

Coulomb interaction is on the order of several eV according to theoretical estimates

[58] and experimental results.

In contrast to the Kondo model, the SIAM does not only include spin-flip terms,

but also allows for charge fluctuations. The interaction term is a product of four

operators and thus makes the model non-trivial. Originally, the four operators were

approximated by a Hartree-Fock term [13], which is bilinear in the operators and

includes local expectation values. This allows for an analytical treatment, but inhibits

the formation of the local magnetic moment and thus destroys the Kondo effect.

Obviously, the trivial limits of the model are the free orbital regime Vk = 0 and

the non-interacting case U = 0. Let us first consider the former case. Here the local

impurity state decouples from the conduction band and can have the following three

occupation states: (i) an empty impurity with energy E0 = ǫF = 0, (ii) a singly

occupied impurity with Eσ = ǫd and (iii) the doubly occupied state with E2 = 2ǫd +U .

Case (ii), where the impurity is occupied with one electron, represents a local magnetic

moment of spin ±1/2. If Eσ lies below the Fermi energy ǫF and E2 − Eσ > ǫF, then

case (ii) is thermally favored and so a local moment is formed in this atomic limit.

Now, by including a small hybridization Vk, the SIAM Hamiltonian (2.4.9) can be
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shown by a Schrieffer-Wolff transformation [16] to be identical to the Kondo Hamilto-

nian (2.2.1) in lowest order in Vk. Here we use the identities S+ = d†↑d↓, S
− = d†↓d↑

and Sz = 1
2
(nd,↑ − nd,↓) of local operators with nd,σ = d†σdσ. In the symmetrical

case ǫd = −U/2, the effective exchange coupling between the localized spin and the

conduction electrons is

J =
4V 2

U
=

4Γ

πρ0U
, (2.4.10)

which is always ≥ 0, i.e. the coupling is anti-ferromagnetic, and thus the spins are

favored to be aligned anti-parallelly.

The case kBT ≪ U < D and V = 0 (i.e. J = 0 in the s-d model) corresponds to the

LMFP, where the impurity is magnetic and is decoupled from the conduction band. If

then U/T → 0, the free orbital fixed point (FOFP) is reached, where all local states

are degenerate. This fixed point is not included in the Kondo model. If, on the other

hand, V → ∞ (i.e. J → ∞) for finite U , we obtain the SCFP, where the impurity is

so strongly coupled to the operator c0,σ of Eq. (1.0.4), that this subsystem effectively

decouples from the remaining band excitations. More details on the fixed point regimes

of the SIAM can be found in Sec. 3.6.

Poor man’s scaling can be applied to the SIAM as well. A reduction of the band-

width leads to a renormalization of the parameters ǫd, U and V , respectively [59]. The

hybridization Γ is a scaling invariant and can thus serve as a general energy scale.

When D reaches the order of the other parameters, perturbation theory begins to

break down, i.e. no further renormalization is possible. If D is the smallest system

energy, real charge fluctuations between the impurity and the conduction band are

prohibited. However, virtual fluctuations are possible and can be taken into account

by transforming to the s-d model.

If, starting from the local moment regime, the parameters ǫd and U are varied so

that either |E0 − ǫF| or |E2 − ǫF| approaches the hybridization Γ, the impurity is no

longer singly occupied, i.e. local charge fluctuations have a relevant impact. This is

called the ”intermediate valence regime”, which is the regime of interest for certain

rare earth compounds, where the f-levels lie near the Fermi level [6]. Here Γ is not the

smallest energy scale, i.e. Vk cannot be treated as a perturbation parameter, and thus

Eq. (2.4.9) can no longer be approximated by the s-d model.

The SIAM is the most simple model for describing magnetic impurities in metals.

However, in some materials other aspects, such as orbital degeneracy, Hund’s rule
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couplings, spin orbit interactions and local environment effects need to be considered

[60, 61, 62]. This would lead to more complicated impurity Hamiltonians Himp with

higher dimensionality. Other possible extensions are a multi-impurity Anderson model

or coupling between impurities [63].

In the context of the NRG, different QIMs can relatively flexibly be incorporated

into the algorithm. Since the main focus of this thesis is to extend the NRG to an OQS

approach (see Chap. 4), we restrict our investigations to the most simple models and

leave more sophisticated examples to later applications.

2.5. Interacting Resonant Level Model

In 1970, Anderson and Yuval showed, that at low temperatures the s-d model (2.2.1)

can, for a particular coupling Jz = JT (the Toulouse limit [53]), be interpreted as a

much simpler model, called RLM [64]. Here the energy scale Γ needs to be replaced by

the Kondo temperature TK. This effect is represented as the Kondo resonance in the

local spectral function of the Kondo model. The Hamiltonian of the RLM is similar

to the SIAM (2.4.9), but the spin DOF is omitted and thus the Coulomb repulsion is

dropped. Vigman and Finkel’shtein [65] later proposed a generalization of the RLM,

which is referred to as the interacting resonant level model (IRLM) in the literature,

by adding a Coulomb interaction U between the impurity and the conduction band

electrons. The IRLM is the minimal model for describing valence-fluctuating systems.

Both the RLM and the IRLM describe a phase-shifted Fermi liquid [66, 67]. In the

interacting case, the RLM Hamiltonian is extended by

HU = U(d†d− 〈d†d〉0)(c†0c0 − 〈c†0c0〉0). (2.5.11)

Here 〈d†d〉0 = 〈c†0c0〉0 = 1
2

are the ground state expectation values at ǫd = 0 for half

filling. This way, ǫd = 0 is the resonance point of the system. By implementing a per-

turbation theory for small U , a treatment for the Kondo problem for low temperatures

was found without the need for a renormalization. In the non-interacting case, the

spectral function is represented by a Lorentzian shaped resonance around the impurity

level ǫd with a width of Γ (see App. A.1). By introducing U > 0, this energy scale

is renormalized to the effective value Γeff, which is comparable to the Kondo tempera-

ture TK. The low-energy fixed point of the IRLM is equivalent to its non-interacting

counterpart for the renormalized hybridization Γ → Γeff [68].
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The additional DOF of the IRLM allows one to map a general AKM onto this

spinless model [65, 18], since both models have similarities with respect to, for example,

the partition function and the susceptibility. Here we can substitute the transverse

coupling by J⊥ = 2V and the longitudinal coupling by Jz =
√

2U + (2 −
√

2)/ρ0 [67].

Consequently, for a special U < 0 a Kosterlitz-Thouless type transition can be reached.

Lowering U from here on lets one enter the ferromagnetic case, while by increasing U

Fermi-liquid behavior is observed. A mapping of the AKM onto a spinless model can

be advantageous for numerical reasons.

Foundational work regarding the IRLM has been done by Vigman [65], as well as

Schlottmann [68, 18]. Camacho et al [69] investigated the IRLM in equilibrium, while

Güttge et al [30, 36], as well as Nghiem et al [70] applied it to non-equilibrium dynamics

in single-band systems. There also exist numerous applications to two band systems

[71, 72, 66, 73, 74, 75].

2.6. Experimental Realization of the Kondo Effect

In the following we present two possibilities to detect the Kondo effect in a real ex-

periment. The explanations are inspired by Ref. [76] and the reader is referred to this

source for further information, as well as Ref. [77].

Quantum Dots

Nano-scale lithography enables the building of devices that allow for realizing the

Kondo effect with scalable parameters. QDs are examples for such devices, which

represent artificially localized electrons coupled to a lead of free electrons. The mag-

netic moments occur due to the very small capacitance C. Here the free electrons are

represented as a two-dimensional electron gas, located at the interface of two semi-

conducting layers. By applying a gate voltage Vg, electrodes on the surface are neg-

atively charged to confine the electron gas between them. A special configuration of

those electrodes lets one separate a relatively small number of electrons of the gas to

form a QD. Varying Vg allows to influence the size of the QD and thus the orbital

levels. By placing contacts with a voltage V in the electron gas, a controllable current

I is induced, that can be directed through the QD. Depending on the direction of the

current, one part of the gas serves as the ”source” for the QD, while the other one is

called the ”drain”. Here the local energy level ǫd of the impurity, the hybridization ΓS
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(ΓD) to the conduction band electrons of the source (drain), as well as the bias voltage

are tunable. External parameters like the temperature T and a magnetic field B are

variable as well [78]. In order for the QD to be magnetic, it needs to comprise an

odd number of electrons, with the highest energy level being occupied by one spin-1
2

electron.

By varying the gate voltage Vg and measuring the conductance dI/dV for different T ,

the Kondo effect can be observed. When sweeping Vg, several dips of the conductance

appear, which can be explained by the ”Coulomb blockade”. To understand this effect,

consider that an itinerant electron, entering the QD from the source, needs to overcome

the Coulomb-repulsion U ∝ e2

2C
of the locally confined electrons. Thus, when the Fermi-

energy lies well below U , a Coulomb blockade is formed, where further transitions to

the QD are inhibited. For lower temperatures this effect is enhanced. By varying Vg,

the local energy level ǫd can be tuned in such a way, that either the highest occupied

or the lowest unoccupied state of the QD lies around the Fermi-level, which supports

the conductance of electrons. For temperatures T ≤ TK the Kondo-effect emerges [79].

In a three-dimensional material with magnetic impurities, we expect the conductivity

to decrease (i.e. the resistivity to increase) with further lowering temperature, since

the increased interaction leads to stronger electron scattering. This can be observed in

QDs with an even number of electrons. However, in a voltage gate regime, where the

number of electrons in the QD is odd (i.e. the QD possesses a net spin), the interaction

helps to overcome the Coulomb blockade and thus increases the conductance. This can

be explained by the Kondo resonance.

Scanning Tunnelling Microscopy

Above we have discussed the Kondo effect for an artificial magnetic impurity. However,

the anomalous conductivity behavior was first discovered in an impure metal. To

examine the effect in those metals, the scanning tunnelling microscopy (STM) can be

used. This technique is capable of imaging surfaces with atomic resolution, as well as

even physically moving atoms. Here a non-magnetic metal with magnetic impurities

(adatoms) on its surface serves as the sample. The STM spectroscopy uses a conducting

tip to measure the conductance (which is proportional to the local density of states) at

different points of identical distance to the sample. At each point, the bias voltage V

between the sample and the tip is varied to obtain conductance curves. If the sample

temperature is well below TK, the Kondo resonance can be observed as a dip of the

conductance around V ≈ 0, if the tip is located in proximity to an impurity. The dip
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can be explained by increased electron scattering off of the impurity or the screening

cloud of free electrons. For experimental measures of the Kondo effect with STM see

e.g. Ref. [80, 81, 82].



3. Numerical Renormalization Group

In the previous chapter we gave an overview of different QIMs and their applications.

Here we focus on the NRG as a powerful method to solve these models. One major chal-

lenge for theoretical models when dealing with QISs is the fact, that the environment

typically comprises a wide range of excitation energies. Any suitable model thus needs

to include the high-energy bandwidth as well as arbitrarily low energies at the same

time. When treating such a system perturbatively, the coupling to those low energies

often causes so-called ”infra-red divergences” [6], which poses a limit to the accessible

energy range. Unfortunately, the inclusion of exponentially small energies is essen-

tial for the Kondo problem discussed in Sec. 2.3. Consequently, a non-perturbative

approach is required, that is able to describe a small impurity coupled to a broad con-

tinuum of energies. The RG [53] allows to bridge between distant energy scales by

performing a series of renormalization steps. The NRG developed by Wilson [22] is a

specific numerical implementation of this approach that is entirely non-perturbative. It

is based upon a logarithmic discretization of the conduction band with a discretization

parameter Λ. The advantage of the discretization is a separation of the energy scales

of the system, allowing to neglect certain high-energy states, whose contributions are

thermally suppressed. This truncation of states significantly reduces the Hilbert space

of the system, enabling a numerical treatment. When applying truncation to the cal-

culation of time-dependent operators, one needs to pay special attention not to neglect

essential information or to ”over-count” certain states. This can be ensured by using

the Anders-Schiller basis (ASB), which will be addressed in detail in Sec. 3.7. In the

case of an OQS approach to the NRG, the correct handling of the truncation is rather

complicated and hence we devoted the entire chapter 6 to it.

When applied correctly, the truncation of high-energy states does not significantly

impair the results (see Sec. 3.3). However, the discretization itself has major conse-

quences, as it turns the QIS into a closed system, which lacks true dissipation and a

finite lifetime of impurity excitations. This will be explained in Sec. 3.8 to 3.10. Sev-

eral canonical methods for compensating the discretization errors are introduced. In
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contrast, the main objective of this thesis is to establish a new method for recovering

the continuum and thus correcting the most relevant discretization errors by introduc-

ing true dissipation to the system. This will be addressed in detail in the subsequent

sections.

The presentations of the NRG follow the review by Bulla et al [25] and include the

references [22, 14, 15, 26].

3.1. Discretization of the Bath Continuum

As a basis for our considerations we start with the Hamiltonian

H = Himp + Hbath + Himp-bath (3.1.1)

of a general QIS, where

Hbath =
∑

kν

ǫkc
†
kνckν (3.1.2)

describes a continuum of energies ǫk within the bandwidth D, while

Himp-bath =
∑

kν

Vk

(

dνc
†
kν + d†νckν

)

(3.1.3)

is the coupling term between the impurity site and each bath excitation with hybridiza-

tion Vk. Here d
(†)
ν annihilates (creates) an impurity excitation while c

(†)
kν annihilates

(creates) the k-th bath mode. The general flavor index ν can e.g. denote the spin of

the particles, will be dropped from here on and can be recovered at the end. Note that

the Hamiltonians Hbath and Himp-bath are basically identical to the definitions (1.0.1)

and (1.0.2), respectively. We choose a different notation here, that is in accordance

with typical NRG notation. The notation of Chap. 2 will be recovered in Chap. 4,

since in the context of the BRF a different partitioning of the total QIS is required.

In contrast to Chap. 2, we restrict to the absolute wave-vectors k = ‖k‖ from now

on, which implies s-wave like conduction band states. The impurity Hamiltonian Himp

can be customized to specific QIMs. We concentrate on fermionic operators only, even

though the NRG formalism can be adapted to bosonic models or combinations of both

as well (see spin-boson model [83] or Bose-Fermi Kondo model [84]).
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The impurity Greens function for a simple single orbital QIS is given by

Gd,d†(z) = (z − ǫd − Σ(z) − ∆(z))−1 , (3.1.4)

with ǫd being the impurity level energy. The model specifications made in Himp enter

the self-energy Σ(z), while all bath information is aggregated in the so-called spectral

coupling function (or hybridization function)

Γ(ω) = lim
δ→0+

Im∆(ω − iδ) = π
∑

k

V 2
k δ(ω − ǫk) (3.1.5)

with

∆(z) =
∑

k

|Vk|2
z − ǫk

. (3.1.6)

Consequently, all transformations of the total Hamiltonian that keep Γ(ω) unchanged

do not influence the impurity dynamics and are thus equivalent. We assume that

the support of Γ(ω) lies within the interval [−D,D]. The Hamiltonian (3.1.1) can be

expressed as the continuous version

H = Himp +

∫ D

−D

dǫg(ǫ)a†ǫaǫ +

∫ D

−D

dǫh(ǫ)
(

da†ǫ + d†aǫ
)

(3.1.7)

by mapping the conduction band onto a one-dimensional energy representation of s-

wave symmetry1. Here g(ǫ) is the dispersion, while h(ǫ) denotes the hybridization.

The s-wave conduction band operators a
(†)
ǫ satisfy the standard fermionic commutation

relations. It has been shown [85] that the functions g(ǫ) and h(ǫ) can be directly related

to the hybridization function Γ(ω). This means that for a given Γ(ω) one function can

be chosen relatively freely, while the other one is then determined [25].

The continuous conduction band is logarithmically discretized, as shown in Fig. 3.1.

The parameter Λ > 1 defines intervals with discretization points xn = ±Λ−n, n =

0, 1, 2, ... and a width of dn = (1 − Λ−1)Λ−n. This logarithmic discretization is the

optimal choice for infra-red problems, such as the Kondo problem, since each interval

equally contributes to a logarithmically diverging integral
∫

dǫǫ−1. The number of

intervals needed to reach a specific energy scale is determined by the choice of Λ.

1i.e. the diagonal free electron part of the Hamiltonian is turned into a semi-infinite tight-binding
chain by a Lanczos algorithm
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Figure 3.1.: Illustration of the bath discretization and the construction of the Wilson
chain. On the top, the system of Eq. (3.1.1) is depicted for the RLM
with a local energy level ǫd. The bath modes are characterized by the
wavevector ~k. Beneath the bath, the conduction band spectrum is plotted
on an energy axis, discretized with the parameter Λ. At the bottom, the
Wilson chain is depicted, which is constructed from the QIS, where each
chain site corresponds to a single mode extracted from each discretized
interval.

The continuous operators are expressed in a Fourier expansion

aǫ =
∞
∑

n=0

∞
∑

p=−∞

a+npΨ
+
np(ǫ) + a−npΨ

−
np(ǫ) (3.1.8)

on each interval n with

Ψ±
np(ǫ) =

{

e2πipǫ/dn/
√
dn ,Λ−(n+1) ≤ ǫ < Λn

0 else.
(3.1.9)

This shifts the ǫ-dependence of the operators to exponential functions. If we define the



3.1. Discretization of the Bath Continuum 23

hybridization function to be section-wise constant on each interval, i.e.

h(ǫ) = h±
n , xn+1 < ±ǫ < xn, (3.1.10)

only the p = 0 modes survive the integration in (3.1.7) which means that only the

p = 0 modes directly couple to the impurity. It is important to note, that a sectionwise

constant hybridization function h(ǫ) does not imply any restrictions on Γ(ǫ), since all

remaining ǫ-dependence can be shifted into the dispersion g(ǫ).

If the expansion (3.1.8) is applied to the conduction electron part, the p 6= 0 do not

vanish automatically. In fact, neglecting those terms is the discretization of the bath,

which is the essential part of the NRG. This step is justified by the fact, that only

the p = 0 modes directly couple to the impurity while the coupling between different

p-modes is ∝ (1 − Λ−1). Thus the approximation becomes exact in the limit Λ → 1+.

The neglection of the p 6= 0 modes has proven in numerous cases to be a well-justified

approximation [22]. However, in more complex cases like spectral functions or non-

equilibrium dynamics this discretization largely impacts the results. This point will be

addressed in the second half of this chapter.

So far, the Hamiltonian is expanded in the operators a±n0. The part Himp-bath in (3.1.1)

can be reinterpreted as the coupling of the impurity site to an operator f0 defined by

V f
(†)
0 =

∑

k Vkc
(†)
k . The operator f0 corresponds to the conduction band spin S the

impurity couples to in real-space in the Kondo model (cf. Sec. 2.2). Constructing a

new set of mutually orthogonal operators f
(†)
nσ from the a±n0 operators by a standard

tri-diagonalization procedure, namely the Housholder algorithm, that uses f
(†)
0σ as a

reference point, leads to a conduction band in the form of a tight-binding chain with

the zeroth site coupled to the impurity. In particular we obtain

HNC
=Himp + V

(

d†f0 + df †
0

)

+

NC
∑

n=0

ǫnf
†
nfn +

NC−1
∑

n=0

tn

(

f †
nfn+1 + fnf

†
n+1

)

(3.1.11)

with NC being the chain length. In the exact case, we have a semi-infinite chain with

NC → ∞. Equation (3.1.11) is called Wilson chain and its parameters are the on-site

energies ǫn and the hopping matrix elements tn. While the initial values ǫ0 and t0 can

be calculated analytically, the remaining chain parameters are defined by a recursion

relation (cf. Appendix A of Ref. [83]). If we presume a general hybridization function,

the recursion relations can only be solved numerically. However, for a constant and

symmetric hybridization function Γ(ω) on the interval [−D,D], we have ǫn = 0 for all
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n, and [22]

tn = S
1 − Λ−n−1

√
1 − Λ−2n−1

√
1 − Λ−2n−3

Λ−n/2 (3.1.12)

with

S =
D

2
(1 + Λ−1) (3.1.13)

for the hopping elements2. In the limit of large n this reduces to

tn → SΛ−n/2. (3.1.14)

In this section we have transformed the general QIM of Eq. (3.1.1) into the one-

dimensional representation (3.1.11) with logarithmically decreasing hopping parame-

ters tn. Obviously, the Wilson chain is not exact, since the p 6= 0 terms have been

neglected. However, the chain model does have a physical meaning in the three-

dimensional case. Each chain site can be interpreted as a shell of conduction band

states which is located concentrically around the impurity. The zeroth Wilson chain

site represents the shell with the maximum of its wave-function closest to the impurity

and is coupled to the next closest shell, and so on [22, 6].

In a practical application the length NC of the Wilson chain needs to be chosen

finitely. Besides the neglect of the p 6= 0 modes, this adds a second approximation to

the model. To assess the effect of a finite NC, consider a semi-infinite chain and choose

an arbitrary chain site n. By artificially switching off the hopping parameter tn, the

first n chain sites are decoupled from the semi-infinite rest chain. In this context, tn

can be seen as a perturbation parameter. If the n-th chain site is far remote from the

impurity, tn is small and the quality of the approximation is high. In second order the

contribution of tn is O(βNC
/Λ) (see Ref. [14], Appendix F) with βNC

being an effective

inverse temperature of the Wilson chain that grows by NC and Λ (see Eq. (3.5.28)).

Thus the chain length NC defines the accuracy of the procedure.

2For details on the calculation see Ref. [85]. Here a pseudo-gap system Γ(ω) ∝ |ω|r is considered.
By setting r = 0 a constant hybridization is obtained.
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3.2. Renormalization Approach

In the previous section we have described the mapping of a general QIM to a semi-

infinite chain, whose hopping terms exponentially decrease with the distance to the

impurity. For this model an iterative RG procedure can be set up by defining (3.1.11)

as a Wilson chain of length NC. The chain of length NC + 1 can then be constructed

by adding the NC + 1-th chain site with the coupling tNC
, which represents the lowest

energy scale of the new system. We define

H̄NC+1 =
ΛNC/2

S
HNC+1 (3.2.15)

so that the eigenenergies of H̄NC+1 are ∼ O(1). The recursion relation

H̄NC+1 =
√

ΛH̄NC
+ t̄NC

(

f †
NC

fNC+1 + fNC
f †
NC+1

)

. (3.2.16)

can be understood as an RG transformation step H̄NC+1 = RG[H̄NC
]. For more details

on the RG see e.g. Ref. [6]. Note, that the on-site energies are ǫn = 0, assuming a

symmetrical DOS. On each iteration step the Hamiltonian is inflated by a factor of√
Λ, and a new site is coupled to the end of the chain. Consequently, the starting point

of this NRG procedure is

H̄NC=0 =
Λ−1/2

S
H0, (3.2.17)

which corresponds to a two-site system of the impurity and the zeroth conduction

electron site.

We defined the dimensionless hopping parameters

t̄n = tnΛn/2/S, (3.2.18)

which converge to 1 for large n. For a bosonic bath we have tn ∝ Λ−n and so a similar

scaling can be defined [86].

From Eq. (3.2.15) it follows, that the total scale of a Wilson chain of length NC is

given by

ωNC
= SΛ−(NC−1)/2, (3.2.19)

which we refer to as the ”NRG scale”.
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We can define the many-particle energies ENC
r

H̄NC
|r;NC〉 = ENC

r |r;NC〉 , r = 1, ..., NS (3.2.20)

with the eigenstates |r;NC〉 and NS being the dimension (number of states) of H̄NC
.

The assumption that the energies ENC
r resemble the exact eigenspectrum of the Wilson

chain of length NC is referred to as the standard ”NRG approximation” [22]. The RG

flow can be characterized by this chain length dependent energy spectrum.

We want to point out the versatility of the NRG as an impurity solver. In the iterative

scheme of the NRG method additional flavors, e.g. the spin or a channel DOF, can

easily be included. Fruthermore, the recursion relation (3.2.16) is independent of the

starting point H0. Thus, the impurity Hamiltonian Himp may be chosen freely and so

the NRG can be adapted to different QIMs. In the context of a numerical realization

the free electron part can be implemented as a basis class while for each impurity

model a new class can be derived from it, inheriting its properties. Any addition to the

program can in turn be derived from this class. In fact, for this thesis we have used an

existing NRG code, that exploits this efficient architecture.

3.3. Truncation Scheme

In the RG procedure described above the Fock space dimension grows by a factor of

d for each added chain site. In the case of the SIAM we have d = 4, since the spin

is included as a DOF for each particle. This exponential growth quickly sets a limit

to the application of the method. Here Wilson’s idea of discarding a fraction of d−1
d

of the eigenstates by each iteration comes into play. By this truncation of states the

Fock space dimension is kept constant for all iterations. To be precise, the Wilson

chain is iteratively enlarged by additional chain sites until a certain number NS of

states is reached. Now the Hilbert space of the system is truncated by discarding the

respective number of high-energy states on each consecutive iteration. This seemingly

drastic approximation is justified by the exponentially decreasing hopping parameters

tn. With each added chain site the total eigenspectum of the Wilson chain undergoes a

correction of the order of tn. If NC is large, the relative correction of the high energies

is negligible. Consequently, the eigenspectrum of a short Wilson chain adequately

defines the high-energy states while long chains are required to correctly calculate the

low-energy states.
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The discretization parameter Λ defines how many iterations are required to reach a

certain low-energy scale. By choosing a large Λ the effective energy scale is significantly

decreased by each NRG iteration. Consequently, low-energies are reached fast and, at

the same time, the number NS of states kept on each iteration can be chosen to be

small. However, the prize one pays are discretization artifacts, such as unphysical

oscillations in non-equilibrium dynamics. To combat this effect, z-averaging can be

applied, which will be described in Sec. 3.10.

The truncation scheme used in this thesis is implemented as follows. The Hamilto-

nian is constructed iteratively without truncation until a Fock space dimension ≥ NS

is reached. Now all higher energies are discarded until we are left with NS states,

which will be kept and used to build the new Hamiltonian. The iteration of the first

truncation is defined as n = nmin. From here on a fraction of d−1
d

states is discarded on

each iteration to keep the Fock space constant in dimension. In Fig. 3.3 the quality of

different values for NS is examined for the non-equilibrium case.

In addition to the rescaling of the Hamiltonian and the truncation of high-energy

states, on each iteration step n the eigenenergies are shifted by an offset ∆En = −En
0 ,

with En
0 being the ground state energy of iteration n. Consequently, the ground state

energy is zero at each iteration and the total offset grows with each step. This ensures

that in the Boltzmann term e−βEi no divergences occur due to negative energies, which

could pose a problem to the natural limitation of computer data types. Furthermore,

the offset in combination with the rescaling by
√

Λ on each iteration and the truncation

of high energies keeps the eigenspectrum within a constant window of [0,O(1)].

3.4. Explicit Algorithm

Here we give an overview over the basic application of the NRG method and discuss

how the successive enlargement of the Wilson chain is executed in practice.

The first step is to identify the symmetries of the system by finding operators, which

commute with the Hamiltonian. These symmetries cause the Hamiltonian to be a

block-diagonal matrix, with each block labeled by a distinct set of quantum numbers

defined by those operators. In the SIAM the particle number operator

QNC
=

NC
∑

n=0

(

∑

σ

f †
nσfnσ − 1

)

(3.4.21)
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and the z-component

Sz
NC

=
1

2

NC
∑

n=0

∑

σ

σf †
nσfnσ (3.4.22)

of the total spin fulfill these criteria. Each Hamiltonian HNC
is thus divided into inde-

pendent blocks with quantum numbers defined by the eigenvalues of the corresponding

operators (QNC
, Sz

NC
) to the eigenstate |r;NC〉 defined by Eq. (3.2.20).

Let |k;n〉 denote a kept eigenstate of the NRG iteration n. To each of those kept

states we can construct d = 4 states of the new basis as

|k, 0;n + 1〉 = |k;n〉
|k, σ;n + 1〉 = f †

n+1σ |k;n〉
|k, 2;n + 1〉 = f †

n+1↑f
†
n+1↓ |k;n〉 , (3.4.23)

where the order of the chain operators in the last line is convention. From here on we

define α ∈ {0, σ, 2} as the general DOF for the new site.

Suppose we know the quantum numbers of the state |k;n〉, then the quantum num-

bers of the new four states are defined as well. Now we can use Eq.(3.2.16) to calculate

the new Hamiltonian in the new basis as

〈k, α;n + 1| H̄n+1 |k′, α′;n + 1〉 =
√

ΛEn
k δkk′δα,α′

+ t̄n
∑

σ

〈k, α;n + 1|
(

f †
nσfn+1σ + fnσf

†
n+1σ

)

|k′, α′;n + 1〉 . (3.4.24)

For symmetry reasons we are left with the calculation of

〈k, α;n + 1| f †
nσfn+1σ |k′, α′;n + 1〉 = 〈k, α;n + 1| f †

nσ |k′, α;n + 1〉 δα′−σ,α. (3.4.25)

The operator fn+1σ acts on the n+1-th chain site and thus reduces α′ by σ. Since f †
nσ is

diagonal in the DOF of chain site n+1, we obtain the restriction α′−σ = α. To calculate

the remaining term 〈k, α;n + 1| f †
nσ |k′, α;n + 1〉, we require the transformation

|r;n〉 =
∑

sα

Pr,s[α] |s, α;n− 1〉 (3.4.26)
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with

Pr,s[α] = 〈s, α;n− 1|r;n〉 , (3.4.27)

which is calculated on the previous NRG iteration and then stored3. The Hamiltonian

(3.4.24) can now be diagonalized to obtain the new eigenbasis |r;n + 1〉, which is then

divided into kept and discarded states.

3.5. Thermodynamic Expectation Values

To calculate thermodynamic quantities, a temperature of the system needs to be de-

fined. Due to the properties of the Boltzmann distribution, we can define a narrow

temperature window, within which the NRG calculations of a finite chain are valid.

The upper limit of this window is determined by the number NS of kept states, while

the lower limit is given by the NRG scale ωNC
(see Eq. (3.2.19)). By choosing a spe-

cific finite chain length NC, we accept the neglect of the following chain sites, which

would generate an increasingly small energy correction ∆ENC
to the eigenspectrum.

For these corrections to be negligible, i.e. e−βNC
(E+∆ENC

) ≈ e−βNC
E, the temperature

has to be chosen such that TNC
≫ ∆ENC

, so the lower limit is given by the NRG

scale. A truncation of the high-energy states, on the other hand, implies, that states

down to a certain energy Emax are negligible, i.e. e−βNC
Emax ≈ 0. This is fulfilled for

TNC
≪ Emax. In practical applications we define the system temperature as

TNC
= ωNC

/β̄ = β̄−1D

2
(1 + Λ−1)Λ−(NC−1)/2. (3.5.28)

with β̄ ∈ [0.5, 1] [25]. When referring to a temperature of the finite chain, always

the definition (3.5.28) is used. The temperature decreases when increasing NC or Λ,

respectively. This corresponds to reaching a better resolution of the smallest ener-

gies. With the system temperature defined, thermodynamic impurity quantities can

be calculated, where in the most simple examples only the eigenspectrum enters. Equi-

librium expectation values of local system operators OS, like the occupation operator

nd = d†d of the impurity, require the knowledge of specific matrix elements. Assuming

3The conventional way of calculating the matrix elements (3.4.25) is to define an operator Oα, that
creates a particle with quantum number α on the n + 1-th site [87]. The fermionic operators are
than commuted to bundle all operators that act on the site n+1, which influences the sign of the
total expression. This composite operator can be defined by a simple chart, while the remaining
part is calculated on the iteration n.
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that we diagonalized a Wilson chain of length NC, with NS being the number of kept

low-energy states, the expectation value of the local operator is given by

〈OS〉 =
1

ZNC

d×NS
∑

r=1

e−βNC
E

NC
r 〈r;NC|OS |r;NC〉 , (3.5.29)

where ZNC
is the partition sum and the index r sums over all low-energy eigenstates

left at the last NRG-iteration. In (3.5.29) we omit the high-energy states of iterations

< NC, since their contribution is suppress by the Boltzmann factor. To evaluate the

expression, the matrix elements 〈r;NC|OS |r;NC〉 are required, which can be obtained

by a successive application of the unitary transformation (3.4.26).

3.6. Energy Flow and Fixed Points

A fixed point in the RG procedure is a Hamiltonian H which is not altered by the

RG step, i.e. H = RG[H] . In the context of the NRG, a fixed point is reached, if

the eigenspectrum of the Wilson chain is not changed by adding two additional sites.

Two sites are required here, since the Wilson chain exhibits an even-odd behavior with

respect to its length. This effect is typical for fermionic finite-size systems. The reason

for the even-odd behaviour in the SIAM lies in the fact, that for an even chain length

NC there is on average an even number of electrons in the system, which can build

pairs to form the ground state, called singlet state. Those singlets have a spin of zero,

since the spins of two fermions compensate each other. Chains with odd length posses

an additional spin doublet. Particle-hole symmetric even chains have an eigenspectrum

which is half positive, half negative. In the ground state, the negative half will be fully

occupied with two electrons each. For odd chain lengths we have an additional zero

eigenvalue.

A flow diagram in the context of the NRG is defined as the eigenspectrum ENC
r

plotted against the chain length NC. As explained in Sec. 3.5, a higher chain length

corresponds to a lower effective temperature of the Wilson chain. Sections of the

flow diagram, in which the eigenspectrum is constant under a small variation of NC,

correspond to an approach to a fixed point. In between those sections we have crossover

regimes, where the system transitions from one approximate fixed point to another.

The choice of local parameters has an impact on the length of those constant sections

and thus on the position of the crossover regimes.

Let us discuss the fixed points of the SIAM as an example. The argumentation here
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follows the work of Krishna-murthy et al [14, 15]. As a first step, we choose the local

parameters, i.e. the impurity energy ǫd, the Coulomb repulsion U (see Sec. 2.4 for

details) and the external magnetic field B. Since the magnetic field is not included in

the above mentioned literature, we set B = 0. The local parameters define the energy

required to occupy the impurity states |0〉 , |σ〉 and |2〉, respectively. A higher energy

relates to a lower probability for the state to be occupied. A large U decreases the

probability for double occupation. A large and positive ǫd favors the empty state, while

a negative ǫd leads to single occupation. If the external magnetic field is chosen B 6= 0,

we introduce a discrimination of the single spin states to the system.

Depending on the occupation of the impurity we distinguish five different fixed points.

In the FOFP all four states are degenerate and thus equally occupied. The frozen

impurity fixed point (FIFP) allows only for the empty state, while the LMFP comprises

only singly occupied states. The valence fluctuation fixed point (VFFP) prohibits the

doubly occupied state and the SCFP effectively decouples the impurity and the zeroth

Wilson chain site from the rest of the chain. The LMFP can be reached by choosing U

large and ǫd < 0. Thus the singly occupied state represents a local magnetic moment

with two degenerate spin states. The FIFP and the VFFP are only accessible in the

asymmetric case ǫd 6= −U/2. The former can be obtained, if ǫd is the dominant energy,

so an occupation of the impurity is energetically prohibited. The latter is reached, if

U is dominant and ǫd → 0, so the empty and the singly occupied state are degenerate,

while the doubly occupied state is prohibited. In the FOFP all impurity states are

degenerate, which can only be realized if T is the dominant energy and thus all states

are equally thermally accessible. Finally, the SCFP implies that the hybridization

Γ ∝
√
V between the impurity and the zeroth bath mode is dominant. In this case,

those two sites effectively decouple from the remaining bath.

A flow diagram starts at high T and then successively lowers the temperature (i.e.

NC is increased). Depending on the relative value of the particular parameters in

comparison to T , different fixed points are approached. In the case of the symmetrical

Anderson model (SAM) we start with the FOFP and transition to the LMFP, before

finally reaching the SCFP. This fixed point is stable4. The temperature regime at

which the crossover from the LMFP to the SCFP happens is defined as the Kondo-

temperature TK (see Sec. 2.1). If U ≪ Γ, the LMFP is skipped and the system directly

transitions from the FOFP to the SCFP.

4For more details, e.g. on the Fermi-liquid behavior at very low temperatures, see Ref. [6].
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3.7. Complete Basis Set

To calculate local dynamical properties, such as the single-particle Green’s function or

non-equilibrium expectation values, a restriction to the basis of the last NRG iteration

(as in Eq. (3.5.29)) is not sufficient. In fact, we need to define a complete basis set

and a corresponding reduced density matrix for each NRG iteration, which will be

elaborated on in this section.

So far, we have interpreted the NRG formalism as an iterative enlargement of a

Wilson chain and, by that, as an iterative enlargement of the Fock space as well (if

no truncation of states is applied). However, for the purpose of evaluating dynamical

expectation values of physical operators, a different point of view proves to be advan-

tageous. Consider to start at a full Wilson chain of length NC, but with all hopping

terms tn set to zero. Thus, the Fock space of the system is of dimension dNC times the

impurity DOF. By applying the NRG algorithm of iteration n (starting with n = 0),

the hopping element tn is switched on. At this point, each eigenvalue and eigenstate

of the system is degenerate by a factor of dNC−n. This factor is defined by the number

of DOF of the residual chain (which is called the ”environment”). The d DOF of the

n-th site are labeled by αn. Thus, an eigenstate of the iteration n can be written as

|r, en;n〉 with en = {αn+1, ..., αNC
} being the entire environment.

Up to iteration n = nmin the eigenbasis of the Hamiltonian Hn still comprises a

complete basis of the full Fock space of the chain of length NC, since the environment

enmin
provides the degeneracy. To keep the dimension of the problem numerically man-

ageable, the eigenstates are divided into the low-energy kept states |k, enmin
;nmin〉 and

the high-energy discarded states |l, enmin
;nmin〉. The labeling of the indices distinctly

defines a state as ”kept” k or ”discarded” l. Only the kept states |k, αnmin
, enmin+1;nmin〉

are used to span the new subspace. However, together with the discarded states they

still form a complete basis. To maintain this completeness after the next iteration

we have to combine the discarded states |l, enmin
;nmin〉 of iteration nmin with those

discarded states |l, enmin+1;nmin + 1〉 of the next iteration as well as the kept states

|k, enmin+1;nmin + 1〉. This leads to a completeness relation

1m =
m
∑

n=nmin

∑

l,e

|l, e;n〉 〈l, e;n| +
∑

k,e

|k, e;m〉 〈k, e;m| . (3.7.30)

for a chain upto the iteration m. Note that from here on we will use the general

environment index e, if no further specification is required. By performing the entire
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NRG algorithm up to m = NC and defining all eigenstates of the last iteration as

discarded, one can identify a complete basis

1NC
=

NC
∑

n=nmin

∑

l,e

|l, e;n〉 〈l, e;n| , (3.7.31)

also known as the ASB [23], as a sum over all states discarded in the NRG algorithm.

By subtracting both equations, one can express the kept states

∑

k,e

|k, e;m〉 〈k, e;m| =

NC
∑

n=m+1

∑

l,e

|l, e;n〉 〈l, e;n| (3.7.32)

as a sum of all following discarded states. Note that to exploit the complete basis set,

information on the discarded states needs to be memorized on each NRG iteration.

Let us now consider the trace of a product of two arbitrary Wilson chain operators A

and B, which is a generalized form of calculating expectation values. We use definition

(3.7.31) to define an ASB for the evaluation of the trace and insert 1n between the two

operators to obtain

Tr{AB} = X + Y

X =

NC
∑

n=nmin

∑

l,e

n−1
∑

n′=nmin

∑

l′,e′

〈l, e;n|A |l′, e′;n′〉 〈l′, e′;n′|B |l, e;n〉

Y =

NC
∑

n=nmin

∑

l,e

∑

r,e′

〈l, e;n|A |r, e′;n〉 〈r, e′;n|B |l, e;n〉 . (3.7.33)

The sum over the indices r includes kept and discarded states, while l and l′ only

include discarded states. In Y only one NRG iteration n enters, while in X matrix

elements enter, that couple two different iterations n and n′. These matrix elements

are complicated to calculate, wherefore we rewrite it in the form

X =

NC
∑

n′=nmin

∑

l,e

NC
∑

n=n′+1

∑

l′,e′

〈l, e;n|A |l′, e′;n′〉 〈l′, e′;n′|B |l, e;n〉

=

NC
∑

n′=nmin

∑

k,e

∑

l′,e′

〈k, e;n|A |l′, e′;n〉 〈l′, e′;n|B |k, e;n〉 (3.7.34)
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by using (3.7.32). We arrive at

Tr{AB} =

NC
∑

n=nmin

∑

r,s6∈k,k′

∑

e,e′

〈r, e;n|A |s, e′;n〉 〈s, e′;n|B |r, e;n〉 . (3.7.35)

which is a sum over equal shell contributions only [29]. Here the indices r and s

can either be kept or discarded but the kept-kept combination is excluded from the

summation. Let us now assume that A is a local operator, i.e. it only acts on DOF of

the NRG iterations n ≤ nmin (as an example consider the non-equilibrium expectation

value of the impurity occupation number. Here A = nd and B is the time-dependent

density matrix). Such a local operator is diagonal in the environment DOF e, meaning

that Eq. (3.7.35) can be written as

Tr{AB} =

NC
∑

n=nmin

∑

r,s 6∈k,k′

Ar,s(n)Bred
s,r (n). (3.7.36)

Here the reduced operator

Bred
s,r (n) =

∑

e

〈s, e;n|B |r, e;n〉 (3.7.37)

has been introduced. Let us assume that the operator B is time-dependent, then Eq.

(3.7.37) yields

∑

e

〈s, e;n|B(t) |r, e;n〉 =
∑

e

〈s, e;n| e−iHtB(0)eiHt |r, e;n〉

≈ ei(E
n
r −En

s )tBred
s,r (n). (3.7.38)

Here B(0) is defined by the initial Hamiltonian H i. Furthermore, we have used the

NRG approximation of Sec. 3.2, which assumes that the eigenenergies En
r of NRG

iteration n represent the exact spectrum of the Wilson chain, as well as a ”full Hamil-

tonian approximation”, that assumes that the discretized Wilson chain Hamiltonian

HNC
represents the full Hamiltonian H. In fact, no other approximation has entered

the expression so far, since complete basis sets have been used. The full Hamiltonian

approximation is well justified in certain regimes, but induces finite-size effects in dy-

namic properties, since the Wilson chain is a closed system that lacks true dissipation.

These effects are well understood and will be discussed in Sec. 3.8 to 3.10 in more

detail.
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3.8. Spectral Function

Let us proceed to the calculation of impurity spectral functions with the NRG. The

single-particle retarded Green’s function (GF) is defined by

GA,B(t) = −iΘ(t)Tr{ρ[A(t), B]ς} = −iΘ(t)Tr{Aχ(t)} (3.8.39)

with [A,B]ς = AB−ςBA and ς = 1 for bosonic operators A,B and ς = −1 for fermionic

operators. The time-dependency is included in the operator A(t) = eiHtAe−iHt in the

first step. By defining

χ = [B, ρ]ς . (3.8.40)

we can shift the time-dependency to χ(t) = e−iHtχeiHt. By choosing A = dσ and

B = d†σ as fermionic impurity operators, we obtain the local GF. The spin-index σ will

be omitted from here on. Equation (3.7.36) can easily be adapted to this case as

Gd(t) = −iΘ(t)

NC
∑

n=nmin

∑

r,s 6∈k,k′

dr,s(n)χred
s,r (n; t)

≈ −iΘ(t)

NC
∑

n=nmin

∑

r,s 6∈k,k′

dr,s(n)χred
s,r (n)ei(E

n
r −En

s )t, (3.8.41)

where in the last step the NRG and full Hamiltonian approximations have been applied.

The calculation of the matrix elements dr,s(n) = 〈r;n| d |s;n〉 follows the procedure

explained in Sec. 3.5. The reduced operator

χred
s,r (n) =

∑

e

〈s, e;n| [d†, ρ]ς |r, e;n〉 (3.8.42)

requires knowledge of the equilibrium density matrix ρ. We use the ASB to obtain the

full density matrix (FDM) [88]

ρ =
1

Z
e−βH =

1

Z

NC
∑

m=nmin

dNC−m
∑

l

e−βEm
l |l;m〉 〈l;m| . (3.8.43)

Here the factor dNC−m stems from the summation over the environment DOF e for all

iterations > m. Instead of 1NC
, one could use 1n here to make sure, that m ≤ n, which

limits the number of summation terms in (3.8.41). Also, the fact that all discarded
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states are orthogonal to each other combined with (3.7.32) yields

〈k, e;n|l, e′;n′〉 = 0, n ≥ n′, (3.8.44)

which excludes numerous terms in (3.8.41). The overlap elements can be obtained by

successively applying the unitary transformation (3.4.26) to reduce n down to n′. It

is possible to approximate the density matrix in the spirit of the NRG by the last

iteration

ρ ≈ 1

ZNC

∑

l

e−βE
NC
l |l;NC〉 〈l;NC| , (3.8.45)

which simplifies the calculation but is only valid if Λ is chosen large enough. It is

obligatory to inversely run through all NRG iterations in order to calculate the reduced

operator χred(n), or rather the reduced density matrix ρred(n), from the respective

iteration n + 1. For an application of the NRG to spectral functions see [24, 88]. In

[89] the time-dependent spectral function is covered, which will not be discussed here.

From (3.8.41) the single-particle equilibrium spectral function can be calculated by

performing the half-sided Fourier transform

Gd(z) =

∫ ∞

0

dteiztGd(t) (3.8.46)

and then taking the imaginary part to obtain

Ad(ω) = − 1

π
ImGd(z = ω + i0+)

=
1

π

NC
∑

n=nmin

∑

r,s 6∈k,k′

dr,s(n)χred
s,r (n)δ

(

ω − (En
r − En

s )
)

. (3.8.47)

The spectral function Ad(ω) is expressed as a sum of delta-distributions. First of all,

since only ASBs have been employed, the sum rule

NC
∑

n=nmin

∑

r,s 6∈k,k′

dr,s(n)χred
s,r (n) = Tr{ρ[d, d†]s} (3.8.48)

is still fulfilled (see appendix A of Ref. [24]). Secondly, the Wilson chain is a closed sys-

tem, so its time-evolution is purely unitary and thus its excitations lack a natural finite

lifetime. In our OQS approach we solve this problem by introducing true dissipation
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to the system (see Chap. 4 and 5). In the closed system case, the delta-distributions

of Eq. (3.8.47) need to be broadened artificially to display a continuous spectrum.

Typically, a logarithmic Gaussian of the form

δ(ω − ωn) → e−b2/4

√
πbωn

exp

(

−
(

ln(ω/ωn)

b

)2
)

(3.8.49)

is chosen [34]. This ensures that excitations with positive energies ωn have no weight

in the negative half ω < 0 and vice versa. Also, the logarithmic function allows for a

higher resolution of smaller energies. For the smallest energies ωn ≈ 0, a Lorentzian

broadening

δ(ω − ωn) → 1

π

b

(ω − ωn)2 + b2
(3.8.50)

needs to be chosen [32]. Both broadening functions are normalized and thus they

maintain the sum-rule (3.8.48).

Let us turn to the SIAM (cf. Sec. 2.4) as a standard model for the application of

the NRG to spectral functions. The local one-particle GF for complex frequencies z

can be defined as

Gσ(z) = 〈〈dσ, d†σ〉〉(z) = (z − ǫd − Σσ(z))−1 (3.8.51)

via its one-particle self-energy Σσ(z) = ∆(z) + ΣU
σ (z) as in Eq. (3.1.4). The hybridiza-

tion ∆(z) is trivially known. The non-trivial extension to the spectral function is the

introduction of the local Coulomb repulsion U , expressed in the correction

ΣU
σ (z) = U

Fσ(z)

Gσ(z)
. (3.8.52)

The term

Fσ(z) = 〈〈dσd†σ̄dσ̄, d†σ〉〉(z) (3.8.53)

defines another GF for a composite impurity operator with σ̄ = −σ. Now two possible

ways for calculating the GF emerge. The first one is to directly calculate Gσ(z) from

Eq. (3.8.41), which is referred to as the raw Green’s function. The second way is

to calculate Fσ(z) and Gσ(z) via (3.8.41) and then build the self-energy (3.8.52) from

those two quantities, which then gives the final GF (3.8.51). This way is superior to the
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Figure 3.2.: The local spectral function Ad(ω) for the SIAM in the particle-hole sym-
metric case ǫd = −U/2 for T → 0. The NRG parameters are NC = 30,Λ =
3, D = 100Γ, NS = 500 and an artificial broadening of b = 0.8 has been
chosen.

raw GF, since a quotient of two numerical functions Fσ(z) and Gσ(z) is relatively stable

with respect to numerical errors (for more details see Ref. [35]). When calculating the

self-energy by simply inverting Eq. (3.8.51), numerical errors of the method add up to

cause an unphysical case, where

ImΣU
σ (z) ≤ 0 (3.8.54)

is not always fulfilled. This could be tackled by increasing the artificial broadening b of

the delta-peaks to avoid unphysical oscillations, which in turn washes out information

from the spectrum. The effect of the self-energy correction (3.8.52) is to smooth out

the curve for small energies, while peaks at high energies are more pronounced. In the

SIAM this relates to the Kondo-resonance and the Hubbard-peaks, respectively. The

calculation of Fσ(z) in the NRG is straightforward by setting A = dσd
†
σ̄dσ̄ and B = d†σ

in Eq. (3.8.39).

In Fig. 3.2 we plot the spectral function of the SAM. In the non-interacting case

U = 0 one obtains a simple Lorentzian of width Γ, which can be derived analytically (see

App. A.1). On the other hand, the interacting case U > 0 reveals non-trivial physical
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properties. For ω ≈ 0 (SCFP) we observe the so-called Kondo-peak (or Abrikosov-

Suhl resonance), which can be attributed to spin fluctuations. For the particle-hole

symmetric case, the value Ad(0) = 1/πΓ is given by the Friedel sum rule. At the

Kondo temperature ω ≈ TK the system transitions into the LMFP and the spectral

function drops to almost zero. From here on, the spectral function grows again to form

the so-called Hubbard satellites around ω = ǫd and ω = ǫd +U , respectively, which are

generated by charge fluctuations. For higher temperature the FOFP is reached and

the spectral function approaches zero at ω → ±∞.

The spectral function of the SAM is a typical medium for benchmarking the NRG

approach. Due to the truncation, the Kondo-peak is underrated by a few percent in

the raw GF. Furthermore, unphysical oscillations occur, which can be damped by

the self-energy correction (3.8.52). The artificial broadening according to Eq. (3.8.49)

tends to give too much weight to higher ω and by that over-broadens the Hubbard

satellites.

3.9. Non-Equilibrium Dynamics

Besides spectral functions the non-equilibrium dynamics of a local system operator OS

can be calculated in a similar way, but faces different challenges due to the discretization

of the bath. We obtain the time-dependent expectation value

OS(t) = Tr{ρ(t)OS} =

NC
∑

n=nmin

∑

r,s6∈k,k′

Or,s(n)ρreds,r (n)ei(E
n
r −En

s )t (3.9.55)

from Eq. (3.7.36) by choosing A = OS and B = ρ. Equation (3.9.55) is the ”fundamen-

tal TD-NRG equation”, and the tool used for its calculation with the NRG is called

time-dependent numerical renormalization group (TD-NRG) [29, 23]. The calculation

of the reduced density matrix

ρreds,r (n) =
∑

e

〈s, e;n| ρi |r, e;n〉 (3.9.56)

turns out to be more complicated than in the case of spectral functions. Suppose we

consider non-equilibrium dynamics as the transition from an initial to a final state at
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t = 0 induced by the time-dependent Hamiltonian

H(t) = H iΘ(−t) + H fΘ(t). (3.9.57)

Typical time-dependent parameters can be the impurity parameters, as well as the

hybridization V between the impurity and the Wilson chain. The initial FDM at t = 0

is then defined as

ρi =
1

Z i
e−βHi

=
1

Z i

NC
∑

ν=nmin

∑

λ,ǫ

e−βEν
λ |λ, ǫ; ν〉 〈λ, ǫ; ν| , (3.9.58)

which describes a system prepared with the initial parameters of H i at t → −∞. This

system is thus assumed to be well thermalized at t = 0. In order to distinguish the

eigenstates of H i from those of H f, we use the corresponding Greek letters instead of the

Latin ones for the initial basis states. The unitary time-evolution of the time-dependent

density matrix

ρ(t) = e−iHftρieiH
ft (3.9.59)

is determined by the final Hamiltonian. For that reason, Eq. (3.9.55) is expressed in

the eigenstates of H f and we are assigned to calculate overlap elements 〈s, e;n|λ, ǫ; ν〉
of initial and final basis states of different NRG iterations n 6= ν to obtain the reduced

density matrix (3.9.56). We define a complete initial basis set of

1i
n = 1+

n + 1−
n =

∑

̺,ǫ

|̺, ǫ;n〉 〈̺, ǫ;n| +
n−1
∑

ν=nmin

∑

λ′,ǫ

|λ′, ǫ; ν〉 〈λ′, ǫ; ν| , (3.9.60)

where λ′ denotes discarded states at iteration ν < n and ̺ denotes kept and discarded

states at iteration ν = n, and insert it into Eq. (3.9.56) to obtain

ρreds,r (n) =
1

Z i

∑

e

NC
∑

ν=nmin

∑

λ,ǫ

e−βEν
λ 〈s, e;n| (1+

n + 1−
n ) |λ, ǫ; ν〉 〈λ, ǫ; ν| (1+

n + 1−
n ) |r, e;n〉 .

