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Zusammenfassung

Ein Rahmen fiir Parameteridentifikationen von vollstéandig thermo-mechanisch gekoppel-
ten, konstitutiven Modellen wird vorgestellt, welcher das Einbinden von Experimentalda-
ten aus vollflachigen Digital-Image-Correlation- (DIC) und Thermographie-Aufnahmen
erlaubt. Die Theorie des inversen Problems der Parameteridentifikation wird ausfiihrlich
erlautert, wobei der Fokus auf der algorithmischen Behandlung der intrinsisch unter-
schiedlichen Daten von Verschiebung (Lagrange Typ) und Temperatur (Euler Typ), der
Definition einer Zielfunktion welche Starrkérperbewegungen kompensiert und auf der
notwendigen Analyse der erzielten Ergebnisse liegt. Der letzte Aspekt beinhaltet da-
bei insbesondere Theorie beziiglich Identifizierbarkeit, Modellabhéngigkeit, Verifizier-
und Validierbarkeit. Des Weiteren wird die allgemeine Anwendbarkeit des vorgeschla-
genen Rahmens anhand eines einfachen Zugversuches mit einer Aluminium-Legierung
empirisch gezeigt. Genauer gesagt werden Daten von zwei unterschiedlichen Arten von
Experimenten genutzt, einmal mit einer Abkiihlphase auf Grund der Umgebungstem-
peratur und einmal ohne. Auf Grundlage des beobachteten Materialverhaltens werden
zwei thermo-mechanisch gekoppelte konstitutive Modelle ausgewéhlt, die konstituti-
ven Gleichungen zusammengefasst und die Modellparameter interpretiert. Die Identi-
fizierbarkeit der thermischen Modellparameter wird in einer Reihe von Identifikationen
mittels Raster-Suchverfahren untersucht, indem sowohl beide Modelle, als auch Daten
aus beiden Experimenten genutzt werden. Dabei wird die Anzahl der als unbekannt
angenommen, thermischen Modellparametern stetig erhoht. Zusétzlich wird die Mo-
dellabhéngigkeit und die Sensitivitéit beziiglich der thermischen Randbedingungen des
Ergebnisses analysiert.






Abstract

A material parameter identification framework is proposed, suitable for fully thermo-
mechanically coupled constitutive models and based on full field Digital-Image-
Correlation (DIC) and thermography measurements. A broad theoretical background
of the inverse problem of parameter identification is provided, focusing on the algo-
rithmic treatment of the intrinsically different data sets of displacement (Lagrangian
type) and temperature (Eulerian type), the definition of an objective function which
compensates rigid body motions and the necessary analysis of the obtained identifica-
tion results. The latter aspect especially includes theory regarding identifiability, model
dependency, verification and validation. Furthermore, the general applicability of the
proposed framework is empirically tested on the basis of a simple tension test using an
aluminium alloy. More precisely speaking, the data of two different types of experiments
is used. One experiment including a cooling stage of the specimen, due to ambient tem-
perature, and one without cooling stage. Based on the experimental observations, two
thermo-mechanically coupled constitutive models are chosen, the required constitutive
relations summarised and the model parameters interpreted. Using both models and
data of both experiments, the identifiability of thermal model parameters is investigated
in several identifications by means of a grid search approach, gradually increasing the
set of unknowns. Moreover, model dependency and sensitivity of results to thermal
boundary conditions are analysed.
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1 Introduction

This thesis provides information on the treatment of inverse problems concerning
thermo-mechanically coupled material models which are based on real full field measure-
ments. At first, the necessity of an identification scheme for such models is motivated
within this chapter, already indicating which of the associated aspects are of interest.
Afterwards, the current state of the art is presented in order to finally derive issues and
questions so far unaddressed in literature. The main focus of this work lies on providing
a general framework for the identification of thermo-mechanically coupled constitutive
models on the basis of experiments with a mechanical load as well as on the identi-
fiability of thermal parameters, model dependency and influence of thermal boundary
conditions.

1.1 Motivation

In order to perform predictive simulations, e.g. for the optimisation of already existing
components, the efficient development of new prototypes or any other kind of mechanics-
driven design, the choice of the model parameters is of utmost importance. Inaccurate
model parameters lead to non-representative results necessitating the use of suitably high
safety factors usually leading to higher production costs. Hence, it seems worthwhile to
use constitutive models which represent the material behaviour as accurately as possible
and to identify reasonable and valid values for the associated model parameters. More
precisely speaking, during some processes the effect of temperature on the material
response may not be neglected, necessitating the use of thermo-mechanically coupled
constitutive models. For such models the set of required optimal model parameters
includes the caloric or thermal as well as mechanical model parameters, so that a general
framework is required which enables the identification of suitable model parameters for
thermo-mechanically coupled models.

However, even optimal parameters are not useful if the chosen constitutive model
itself is not able to represent important key features of the material behaviour under
consideration. If, for example, an isotropic yield surface is used to predict the material
response of a strongly anisotropic material undergoing inhomogeneous stress states, the
computed results will not reflect the real material behaviour, regardless of whether the
parameters are optimal or not. Likewise, insufficient experimental data may allow a
good fit of a model, but the fitted parameters may not represent any other type of
boundary value problem due to overfitting. Although it may be obvious as to what kind
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of models should be avoided, it is not always clear how certain aspects of a model must
be chosen exactly. Regarding the example from before, it is not intuitively clear what
kind of anisotropic yield surface fits best to what kind of material, seeing that there are
various different formulations established. This knowledge has to be acquired by trial
and error, comparing model predictions and experiments. One modelling aspect that
has been subject to scientific discussion for almost a century is the question of how to
model dissipation within thermo-plastic material models, which can lead to significant
temperature raises during forming processes. No final answer exists, so that the impact
and requirements of different constitutive model formulations are worth analysing.

Apart from the model formulation, the thermal boundary values can have a notable
influence on the predicted material response for a process. Hence, the identification of
suitable thermal boundary conditions is vital for any temperature related analysis, be it
either a direct or inverse problem which is considered. In common engineering applica-
tions boundary conditions of Robin-type often best describe the heat exchange between
the body under consideration and its environment. This special kind of thermal bound-
ary condition usually postulates a heat exchange along Newton’s law of cooling which
requires the temperature of the surrounding medium and a film or heat transfer coeffi-
cient. Obtaining the first parameter, i.e. the temperature of the surrounding medium, is
usually done by a simple measurement (assuming that this temperature is indeed con-
stant over time). The definition of a suitable heat transfer coefficient, on the other hand,
is usually not as simple since its value may depend on material pairing, contact pressure
or fluid velocity, general geometry as well as on surface roughness. Precise values for
the heat exchange coefficients are therefore difficult to obtain from literature and must
in general be identified for each type of boundary value problem. Thus, the possibil-
ities and limits regarding the identification of thermal boundary coefficients alongside
thermal model parameters are of interest.

It is therefore worth looking at the current state of the art to find out which aspects
- required for a precise identification of valid model parameters for thermo-mechanically
coupled constitutive models - have already been established. Afterwards, the precise
aim of this thesis is formulated.

1.2 State of the art

The identification of model parameters for thermo-mechanically coupled constitutive
models covers several areas of experimental and theoretical solid mechanics. Hence, the
overview of the state of the art is split into three parts, i.e. parameter identification in
general, modelling and fit of dissipation, and identification of heat transfer coefficients.

Parameter identification Quite some research has already been completed to develop
methods for the identification of material parameters for purely mechanical material
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models. The basic principle of a Finite-Element (FE) based parameter identification,
the so called Finite Element Model Updating (FEMU) method is presented and explained
in considerable detail in [43] and [46]. The framework is first tested and verified on the
basis of numerical experiments, followed by an application to real data. In these works,
experimental values were obtained from a standard tensile test by means of gratings on
the surface of the specimen and fitted to an isotropic elasto-plastic material model. The
determination of parameters for a non-isotropic Hill-type yield surface can be found in
[51]. In later years, the concept did not change much but was applied to different kinds
of material models, ranging from large strain models [33], to gradient enhanced damage
formulations, [45]. At some point, the concept of Digital-Image-Correlation became
available as a full field measurement technique for displacement fields and was adapted to
easily obtain experimental data for parameter identification. Interpolation and general
treatment of such data is addressed in, e.g., [64], [57] and [35]. Further publications
mostly focus on different material models, applications or objective functions, whereas
the latter usually differ from the one proposed in [43] only in terms of the defined
weighting factors. Regarding the shape of the specimens, many different geometries
have been used to obtain different stress states, e.g. a notched plate in [16] or different
kinds of cruciform specimens in [39], [68], [66] and [76]. A more detailed overview of the
state of the art can be found in either [3] or [48].

A slightly different community has concentrated on the identification of thermal prop-
erties and parameters by means of different approaches. The first is the use of calorime-
try, necessitating special experimental devices which can be used almost exclusively for
that purpose. An alternative is the identification on the basis of measured temperature
fields, e.g. using the so-called flash method as introduced in [55]. The main idea is to sub-
ject a specimen to a short, impulse-like laser beam and to measure temperature changes
that occur afterwards. No mechanical loads are applied to the specimen and observa-
tion time is kept very short to assume adiabatic boundary conditions for all boundaries
that were not subject to the laser beam. Though the original method is based on an
analytical solution, the method has been enhanced and extended, c.f. [38] and [2], es-
pecially by replacing the analytical solution with a numerical FE simulation. Thus, the
identification method itself is remarkably similar to the Finite-Element-Model-Updating
(FEMU) method which is now well established for mechanical parameter identifications,
as it involves a least square fit of a simulated and measured temperature field. Further
use of thermography has been made to analyse heat sources, e.g. in [18] and [17], to
identify the temperature dependency of mechanical parameters, e.g. in [50] and [53], or
to validate a simulation, e.g. in [63].

Regarding the coupling of temperature and displacement fields, a possibility to com-
bine DIC and thermography data is presented in [41] and is used for the estimation of
heat sources during a tensile test. An actual adjustment of thermo-mechanically coupled
material models, based on displacement and temperature full field data, is shown in [44]
by means of numerical experiments only. Although the conclusion of that paper already
suggests the application to real experiments in order to determine caloric quantities,
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such a comprehensive work has, to the author’s knowledge, not yet been published in
the context of parameter identification.

Modelling and fit of dissipation One of the first reports regarding the correlation of
cold work and heat was published in 1925 by Farren and Taylor, see [22]. Their mea-
surements during dynamic tension tests suggested that a near constant fraction of the
cold work was transformed to heat and that the remainder was stored as latent energy in
the material. Some time later, Taylor and Quinney reasoned that this finding could not
be true for larger strain states, since the latent energy of a material should saturate, see
[73]. Within that work, experiments with a twisted rod underlined this line of thought,
showing that the dissipated energy depends on the current load state. This led to the
introduction of the so-called Taylor-Quinney factor which describes the ratio of cold
work to dissipated energy. In later years, a similar factor was introduced to describe
the ratio between the rate of cold work, i.e. the stress power, and the rate of dissipated
energy, see e.g. [49] and [59]. The latter work also clearly differs between the two afore-
mentioned factors which were usually denoted by the same symbol, albeit describing
fundamentally different ratios. At that point, the idea of a strain and strain rate de-
pendent ratio between cold work and dissipated energy was well established, and many
further scientific contributions can be found with the focus on the determination of this
dependency. Whereas some researchers mainly seek to determine the Taylor-Quinney
coefficient experimentally, e.g. in [28], [42] by using a Kolsky (Split-Hopkinson) pressure
bar, or in [36] under uniaxial tension, others more strongly emphasise thermodynamical
consistency. It has often been stated that the simple replacement of the predicted dis-
sipation of a model with a fraction of the plastic stress power does not necessarily fulfil
the first law of thermodynamics, so that a thermodynamically consistent model which
accurately predicts the dissipated energy should be used instead. Hence, several mod-
elling approaches have been proposed and their predictions have usually been compared
to experimental data of a dynamic Kolsky (Split-Hopkinson) bar test assuming adiabatic
conditions, see e.g. [60], [75], [71] and [6]. In the latter work, an additional material pa-
rameter is introduced by making an extension to the postulated Helmholtz free energy
function. This parameter determines how much energy is stored in the material and how
much is dissipated during plastic deformations. Thus, it allows a better adaptation of
the model to real material behaviour while still satisfying the laws of thermodynamics.

Although the overview above is just a brief excerpt and many more publications
could be mentioned, attention is drawn to only two more approaches to the identifica-
tion of plasticity induced dissipation. In [58] a slightly different concept is presented
which tries to avoid the test of all kind of possible energy formulations and rather aims
at deducing an appropriate Helmholtz free energy function directly from experimental
data. The approach is tested on data of a tensile test assumed to be adiabatic and
compares two fundamentally different plasticity model approaches, i.e. associated and
non-associated plasticity. The results show that the associated format is not able to



1.3 Outline and aim

correctly predict the dissipation obtained from the experiment. The second approach
can be found in [56] where an inverse analysis with full field displacement and temper-
ature measurements of an inhomogeneous boundary value problem (BVP) is used to fit
the mechanical parameters and the evolution of a Taylor-Quinney factor of a simple,
not necessarily thermodynamically consistent model to an observed temperature field.
However, all other thermal model parameters, i.e. heat capacity, thermal conductivity
and thermal expansion were taken from literature and are not part of the optimisation.

Identification of heat transfer coefficients Methods for an inverse analysis in order
to determine heat transfer coefficients date back as far as the 1970s, see e.g. [9]. The
method presented in that work minimises the difference between experimental and com-
puted data along certain grid points by using finite differences. Thereafter, and with
improved computational capability, methods for two-dimensional problems were derived.
In [8] the identification of a time and space dependent heat transfer coefficient is demon-
strated by means of a spherical body with a symmetric temperature field. Moreover, [15]
analyses the heat exchange of an insulated, two-dimensional plate by using the bound-
ary element method. At some point the terms ‘inverse heat transfer coefficient problem’
(IHTCP) and ‘inverse heat conduction problem’ (IHCP) were introduced and associated
with the determination of film or heat transfer coefficients by means of inverse prob-
lems. Nowadays, the identification of heat transfer coefficients for three-dimensional
boundary value problems poses no further computational problem and makes use of
common solution methods for the underlying differential equations such as the Finite
Volume Method, see e.g. [19], or the Finite Element Method, see e.g. [20]. However,
all methods mentioned above require at least a subset of the classic thermal material
parameters to be known, which especially includes the thermal conductivity of the body
under consideration. As was already mentioned above, these material parameters are
usually identified through highly specialised experiments, e.g. by using a guarded hot
plate, see e.g. [23], or laser flashes, see e.g. [55] or [2]. For the inverse analysis of these
experiments either isothermal or adiabatic boundary conditions are applied, so that a
heat transfer coefficient is not required and therefore neither needs to be estimated nor
identified.

1.3 Outline and aim

The current state of the art shows that identifying the parameters of a thermo-
mechanically coupled constitutive model is usually done in two parts, fitting the me-
chanical and thermal model parameters independently from each other on the basis of
different experiments. Thus, the classic identification of thermal model parameters re-
quires highly specialised experiments and equally specialised equipment, the former of
which are performed without applying mechanical load to the specimen. A potential
alternative was already proposed, i.e. the identification of both sets of parameters on
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the basis of experiments under mechanical load leading to dissipation induced self heat-
ing of the specimen. This alternative approach requires almost no additional equipment,
apart from what is already necessary for the fit of mechanical model parameters anyway.
However, this approach was so far only shown on the basis of numerical experiments and
was not pursued any further. Consequently, the fundamental questions related to that
identification approach also still require further research.

Hence, it is the aim of this thesis to provide a framework for the identification of me-
chanical and thermal material parameters on the basis of real experimental displacement
and temperature field data as well as answering questions related to the identifiability
of thermal parameters, model dependency and influence of thermal boundary condi-
tions. More precisely speaking, it is explicitly not the aim of this work to perform an
identification, the results of which can be used for predictive simulations of different
geometries and stress states, but rather to establish the underlying framework for pa-
rameter identification based on (potentially) inhomogeneously distributed displacement
and temperature fields. To that end, this thesis is structured as follows.

In Chapter 2, a theoretical background is provided with respect to the definition
of the inverse problem of parameter identification, possible solution strategies in
general, as well as detailed information especially on the FEMU method. Commonly
used optical measurement methods for displacement and temperature field are briefly
explained in order to motivate the specific treatment of temperature data in the
proposed framework. In that context, sources of errors that should be avoided
during measurements are mentioned. The algorithmic framework for the necessary
pre-processing of temperature and displacement data is then presented, followed by
possible definitions of the objective function. Different options are briefly discussed,
introducing a newly proposed definition of relative displacements as a measure which
intrinsically compensates rigid body motions. The commonly encountered sources of
errors related to the parameter identification scheme are summarised, including errors
related to the model formulation, necessitating the definition of identifiability criteria
to determine whether or not an optimisation result is (locally) unique. Finally, the
concepts of verification and validation, as well as the difference between model and
material parameters are briefly discussed, once again focusing on the effect which
different model formulations may have on an identification process.

After providing the required framework, the aspect of identifiability is empirically
investigated. This is done by means of several proofs of concept using real experimental
data as well as constitutive models.

In Chapter 3, the experimental data required for the specific identifiability analysis
is shown, starting with the introduction of the measurement equipment, the geometry
of the specimens and the general experimental setup. A simple tension test with
specimens made of the aluminium alloy AW6016 is chosen as the basis for the proofs
of concept at hand and the obtained experimental data is analysed with respect to the
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required features of a constitutive model.

In Chapter 4, two constitutive models are presented which are based on commonly
used standard model formulations for associated and non-associated plasticity. More
precisely speaking, a term is added to the assumed free energy expression, introducing an
additional model parameter which does not influence the mechanical material response
but allows a scaling of the predicted dissipation while maintaining a thermo-dynamically
sound framework. The two models themselves feature an almost identical mechanical
material response and mainly differ in the expression for the predicted dissipation.
For each model, the dissipation follows directly from the postulated potentials and is
a function of the current load state, requiring no further assumptions, e.g. regarding
the relation towards cold work. The chapter closes with an analysis of the constitutive
equations in order to determine which model parameters can and which can not be
identified on the basis of a simple tension test. While doing so, it is shown that a
simple assumption on the influence of the low, experimentally detected temperature
rise allows the decomposition of the identification process into three stages, whereby
only subsets of the total material parameter set are optimised within the respective stage.

In Chapter 5, the actual analysis of identifiability regarding the thermal model param-
eters is performed, combining the framework, the experimental data and the constitutive
models from the previous chapters in a successive identification scheme, concentrating
on the questions

e Does the proposed framework allow an identification in general?

e Does the use of relative displacements compensate rigid body motion as is ex-
pected?

e Is a (locally) unique fit of the three classic thermal model parameters possible on
the basis of simple tension test?

At first, however, the underlying boundary value problem as well as details of the iden-
tification scheme are specified. With this information at hand, the identifiability of
the three classic thermal material parameters of a simple standard model is shown by
means of a grid search approach. While doing so, it is also shown that the proposed
framework is sound and that the newly proposed error measure of relative displacements
does indeed intrinsically compensate rigid body motions. In a second step, the two ex-
tended, non-standard models are compared in the context of parameter identification,
focusing on the identifiability of the enlarged set of unknown thermal model parameters
by answering the questions

e How do the different model formulations presented in Chapter 4 affect the optimal
values of the model parameters?

e Is a (locally) unique fit of the thermal model parameters possible, if the dissipation
related parameter 3 is included as an additional unknown?
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e What kind of experimental data is required to ensure identifiability of all four
thermal model parameters?

The parameters of both models are fitted to the experimental data of either of the two
experiments presented before to see what kind of data is necessary for a (locally) unique
fit. The obtained results are presented and analysed with respect to the remaining
error, possible correlations and validity. In a last set of identifications, the identifiability
of thermal boundary coefficients (required for Newton’s law of cooling) alongside the
thermal model parameters is shown by again using the grid search approach. Related
questions are

e Is a (locally) unique fit of thermal model parameters and boundary coefficients
possible on the basis of full field temperature measurements?

e How sensitive are the resulting parameter values with respect to the (measured)
boundary temperatures required for Newton’s law of cooling?

Before the identifiability of thermal material parameters alongside thermal boundary
coefficients is analysed, however, the objective function, the mechanical material
parameters used for the simulation as well as a reference solution obtained with
prescribed boundary coefficients are introduced. With this information at hand, a grid
search optimisation is performed to study the identifiability and uniqueness of the
obtained solution within a certain area in parameter space. The resulting parameter
values as well as the material response of the simulation based thereon are compared
against the reference solution. Thus, the improvement in precision using optimised
boundary conditions is shown in terms of both relative and absolute error improvement.
The sensitivity of the optimum with respect to the prescribed temperature values of the
external media required for Newton’s law of cooling is analysed thereafter by rerunning
the identification several times with different, prescribed external temperatures. Finally,
the possibility of identifying only a subset of thermal material parameters and boundary
coefficients is explored, prescribing the values of those thermal material parameters
which can be identified by means of specialised experiments and which are usually
available in literature, i.e. thermal expansion, heat capacity and thermal conduction.
The obtained result is again compared against the fully optimised material response.

In Chapter 6, the answer to the questions above are explicitly given and the main
results are summarised. Although not the focus of this thesis, the possibility to obtain
valid parameter sets is furthermore commented on. The chapter closes with a short
outlook on possible extensions and future research directions.



2 Theory of parameter identification

The theoretical background of a full field measurement based parameter identifi-
cation for thermo-mechanically coupled material models is provided in this chapter,
focusing on the Finite-Element-Model-Updating (FEMU) method, as well as on the
handling of experimental data. More precisely speaking, information necessary for the
implementation of a FEMU scheme suitable for thermo-mechanically coupled material
models are given. Furthermore, the operating principle of commonly used measurement
devices are briefly explained in order to devise suitable and reasonable experimental
setups and enable an appropriate (pre-)processing of the obtained data.

To do so, the chapter is structured as follows. The definition of the direct and in-
verse problem is given first, underlining the dependencies of the solution for a parameter
identification. A possible solution technique for the inverse problem is shown next, in-
troducing the general structure of the FEMU method and briefly distinguishing this
scheme from other established solution techniques. The chosen solution technique re-
quires experimental data and a pre-processing of said data, which is addressed in the
subsequent section. Thus, the general framework is followed by information on full
field measurements of displacements and temperatures using Digital-Image-Correlation
(DIC) and thermography, highlighting aspects which have a direct influence on the ex-
perimental setup and the treatment of measured data. The necessary pre-processing
steps of experimental data, i.e. the interpolation, are explained thereafter. As a vital
part of the FEMU method, the choice of an objective function is discussed, introducing
a formulation which intrinsically compensates rigid body motions of the testing ma-
chine. Afterwards, more general sources of errors are outlined including errors related
to the choice of a model formulation. From that, the definition of identifiability criteria
is motivated, in order to determine whether or not an optimisation result is (locally)
unique. Finally, the necessity of verification and validation, as well as the difference be-
tween model and material parameters are briefly discussed, focusing on the effect which
different model formulations may have on an identification process.



2 Theory of parameter identification

2.1 The direct problem

The solution of the direct problem is usually of interest for predictive simulations. It
is defined as the solution of a boundary value problem with given geometry, boundary
values (3, material parameters k and constitutive material model represented by a set of
constitutive equations p. The sought for quantities are usually displacements, tempera-
tures or derived quantities such as stress, strain or heat flux, see Figure 2.1a. According
to [43] the direct problem can mathematically be defined as the search for a valid output
quantity d which satisfies a set of residual functions b

d(k; B, n) = Arg{b(d; B, k, n) =0} , (2.1)

with g being, for example, the weak forms of the balance equations for linear momentum
and energy. As visualised in Figure 2.1, one of the so-called inverse problems is obtained
by switching one of the input parameters with the output quantity of the direct problem.

2.2 The inverse problem of parameter identification

The main intention of a parameter identification is to fit the predicted material be-
haviour of a simulation to the real material response by solving the associated inverse
problem which is graphically depicted in Figure 2.1b. The inverse problem of parameter
identification requires a given geometry, boundary values [3, a set of constitutive equa-
tions p and an experimental material response d*** as input data and solves for a set of
model parameters

k(d™?; B, n) = Arg{f (d**, k; B, n) =0} , (2.2)

so that an objective function f is satisfied. Keeping the aim of a parameter identifica-
tion in mind, the objective function is usually chosen to represent the gap between the
predicted material behaviour and some observed material response. A basic example for
such a formulation reads

f(d(k; B, m), d™P) = [d™® —d (k; B, n)]° (2.3)

and is simply the error squared between the observed and computed material response.
It is worth noting that the experimental data set d**, the boundary conditions 8 and the
constitutive model p are treated as constants (as indicated by the separation through
a semicolon in the list of arguments) within one parameter identification process, so
that the formal dependency in Equation (2.3) is usually omitted. The definition of
the objective function is not unique and more elaborate formulations can be found in
Section 2.6. However the specific choice of an objective function may be, the number
of experimental data in general exceeds the number of unknown model parameters,
rendering this problem ill-posed, c.f. [43]. Therefore, a solution as defined in Equation
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2.2 The inverse problem of parameter identification

Boundary conditions Boundary conditions
Material parameters Material response
Constitutive model Constitutive model
Geometry Geometry
Direct problem Inverse problem
Material response Model parameters
(a) The direct problem. (b) Inverse problem of pa-
rameter identification.
Boundary conditions Boundary conditions
Material parameters Material parameters
Material response Constitutive model
Geometry Material resTonse
Inverse problem Inverse problem
Constitutive model Geometry
(c) Inverse problem of ma- (d) Inverse problem of
terial modelling. structural optimisation.

