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Abstract
We study the monolithic finite element method, based on the least-squares min-

imization principles for the solution of non-Newtonian fluids with non-isothermal ef-

fects. The least-squares functionals are balanced by the linear and nonlinear weighted

functions and the residuals comprised of L2-norm only. The weighted functions are

the function of viscosities and proved significant for optimal results. The lack of mass

conservation is an important issue in LSFEM and is studied extensively for the diverse

range of weighted functions. Therefore, we consider only inflow/outflow problems.

We use the Krylov subspace linear solver, i.e. conjugate gradient method, with a

multigrid method as a preconditioner. The SSOR-PCG is used as smoother for the

multigrid method. The Gauss-Newton and fixed point methods are employed as non-

linear solvers. The LSFEM is investigated for two main types of fluids, i.e. Newtonian

and non-Newtonian fluids.

The stress-based first-order systems, named SVP formulations, are employed to

investigate the Newtonian fluids. The different types of quadratic finite elements are

used for the analysis purposes. The nonlinear Navier-Stokes problem is investigated

for two mesh configurations for flow around cylinder problem. The coefficients of

lift/drag, pressure difference, global mass conservation are analyzed. The comparison

of linear and nonlinear solvers, based on iterations, is presented as well. The analysis

of non-Newtonian fluids is divided into two parts, i.e. isothermal and non-isothermal.

For the non-Newtonian fluids, we consider only Q2 finite elements for the discretiza-

tion of unknown variables. The isothermal non-Newtonian fluids are investigated with

SVP-based formulations. The power law and Cross law viscosity models are considered

for investigations with different nonlinear weighted functions. We study the flow pa-

rameters for flow around cylinder problem along with the mass conservation for shear

thinning and shear thickening fluids. To study the non-isothermal non-Newtonian

fluids, we introduced a new first-order formulation which includes temperature and

named it as SVPT formulation. The non-isothermal effects are obtained due to the

additional viscous dissipation in the fluid flow and from the preheated source as well.

The flow around cylinder problem is analyzed for a variety of flow parameters for Cross

law fluids. It is shown that the MPCG solver generates very accurate results for the

coupled and highly complex problems.

Key words: Monolithic, Weighted LSFEM, Krylov subspace, Multigrid-PCG, SVP,

SVPT, Navier-Stokes equation, non-Newtonian fluids, non-isothermal
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Chapter 1

Introduction

In this thesis we are concerned with the development of new numerical method, based

on finite element method in least-squares manner, to analyze the non-isothermal effects

on incompressible Navier-Stokes equations for Newtonian and non-Newtonian fluid

flows.

In classical physics, a fluid is one of the phases of matter that can be defined as

a substance with deforming (flow) properties under some externally applied forces.

Mankind encounters the fluid flows in everyday life, whether it is inside the human

body as blood or outside as oil, water etc. Hence, the importance of fluids can not

be neglected. Considering fluids importance, they are investigated extensively for the

prosperity of human race. Fluid mechanics is one of the branches of applied sci-

ences that study the fluid flow behaviors governed by partial differential equations

(PDEs) which obey the conservation laws. The partial differential equations, known

as Navier-Stokes equations, are the most developed mathematical framework used to

represent the fluid flow phenomena. Interestingly, the exact analytical solution of

the Navier-Stokes problem is remaining an open problem. The invention of computer

was a real sigh of relief for researchers as it opened door to viable possibilities. As

a consequence, the computational fluid dynamics (CFD) is appeared as a new field

of computational mathematics in which complex partial differential equations are re-

placed by algebraic systems and approximated with suitable numerical techniques. The

most popular numerical discretization methods employed in literature are namely fi-

nite volume method, finite element method and finite difference method. In this thesis,

finite element method is employed in least-square manner to treat the incompressible

non-isothermal Navier-Stokes equations for Newtonian and non-Newtonian fluid flows.