(3.9.61)

By neglecting the 1−
n term, the reduced density matrix is referred to as ρ++

s,r (n) in

the literature [23]. This assumption is exact, if ρi can be restricted to the last NRG
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iteration, as in Eq. (3.8.45). We then obtain

〈l, e;n|1+
n |λ;NC〉 =

∑

κ

Sn
l,κ 〈κ, e;n|λ;NC〉 (3.9.62)

for n < NC and

〈l;n|1+
n |λ;NC〉 = SNC

l,λ (3.9.63)

for n = NC. The overlap matrix elements

Sn
r,̺ = 〈r;n|̺;n〉 (3.9.64)

can be calculated straightforwardly by running two independent NRG algorithms for

H i and H f each, and combining all eigenstates at each iteration n. The elements

〈κ, e;n|λ;NC〉 can be obtained as described in Sec. 3.8. Thus, after completing the

NRG runs, we start with ρredς,̺ (NC) in the initial eigenbasis and successively calculate

its contributions for different NRG-iterations n < NC by applying Eq. (3.4.26). Each

ρredς,̺ (n) is then turned into the final eigenbasis by

ρreds,r (n) =
∑

κ,κ′

Sn
s,κS

n
r,κ′ρredκ,κ′(n), (3.9.65)

where only kept indices κ of the initial basis enter.

Let us discuss the limitations of the approximation of Eq. (3.8.45). As already

mentioned, the quality of the NRG can always be improved by increasing the chain

length NC and thus reducing finite-size effects. However, the effective temperature

of the system is defined by NC (see Eq. (3.5.28)). Thus, to calculate systems with

large NC and finite temperature at the same time, β̄ needs to be decreased. However,

this impairs the approximation (3.8.45), since now energies of iterations n < NC have

a significant contribution as well. In that case we need to include all iterations and

calculate all parts ρ++
s,r (n), ρ+−

s,r (n), ρ−+
s,r (n) and ρ−−

s,r (n), respectively. In fact, it can

be shown, that ρ+−
s,r (n) = ρ−+

s,r (n) = 0 and that the terms ρ++
s,r (n) and ρ−−

s,r (n) can be

calculated efficiently for the FDM by a recursive procedure, starting at n = NC [90].

However, in this thesis we restrict to the approximation (3.8.45) and thus we need to

chose β̄ ≈ 1.

In Fig. 3.3 we display the convergence behavior of the non-equilibrium impurity

occupation for the chain length NC (panel (a) and (b)) and for the number NS of kept
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Figure 3.3.: The impurity occupation number for the RLM. We have chosen D =
100Γ, ǫfd = −ǫid = Γ and the remaining NRG parameters according to
the labeling with β̄ = 1. The analytical solution of App. A.2 for T → 0 is
added as a black dashed line.

states (panel (c) and (d)) with respect to the discretization parameter Λ. We use the

RLM as the most simple benchmark model here. As expected, the curves converge

faster, if Λ is chosen to be large. In that sense, a large discretization parameter is

superior, since less chain sites and less kept states are required to obtain a convergence

to the exact discretized result, at least for short times. However, the drawback of a

large Λ is displayed as well, since it increases the amplitude of unphysical oscillations.

This discretization effect will be investigated in Sec. 3.10 in more detail. Note that the

chain length NC influences the effective temperature of the Wilson chain and thus the

equilibrium values, most prominently in the blue curve of panel (a), since here T ≈ Γ.

Furthermore it is worth mentioning, that the NRG works astonishingly well even for a

small number of kept states NS compared to the total system dimension. This is seen

in TD-NRG calculations [23], as well as for equilibrium spectral functions [24].

In Fig. 3.4 we display the revival effect. With increasing chain length NC the
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Figure 3.4.: The impurity occupation number for the RLM. We have chosen D =
100Γ, ǫfd = −ǫid = Γ, NS = 100 and β̄ = 1. The chain length NC is varied
and the discretization parameter is adjusted to meet the temperature T =
10−3Γ for all curves. The analytical solution of App. A.2 is added as
a black dashed line and a version of the purple curve that is artificially
damped with αn = ωn is added as a black dotted line.

occurrence of finite-size oscillations is delayed and so the time point, at which the

numerical solution significantly deviates from the analytical one, is shifted to the right.

At the same time, Λ is decreased, which damps the unphysical oscillations discussed

above [30].

Independently of the choice of parameters, the TD-NRG is not able to allow for true

thermalization, since the chain length NC is still finite and charge reflections at the

end of the chain are inevitable. A simple solution to imitate an OQS is to damp the

oscillating terms of the off-diagonal part of the density matrix (ODDM) by a factor of

e−αnt (see the black dotted line in Fig. 3.4), where the damping factor αn is chosen in

accordance with the NRG scale ωn (see Ref. [23]). This damping relates to an artificial

broadening of the respective energy modes. The system now thermalizes for t → ∞ to
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a steady-state predicted by the diagonal ensemble [91], which is obtained by averaging

Eq. (3.9.55) over t ∈ [0, τ ] and then letting τ → ∞. This is effectively identical

to setting r = s. However, this steady-state value is not equal to the Boltzmann

distribution, and thus the correct steady-state within the NRG approximation is not

reached. This is fixed by the OWC approach that we propose in Chap. 5.

3.10. Discretization Artifacts

When investigating QIMs that exceed the most simple case of the RLM, often flavor

DOF (e.g. spin or multi-channel) need to be included. This increases the factor d,

by which the Fock space of the Wilson chain is augmented at each NRG iteration. If

the number NS of kept states is limited due to practical reasons, the discretization

parameter Λ needs to be increased to justify the truncation of high-energy states. The

numerical cost can thus be reduced by 1/ ln(Λ). However, increasing the discretization

takes one further away from the continuum limit Λ → 1+. As a direct consequence of

the discretization, the hybridization function Γ(ω) is systematically underestimated.

Therefore, the correction factor AΛ is typically used to increase the coupling V and

thus to accelerate the convergence to the continuum limit [14, 27]. For a constant

hybridization the analytical correction [14]

AΛ =
1

2

Λ + 1

Λ − 1
ln(Λ) (3.10.66)

is included in all our NRG calculations.

A pronounced consequence of the choice of higher Λ are so-called discretization

artifacts [26]. These are expressed as unphysical oscillations around the exact solutions

with an amplitude that grows rapidly with Λ. We can significantly suppress these

oscillations by simply averaging over several identical configurations of the NRG with

slightly varied discretization. This is nowadays referred to as z-averaging [33]. Here

we average over Nz Wilson chains, each discretized differently. To be precise, the

discretization scheme is altered by choosing

Λ−z < ǫ ≤ 1, (0 < z ≤ 1) (3.10.67)

as the first discrete interval of the bath instead of Λ−1 < ǫ ≤ 1 (cf. Sec. 3.1). The

subsequent discretization points xn are still scaled by a factor of xn

xn+1
= Λ and thus

the renormalization scheme of the NRG is not affected by the introduction of z. In
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fact, if the influence of z was extended to the relation of the discretization points, i.e.
xn

xn+1
= Λz, z would merely cause a rescaling of the parameter Λ → Λz. Instead, by

solely varying the entry point of the discretization scheme, the sliding parameter z

simply yields a logarithmic translation of xn while not affecting the renormalization.

In contrast to Eq. (3.1.12), the chain parameters ǫn and tn need to be calculated

numerically, even for a constant density of states. Only for z = 1 the standard scheme

is recovered.

For this thesis, a z-averaging is implemented as follows. The program is performed

Nz times where zk = k/Nz, k = {1, ..., Nz} is chosen. After completion the results are

simply averaged. The bare minimum for the z-averaging is z1 = 0.25 and z2 = 0.75,

which already significantly damps finite-size effects [26].

The procedure has already been applied to non-equilibrium dynamics [29, 23, 92, 93].

Here we can see, that the tolerance of non-equilibrium dynamics to a large discretization

parameter Λ is lower than that of equilibrium properties. Wilson has early pointed out

[22], that all values Λ ≤ 3 reflect the continuum adequately in the latter case. However,

the effect of the finite-size oscillations in the non-equilibrium case is significantly larger

in a comparable range of Λ [23]. Here a z-averaging is of high importance even for

Λ ≤ 3.

In Fig. 3.5 the effect of z-averaging is displayed for different values of Nz. Obviously,

for tΓ > 6 the TD-NRG curves perform oscillations around the curve, which can be

obtained by an artificial relaxation of the ODDM (dotted curve). These oscillations are

damped for increasing Nz, so that the undamped curves converge to the damped ones

for shorter times. However, as discussed at the end of Sec. 3.9, the correct steady-state

(indicated by the black dashed line of the analytical solution) is not reached in any of

both cases.

It has been shown by Güttge et al [30], that the source of the discretization artifacts

are back-reflections of charge at each chain site due to the discontinuous transitions

between the discrete excitations. If one considers a tight-binding chain of finite length,

after the local quench at t = 0 all charge is transported through the chain and si-

multaneously reaches the end of the chain. It is then reflected back and reaches the

impurity again after a certain time. This revival time is influenced by the chain length.

In a Wilson chain with Λ > 1, the hopping elements decrease logarithmically with the

chain site n, leading to back-reflections at each site. Approximately only the fraction

of 4/(Λ + 1)2 is transported from site n to n + 2 [19]. In contrast, the charge, that

reaches the last chain site and is reflected here, is relatively small in a Wilson chain.
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Figure 3.5.: The real-time impurity occupation for the RLM. We have chosen D =
100Γ, ǫfd = −ǫid = Γ, NS = 100, NC = 20,Λ = 4 with β̄ = 1. The z-
averaging is performed with different values for Nz. An artificial damping
with αn = ωn is supplemented as a purple dotted line for Nz = 16. The
analytical solution of App. A.2 is added as a black dashed line.

Also, the charge velocity is proportional to the hopping parameters and is therefore

decreased throughout the chain for Λ > 1. In that way, the Wilson chain allows for a

temporary thermalization as well as an increased revival-time at the cost of finite-size

oscillations.

3.11. Hybrid-NRG Approach

Above we have mentioned several ways to combat the finite-size effects in the Wilson

chain. The z-averaging can, to a certain degree, smooth the oscillations induced by

back-reflections at each chain site, but is not capable of reproducing the exact solution

of the continuum. An artificial damping with a fixed damping factor allows for a true

thermalization for t → ∞, but damps finite-size oscillations in an uncontrolled manner
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and reaches the same incorrect steady-state as z-averaging. The best results can be

obtained by reducing the discretization parameter significantly to around Λ = 1.05

[19], which practically entirely prevents back-reflections of charge. The chain length

is required to be increased accordingly to obtain a sufficient energy resolution. Also,

the revival time is increased by increasing the chain length, since it takes longer for

the charge to flow along the chain. The required chain length is around NC = 500 to

well reproduce the continuum solution, which is infeasible in the context of most NRG

applications.

A more efficient approach to that is the double Wilson chain [36]. Here a relatively

short Wilson chain (NC ≈ 30, Λ ≈ 1.8) is followed by an effective tight-binding chain

(NC ≈ 100, Λ ≈ 1.05), coupled to the end of the first chain. This double Wilson chain

is capable of reproducing the results of the Wilson chain mentioned above (NC = 500,

Λ = 1.05) with significantly less computational cost. The idea of the double Wilson

chain is to rapidly reduce the effective bandwidth of the system with a relatively large Λ,

but keep this chain short, in order to avoid back-reflections. From a classical standpoint,

these reflections first occur at site n, where the hopping parameter tn is below the

hybridization V . When constructed with the lowered effective bandwidth, the second

Wilson chain requires less chain sites to obtain the same energy resolution as the pure

Wilson chain.

Even in this shorter Wilson chain, truncation of eigenstates is inevitable. However,

for Λ ≈ 1.05 a truncation of high-energy states is effectively impossible. An elegant

solution to that is the hybrid NRG-DMRG approach [36]. Here a Wilson chain of

length M and a discretization Λ ≈ 1.8 is constructed and the TD-NEV is calculated

with the TD-NRG. In contrast to the approach presented in Sec. 3.9, the states at

iteration M are divided into a kept and a discarded part and from the kept low-energy

sector a time-dependent correction term to the TD-NEV is generated. The kept sector

is treated as an effective low-energy impurity, which is couple to a tight-binding chain.

This way, the discretization error in the low-energy regime of the system is significantly

reduced. Due to the missing energy-hierarchy, the tight-binding chain is treated with

a time-dependent DMRG approach to allow truncation.

Although the NRG-DMRG approach significantly reduces the finite-size oscillations

in non-equilibrium dynamics, it has several drawbacks. Firstly, due to the application

of the DMRG, this hybrid approach is restricted to temperature T = 0. Secondly, at a

certain chain length the revival-time effectively cannot be increased further, since even

for a small Λ back-reflections dominate local dynamics before the reflections from the
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end of the chain reach the impurity. The approach yields excellent results up to times

t = 100/Γ, but does not reach a true thermalized steady-state. Thirdly, the approach

does not include a finite-lifetime for local excitations, and so it is not suitable for the

calculation of spectral functions.

In this thesis we propose a different hybrid-NRG approach. Here we construct reser-

voirs, that recover the continuum limit and couple one single reservoir to each site of

the Wilson chain. This way, surplus charge is absorbed into the reservoirs and back-

reflections are reduced. Also, the low-energy reservoir at the end of the chain prevents

the revival-effect and thus allows for true relaxation. To couple the reservoirs to the

Wilson chain we will choose the BRF. Since this is a perturbative approach in second

order, we expect some reflections to persist on intermediate time scales. However, in

the BRF, the correct steady-state (in the limit of the NRG) is always guaranteed. This

formalism generates relaxation rates, which translate to natural broadening parameters

and thus it is suitable for ESF as well. Here we consequently expect the broadening

induced by the BRF to be too narrow and finite-size oscillations to occur. The BRF

will be explained in detail in Chap. 4, while its application to the Wilson chain for

the RLM is covered in Chap. 5 and to the NRG in Chap. 6, respectively. Finally, in

Chap. 7 the OCF is tested for non-trivial interacting QIMs.
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In the previous chapter the NRG has been discussed as a powerful tool to calculate

QISs. The formalism is made for accessing a wide range of energies, spanning from

the entire width of the band to the exponentially small Kondo temperature. To meet

this requirement, the band is discretized logarithmically and only a finite number of

excitations from the infinite environment of the QIS is taken into account. This is due

to the fact, that the NRG is effectively a closed system formalism, meaning that each

system DOF is considered explicitly. The restriction to a finite - and thereby closed -

system is thus of pure practical nature.

Closed systems are by nature conservative, meaning that quantum numbers such as

charge or spin are constant due to an absent interaction with an environment. Dis-

sipation of impurity quantities is limited to the size of the closed system and a true

relaxation is impossible. Here lies the strength of OQS formalisms. If one is solely in-

terested in the properties of the impurity, an explicit formulation of single environment

modes is not necessary. Instead, the continuum is basically treated in a statistical way,

which is perfectly sufficient to introduce true dissipation and thermalization into QISs.

Needless to say, those OQS formalisms are not exact either. To be precise, several

indispensable approximations restrict the system to certain parameter regimes, and

thereby make small energies inaccessible, which are essential to the Kondo problem.

From this standpoint, a hybrid approach between a closed system impurity solver like

the NRG and an OQS formalism appears to be a promising attempt to combine the

strength of both worlds. This connection is made in Chap. 5 and 6, where we discuss

the construction of an OWC. In Chap. 4, however, the focus lies solely on a didactic

introduction to the OQS formalism of our choice, namely the BRF. In the following

sections this formalism is explained in the way it is presented in typical literature and

its limitations are discussed in detail. Related links are provided at certain points, if

further information to the respective topic is desired.
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4.1. Open Quantum System

In the theory of OQSs a microscopic quantum mechanical system of finite DOF interacts

with a large system in the thermodynamic limit, called the environment or bath. The

strength of the theory lies in the fact that if one is interested in the characteristics

of the microscopic system only, one does not have to deal with an infinite amount

of bath DOF. Instead, the knowledge of macroscopic bath quantities, like e.g. the

temperature or the DOS, is sufficient to obtain detailed insight into the microscopic

system (simply called ”system” from here on). Unlike the unitary time evolution of

time-independent Hamiltonians, the theory of OQSs is able to include phenomena like

dissipation and fluctuation. The evolution of the density matrix is typically described

by a Lindblad or Bloch-Redfield equation. This equation has countless applications in

condensed matter [94], quantum optics [95], quantum information [96] and decoherence

[97]. An interesting work in the context of this thesis has been published by Schwarz

et al [98] who use the Lindblad equation to describe transport phenomena.

In many instances, a quantum mechanical system of finite DOF is treated as isolated,

we called it a ”closed” system. Neglecting the explicit interactions with the rest of the

universe is often crucial for a quantitative treatment of a problem. In reality, how-

ever, no isolated systems exist, as an interaction with the environment is unavoidable.

Therefore, an approach is required which includes dissipative terms without having

to deal with the potentially infinite environment DOF. Dissipation is defined as the

transformation of directed (usable) kinetic energy into an undirected form. This is

realized by a relatively small, well-defined system which transfers energy to a large

environment. This energy is then irreversibly lost, which is often associated with an

increase in entropy. In classical mechanics friction is a typical mechanism that trans-

forms kinetic into thermal energy which then dissolves into the environment. The latter

is often so large, that its temperature is effectively not affected by the small system.

Dissipation can thus be seen as an irreversible energy flow that breaks time-reversal

symmetry.

To describe dissipation, i.e. the change in local parameters like energy or particle

number, a mathematical formulation of the interaction with an infinitely large envi-

ronment is required. For that purpose the microscopic system is described by reduced

operators that contain the relevant environment information, while only living in the

local Hilbert space. Two approaches that meet these requirements are the Lindblad for-

malism and the BRF. Here the evolution of the reduced density matrix is described by
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a von-Neumann equation, which is a quantized version of the Liouville equation. The

BMA is applied, which assumes that the environment is large in relation to the local

system and that the system-bath coupling is weak. Due to the additional dissipation

terms in the equation of motion the effect of an open system can be described, including

a relaxation into a true thermalized state. The BMA turns the von-Neumann equation

into a simple master equation in the context of a linear response theory. Therefore,

the solutions of these equations contain exponential decay terms of the form e−γt. The

coefficients γ can be seen as friction parameters that mediate the process of dissipation

into the environment, where γ = 0 accounts for the thermalized steady-state of the

system. The parameters of the Lindblad master equation are more general, while the

parameters of the BRF are directly derived from bath properties. For more details on

the differences of the Lindblad and the BRF see e.g. Ref. [99, 100].

The Lindblad formalism guarantees the fundamental properties of the density matrix,

meaning positivity, hermiticity and the conservation of the trace. In this chapter we

show that our formalism does not violate these properties. The conservation of the trace

in the context of OWC is discussed in detail in Chap. 6. For an alternative introduction

to the Lindblad or Bloch-Redfield equation and discussion of the approximations see

[39, 101, 40].

The foundation of the formalism described in the subsequent section basically follows

Ref. [40]. We restrict our considerations to a fermionic environment. A comparable

approach to bosonic systems can be found in Ref. [102].

4.2. Density Matrix of an Open Quantum System

The subject of our study is a small localized system S with a finite number of levels

that interchanges energy with a large environment or bath B. For that purpose we

begin with a QIS Hamiltonian in the general form

H = HS + HB + HSB, (4.2.1)

where HS and HB are Hamiltonians for S and B, respectively, and HSB is an interaction

Hamiltonian. The reservoir is only of indirect interest and its properties only need to

be specified in general terms. In our case, the general temperature and the energy DOS

need to be defined. To calculate the time-evolution of the density matrix the quantum
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mechanical Liouville equation, i.e. the von-Neumann equation

ρ̇(t) = i [ρ(t), H] (4.2.2)

is used. We transform it into the interaction picture using H0 = HS + HB

ρI(t) = eiH0tρ(t)e−iH0t. (4.2.3)

Since the coupling between the system and the bath is considered to be weak, the

oscillations generated by eiH0t are relatively fast. Taking the time-derivative of (4.2.3)

and using (4.2.2) leads to

ρ̇I(t) = i
[

ρI(t), H I
SB(t)

]

, (4.2.4)

introducing the time-dependent hybridization term

H I
SB(t) = eiH0tHSBe

−iH0t (4.2.5)

in the interaction picture. Integrating (4.2.4) for t ≥ 0 and plugging the obtained ρI(t)

back into this equation yields

ρ̇I(t) = iR1(t) −R2(t),

R1(t) = [ρI(0), H I
SB(t)],

R2(t) =

∫ t

0

dt′
[ [

ρI(t′), H I
SB(t′)

]

, H I
SB(t)

]

. (4.2.6)

Even though the coupling term HSB explicitly appears only in first and second order,

this equation is still exact, since higher orders of HSB are embedded in the time-

dependent density matrix ρI(t).

The strength of the BRF for OQSs lies in the fact that if one is interested in the

local system S there is no need to worry about the composite system S⊗B in detail. If

ÔS is such a desired operator in the Hilbert space of S, we can calculate its average in

the bath DOF if we have knowledge of the local contribution of ρ(t) alone. This local

part is called the reduced density matrix ρS(t) and is defined as

ρS(t) = TrB
{

ρ(t)
}

(4.2.7)
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by tracing out the bath environment degrees of freedom (EDOF). The expectation

value of a local operator can be written as

〈ÔS(t)〉 = TrS⊗B

{

ÔSρ(t)
}

= TrS

{

ÔSρS(t)
}

. (4.2.8)

By using ρS(t) we can consider the influence of the environment, and at the same time

express the expectation value of local operators in the local space only. Our objective

is thus to derive an equation for the reduced density matrix. For that purpose, we

take the trace over the bath DOF on both sides in Eq. (4.2.6). We assume that the

compound system is in thermal equilibrium, and that system and bath are decoupled

for times t ≤ 0, meaning that no correlations between S and B exist. The initial density

matrix

ρI(0) = ρIS(0)ρB (4.2.9)

then factorizes into a separate system and bath part. This assumption already elimi-

nates the first term of Eq. (4.2.6), namely

TrB

{

R1(t)
}

= TrB

{

[ρIS(0)ρB, H
I
SB(t)]

}

= [ρIS(0), eiHSt〈HSB〉Be−iHSt] (4.2.10)

by employing the cyclicality of the trace and eiH0t = eiHSteiHBt, since HS and HB

commute. Note that we have defined

ρIS(t) = TrB
{

ρI(t)
}

= eiHStρS(t)e−iHSt (4.2.11)

with the cyclicality of the trace in Eq. (4.2.3). Since we assume that in the interaction

Hamiltonian HSB bath operators only occur in linear form, 〈HSB〉B vanishes and likewise

does TrB

{

R1(t)
}

. The second order term R2(t) remains and encodes the influence of

the bath B onto the system S. Thus, the von-Neumann equation becomes

ρ̇IS(t) = −TrB

{

R2(t)
}

. (4.2.12)

At a first glance, this integro-differential equation resembles a typical Picard-Lindelöf

problem by defining

ρ̇I(t) = −R2(t) ≡ f(t, ρI(t)). (4.2.13)
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The solution can then be obtained by

ρI[l+1](t) = ρI(0) +

∫ t

0

dsf(s, ρI[l](s)), (4.2.14)

with the initial value ρI[0](t) ≡ ρI(0). The time-dependent operator ρI[l](t) is calculated

iteratively until the desired convergence at l = l is reached. However, since R2(t)

contains bath operators via HSB, Eq. (4.2.13) cannot be written in the simple form

ρ̇IS(t) = f(t, ρIS(t)) (4.2.15)

by performing a trace over the bath DOF. Hence, the reduced density matrix can

only be calculated after completion of the final step l. Up to that point, the bath

operators remain and yield more and more complex entanglement of the bath modes

with each iteration step. Even though it can be shown analytically (see App. C)

that only bath correlations up to quadratic order appear in expression (4.2.14), still all

bath indices are coupled indirectly rendering even the evaluation of ρI[2](t) practically

impossible. Any further thoughts regarding the decoupling of certain bath modes, e.g.

in the fashion of the NRG formalism, shall not be subject of this thesis. The first

order term, ρI[1](t), which can be interpreted as a second order perturbation in HSB,

however, can be calculated analytically and can thus serve as a benchmark for very

short-time considerations of various QIMs (see Eq. (4.6.1.70)). To reliably reach more

relevant timescales and, in addition, simulate correct thermalization a different route

needs to be taken. Equation (4.2.15) can be realized by defining a factorization of the

density matrix in the spirit of Eq. (4.2.9) for all times t ≥ 0. This allows one to trace

out the bath DOF and thus to set up an integro-differential equation in local system

parameters only. In fact, different approximations are necessary to solve this equation,

which we will elaborate on in Sec. 4.3.

4.3. Born-Markov Approximation

The first approximation we need in order to locally treat OQSs is the one which has

the most impact at the same time, the so called Born approximation (BA) [39, 103].

Recall, that we defined the interaction term to be turned on at t = 0, so correlations

between the system and the bath will still occur for positive times. We consider the
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density matrix to have a product form

ρI(t) = ρIS(t)ρB. (4.3.16)

for all times t > 0. This is defined as a BA. It is motivated by the assumption

that the coupling term HSB is weak relative to HS and HB and that there are no

feedback processes onto the bath, so ρB is left unaltered. To understand the origin

of this approximation consider the full density matrix ρ(t) = 1
Z
e−β(HS+HB+HSB) as an

expansion in the interaction Hamiltonian HSB. Since terms of the order of O ((βHSB)n)

lead to O
(

(βHSB)n+2) in Eq. (4.2.6), we consider terms with n ≥ 1 to be negligible,

if the coupling strength is small compared to the temperature. The factorization of

the density matrix in Eq. (4.2.6) is crucial to trace out the bath DOF and thus to

handle OQSs within our approach. Nevertheless, by neglecting correlations between

system and bath modes, fundamental effects which rely on feedback processes, like the

formation of the Kondo-singlet, cannot be explained. The recovery of those correlations

is discussed in Chap. 5.

Let us briefly investigate the influence of the temperature on the approximation. In

the limit β → 0 the approximation becomes exact. In the case of finite temperature

the effect is more pronounced. If the coupling is of the order of the local energies and

the bath dispersion, a huge error can be expected in the limit of low temperatures.

To proceed with the evaluation of Eq. (4.2.6), we rewrite it as

ρ̇IS(t) = −
∫ t

0

dsTrB

{

[ [

ρIS(t− s)ρB, H
I
SB(t− s)

]

, H I
SB(t)

]

}

, (4.3.17)

where we have substituted t′ = t− s for the sake of convenience.

As a first step (before applying any further approximations) the master equation

(4.3.17) is written in the eigenbasis of the finite system Hamiltonian HS, yielding

ρ̇ab(t) = −
∑

mn

∫ t

0

dsRab,mn(t, s)ρmn(t− s), (4.3.18)

where the indices a, b,m, n denote the eigenstates of HS. We have introduced the
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two-times-dependent BRT

Rab,mn(t, s) = δbn
∑

l

Γ+
al,lm(t, s) + δam

∑

l

Γ−
nl,lb(t, s) − Γ+

nb,am(t, s) − Γ−
nb,am(t, s),

(4.3.19)

comprising the damping tensors

Γ+
ab,mn(t, s) = TrB

{

ρBHab(t)Hmn(t− s)
}

Γ−
ab,mn(t, s) = TrB

{

ρBHab(t− s)Hmn(t)
}

, (4.3.20)

where ρab(t) = 〈a| ρIS(t) |b〉 and Hab(t) = 〈a|H I
SB(t) |b〉 are the operators in the local

eigenbasis. To proceed, let us introduce an explicit form of HSB in analogy to Eq.

(1.0.2). We assume a bilinear single-particle coupling between the local and the bath

DOF that reads

H I
SB(t) =

∑

k

Vk

(

f †(t)ck(t) + f(t)c†k(t)
)

. (4.3.21)

Here f accounts for the annihilator of a local state in the Hilbert space of S and ck

annihilates a bath state. The momentum index k sums over the bath DOF and Vk

is the corresponding hybridization. The appearing operators can easily be augmented

by further indices (e.g. a spin or channel index), yielding more specific hybridization

Hamiltonians. For the purpose of presenting the principal calculations, these DOF will

be neglected for now.

Inserting Eq. (4.3.21) into the equations (4.3.20) of the damping tensors, bath

correlation functions emerge. Considering the case of a bath HB =
∑

k ǫkc
†
kck of non-

interacting fermions in thermal equilibrium (cf. Eq. (1.0.1)), the time evolution of the

bath annihilators simplifies to ck(t) = ck(0)e−iǫkt, yielding the correlation functions

Cp(s) =
∑

kk′

VkVk′TrB

{

ρBck(t)c†k′(t− s)
}

=
∑

k

V 2
k fβ(−ǫk)e−iǫks

Ch(s) =
∑

kk′

VkVk′TrB

{

ρBc
†
k(t)ck′(t− s)

}

=
∑

k

V 2
k fβ(ǫk)eiǫks (4.3.22)

for a particle and a hole respectively. The Fermi function fβ(ǫk) = 〈c†k(0)ck(0)〉B has

been introduced with β being the inverse temperature of the environment. To deal

with the infinite bath continuum, the sum over the bath excitations k is turned into an
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integral by introducing the DOS ρ(ǫ), such that ρ(ǫ)dǫ gives the number of excitations

within the interval ǫ to ǫ+ dǫ. The spectral coupling function (see Eq. (1.0.3)) is then

defined as

Γ(ǫ) = πV 2(ǫ)ρ(ǫ) = π
∑

k

V 2
k δ(ǫ− ǫk) , (4.3.23)

turning the bath correlation functions of Eq. (4.3.22) into

Cp/h(s) =
1

π

∫ ∞

−∞

dǫΓ(ǫ)fβ(∓ǫ)e∓iǫs . (4.3.24)

For a symmetric spectral coupling function the bath is particle-hole symmetric, yielding

Cp(s) = Ch(s) ≡ C(s). Using the definition fab(t) = 〈a| eiHStfe−iHSt |b〉 = fabe
iωabt for

the system operator in the local eigenbasis with ωab = Ea − Eb being the difference of

local eigenenergies, the damping tensors (4.3.20) become

Γ+
ab,mn(t, s) = ei(ωab+ωmn)t

[

f †
abfmnCp(s) + fabf

†
mnCh(s)

]

e−iωmns

Γ−
ab,mn(t, s) = ei(ωab+ωmn)t

[

f †
abfmnC

∗
p(s) + fabf

†
mnC

∗
h(s)

]

e−iωabs. (4.3.25)

The second canonical approximation at this point is the Markov approximation (MA).

The master equation (4.3.18) is non-Markovian, since the dynamics of ρIS(t) depends

on its entire history 0 ≤ s ≤ t, meaning that feedback processes between S and B

are possible. This renders a complicated integro-differential equation. By assuming

Markovian behavior those rebound processes are neglected which considerably simpli-

fies the equation by lifting the convolution integral. The question arises under which

circumstances this assumption is justified. The reader shall be reminded, that even

though the BA neglects correlations between S and B, correlations between the single

bath modes still occur. These correlations are expressed by the bath correlation func-

tions Cp/h(t) of Eq. (4.3.24). For large times t → ∞, these functions decay entirely,

since the exponential terms e∓iǫt oscillate rapidly in this case and thereby cancel the

kernel under the integral to zero. We define the time scale of the decay of Cp/h(t) as

the bath correlation time tB. If tB is considered to be small in comparison to the local

time scale tS on which the density matrix varies, then local information decays rapidly

in the bath, rendering B a constant background for S. This inhibits feedback loops of

information going from S into B and then back to S and thus provides a Markovian

system. It is left to show that tB ≪ tS.
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By the above made assumption that the coupling term HSB is weak, the changing

rate of the density matrix is small. Consequently, the density matrix can be seen as a

slowly varying operator compared to the bath correlation time tB. Let us consider a

constant spectral coupling function

Γ(ǫ) = ΓΘ(D − |ǫ|) (4.3.26)

to exemplarily calculate the correlation function C(t). The bandwidth D serves as an

upper limit for the bath energies and the normalized bath DOS becomes

ρ(ǫ) =
∑

k

δ(ǫ− ǫk) =
1

2D
Θ(D − |ǫ|). (4.3.27)

For a hybridization V that is independent in k, we can derive

V =

√

2DΓ

π
. (4.3.28)

with Eq. (4.3.23). From Eq. (4.3.24) we obtain

ReC(t) =
V 2

2

sin(t/tB)

t/tB
(4.3.29)

for the real-part with the correlation time tB = 1/D. The imaginary-part vanishes for

high temperatures and is

ImC(t) =
V 2

2

cos(t/tB) − 1

t/tB
(4.3.30)

for T = 0.

In Fig. 4.1 the correlation functions are displayed on scaled axes. In the wideband

limit D ≫ Γ the correlation function C(t) converges to Γδ(t), which is the desired

behavior for the MA. Further discussion can be found in Sec. 4.6 and 5.3.3.

When tB is considered to be small, the master equation (4.3.18) can be simplified

twofold. The first approximation step is to replace ρmn(t − s) by ρmn(t) under the

integral. Since correlations are practically vanished for t ≫ tB, the upper limit of the

integral can be set to ∞, which is the second approximation step. We end up with

ρ̇ab(t) = −
∑

mn

Rab,mn(t)ρmn(t), (4.3.31)
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Figure 4.1.: The dimensionless correlation function C(t)/V 2 versus dimensionless times
t/tB for a constant spectral coupling function. For ImC(t) we chose T = 0.

where Rab,mn(t) =
∫∞

0
dsRab,mn(t, s). Thus we obtain a Markovian equation, where the

dynamics of the density matrix at time t only depends on its current state.

It shall be mentioned here, that the second approximation step is clearly problematic

for short times t < tB. Here, a major part of the correlation function is falsely included

in the integration and thereby in the relaxation rate of ρIS(t).

Let us investigate the master equation for short times, to obtain a non-Markovian

estimation in the regime, where the MA is most problematic. In Eq. (4.3.25) we set

t = s = 0 to obtain the damping matrices. The initial value of the correlation functions

is C(0) = ΓD
π

= V 2

2
. The damping matrices are now given by

Γ±
ab,mn(0, 0) =

V 2

2

[

f †
abfmn + fabf

†
mn

]

. (4.3.32)

The master equation (4.3.18) becomes

ρ̇ab(t) = −
∑

mn

Rab,mn(0, 0)

∫ t

0

dsρmn(t− s) ≈ −
∑

mn

Rab,mn(0, 0)tρmn(t). (4.3.33)

On the r.h.s. of the equation the first MA has been executed. The convolution integral

yields a cosine-type short time evolution of the density matrix, while the first MA yields



60 4. Bloch-Redfield Formalism

a Gaussian-type density matrix. In any case, the first non-vanishing contribution of

t is quadratic. This is in accordance with ρ̇(t = 0) = 0, which can easily be deduced

from Eq. (4.3.18).

We proceed to the Markovian time scale of t ≫ tB, where the damping matrices are

transformed into

Γ+
ab,mn(t) = ei(ωab+ωmn)t

[

f †
abfmnCp(ωmn) + fabf

†
mnCh(ωmn)

]

Γ−
ab,mn(t) = ei(ωab+ωmn)t

[

f †
abfmnC

∗
p(ωba) + fabf

†
mnC

∗
h(ωba)

]

. (4.3.34)

Here we have defined the greater/lesser reservoir Green’s functions (RGFs)

Cp/h(ω) =

∫ ∞

0

dsCp/h(s)e−iωs−0+s

= Γ(∓ω)fβ(ω) +
i

π
PV

∫ ∞

−∞

dω′Γ(∓ω′)fβ(ω′)

ω′ − ω
(4.3.35)

as the half-sided Fourier transform of the correlation functions. PV denotes the Cauchy

principal value. Naturally, the imaginary part of the RGFs is connected to the real

part via a Kramers-Kronig relation.

The stage is set for the third and last approximation, the so-called secular approx-

imation. It is based upon the secular effect which, in general, denotes a separation of

the time scales of a system. In our case, we consider the local dynamics of ρIS(t) to

happen on a much larger time scale than the fast oscillating terms ei(ωab+ωmn)t in Eq.

(4.3.34). This assumption is again based on a weak coupling HSB and thus a slowly

varying density matrix. In this approximation, the master equation is secularized, i.e.

averaged over the rapidly varying terms. As a result, those terms average to zero and

any modulations over these short times are washed out. The only surviving terms

are those that fulfill ωab + ωmn = 0. Hence, the exponential functions are turned into

Kronecker-deltas and the damping matrices reach their final form

Γ+
ab,mn = δωab+ωmn,0

[

f †
abfmnCp(ωmn) + fabf

†
mnCh(ωmn)

]

Γ−
ab,mn =

(

Γ+
ab,mn

)∗
. (4.3.36)

In Sec. 4.6 and 5.3.3 the occurring local energies are compared to the time scale of the

local dynamics to discuss the accuracy of the approximation. To this end, the BRT is
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time-independent rendering the master equation (4.3.18) to become

ρ̇ab(t) = −
∑

mn

Rab,mnρmn(t), (4.3.37)

with the final time-independent BRT

Rab,mn = δbn
∑

l

Γ+
al,lm + δam

∑

l

Γ−
nl,lb − Γ+

nb,am − Γ−
nb,am. (4.3.38)

The first two terms of the BRT maintain particle number, and will thus be referred to

as the unitary part, while the latter (dissipative) part connects two different particle

subspaces. Equation (4.3.37) is a Lindblad-type master equation, where in canonical

Lindblad theory, the entire BRT is denoted as the dissipator.

The BRT can be seen as a Lindblad super-operator or as a matrix R, if the density

matrix is expanded as a super-vector. In the latter case, the master equation has the

simple solution

|ρ(t)〉 = e−Rt |ρ(0)〉 =
∑

l

cle
−λlt |vl〉 , (4.3.39)

with cl = 〈wl|ρ(0)〉. Here a bi-orthonormal eigenbasis of the BRT has been defined

with left and right eigenvectors 〈wl| and |vl〉, respectively, fulfilling 〈wl|vm〉 = δlm.

This establishes the requirement for diagonalizing the BRT. Equation (4.3.39) is a

sum of exponential decays supplemented by oscillations induced by the imaginary part

of λl, which is often referred to as the Lamb-shift. As mentioned above, Eq. (4.3.39)

resembles the dynamics well for large times. The correct equilibrium value for t = 0

is included as |ρ(0)〉 =
∑

l cl |vl〉, which can be used to check numerical calculations.

The correct gradient |ρ̇(t = 0)〉 = 0, however, is not given. This can easily be seen

by setting t = 0 in the master equation (4.3.37). The gradient can only be zero if

R |ρ(0)〉 = 0, which implies that the expression (4.3.39) is constant in time.

With Eq. (4.3.39) and (4.2.8) at hand, physical properties can be calculated in the

system Hilbert space. The non-equilibrium expectation value of any local operator OS
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is given by

〈OS(t)〉 = Tr
{

eiHStOSe
−iHStρIS(t)

}

=
∑

ab

∑

l

(OS)ab cl (|vl〉)ba eiωabt−λlt

=
∑

f,l

Xf,l e
iωl,f t−Reλlt, (4.3.40)

where in

Xl,f =

ωab=ωf
∑

ab

(OS)ab cl (|vl〉)ba (4.3.41)

all identical energy differences ωab = ωf are aggregated and ωl,f = ωf −Imλl. Here the

real part Reλl allows for true relaxation of the system into the steady state, while the

Lamb-shift Imλl induces small supplemental oscillations. The closed system solution

is recovered by setting the relaxation rates λl → 0. Equation (4.3.40) then becomes

〈OS(t)〉CC =
∑

ab

(OS)ab
∑

l

cl (|vl〉)ba eiωabt

= Tr
{

eiHStOSe
−iHStρIS(0)

}

. (4.3.42)

4.4. Adaptation of the Bloch-Redfield Equation to the

χ-Operator

The time-dependent retarded equilibrium Green’s function (TD-EGF) is defined as

GA,B(t) = −iΘ(t)Tr{ρ[A(t), B]ς}, (4.4.43)

with [A(t), B]ς = AB − ςBA and ς = 1 for bosonic operators A,B and ς = −1

for fermionic operators (cf. Eq. (3.8.39)). The time dependency is included in the

operator A(t) = eiHtAe−iHt. By exploiting the cyclicality of the trace, we can define

χ(t) = e−iHt[B, ρ]ςe
iHt. Replacing A → d and B → d†, with d(†) being the local
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fermionic annihilation (creation) operator1, we obtain the local GF

Gd(t) ≡ Gd,d†(t) = −iΘ(t)Tr{χ(t)d}, (4.4.44)

with χ(t) = e−iHt
(

ρd† + d†ρ
)

eiHt being a fermionic operator as well. In the spirit of

Eq. (4.2.8) the trace is split into a system part S and a bath part B. This way Eq.

(4.4.44) can be expressed in terms of local quantities only leading to

Gd(t) = −iΘ(t)TrS{e−iHStχI
S(t)eiHStd}, (4.4.45)

where χI
S(t) = TrB

{

eiH0tχ(t)e−iH0t
}

is the reduced operator in the interaction picture.

To calculate χI
S(t), the BRF discussed above needs to be adapted to this new fermionic

operator. Since χ(t) = e−iHtχeiHt, this operator evolves in time like the density matrix

and thus the von-Neumann equation (4.2.2) can, analogly to ρ(t), be used as the entry

point of the BRF. The BA

χI(t) ≈ χI
S(t)ρB (4.4.46)

(cf. Eq. (4.3.16)) can be performed since d† is a local operator and χ is linear in

its constituents ρ and d†. The bath equilibrium density matrix ρB is then used to

construct the correlation functions. The formalism deviates by a sign from the BRF

for the density matrix, since χ has fermionic properties. By commuting χI
S(t) with

a bath operator c
(†)
k , which is necessary to build the correlation functions Cp/h(s) of

Eq. (4.3.22), the sign of the dissipative part of the BRT is changed. This sign change,

however, does not impact the following Markov and secular approximation (MSA) and

thus we end up with the master equation

χ̇ab(t) = −
∑

mn

Rab,mnχmn(t), (4.4.47)

where

Rab,mn = δbn
∑

l

Γ+
al,lm + δam

∑

l

Γ−
nl,lb + Γ+

nb,am + Γ−
nb,am (4.4.48)

1Note, that we choose d, instead of f for the local operator here. f shall denote a general operator
of the system Hamiltonian HS, while d is restricted to a specific impurity operator.
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is the new modified BRT. The only difference to Eq. (4.3.38) lies in the sign of the

last two terms.

It should be mentioned here, that the sign of the dissipative part does not have a sig-

nificant effect on the overall dynamics of χI
S(t), if the system is particle-hole symmetric,

since the dissipative terms always come in pairs of positive and negative sign, medi-

ated by the local operators f (†). The major difference between the master equations

for ρ and χ lies in the fact that different particle number subspaces Sn are coupled.

The unitary terms of the BRT maintain the particle number of the operator, that

shall be evolved in time, while the dissipative terms change it by one. The density

matrix ρ is a block-diagonal operator in Sn, i.e. the unitary part couples Sn to Sn

while the dissipative part couples it to Sn−1 and Sn+1, respectively. On the other

hand, χ is a fermionic operator in the sense that it couples Sn to Sn+1. The unitary

part of the BRT maintains this scheme, while the dissipative part couples (Sn+1,Sn)

to (Sn,Sn−1) and (Sn+2,Sn+1), respectively. This fact has a major impact on the

numerical implementation of the BRF in the context of the NRG, which operates in

sub-blocks defined by quantum numbers.

With the formal solution

|χ(t)〉 = e−Rt |χ(0)〉 =
∑

l

cle
−λlt |vl〉 (4.4.49)

one can write the TD-EGF in the eigenbasis of the local Hamiltonian HS to obtain

Gd(t) = −iΘ(t)
∑

ab

∑

l

dabcl(|vl〉)baeiωabt−λlt (4.4.50)

with the local annihilator d. A half-sided Fourier transform yields

Gd(ω) =
∑

ab

∑

l

dabcl(|vl〉)ba
ω + ωab − Imλl + iReλl

=
∑

f,l

Yl,f

ω + ωl,f + iReλl

(4.4.51)

where

Yl,f =

ωab=ωf
∑

ab

dab cl (|vl〉)ba (4.4.52)

takes the role of a spectral density, in which all identical energy differences ωab = ωf
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are contained. From here, the spectral function

Ad(ω) = − 1

π
ImGd(ω) =

1

π

∑

f,l

Reλl ReYl,f − (ω + ωl,f ) ImYl,f

(ω + ωl,f )2 + (Reλl)
2 (4.4.53)

can be derived. Clearly, Reλl serves as a natural broadening for the lifetime of local ex-

citations, while Imλl produces an energy shift. Equation (4.4.53) resembles Lorentzians

with weight ReYl,f supplemented by a further term. It is easy to prove that our repre-

sentation of the spectral function does not violate the sum rule. The Lorentzians are

each normalized by nature, independent of their energy shift. The second term can be

shifted to reveal its anti-symmetric nature and thus it vanishes when integrated over

the entire real axis. It is left to show that
∑

f,l ReYl,f = 1. We obtain

∑

f,l

Yl,f =
∑

ab

dab
∑

l

cl (|vl〉)ba =
∑

ab

dab χba(0)

=
∑

a

〈a| d
(

d†ρS + ρSd
†
)

|a〉 = TrS

{

ρS{d, d†}
}

= 1, (4.4.54)

which is the required proof. The closed system solution is contained in Eq. (4.4.53) by

setting λl → 0, like in the non-equilibrium case above. We obtain

Ad(ω) =
1

π

∑

f,l

δ(ω + ωf ) ReYl,f − ImYl,f/(ω + ωf )

=
1

π

∑

ab

dabχba(0)δ(ω + ωab) (4.4.55)

since
∑

l ImYl,f = 0.

If the short time approximation (4.3.33) is applied to the Green’s function (4.4.50),

a time-dependence ∝ e−λt2 arises, leading in turn to a Gaussian broadening in the

spectral function.

4.5. Features of the Bloch-Redfield Equation

Let us investigate some features of the above derived equation (4.3.37). Especially, we

want to ensure that the applied approximations do not corrupt the fundamental prop-

erties of the time-dependent density matrix, i.e. positive semi-definiteness, hermiticity

and the conservation of the trace for all times.

Firstly, the secular approximation adds an interesting feature to the BRT. The
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Kronecker-deltas can be extracted from the damping matrices in Eq. (4.3.19), leading

to

Rab,mn ∝ δωab,ωmn
. (4.5.56)

The unitary part of the BRT is now proportional to δωam
and δωbn

, respectively. Note

that the local operators f (†) demand, that a,m (b, n) originate from the same particle

number subspace of the Hilbert space. If there are no degeneracies within a subspace,

we can replace δωam
→ δam. This is the case for all models investigated in this thesis,

i.e. the RLM, the IRLM and the SIAM.

The BRT reads in its simple form

Rab,mn = δamδbn
∑

l

(

Γal,la + Γ∗
bl,lb

)

− 2ReΓnb,am. (4.5.57)

The unitary part can be incorporated into the density matrix by defining

ρab(t) ≡ e
∑

l Γal,latρab(t)e
∑

l(Γbl,lb)
∗t (4.5.58)

and then rewriting the master equation (4.3.37) for ρab(t). However, this is no simplifi-

cation to solving the master equation and is only intended to justify the term ”unitary”

in this context.

It is easy to conclude Raa,mn = Raa,mmδmn, which means that the evolution of the

diagonal part of the density matrix (DDM) is independent of the ODDM. For the

DDM we can explicitly write

Raa,mm = 2Re

[

δam
∑

l

Γal,la − Γma,am

]

. (4.5.59)

Obviously, the diagonal elements Rmm,mm = 2Re
∑

l Γml,lm of the BRT are given as a

linear combination of the off-diagonal elements Raa,mm = −2ReΓma,am, a 6= m (note,

that Γaa,aa = 0). For that reason, the rank of the matrix is one below its dimension.

Consequently, the matrix is singular and automatically contains one eigenvalue that is

equal to zero.

Secondly, we investigate the conservation of the trace of the density matrix. By

switching summation indices in
∑

am Raammρmm(t), one can show that the two parts

of the BRT cancel each other out leading to
∑

a ρ̇aa(t) = 0, which is equivalent to the

fact that the trace of the density matrix is conserved.
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The positive definiteness of the density matrix, i.e. ρaa(t) ≥ 0∀a, can be shown for

all times t ≥ 0. Since a master equation does not change the sign of any component

of its function, we can guarantee that sgn(ρaa(t)) = const for all indices a and times t.

Thus, the positive definiteness of the density matrix is always given if the initial value

ρ(t = 0), which is an extrinsic quantity to the formalism, is positive definite.

The hermiticity of the density matrix is conserved as well. Note that the definition of

the RGFs (4.3.35) implies that G(ω) = G∗(−ω). From the symmetry
[

Γ±
ab,mn

]∗
= Γ∓

nm,ba

it follows that

R∗
ab,mn = Rba,nm, (4.5.60)

which means that the master equation (4.3.37) yields identical dynamics for ρ and ρ†,

respectively.

We show that the density matrix reaches the correct Boltzmann form ρfinal ∝ e−βHS

in the steady-state. This is equivalent to prove that ρfinal is a stationary solution

of the master equation. Plugging ρfinal into Eq. (4.3.37) leaves us to show that
∑

m Raa,mme
−βEm = 0. This is easy to see by considering that fβ(ω)eβω = fβ(−ω).

In order for a master equation of the form ρ̇ = −Rρ to reach a finite steady state, at

least one eigenvalue needs to be zero, while the other eigenvalues are positive. This is

guaranteed for any finite Liouvillian (i.e. the BRT) by Evans’ theorem [104, 105] and

the existence of the zero-eigenvalue is shown above. The normalized eigenstate of the

zero eigenvalue (called Gibbs state or Kubo-Martin-Schwinger state) is equal to the

final equilibrium density matrix. The existence of only one zero eigenvalue determines

that the number of possible steady states is also one.

Above we have mentioned that Rab,mn is proportional to δωab,ωmn
. That means that

the master equation (4.3.37) couples ρ̇ab(t) and ρmn(t), iff ωab = ωmn. The BRT is

thus diagonal in the energy differences ωab and can be written as an array R(ωab) of

quadratic block-matrices. Each of those blocks is considerably smaller in dimension

than the whole BRT, making an exact diagonalization of the BRT possible. The by

far largest block is the part of the DDM for the subspace ωab = 0. This block has

dimension n × n, where n is the system Hilbert space dimension, and provides n real

eigenvalues, although it is an asymmetrical matrix. The complex conjugate eigenvalue

pairs λ = x ± iy are connected to the energy differences ±ωab 6= 0. This immediately

follows from the above derived identity Eq. (4.5.60). For details on the eigenspectrum

of the BRT the reader is referred to Ref. [106, 107]. One has to bear in mind that
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information on the particular indices is lost by reducing the BRT to R(ωab). This

reduction is only expedient if the desired expression relies on the energy differences

ωab = Ea−Eb alone, instead of the single local energies Ea. This is given for TD-NEVs

(4.3.40), as well as the ESFs (4.4.51).

In general, the BRT is asymmetric, i.e. Rab,mn 6= Rmn,ab, which holds for each

block-matrix. However, its eigenvalues are not automatically complex. As an example

consider the ωab = 0 sub-block, which is asymmetric, but has real eigenvalues. The

other sub-blocks have complex eigenvalues, whose imaginary parts are entirely defined

by the imaginary part of the BRT. Thus the imaginary part of the BRT defines the

Lamb-shift and artificially neglecting it deletes the Lamb-shift.

4.6. Discussion of the BMA

In the following section we discuss the approximations of the BRF, i.e. the Born,

the Markov and the secular approximation. We investigate their impact on local non-

equilibrium real-time dynamics in Sec. 4.6.1 and on local equilibrium spectral functions

in Sec. 4.6.2. For this purpose, we choose the most simple case of a spinless local

two-level model, which resembles the RLM in the limit of an exact coupling. Here

analytical solutions are available (see App. A.2), which make this model a perfect

benchmark. A non-trivial extension of the RLM can be obtained by include a spin DOF

for all fermionic particles as well as a local Coulomb-repulsion. This local Hubbard-like

model resembles the SIAM in the exact limit. Although no analytical solution exists,

this model has been extensively studied for over 60 years and is well understood (see

Sec. 2.4). The spectral coupling function Γ(ω) for the BRF is in all cases considered

to be constant on the interval [−D,D] (see Eq. (4.3.26)). The application of a more

general power-law spectral coupling function to the BRF is discussed in App. B.