Figure 2.1: Comparison of direct and inverse problem.

(2.2) which satisfies the objective function exactly does not exist and the problem is
reformulated as a minimisation problem

min f(d (k) , st. h(k) =0, g(k) <0 (2.4)

which can be subjected to equality and inequality constraints h and g respectively.

Remark 2.1. Although the formal dependency of the inverse problem on the chosen
constitutive model is omitted in Equation (2.4), it is nevertheless important to keep
especially this dependency in mind. Different constitutive models might lead to signif-
icantly different model parameters, since the solution of a parameter identification are
not necessarily the true material parameters but rather the optimal parameters for the
provided input, as is discussed in greater detail in Section 2.9.3 and exemplarily shown
in Section 5.4.
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2 Theory of parameter identification

2.2.1 Solution techniques

An analytical solution to the inverse problem of parameter identification exists only
for very simple constitutive models, e.g. linear elasticity. In general, an optimisation
based parameter identification scheme is required to solve the minimisation problem
defined in Equation (2.4) and a couple of different methods have been proposed to
do so, see [3] and [48]. Most prominent are the Constitutive Equation Gap Method
(CEGM), the Virtual Fields Method (VFM) and the Finite Element Model Updating
(FEMU) method. In contrast to other methods available, the FEMU method can handle
a wide variety of experimental data, is applicable to almost all kinds of boundary value
problems and has no restrictions regarding the position of available experimental data
on or within the body considered. Furthermore, the intrinsically modular structure is
easy to implement and allows the incorporation of already existing toolboxes, for either
the optimisation or FEM routine. For these reasons the FEMU method is used within
the thesis at hand. Since the underlying idea of this scheme is to compare the solution
of a Finite-Element-Method (FEM) to the experimental data and iteratively update the
model parameters until some convergence criterion is met, an algorithmic structure as
is presented in Figure 2.2 naturally arises. This structure allows the use of almost every
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(a) Parameter identification (b) Optimisation routine. (c) Assembly of objective func-
routine. tion.

Figure 2.2: Flow diagram of parameter identification routine.

optimisation scheme and the optimisation with respect to any physical quantity as long
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2.3 Optical displacement measurement

as it is observable or at least derived from observable quantities. Commonly used are
the reaction force F', the temperature field 0, the displacement field u, the strain field
€ derived from u, or a combination of those measurands. Usually, reaction forces are
obtained using conventional load cells. Concerning the measurement of temperature and
displacement field however, more advanced methods are required.

2.3 Optical displacement measurement

One possibility to measure the displacement field of a specimen lies in the principle of
digital image correlation (DIC). It allows the capturing of the three dimensional dis-
placement field of a specimen surface throughout an experiment. A detailed description
and derivation of this technique can be found in [74] and an extensive analysis of the
method is provided in [25], Chapter 5, so that only a brief overview is given within this
section.

The setup for this kind of displacement measurement is fairly simple. One or more
charge-coupled device cameras (CCD cameras) take pictures of the initial and every
subsequent loading stage. By comparing each picture either with the reference or the
preceding stage, movement of individual areas can be tracked. To do so, the picture is
divided into rectangles, called facets, with a side length of some pixels, see Figure 2.3.
Each facet is represented by its grey value distribution which is assumed to be unique

Figure 2.3: Field of facets for optical displacement measurement. Red dots indicate centre of each facet
where displacement data is available. Only some facets are exemplarily shown.

within a certain neighbourhood. To fulfil this assumption the surface of the specimen
must either feature a natural pattern, or a stochastic pattern has to be applied manually.
Figure 2.4 shows an example for both cases. It is worth noting that the size of the facets
needs to fit to the observed pattern. Large speckles, for example, require larger facets.
If too small, some facets may be completely filled by speckles so that the grey value
distribution is not unique. Practically, the applied pattern is usually chosen to match
the desired facet size, since the facet size also defines the smallest observable material
effect, e.g. some shear band moving through the specimen. However, if the grey value

13



2 Theory of parameter identification

(a) Natural pattern. (b) Unsuitable surface. (¢) Manually applied pattern.

Figure 2.4: Example for suitable patterns which allow a displacement measurement via DIC.

distribution of a facet is indeed unique, this distribution is traced throughout each frame
that was made during the experiment. The resulting displacement is then assigned to the
midpoint of the respective facet. A closer look at Figure 2.3 reveals that displacement
data may be unavailable exactly at the edge of a specimen, since some software packages
do not consider facets which protrude over the edge of the specimen for the sake of
precision. For such cases, the midpoint of a traceable facet can never lie on the edge
of the observed surface. This is important to keep in mind if data is required directly
on the edge, because it would mean to extrapolate data onto this position, which is a
potential source of error if not treated carefully, see Section 2.7. Another source of error
to be aware of is the choice of a reference stage for the computation of experimental
displacements. Some systems provide the option to trace changes from image to image
which might allow a matching of related facets under large distortions, but can also lead
to a substantial build-up of systematic and random errors. Comparing images against
the initial stage will intrinsically avoid this problem, see Figure 2.5.

Structure of DIC data A DIC system intrinsically uses a Lagrangian approach of
recording data, due to the fact that it traces the movement of certain material points
(represented by a facet). Thus, for each observed point of the reference configuration,
a set of displacements is available describing the path of the associated point through
space, evaluated at discrete time steps, see Figure 2.6. This structure of DIC data has
a direct influence on the way it must be treated during pre-processing.

2.4 Optical temperature measurement

Regarding the measurement of temperature fields, infra-red thermography presents a
non-contact method with a high availability of corresponding devices. The key com-
ponent of such a thermography system is a sensor array which detects electromagnetic
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Figure 2.5: Example of strain in tension and lateral direction using the initial stage (—) and the preceding

stage (--) as reference for the computation. Difference of up to 2% in tension direction and 25% in
lateral direction.

waves with certain wavelengths. The temperature which corresponds to the registered
radiation is then computed using well known laws of thermodynamics, e.g. Kirchhoft’s
law of thermal radiation and Planck’s radiation law, see [10] Section 13.2. The tempera-
ture associated with each sensor is furthermore visualised in a thermogram by assigning
a certain colour to each temperature value. Hence, each pixel of a thermogram repre-
sents the temperature obtained from one sensor. Regarding these sensors, different types
can be used within thermography systems, which differ in the underlying measurement
principle (e.g. thermal- vs. photon detector), thermal resolution as well as in the re-
quired integration time of each sensor, cf. [10] Section 13.9. Furthermore, thermography
systems usually do not read all sensor values simultaneously, which can lead to a tempo-
rally distorted thermogram, the significance of which depends on the underlying method
(reading data row-wise or snap-shot method) as well as on the characteristic time scale,
i.e. speed, of the process observed.

It is worth emphasising that thermography systems do not detect the whole infra-red
spectrum but only a certain range of wave lengths. Usually, this range lies within one
of the so-called atmospheric windows. Figure 2.7 shows the transmission coefficient of
air 7 as a function of the observed wavelength, and the atmospheric windows are those
areas where the air absorbs as little of the infra-red radiation as possible (7 ~ 1). Most
systems either make use of the medium-wavelength ( 3 - 5 um) or the long-wavelength
window (> 8 um). The detected wavelength is of importance especially if different
coatings are applied to the specimen, since the emission coefficient of most paints differ
significantly from each other for medium-wavelengths, but tend to coincide for longer
wavelengths, see Figure 2.8. Hence, a speckle pattern should only be observed using a
thermography system if the emission coefficients of both coatings coincide for the de-
tected wavelengths. Otherwise, it is not possible to compute the correct temperature of
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2 Theory of parameter identification

Facet Current position Reference position
(a) Reference configuration at  (b) Deformed configuration  (c) Deformed configuration at
time tg. at time t1 > . time to > t4.
Trajectory of facet Infra-red pixel

Midpoint of pixel

(d) Trajectory of facets. (e) Position of infra-red pixel
is fixed for all time steps.

Figure 2.6: Measured displacements of each facet are assigned to reference coordinates of the facet.
Measured temperature of one infra-red pixel is assigned to the stationary midpoint of the pixel and
may correspond to different facets at different time steps.

the speckled surface since the appropriate emission coefficient for each pixel is unknown.
That is if one pixel happens to contain part of a white and part of a black area, the
detected temperature will be smeared and averaged. Apart from the emission coeffi-
cient, the temperature of the surrounding area is also of importance. Every body with a
temperature greater than zero Kelvin emits radiation that is reflected from each surface
with an emission coefficient ¢ < 1 as exhibited by almost every common material and
coating. Most thermography systems can compensate the homogeneous and constant
reflection of a body in the observed surface if the temperature of the reflected body is
known. Thus, it is crucial to avoid a time dependent or inhomogeneously distributed
irradiation, e.g. due to nearby machines heating up or to moving people reflecting on
the surface, especially if only small changes in temperature are expected. One simple
way to avoid the influence of external radiation is the use of cardboard screens to cover
the observed body. Alternatively, glass plates can be used in case a transparent screen
is required, see for example Section 3.3, since glass has a high transmission coefficient
for electromagnetic waves in the visible, but a rather low transmission for waves in the
infra-red spectrum. Thus, it may not block all of the external radiation but it leads
to a significant reduction. Although the glass screen may heat up and emit infra-red
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Figure 2.7: Transmission coefficient of air. Pathlength [ = 1 m, relative humidity u = 75 %, temperature
T =32 °C. Courtesy of Optris GmbH.

radiation itself, it does so in a more homogeneous way due to its own conductivity.
Regarding the different types of detectors used for thermography systems, it must be
chosen according to the measurement requirements, see [10] Chapter 14. Thermal de-
tectors, e.g. microbolometer or pyrometer, are usually inexpensive and do not require
additional cooling. Compared to photon-detectors, however, they have a lower thermal
resolution and higher reaction time. Photon-detectors are to be preferred for high ac-
curacy and dynamic measurements, but require a cooling of the detector (around 100
K or even less), rendering them more complex and expensive. Furthermore, an actively
cooled system should not be used for measurements immediately after powering up but
needs some time (around 1 — 2 hours) to reach a steady state. Independent of the
detector type chosen, thermography systems often use an at regular intervals reoccur-
ing offset-correction to compensate thermal drift of measurement data, cf. [10] Section
14.5.6. The time between these corrections is usually significantly larger for the actively
cooled photon-detector systems if compared to e.g. a system with microbolometer. This
automated adjustment may be suppressed during measurements, but at the cost of the
afore mentioned thermal drift over time.

Structure of thermography data In contrast to DIC systems a thermography system
uses an Eulerian approach of recording data. It does not track points, but detects the
temperature of points moving through a position fixed in space, i.e. the infra-red pixel,
see Figure 2.6. For each of these infra-red pixel, a discrete set of temperatures is available
which describes the temperature history of the associated position fixed in space. It is
worth noting that the thermography system has no information about the length scale
of the observed surface, so that the exact position of each pixel in a coordinate system
is not available. All that is known is the order of pixels within the thermogram. Thus,
a fundamentally different treatment of thermography and DIC data is required.
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Figure 2.8: Temperature measurement of a speckled specimen using different wave lengths. The emission
coefficient ¢ of the coatings is different for medium-wavelengths and coincides for longer-wavelengths.
Since the true emission coefficient is unknown, € = 1 was used in both cases for the computation of
temperature values, hence the deviation between the levels of temperature in (b) and (d).

2.5 Interpolation of experimental data

Usually, an error-squared like objective function representing the difference between
experiment and simulation is used within the FEMU method, see Section 2.2. A mean-
ingful error measure, however, is only obtained if the experimental and simulated data
points subtracted within the objective function are somehow related to one another.
This relation is not uniquely defined and different approaches can be found, several of
which are used within literature. Compared data must certainly refer to the same point
in time, but whether it is some time step of the experiment, of the simulation or some
other time point is a matter of personal choice. Regarding the position in space, exper-
imental and simulated data could refer to the same point in the current configuration,
or it could refer to the same material point, i.e. the same position in the reference
configuration. Following the first approach, different material points of simulation and
experiment are compared at every iteration and may even change from time step to time
step, see Figures 2.9a-2.9b. Thus, data must be interpolated at every iteration of the
identification routine since the position at which simulated data is available (the FE
nodes) at a certain time step changes with the model parameter set and therefore with
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FEM node in

reference configuration

Experimental data point
in reference configuration

(a) Comparing data at the same point in current (b) Comparing data at the same point in current
configuration, iteration q. configuration, iteration j.

Usim — WUexp

Usim (kz)

(¢) Comparing data at the same point in refer- (d) Comparing data at the same point in refer-
ence configuration, iteration . ence configuration, iteration j.

Figure 2.9: Different material points are compared at every iteration step, if displacements at the same
point in the current configuration are used, necessitating repeated interpolations. Comparing data of the
same point in the reference configuration can be done with one interpolation during the pre-processing
step.

each iteration. If, however, data of the same material point is compared, an interpola-
tion of experimental data is only required once since the position of the FE nodes in the
reference configuration does not change, see Figures 2.9¢-2.9d. Apart from the fact that
the choice should make no difference if close enough to the solution of the inverse prob-
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2 Theory of parameter identification

lem, the latter approach is usually preferable in terms of efficiency. Within this thesis,
the second approach is therefore chosen, comparing data of the same material points,
whereas experimental data is interpolated to match the position in time and space of
computed data as follows.

2.5.1 Displacements

The interpolation of displacements is rather straight forward and has already been de-
scribed in several publications such as [64], [57] and [34]. It takes advantage of the fact
that a DIC system intrinsically uses a Lagrangian approach of recording data, tracing the
movement of certain material points as is explained in Section 2.3. A list of experimen-
tal displacements is associated with each observed point of the reference configuration,
describing its path through space. Hence, it is possible to use the coordinates of the
points in the reference configuration to interpolate the sets of experimental displace-
ments onto the position of the FE nodes in the reference configuration, see Figure 2.10a.
Due to the high density of data points, a linear interpolation as shown in Algorithm 2
is usually sufficient and can be performed once during pre-processing of the parameter
identification routine.

2.5.2 Temperature

The required interpolation scheme for temperatures differs fundamentally from the one
used for the displacements, since a thermography system does not track material points,
but detects the temperature of different material points moving through a position fixed
in space, see Section 2.4. More precisely speaking, the position of each FE node in the
deformed configuration is required in order to map the experimental temperatures onto
these coordinates. This can be done either in every iteration step of the identification
procedure using the computed displacements of the simulation, or once during pre-
processing if the experimental displacement field is utilised, see Algorithm 3. Following
the latter approach, the experimental displacements of a material point associated with
the reference position of an FE node is computed as described in Section 2.5.1, yielding
its (experimental) position in the current configuration. The experimental temperatures
of the corresponding time step can then be interpolated onto the current position which
the material point had in the experiment as is shown in Figure 2.10b. Thus, for each
material point considered a set of experimental displacements and temperatures is known
and the reference positions of all material points coincides with the reference positions
of the FE nodes.

2.5.3 Time

So far, experimental data has been mapped onto the same position in space. In order to
enable a comparison of experimental data with simulated data, however, the position in
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(a) Linear interpolation w;,; of experimental dis- (b) Linear interpolation 6;,; of experimental
placements ey, onto the reference position of a temperatures fqxp onto the current experimen-
FE mesh node. tal position of a FE mesh node.

Figure 2.10: Linear interpolation of measurement data to obtain a set of experimental displacements
and temperatures associated with a certain point of the reference configuration.

time has to be identical as well. If the frequency of the thermography and DIC system
is chosen to be sufficiently high, a linear interpolation in time between the two closest
experimental time points is an appropriate choice.

2.5.4 Coordinate systems

Since coordinates of the reference and deformed configuration are used, any interpolation
scheme can only be performed if all coordinate systems are identical in position and
orientation. Concerning the FE mesh, the coordinate system is chosen by the user,
and common DIC systems usually have an option to shift the coordinate system as
well. This leaves only the data of the thermography system which needs a suitable
coordinate system. Since infra-red cameras are usually not used or designed to measure
the dimension, elongation or point positions of a specimen, the thermography system
has, unlike the DIC system, no information regarding the length scale. Temperatures
are assigned to each pixel so that an algorithm has to be applied which converts the
position of each pixel within the picture into a position in a chosen coordinate system.
To do so, some points must be selected manually on the infra-red image at characteristic
locations of the specimen, see Figure 2.11a. The blue points (=) could theoretically also
coincide with the green ones (0) and were only chosen in the form shown in Figure 2.11a
for the sake of visibility. In the example displayed in Figure 2.11a the coordinate system
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of the displacement data was aligned with the specimen and positioned at its centre.
For other cases, different points may be used, but the approach depicted in Algorithm 1
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(a) Example of cha- (b) Position of pixel P;; in ith row and jth column in initial coordinate system
racteristic points. using the known length scale.

Figure 2.11: Definition of coordinate system by means of characteristic point using an infra-red image.

and explained hereafter remains the same. At first, the red points (4) are used to
define a line with a known length so that the length scale can be computed. Thus,
each pixel midpoint can be assigned to a coordinate in a coordinate system which is
positioned at the top left corner of the image with its axes parallel to the image borders,
see Figure 2.11b. The basis of this initial coordinate system is henceforth represented
by e;. Afterwards, a circle is specified by means of three points on its circumference
(0). These points are chosen in such a way that the centre of the circle o = o; ; is
identical to the position of the coordinate system used for the displacement data. Thus,
the coordinates of the pixels must simply be shifted to match the new origin. Finally,
the orientation of the axis can be adjusted by using the blue points (#). They define a
vector parallel to the specimen edge, as well as the orientation of the desired coordinate
systems basis e; = R;; e;. Hence, the coefficients of the rotation tensor R = e, ® €
can be computed and applied to further transform and align the coordinate system with
the edge of the specimen. A similar procedure can be found in [41].
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Load picture
— Save order of all pixels.

Define length scale

— Get row and column of two pixels Pj;, Py defining a line (+).
— Insert length of line [, in mm.

— Compute length of line in pixel (px)

by =l — i+ - .

— Compute length scale in mm per px

o~

§=
Ip

Define initial coordinate system
— Set origin at top left pixel.

— Define axes parallel to picture borders.

Define new coordinate system

— Get row and column of two pixels on one side of specimen (=).

— Define vector y along side of specimen.

— Get row and column of a third pixel on other side of specimen(s).

— Define vector @) perpendicular to y; through third point.

— Get row and column of three pixels on circle around centre of specimen (O).
— Compute position of centre point.

— Compute rotation tensor R transforming initial into new coordinate system.
— Compute offset vector o between origins.

Assign Coordinates

for file=1, ..., nydo

— Read file with pixel values 6;;.

— Save values in matrix, according to pixel position in picture.
— Assign coordinates to all pixels Pj; in initial coordinate system

_ . 1
.Z‘ij:[]—l]8+§8,

_ . 1
yij:[z—l]s+§s.

— Transform into new coordinate system

) =r ] o)

— Assign pixel values to points and save in file.

end

Algorithm 1: Definition of coordinate system for temperature data.
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Import experimental data
— Read all n¢ data files.
— Save displacements of each point.
— Save reference coordinates of each point.
— Save time stamp of each file.
Import mesh
— Read input file for FEM.
— Save number of nodes nyy.
— Save reference coordinates of each node.

Interpolate displacements in space
for file=1, ..., nydo
— Save current time stamp tgje.

for node =1, ..., ny, do
— Find three closest points for current mesh node in reference configuration.
. . . ¢
— Save reference coordinates X, Y and displacement at current time u,"°,
L til :
uy'*, us"'® of particles.

— Interpolate displacements linearly onto node position using

Y N|[X -X] - [X3 - X][Y -]
V=YX - Xi] - [X3 - X] [Ya — V)]

V1 = Yol [X — X] + [Xo — X4] [Y — V1]

T X)X X)) [V

thle __ e thle thle tle
whe = [1 — s —t] u™ + suy +tug.

— Save experimental displacement for current node.
end

end

Interpolate displacements in time
for timestep =1, ..., ny do
— Save current time step tgim.

— Find two closest experimental time stamps to current time step.
— Save time stamps t1, 2 and interpolated displacements ufrllt, ufflt.
— Interpolate displacements linearly onto time step using

t2 - 7fsim t1 sim — tl to

tsim t
u. = —u_, + —u;
nt tg o tl nt t2 o tl nt

— Save experimental displacements for current time step.
end

Algorithm 2: Linear interpolation of displacements.
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Import experimental data
— Read all n¢ data files.
— Save temperature of each pixel.
— Save reference coordinates of each pixel.
— Save time stamp of each file.
Import mesh
— Read input file for FEM.
— Save number of nodes nyy.
— Save reference coordinates of each node.

Interpolate temperatures

for timestep =1, ... ,n; do

— Save current time stamp tgimy.

— Find two closest experimental time stamps to current time step.
— Save time stamps t1, to and temperatures 0°1, 92,

— Compute temperatures at current time step using

gtoim — 2= tsim gp, , fsim — 11 gy,
to — 11 to — 11

— Save experimental temperatures for current time step.
for node =1, ... ,ny, do
— Compute expected position of node in current configuration by

whim =X + g

tsim tsim

Yy =Y + uint, y -
— Find three closest pixel for node in current configuration.
— Save spatial coordinates x, y and temperatures at current time G%‘m, (955““,
H?im of pixels.
— Interpolate temperatures linearly onto node position using

o s [zt — ] — [ws — @] [y — ]
s — 1] 22 — 2] =[5 — @] [y2 — 1]
o= gl [am — o] + [on — @] [y — ]

lys — y1] [z2 — 1] — [23 — 21] [y2 — ¥1]

e?sim — [1 — 5 — t] gisim _|_ Seésim + tegsim.

int

— Save experimental temperature for current node.
end

end

Algorithm 3: Linear interpolation of temperatures.
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2 Theory of parameter identification

2.6 Choice of objective function

The FEMU method compares data of simulation and experiment, aiming at a min-
imisation of differences by minimising the objective function value, as is explained in
Section 2.2.1. Thus, the objective function is usually chosen to represent some error
measure of the observed physical quantity, e.g. displacements. The exact formulation of
an objective function, however, is not unique and can differ with respect to the following
characteristics

e error measure,
e considered physical quantities,
e weighting factors,

which are defined subsequently.

2.6.1 Error measure

Although several other suitable error measures may be defined, it is usually the error
squared

f=r(k)-W-r(k) (2.5)

which is favoured in literature and which is also chosen as error measure for the objective
function within this thesis. Alternatively, for example some norm of the residuum could
be used. The residual function r itself as well as the weighting matrix W can be specified
as follows.

2.6.2 Physical quantities

In principle, all observable as well as derivable quantities can be used to define the
residual

) = (o) (k) — (o) 26)

which, for the sake of simplicity, is represented as a list holding values of all nodes and
all time steps under consideration. Common examples are displacements (observable) or
strains (derived from displacements). It was already proposed in [43], that the objective
function might be expanded to account for further quantities such as force (or stress),
or temperature by simply adding the respective error measures, i.e.

Fm P T = T W O O L (27)
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2.6 Choice of objective function

Displacements - u Displacements can usually be used for the definition of the residual
function

r'* =u(k) —u”? (2.8)

without restrictions to the kind of boundary value problem. The experimental set may,
however, include rigid body motion of the specimen which can not always be adequately
represented in the simulation leading to severely erroneous results, see sections 2.7.2 and
5.3.1.

Strains - € Strains are intrinsically not affected by rigid body displacements or rigid
body rotations, i.e. small rotations for small strain measures and arbitrary rotations for
large strain measures. Most DIC systems are able to compute the (technical) strain
field on the observed surface, using displacement data of several facets in a certain
environment. It is not always clear as to how exactly experimental strains are computed,
so that it may be impossible to recreate the procedure with simulated data. Thus, if
strains are used within the residual function

r*=ge(k) — ™ (2.9)

to compare experiment and simulation, those strain measures are usually not equivalent.
Those who wish to ensure the use of identical strain measures must therefore compute
strains for both DIC and simulation data using the same displacement based scheme, as
is done e.g. in [27].

Relative displacements - Au A similar possibility to circumvent the problem of rigid
body motions while still ensuring that equal measures are compared within the objective
function is the use of relative displacements, i.e.

r® = Au (k) — Au®™P. (2.10)

The underlying idea is the approximation of the same strain-like measure in simulation
and experiment. All strain-like quantities are based on the displacement gradient which
can be approximated by using the difference in displacements of points. Hence one
possibility is to use the difference in displacements Au of neighbouring FE nodes. This
formulation ensures that translational rigid body motions as well as small rotations are
completely compensated. One way of specifying these differences Au is to subtract the
displacement component of neighbouring data points from the displacement component
of the node under consideration, as is exemplarily shown in Figure 2.12a with

Aul,mx U,z — U2 ¢,
Aty yy =1,y — Uy,
Aul,xy =Ul,z — U3 2,

Aug ye =u1,y — Ugy .
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2 Theory of parameter identification

This difference can further be divided by the initial distance of the nodes to obtain
an approximation of the afore mentioned displacement gradient, while simultaneously
reducing the influence of the mesh density on the contribution single nodes make to
the overall objective function value. Further manipulations can be used to approximate
other, strain-like quantities, e.g. technical strain

o ul,x - u2,:1:

AUy 4y = AY , (2.15)

AuLyy = ULyA_YU&y ) (216)
1 |uy , — us U,y — Uz

AUy 3y == il td Y N 2.17

fhay =5 { AY T AX ] (2.17)

The significance of the relative displacement component related to the off-diagonal

(a) Hlustration of a possible definition of Au. (b) Possible constraints for the definition of a
neighbouring node in an unstructured mesh.
Neighbouring nodes have to lie within a triangle
with predefined dimensions.

