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Abstract

Motivated by the influence of (micro-)cracks on the effective electrical properties of material systems and components, this
contribution deals with fundamental developments on electro-mechanically coupled cohesive zone formulations for electrical
conductors. For the quasi-stationary problems considered, Maxwell’s equations of electromagnetism reduce to the continuity
equation for the electric current and to Faraday’s law of induction, for which non-standard jump conditions at the interface are
derived. In addition, electrical interface contributions to the balance equation of energy are discussed and the restrictions posed
by the dissipation inequality are studied. Together with well-established cohesive zone formulations for purely mechanical
problems, the present developments provide the basis to study the influence of mechanically-induced interface damage
processes on effective electrical properties of conductors. This is further illustrated by a study of representative boundary
value problems based on a multi-field finite element implementation.
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1 Introduction

Material interfaces can occur at different material length
scales and can significantly influence the effective consti-
tutive response of the material (system) under consideration.
Typical examples for such interfaces are grain boundaries in
polycrystalline materials and transition zones between dif-
ferent phases in multi-phase materials. In this regard, the
unique properties of the interfaces may significantly dif-
fer from those of the surrounding continuum and can be
accounted for in simulations by the introduction of interface
models. In these approaches, the physical interface (of finite
thickness) is not geometrically resolved but rather approx-
imated as a lower-dimensional object (e.g. a surface in a
three-dimensional setting).
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Based on the assumed continuity of field quantities across
the interface, different types of interface formulations may
moreover be distinguished, see [15] and references cited
therein. Elastic-interface models originate from the pioneer-
ing works of Gurtin and Murdoch on interface elasticity
[11,23], and assume the displacement-type fields to be
continuous, whereas traction-type quantities may exhibit
jump-discontinuities across the interface. Classic cohesive
interface models that date back to the seminal works
by Barenblatt on quasi-brittle materials [2] and by Dug-
dale on ductile materials [6] on the other hand, assume
traction continuity across the interface and allow for the
modelling of jump-discontinuities in the displacement-type
fields. Although seemingly different, it has recently been
shown that classic cohesive zone formulations and interface
elasticity formulations can be regarded as two extremes of
the unifying theory of generalised imperfect interfaces elab-
orated in [15,16,27,31].

Since the works of Barenblatt and Dugdale [2,6], classic
cohesive zone models have been subject of intense research
with many contributions focusing on the consistency of cohe-
sive zone formulations with fundamental requirements of
continuum mechanics (particularly for finite deformations),
e.g. [22,26,35,38], and on the elaboration of specific trac-
tion separation laws that account for irreversible processes
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such as damage and plasticity, e.g. [7,12,25,30,33,39]. In this
regard, a salient feature of cohesive zone damage formula-
tions as compared to continuum damage formulations is that
the fracture energy does not depend on the finite element
size such that no sophisticated regularisation schemes are
required [3,24]. Moreover, cohesive zone formulations can
conveniently be incorporated into finite element formulations
by means of mixed-type boundary conditions or cohesive
zone elements, see [24] and references cited therein.

In addition to the developments on cohesive zone for-
mulations for purely mechanical problems, cohesive zone
formulations for coupled multi-physics problems have been
in the focus of intense research. In particular, thermo-
mechanical coupling has been addressed in [8,9,28] and
electro-mechanically coupled cohesive zone formulations for
electro-active solids have been studied in [1,18,19,34,36,37].
Focussing on piezo- and ferroelectric effects in dielectric
solids, the latter formulations differ significantly from the
present developments on electrical conductors. In this regard,
the principal (electrical) material parameters in the estab-
lished formulations for electro-active solids are the piezo-
and dielectric moduli, whereas the present contribution is
motivated by the influence of mechanically-induced interface
damage processes on the electrical conductivity, as studied
experimentally in, e.g., [4,5,10].

The contribution is organised as follows: Section 2 deals
with the derivation of the fundamental set of balance equa-
tions and jump-conditions at material interfaces, with par-
ticular focus being on the electrical sub-problem. Based on
these developments, a finite element-based implementation
of the theory is discussed in Section 3. These fundamentals
serve as the basis for the study of representative boundary
value problems in Section 4 that show the applicability of
the proposed formulation. In particular, the finite element
implementation is validated by means of analytical solutions,
and the influence of intergranular fracture processes on the
electrical conductivity is studied numerically.

1.1 Notation

With «, B, y, 8 denoting tensor-valued quantities of first
order and with the standard dyadic product denoted by ®,
single and double tensor contractions take the form [ ® B]-
[y©3] = [B-7][«®8] and [« @ B] : [y ®8] =
[ ¥] [B 8] In addition, the non-standard dyadic prod-
ucts [ @ BI® [y ® 8] = [« @ y|®[B ® §land [« Q@ B1®
[y ® 6] = [ot ® y]®[6 ® ] are introduced to shorten nota-
tion. Moreover, I denotes the second order identity tensor,
€ the third order permutation tensor and Ve, V - o, V X e,
indicate (right-)gradient, (right-)divergence and (right-)curl
operations, respectively. Furthermore, quantities at the two
opposing sides of an interface will be indicated by super-
scripts ¢~ and ™ such that the jump of a quantity across the
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Fig. 1 Specification of quantities in the control volume V and on the
interface Z. The interface is characterised by its unit surface normal
vector 12 and quantities at opposing sides of the interface are indicated
by superscripts e~ and o™

interface follows as
[o] = o —o, @))

the interfacial mean value reads

L
{0}}—5[0 +o7 ], 2)
and the identity
[ox] = [o] {{=}} + (o} [x], 3)
holds.