4.6.1. Non-Equilibrium Real-Time Dynamics

Non-Interacting Model

We start with a simple two-level system

HS = ǫdd
†d (4.6.1.61)
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as the local Hamiltonian with energy ǫd and d(†) being an annihilator (creator) of a

local mode. The state |0〉 shall be the empty state, while |1〉 denotes the excited case.

Let us briefly discuss the energy scales of this model. The local energy of S is ǫd, while

the maximum scale of B is given by the bandwidth D and the hybridization strength

between both systems is Γ. If the local energy level exceeds the bandwidth, transitions

between S and B are prohibited. In the context of the BMA we expect good results,

if Γ is small in comparison to the other energies. Large temperatures should even out

the difference between the energy scale and by that improve the BA even if Γ is large.

The bandwidth D influences the correlation time tB and a large D is expected to yield

good results in the context of the MA even for short times.

We will investigate local non-equilibrium occupation nd(t) = 〈d†d〉(t) for the discon-

tinuous parameter quench ǫd(t) = ǫidΘ(−t) + ǫfdΘ(t). If unambiguous, we will omit the

superscript ”f” for the final system parameters for the sake of clarity.

We obtain

nd(t) = Tr
{

e−iHStρIS(t)eiHStnd

}

= ρ11(t) , (4.6.1.62)

with ρ11(t) = 〈1| ρIS(t) |1〉. The system is considered to be in thermal equilibrium

for t = 0, which implies that the initial density matrix ρ11(0) = fβ(ǫid) is given by the

Fermi function. To calculate the occupied state component ρ11(t) of the time-dependent

density matrix, Eq. (4.3.18) is used, i.e. no Markov or secular approximation has been

applied so far. The non-vanishing components of the damping matrices are given by

Γ+
01,10(t, s) = C(s)e−iǫds, Γ+

10,01(t, s) = C(s)eiǫds,

Γ−
01,10(t, s) = C∗(s)eiǫds, Γ−

10,01(t, s) = C∗(s)e−iǫds . (4.6.1.63)

At this point it is obvious that the oscillating terms ei(ωab+ωmn)t vanish and thus no

secular approximation is required or even possible. By exploiting the conservation of

the trace, ρ00(t) + ρ11(t) = 1 ∀ t ≥ 0, we end up with the equation

ρ̇11(t) = −
∫ t

0

dsf(s)ρ11(t− s) + g(t) (4.6.1.64)
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with

f(s) =
2

π

∫ +∞

−∞

dǫΓ(ǫ) cos((ǫ + ǫd)s)

=
2

π
Γ

sin ((D + ǫd)s) + sin ((D − ǫd)s)

s
,

g(t) =
1

π

∫ t

0

ds

∫ +∞

−∞

dǫΓ(ǫ)fβ(ǫ) cos((ǫ− ǫd)s)

=
2

π
Γ

∫ D

−D

dǫ
sin((ǫ− ǫd)t)

ǫ− ǫd
fβ(ǫ), (4.6.1.65)

for the non-equilibrium density matrix in the BA. Here we have inserted Eq. (4.3.26).

Let us first calculate the equilibrium values of this equation. ρ11(0) is chosen extrin-

sically and is thus exact within the limitations of the BA. The time-derivative ρ̇11(t)

vanishes at t = 0, which yields the correct short-time behavior. To calculate the limit

t → ∞, we have to consider several things. Firstly, the function f(s) decays on a

time scale 1/D, meaning that the system becomes Markovian and a full MA can be

performed. The sinc-function under the integral of g(t) converges to a delta function

for large times, so that g(t → ∞) = 2Γfβ(ǫd)Θ(D − |ǫd|). Equation (4.6.1.64) thus

turns into

ρ̇11(t) = −2Γ(ǫd) (ρ11(t) − fβ(ǫd)) , (4.6.1.66)

which has the simple solution

nd(t) =
(

fβ(ǫid) − fβ(ǫd)
)

e−2Γ(ǫd)t + fβ(ǫd) (4.6.1.67)

for the local occupation. The steady-state in the limit t → ∞ is hence given by fβ(ǫd)

which is, once again, exact within the BA.

Note, that in Eq. (4.6.1.67) the full BMA has been performed, leading to a simple

exponential decay on the time scale 2Γ. Since the equilibrium values of nd(t) are

independently of the MA given by a Fermi distribution, one can assess the error of the

BA by calculating the relative difference ∆nd between the Fermi value and the exact

impurity occupation. For our simple problem the impurity spectral function Ad(ω) is

a Lorentzian of width Γ with an energy shift that vanishes in the wideband limit (see
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Figure 4.2.: The relative difference ∆nd of the exact impurity occupation nd and the
Fermi function f(ǫd) for different bandwidth D and temperature T . The
local energy has been chosen as ǫd = −0.1D.

App. A). The equilibrium occupation can thus be calculated via

nd =

∫ +∞

−∞

dωfβ(ω)Ad(ω). (4.6.1.68)

In Fig. 4.2 the relative difference ∆nd = (fβ(ǫd)−nd)/fβ(ǫd) is plotted for a variation

of D and different temperatures. The local energy ǫd is chosen to be −0.1D, to allow

for transitions between S and B. For large values of ǫd and D the hybridization Γ can

be seen as small and thus the systems S and B are approximately decoupled, which is

the favored regime for the BA and consequently ∆nd is low. A large temperature T

evens out the effect of a relatively larger Γ and by that improves the approximation.

To assess the MA, Eq. (4.6.1.64) needs to be solved numerically. Alternatively,

the convolution integral can be factorized by using the first MA, which simplifies Eq.

(4.6.1.64) to

ρ̇11(t) = −F (t)ρ11(t) + g(t), (4.6.1.69)

where F (t) is the antiderivative of f(s). However, by using the full MA one ends up

with Eq. (4.6.1.66).
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Figure 4.3.: Plot of the impurity occupation nd(t) vs. dimensionless time tΓ for T =
0.1Γ. The bandwidth D and the local energy ǫd have been varied in the
following way: (a) ǫd = 1, D = 10, (b) ǫd = 1, D = 100, (c) ǫfd = 10, D =
100, (d) ǫd = 1, D = 1000, (e) ǫd = 10, D = 1000, (f) ǫd = 100, D = 1000.
All values are given in units of Γ and ǫid = −ǫd. The blue lines are the
canonical BMA (4.6.1.67) and the orange lines are the BA plus the first
MA (4.6.1.69). The analytical solution (A.2.22) is added as a black dashed
line for comparison.

As a benchmark for the above discussed approximations, an exact solution of the

two-level model in the wideband limit can be calculated with the Keldysh formalism

(see App. A.2).

In Fig. 4.3 the local dynamics is investigated to assess the Born and the first MA.

The curves are artificially scaled to the exact equilibrium values to allow for a better

comparison of the qualitative shape of the curves. We have chosen the temperature

T = 0.1Γ, where the low temperature limit is practically reached. As argued above,

the effect of the approximations is most pronounced for low temperatures. The BMA

is plotted as a blue curve, while the first MA is given as an orange curve and the exact

solution is added as a black dashed line.
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An interesting point is revealed in this plot, i.e. the effect of the MA goes beyond

the correlation time tB = 1/D. For t = 0 the approximation is worst, since here the

function falls off exponentially instead of being constant. The effect of the MA is

carried on until the steady-state is reached at around t = 2Γ. In turn, the relative

value of the local energy ǫd/Γ has a strong effect on the short time behavior of the

curve, improving the MA for large values. Mathematically, this can be seen in Eq.

(4.6.1.64) by varying D and ǫd. Both generate oscillations in f(t) and g(t). Since we

choose ǫd < D, the local energy is responsible for the slowly oscillating terms and thus

defines the relevant time scale for the MA. In the general damping matrices Γ±
ab,mn(t, s)

of Eq. (4.3.25) this effect is mediated by the complex exponential terms eiωs, which

oscillate in a frequency given by the eigenenergies of the system Hamiltonian HS and

thereby define the dominant time scale on which the BRT Rab,mn(t, s) converges to its

steady-state predicted within the MSA (see Eq. (4.3.18) versus (4.3.37)). For small

ǫd ≈ Γ the global rate of the master equation dampens the density matrix before the

BRT is converged to its steady-state. In this case, the MA is off until the steady-state

has been reached, as can be seen for the blue curves in Fig. 4.3. The bandwidth D,

as the largest energy of the ”unperturbed Hamiltonian” H0 = HS + HB, controls the

very short time behavior where the density matrix is approximately constant. Note

that the exact solution always fulfills ṅd(t = 0) = 0 (even for panel (f)), but that the

time scale until the exponential decay steps in is short due to the large D.

Two things shall be mentioned here. Firstly, the exact solution is, as discussed

above, only defined for the wideband limit. We artificially supplemented the equations

by the real-part of the impurity self-energy (see App. A.2) to correct the equilibrium

values, but still the qualitative shape of the black dashed curves in the panels (a) to

(c) cannot be trusted, since we are not in the wideband limit here. Secondly, in Fig.

4.3 the first MA has been used for the orange curves. The effect of this approximation

in comparison to the pure BA is still unclear.

To illustrate the two points above, the impurity occupation nd(t) is plotted in Fig.

4.4. Several approximations (solid lines) are compared to the exact curve in the limit

t → 0 (red dashed line), which is obtained by calculating the density matrix ρI[1](t) via

Eq. (4.2.14). This yields

ρI[1](t) =ρ11(0) − 2
Γ

π
[g(D − ǫd; t) + g(D + ǫd; t)] ρ11(0)

+ 2
Γ

π
[g(D + ǫd; t) − g(ǫd; t)] (4.6.1.70)
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Figure 4.4.: The impurity occupation nd(t) vs. short dimensionless times tΓ. The
parameters have been chosen as T = 0.1, ǫd = 1 and D = 10 and D = 1000
for (a) and (b) respectively in units of Γ. The blue line is the canonical
BMA (4.6.1.66), the orange line is the BA plus the first MA (4.6.1.69) and
the green line only includes the BA (4.6.1.64). Here three different value
for the number Ntime of mesh-points are given (dotted line: Ntime = 1000,
dashed line: Ntime = 5000, solid line: Ntime = 10000). The exact short
time dynamics (4.6.1.70) are added as a red dashed line for comparison.

with g(ǫ; t) = tSi(ǫt) + cos(ǫt)−1
ǫ

and Si(x) being the sine integral function.

The blue curve is the full BMA, the orange one is the first MA and the green lines

depict the pure BA. Here three different value for the number Ntime of mesh-points are

plotted to rule out the effects of numerical inaccuracy. The influence of the second MA

turns out to be weak, since the green curves are almost identical to the orange ones. A

large bandwidth D shortens the correlation time and thereby the time scale on which

the convolution integral is relevant. In the wideband limit the first MA becomes exact

in the limitations of the BA. By comparing to the red dashed curve, one can deduce

from the figure that even the first MA is exact for short times and that the second MA

is responsible for significant deviation from the exact solution for short times.
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Apart from the above discussed approximations, the strength of the BRF in the

BMA definitely lies in the thermalization process itself. By including a full environment

continuum in the OQS, a true thermalization is guaranteed. Also, the relaxation rate

of 2Γ resembles the exact rate of the analytical solution well.

Interacting Model

To investigate a more complex model, we can add the spin as a DOF for each particle

of the fermionic system. A Coulomb repulsion U and an external magnetic field B can

be added as well to obtain

HS =
∑

σ

(

ǫd −
σ

2
B
)

nσ + Un↑n↓ . (4.6.1.71)

The Hamiltonian resembles the impurity part of the SIAM, i.e. an atomic Hubbard

model. We have to consider the four states |0〉 , |↑〉 , |↓〉 and |2〉 of the occupation on

the local site. We define

ρ↑↓ = 〈↑| ρIS |↑〉 − 〈↓| ρIS |↓〉
ρ02 = 〈0| ρIS |0〉 − 〈2| ρIS |2〉 (4.6.1.72)

and exploit the conservation of the trace of the density matrix to obtain

nd = 1 − ρ02

Sz =
1

2
ρ↑↓ (4.6.1.73)

for the impurity occupation and magnetization, respectively. If we restrict ourselves to

the SAM for the final parameter set, i.e. ǫfd = −U f/2 and Bf = 0, the symmetries in

the BRT yield

ρ̇02(t) = − 4

π

∫ t

0

ds

∫ +∞

−∞

dǫΓ(ǫ)fβ(ǫ) cos((ǫ + U f/2)s)ρ02(t− s)

ρ̇↑↓(t) = − 4

π

∫ t

0

ds

∫ +∞

−∞

dǫΓ(ǫ)fβ(ǫ) cos((ǫ− U f/2)s)ρ↑↓(t− s). (4.6.1.74)
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Again, the secular approximation has not been used. With the first MA, the equations

can be solved leading to

nd(t) = 1 − ρ02(0)e−F (+U ;t)

Sz(t) =
1

2
ρ↑↓(0)e−F (−U ;t) (4.6.1.75)

with

F (U ; t) =
4

π

∫ ∞

−∞

dǫΓ(ǫ)fβ(ǫ)
1 − cos((ǫ + U/2)t)

(ǫ + U/2)2
. (4.6.1.76)

In the limit of a large bandwidth D and large times, we obtain F (U ; t → ∞) =

4Γ(−U/2)fβ(−U/2)t and end up with

nd(t) = 1 − ρ02(0)e−4Γ(−U/2)fβ(−U/2)t

Sz(t) =
1

2
ρ↑↓(0)e−4Γ(+U/2)fβ(+U/2)t. (4.6.1.77)

Note, that for 2D < |U | the BRT vanishes and so the density matrix is constant over

time. For the initial parameters Bi/2 = ǫid = Γ, U i = 0 we obtain

ρ↑↓(0) =
1

2
− fβ(Γ)

ρ02(0) = ρ↑↓(0) . (4.6.1.78)

The SIAM is a non-trivial model, meaning that no exact solution for the problem exists

to estimate the quality of the BMA. However, the results of the TD-NRG (see Sec.

3.9 or Ref. [29]) can be used as a guideline. The first MA (4.6.1.75) is expected to be

a good approximation, if the local energy U is large compared to the hybridization Γ.

Low temperatures T might enhance the effect of the BA. The full BMA (4.6.1.77) is a

good estimate if additionally the wideband limit D ≫ Γ is assumed.

In Fig. 4.5 the first MA (dashed lines) is compared to the BMA (blue solid line).

A temperature of T = Γ and U ∈ {Γ, 5Γ, 10Γ} have been chosen for the sake of

presentation. If the temperature is significantly higher, the U -dependence of the curves

gets evened out, while a lower temperature enlarges them and by that significantly slows

down the relaxation of Sz(t). The effect happens analogly for smaller and larger U ,

respectively. The time-axis has been chosen logarithmically, which amplifies differences

in the short time behavior. If U is small, we basically obtain the two-level model
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Figure 4.5.: Semi-logarithmic plot of the impurity occupation nd(t) and the magneti-
zation Sz(t) vs. the dimensionless time tΓ for temperature T = Γ. We dis-
play a quench from Bi/2 = ǫid = Γ and U i = 0 to Bf = 0 and ǫfd = −U f/2.
The Coulomb repulsion is U f = Γ for (a),(d), U f = 5Γ for (b),(e) and
U f = 10Γ for (c),(f). The orange, green and red dashed curves are the first
MA (4.6.1.75) for bandwidth D = U, 2U and 10U , respectively. The blue
curves are calculated via Eq. (4.6.1.77).

discussed above with ǫfd = 0 and a different initial value. Thus, the first MA approaches

the BMA solution in the wideband limit. The red dashed curves are basically converged

for large D but still differ from the BMA. Analogly to the two-level system it shows,

that controlling the bandwidth D, and thereby the correlation time of the bath, is not

enough to justify the MA. Instead, increasing the local energies is required as well.

Apart from that, the system shows a transition between the equilibrium values given

by the Fermi distribution, which is exact in the BA. The gradient of the curves at

t = 0 is almost zero for the magnetization and slightly larger for the occupancy. The

first MA is able to guarantee a gradient of zero for t = 0.

The relaxation rate of the functions in the BMA scales with 4Γfβ(±U/2) (see Eq.
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(4.6.1.77)). The TD-NRG solution suggests a scaling with the Kondo temperature TK

[29]. In the SAM, TK can be approximated for weak coupling as

TK = De−
πU
8Γ (4.6.1.79)

(see Eq. (2.3.4) and (2.4.10)). Let us quickly compare this to the time scale of the

magnetization in the BMA (4.6.1.77). We want to explicitly show that fβ(U/2) ∝ TK.

For βU ≫ 1 we approximate the Fermi function as fβ(U/2) ≈ e−βU/2. The time scales

are proportional, if T = 4
π
Γ ≈ Γ, which is similar to the temperature of Fig. 4.5. In

this approximation, U has to be chosen well above Γ, which is fulfilled in panel (f).

This is another example for the quality of the BMA.

Let us conclude this section by investigating TD-NEVs in the interacting case for

large local parameters, i.e. U > 2D. We restrict to T = 0, which simplifies Eq.

(4.6.1.74) to

ρ̇02(t) = −4Γ

π

∫ t

0

ds
sin((D − U/2)s) + sin(U/2s)

s
ρ02(t− s)

ρ̇↑↓(t) = −4Γ

π

∫ t

0

ds
sin((D + U/2)s) − sin(U/2s)

s
ρ↑↓(t− s). (4.6.1.80)

Those equations can be solved numerically to obtain the local non-equilibrium occu-

pation and magnetization in the BA. By applying the first MA, we can solve the

equations analytically to obtain Eq. (4.6.1.75) with

F (U ; t) =
4Γ

π
(g(U/2; t) + g(D − U/2; t)) , (4.6.1.81)

where the function g(ǫ; t) is defined in Eq. (4.6.1.70).

In Fig. 4.6 we display the above discussed approximations for T → 0 and large U/D.

For U ≤ 2D the occupation number in the BA converges to the correct steady-state

of 1 (green curves in Fig. 4.6 (a) and (b)). However, in the case U > 2D (green

curves in Fig. 4.6 (c)), nd(t) oscillates around 1− 0.5 exp
(

− 16ΓD
πU(U−2D)

)

for large times

and converges to 0.5 for U → ∞. The magnetization Sz(t) oscillates for arbitrary U

and large times around 0.25exp
(

− 16ΓD
πU(U+2D)

)

(green curves in Fig. 4.6 (d), (e) and

(f)). The correct steady-state of 0 is reached only for U → 0. This suggests a large

error of the BA for large U/D. The first MA has no relevant impact on the steady-

states (orange curves in Fig. 4.6). However, the second MA (blue curves in Fig. 4.6)

completely prohibits transitions between S and B for U > 2D and thus has an even
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Figure 4.6.: Impurity occupation nd(t) and the magnetization Sz(t) vs. the dimen-
sionless time tΓ for temperature T = 0. We display a quench from
Bi/2 = ǫid = Γ and U i = 0 to Bf = 0 and ǫfd = −U f/2. The Coulomb
repulsion is U f = 0.5D for (a),(d), U f = 1.9D for (b),(e) and U f = 3D
for (c),(f). We have chosen a bandwidth of D = 10Γ. The orange dashed
curves are the BA and the first MA (Eq. (4.6.1.75) with Eq. (4.6.1.81)).
The green dashed curves represent the pure BA of Eq. (4.6.1.80). The
blue solid curves are the full BMA calculated via Eq. (4.6.1.77) and the
red dotted curves are the exact short-time solutions via Eq. (4.6.1.82).

stronger impact on the steady-states than the BA. Additionally, for Sz(t) the Fermi-

function erases all dynamics for finite U and T → 0 due to the second MA (see Eq.

(4.6.1.77)).

The effect of the first MA is to damp short-time oscillations (compare orange and

green curves in Fig. 4.6 (a), (b) and (d)). For large U/D, the differences between the

two curves vanish, suggesting that the first MA does not have a significant effect in

this case.

For short times, the second MA turns the actual t2 dependency of the TD-NEV



80 4. Bloch-Redfield Formalism

into a linear dependency in t (see Fig. 4.6 (a) and (b)), which is identical to the

non-interacting case (see Fig. 4.4 (a)).

To estimate the effect of the BA on short-time dynamics consider Eq. (4.2.14). We

obtain

nd(t) = 1 − ρ02(0)(1 − F (+U ; t)) = 1 − ρ02(0)(1 − V 2t2 +
3

288
V 2U2t4 + O(t6))

Sz(t) =
1

2
ρ↑↓(0)(1 − F (−U ; t)) =

1

2
ρ↑↓(0)(1 − V 2t2 +

3

288
V 2U2t4 + O(t6)), (4.6.1.82)

which resembles Eq. (4.6.1.75) for short times. The curves of Eq. (4.6.1.82) are

plotted in Fig. 4.6 as red dotted lines. It is depicted, that the dashed lines reproduce

the correct short-time dynamics well, while the green lines are a slight improvement

to the orange ones. Equation (4.6.1.82) shows the typical short-time behavior of Eq.

(4.3.32), which scales by the squared hybridization V 2 = 2DΓ/π in quadratic order in

t. The Coulomb repulsion U first appears in fourth order in t. For increasing U the

curves become flatter (not explicitly shown), suggesting a decreasing relaxation rate.

Interestingly, the red dotted curves converge to the green dashed ones for large U/D.

This suggests, that the validity of short-time approximations is extended to later times,

if U is increased.

From Fig. 4.6 we can conclude, that for large U/D short-time dynamics are most

impaired by the second MA, as is the case for the non-interacting QIM as well (see

above). The first MA damps some oscillations on intermediate time scales, but does

not relevantly influence dynamics. Also, its influence vanishes for U → ∞. On the

other hand, the BA has a significant impact on large time scales, as it corrupts the

steady-state. Its influence on intermediate time scales, i.e. on the relevant relaxation

rates of the TD-NEV, cannot be estimated at this point, since no exact solutions for

the SIAM are available. More details on the case of large local energies can be found

in Sec. 4.7.2.

4.6.2. Equilibrium Spectral Functions

Non-Interacting Model

The spectral function Ad(ω) (see Eq. (4.4.53)) of the impurity can be calculated for the

two-level system described above in a similar manner as the non-equilibrium occupation

number. As a first step, the time-dependent reduced operator χ(t) is calculated in the

interaction picture with the master equation (4.4.47) before the MA is applied. For
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the TD-EGF, only the component χ10(t) is relevant. We obtain

χ̇10(t) = −
∫ t

0

dsf(s)χ10(t− s) (4.6.2.83)

with

f(s) =
1

π
eiǫds

∫ +∞

−∞

dǫΓ(ǫ) cos(ǫs)

=
2

π
Γeiǫds

sin(Ds)

s
. (4.6.2.84)

Note that Eq. (4.6.2.83) is independent of the temperature. For large s the oscillating

terms in f(s) cancel each other out, letting the expression vanish in the limit s → ∞.

To evaluate the steady-state of the function we can thus use the MA which gives

χ̇10(t) = −(Γ(ǫd) + iγ(ǫd))χ10(t) (4.6.2.85)

with

γ(ǫ) = ImC(ǫ) − ImC(−ǫ) =
Γ

π
ln

(

D − ǫ

D + ǫ

)

, (4.6.2.86)

where C(ǫ) = Cp/h(ǫ) is the correlation function according to Eq. (4.3.35) for a sym-

metric spectral coupling function. Obviously, the function χ10(t) vanishes for t → ∞.

The t = 0 value is given by χ10(0) = 〈1| d†ρS + ρSd
† |0〉 = 1. According to Eq. (4.4.45)

we obtain the TD-EGF

Gd(t) = −iΘ(t)eiγ(ǫd))t−iǫdt−Γ(ǫd)t. (4.6.2.87)

From here we obtain the spectral function

Ad(ω) =
1

π

Γ(ǫd)

(ω − ǫd + γ(ǫd))2 + (Γ(ǫd))2
, (4.6.2.88)

which resembles the exact spectral function of the RLM (see Eq. (A.1.10) in the

appendix).

In Fig. 4.7 the functions B(t) = −ImGd(t) and A(ω) are plotted in the BMA (black

dashed line), in the BA plus first MA (blue line) and in the BA only (orange line),

respectively. Note, that the BMA renders the exact solution. This implicates that the
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Figure 4.7.: Plot of B(t) = −ImGd(t) and A(ω) = −ImGd(ω)/π of the two-level model
vs. dimensionless time tΓ and energy ω/Γ respectively. The bandwidth
has been chosen as D = 10Γ ((a),(c)) and D = 100Γ ((b),(d)), respectively.
Different approximations according to the BRF are displayed. The blue
lines are the BA plus the first MA and the orange lines only include the
BA (4.6.2.83). The BMA according to Eq. (4.6.2.85) is added as a black
dashed line. The parameter ǫd = Γ has been chosen.

MA compensates the error done by the BA. However, both effects are minor. When

the Green’s functions are transformed into spectral functions, one can see that there is

no sharp cut-off for ω = ±D in the blue and orange curves. The convolution integral

is able to compensate that with a smooth transition (panel (c)). The first MA lacks a

cut-off and makes the spectral function too narrow. This effect is not due to numerical

inaccuracy but a flaw of the approximation. The deviation from the exact solution is

decreased by increasing the bandwidth D (panel (d)). A larger local energy ǫd simply

adds oscillations in χ10(t), which translate to an energy shift in Ad(ω).
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Interacting Model

Let us conclude this section by applying the BRF to the atomic Hubbard model

(4.6.1.71). Since the local operator d(†) gains a spin DOF σ, we obtain one TD-EGF

for the spin up and one for the spin down case. Since we again restrict ourselves to

the absence of an external magnetic field, those two GFs become identical. We define

χσ(t) = d†σρ + ρd†σ which has only two non-zero components χσ0(t) and χ2σ(t) with

σ ≡ −σ. Note that χ is expressed here in the interaction picture representation. The

equation of motion reads

χ̇(t) = − 2

π
Γ

∫ t

0

ds
sin(Ds)

s
e−iUs/2

[

2χ(t− s) − e−iU(t−s)χ∗(t− s)
]

(4.6.2.89)

with χ(t) ≡ χσ0(t) = χ∗
2σ(t). For the first time, oscillating terms enter where the

secular approximation can be applied by replacing e−iUt → δU,0. Note, that the U = 0

case recovers the non-interacting model (4.6.1.61), which we have calculated above. If

U is large compared to Γ, the secular approximation can be applied and is expected to

yield good results, since in this case the oscillating terms average themselves to zero.

For U = 0 the secular approximation does not have to be applied and is thus exact.

For small finite U , however, it will deviate significantly from the exact solution. To be

precise, the secular approximation artificially sets e−iUt → 0 for U > 0. For U → 0

those terms are not recovered leading to a discontinuous jump of the function χ(t).

To investigate this jump we first calculate the BMA of Eq. (4.6.2.89). We obtain

χ̇(t) = −2 (Γ(U/2) + iγ(U/2))χ(t) + Γ(U/2)δU,0χ
∗(t). (4.6.2.90)

For U > 0 the Kronecker-deltas vanish and the spectral function resembles two

Lorentzians of width 2Γ at positions ω = ±(U/2 − γ(U/2)), which is in accordance

with analytical predictions [108]. They can be interpreted as so-called Hubbard peaks.

In the wideband limit the Lamb-shift γ(U/2) vanishes. In the non-interacting case we

end up with the analytical solution of the RLM (4.6.2.88) for ǫd = 0.

The case U ≫ D can be investigated by applying the secular approximation e−iUt →
0 on the r.h.s. of Eq. (4.6.2.89) and replacing sin(Ds)

s
→ D. The equation can now

be solved by a Laplace transform and yields χ(t) = χ(0) for U ≫ D. The spectral

function is thus represented by two delta-peaks at ω = ±U/2. If the local energies

exceed the bandwidth, transitions into the bath are suppressed and thus the lifetime

of local excitations goes to infinity if the bandwidth vanishes.
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Figure 4.8.: The spectral function Ad(ω) = −ImGd(ω)/π of the symmetrical atomic
Hubbard model ǫd = −U/2 for (a) D = 10Γ and (b) D = 100Γ, respec-
tively. The Coulomb repulsion U has been varied. In the case U = 2D we
have shifted the bandwidth by +0.1. The solid lines are the solution in
the BA, the additional Markov plus secular approximation is added as a
dotted line of the same color. The exact non-interacting solution U = 0 is
added for comparison as a black dashed line.

In Fig. 4.8 we have plotted the spectral function in the above discussed approxima-

tions. It is shown, that by lowering U , Eq. (4.6.2.89) (solid lines) allows for a smooth

transition to the U = 0 case (black dashed line). In contrast, the secular approximation

(dotted lines) applied in Eq. (4.6.2.90) deviates from the exact curves for small U .

For large D (i.e. panel (b)) the MA becomes reliable and so the solid and dotted

curves for U = 20Γ match nicely. If, on the other hand, U ≥ 2D, the MA cuts out

the excitations at ω = ±U/2 (magenta dotted curve in panel (a)). In a non-Markovian

environment, these excitations persist, even for large U ≫ D (magenta solid curve in

panel (a)). Numerical calculations for U ≫ D show, that those peaks are basically

Lorentzians with a width ∝ D. They are located at ω = ±(U/2 + δshift) with a shift
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δshift ∝ DΓ
U

. Consequently, we obtain delta-peaks at ω = ±U/2, if D → 0, which is in

accordance with the estimates made above.

Raas et al [109] have examined the Hubbard peaks of the SAM for U > 2D with

DMRG calculations and backed their results by Fermi’s golden rule considerations.

They found δshift ∝ V 2/U for a semi-elliptic DOS of the bath, which is in qualitative

accordance to our findings, considering that we have chosen a constant DOS. The width

of the Hubbard peaks has been found to be ∝ V 4/U2. This qualitatively contradicts

our findings, which suggest that the width is independent of U . The deviation can only

be attributed to the BA in second order.

Aside from the approximation effects, the BRF, even in the rough BMA, reveals the

correct physical behavior with regard to the Hubbard peaks located at ω ≈ ±U/2 (see

Fig. 3.2). A small shift is included as well, that slightly shifts the peaks away from the

center, depending on the bandwidth D. The Kondo resonance, however, is not included

in such a crude approximation since all occurring energies are nowhere near the scale

of the Kondo temperature TK. Here the BRF faces the standard problem of the widely

stretched energy scale required to explain the Kondo effect. The extension of the local

system by the wide energy range of the NRG seems to be a promising approach to

accomplish this task and will be further investigated in Chap. 5. Applying the BA in

higher order is another possibility to resolve smaller energies. This will be addressed

in the following section.

4.7. Improvements of the BMA

We have investigated the effect of the single approximations of the BRF in Sec. 4.6.

Several aspects have turned out to be problematic in this context.

The second MA impairs short-time dynamics by restricting to exponential decay

terms in the time-domain, which translates to Lorentzians in ESF. This is only correct

in the limit, where the bandwidth D significantly exceeds the hybridization Γ. In Sec.

4.7.1 we briefly discuss an analytic solution for a general OQS in second order in Γ,

that yields the exact short-time dynamics, but diverges for larger times.

The secular approximation relies on large system energies and becomes problematic

for U ∼ Γ in the interacting case. However, this problem only appears in ESFs. The

BA has a lesser impact on TD-EGFs, but significantly impairs the steady-states in

TD-NEVs, since they are only calculated locally for the finite system in the BMA.

The fundamental part of this thesis is to improve the above mentioned points by



86 4. Bloch-Redfield Formalism

enlarging the system Hamiltonian by certain bath excitations. If the system part

resembles the equilibrium values more precisely, the BA is improved. Also, the coupling

to the remaining bath is decreased, which generally improves the BMA. The sharp

cut-off of the bath spectral coupling function is smoothed out, allowing for excitations,

which exceed the bandwidth, to transition into the bath, which improves the second

MA. Also, by enlarging the system Hamiltonian, small local energies are compensated

for, which aids the secular approximation.

A simple way to enlarge the system Hamiltonian would be to successively decouple

modes from the bath and couple them in the form of a tight-binding chain to the

impurity. However, in this approach exponentially small energies, which are essential

to the Kondo effect, cannot be reached. For that reason, we choose a Wilson chain

with logarithmically decreasing coupling parameters, as is explained in detail in Chap.

5. The chain constructed in this way is called OWC. The Wilson chain allows for

a truncation of the Fockspace of the system Hamiltonian, which is the foundation of

the NRG. This way, the system Hamiltonian can be enlarged significantly, which is

expected to improve the BMA even further. The implementation of the NRG to the

OWC is covered in Chap. 6.

However, there is one case, in which the BMA is not expected to significantly improve

by implementing the OWC, i.e. for large local energies, which exceed the bandwidth.

The reason for that is a systematic shortcoming of the BA in second order, as will be

explained in Sec. 4.7.2. This can be compensated for by either extending the BA to

fourth order (see Sec. 4.7.1) or transitioning the interaction Hamiltonian HSB (see Sec.

4.7.2). Both cases will be discussed briefly in the following sections, but will not be

covered quantitatively in this thesis.

4.7.1. Higher-Order Formalism

Since the conventional BRF is calculated up to second order only, we suffer several

errors due to the dependence on weak coupling to the bath. In principle, the integration

and substitution of the density matrix in the von-Neumann equation could be iterated

more often, to acquire the integro-differential equation (4.2.6) in higher order. Let us
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exemplarily investigate the fourth-order equation:

ρ̇I(t) = −
∫ t

0

dt1
[ [

ρI(0), H I
SB(t1)

]

, H I
SB(t)

]

+

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

[

[

[

[ρI(t3), H
I
SB(t3)], H

I
SB(t2)

]

, H I
SB(t1)

]

, H I
SB(t)

]

.

(4.7.1.91)

At this point, the trace over all bath DOF is performed on both sides of the equation.

First and third order terms cancel out due to particle conservation of the bath, which

is why we have already omitted them in Eq. (4.7.1.91). We are able to solve the

second order part of the equation analytically, so the MSA only need to be applied

to the fourth-order part. By expressing the equation in the eigenbasis of the system

Hamiltonian HS and substituting the integration variables t3 = t1 − s and t2 = t− s′,

respectively, we obtain

ρ̇ab(t) = R2
ab(t) +

∑

mn

∫ t

0

dt1

∫ t

t−t1

ds′
∫ t1

t1−t+s′
dsR4

ab,mn(t, t1, s, s
′)ρmn(t1 − s),

(4.7.1.92)

which is analog to Eq. (4.3.18). Here we have condensed the first term on the r.h.s.

of (4.7.1.91) in the expression R2
ab(t). The BRT R4

ab,mn(t, t1, s, s
′) is still a fourth-order

tensor with respect to the local DOF. However, it includes four nested commutators,

which yields a total number of 16 terms. If we assume

H I
SB(t) =

∑

k,ν

Vk,ν

(

f †
ν (t)ck,ν(t) + fν(t)c†k,ν(t)

)

(4.7.1.93)

for the interaction Hamiltonian H I
SB(t) with a general bath DOF ν and perform the

trace over the bath DOF, we end up with 12 non-vanishing combinations of operators

and indices for each of those 16 terms. Here we consider the fact, that all operators

are fermionic, which excludes most combinations. Each non-vanishing term includes

the two sums
∑

k,ν

∑

k′,ν′ . Let us exemplarily calculate one of the 12 possible terms of
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the type ρI(t1 − s)H I
SB(t1 − s)H I

SB(t− s′)H I
SB(t1)H

I
SB(t). We start with

∑

ν,ν′

∫ t

0

dt1

∫ t

t−t1

ds′
∫ t1

t1−t+s′
dsρIS(t1 − s)fν′(t1 − s)fν(t− s′)f †

ν′(t1)f
†
ν (t)×

×
∑

k,k′

V 2
k V

2
k′TrB

{

ρBc
†
k′ν′(t1 − s)c†kν(t− s′)ck′ν′(t1)ckν(t)

}

, (4.7.1.94)

where we have already used the BA of Eq. (4.3.16). Since k 6= k′, the second line can

be transformed into

−
∑

k,k′

V 2
k V

2
k′Tr

{

ρBc
†
k′ν′c

†
kνck′ν′ckν

}

e−iǫks
′

e−iǫk′s = Ch,ν(−s′)Ch,ν′(−s) (4.7.1.95)

with the definitions of Sec. 4.3. The correlation functions demand that s, s′ ≤ tB and

consequently t− t1 ≤ tB. In the spirit of the MA, we assume the bath correlations to

decay fast in comparison to the local dynamics, i.e. tBΓ ≪ 1. With this argument we

can substitute ρIS(t1 − s) → ρIS(t1) and substitute all t1 → t in the time evolutions of

the local operators. This is the first MA. Now we express Eq. (4.7.1.94) in the local

eigenbasis (as has been done in Eq. (4.7.1.92)) to obtain

∑

ν,ν′

∑

mncd

δamρmn(t) 〈n| fν′ |c〉 〈c| fν |d〉 〈d| f †
ν′f

†
ν |b〉 ei(En−Eb)tX(t, En − Ec, Ec − Ed),

X(t, ω, ω′) =

∫ t

0

dτ

∫ t

τ

ds′
∫ t−τ

s′−τ

dsCh,ν(−s′)Ch,ν′(−s)e−iωse−iω′s′ , (4.7.1.96)

where we have substituted t1 = t − τ . According to the secular approximation, we

can set ei(En−Eb)t → δEb,En
, which reduces the number of summation terms. The only

time-dependency of the new BRT lies in X(t, ω, ω′). It can be shown numerically, that

this function decays on a similar time scale as the correlation functions, implying that

we can set X(t, ω, ω′) → X(t → ∞, ω, ω′) ≡ X(ω, ω′), which is the second MA. Now

X(ω, ω′) can be calculated analytically, leaving two integrals over ǫ and ǫ′, respectively

(see Eq. (4.3.24)), which need to be treated numerically.

We have seen, that the fourth-order BRT can, in principle, be calculated analogly

to the second order BRT by applying the BMA. We obtain a similar tensor with

four independent local indices, which can be diagonalized and then yields exponential

decay terms for the time evolution of the density matrix. A huge advantage of this

approach lies in the fact, that in order to solve the differential equation (4.7.1.92), we

can integrate R2
ab(t) analytically, since it solely comprises exponential functions. This
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means, as argued above, that we not only improved the BA to fourth-order, but that

we improved the MSA as well. A MA in second order provides a significant error in

the dynamics for short times. In contrast, we have shown in Fig. 4.4, that a density

matrix, which is exact in second order, yields the correct short-time dynamics up to

a certain time, before the error of the MA in fourth-order starts. By reducing the

impurity-bath coupling strength, we can shift this time to the right. At a certain time,

the density matrix is thermalized and the contributions that are affected by the MA

are entirely damped. In this context, we expect the fourth-order BRF to significantly

improve the short-time dynamics, which is a major shortcoming of this formalism.

Since the numerical effort of the construction of the fourth-order BRT is tremendous

compared to the second order, one might suggest a hybrid approach. For the long-time

dynamics, the canonical BRF in second order is applied. To obtain reliable short-time

dynamics, the second order contribution R2
ab(t) is calculated exactly. By decreasing the

coupling strength, both approaches are expected to continuously transition into each

other at a certain time with only small deviations.

4.7.2. Adaptation to Large Local Interactions

In Sec. 4.6 the BMA proved to be problematic in the case, where the local energies

exceed the bandwidth. Especially the BA turned out to yield the wrong dependency of

U in both TD-NEVs and ESFs. In Sec. 4.3 we have performed the BA, which effectively

resembles a perturbative coupling of the impurity to the bath in second order in the

hybridization Γ. In a simple view, this approximation is always applicable, if Γ is

sufficiently small. However, let us discuss a case, where the BA is insufficient.

Consider the SAM with a Coulomb repulsion U that is large in comparison to the

bandwidth D. Here the local one-particle state is favored and transitions between the

impurity and the bath are restricted to spin-flip processes. However, the BA in second

order, as performed in Sec. 4.3, only accounts for hopping processes of particles with

the same spin. Consequently, the BA can be applied in higher order, as discussed in

Sec. 4.7.1, to include higher-order coupling terms. However, the resulting BRT is very

complicated and a practical implementation is hardly possible, unless new symmetries

are found or further approximations are performed. An alternative approach would

be to transition to a model, that only includes spin-flip processes, i.e. the Kondo

model. For a small hybridization Vk we can transform the SIAM via a Schrieffer-Wolff

transformation [16] (see Sec. 2.4). In the context of the BRF, the system parameters

are renormalized and the interaction Hamiltonian HSB, which is linear in the local
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operators, is turned into an expression, which is bilinear in the local operators. This

is the Heisenberg spin-interaction of the Kondo model (see Eq. (2.2.1)). The operator

HSB is proportional to the spin-coupling J , which in turn is proportional to V 2

U
(see Eq.

(2.4.10)). Consequently, the coupling parameter is small if U/D is large, suggesting

it is an adequate choice for the BMA. Now, even in second order in J the required

spin-flip processes are included. The BRT is here proportional to J2, and consequently

the eigenvalues are as well. This, in turn, leads to a scaling of the relaxation rates and

broadening parameters with U−2.

In this approach, the interaction Hamiltonian (4.7.1.93) is replaced by

HSB =
∑

kk′

Jkk′
(

S+c†k↓ck′↑ + S−c†k↑ck′↓ + Sz(c†k↑ck′↑ − c†k↓ck′↓)
)

(4.7.2.97)

with the coupling

Jkk′ = VkVk′
(

(ǫk − ǫ+)−1 − (ǫk − ǫ−)−1 + (ǫk′ − ǫ+)−1 − (ǫk′ − ǫ−)−1
)

(4.7.2.98)

and ǫ+ = ǫd + U , ǫ− = ǫd. According to Schrieffer and Wolff [16], the Coulomb

interaction is in the symmetrical case ǫd = −U/2 renormalized to U → Ũ = U+8V 2/U .

With Eq. (4.7.2.97) inserted into Eq. (4.3.20), we obtain the time-dependent damping

matrices as

Γ+
ab,mn(t, s) = ei(ωab+ωmn)t

(

S+
abS

−
mn + S−

abS
+
mn + Sz

abS
z
mn

)

e−iωmnsC(s)

Γ−
ab,mn(t, s) = ei(ωab+ωmn)t

(

S+
abS

−
mn + S−

abS
+
mn + Sz

abS
z
mn

)

e−iωabsC(−s), (4.7.2.99)

with the time-dependent correlation function

C(s) =
1

π2

∫ +∞

−∞

dǫ

∫ +∞

−∞

dǫ′Γ(ǫ)Γ(ǫ′)fβ(ǫ)fβ(−ǫ′)ei(ǫ−ǫ′)s×

×
(

(ǫ− ǫ+)−1 − (ǫ− ǫ−)−1 + (ǫ′ − ǫ+)−1 − (ǫ′ − ǫ−)−1
)2

. (4.7.2.100)

Here we exploit the fact, that the bath modes are degenerate with respect to the spin

DOF. In the symmetrical case and for U ≫ D, only terms with ǫ, ǫ′ ≪ U contribute.

Here we can approximate

(ǫ− ǫ+)−1 − (ǫ− ǫ−)−1 + (ǫ′ − ǫ+)−1 − (ǫ′ − ǫ−)−1 ≈ −8/U, (4.7.2.101)
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and consequently C(s) ∝ U−2. In the MSA we obtain

Γ+
ab,mn = δωab+ωmn,0

(

S+
abS

−
mn + S−

abS
+
mn + Sz

abS
z
mn

)

C(ωmn)

Γ−
ab,mn =

(

Γ+
ab,mn

)∗
, (4.7.2.102)

with the RGFs

C(ω) =

∫ ∞

0

dsC(s)e−iωs−0+s (4.7.2.103)

given as the half-sided Fourier transform of Eq. (4.7.2.100).

We were able to show here, that the BMA reproduces the U−2-dependence of its

eigenvalues, as is predicted by analytical considerations, if the SIAM is transformed

into the Kondo model.

4.8. Summary

We have investigated the BRF as a perturbative approach to OQSs. This approach

yields true thermalization in non-equilibrium dynamics as well as a finite lifetime of

local exciations. It is applicable to any QIM, arbitrary bath DOS and can even be

adapted to treat transport phenomena. The BRF relies on the BMA which is exact

in the limit of a small hybridization Γ between the local system and the environment.

We have discussed the BRF in great detail in the case of an impurity coupled directly

to a bath with a constant DOS. Especially, we have investigated the influence of the

single approximations. The hybridization strength between the system and the bath is

here the central quantity. The BMA can only be justified, if the hybridization is well

below the system energies, the temperature and the bandwidth.

In non-equilibrium real-time dynamics the BMA allows for a true thermalization on

the correct time scale, as has been shown for the RLM and the SIAM. The BA mainly

influences equilibrium values and reduces them to the local values of a closed system.

This approximation can be improved by increasing the temperature. The MA can be

separated into two parts. The first approximation is the most essential one, that allows

one to split the convolution integral and thus to solve the time-evolution of the density

matrix analytically. This approximation relies on a short bath correlation time, i.e. a

large bandwidth, and only has a minor effect. The second MA in combination with

the secular approximation makes the BRT time-independent and thus yields a simple
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master equation for the density matrix, that can be solved by matrix diagonalization.

These approximations are essential to treat large local systems, however, their impact

on short-time dynamics can be significant, since the time-evolution of the density ma-

trix is now restricted to exponential decay terms, which do not necessarily reflect the

correct physical behavior. In order to improve the MSA, the local parameters, as well

as the bandwidth, need to be increased in comparison to the hybridization. Also the

second MA demands that the bandwidth is the largest energy scale of the system, as

otherwise transitions into the bath are prohibited and the dynamics are frozen out.

The ESFs for the constant bath DOS have been calculated as well. Here the OQS

character of the BRF yields a natural broadening of local excitations. Interestingly,

the BMA reproduces the exact solution of the RLM and deviations can only be found

in more complex models such as the SIAM. To investigate ESFs, the TD-EGFs can

be examined in a first step, since they exhibit a similar influence of the BMA with

respect to the MSA as TD-NEVs. In contrast, the BA does not impact the steady

states of TD-EGFs, but short-time dynamics. In ESFs it is shown that the second

MA cuts off excitations that lie outside the band. The secular approximation has a

significant impact for small local energies and generates a discontinuous transition of

the interacting to the non-interacting case in the SAM. Here the BA predicts Hubbard

peaks with a width of 2Γ, if U/D is small, and a width proportional to the bandwidth,

but independent of U , if the interaction is large compared to the bandwidth. This

finding contradicts Fermi’s golden rule estimations, which predict a dependence of

(D/U)2.

In contrast, in TD-NEVs the relaxation rates decrease with increasing U , when the

SAM is chosen. This behavior is understandable in the context, that a large U/D

strongly confines the local single electron and inhibits transitions to the conduction

band. In that case, the BA produces a wrong steady-state and its influence on the

relaxation rates is unknown. A restriction to a perturbative coupling in second order

in Γ is expected to be a systematic problem here. However, since the BA is the

foundation of the BMA, it cannot be avoided in this context. Also, the implementation

of a BA in fourth order is practically infeasible at this point. Hence, for large U/D

one might suggest a Schrieffer-Wolff transformation to the Kondo model, where one

obtains a small coupling of J ∝ U−1. If the BMA is carried out as a perturbation in

J , relaxation rates ∝ J2 are expected, which resembles analytical predictions.

In the following chapter we present the OCF that redefines certain excitations of

the bath into the system Hamiltonian. Thus, the BRF is applied to several separate
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reservoirs, that are coupled by an increasingly small hybridization to the system. In

that way, the BMA can successively be improved and the results are expected to

converge to the real physical solutions.





5. Open Wilson Chain

The Wilson chain of a fixed length derived in Sec. 3.1 is a closed system, i.e. it does

not include dissipative processes. Thus, parameters like energy and particle number

are conserved within the system. In the case of real-time dynamics, so-called Pointcaré

recurrences are unavoidable in conservative systems. They have been referred to as

”revival effects” in Chap. 3. To allow for dissipation, a bath with an infinite amount

of DOF is required. The objective of this chapter is now twofold. Firstly, we recover

the p 6= 0 modes as so-called high-energy reservoirs and the oddment of the truncated

Wilson chain as a low energy reservoir (for details see Sec. 3.1). This is achieved

by successively decoupling the discrete Wilson chain modes from the infinite bath

under the restriction that the bath spectral coupling function to the impurity is not

altered by that process. The remainders of the bath are then carefully collected to

form the reservoirs. Up to this point, the formalism is exact and recovers the full

continuum that has been discarded by the closed Wilson chain (CWC) for arbitrary

Λ ≥ 1. Our second objective is to then couple the reservoirs to the chain and thus

to turn the latter into an OQS. Here, the BRF from Chap. 4 comes into play to

calculate the time-evolution of the density matrix. In this context the CWC constitutes

the system S. The main purpose of the BRF is to extend the CWC by a natural

intrinsic relaxation rate to introduce dissipation and thermalization. This is a way to

reduce the discretization artifacts discussed in Sec. 3.10. Since the BRF is a second-

order Markovian coupling mechanism, it brings back approximations to the OWC.

To improve these approximations, the system Hamiltonian HS needs to be enlarged so

that it resembles the equilibrium density matrix more adequately. Here the equilibrium

values are reached with increasing precision by increasing the chain length NC.

Chapter 5 is organized as follows. In Sec. 5.1 we explain the process of constructing

the above described reservoirs. In Sec. 5.2 the construction of the BRT for the OWC

is illustrated. By diagonalizing this tensor, the time-dependent density matrix of the

OQS can then be calculated. The quality of the BMA for different parameter regimes

is discussed in Sec. 5.3. Here we restrict to a pure theoretical level by estimating the
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validity of the approximations based on the OWC parameters calculated in Sec. 5.1.

In Sec. 5.4 we cover the numerical implementation of the OWC. In the sections 5.4.1

and 5.4.2 the OWC is realized to calculate TD-NEVs and ESFs, respectively. Here

the reservoirs are coupled to a Wilson chain, which is treated exactly by restricting

to a short chain length. The sections thus serve as a benchmark to test the BRF for

the OWC without including relevant numerical errors. The adaptation of the OCF to

the NRG, i.e. a truncated system eigenbasis, includes further challenges and will be

covered in Chap. 6. Finally, in Sec. 5.5 we summarize the findings of the chapter.

The formalism for iteratively calculating the reservoirs comes in the form of a so-

called CFE. It should be mentioned here that the CFE of the GF is a well-established

tool to map QIMs to a chain [110, 111, 112]. Bruognolo et al. [113] constructed an

OWC similar to the formalism described below. They used the reservoirs to calculate

corrections to the on-site energies ǫn to ensure a correct energy shift ReΣ(0) of the

entire system. This effect is only relevant for a non-symmetric bath spectrum Γ(ω)

as it occurs in bosonic systems. In our approach, however, all reservoir information is

perturbatively included. Thus, the OWC in combination with the BRF turns out to

be a powerful tool for incorporating dissipation and thermalization effects, as well as

a finite lifetime, to the CWC.

5.1. Continued Fraction Expansion

The calculations of this section follow Ref. [113, 114], where the CFE for OWCs was

first introduced. We present the formalism for a spinless OQS, which resembles the

RLM. The extension to the spinful case (i.e. the SIAM) is straightforward.

For the simple RLM (cf. Sec. 2.5) the Hamiltonian can be written as

H = ǫdd
†d +

∑

k

Vk(d†ck + c†kd) +
∑

k

ǫkc
†
kck, (5.1.1)

comprising a local level with energy ǫd and an infinite fermionic bath with excitation

energies ǫk. The hybridization strength between the impurity level and the bath exci-

tation with momentum k is Vk. The normalization factor of 1/
√
N is absorbed in the

Vk’s, where N is the number of bath particles. The GF of the impurity level, governing

its dynamical properties, can be calculated in a simple manner by using the equation
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of motion (see App. A.1) leading to

Gd,d†(ω) = (ω − ǫd − Σ(ω))−1. (5.1.2)

Here

Σ(ω) =
∑

k

|Vk|2Gc
k
,c†

k
(ω) (5.1.3)

is the self-energy with Gc
k
,c†

k
(ω) = (ω− ǫk + i0+)−1 being the GF of the non-interacting

bath. From Eq. (4.3.23) we recognize Γ(ω) = ImΣ(ω) = π
∑

k V
2
k δ(ω−ǫk) as the spec-

tral coupling function1. This function contains all information on the bath spectrum

and its influence on the impurity [113]. Now by coupling off certain modes of the bath

and in this way creating new baths and a new local system, the local GF (5.1.2) needs

to be conserved in order for this process not to influence the impurity dynamics.