Figure 2.12: Neighbouring nodes may be used to generate a relative displacement measure which
intrinsically compensates rigid body motions.

element of the displacement gradient (2.17) greatly depends on the experiment under
consideration. It can either be neglected in case no shear strain is expected or must be
considered in particular if shear strains are dominant. The effect of choosing relative
displacements instead of (unmodified) displacements within the objective function is
also examined in Section 5.3.1, Table 5.2 where the different results of both, u and Au
based, objective function formulations can be seen. It is interesting to note that the
observed rigid body motion of a specimen during an experiment may differ significantly
for different types of testing machines. Hence, depending on the construction of the used
device, the impact of this choice for an objective function may either be pronounced or
negligible.
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2.6 Choice of objective function

Force - F Reaction forces of an experiment are usually integral measures and therefore
only have a limited capability if used alone within an objective function. Depending
on the applied boundary conditions within the simulation, however, adding the error in
reaction forces

r’ = F (k) — Fo® (2.18)

to the error of some displacement based measure may speed up the identification process
significantly. Prescribing the measured reaction forces as Neumann Boundary Conditions
results in a high sensitivity of the displacement related error measures with respect to
the model parameter set and, intrinsically, fulfils r¥ = 0 rendering the use of forces in
the objective function redundant. If only Dirichlet Boundary Conditions are applied,
the sensitivity of the displacement field with respect to the model parameter set can be
expected to be rather low, since the resulting displacement field can only vary within
the applied bounds. For such a case, the value of the reaction force will greatly depend
on the current model parameter set and will therefore accelerate the convergence of a

parameter identification scheme if considered in the objective function, as was proposed
in [43].

Stress - o Stress can never be measured and must be derived from a reaction force by
using certain assumptions regarding the homogeneity of stresses. Thus, stress has the
same limited capability as forces if used alone within an objective function. A common
application for stress-based residual functions

r’ =o (k) — o™ (2.19)

in the objective function is for simple experiments which can be simulated on material
point level using a constitutive driver algorithm instead of an FE analysis.

Absolute temperature - © The error in temperature
r® = @ (k) - @ (2.20)

can be used for the identification of caloric model parameters. It is a suitable measure
if the initial temperature distribution of the body under consideration can be applied to
the simulation as well. Otherwise, the inhomogeneity must be small in comparison to
the overall rise in temperature during the experiment in order to be neglected.

Relative temperature - A® If only small temperature changes are observed and the
initial (inhomogeneous) temperature field cannot simply be applied to the simulation,
the error of relative temperatures

r®® = A@ (k) — A@™® (2.21)
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2 Theory of parameter identification

is still a suitable measure for the identification of caloric model parameters. Each entry
of the list A® holds the difference of a material point to the temperature of the same
material point at some reference time

AO=0(t)—0(t=ty), (2.22)
AGTP =0 (1) — 0P (t = ty) , (2.23)
which is usually the start of the experiment.

Remark 2.2. The residual function is defined as a vector in this section for purely prag-
matical reasons. The alternative representation of the objective function

f=r s
Y SO S (A A (R WSS (A6 G, (k)
i€ {z,y} t=1 n=1 t=1 n=1 (2.24)
= Y Y k2wt TS k)
ie{z,y} t=1 n=1 t=1 n=1

is closer to the actual implementation, with the number of evaluated time steps nys, the
number of contributing node points n,, and the weighting factors W.

2.6.3 Weighting factors

The purpose of the weighting factors is twofold. A clash of units must be prevented,
as soon as the errors of different physical quantities are added within the objective
function. This is formally done by assigning a suitable unit to each weight, e.g. the
inverse unit of the quantity it is paired with, rendering the overall objective function
to be consistent or dimensionless. Furthermore, the weighting factors ensure that all
addends of the objective function have the desired influence on the objective function
value, since error values might range in different orders of magnitude. This should be
of little concern for a, theoretically, perfect material model, which precisely represents
all characteristics of the real material. For such a model, the global optimum of all
error functions should coincide, whether referring to temperature, displacements or any
other quantity. For a non-perfect model, however, this is usually not the case. Thus,
different model parameter sets may be required to reach, for example, either the global
optimum of the error in temperature or the global optimum of the error in displacements.
The result of the overall optimisation will, in that example, depend on the choice of the
weighting factors, shifting the overall optimum between the two optima of the single error
functions along a pareto front also known from multi-objective optimisation. Common
choices for weighting factors are a manual selection based on experience as is done in
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2.6 Choice of objective function

this thesis, or one of the following naturally occurring weighting methods. In [48] the

residual is divided by the current experimental value
M exp] 2
W [r(')f _ (o)(k) — (o)P N we — 1

(o) | [(o)exe]*

whereas the maximal experimental value is chosen as a weight in [27] leading to

(2.25)

B exp 2
W [(®] = (o)) :XIS') ’ = we - 1 (2.26)
(&)max ] [(®)max]

It is noteworthy that indices relating to the degree of freedom or time step are omitted
in the two equations above. A different approach can be found in [70], using available
parameters to transform two addends of the objective function to an identical measure
(e.g. stress or energy like). In the case of the publication mentioned above, strain and
force contribution to the objective function were weighted with Young’s modulus and
the initial cross section of the utilised dogbone specimen to yield stress-like quantities.
Although this specific approach may only work for special cases, it can still be adopted
to other pairings within the objective function.

2.6.4 Derivatives

Independent of the precise formulation chosen for the objective function, the Jacobian
and the Hessian of this function are required not only for gradient based optimisation
schemes, but also for the analysis of common identifiability criteria, see Section 2.8.
Since the objective function was defined above with respect to to different quantities,
weighting factors and notations, the following, more general expression

Nngs  Nd Nts  Nd
f= ZZW” = ZZ [TZVLQ with Txv‘t = /W, 7, (2.27)
t=1 n=1 t=1 n=1

is used for the introduction of the derivatives. In Equation (2.27), different kind of
physical quantities (e.g. temperature, displacement in z- and displacements in y-direction
of all n,, nodes considered) are incorporated in the number of all data points ngq, the
weighted squared error 7V of which is summed over all time steps n. The first derivative
with respect to the model parameters yields the gradient or the Jacobian of the objective
function

Nts  Nd

J'=2>"3 "Wl 3], , (2.28)

t=1 n=1
making use of the Jacobian of the residual function r evaluated for the current time step
and data point
dr,
dk

d[(e)n(k) — (0)7"]
dk

J|, = (2.29)

t
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Regarding the Hessian of the objective function

Nts  Nd d2(0)
H =2 W, [JE @ J" +r, H" ith H® LI 2.30
;; [ n n r n]t Wl |t de . ( )

the second addend holding the Hessian of the residual function H, |, is usually neglected,
leading to

Ngs N4

Hj, =2) > W,[J,J,],. (2.31)

t=1 n=1

This approximation is only valid if the omitted addend is significantly smaller than the
first one, which is certainly true if the residual function r is linear in the model parameters
k, but cannot be guaranteed in general. It is worth mentioning that the approximated
Hessian HY does not depend on experimental data, as long as the weighting factors W
are independent of experimental data, cf. Equations (2.29) and (2.26). It can furthermore
be rewritten in index notation as

Nts  Nd
[Hy,],; = 2 W [Tl ) [5], =233 - 37
; ; ! (2.32)
W= w3

with the vector of weighted residual sensitivities

d[(e),= T M d[(e)n= T
VW=t % %

v lt=1 o lt=1

d[(®)n=2] d[(e)n=2]
VWi === RO

t=1 ¢ t=1
gV = | VW, W =W I = VW W o (2.33)
W —d'f("izz"d] —d“‘;’;fﬂ

which will be used for the definition of correlation measures in Section 2.8. The weighted
residual sensitivity in Equations (2.32) and (2.33) can only be reduced to the vector of
(unweighted) residual sensitivities J* if the weighting factors are identical for all entries.

Remark 2.3. The definition of the actual response sen81t1v1tles depends on the chosen
constitutive model and on the framework used (e.g. FE- Method or constitutive driver
algorithm). Such an extensive derivation is out of scope for the thesis at hand, but can
for example be found in [46] and [47].
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Remark 2.4. Tt was already mentioned that the use of the approximated Hessian of the
objective function HY is usually associated with the assumption that the second ad-
dend in Equation (2.30) is significantly smaller than the first part. This assumption can,
unfortunately, not be examined without computing the neglected addend, generating a
conflict between making the assumption in order to avoid derivational and implemen-
tational effort and the necessity to prove the validity of the assumption. Alternatively,
the absolute value of the residuum r < 1 close to the optimum is typically considered in
order to discard the second addend. The value of the residuum, however, can simply be
scaled, e.g. by changing the underlying system of units, and is therefore difficult (maybe
even impossible) to interpret.

2.7 Sources of errors

Like all other numerical and experimental schemes, the parameter identification is prone
to several kinds of errors. A careful handling of the respective sources of each error can
minimise the impact on the solution. Hence, several of the most commonly encountered
errors are listed below.

2.7.1 Measurement errors

According to [1], measurement errors can be divided into two groups, i.e. random errors
and systematic errors. Random errors can, per definition, not be controlled and include
e.g. the so-called uncertainties such as noises and scattering. Both are usually treated
by considering a statistically relevant amount of data, rather than just the set of a single
experiment. Systematic errors, on the other hand, refer to reproducible effects like the
wrong calibration or ignoring the warm-up phase of a measuring device. Those errors can
either or not be correctable by means of a post measurement calculation. The specific
random and systematic errors that can occur during the experiments considered in this
thesis are commented on in Sections 2.3 and 2.4.

2.7.2 Experimental errors

Some experimental errors are inevitable but most of the severe ones can be avoided or
compensated. One source is the clamping of the specimen. An unaligned specimen can
lead to bending during the experiment, falsifying the results if the effect becomes too
pronounced. Furthermore, the specimen is usually subject to rigid body motion since no
machine is perfectly stiff. In some cases the superimposed displacement can be corrected
if the machine stiffness is known. Depending on the structure of the employed machine,
however, the stiffness may not be a constant function of the force due to settling and
slipping of some components. This requires a more sophisticated handling, for example
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Specimen ~—
"N

Clamping head

Loading

Clamping jaw

Figure 2.13: Superimposed rigid body motion u, of the specimen due to elongation of the testing
machine and slip of some components.

by a carefully chosen objective function which intrinsically compensates rigid body mo-
tions, c.f. Section 2.6.

Another source of experimental errors lies in the so-called incompleteness of data. It
refers to information which is unavailable either because it was not part of the time
and space-discrete measurement or because some material effect is not even featured in
the experiments, see for example Figure 2.14. Applying an appropriately high sampling
rate and facet density, the first aspect can usually be avoided by means of appropriate
measuring devices, i.e. with a suitable resolution and frame rate. Regarding the second
aspect of incompleteness, information which is not represented by the experiments at
hand, the effect of all model parameters must be well understood in order to chose ex-
periments which actually allow an identification. Unfortunately, a unique interpretation
of model parameters may not always be possible, at least not in a straightforward man-
ner. For such cases several alternative possibilities to check the identifiability of model
parameters exist, as is explained in Section 2.8.

2.7.3 Modelling errors

Apart from experimental data, the inverse problem requires further input (boundary con-
ditions, constitutive model and geometry, see Figure 2.1b) to define a suitable Boundary
Value Problem (BVP). All of these modelling aspects can be subject to more or less
obvious modelling errors which, in turn, affect the result of the inverse problem.
Assuming that the geometry is approximated with Finite Elements, elements (cubic or
tetrahedral elements, linear or higher order shape functions, etc.), as well as the mesh
density should be chosen accordingly to ensure mesh independence, i.e. further refine-
ment should not alter the outcome of the direct, nor of the inverse problem (if the exact
same points contribute to the objective function).

Boundary conditions must represent the experiment considered and often rely on mea-
sured data (e.g. force or displacement). The experiment is matched as precisely as
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Figure 2.14: Visualisation of incompleteness. Too little information is available to fit the orthotropic
yield surface (Hill48) to the experimental data.

possible if measured or otherwise known data can be prescribed at all bounds of the
body under consideration. If this is not possible (e.g. with respect to temperature or
heat flux), further assumptions must be made, and the solution of the inverse problem
depends on the quality of these assumptions as can exemplarily be seen in Section 5.5.
One further source of modelling errors lies in the constitutive model which introduces the
actual model parameters. Most constitutive models rely, at some point, on a phenomeno-
logical description of physical processes and may therefore not be able to represent all
aspects of a material equally well. Even in a theoretical scenario without measurement
and experimental errors, a certain model may not fit the experimental data points per-
fectly, as is exemplarily illustrated by fitting two different orthotropic yield surfaces to a
specific dataset in Figure 2.15. The constitutive model should therefore be chosen care-
fully and usually requires experience or trial and error testing of different formulations
until remaining model errors are within acceptable bounds. It is worth keeping in mind
that the existence of a perfect phenomenological model which reduces the modelling
error to zero for an arbitrary set of experimental data is not guaranteed.

2.8 Identifiability and correlation

It was already mentioned in Section 2.7 that an interpretation of all model parameters
may not always be possible, especially for complex constitutive models with many
model parameters. For those models, two effects which lead to infinitely many
solutions of the inverse problems may not be noticed by means of the constitutive
equations alone. Those effects are incompleteness of data and dependency of model
parameters. Identifiability can therefore be related to the model specific property of
overparametrisation as well as to the experiment specific property of addressing all
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Figure 2.15: Illustration of modelling error which can depend on specific model formulation. None of the
formulations fit perfectly. Although it could be said that the remaining error between the exemplary
experimental data and the BBC model is merely due to experimental and measurement errors, the
Barlat model clearly inhibits some model-specific remaining error.

model parameters (sufficiently strong). Thus, some sort of measure for the identifiability
of model parameters on the basis of a given set of experimental data is required. In fact,
several measures and schemes exist which can detect whether or not the experimental
data holds sufficient information for the identification of the targeted model parameters
and whether the model holds only independent model parameters.

Before presenting the most commonly used methods, three more aspects are worth
mentioning. Firstly, the measures shown in this section can, at best, guarantee local
uniqueness in the sense of a local optimum at one (isolated) point, as opposed to a val-
ley of solutions. The existence of further local minima outside a certain trust area is still
possible. Secondly, the difference between correlation and dependency of parameters as
used within this thesis should be defined, since some authors tend to use these expres-
sions as synonyms. Here, the dependency of parameters implies an overparametrisation
of the model, so that two or more parameters are connected by means of some function
which can be linear or non-linear. In contrast thereto, correlation describes the ten-
dency of a random variable (e.g. a model parameter) to increase or decrease with some
further random variable, c.f. [13] Section 3.5. Two correlated parameters are therefore
not necessarily dependent. Only perfect correlation, as defined later within this sec-
tion, implies a dependency of parameters, see [67] Section 4.4. Thirdly, the correlation
measures below provide no information as to whether two parameters are dependent
due to incomplete experimental data (e.g. isotropic and kinematic hardening applied to
monotonous loading), or as to whether the model holds some intrinsically dependant
parameters.
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2.8.1 Correlation based on residual sensitivity

The question of identifiability for a certain model parameter can be related to the
question whether this parameter has sufficient impact on the model solution (i.e. the
response) for a specific experiment. Thus, the analysis of response sensitivities was pro-
posed in [69] and [24] as a means to choose experiments which activate, i.e. are sensitive
enough with respect to all parameters sought for. This (graphical) concept, however,
tends to increase in complexity with the number of model parameters. A simplified
measure lies in the analysis of the collinearity of the vector of response sensitivities via
the correlation measure

JWr | gWr _ J I
CISJ = \er er (W”:W) rl jr ) (234)
(1 a8 | 515l

as proposed in [21] and applied in [35]. Tt is worth noting, that the correlation matrix is
introduced in [21] by using the response sensitivities (equal to residual sensitivities J* as
defined in Equation (2.29)) and constant weights W. The definition in Equation (2.34)
using the weighted residual sensitivities J"* is more general, taking into account different
weights, see Appendix A for a short example on the importance of weights within this
measure. Entries of this correlation matrix take values between —1 < C’isj < 1, whereas
|C|l = 1 indicates perfect collinearity, i.e. perfect correlation and therefore dependency
of the parameters k; and k;. Should one parameter not contribute to the considered
material response, the norm of the associated weighted residual sensitivity vanishes
rendering the entries related to such a parameter not defined. Comparing Equations
(2.34) and (2.32), the correlation matrix can be computed by using the approximated
Hessian of the objective function

f
H . (2.35)

\/ [Hlfin] i [Hfin} ji

Although the entries of the correlation matrix C® are simple to compute once the ap-
proximated Hessian is available, entries other than zero, one (or not defined) are difficult
to interpret. Furthermore, the matrix holds no information regarding the extend of in-
fluence which a parameter has on a certain experiment, i.e. the predicted response.

S _

2.8.2 Correlation based on covariance

Another correlation measure widely used is based on the so-called covariance matrix
which stems from the field of statistical analysis, see e.g. [14], [4], [26] and [27]. Whereas
the previous correlation measure indicates the tendency of the material response to
change with the model parameters, the covariance matrix indicates the (statistical)
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tendency of the model parameters themselves to change in dependency of each other,
see [13] Section 3.5. The entries of the covariance matrix for the model parameters

Pf=a” [ fml}ij : (2.36)

can be computed using the variance o of the weighted residuals and the (pseudo-)
inverse of the approximated Hessian H . The associated correlation measure is defined
as

Pk B [Hlfin_1:| . | (237

k pk -1 -1
T o, [

Although the variance of the weighted residuals is not required for the computation of
the model parameter correlation, using the empirical variance

Ntot Nts  Nd
S N 3 S
i=1 ol =1 n=1
LWL W (2.38)
Ndof

with the total amount of data points ny, = nisnq, the statistical degrees of freedom
Ndot = Mot — Np and the number of model parameters n, allows the specification of the
confidence interval for each model parameter

konv (k [ — /Py, k' + ] (2.39)

around the identified optimal values k* since the covariance matrix intrinsically holds
the variance, and therefore also the standard deviation of each parameter on its main
diagonal, cf. [13] and [37].

Analogous to the last correlation measure, the coefficients of this correlation matrix
take values between —1 < Cf < 1, whereas ||C}|| = 1 indicates perfect correlation and
therefore dependency of the parameters k; and k;.

It is worth noting that Equations (2.36) and (2.38) are subject to several assumptions
which can be found in Appendix B.

2.8.3 Identifiability based on Hessian

One further method to check the identifiability of model parameters lies in the direct

analysis of the Hessian H' or its approximation HE  at the solution point k*. Tt is well
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known that a positive definite Hessian with only positive eigenvalues AIf > 0 indicates
an isolated minimum at k*, see Figure 2.16a. If one or more eigenvalues are equal
to zero, i.e. Al > 0, the Hessian is positive semi-definite which, according to [7], can
indicate a dependency between one or more parameters. In such a case multiple solutions
lie next to each other, thereby forming a valley of possible solutions to the inverse
problem as is shown in Figures 2.16b and 2.16c. The reasoning behind this method is,
that the gradient does not change along the direction of the eigenvector quHf associated
with the zero eigenvalue which is obviously true along the valley of solutions where
the gradient is zero at all points independent of the type of parameter relation (i.e.
linear or non-linear). It is interesting to note that the approximated Hessian HL may
detect linear and non-linear dependencies at arbitrary points in parameter space as is
further elaborated in Appendix C. Thus, checking the approximated Hessian can reveal
parameter dependencies a priori. Furthermore, the associated eigenvector points in the
direction of the iso-line, therefore revealing the linearised relation of the two parameters
at the evaluated point, see Appendix C for an example. It should be mentioned that
this method is similar to checking the sufficient condition by using the second derivative
test which is considered inconclusive in the case of a semi-definite Hessian. Thus, a
point along a valley of solutions will always have a singular Hessian, but not all singular
Hessians are due to intrinsic parameter dependencies which is an important issue to keep
in mind.
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Figure 2.16: Contour plots of exemplary functions with model parameters a and b. Minima are marked
by X.

2.8.4 Identifiability based on grid search

So far, the measures and methods above all rely on the availability of the response
sensitivity. A grid search may therefore be a suitable alternative in case an analytical
expression for the response sensitivity is not at hand. Starting from sufficiently many
initial guesses which are scattered evenly across parameter space, three cases can usually
be distinguished
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e Different starting points reach different optima k’, k%,..., with different objective
function values f3, f5, ...
This case indicates different, but isolated minima within the area in parameter
space considered.

e Different starting points reach different optima k’, k%,..., with numerically iden-
tical objective function values f} = f5 = ....
A dependency of some model parameters is likely, since the objective function val-
ues at different optima coincide. If the obtained material response is also identical,
it further underlines the possibility of a parameter dependency.

e All starting points converge towards the same optimal parameter set.
This case suggests that no further minima are present within a certain area in
parameter space. The problem therefore appears to have an isolated minimum,
whereas further minima could still exist outside the area in parameter space con-
sidered.

Although this method may not be equivalent to a mathematical proof, it can nevertheless
give a sufficiently good impression of the situation at hand, depending on the number
of initial guesses used. From the methods presented within this section this one is
furthermore the only one to detect further local minima, which comes, however, at the
drawback of high computational costs for the evaluation of several inverse problems.

Remark 2.5. Additional measures for the correlation of parameters exist and can be
found in literature, see e.g. [14], [4], [72].

2.9 Verification and validation

A vital part of every identification process, the result of which is to be used for predictive
simulations, is the verification and validation of the obtained parameter set. Accordingly,
these two concepts are explained at first, underlining especially the importance of a
validation. Finally, the case of model dependent results is discussed.

2.9.1 Verification

To verify the solution of the inverse problem, the material response of the chosen model
with the obtained model parameters is compared against the experimental data which
was used for the identification process. The solution is verified if the model prediction
fits the experimental data well. A failed verification can e.g. be due to local minima
of the objective function, see Figure 2.17a, or to the model’s general inability to fit the
observed material behaviour, see Figures 2.17b and 2.17c.
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Figure 2.17: Fit of three yield surface formulation to exemplary experimental data. All plotted states
represent the converged solution and therefore a (local) minimiser to the associated inverse problem.

2.9.2 Validation

Whereas verification checks the ability of the model at the solution point to represent
the data which was used for the fit in the first place, validation aims at the general ca-
pability of the model to predict the response of the material under consideration. This
is done by comparing experimental data which was not part of the identification process
to the predicted material response using the obtained, optimal parameter set, see Figure
2.17b. Depending on the number and type of additional experiments, the significance
of the validation can be more or less pronounced. For example, Figure 2.17b shows a
successful validation of the BBC model. This does, however, not imply how well the
model predicts states with compressive stresses and does therefore not guarantee a gen-
eral applicability of the obtained parameter set to arbitrary boundary value problems.
It is worth noting that a failed validation does not necessarily render the whole model
inadequate. Adding further data to the identification process may sometimes signifi-
cantly improve the validity of the obtained parameter set, compare for example the fit
of the Barlat model in Figures 2.17b and 2.17c.

2.9.3 Model dependency

With the difference between verification and validation being defined, let only mod-
els which adequately predict all possible material responses of a certain material for a
specific range of strain, temperature and strain rate be called material model of this
material and let the associated parameter set be the material parameters for this couple
of model and material. Thus, only parameter sets which pass both, verification and
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2 Theory of parameter identification

validation, can be considered true material parameters of a specific model for a certain
material (in a defined range of strain, temperature and strain rate). In contrast thereto,
the optimal parameter set of a model which does not represent a certain material ade-
quately will usually differ for different boundary value problems. Those parameter sets,
albeit optimal, can therefore not be considered material parameters since they do not
only depend on the material but also on the boundary value problem under consider-
ation. For the same reason, the model should not be called a material model for this
material. In summation, a tuple of material, model and parameter set should always be
considered and thoroughly validated before deciding whether or not model and parame-
ter set can be called material model and material parameters respectively. A parameter
identification does therefore not necessarily compute the, say, true material parameters
but rather determines the optimal parameters for the provided input, as was already
implied in Section 2.2.
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3 Experimental setup

This chapter provides information on the experiments which are used during
the parameter identification, starting with the description of the testing and measure-
ment devices utilised. Afterwards, the employed specimens are presented as well as the
experimental setup. Finally, a graphical representation of the obtained experimental
data is shown and analysed with regards to the requirements of a suitable constitutive
model.

3.1 Testing equipment and measurement devices

The identification of a model parameter set for a thermo-mechanically coupled consti-
tutive model requires information about the mechanical and the thermal field. Hence, a
DIC system is used along with a thermography system to capture the displacement field
as well as the temperature field during the experiments. The load is applied by means
of an electro-mechanical tension machine which can be seen in Figure 3.1 together with
the measurement systems.

(a) Aramis system from GOM. (b)  Electro-mechanical (c¢) Thermography system ImagelR
tension and torsion ma- 8320hp from InfraTec.
chine from Walter&Bai.