2 Continuum thermodynamics

This section deals with the thermodynamic fundamentals
of a continuum with material interfaces that is subjected
to mechanical and electrical loads, see Figure 1. For the
convenience of the reader, and to show similarities and
differences in the derivations of the local field equations,
the mechanical sub-problem is briefly recapitulated in Sec-
tion 2.1 before the electrical sub-problem is studied in detail
in Section 2.2. Based on these fundamentals, an extended
form of the balance equation of energy is proposed in Sec-
tion 2.3, and constitutive restrictions that are posed by the
extended dissipation inequality are discussed in Section 2.4.
The ensuing derivations are based on the assumption of
quasi-static deformation processes and of a quasi-stationary
electrical problem.

2.1 Mechanical sub-problem

The control volume V is assumed to be loaded by volume
distributed forces f that scale in the mass density (per unit
volume) p, by surface distributed forces 7 that act on the
interface 7 and scale in the mass density (per unit surface)
0, and by tractions

t=o0-n, “4)
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that are related to the small strain stress tensor o via the
outward unit surface normal vector n. Based on the latter
assumptions, and by neglecting line-distributed (tangential)
forces on 0Z, the extended integral form of the (quasi-static)
balance equation of linear momentum reads

0:[ pfdv+/5?da+f tda. 5)
% T VY

The third summand on the right-hand side of (5) can further
be rewritten as

/ tda:/ tda—}—[—l—i—l]/ tda
oV oV I+uUIl-
=/ tda+/ tda+/[(t“]]da (6)
v+ A% T
=/ V~adv+/ V~6dv+/[?]]da
VA - T

where the classic divergence theorem was used along with
the definitions

(=7 -7, Tt=0*%, T =0 -7 7

and with the geometric constraint on the unit surface normal
vectors at opposing sides of the interface

nT=-%, n =10. (8)

The localisation of the ensuing equation that results from the
insertion of (6) into (5), i.e.,

0:/ V~a+pfdv+/ V.o +p fdv
v+ %

_ 9
+/I[[7ﬂ+ﬁfda,

for control volumes that contain and for control volumes that
do not contain material interfaces, eventually gives rise to
the local form of the balance equation of linear momentum
in the bulk and at the interface, namely

(in the bulk),

(at the interface).

(10a)
(10b)

Under the same assumptions that gave rise to (5), the
extended integral form of the balance equation of angular
momentum follows as

0=/xAxpfdv+/xAxﬁ?da+/ xA X tda,
\% A VY
(11)

with x denoting the position vector of a particle and with
x A = X — Xrer denoting the difference vector to a fixed but
otherwise arbitrary reference point x¢f. In a small deforma-
tion setting, the balance equations are evaluated with regard
to the undeformed configuration such that ¥ = x~ = xT.

Accordingly (11), takes the form

0:/ xax[Veo+pf]+te:otdy
y+
+/ xAx[Vwr—i—,of]—i—e:atdv (12)
V-

—i—/I xAx[[[?]}+ﬁj~”]da.

By invoking (10), the localisation of (12) further simplifies
to the classic symmetry condition of the bulk stress tensor

o =c' (in the bulk). (13)
In a finite deformation setting, the balance equation of angu-
lar momentum additionally stipulates a coaxiality constraint
between {{¢}} and the jump in the displacement field across the

interface [u], see for instance [16] for a detailed derivation
and the discussion in [26,38].

2.2 Electrical sub-problem

The quasi-stationary processes of electrodynamics that are in
the focus of this contribution are governed by the continuity
equation for the electric current density

0:/ j-nda, (14)

v

and by Faraday’s law of induction

0 =/ e -ds, (15)
9A

with e denoting the electric field vector, see e.g. [14,17] for
a derivation based on Maxwell’s equations of electromag-
netism.

Following the same procedure that led to (10), the sur-
face term in (14) is rewritten by making use of the classic
divergence theorem

j-nda
T+uZ-

=/ j~nda+/ j~nda+/[[?]]da

v+ [0 T

=/ V~jdv+/ V. jdv +/[[T']]da (16)
v+ V- A
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Fig.2 Detailed schematic sketch of the interface

and by introducing the definitions

[=it-7T, it=jT-7, i =j @ (17)

The localisation of (16) for control volumes that contain and
for control volumes that do not contain material interfaces
stipulates the local form of the continuity equation for the
electric current in the bulk and at the interface, namely

(in the bulk), (18a)

(at the interface). (18b)
Equation (18b) states that the normal jump of the electric
current density vector across a material interface vanishes.
In the derivation of this continuity condition it has tacitly
been assumed that the tangential component of the interfacial
electric current density vector is negligible. The relaxation of
this assumption would lead to a generalised formulation that
includes contributions akin to those known from interface
elasticity formulations in the mechanical case.