In a zeroth step we start by decoupling the whole bath from the impurity and couple

it to a single bath mode. This mode is then coupled to the impurity constructing a

two-orbital system, analogly to Eq. (1.0.4). We define this system as the foundation

of the chain with length NC = 1, while the index of the chain sites here starts at zero.

Note that this definition deviates from the one introduced in Chap. 3, where we would

have defined NC = 0 in this case. However, from now on we will stick to the new

definition.

The Hamiltonian now reads

H = ǫdd
†d + V (d†f0 + f †

0d) + ǫ0f
†
0f0 +

∑

k

V0,k(f †
0c0,k + c†0,kf0) +

∑

k

ǫ0,kc
†
0,kc0,k.

(5.1.4)

Here the impurity solely couples to the newly defined zeroth mode f
(†)
0 via the hy-

bridization V (see Eq. (4.3.28)), while the zeroth mode couples to the entire zeroth

bath modes c
(†)
0,k. The GF of the impurity thus becomes

Gd,d†(ω) = (ω − ǫd − V 2Gf0,f
†
0
(ω))−1. (5.1.5)

with Gf0,f
†
0
(ω) being the GF of the zeroth site that has just been constructed. The

level coupled to the bath has simply been shifted from the impurity to the zeroth chain

1Γ(ω) is called hybridization function in the context of the NRG [25]
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site meaning that its GF becomes

Gf0,f
†
0
(ω) = (ω − ǫ0 − Σ0(ω))−1. (5.1.6)

The function Σ0(ω) again serves as a self-energy that contains all information of the

remaining bath. To conserve impurity dynamics, i.e. to retain the self-energy in Eq.

(5.1.5), we require

Σ(ω) = V 2Gf0,f
†
0
(ω). (5.1.7)

Together with Eq. (5.1.6) we obtain the simple equation

Σ0(ω) = ω − ǫ0 − V 2Σ−1(ω) (5.1.8)

for the new self-energy. The on-site energy is given by

ǫ0 =
1

πV 2

∫

dωωΓ(ω), (5.1.9)

where the prefactor acts as a normalization. The on-site energy can thus be seen as

the first momentum of the spectral coupling function. If we consider the fact that the

spectral function is normalized by definition, Eq. (5.1.7) leads to

V 2 =
1

π

∫

dωΓ(ω), (5.1.10)

which defines the hybridization strength V by the bath.

The system now describes a ”super-impurity” of two sites connected via V , with one

site being coupled to a bath with a spectrum of Γ0(ω).

5.1.1. Construction of an Open Chain

To construct an open chain we proceed by repeating the above described procedure

of extracting one mode from the bath and coupling it between the last chain site and

the new bath. By retaining the self-energy Σ0(ω) in Eq. (5.1.6) we arrive at the new

self-energy

Σ1(ω) = ω − ǫ1 − V 2
0 Σ−1

0 (ω). (5.1.1.11)
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Here V0 enters as the coupling strength between the zeroth and the first chain site. It

can be calculated similarly to Eq. (5.1.10) as V 2
0 = 1

π

∫

dωΓ0(ω).

Iterating the above given steps leads to the CFE

Σn+1(ω) = ω − ǫn+1 − V 2
n Σ−1

n (ω). (5.1.1.12)

with

ǫn+1 =
1

πV 2
n

∫

dωωΓn(ω) (5.1.1.13)

for a chain of length NC with a reservoir ΓNC−1(ω) coupled to the last chain site. The

coupling constants are defined by

V 2
n =

1

π

∫

dωΓn(ω). (5.1.1.14)

For a constant DOS the coupling constants are given by [115]

Vn = D
n + 1√

4n2 + 8n + 3
. (5.1.1.15)

This equation can easily be derived2 by evaluating

tn = S
1 − Λ−n−1

√
1 − Λ−2n−1

√
1 − Λ−2n−3

Λ−n/2 (5.1.1.16)

with

S =
D

2
(1 + Λ−1) (5.1.1.17)

(see Eq. (3.1.12)) for Λ → 1+. In Fig. 5.1 the numerically calculated coupling constants

Vn are compared to the analytical values of Eq. (5.1.1.15). The excellent consistency

of the results guarantees sufficient numerical accuracy.

For n → ∞ the coupling constants converge to Vn → D/2, which partially resembles

a tight-binding chain with hopping parameters t = D/2. Considering a symmetrical

DOS, the orbital energies ǫn vanish. The recursion relation of Eq. (5.1.1.12) can now

2To be precise, Λ is replaced by 1 + ǫ and for each occurring power of Λ a Taylor expansion around
ǫ = 0 is used in first order. Then ǫ is set to zero to obtain the solution.
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Figure 5.1.: The coupling constants Vn calculated numerically via Eq. (5.1.1.14) for
iteration n in comparison to the analytical solution of (5.1.1.15).

easily be solved for its steady state by evaluating

Σ̃(ω) = ω − (D/2)2

Σ̃(ω)
. (5.1.1.18)

For the self-energies we obtain

Σ̃(ω) =
ω ±

√
ω2 −D2Θ(|ω| −D)

2
+ i

±
√
D2 − ω2Θ(D − |ω|)

2
. (5.1.1.19)

The solution is ambiguous since Eq. (5.1.1.18) is a quadratic equation in Σ̃(ω). The

real part either goes to zero, which is the physical solution, or diverges for large absolute

values of ω. In our case, the imaginary part Γ̃(ω) is always positive for energies within

the bandwidth D.

In Fig. 5.2 the reservoirs are displayed for the first 20 iterations of the recursion

relation. Since the axes are scaled by the bandwidth D, no system parameters enter

the calculation. A fast convergence to the steady-state solution (5.1.1.19) within the

interval [−1, 1] is apparent.
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Figure 5.2.: Self-energies Σn(ω) calculated via Eq. (5.1.1.12), rescaled by the band-
width D versus the rescaled energies ω/D. The steady state solution Σ̃(ω)
of Eq. (5.1.1.19) is added as a black dashed line. The real part it connected
to the imaginary part by a Hilbert transform.

5.1.2. Adaptation to the Wilson Chain

The coupling parameters Vn of Eq. (5.1.1.14) are the maximum values one can reach

by using the entire remaining bath to construct the rest chain at each iteration. By

splitting off a certain part, the remaining bath yields a smaller coupling parameter

tn < Vn. Since the coupling parameters tn decrease along the chain, it is convenient to

split the bath into a high- and a low-energy reservoir, i.e. Γn(ω) = ΓH
n (ω) + ΓL

n(ω). If

the low-energy reservoir is then used to construct the remaining chain, the support of

the reservoirs Γ
H/L
n (ω) shrinks with each iteration analogly to the coupling parameters

tn. This fact is advantageous for a renormalization procedure (see Sec. 5.1.3). Note

that the high-energy reservoirs cannot be neglected here. Instead, in order to retain

the correct impurity self-energy they still remain coupled to their particular chain site.

This way we construct a chain of coupling parameters tn with a high-energy reservoir

ΓH
n (ω) coupled to each chain site and a full reservoir ΓNC

(ω) coupled to the end of the

chain (see Fig. 5.3).
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Figure 5.3.: Illustration of the OWC. The impurity level (blue) hybridizes via V to the
Wilson chain. The chain sites (red) are coupled by tn to each other, while
the n-th high-energy reservoir (gold) is coupled by t′n to the n-th chain
site. To the last site n = N , a full reservoir is coupled by VN . The modes
of the n-th reservoir are denoted by ǫ~kn.

To split the reservoirs, a cut-off function F (ω, ωC
n ) is defined with

ΓH
n (ω) = (1 − F (ω, ωC

n ))Γn(ω),

ΓL
n(ω) = F (ω, ωC

n )Γn(ω). (5.1.2.20)

For each iteration n it can be tuned by a particular cut-off-frequency ωC
n . By definition

of the high- and low-energy reservoirs it is required that F (0, ωC
n ) = 1∀ωC

n ∈ R and that

the function monotonously decreases for increasing |ω|. The most simple choice would

obviously be F (ω, ωC
n ) = Θ(ωC

n −|ω|). However, since one needs to calculate ReΣ
H/L
n (ω)

from Γ
H/L
n (ω) via a Kramers-Kronig relation, a smooth function is chosen. Kinks in the

curve lead to logarithmic divergences and should be avoided from a numerical point.

For that reason, we choose

F (ω, ωC
n ) = e−(ω/ωC

n )4 . (5.1.2.21)

The cut-off frequencies ωC
n are defined by

t2n =
1

π

∫

dωF (ω, ωC
n )Γn(ω) (5.1.2.22)

and need to be chosen in a way that recovers the Wilson chain parameters tn. To

numerically determine the value of ωC
n , an approximation algorithm is required. We

chose Newton’s method (see App. D), where on average four steps are required to

reach a relative convergence radius |r| ≤ 10−7.
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The coupling t′n to the high-energy reservoirs is determined by

(t′n)2 =
1

π

∫

dω(1 − F (ω, ωC
n ))Γn(ω). (5.1.2.23)

To proceed in the algorithm one has to keep in mind that Eq. (5.1.2.20) only determines

Γ
H/L
n (ω) = ImΣ

H/L
n (ω). To obtain the real part of the low energy reservoir, and thus

to get ΣL
n(ω), a Hilbert transform of the imaginary part is required.

The recursion relation now becomes

Σn+1(ω) = ω − ǫn+1 − t2n(ΣL
n(ω))−1, (5.1.2.24)

since the new reservoir of iteration n+ 1 is constructed from the low energy part of the

previous reservoir n only. Since only the imaginary part of Σn+1(ω) is relevant for the

algorithm, it is sufficient to calculate

Γn+1(ω) = t2n
ΓL
n(ω)

(ReΣL
n(ω))2 + (ΓL

n(ω))2
, (5.1.2.25)

instead of Eq. (5.1.2.24). In any case, the orbital energies

ǫn+1 =
1

πt2n

∫

dωωΓL
n(ω) (5.1.2.26)

vanish for a symmetric spectral coupling function Γ(ω) of the bath. Note that the

parameters defined by

(V ′
n)2 =

1

π

∫

dωΓn(ω). (5.1.2.27)

are for Λ > 1 no longer identical to the Vn defined in Eq. (5.1.1.14). In fact, we

obtain V ′
n < Vn for all n ≥ 1, since the subsequent reservoirs are constructed from

the remaining low-energy ones. The coupling t′n to the high-energy reservoirs (cf. Eq.

(5.1.2.23)) can thus be calculated via

(t′n)2 = (V ′
n)2 − t2n. (5.1.2.28)

The hopping parameters tn, defined in Eq. (5.1.2.22), can now be chosen extrinsically.

The hopping parameters for an OWC with a constant DOS are given by Eq. (5.1.1.16).

The OWC reservoirs obtained in that manner are plotted in Fig. 5.4. Here the
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Figure 5.4.: The high-energy reservoirs ΓH(ω) (top) and the low-energy reservoirs ΓL(ω)
(bottom), rescaled by the bandwidth D. The even iterations are plotted
on the left and the odd iterations on the right. Λ = 2 has been chosen.

discretization parameter Λ enters, which defines the coupling parameters tn of the

chain. With each iteration n the reservoirs shrink roughly by a factor of
√

Λ on both

axes, analogly to the NRG energy scheme, letting the reservoirs vanish as n → ∞.

The question arises whether the Wilson chain hopping parameters tn are below V ′
n

for all iterations n. That determines whether an OWC of an arbitrary discretization

parameter Λ > 1 can be realized. To answer that question, we recall that the hopping

parameters tn for Λ → 1+ converge to Vn of Eq. (5.1.1.15), meaning that the OCF

without bath splitting produces a Wilson chain in the limit of Λ → 1+ with an addi-

tional reservoir at the end of the chain. Here we obtain tn → V ′
n → Vn and t′n = 0.

Now, by increasing Λ the coupling to the high-energy reservoirs appears and increases.

The Wilson chain parameters tn, in turn, decrease below Vn. Thus, it can be expected

that Vn > V ′
n > tn for all n ≥ 1. For the starting point of the recursion, namely n = 0,

the condition V0 = V ′
0 ≥ t0 is always fulfilled, which can be seen by comparing Eq.

(5.1.1.15) to Eq. (5.1.1.16). The analytical solution V0 = D/
√

3 can furthermore be

used as a measure for the accuracy of the numerical calculations.

To find a more intuitive explanation to the question, whether the OWC is con-
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Figure 5.5.: The OWC parameters V ′
n, tn and t′n scaled by the bandwidth D and plotted

for the first 30 iterations. The discretization parameter has been chosen
as Λ = 1.05 (blue), Λ = 1.33 (orange) and Λ = 2.59 (green). The discrete
values are connected by a line for the sake of clarity.

structable for all Λ > 1, we point out the similarities of the CWC and the CFE. In

both cases the construction of the chain is based upon the fact that the self-energy

Σ(ω) of the impurity level is not altered (see Sec. 3.1). In contrast to the CWC, the

OWC is an exact formalism which conserves the full continuum3. The OWC can thus

be seen as an extension of the CWC or the CWC as a sub-part of the OWC. The

parameter Λ here decides where to divide the system (i.e. the CWC) from the bath.

Aside from the DOS, which enters by the spectral coupling function of the bath

and the cut-off function F (ω, ωC
n ) that influences the smoothness on the edges of the

reservoirs, the only parameter that specifies the recursion relations is Λ. For a constant

DOS it is thus sufficient to only investigate a variation of the discretization parameter.

Since all Λ-dependence of the algorithm is encoded in the reservoir parameters V ′
n, tn

and t′n, we stick to them to investigate a variation of the discretization parameter.

3To be precise: when applied to calculate a time-dependent density matrix, the OCF is not exact
either, since here the approximations lie in the BRF, which couples the reservoirs to the chain, see
Sec. 5.2
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In Fig. 5.5 the coupling parameters V ′
n, tn and t′n (see Eq. (5.1.2.23)) are plotted for

different values of Λ. For Λ = 1.05 (blue curves) the parameters V ′
n and tn change slowly

with n and no particular even-odd behavior can be detected. For Λ = 1.33 (orange

curves) and Λ = 2.59 (green curves) the parameters decay more rapidly and slight

oscillations between even and odd iterations are depicted for V ′
n and t′n. A detailed

discussion of these findings follows in Sec. 5.1.3.

In the limit of Λ → 1+ the high-energy reservoirs slowly vanish and consequently the

t′n’s do so as well. In this way, the latter serve as a measure for the size of the additional

reservoirs on chain site n while the tn determine the Wilson chain. When Λ is increased

from Λ = 1, the coupling parameters t′n are increased as well. As Fig. 5.5 illustrates,

the t′n’s first increase with iteration n to a maximum value and then slowly decrease to

zero. The iteration nmax of the maximum value decreases with increasing Λ and goes to

infinity if Λ → 1+. For the first iterations the t′n’s of small Λ (blue curve) lie below the

coupling parameters for the larger Λ’s (orange and green curves). Then, however, the

higher Λ curves rapidly drop beneath the blue ones and go to zero much faster. The

maximum iteration nmax roughly corresponds to a temperature Tnmax = D/2. Here, Tn

is the effective temperature of a Wilson chain of length n defined by

Tn =
D

2
(1 + Λ−1)Λ−(n−1)/2 (5.1.2.29)

(see Eq. (3.5.28)).

5.1.3. Rescaled Reservoirs

The Wilson chain parameters tn are proportional to Λ−n/2. Consequently, the relevant

energy scale of the Wilson chain is downscaled by a factor of
√

Λ for each iteration.

As mentioned above, the reservoirs exhibit a similar scaling behavior. As a result of

the constantly shrinking scale, the numerical evaluation of large iterations n becomes

increasingly problematic. That suggests a renormalization of the reservoirs in the

manner of the NRG, which leads to similar even-odd steady-states of the reservoirs. In

addition, a logarithmic mesh for the ω-axis is chosen, ensuring an adequate resolution

even for the smallest energies of the system.

In principle, the starting point of the recursion can be scaled arbitrarily, as long as

both axes are dilated by a factor of
√

Λ on each iteration to ensure convergence. How-

ever, to obtain reservoirs that match the Wilson chain parameters, the dimensionless
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hopping parameters need to be scaled as tn = tn/ωn+1 with the ”NRG-scale”

ωn =
D

2
(1 + Λ−1)Λ−(n−1)/2 (5.1.3.30)

(see Eq. (3.2.19)). Consequently, the starting point of the recursion is the spectral

coupling function

Γ
L

−1(ω) = Γ(ω)/ω0, (5.1.3.31)

rescaled on both axes by ω0. The subscript ”−1” and the superscript ”L” are pure

definition to match the notation of the algorithm. In that way, V−1 = t−1 = V shall

hold as well. The following steps are defined for an iteration n, starting with n = −1.

For a given rescaled low-energy spectral coupling function Γ
L

n(ω), which is the imag-

inary part of the rescaled low-energy self-energy Σ
L

n(ω), the orbital energy

ǫn+1 =
1

πt
2
n

∫

dω ωΓ
L

n(ω) (5.1.3.32)

can be calculated. The energies ǫn+1 play no role in the algorithm, but since for a

symmetrical DOS they are always zero, they may serve as a measure for numerical

accuracy. As a first relevant element, the real-part of the self-energy is given via a

Kramers-Kronig relation

ReΣ
L

n(ω) =
1

π

∫

dω′Γ
L

n(ω′)

ω − ω′ . (5.1.3.33)

The spectral coupling function of the subsequent iteration is given by the recursion

relation

Γn+1(ω) = t
2
n

Γ
L

n(ω)
(

ReΣ
L

n(ω)
)2

+
(

Γ
L

n(ω)
)2 . (5.1.3.34)

The three latter equations are scaled by a factor of ωn+1 on both axes. However, to

proceed in the algorithm, Γn+1(ω) needs to be scaled by ωn+2 = ωn+1/
√

Λ, so we make

the substitution

Γn+1(ω) → Γn+1(ω
√

Λ)/
√

Λ . (5.1.3.35)
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The hybridization

(V
′

n+1)
2 =

1

π

∫

dωΓn+1(ω) (5.1.3.36)

can be calculated as a measure for the size of the full reservoirs, but again has no rel-

evance for the algorithm. Now the extrinsic Wilson chain parameter tn+1 is calculated

according to Eq. (5.1.1.16) and is used to determine the cut-off frequency ωC
n+1 via

t
2
n+1 =

1

π

∫

dωF (ω, ωC
n )Γn+1(ω). (5.1.3.37)

The low-energy spectral coupling function Γ
L

n+1(ω) = F (ω, ωC
n )Γn+1(ω) and its high-

energy counterpart Γ
H

n+1(ω) = Γn+1(ω) − Γ
L

n+1(ω) are then stored for later usage.

Let us wrap up the algorithm. An arbitrary spectral coupling function Γ(ω) is

chosen as defined in Eq. (5.1.3.31). Then the three steps Eq. (5.1.3.33), (5.1.3.34) and

(5.1.3.37) are performed iteratively for each site of the chain to obtain the high- and

low-energy reservoirs.

In Fig. 5.6 the reservoirs Γ
H/L

n have been determined by the rescaled algorithm

described above. In comparison to Fig. 5.4, both axes are scaled by the NRG scale ωn

(see Eq. (5.1.3.30)), meaning that Γn(ω) = Γn(ω)/ωn+1 and ω = ω/ωn+1. A clear even-

odd behavior of the reservoirs can be observed. Even though the Wilson chain coupling

parameters tn do not explicitly show this behavior, the resulting eigenspectrum does.

Details on this can be found in Sec. 3.6. The alternating scheme of the energies of even

and odd chains is also reflected in the reservoirs, which can be seen as a complement

to the chain.

Let us discuss the scaling of the reservoirs. To start with the vertical axis, we derive

Γn(0) =
√

Λ
t
2
n−1

Γn−1(0)
=

t
2
n−1

t
2
n−2

Γn−2(0) (5.1.3.38)

from Eq. (5.1.3.34), since ReΣ
L

n(0) = 0. The rescaled hopping parameters tn go to

1 for large n. Hence, on the vertical axis the rescaled reservoirs experience a distinct

steady-state for even and odd iterations.

To investigate the scaling of the horizontal axis, we recall that the cut-off frequency

ωC
n is a measure for the width of the n-th reservoir and, in this way, for the scaling

of the horizontal axis. It is left to calculate the scaling of ωC
n . The integral of Eq.
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Figure 5.6.: The high-energy reservoirs Γ
H

n (ω) (top) and the low-energy reservoirs Γ
L

n(ω)
(bottom), rescaled by the NRG scale ωn. Λ = 2 has been chosen. Legend
as in Fig. 5.4.

(5.1.2.22) can be approximated by

t2n ≈ 1

π
Γn(0)

∫

dωF (ω, ωC
n ) ≈ 0.577 Γn(0) ωC

n , (5.1.3.39)

since the cut-off function F (ω, ωC
n ) defines the shape of the curve. From here we can

conclude

ωC
n ∝ t2n

Γn(0)
= Γn+1(0), (5.1.3.40)

meaning that the cutoff frequencies ωC
n experience the same scaling as the height

Γn+1(0) of the reservoirs. This statement analogly counts for the rescaled parame-

ters ωC
n and Γn+1(0), respectively.

The validity of this finding is shown in Fig. 5.7 for rescaled parameters Γn+1(0) (see

Eq. (5.1.3.38)) and ωC
n (Eq. (5.1.3.37)). As suggested in Eq. (5.1.3.38) and (5.1.3.40),

both parameters scale by
√

Λ for higher iterations n, as can be seen by the steady-

state of the rescaled parameters. The difference of the steady-states for even and odd
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Figure 5.7.: The rescaled quantities Γn+1(0) and ωC
n , plotted for different iterations n

and discretization parameters Λ.

iterations is increased with Λ and scales roughly by
√

Λ. The rescaled reservoir width

ωC
n shows a dip at n ≈ nmax, comparable to t′n (see Fig. 5.5).

In Fig. 5.8 the reservoir parameters are plotted for the first 30 iterations. As done

above, they are each scaled by a factor of ωn+1 to reveal their converging behavior. In

contrast, the absolute parameters in Fig. 5.5 fall off to zero. Let us elaborate on the

effect of Λ on the single OWC parameters. First of all, the steady-state value for all

parameters is reached within the first 10 iterations for Λ ≥ 1.5. For a smaller Λ → 1+

the convergence is significantly delayed. As discussed above, the maximum value of

the absolute parameters is reached at Tnmax ≈ D/2. The steady-state can reliably be

assumed at the iteration nSS that translates to an effective temperature of TnSS
= 0.1D.

Secondly, the oscillations between even and odd iterations are most pronounced for

higher Λ. Both characteristics coincide with the Wilson chain eigenspectrum. Lastly,

Λ influences the rescaled steady-state value of the reservoir parameters V
′

n and t
′
n, and

thus the coupling strength to the full and high-energy reservoirs respectively. This

behavior also coincides with the Wilson chain spectrum.
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5.2. Calculation of the Bloch-Redfield Tensor

To explicitly calculate the time-dependent density matrix ρIS(t) of the OWC, we need

to combine all elements we have deduced so far. First of all, the CWC of length NC is

constructed according to Sec. 3.1 and is part of the new local Hamiltonian HS. Here,

all impurity parameters, as well as the bandwidth D and the discretization parameter

Λ are defined. An adapted version of the reservoirs is then built to turn the CWC into

an exact OQS. The total system Hamiltonian is extended by a bath part

HB =

NC−1
∑

n=0

HR,n, (5.2.41)

comprising all reservoirs, and an interaction part

HSB =

NC−1
∑

n=0

HSR,n (5.2.42)
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with the bilinear Hamiltonian

HSR,n =
∑

k

t′k

(

f †
ncn,k + fnc

†
n,k

)

. (5.2.43)

The operator f
(†)
n is the Wilson chain operator of the n-th chain site, while c

(†)
n,k stands

for an excitation in the n-th reservoir. The BRF is performed with the interaction

Hamiltonian (5.2.42) and consequently the BRT is given as a sum over the index n.

To be precise, we need to calculate an independent BRT for each chain site n with a

given global inverse temperature β of the system. The chain operator f
(†)
n , as well as

the reservoir Γn(ω), is different for each chain site n, while the local eigen-states and

-energies are defined by the Hamiltonian HS of the Wilson chain of length NC.

Let us discuss the precise way to optimally construct the single BRTs for each Wilson

chain site m. Here we assume the iterative construction of the CWC in the spirit of the

NRG, while still treating the Wilson chain exactly and not truncating any eigenstates

of the Hamiltonian. First of all, on each iteration n of the CWC construction we build

the RGF of site m = n. Since we assume symmetric bath spectra, there is particle-hole

symmetry for the correlation functions, i.e. Cp(ω) = Ch(ω) = C(ω). This way, only

one RGF needs to be calculated for each iteration. After completion of the CWC, we

parallely construct a BRT for each chain site m and then merge all parts at the end.

We choose a logarithmic ω-mesh, to allow for a sufficient resolution of exponentially

small energies. The RGF at energy ω is then calculated by interpolation, which is a

limiting factor concerning runtime. For that reason, we construct a matrix from the

RGF with indices (a, b) and components C(ωab), i.e. for each difference ωab = Ea −Eb

of local eigenenergies. This way, each relevant energy ωab only needs to be evaluated

once.

For the construction of the BRT of site m we take Eq. (4.5.57) as a basis. The

unitary part and the dissipative part are then handled independently. We define a

vector ~r with (~r)a =
∑

l Γal,la and the unitary part is calculated from (~r)a + (~r)∗b .

The dissipative part, on the other hand, has a contribution, iff the Kronecker delta

δωab+ωmn,0 is unequal to zero, which is fulfilled only for specific combinations of indices.

Furthermore, since the dissipative part is proportional to the Fermi-function, one half

of the non-zero components is effectively cut out for T → 0.

The most effective and, at the same time, most complicated aspect of optimizing

the construction of the BRT is the exploitation of quantum number symmetry. The

CWC algorithm naturally divides the Fockspace into independent sub-matrices defined
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by quantum numbers, such as particle number and spin. In all non-zero components

ρab of the density matrix, both indices a and b originate from the same subspace.

According to Eq. (4.3.37), the indices (a, b) need to form a pair of identical quantum

numbers and (m,n) need to be such a pair as well. This significantly reduces the size

of the BRT. For the unitary part we have (m,n) = (a, b). For the dissipative part we

need to construct

Γnb,am ∝
∑

ν

(fν)am (fν)bn + (fν)ma (fν)nb . (5.2.44)

Here the index pairs differ by one particle of spin ν. This way, we only need to construct

certain combinations of indices, which further reduces the building time of the BRT.

In the dissipative part another symmetry, i.e. Eq. (4.5.60), can be exploited. Thus it

is sufficient to explicitly calculate the cases a ≥ b,m ≥ n.

The case of the operator χσ = ρd†σ + d†σρ is more complicated, since it connects two

subspaces, which differ by a particle of spin σ. According to Eq. (4.4.47), this also

counts for the index pairs (a, b) and (m,n), respectively. For that reason, a separate

BRT for each value of σ needs to be calculated and stored. Combined with the index

ν, the BRT connects a maximum of three adjacent subspaces.

Note that even with the application of the symmetries mentioned above and with

proper parallelization, the construction of the BRTs still poses the bottleneck of the

OCF with respect to runtime and memory demands.

5.3. Assessment of the BMA in the OCF

The purpose of the construction of the OWC is to improve the BMA. The Wilson

chain corresponds to the local system S, while the reservoirs constitute the bath B.

In Chap. 4 it has been argued that in order for the BMA to be applicable in the

NC = 0 case, the hybridization strength Γ = πV 2

2D
has to be way below the impurity

energies and the bandwidth D of the bath. Our approach is to increase the system

and bath parameters in relation to the hybridization by transitioning to the NC > 0

case. This is expected to improve the BMA, which relies on the hybridization to be the

smallest parameter of the total OQS. The OCF is then, to some extend, applicable for

arbitrary impurity parameters and bandwidth. To evaluate the relation of the S and

B parameters to the hybridization, we require a way to quantify the specific S and B

energy scales depending on the length of the OWC.
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In the first step of the OCF, the system energy scales are defined by the impurity

parameters only, which depend on the specific QIM. Then Wilson chain sites are

added to the impurity, influencing the system eigenspectrum by the introduction of

the hopping parameters tn. These parameters can thus be used to define the system

energy scale for an OWC. For the first chain sites, the tn’s are on the order of the

bandwidth, then they decay rapidly, depending on the choice of Λ. It is thus left

to estimate, in what way the exponentially small local energies of a sufficiently long

Wilson chain impact the quality of the BMA. Here we expect an influence especially

in the second MA and the secular approximation. The former relies on a fast decay

of the damping matrices (see Eq. (4.3.25)) with respect to the time s to safely extend

the integral over s up to infinity. However, the damping matrices do not only comprise

the correlation functions C(s), but also oscillating terms eiωs, which oscillate with

frequencies ω, defined by the system Hamiltonian eigenenergies. Besides a small bath

correlation time tB, the second MA requires large system energies, to guarantee a fast

decay of the damping matrices. The secular approximation, on the other hand, is the

neglect of t-dependent rapid oscillations in the master equation. It also relies on large

system energies and is discussed in detail in Sec. 5.3.4.

In the following section we will firstly discuss the system, the bath and the hybridiza-

tion parameters of the OWC in Sec. 5.3.1 to lie the foundation of our argumentation.

Secondly, the contribution, and thus the relevance, of the single reservoirs depending

on the chain site number m is estimated in Sec. 5.3.2. Finally, the MA and the secular

approximation are discussed in detail in the sections 5.3.3 and 5.3.4, respectively. With

the insights of Sec. 5.3 we will then have a perspective to understand and assess the

OWC results in the sections 5.4.1 and 5.4.2 with respect to the BMA.

5.3.1. OWC Parameters

In the case of NC = 0 (see Chap. 4), the bath energy scale has been defined by

the bandwidth D. The equivalent in the OWC would be the width of the reservoirs

Γn(ω). Here we recognize that the shape of ΓL
n(ω) is mainly determined by the cut-off

function F (ω, ωC
n ). By setting F (ω0.5, ω

C
n ) = 0.5 one can see that the half mean width

ω0.5 ≈ ωC
n . That means that the cut-off frequency ωC

n is a measure for the width of the

n-th reservoir, high- and low-energy reservoir alike.

The hybridization strength between the chain site n and the corresponding reservoir
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Figure 5.9.: The OWC parameters tn,Γ
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ted semi-logarithmically for the first 30 iterations. The discretization pa-
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Λ = 2.59 (green). The discrete values are connected by a line for the
sake of clarity.

can then be defined as

Γ′
n =

π(t′n)2

2ωC
n

. (5.3.1.45)

This quantity plays the role of the hybridization Γ between the impurity and the bath

and the question, whether it is small in comparison to the other energy scales is the

key point of the BMA.

In Fig. 5.9 the parameters tn,Γ
′
n and ωC

n are plotted for the first 30 iterations. The

energy axis has been chosen logarithmically to compare the various energy scales of

the parameters. It can be seen that the hybridization Γ′
n lies well below the other

parameters for all iterations n. By increasing Λ, the difference between Γ′
n and the

other parameters shrinks, which indicates that the BMA is impaired.

Obviously, the discretization parameter has a significant impact on the OWC. How-

ever, the role of the bandwidth with respect to the quality of the BMA has changed. In
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Chap. 4 the impurity was directly coupled to the bath, hence the bandwidth directly

influenced the hybridization between the system and the bath and thus the BMA. Now,

the impurity is coupled to the OWC, which comprises the CWC and the reservoirs.

The BMA only influences the coupling of the reservoirs to the single chain sites within

the OWC. All parameters of the OWC are scaled by the bandwidth, i.e. in the OWC

alone, the bandwidth has no relevance at all, especially not with respect to the BMA.

The bandwidth now only defines the size of the OWC in comparison to the impurity

and the coupling Γ between the impurity and the OWC. From this standpoint, a

small bandwidth is preferable, since here the impurity parameters are relatively large,

which improves the MSA. However, the overall quality of the BMA is expected to be

independent of the bandwidth.

The representation in Fig. 5.9 is suitable for investigating single chain sites. To

evaluate the global effect of the OWC onto the BMA we plot the sum of the parameters

upto iteration n in Fig. 5.10. Crosses have been chosen instead of stars to better depict

the steady-states. For increasing chain length the difference between the hybridization
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Γ′
n and the other two energy scales is increased. This effect is largest for small Λ. Here

the coupling to the reservoirs is weak, while with each iteration a relatively high energy

excitation is extracted from the bath and added to the chain, translating to a large

tn. If the coupling tn to the rest-chain is large, the width of the subsequent reservoir

is large as well. We can thus conclude that the BMA is best for a small Λ, while it

can always be improved by increasing the chain length. For large Λ, however, this

improvement is small.

One point is left to mention here. If the system Hamiltonian contains exponentially

small energies, i.e. in the impurity or as hopping parameters for large n, these energies

are reflected in the local eigenspectrum. Consequently, the second MA, as well as the

secular approximation, are affected for n ≈ nmax, since here the hybridization Γ′
n is

relatively large. This is expected to impair short-time dynamics of the time-dependent

density matrix. However, the influence of the first reservoirs of long Wilson chains on

the BRT is small, as will be discussed in Sec. 5.3.2.

It is relatively simple to assess the applicability of the BA in the OWC, as it is a

perturbative coupling of the reservoirs in second order in the hybridization between the

reservoir and the system. Thus, if the hybridization is relatively small in comparison

to the other OWC parameters (which is proven in Fig. 5.9 and 5.10), the BA can be

expected to yield good results. With increasing chain length, more and more excitations

are extracted from the bath into the system. Thus the coupling from the system to the

remaining bath (comprising the reservoirs) is decreased and the BA is improved. The

main impact of the BA on the time-dependent density matrix lies in its equilibrium

values, since in the dynamics of the master equation the hybridization is still included.

The equilibrium values, however are defined by the CWC, which is known from NRG

calculations to well reproduce physical values, if NC is chosen large enough.

An assessment of the MSA is more complicated and consequently we devoted Sec.

5.3.3 and 5.3.4 to that topic.

5.3.2. Contribution of the Single Reservoirs

The OCF is based on a separate reservoir coupled to each single chain site n via

distinct hybridization strengths. The BMA is effectively applied to each chain site, so

it is advisable, to (a) assess the quality of the BMA depending on n and (b) estimate

the contribution of the n-th reservoir to the total BRT.

The behavior of the eigenspectrum of a Wilson chain is well-known. Here lower

and lower energy modes are added to the chain with each iteration, while for a given
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effective temperature TNC
the high-energy modes are suppressed by the density matrix.

The chain operators are expected to give the largest contribution for n = NC, while

shrinking by a factor of
√

Λ for each step backwards along the chain, since the overlap of

CWC eigenstates is 〈r, e;n|r′, e′;n′〉 ∝ Λ−|n−n′|/2 (see Sec. 6.1.4). Since the operators

appear in quadratic order in the BRT, the scaling effect is quadratic as well. The

reservoirs, in turn, are largest for n = 0 and shrink on both axis by a factor of around√
Λ. Note that the scaling arguments only count for n > nmax with nmax being defined

by the effective temperature Tnmax = D/2. Since the RGFs are proportional to the

reservoir spectral functions, they damp the BRTs of higher n by a factor of
√

Λ with

each site along the chain. This effect, however, is not expected to fully compensate the

quadratic scaling of the chain operators, making the later sites n ≈ NC dominant in

comparison to the first sites n ≪ NC. Another factor that enhances the contribution

of later sites to the BRT is the shape of the reservoirs in relation to the distribution of

the eigenspectrum.

To illustrate this effect, the RGF Gn(ω) (see Eq.(4.3.35)) are plotted for the first

30 iterations for two different values of Λ in Fig. 5.11. The real-part of the functions

comprises a product of the reservoir spectral functions Γn(ω) and the Fermi-function,

while the imaginary-part is obtained from a Hilbert transform of the real-part.

We know from the considerations above that the reservoirs are not converged yet

after 30 iterations for Λ = 1.05, while for Λ = 2 the steady-state has been reached after

around 10 iterations. In this context, it may seem confusing at first that the RGFs

need around 20 iterations to reach a steady-state for Λ = 2. This is, however, due to

the Fermi-function. At a fixed temperature T the Fermi-function practically appears to

relatively broad functions as a Heaviside-function Θ(−ω), while it is effectively constant

at 1
2

for functions that are very narrow in relation to the temperature T . Since for a

larger Λ lower energy scales are reached, the two peaks of ReGn(ω) (Fig. 5.11 (e) and

(f)) become more and more symmetric, until ReGn(ω) → 0.5Γn(ω) in the limit of large

n. Here the Fermi-function is effectively constant on the support of the reservoir.

To estimate the contribution of the RGFs to the BRT with respect to the chain

site number n, we have to consider the distribution of the eigenspectrum of the Wilson

chain. At a given iteration n, we know that the eigenspectrum of the Wilson chain spans

from energies of the order of the bandwidth D down to the exponentially small ”NRG-

scale” ωNC
. From Fig. 5.11 we can see that each Gn(ω) has its major contributions

for energies ω ≈ ωn. Additionally, ImGn(ω) has a significant contribution for small

energies as well on the first Wilson chain sites, i.e. if n is small. The imaginary-part
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Figure 5.11.: The rescaled RGFs Gn(ω) versus the rescaled energies ω. We start with
iteration n = 0 (red) and proceed through the physical color spectrum to
n = 30 (violett). The real-part is plotted in panels (a), (b), (e), (f) and
the imaginary part in panels (c), (d), (g), (h), respectively. For the upper
four panels a discretization parameter Λ = 1.05 has been chosen, while
we have Λ = 2 in the lower four panels. The curves are constructed for
T = 1Γ.

of the RGFs, in turn, defines the Lamb-shift generated by the imaginary part of the

BRF. Considering the fact that in the logarithmically discretized bath the low-energies

of the eigenspectrum are most relevant (see Sec. 3.3), the real-part of the BRT that

defines the relaxation rates and the natural broadening, is mostly dominated by the

last sites of the OWC.

To sum up, the contribution of the chain operators grows by a factor of Λ for each

iteration, while the reservoirs shrink by
√

Λ, leading to a dominant contribution for

n ≈ NC. The shape of the RGFs suggests that ReGn(ω) and ImGn(ω) have a similar

contribution for n ≈ NC, while the ReGn(ω) are damped more strongly for n ≪ NC.

What can we assume regarding iterations n > NC? The chain operators will damp
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the BRT components by ΛNC−n, while the reservoirs are further damped by
√

Λ with

each iteration, leading to a damping factor of
√

Λ
3

with each iteration. Since the

RGFs shrink on the ω-axis as well, the eigenspectrum of the Wilson chain is relatively

enlarged which further decreases the contribution of iterations n > NC, making them

negligible. This fact will be relevant later on in Sec. 6.1.3.

5.3.3. Impact of the Markov Approximation

Before we proceed to calculate physical properties with the OCF, let us estimate the

effect of the MSA. More precisely, we want to assess how the Wilson chain influences

the applicability of those approximations. In the simple NC = 0 model of Sec. 4.6

we required to be in the wideband limit in order to ensure short correlation times.

Furthermore, large local energies ǫd ≫ Γ were required to let the BRT from Eq.

(4.3.19) decay fast with s compared to the local time scale defined by Γ. Since the

BRT is a linear combination of the damping tensors, it is them we need to investigate.

For particle-hole symmetric reservoirs the damping tensors are basically given by

(Γn)ab,cd(t, s) = ei(ωab+ωcd)t
[

(fn)†ab(fn)cd + (fn)ab(fn)†cd

]

Cn(s)e−iωcds (5.3.3.46)

for the n-th chain site. If the correlation time of Cn(s) is short, the MA can be

applied without restriction. Thus, the correlation functions Cn(t) make an important

contribution to the behavior of the density matrix in the master equation (4.3.18), since

they contain the entire information on the n-th reservoir. The reservoirs are responsible

for any true dissipative processes. The time-dependent correlation functions are defined

by the reservoir coupling function Γn(ǫ) as

Cn(t) =
1

π

∫ +∞

−∞

dǫΓn(ǫ)fβ(ǫ)eiǫt (5.3.3.47)

(see Eq. (4.3.24)). Since the reservoir functions Γn(ǫ) are symmetrical, the Fermi-

function fβ(ǫ) vanishes in ReCn(t) and thus the real-part is independent of tempera-

ture. The imaginary part vanishes in the limit of high temperatures, where the Fermi-

function is constant, and is maximal for T = 0.

The correlation functions Cn(t) are plotted in Fig. 5.12 for Λ = 1.1. For such a

small discretization parameter the even-odd behavior is small and the decay rate of

the amplitude low. This provides a smooth transition between the iterations which

is preferable for plotting even and odd curves for high iterations n within one single
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figure. The correlation time is defined as the time t = tcorr when the envelope function

of ReC(t) has sufficiently decayed. According to the figure that time can be estimated

as tcorr ≈ 20/D for chain site number n = 10.

The question remains, how the correlation time scales with Λ and with the iteration

n. For higher Λ there is a larger energy separation between the iterations, leading to a

faster change in the correlation functions. For that reason, the scaling of the correlation

functions needs to be investigated.

The maximum value at t = 0 is given by

Cn(0) =
1

π

∫ +∞

−∞

dǫΓn(ǫ)fβ(ǫ) =
1

2π

∫ +∞

−∞

dǫΓn(ǫ) =
(t′n)2

2
. (5.3.3.48)

The correlation functions are expected to decay quadratically with the reservoir cou-

pling parameters t′n, when the iteration number n is increased above nmax. Let us

develop an approach to determine the correlation times. We approximate the spectral
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functions by a box function

Γn(ω) = Γn(0)Θ(ωC
n − |ω|), (5.3.3.49)

whose dimensions are determined by the findings made above. The real-part of the

correlation function is then given as

ReCn(t) =
Γn(0)

π

∫ +ωC
n

−ωC
n

dǫfβ(ǫ) cos(ǫt) =
Γn(0)

π

sin(ωC
n t)

t
. (5.3.3.50)

The envelope function can be obtained by setting the sine-function to 1, which removes

the oscillations. For the initial value t = 0 it follows ReCn(0) = Γn(0)ωC
n

π
. The time

when the envelope function is decayed to 10% of the initial value is then given by

tn,0.1 =
10

ωC
n

. (5.3.3.51)

The cut-off frequencies ωC
n can hence be used as an estimate for the inverse correlation

times. This suggests that tcorr,n ∝ Λn/2, meaning that the correlation times grow

significantly for large Λ. Note that tcorr,n ≈ 1/ωC
n is consistent with the finding of

Sec. 5.1.3 that the cut-off frequencies are a measure of the width of the corresponding

reservoirs.

As a possible absolute measure for the MA, the correlation times can be determined

graphically. The axes need to be rescaled by ωn to depict larger values of Λ. To find

the correct scaling we investigate the convergence of the correlation functions Cn(t).

For this purpose, we exploit the convergence of the reservoirs Γn(ω) and define

Cn(t) =
1

π

∫ ∞

−∞

dǫΓn(ǫ)fβ(ǫ)eiǫt

=
ω2
n+1

π

∫ ∞

−∞

dǫΓn(ǫ)fβ(ǫ)eiǫt

= ω2
n+1Cn(t) (5.3.3.52)

with the dimensionless time t = tωn+1 and the dimensionless inverse temperature

β = βωn+1. From here it is obvious that the correlation times scale with Λn/2, while

the amplitude of the correlation functions scales with Λ−n. For a fixed temperature

T the dimensionless inverse temperature β decreases along the chain, meaning that

ImCn(t) is maximal for small n.
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Figure 5.13.: The real-part of the rescaled time-dependent correlation functions
ReCn(t) versus the dimensionless time t. We start with iteration n = 0
(red) and proceed to n = 17 (violett). As arrows with the same color
scheme, tn,0.1 is added to the horizontal axis. The discretization parame-
ter Λ has been varied according to the notation on the right. The panels
on l.h.s. depict the even and on the r.h.s. the odd chain sites.

In Fig. 5.13 the real-part of the rescaled time-dependent correlation functions Cn(t)

is plotted for different iterations n and different discretization parameters Λ. The be-

havior is similar to the reservoir functions with respect to the even-odd convergence.

The number of iterations n has been chosen in such a way that a sufficient convergence

is reached. For a Wilson chain of length NC, the effective temperature can be defined

as TNC
= ωNC

(see Eq. (3.5.28)). Convergence is thus reached when the effective tem-

perature drops below a convergence temperature TnSS
. As discussed above with respect

to Fig. 5.9, a temperature of TnSS
= 0.1D is sufficient for appropriate convergence.

We have already pointed out that the time tn,0.1, when the envelope of the correlation

function has dropped below around 10% of its initial value, appears to be a promising

candidate to estimate the correlation times. For that reason, those times are added in a
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rescaled version as arrows on the horizontal axis. The figure suggests that in our chosen

parameter interval of Λ the correlation times can reliably be estimated as tcorr,n ≈ 5.

For an exemplary effective temperature of T = 0.1Γ this relates to the absolute times

Γtcorr,n = 50, which is way above typical time scales of the local density matrix. Any

local system would be thermalized for a long time before the reservoir correlations have

decayed. In this context, the MA appears outright unsuited. However, as discussed

above, the correlation times of the reservoirs, which are mediated by their particular

widths, are not the only relevant time scale for the convergence of the BRT to its

steady-state. From Eq. (5.3.3.46) it follows that the damping tensors are proportional

to C(s)eiωs, meaning that the decay rate with respect to s is not only defined by the

oscillation frequency of the correlation function C(s) but of the sum with the system

energies as well. Further assessment of the quality of the BMA approximation is given

in the subsequent section. Here, local non-equilibrium dynamics as well as local spectral

functions are investigated for small chain lengths. The OWC results are compared to

the closed chain and the influence of the parameters onto the bath discretization and

the BMA is discussed. In Chap. 6 the truncation scheme of the NRG is implemented

into the BRF to construct chains of higher length NC and thus to access parameter

regimes more favorable to the above mentioned approximations.

5.3.4. Accuracy of the Secular Approximation

The block-diagonalization of the BRT is based on the secular approximation, i.e.

Rab,cd ∝ δωab+ωcd,0 (see Eq. (4.5.56)). Within this approximation we consider rapidly

oscillating terms in the master equation for the density matrix to average out. How-

ever, a Kronecker-delta here implies that only those frequencies with ωab +ωcd = 0 can

contribute to the dynamics of the density matrix. A more realistic definition would be

to define a small ∆ that determines the window of relevant energies. The Kronecker-

delta is in this way replaced by the Heaviside function Θ(∆−|ωab +ωcd|), where in the

case ∆ → 0 the Kronecker-delta is recovered.

The specific choice for ∆ now needs to be discussed. Let us therefore consider the

most simple case of a one-dimensional master equation without secular approximation

ρ̇(t) = −γeiωtρ(t), (5.3.4.53)

which represents a differential equation with an oscillation frequency4 ω and a re-

4Note that in the secular approximation we would choose ω = 0 here.
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spective relaxation rate γ. The purpose of Eq. (5.3.4.53) is to resemble the master

equation (4.3.37) before the secular approximation has been applied. The relaxation

rate γ is then defined by the damping matrix elements of the BRT and ω is a difference

of eigenenergies of the system Hamiltonian. Equation (5.3.4.53) can be expanded to

a sum over j of different parameters γj and ωj, however, this would not impact the

following argumentation.

To assess the quality of the secular approximation depending on the parameters γ

and ω, we solve the master equation (5.3.4.53) to obtain

ρ(t) = ρ(0)f(ω/γ; tγ) (5.3.4.54)

with

f(ω; t) = exp
(

i(eiωt − 1)/ω
)

. (5.3.4.55)

If Eq. (5.3.4.53) comprises a sum of different frequencies ωj and rates γj, then the

solution represents a product function of the type of Eq. (5.3.4.55).

In what cases is the secular approximation eiωt → δω,0 appropriate in Eq. (5.3.4.53)?

Obviously, for ω → 0 we can substitute eiωt → 1. No secular approximation is neces-

sary here. A slight increase of ω will not significantly change the resulting ρ(t), which

justifies the introduction of a small interval [−∆,∆], in which all frequencies are ac-

cepted as effectively zero. On the other hand, by increasing the absolute value of ω

beyond ∆, a regime is entered, in which the secular approximation is no longer appli-

cable. The other extreme of the spectrum is ω/γ → ∞. Here f(ω/γ; tγ) ≈ 1 ∀ t, i.e.

ρ(t) = const and we can safely replace eiωt → 0 in Eq. (5.3.4.53), which means that the

secular approximation is perfectly justified. Consequently, our objective is to estimate

the interval, in which the secular approximation is expected to yield a significant error.

In Fig. 5.14 the function f(ω/γ; tγ) of Eq. (5.3.4.55) has been plotted for different

values of ω/γ. Curves with ω ∼ γ already significantly deviate from the ω = 0 curve.

This suggests to choose ∆ < 10−2γ. On the other hand, the secular approximation

requires all frequencies ω > ∆ to be at least around 103γ to justify neglecting them.

The purpose of the investigation of Eq. (5.3.4.53) is to estimate the error of the

secular approximation in the OWC. The energy scale γ is here given by the single

reservoirs, which span from the order of the bandwidth D down to exponentially small

energies of the scale of the effective Wilson chain temperature. The frequency ω rep-

resents the system energies, i.e. the eigenenergies of the Wilson chain Hamiltonian.
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Figure 5.14.: f(ω/γ; tγ) plotted versus dimensionless time tγ to estimate the cut-off
frequency ∆ for the secular approximation. The real-part of the function
is depicted as a solid line, while the imaginary part is not plotted, but
exhibits a comparable convergence behavior.

These energies are of a comparable order as the reservoir coupling functions Γ
H/L
n (ω).

Consequently, the case ω/γ < 10−2 can only be fulfilled for small system energies and

for reservoirs of the first chain sites. However, these sites are least relevant for the

dynamics of the time-dependent density matrix, as has been discussed in Sec. 5.3.2. In

most relevant cases ω/γ < 10−2 can only be fulfilled, if the indices of ωab +ωcd combine

in such a way that the net result is zero. Thus, ∆ can effectively be chosen as zero, in

the limit of the numerical accuracy of the eigenenergies.

At this point, it cannot simply be estimated, to what extend the other case, ω/γ >

103, is fulfilled for all ω > 0. The most relevant chain sites at the end of the chain

are attributed with the smallest reservoirs, however, for exponentially small system

energies, the secular approximation might not be applicable. Note that Γ defines the

actual relevant time scale for the dynamics of the density matrix. Thus all oscillations

with ω ≪ Γ will be damped before they have any relevant contribution to the dynamics.

If n is large, then ωn is small and the critical frequencies are small as well.

To quantitatively support the arguments made above, we plot ω

Γ
H/L
n (ω)

in Fig. 5.15.
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Since the reservoirs are symmetrical, we restrict to ω ≥ 0. We can deduce the frequency,

below which the secular approximation is no longer applicable, as around 3.5ωn for

high-energy and 2.5ωn for the low-energy reservoirs. For any frequency below that, the

secular approximation is considered to produce a significant error. In the case of the

high-energy reservoirs, ω < 0.2ωn is accepted as well.

If n is large enough that ωn ≪ Γ, the oscillations induced by the problematic fre-

quencies have no impact on the total dynamics generated by the master equation. If n

is small, and consequently ωn is relatively large, a large amount of problematic oscilla-

tions can occur that possibly impact the dynamics on time scales ∼ 1/Γ. However, as

argued above, these chain sites do not significantly contribute to the overall dynamics

and thus one is advised to choose NC as high as possible with a preferably low effective

temperature to maximally reduce the impact of the secular approximation.

We conclude that ω/γ is always large in the relevant cases, except for the case

ωab = Ea − Eb = 0, where the energies are identical. The application of a Kronecker-

delta for the secular approximation is thus justified within the limit of the expected
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machine precision of the system eigenenergies. As a criterion for the maximum value

of ∆ we can use the above mentioned block-diagonal structure of the BRT. The largest

subblock of this matrix connects the DDM and has the associated energy ωab = 0. The

eigenvalues of this submatrix are entirely real and semi-positive (for details on that

see Sec. 4.5). If, by choosing ∆ too large, too many components are assigned to this

subspace, complex eigenvalues emerge. In other cases, eigenvalues with negative real-

part may occur. Thus, ∆ will be chosen sufficiently small to avoid these unphysical

cases.

5.4. Numerical Implementation of the OCF

In this section we present results for local impurity quantities of the OWC in the RLM.

We choose a chain length NC ≤ 10 to be able to treat the spectrum of the Wilson chain

exactly and calculate TD-NEVs and ESFs. Truncation of high-energy states is covered

in Chap. 6.