Figure 3.1: Experimental equipment.
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Electro magnetic tension and torsion machine All experiments are performed on a
LEM 100-T200 from Walter&Bai with a nominal load of 100 kN tension and 200 Nm
torsion respectively. This system is equipped with a high resolution, two channel digital
control and regulation unit of type PCS 8000-T2. Due to the spindle drive, only quasi
static experiments with low accelerations can be realised. It is worth noting that the
clamping jaws tend to slip within the grip heads, so that the overall machine stiffness
cannot be expressed by a function of the force alone.

Digital image correlation system In order to gain information about the experimental
displacement field, an Aramis-System from GOM was used, see Figure 3.1a. Each of the
two cameras has a resolution of 2358x1728 pixels and is equipped with a 50 mm lens.
The system can be connected to the tension and torsion testing machine allowing for a
synchronisation, as well as the transmission of data.

Thermography system The temperature field is observed by means of the high speed
thermography system ImagelR 8320hp from InfraTEC. It captures electromagnetic
waves with a length of between 2.0 and 5.7 yum and is equipped with a 50 mm high-
precision telephoto lens. The spatial resolution of the camera is 640x512 pixels with an
accuracy of +/-1 °C or +/- 1 %. Analogous to the Aramis system, the ImagelR can
also be coupled to the tension and torsion testing machine in order to synchronise the
start of the devices.

3.2 Specimens

All tests are carried out by using the same type of specimen made from the aluminium
alloy AW6016. The chosen geometry is based on recommendations found in DIN 50125
and can be seen in Figure 3.2. The specimens are water-cut from sheet metal plates
with an angle of 0, 45 and 90 degrees with respect to the rolling direction. Within this
thesis, however, only those specimens aligned with the rolling direction (angle of zero
degrees) are used for the identification process.

3.3 Experimental setup

The general setup of the different devices is depicted in Figure 3.3. Each experiment is
displacement controlled by the regulation unit of the tension system and synchronised
by means of a trigger signal sent to the measurement units, indicating the start of an
experiment. Since the force signal is also sent to the DIC system, all mechanical data is
available on the Aramis system, whereas all temperature data is saved on the thermogra-
phy system. A glass plate is positioned between the specimen and DIC system to reduce
the thermal influence of the heated DIC lights, see Section 2.4. The thermography sys-
tem, however, is placed on the opposite sides of the specimen, due to the wavelength
spectrum detected by the system at hand. The emission coefficient is usually a function
of the wavelength and significantly differs for most paints in the range between 2.0 and
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(b) Technical drawing — front view.

(d) Black paint for thermography system on backside of specimen.

Figure 3.2: Dogbone specimen for tensile testing.

5.7 pm. Hence, it is not possible to compute the correct temperature of the speckled
surface since the appropriate emission coefficient for each pixel is unknown, see Section
2.4. For this reason the thermography system is positioned to observe a different side of
the specimen onto which paint with a known emission coefficient is applied, see Figure
3.2. The thermography system is started roughly two hours before the first measure-
ment is performed to allow the camera, which is actively and internally cooled, to reach
a steady temperature state for the sake of higher accuracy. The interested reader can
find further useful instructions on the handling of thermography systems in [65].

3.4 Experimental data

With this setup, several specimens are tested with a constant crosshead speed of 0.14
mm/s. At first, some specimens are used to analyse the material response with respect
to anisotropy and breaking strain. Although full field measurements are made and used
for the identification later on, local quantities (stress, strain and temperature of a single
point) are shown in the following, since the evolution of a local quantity can be visualised
and interpreted straightforwardly.

Regarding the experimental stress strain relation, it can be computed on the basis of the
obtained displacement field and force signal. Assuming a homogeneous distribution of
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Figure 3.3: Setup of the tension test.

stress and strain within the area of interest, the associated component of the Piola stress
tensor and of the deformation gradient in tensile direction, P and Fj respectively, allow
a direct visualisation and interpretation of the experimental data. Figure 3.4a shows
the obtained relation of both quantities until rupture and for different rolling directions.
The tensile strength of the material is reached at a stretch of approximately 1.23 and
the specimens rupture after reaching a stretch greater than 1.3.

As already mentioned in the introduction, this thesis mainly deals with proofs of
concept and less with the precise identification of model parameters for predictive simu-
lations. Thus only three further experiments are performed and Table 3.1 shows which
experiment is used for which identification in Chapter 5. It is worth noting that these

Table 3.1: Experiments and constitutive models used within this thesis.

Exp. No. Description Proof of concept Mat. Mod. Sec.
1 Monotonous loading Identifiability of thermal 1 5.3
Without cooling down model parameters
Loading and unloading 1& 2 5.4
2 With cooling down Model dependency
3 Loading and unloading Identifiability of thermal 2 9.5
With cooling down boundary coefficients

experiments feature a maximal stretch of Fj ~ 1.16, see Figure 3.4b, thereby avoiding
the onset of rupture and hence a strong influence of damage and material failure. The
temperature of the centre point of the specimens (marked by + in Figure 3.6) over time
is given in Figure 3.5, together with the components in tensile direction of stress and

46



3.4 Experimental data

250
200
<
ol
= 150
o
o=
A 100
50
— 0° - rolling direction
45° - rolling direction
— 90° - rolling direction
0 I I I I I I}
1 1.05 1.1 1.15 1.2 1.25 1.3

il
(a) Stress-strain relation for different rolling di-
rections. Data of two experiments per consid-
ered rolling direction are shown.

250
200
<
ol
= 150
=
o=
A, 100
50 &
—Experiment No. 1 i
- - -Experiment No. 2
----- Experiment No. 3 i
0 L L A I}
1 1.05 1.1 1.15 1.2

Ey
(b) Stress-strain relation of the experiments
used for the identification.

Figure 3.4: Experimental stress-strain relation using the Piola stress tensor P and the deformation

gradient F" ((e),, denotes projection in tensile direction).
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Figure 3.5: Stress, strain and temperature evolution of the centre point of the specimen over time for
the experiment without cooling, No. 1 (-), as well as for the two experiments with cooling, No. 2 (- -)

and No. 3 (---).

stretch in the area of interest. Analysing the data given in both Figures, 3.4b and 3.5,
the experiments feature an almost identical stress strain relation starting with linear
elastic material behaviour followed by plasticity with a saturation type of hardening.
The temperature data indicates that each experiment considered here undergoes some
elastic cooling before plastic heating leads to a temperature rise of approximately 3 K.
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The experiments with cooling (no. 2 and 3) furthermore show a rise in temperature
during elastic unloading, followed by the expected cooling down of the specimen.

) 23|.5 ‘ 2§‘ 23.

9°C
s

(a) Initial temperature distribution. o5 5 (a) Temperature distribution of a specimen.
23.60
0 52355
24.5 © 2350
E2345
24.0 D 23.40
o 23.35
23.5 °C T
(b) Temperature field at 140 s. (b) Temperature distribution along
T—axis.
Figure 3.6: Temperature field of specimen during Figure 3.7: Initial steady state tempera-
the experiment. ture distribution.

Although the strain field is quasi homogeneous up to the point of localisation, the tem-
perature is distributed inhomogeneously almost right from the start of the experiment.
This is mainly due to the thermal boundary conditions at either end of the specimen,
where heat is absorbed by the clamping jaws resulting in an extremum of temperature in
the middle of the specimen, as can be seen in Figure 3.6. Moreover, it may appear at first
glance that at least the initial temperature distribution of the specimen is homogeneous,
but a closer look reveals a rise of temperature towards the middle of the specimen, see
Figures 3.7a and 3.7b. An explanation is found in the temperature of the clamping jaws
and the surrounding air which was measured using thermocouples at the beginning of
each experiment. The clamping jaws are approximately 0.70 - 1.15 K colder than the
surrounding air, see Table 3.2. Hence, thermal equilibrium enforces the temperature
drop at either end of the specimen, even if the specimen is left in the clamping jaws
for up to ninety minutes to reach a steady temperature state. It is worth mentioning
that the temperature evolution of the clamping jaws is measured during (some of) the
experiments using thermocouples. No significant change in temperature is detected.

Table 3.2: Measured temperatures at the boundaries of the specimen for each experiment.

No. Clamping jaws in °C  Air in °C

1 23.10 24.25
2 23.80 24.50
3 23.55 24.25
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4 Constitutive models for test cases

Two different constitutive models are introduced within this chapter to be used
for different proofs of concept as this work proceeds, see Table 3.1. The underlying
model parameters are briefly analysed with respect to identifiability on the basis of the
experimental data at hand. In doing so, a successive scheme for the identification is
motivated. The basics of material modelling - i.e. the derivation of constitutive relations
from first and second law of thermodynamics, the procedure of Coleman and Noll, as
well as the classic kinematic setting for large deformations - are assumed to be state of
the art. These aspects are therefore not addressed in detail within this thesis. Readers
unfamiliar with these topics are kindly referred to, for example [29], [54] or [40], where
further details and more background are provided.

4.1 Model formulation

It was already mentioned that the choice of a particular constitutive model has a large
impact on the result and quality of the identification. Although the routine will fit the
parameters of any model to the experimental data in the sense of the objective function,
the remaining errors can of course vary significantly for different models. However, two
rather simple models which only cover some of the key aspects of the previously observed
material behaviour are chosen for the proofs of concept in Chapter 5. More precisely
speaking, both models are fully thermo-mechanically coupled, especially including the
Gough-Joule effect as well as plastic heating. They feature isotropic elasticity, a Hill-
type yield surface and saturating, isotropic hardening. Furthermore, a factor 5 scaling
single dissipation contributions is included which has no influence on the thermodynamic
consistency of either model as is proposed in [6]. In addition, surface elements are used
to incorporate heat exchange with the environment, see e.g. [11]. The main difference
between the models is the choice of evolution equations which are associated for one and
non-associated for the other. Model 1 furthermore features linear hardening in addition
to the exponentially saturating hardening.

It is worth mentioning at this point that both models will show a similar mechanical
behaviour (if the linear hardening part of model 1 is deactivated), yet differ in the
prediction of dissipated energy. Furthermore, the aforementioned factor 5 can be used to
scale the amount of dissipated energy which would otherwise solely depend on mechanical
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model parameters. It is worth noting that 3, as introduced in [6] and as used within this
work, is not a Taylor-Quinney factor. In general, it describes neither the ratio of plastic
work to dissipated energy nor the ratio of plastic power to dissipated energy rate. It
is merely an additional model parameter, describing the amount of energy which is for
example necessary for the creation and upholding of dislocations, the so-called stored or
latent energy of cold work.

Remark 4.1. Before a model is chosen, some thought should be given to the question
as to which kind of parameters can actually be identified with the experimental data at
hand, or, if a model has already been chosen, what kind of experiments are required.
It was mentioned in Section 3.2 that only data from a simple tension test in rolling
direction is used for the identifications within this thesis as a proof of concept, so that
no information about anisotropy is available for the identification process. Nevertheless,
a model with an anisotropic yield surface is chosen due to the slightly higher flexibility
of the model in comparison to a von Mises yield surface for example, even for the single,
simple tensile test. Further reasons for the specific choice of the Hill-type yield surface
is the interpretability of the associated model parameters. Based on this interpretation,
Section 4.2 shows which parameters of the chosen model can be identified with the data
at hand.

Both constitutive models are set up in a finite deformation setting with the defor-
mation gradient F' = V x ¢ of the deformation mapping * = ¢ (X, t). We shall assume
a multiplicative split into an elastic contribution and a plastic part, i.e. F = F° . FP!.
The free energy function

W= ! Pl gpther 4 gpeonp L ns it (4.1)
01 = 2 ) 4 2 (1) 5] — pin ). (42
Piher = ¢ [9 —f6y— 6 In <e%>] , (4.3)
GO 3 0 K [0 — o 1“3{ 9. (4.9)
Y™ = [1 — B] M,, o, (4.5)

is postulated for both models, using the determinant of the elastic deformation gradient
J = det (Fel), the right, elastic Cauchy-Green tensor C® = [Fel}t . F, as well as
the internal hardening variable a and the absolute temperature field 6 (X ,¢). A non-
standard contribution is added, as is proposed in [6], which will turn out to control the
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4.1 Model formulation

amount of energy which is either dissipated or latent during plasticity evolution. The
only difference in the two free energy formulations lies within the chosen plastic part,

] N exp(—Hexp @)
Hexp

1
Model 2 ¢P! = §hoz2. (4.7)

(4.6)

Yo

1
Model 1 9P = 5 Hin o’ + [M,, — M

Regarding the derivation of the required constitutive equations, the local form of the
Clausius-Duhem inequality can be used to obtain the constitutive equations for the Piola
stress tensor P, driving force K for the internal hardening variable and, based on P,
for the Mandel stress tensor M, i.e.

. &D ) pl —t

P = Py [F*] (4.8)
__ %

K=-2- (4.9)
_ el]t . . pl1t el1t . aw

M = [F] - P [F"] = [F°] Y (4.10)

by following the steps of the Coleman-Noll procedure. The driving force of the internal

hardening variable is reduced to
OYP!

 da

for standard models without the non-standard energy contribution, which can also be

retrieved by choosing f = 1. Fourier’s law

q = —Ktherm Vazg (412)

K =

(4.11)

is assumed to govern the heat flux in the spatial configuration, so that the Fourier part
of the Clausius-Duhem inequality is always fulfilled. Regarding heat exchange with the
environment, the heat flux normal to the current surface of the body is incorporated by
using the equation

Jo =M g = —0Qon [QM - 0} , (4.13)

depending on the convection or conduction coefficient .., and on the temperature of
the surrounding medium 6™, see e.g. [11] for more details.

The approach for a standard model formulation is used to define the evolution equations
for the plastic velocity gradient LP' = o [Fpl] ! and the internal hardening variable
a, i.e.

99
pl _ 4.14
L7 = L (1.14)
. dg
a = )\pm 8_K s (415)
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with the Lagrange or plastic multiplier A, and the plastic potential g. The plastic
potential is chosen differently for each model,

Model 1 g=o (4.16)

1 _
Model 2 g=o+ 5% K2, (4.17)

Both potentials make use of the yield function
&=vM:G: M —-M,+K (4.18)

with the fourth order tensor G representing Hill-type plastic anisotropy, see Appendix
D. A comment on the reason for the specific formulation of the plastic potential for the
non-associated model can be found in Remark 4.3 at the end of this section. If the
definition of the driving force K is inserted into the chosen form of the yield function,
the standard formulation of a Hill type yield surface

d=vVM:G:M - M, + K,
= [F [M11—M22]2+G[M33—M11]2

4.19
+ H [Myy — Mg’ +2 L M% +2M M2 (4.19)

12N Mfg]i—MyO+l_(

is retrieved, introducing the six Hill parameters F', G, H, L, M, N with the coefficients
of the Mandel stress tensor referring to the underlying (aligned) orthonormal frame.
Time integration is done by means of a simple backward Euler scheme.

For the sake of interpretation in later sections, the balance of energy is given as

. a?w .
0l =por—Vx - Q+D™" +§——:F° 4.20
08 =por=Vx Q OF7 90 (4.20)
with @ = det (F) q - F™* and with the referential heat capacity ¢y = — @ % being

constant due to the chosen form of the thermal free energy contribution as introduced
in Equation (4.3). Furthermore, the particular models at hand yield fundamentally
different equations for the mechanical dissipation,

Model 1 D™t = B\ My, (4.21)
Model 2 DN = Ao [bha® + [1 = B]b My + B M, ] . (4.22)
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Equations (4.21) and (4.22) show that the dissipation of both models is always larger or
equal to zero as long as (8 lies within the model specific boundaries

Model 1 g >0, (4.23)
Model 2 0<B<1 V B <B<B, with (4.24)
M%b+m{1i ﬁ%ﬁ+{
= 4-2
Bu,l Myo b ( 5)

A detailed derivation of the limit values of S for model 2 can be found in Appendix E.

Remark 4.2. Regarding model 1, the constitutive equation for stresses, the evolution
equation for the plastic contribution to the deformation gradient and internal hardening
variables as well as the yield surface are independent of the non-standard addend to the
free energy and therefore independent of parameter § which only influences the amount
of dissipated energy. The mechanical response of model 1 is therefore identical to the
associated standard model formulation, if coupling effects due to the rise of 3 K for the
case at hand are neglected. Furthermore, the chosen evolution equations for model 1
can also be obtained through the postulate of maximum dissipation.

Remark 4.3. There are general, well-established frameworks, such as the one of gen-
eralised standard materials (GSM), which guarantee a non-negative dissipation if the
plastic potential of a model with non-associated evolution equations is defined accord-
ingly. The commonly used formulation

Gg=9+--K* (4.26)

> o

1
2

meets all requirements of the GSM approach and therefore also guarantees a non-negative
dissipation. However, this choice for a plastic potential leads to evolution equations that
depend on parameter 5. Thus, the evolution equations are no longer comparable to the
ones of a standard model formulation, i.e. without the non-standard energy contribution.
This, in our case, undesired effect can be remedied by the simple modification in Equation
(4.18). The alternative formulation may violate some of the conditions of the GSM
approach, so that its line of reasoning can not be applied to the second model. It is
therefore shown in Appendix E that this specific choice nonetheless fulfils the dissipation
inequality. The mechanical response of model 2 is therefore identical to the standard
model formulation if coupling effects due to the experimentally observed rise of 3 K are
neglected so that parameter S only influences the amount of dissipated energy.

Remark 4.4. As was mentioned above, the mechanical response of both models is identi-
cal to the one of their standard model counterpart, i.e. without the non-standard addend
Y™ of the free energy, since this addend only influences the amount of dissipated en-
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ergy. It is furthermore shown in Appendix F that the mechanical response of these two
standard models is identical in the range of small strains if

b =Heyxp and (4.27)
h
g = [Myoo - Myo] ) (4'28)

assuming a neglectable influence of the low rise in temperature and dismissing the linear
hardening part of model 1. The mechanical response of the two models at hand is
therefore also identical under the assumptions mentioned before and can be assumed
to be at least comparable for large deformations. Thus, the hardening parameters Hey,
and M, will be used for both models in the following.

Remark 4.5. 1t is worth noting that Young’s modulus E and Poisson’s ratio v are used
within the identification process instead of the two Lamé parameters A, 1 and the bulk
modulus Ky, which were used for the definition of the energy contributions above.

4.2 Model parameters

It is important to know which kind of influence each model parameter has on the material
response in order to obtain meaningful results through a parameter identification scheme.
More precisely speaking, the question of identifiability must be raised and answered with
respect to the kind of experiments which are required for the model at hand. This can
be done either by means of the approximated Hessian of the objective function, by an
analysis of the underlying constitutive equations, or by using a grid search method in
order to receive information towards the uniqueness of the solution within a certain
area in parameter space, see Section 2.8. The last two options are considered in this
thesis, starting with an analysis of the constitutive equations to see which of the 16
model parameters from Table 4.1 are identifiable and which are not. More precisely
speaking, this analysis provides information as to which parameters of the models can
and which can not be identified on the basis of the experiments at hand, information
on the dependency of model parameters and information on the possibility to identify
subsets independently. Mechanical parameters which are found to have no influence
on the boundary value problem at hand are directly excluded from the identification
process. Different and suitable experiments should generally be used for such cases, but
it is not the aim of this work to obtain mechanical material parameters which can be
used for predictive simulations of different boundary value problems.

Regarding the identification process itself, it should theoretically be possible to iden-
tify all model parameters at once, but such a procedure is usually not advisable. Further-
more, computation time can in some cases be reduced if it is possible to identify subsets of
the model parameters separately. This, however, can only be done if the effect of certain
model parameters on the material response can be separated, which is possible for com-
mon mechanical models but requires certain assumptions for the thermo-mechanically
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4.2 Model parameters

coupled models presented above. More precisely speaking, the low change in tempera-
ture of approximately 3 K for the experiments at hand is assumed to have no significant
influence on the displacement field, allowing a separate and stepwise identification of
elastic, plastic and finally the thermal model parameters. To further understand which
parameters can be identified with the experiments presented in Section 3.4, the exact
influence on the material response is analysed in the following.

Table 4.1: Model parameters of the models.

E Young’s modulus

v Poisson’s ratio

M,, Initial yield limit

l;: ]\Cj[” }]{[’ Hill parameters

Hyy, Linear hardening modulus (only model 1)
M, Exponential hardening limit
Heyp, Exponential saturation speed
Qlexp Thermal expansion coefficient
Ktherm Thermal conduction coeflicient
Co Heat capacity

15} Dissipation factor

Step 1 - Elastic model parameters No significant correlation between the two elastic
model parameters E and v is expected, allowing a unique identification of both pa-
rameters on the basis of displacement data in tension and lateral direction. Although
the elastic strains of a simulation are generally influenced by the aforementioned elastic
model parameters and the thermal expansion coefficient ceyp, it can be assumed that
the latter has no influence on the mechanical field in the elastic regime due to the low
change in temperature. This allows the separate identification of F and v in a first
step for both models, based solely on the measured displacement field. Thus, only data
up to the point of yielding must be used, which can be found either by considering
the force-time curve in the case of homogeneous strains or by detecting the first rise of
temperature due to a plastic loading state.
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Step 2 - Plastic model parameters The evolution of plasticity is controlled by the
yield function which is assumed to have the form

&= |F[My — M22]2 + G [M33 — M11]2 + H My — ]\/[33]2

V2L MEL+2M ML+ 2N M|’ (4.29)
— [My, + Hin o+ [My, — My ] [1 — exp(—Hexp @)]]

for model 1 with the six Hill parameters F', G, H, L, M and N, cf. Equations (4.19)
and (4.11). Each of these parameters are assigned to one or two stress coefficients of M
and thus only have an influence on the flow surface if the associated stress components
are non-zero. For the present case of simple tension, only one principal value of P is
non-zero in the area of interest, i.e. the area which is sufficiently far away from the
clamps and which is observed by the DIC system. Due to the relation between the two
stress measures in Equation (4.10), M and P possess the same pattern of non-zero and
zero components for the specific loading case considered. Hence, the Hill parameters
governing the influence of shear stresses on the flow surface, i.e. L, M and N, cannot
be identified with the data at hand. Concerning the Hill parameters associated with
normal stresses, only two of the three parameters F', G and H have a direct influence on
the simulated displacement field, since one of these parameters will always be multiplied
with zero coefficients of the uniaxial stress tensor. Furthermore, only the ratio of the
remaining Hill parameters is of importance. If, for instance, a uniaxial load in 2-direction
is assumed, the flow surface takes the form

N[

¢ = [[F+ H| [Ma]’]

= |va]| {%Hf [Mao) - Pfﬁﬁ; VHo

[ - [ (G )]

- [Myo + Hyn a0+ [Myoo - Myo] [1— eXp(_HeXp )]l

(4.30)
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— Y

where F'/H determines when the yield limit is reached for a fixed stress state. Regarding
the evolution of the yield surface, all plastic model parameters are in one way or another
scaled by H which is explained in detail in Appendix G. Hence, an infinite number of
possible solutions exists, all representing the same yielding and hardening behaviour for
such a uniaxial case. This means that only one of the two remaining Hill parameters can
be pre-identified with data from a simple tension test with fixed loading direction, while
the value of the other parameter must be chosen and fixed throughout the optimisation.
Regarding the remaining plastic parameters of the material, the hardening modulus
Hyin, as well as the parameters for the exponential hardening M, and H., have a
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4.2 Model parameters

unique influence on the evolution of plastic hardening, so that some correlation but not
a dependency in the sense of Section 2.8 is expected. Although the above analysis is
made with respect to model 1, it can also directly be applied to model 2, since both
models are identical in their mechanical response and feature similar model parameters
as was already mentioned in Remark 4.4.

Step 3 - Thermal model parameters Assuming that the mechanical field has an
influence on the thermal field but not vice versa allows the separate identification of the
mechanical model parameters on the basis of the displacement field data, as described
above. This means that these parameters as well as their influence on the mechanical
and thermal field are already fixed, leaving only the four thermal parameters ceyp, co,
Ktnerm and 3 open to fit the computed temperatures to the experimental data.

For a standard model formulation, i.e. setting 8 = 1, the amount of dissipated energy
and therefore the amount of heat which can be used for a change in temperature is
fixed along with the choice of the mechanical model parameters, see Equations (4.20),
(4.21) and (4.22). Hence, the thermal conduction coefficient Kinerm and heat capacity
co determine quality and quantity of the temperature distribution during plastic
heating. These two parameters can possibly be fitted by means of the measured part
of the temperature field. Assuming that this information is sufficient to determine the
aforementioned two thermal model parameters, the thermal expansion coefficient e
is the only remaining parameter to control the quantity of the elastic cooling effect, see
Equations (4.20) and (4.4).

In the case of the non-standard model formulation, however, parameter § can have a
high correlation to the aforementioned thermal model parameters, depending on the
chosen BVP. The parameter is not redundant, i.e. there is no model intrinsic depen-
dency, but its unique identification greatly depends on the thermal boundary conditions
as well as on the precise influence of 8 on the dissipation. A general statement about
correlation, dependency and required data regarding the four thermal parameters of
the models at hand therefore proves to be difficult. Instead, an interpretation for the
precise cases at hand is given in Section 5.4, where the thermal boundary conditions for
the BVP considered in this work are defined.

It is worth mentioning that, in contrast to the mechanical field, the thermal boundary
conditions are usually unknown, at least a part of them. Although the temperature
of the surrounding air and of the clamping jaws might be measurable, the convection
or conduction coefficients are generally unknown. A value for these parameters must
either be assumed or identified.

