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Phase field modeling with deformation-dependent interface energies
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In the last years, the phase field method has established itself for the simulation of various problem types, especially in the
fields of microstructure evolution and phase transformations as well as in fluid dynamics. Concerning the first two cases,
usually a constant, deformation-independent, surface energy is considered. In this work, however, deformation-dependent
surface elasticity according to [5] will be incorporated into phase field theory. In line with [4], a finite element framework
for an Allen-Cahn type phase field model coupled to continuum mechanics is presented, which is solved in a monolithic
manner by means of Newton’s method. The resulting model also accounts for a spatial evolution of the diffuse interface by a
functional of Ginzburg–Landau type. The implemented model is employed in numerical simulations. These will be used to
study the behavior of the phase field model.
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1 Interface kinematics in continuum mechanics

In order to model two phase systems with interface elasticity, a measurement of deformation within the interface is required.
In line with the work in [1], the surface deformation gradient is considered for that purpose. For this, two referential covariant
basis vectors Gα (and their contravariant counterparts Gα) are introduced as

Gα = ∂X
∂θα

, (Gα = ∂θα
∂X
= ∂X
∂θα
) with α ∈ {1,2} (1)

and the spatial basis vectors gα (and gα) are defined analogously. The surface deformation gradient (a tensor of rank 2) then
reads

F̄ = gα ⊗Gα. (2)

2 Diffuse interface zone
2.1 Elasticity in the interface

The mechanics of the diffuse interface are captured by volume-specific energy

ψΓ = fdw(p,∇p)ψΓ0(F̄ ), (3)

with ψΓ0(F̄ ) being the underlying area-specific Helmholtz-like energy (in this work: neo Hooke type) and fdw, depending
on the phase field parameter p and its gradient. The latter is a smooth approximation of the Dirac delta function, which thus
transforms area integrals to volume integrals. From a physics point of view, phase field parameter p represents the relative
volume of phase 2.

2.2 Homogenization regarding the bulk phases

Aside from the interface elasticity itself, the material responses of the bulk phases within the diffuse zone need to be taken
into account. For that purpose, homogenized, effective energy

ψB = [1 − p]ψ(1)B (F (1), p) + pψ(2)B (F (2), p) (4)

is employed, cf. [2]. Here, the deformation gradients of the phases F (1), F (2) have been introduced. Following [3], they are
assumed as spatially constant and consequently, they can be written as

F (1) = [F − p ⟦F ⟧] ⋅ [F (1)Bain]−1, F (2) = [F + [1 − p] ⟦F ⟧] ⋅ [F (2)Bain]−1, (5)

where ⟦F ⟧ resembles the jump in F between the bulk phases. It is calculated depending on the choice of a homogenization
scheme. For the Taylor-Voigt scheme ⟦F ⟧ is set to 0. This does not necessarily fulfill the equilibrium of forces in the interface,
though. The other limiting case is the Reuss-Sachs assumption, which determines ⟦F ⟧ via a local energy minimization.
However, this homogenization assumption is not necessarily kinematically compatible. A better approach – fulfilling both
conditions – is the rank-1 scheme where the jump in F is calculated from a jump vector a and a normal vector N , which are
in turn again obtained via a local minimization. Clearly this option is motivated by the Hadamard jump condition. However,
this work sticks to the Taylor-Voigt assumption.
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2 of 2 Section 7: Coupled problems

2.3 Variational framework

The total energy of the system consists of the volume and surface contributions ψB and ψΓ, as well as contributions due to
external work. Since interfaces are usually linked to dissipation, an additional dissipation term ϕ(ṗ) of Ginzburg–Landau type
is also employed, depending on the rate of p. Based on these definitions, rate (or incremental) energy

∆E =∫B0

ψB(tn+1)dV − ∫B0

ψB(tn)dV + ∫B0

ψΓ(tn+1)dV − ∫B0

ψΓ(tn)dV

−Wext(tn+1) +Wext(tn) + ∫B0

∆t ϕ(ṗ)dV
(6)

is considered, cf. [4]. The motion φ and the phase field parameter p can then be obtained via {φ, p} = arg inf (∆E) as
minimization arguments. For the sake of completeness it should be mentioned, that additional penalty terms were utilized in
order to enforce 0 ≤ p ≤ 1.

3 Numerical example

The model was discretized and incorporated into a FE algorithm, resulting in a fully coupled model which is solved mono-
lithically. As a numerical experiment a hollow sphere, that is subjected to homogeneously distributed radial displacements on
the outer shell, is considered, cf. Figure 1. The chosen example allows for the use of symmetries in order to reduce the model
to 1d. While for smaller values of upre the interface energy contribution dominates, the bulk energy becomes the major driving
force for larger deformations.

Fig. 1: Illustration of a hollow sphere, cut
open for the sake of better understanding.
The inner void is represented by a phase with
significantly reduced elastic stiffness (fac-
tor 1e+2).

Fig. 2: Comparison of phase field parameter p and radial displacements ur for the
3d simulation, 1d simulation and analytic calulations.

For this example a full 3d framework is compared to the symmetry using 1d algorithm as well as to an analytic solution. The
results for upre = 0.25mm after a relaxation period are shown in Figure 2. The curves for 1d and 3d are almost identical,
ensuring that the reduced model works just as well as the full 3d one. The interface position of these two simulations differs
slightly from the analytic results. Here it needs to be stated that the analytic results was calculated using a sharp interface.
Furthermore, the choice of the homogenization scheme may have additionally influenced the result. However, the numerically
obtained results fit the analytic ones quite well.
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