The TD-NEVs are investigated by calculating the impurity occupation number

〈nd(t)〉 according to Eq. (4.3.40). Firstly, two separate CWCs are constructed par-

allely. The first chain is constructed for the initial parameter ǫd = ǫid to generate

the initial density matrix. For the second one we choose the parameter ǫd = ǫfd to

obtain the eigenbasis of the final Hamiltonian. With these elements we are able to

simulate a sudden quench at t = 0. In all cases, we choose ǫfd = −ǫid > 0, to obtain a

symmetrical relaxation process from the impurity site into the bath in the sense that

〈nd(0)〉 − 0.5 = 0.5 − 〈nd(t → ∞)〉 > 0.

The ESF Ad(ω) is calculated via Eq. (4.4.53) and only one CWC is necessary. Here

ǫd = 0 is chosen, since this value corresponds to a symmetrical spectrum around ω = 0.

The CWCs are constructed iteratively in the spirit of the NRG, even though no

truncation of eigenstates is applied. At each iteration n we calculate the respective

reservoirs Γ
H/L
n (ω) and from here on the correlation functions Cn(ω) according to Eq.

(4.3.35). After completion of all iterations n < NC, the BRT is constructed for all sites

of the Wilson chain and then diagonalized exactly by exploiting its block-diagonality

with respect to the system energy differences (see Eq. (4.5.56)). The construction of

the BRT can be parallelized for each chain site and the diagonalization is parallelized

for each block. This way the program is almost entirely parallelized, and we have used

a maximum of 12 threads.

We have chosen a logarithmic frequency mesh in accordance with the logarithmic



5.4. Numerical Implementation of the OCF 129

discretization procedure of the CWC formalism. This ensures an adequate resolution

of the different energy scales of the Wilson chain. We choose a symmetric energy mesh

with

ωi = 2D (ωNC−1δ/(2D))2i/Nm , i ∈ [0, Nm/2] (5.4.56)

for the positive half of the spectrum. Here D is the bandwidth, ωNC−1 is the NRG-scale

at the last chain iteration and δ is the relative maximum resolution of the mesh. We

have chosen δ = 5 · 10−4.

To construct the BRT of the m-th chain site, the particular correlation function

needs to be evaluated at specific system energy differences ωab. Since the energy mesh

of Cm(ω) is fixed, the values Cm(ωab) are evaluated via a linear interpolation between

the mesh points. This approximative step does not impair the results in any significant

way, however, it takes up most of the runtime. The number of mesh points Nm is thus

not only a marker for the numerical accuracy of the BRT, but also for the runtime of

the program. We have chosen Nm = 103 in all cases to obtain a sufficient resolution of

the correlation functions for all iterations n. To justify our choice of the mesh for the

correlation functions, let us briefly discuss the drawbacks of alternative construction

schemes.

One option is to collect all eigenenergy differences ωab of the complete CWC Hamil-

tonian, before calculating the reservoirs. These energy differences are ordered and used

to construct the mesh for the reservoirs. This way we do not evaluate the reservoirs for

continuous energies ω, but for discrete indices a, b. Hence no interpolation is necessary

and the construction time of the BRT would be decreased significantly. Here the num-

ber Nm of mesh points is not necessarily equal to the quadratic number N2
S of CWC

eigenenergies, since several energies ωab can be degenerate. In fact, Nm is here equal to

the number of blocks of the BRT. However, if the chain length is large, the number of

necessary mesh points by far exceeds Nm = 103 and this likely also counts in the case

of a truncated eigenbasis of the Wilson chain. Even though the construction time of

the BRT is now decreased, the construction time of the reservoirs and their respective

RGFs is significantly increased. Since the CFE algorithm is iterative (see Sec. 5.1),

no parallelization with respect to the iteration n is possible here. Furthermore, the

numerical stability of integrating over these specific meshes is uncertain and needed a

more careful investigation.

A second option is to exploit the steady-state of the correlation functions Cn(ω) (see
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Sec. 5.2). At a certain effective temperature TnSS
≈ 0.1D, which depends on the chain

length NC and the discretization parameter Λ, an even-odd steady-state of Cn(ω) is

reached (see Sec. 5.3.3). From here on, the correlation functions are simply scaled by

a factor of Λ on both axes for each increment of 2 of the iteration number n, meaning

that

Cn+2(ω) = Cn(ωΛ)/Λ (5.4.57)

for n ≥ nSS. Thus, by rescaling the BRT of chain site n and the respective eigenenergies

ωab by a factor of
√

Λ
n−nSS

, the correlation functions CnSS
(ω) and CnSS+1(ω) could be

reused for all consecutive chain sites and Nm could be kept relatively low. However,

in order to use this scheme, we require effective temperatures of the Wilson chain well

below 0.1D. Also, the logarithmic discretization of Eq. (5.4.56) is so well-adapted to

the energy spectrum of a Wilson chain, that the number of required mesh points is

almost independent of the effective temperature. For that reason, we discarded the

two alternative mesh schemes and accept the linear interpolation.

Besides the construction of the BRT, the second bottleneck of the program is the

diagonalization of the BRT and the construction of physical quantities. The block-

diagonality of the BRT with respect to the system eigenenergy differences ωab allows for

a second parallelization. The diagonalization within these ”energy-subspaces” is exact.

Since we choose Nm = 103, the diagonalization of the BRT takes up a similar amount

of time as its construction. Thus, a reduction of Nm could in the best case reduce the

total program runtime by around 50%. The energy-subspaces of the BRT are highly

inhomogeneous in dimension, with the subspaces for ωab ≈ 0 being the by far largest

ones. The question, when to interpret two energy differences ωab and ωcd as degenerate

and thus, when to assign them to the same subspace, influences the size of the blocks

of the BRT. However, if energies are interpreted as degenerate for ∆ ≤ ωn · 10−5, the

results are practically converged to the ∆ = 0 version5. The largest blocks of the BRT

could be diagonalized numerically to accelerate the program. A Lanczos method would

be appropriate here, since it significantly reduces the number of eigenstates to the low-

energy ones, which are most relevant for the long-time behavior of the time-dependent

density matrix and thus for the relaxation. A concrete implementation of the Lanczos

method for the diagonalization of sub-blocks of the BRT is described in Sec. 6.1.8. For

the construction of the χ-operator, which is required for ESFs, the ωab = 0 subspace

5For details on ∆ and the closely linked secular approximation see Sec. 5.3.4
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is not included in the BRT, since χaa = 0. This decreases the CPU time required for

the diagonalization.

For the following results of the OCF we have chosen Nm = 103, ǫfd ≡ ǫd = −Γ,

D = 100Γ, NC = 10 and Λ = 2, if not stated otherwise. The dimensionless inverse

temperature β is adapted to always guarantee T = Γ. A black dashed line, added to

the figure, in any case represents the analytical exact solution for the RLM (see App.

A), both for TD-NEVs and ESFs.

As mentioned above, we restrict to the two-level problem with an impurity Hamil-

tonian

Himp = ǫdd
†d (5.4.58)

coupled to a closed and open Wilson chain, respectively. In the thermodynamic limit

this resembles the RLM. Since its exact solution is known analytically, it serves as the

perfect toy model to benchmark the OWC results.

5.4.1. Non-Equilibrium Real-Time Dynamics

We investigate the impurity occupation number

nd(t) = Tr
{

eiHStnde
−iHStρIS(t)

}

=
∑

ab

∑

l

(nd)ab cl (|vl〉)ba eiωabt−λlt

=
∑

f,l

Xf,l e
iωl,f t−Reλlt. (5.4.1.59)

with Xl,f =
∑ωab=ωf

ab (nd)ab cl (|vl〉)ba and ωl,f = ωf−Imλl (see Eq. (4.3.40)). The CWC

solution is obtained by setting the eigenvalues λl of the BRT to zero. The CWC solution

accounts for a correct short-time behavior by the oscillation frequencies ωf , while those

oscillations stay coherent on longer timescales and thus yield charge reflections back

to the impurity site. The real-part of λl generates a relaxation of these oscillations,

while λ0 = 0 of the ωf = 0 subspace accounts for the long-time steady-state. For that

reason, we refer to Reλl as the relaxation rates. The Lamb-shift Imλl, on the other

hand, adds slow oscillations to the ODDM.

In Fig. 5.16 the impurity occupation is displayed for chain length NC ∈ [0, 10]. Here

NC = 0 accounts for the system being reduced to the bare impurity, while NC = 1 adds

the zeroth Wilson chain site to the system Hamiltonian. With increasing chain length
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Figure 5.16.: Impurity occupation nd(t) for various chain lengths NC. Even chain
lengths are depicted in the upper panels (a) and (b) while odd chain-
lengths appear in the lower panels (c) and (d). On the r.h.s. in panels
(b) and (d) we present the OWC solutions, on the l.h.s. in (a) and (c)
only the CWC is displayed.

HS grows, and thus the BA is improved. This translates to improved equilibrium values

nd(t = 0), both for the CWC (depicted on the left) and the OWC (on the right). The

steady-state nd(t → ∞) = 1 − nd(t = 0) is reached with a deviation of 0.1%, which

solely stems from numerical inaccuracy by choosing Nm = 103. This shows that the

OWC curves relaxate to the equilibrium value predicted by the CWC.

An interesting feature of Fig. 5.16 is the difference between even and odd chain

lengths. The equilibrium values nd(t = 0) approach the exact solution (black dashed

line) from below (even NC) and above (odd NC), respectively. This suggests that the

even-odd behavior is incorporated in the energy spectrum of the Wilson chain and

that it converges for long chains. Indeed, it is a well-known fact, that the spectrum

of the Wilson chain exhibits an even-odd behavior. Since in the CWC the particle

number is conserved, the one-particle subspace is sufficient to understand this effect.
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The one-particle contribution to the equilibrium occupation number is

n1
d = (Z)−1 〈1, 0, 0, ...| e−βH |1, 0, 0, ...〉 . (5.4.1.60)

In the Wilson chain the hopping parameters t0, t1, ... are defined by the bandwidth D,

while the local impurity energy shall be |ǫd| ≪ D. For odd chain lengths the spectrum

is almost symmetrical around the Fermi level, while for even chain lengths a small

eigenvalue E0 ≈ ǫd is always present. The corresponding eigenstate has a strong overlap

with the one-particle impurity state and so E0 always has the dominant contribution

to the equilibrium value of the impurity occupation. Since for short chains E0 is much

smaller in absolute value than the smallest eigenenergies of odd chains, nd(t = 0)

always deviates more from half-filling for even chains. With increasing chain length

the logarithmically decreasing Wilson chain parameters tn split up the eigenspectrum

for small energies and thus decrease the even-odd effect.

The closed chain real-time dynamics

n1
d(t) = (Z i)−1 〈1, 0, 0, ...| e−iHfte−βHi

eiH
ft |1, 0, 0, ...〉 (5.4.1.61)

for the one-particle subspace can be explained in a similar manner6. For NC = 0 the

impurity is isolated and so no transitions are possible. For even chain lengths NC > 0

the eigenenergy E0 still has the dominant contribution to the state where the impurity

level is occupied. Here, the oscillation frequency is ωf = E0−E0 = 0. Oscillating terms

are added with a small amplitude and this effect increases with the chain length. The

NC = 1 case describes a simple oscillation between the impurity and the zeroth Wilson

chain site with a frequency Ω ≈ 2V . With increasing chain length the eigenenergies

closest to the Fermi-level shrink, and thus the oscillation amplitude is decreased. In

any case, the even and odd chains slowly converge to each other with increasing chain

length. The convergence can be accelerated by choosing a higher Λ, which ensures that

the small energies converge to each other faster.

To explain the behavior of nd(t) in the OWC, a different argumentation is required.

The initial equilibrium value is reached by definition for t = 0, while the final steady-

state is always reached by construction (see Sec. 4.5). At temperatures T = Γ, the

Lamb-shift is much smaller than the relaxation rates. Hence, the slow oscillations it

generates are already damped by Reλl before they can contribute to the dynamics.

Thus, the difference between even and odd chains lies in the dominant relaxation

6Note, that we quench the Hamiltonian at t = 0 from the initial one H i to the final one H f.



134 5. Open Wilson Chain

rates. For each chain the eigenvalue λl = 0 of the energy subspace with ωf = 0 has

an important contribution as it defines the steady-state. Even chains always have a

real eigenvalue λl ≈ 2Γ with a large weight cl. The eigenvalues with largest weight for

odd chains are (besides λl = 0) a complex conjugate pair z, z∗ with Rez ≫ Imz and

Rez ≫ 2Γ. With increasing chainlength, even and odd chains align.

Let us explicitly cover the relevant dynamics of the first OWC curves of Fig. 5.16

for −ǫfd = Γ ≪ D. In the NC = 0 case we observe a simple exponential decay with

a relaxation rate γ = 2Γ−1(ǫ
f
d) = 2Γ, i.e. the reservoir evaluated at the lowest local

one-particle energy ǫfd. If we proceed to NC = 1 the dynamics is ∝ cos(2V t)e−γt. Since

γ = Γ0(V ) ≈ 2
π
D ≫ 2V , the oscillating term is almost immediately damped by the

decay term and so no oscillations can be observed in the figure. Note, that the cos(2V t)

term resembles the oscillations that occur within the CWC one-particle subspace. The

relaxation rate γ is, once again, given by the reservoir coupling function at the lowest

one-particle energy. If the chain length is increased then the dominant relaxation rate

γ is basically defined by the last reservoir ΓNC−1(ω) of the chain at ω ≈ 0. Since

the reservoirs shrink with the iteration n, the relaxation rate of odd chains decreases

further. However, with increasing chain length an eigenvalue emerges in the ωf = 0

subspace that converges to 2Γ from above and thus becomes the dominant rate of the

relaxation. Even chains possess this eigenvalue of 2Γ for all chain lengths and thus

exhibit the correct relaxation rate even for short chains.

To illustrate these findings, we have plotted the single contributions to the occupation

number nd(t) in Eq. (5.4.1.59) in Fig. 5.17. We represent ωf as blue points, Reλl as

orange crosses and Imλl as green stars. The specific energy value of these components

is plotted on the horizontal axis, while their respective weight |Xf,l| in the expression

for nd(t) is plotted on the vertical axis. While the Reλl are semi-positive, ωf and

Imλl are located symmetrically around ω = 0. To avoid redundancy, most negative

energies are cut off on the horizontal axis. The value ωf is associated with
∑

l |Xf,l|
and the values Reλl and Imλl with

∑

f |Xf,l|. This way, Fig. 5.17 gives an overview

over the most important relaxation rates and oscillation frequencies of the RLM for

short OWCs. In turn, these elements explain the resulting non-equilibrium curves of

Fig. 5.16.

The symbols at the upper left of each panel represent the steady-state of the occu-

pation number for λl = 0. The height of each symbol is proportional to its importance

in the expression. Consequently, the second most important eigenvalue of the BRT has

a large real-part for odd chains that constantly shrinks with increasing chain length



5.4. Numerical Implementation of the OCF 135

10−3

10−1
|X

f,
l|

odd even
ωf

ℜ�λl

ℑℑλl

10−3

10−1

10−3

10−1

0 20 40 60
ω/Γ

10−3

10−1

0 5 10
ω/Γ

N
C
=
1/
2

N
C
=
3/
4

N
C
=
5/
6

N
C
=
7/
8

Figure 5.17.: A display of the single components of Eq. (5.4.1.59) for different chain
lengths NC. ωf (blue points), Reλl (orange crosses) and Imλl (green
stars) are plotted on the x-axis in units of Γ and their respective weight
|Xf,l| on the y-axis. Odd chains are plotted on the l.h.s., starting with
NC = 1 at the top and even chains starting with NC = 2. Both axes are
scaled by Γ.

(see the orange crosses in the l.h.s. panels). On the other hand, smaller eigenvalues

gain importance with NC and eventually converge to 2Γ. For even chains this eigen-

value is present for all chain lengths (single upper orange crosses in the r.h.s. panels).

The imaginary-part of the eigenvalues (green stars) is always way below its respec-

tive real-part and thus the Lamb-shift induces slow oscillations, which are damped

almost immediately. The blue points represent the influence of the CWC. As long

as ωf ≪ Reλl, the CWC oscillations are damped by the relaxation rates. For longer

chains, however, the influence of those oscillations in the occupation number grows in

their absolute values as well as their weight relative to the relaxation rates. For that

reason, the damping of the CWC oscillations happens later in time for longer chains

and the influence of the CWC on the short-time dynamics grows, which explains the
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Figure 5.18.: Impurity occupation nd(t) for chain length NC = 10. In each panel a
different parameter is varied. We have varied (a) the bandwidth D, (b)
the impurity level ǫd, (c) the temperature T and (d) the discretization
parameter Λ. In all panels, except for (c), the temperature is chosen
to be T = Γ. In all case, β has been adjusted to reach the desired
temperature. The OWC is depicted as a solid line, the CWC as dotted.
The OWC without the Lamb-shift is presented as a dashed line and the
analytical solution according to App. A.2 is added as a black dashed line.

”bumps” in the r.h.s. panels of Fig. 5.16 for longer chains. Since the CWC is known to

yield the exact short-time dynamics increasingly well with longer chains, those unphys-

ical bumps are expected to converge to the exact dynamics with increasing NC. This

will be investigated in Chap. 6, since truncation of the high-energy states is required

to calculate chains with NC ≫ 10.
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In Fig. 5.18 the OWC with (solid lines) and without (dashed lines) Lamb-shift is

compared to the CWC (dotted lines) in different parameter regimes for a chain length

of NC = 10. Obviously, the effect of the Lamb-shift is small. Only by increasing Λ

a significant influence of the Lamb-shift can be observed. As predicted in Sec. 4.6,

increasing the local parameter ǫd improves the MA, while increasing the temperature

T improves the BA.

5.4.2. Equilibrium Spectral Functions

In analogy to Sec. 5.4.1, we start by defining the TD-EGF

Gd(t) = −iΘ(t)Tr{ρ[d(t), d†]s}
=
∑

f,l

Yl,fe
iωl,f t−Reλlt (5.4.2.62)

of the impurity in the time domain (for details on the definitions see Sec. 4.4). The

GF in the frequency domain is obtained via a half-sided Fourier transform

Gd(ω + i0+) =

∫ ∞

0

dt
∑

f,l

Yl,fe
i(ω+ωl,f )t−Reλlt

=
∑

f,l

Yl,f

ω + ωl,f + iReλl

(5.4.2.63)

slightly above the real axis in the complex plain. The ESF of the impurity follows as

Ad(ω) = − 1

π
ImGd(ω + i0+)

=
1

π

∑

f,l

Reλl ReYl,f − (ω + ωl,f ) ImYl,f

(ω + ωl,f )2 + (Reλl)
2 . (5.4.2.64)

The CWC solution can be obtained by λl → 0. Since the CWC spectrum naturally

consists of delta-peaks, it is artificially broadened by a logarithmic Gaussian and, for

small ω, by a Lorentzian. Details on this broadening scheme can be found in Sec. 3.8.

A broadening of the ESF peaks relates to a damping in the time domain. Consequently,

a small/large relaxation rate of the OWC translates to a narrow/wide broadening of

the spectrum peaks.

An initial value Gd(t = 0) = 1 corresponds to the sum-rule of the ESF and should

always be fulfilled. In fact, this value is a simple way to assess the correctness and the
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Figure 5.19.: The time-dependent retarded Green’s function Gd(t), calculated via
(5.4.2.62), versus dimensionless time tΓ for the CWC (left panels (a) and
(c) ) and the OWC (right panels (b) and (d) ). The analytical solution
e−Γt is added as black dashed lines for comparison.

numerical accuracy of the method.

In the case of the RLM and a constant DOS, Gd(t) resembles a simple exponential

decay with rate Γ, while the corresponding ESF is a Lorentzian of width Γ (see App.

A.1). This once again makes the RLM the perfect foundation to benchmark the OCF

before proceeding to non-trivial models in Chap. 7.

We begin by choosing a discretization parameter of Λ = 2 and a bandwidth of

D = 100Γ, as already done in the previous section. The chain length is varied and the

temperature is in all cases adapted to be T = Γ. We choose an impurity energy at the

Fermi-level to obtain a symmetrical spectral function around ω = 0.

In Fig. 5.19 the TD-EGF Gd(t) is plotted to compare the CWC and the OWC.

Firstly, Gd(t = 0) = 1 is always fulfilled, which is clear in view of the fact, that it is

solely defined by the closed chain and no numerical approximation has been performed

here. Secondly, the CWC resembles the analytical solution for short times well, while
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it then exhibits periodic revival oscillations and does not approach a steady-state. The

OWC solution, on the other hand, relaxates to its steady-state. Here the even-odd

behavior resembles the non-equilibrium dynamics of Fig. 5.16 for similar reasons. The

steady-state Gd(t → ∞) = 0 is guaranteed by the fact, that χaa = 0, and so the

corresponding BRT does not include the ωf = 0 sub-space. However, this subspace is

the only one that includes the λl = 0 eigenvalue responsible for a finite steady-state of

the system. Thus, all eigenvalues of the BRT occur in complex conjugate pairs with

Reλl > 0 and lead to a complete dissipation of χ(t). The ”bumps” around t ≈ Γ in the

OWC solution stem from the influence of the CWC, which becomes dominant on short

time scales if the chain length is increased. This effect has been well covered in Sec.

5.4.1. The corresponding spectral functions could be obtained by a numerical Fourier

transformation. However, we analytically calculate them from the parameters Yl,f , ωf

and λl as in Eq. (5.4.2.64).

In Fig. 5.20 the spectral functions are plotted in an analog manner to Fig. 5.19.

The dominance of the one-particle energies ≈ ±V in the even chains is depicted as

the two peaks in the upper panels. Those peaks are expected to merge in the limit of

long Wilson chains. The CWC shows a reverse behavior with increasing chain length.

Here the dominant contribution to the ESF starts around the local energy level and

then splits up into two peaks and thereby decreases the height of the resulting peak.

However, in the limit of long Wilson chains the CWC is expected to yield good results

for the spectral function. Similar to the non-equilibrium case in Sec. 5.4.1, the BRT

contains the 2Γ-eigenvalue for all odd chain lengths, and thus the correct Lorentzian

is obtained in each case. The ”bumps” of Fig. 5.19 translate to small oscillations at

the sides of the Lorentzian. However, with increasing chain length, the CWC solution

of Gd(t) is valid for increasingly longer time scales, which is the same effect as seen in

nd(t). Under this aspect, the unphysical oscillations are expected to vanish for longer

chains, and the OWC is expected to converge to the correct solution. This will be

further investigated in Sec. 6.2.

At low temperatures, the OWC solution of χ(t) exhibits an interesting behavior,

i.e. the contribution of the dissipative part of the BRT shrinks, making it effectively

diagonal. Since the off-diagonal elements of the BRT, i.e. the dissipative part, are

proportional to Fermi functions and the Fermi function vanishes for positive energies,

the BRT becomes a triangular matrix, if T is sufficiently small. Consequently, the

dissipative part has no influence on the eigenspectrum of the BRT. In fact, those

elements have no impact on χ(t) at all. This can be understood by examining the
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Figure 5.20.: The spectral functions Ad(ω), calculated via (5.4.2.64), versus dimension-
less energy ω/Γ for the CWC (left panels (a) and (c) ) and the OWC (right
panels (b) and (d) ). The analytical solution is added as black dashed
lines for comparison. The CWC curves are broadened with a logarithmic
Gaussian factor of b = 0.8 and we choose a bandwidth of D = 100Γ.

operator χ(0). In the untruncated system eigenbasis we obtain

χmn(0) = 〈m|χ(0) |n〉 =
e−βEm + e−βEn

Z
d†mn. (5.4.2.65)

If both eigenenergies Em, En > 0, the expression vanishes for T → 0. In general, χmn(0)

is damped quickly, if the energies are relatively large. Let us define the equation

Oab =
∑

mn

Rab,mnPmn (5.4.2.66)

in the system eigenbasis, with O and P being arbitrary local operators and R being

the BRT. To examine the off-diagonal elements, consider a 6= m and b 6= n, i.e. the

BRT is equal to the dissipative part, which is ∝ δEa−Eb,Em−En
fβ(Ea − Em) (see Eq.
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Figure 5.21.: Relative (and thus dimensionless) difference ∆Ad(ω) of the OWC ESF
with and without the dissipative part for different temperatures T . The
chain lengths are chosen as (a) NC = 6, (b) NC = 7, (c) NC = 8 and (d)
NC = 9.

(4.5.57)). These elements are non-zero, iff Ea −Em = Eb −En ≤ 0, which means, that

the indices m and n are associated with relatively large eigenenergies. If we choose

P ≡ χ(0), then the elements Pmn of large eigenvalues Em, En are zero and the operator

O is independent of the dissipative elements. As a consequence, the expression

|χ(t)〉 = e−Rt |χ(0)〉 . (5.4.2.67)

has no contribution of the dissipative elements.

Up to this point, the discussion has been rather intuitive. To prove the statement,

that the dissipative part of the BRT can effectively be neglected for T → 0, we have

plotted the relative difference of the OWC ESF Ad(ω) with and without the dissipative

part of the BRT in Fig. 5.21. The inverse temperature β has been varied to set different

temperatures T . Since the spectra are symmetric, we have restricted ourselves to the
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positive part of the spectrum. The differences decrease with lower temperature, as has

been suggested above. For even chain length the diagonal version of the BRT becomes

exact at T ≤ 0.1Γ. For odd chains a small difference between the spectral functions

remains. With increasing chain length, we expect the even-odd behavior to reduce and

the influence of the dissipative part to decrease further for small temperatures.

With a diagonal BRT, the computation simplifies significantly. We can express the

unitary, i.e. the diagonal, part of the BRT as Rab,ab = ra + r∗b (cf. Sec. 5.2). It is thus

sufficient to construct and store the first order tensor ra =
∑

l Γal,la. The GF can then

be expressed as

Gd(ω) =
∑

ab

dabχba(0)

ω + ωab + i(ra + r∗b )
, (5.4.2.68)

which represents a simplification of Eq. (5.4.2.63) by neglecting the dissipative part

of the BRT. The diagonal elements ra + r∗b of the BRT serve as direct broadening

parameters for the CWC spectrum. In contrast to Eq. (5.4.2.63), we have changed

the indices here. The index l can be dropped, since no diagonalization of the BRT is

necessary and the index f is split up into a and b according to ωab = ωf . The reduction

to the diagonal part of the BRT renders a diagonalization obsolete. Furthermore, there

is no requirement to construct a fourth order BRT, but instead the first order tensor r

is sufficient. Thus the program complexity of the OWC reaches the orders of magnitude

of the CWC. In this regime, the alternatives to optimize the construction of the RGFs

mentioned at the beginning of this section are relevant.

5.5. Summary

We defined a CFE, that restores the continuum for a logarithmically discretized bath

by iteratively coupling reservoirs to the Wilson chain, and thus constructing an OWC.

To adapt the formalism to arbitrary discretization parameters Λ ≥ 1, the low-energy

reservoir at the end of the chain is at each iteration n divided into a high- and a low-

energy part by a cut-off function with a cut-off frequency ωC
n . The remaining OWC

is then constructed from the low-energy reservoir. Since there are strict criteria for

the cut-off function, its precise form does not significantly influence the RGFs and is

effectively no DOF of the OWC. The OCF is adaptable to arbitrary bath DOS, where

symmetric spectra are preferable to simplify the algorithm. To numerically calculate

the reservoir coupling functions, which shrink exponentially with n, a logarithmic mesh
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needs to be chosen. The finite number of mesh points represents a source of numerical

inaccuracy, however, with our chosen number of 103 mesh points, this inaccuracy is

negligible.

The purpose of the extension of the system part by the Wilson chain, and thus the

construction of the OWC, is to improve the BMA. As pointed out in Chap. 4, the

BMA is based upon the assumption that the hybridization between the system and

the bath is small with respect to the other parameters of the OQS. This criterion

is now shifted to the hybridization between the single chain sites and the respective

reservoirs. We have shown, that the system energies of the OWC are defined by the

local impurity parameters, as well as the Wilson chain coupling parameters tn. The

bandwidth D only influences the coupling between the impurity and the OWC and

has no direct effect on the BMA. The width of the reservoir coupling functions can be

estimated by ωC
n , and we have shown, that all parameters mentioned above are larger

than the respective hybridization t′n to the single reservoirs. In the limit of Λ → 1+,

the t′n’s vanish and the BMA becomes exact.

The most significant error of the BMA is expected to occur for the first chain sites

n ≪ NC, which is due to the fact that the t′n increase with n, if n is small, and only start

to decrease for an effective Wilson chain temperature below 0.5D. If Λ is small, n is

required to be relatively large for the reservoir hybridization to be small. Nevertheless,

the contribution of the first chain sites to the total BRT is increasingly small with

decreasing effective temperature.

The reservoir coupling functions exhibit an even-odd behavior and a scaling of Λ

between each iteration n and n + 2. This behavior is already known from the level

spectrum of the Wilson chain, which exhibits two distinct fixed points. An increase of Λ

enhances the difference between even and odd iterations. For an effective temperature

of 0.1D, the steady-state of the RGFs is reached and thus the even-odd effect has

effectively vanished.

The even-odd effect is also depicted in TD-NEVs, TD-EGFs and ESFs, respectively,

for CWC and OWC curves alike. With increasing n these differences even out, and

the solutions converge to the exact solution, in the limit of the BMA. The RLM has

been examined for chain lengths NC ≤ 10 to allow for an exact treatment without

truncation of high-energy system eigenstates. This way, we can assume the impact of

numerical errors on the solutions to be minimal.

In TD-NEVs the steady-states are in the BMA completely defined by the system

eigenenergies. For increasing chain length the Wilson chain is known to reproduce
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these equilibrium values well. Additionally, the BRT provides a thermalization on the

correct time scale for the RLM. The MSA restricts the time-evolution of the density

matrix to exponential decay terms and thus a physically correct short-time behavior

cannot be simulated by the BMA. However, we were able to show, that the CWC

solution begins to dominate for short times, if the chain length is increased, which

improves the OWC curves. In that context, the OWC in the BMA in second order

seems to be an adequate approach for TD-NEVs.

The TD-EGFs show a similar behavior as the TD-NEVs. Short-time dynamics is

governed by the CWC, while the reservoirs allow for a complete relaxation within few

units of 1/Γ. In contrast to TD-NEVs, the steady-states of the TD-EGFs are not

influenced by the BMA, and are thus exact up to numerical precision. With increasing

chain length NC and discretization parameter Λ, unphysical oscillations appear due to

the discretization error. These oscillations translate to bumps in the outer regions of

the respective ESF. We expect the CWC TD-EGF short-time dynamics to improve

for smaller Λ and thus the bumps in the OWC ESF results to be reduced.

For low temperatures, the dissipative part of the BRT appears to be negligible when

calculating ESFs. A reduction of the BRT to the unitary part has the potential to

spare a significant amount of runtime, making the OWC program runtime comparable

to that of the CWC. This will be especially relevant for large Wilson chains, since here

the effective system temperature is naturally lower, if all other parameters are fixed.
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Up to this point we have restricted our investigations of closed and open Wilson chains

for purely practical reasons to chain lengths NC ≤ 10 . The Hilbertspace of a Wilson

chain grows exponentially by a factor of d with each additional chainsite. The local

Hilberspace dimension d = 2 of the simple RLM is increased, if DOF such as spin or

additional channels are included. This sets a rather tight limit to the application of a

Wilson chain. Furthermore, dynamical quantities require long chains in order to avoid

major finite-size effects to occur up to a certain point in time of interest. Long chains

also allow for reaching exponentially small energy scales, and even the Kondo scale,

without choosing a large Λ and, thereby, suffering significant discretization errors (see

Sec. 3.10). For Wilson chains of length NC ≫ 10 the NRG introduces a truncation

scheme that discards certain states at each iteration to keep the Hibertspace constant.

Thus, the complexity grows linearly with NC, instead of exponentially. Initially, the

NRG has only been applied to the equilibrium case (see e.g. Ref. [22]). Though,

within the last 20 years significant progress has been made in applying the NRG to

the calculation of non-equilibrium dynamics and spectral functions [29, 23, 24, 88].

The suitability of a truncation scheme for all of these cases is based on a simple fact.

Since the construction of a Wilson chain implies a logarithmic discretization of the

band, a wide range of energies is included in the system, spanning from the bandwidth

D down to the effective temperature TNC
of the Wilson chain of length NC (see Eq.

(3.5.28)). By increasing NC, while keeping Λ fixed, TNC
can be decreased quickly by

orders of magnitude. Low-energy states β(E −Eg) < 1 are favored by the Boltzmann-

distribution. At T ≈ TNC
, high-energy states with E − Eg ≫ TNC

can reliably be

neglected since the density matrix damps their contributions (see Sec. 3.3). This

truncation scheme has already successfully been applied to an NRG hybrid approach

(see Sec. 3.11). Our objective is to apply the NRG to the OWC to construct a hybrid

system, which combines the properties of a true OQS with the versatility of the NRG.

Note that flavor DOF, such as spin or band indices, of local operators is omitted since

it does not impact the following argumentation. Where necessary, the incorporation of
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DOF is explicitly addressed.

6.1. Master Equation for the Truncated Wilson Chain

We start with the time-evolution of an arbitrary local operator

OS(t) = Tr
{

e−iHStρIS(t)eiHStOS

}

. (6.1.1)

By choosing ρIS(t) as the reduced density matrix obtained by the BRF the limitations

of the BMA are included in the system. The quality of the approach is then determined

by the system Hamiltonian HS. In Chap. 4 we have reduced HS to the bare impurity.

In Chap. 5 the local system has been enlarged to a relatively short Wilson chain, which

already significantly improved the BMA. Consequently, Eq. (6.1.1) has been expressed

in the complete basis

1 =
∑

r

|r;NC〉 〈r;NC| (6.1.2)

of a Wilson chain of length NC. Here |r;NC〉 denotes an eigenstate of the CWC

Hamiltonian and the sum runs over all of those eigenstates. In the context of the NRG,

at iteration n = nmin the truncation scheme starts, i.e. all eigenstates are divided into a

discarded set of high-energy states |l;nmin〉 and a kept set of low-energy states |k;nmin〉.
With increasing NRG iteration n the number of possible configurations of charge on

the Wilson chain grows. To account for that fact, an index e is added to the system

state, which aggregates all EDOF of the rest chain NC − n. The state |r, e;n〉 is thus

degenerate by a factor of dNC−n to be compatible to the states of higher iterations > n.

The basis

1nmin
=
∑

r,e

|r, e;nmin〉 〈r, e;nmin| (6.1.3)

is still complete, if r includes all kept and discarded states on iteration nmin. By

dividing the kept states |k, e;nmin〉 into kept and discarded states on iteration nmin + 1,

a different set of basis states is obtained. By defining all states of the last iteration

n = NC to be discarded, we can write a complete set of eigenenergies in the context of
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a truncated Wilson chain as

1m =
m
∑

n=nmin

∑

l,e

|l, e;n〉 〈l, e;n| +
∑

k,e

|k, e;m〉 〈k, e;m| (6.1.4)

with nmin ≤ m ≤ NC. The exact case without truncation is recovered for nmin = NC.

The time-evolution of a local operator OS in the basis of the truncated chain is given

by (cf. Eq. (3.9.55))

OS(t) =

NC
∑

n=nmin

∑

r,s/∈{k,k′}

ρredsr (n; t)On
rse

i(En
r −En

s )t, (6.1.5)

where

ρredsr (n; t) ≡
∑

e

〈s, e;n| ρIS(t) |r, e;n〉

=
∑

α,e

e−λαtcα 〈s, e;n| ρrα |r, e;n〉 . (6.1.6)

is the time-dependent density matrix, which is reduced both with respect to the trace

TrB over the bath DOF and the sum over the rest chain environment e. The quan-

tities λα are the eigenvalues, ρ
r/l
α the r.h.s./l.h.s. eigenoperators of the BRT and

cα ≡ Tr
[

ρlαρS(t = 0)
]

. To obtain 〈s, e;n| ρrα |r, e;n〉, the BRT has to be diagonal-

ized in the complete eigenbasis 1n of the truncated Wilson chain. For that reason, we

rewrite the BRT of Eq. (4.5.57) in the form

R12,34 = δ13δ24
∑

5

(

Γ15,51 + Γ∗
25,52

)

− 2δω12,ω34ReΓ42,13 (6.1.7)

with the damping tensor

Γ12,34 =

NC
∑

m=0

Cm,p(ω34)f
†
m,12fm,34 + Cm,h(ω34)fm,12f

†
m,34. (6.1.8)

The numbers in the subscript are defined by i ≡ |ri, ei;ni〉 and thus account for a kept

or discarded state at iteration ni. The sum over 5 needs to comprise the complete basis
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set 1n. The master equation is consequently given by

ρ̇12(t) = −
∑

34

R12,34ρ34(t), (6.1.9)

where
∑

34 needs to comprise complete basis sets as well. For each element n of the

sum over all truncated NRG iterations in Eq. (6.1.5) a basis set 1n needs to be chosen,

that includes the kept states of iteration n and the discarded states of iterations m

with nmin ≤ m ≤ n.

In its most general form, the BRT R12,34 may couple states of four independent

NRG iterations. For n = nmin the BRT is self-contained on its iteration, while for

n = NC all iterations ≥ nmin are coupled. To assess the dimension of such a tensor,

let us first estimate the number of states of the complete basis set. Independent of

the iteration n the total number of states that comprise the complete basis set 1n is

around NSd
NC−nmin . The definition of the EDOF e keeps this number constant over all

iterations. Obviously, this number is equal to the number of states of the untruncated

Wilson chain and is thus exponentially large. The TD-NRG overcomes this problem

by reducing the sum over two complete basis sets in Eq. (6.1.5) to a sum over n and

r, s. The EDOF are condensed in the reduced density matrix (see Eq. (3.9.56)). A

similar strategy can be used in the master equation (6.1.9) to reduce it to

ρ̇12(t) = −
∑

5

(

Γ15,51 + Γ∗
25,52

)

ρ12(t) + 2

NC
∑

n3,n4=nmin

δn3,n4

∑

r3,r4 /∈{k,k′}

δω12,ω34

∑

e3,e4

ReΓ42,13ρ34(t).

(6.1.10)

While the unitary part immediately follows from the Kronecker-deltas in Eq. (6.1.7),

the origin of the summation in the dissipative part is not so obvious. Let us for that

reason explicitly show that

∑

34

δω12,ω34Γ42,13ρ34(t) =

NC
∑

n3,n4=nmin

δn3,n4

∑

r3,r4 /∈{k,k′}

δω12,ω34

∑

e3,e4

Γ42,13ρ34(t). (6.1.11)
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Firstly, we reverse the second MA and the secular approximation to obtain

∑

34

δω12,ω34Γ42,13ρ34(t)

→
∑

34

NC
∑

m=0

∫ t

0

ds
[

Cm,p(s) 〈4| f †
m(t) |2〉 〈1| fm(t− s) |3〉

+ Cm,h(s) 〈4| fm(t) |2〉 〈1| f †
m(t− s) |3〉

]

〈3| ρIS(t) |4〉

=

∫ t

0

ds
∑

34

〈4|X12(t, s) + Y12(t, s) |3〉 〈3| ρIS(t) |4〉 (6.1.12)

with

X12(t, s) ≡
NC
∑

m=0

Cm,p(s)f †
m(t) |2〉 〈1| fm(t− s)

Y12(t, s) ≡
NC
∑

m=0

Cm,h(s)fm(t) |2〉 〈1| f †
m(t− s). (6.1.13)

The sum over 3 can be dropped while the sum over 4 corresponds to a trace. The last

line of Eq. (6.1.12) is the trace of a product of two operators and thus it can be treated

analogly to Eq. (6.1.5). By reapplying the two approximations, Eq. (6.1.11) is shown.

The EDOF are still coupled in the master equation (6.1.10), which makes it prac-

tically impossible to be calculated. By choosing n1 = n2 ≡ n, e1 = e2 ≡ e and

performing the sum over e, we construct the reduced density matrix of Eq. (6.1.5) on

the l.h.s. of the master equation. To discuss the EDOF we investigate the unitary and

the dissipative part separately in the subsequent sections.
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6.1.1. Unitary Part of the Master Equation

The unitary part comprises two terms of the type

∑

5

∑

e

Γ15,51ρ12(t)

=
∑

5

∑

e

NC
∑

m=0

(

Cm,p(ω51)f
†
m,15fm,51 + Cm,h(ω51)fm,15f

†
m,51

)

ρ12(t)

=

NC
∑

n′=nmin

∑

l5

∑

e5,e

NC
∑

m=0

[

Cm,p(En′

l5
− En

r1
) 〈r1, e;n| f †

m |l5, e5;n′〉 〈l5, e5;n′| fm |r1, e;n〉+

+ Cm,h(En′

l5
− En

r1
) 〈r1, e;n| fm |l5, e5;n′〉 〈l5, e5;n′| f †

m |r1, e;n〉
]

〈r1, e;n| ρIS(t) |r2, e;n〉

=

NC
∑

n′=nmin

∑

l5

NC
∑

m=0

[

Cm,p(En′

l5
− En

r1
)(Fm)r1l5 (n, n′) + Cm,h(En′

l5
− En

r1
)(Fm)r1l5 (n, n′)

]

ρredr1r2
(n; t).

(6.1.1.14)

In the first step we simply inserted Eq. (6.1.8). In the second step we defined
∑

5 |5〉 〈5| = 1NC
with n5 = n′ and expanded the short-form notations in their ex-

plicit form. In the last step we have used

〈s, e;n| ρIS(t) |r, e;n〉 = ρredsr (n; t)dn−NC , (6.1.1.15)

which is in accordance with Eq. (6.1.6), and defined

(Fm)r1r2(n1, n2) = dn1−NC

∑

e1,e2

〈r1, e1;n1| f †
m |r2, e2;n2〉 〈r2, e2;n2| fm |r1, e1;n1〉

(Fm)r1r2(n1, n2) = dn1−NC

∑

e1,e2

〈r1, e1;n1| fm |r2, e2;n2〉 〈r2, e2;n2| f †
m |r1, e1;n1〉 .

(6.1.1.16)

The explicit calculation of (Fm)r1r2(n1, n2) and (Fm)r1r2(n1, n2) is described in Sec. 6.1.4.

The last line of Eq. (6.1.1.14) includes the discarded states of all iterations n′ > n.

However, these states can also be expressed by the kept states of iteration n and so we
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can substitute

NC
∑

n′=n

∑

l5

NC
∑

m=0

[

Cm,p(En′

l5
− En

r1
)(Fm)r1l5 (n, n′) + Cm,h(En′

l5
− En

r1
)(Fm)r1l5 (n, n′)

]

ρredr1r2
(n; t)

→
∑

r5

NC
∑

m=0

[

Cm,p(En
r5
− En

r1
)(Fm)r1r5(n, n) + Cm,h(En

r5
− En

r1
)(Fm)r1r5(n, n)

]

ρredr1r2
(n; t).

(6.1.1.17)

The indices r5 here include kept and discarded states of the iteration n.

6.1.2. Dissipative Part of the Master Equation

The off-diagonal elements of the BRT are defined by the dissipative term of Eq.

(6.1.10), where we have

NC
∑

n3,n4=nmin

δn3,n4

∑

r3,r4 /∈{k,k′}

δω12,ω34

∑

e,e3,e4

ReΓ42,13ρ34(t)

=

NC
∑

n3,n4=nmin

δn3,n4

∑

r3,r4 /∈{k,k′}

δω12,ω34

∑

e,e3,e4

NC
∑

m=0

fβ(ω13)
[

Γm,p(ω13)f
†
m,42fm,13+

+ Γm,h(ω13)fm,42f
†
m,13

]

ρ34(t)

=

NC
∑

n′=nmin

∑

r3,r4 /∈{k,k′}

δEn
r1

−En
r2

,En′
r3

−En′
r4

∑

e,e3,e4

NC
∑

m=0

fβ(En
r1
− En′

r3
)×

×
[

Γm,p(En
r1
− En′

r3
) 〈r4, e4;n′| f †

m |r2, e;n〉 〈r1, e;n| fm |r3, e3;n′〉+

+ Γm,h(En
r1
− En′

r3
) 〈r4, e4;n′| fm |r2, e;n〉 〈r1, e;n| f †

m |r3, e3;n′〉
]

ρ34(t)

≈
NC
∑

n′=nmin

∑

r3,r4 /∈{k,k′}

δEn
r1

−En
r2

,En′
r3

−En′
r4
fβ(En

r1
− En′

r3
)ρredr3r4

(n′; t)×

×
min(n,n′)
∑

m=0

[

Γm,p(En
r1
− En′

r3
)(Fm)r1r2r3r4

(n, n′) + Γm,h(En
r1
− En′

r3
)(Fm)r1r2r3r4

(n, n′)
]

.

(6.1.2.18)

Here, similar steps have been performed as in Eq. (6.1.1.14) and the Kronecker-deltas
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δEn
r1

−En
r2

,En′
r3

−En′
r4

add another restriction to the sums. We have defined

(Fm)r1r2r3r4
(n, n′) = dn

′−NC

∑

e,e3,e4

δe3,e4 〈r4, e4;n′| f †
m |r2, e;n〉 〈r1, e;n| fm |r3, e3;n′〉

(Fm)r1r2r3r4
(n, n′) = dn

′−NC

∑

e,e3,e4

δe3,e4 〈r4, e4;n′| fm |r2, e;n〉 〈r1, e;n| f †
m |r3, e3;n′〉 .

(6.1.2.19)

In the last step of Eq. (6.1.2.18) we have introduced our first approximation in the

context of expressing the master equation for the truncated system. Here we assume

that the index m ≤ n, n′, which we denote by the local operator approximation (LOA)

(see Sec. 6.1.3). This approximation allows us to interpret the chain operators f
(†)
m as

local operators with respect to the EDOF e, e3 and e4, respectively1.

Consequently, for n′ ≥ n we obtain e3 = e4 in Eq. (6.1.2.19), which allows us to

substitute 〈r3, e3;n′| ρIS(t) |r4, e4;n′〉 = ρredr3r4
(n′; t)dn

′−NC . Furthermore, the sum over

e3 cancels out the factor of dn
′−NC and the sum over e yields another factor of dn

′−n.

Since we assume n′ ≥ n, this factor enlarges the particular terms. However, if the

temperature is sufficiently low, the Fermi-function fβ(En
r1
−En′

r3
) suppresses these terms,

since En
r1
− En′

r3
> 0 in most cases. Additionally, the overlap 〈r, e;n| f (†)

m |r′, e′;n′〉 is

expected to decrease if |n− n′| is large. For that reason, the terms n′ ≫ n can be see

as negligibly small.

The case n′ < n needs to be treated with more caution. The indices e in Eq.

(6.1.2.19) demand the last NC − n elements of e3 and e4 to be identical and here the

reduced density matrix can be constructed. However, the first n − n′ elements are

not necessarily identical, since the operator |r2, e;n〉 〈r1, e;n| is not diagonal in these

EDOF. Here we require a further assumption of

〈s, e;n| ρIS(t) |r, e′;n〉 ≈ ρredsr (n; t)dn−NCδee′ , (6.1.2.20)

i.e. we assume that the density matrix is diagonal in the EDOF for all times t. This

restriction demands e3 = e4 and so the sum over e3 yields a factor of dn−n′

, while the

sum over e yields dNC−n. Together, both factors cancel out dn
′−NC in Eq. (6.1.2.19).

Opposed to the case n′ ≥ n, the Fermi-function has a relevant contribution for all

temperatures, since in most cases En
r1
− En′

r3
< 0 if n′ < n. Hence, these terms are

1It should be stressed, that in the original NRG context, only sites ≤ nmin are defined as ”local”.
Here we expand this term to all sites that are equal or below the respective indices n, n′.
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neither damped by a pre-factor, nor by the Fermi-function and the assumption Eq.

(6.1.2.20) needs to be evaluated.

Obviously, the density matrix is diagonal in the EDOF in the equilibrium case t →
∞, since the density matrix relaxates into the Boltzmann distribution in the final NRG

basis. For t = 0 this does not hold and the density matrix is not diagonal in the EDOF

(see Sec. 3.9). To assume diagonality for all times thus generates an error of, up to

this point, undefined quantity in the short-time behavior. However, one has to keep in

mind, that the error grows with n− n′ and vanishes for n′ → n. As mentioned above,

the overlap 〈r, e;n| f (†)
m |r′, e′;n′〉 is expected to decrease, if |n− n′| is large. From that

perspective, the terms n′ ≈ n have the most important contribution in the master

equation and the approximation is well justified.

6.1.3. Local Operator Approximation

Let us discuss the impact of the approximation m ≤ n, n′. In fact, our argument is

that Cm,p/h(En′

r −En
s ) is negligible, if at least one of the numbers n, n′ is smaller than

m. We have already mentioned this approximation in Sec. 5.3.2, however, here we

want to give a more rigorous justification.

To assess the LOA, we present the NRG spectrum for the first n = 20 iterations in

Fig. 6.1. For demonstration purposes we have chosen the small number of NS = 30

kept states (green lines) and thus the truncation of the high-energy states (red lines)

starts at nmin = 3. Since we restrict ourselves to the spinless RLM, d = 2 and thus 30

states are discarded at each iteration. Note that we have plotted the absolute energies

and so no ground-state-shift has been applied (see Sec. 3.3). The black dashed lines

represent the edge of the effective support of the correlation function Cn(ω) (called

correlation width), which is roughly given by ±5ωm with ωm being the NRG-scale (see

Fig. 5.11).

To assess the approximation, several different cases need to be addressed. In the first

part of the last step in Eq. (6.1.1.14), n′ < n is always fulfilled and the energies En′

l5
are

all discarded. Let us first concentrate on the case n′ ≪ n. Here, the energy difference

En′

l5
− En

r1
≈ En′

l5
> 0 is mainly defined by En′

l5
. In Fig. 6.1(a) we can see, that the

discarded energies of iteration n are well outside of the correlation width of iterations

m > n. Thus, Cm,p/h(En′

l5
−En

r1
) → 0 and the approximation m ≤ n, n′ becomes exact

for n′ ≪ n.

The other extreme case, n′ = n, is more problematic in the context of the LOA.

Figure 6.1(b) shows, that only some kept-discarded energy differences (blue lines) lie
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Figure 6.1.: Eigenenergies of the truncated Wilson chain for different NRG iterations n.
The vertical axis is given in units of Γ and scaled logarithmically. We have
chosen D = 100Γ and Λ = 2. In panel (a) we present the bare energies
En

r , divided into kept states (green) and discarded states (red). All values
are shifted by an offset of +152Γ to allow for a logarithmic presentation.
In panel (b) we plot the energy differences ∆En = En

r − En
s within one

iteration, where we distinguish discarded-discarded (red), discarded-kept
(blue) and kept-kept differences (green), respectively. The plot is symmet-
rical on the vertical axis and thus the negative half is omitted. As a black
dashed line 5ωn is added.

outside of the correlation width for n < m. All other energies can only be neglected

if n ≪ m and if Λ is large. Precisely, we expect to neglect significant contributions of

the correlation functions for relatively large n′, n and n′, n 6= NC. However, compared

to the total number of all possible combinations of the indices n′, n,m the effect of

the approximation m ≤ n, n′ is to decrease the relaxation rates of the density matrix

by only a small amount. Since the master equation is significantly simplified by the

LOA, we accept this small additional error. Furthermore, the contribution of the chain

operators of site m is small in the basis of iteration n, if n < m, as discussed in Sec.

5.3.2.
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6.1.4. Calculation of the Matrix Elements of the Chain Operators

We turn to the explicit calculation of the tensors Fr1r2(n1, n2) of Eq. (6.1.1.16). The

case n1 = n2 = n is trivial. Since the chain operators are assumed to be local, they are

diagonal in the EDOF e1, e2. Thus we obtain

(Fm)r1r2(n, n) = dn−NC

∑

e1,e2

δe1,e2 〈r1, e1;n| f †
m |r2, e2;n〉 〈r2, e2;n| fm |r1, e1;n〉

= 〈r1;n| f †
m |r2;n〉 〈r2;n| fm |r1;n〉 . (6.1.4.21)

The prefactor is cancelled by the trace over e1, and we have defined the chain operators

in the basis of the NRG iteration n without the EDOF.

Let us proceed to the case n1 < n2. We insert two complete basis sets 1n1 into Eq.