In order to localise Faraday’s law of induction (15) under
the assumption of strong discontinuities in the electric field
quantities, it is instructive to resolve the electrical processes
atthe interface as depicted in Figure 2. To this end, assume for
now that it is possible to define the electric field as the (nega-
tive) gradient of an electric potential field ¢, as is customary
for quasi-stationary electrical problems. By integrating the
electric field along a path 7 connecting two opposing points
of the interface one arrives at

+

¢
/e~ds=/—V¢~ds=/ —1d¢ = —[¢]. (19
T T _—
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The mathematic analogue to the latter physically motivated
derivation is the integration of a §-distribution since the elec-
tric field becomes infinite in the limit case of vanishing
interface thickness. With (19) at hand, the evaluation of (15)
for an arbitrary control surface .A that intersects the material
interface, see Figure 3, yields

/aAe.ds=/“S+e.ds+/‘;7e.ds+[[¢ﬂE_[[¢]]B
= [ evds [ edst [le - [on
S+ S

4+ [—1+1] e-ds
Sfusy

=/ Vxe-nda—i—/ V xe-nda
At -

+ /Sz [ef —e7]-ds+ [¢]e — [¢]s (20

where the Kelvin-Stokes theorem in its classic form has been
used. The localisation of (20) for a control surface that does
not intersect a material interface yields the local version of
Faraday’s law of induction in the bulk

V x e =0 (inthe bulk), 1)

which can naturally be fulfilled by the introduction of an
electric potential for the electric field vector. The localisa-
tion of (20) for a control surface that intersects the interface
yields no additional condition for the studied cohesive zone
formulation since, by invoking (21), the last three summands
in (20) cancel out. It is noted that the latter statement tacitly
assumes negligible tangential electric currents in the inter-
face and hence neglects the tangential electric field in the
interface. In an extended formulation that accounts for the
latter quantities in the spirit of interface elasticity, an addi-
tional condition would occur that can be fulfilled by a proper
definition of the interfacial electric potential. This discussion
lies, however, beyond the scope of the present contribution.

Remark 1 (Continuity condition in the case of weak discon-
tinuities). In the derivation of (20), strong discontinuities,
i.e. jumps in the electric potential across material interfaces,
were considered. Due to this assumption, the classic conti-
nuity condition for the tangential component of the electric
field vector

le] - R=0 Yh L7 (atthe interface) (22)
with & denoting tangential vectors to the interface, was not

recovered. If only weak discontinuities, i.e. jumps in the elec-
tric field vector, were considered, (20) would take the form

/e-ds:f Vxe~nda+/ V xe-nda
A At -
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bg E %m simplifies to
_ P =/ Vi : adv+f[[1'4]] - {t) da. (26)
" " AVA z
X ! A
5 The thermal power is given by
_') B (+ P9=/prdv—/ q -nda
S— o8 O St v oV 7

S; Stz Sf

Fig. 3 Intersection of control surface A = A~ U AT and interface Z.
The beginning and end point of the intersection line are labelled with
B and E, respectively

— T e |-ds, 23
/SI[e e |- ds (23)

which would imply (22) in addition to (21).

2.3 Balance equation of energy

This section summarises the balance equation of energy for
a continuum that is subjected to mechanical, thermal and
electrical loads. The thermal problem is not in the focus
of the present contribution but included in the presentation
to highlight the fundamental differences between electrical
and thermal cohesive zone formulations with regard to the
evaluation of the dissipation inequality, cf. Section 2.4. By
introducing the mass-specific internal energy densities of the
bulk e and of the interface ¢, the (quasi-static) balance equa-
tion of energy reads

d [~
— pedu+—fpeda=7>"+7>9+7>¢. (24)
de Jy dt J7

The powers exerted by mechanical, thermal and electrical
loads on the control volume are denoted by P*, P? and P?,

respectively. In accordance with the assumptions made in
Section 2.1, P¥ takes the form

P"=fit~pfdu+/ﬁ~,5;‘da +/ u-tda
v A vV
:/ Vﬂ:adv+/ i [V-o+pf]d
AVA W\

+fI[[i4]-{{?}}da+fzﬁ-5?+{{u}}-[[t“]]da, (25)

with & denoting the velocity field. By additionally assuming
that the interface remains positioned in the middle of the two
opposing surfaces, i.e. # = {{i}}, and by invoking (10), (25)

:/ pr—V-qdv+/—ﬂq~ﬁﬂda
V\Z T

with the classic heat flux vector ¢ and with r denoting mass-
specific heat sources in the bulk. It is noted that heat sources
and the tangential heat flux vector in the interface have been
neglected in (27) for the sake of simplicity.

The electrical contribution to (24) is of purely dissipative
type if polarisation and magnetisation effects are neglected.
In particular, the dissipation caused by the electric current in
the bulk is assumed to take the classic form

PY =f j-edv. (28)
W= Lz

In order to derive the energy contribution related to the elec-
tric current across the interface, a simple electrical resistor
connecting the two opposing sides of the interface is anal-
ysed, as schematically depicted in Figure 2. According to
(18b), the electric current density does not change across the

interface, i.e.it =i~ = {{i}}, such that
Pi=[ [ e @asda= [ ~@nIo1da, 29)
zJT A

is proposed, see also Remark 2. It is noted that tangential
electric currents in the interface are neglected in (29), in
accordance with the derivations presented in Section 2.2.