Remark 4.6. Some effects are deliberately not considered within the models, such as
rate-dependency of the material or a precise representation of the anisotropy, e.g. the
Hill surface is considered to generally represent aluminium alloys rather poorly, cf. [5].
The model is deliberately chosen to be as complex as necessary, yet as simple as possible
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4 Constitutive models for test cases

for the sake of the proofs of concept that are the main focus of this thesis. If truly valid
material parameters are required which can be used for predictive simulations of more
complex boundary value problems, i.e. with an inhomogeneous strain distribution, the
aforementioned issues should of course be addressed and incorporated in the constitutive
model first.

4.2.1 Model dependency

If different models yield truly valid parameter sets, all parameters with a physical inter-
pretation must intrinsically coincide, e.g. point of yielding in a specific direction, heat
capacity, etc., at least up to an acceptable limit which marks the difference between
pass and fail in the validation process. On the other hand, two models which can be
verified but are non-valid will usually yield different optimal model parameters, even for
parameters which have the same physical interpretation. Consider for example thermo-
mechanically coupled models. The main reason for a rise in temperature usually is the
mechanical dissipation D™ which is transformed to heat. However, the amount of
dissipated energy differs significantly for the models presented in this chapter whereas it
can be shown that both models yield an identical stress-strain relation (for small strains
at least), as is shown in Appendix F. Hence, it is only to be expected that the optimal
thermal model parameters will also differ for each of these models. This example un-
derlines that a parameter identification does not necessarily compute the true material
parameters but rather determines the optimal parameters for the provided input, as was
explained in Section 2.9.
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5 Parameter identification

This chapter provides information on and results of the performed identifications using

the general framework proposed in Chapter 2 and drawing on the experimental data
and constitutive models presented in Chapter 3 and 4. Each identification itself follows
the scheme already indicated in Section 4.2, identifying elastic and plastic parameters
separately before the thermal model parameters are optimised. Several questions related
to applicability of the proposed framework are answered. More precisely speaking,
the identifiability of thermal model parameters is investigated by gradually increasing
the number of unknown parameters, thereby also increasing the complexity of the
optimisation process.

In Section 5.3, the general applicability of the proposed identification scheme for
thermo-mechanically coupled constitutive models using full field displacement and tem-
perature data is shown, proving that the classic thermal model parameters of a standard
model are identifiable on the basis of a simple tension test under monotonous loading.
The result is subjected to verification and validation.

In Section 5.4, the extended, non-standard model formulations are compared, adding an
additional thermal model parameter. Focus of that section is again the identifiability of
the model parameters, showing what kind of data is required for a (locally) unique fit of
the enhanced models and underlining how small changes in the model formulation in-
fluence the result of the optimisation. Obtained results are again verified and validated.
In Section 5.5, the boundary coefficients are considered as additional unknowns during
the optimisation. Identifiability and sensitivity of the extended set of thermal model
parameters is analysed, closing with an attempt to obtain not only verifiable but also
valid model parameters.

It is worth mentioning that, although verification and validation are performed for all
identifications at hand, it is not the aim of this thesis to provide material parameters
which can be used for predictive simulations of arbitrary boundary value problems (which
is highly model dependent). Instead, the central theme is the general identifiability of
thermal parameters as is also indicated by the research questions formulated at the start
of each of the sections mentioned above. Before the identifications are performed, how-
ever, the boundary value problem as well as details of the identification scheme used
within this thesis are specified.
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5.1 Identification scheme

The FEMU method is applied to the inverse problems considered within this thesis, fol-
lowing the framework and the algorithmic structure presented in Chapter 2. Remaining
details which were not specified in the general description, e.g. the segmentation of the
identification process and the choice of weights within the objective function, are given
below. Regarding the optimisation algorithm, a gradient-free scheme from the open
source toolbox NLopt, see [32], is applied. More precisely speaking, an implementation
of the Nelder-Mead Simplex method with bound constraints is used, as documented in
[52] and [12].

5.1.1 Successive parameter identification approach

Following the successive scheme motivated in Section 4.2, the identification is split into
three stages:

1. Identification of elastic parameters.
All other parameters are fixed and are not part of the optimisation. Only the
elastic loading range of the displacement field data is considered.

2. Identification of plastic parameters.
The elastic parameters are fixed at the values known from step 1. Apart from the
plastic parameters, all other parameters are fixed as well and are not part of the
optimisation. Only displacement field data is considered.

3. Identification of thermal parameters.
The mechanical parameters are fixed at the values obtained from the first two
stages. Only temperature data is considered.

5.1.2 Objective function

If not mentioned otherwise, the objective function from Equation (2.24) is used, compar-
ing relative displacements and temperatures. Only those nodes on the xy-plane which
are inside the black rectangle (|y| > 20 mm) in Figure 5.1 are considered and contribute
to the objective function value. Nodes too close to the edge of the specimen (z > 11 mm)
are neglected as well. The weights W" for x- and y-components of the remaining nodes
are chosen so that an almost equal influence on the overall objective function value is
ensured. Values vary for different identifications and are specified within the respective
sections. Displacement data in z-direction is not used and the related weights are set
to zero for every node considered. All identifications that involve temperature data are
performed with a value of W% = 1. The load steps at which the objective function is
evaluated are indicated by markers in the stress-strain and temperature-time curves in
the respective Section of each identification. It is worth mentioning that the time step
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E

Figure 5.1: Only nodes within the black window which do not lie on the edge of the specimen are
considered within the objective function.

density can also be seen as some kind of weighting. Evaluation points are chosen to
cluster around points, respectively loading states of significance, such as temperature
maxima and minima or the onset of plasticity.

Remark 5.1. If working with Robin-type boundary conditions, time steps must be cho-
sen to be small enough to account for the temperature dependency and hence time
dependency of such conditions. Otherwise, at least the accuracy of the time integration
scheme should be considered.

5.2 Boundary value problem

In order to perform a parameter identification using the FEMU method, an FE model is
required. Main parts are the mesh and the boundary conditions, both of which should
represent the experiment as accurately as possible to avoid physics- and mathematics-
related errors.

5.2.1 Finite element discretisation

The body under consideration is modelled according to the dimensions of the specimen
from Figure 3.2. Thickness and width of each specimen is measured prior to the ex-
periments in order to take into account possible deviations during the manufacturing
process of the respective specimen. By assuming symmetric deformation throughout the
experiment the model can be reduced to a fourth of the original specimen. Hence, only
half the width and half the thickness are considered. Regarding the discretisation of the
body, the mesh shown in Figure 5.2 is chosen to be rather coarse in areas where only
homogeneous stresses are expected, and to be comparatively fine in areas of inhomo-
geneous stress states. The mesh should generally be chosen to be fine enough so that
further mesh refinement has no significant influence on the simulation results.
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Figure 5.2: Discretised FE model of the specimen.

The mesh at hand consists of a total of 3840 brick elements with linear shape functions
for the approximation of the displacement and temperature fields. In addition, 1280
surface elements are used to model heat exchange with either the surrounding air or
with the clamping jaws.

5.2.2 Boundary conditions

For the thermo-mechanically coupled boundary value problem, mechanical and thermal
boundary as well as initial conditions must be defined and shall be discussed in the
following paragraphs.

Mechanical boundary conditions The boundary conditions of Dirichlet and Neu-
mann type can be transferred from the experiments with few assumptions. Rigid
body motions of the specimen observed during the experiment are neglected since they
can be excluded by means of the chosen objective function, which compares relative
displacements, see Section 2.6.2. Hence, the displacement of the nodes on the green
(left) surface in Figure 5.3 is clamped in y—direction, and the measured experimental
force is applied onto the nodes on the blue (right) surface. For the latter, a linear
constraint is used so that all nodes on the blue (right) surface must undergo the same
displacement in y-direction. A fourth of the experimental force is then applied to
one of the nodes, since only a fourth of the specimen’s cross-section is considered.
The exact prescribed force, as well as the time range used for the identification of
elastic, plastic and thermal model parameters varies slightly for each experiment and is
therefore given in the respective sections as this work proceeds. Regarding the required
symmetry conditions, nodes within the yz-plane at x = 0 are clamped in z-direction
and nodes within the zy-plane at z = d/2 ~ 0.6 mm (depends on measured thickness d
of specimen) are clamped in z-direction.

It is worth mentioning that, although it seems tempting to reduce the model even further
in y-direction and to apply the measured displacements directly on the new boundary,
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. x . -

Z Y

Figure 5.3: Top view of the model — Nodes on the green (left) surface are clamped and nodes on the
the blue (right) surface are loaded with the measured force. Symmetry conditions are applied.

this is usually connected with further assumptions, e.g. that the displacement in axial and
lateral direction is not a function of the coordinate z. The accuracy of this assumption
probably strongly depends on the thickness of the specimen. More importantly however,
it is not always possible to measure the displacement on the edge of the specimen with
common DIC systems. In the case that experimental displacements are used as Dirichlet
boundary conditions, the measured values have to be interpolated on the node positions.
If no data is available at the edges, the information for these nodes must therefore be
extrapolated which can lead to substantial errors if not treated carefully.

Thermal boundary and initial conditions In contrast to the mechanical boundary
conditions, the thermal conditions are usually unknown. Heat is exchanged with the
environment, to be more precise, with the surrounding air and the clamping jaws. For
this reason, every outward surface is represented by means of a surface element which
accounts for such a surface flux, whereby a constant temperature of the surrounding
medium ™ and a constant coefficient a., are assumed, see Equation (4.13). In addition,
an initial temperature has to be assigned to each node of the mesh.

The temperatures of the surface elements representing the clamping jaws and the sur-
rounding air are set to the measured values shown in Table 3.2. Since the temperature
of the clamping jaws does not rise throughout the experiments considered, we assume a
very high conduction coefficient of aZ2™P > 10® W /[m? K], leading to isothermal bound-
ary conditions in the vicinity of the jaws. Concerning the convection coefficient towards
air, literature, e.g. [30], suggests a value between 2 and 25 W/[m?K]. Alternatively, a
convection coefficient for an infinitely long wall of the same heights as the specimen can
be computed analytically. Such an estimation yields a convection coefficient between
0 and 3 W/[m?K], depending on the temperature difference between wall (specimen)
and air. In summary, the literature as well as an analytical estimation of the convec-
tion coefficient towards air do not provide an exact value for the required convection
coefficient, but suggest that the sought value must be considerably smaller than the
conduction coefficient for the clamping jaws, a2 < od2mP Taking into account that
the heat conduction of aluminium itself is rather high, it is therefore assumed that heat
conduction through the clamping jaws is the main mechanism for heat exchange with
the environment. The loss of heat through convection is hence neglected by setting

alr

a2 = 0. The two model parameters defining the surface elements are prescribed to the

aforementioned values for all identifications unless explicitly stated otherwise.
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5 Parameter identification

Regarding the initial temperature value of each node, the exact temperature distribu-
tion along the hole specimen is unknown since only a part of the specimen was detected
by the thermography system. As described in Section 3.4 however, mechanical load
was only applied to the specimen after an initial steady temperature state was reached.
Thus, the same conditions are considered within the simulation, rendering the choice of
the exact initial temperature values trivial.

Finally, to enforce the aforementioned symmetry in temperature distribution, the
heat flux over the symmetry planes is set to zero.

5.3 ldentifiability of thermal model parameters

Since, to the author’s best knowledge, the algorithmic structure presented in Section 2.5
has so far never been used to identify thermal model parameters on the basis of real
(as opposed to numerically) experimental data of a simple tension test, the following
questions arise.

e Does the proposed framework allow an identification in general?

e Does the use of relative displacements compensate rigid body motion as is ex-
pected?

e Is a (locally) unique fit of the three classic thermal model parameters possible on
the basis of a real simple tension test?

Hence, the general identifiability of the classic thermal model parameters, i.e. Qtexp, Ktherm
and ¢g, is empirically shown within this section as a proof of concept that these param-
eters can be identified on the basis of a simple tension test. More precisely speaking,
data from experiment no. 1 (monotonous loading only, see Table 3.1) and model 1 are
used as the basis of an identification following the successive scheme as described above.
Furthermore, the identification of the elastic model parameters is used to show the differ-
ence between using displacements and relative displacements in the objective function,
cf. Equations (2.8) and (2.10). It is worth mentioning that, for this first and general
proof of concept, model 1 is reduced to the standard model formulation by setting the
scaling parameter 5 = 1, see Section 4.1.

5.3.1 Step 1 - ldentification of elastic parameters

Choosing the parameter set from Table 5.1 as initial guess, the identification is per-
formed twice to underline the effect of relative displacements within the objective func-
tion. Hence, one identification directly uses displacements within the objective function
while the second identification draws on relative displacements within the error measure
which intrinsically eliminates the influence of unwanted rigid body motions. Neither
temperatures nor reaction forces, but only displacements in z— and y—direction are
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5.3 ldentifiability of thermal model parameters

used within either objective function. The weighting factors are manually set to W =1
and W' = 1 and the experimental reaction force of up to two seconds is prescribed as
load to ensure that the elastic parameters are identified on the basis of purely elastic
experimental data, see Figure 5.4. Table 5.2 holds the results of these identifications,

14 150 r

Pa
=
o
o

P” in M

* Simulation
— Experiment

00 5 16 15 1 1.001 1.002 1.003
tin s FII

Figure 5.4: Prescribed force Fj,. over time for
identification based on experiment no. 1. Verti-
cal, black line indicates end time & ; = 2.0 s for
identification of elastic parameters.

Figure 5.5: Local stress-strain relation for op-
timal elastic parameter set using model 1 and
experiment no. 1, evaluated at the midpoint of
the specimen.

Table 5.1: Initial guess for elastic model parameters.

Model parameter FE in MPa v
Value 60000  0.30

showing that the improved formulation yields results close to the values found in litera-
ture, e.g. [31], whereas the commonly used objective function based directly on displace-
ments leads to a solution which lets the material appear softer. This example thereby
highlights the necessity to take rigid body motion during the experiment into account
as well as the capability of relatives displacements to do so. The experimental data is

Table 5.2: Identified elastic model parameters for AW6016 using model 1 and experiment no. 1.

Objective function E in MPa v

Displacements 58317  0.10
Relative displacements 67913  0.35
Literature 69000  0.33

not matched exactly, but some error remains which is expressed by the remaining con-
tribution of each considered FE-node to the objective function. However, this error is
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rather homogeneously distributed over all nodes and all time steps, see Figures 5.6 and
5.5, suggesting that model 1 represents the real material behaviour adequately during
elastic deformations.

Figure 5.6: Remaining nodal contribution to the mechanical (displacement) part of the objective func-
tion at time t = 2.0 s using model 1 and experiment no. 1.

5.3.2 Step 2 - Ildentification of plastic parameters

With the elastic parameters at hand, those plastic parameters can be identified which
have an influence on the one-dimensional stress state of the simulation. To do so,
experimental data is required which is well past the point of initial yielding. For the
present case, displacement data up to the time of ¢ = 140 s is employed, see Figure 5.7.
The loading stages at which simulation results and experimental data are compared can
be seen in Figure 5.8. The weighting factors are chosen to be W =5 and W = 1.
Again, no use is made of the temperature data. Starting at the parameter set displayed
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Figure 5.7: Prescribed force Fj,,. over time for
identification based on experiment no. 1. Verti-
cal, black line indicates end time tgrll therm

140 s for identification of plastic and thermal pa-
rameters.

a=t
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Figure 5.8: Local stress-strain relation for op-
timal plastic parameter set using model 1 and
experiment no. 1, evaluated at the midpoint of
the specimen.
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Table 5.3: Initial and obtained values for plastic model parameters on the basis of model 1 and exper-
iment no. 1.

Model parameter M, in MPa M, in MPa Hj, in MPa  Heyyp F

Initial guess 140.00 290.00 100.00 15.00  0.50
Optimal value 129.71 253.12 173.30 14.11 0.38

in Table 5.3, the identification leads to the result shown in the same table. The remaining
squared error in displacements is quasi homogeneously distributed in each time step as
can exemplarily be seen in Figure 5.9. Thus, model 1 is appropriate for the representation
of the mechanical behaviour of the aluminium alloy during elastic as well as plastic
loading stages, at least for the one-dimensional stress state considered.

Figure 5.9: Remaining nodal contribution to the mechanical (displacement) part of the objective func-
tion at time ¢t = 140 s using model 1 and experiment no. 1.

5.3.3 Step 3 - Ildentification of thermal parameters

Using the previously obtained values for the mechanical parameters, the caloric quanti-
ties can be identified on the basis of the measured temperature field alone. Again, data
up to the time of t = 140 s is used and the points of comparison in time are distributed
with a higher density around important effects, e.g. elastic cooling, see Figure 5.11.

It was already established in Section 4.2 that no model intrinsic dependency between
the three thermal model parameters of a standard model ciexp, Kiherm and cg is expected.
Nevertheless, incompleteness of data could still lead to a non-unique result, so that in
this first proof of concept the identifiability of the three aforementioned, classic thermal
model parameters is further investigated by means of a grid search approach, see Section
2.8.4. For the sake of convenience, the units of the different parameters are mentioned in
Table 5.4 in order to skip these units in the subsequent tables. The value of the objective
function at the end of the optimisation process is denoted by f¢ which is identical to
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the remaining, unweighted squared error between simulated and experimental changes
in the temperature field. Table 5.5 shows the different starting sets and Table 5.6 holds

Table 5.4: Units of the different parameters.

Parameter Unit

Qexp 107¢/K
Ktherm mW /[mm K]
Co mJ/[mm?® K]
f@ K2

the obtained model parameters for each initial guess, as well as the remaining value of
the objective function f?. It can be seen that all of the chosen initial guesses lead to
the same minimum. Although this is not equivalent to a mathematical proof that no
better solution for the optimisation problem at hand exists, it is nevertheless a strong
indicator for the identifiability of the classic thermal model parameters on the basis of
a simple tension test.

Table 5.5: Different starting points kf, for ~Table 5.6: Results k! . for the identification of
the identification of thermal model parame- thermal model parameters alongside the remaining

ters on the basis of model 1 and experiment squared error in temperature using model 1 and ex-

no. 1. periment no. 1.

Initial set  Qexp  Ktherm  Co Optimal set  Qexp  Ktherm  Co 1
k; 23.00 200.00 2.43 K ot 25.40 91.19 3.10 9.61
k? 46.0 200.00 2.43 k2. 25.40 91.19 3.10 9.61
K} 23.0  400.00 2.43 kDo 25.40 91.19 3.10 9.61
k; 23.0  200.00 4.86 Kot 25.40 91.19 3.10 9.61
K} 23.0 400.00 1.22 kDo 25.40 91.19 3.10 9.61
k; 12.0  400.00 1.22 Koo 25.40 91.19 3.10 9.61
k! 12.0 100.00 1.22 Kkl 25.40 91.19 3.10 9.61

Taking a closer look at the optimal material response, a good fit of simulation results
to experimental data is again obtained as indicated by Figures 5.10 and 5.11. More pre-
cisely speaking, Figure 5.10 shows that the remaining error in temperature change does
not cluster around any specific point in space and is rather homogeneously distributed.
Moreover, Figure 5.11 demonstrates for a single material point (midpoint of specimen)
that the remaining error in temperature is also uniform in time. The obtained model
parameters therefore lead to a very good representation of the experimental data at hand
for both displacement and temperature field, passing the verification as introduced in
Section 2.9.1. It is worth mentioning at this point that k:(l) represents the literature values
for the parameters of AW6016, see [31], which can be used to describe certain purely
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5.3 ldentifiability of thermal model parameters

Figure 5.10: Remaining nodal contribution to the thermal (temperature) part of the objective function
at time ¢ = 140 s using model 1 and experiment no. 1.
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erature values. set.

Figure 5.11: Local temperature-time relation evaluated at the midpoint of the specimen using model 1
and experiment no. 1.

thermal boundary value problems, e.g. a simple heat conductor. Comparing the litera-
ture values against the obtained parameter set, a significant difference is revealed which
indicates that model 1, together with the parameter set obtained within this section is
not able to represent a simple heat conductor and a simple tension test with self-heating
equally well. In conclusion, model 1 and the associated optimal parameter set of this
section can be verified, but not be validated. One reason for the failed validation most
probably lies within the model formulation itself, i.e. the predicted dissipation which
represents the main heat source for the boundary problem at hand. Models with dif-
ferent dissipation will lead to different optimal model parameters as was explained in
Section 4.2.1 and as is further investigated in the following section.
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5.4 Model dependency

With the general identifiability of the classic thermal model parameters on the basis of a
simple tension test being ensured, this section concentrates on the effect different model
formulations have on the result of such an identification. The aim of this section is to
answer the questions

e How do the different model formulations presented in Chapter 4 affect the optimal
values of the model parameters?

e Is a (locally) unique fit of the thermal model parameters possible if 3 is included
as an additional unknown?

e What kind of experimental data is required to ensure identifiability of all four
thermal model parameters?

Hence, the two constitutive models are compared in the context of a parameter identifi-
cation as a proof of concept that even seemingly small changes to the model formulation
may have a significant impact on the optimal parameter values. The identifications are
performed twice for each model, using data from experiment no. 1 (monotonous loading)
and no. 2 (loading-unloading-cooling), see Table 3.1, to analyse identifiability. It is worth
mentioning that experiment no. 1 will henceforth be referred to as “without cooling” and
experiment no. 2 as “with cooling”. To ensure comparability of the models, the linear
hardening part of model 1 is omitted, rendering its mechanical response nearly identical
to that of model 2, see Remark 4.4. The parameter identification process, again, follows
the successive scheme presented above, identifying first the elastic, then the plastic and
finally the thermal model parameters.

5.4.1 Experiment without cooling

Data of the experiment without cooling, i.e. experiment no. 1, is used for the following
identification which is split into three parts. Results for model 1 and model 2 are
presented side by side for each step of the process.

5.4.1.1 Elastic model parameters

The experimental reaction force of up to two seconds is prescribed as load to ensure
that the elastic parameters are identified on the basis of purely elastic experimental
data, see Figure 5.12. Only the error in displacements is considered for this part and
the missing weighting factors are set to W' = 1 and W' = 1. The initial guess as
well as the resulting model parameters of model 1 and model 2 are displayed in Table
5.7. The optimal elastic model parameters for model 1 and model 2 are identical, since
both models share the same purely elastic material behaviour. Regarding the quality
of the fit, Figure 5.14 exemplarily shows that the remaining error f = f" is distributed
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Figure 5.12: Prescribed force Fp.. over Figure 5.13: Local stress-strain relation of ex-
time. Black, vertical line indicates end time periment without cooling and of simulation with
tZLd = 2.0 s for identification of elastic param- optimal elastic parameter set, evaluated at the
eters on the basis of the experiment without midpoint of the specimen. Elastic response is
cooling. identical for model 1 and model 2.

Table 5.7: Initial and obtained values for elastic model parameters on the basis of the experiment
without cooling.

Model parameter E in MPa v

Initial guess 60000  0.30
Optimal value - Model 1 67913  0.35
Optimal value - Model 2~ 67913  0.35

rather homogeneously over the area which was considered for the identification. The
distribution of the remaining deviation between experimental data and simulation results
over time of a single, representative node can be seen in Figure 5.13. The two Figures
suggest a good fit of either model to the elastic material behaviour.

5.4.1.2 Plastic model parameters

With the elastic model parameters at hand, the plastic model parameters are identified
in a second step by using experimental data up to the end of the experiment without
cooling, i.e. up to 140 s. The prescribed load path is displayed in Figure 5.15. Only
the error in displacements is considered and the weighting factors are set to W' =
and W' = 1. The identification process is started with the initial guesses from Table
5.8 yielding the optimal model parameters displayed in the same Table. Remaining
deviations to the experimental data are sufficiently small, as Figures 5.16 and 5.17
indicate. Thus, the fit of the two models to the plastic material behaviour appears to
be acceptably accurate.
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Figure 5.14: Remaining nodal contribution to the mechanical (displacement) part of the objective

function f" at time ¢t = 2.0 s using data from the experiment without cooling. The remaining error is
the identical for model 1 and model 2 since the elastic response is identical.
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Figure 5.15: Prescribed force Fy,e over time. Vertical, black line indicates end time teprlld = 140.0 s for

identification of plastic parameters on the basis of the experiment without cooling.

Table 5.8: Initial and obtained values for plastic model parameters on the basis of the experiment
without cooling.

Model parameter My, in MPa M, in MPa Hep F

Initial guess 140.00 290.00 15.00 0.50
Optimal value - Model 1 131.13 297.97 10.62 0.37
Optimal value - Model 2 130.38 295.60 10.92  0.37

Independent of the fit, a closer look at the obtained optimal plastic model parameters
in Table 5.8 and the material response in Figure 5.17 shows that the two models pre-
dict an almost identical mechanical material response for the almost same set of model
parameters. Thus, the assumption made in Remark 4.4, stating that the mechanical
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5.4 Model dependency

Figure 5.16: Remaining nodal contribution to the mechanical (displacement) part of the objective
function f" at time ¢ = 140.0 s using data from the experiment without cooling.
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(a) Model 1. (b) Model 2.