(6.1.1.16) to obtain

(Fm)r1r2(n1, n2) =dn1−NC

∑

e1,e2

〈r1, e1;n1| f †
m1n1 |r2, e2;n2〉 〈r2, e2;n2|1n1fm |r1, e1;n1〉

=dn1−NC

∑

k,k′

∑

e1,e2

〈r1, e1;n1| f †
m |k, e1;n1〉 〈k, e1;n1|r2, e2;n2〉×

× 〈r2, e2;n2|k′, e1;n1〉 〈k′, e1;n1| fm |r1, e1;n1〉
=dn1−n2

∑

k,k′

S
(n1,n2)
kk′,r2r2

〈r1;n1| f †
m |k;n1〉 〈k′;n1| fm |r1;n1〉 . (6.1.4.22)

As above, the chain operators are diagonal in the EDOF and thus demand that e =

e′ = e1. Of the complete basis set 1n1 only the kept states of iteration n1 have a

contribution, since the discarded states of iterations n1 are orthogonal to all states of

iterations n2 > n1. In the last step we have summed over e2, which yields a factor of

dNC−n2 . We are left with the calculation of the general overlap tensor

S
(n1,n2)
kk′,rr′ =

∑

e

〈k, e;n1|r;n2〉 〈r′;n2|k′, e;n1〉 , (6.1.4.23)

where the index e sums over all dn2−n1 EDOF which occur on the iterations n1 + 1 to

n2. Consequently, we need a way to successively transition the state |r;n2〉 down to a

state of iteration n1. The first step can be performed as

|r;n2〉 = 1n2−1 |r;n2〉 =
∑

k,α

P n2−1
r,k [α] |k, α;n2 − 1〉 . (6.1.4.24)
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From the complete basis set 1n2−1 only the kept states of iteration n2−1 remain, since

the discarded states of iterations < n2 are diagonal to |r;n2〉. The index α runs over

all d EDOF of the n2-th chainsite. The real matrix elements

P n2−1
r,k [α] = 〈k, α;n2 − 1|r;n2〉 (6.1.4.25)

are an integral part of the conventional NRG algorithm (see Sec. 3.4) and connect the

tensor-product state |k, α;n2 − 1〉 to the eigenstates of the subsequent NRG iteration.

If Eq. (6.1.4.24) is inserted into (6.1.4.23), we can define the overlap tensor recursively

via

S
(n1,n2)
kk′,rr′ =

∑

k,k
′
,α

P n2−1

r,k
[α]P n2−1

r′,k
′ [α]S

(n1,n2−1)

kk′,kk
′ . (6.1.4.26)

Since S
(n1,n2)
kk′,rr′ is not defined for n1 > n2, the recursion starts at

S
(n1,n2=n1)
kk′,rr′ = δkrδk′r′ (6.1.4.27)

and then successively increases n2. The overlap tensor is a tensor of fourth order in the

state indices and of second order in the iteration indices. Thus its dimension is of the

order N2
CN

4
S . If each NRG iteration is handled separately, the OWC requires around

NC BRTs of the order NS. These tensors are highly sparse, but yet their construction

constitutes a bottleneck to the total program. Consequently, the construction of all

required overlap tensors is not feasible with typical modern workstations. A more

efficient way of recursively calculating the tensors Fr1r2(n1, n2) is to define

(Fm)r1r2r3(n1, n2) =
∑

k,k′

S
(n1,n2)
kk′,r2r3

〈r1;n1| f †
m |k;n1〉 〈k′;n1| fm |r1;n1〉 , (6.1.4.28)

which is only of third order in NS. Equation (6.1.4.26) can be inserted here to define

the recursion relation

(Fm)r1r2r3(n1, n2) =
∑

k,k′,α

P n2−1
r2,k

[α]P n2−1
r3,k′

[α]F r1
kk′(n1, n2 − 1) (6.1.4.29)

with

(Fm)r1r2r3(n1, n2 = n1) = 〈r1;n1| f †
m |r2;n1〉 〈r3;n1| fm |r1;n1〉 (6.1.4.30)
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as the recursion start. The required tensor can be recovered by

(Fm)r1r2(n1, n2) = dn1−n2(Fm)r1r2r2(n1, n2). (6.1.4.31)

The case n1 > n2 can simply be obtained via

(Fm)r1r2(n1, n2) = (Fm)r2r1r1(n2, n1). (6.1.4.32)

Here, the horizontal line indicates that the chain operators fm and f †
m are switched.

Let us discuss a useful approximation to conclude this section. In Eq. (6.1.1.16)

the operator (Fm)r1r2(n1, n2) includes two different EDOF, e1 and e2 respectively. Since

the sum over these EDOF is included, the terms of f †
m and fm cannot be treated

independently. That is the reason why we need the third order tensors (Fm)r1r2r3(n1, n2).

However, if we approximate the EDOF of the lower NRG iteration as independent, we

can separate those terms. To illustrate that idea, we choose n1 > n2, without loss of

generality, and obtain

(Fm)r1r2(n1, n2) = dn1−NC

∑

e1,e2

〈r1, e1;n1| f †
m |r2, e2;n2〉 〈r2, e2;n2| fm |r1, e1;n1〉

=
∑

e2

[

〈r2, e2;n2| fm |r1;n1〉
]2

≈
[

∑

e2

〈r2, e2;n2| fm |r1;n1〉
]2

. (6.1.4.33)

The EDOF e2 are redefined as

e2 = {e2, e1}, (6.1.4.34)

where e2 denotes the EDOF for the chainsites n2 + 1, ..., n1. The LOA demands that

m ≤ n1, n2 and thus the chain operators are diagonal in the EDOF. For that reason,

we can set e1 = e1. We sum over e1, which yields a factor of dNC−n1 that cancels out

the factor of dn1−NC . Consequently, we are left with the sum over e2, which means that

all combinations of EDOF {αn2+1, ..., αn1} contribute to the sum. In the last step, we

interpret the sum over e2 as two independent sums and thus we are able to factorize

(Fm)r1r2(n1, n2). We denote this approximation by the name factorized local operator

approximation (FLOA).
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6.1.5. Single Shell Approximation

Let us discuss another approximation, the single shell approximation (SSA), that is

equally useful as the LOA. The objective of this section is to reduce the master

equation (6.1.9) to NC − nmin isolated equations, which each only include one single

NRG iteration n. The term ”shell” originates from the fact that in the context of

the Wilson chain each chain site corresponds to an energy shell, which is arranged

concentrically around the impurity.

As illustrated in Eq. (6.1.1.17), the unitary part of the master equation comprises a

sum of kept and discarded states on the iteration n′ = n, and discarded states for the

iterations n′ < n. The energy of these latter discarded states is typically larger than all

energies on the iteration n (see Fig. 6.1). Consequently, En′

l5
− En

r1
> 0 in most cases.

The real-part of the correlation functions is ReCm(ω) = Γm(ω)fβ(ω) and the Fermi-

function suppresses all positive energy contributions. Hence, the terms with n′ < n

can be neglected in the last line of Eq. (6.1.1.14), if the temperature is sufficiently low

(and this is typically the case in systems, where a truncation of high-energy states is

justified).

However, the imaginary part of the correlation functions is not proportional to the

Fermi-function and thus its is not suppressed for positive energies. Neglecting the

terms n′ 6= n is expected to produce a relatively large error in the Lamb-shift. In Sec.

6.1.9 we discuss the effect of the truncation on the Lamb-shift and propose several

approximations. Since the impact of the Lamb-shift on the final result is relatively

small, we can set the imaginary part of the BRT to zero to obtain a valid approximation.

For the dissipative part a different argument holds to calculate the master equation

within one single NRG iteration. As discussed in Sec. 6.1.2, terms in which the

absolute difference of n and n′ is large have an increasingly small contribution in the

master equation. Furthermore, the Kronecker-delta δEn
r1

−En
r2

,En′
r3

−En′
r4

in Eq. (6.1.2.18)

adds another restriction that favors n = n′. Here all terms are prohibited, which do

not fulfill En
r1
− En

r2
= En′

r3
− En′

r4
. Since this restriction originates from the secular

approximation, a small energy window ∆ might be chosen and all combinations of

energies might be accepted which suffice |En
r1
−En

r2
−En′

r3
+ En′

r4
| < ∆ (see Sec. 5.3.4).

In any case, it is unlikely to find identical energy differences En
r1
− En

r2
for r1 6= r2 on

different NRG iterations n and n′ (the case r1 = r2 and r3 = r4, which allows for n 6= n′

is discussed in Sec. 6.1.7). In this context, the approximation n = n′ appears valid for

the dissipative part as well.
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In the SSA the master equation (6.1.10) can be turned into

ρ̇redr1r2
(n; t) = −

n
∑

m=0

∑

r5

fβ(ωr5r1)Γm(ωr5r1)F
(m)
r1r5,r5r1

ρredr1r2
(n; t)

−
n
∑

m=0

∑

r5

fβ(ωr5r2)Γm(ωr5r2)F
(m)
r2r5,r5r2

ρredr1r2
(n; t)

+ 2
n
∑

m=0

∑

r3r4

δEn
r1

−En
r2

,En
r3

−En
r4
fβ(ωr1r3)Γm(ωr1r3)F

(m)
r4r2,r1r3

ρredr3r4
(n; t).

(6.1.5.35)

The indices ri denote kept and discarded states. We assume a particle-hole symmet-

ric bath continuum and defined the general spectral coupling function Γm(ω) for the

reservoirs, which stands for a high-energy reservoir if m < NC and a complete reservoir

if m = NC. Furthermore, the short-form notations

ρredr1r2
(n; t) = 〈r1;n| ρIS(t) |r2;n〉

F (m)
r1r2,r3r4

= 〈r1;n| f †
m |r2;n〉 〈r3;n| fm |r4;n〉 + 〈r1;n| fm |r2;n〉 〈r3;n| f †

m |r4;n〉
(6.1.5.36)

have been used.

The master equation (6.1.5.35) constitutes the bare minimum for an OWC formu-

lation in the context of a BMA. The fundamental physics of the correct relaxation

time and steady-state value are already well included in this crudely simplified version

of the complete master equation (6.1.9). With increasing chain length, the short-time

behavior is also reproduced correctly, since here the CWC dominates (see Sec. 5.4.1).

However, one major problem arises in the context of the SSA. Over time, the weight

of the density matrix relaxates from the high-energy states into the low-energy states.

Since all iterations are disconnected in our approximation, the weight flows from the

discarded-discarded sector of iteration n into its respective kept-kept sector, where the

latter is not included in the summation of Eq. (6.1.5) and so relevant information is

lost. In a correct formulation, the high-energy states would serve as source terms for

the low-energy states and thus transport information from the beginning of the Wilson

chain up to its end. This source term effect will be discussed in more detail in the

following section.
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6.1.6. Source Term Effect

As already mentioned, the time-dependent density matrix performs a transition from

a mixed state at t = 0 to a Boltzmann distribution for t → ∞ in the context of the

BMA. Consequently, information flows from the high-energy states to the low-energy

states and so the complete master equation (6.1.9) can be interpreted as a differential

equation that uses the high-energy states as source terms for the low-energy states. To

explicitly prove this fact, we recall from Eq. (6.1.3) that 1nmin
yields a complete basis

set including only the NRG iteration n = nmin. If we choose this basis set for all indices

1, 2, 3, 4, 5 that appear in the master equation2, ρred(nmin; t) can be calculated exactly

within one single NRG iteration only, since it is an isolated quantity with respect to

the lower energy states of the Wilson chain. The SSA or any other approximation

besides the LOA is not required in this context. Starting from the initial time t = 0,

all indices of the density matrix will relaxate into the kept-kept sector (i.e. the low-

energy sector) to form the Boltzmann distribution for t → ∞. However, this sector has

no contribution in the final expression (6.1.5) and so the contribution of ρred(nmin; t)

will vanish entirely.

In fact, the information of the kept-kept sector is not lost over time. For iterations

n > nmin we formulate the master equation with complete basis sets 1n and so ρred(n; t)

is connected to all previous iterations, which serve as source terms for the lower energy

states of iteration n. The information that would dissipate into the kept-kept sector

of ρred(nmin; t) now flows into ρred(nmin + 1; t) and then, later on, dissipates into its

respective kept-kept sector. In this way, information flows from the early high-energy

iterations to the later low-energy iterations. Since for n = NC all states are discarded

by definition and thus included in Eq. (6.1.5), ρred(NC; t) aggregates all information for

t → ∞. If one applies the SSA, the iterations are not connected and so all information

of the iterations n < NC is lost for t → ∞. The physically most relevant effect of this

is a continuous loss of the trace

TrρS(t) =

NC
∑

n=nmin

∑

l

ρll(n; t). (6.1.6.37)

The total trace of the density matrix is supposed to be normalized to 1. Instead, if

each NRG iteration is treated separately, the trace is conserved on each single iteration

only (see Sec. 4.5). Since the discarded-discarded sector for iterations n < NC is

2... and apply the LOA, which we assume from here on
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Figure 6.2.: nd(t) versus tΓ for NC = 10,Λ = 10, D = 100Γ, T = 0.01Γ. The number
of kept states is chosen as NS = 30 (blue), NS = 50 (orange), NS = 100
(green) and NS =max. (red). The corresponding half trace of the density
matrix is added as dashed lines of the same color and the Lamb-shift is set
to zero. The analytical solution is added as a black dashed line.

depopulated over time, only
∑

l ρll(NC; t) contributes to the trace for t → ∞ and so

the trace of the density matrix relaxates to a steady-state < 1. In Sec 4.5 it has

been shown, that the density matrix thermalizes to the Boltzmann distribution in the

context of the BMA. However, it is only guaranteed, that the single components of the

DDM fulfill the Boltzmann distribution relative to each other, i.e.

limt→∞
ρredaa (n; t)

ρredbb (n; t)
= e−β(En

a−En
b
). (6.1.6.38)

The absolute weight Zn(t → ∞) is not automatically correct, i.e. equal to
∑

l e
−βEn

l .

In Fig. 6.2 the impurity occupation number nd(t) for the RLM is plotted against

the dimensionless time tΓ. A chain length NC = 10 has been chosen to allow for a

comparison with the non-truncated case. Furthermore, Λ = 10 is picked to be quite

large in order to maximally enhance the effect of the loss of the trace of the density

matrix. The functions are practically converged for NS = 100, while for a lower number



162 6. Hybrid NRG-BRF Approach

of kept states the curves start to deviate significantly from the untruncated case. Since

the CWC is still almost exact for NS = 30, the deviation is to be attributed mainly to

the loss of the trace. In the trace of the density matrix (dashed lines) this behavior is

clearly depicted.

In the following section we discuss several ways to recover the conservation of the

trace for a truncated Wilson chain.

6.1.7. Conservation of the Trace of the Density Matrix

We presume the SSA for all truncated NRG iterations. Here all kept and discarded

states are included within one iteration. As discussed above, the trace of the density

matrix is not conserved in that case, leading to an unphysical drop of local operator

expectation values OS(t) over time. In the following we discuss four simple ways to

compensate for that trace loss. Here each approach yields different results, which is

why a comparison of the approaches is required to assess their validity.

Ad-Hoc Compensation of the Trace Loss

A simple way to compensate for the loss of the trace is to substitute the density matrix

by a normalized version

ρ(t) ≡ 1

Tr
[

ρS(t)
]ρS(t). (6.1.7.39)

An alternative approach would be to only normalize the DDM and to keep the ODDM

unchanged.

Another simple possibility to keep the trace of the density matrix constant is to

artificially include the kept-kept sector in Eq. (6.1.5). Normally, one would calculate

ρredab (n; t) for each iteration n separately with the master equation, including all kept

and discarded combination. As an initial value the entire equilibrium density matrix

ρredab (n; t = 0) is used. Then the kept-kept sector is cut out for all times to construct

OS(t). Alternatively, we only cut out the kept-kept sector in the initial value ρredab (n; t =

0) and calculate the time-evolution from here on. By this ”over-counting” of the kept

states, a relaxation of the density matrix into the low-energy sector is included. The

relaxation time of the high-energy states into the low-energy states is considered to

be approximately correct within the SSA. In the case of iterations n ≈ nmin, the

coupling to the lowest energies is missing. However, this coupling is considered to have
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a relatively weak influence. For iterations n ≈ NC the source term effect is missing,

but since we include the kept-kept sector in Eq. (6.1.5), no information is lost. Per

definition, the trace is conserved for all times. The steady-state value nd(t → ∞) is

met correctly as well, since the density matrix converges to the correct Boltzmann-

distribution, on the one hand, and, on the other hand, keeps the trace constant.

A third, fairly simple way to combat the loss of the trace would be to artificially

rescale the density matrices ρred(n; t) to ensure the correct values of Tr
[

ρred(n; t)
]

for

all times. Let

Zkept
n (t) =

∑

k

ρredkk (n; t), Zdisc
n (t) =

∑

l

ρredll (n; t), (6.1.7.40)

where k/l sums over all kept/discarded states of iteration n. In the SSA we obtain

Zkept
n (t) + Zdisc

n (t) = const,

Zdisc
n (t → ∞) = 0, if n < NC and

Zdisc
n (t) = const, if n = NC. (6.1.7.41)

Obviously,
∑NC

n=nmin
Zdisc

n (t) = const is not fulfilled this way. Hence, one could define a

time-dependent scheme to correct for the unphysical loss of Zdisc
n (t). Since the correct

behavior of the trace is unknown with respect to the single iterations n, we propose a

scheme, that uses the portion lost in the discarded-discarded sector as a source term

for later iterations. Precisely, we successively substitute the single shell values

Zdisc
n (t) → Zdisc

n (t) +
Zdisc

n (t)

Zdisc
n (0)

n−1
∑

n′=nmin

[

Zdisc
n′ (0) − Zdisc

n′ (t)
]

(6.1.7.42)

with Zdisc
nmin

(t) being the start of the procedure, since we know that this iteration is given

correctly in the SSA. The density matrices ρred(n; t) now need to be scaled to match

the calculated Zdisc
n (t).

To conclude the list of simple approaches to conserve the trace let us mention the

case, where we separate the time-evolution of the DDM from the one of the ODDM.

The ODDM is calculated via the conventional SSA, while for the DDM we approximate

the master equation (6.1.5.35) even further by neglecting the coupling of the discarded

states and the kept states. In fact, we demand that ri = li for all indices. This

decoupling keeps information from dissipating from the discarded into the kept sector.

Thus, the trace of the discarded part of the density matrix is conserved on all iterations.
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Figure 6.3.: Absolute value of the relative difference ∆nd(t) of the approximate and
the exact results versus tΓ for NC = 10,Λ = 10, D = 100Γ, T = 0.01Γ.
The Lamb-shift is set to zero. The number of kept states is chosen as
NS = 30 in the approximate cases. We include the cases in which the
whole occupation number is weighted by the time-dependent trace (blue),
only the DDM is weighted by the trace (orange) and the case where we
include all kept states and simply cut out the kept-kept sector for t = 0
(green). The vertical axis has been chosen logarithmic.

In Fig. 6.3 we compare three different cases of approximately recovering the trace

of the density matrix. We plot the relative difference ∆nd(t) of each approximation

with the exact version, where no truncation of high-energy states has been included.

The blue curve represents the impurity occupation nd(t) in the SSA, divided by the

time-dependent trace of the density matrix Trρ(t). This case is realized by calculating

the density matrix coupling all states and cutting out the kept-kept sector in the

equilibrium particle number operator nd. The kept-kept sector is thus automatically

cut out in Eq. (6.1.5). The orange curve is similar to the blue curve, only here we

treat the DDM and the ODDM separately and solely divide the former by the trace

of the density matrix. The green curve is constructed by cutting out the kept-kept

sector in ρ(t = 0) only, to correctly meet the equilibrium value nd(t = 0), and then

including all kept states from here on. By this ”over-counting” of the kept states a
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relaxation of the density matrix into the low-energy sector is included, as argued above.

Instead of relaxating into the last iteration n = NC, the density matrix relaxates into

the kept-kept sectors of all iterations without down-scaling these iterations over time.

This allows to recover the untruncated results almost exactly. For that reason, we

favor this approach as the most simple way to calculate non-equilibrium dynamics for

a truncated OWC.

Even though the previously discussed approaches produce results that match the

analytical solution quite well, they lack a physical motivation and thus cannot be

trusted to yield correct results in all cases. For that reason, we propose two alternative

approaches which are significantly more tedious, but can be derived systematically.

Here a correct coupling of all NRG iterations is included.

Iteration Coupling for the Diagonal Part of the Density Matrix

We rewrite the master equation for the DDM as

ρ̇redr1r1
(n1; t) = −

∑

2

[

Ξr1r2(n1, n2)ρ
red
r1r1

(n1; t) − Ξr2r1(n2, n1)ρ
red
r2r2

(n2; t)
]

(6.1.7.43)

with

Ξr1r2(n1, n2) ≡2fβ(En2
r2

− En1
r1

)

min{n1,n2}
∑

m=0

[

Γm,p(En2
r2

− En1
r1

)(Fm)r1r2(n1, n2)+

+ Γm,h(En2
r2

− En1
r1

)(Fm)r1r2(n1, n2)
]

. (6.1.7.44)

The set 2 in Eq. (6.1.7.43) can be chosen freely, as long as it comprises a complete basis

set. For this approach we choose
∑

2 |2〉 〈2| = 1n1 to exploit the source term effect.

The r.h.s. of Eq. (6.1.7.43) can thus be divided into a part ρredrr (n1; t) which includes

kept and discarded states and a part ρredll (n2; t), n2 < n1 which solely includes discarded

states. This second part comprises the source terms which vanish in the limit t → ∞.

We thus define

ρ̇(n1; t) = −X(n1)ρ(n1; t) +

n1−1
∑

n2=nmin

Y (n1, n2)ρ(n2; t) (6.1.7.45)

with the vector

(ρ(n; t))r = ρredrr (n; t) (6.1.7.46)
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and the matrices

(X(n1))r1r2 =
∑

3

Ξr1r3(n1, n3)δr1,r2 − Ξr2r1(n1, n1)

(Y (n1, n2))r1r2 = Ξr2r1(n2, n1)δr2,l2 . (6.1.7.47)

The first matrix X(n1) is solely defined on iteration n1 and can thus be diagonalized

as X(n1)ρ
r/1
α = λ1

αρ
r/1
α . The source terms ρ(n2; t) for n2 < n1 are already known.

Equation (6.1.7.45) can be solved as

ρ(n1; t) =e−X(n1)tρ(n1; t = 0) − e−X(n1)t

n1−1
∑

n2=nmin

∫ t

0

dt′eX(n1)t′Y (n1, n2)ρ(n2; t)

=
∑

α

e−λ1
αtρr,1

α

[

c1α − ρl,1
α

n1−1
∑

n2=nmin

Y (n1, n2)

∫ t

0

dt′eλ
1
αt

′

ρ(n2; t
′)
]

, (6.1.7.48)

where the time integral can be calculated recursively with ρ(nmin; t) = e−X(nmin)tρ(nmin; t =

0).

The realization of this approach in the TD-NRG program works as follows. First we

need a complete TD-NRG run to construct the reduced density matrices ρ(n; t = 0) for

each iteration. Then we need a second TD-NRG run to construct the X(n) and Y (n, n′)

matrices. On each iteration, X(n) is diagonalized and ρ(n; t) is constructed via Eq.

(6.1.7.48). The time integral can either be calculated analytically or numerically. The

analytical expression is rather complicated, since it includes multiple nested integrals

over exponential functions. In any case, it should be stressed that this approach is

relatively fast, since the matrices X(n) have the dimension dNS × dNS, which is equal

to the size of the NRG Hamiltonian, and can thus be diagonalized quite efficiently.

Simultaneously, the BRTs for the ODDM are set up for each iteration and then stored

on the hard drive together with the DDM ρ(n; t). Alternatively, if the analytical

integration is chosen, it would be sufficient to save the matrices X(n) and Y (n, n′), n′ <

n. Finally, on the backward TD-NRG run the DDM and the ODDM are combined to

construct the time-dependent OS(t) via Eq. (6.1.5).

A more simple, but at the same time more runtime consuming alternative would be

to directly solve the master equation

ρ̇redl1l1
(n1; t) = −

NC
∑

n2=nmin

∑

l2

Rl1,l2(n1, n2)ρ
red
l2l2

(n2; t) (6.1.7.49)
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by diagonalizing the BRT

Rl1,l2(n1, n2) =

NC
∑

n3=nmin

∑

l3

[Ξl1l3(n1, n3)δn1,n2δl1,l2 ] − Ξl2l1(n2, n1). (6.1.7.50)

Here we choose 1NC
as a complete basis set to obtain a master equation that only

includes discarded states. The BRT (6.1.7.50) is a large matrix that couples all NRG

iterations. Therefore, its dimension is dNS(NC − nmin). The calculation of all ten-

sors (Fm)r1r2(n1, n2) that appear in the BRT (6.1.7.50) is theoretically possible via the

procedure detailed in Sec. 6.1.4. However, since the weight of the components of the

BRT shrinks exponentially with increasing |n1 − n2|, the tensor Ξl1l2(n1, n2) is calcu-

lated exactly only for |n1 − n2| ≤ 1. A tridiagonal Ξl1l2(n1, n2) is already sufficient

to guarantee the conservation of the trace. This can be seen by a summation over all

discarded states in Eq. (6.1.7.43). Precisely, we obtain

NC
∑

n1=nmin

∑

l1

ρ̇redl1l1
(n1; t) = −

NC
∑

n1=nmin

n1+1≤NC
∑

n2=n1−1≥nmin

∑

l1,l2
[

Ξl1l2(n1, n2)ρ
red
l1l1

(n1; t) − Ξl2l1(n2, n1)ρ
red
l2l2

(n2; t)
]

. (6.1.7.51)

The conservation of the trace is shown by switching n1 ↔ n2 and l1 ↔ l2 in one of the

two terms on the r.h.s. of the equation which leads to Trρ̇S(t) = 0. At first, it might

seem confusing, that the trace is already conserved in the tridiagonal case. In fact,

even the diagonal case Ξl1l2(n1, n2) ∝ δn1,n2 conserves the trace, as has been explained

above. However, this SSA in combination with the decoupling of kept and discarded

states is a very rough approximation that does not include any source term effect, since

the iterations are not connected. In the tridiagonal case, all iterations are connected

and information is allowed to flow from the high-energy states down to the low-energy

ones. Since a direct coupling of distant iterations |n1 − n2| ≫ 1 is not included, this

information flow is expected to be rather slow though. For that reason, we propose an

approximation for the tensors Ξl1l2(n1, n2) with |n1−n2| > 1. In fact, the explicit form

of Ξl1l2(n1, n2) is of less importance, since as long as

Ξl1l2(n1, n2) ∝ fβ(En2
l2

− En1
l1

) (6.1.7.52)

is fulfilled, the correct steady-state of the density matrix (which is the Boltzmann-

distribution) is always reached for t → ∞. The other components of Ξl1l2(n1, n2) only
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influence the relaxation rate and the short-time dynamics. Furthermore, as explained

above, the single components with |n1−n2| > 1 are expected to be exponentially small,

and so their exact value is of little importance. It is rather their sheer number and

their role as mediators between distant iterations that makes them important for the

correct relaxation time of the density matrix. To find an adequate approximation for

particular components, we concentrate on approximating the most complicated part of

Ξl1l2(n1, n2), which is the chain operators. In fact, we propose to choose

(Fm)r1r2(n1, n2) = µδQ1,Q2+1d
min(n1,n2)−n2 (6.1.7.53)

which covers the degeneracy in the EDOF, the correct subspace combinations and, by

that, it also reproduces the correct scaling of the exact equation. Here Qi stands for the

number of particles in the subspace of the state ri. The chain operator f
(†)
m annihilates

(creates) a particle, and thus the tensor only has contributions for specific indices r1, r2.

If the chain operators have an additional flavor index, e.g. a spin or a channel DOF,

these restrictions to the states have to be covered by additional Kronecker-deltas. The

factor µ is of entirely artificial origin and allows for a scaling of these approximative

components. Per default, µ = 1.

We investigate the effect of coupling all NRG shells in the master equation for the

density matrix and depict the results in Fig.6.4.

In the simple SSA (blue curve) the trace of the density matrix decreases, since

information of the iterations n < NC is lost over time, and so the curve drops to

an unphysical steady-state, which lies significantly below the real steady-state of the

Boltzmann-distribution. By including the kept-kept sector for t > 0 (orange curve)

the trace is conserved and the NRG equilibrium value, i.e. the Boltzmann-distribution

indicated by the black arrow, is met with machine precision. Since for all solid curves

of Fig. 6.4 a z-averaging with Nz = 4 has been used, the Nz = 1 version of the curve is

added as an orange dashed line. Here the effect of the z-averaging becomes apparent,

since it damps the unphysical oscillations. For the green curve we have chosen the SSA

and additionally decoupled the kept states from the discarded states in the master

equation. In other words, we have solved the master equation (6.1.7.49) with the re-

striction of a diagonal tensor Ξl1l2(n1, n2) ∝ δn1,n2 . Here the trace of the density matrix

is conserved for all times, since no information from the high-energy states is lost into

the kept-kept sector. However, this also implies that the terms Zdisc
n (t) do not relaxate

in a correct way. Hence, even though the density matrix comprises the Boltzmann-
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Figure 6.4.: Impurity occupation nd(t) versus tΓ in the RLM for NC = 50,Λ =
1.59, D = 1000Γ, T = 0.01Γ. The Lamb-shift is set to zero. We have
performed a z-averaging with Nz = 4. The number of kept states is chosen
as NS = 1000. We compare the SSA (blue, orange, green) to a coupling
of adjacent shells (red) and an approximate coupling of all shells (purple).
The blue and orange curves include kept and discarded states, while the
green curve only couples discarded states in the density matrix. In the
orange curve, all kept states are included in the final expression, as for
the green curve in Fig. 6.3. The black arrow on the right indicates the
equilibrium NRG value. The analytical solution is added as a black dashed
line. The Nz = 1 counterpart to the orange curve is added as a dashed
line.

distribution for t → ∞, a wrong steady-state is reached. This fundamentally changes

when adjacent shells |n1 − n2| = 1 are included in Ξl1l2(n1, n2) (red curve). Now the

correct steady-state can be reached for t → ∞, since all information will flow from

the high-energy to the low-energy states, if t is chosen sufficiently high. However, the

relaxation time clearly is significantly too low. The reason lies in the fact, that terms

with |n1 − n2| ≈ NC − nmin are missing in Ξl1l2(n1, n2), which means that the highest

energy states do not couple directly to the lowest energy states, but instead have to

take the ”long route” via all iterations that lie between n1 and n2. For that reason, we
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have included a coupling of all shells with approximate values for the chain operators

for |n1−n2| > 1 (purple curve). Here the relaxation rate is met correctly, and the short

time dynamics seems to be even more accurate than for the orange curve. However,

one has to keep in mind, that though the approximation (6.1.7.53) is considered to

have the correct magnitude on average, its concrete impact on the dynamics cannot

be estimated. In this context, the short time behavior of the purple curve in Fig. 6.4

is to be taken with caution. Furthermore, the BRT (6.1.7.50) that couples all shells

is relatively large, as discussed above. For that reason, an exact diagonalization is no

longer possible. We use a Lanczos-method instead, to numerically calculate the rele-

vant eigenvalues. This method is rather efficient here, since the BRT is a sparse matrix

due to the Kronecker-delta in Eq. (6.1.7.53). The Lanczos-method induces an un-

evitable numerical error to the results. Its accuracy is defined by the ”Lanczos-depth”

mLan which we have chosen to be 1000 for the results shown in Fig. 6.4. On the one

hand, this Lanczos-depth is a measure for the maximum time we can reliably resolve

the calculated curve. In our case, this time is chosen to be large enough to guaran-

tee that the density matrix is relaxated before significant errors occur. This way, the

occupation number has a constant steady-state for all times. On the other hand, the

Lanczos-depth controls the accuracy of the mLan calculated eigenvalues and -vectors

of the BRT. This numerical inaccuracy is the cause for the minor oscillations of the

red and purple curve, as well as the fact, that the steady-state is not met exactly for

the purple curve. However, for mLan = 1000 the diagonalization of the BRT for DDM

is already the bottleneck of the program and thus could not have be chosen higher on

our workstations. In the following section 6.1.8, the Lanczos-method, adapted to our

case, is discussed in more detail.

6.1.8. Biorthogonal Lanczos Method

This section is intended to give a short introduction to the biorthogonal Lanczos

method [116] for diagonalizing non-hermitian matrices R 6= R†. The main intention,

however, is to adapt the Lanczos method to the particular case of diagonalizing the

BRT of Eq. (6.1.7.50). The Lanczos method is a diagonalization scheme that calculates

the mLan extreme eigenvalues of R. Their corresponding eigenvectors can be obtained

as well which, in turn, requires more memory capacity. The bottleneck of the method

regarding its complexity is a matrix-vector multiplication, which has to be performed

2mLan-fold in the course of the algorithm. If mLan is chosen to be much smaller than

the dimension D of R, the method is efficient for diagonalizing R. Another factor
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for the efficiency is the sparseness of R, which can be exploited to accelerate multi-

plications. The BRT of (6.1.7.50) is sparse, since only specific combinations of states

contribute to the BRT, as has been argued above. The BRT of the DDM is real, but

the Fermi-functions cause it to be non-symmetric and thus the biorthogonal version of

the Lanczos method is required.

The conventional Lanczos method starts by choosing a, to some degree, arbitrary

normalized starting vector ϕ0 and than spanning the so-called Krylov-space

K
mLan = {ϕ0, Rϕ0, ..., R

mLan−1ϕ0}. (6.1.8.54)

This Krylov-space is then orthonormalized by a Gram-Schmidt method to obtain the

mLan Lanczos-vectors ϕi, where i = 0 serves as a point of reference for the orthonormal-

ization procedure. The Lanczos-vectors can thus be written as a linear combination of

the Krylov-space vectors. As a by-product of the Gram-Schmidt procedure, a tridiag-

onal matrix T of dimension mLan×mLan can be constructed, whose eigenvalues (called

Ritz values) are the desired mLan extreme eigenvalues of R. To obtain the correspond-

ing eigenvectors of R (Ritz vectors), the eigenvector-matrix of T needs to be multiplied

by the matrix of the Lanczos-vectors. The specific mLan Ritz vectors of R are thus a

linear combination of the Lanczos-vectors and of the Krylov-space vectors at the same

time.

Since for non-symmetric matrices the left and right eigenvectors generally do not

coincide, the biorthogonal version of the method requires an additional left starting

vector φ0, which spans the corresponding Krylov-space with the adjungated matrix

R† similar to Eq. (6.1.8.54). The orthogonalization then generates left and right

Lanczos-vectors φi and ϕi, respectively, which fulfill the biorthonormality criterion

φi · ϕj = δi,j. All quantities involved are no longer real, but in general complex. The

explicit algorithm we have used is described in App. F and is taken from netlib.org

[117].

To ensure optimal compatibility of the Lanczos method to our BRT (6.1.7.50), we

have to choose the normalized version of the vector ρ(t = 0) as the starting vector for

both φ0 and ϕ0. Here ρ(t = 0) is the diagonal part of the reduced equilibrium density

matrix that includes all discarded states of all truncated iterations. To justify this

choice, we define R as the BRT that connects all iterations according to Eq. (6.1.7.50)
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and write the time-dependent DDM as

ρ(t) = e−Rtρ(t = 0) =
∞
∑

k=0

(−t)k

k!
Rkρ(t = 0), (6.1.8.55)

where we have expanded the exponential function as a simple Taylor series in the

second step. Obviously, the first mLan elements of the series are proportional to the

vectors of the right Krylov-space (6.1.8.54). Suppose we diagonalize R exactly and

find all D eigenvalues λα and corresponding left and right eigenvectors wα,vα. Let us

divide these eigenenergies into the first mLan, that are found by the Lanczos-method as

the Ritz values, and the remaining ones. As discussed above, the corresponding mLan

right eigenvectors of R are part of the right Krylov-space KmLan . Since all elements

of KmLan are linearly independent, each of them is biorthogonal to the D − mLan left

eigenvectors of R. We can exploit that fact by inserting a complete basis set of D

eigenvectors into Eq. (6.1.8.55). We then divide the sum over k into the three parts

ρ(t) =

mLan−1
∑

k,α=0

(−t)k

k!
vαw

T
αR

kρ(t = 0)+

+
D−1
∑

k,α=mLan

(−t)k

k!
vαw

T
αR

kρ(t = 0) + O(tD). (6.1.8.56)

The first part contains the lowest powers of t and is thus relevant for the short-time

dynamics. As it contains the Krylov-space vectors, it is biorthogonal to the remaining

D −mLan eigenvectors of R. In this context, the Lanczos-method is exact up to times

defined by mLan. In the second part the contrary argument holds. If one performs a

Lanczos-method with mLan = D steps, one would find, that the remaining D −mLan

eigenvectors are part of the subspace spanned by the Krylov-space vectors Riρ(t =

0) with i ∈ {mLan, ..., D − 1}. For that reason, the first mLan eigenvectors have no

contribution here. Since D is large in our case, the third part of Eq. (6.1.8.56) will

only be relevant for times, where the density matrix has already thermalized and thus

this part can be neglected in our argumentation.

We have seen, that the short-time dynamics is well covered by the Lanczos method,

but what can we say about the long-time behavior and the steady-state in particular?

As discussed in Sec. 4.5, all eigenvalues of the BRT are semi-positive, which includes

exactly one zero-eigenvalue, which is part of the DDM and thus of R. Since the Lanczos

method is intended to find the extreme eigenvalues of a matrix first, we can be sure to



6.1. Master Equation for the Truncated Wilson Chain 173

find the zero-eigenvalue in any case and in that way the steady-state will be reached.

The objective is now to choose mLan large enough that the density matrix is practically

thermalized before the error of the Lanczos method grows to be significant.

It should be mentioned, that the Ritz values and vectors found be the Lanczos

method are not expected to be identical to the corresponding exact eigenvalues and

-vectors. In fact, with increasing mLan the extreme Ritz values converge to the exact

eigenvalues, while the Ritz values in the middle cannot be trusted at all. However,

only the smallest eigenvalues of R are relevant for the time evolution on intermediate

and large time scales, since the MA is expected to impair the behavior on very short

times in any case. Also, the choice of the correct initial states has a huge impact on

the quality of the results, as has been argued above.

6.1.9. Correction of the Lamb-Shift

We have already mentioned, that the SSA is expected to generate a relatively large

error in the imaginary part of the BRT and thus in the Lamb-shift. The part of the

BRT, which generates the time-evolution of the DDM, is entirely real and thus the

steady-state of the density matrix is not impaired by this error.

In Fig. 6.5 we present approximative curves to recover the correct Lamb-shift for the

truncated OWC in the SSA. If the Lamb-shift is artificially set to zero, the truncated

and the untruncated curves align (as shown in Fig. 6.2). The blue dashed curve is

the exact untruncated case, where in the orange case we restrict the number of kept

states to NS = 100. This value guarantees an almost complete conservation of the trace

(see Fig. 6.2), while it clearly reveals the error of the Lamb-shift at the same time.

Here we observe wrong oscillations in the short-time dynamics, which are damped over

time, since all complex components of the BRT, relevant for the ODDM, decay to zero.

The remaining curves represent an extension to the SSA by including the coupling of

different shells in the unitary part of the BRT. Precisely, the terms n′ < n of Eq.

(6.1.1.14) are recovered for r1 6= r2. The terms n′ > n are already included in the

kept states of n. The components r1 = r2 are real and would only impact the trace.

For n′ < n − 1 we use the approximation from Eq. (6.1.7.53) with a factor of µ 6= 1.

The green curve only includes the adjacent shell coupling n′ = n − 1. It is clearly

a good interpolation between the orange curve (truncated OWC without Lamb-shift

correction) and the blue dashed curve (untruncated OWC). The dotted line represents

the solid green curve in the FLOA. Since we observe almost no deviation, the FLOA

appears to be a valid approximation, at least if |n1 − n2| is small.
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Figure 6.5.: nd(t) versus tΓ for NC = 10,Λ = 10, D = 100Γ, T = 0.01Γ. The blue
dashed curve represents the untruncated case (”untrunc.”), while the num-
ber of kept states is chosen as NS = 100 for the solid curves. Here the
orange curve represents the case, where no correction to the Lamb-shift
has been attempted (”no corr.”). The remaining curves include the Lamb-
shift correction for all iteration where the approximation (6.1.7.53) is used
with the factor µ. The green curves (µ = 0) consequently represent the
|n− n′| ≤ 1 case. Here the FLOA is added as a green dotted line.

When increasing µ the approximate operators are added to couple more distant it-

erations. When µ > 0.03 the qualitative shape of the curve is significantly impaired by

the approximation. For that reason we propose to choose µ fairly small. The approx-

imation (6.1.7.53) is necessary in Fig. 6.4 to artificially obtain the correct relaxation

times, but the qualitative behavior is captured fairly badly by it. A calculation of the

exact operators for n′ = n− 2 is possible in principle and would be our recommenda-

tion, if further improvement of the Lamb-shift is desired. However, we will not go this

route in this thesis.

Apart from the truncation error, the influence of Λ needs to be discussed regarding

the Lamb-shift. Precisely, we want to differentiate between the oscillations induced by

a wrong Lamb-shift and those of the discretization error by choosing a large Λ. As in

the previous cases, we have chosen a large discretization parameter Λ = 10 to illustrate



6.1. Master Equation for the Truncated Wilson Chain 175

0 2 4 6 8 10
tΓ

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

n d
(t)

Nz=1
Nz=4
Nz=12

Figure 6.6.: nd(t) versus tΓ for NC = 10,Λ = 10, D = 100Γ, T = 0.01Γ. No states have
been discarded. The dashed colored lines represent the curves without
Lamb-shift. The z-averaging has been used with different values for Nz.
The analytical solution is added as a black dashed line.

the truncation effect. For a smaller Λ the effects are significantly less pronounced

for a chain of length NC = 10 and would only emerge if the chain is elongated and

smaller energies are reached by the NRG. It is well understood (see Sec. 3.10) that a

large Λ generates a large discretization error, which includes unphysical oscillations in

non-equilibrium dynamics.

These oscillations are depicted in Fig. 6.6 (blue curves). Here the difference between

the curves with (solid lines) and without Lamb-shift (dashed lines) is illustrated as well.

The canonical way of compensating these oscillations is by implementing a z-averaging

over Nz independent Wilson chains (see Sec. 3.10). As shown in the figure, this method

significantly smooths the oscillations. The fact that the difference between the curves

with and without Lamb-shift persists, even for Nz = 12, shows that the oscillations

induced by the Lamb-shift are not an artifact of the discretization.
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6.2. Results for the Spectral Function

In the following section we discuss the adaptations, which are required to calculate

OWC ESFs for a truncated system eigenbasis. The influence of the truncation of high-

energy states, as well as the NRG parameters Λ and NC, is investigated. We basically

ourselves to methodological considerations in the RLM. The extension to interacting

QIMs is covered in Chap. 7.

6.2.1. Calculation of the χ-Operator for a Truncated OWC

The calculation of the χ-operator implies different challenges compared to the density

operator ρ, since it has a different subspace structure. In the master equation of the

density matrix we have coupled different NRG iterations only for the DDM (see Sec.

6.1.7). In the χ-operator the diagonal elements equal zero, and so the elements Raa,mm

of the BRT are irrelevant. From this perspective, the SSA should be sufficient, when

truncating high-energy states in the master equation of χ. The imaginary part of the

BRT possibly includes growing errors when the number of truncated states is increased,

which is why the Lamb-shift correction (see Sec. 6.1.9) might be necessary here.

In order to validate our hypotheses, we plot the ESF of the RLM with different

numbers NS of kept states at each iteration in Fig. 6.7. Since the NRG is the foundation

of our OCF, we take the artificially broadened CWC as a guideline for the effect of

the truncation. In Fig. 6.7 (a) we can see, that the CWC ESF is basically converged

for NS = 100. In contrast, the OWC curve in Fig. 6.7 (b) requires NS = 500 for

convergence, suggesting that the SSA alone is not optimal in our case. To identify

the source of the error, we compare the OWC (c) without Lamb-shift and (d) without

dissipative part, respectively, with the complete OWC curves. We observe, that the

Lamb-shift only has a minor influence on the curves and on the truncation as well. In

contrast to the calculation of the density matrix, the dissipative part seems to be the

relevant factor, which influences the truncation error, since the OWC curves match the

convergence behavior of the CWC, when the dissipative part of the BRT is switched

off. Due to the different subspace structure of the χ-operator, energy combinations

En
r1
− En

r2
= En′

r3
− En′

r4
with n 6= n′ are assumed to occur and to have a significant

contribution in the master equation. However, implementing a master equation, which

includes a coupling of χ(n; t) for different iterations n is not feasible at this point.

We have shown in Sec. 5.4.2, that the influence of the dissipative part of the BRT

on the χ-operator becomes irrelevant if T is sufficiently small. When calculating OWC
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Figure 6.7.: Spectral function Ad(t) versus dimensionless energy ω/Γ for NC = 10,Λ =
2, D = 100Γ, T = Γ in the RLM with ǫd = 0. The number of kept states
NS is varied and the untruncated curve is in each panel added as a black
line. We plot the (a) CWC, (b) OWC, (c) OWC without Lamb-shift and
(d) OWC solution without dissipative part, respectively.

ESFs with a truncated system eigenbasis we thus recommend to concentrate on the

low temperature case. Here the BRT can be treated as diagonal and the coupling of

different NRG iterations in the dissipative part is hence obsolete. This also significantly

reduces program runtime. The imaginary part of the BRT can either be set to zero, or

a Lamb-shift correction according to Sec. 6.1.9 can be implemented. In the following

we choose T ≤ 0.1Γ and neglect the Lamb-shift.

6.2.2. Discretization Artifacts in OWC ESFs

Apart from the effect of truncating high-energy states, there is another source of error

for the OWC ESFs. The curves in Fig. 5.20 exhibit increasing oscillations when the

chain length is increased. This effect shows in TD-NEVs as well (see Fig. 5.16).

By increasing the discretization parameter Λ, this effect is enhanced (see Fig. 6.6).

Obviously, the unphysical oscillations are not generated by truncation of high-energy
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Figure 6.8.: Time-dependent equilibrium impurity Green’s function Gd(t) with ǫd =
0, D = 100Γ, NS = 1000 for the RLM. The chain length NC is varied and
the discretization parameter Λ is adapted to guarantee T = 0.1Γ. On the
l.h.s. we plot the CWC solution (panel (a)) and on the r.h.s. the OWC
solution (panel (b)). The analytic solution is added as a black line.

states, but instead by the discretization of the NRG itself. We know from TD-NEVs

(see Fig. 6.4), that the discretization error of a Wilson chain of an effective temperature

T can be improved by decreasing Λ and simultaneously increasing NC to maintain a

fixed temperature.

In Fig. 6.8 we have applied this approach to the TD-EGF for the RLM at an effective

temperature T = 0.1Γ, which approximately corresponds to the low-temperature limit.

Since the function Gd(t) is time-dependent, it exhibits similar effects as non-equilibrium

curves of local operators. Since the ESF is unambiguously connected to the TD-EGF

via a Fourier transform, the latter is a perfect testing ground for the OCF.

The oscillations of Gd(t) are significantly reduced in the CWC solution in Fig. 6.8,

if Λ is lowered, and the short-time dynamics approaches the exact solution. The

OWC solution is identical to the CWC solution with additional natural damping of

the oscillations. Thus the OWC exhibits the expected behavior, which is similar to

OWC non-equilibrium dynamics, although some oscillations remain, that are damped
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only on very large time scales (not shown). This indicates, that some eigenvalues of

the BRT that correspond to relevant excitations of the Wilson chain are too small

to induce a significant damping. This behavior has already been observed for the

ODDM in TD-NEVs and has been countered by z-averaging (see Fig. 6.4). Since

the discretization error of Gd(t) translates to unphysical oscillations in the ESF, one

is advised to incorporate z-averaging. We will leave this to future investigations and

concentrate on the effect of lowering Λ on the discretization error in ESFs.

By lowering Λ, while still maintaining a constant effective temperature, the chain

length needs to be increased. For long OWCs a truncation of the system eigenbasis is

inevitable. However, if one truncates a significant number of high-energy states with

a small Λ → 1+, a large truncation error can be expected. We accept this error in

our investigations to illustrate the discretization effect on ESFs. However, we then

require a way to distinguish the discretization error from the truncation error, i.e. we

need benchmark curves, that include an analog truncation error, without suffering the

discretization error. Obviously, the exact solution for the RLM is not suitable here.

The CWC curves include the truncation error, however the Gaussian broadening of the

curves is artificial and to a small degree arbitrary, even for small ω. For that reason

we introduce a different, more natural broadening scheme for the CWC spectrum, that

will serve as a benchmark to assess the discretization effect of the OWC curves for a

truncated system eigenbasis.

6.2.3. Comparison of Different Broadening Schemes

In Fig. 6.9 we illustrate the discretization effect on ESFs. The OWC solution (Fig. 6.9

(c)) exhibits large oscillations, induced by finite-size effects, that are reduced when Λ is

lowered, while simultaneously maintaining a fixed effective temperature by increasing

the chain length NC.

In Fig. 6.9 (a) the canonical Gaussian broadening scheme of the CWC ESF (see

Eq. (3.8.49)) is displayed. Here for |ω| < 0.22Γ the Lorentzian broadening (see Eq.

(3.8.50)) is used.

Friedel’s sum rule demands Ad(ω = 0)Γπ = 1. The curves in Fig. 6.9 clearly violate

this rule, especially for low Λ. This is partially due to the truncation error, which is

generated by choosing a number of NS = 1000 kept states at each iteration. A small

discretization parameter even enhances this effect. Nevertheless, in the OWC curves

of Fig. 6.9 (c) we cannot trivially distinguish between the truncation effects and the

errors induced by the discretization. As mentioned above, the CWC solution with
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Figure 6.9.: Equilibrium impurity spectral function Ad(t) with ǫd = 0, D = 100Γ, NS =
1000 for the RLM. The chain length NC is varied and the discretization
parameter Λ is adapted to guarantee T = 0.1Γ. We compare the canonical
Gaussian CWC broadening with b = 0.8 (panel (a)) to the sinc-broadening
with γ = 0.2Γ (panel (b)) and Lorentzian broadening by the BRF (panel
(c)).

Gaussian broadening in panel (a) does not provide a reliable benchmark for the OWC

solutions here, since the broadening is artificial.

In Fig. 6.9 (b) we depict Ad(ω) obtained by a sinc-broadening. This broadening is

based on the assumption, that the CWC TD-EGF

Gd,CWC(t) = −iΘ(t)
∑

ab

dabχba(0)eiωabt (6.2.3.57)

approaches the exact physical solution for short-times t ≤ T , if Λ is sufficiently small.

The time T can be increased by increasing NC. Since Gd(t) converges to zero for

t → ∞, we can always choose the parameters in such a way, that for t = T the GF has
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sufficiently decayed. Thus we define the energy-dependent approximate GF as

Gd,CWC(ω) =

∫ T

0

dtGd,CWC(t)eiωt = −
∑

ab

dabχba(0)
ei(ω+ωab)T − 1

ω + ωab

(6.2.3.58)

and the spectral function is consequently given as

Ad,CWC(ω) =
1

πγ

∑

ab

dabχba(0)sinc

(

ω + ωab

γ

)

(6.2.3.59)

with the broadening γ = 1/T and sinc(x) = sin(x)/x. According to Fig. 6.8 (b),

Gd(t) has, for a sufficiently small Λ, effectively decayed to its theoretical steady-state

at T = 5/Γ, i.e. γ = 0.2Γ. Given that it is chosen small enough, the precise choice of

the broadening γ has only a numerical impact on the solution and not a physical one.

Details on the sinc-broadening can be found in App. G. Here we illustrate, exemplarily

for the RLM, that a superposition of different oscillations, as they occur in the CWC

TD-EGF in Eq. (6.2.3.57), can reproduce decoherence up to a certain time T . This

time T is finite, but arbitrary, if the numerical accuracy is adequately adapted by

increasing the system size. One can thus choose T for the TD-EGF arbitrarily, as long

as Gd(t) has sufficiently thermalized for t ≥ T and as long as NC is chosen large enough

to guarantee for a sufficient numerical accuracy. In turn, the arbitrariness of T and the

broadening γ = 1/T , respectively, support the assumption, that the sinc-broadening is

a natural broadening, which is effectively not impacted by the choice of T . We can thus

assume, that the curves of Fig. 6.9 (b) are correct in the limit of the truncation and the

discretization error, whereby the discretization error is reduced in the green curve. The

latter shows a good agreement with the green OWC curve of Fig. 6.9 (c), suggesting,

that the broadening induced by the BRT is of the correct order of magnitude.

6.3. Comparison to the Auxiliary Master Equation

Approach

Dorda et al [45, 46] proposed an approach, which is in some way similar to the OCF.

After we have revised our approach in detail, we now compare it to the AMEA for

QISs. Here a number of NB discrete modes are extracted from the bath to form an

auxiliary system and are coupled to the impurity (central region). In contrast to the

OCF, the AMEA is not restricted to Wilson chains, but allows for an arbitrary set of
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energy levels and hybridizations in the system. The auxiliary modes are then coupled

to continuous reservoirs via a Lindblad approach [47, 48] to form a buffer zone [42, 43,

44] between the impurity and the bath. This approach implies Markovian reservoirs,

however, the resulting local dynamics is non-Markovian, as in the case of the OWC.