By inserting (26)—(29) into (24) and by localising the ensu-
ing equation in the bulk and at the interface one eventually
arrives at

(30a)
(30b)

pée=0c:é+pr—V.q+j-e (in the bulk),
pe=[a] - () —[qg-7] — (i} [¢] (attheint),

where the definition of the small strain deformation tensor
e = VSMy was used.

Remark 2 (Alternative derivation of (29)). The specific form
of the dissipation related to the electric current across the
interface, (29), was motivated in Section 2.3 based on phys-
ical arguments. In this remark, a more elaborated way to
derive (29) is shown. First when focusing on a control vol-
ume that does not contain interfaces, it is observed that by
virtue of (18a), (28) can alternatively be expressed in terms

@ Springer
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of the electric current density and of the electric potential at
the boundaries, namely

/j~edv=—/ j-n¢>dv+/V~j¢dv. 31)
v vV Y=

Analogously to the mechanical sub-problem (25), the eval-
uation of the surface integral-based representation of the
electric dissipation for a control volume that contains inter-
faces yields

—/ j-n¢dv=/ j-edu—/[[7¢]]da, (32)
EYY WI T

where tangential electric currents in the interface have been
neglected in accordance with Section 2.2. From a physics
point of view, (32) states that two contributions are associ-
ated with the dissipation caused by the movement of electric
charges from regions of high electric potential to regions
of low electric potential. Whereas the first contribution is
related to the classic electrical resistance of the bulk, the sec-
ond contribution accounts for the electrical resistance of the
interface. By additionally taking (3) and (18b) into account,
the interface contribution in (32) can further be rewritten as

- [Fo1da =~ [ 1 1ey+ i g ca (3
7 I~
2.4 Dissipation inequality

With 0 and s denoting the absolute temperature and the mass-
specific entropy density of the bulk, and with 5 denoting the
mass-specific entropy density of the interface, the dissipation
inequality reads

d — pr qg-n
— | psdv+ [ psda > —dv — da.
dt Jy T v 0 ov 0

(34)

In order to localise (34), the volume integral on the right-hand
side is rewritten in a first step. More specifically speaking

q-n 1 1
da = ~V.qg——5¢q-Vodv
ay 0O V\29 0

+/[[q Ao N +lg -y [0 da
T

(35)

holds, where (3) was used. To proceed, the convex-concave
Legendre(-Fenchel) transformations

v (6, e) =irv1f{e (s, ) — 05}, (36a)

¥ (6, 8) =inf {2, o) — 5], (36b)

@ Springer

with energetic duals

0 d

o0 W (37a)
as 00

~ 9T v

g oYW (37b)
as 00

are invoked. In the latter set of equations, i and 1; denote
the mass-specific Helmholtz free energy density functions
of the bulk and of the interface, and g denotes the interface
temperature.

By inserting (30) and (35) into (34), and by making use
of (36) one eventually arrives at the local forms of the dissi-
pation inequality

o:é—p[t/'f—ksé]—éq've—i-jmzo

(in the bulk) (38a)

and

[a] - (7 — 5[ +58] - (@) [9]
+7[tg -yl + [0~y 0" lg 7] = 0

(at the interface). (38b)

The application of a Coleman-Noll-type procedure to eval-
uate (38) naturally gives rise to the constitutive restrictions
for the electrical sub-problem

J-€
—{{i) [

(in the bulk),
(at the interface).

>0 (39a)
>0 (39b)

From a physics point of view, (39) implies that the flow of
electric charges is opposed to the electric potential gradient.
In contrast to the electrical sub-problem, the thermal sub-
problem at the interface

ot anto "1+t -5"]la 7] =0
(at the interface) (40)
cannot further be evaluated without additional assumptions

on the relation between the bulk and the interface tempera-
ture.

3 Weak form of equilibrium
In order to derive the weak form of equilibrium for the

electro-mechanically coupled continuum under considera-
tion, field equations (10a) and (18a) are multiplied by test
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functions

u

n", respectively n® (G3))

and integrated over (the subdomains of) body B. Likewise,
(10b) and (18b) are multiplied by test functions

W' = "}, respectively 7% = {(n?} (42)

and integrated over the interface(s) Z. By additionally apply-
ing the classic divergence theorem and by making use of (3),
the weak form of the balance equation of linear momentum
(10), i.e.

(43)
takes the form
0:—/ 2 :adv—/[[n"]]-{{?}}da
B\Z 7T
+/ n"-pfdv+/{{n“}}~57da (44)
B\Z 7

+/ 7" - tda.
B

Following the same procedure, the weak form of the conti-
nuity equation for the electric current density

0=/ n¢V-jdv+/n
B\T T

can be rewritten as

~

[i]da (45)

S

0=—/ Vn"’-jdv—/ﬂn"’ﬂ{{?}}da
B\Z T

+/ n® j-nda.
B

3.1 Finite element implementation

(46)

The finite element implementation of the proposed cohesive
zone formulation is based on the discretisation of primary
fields and test functions by means of Lagrange polynomials,
namely,

Nep Nen

u=> Ncuc, 1*" =) Nanl, (47a)
C=1 A=1
Nep Nen

¢"= Npg¢p. n*" =) Npunj. (47b)
D=1 Bl

with nep denoting the number of element nodes, with N,
denoting shape functions and with nodal values being indi-
cated by subscripts, e.g. uc. By inserting (47) into the weak
forms of the field equations, (44) and (46), one arrives at the
residual-type format

uh ~uh

vol — f vol

~uh
|:r"h:| _ ;‘n{l—i_fint - 'slul;_ (48)
f

$h ~

r ¢h ¢h ¢h
int + fint - Jsur

thatis based on the (generalised) internal, surface and volume

forces vectors defined in Appendix A. The linearisation of

(48) at some iteration step ¢ in an iterative, gradient-based

solution method moreover results in the update relation

Kuu+ﬁuu Ku¢+ﬁu¢ |:Aﬁ:| __|:r"h:|
K% + K¢ K99 4 K9 , A4 |, roh .
49)

for the global lists of nodal degrees of freedom, & and a .In
(49), K** and K** denote bulk and interface contributions to
the generalised global stiffness matrix. The specific forms of
these quantities are provided in Appendix B.