The Finite Element Methods (FEM) are the numerical arrangements for estimating

the approximate solutions of mathematical phenomena that are normally constructed

in order to represent some physical reality with highest precision. The finite element

method is truly a quasi-projection scheme. Therefore, the variational principle and the

1



2 1. Introduction

closed subspace are essential requirements for their construction. In this context, this

method is a combination of the variational principle and the closed finite-dimensional

subspace. The variational principle is specifically given in terms of a weak form of

the considered partial differential equations. Hence, the quasi-projections of the exact

weak solutions onto the closed subspace are characterized as approximate solutions.

The favorable outcome of the finite element method relies upon wisely culling ap-

proximation spaces determined by piecewise polynomials constructed on elementary

geometrical structures.

Although the approximate spaces (i.e. finite element spaces) and variational prin-

ciples are equally significant in amelioration of finite element methods, but the fun-

damental properties of these methods are always determined by variational principles

and lead to distinct kinds of quasi-projections. Instead of naturally occurring quasi-

projections, the primary characteristic of the quasi-projection aims towards the search

of suitable externally defined variational principles in the finite element method. This

leads to a pair of well-known existing schemes to get more suitable quasi-projections.

The first type of the finite element methods is based on the modification of naturally

occurring variational principles. The second type of method is based on the exploration

of artificial energy functional which is externally defined. The main aim of our work

is to focus particularly on second type of methods called least-squares finite element

methods (LSFEM).

1.1 Methods based on variational principles

The finite element method can be divided into three major variational settings. The

Rayleigh-Ritz method, Galerkin method, and the least-squares method. The Rayleigh-

Ritz method works on the principle to find minimizer of the total potential energy

functional, i.e. the global minimization of an unconstrained positive functional. It

provides the most suitable setting for a finite element method, i.e. the finite element

solution defined in this case is a true projection with a suitable inner product in

some Hilbert space. Remarkably, the true inner product projections are acceptable

for the vast range of approximating spaces. The Rayleigh-Ritz method is proved

to be extremely effective in the exploration of heat conduction problems for elliptic

diffusion-type equations and mainly in the field of solid mechanics. The Rayleigh-Ritz

principle induced finite element methods with many invaluable features that prompted

their incredible achievement and prominence. The Rayleigh-Ritz variational procedure

always results in a sparse, symmetric and positive definite1 (SPD) system. Also, the

1The matrix K ∈ Rnxn is symmetric, if K = KT.
and K is a positive definite matrix, if for vector u ∈ Rn following relation holds

uTKu > 0, for all u ̸= 0.
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conditions on boundaries in general regions are easy to tackle and the freedom to

use conforming finite element spaces seal the optimality and stability of solutions.

Moreover, we can employ identical piece-wise polynomials for the approximation of

all unknown variables. Due to these practical features, many commercially developed

codes for the finite element method are based on the Rayleigh-Ritz principle and they

are generally in practice for the analysis of problems arise in engineering.

The affiliation among finite element methods and Rayleigh-Ritz variational princi-

ples played a key role in the development of finite element methods. However, this fact

was initially neglected by researchers and they pursued their research beyond the class

of problems based on Rayleigh-Ritz settings which eventually resulted in violation of

some basic approximation principles. But, with the fast theoretical as well as practical

advancement of finite element methods, the understanding was soon established over

the causes of primary complications. Later, two entirely distinct types of variational

principles were developed for differential equations not associated with unconstrained

minimization principles. The first type dealt with the constraint minimization prob-

lem in which the resulted quasi-projection is an outcome of the search carried out

for a stationary point of an indefinite functional. This procedure led to a symmetric,

indefinite algebraic system and required additional compatibility constraints to satisfy

on the spaces, namely Ladyzhenskaya-Babuska-Brezzi (LBB) condition, for the stable

and optimal approximations. The mixed-Galerkin method employed to handle these

types of problems.

The second type of principle was based on very general settings that could be

used to obtain variational form of partial differential equations. The idea is known

as the Galerkin method in applied mathematics. The standard Galerkin method is a

weighted residual method and quasi-projections are obtained by residual orthogonal

procedures. The idea is applicable to almost any partial differential equation regardless

if it is an optimization problem or not. In the event if such an optimization problem

exists, at that point, Galerkin methods do recuperate the related optimality framework.