The precise Lindblad master equation to calculate the reduced time-dependent density

matrix in the interaction picture is given by

ρ̇IS(t) = −
∑

i,j

Γ
(1)
ij

(

{ρIS(t), f †
i fj} − 2fjρ

I
S(t)f †

i

)

−
∑

i,j

Γ
(2)
ij

(

{ρIS(t), fjf
†
i } − 2f †

i ρ
I
S(t)fj

)

. (6.3.60)

To define the auxiliary system, as well as the Lindblad parameters Γ(1/2), a fit is

performed, which is intended to optimize the effective bath hybridization function of

the system (cf. Sec. 5.1) with respect to the physical one for a given number NB. Dorda

et al restricted their calculations to a particle-hole symmetric SIAM, to reduce the

number C(NB) of free fit parameters. Additionally, they compared different geometries

of the auxiliary system, which significantly reduce C(NB) as well, and found that a

double chain is significantly superior to a single chain or a star geometry to reproduce

a flat DOS [46]. Since the OWC corresponds to a single chain with on-site reservoir

coupling in this picture, the findings suggest, that the Wilson chain is an inadequate

choice for a buffer zone.

However, one can not simply compare the Lindblad formalism to our BRF. To re-

produce the chain geometry in the system, one has to set i = j in Eq. (6.3.60), which

then translates to the summation index n over the single chain sites in Eq. (5.2.42).

To turn the Lindblad equation (6.3.60) into a Bloch-Refield equation (4.3.36), two

steps are still missing that reveal the complexity of the latter. Firstly, the introduc-

tion of the secular approximation, i.e. the Kronecker-delta, allows one to exploit the

block-diagonal structure of the BRT and thus to efficiently diagonalize it. In contrast,

Dorda et al diagonalize the entire tensor using Lanczos exact diagonalization or matrix

product states [46]. Secondly, and most importantly, the operator Γ
(1/2)
n fn needs to be

turned into a different operator, that is a complex combination of the system operator

fn and the corresponding RGF Cn(ω) (see Eq. (4.3.36)), evaluated at an energy, which

depends on the components of the system operator. Precisely, this means

Γ(1/2)
n 〈a| fn |b〉 → Cn(Ea − Eb) 〈a| fn |b〉 , (6.3.61)
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with |α〉 being a system eigenstate with the corresponding eigenenergy Eα. The r.h.s.

of Eq. (6.3.61) is thus a complex operator, that is not linearly dependent on fn, and

thus the Bloch-Redfield master equation (4.3.37) cannot be reproduced by the l.h.s. of

the equation, i.e. the Lindblad equation (6.3.60). To achieve this, in each term of the

Lindblad equation one of the system operators would have to be replaced by an entirely

new operator, whose components would need to be included in the fit process. This, in

turn, would render the fitting of the auxiliary system effectively infeasible. In contrast,

the Bloch-Redfield equation could be turned into a Lindblad equation by assuming

Cn(ω) = const. This implies the high-temperature and wideband limits, respectively,

as well as a constant reservoir coupling function Γn(ω) (see Eq. (4.3.35)).

Despite the incompatibility of both approaches, two key points might be transferred

to the OCF. Firstly, the bath hybridization function is an excellent measure for the

quality of the approximation. In the case of the OWC, we guarantee to maintain

this function by the implementation of the CFE (see Sec. 5.1), but then distort it

to a certain degree by the BMA. By calculating the bath hybridization function of

the OWC from the GF of the zeroth Wilson chain site, while decoupling the impurity

(i.e. setting V = 0), one would obtain a measure for the quality of the BMA, that

only depends on the size and the shape of the OWC, i.e. on NC and Λ, respectively.

Secondly, the superiority of the double chain in relation to the single chain in the

AMEA might inspire one to consider two OWCs, by splitting the bath into a high- and

a low-energy part, before constructing the chains. This would render a high-energy

chain with a gapped bath hybridization function and an additional low-energy chain

with a renormalized bandwidth. In general, one could imagine to investigate numerous

buffer zone geometries in the AMEA with respect to their bath hybridization function

convergence per C(NB). The best choice is then reproduced rigorously as close as

possible in the spirit of the OWC, which would give a physical justification to the

approach, as well as render a possible opportunity to exploit a truncation scheme or

system symmetries.

6.4. Summary

One of the key components of the NRG is the truncation of high-energy states, which

allows for the CPU time to increase linearly with the Wilson chain length, instead of

exponentially. To exploit this effect with the OCF, the ASB needs to be inserted in

the master equation of the density matrix, leading to a coupling of all energy shells of
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the NRG. Since a full treatment of this master equation is infeasible on modern work-

stations, we discussed several approximations and their impact on the OWC solution

in this chapter.

For TD-NEVs a time-dependent density matrix is calculated via the master equa-

tion. Here it turned out to be sufficient to couple different shells in the DDM only, to

guarantee physical behavior such as the conservation of the trace and a correct thermal-

ization. Additionally, more efficient alternatives have been discussed, that artificially

conserve the trace of the density matrix.

For ESFs a compound operator of the density matrix and an impurity creator is

evolved in time in the master equation. Due to its inner structure, this operator has

a trace of zero, which renders a conservation of the trace obsolete. In contrast, the

coupling of different iterations is relevant for the dissipative part of the BRT. However,

for sufficiently low temperatures, this part has no influence on the compound operator

and can safely be neglected.

The imaginary part of the BRT enters as a small Lamb-shift in all OWC results.

When truncating high-energy states, this Lamb-shift has shown to induce a dispropor-

tionately large error. We outlined a procedure how to compensate this error, however,

we chose to simply neglect the Lamb-shift for practical reasons.

The discretization scheme of the NRG is known to induce a finite-size error to the sys-

tem. This error has an influence on OWC dynamics in both TD-NEVs and TD-EGFs,

which is especially strong on intermediate time scales, where the relaxation terms have

not yet damped the unphysical finite-size oscillations. In ESFs these oscillations occur

analogly, effectively washing out low-energy information of the spectrum. Here the z-

averaging is a simple scheme to compensate for this finite-size error, as has been shown

for TD-NEVs. In ESFs we leave the investigation of the compensation of finite-size

effects to future works.



7. Interacting Quantum Impurity

Models

In Chap. 5 and 6 we have applied the OCF to the RLM to benchmark the approach

with respect to the BMA and the truncation of high-energy eigenstates, respectively.

In this chapter we test our formalism with relatively simple QIMs that include a local

interaction term U , namely the IRLM (see Sec. 2.5) and the SIAM (see Sec. 2.4). Here

no exact solutions are known, however, numerous analytical and numerical predictions

to those models are available [36, 109, 13, 22, 29]. The purpose of this chapter, and

of this thesis in general, is not to reveal new physics, but to establish our OCF and to

assess its applicability in a variety of testing grounds.

7.1. Local Non-Equilibrium Real-Time Dynamics

In this section we investigate TD-NEVs for the IRLM and the SIAM, respectively.

The results are obtained analogly to Sec. 5.4.1, but for the interacting case. When a

truncation of high-energy states is applied, the trace of the density matrix is conserved

by artificially normalizing nd(t) with the numerically calculated Trρ(t), if not stated

otherwise.

7.1.1. Interacting Resonant Level Model

We proceed to our first non-trivial QIM for the OWC by adding a Coulomb repulsion U

between the impurity and the zeroth Wilson chain site. This is denoted by the IRLM.

The impurity Hamiltonian becomes

Himp = ǫdd
†d + V

(

d†f0 + df †
0

)

+ U

(

d†d− 1

2

)(

f †
0f0 −

1

2

)

. (7.1.1.1)

Here the zeroth site of the Wilson chain is included in Himp and so the remaining OWC,

as well as the zeroth reservoir, couple directly to this ”super-impurity”. For vanishing
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U the system resembles the RLM. We will restrict the non-equilibrium dynamics to a

quench with ǫfd = −ǫid = Γ at t = 0.

The impurity dynamics corresponds to an oscillation with frequency

Ω =
√

E2
d + 4V 2, (7.1.1.2)

which is identical to the CWC dynamics of the RLM for NC = 1, and an additional

slow decay with a relaxation time τ . This motivates the analytical solution [30] for the

occupation dynamics

nd(t) =(ni
d − nf

d)e−t/τ + nf
d

+ A

(

cos(Ωt)
√

1 − cos2(θ)e−t/τe−t/(2τ) − sin(θ)e−t/τ

)

(7.1.1.3)

in the limit U ≫ D, T (see App. E). Here

τ =
π4

256

Ω

DΓ

(

U

D

)2

(7.1.1.4)

is the above mentioned relaxation time and A and θ are constants, which are to be

defined by a fitting procedure. In the limit of U/D → ∞ the relaxation time τ

diverges, meaning that the ”super-impurity” is practically decoupled from the OWC

and the zeroth reservoir. For U → 0 the relaxation time τ vanishes, instead of being

of the order of Γ, proofing that the expression of Eq. (7.1.1.4) is not valid for small U .

Let us exemplarily compare τ of Eq. (7.1.1.4) with the relaxation rate of the shortest

OWC possible in the IRLM, which has a length of NC = 1. The dominant relaxation

rate in the BMA can be derived analytically as

τ−1 = Re

{

C0(U/2 − V ) + C0(U/2 + V )
}

(7.1.1.5)

for ǫd ≪ D, where C0(ω) is the correlation function of the zeroth reservoir. Since the

support of the reservoir spectral function is limited to the bandwidth, the relaxation

rate is always zero for U > 2D + 2V , meaning that here the reservoir does not accept

any charge from the system and so we basically obtain a closed system. This effect can

already be seen for U > 2V in the limit of T → 0, since here the Fermi-functions in

C0(ω) produce a sharp cut-off.

In Fig. 7.1 the relaxation rates of Eq. (7.1.1.5) are compared to the analytical
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Figure 7.1.: The relaxation rates of the OWC of chain length NC = 1 for different
temperatures T , calculated via Eq. (7.1.1.5). As a comparison, the rate
calculated according to Eq. (7.1.1.4) is added as a black dashed line. The
axes are both scaled by the bandwidth D and plotted logarithmically.

prediction of Eq. (7.1.1.4) for different temperatures T . For small U both results

deviate significantly from each other. In this case the OWC is superior to the analytical

prediction, since the relaxation rate is finite. By increasing U , the intercept of the

analytical prediction and the OWC solution is located at U ≈ 0.2D. Here U is still

considered to be small and Eq. (7.1.1.4) does not hold. For large U the OWC rates

quickly drop below the analytic prediction. A behavior ∝ U−2 cannot be observed. The

reason is that the relaxation rates of the OWC are always composed of the correlation

functions evaluated at different Wilson chain energies. The parameter U only directly

influences the eigenspectrum of the Wilson chain and not the values of the correlation

functions, and so the relaxation rates cannot be a simple function of U . The inability

of the OWC to reproduce τ ∝ U2 clearly is a consequence of the BMA in second order,

as discussed in Sec 4.7. In the following we concentrate on the effect of increasing the

chain length NC on the results, especially the relaxation times.

When comparing curves for different chain length NC, the temperature needs to be

adapted by β, as has been done in Fig. 5.16, since a different temperature leads to

different equilibrium values. A finite U has a similar effect on the curves. It has been

shown (see Sec. 2.5 or Ref. [68]) that the fixed points of the IRLM are identical to
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those of the RLM, if Γ is replaced by an effective hybridization Γeff. This is identical

to a rescaling of the energies, which allows for the equilibrium values of the IRLM to

be identical to those of the RLM. The non-equilibrium dynamics, however, deviate

strongly from the RLM for finite U , independent of the choice of Γeff. To be precise, a

finite U effectively suppresses the coupling of the Wilson chain to the super-impurity

and so charge is reflected back from the zeroth chain site to the impurity, leading to

oscillations that relaxate on a time scale of τ into the chain. In the CWC of finite

length we experience an unphysical revival effect at a certain time, when charge is

reflected at each site of the chain back to the impurity [19]. With increasing U this

effect occurs more early in time. In the limit of U → ∞ dissipation is suppressed and

any chain basically resembles the CWC with NC = 1.

What is the precise influence of increasing U on short OWCs? In chains with an

even number of sites the dynamics in the non-interacting case are almost entirely

determined by the DDM, which yields the relaxation rate of 2Γ. When U is increased,

the DDM quickly changes to be constant in time and thus it no longer has an impact on

the relaxation of the system. This way, the oscillations induced by the CWC become

dominant on short time scales. On longer time scales the real-part of the ODDM damps

these oscillations with a lower relaxation rate and thus inhibits the revival effect. The

Lamb-shift is weak and does not significantly impact the occupation dynamics.

Odd chains show a different behavior. Here the ODDM is prominent also in the

non-interacting case. When increasing U the influence of the DDM again vanishes, but

the relaxation rate of the ODDM is much lower than that of the even chains. In this

way, the IRLM shifts the ratio of the effective relaxation rates of even and odd chains.

In Fig. 7.2 the impurity occupation nd(t) is displayed for two distinct sets of pa-

rameters. The CWC curves are plotted on the left and the OWC curves on the right,

respectively. Obviously, the OWC has a higher relaxation rate for short times than the

CWC. This is the case for all combinations of parameters and a considerable numerical

inaccuracy can be excluded, since the only numerical parameter here is Nm (see Sec.

5.4), which is chosen high enough for sufficient convergence. One possible reason for

the discrepancy between CWC and OWC relaxation rates are finite size effects in the

CWC. Reflections of charge back onto the impurity can lead to a slower relaxation.

These revival effects are expressed in oscillations of the envelope of the function (see

the upper left panel). In the figure it is not possible to exactly estimate up to which

time the CWC curves can be interpreted as approximately correct, as it is possible

for the RLM . For that reason, the relaxation rate of the CWC cannot be used as a
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Figure 7.2.: Non-equilibrium occupation number for different parameter sets. The up-
per two panels (a) and (b) are created with NC = 7,Λ = 2, T = Γ and the
lower two panels (c) and (d) with NC = 10,Λ = 5, T = 0.1Γ. Different
values for U are chosen, as depicted in the legends of the panel. On the
l.h.s. in panels (a) and (c) the CWC results are presented, while on the
r.h.s. in panels (b) and (d) the corresponding OWC version for identical
parameters is shown. A fit with the function (7.1.1.3) is added as dashed
lines in the same color for the OWC.

benchmark for the OWC solution.

As expected for an OQS, the OWC relaxates to the correct steady-state, while per-

forming oscillations with a constant frequency. Increasing U increases the relaxation

time τ , which is explained by the fact, that U holds back charge to the impurity and

thus slows down relaxation. To estimate the quality of the OWC results we use the

analytical prediction Eq. (7.1.1.3) for local non-equilibrium dynamics nd(t). By choos-

ing Ω = 0, Eq. (7.1.1.3) yields the envelope function. By demanding that the first

derivative of the envelope function with respect to time t is zero at t = 0, one obtains
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the restriction

sin(θ) = − A

2(ni
d − nf

d)
. (7.1.1.6)

This restriction is equal to the fact that ρ̇(t)
!

= 0, which follows from the von-Neumann

equation. However, if we apply the MA, this correct short-time behavior cannot be

fulfilled by the BRF. Instead, the only possible choice is θ = π
2
, which reduces nd(t) to

a sum of exponential decay terms.

We have fitted Eq. (7.1.1.3) to the OWC data in Fig. 7.2 (dashed lines). The

qualitative concordance for U ≥ D is significant and suggests, that Eq. (7.1.1.3) is

applicable even when U is of the order of the bandwidth. For U ≥ 10D the fitted

frequencies of the OWC comply with Eq. (7.1.1.2) within a variance of 5%. The

relaxation times τ , however, are lower than predicted, and increasingly deviate from

Eq. (7.1.1.4) for higher U .

To quantitatively investigate this behavior, we examine the OWC solutions for the

effective hybridization Γeff. All parameters are now expressed in the new energy scale

Γeff, while the ratio between the scales is Γ
Γeff

. The effective parameters are given by

V =

√

2

π
DΓ =

√

2

π

D

Γeff

Γ

Γeff

Γeff,

Ω =

√

(

ǫd
Γeff

)2

+
8

π

D

Γeff

Γ

Γeff

Γeff,

τΓeff =
π4

256

(

U

D

)2
Ω

D

Γeff

Γ
. (7.1.1.7)

The ratio Γ
Γeff

is predicted [36] as

Γ

Γeff

=

(

Γeff

D

)α

≤ 1,

α = 2δ − δ2,

δ =
2

π
arctan

(

π

4

U

D

)

. (7.1.1.8)

In the limit of U/D → ∞ we obtain Γ
Γeff

= Γeff

D
. Hence, the bandwidth cancels out in

all parameters and the relaxation rate is τΓeff ≈ 0.717
(

U
D

)2
for ǫd = Γeff.

In Fig. 7.3 the rescaled curves for NC = 7 are plotted for the CWC (top) and the
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Figure 7.3.: Non-equilibrium occupation number for different U/D for NC = 7,Λ =
2, D = 100Γ, T = Γ. On the top we present the CWC, in the middle the
corresponding OWC without and on the bottom the OWC with Lamb-
shift. For the violet curve U/D = 0 has been chosen, while we have
U/D = 2n, n ∈ N0 up to the red curve. A fit with the function (7.1.1.3) is
added as dashed lines in the same color for the curves with U > D of the
OWC with Lamb-shift.

OWC with Lamb-shift (middle) and without Lamb-shift (bottom). Γ has been rescaled

to meet the equilibrium values defined by the NRG. Clearly, the CWC and the OWC

(without Lamb-shift) solutions coincide in the oscillation frequency, which is given by

Eq. (7.1.1.2). As already mentioned, the oscillating part of the OWC occupation

number for U ≫ D is entirely defined by the CWC plus a small Lamb-shift, that

vanishes for U ≫ D, so this does not come as a surprise. The contribution of the DDM

basically vanishes for large U and so the relaxation rate of the OWC is defined by the

real-part of the ODDM.

To compare the OWC to the analytical predictions for Γ/Γeff,Ω and τ , we have fitted

the OWC curves of Fig. 7.3 with Eq. (7.1.1.3) and plotted the results in Fig. 7.4.
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Figure 7.4.: Effective parameters Γ/Γeff, Ω/Γeff and τ−1Γeff for different U/D. The
dotted lines are the pure theoretical predictions via Eq. (7.1.1.8) and
(7.1.1.7). The dashed lines are the parameters calculated via (7.1.1.7) for
a numerically determined Γ/Γeff. The stars represent the fitted parameters
of Fig. 7.3. We have chosen NC = 7,Λ = 2, D = 100Γ, T = Γ. The
horizontal axis, as well as the vertical axis for the green curves, are chosen
logarithmically. The red stars are calculated for NC = 7,Λ = 1.2, D =
100Γ, T = Γ, where β has been adapted accordingly. The red stars are
additionally shifted upwards by a factor of 104 to facilitate their comparison
with the green stars.

The parameters of Fig. 7.4 have been calculated as follows. The blue dotted curve

is obtained via Eq. (7.1.1.8) with D = 100Γeff, while the dashed line is obtained by

comparing the equilibrium values for U > 0 with those of the non-interacting case and

varying Γ/Γeff in the first case until those values align. The orange curves are calculated

via Eq. (7.1.1.7). Again, we have chosen ǫd = Γeff and D = 100Γeff. The dotted orange

curve is calculated from the values Γ/Γeff from the dotted blue line and the dashed

line vice versa. The orange stars are the fitted OWC parameters. The relaxation rates

of the green lines are obtained via Eq. (7.1.1.7) by using the values Γ/Γeff and Ω/Γeff
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from the dotted and dashed curves, respectively. The stars again represent the fitted

parameters, while we have maintained Λ at 2 for the green stars and changed Λ to 1.2

for the red ones. For the fitting process we expanded the time-axis up to tΓ = 106, to

reliably measure the large relaxation times that occur for larger U/D.

A systematic deviation of the fitted parameters (stars) from the analytical predictions

(dotted lines) is apparent. However, if we correct the effective scale Γ/Γeff for the

numerically determined values (dashed lines), we obtain a much better agreement with

the fitted parameters Ω. There seems to be a systematic deviation of the effective scale

for the CWC equilibrium value, which seems logical in view of the fact that we have

chosen a chain length of NC = 7. For longer chains we expect Eq. (7.1.1.8) to be met

with more precision.

The fitted relaxation rates τ−1 (green stars) differ significantly from the analytical

predictions (green dashed and dotted lines). Equation (7.1.1.3) only holds for large

U/D, so we expect an error of the green dashed and dotted curves for small U/D. We

have shown in Fig. 5.16 that the OWC relaxation rates are too large for NC = 7 in

the non-interacting case, and consequently we expect the green stars to be slightly too

high for small U/D in Fig. 7.4. Furthermore, the fitting process with Eq. (7.1.1.3) is

not reliable here, since the fit-function is not suited for small U/D. For intermediate

values of U , i.e. U ≈ 10D, the green stars lie below the dashed line, which suggests that

the relaxation rates generated by the BRT are too small, if we consider the analytical

predictions to be correct in this regime. The BMA is performed in second order only,

meaning that the coupling to the reservoirs, and consequently the relaxation, is too

weak in this approximation. For U > 50D the relaxation rates converge to a constant

value, which is independent of U . This behavior is a strong contradiction to the

expected U−2-dependence of the relaxation rates.

To compare the influence of Λ, we added the case Λ = 1.2 as red stars, scaled by

a factor of 104. Obviously, the relaxation rates generated for this small discretization

parameter are significantly lower than those for Λ = 2. This can be explained by the

fact, that the reservoir coupling is naturally weaker for small Λ. Additionally, the red

stars reach their steady-state value significantly later than the green stars. In fact,

in the range U/D ∈ [8, 32] the curves exhibit the predicted U−2 behavior. A smaller

Λ allows for a better resolution of large energies, which is to be preferred in the case

U ≫ D and might explain the behavior of the red stars in comparison to the green

ones. However, the slower convergence for smaller Λ is also in accordance with the

slower convergence of the reservoirs to their steady-state (see Fig. 5.8).
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Up to this point it is not clear, whether the parameters can be further aligned to

the analytical predictions by varying the Wilson chain parameters. A larger Λ appears

to be beneficial in the sense, that the relaxation rates approach the correct order

of magnitude. However, a lowering of Λ, and consequently a slower relaxation, could

possibly be compensated for by increasing the chain length. Thus we expect to improve

the relaxation rates for U ≫ D by increasing the chain length and simultaneously

choosing a relatively small Λ, which is better suited for the resolution of high energies.

To attain longer Wilson chains, we proceed by introducing the truncation of high-energy

system eigenstates to the IRLM.

In Fig. 7.5 we have plotted the impurity occupation nd(t) for different values of U

for relatively long Wilson chains of length NC = 50 with NS = 103 retained states at

each NRG iteration. To extract the relaxation times τ , a fit with Eq. (7.1.1.3) has

been performed. The success of this procedure is very susceptible to the correct choice

of the initial value for the oscillation frequency Ω. One can either guess this value from

the shape of the curves, or use the envelope function of the curves, which are obtained

by artificially neglecting the CWC oscillations, i.e. setting En
r −En

s → 0 in Eq. (6.1.5).

The envelope function is obtained from Eq. (7.1.1.3) by setting Ω = 0. Furthermore,

the fitting process of the OWC curves can be simplified by choosing θ = π/2 for all

curves, as has been mentioned above. The fitting process with Eq. (7.1.1.3) confirms

this choice of θ for U ≥ 4D.

In Fig. 7.5 the fitted functions (dashed lines) deviate more from the original curves

(solid lines) than in Fig. 7.3, where the differences are practically not existent. This

stronger deviation can be attributed to the truncation of high-energy states in Fig.

7.5, as well as to the fact, that the OWC solution contains more different relevant

relaxation rates, if the chain length is larger.

The parameters obtained from Fig. 7.5 are depicted in Fig. 7.6. The latter is an

analog comparison to Fig. 7.4. In contrast, in Fig. 7.6 the relative deviation of the

numerically calculated Γ/Γeff is significantly reduced from approximately 650% to 13%.

This is due to the higher accuracy of NRG equilibrium values for longer Wilson chains.

A large value of U obviously increases the chain length NC, which is necessary to reach

a sufficient convergence here. The U -value at which all three parameters are effectively

converged is not significantly changed. However, the most relevant difference lies in

the relaxation rates τ−1. In Fig. 7.4 the rates converge to a value, which is effectively

constant in U for approximately U ≥ 16D. In contrast, in Fig. 7.6 a U−2 dependence

can be observed for U ≥ 96D, which is the predicted physical behavior. According to
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Figure 7.5.: Figure taken from Ref. [114]. Non-equilibrium impurity occupation versus
dimensionless rescaled time tΓeff for different values of U . Γ/Γeff has been
adapted to align the equilibrium values of the curves. The Wilson chain
parameters are Λ = 1.59, NC = 50, D = 103Γeff, which yields an effective
temperature of T = 0.01Γeff. We retained NS = 103 low-energy states
at each iteration and averaged over Nz = 4 values of z. The Lamb-shift
has been set to zero and the curves are artificially renormalized by the
trace of the density matrix, since no coupling of iterations has been per-
formed in the BRT. The non-interacting analytical solution is added as a
black dashed line. The colored dashed lines are the fitted curves with Eq.
(7.1.1.3).

the discussion above, we assume this is due to the longer Wilson chain in combination

with a lowered Λ. We expect the relaxation rates to converge to a constant value, if

U is chosen to be sufficiently large. The relaxation rates (green stars in Fig. 7.6) are

too large in comparison to the analytical predictions (green dotted and dashed lines).

We have shown in Fig. 7.4, that the choice of the discretization parameter impacts the

steady-state, which is due to its influence on the quality of the BMA. Thus we expect

a smaller Λ to better reproduce the correct steady-state of the relaxation rates.
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Figure 7.6.: Effective parameters Γ/Γeff·D/Γeff, Ω/Γeff and τ−1
eff /Γeff·(U/D)2 for different

U/D. The figure is to be understood analogly to Fig. 7.4. The dotted lines
are the pure theoretical predictions via Eq. (7.1.1.8) and (7.1.1.7). The
dashed lines are the parameters calculated via (7.1.1.7) for a numerically
determined Γ/Γeff. The stars represent the fitted parameters of Fig. 7.3.

In the context of a BMA in second order, one might expect the relaxation rates of the

OWC curves to lie below analytical predictions, instead of above. This might be the

case for the BA, however the other approximations involved, especially the second MA,

potentially falsely increase the components of the BRT. We know from calculations

for the non-interacting case, that the influence of the second MA (which is basically

expressed by an impairment of the short-time dynamics) is reduced by increasing the

chain length (see Fig. 6.4). This is based on the fact, that the relaxation of the curves

is mainly influenced by the DDM. However, the relaxation rates for large U/D are

mainly given by the ODDM (see Fig. 9.2). Here, the influence of the second MA is

still unknown.

To assess the effect of the single approximations for large U/D, one could calculate

the OWC NC = 1 curves for a non-Markovian reservoir, as has been done in Sec. 4.6.1
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for the NC = 0 case. For a local Hilbertspace dimension of 4 one obtains a BRT of 44

components, which is the reason, why we do not attempt to calculate it in the non-

Markovian case here. However, by separating the DDM and the ODDM as explained

in Sec. 4.5, as well as restricting to the ǫfd = 0 case and exploiting all symmetries of

the BRT, the calculation might be possible.

Let us summarize our findings regarding the suitability of the BMA for OWC

TD-NEVs in the case U ≫ D. For short chains the predicted U−2 behavior of the

relaxation rates could not be reproduced, which is expected to be mainly based on

the BA. A significant increase in the chain length is able to generate the correct U -

dependence, which supports this hypothesis. Still, the absolute value of the rates is

too large. This can be attributed mainly to the second MA by influencing the ODDM,

which is most relevant to the local dynamics for large U/D. From calculations in

the non-interacting case we know that a lowering of Λ improves short-time dynamics,

which is connected to the second MA (not shown). The hypothesis, that a lowering of

Λ improves the absolute value of the relaxation rates is supported by the short chain

calculations in Fig. 7.4.

Additional calculations and figures for the OWC TD-NEV in the IRLM can be found

in App. H.

7.1.2. Single Impurity Anderson Model

As the second non-trivial model investigated in this thesis, we turn to the SIAM. This

model has been discussed in detail in Sec. 2.4, 3.6 and 4.6. Compared to the RLM,

we add a spin DOF and a Hubbard-like local Coulomb repulsion U . In the IRLM

the energy U favors the super-impurity (impurity plus zeroth chain site) to be singly

occupied and by that induces local Rabi-like oscillations. The effect of U in the SIAM is

similar, as it prohibits a doubly occupation of the impurity site. However, the dynamics

is entirely different, as in the SIAM no direct hopping between the local spin-up and

spin-down state is possible. In analogy to Sec. 4.6, we consider the impurity occupation

nd(t) = n↑(t) +n↓(t) and the impurity magnetization Sz(t) = 0.5
(

n↑(t)−n↓(t)
)

. Here

nσ(t) denotes the time-dependent expectation value of the |σ〉 〈σ| + |2〉 〈2| operator.

In Fig. 7.7 we examine the impurity occupation and magnetization for a quench,

which is inspired by Ref. [118] and [29]. Here we start with a spin-polarized state, i.e.

the local energy levels are E0 = E↑ = 0 and E↓ = E2 = Γ, so that the empty and

the spin-up state are thermally favored. We then quench at t = 0 to the particle-hole

symmetric case by switching off the external magnetic field and adapting U and ǫd.
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Figure 7.7.: Non-equilibrium impurity occupation nd(t) (panels (a) and (b)) and mag-
netization Sz(t) (panels (c) and (d)) for different values of the Coulomb re-
pulsion U . We switch from ǫid = −0.5Γ, Bi = Γ, U i = 0 to ǫfd = −U/2, Bf =
0 at t = 0. The initial hybridization is Γi = 0 in panels (a) and (c) and
Γi = Γ in panels (b) and (d). The final hybridization is Γf = Γ in both
cases. The Wilson chain parameters are NC = 30, Λ = 1.66, D = 20Γ,
so that a temperature of T = 0.01Γ is reached. We have used NS = 103

states and Nz = 4. The CWC solution is added as dashed curves and the
horizontal axes are chosen logarithmically.

Here the local eigenenergies are E0 = E2 = 0, E↑ = E↓ = −U/2, so the system is

spin-degenerate and the singly occupied state is thermally favored. Consequently, the

magnetization drops to zero for long times, while the occupation converges to 1, which

is the equilibrium value of the SAM. We have chosen the temperature as the smallest

energy scale and the bandwidth relatively small, to simulate the strong-coupling fixed

point for t → ∞. In the case Γi = 0 we have the free-orbital fixed point for t = 0,

since the impurity is decoupled from the Wilson chain. The case Γi = Γ corresponds

to a valence-fluctuation fixed point. The impurity levels of those cases are depicted

in Fig. 7.8, while Fig. 7.7 compares the OWC dynamics (solid lines) to those of the
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Figure 7.8.: Impurity level energies for the spin-polarized valence-fluctuation fixed
point ǫd = 0.5Γ, B = Γ, U = 0 (panel (a)), the local-moment fixed point
ǫd = −U/2, B = 0 (panel (c)) and a hypothetical transition state (b).

CWC (dashed lines). In contrast to Ref. [29], we have used a smaller number Nz in the

z-averaging and no artificial damping of the ODDM. Thus the finite-size oscillations

in the CWC solution are still visible, while the OWC curves thermalize to the correct

steady-state value. For short-times the OWC version relaxates faster than the CWC,

which is the well-known effect of the MA. Since the magnetic field is turned off, the

magnetization drops to zero for t → ∞. This behavior is well reflected by the OWC,

while the CWC solution maintains a residue magnetization. Intuitively, one would

expect the magnetization to steadily drop after the magnetic field has been turned off.

Instead, we observe a bump around tΓ ≈ 10, which is most pronounced in Fig. 7.7 (d),

as here the magnetization is even increased on intermediate times.

To understand this behavior, consider Fig. 7.8. Recall that we have defined the

magnetization as ∝ n↑−n↓. At t = 0, the empty and the spin-up state are degenerate,

meaning that the impurity is not fully occupied with the spin-up electron (see Fig. 7.8

(a)). By quenching to the symmetrical case, the levels of the singly occupied states are

decreased (Fig. 7.8 (c)). Thus, the empty state is now thermally less accessible and

the probability is effectively shifted to the spin-down state. However, the dynamics

between the two steady-states is dominated by the fact, that at first this probability is

shifted from the empty state and equally distributed between the two singly occupied

states, leading to additional occupation of the spin-up state. This additional occupation

then relaxates onto the spin-down state, until both spin states are degenerate, and is

responsible for the bump of the impurity magnetization on intermediate time scales.

Note, that this bump already partially shows in Fig. 4.5, where the most simple case

of NC = −1 has been assumed (i.e. no Wilson chain). The transition between the

two states can be depicted by the energy levels of Fig. 7.8 (b). This panel does not

represent an actual physical state of the system, but merely serves to illustrate the
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Figure 7.9.: Non-equilibrium impurity occupation nd(t) and magnetization Sz(t) for
different values of the Coulomb repulsion U . The parameters are identical
to Fig. 7.7. Here the horizontal axis is scaled by the respective Kondo
temperature TK, calculated from the impurity susceptibility via [14].

change in occupation probability right after the quench.

Another physically interesting feature is the relaxation time of the curves. For small

U , all relaxation happens on the time scale of the hybridization Γ. In the context of

the SIAM, the Kondo temperature TK is an important energy scale as well. For that

reason, we have scaled the curves of Fig. 7.7 by the Kondo temperature and replotted

them in Fig. 7.9. In fact, the magnetization in Fig. 7.9 (c) reveals the expected

relaxation behavior [119, 29], since the curves overlap at tTK ≈ 1. The OWC curve for

U = 16Γ is an exception, since it relaxates too fast. Here the Kondo temperature is

so low, that it is on the same magnitude as the system temperature. In other words,

thermal processes overlap the Kondo effect. If the temperature would have been chosen

lower by increasing NC, we would expect the red solid curve to better match the dashed

one. In fact, the deviation between the OWC and the CWC is increased in all curves

if U is increased. This supports the assumption made in Sec. 7.1.1, that the MA is
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impaired for large U/D. In the red curves we have chosen U ≈ D, which is why we

expect the most impact of the BMA on the relaxation rates here.

Further figures for the TD-NEV in the SIAM can be found in App. I.

7.2. Equilibrium Spectral Function

In this section we investigate the TD-EGF and the ESF for the IRLM and the SIAM,

respectively. The results are obtained analogly to Sec. 5.4.2, but for the interacting

case. Note, that for the SIAM the χ-operator has a spin index. Consequently, two

separate BRT are calculated and diagonalized, one for each spin value.

7.2.1. Interacting Resonant Level Model

As demonstrated in Fig. 7.2, a large local interaction U induces an effective separation

of the zeroth chain site from the remaining Wilson chain. The local Hamiltonian of the

super-impurity resembles the SAM with the one-particle energies −U
4

and the zero- and

two-particle energies +U
4

. The oscillations of Gd(t) are dominated by transitions from

the one particle subspace to the zero- or two-particle subspaces, respectively, leading

to frequencies U
4
−
(

−U
4

)

= U
2

.

In Fig. 7.10 we examine the TD-EGF for even and odd chain lengths and different

values for U and D, respectively. The local oscillations with frequency U/2 are shown

in Fig. 7.10 (a) and (c), where we have Gd(t) = cos(U
2
t) for large U and short times.

In contrast to the non-equilibrium impurity occupation in Sec. 7.1.1, the oscillations

are influenced by U and independent of any scaling Γeff.

For larger times, the relaxation rates, that are generated by the OWC, enter. In

Fig. 7.10 (b) it is displayed, that for U ≫ D and NC = 6 the envelope function of the

oscillations can be approximated by a single exponential decay rate α. This rate turns

out to be proportional to the bandwidth D, which is plausible, since α is defined by

the eigenvalues of the BRT, and the BRT is proportional to the correlation functions,

which scale with the bandwidth. For odd chain length (Fig. 7.10 (d)) the relaxation

rate is significantly smaller, which again matches with all observations made so far for

the OWC. For higher chain length, the rates of even and odd chains are expected to

coincide.

In Fig. 7.11 we investigate the OWC ESF for U ≥ D and an exact Wilson chain of

length NC = 6. We observe Lorentzian-type excitations at ω = ±(U/2 + δshift), which
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Figure 7.10.: The TD-EGF Gd(t), calculated via Eq. (5.4.2.62) in the IRLM, versus
dimensionless time 1

2
Ut and tΓ, respectively. The U = 0 curves are

unscaled with respect to the horizontal axis. The analytical solution for
U = 0 is added as black dashed lines for comparison. The black solid line
in panel (b) represents exp(−αt) with α = 0.08D. The panels (a) and
(c) are a zoom for short times, while panels (b) and (d) are plotted semi-
logarithmically to reveal the relaxation behavior. The NRG parameters
are chosen as in Fig. 5.19 with a chain length of NC = 6 (panels (a) and
(b)) and NC = 7 (panels (c) and (d)), respectively. The bandwidth is
D = 100Γ.

translate to the local transitions mentioned above. In the low-energy regime, the RLM

excitation at ω = ǫd = 0 is displayed, which is suppressed, if U is increased. To

evaluate the IRLM curves, we need to recall Eq. (5.4.2.63) and (5.4.2.64), respectively.

The weight and the position of the excitations in the OWC ESF are defined by the

CWC, while their broadening and a small shift are generated by the real- and the

imaginary-part of the eigenvalues of the BRT, respectively. In Fig. 7.11, all peaks

are broadened proportionally to the bandwidth D, which originates from the influence

of the reservoirs in the BRT, similar to the decay rates mentioned above. The only
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Figure 7.11.: The OWC ESF ΓAd(ω) for the IRLM with ǫd = 0, versus dimensionless
energies ω/D and ω/U , respectively. A discretization with Λ = 1.2 is
plotted in panels (a) and (b) and Λ = 3 in (b) and (d). We choose a
chain length NC = 6 and adapt β to obtain T = Γ. In panels (a) and
(c) the bandwidth D = 100Γ is maintained and U is varied. In contrast,
U = 1000Γ is fixed in panels (b) and (d) and D is varied.

dependence of U is expressed by the position of the high-energy peaks, as well as by

the weight of the low-energy excitations, which are solely defined by the influence of

the CWC.

The U -independence with respect to the broadening has already been observed in

the SAM for large U ≫ D in Sec. 4.6.2. Here we have coupled the bath directly

to the impurity and the influence of the single approximations was illustrated. The

MA cuts off the high-energy peaks, that lie outside the band. In contrast, Fig. 7.11

illustrates, that a Wilson chain of length NC = 6 is sufficient to improve the MA in

such a way, that those high-energy excitations are recovered. On the other hand, the

same scaling behavior of the peaks with respect to U and D is observed, i.e. the width

of the peaks is still independent of U and only depends on D. In contrast, the width of
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the peaks is expected to be proportional to U−2 [109]. To obtain an analytical estimate

of the precise behavior of Gd(t) in the case U ≫ D, one could perform a perturbative

calculation similar to App. E. Here we expect oscillations with a frequency of U/2

and a dominant decay rate ∝ U−2. Broadening parameters, which are constant in U

for large U/D correspond to the relaxations rates found for TD-NEVs (see Fig. 7.4)

and for TD-EGFs (see Fig. 7.10). The fact, that the broadening is converged for

significantly smaller U (U = 6D in Fig. 7.11 versus U = 50D in Fig. 7.4) might be

attributed to the different chain length and the even-odd effect. A slower convergence

for smaller Λ, as seen for TD-NEVs, cannot clearly be observed.

The findings of Fig. 7.11 suggest, that the BRF is not suitable to reproduce a direct

dependence of local parameters for the broadening of ESFs, if U ≫ D. We assume, that

this can be attributed to the BA, since here the local and the bath density matrix are

separated, leading to the case, in which the BRT is scaled by the reservoirs, i.e. bath

quantities, only. This is a systematic problem of the BA in second order, wherefore we

propose a BRF in fourth order (see Sec. 4.7.1) or a transition to a different QIM (see

Sec. 4.7.2) for U ≫ D.

However, the relaxation rates plotted in Fig. 7.4 for TD-NEVs might inspire one to

an alternative approach. By increasing the chain length and simultaneously lowering

the discretization parameter, we obtain an OWC with a large number of site, where the

reservoir coupling functions have not converged to their steady-state yet. We expect

this regime to resonate with a slower convergence of the eigenvalues of the BRT (i.e. the

relaxation rates and the broadening parameters generated by the BRF) with respect to

U , meaning that the relevant eigenvalues will be in the regime ∝ U−2 for higher values

of U , as found in Sec. 7.1.1. In any case, we expect the OWC solutions to converge to

a constant value for U → ∞, implying that the BRF in second order is not suitable

for arbitrary large U .

7.2.2. Single Impurity Anderson Model

We conclude our investigations with the OWC ESF in the SIAM. We choose NC = 5,

to match an IRLM of length NC = 6. The impurity of the SIAM then resembles the

super-impurity of the IRLM, which in turn includes the zeroth Wilson chain site.

In Fig. 7.12 the OWC ESF is plotted in a similar manner as in Fig. 7.11. Again,

U influences the position of the high-energy peaks (here called Hubbard peaks), but

not their widths. Additionally, the shift δshift observed in all cases discussed above,

effectively vanishes. Only for large bandwidths, a small δshift < 0 from the ω = ±U/2
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Figure 7.12.: The OWC ESF ΓAd(ω) for the symmetric Anderson model, versus di-
mensionless energies ω/D and ω/U , respectively. A discretization with
Λ = 1.2 is plotted in panels (a) and (b) and Λ = 3 in (b) and (d). We
choose a chain length NC = 5 and adapt β to obtain T = Γ. In panels
(a) and (c) the bandwidth D = 100Γ is maintained and U is varied. In
contrast, U = 1000Γ is fixed in panels panel (b) and (d) and D is varied.

points can be observed (Fig. 7.12 (b)), which is induced by the Lamb-shift and is

not reproduced in the CWC solution (not shown). Also, increasing Λ reduces the

Lamb-shift effect (Fig. 7.12 (d)) and thus makes the curves more symmetric around

ω = ±U/2.

In contrast to the solution in Sec. 4.6.2, there is a smooth crossover of the OWC

SIAM curves between the U < 2D and the U > 2D case. This suggests, that the

discontinuity of the transition of the curves in Sec. 4.6.2 is induced by the BMA and

that the OWC well compensates for that. In fact, even the sole addition of the zeroth

Wilson chain site to the OQS is sufficient to restore the Hubbard peaks, which are cut

off for U > 2D by the MA. However, in short OWCs of even chain length, the spectrum

is effectively cut off for |ω| > D and the Hubbard peaks appear as narrow delta-peaks.
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With increasing chain length, these peaks are broadened until they converge to the

odd chain curves. This is another example for the even-odd effect of short OWCs. In

the IRLM this effect occurs in a similar manner. However, as mentioned above, the

super-impurity needs to be interpreted as the local system here, meaning that even

chains generate physical curves and odd chains display the delta-peaks for large U/D.

In 2004, Raas et al [109] used DMRG calculations, i.e. a linear bath discretization,

to investigate ESF for a SAM in the U > D regime. They found δshift ∝ J and the

width of the Hubbard peaks ∝ J2, with J ∝ V 2/U , which is in accordance with Fermi’s

golden rule considerations. Figure 7.12 is constructed to be comparable to the results

of the paper. Since a smaller Λ should be more suited to recover the DMRG results,

we have plotted the ESF for two different values of Λ. However, the discretization

seems to have no effect on the U -dependence of the high-energy peaks. This suggests,

that the deviations cannot be attributed to the logarithmic discretization of the Wilson

chain. Also, numerical inaccuracy can be excluded here, as argued above. For that

reason, the cause of the deviations of Fig. 7.12 from the DMRG results has to lie in

the BMA. Comparable to Fig. 4.8, the OWC results show the same independence of U

with respect to the width of the Hubbard peaks in the U ≫ D regime, which suggests

that the BA has the most relevant contribution to the deviations.

To investigate the low-energy spectrum of the SIAM, a longer chain length, and thus

truncation of high-energy states, is required.

In Fig. 7.13 the ESF is plotted for the SAM. The Hubbard peak is clearly visible

at ω ≈ U/2 = 10Γ. The Kondo resonance at ω ≈ 0 has a width, which corresponds to

the Kondo temperature. The CWC curves (dashed lines) do not reproduce the exact

solution here due to a limited chain length. The OWC curves (solid lines) basically

resemble the dashed lines, but oscillate around them. This is a typical indicator of a

finite-size effect (see Fig. 6.6), which can be compensated for by z-averaging. Figure

7.13 reveals, that the BRF is able to reproduce the small energy scale of the Kondo

temperature. Thus we conclude that, in contrast to the U ≫ D regime, the BMA is

well suited to treat the U ≪ D interacting case.

7.3. Summary

The BRF provides a thermalization on the correct time scale for the non-interacting

RLM and for interacting models as well, if the local Coulomb repulsion U is small

compared to the bandwidth. In the case U ≫ D the CWC reproduces the correct
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Figure 7.13.: Equilibrium impurity spectral function Ad(t) for the SAM with ǫd =
−U/2 = −10Γ, D = 100Γ, NC = 30,Λ = 3, T = 10−5Γ. The number NS

of kept states is varied. The CWC is depicted as dashed lines and the
respective OWC as solid lines of the same color. The axes are chosen
logarithmically and we restrict to the positive half of the spectrum.

oscillation frequency of local Rabi-like oscillations in TD-NEVs. Perturbative consid-

erations predict a quadratic increase of the relaxation times τ in U . For short Wilson

chains (NC = 7 in our example), we observe a quadratic behavior in a small region

around U = 10D and then τ converges to a value, which is constant in U . We were

able to show, that an increase of the chain length to NC = 50 yields the correct U de-

pendence for 64D < U < 256D. At this point, it is not clear, whether τ approaches the

constant regime for larger U , i.e. it is not clear, whether an increase of the chain length

simply delays the convergence of τ to a constant value. Furthermore, the steady-state

of τ and τ/U2, respectively, exceeds the analytical predictions. Again, an increase in

the chain length significantly reduces this deviation. Here the discretization parameter

Λ has an influence as well, as it decreases the steady-state when Λ is decreased. We thus

propose to choose the OWC to be as long as possible with an adequately small Λ → 1+
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to optimally reproduce interacting models in the U > D regime. However, the trunca-

tion scheme of the NRG is not adapted to small Λ, since here the separation of adjacent

energy scales is too small. For large U a tight-binding chain treated with DMRG or

an open NRG+DMRG might represent a fruitful approach here. Also the extension of

the BRF to fourth order or the modification of the model via a Schrieffer-Wolff trans-

form are worth considering here. Both approaches include a coupling of fourth order

system operators to the reservoirs. These couplings are relevant for U > D, since here

an effective local moment is formed, and so spin-flip processes are the dominant local

interaction.

For IRLM ESFs we do not possess an analytical approximation, that aids in es-

timating the quality of the OWC solutions. In the symmetrical case ǫd = 0, the

model converges to the SAM for large U/D, which we can use to benchmark the so-

lutions. Aside from the Kondo resonance, the SAM exhibits its main excitations at

ω = ±(U/2 + δshift), called Hubbard peaks. Fermi’s golden rule considerations suggest

that δshift is proportional to the spin-coupling J ∝ V 2/U and that the width of the

peaks is proportional to J2. In contrast, we find the width of the Hubbard peaks to be

constant in U in the limit of large U/D, for each the IRLM and the SIAM respectively.

This is the identical behavior observed for the short chain TD-NEVs, since the broad-

ening parameters, as well as the relaxation rates, both stem from the eigenvalues of

the BRT. Due to finite-size oscillations, we were not able to evaluate ESFs for longer

Wilson chains at this point. However, from the parallelism of the relaxation rates and

the broadening parameters we assume, that the broadening of the Hubbard peaks will

be proportional to U−2, if the Wilson chain is sufficiently long. Also, we apply the same

argumentation as above for a possible improvement of the formalism with respect to

the U > D case.
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We have implemented an OQS approach for QIMs. For this purpose, we extended the

NRG formalism by reservoirs that are coupled to each Wilson chain site via a BRF.

In contrast to closed system approaches, this allows for true dissipation of quantities

in local TD-NEVs, as well as a finite lifetime of excitations in local ESFs. The OQS

character of the approach is mediated by a time-dependent density matrix, which is

defined by a von-Neumann equation. In the context of the BRF, this equation can

be turned into a simple master equation, which is then solved by diagonalizing the

so-called BRT. Here the BMA is necessary, which assumes a large bath and a weak

coupling to the system.

We have investigated the BRF in the most simple case of a direct coupling of the

impurity to the bath, where the effect of the single approximations included in the BMA

can be examined in detail. It has been shown, that the BA impairs equilibrium values,

while the MA mainly influences the short-time behavior of time-dependent quantities.

However, in this simple approach, a relaxation on the correct time-scale, as well as

the correct broadening of local excitations are already included for the non-interacting

RLM.

The main component of this thesis is the improvement of the BMA by the construc-

tion of an OWC. Here discrete excitations are extracted from the bath and are included

in the system Hamiltonian in the canonical manner of the NRG. The remaining bath

parts are collected as reservoirs and coupled to the Wilson chain to restore the contin-

uum. We were able to explain, how the BMA is improved by iteratively enlarging the

system Hamiltonian, while simultaneously decreasing the effective hybridization to the

remaining rest-bath. Due to the logarithmic discretization of the bath, discretization

errors occur in the OWC solutions, that are already well-known from NRG calcula-

tions. These errors are expressed as unphysical oscillations in TD-NEVs and ESFs,

and can be compensated for by a standard z-averaging. We have proofed that fact for

TD-NEVs, while it is still left to show for ESFs.

When increasing the Wilson chain length, a truncation of certain system eigenstates
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is required to keep the Fockspace dimension manageable. When calculating dynami-

cal properties with the NRG, all truncated iterations need to be included to avoid a

violation of the sum-rule. For the OWC, we analogly need to include a coupling of all

truncated iterations in the master equation, due to the application of an ASB. This

coupling imposes infeasible demands with respect to CPU time and memory to modern

workstations, which is the reason why we discussed and implemented several approx-

imations to the BRT. In the SSA, the coupling between different NRG iterations is

neglected. This significantly affects the Lamb-shift, which is yielded by the imaginary

part of the BRT. We discussed a possible way to correct the Lamb-shift, however we

decided to simply neglect it, since its influence on the solutions is exponentially small,

if the discretization parameter is small. In TD-NEVs the SSA yields an unphysical

loss of the trace over time. Here we discussed a coupling of all NRG iterations for the

DDM, as well as efficient alternative approaches. In ESFs the coupling of different

iterations is relevant for the dissipative part of the BRT. We have no practical way of

including the iteration coupling here, however, in the limit of low temperatures, the

dissipative part has no influence on the ESF and can safely be neglected. In that case

the BRT is diagonal, which significantly simplifies calculations.

Since the purpose of this thesis is of methodological nature, all points above have been

investigated for the simple RLM, where analytical solutions are available as benchmarks

for the OCF. To proof that our formalism is also applicable to non-trivial models, we

have included a local Coulomb interaction to investigate the IRLM and an additional

spin DOF for the SIAM.

If the local Coulomb interaction is relatively small, i.e. within the bath bandwidth,

it can be treated as an effective correction to the RLM in the context of the BRF. In

TD-NEVs the relaxation rates generated by the BRT are modified by the local inter-

action and in the case of the IRLM, additional local Rabi-like oscillations are induced,

which are solely defined by the CWC. In the SIAM a scaling of the magnetization

with the Kondo temperature has been found for the OWC solutions, which is in ac-

cordance with TD-NRG calculations. For ESFs the OCF is capable of reproducing the

Hubbard-peaks of a width of 2Γ and, within the limits of the discretization error, the

Kondo resonance is of the width of the Kondo temperature. The secular approxima-

tion can lead to a discontinuous transition, if the interaction is turned on, however, this

transition can be smoothed, by increasing the Wilson chain length. We conclude, that

the BRF is well applicable to interacting QIMs, if the interaction energy lies within

the range of the bandwidth.
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If the local interaction exceeds the bandwidth, the BRF faces two major problems.

Firstly, the MA prohibits transitions between the impurity and the band, which can

easily be corrected by increasing the chain length. Secondly, the BRT, and consequently

its eigenvalues, is independent of the interaction energy due to the BA, which leads to a

corruption of the relaxation rates in TD-NEVs, as well as the broadening parameters in

ESFs, respectively. We have shown, that this error can also be corrected by increasing

the chain length, however, a significantly larger increase is required here compared to

the correction of the MA. Furthermore, the relaxation rates obtained from the OCF are

significantly larger than analytical predictions suggest, which can be compensated for

by decreasing the discretization parameter. Considering these facts, the BMA in second

order appears to be systematically maladapted to relatively large local interactions.