4 Representative simulation results

This section focuses on the study of representative boundary
value problems. To this end, the electro-mechanical mate-
rial behaviour is specified in Section 4.1 and Section 4.2.
In particular, a coupling of the mechanical and electrical
field equations due to the influence of deformation-induced
interface damage processes on the electrical conductivity is
considered. With the specific material model at hand, ana-
lytical solutions for a one-dimensional tensile problem are
derived in Section 4.3 and compared with finite element-
based simulation results in Section 4.4. Finally, tension
and compression tests of a test specimen with geometri-
cally resolved microstructure are studied in Section 4.5. It
is emphasised that the boundary value problems studied in
the proof of concept-type simulations are of academic nature
and that, in particular, neither the material models nor the
material parameters are adapted to a specific material (sys-
tem). Moreover, it is noted that the derivations presented in
Section 2 and Section 3 hold independently of the spatial
dimensions such that the application of the proposed formu-
lation to general three-dimensional boundary value problems
is possible.

4.1 Mechanical material models

For the sake of simplicity, the mechanical response of the bulk
is assumed to be isotropic, linear-elastic and to be governed
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by the Helmholtz free energy density function

plﬂZW(E):%EZESE‘, (50)

with the elasticity tensor

Ev
E=——— " IQI+

[I+v][1l—=2v] 2[1+v] [I®I+I@I]

(S

being parametrised in terms of Young’s modulus E and Pois-
son’s ratio v. For the interface, a linear-elastic mechanical
material response combined with a brittle damage formu-
lation is used, which represents a direct extension of the
model proposed in [29]. More specifically speaking, the area
specn‘ic interface Helmholtz free energy density function
Uo=p w is formulated as a function of the displacement
jump [u] and of the interface damage variable d. Further-
more, it is assumed that interface damage processes manifest
themselves in a reduction of the mechanical stiffness E in the
tensile region

U ([u],d) =[1—d] @ ([u]) with
~ 1~ (52a)
%, ([u]) = 3 Efu]-I-[u], iffu]-n>0,

whereas the interface is assumed to regain its normal stiffness
under compressive loadings

—d|I -7l [u]
(52b)
®n-[u], if [u] -7 <0.

With (50) and (52) at hand, the evaluation of (38) yields the
specific form of the bulk stress tensor

v

:—:E: s 53
e & (53)

and of the traction separation law under tensile loadings

{{?}}:%41—3]5[&4],

respectively under compressive loadings

if [u] -7 > 0, (54)

—=E[1-d]|[I -u®7 [u] 55)

+En@fi-[u],if [u] -7 <0.

By virtue of (38)-(40) and (52a), the reduced form of the
interface dissipation inequality in the tensile region takes the

@ Springer

if [u] -7 > 0, (56)

which stipulates that the damage process is intrinsically
energy driven and that no self-healing occurs. By addition-
ally assuming that damage evolution only takes place under
tensile loadings (i.e.d = 0if [u] -7 < 0), the failure function

20,
E

F =sgn ([u] - 7) —x (57)

with admissibility conditions
F<o0, d>0, Fd=o, (58)

is proposed. In accordance with the developments presented
in [12,29], d is moreover assumed to be related to the dis-
placement jump-type internal variable at time ¢*,

~

29,

X = max Orgas)i* sgn ([[u]] . n) = [ X0 (> (59

via

~ X0 E 0

d=1—=—exp|—[x—xol ——————) . 60)
p p( X = X0 Gr—1Ex ) (

In the light of (57), xo takes the interpretation of the critical
interface opening that is related to the initial fracture strength
Qo according to

Qo = E xo. 61)

Furthermore, G can be interpreted as the fracture toughness,
see [29] and Remark 3.

Remark 3 (Fracture toughness). The fracture toughness of
the brittle material under consideration is defined by the
dissipation that is associated with the crack formation. In
particular, time integration of (56) yields

0 o dg
f Dredgr = f U, — dx = Gp. (62)
t=0 x=x0 94X

4.2 Electrical material models

The electrical material models are chosen in accordance with
the restrictions posed by the dissipation inequalities (39). In



Computational Mechanics (2021) 68:51-67

59

particular, a linear relation between the electric field vector
and the electric current density vector, namely

j=8-e (63)
is assumed in the bulk, with
S=x«l, (64)

denoting the (positive definite) electrical conductivity tensor
that is defined in terms of the scalar-valued electrical con-
ductivity parameter «.