Figure 5.17: Local stress-strain relation of experiment without cooling and of simulation with optimal
plastic parameter set, evaluated at the midpoint of the specimen.

parts of the two models are comparable for large deformation, appears to be valid for
the boundary value problem considered.
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5 Parameter identification

5.4.1.3 Thermal model parameters

Finally, the thermal model parameters of each model can be fitted to the temperature
data of the experiment without cooling using data up to the time ¢ = 140 s. The
identification is started from several initial guesses, see Table 5.9, to investigate the
uniqueness of the solution within a certain area of the parameter space, since a general
statement about the correlation of the four thermal model parameters in Section 4.2 was
not possible. Bounds for parameter S in model 2 are set in accordance with Equation
(4.25) to 0 < B < 6.92. Comparing the optimised material response of each model, the
predicted temperature evolution is almost identical for all optimised model parameter
sets, and remaining errors per node are rather small for both models, as is indicated in
Figures 5.18 and 5.19. However, a closer look at the obtained parameter values for each
model reveals significant differences.

Table 5.9: Initial values for thermal model parameters for model 1 and model 2 and literature values.

Initial set Qexp in 1075/K  Ktherm in mW/mm K ¢y in mJ/mm? K 15}
ka 23.00 200.00 2.43 1.00
kg 23.00 200.00 2.43 0.10
kc 23.00 200.00 2.43 0.50
kp 12.00 400.00 1.22 0.50
Literature value 23.00 200.00 2.43 -

Model 1 The optimal model parameter sets of model 1 differ significantly while lead-
ing to the same remaining error value, as can be seen in Table 5.10. Thus, the inverse
problem at hand has several solutions close to each other, and the assumption arises that
a whole valley of solutions exists for the specific inverse problem at hand. Either way, a
dependency between scaling parameter § and the remaining thermal model parameters
becomes evident for this combination of model and experimental data. Although a gen-
eral statement was not possible in Section 4.2, the specific thermal boundary conditions
for the BVP at hand eventually allow an interpretation of the correlation between 3, cvexp,
Ktnerm and cg. It was already shown in Section 5.3 that the identification of thermal model
parameters on the basis of an experiment without cooling, i.e. with monotonic loading,
yields a unique (at least locally) result if a standard formulation of model 1 is used. The
main difference between such a standard formulation and the non-standard formulation
used within this section is parameter 5. Whereas the dissipation of a standard model
only depends on the mechanical model parameters, the dissipation rate density can still
be scaled for the non-standard model without affecting the mechanical response, as was
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(a) Model 1. Distribution is almost identical for all optimal parameter sets.
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Figure 5.18: Remaining nodal contribution to the thermal (temperature) part of the objective function
f? at time t = 140.0 s using data of the experiment without cooling.
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(a) Model 1. (b) Model 2.

Figure 5.19: Local temperature-time relation of experiment without cooling and of simulations with
optimal thermal parameter sets, evaluated at the midpoint of the specimen.
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5 Parameter identification

Table 5.10: Obtained values for thermal model parameters and remaining error contribution to the
objective function f? for model 1 on the basis of the experiment without cooling.

Optimal set  Qexp in 1079/K  Kgherm in mW/mm K ¢ in mJ/mm* K~ 3 fe
Kk 28.74 99.32 3.68 1.13 8.76
k; 37.06 128.15 4.68 1.46 8.76
k¢ 30.57 105.65 3.90 1.21 &8.76
kp 18.97 65.49 2.46 0.75 &8.76

explained in Section 4.1. That is to say that [ affects the dissipation of all time steps
for model 1 alike by simply shifting the quantity of dissipated energy, as can be seen
in Figure 5.20. This constant difference in available heat is simply compensated by an
adaptation of the other thermal model parameters, all of which are featured linearly in
one of the active addends within the balance of energy (4.20) for model 1. The following
example is considered: If twice as much energy is transformed to heat at each time step,
the heat capacity must be twice as high to ensure that the same (optimal) temperature
is reached. The thermal conduction must be twice as high in order to transport twice as
much heat towards both ends of the specimen where it can leave the specimen (due to
the specific thermal boundary conditions at hand). By considering the balance of energy
in Equation (4.20), it follows that the heat expansion coefficient, which is featured in
the addend responsible for the Gough-Joule effect, must also be twice as high for such a
case. This example illustrates that the dependency of parameters mainly occurs due to
the specific BVP at hand, where the predicted dissipation of model 1 is constant for all
plastic time steps. Thus, an experimental part with a different rate of dissipation should
stabilise the identification process, but the influence of the rather short elastic part of
the experiment at hand is apparently not enough. Accordingly, the ratio of qex,/f,
Ktherm/ 8 and co/f should be constant if the amount of dissipated energy scales linearly
in 8. This is the case for model 1 and the results underline the explanation above.

Apart from the dependency of the parameters, it is not possible to retrieve a thermal
model parameter set for model 1 which is close to the literature values, see Table 5.9.
The four thermal model parameters of model 1 are therefore neither identifiable on the
basis of a simple tension test nor do they pass a simple validation, i.e. they cannot be
used to predict different boundary value problems equally well, e.g. plastic heating and
a simple heat conductor.

Model 2 All obtained solutions for model 2 are numerically identical, see Table 5.11,
suggesting that a (locally) unique optimum has been found and that no dependency
between the thermal parameters exists for this combination of model and experiment.
This appears to be reasonable due to the difference to model 1 regarding how (3 affects
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Figure 5.20: Predicted local dissipation contribution during simulations of the experiment without
cooling with optimal thermal parameter sets evaluated at midpoint of the specimen and at output time
steps (subset of all time steps). Amount of dissipated energy density depends on applied load, i.e. the
difference of applied force between two load steps. Due to the noise in the prescribed, experimental
reaction force, some time steps have a larger or smaller increase in force than an ideal, smooth load path
would generate. This leads to jumps in the dissipation rate density, which would otherwise represent a
more smooth function for the case at hand.

the dissipation. The resulting format of the dissipation, see Equations (4.21) and (4.22),
shows that /3 leads to a constant shift of dissipation for model 1, but scales the dissipation
load state dependent for model 2. Thus, if only a particular functional relation between
strain and dissipation is favourable regarding the plastic heating of the specimen, only
one optimum exists.

The values of the optimal set, however, do also not resemble the literature values in
Table 5.9 and it can be concluded that an experiment with monotonous loading alone
may hold enough information for a unique and verifiable fit of the four thermal model
parameters of model 2, but that the obtained model parameters are not valid, i.e. they
cannot be used to predict different boundary value problems equally well.

Table 5.11: Obtained values for thermal model parameters and remaining error contribution to the
objective function f¢ for model 2 on the basis of the experiment without cooling.

Optimal set  Qieyp in 1075/K  Kiperm in mW/mm K ¢p in mJ/mm® K 3 f?

ky 53.74 166.53 6.31 2.29 8.63
kg 53.74 166.53 6.31 2.29 8.63
k¢, 53.74 166.53 6.31 2.29 8.63
kL 53.74 166.53 6.31 2.29 8.63
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5 Parameter identification

5.4.2 Experiment with cooling

Data of the experiment which includes a stage of cooling down to ambient temperature
is used for the following identification. Results for model 1 and model 2 are presented
side by side for each step of the identification process.

5.4.2.1 Elastic model parameters

The experimental reaction force of up to two seconds is prescribed as load to ensure that
the elastic parameters are identified on the basis of purely elastic experimental data, see
Figure 5.21. Only the error in displacements f = f" is considered for this part and the
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Figure 5.21: Prescribed force Fp.e over time.
Vertical, black line indicates end time tgild =20
s for identification of elastic parameters on the
basis of the experiment with cooling.

weighting factors are set to W' =1 and W}

Figure 5.22: Local stress-strain relation of exper-
iment with cooling and of simulation with opti-
mal elastic parameter set, evaluated at the mid-
point of the specimen. Elastic response is iden-
tical for model 1 and model 2.

= 1. Initial guess as well as the resulting

model parameters of model 1 and model 2 are displayed in Table 5.12. The optimal
elastic model parameters for model 1 and model 2 are again identical, since both models
share the same purely elastic material behaviour. Figure 5.23 shows that the remaining

Table 5.12: Initial and obtained values for elastic model parameters on the basis of the experiment

with cooling.

Model parameter

E in MPa v

Initial guess

Optimal value — model 1

Optimal value — model 2

60000  0.30
67026  0.36
67026  0.36
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5.4 Model dependency

error f = f"is distributed rather homogeneously over the area which was considered for
the identification, similar to the identification on the basis of the experiment without
cooling. The distribution of the remaining error over time of a single, representative
node can be seen in Figure 5.22. Both figures suggest a good fit of either model to the
elastic material behaviour of the experiment with cooling.

Figure 5.23: Remaining nodal contribution to the mechanical (displacement) part of the objective
function f" at time ¢t = 2.0 s using data of the experiment with cooling. The remaining error is the
same for model 1 and model 2 since the elastic response is identical.

5.4.2.2 Plastic model parameters

The plastic parameters are identified on the basis of experimental data up to 144 s, taking
into account the unloading of the specimen. Figure 5.24 shows the prescribed load path
of the experimental reaction force. Only the error in displacements is considered and
the weighting factors are set to W' = 5 and W' = 1. Starting from the parameter
sets identified on the basis of the experiment without cooling, the identification yields
the optimised parameters depicted in Table 5.13. Remaining deviations from the

0 25 50 75 100 125
tin s

Figure 5.24: Prescribed force Fj;. over time. Vertical, black line indicates end time tsrlld = 144.0 s for
identification of plastic parameters on the basis of the experiment with cooling.
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Table 5.13: Initial and obtained values for plastic model parameters on the basis of the experiment
with cooling.

Model parameter My, in MPa M, inMPa Hep F

Initial guess 131.13 297.97 10.62 0.37
Optimal value - Model 1 129.27 293.38 10.82 0.37
Optimal value - Model 2 129.28 293.36 10.97 0.37

(b) Model 2.

MﬂWMQﬁWHHﬁW iiilo_

Figure 5.25: Remaining nodal contribution to the mechanical (displacement) part of the objective
function f" at time ¢ = 140.0 s using data of the experiment with cooling.

experimental data are sufficiently small as Figures 5.25 and 5.26 indicate. Thus, both
models have an almost identical and accurate fit to the elasto-plastic material behaviour,
underlining once again the similarities of the two chosen model formulations with respect
to the mechanical part. Figure 5.26 furthermore shows that both models also fit the
unloading stage of the experiment rather well, thereby suggesting that the material
did not experience a significant degradation of elastic material properties during the
experiment. Such a degradation would otherwise be an indicator for damage effects,
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Figure 5.26: Local stress-strain relation of the experiment with cooling and of simulation with optimal
plastic parameter set, evaluated at the midpoint of the specimen.

and the fact that none are observed support the decision to neglect damage effects in
the constitutive models at hand (at least to a certain degree).

5.4.2.3 Thermal model parameters

Finally, the thermal model parameters of each model are fitted to the temperature data
of the experiment with cooling by using data including the cooling-down phase up to
time t = 400 s. The initial guesses from Table 5.9 are used again to see whether the
dependency between the four thermal model parameters of model 1 shown in Section
5.4.1.3 vanishes for the enhanced set of experimental data which includes the cooling of
the specimen. The rough grid search approach furthermore shows whether it is possible
to retrieve a parameter set that is sufficiently close to literature values, thereby indicating
a valid parameter set. Bounds for the parameter § in model 2 are set in accordance with
Equation (4.25) to 0 < 8 < 6.93.

Model 1 All of the performed identifications converge towards the same optimum, see
Table 5.14. Thus, the additional information of the cooling process stabilises the iden-
tification process for this model, removing the dependency described in Section 5.4.1.3
which occurred due to an incompleteness of data. The resulting, optimal material re-
sponse of model 1, however, still exhibits large remaining errors, see Figure 5.27. Even
though the remaining deviation from experimental data is distributed rather homoge-
neously in space, the comparison of experimental data and the optimal thermal material
response over time in Figure 5.29 reveals a substantial mismatch. It therefore appears
impossible to predict the heating as well as the cooling of a specimen adequately with
the associated plasticity model and a single set of model parameters within the range of
temperature changes considered.
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Table 5.14: Obtained values for thermal model parameters and remaining error contribution to the
objective function f? for model 1 on the basis of the experiment with cooling.

Optimal set  Qexp in 107/K  Kgherm in mW/mm K ¢g in mJ/mm? K I6; 1o
K\ 421.56 2653.29 <1 18.92 211.63
kg 421.40 2652.13 <1 18.91 211.63
k¢ 421.35 2651.07 <1 18.90 211.63
kp 421.47 2652.10 <1 18.91 211.63

] [l i —

0.0 Xmﬁw_ﬁ 9 [ 107% 19 ﬁ]{ 1 26107

Figure 5.27: Remaining nodal contribution to the thermal (temperature) part of the objective function
f? at time t = 140.0 s using data of the experiment with cooling and constitutive model 1.
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Figure 5.28: Remaining nodal contribution to the thermal (temperature) part of the objective function
f? at time t = 140.0 s using data of the experiment with cooling and constitutive model 2.

Model 2 All initial guesses lead to the same optimal set of thermal model parame-
ters, indicating that a (locally) unique optimum is obtained for the case at hand. The
remaining error per node, as exemplarily depicted in Figure 5.28, is again rather low
and statistically distributed. A closer look at the temperature evolution over time of
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Figure 5.29: Local temperature-time relation of experiment with cooling and of simulations with optimal

thermal parameter set, evaluated at the midpoint of the specimen.

Table 5.15: Obtained values for thermal model parameters and remaining error contribution to the
objective function f? for model 2 on the basis of the experiment with cooling.

Optimal set  Qexp in 1075/K  Kiperm in mW/mm K ¢ in mJ/mm® K~ 3 fe
kL 19.83 189.89 2.21 0.81 26.73
kg 19.83 189.89 2.21 0.81 26.73
k¢ 19.83 189.89 2.21 0.81 26.73
kL 19.83 189.89 2.21 0.81 26.73

a representative, single node in Figure 5.29 reveals a very precise fit of computed to
experimental data. Thus, model 2 appears to be capable of predicting plastic heating
and thermal cooling effects similarly well with a single set of model parameters. More-
over, this optimal set is very close to the literature values in Table 5.9 with a relative

deviation of

lit opt
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e e
B S S 13.78%,
aht
exp
lit opt
K — R
therm therm _
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lit opt
Cqh — C
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(5.1)

(5.2)

(5.3)

which is not too uncommon for model parameters. The elastic parameters F and v,
for example, exhibit a relative deviation of 5% and 9% with respect to literature values
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for aluminium. The obtained thermal model parameters for model 2 could therefore
probably also be used to predict different boundary value problems such as a rigid heat
conductor. Accordingly, an experiment with loading-unloading-cooling holds sufficient
information for a unique fit, and model 2 furthermore yields optimal parameters which
appear to pass a first and very simple validation attempt. Of course, for the parameter
set to be truly validated, comparisons against further and possibly more complex bound-
ary value problems should be made. This, however, is out of scope and not the aim of
the thesis at hand which is mainly concerned with general identifiability of parameters.

It may appear odd that a similar set has not already been found for the monotonous
loading case in Section 5.4.1 since both parameter sets lead to an apparently equally
good fit of the heating phase. A comparison of the remaining error as described by
the objective function value f? would give a closer insight to the quality of the fit,
but such a direct comparison is not valid since the number of time steps is not equal.
Thus, the error function is evaluated once again, comparing data from the experiment
including cooling with the computed data of two simulations which both end at 140 s,
just prior to unloading. One simulation uses the optimal thermal parameters obtained
in Section 5.4.1.3 resulting in a remaining error of f¢ = 5.16. The second simulation
uses the optimal thermal parameters from this section leading to a remaining error of
f% = 12.85. It shows that the parameter set of this section may be able to describe
heating and cooling alike. At the trade-off, however, that a slightly less perfect fit may
be obtained than might be possible if only one phenomenon was considered at a time.
The trade-off itself is very small and the fit nevertheless still very precise as the previously
mentioned figures show, so that an accurate identification of the thermal parameters is
possible with model 2 in combination with an experiment with cooling.

5.4.3 General identifiability of the heat equation

The heat equation, which is based on the balance of energy, is the main equation on
which the identification of thermal model parameters is based due to the split of the iden-
tification process into an elastic, plastic and thermal part. Depending on the boundary
value problem considered, it can take slightly different forms, e.g.

C[)é = — VX : Q (. ) Ktherm) A n-q=— Qcon [QM - 9] <54)

for a rigid body with transient change in temperatures and subject to convection at its
boundary. Due to the specific definition of the heat flux, which is linear in the model
parameter Kinerm, the model parameters of all addends can be factorised. Equation (5.4)
can therefore be rewritten as

COé = — Ktherm VX * Q A Ktherm TV * € = — Qlcon [QM o 0} <55)
& = _Twmg g oA Mmoo T gl (56
o Co Co

84



5.5 Identifiability of thermal boundary coefficients

showing that only a subset of all parameters can be uniquely identified. This is true as
long as the main set of equations consists only of addends with different model param-
eters which can be factorised. Hence, adding different features to the experiment, e.g.
the effect of plastic heat sources D! (o; 3) where the new unknown model parameter
B can be factorised as is the case for classic models with associated evolution equations
(Dmech = 3 Dmech  see Equation (4.21)), changes nothing at the intrinsic overparametri-
sation of the heat equation. This overparametrisation is only resolved if at least one
thermal model parameter is known a priori, or if the model parameter cannot be fac-
torised in at least one addend as is the case for model 2, see Equation (4.22).

It is worth mentioning that the identifiability of a set of parameters is not only related
to this model specific property but also to the experiment. If one or more parameters
are not addressed strong enough (or not at all) by the experimental data, the value of
the respective parameters can take arbitrary values, thereby leading to infinitely many
non-isolated minima. This is, for example, the case for the identification performed
with model 1 and the experiment without cooling in Section 5.4.1.3. The intrinsic
overparametrisation is resolved due to the a priori estimation of the heat conduction
coefficients a.o,. Nevertheless, a dependency of model parameters is detected since the
data of an experiment without cooling appears to insufficiently address the part of the
heat equation related to the heat conduction coefficients.

5.5 ldentifiability of thermal boundary coefficients

In the previous sections the identifiability of the three classic and one additional thermal
model parameter has been analysed, based on experimental data of a simple tension test.
However, two further model parameters have so far been ignored, i.e. the heat conduction
and heat convection coefficient which define the thermal boundary conditions. It was
already mentioned in Section 5.2.2 that the value for these boundary coefficients must be
generally considered unknown since common testing devices usually cannot guarantee
isothermal or adiabatic bounds. Assumptions regarding these heat transfer coefficients
can be made for certain cases, see Section 5.2.2, but they are unknown in general.
This leads to the questions of identifiability and sensitivity of the thermal boundary
coefficients alongside the actual thermal model parameters. To be more precise, related
fundamental questions are

e Is a (locally) unique fit of thermal model parameters and boundary coefficients
possible on the basis of full field temperature measurements?

e How sensitive are the resulting parameter values with respect to the (measured)
boundary temperatures required for Newton’s law of cooling?

In order to answer these questions, the results of several parameter identifications are
shown within this section, whereas the main focus lies on the identifiability of heat con-
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duction and heat convection coefficients alongside the unknown thermal model parame-
ters. At first, however, the optimal mechanical parameters for the underlying problem,
as well as a reference solution for the optimal thermal model parameters are introduced.
The actual identifiability of the whole set of unknown model parameters is shown after-
wards by using a grid search approach. This is followed by a sensitivity analysis of the
optimal parameter values with respect to the external, prescribed temperatures. Finally,
the possibility to optimise only a subset of the thermal model parameters is explored and
the result is compared against the fully optimised parameter set. It is worth mentioning
that data from experiment no. 3 (loading-unloading-cooling, see Table 3.1) is used for
the following identifications. Furthermore, only model 2 is considered, due to its ability
to represent the material at hand, see Section 5.4.

5.5.1 Mechanical model parameters

The mechanical parameters are identified in two steps, identifying first the elastic model
parameters (Young’s Modulus F and Poisson’s ratio v) and subsequently the plastic
model parameters (initial Yield limit M, , non-linear hardening parameters M, = and
Hey,, as well as the one independent yield surface parameter F'. The obtained parameter
values are summarised in Table 5.16. Furthermore, Figure 5.30 shows the resulting fit
between simulation and experiment.

Table 5.16: Optimal values for mechanical model parameters using model 2 and experiment no. 3.

Model parameter FE in MPa v M,y in MPa M, _inMPa Hegp F
Optimal value 68396.66 0.34 128.92 292.73 10.87 0.35

5.5.2 Reference solution with prescribed boundary coefficients

Before optimising the thermal boundary coefficients along with the thermal model pa-
rameters, a reference solution with prescribed convection and conduction coefficient is
generated. The obtained parameters are subsequently compared to the solution based
on the full optimisation in Section 5.5.3.

As was shown in Section 5.4 a locally unique fit of the thermal model parameters (i.e.
thermal expansion .y, heat conduction Kiherm, heat capacity ¢y and the parameter
scaling latent heat, respectively dissipation () is possible for the specific combination
of model, material and experiment at hand and yields thermal model parameters close
to literature values. In the aforementioned section, it was assumed that the boundary
coefficients can be prescribed as a2 = 0 and o = 10® W/[m? K] since the heat ex-
change through the clamping jaws appears to dominate. Prescribing the same values for
the heat transfer coefficients, the optimised thermal model parameters of the reference

86



5.5 Identifiability of thermal boundary coefficients

50 * Simulation
) Experiment
o L L
1 1.05 11 1.15 —6 —6 —6
F 0‘0X%H[\\\\47(?\)\(‘;9\\\\\\‘\\\7 x 10
(a) Stress-strain relation of experiment no. 3 (b) Remaining nodal contribution to the objec-
and simulation evaluated at midpoint of the tive function f" (squared error in relative displace-
specimen. ments) at time ¢ = 140 s.

Figure 5.30: Optimised mechanical model parameters lead to a very good agreement between simulation
based on model 2 and experiment no. 3 with respect to displacement and reaction force data.

solution for the experimental data at hand can be found in Table 5.17. Figure 5.32
shows the fit of the temperature-time relation for a single, representative FE node of
the specimen. The overall fit of the material response can later be compared against
the material response of the fully optimised parameter set, which would be expected to
be even better regarding the remaining error. It is worth noting that the assumptions
regarding the heat transfer coefficients are only possible due to the high conductivity of
the aluminium alloy under consideration and cannot be transferred to other materials
in general.

Table 5.17: Obtained reference values for the thermal model parameters and remaining error con-
tribution to the objective function f?, based on experiment no. 3. Prescribed values are marked in
grey.

Material Qexp Ktherm o B a2 ad 1o
parameter 107%/K mW/mm K mJ/mm? K W/m? K W/m? K
Optimal value 20.04 175.17 2.35 0.81 0.00 108 20.04

5.5.3 Identification of thermal model parameters and boundary
coefficients

It was already mentioned in Section 5.2.2 that the thermal boundary coefficients are gen-
erally unknown, so that the set of sought parameters includes the classic thermal model
parameters, the model parameter governing dissipation, respectively latent heat, as well
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as the convection and the conduction coefficients, i.e. o and o . The identification is
started from ten different initial guesses, see Table 5.18, to ensure that the experimental
data holds the required information to find a locally unique parameter set which min-
imises the objective function. Table 5.19 shows the obtained values which are identical
for all ten cases, leading to the remaining error distribution shown in Figure 5.31. While
this may not prove (local) uniqueness in a mathematical sense, it nevertheless suggests
that no further minima are to be expected within the vicinity of the obtained solution.
Thus, the unknown parameters also appear to be independent in the sense that no direct
relation (neither linear nor non-linear) connects two or more parameters which would

lead to an infinite number of solutions.

Figure 5.31: Remaining nodal contribution to the objective function f (squared error in temperature
rise) at time ¢t = 140 s using data from experiment no. 3 and the optimised parameter set for model 2,
including the boundary coefficients.

5.5.3.1 Comparison with reference solution

So far, it has been shown that the identification of boundary coefficients alongside the
thermal model parameters is possible, in principle, on the basis of full field tempera-
ture measurements. Comparing the obtained values of such an identification process
with the results from the reference solution, which incorporated reasonable values for
the boundary coefficients prescribed, shows some significant differences that are worth
mentioning.

Subjecting the boundary coefficients to the optimisation process allows the remain-
ing squared error value at the end of the optimisation f? to drop by approximately
25% from 20.04 to 14.97, see Tables 5.17 and 5.19. The optimal values for the three
thermal model parameters ceyp, ¢o and S are almost identical and for both cases close
to available literature values. Regarding the convection coefficient Kinerm, the obtained
value lies within the expected range of 2 to 25 W/[m? K] for free convection, see e.g.
[30]. There is no expected value for the conduction coefficient, but it is roughly 20 times
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5.5 Identifiability of thermal boundary coefficients

Table 5.18: Initial guess for thermal model parameters.

Initial set Qexp Ktherm co 8 QAT ofl

107%/K mW/mm K mJ/mm? K W/m? K W/m? K
ka 19.83 189.89 2.21 0.81 0.10 4-10°
kp 23.00 200.00 2.43 1.00 0.10 4-10°
kc 46.00 200.00 2.43 1.00 0.10 4-10°
kp 23.00 400.00 2.43 1.00 0.10 4-10°
kg 23.00 200.00 4.86 1.00 0.10 4-10°
kr 23.00 200.00 2.43 0.10 0.10 4-10°
kg 23.00 200.00 2.43 1.00 1.00 4-10°
ky 23.00 200.00 2.43 1.00 0.10 8-10°
ky 12.00 400.00 1.22 0.50 0.05 2-10°
k; 46.00 100.00 4.86 1.00 1.00 8-10°

Table 5.19: Obtained values for the thermal model parameters and remaining error contribution to the
objective function f.