The OCF is capable of compensating for that to a certain degree by increasing the

system size, however, we propose to try different approaches, such as a BMA in fourth

order or a Schrieffer-Wolff transform of the QIM, to more efficiently treat interacting

models.

Due to its logarithmic discretization of the bath, the OCF is confined to QIMs. How-

ever, in this wide range of applications, the approach is versatile. The construction of

the reservoirs is independent of the precise form of the impurity and so, e.g. multi-

impurity models can be investigated as well. In the BRF we have included the spin in

the SIAM as a DOF. Here we could add arbitrary DOF, e.g. different channels and

by that extend the OCF to multi-channel models. By manipulating channel chemical

potentials, local transport processes can be investigated. Our work was confined to

a constant bath DOS, but the BRF can easily be adapted to, e.g. gapped systems.

Bosonic systems are considerable as well. Furthermore, we have restricted ourselves to

a single quench in non-equilibrium dynamics. Multiple quenches would be possible as

well to simulate pulses for QDs. To better adapt our formalism to high-temperature

calculations, one would need to extend the density matrix by a FDM approach. How-

ever, caution is advised when truncating high-energy states in ESFs in the regime of

high temperatures for the reasons mentioned above.

In principle, the OCF can be applied to all problems the NRG is suitable for. This is

due to the fact, that the BRF is independent of the impurity Hamiltonian and adaptable

to different chain geometries. Solely the hybridization term has a major effect on the

BRF. Here we have restricted ourselves to the canonical bilinear Hamiltonian, while it

is, in principle, possible to adapt the formalism to higher order terms, as they appear

e.g. in the Kondo model.





9. Appendix

A. Analytical Calculations for the Resonant Level

Model

In the following analytic calculations we restrict to the RLM, i.e. a QIS comprising

a local two-level system hybridized with a bath of non-interacting fermions (cf. Eq.

(5.1.1)).

A.1. Equilibrium Spectral Function

We begin by calculating the equilibrium GF Gd,d†(z) of the local impurity level using

an equation of motion

zGA,B(z) = 〈{A,B}〉 + G{A,H},B(z), (A.1.1)

with the complex energy z = ω + iδ. For a decoupled impurity, i.e. V = 0, we obtain

Gd,d†(z) =
1

z − ǫd
(A.1.2)

for the retarded GF, yielding a spectral function of a simple delta-peak

Ad,d†(ω) = − 1

π
lim
δ→0+

ImGd,d†(z) = δ(ω − ǫd), (A.1.3)

which translates to an infinite lifetime of the impurity level due to a missing dissipation

mechanism into the bath. The DOS of the bath

ρ(ω) =
∑

k

Ac
k
,c†

k
(ω) =

∑

k

δ(ω − ǫk) (A.1.4)

follows analogly.
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For the coupled problem V 6= 0 the GF reads

Gd,d†(z) =
1

z − ǫd − Σ(z)
(A.1.5)

containing the self-energy

Σ(z) =
∑

k

|Vk|2Gc
k
,c†

k
(z) =

∑

k

|Vk|2
z − ǫk

. (A.1.6)

By assuming a constant DOS

ρ(ω) =
1

2D
Θ(D − |ω|), (A.1.7)

where D is the bandwidth, the imaginary part of the self-energy becomes

ImΣ(ω) = lim
δ→0+

ImΣ(z) = −ΓΘ(D − |ω|) (A.1.8)

with Γ = πV 2

2D
(see Sec. 5.1), while the real part

ReΣ(ω) =
1

π

∫ ∞

−∞

dω′ImΣ(ω′)

ω′ − ω
= −Γ

π
ln

∣

∣

∣

∣

D − ω

D + ω

∣

∣

∣

∣

(A.1.9)

can be obtained by a Kramers-Kronig relation.

This result can now be inserted into Eq. (A.1.5) to calculate the spectral function

Ad,d†(ω) =
1

π

Γ

(ω − ǫd −ReΣ(ω))2 + Γ2
(A.1.10)

of the impurity site. In the wideband limit ω ≪ D (which coincides with a constant

DOS) ReΣ(ω) vanishes, so we are left with a simple Lorentzian

Ad,d†(ω) =
1

π

Γ

(ω − ǫd)2 + Γ2
, (A.1.11)

with a broadening of Γ, resulting in a finite lifespan of the impurity level. The curve

is centered around ω = ǫd, supplemented by a potential additional shift for a non-

vanishing real part of the self energy.
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From the spectral function the equilibrium occupation

〈nd〉 =

∫ ∞

−∞

dωfβ(ω)Ad,d†(ω) (A.1.12)

of the local level can be calculated with fβ(ω) =
(

1 + eβω
)−1

being the Fermi function

for the inverse temperature β. In the limit of T → 0 we obtain

〈nd〉 =
1

2
− 1

π
arctan

(ǫd
Γ

)

. (A.1.13)

For Γ → 0 the impurity decouples from the bath, which is the V = 0 case discussed

above. The spectral function consequently turns into a delta-peak leading to 〈nd〉 =

fβ(ω), i.e. the impurity occupation is solely defined by the Fermi-function.

A.2. Non-Equilibrium Occupation Number

The calculations of this section are based upon Ref. [29, 23]. We investigate exact

non-equilibrium dynamics of the impurity occupation in the RLM by using a Keldysh

formalism [120]. The considerations partially rely on the wideband limit D ≫ Γ

and the occuring integrals can be evaluated analytically for vanishing temperature T .

The non-equilibrium case is provided by a time-dependent impurity level ǫd(t) and

hybridization V (t) in the Hamiltonian.

To begin with, we identify the impurity occupation

nd(t) = 〈d†(t)d(t)〉 (A.2.14)

as the equal-time version of the lesser GF

G<
d,d†(t, t

′) =

∫ ∞

−∞

dτ

∫ ∞

−∞

dτ ′Gr
d,d†(t, τ)Σ<(τ, τ ′)Ga

d,d†(τ
′, t′), (A.2.15)

where Σ< is the lesser self-energy. G
r/a

d,d†
is the retarded/advanced GF, which obeys the

equation of motion

(i∂t − ǫd(t))G
r/a

d,d†
(t, t′) = δ(t− t′) +

∫ ∞

−∞

dτΣr/a(t, τ)G
r/a

d,d†
(τ, t′). (A.2.16)
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Here enters the retarded/advanced self-energy

Σr/a(t, t′) = ∓iΘ(±(t− t′))V (t)V (t′)

∫ ∞

−∞

dǫρ(ǫ)e−iǫ(t−t′). (A.2.17)

To simplify the integral we now assume the wideband limit which leads to a constant

fermionic DOS ρ(ǫ) = ρF . Together with Eq. (A.2.16) we obtain

G
r/a

d,d†
(t, t′) = ∓iΘ(±(t− t′))exp

(

−
∫ t

t′
dθiǫd(θ) ± Γ(θ)

)

, (A.2.18)

where we have introduced the definition Γ(t) = πρFV
2(t). Analogly to Eq. (A.2.17)

the lesser self-energy is given by

Σ<(t, t′) = V (t)V (t′)

∫ ∞

−∞

dǫρ(ǫ)e−iǫ(t−t′)fβ(ǫ). (A.2.19)

Plugging the derived equations into Eq. (A.2.15) yields

nd(t) = G<
d,d†(t, t) =

∫ ∞

−∞

dǫρ(ǫ)fβ(ǫ) |A(ǫ, t)|2 , (A.2.20)

with

A(ǫ, t) =

∫ t

−∞

dτV (τ)exp

(

−iǫτ −
∫ t

τ

dθiǫd(θ) + Γ(θ)

)

=

[

V i

Γi + i(ǫid − ǫ)
− V f

Γf + i(ǫfd − ǫ)

]

e−(iǫfd+Γf)t +
V f

Γf + i(ǫfd − ǫ)
e−iǫt. (A.2.21)

In the last step we have restricted ourselves to a discontinuous parameter quench from

the initial values ǫid, V
i,Γi to the final ones ǫfd, V

f,Γf at t = 0. Note that in Eq. (A.2.19)

and (A.2.20) a general ρ(ǫ) can be maintained even though previously a constant DOS

has been proposed. This allows for approximate corrections of the DOS in cases that

deviate from the wideband limit. In the case of T → 0 a closed analytical form can be

found. For details, see Ref. [23].

In the equilibrium cases, t = 0 and t → ∞, Eq. (A.2.20) yields the expression of

Eq. (A.1.12). If one recalls that here also the wideband limit has been considered by

neglecting the real part (A.1.9) of the self-energy, it seems reasonable to substitute it

back into the GF-like terms of Eq. (A.2.21). This makes up for the approximation

done in Eq. (A.2.17), at least with respect to the equilibrium values.
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If A(ǫ, t) is plugged into Eq. (A.2.20), one obtains a function of the type

nd(t) =(ni
d − nf

d)e
−2Γft + nf

d + e−2ΓftI1 + e−ΓftI2(t), (A.2.22)

with ni
d, n

f
d being the equilibrium values. The first two terms on the r.h.s. of Eq.

(A.2.22) resemble the simple 2Γ-decay of the BRF solution Eq. (4.6.1.67), while I2(t)

adds an oscillation that decays with Γ and fulfills I2(0) = −I1.
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B. Different Spectral Coupling Functions

The BRF can easily be adapted to more general spectral coupling functions Γ(ω).

In Sec. 4.3 and 4.6 all Γ(ω) can be replaced, which does not require any additional

calculations, if the BMA is applied.

Introducing a power-law spectral coupling function [85]

Γ(ω) = Γ(1 + r)D−r|ω|rΘ(D − |ω|), (B.23)

we can recognize the case of a constant function by setting r = 0. For r = 1, we can

replace all spectral coupling functions in the BMA by

Γ(ω) =
2Γ

D
|ω|Θ(D − |ω|), (B.24)

which simply rescales the relaxation rates generated by the BRT by 2|ω|
D

≤ 2. The

Lamb-shift γ(ω) (see Eq. (4.6.2.86)) is replaced by

γ(ω) =
1

π

∫ ∞

−∞

dǫ
Γ(ǫ)

ǫ− ω
=

2

πD
ω ln |D

2 − ω2

ω2
|, (B.25)

and vanishes in the wideband limit D ≫ |ω|.

C. Higher Order Terms in the Von-Neumann Equation

We discuss a perturbative solution to the von-Neumann equation

ρ̇I(t) = i
[

ρI(t), H I
SB(t)

]

(C.26)

(see Eq. (4.2.4)) and the evaluation of the thermal expectation value of a local operator

〈ÔS(t)〉 = TrS

{

eiHStÔSe
−iHStTrB

[

ρI(t)
]}

. (C.27)

Here we concentrate on the impurity occupation operator OS = nd = d†d and the

RLM. Other choices for the local operator and the QIM are possible as well but the

calculations would require appropriate adjustment.
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The local system Hamiltonian in the RLM is simply given by

HS = ǫdd
†d, (C.28)

while the hybridization to the non-interacting fermionic bath is in the interaction pic-

ture defined as

V (t) ≡ H I
SB(t) =

∑

k

Vk

[

d†(t)ck(t) + d(t)c†k(t)
]

. (C.29)

By defining the local eigenbasis {|0〉 , |1〉} and considering a bath of non-interacting

particles, we can rewrite these Hamiltonians as

HS = ǫd |1〉 〈1| (C.30)

and

V (t) =
∑

k

Vk

[

|0〉 〈1| c†kei(ǫk−ǫd)t + |1〉 〈0| cke−i(ǫk−ǫd)t
]

(C.31)

respectively. If we define the non-equilibrium case by a quench

ǫd(t) = ǫidΘ(−t) + ǫdΘ(t) (C.32)

of the local impurity energy and assume the impurity and the bath to be separated for

t ≤ 0, the initial reduced density matrix is given by

ρS(t = 0) = fβ(−ǫid) |0〉 〈0| + fβ(ǫid) |1〉 〈1| , (C.33)

with fβ(ǫ) being the Fermi-function for the inverse temperature β.

The local impurity occupation can now be written as

nd(t) = TrS

{

ndTrB

[

ρI(t)
]}

= TrS

{

ρS(t = 0)TrB

[

∞
∑

n=0

R2n(t)
]}

(C.34)
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with

Rn+2(t) = −
∫ t

0

dtn+1

∫ tn+1

0

dtn+2

[

V (tn+2), [V (tn+1), Rn(t)]
]

R0(t) = nd. (C.35)

The first order term

[

V (t2), [V (t1), nd]
]

= 2nd

∑

k

V 2
k cos ((ǫk − ǫd)(t2 − t1))

−
∑

k1k2

Vk1Vk2c
†
k1
ck2
(

ei(ǫk1−ǫd)t1−i(ǫk2−ǫd)t2 + ei(ǫk1−ǫd)t2−i(ǫk2−ǫd)t1
)

(C.36)

can be obtained by switching the indices k1 ↔ k2 in two terms and exploiting

|1〉 〈1| ck2c
†
k1
− |0〉 〈0| c†k1ck2 = |1〉 〈1| δk1,k2 − c†k1ck2 . (C.37)

To incorporate (C.36) into (C.34) one needs to calculate the trace over all impurity

and bath DOF, which simply yields

TrS

{

ρS(t = 0)TrB

[

V (tn+2), [V (tn+1), nd]
]]}

=
2

π

∫ ∞

−∞

dǫΓ(ǫ)
(

fβ(ǫid) − fβ(ǫ)
)

cos ((ǫ− ǫd)(t2 − t1)). (C.38)

Here we have turned the discrete sum over k into an integral over ǫ by defining the

spectral coupling function as in Eq. (4.3.23).

The true challenge now lies in the calculation of higher order terms of R2n(t) with

n > 1. Deriving higher order terms from the first branch of (C.36) is fairly simple,

since no bath operators are involved and so the sums over the bath DOF will never

be entangled. The second branch contains the operators c†k1ck2 and for that reason the
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evaluation in higher orders is not as apparent. Let us calculate

[

V (t2),
[

V (t1), c
†
k1
ck2

]]

=
∑

k 6=k2

Vk1Vkc
†
kck2e

i(ǫk−ǫd)t2−i(ǫk1−ǫd)t1

+
∑

k 6=k1

VkVk2c
†
k1
cke

i(ǫk2−ǫd)t1−i(ǫk−ǫd)t2

+ Vk1Vk2(c
†
k2
ck2 − nd)e

i(ǫk2−ǫd)t2−i(ǫk1−ǫd)t1

+ Vk1Vk2(c
†
k1
ck1 − nd)e

i(ǫk2−ǫd)t1−i(ǫk1−ǫd)t2 . (C.39)

Interestingly, no bath correlations higher than second order emerge. With (C.36) and

(C.39), nd(t) can straightforwardly be calculated up to fourth order, since the first two

terms of (C.39) vanish in the final expression. With each order of n, these terms add

one summation over the bath DOF. A neglection of those terms would only affect third

order contributions in k and then have an increasing effect on higher order terms. If

we assume a weak coupling between the impurity and the bath, this approximation

appears to be legitimate.

In any case, one is left with the integration of increasingly nested exponential func-

tions. We do not want to proceed on this path, since this thesis is intended to restrict

to the BMA. However, we want to point out, that the above discussed method is

basically adaptable to arbitrary QIMs, since local and bath operators are entirely de-

coupled. Also, the calculation of a TD-EGF is possible as well by replacing (C.34)

by

Gd(t) = −iΘ(t)e−iǫdtTrS

{

dTrB

[

χI(t)
]}

, (C.40)

where χ = d†ρ + ρd†.

D. Numerical Determination of the Cut-Off

Frequencies

The cut-off frequencies ωC
n are defined by

t2n =
1

π

∫

dωFn(ω)Γn(ω) (D.41)
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with Fn(ω) = e−(ω/ωC
n )4 . The problem is equivalent to finding the root of

f(x) = πt2n −
∫ +∞

−∞

dωe−ω4/x4

Γn(ω). (D.42)

To find a starting point x0, we approximate e−ω4/x4 ≈ 1 − ω4/x4 and set f(x0) = 0.

The constant term yields π(V ′
n)2 by integration over ω. We end up with

x4
0 =

∫ +∞

−∞

dω
ω4Γn(ω)

π(t′n)2
(D.43)

with (t′n)2 = (V ′
n)2 − t2n.

Now Newton’s method is implemented as

xm+1 = xm − f(xm)

f ′(xm)

=
4h(xm) + πt2n − g(xm)

4h(xm)
xm (D.44)

with

g(x) =

∫ +∞

−∞

dωe−ω4/x4

Γn(ω)

h(x) =

∫ +∞

−∞

dω
ω4

x4
e−ω4/x4

Γn(ω). (D.45)

The radius of convergence is defined as r = 1 − xm/xm+1. The algorithm is iterated

until |r| ≤ 10−7 is reached.

E. Interacting Resonant Level Model in the Strong

Coupling Limit

Here we derive an analytical investigation of the IRLM in the limit of large U ≫ D, T .

The calculations basically follow the thoughts of Avi Schiller, presented in the thesis

of Fabian Güttge [19], Appendix D, and in Ref. [36].

We start with the IRLM Hamiltonian (see Sec. 2.5), cast into the shape of a semi-

infinite Wilson chain (see Sec. 3.1). The impurity part of the Hamiltonian is given
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by

Himp = ǫdd
†d + U

(

d†d− 1

2

)(

c†0c0 −
1

2

)

. (E.46)

A diagonalization of Himp yields the eigenvalues

E0 = U/4

E± = ǫd/2 − U/4 ± Ω/2

E2 = ǫd + U/4 (E.47)

with Ω2 = ǫ2d + 4V 2. The eigenstates are given by

|0〉 = |0, 0〉
|±〉 = ±α± |1, 0〉 + α∓ |0, 1〉
|2〉 = |1, 1〉 (E.48)

and α2
± = (Ω ± ǫd)/(2Ω). For large U the one-particle eigenstates |±〉 become a low-

energy subspace and so for temperatures well below U the higher energy states |0〉 and

|2〉 are thermally inaccessible with respect to the rest of the system. This motivates a

Schrieffer-Wolff-type transformation [16]

Heff = eS−S†

HeS
†−S (E.49)

that decouples the high-energy sector from the rest of the system up to a certain order

in t0. Here t0 is the Wilson chain coupling parameter between the zeroth and the first

chain site. As a perturbation part of the Hamiltonian we choose

H1 = t0

(

f †
1f0 + f †

0f1

)

, (E.50)

while H0 = H − H1 resembles the unperturbed part. Note, that H1 is the only part

of the total Hamiltonian H that changes the particle number of the local ”super-

impurity”. To ensure that in (E.49) no terms appear, that are linear in t0, S needs to

be chosen to be proportional to t0 and

H1 + [S,H0] − [S†, H0]
!

= 0 (E.51)
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needs to be fulfilled. In that case we obtain

Heff = H0 + [S − S†, H1] + O(t30). (E.52)

For a large U we can approximate H0 → Himp in the commutator and so the require-

ment of (E.51) can be turned into

[S,Himp]
!

= −t0f
†
0f1. (E.53)

By expanding the zeroth chain site creator f †
0 in the local eigenbasis (E.48) one arrives

at

S = t0

[

α+

E2 − E+

|2〉 〈+| − α−

E2 − E−

|2〉 〈−| +
α−

E+ − E0

|+〉 〈0| − α+

E− − E0

|−〉 〈0|
]

f1.

(E.54)

Since U is considered to be the largest local energy, we can substitute the four denom-

inators of (E.54) by ±U/2.

For infinite U , charge on the impurity is expected to oscillate between the two low-

energy states |±〉 with the frequency Ω = E+ −E−. If U is finite, the charge relaxates

from |+〉 to |−〉. According to Fermi’s golden rule the transition rate is then, in first

order, given by

τ−1 = 2π| 〈+|Heff |−〉 |2ρ21Ω. (E.55)

Here, 〈+|Heff |−〉 =
4V t20
ΩU

follows from the Schrieffer-Wolff transform (E.52). ρ1 is the

local DOS at the first chain site. In the spirit of Sec. 5.1 we can connect the GF of the

zeroth and first chain site operators by

G0(z) =
1

z − ǫ0 − t20G1(z)
(E.56)

(see Sec. 5.1). In the particle-hole symmetric case we have ǫ0 = 0 and ReGi(0) = 0.

This gives an equation for the DOS ρi(0) = − 1
π
ImGi(0) at ω = 0. For a constant DOS

we set ρ0 ≡ 1/(2D) and obtain t20ρ1 = 2D/π2. One ends up with

τ =
π4

256

Ω

DΓ

(

U

D

)2

. (E.57)
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With the considerations made above the local observables can now be calculated in the

limit of large U . We start with a time-dependent system state

|Ψ(t)〉 =
∑

p=±

cp(t)e
−iEpt |p〉 ⊗ |Ψp(t)〉 . (E.58)

Here, the local part and the bath part |Ψp(t)〉 are factorized in the spirit of a BA for

a weak coupling t0. For the impurity occupation number it follows

nd(t) = 〈Ψ(t)| d†d |Ψ(t)〉

= α2
+c

2
+(t) + α2

−c
2
−(t) − 2α+α−c+(t)c−(t)Re

{

e−iΩt 〈Ψ−(t)|Ψ+(t)〉
}

. (E.59)

According to Fermi’s golden rule the state |+〉 decays with a rate τ−1, meaning that

|+〉〈+|(t) = | 〈+|Ψ(t)〉 |2 ∝ e−t/τ . Combined with the fact that the states (E.58) are

normalized to 1, we obtain the time-dependent coefficients

c+(t) = c+(0)e−t/(2τ)

c−(t) =
√

1 − c2+(0)e−t/τ . (E.60)

Equation (E.59) can be written as

nd(t) =(ni
d − nf

d)e−t/τ + nf
d

+ A

(

cos(Ωt)
√

1 − cos2(θ)e−t/τe−t/(2τ) − sin(θ)e−t/τ

)

, (E.61)

where the quantities A and θ are undefined and need to be determined numerically by

a fitting procedure. Equation (E.61) resembles a decay of the impurity on the timescale

τ with damped Rabi-oscillations with a frequency of Ω.

F. Algorithm for the Biorthogonal Lanczos Method

In the following we explicitly describe the Lanczos algorithm we have used to diago-

nalize the BRT R (cf. Eq. (6.1.7.50)). All elements of the algorithm are considered

complex. Vectors are written with a bold font and the scalar product ” ·” implies, that

the first vector is conjugated complexly.

As a first step we declare the matrices φ, ϕ to store the left and right Lanczos vectors
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φi and ϕi, respectively, and choose the starting vectors

φ0 = ϕ0 =
ρ(t = 0)

||ρ(t = 0)|| . (F.62)

We define the temporary vectors

r = Rϕ0,

s = R†φ0, (F.63)

declare the values α, β, γ, ω and set

α = φ0 · r. (F.64)

Furthermore, we declare the matrix T , which is initialized as a zero-matrix of dimension

mLan ×mLan and set

T [0, 0] = α. (F.65)

The following steps are performed in a loop for i ∈ [0,mLan − 1].

We start with

r → r − αϕi

s → s− α∗φi

ω = r · s
β =

√

|ω|
γ = ω∗/β (F.66)

and compute the new Lanczos vectors:

ϕi+1 = r/β

φi+1 = s/γ∗. (F.67)
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We may re-biorthogonalize the new Lanczos vectors with respect to all vectors j ≤ i:

ϕi+1 → ϕi+1 −
i
∑

j=0

(

φj ·ϕi+1

)

ϕj

φi+1 → φi+1 −
i
∑

j=0

(

ϕj · φi+1

)

φj. (F.68)

This process can be repeated until the vectors are sufficiently converged. We continue

by setting

r = Rϕi+1 − γϕi,

s = R†φi+1 − β∗φi+1 (F.69)

(F.70)

and

α = φi+1 · r.

Now the parameters are stored in the T matrix:

T [i + 1, i + 1] = α,

T [i, i + 1] = γ,

T [i + 1, i] = β, (F.71)

which concludes the loop iteration.

As a measure for the numerical accuracy of the algorithm

detφ†ϕ = 1 (F.72)

has to be fulfilled.

The matrix T is now diagonalized to obtain the Ritz values. The right eigenvectors

of T are stored in a matrix U . We calculate the left and right Ritz vector matrices
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W,V by using the Lanczos vectors

V = ϕU,

W = φ
(

U−1
)T

. (F.73)

The bottleneck of the algorithm regarding program complexity is the matrix-vector

multiplication (F.70). Here it is important to exploit the sparsity of the matrix R.

A typical criterion for the numerical break-down of the algorithm is that any of

the values ||r||, ||s||, |ω| ≈ 0. In that case, one has to choose new starting vectors

and restart the algorithm. The data computed up to this point, however, is valid to

calculate the first Ritz values and vectors. In our program, a break-down of that kind

has never occurred. In some cases, α might diverge. Here the algorithm has to be

interrupted early enough, but still all calculated values are valid, since an eigenvalue

E → ∞ has no contribution in the final result. To combat this divergence, one might

repeat the re-biorthogonalization (F.68) or simply choose a slightly different set of

system parameters.

G. Sinc-Broadening for the RLM Equilibrium Spectral

Function

In closed systems the TD-EGF Gd(t) is given as a sum of oscillating terms (see Eq.

(6.2.3.57) for the CWC). Consequently, the respective ESF resembles a sum of delta-

peaks. We investigate a simple broadening scheme for closed systems, that provides a

natural, non-arbitrary broadening for the spectrum. This sinc-broadening procedure is

based on the assumption, that Gd(t) thermalizes due to decoherence and that finite-size

oscillations do not occur up to times t = T . By assuming that Gd(t) is zero for t > T ,

the function can be Fourier transformed to obtain an ESF with a natural broadening

γ = 1/T .

Let us investigate this procedure for the simple RLM with the local energy level

ǫd = 0 and a constant bath DOS. Here the exact GF

Gd(t) = −iΘ(t)e−Γt (G.74)

is known. In Fig. 9.1 (a) we have Fourier transformed (G.74) over the interval t ∈ [0, T ]

and plotted the resulting ESF. We can see, that the curves quickly converge to the
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Figure 9.1.: Spectral function calculated by (a) integrating (G.74) over the interval
t ∈ [0, T ] for different values of T and (b) applying (G.77) for different
ratios Nk/T .

exact solution of a Lorentzian of width Γ, if T is increased. In this trivial example, T

can be chosen arbitrarily large. However, in a closed system, the maximum value of T

depends on the size of the system. If T is chosen too large, finite-size oscillations are

included in the ESF.

Let us proceed to a more complex problem, in which we express an arbitrary function

Gd(t) on the interval t ∈ [0, T ] as a sum of oscillating terms, which resembles the CWC

expression of Eq. (6.2.3.57). We obtain a Fourier series

Gd,CWC(t) = −iΘ(t)

NF
∑

k=−NF

ake
iωkt, (G.75)

with frequencies ωk = 2πk/T . This function can resemble an arbitrary analytical

function for t < T and is periodic with T . The number NF of terms in the expression

defines the numerical accuracy of the series and needs to be increased, if T is increased.

The periodicity of the Fourier series on the interval [t, t + T ) is an analogue to the

finite-size nature of the CWC. The ratio NF/T can be chosen in such a way, that

the maximum energy ωNF
equals the bandwidth D of the system. From a numerical

standpoint, NF loosely corresponds to the chain length NC and should be chosen as

large as possible.
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For the GF (G.74) the coefficients of (G.75) are given as

ak =
1

T

∫ T

0

dtGd,CWC(t)eiωkt =
e−ΓT − 1

ΓT + 2πki
(G.76)

and we obtain an energy-dependent GF of

Gd,CWC(ω) =

∫ T

0

dtGd,CWC(t)eiωt =

NF
∑

k=−NF

ak
eiωT − 1

ω + ωk

(G.77)

after a Fourier transform up to t = T . For T → ∞ the ω-dependent part of the

functions approaches delta-peaks. However, the coefficients ak are affected by T as

well and compensate this effect, if NF is chosen large enough.

In Fig. 9.1 (b) we display the convergence of the ESF calculated from (G.77) with

the ration Nk/T . For Nk = TΓ oscillations close to the exact solution are visible,

which resemble the finite-size effect of the OWC solution. By increasing the numerical

resolution Nk per considered interval T , the curves quickly approach the physical so-

lution. This behavior is similar to the OWC solution of Fig. 6.9 (c), where the energy

resolution can be increased by increasing the Wilson chain length and simultaneously

decreasing the discretization parameter. We have shown, that the resulting ESF curves

are independent of the broadening γ = 1/T , given that T is chosen large enough for the

TD-EGF to have sufficiently decayed and that the numerical accuracy (in our case Nk)

can be adapted to adequately suppress finite-size oscillations on the respective interval

t ∈ [0, T ].

H. Additional Calculations for the IRLM

In the following we present additional figures for TD-NEVs in the IRLM, calculated

with the OCF. Consequently, this section is a continuation of Sec. 7.1.1.

In Fig. 9.2 we compare the non-equilibrium dynamics of the IRLM to the RLM.

As in the previous sections, NC is chosen relatively low to allow for a comparison to

the exact OWC (that is the OWC without truncation of high-energy states) and Λ

is chosen large at the same time to exaggerate the effects of the Lamb-shift and of

truncation at the same time. In Fig. 9.2 (a) and (b) we investigate the curves for

their particular parts. The green dashed lines only include the DDM and represent a

simple relaxation with rates almost independent of U on the effective scale 1/Γeff. For
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Figure 9.2.: Non-equilibrium impurity occupation for NC = 10,Λ = 10, D = 100Γ, T =
0.01Γ. On the l.h.s. we plot the RLM and on the r.h.s. the IRLM with
U = 100D. We have chosen Γ = 8.289 · 10−3Γeff for the U = 100D curves.
Panels (a) and (b) show nd(t) in the untruncated case for the CWC (blue,
dotted), OWC (orange), DDM only (green, dashed) and without the CWC
oscillations (red). Panels (c) and (d) show the relative difference |∆nd(t)|
of the untruncated OWC solution and a truncated one with NS = 30 (blue),
NS = 50 (orange) and NS = 100 (green) kept states without Lamb-shift.

the red lines we have artificially set the oscillatory terms ei(E
n
r −En

s )t in Eq. (6.1.5) to

zero. Thus the dynamical behavior is here solely generated by the OWC. Similar to the

green curves, the red curves in (a) and (b) are almost identical and differ by a maximum

relative difference of around 13% on intermediate time-scales. Consequently, the major

influence of the interaction U is to induce Rabi-like oscillations between the impurity

and the zeroth Wilson chain site, which are included in the CWC. The contributions

of the BRF to the result are expressed as certain relaxation rates for the DDM and the

ODDM, which appear to be independent of U , at least if the temperature is sufficiently

low.

To further investigate this point, we need to increase NC to reach low temperatures

without choosing a large Λ and thus generating large discretization errors. Longer

OWCs require a truncation of the high-energy states. For that reason, we investigate
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Figure 9.3.: Relative difference |∆nd| between the equilibrium impurity occupation of
U = 0 and U > 0. In the case of finite U , a scaling of the parameters with
Γ/Γeff = Γeff/D has been applied. We have chosen Λ = 2, D = 100Γeff, ǫd =
Γeff, NS = 300 for all curves. The chain length NC has been varied to reach
the indicated temperatures and fine adjustments have been made by tuning
β.

the influence of truncation on the OWC in Fig. 9.2 (c) and (d). Here we show the

relative difference between the truncated and the untruncated eigenbasis for different

numbers of kept states NS without Lamb-shift. Obviously, a value of NS = 100 already

yields a good match with the untruncated case. Note that the total number of states

is d2+NC = 2048 in our case, so keeping NS = 100 per NRG-iteration is a significant

reduction of this number. The effect of the Lamb-shift for U > 0 is a small increase of

the oscillation frequency Ω. This deviation grows if NS is reduced, which means that

the Lamb-shift is more susceptible to a reduction of the eigenbasis.

In Fig. 7.4 we have seen that the IRLM values Γ/Γeff,Ω and τ deviate from theoretical

predictions, especially in the limit U → ∞. To investigate this observation further, let

us first concentrate on the equilibrium case and Γ/Γeff.

In Fig. 9.3 we depict the relative difference |∆nd| of the equilibrium NRG values

nd(U = 0) and nd(U > 0). The finite U value is plotted on the horizontal axis in
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dimension of the bandwidth and in the U > 0 cases the parameters are scaled by

Γ/Γeff = Γeff/D, which is the theoretical prediction for the limit of U → ∞ accord-

ing to Eq. (7.1.1.8). The temperature has been varied, since the equilibrium values

coincide for all values of U in the case T → ∞ and start to increasingly deviate, if

the temperature is lowered. Independently of the temperature, the NRG values are

practically converged for U > 10D and the convergence scale is almost identical for all

investigated chain lengths. We expect this scale to change depending on the choice of

Λ, analogly to Fig. 7.4.

The impact of U on the equilibrium value is highly dependent on the temperature.

As for other local quantities, such as ǫd, the relative and absolute influence of U on the

equilibrium value is increased, if the temperature is lowered. This is due to the fact,

that a small inverse temperature β in the Boltzmann factor strongly damps variations

in the local parameters. By decreasing the temperature, i.e. increasing β, the influence

of these variations on the total NRG equilibrium value is enhanced. Here T = 0.1Γeff

can be seen as an effective low-temperature limit, since a further lowering of T does

not significantly impact the U -dependence.

We proceed to the frequency Ω of the Rabi-like oscillations, defined via Eqs. (7.1.1.2)

and (7.1.1.3). This frequency is a dynamical quantity in the sense, that it only occurs in

non-equilibrium quench dynamics. In Fig. 9.2 it has been shown, that these oscillations

are solely generated by system Hamiltonian eigenenergies, i.e. by the CWC. For that

reason, the pure TD-NRG without an OQS extension is the most simple system to

study the effect of T and U on the frequency Ω.

In Fig. 9.4 we plot nd(t) in the CWC case for increasing U . The Coulomb-interaction

favors the ”super-impurity” site, consisting of the impurity and the zeroth Wilson chain

site, to be half filled. Consequently, any relaxation into the chain is suppressed for large

U . The theoretically predicted oscillation period 2πΓeff/Ω = 2π/
√

1 + 8/π ≈ 3.336

(black dashed line) is met within 1% for U ≥ 100D. Note, that we choose Γ/Γeff =

Γeff/D according to Eq. (7.1.1.8), so the equilibrium values do not exactly align. For

lower temperatures, the influence of U is most pronounced, as it induces the local

Rabi-like oscillations. For higher temperatures, thermal fluctuations hinder this effect

and consequently, a larger U is required to obtain comparable local oscillations.
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Figure 9.4.: Non-equilibrium impurity occupation of the CWC. The parameters are
Λ = 2, D = 100Γeff, ǫd = Γeff, NS = 100 for all curves. The chain
length NC and β have been varied to reach the indicated temperatures.
Γ/Γeff = Γeff/D has been chosen according to Eq. (7.1.1.8). The theoreti-
cal prediction for Ω in the limit U → ∞ has been added as a black dashed
line.

I. Additional Calculations for the SIAM

In the following we present additional figures for TD-NEVs in the SIAM, calculated

with the OCF. Consequently, this section is a continuation of Sec. 7.1.2.

Both spin states of the SIAM can be discriminated by an external magnetic field B.

For that reason, we start by a quench Bi = −B to Bf = B, where the local parameters

ǫd and U are set to zero for all times. The occupation number is constant over time and

the magnetization dynamics is entirely driven by the switch of the external magnetic

field.

In Fig. 9.5 Sz(t) is depicted in the limit T → 0. For tΓ > 10 in panel (a) the

CWC curve oscillates around the steady-state value defined by the DDM for t = 0 (for

details see Fig. 3.4 for the artificially damped CWC curves). The OWC solution, on

the other hand, thermalizes to the correct equilibrium value defined by the Boltzmann

distribution (i.e. ±0.5 for B → ∞) with a deviation of under 1%. The z-averaging
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Figure 9.5.: Non-equilibrium impurity magnetization Sz(t) for different values of the
external magnetic field B. We switch Bi = −B to Bf = B at t = 0 and
keep ǫd = U = 0. The NRG parameters are NC = 50, Λ = 2, D = 100Γ,
so that a temperature of T ≈ 10−6Γ is reached. We have used NS = 300
states and Nz = 12. In panel (a) we compare the CWC (dashed lines)
and the OWC (solid lines). The Lamb-shift is set to zero. In panel (b) we
artificially exclude the CWC oscillations and plot the ODDM (solid lines)
separated from the DDM contribution (dashed lines). The time axes are
plotted logarithmically.

performed only smooths the unphysical oscillations induced by the discretization for

intermediate times. Apart from some small oscillations that occur around tΓ ≈ 1 the

magnetization performs a simple quench, which is (on a logarithmic scale) symmetrical

around a point (t̃, 0). Interestingly, t̃ decreases with increasing B, which implies that

the relaxation is accelerated when the difference between the initial and the final state

is increased. We know, that for sufficiently long chains the CWC solution converges

to the exact solution for short times, i.e. quadratic dynamics in t. The OWC solution

experiences an over-exaggerated relaxation due to the MA (see Sec. 4.6). Consequently,

the OWC curves are shifted to the left in the figure. The influence of B is here a

stretching of both axes in the sense that this shift grows with B, as does the difference

between the equilibrium values. The Lamb-shift is set to zero in the figure, since it
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Figure 9.6.: Non-equilibrium impurity occupation nd(t) for different values of the
Coulomb repulsion U . We switch ǫid = −Γ to ǫfd = Γ at t = 0 and keep U
and B = 0 constant. All other properties of the plot are identical to Fig.
9.5.

only has a small contribution that vanishes for larger B in the exact case and induces a

large error, when truncating high-energy states. In Fig. 9.5 (b) the contribution of the

reservoirs to the dynamics is examined by artificially neglecting the CWC oscillations

(see Fig. 9.2, red curves). For small B the dynamics is almost entirely carried by the

ODDM, while for increasing B the DDM dominates.

In Fig. 9.6, we quench the impurity energy ǫd for different U ≥ 0 without an

external magnetic field. This way, the magnetization is zero, and we obtain the pure

effect of a variation in U . Obviously, an increase of U decreases the equilibrium values

nd(t = 0), since a large local Coulomb repulsion depopulates the |2〉 state. However,

the relaxation rate is not influenced by a variation of U . This holds for the CWC

solution (see Fig. 9.6 (a), dashed lines), as well as the OWC solution (Fig. 9.6 (b),

solid lines). Consequently, in this case U only impacts the equilibrium values and has

no influence on non-equilibrium dynamics. This especially means that the eigenvalues

of the BRT are independent of U , which can be attributed to the small temperature

chosen for the curves of the figure and the small U ≪ D. The CWC solution shows
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the same independence of U with respect to the relaxation rate. Thus we can conclude

that this effect is not caused by the BMA, but that it is of physical origin.

Note, that the choice of parameters in Fig. 9.6 is similar to the quench investigated

for the IRLM in Fig. 9.2. However, the resulting dynamics is fundamentally different.

In the IRLM, the hybridization V mediates a hopping between the two local states.

Charge can only dissipate via the zeroth Wilson chain site. This leads to damped

oscillations of the impurity occupation number. In the SIAM, no hopping between

the two local singly occupied states is possible and charge can dissipate directly from

both sites. Thus we observe a simple relaxation process, with U only influencing the

equilibrium values. Furthermore, we chose U > D in the IRLM case to obtain the

damped oscillations. In the case U < D, almost no oscillations occur.
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[41] Micha l Karski, Carsten Raas, and Götz S. Uhrig. “Single-particle dynamics in

the vicinity of the Mott-Hubbard metal-to-insulator transition”. In: Physical

Review B 77.7 (Feb. 2008), p. 075116. doi: 10.1103/physrevb.77.075116.



Bibliography 243

[42] Alan A. Dzhioev and D. S. Kosov. “Stability analysis of multiple nonequilibrium

fixed points in self-consistent electron transport calculations”. In: The Journal

of Chemical Physics 135.17 (Nov. 2011), p. 174111. doi: 10.1063/1.3658736.

[43] Alan A. Dzhioev and D. S. Kosov. “Super-fermion representation of quantum

kinetic equations for the electron transport problem”. In: The Journal of Chem-

ical Physics 134.4 (Jan. 2011), p. 044121. doi: 10.1063/1.3548065.

[44] Shigeru Ajisaka et al. “Nonequlibrium particle and energy currents in quantum

chains connected to mesoscopic Fermi reservoirs”. In: Physical Review B 86.12

(Sept. 2012), p. 125111. doi: 10.1103/physrevb.86.125111.

[45] Antonius Dorda et al. “Auxiliary master equation approach to nonequilibrium

correlated impurities”. In: Physical Review B 89.16 (Apr. 2014), p. 165105. doi:

10.1103/physrevb.89.165105.

[46] A. Dorda et al. “Optimized auxiliary representation of non-Markovian impurity

problems by a Lindblad equation”. In: New Journal of Physics 19.6 (June 2017),

p. 063005. doi: 10.1088/1367-2630/aa6ccc.

[47] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum

Systems. Oxford University Press, Jan. 2007. doi: 10 . 1093 / acprof : oso /

9780199213900.001.0001.

[48] Gernot Schaller. Open Quantum Systems Far from Equilibrium. Springer Inter-

national Publishing, 2014. doi: 10.1007/978-3-319-03877-3.

[49] Unknown. “Still irresistible”. In: Nature Physics 10.5 (Apr. 2014), pp. 329–329.

doi: 10.1038/nphys2972.

[50] P. Nozires. “A ”fermi-liquid” description of the Kondo problem at low temper-

atures”. In: Journal of Low Temperature Physics 17.1-2 (Oct. 1974), pp. 31–42.

doi: 10.1007/bf00654541.

[51] M. P. Sarachik, E. Corenzwit, and L. D. Longinotti. “Resistivity of Mo-Nb and

Mo-Re Alloys Containing 1% Fe”. In: Physical Review 135.4A (Aug. 1964),

A1041–A1045. doi: 10.1103/physrev.135.a1041.

[52] A. A. Abrikosov. “Electron scattering on magnetic impurities in metals and

anomalous resistivity effects”. In: Physics Physique Fizika 2.1 (Sept. 1965),

pp. 5–20. doi: 10.1103/physicsphysiquefizika.2.5.



244 Bibliography

[53] P W Anderson. “A poor man’s derivation of scaling laws for the Kondo prob-

lem”. In: Journal of Physics C: Solid State Physics 3.12 (Dec. 1970), pp. 2436–

2441. doi: 10.1088/0022-3719/3/12/008.

[54] N. Andrei. “Diagonalization of the Kondo Hamiltonian”. In: Physical Review

Letters 45.5 (Aug. 1980), pp. 379–382. doi: 10.1103/physrevlett.45.379.

[55] P B Wiegmann. “Exact solution of the s-d exchange model (Kondo problem)”.

In: Journal of Physics C: Solid State Physics 14.10 (Apr. 1981), pp. 1463–1478.

doi: 10.1088/0022-3719/14/10/014.

[56] H. Bethe. “Zur Theorie der Metalle”. In: Zeitschrift für Physik 71.3-4 (Mar.

1931), pp. 205–226. doi: 10.1007/bf01341708.

[57] J. Hubbard. “Electron correlations in narrow energy bands”. In: Proceedings

of the Royal Society of London. Series A. Mathematical and Physical Sciences

276.1365 (Nov. 1963), pp. 238–257. doi: 10.1098/rspa.1963.0204.

[58] J. F. Herbst, R. E. Watson, and J. W. Wilkins. “Relativistic calculations

of4fexcitation energies in the rare-earth metals: Further results”. In: Physical

Review B 17.8 (Apr. 1978), pp. 3089–3098. doi: 10.1103/physrevb.17.3089.

[59] F. D. M. Haldane. “Scaling Theory of the Asymmetric Anderson Model”.

In: Physical Review Letters 40.6 (Feb. 1978), pp. 416–419. doi: 10 . 1103 /

physrevlett.40.416.

[60] B. Coqblin and J. R. Schrieffer. “Exchange Interaction in Alloys with Cerium

Impurities”. In: Physical Review 185.2 (Sept. 1969), pp. 847–853. doi: 10.1103/

physrev.185.847.

[61] K. M. Stadler et al. “Dynamical Mean-Field Theory Plus Numerical Renormalization-

Group Study of Spin-Orbital Separation in a Three-Band Hund Metal”.

In: Physical Review Letters 115.13 (Sept. 2015), p. 136401. doi: 10 . 1103 /

physrevlett.115.136401.

[62] K.M. Stadler et al. “Hundness versus Mottness in a three-band Hubbard–Hund

model: On the origin of strong correlations in Hund metals”. In: Annals of

Physics 405 (June 2019), pp. 365–409. doi: 10.1016/j.aop.2018.10.017.

[63] Fabian Eickhoff and Frithjof B. Anders. “Strongly correlated multi-impurity

models: The crossover from a single-impurity problem to lattice models”. In:

Physical Review B 102.20 (Nov. 2020), p. 205132. doi: 10.1103/physrevb.

102.205132.



Bibliography 245

[64] G. Yuval and P. W. Anderson. “Exact Results for the Kondo Problem: One-

Body Theory and Extension to Finite Temperature”. In: Physical Review B 1.4

(Feb. 1970), pp. 1522–1528. doi: 10.1103/physrevb.1.1522.

[65] A.M. Finkel’Shtein P B Wiegmann. “Resonant-level model in the Kondo prob-

lem”. In: Journal of Experimental and Theoretical Physics 48 (July 1978), p. 102.

[66] L. Borda, A. Schiller, and A. Zawadowski. “Applicability of bosonization and

the Anderson-Yuval methods at the strong-coupling limit of quantum impurity

problems”. In: Physical Review B 78.20 (Nov. 2008), p. 201301. doi: 10.1103/

physrevb.78.201301.

[67] P. Schlottmann. “The Kondo problem. I. Transformation of the model and its

renormalization”. In: Physical Review B 25.7 (Apr. 1982), pp. 4815–4827. doi:

10.1103/physrevb.25.4815.

[68] P. Schlottmann. “Simple spinless mixed-valence model. I. Coherent-hybridization

states versus virtual-bound states”. In: Physical Review B 22.2 (July 1980),

pp. 613–621. doi: 10.1103/physrevb.22.613.

[69] Gonzalo Camacho, Peter Schmitteckert, and Sam T. Carr. “Exact equilibrium

results in the interacting resonant level model”. In: Physical Review B 99.8 (Feb.

2019), p. 085122. doi: 10.1103/physrevb.99.085122.

[70] H. T. M. Nghiem et al. “Ohmic two-state system from the perspective of the

interacting resonant level model: Thermodynamics and transient dynamics”. In:

Physical Review B 93.16 (Apr. 2016), p. 165130. doi: 10.1103/physrevb.93.

165130.

[71] Pankaj Mehta and Natan Andrei. “Nonequilibrium Transport in Quantum Im-

purity Models: The Bethe Ansatz for Open Systems”. In: Physical Review Let-

ters 96.21 (June 2006), p. 216802. doi: 10.1103/physrevlett.96.216802.

[72] E. Boulat, H. Saleur, and P. Schmitteckert. “Twofold Advance in the Theoret-

ical Understanding of Far-From-Equilibrium Properties of Interacting Nanos-

tructures”. In: Physical Review Letters 101.14 (Sept. 2008), p. 140601. doi:

10.1103/physrevlett.101.140601.

[73] Mikhail Pletyukhov, Dirk Schuricht, and Herbert Schoeller. “Relaxation versus

Decoherence: Spin and Current Dynamics in the Anisotropic Kondo Model at

Finite Bias and Magnetic Field”. In: Physical Review Letters 104.10 (Mar. 2010),

p. 106801. doi: 10.1103/physrevlett.104.106801.



246 Bibliography

[74] D. M. Kennes et al. “Renormalization group approach to time-dependent trans-

port through correlated quantum dots”. In: Physical Review B 85.8 (Feb. 2012),

p. 085113. doi: 10.1103/physrevb.85.085113.

[75] Yuval Vinkler-Aviv, Avraham Schiller, and Frithjof B. Anders. “From thermal

equilibrium to nonequilibrium quench dynamics: A conserving approximation

for the interacting resonant level”. In: Physical Review B 90.15 (Oct. 2014),

p. 155110. doi: 10.1103/physrevb.90.155110.

[76] Tim Child et al. “An Introduction to the Kondo Effect”. In: (Nov. 2018).

[77] M. A. Kastner. “The single-electron transistor”. In: Reviews of Modern Physics

64.3 (July 1992), pp. 849–858. doi: 10.1103/revmodphys.64.849.

[78] Sara Marie Cronenwett. “Coherence, charging, and spin effects in quantum dots

and point contacts”. In: (Aug. 2002).

[79] D. Goldhaber-Gordon et al. “From the Kondo Regime to the Mixed-Valence

Regime in a Single-Electron Transistor”. In: Physical Review Letters 81.23 (Dec.

1998), pp. 5225–5228. doi: 10.1103/physrevlett.81.5225.

[80] V. Madhavan. “Tunneling into a Single Magnetic Atom: Spectroscopic Evidence

of the Kondo Resonance”. In: Science 280.5363 (Apr. 1998), pp. 567–569. doi:

10.1126/science.280.5363.567.

[81] Jiutao Li et al. “Kondo Scattering Observed at a Single Magnetic Impurity”.

In: Physical Review Letters 80.13 (Mar. 1998), pp. 2893–2896. doi: 10.1103/

physrevlett.80.2893.

[82] H. C. Manoharan, C. P. Lutz, and D. M. Eigler. “Quantum mirages formed by

coherent projection of electronic structure”. In: Nature 403.6769 (Feb. 2000),

pp. 512–515. doi: 10.1038/35000508.

[83] Ralf Bulla et al. “Numerical renormalization group for quantum impurities in

a bosonic bath”. In: Physical Review B 71.4 (Jan. 2005), p. 045122. doi: 10.

1103/physrevb.71.045122.

[84] Matthew T. Glossop and Kevin Ingersent. “Numerical Renormalization-Group

Study of the Bose-Fermi Kondo Model”. In: Physical Review Letters 95.6 (Aug.

2005), p. 067202. doi: 10.1103/physrevlett.95.067202.

[85] R. Bulla, T. Pruschke, and A. C. Hewson. “Anderson impurity in pseudo-gap

Fermi systems”. In: Journal of Physics: Condensed Matter 9.47 (Nov. 1997),

pp. 10463–10474. doi: 10.1088/0953-8984/9/47/014.



Bibliography 247

[86] Ralf Bulla, Ning-Hua Tong, and Matthias Vojta. “Numerical Renormalization

Group for Bosonic Systems and Application to the Sub-Ohmic Spin-Boson

Model”. In: Physical Review Letters 91.17 (Oct. 2003), p. 170601. doi: 10.

1103/physrevlett.91.170601.

[87] Frithjof B. Anders. Lecture notes: Introduction to the Renormalization Group.

Technische Universität Dortmund, Feb. 2018.

[88] Andreas Weichselbaum and Jan von Delft. “Sum-Rule Conserving Spectral

Functions from the Numerical Renormalization Group”. In: Physical Review

Letters 99.7 (Aug. 2007), p. 076402. doi: 10.1103/physrevlett.99.076402.

[89] H. T. M. Nghiem, H. T. Dang, and T. A. Costi. “Time-dependent spectral

functions of the Anderson impurity model in response to a quench with ap-

plication to time-resolved photoemission spectroscopy”. In: Physical Review B

101.11 (Mar. 2020), p. 115117. doi: 10.1103/physrevb.101.115117.

[90] H. T. M. Nghiem and T. A. Costi. “Generalization of the time-dependent numer-

ical renormalization group method to finite temperatures and general pulses”.

In: Physical Review B 89.7 (Feb. 2014), p. 075118. doi: 10.1103/physrevb.

89.075118.

[91] Amy C. Cassidy, Charles W. Clark, and Marcos Rigol. “Generalized Thermal-

ization in an Integrable Lattice System”. In: Physical Review Letters 106.14

(Apr. 2011), p. 140405. doi: 10.1103/physrevlett.106.140405.

[92] J. B. Silva et al. “Particle-Hole Asymmetry in the Two-Impurity Kondo Model”.

In: Physical Review Letters 76.2 (Jan. 1996), pp. 275–278. doi: 10 . 1103 /

physrevlett.76.275.

[93] S. C. Costa et al. “Numerical renormalization-group computation of specific

heats”. In: Physical Review B 55.1 (Jan. 1997), pp. 30–33. doi: 10 . 1103 /

physrevb.55.30.
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darüber hinaus.

❼ Carsten Nase, der sich um die Computer kümmert und bei technischen Fragen
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