Moreover, the deformation-induced damage processes at
the interface are assumed to influence the effective electrical
conductivity. The specific form of the constitutive equation
for the electric current density

[1-d]%[4]
—« [¢]

if[u] -m>0

if [u] -7 <0’ (63)

fiy=1

with ¥ denoting the idealised conductivity of the inter-
face, thus establishes a coupling between the electrical and
mechanical field equations. Equation (65) is based on the
assumption that the effective conducting interface area in
the tensile region is reduced due to the damage processes,
whereas the interface recovers its initial conductivity under
compressive loads. Conceptually speaking, the electrical
problem is thus treated similarly to the mechanical problem
with the damage evolution being associated with a reduction
in the number of springs, respectively a reduction in the num-
ber of wires, connecting the opposing sides of the interface,
cf. Figure 2.

4.3 Analytical solution

This section deals with the derivation of an analytical solu-
tion for the one-dimensional sample boundary value problem
sketched in Figure 4, subject to the assumption of monotonic
tensile loadings. The total elongation of the bar
Au =2 Au + [u] (66a)
results from the elongation of the regions B~ and B7, i.e.
2 Au, and from the displacement jump across the interface

[u]. Moreover, the latter kinematic quantities are related to
the axial stress in the bulk via

and determine the stresses at the interface
a:[l—g]f[[u]], (66¢)

oS

0:4 B~ B+ Ii_:cr

Fig.4 Baroflength2/andcross-sectional area A, subjected to mechan-
ical and electrical loadings. A material interface is positioned in the
middle of the bar as indicated by dark-grey colour

such that by evaluating the set of equations (66) one eventu-
ally arrives at

21E
E

Au = [1 + ZZTE] [u] —d (x) [u]. (67)
For monotonic loadings, d (x) can equivalently been expre-
ssed as a function of the displacement jump [u], such that (67)
establishes an analytical relation between the displacement
jump across the interface and the total elongation of the bar.
Ip this regard, it is noted that, by virtue of (59) and (60),
d > 0 implies [u] > 0.

Expressions for the effective mechanical and electrical
properties of the bar may further be derived by interpreting
the bar in Figure 4 as a series connection of springs and
resistors. More specifically speaking, the axial stress o as a
function of the displacement jump takes the form

21 1 o
o= |:E + W} Au ([u]) (68)

and the axial electric current density j as a function of the
displacement jump and of the prescribed electric potential
difference A¢ reads

P — |:2+;:|_1 A_¢ (69)
TE e T —d() R '

With parametrisations of the total elongation, of the axial
stress and of the electric current density in terms of the dis-
placement jump at hand, (implicit) relations between the total
elongation and the axial stress, respectively between the total
elongation and the electric current density, are established.

Remark 4 (Size effects). According to (69), the electrical
conductance of the bar for a given deformation state reads

—1
21 1
g:[7+[1_3];] A 70

Likewise, by taking (69) into account and by neglecting snap-
back-type effects the mechanical (unloading) tensile stiffness
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Fig. 5 Evolution of the normalised (unloading) tensile stiffness and
electrical conductance, according to (73), for various length scale ratios
Lo/l

is given by
21 1 -
! |:E [l—d]E:| 7y

The specific forms of (70) and (71) indicate a size-dependent
theory and motivate the introduction of internal length scales

| by

Cy = (72a)

£y = (72b)

AU =

which can be used to derive a unified form of (70) and
(71). More specifically speaking, by indicating the reference
(unloading) tensile stiffness and the reference conductance
of the virgin material by subscripts e one arrives at

—_— = = 7. = A
Go Kuto 21+ 7 24+ 7T

Relation (73) suggests a similar evolution of the mechanical
(unloading) stiffness and of the electrical conductance with
damage evolution, and is plotted in Figure 5 for various values
of the length scale ratio £,/I. In particular, it is observed
that the extent to which interface damage processes manifest
themselves in a reduction of the mechanical stiffness and
of the electrical conductance significantly depends on the
length scale ratio £,/] which may take different values for
the mechanical and the electrical problem.

@ Springer

4.4 Comparisson of simulation results and analytical
solutions

This section focuses on the validation of the finite ele-
ment implementation proposed in Section 3 based on the
analytical solution derived in Section 4.3. To this end, the
elementary boundary value problem depicted in Figure 4
is discretised by means of four-node quadrilateral bulk and
four-node (two nodes on each side) linear interface ele-
ments, e.g. [32,33], with the same discretisation being used
for the geometry and the primary electrical and mechanical
field quantities. Occurring integrals are evaluated numeri-
cally by means of Gaussian quadrature schemes featuring
four quadrature points, respectively one quadrature point.
Since the two-dimensional finite element calculations are
carried out subject to the simplifying assumption of a plane
strain deformation setting, the material parameter E in the
analytical solutions derived in Section 4.3 needs to be sub-
stituted by its plane strain equivalent Epg, i.e.

E

E(—Epszm.

(74)

The finite element results and the analytical solutions for
the axial stress o and for the axial electric current density j
are provided in Figure 6 for a bar of length 2/ = 100mm.
The finite element simulations are based on the material
parameters provided in Table 1, whereas, according to (74),
Eps ~230769Nmm~2 and E = 210000Nmm 2 are used in
the evaluation of the analytical solutions.