Optimal set ey Ktherm Co 15} oz?:g;l aﬁ}m 1o
107%/K mW/mm K mJ/mm? K W/m? K W/m? K
Kk 20.21 133.45 2.22 0.79 14.72 236.30 14.97
kg 20.21 133.41 2.22 0.79 14.73 236.04 14.97
k¢ 20.21 133.40 2.21 0.79 14.73 236.10 14.97
kL 20.20 133.46 2.22 0.79 14.71 236.44  14.97
ky 20.21 133.43 2.22 0.79 14.72 236.44  14.97
kL 20.20 133.32 2.21 0.79  14.75 234.92  14.97
k¢, 20.21 133.35 2.22 0.79 14.74 236.11  14.97
ky 20.21 133.41 2.22 0.79 14.73 236.27  14.97
ki 20.20 133.37 2.22 0.79 14.73 236.46  14.97
k; 20.21 133.39 2.22 0.79 14.73 236.41  14.97

higher than the convection coefficient, underlining the assumption made in Section 5.5.2
that heat exchange through the clamping jaws dominates the heat exchange with the
environment. The change in boundary coefficients clearly leads to a major difference
between the two solutions which lies in the optimal value of the thermal conductivity
Ftnerm- Comparing the material response on the basis of the two parameter sets in Fig-
ure 5.32 shows that both solutions nevertheless fit the experimental temperature almost
equally well. The most noticeable difference lies in the fit of the end temperature which
does not return to the initial temperature (for a node at the centre of the specimen),
but remains at a slightly higher value. This effect is based on the different temperatures
of air and clamping jaws, combined with the plastic deformation of the specimen during
mechanical loading. The difference in room- to clamping jaw temperature leads to a

89



5 Parameter identification

4.0 04
. Experiment —gx pef 11{;(1ent
= Simulation 0.3 ° Siﬁﬁlg‘cigﬁ
30 o Simulation
= 0.2
R=
S
1
A 0
0.0 r
0 100 200 300 400 500 250 300 350 400 450 500 550
tins tins
(a) Data over the whole time range. (b) Data at the end of the cooling down phase.

Figure 5.32: Local temperature-time relation of experiment no. 3 and simulations using optimal param-
eter sets, evaluated at midpoint of the specimen. Identification with prescribed boundary coefficients
(o) from Section 5.5.2 and identification including boundary coefficients (x).

higher steady state temperature at the centre point for an elongated specimen and can
be reproduced by a simulation, only in case heat exchange with the surrounding air is
considered. Thus, the temperature rise returns to zero for the parameter set with the
prescribed boundary coefficients, since those boundary coefficients were chosen to rep-
resent isothermal conditions at the clamping jaws and adiabatic behaviour towards air.
In contrast thereto, the optimised convection coefficient enables a reasonable amount
of heat to be exchanged with the air leading to the aforementioned effect of a slightly
higher remaining steady state temperature towards the centre of the specimen.

The model is therefore able to represent this behaviour by adapting the boundary
coefficients but requires a significant change in the thermal conductivity, in order to
maintain the overall good match. As discussed above, the effect of the remaining steady
state temperature depends on the temperature difference between air and clamping
device. Those values are prescribed in the simulation and rely on a measurement that is,
like all measurements, subject to measurement errors. Thus, the question of sensitivities
towards measured boundary temperatures arises, as is addressed in the following.

5.5.3.2 Sensitivity investigations

Thermal model parameters and boundary coefficients are identified again, but with mod-
ified boundary temperatures in the simulation. Prescribed values as well as resulting
optimal model parameters are summarised in Tables 5.20 and 5.21. The precise tem-
perature value of either air or clamping jaws does not matter as much as the actual
difference, because results are almost identical as long as the prescribed temperature
difference is also identical. Thus, the values from Table 5.20 are visualised in Figure
5.33, showing the relative change of optimal values with respect to the prescribed tem-
perature difference between air and clamping jaws. Figures 5.33a and 5.33b show that
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Figure 5.33: Relative change of model parameter with respect to prescribed temperature difference of
air and clamping jaws (62" — 0°!). Reference are the values corresponding to the measured temperature
difference of 0.7 K.

reasonable measurement errors in the prescribed external temperature difference have
very little effect on the optimal value for the thermal expansion coefficient cveyp, the heat
capacity ¢y and the scaling parameter (3, which only change up to 4% for the case at
hand. In contrast thereto, the optimal values of the remaining model parameter Knerm
as well as the unknown boundary coefficients react very sensitively to a change of the
prescribed temperature difference and may differ up to 60%. Furthermore, the overall
trend indicates the intrinsic correlation of the three latter parameters, all of which define
a different type of heat conductivity. A drastic change in one (conductivity) parameter
necessitates the other two parameters to change accordingly, in order to maintain the
overall temperature fit. It is worth mentioning that, although the correlation between
the parameters Kiperm, aiﬁfn and ag}m may be high, it is not a perfect correlation in the
sense of dependency (linear or non-linear), which would have led to multiple equally
suitable solutions in Section 5.5.3.
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5.5 Identifiability of thermal boundary coefficients

Thus, an identification of thermal boundary coefficients for low temperature rises
appears possible but requires a precise measurement of temperatures at the surfaces
of the specimen. Alternatively, an experimental setup which guarantees an identical
temperature of air and clamping jaws would circumvent the problem of this kind of
sensitivity, since the identification is not as sensitive to the overall temperature level as
it is to a difference in prescribed temperatures at the boundaries.

5.5.4 Identification with reduced set of unknowns

So far, it has been shown that the whole set of unknown model parameters is identifi-
able on the basis of an experiment with only a low rise in temperature and a cooling
down phase. The experiment therefore holds enough information for a (locally) unique
fit for the specific model at hand. The obtained result can furthermore be verified but
a simple validation attempt, i.e. comparing the optimal parameters against literature
values, shows that the obtained model parameters can not be used for the prediction
of different boundary value problems such as a simple heat conductor. Whether or
not the optimal parameter set will pass a validation highly depends on the constitutive
model that is chosen, but it was also mentioned in Section 2.9.2 that adding further
experimental data might increase the validity of the obtained parameters. More pre-
cisely speaking, there may be applications where the classic thermal model parameters
can either be pre-identified by using specialised experiments or simply be taken from
literature. For those cases, the identification process reduces to the optimisation of the
scaling parameter § and of the thermal boundary coefficients. Table 5.22 shows the
result of such an identification for the aluminium alloy at hand. It can be seen that the
remaining error value increases by 17% when compared to the solution with prescribed
boundary coefficients and increases by 58% when compared to the solution with the
optimised boundary coefficients. However, the obtained values are still within reason-
able bounds. Moreover, this immense (relative) increase in remaining error can be put
into perspective if the actual material response of the three parameter sets (Tables 5.17,
5.19 and 5.22) is compared with the experimental data. Figure 5.34 reveals an almost
insignificant absolute difference between the material response of the three parameter
sets mentioned before. This is due to the specific material model chosen which allows
the adjustment of the remaining thermal model parameter § to obtain a slightly less op-
timal, but nevertheless still respectable, fit to the experimental data. Depending on the
overall model formulation, it is therefore possible to either optimise the thermal model
parameters along with the thermal boundary coefficients or to prescribe some parameter
values (which were identified by means of other boundary value problems, e.g. simple
heat conductor) while still maintaining a satisfyingly precise fit.

Thus, adding additional experimental information still leads to a verifiable set of
model parameters (for the specific model at hand), with the improvement that the set
can now be used to describe at least a small choice of different boundary value problems,
such as loading-unloading-cooling of a dogbone specimen and a simple heat conductor. A

93



5 Parameter identification

validation, however, would require further data which was not used for the optimisation
process and it stands to reason that the rather simple model used within this thesis will
have its limits.

Table 5.22: Obtained values for the model parameters and remaining error contribution to the objective
function f? using available literature values. Prescribed values are marked in grey.

Material Qlexp Ktherm Co 15} ozg(i;l ozglm 1o
parameter 107°/K mW/mm K mJ/mm?® K W/m? K W/m? K
Optimal value  23.00 200.00 2.43 0.93 2.18 976.00 23.59
4.0 0.4
Experiment Experiment
* Simulation = Simulation
3.0 o Simulation 03 o Simulation
o Simulation
~ 0.2
k=
T 0.1
q 0
0.0
0 100 200 300 400 500 250 300 350 400 450 500 550
tins tin s
(a) Data over the whole time range. (b) Data at the end of the cooling-down phase.

Figure 5.34: Local temperature-time relation of experiment no. 3 and simulations using optimal param-
eter sets, evaluated at midpoint of the specimen. Identification with prescribed boundary coefficients
(o) from Section 5.5.2, identification with whole set of optimised model parameters (x) from Section
5.5.3, and identification with prescribed thermal model parameters (O).
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6 Concluding remarks

This thesis provides information on the treatment of inverse parameter identifi-
cation problems regarding thermo-mechanically coupled constitutive models which
are based on real full field measurements. A general framework and the necessary
theoretical background is provided, so that a reader new to the field of parameter
identification can apply the scheme or extend it as necessary. This includes not only
the numerical implementation, but also the the performance of suitable experiments to
avoid mistakes, intending to provide an overall easy access to the topic of identification
for thermo-mechanically coupled constitutive models. Furthermore, the identifiability
of thermal parameters on the basis of a simple tension test is analysed for two different
models, supplying information on the required experimental data for a (locally) unique
fit and on the sensitivity towards measured temperatures at the boundary.

A summary for each chapter and a discussion of results can be found below, explicitly
answering the research questions posed in the introduction and in Sections 5.3 - 5.5. This
is followed by a short outlook.

6.1 Summary

The first aspect - providing a theoretical background for the solution of the inverse prob-
lem of parameter identification - can be found in Chapter 2. A broad overview is given,
ranging from the general definition of the inverse problem to the analysis of identifiabil-
ity and validity of the results. Aspects new to the field of parameter identification are
the algorithmic structure suited for the treatment of real experimental temperature data
as well as the definition of relative displacements which intrinsically compensate rigid
body motion of the specimen. Further details on the concept of optical displacement
and temperature measurement may not be entirely new, but are important to know,
especially if unfamiliar with the field of parameter identification. For example, the con-
cept of identifiability is presented, explaining advantages and disadvantages of some
measures for identifiability. Furthermore, the impact of different model formulations on
the remaining error, the difference between model and material parameters, as well as
the associated necessity for verification and validation is discussed, complementing the
theoretical aspects of parameter identification.
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The second aspect - analysing the applicability of the proposed framework in general
and the identifiability of the parameters for the specific case at hand - is covered by
Chapters 3 to 5. In Chapter 3, the experimental data of three simple tension tests is
shown, including the general experimental setup and an analysis of the obtained data
with respect to required features of a constitutive model. Based on that analysis, two
constitutive models are presented in Chapter 4 which are derived from common stan-
dard model formulations using either associated or non-associated evolution equations.
An additional term is added to the postulated free energy expression, introducing an
additional model parameter which does not influence the mechanical material response
but which allows a scaling of the predicted dissipation while maintaining a thermo-
dynamically sound framework. The two models themselves feature an almost identical
mechanical material response and only differ in the expression for the predicted dissipa-
tion. For each model, the dissipation follows directly from the postulated potentials and
is a function of the current load state, requiring no further assumptions, e.g. regarding
the relation towards cold work. Based on the constitutive equations, a first examina-
tion regarding the identifiability of model parameters is performed, determining which
parameters can and which cannot be identified on the basis of a simple tension test.
The actual identifiability analysis for the thermal parameters is performed in Chapter 5,
combining the framework, the experimental data and the constitutive models from the
previous chapters in a successive identification scheme. Identifiability of all thermal pa-
rameters is shown by means of a grid search approach. If identifications starting from
several well distributed initial guesses all converge towards the same optimum, it is as-
sumed that the solution is unique within a certain (trust) area. Based on this, it directly
follows that the unknown parameters are independent and not connected via some linear
or non-linear relation which would otherwise lead to a valley of solutions. The analysis is
done in three parts, gradually extending the set of unknown thermal model parameters.
At first, only the three classic thermal model parameters of a standard model Kiperm,

alr

a?r and afl are considered and the following questions are answered.

e Does the proposed framework allow an identification in general? The
analysis of the obtained parameter sets show that the results are reasonable and fit
the mechanical as well as thermal material response of the model to the provided
experimental data. The framework, i.e. the pre-processing of temperature data
and the successive identification approach, therefore appears to be sound and can
be applied to different and more complex identifications. It is worth mentioning,
however, that the successive split of the identification should only be used as long as
the temperature can be assumed to have no significant influence on the mechanical
part of the constitutive model.

e Does the use of relative displacements compensate rigid body motion as
is expected? Asshown in Section 5.3.1, the use of relative displacements leads to
a set of elastic material parameters sufficiently close to literature values, whereas
the use of unmodified displacements let the material appear significantly softer.
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Relative displacement therefore present an adequate and easy to apply possibility
to compensate rigid body motions.

e Is a (locally) unique fit of the three classic thermal model parameters
possible on the basis of simple tension test? The results suggest that a
locally unique fit of thermal parameters for the standard version of the model with
associated evolution equations is possible on the basis of a simple tension test with
monotonous loading since the grid search approach leads to only one optimal set.
It is worth mentioning that identifiability has nothing to do with verifiability or
even validity of the result as is commented on at the end of this section.

In a second step, the scaling parameter 3 is added to the set of unknown thermal
model parameters. Furthermore, the identifications are performed by using the two
extended models as well as two different experiments to analyse the impact of the model
formulation on the identifiability and the required experimental data, answering the
three questions below.

e How do the different model formulations presented in Chapter 4 affect
the optimal values of the model parameters? Although the two models
predict a similar mechanical material response, the predicted dissipation differs
significantly. The thermal model parameters must therefore also be different for
each model in order to match the given temperature distribution and temperature
evolution, since the dissipated energy is the main source for the temperature rise
during the experiment. This underlines the high model dependency of the inverse
problem of parameter identification and that it is, in general, impossible to say a
priori which model represents a certain material more accurately. If not already
known, it therefore appears advisable to compare different model formulations and
to at least find the limits of applicability by verification and validation attempts,
before making a choice for predictive simulations.

e Is a (locally) unique fit of the thermal model parameters possible, if 3
is included as an additional unknown? For the two specific models at hand,
a (locally) unique fit is possible, confirming that no model-intrinsic dependency
connects the extended set of thermal model parameters. Thus, the enhancement of
the standard model formulation makes sense from an identifiability point of view,
allowing the use of models featuring a greater adaptability.

¢ What kind of experimental data is required to ensure identifiability of
all four thermal model parameters? It was already mentioned that the result
of an identification is highly model dependent, as is the answer to this question. An
experiment with monotonous loading, a standard experiment in literature, holds
sufficient information to ensure the identifiability of the thermal model parameters
of the model with non-associated evolution equations (model 2), but leads to a
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valley of solutions for the model with associated evolution equations (model 1).
This is due to the model-intrinsic dissipation which is constant for model 1 (i.e. for
the specific load case considered), and load state dependant for model 2. Hence,
a scaling of dissipated power in model 1 is compensated by a likewise scaling of
the remaining thermal parameters, all of which appear as a factor in one of the
addends of the balance of energy. The scaling ratio of the dissipation of model 2,
on the other hand, changes with each load step and can therefore only represent a
certain temperature rise with one optimal parameter set. Consequently, enhancing
the experimental data by using an experiment with an additional unloading and
cooling phase allows a (locally) unique fit of both models. The results furthermore
show that identifiability is not the same as verifiability or even validity of the result,
since, for model 1, neither a valid nor a verifiable result could be obtained. For
model 2, the experiment with monotonous loading already allows the identification
of a unique and verifiable parameter set, but adding the additional experimental
information leads to a set which also passes a first and simple validation attempt.

After having established the identifiability of the (potential) thermal material param-

eters, the identifiability of the (boundary value problem dependant) thermal boundary
coefficients, required for Newton’s law of cooling, is analysed by using the grid search
approach and by answering the questions below.
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e Is a (locally) unique fit of thermal model parameters and boundary

coefficients possible on the basis of full field temperature measurements?
The model with the non-associated evolution equation is used for this analysis due
to its overall capability to represent the material for the boundary value problem
at hand. Using an experiment with loading-unloading-cooling, the grid search
approach yields only one set of optimal parameters, suggesting that the fit of
thermal model parameters and boundary coefficients is (locally) unique.

How sensitive are the resulting parameter values with respect to the
(measured) boundary temperatures required for Newton’s law of cool-
ing? Comparing the obtained parameters with a reference solution based on rea-
sonable, prescribed values for the boundary coefficients already indicates a high
correlation between heat conduction and the two boundary coefficients, i.e. Kiherm,
a®r and af |, respectively. Not only does an analysis using several prescribed
temperature differences for the surrounding air and clamping jaws underline the
correlation of the three conduction-like model parameters, it furthermore shows the
sensitivity of the optimal values with respect to small changes in the prescribed
temperature difference of the surrounding media. To be more precise, a different
prescribed external temperature difference naturally leads to different optimal val-
ues for the heat conduction and heat convection coefficient. These two parameters
are very sensitive to the aforementioned changes and, moreover, cause an equally
severe sensitivity in the thermal conduction coefficient due to the high correlation



6.1 Summary

between the three parameters. Thus, the optimal value of the thermal conduction
coefficient changes drastically with the prescribed temperature difference and is
therefore extremely dependent on measurement errors. The obtained parameter
sets can again be verified with respect to the data which was used for the iden-
tification in the first place, but the parameters fail a simple validation attempt.
If, however, thermal material parameters are identified a priori by means of spe-
cialised experiments or taken from literature, the optimisation of the remaining
model parameters yields different parameter values and the obtained fit to exper-
imental temperature data may worsen (by almost 60% for the case at hand), but
the actual absolute error may remain within reasonable limits (depending on the
adaptability of the model).

Apart from the information on model dependency, identifiability and sensitivity of
thermal model parameters, the results shown within this thesis provide further insight
to the verification and validation of results. Especially the identification shown in Section
5.5.4, which uses additional data, answers the following question regarding the validation
process in general.

e How can a valid set of material parameters be identified? Although it
is not the aim of this work to provide material parameters which can be used
for predictive simulations, a verification and (a simple) validation of the obtained
parameter sets is always performed. Thus, it can be seen that the validity of the
result does not only depend on the specific model, but also on the experimental
data available. The general ability of the model to represent important material
characteristics is of course vital and defines the limits of applicability in general.
However, a model which is non perfect - in the sense that it would emulate the true
material behaviour in all aspects (which is highly unlikely for a phenomenologi-
cal model) - will actually only be able to predict the material response of a finite
number of boundary value problems with limited precision. Such a model can nev-
ertheless be suitable within a certain range of strain, strain rate and temperature,
and the validity of the obtained parameter set can be increased with additional
experimental data, even if the fit with less data already is (locally) unique. Due
to the imperfection of the model, this will usually worsen the verification result
as represented by the remaining objective function value, and a combination of
model and experimental data must be found which passes both, verification and
validation. How a suitable model must be defined entirely depends on the appli-
cation at hand and what kind of experimental data leads to the best compromise
between verification and validation cannot be said in general.
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6.2 Qutlook

So far, only experiments with a low rise in temperature have been used for the iden-
tification of thermal model parameters, but it is now possible to apply the underlying
identification framework to materials which undergo a higher temperature rise during
loading, e.g. in order to see whether this reduces the sensitivity towards external temper-
atures rendering the whole process closer to practical applications. However, this may
involve more complex material behaviour, respectively models, such as viscous response
and damage effects which contribute to dissipation and therefore to plastic heating.
Modelling these effects will probably introduce further sources of discrepancy between
actual and predicted dissipation, so that an identification, i.e. optimisation, for such a
pairing of material and model is non-trivial and highly model dependent. Tests with steel
have already shown a significantly higher rise in temperature if compared to aluminium,
see Figure 6.1 and a first step could be the incorporation of damage into the thermo-
mechanically coupled model to analyse the influence of damage associated dissipation
contributions. Further research could concentrate on the fit of thermo-mechanically cou-
pled models to boundary value problems with a more complex stress distribution, e.g.
by using cruciform specimens, see Figure 6.2.
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(a) Experiment with aluminium alloy AW6016. (b) Experiment with steel alloy EN1.4301.

Figure 6.1: Experimental temperature-time relation at the central node of a dogbone shaped speci-
men for monotonous loading until rupture of a simple tension test. Damage induced dissipation may
contribute significantly even prior to macroscopic failure.

(a) Displacement field (top) and temperature  (b) Biaxial testing machine for cruciform speci-
field (bottom). men.

Figure 6.2: Cruciform specimen can be used to analyse anisotropic material response.
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A Influence of weights on correlation

The importance to consider the applied weights of the objective function within
the correlation measure is discussed in this chapter.

Consider a homogeneous, simple tension test which provides axial and lateral strain
information. The experiment is used to identify the parameters of a linear elastic ma-
terial model k = [F, v|, i.e. Young’s modulus F and Poisson’s ratio v. The well known
constitutive relations for uniaxial stress states read

o
€11 = fll (Al)
14
€99 = — E 011 (AQ)

and show that Young’s modulus can be identified by means of axial and Poisson’s ratio
by means of lateral strain information. The identification is performed by using the
objective function

Ngs=2 nd:2

F=23 Wl
t=1 n=1 . . (AS)
=Wi e —en’lmy + Wi e — €]y

+ Wa [e2g — €95 |,y + Wa [e22 — 55" ],y

which takes into account axial and lateral information of two time steps. Hence, if the
response sensitivities (equal to the unweighted residual sensitivities J*, see Section 2.6.4)

103



A Influence of weights on correlation

-1
dery 1 — o,
T R 7] A4 5
éiE E2 o1 ( ) Jli _ VEQO_O-H =9 (A8)
— 7z O11|,_
5 ~ =0 (A.5) i
! = - B =2
d -
dE;? — é 011 (A6) 8
=~ ou (A7) T11l=1
o __011|t=2
are used for the computation of the correlation matrix
_ J.Jt o 1 e
S __Yi “j 5 '
Commem > C=l Y wme<r @

it indicates the identifiability of both parameters, independent of the chosen weights.
However, if the factor weighting the lateral strains is set to zero Wy = 0, Poisson’s ratio
becomes unidentifiable which is only reflected in the correlation based on the weighted
residual sensitivities

JWr . JWr
S ___ v I CS — 1 nd. (A.11)
A A I M nd. nd.

with
W, @

E2

P R
Wi 2o

Wi ﬁan

t=1

=2l I = (A.12)

t=1

o O OO

t=2

as defined in Section 2.6.4.
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B Construction of the covariance
matrix

This chapter contains additional information on the construction of the covari-
ance matrix for the material parameters. It is a condensed summary of information
found in [37], [13] and [67] applied to the problem of parameter identification at hand.
Although it is the aim of this chapter to provide a basic understanding of the underlying
assumptions which lead to the specific form of the covariance matrix shown in Equation
(2.36), a basic knowledge in the field of statistics is required and the aforementioned
publications are strongly recommanded, especially [13] Sections 3.3, 3.5-3.8 and 6.2.

Regarding the covariance matrix of the material parameters P*, a direct construction
Pl = E (ki — E (k)] [k; — E (k) (B.1)

would require direct measurements of the parameters as well as an expected or mean
value E (k;), which is intrinsically not possible/available. Instead, some material re-
sponse (e) is measured which depends on and therefore provides indirect information
about the material parameters. Hence, the linear transformation of variables as shown in
[13] Section 3.8 can be applied to the weighted residual r¥V (k) (containing n; entries)
as a function of the random variable k (containing the n, parameters). It is worth noting
that it is important to use the weighted and not the unweighted residual or even simply
the material response, since the weights can have a significant influence on the corre-
lation of parameters, see [14] or Appendix A. Following the steps in [13], the weighted
residual is linearised around the optimal parameter set k* by

Lin(eW)=r =rV| . +T-[k—k']=T-k+a (B.2)
with the matrix of weighted residual sensitivities

er Wr Wr Wr
containing the vectors of weighted residual sensitivities as defined in Equation (2.33).