4.5 Intergranular crack propagation

Motivated by cracks that propagate along grain bound-
aries, the two-dimensional sample boundary value problem
depicted in Figure 7 is studied in this section. In particu-
lar, the individual grains of the microstructure are resolved
in the ensuing finite element calculations by making use of
the proposed electro-mechanically coupled cohesive zone
formulation. By doing so, transgranular fracture processes
where cracks grow through the material grains are neglected
for now and the set of admissible crack paths is signifi-
cantly reduced. Furthermore, the material models are chosen
according to Section 4.1 and Section 4.2, a plane strain set-
ting is assumed and the set of material parameters provided
in Table 1 is adopted. In accordance with Section 4.4, the
finite element discretisation is based on four-node quadri-
lateral bulk and four-node (two nodes on each side) linear
interface elements, and Gaussian quadrature schemes with
four quadrature points, respectively one quadrature point,
are used.

Whereas the vertical displacement at the two ends of the
test sample is fixed in the simulations, a relative displacement
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(a) axial stress
Fig.6 Axial stress o and axial electric current density j as functions of

deformation. The two-dimensional finite element simulations are based
on the material parameters provided in Table 1 and assume a plane

Table 1 Material parameters used in the finite element-based simulations

(b) axial electric current density for Ag = 1 mV

strain deformation setting. By virtue of (74), the analytical solution is
evaluated for Eps ~ 230769Nmm~2 and E = 210000Nmm 2

E

v E Qo Gf K K
210000 N/mm? 0.3 210000 N/mm? 500 N/mm? 200 N/mm 1450A/[Vmm] 1450A /[Vmm?]
Ap, T
-
JAR
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:
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] T_,e1 — =
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Fig.7 Sample of length 100mm, height 10mm and thickness 1mm with geometrically resolved microstructure. The circular notches in the centre

region of the sample are of radius 0.1mm

in horizontal direction is prescribed that results in a total
elongation Au. Moreover, an electric potential difference A¢
between the two ends is prescribed and the electric potential
at the left boundary is set to 0.0mV. The potential difference
A¢ = 0.1mV is applied in the first load step (A— B) and kept
constant during tensile loading (B—C), unloading (C—D)
and compressive loading (D—E).

For the latter load path, the horizontal reaction force
F - ey and the electric current I are depicted in Figure 8
as functions of deformation. Due to the evolution of inter-
face damage, significant reductions in both the mechanical
reaction force and the electric current are observed under
tensile loading (B—C). In the (purely elastic) unloading
step (C—D), no damage evolution occurs so that the over-
all mechanical stiffness and electrical conductance remain

constant. Under compressive loading (D—E), the damage
evolution is suppressed and the interfaces are assumed to
regain their normal stiffness and conductivity. Hence, jumps
in the horizontal reaction force-elongation curve and in the
electric current-elongation curve are observed at the end of
the unloading step (C— D). In addition to the generalised
reaction force-displacement curves, the electric potential
field and the electric current density field are depicted in
Figs. 9 and 10 for various load steps. Since the material
interfaces pose additional obstacles for the electric current,
a complex, inhomogeneous electric current density distribu-
tion is observed. Moreover, due to the evolution of interface
damage and its influence on the electrical conductivity, the
electric current density distribution and the electric potential
field significantly change with deformation.
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(a) horizontal reaction force

Fig. 8 Axial reaction force f_~e1 and electric current 1 as func-
tions of prescribed elongation Au and prescribed potential difference
A¢. The simulations of the test specimen with geometrically resolved

¢ in mV
0.050 0.055

0.049 0.04%5 0.060

0.005 0.022
1] L

B
(a) deformation state B

Fig. 9 Electric potential field ¢ at the centre region of the boundary
value problem depicted in Figure 7 for deformation states according to
Figure 8. In particular, state B resembles a sample in an undeformed
state, state C a sample subjected to tensile loading and state E a sample

Finally, an additional study of the influence of the finite
element discretisation on the simulation results is provided
in Appendix C.

5 Closure

Motivated by the influence of mechanically-induced inter-
face damage processes on the electrical conductivity, this
contribution dealt with the fundamentals of electro-mechani-
cally coupled cohesive zone formulations for electrical

@ Springer
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(b) electric current for Z¢ =0.1mV

microstructure according to Figure 7 are based on the set of material
parameters provided in Table 1 and assume a plane strain deformation
setting

¢ in mV
0.050 0.055 0.060
o

0.040 y 0.045
[

(¢) deformation state E

subjected to compressive loading. It is noted that the material interface
in state E is damaged due to the deformation history. Moreover, (nor-
malised) electric current density vectors are indicated by black arrows

conductors. At the outset of the theory, local forms and
jump conditions of the governing set of balance equations
for the electrical sub-problem, that reduced to Faraday’s law
of induction and to the continuity equation for the elec-
tric current, were discussed. In addition, an extended form
of the balance equation of energy that accounted for addi-
tional electrical interface contributions was proposed and the
associated restrictions stipulated by the dissipation inequal-
ity were studied. Next, the electro-mechanically coupled
cohesive zone formulation was implemented into a multi-
field finite element framework. The coupling between the
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Fig. 10 Electric current density field || j|| at the centre region of the
boundary value problem depicted in Figure 7 for deformation states
according to Figure 8. In particular, state B resembles a sample in an
undeformed state, state C a sample subjected to tensile loading and
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(a) horizontal reaction force

Fig.11 Comparison of axial reaction force F - e and electric current T
as functions of prescribed elongation Au and prescribed potential dif-
ference A¢ for different finite element discretisations. The simulations

electrical and mechanical sub-problem was established by
the constitutive equations at the material interface — i.e.
mechanically-induced damage processes were assumed to
reduce the interface conductivity in the sample boundary
value problems studied. More specifically speaking, the finite
element formulation was validated by means of analytical
solutions in a first step, before the influence of intergranular
crack propagation on the effective electrical properties was
studied.

The sample boundary value problems have been of aca-
demic nature to show the principle applicability of the

|7]l in mA/mm?

0.000 0125“‘912;,

(b) deformation state C

|7]l in mA/mm?

01520625 TP LETE 2,650

(¢) deformation state E

AT 0500

state E a sample subjected to compressive loading. It is noted that the
material interface in state E is damaged due to the deformation history.
Moreover, (normalised) electric current density vectors are indicated by
black arrows

15

12+ \

I in mA
e

Au in mm

(b) electric current for A¢ = 0.1 mV

of the test specimen with geometrically resolved microstructure accord-
ing to Figure 7 are based on the set of material parameters provided in
Table 1 and assume a plane strain deformation setting

proposed formulation. However, to truly understand and pre-
dict the electro-mechanical interaction at material interfaces,
tailored material models (including damage, plasticity and
their influence on the electrical conductivity) need to be fur-
nished for a specific material system in close relation to
experiments. In this regard, sophisticated computational mul-
tiscale approaches for material interfaces, as elaborated for
instance in [13,20,21], may be invoked to take detailed (lower
scale) information of the material interfaces into account.
Put into perspective, the general modelling framework for
electro-mechanically coupled cohesive zone formulations
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¢ in mV
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Fig. 12 Comparison of electric potential field ¢ and electric current
density field || j|| at the centre region of the boundary value problem
depicted in Figure 7 for different finite element discretisations and defor-

that has been established in the present work provides a basis
for these developments.

In conclusion, it is remarked that tangential electric cur-
rents in the interface have been neglected in the proposed
formulation. From a modelling point of view, these processes
share similarities with the theory of interface elasticity known
from mechanical problems. An extension of the present for-
mulation in the spirit of generalised imperfect interfaces is
thus aspired in future works.
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mation states according to Figure 8, respectively Figure 11. In particular,
state B resembles a sample in an undeformed state and state C a sample
subjected to tensile loading
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A Generalised nodal force vectors

The bulk and interface contributions to the (generalised)
internal, surface and volume forces vectors that result from
the discretisation of (44) and (46) are briefly summarised in
this appendix. In the ensuing equations, assembly operator ;A
will frequently be used to establish the relation between local
quantities and their global analogues. In this regard, ne; and
ng denote the total number of bulk and interface elements,
respectively.

For the mechanical subproblem, the bulk and interface
contribution to the internal force vector are given by

nel

;;1{‘_ f VN4 - o dv, (75)
~uh nd
Sine = / Ny {(t} da. (76)

The respective contributions to the volume force vector read

nel
= / Nap fdv, )

gl

Fei = A
e=1

and the surface force vector takes the form

NA 5fda, (78)
Te

Ne]

- A
sur —
e=1

Likewise, the generalised internal force vectors of the elec-
trical subproblem are given by

Ny tda. (79)
oBe

nel

fi’ff— f VN3 - j dv, (80)

~¢h

Find = A /Z Np {7} da, 81
e=1 ¢

and the generalised surface force vector is

Ne|

§Ur A

R j-nda. (82)

B Tangent stiffness contributions

This appendix focuses on the specific form of the tangent
stiffness contributions that occur in the linearisation of (48).
For the sake of simplicity, functional dependencies of the
volume distributed forces and of the (generalised) surface
forces on the primary field variables are neglected in the
following.

The contributions to the global tangent stiffness matrix
thatresults from the linearisation of (75) and (76) with respect
to the displacement field are given by

De]

dfub do
K4 = it /VN~—~VNd, 83
du A o A de cav (83)
nel
~ d
K¢ = ot f int f NA—cha. (84)

The respective sensitivities with respect to the electric poten-
tial field read

De]

dfeh
K4 — ﬁ = A/ —VNy - VNp dv, (85)
_ df nel
K%¢ — —int / —N da. (86)
M dfe] P

Likewise, the linearisation of (80) and (81) with respect to
the displacement field give rise to

De|

dj
K% — A =Af VYNg - L. VNedo, (87)
du " d
aft R aiiy
gon = Sint Np 3B N da, (88)
du eel 7o " du]

whereas the linearisation with respect to the electric potential
field results in

De]

b _ lnt = —VNp-—.V
K d Al\/g NB de NDdU, (89)
K% = mt Npda. 90

C Influence of the finite element
discretisation

This appendix refers to the influence of the finite element
discretisation on the solution of the boundary value prob-
lem depicted in Figure 7. For the material models, material
parameters and load path introduced in Section 4.5 and
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for two different finite element discretisations, the resulting
(generalised) reaction force-elongation curves are depicted
in Figure 11. In addition, the electric potential field and the
electric current density field are provided in Figure 12. The
comparison of the simulation results eventually reveals a
comparably small influence of the finite element discreti-
sation on the simulation results.
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