Thus, the expected values of r}¥ and k are related by

E@Y)=tpn=T-k+a. (B.4)
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B Construction of the covariance matrix

This relation can now be used in the definition of the covariance matrix of the weighted
residual

Py =E([r" = E )] [ = E ("))

= B (| Tim ki = Ton o] | Tinbin = T ] ) (B.5)
it (o] - )
=Tim P, Ty,

which, as can now be seen, is connected with the desired covariance matrix of the material
parameters P¥. Solving for the latter yields

PE=T'PWVT " (B.6)

im ~ mn Tnj

In order to end up with the definition of the covariance matrix as given in Equation
(2.36), some further assumption must be made

e the mean of the residuals vanishes E (TZVV ) =7V =0 (i.e. the model is sufficiently

(2
accurate)

e the residuals are uncorrelated, i.e. a change in one residual 7}V has nothing to do
with T}N, so that PZ\;V‘" =0 Vi#j

e the residuals share a common variance o2

see [37]. Especially the last two assumptions lead to the following, simplified structure
of the covariance matrix of the weighted residuals

PVt =% (B.7)

with §;; being the entries of the gy X 1y identity matrix. Thus, Equation (B.7) can
be used in (B.6) to end up with the format of the covariance matrix for the material
parameters as introduced in Equation (2.36), i.e.

k _ _2p—1 —t
‘Pij =0 jlm 6m” Tnj

2 =1
=T T (B.8)

-1

202 [H{in i|

ij

with
_ _ — 1

Tt =T ==y, (B.9)
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All that remains to be defined is the variance of the residuals 2. It was already assumed
that all residuals share a common variance

02 =02 (V) = o (T;?V) — 0% (V) (B.10)

which must therefore be identical to the variance of the average residual #¥V. Following
the reasoning in [13] Section 6.2, the variance of the average residual
Ntot

o (FV) = ﬁ > o () (B.11)

can be approximated by the empirical variance

1 Ntot

o LS g

(B.12)

using the difference of the observed value to the expected value. At this point the first as-
sumption reduces the empirical variance to the expression introduced in Equation (2.38)

1 Ntot

oW W (B.13)

Finally, it should be mentioned that the definition of the (statistical) degrees of freedom
Ngof 18 meant to guarantee certain properties of the empirical variance which is then
called an unbiased approximation of the variance, see [13] Section 6.2. However, two
different definitions can be found in literature

® Ngof = Mot — 1, €.g. in [26] or [13] Section 6.2
® Ndof = Mot — Np, With the number of parameters n,, e.g. in [37] or [67] Section 5.7

Although different at first sight, both definitions asymptotically approach nges = nye for
large nyo, i.€. a large amount of data.
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C Examples for the identifiability
based on Hessian

Possibilities and limits of the Hessian as a measure for identifiability are shown
in this chapter by means of three exemplarily chosen model functions with two model
parameters. At first a function with an isolated minimum is analysed showing that
especially the approximated Hessian can also be singular at isolated minima. This
is followed by two functions with either an intrinsic non-linear or linear parameter
relation. Both functions suggest that the parameter dependencies can be identified a
priori at arbitrary points by using the approximated Hessian. The chapter closes with
a proof that the approximated Hessian must indeed be singular at arbitrary points in
case a subset of model parameters is dependant.

No parameter relation Consider the model function
y=[2az+b—1] 2? (C.1)

with the unknown but independent model parameters a and b. Assume that the three
data points

o)

(551, 3/1) = (1>
($2, 92) = (27
(x?)a y3) = (37

)

O ©
S~—
—~
Q
\)
~—

are available for the identification so that the objective function

can be defined by using the residuals

ri=vy(z;) —y = [[2 a]3 x;+[b— 1]2 xﬂ -9. (C4)
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C Examples for the identifiability based on Hessian

The Hessian of this function then reads

3
H' =Y 2 [HY,| +2nH
i=1 !

3 (C.5)
:Hf1n+ZZT2H§7
i=1
with
- 9 [2a]* 22 3[2a [b—1] 2?
Hfin = ' g .
[ : L i [3 2a]” [b—1] 2? [b—1]% 2 (C.6)
and
. 48ax; 0
PR TN o

see Section 2.6.4. If restricted to 0 < a < 3 and 0 < b < 3, the function has one
isolated minimum at (a = 0.78, b = 1.00), one isolated maximum at (e = 0.00, b = 1.00)
and a saddle point at (@ = 0.00, b = 2.13), see Figure C.1. However, the Hessian H'

is clearly singular for a = 0 and the approximated Hessian H fm is also singular for

b=1, see (C.5), (C.6) and (C.7). Hence, simply applying the identifiability test at the
minimum by using the approximated Hessian (as is usually done) would falsely indicate
a parameter dependency. This simple example underlines that the second derivative test
is usually considered inconclusive if the Hessian is positive semi-definite and assigning a
general interpretation to this case may generally be deceptive.

Non-linear parameter relation Consider the model function
y=[2a 2> +[b—1]" 2% = [[2 a’ +[b— 1]2] r? = ca? (C.8)

with the unknown and dependent model parameters a and b which are related by the
function

c=[2a’+[b—1]". (C.9)
Again, the same three data points and the objective function

(21, 91) = (1, 9) (22, 92) = (2, 9) (23, y3) = (3, 9) (C.10)
f :er (C.11)

are available for the identification by using the residuals

ri=y(z;) —yi = [[[2 al’ +[b— 1]2} zi] —9. (C.12)

110



1 - e e o +..

o
-
N E
w

a

Figure C.1: Contour plot of the objective function (C.3). Minimum is marked by X, maximum and
saddle point by X. The Hessian is singular along the line (--), the approximated Hessian is furthermore
singular along the line (---).

The Hessian of this function reads
3 _
H =32 [Hfhn]i 2 H
A (C.13)
:Hfin —|—ZQ7}H£,
i=1

with

(2

LRI R R

Z C.14
:8964{ 9 [2a)* 3 [2a)> [b—1]} (C.14)
“13 24 b—1] b— 1)
and
.= {488% 2(9)3?] (C.15)

If restricted to 0 < a < 3 and 0 < b < 3, the function has infinitely many solution
points along the iso-line ¢ = 1.29 and one isolated maximum at (e = 0.00, b = 1.00),
see Figure C.2. As expected, the Hessian H' is singular for all @ and b which fulfil
c=[2 a]3 + [b— 1]2 — 1.29. The approximated Hessian HY_, however, is singular for
arbitrary combinations of a and b, see (C.13) and (C.14). The proof at the end of
this chapter shows that this must always be the case for functions with intrinsic model
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C Examples for the identifiability based on Hessian
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Figure C.2: Contour plot of the objective function (C.11). Minimum is marked by X, maximum by X.

The Hessian is singular along the lines (--), the approximated Hessian is furthermore singular on the
whole domain as indicated by the lines (---).

dependencies and not just for the specific function at hand. Evaluating the Hessian at
the point a* = 0.53 and b* = 1.25 which lies on the iso-line ¢* = 1.29 yields the Hessian

¢ 9.23 0.67
H' = 1000 {0.67 0.049} (C.16)
with the Eigenvalues and Eigenvectors
1.00
A =0 b, = [_13.73} , (C.17)
13.73
A2 =9279.57 b, = {1.00} . (C.18)
Computing the linearised relation between the two parameters at that point
b=y/c* —[2a) +1 (C.19)
db
Lin(b) =b"+ — [a — a”
= Lin(h) =6+ la—d] (C.20)
=b"—13.73 [a — a|
= [b=0]=—13.73 [a —a’| (C.21)

shows that the Eigenvector associated with the zero Eigenvalue reveals the linearised
relation between the two parameters.

Linear parameter relation Consider the model function

y=1[2a+[b— 1]]2 2 =2 (C.22)
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with the unknown and linearly dependent model parameters a and b which are related
by the function

c=2a+[b—-1]. (C.23)
The three data points and the objective function

(1, 1) =(1, 9) (22, 42) = (2, 9) (23, y3) = (3, 9) (C.24)
f :er (C.25)

are used for the identification together with the residuals
ri=vy(x;) —y; = [[2@ +b-1]° ZL‘2} -9. (C.26)

The Hessian of this function reads

3
H' = ZQ [Hflin]A+27“iH§
i=1 !

\ (C.27)
:HfmTLZQTng,
=1
with
[EIﬂmL —8[2a+[b— 1] « E ﬂ (C.28)
and
H = 22? [;1 ﬂ : (C.29)

If restricted to 0 < a < 3 and 0 < b < 3, the function has infinitely many solution
points along the iso-line ¢ = 1.13 and infinitely many maxima along the iso-line ¢ = 0,
see Figure C.3. For this case of linear parameter dependency, however, the Hessian H'
is singular for all a and b, see (C.27), (C.28) and (C.29). Evaluating the Eigenvalues
and Eigenvectors of the Hessian at the point a¢* = 0.44 and b* = 1.25 which lies on the
iso-line ¢* = 1.29 yields

1.00

- o [0 o0
2.00

Ay =5040.00 &, = {1.00} . (C.31)

Again, Eigenvector @, reveals the (linearised) relation of the two dependant parameters
at the chosen point in parameter space.
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C Examples for the identifiability based on Hessian

10°

3

Figure C.3: Contour plot of the objective function (C.25). Minima are marked by X, maximum by X.
The Hessian is singular on the whole domain as indicated by the lines (--).

Singularity of the approximated Hessian The last two examples have revealed that
especially the approximated Hessian appears to be singular at arbitrary points in pa-
rameter space for model functions with an intrinsic parameter dependency. In order to
prove that this is the case in general, the model function

y=7 (fc, c (l_c)> (C.32)

is considered with the vector of all ny model parameters

o [§ (039

being split into n; independent model parameters k and nj parameters k which are
related by means of some function ¢. Remembering that the approximated Hessian is
defined as

Ntot

Hi, =2> W,[J,eJ,]. (C.34)

lin
n=1

the derivative of the residual function

dy
Jb = 2
" dk

dy
_ [d—g%—cl (C.35)

de dk

must be evaluated at all n; observed states and points. It is important to note that the

model function y and its derivatives % and % may in general depend on the state n,
dk de
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whereas the function ¢ and its derivatives d—,_z intrinsically do not depend on the current
state. The approximated Hessian can now be written as

Ntot

hn_2 ZWn

de dk

dy®dy

dy dy o, dc
de dk ® &

2

Comparing the i-th and j-th row of the lower ngz x n; matrix

Ntot

i-th row: 2ZW [dy de dy

de dk,; dk
n=1
Ntot

dy de dy

j-th row: 2 E Wi [dc ak, dk
n=1

[
[

dy

de

dy
de

]

]2

2 &E} —9 d nth [dy dy

dk; dk 7 cd
‘ dkz n=1
Ntot
de de] _g de S W, [dd
dkj dk | d’;i n c dk
j n=1

(C.36)
2 C
4] de]
2 C
a)? de ]
(C.37)

shows that all rows of the ng xn; submatrix are identical up to a constant factor rendering
the whole approximated Hessian singular for all model parameters and independent of
the actual experimental, model function or type of dependency.
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D Representation of Hill-type flow
surface

The Hill-type tensor used in Section 4.1 can be introduced as

G=0,;A @A+ ¢ A, (D.1)
whereby unit-vectors a; define the structure tensors

A =a,®a;, (D.2)

Ai:i[Ai®I+Ai@I+I®Ai+I@Ai], (D.3)

with I denoting the second order identity tensor and the non-standard dyadic products
defined as

[T\®T,) : T3 =T, -Ts- T}, respectively (D.4)
for second order tensors T'; 53. For the purpose of illustration, the axes of symmetry
in the intermediate configuration are assumed to be aligned with the Cartesian axes

a; = e;. Constants ¢;; and ¢; can be expressed by the classic Hill parameters, to be
specific

¢p11=F+G—[L—- M+ NJ, b12 =¢21 = —F, pr=L-M+N,
¢22:F+H—[L+M—N], ¢13:¢31:—G, (p2:L+M—N, (DG)
¢33 =G+ H —[-L+ M+ NJ, P23 =32 = —H, p3=—-—L+M+N.

The coefficients of G with respect to the aforementioned Cartesian axes can be provided in
matrix form as

[Gi111 Grize Giisz Giiiz Giiis Giios [F+G —F -G 0 0 0
Goo11 Gozoo  Gozszz  Gooiz Gooiz  Gooos -F F+H -H 0 0 0
Gasir Gssze Gszzs Gssiz Gasiz Gases| | -G -H G+H 0 0 0
Gi2i1 Gizo2 Giass Giziz Giziz Gioos| 0 0 0 $L 0 0
G311 Gizaz Gizzz Giziz Giziz Gisos 0 0 0 0 N 0

| Go311 Gozzz  Goszzs  Goziz Goziz Gagasd | 0 0 0 0 0 31M]

(D7)

since tensor G has minor and major symmetries.
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E Limits for scaling parameter [ in
model 2

Boundaries for material parameter S are derived in this chapter to ensure that the
dissipation of model 2, with non-associated evolution equations, is always larger or equal to
Zero.

The dissipation of model 2 is given in Equation (4.22) so that the associated dissipation
inequality can be written as

D™ = Ao [bha® + (1 — b Mya+ My, > 0. (E.1)

For this model, the plastic multiplier will always be non-negative and it will be assumed that the
same holds for the mechanical material parameters. Thus, inequality (E.1) is always fulfilled
as long as

D(a) =bha?®+[1 — B]bMya+ My, >0, with Apm > 0. (E.2)

Recalling that b > 0, h > 0 and M,, > 0, this function can be identified to be a convex,
quadratic function in o with a y-intercept of D (o = 0) = 3 M,,. It is now sufficient to ensure
that

D>0 Ya>0 (E.3)

since « evolves positive for the model at hand. A first, lower boundary for the parameter 3 can
easily be obtained by considering the y-intercept of the continuous function D. D (a =0) >0
has to be fulfilled in order to ensure that the particular point of & = 0 complies with (E.3).
Hence

B>0 (E4)

must hold to ensure a positive y-intercept. Further conditions for 8 can be derived by consid-
ering that the dissipation of the model will always be larger or equal to zero if the function

D(a)=bha®+[1—BlbMya+ My, >0, with

(E.5)
67 b7 h'7 Myo ZO

lies only in the first quadrant for a > 0. There are only two possibilities for a convex, quadratic
function with a positive y-intercept fulfilling this condition. Either both roots of the function
must be negative, see Figure E.la, or there are less than two roots, see Figure E.1b. In
summation, the dissipation of the model is guaranteed to be larger or equal to zero if g is
chosen such that either condition is met.
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E Limits for scaling parameter 3 in model 2

/
Yo
Yo

(a) Case 1 - D has only negative roots. (b) Case 2 - D has less than two roots.

Figure E.1: D is a convex, quadratic function in o and required to be in the first quadrant for
all a > 0 to ensure a dissipation which is larger or equal to zero.

Case 1 — negative roots The two roots aj 2 of function D can be computed by

2 02
[1 — B] My, [1 -5 Myo My,
S + — ) E.
2 2h 472 o (E.6)
It has already been established that 8 > 0 so that only two different cases must be considered.

1. 8 <1 — The first addend is negative for this case. Hence, it suffices to enforce the larger
of the two roots

1*5M0 [1_ﬁ]2M20 Mo
a1 = 2l]z ’ +\/ o 0 (B.7)

to be negative, resulting in the inequality

ol = —

[1_6]Myo +\/[1B]2My20 _BMyo <0

2h 4 h? hb —
N [1 — B8] My, > [1_m2M50_BMy0
2h - 4 h2 hb
[1 - 5} Myo \/[1 B B]QMyQO Myo .
— | > — < p < .
& ' oh > 12 ﬁhb with0< <1 (E.)
o [1_5]2M50>[1_ﬁ]2My20_BMy0
4 h2 - 4 h2 hb
& 8>0.

This renders one set of bounds for the material parameter 5 to be 0 < § < 1.
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2. 8> 1 — The first addend is positive for this case and it must again be ensured that the
larger of the two roots oy is negative. This however will not occur since

— B M 1— B)% M2 M.
041:—[1 QB;L yo—i—\/[ f;ﬂ yo—ﬁh‘? (E.9)

is the sum of two positive addends. It is therefore impossible to have only negative roots
if 8 > 1 and the resulting bounds are again 0 < g < 1.

The roots of function D are therefore negative if 0 < § < 1, leading to a dissipation of the
model which is larger or equal to zero.

Case 2 — less than two roots The quadratic function D has less than two roots (in R) in
the case that the radicand of Equation (E.6)

2
1-BPa2
4 h?

Myo
hb

B (E.10)

is zero (only one root) or negative (no roots). This is the case if 5 lies between the two roots
of r
My, b+ 2h [u Mzobﬂ}

Bu = (E.11)

M, b

since r is a convex, quadratic function in §. Following therefrom, the convex function D has
less than two roots in R so that the dissipation is always larger or equal to zero for

B<B < bBu- (E.12)

Hence, the total set of bounds for the material parameter 8 which ensures a fulfilment of the
second law of thermodynamics reads

My, b+ 2h [u: M?;f”+1}

0<B8<1 VvV B <B< By, with By = (E.13)

My, b
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F Comparison of model responses

It was stated in Remark 4.4 that the two model formulations used within this thesis
yield the same mechanical stress-strain response but dissipate a different amount of energy.
This chapter contains the associated proof, assuming small strains, a neglectable influence of
the low rise in temperature and dismissing the linear hardening part of model 1. Part of the
derivation can also be found in [6].

At first, an expression for the dissipated energy is derived for the two small-strain-model
formulations. Afterwards, the mechanical response of the two formulations is analysed for a
specific load case. The desired expressions are derived parallelly for both models to allow a
better comparison.

From the energy contributions

1
Model - 1 ¢ = 5661 tE:e®) 9Pl = (o, — 0y o+ exp(—Hexp )| ,  (F.1)

1

Hexp
1 1

Model - 2 P = 5561 CE:e, P = 5Hoﬂ, (F.2)

the driving force K of the internal hardening variable « is derived, i.e.

Model - 1 K= — g% = [0y — 0y] [1 — exp(—Hexp )] (F.3)

Model - 2 K = —?/J:—Ha. (F.4)
A yield surface

Model - 1 @ =69 — [0, — K] = 0°4 — [0, — K] , (F.5)

Model - 2 ® =% - [0y, — K] = 0% — [0y, — K]

is defined by using the norm of the deviatoric part of the stress tensor as an equivalent stress
measure which is positively homogeneous of degree one. The evolution equations are derived
from a plastic potential and are assumed to be associated to the yield surface for model 1 and
non-associated for model 2, i.e.

Model - 1 g=92, (F.7)

10
Model - 2 =P+ - — K? F.8
ode g +2H ) (F.8)
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F Comparison of model responses

with the material parameters b and H. The evolution equations for the internal variables then
read

0P : 0P

Model - 1 Pl = A\pm EeE & =Apm 52z = Apm s (F.9)
) dg 0D ) dg
Model - 2 &bl — Apm o = Apm Pt & = A\pm K Apm [1 —ba] . (F.10)

With these equations at hand, the dissipation of each model can be written as

[ 0D
Model - 1 D™ =g : & 4 K & = Apy a:aﬂﬂ
L o (F.11)
=g [l + K|
mech - pl . [ 0P 9
Model - 2 D =0: " +Ka=\m |0: -—+ K+ bH«
do (F.12)

= Apm [HadeVH + K+ b-H az} .

In the case of elasticity, Ap,m vanishes and no energy is dissipated. For plastic loading, however,
¢ = 0 must hold. Hence, Equations (F.5) and (F.6) respectively can be used to further
transform the expression for the dissipated energy to yield

Model - 1 DN = N e (F.13)
Model - 2 Dt = A\p [0y +0H ] . (F.14)
These expressions, however, can only be compared if the evolution of A, and ePlis known. In
order to reach an analytical solution, the following assumptions are made which are in line with

the boundary value problems examined in this thesis. Consider a body with a one-dimensional
stress state which is subjected to a linear increasing strain load, i.e.

g = + eP! with €99 = €33 and el =ct. (F.15)

For this special case and for isotropic elastic properties, the strain in lateral and the stress in
loading direction can be computed by using

o1 = 20+ N\ 5] + 2\ €8, (F.16)
o9 =AeSh + 2+ N eSh=0 (F.17)
e )\ € €
= 5212 = — mglll = —V€111 (F18)

2

A
= 011 = [2#4—)\]—“7

1
| ei=Adi=4 [511 - 55’1} . (F.19)

The elastic material parameters are summarised in parameter A for the sake of more clarity.
Due to the assumptions made, there is only one unknown, sﬂ. To compute the missing plastic
strain component, the yield surface of each model is considered for a plastic state and the
resulting equation solved for the sought unknown. Before doing so, however, the equivalent
stress as well as the internal hardening variable must be defined as functions of 8‘1)11.

124



Since a one-dimensional stress state is postulated, the equivalent stress is reduced to

2 2
eq _ “ — “ __pl
g \/;0'11 \/;A [611 611] (FQO)
and can be inserted into the yield surface

2

Model - 1 ¢ = \/QA [511 - 6?” — Oyo — [Oyoe — Tyol [1 — exp(—Hexp )] (F.21)
2

Model - 2 & = \/;A [811 - agﬂ — oy~ Ha. (F.22)

Concerning the internal hardening variable, the evolution equations can be used to define the
desired relation. For the specific load case at hand, the evolution of the plastic strains can be
specified as

20 0
Model - 1 &P = Ay gf =dpm | 0~ 01 , = &= \/g ., (F.23)
|00
Viooooo
Model - 2 &P = Ay 99 _ dm | 0 -1 0 |, = &=\ \/5 . (F.24)
oo 0 (\)/5 . 3
I Ve |

Applying Equations (F.9), (F.23) and (F.10), (F.24) respectively allows the integration of each
equation by using a separation of variables

Model - 1 ((iTctx = Apm & o= /)\pm dt, (F.25)
1
Model - 2 %‘t)‘ =dpm [1=ba] &  —gln(l-ba)= /Apm dt,  (F.26)
de?! 2 3
Model - 1 % = Apm \ﬂ & \@ Pl = / Apmdt  (F.27)
de?] 2
Model - 2 % = dpm \| 5 & \/g Pl = / Apmdt.  (F.28)

Based on Equations (F.25), (F.27) and (F.26), (F.28) the following relations are obtained

Model - 1 a= \/g e (F.29)

1 3 1 3
Model - 2 —bln(l—ba):\/;elfll & a:bll—exp<—b\/;elﬂ>]. (F.30)
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F Comparison of model responses

This equation can now be used to finally define the yield function with Ell)i as the only unknown

3
A [511 - 5?” — 0yo = [0y — Oye] [1 — €xp (‘Hexp 2511)i>]

(F.31)
2 r ] 3
V3 A _511 - 511)11_ = Oy + [0yoe — 0yp] XD (‘HeXp \/;51&%) )

2 70 1 1 3
Model -2 @ = 3 A en - 511311_ — oy, — H 3 [1 — exp <—b \/QE%)] (F.32)

2 T . H H 3
- 3A_€11—£§’1_—0y0—b—i—bexp(—b\/;zs‘fl).

In the case of plastic loading ¢ = 0 must hold and allows the computation of 611)11. It is,

however, not necessary to further specify Elfll, since the yield surfaces are identical if the material
parameters of the model fulfil the relations

Model - 1 ¢ =

W N

b= Hexp (F.33)
H
= 00 — O] - (F.34)
Since the conditional equations @ are identical, the resulting quantities 5% must also be iden-
tical. It has hence been shown that the two models do indeed yield the same stress-strain
response, at least for the specific load case assumed for this derivation. Equations (F.23) and
(F.24) furthermore show that the plastic multiplier of both models evolves identically and, in

consequence, that the dissipation predicted by each model and shown in Equations (F.13) and
(F.14) is different.
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G Influence of Hill parameters on flow
surface under uniaxial stress states

The correlation between the parameters of a Hill-type yield surface for a one-dimensional
stress state is addressed in this chapter. It was already mentioned in Section 4.2 that four
out of the six Hill parameters have no influence on the yield limit for a one-dimensional
stress state, and that all other material parameters governing plasticity are simply scaled by
one of the two remaining Hill parameters, so that infinitely many combinations of material
parameters describe the same uniaxial yielding behaviour. The exact scaling relations for
all material parameters are derived by comparing two formulations of the considered yield
surface. Furthermore, it is shown that the evolution of plasticity is also identical for the
aforementioned parameter relations.

Consider two yield surfaces @ and @, for the uniaxial stress state shown in Equation (4.30),
ie.

[ -] [ (S]] |

(G.1)
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G Influence of Hill parameters on flow surface under uniaxial stress states

Furthermore, assume a prescribed, fixed stress My = M which leads to plastic yielding. For
such a case, @y = @3 = 0 must hold so that each equation can be transformed to

1
1:| 2 [Myo th \/*

] ol )] -0

— M Hln rr o~
M—[ v 4 I; V Héa+t

My, _ My, {E ey 7\ (G4)
Gl )

If a parameter set is chosen for each formulation, for which the relations

(G.3)

+
8
|

+1

T

% _ Z | (G.5)
]\/”% _ A\% (G.6)
I?I _ E;ll | (@7)
]‘\% . ]‘\% , (G.8)
]\%’ _ Ij/ﬁ (G.9)

hold, the two yield surfaces are not only identical, but a relation for the internal hardening
variables

VHa=VHa (G.10)

can directly be computed. To prove that the evolution of plasticity, represented by the plastic
velocity gradients

LP' =\ and L™ = Jpm —— (G.11)

PR oM
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is identical for both yield surfaces, a relation between the plastic multipliers Ay, and 5\pm is
required. Fortunately, this relation can be found by considering the time derivative of Equation
(G.10) and the associated evolution equation for the internal hardening variable, i.e.

VH&=VHG&,
oP —_ 9
& VH o =VH o= (G.12)

o VH =V i,
VH -

= Wi Apm - (G.13)

Apm =

With Equations G.5 (adding one, expanding fraction, using inversion) and G.12 at hand, it
can be shown that

-F 0 0
Ob A
LP = A = __Cpm F+H
Aem 501 VEF+H 8 Jg _(}{

“dmVF+H| 0 1 0

H
0 0 -7
FJI:H 0 0 (G.14)
—Apm\/H\/1+ 0 1 0
H
0 0 T F+H
2
- | —== 0 0 -
. _ P Fri . é -
o VA1 E L 0T 1 0 =22
i i oM
0 0 -5F

holds. Hence, an infinite number of material parameter combinations can describe the same

uniaxial plastic behaviour for this material model, such that the form of yield surface and the
rate of plastic hardening are identical.
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