On account of this comprehensiveness, Galerkin strategy has been a natural option

for expanding finite element methods beyond differential equations issues related to

minimization problems. Like a mixed-Galerkin method, the standard Galerkin method

may also need to satisfy some stability constraints (inf-sup conditions) on the choices

of the spaces and eventually lead to a non-symmetric algebraic system.

In both situations as discussed above, the corresponding finite element schemes

work in considerably less beneficial settings in comparison to the settings adopted for

the Rayleigh-Ritz method because the variational settings of these schemes do not lead

to a true inner product projections. In first case, the mathematical formulation ends

up with an indefinite algebraic system and the second situation is confronted by the
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problem of solving the non-symmetric algebraic system.

1.2 Motivation behind LSFEM

There have been numerous endeavors for the development of finite element meth-

ods that share the maximum achievable mathematical properties of the Rayleigh-Ritz

method for issues not associated with unconstrained variational principles. The least-

squares finite element method have been perceived as another tool to solve elliptic

partial differential equations. The approach is based on an artificially defined energy

functional for partial differential equation by totally relinquishing the naturally existing

variational principles. The term ”least-squares” is used with the finite element meth-

ods because the artificially defined energy functional generally appears as a residual

minimization problem in an appropriate Hilbert space. Like orthogonal minimiza-

tion scheme, i.e. Galerkin method, the residual minimization method is applicable

to almost any partial differential equation in physics but with distinct fundamental

properties. The major difference among both approaches, unlike the Galerkin method,

is that the least-squares finite element method has the potential to recover almost all

the precious features of the Rayleigh-Ritz method. The least-squares finite element

methods obtain few additional properties which make them more superior from other

finite element methods. The boundary conditions can be evaluated inside the defined

energy functional in a weak manner as residuals. Also, the least-squares functionals

give an effectively calculable residual error indicator that can be utilized for adapted

grids techniques.

In the early 70s, the straight forward implementation of the least-squares technique

to the partial differential equations experienced severe issues that seriously constrained

their allure. For example, in many situations C1 smoothness or higher ordered dis-

crete approximation spaces were required and prompted issues with higher condition

number. Additionally, such techniques frequently requested higher solution regular-

ity to get convergence and not easily preconditioned. Later, the remarkable idea of

transforming partial differential equations to first order systems was a game-changer

in the development of least-squares finite element methods. The transformations to

the first order linear system guarantee to work in C0 finite element spaces with low

condition number. The least-squares finite element method is considered to be practi-

cal if the linear first order system is discretized to conforming subspaces at ease and is

well-conditioned. Also, it is based on a simple structure for implementation. Initially,

the standard and straightforward least-squares finite element method was defined in

L2-norm which has the potential to recover all the characteristics of the Rayleigh-Ritz

method. Later, the idea of norm equivalence of least-squares functionals was floated

and raised as an essential requirement to recuperate all the Rayleigh-Ritz settings.
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However, eventually it is substantiated that norm-equivalence is frequently in strife

with practicality. For the development and implementation point of view, norm equiv-

alence is often relinquished over practicality as it is an intransigent circumscription.

1.3 Contributions

A handsome portion of theoretical analysis and numerical research on least-squares

finite element methods is associated with the theory of elliptic partial differential equa-

tions. That shows the potential and provides the solid grounds to explore it further

in this area. Therefore, we consider elliptic systems for our study purpose. The major

development in this field was the consequences of work from Agmon, Douglas and

Nirenberg ([2], [3]). They build up the foundation for ADN-theory which was utilized

in numerous research productions. Soon after, another idea was floated by Wendland

[96] which applied complex function theory to produce several results in 2D spaces

for elliptic systems. He demonstrated that the straightforward use of a least-squares

principle with appropriate weights may prompt optimal convergence. Furthermore,

Aziz et al. [6] presented more general ideas for elliptic systems by using ADN-theory

for least-squares finite element methods. These studies are the basic foundation for

the development of least-squares finite element methods for elliptic systems and many

researchers have followed these ideas for analysis and applications of least-squares

finite element methods. The comprehensive analysis on continuous and discrete least-

squares principles was provided by Bochev and Gunzburger [15]. They highlighted the

conflicting aspects between continuous least-squares principles (i.e. mathematically

well-posed) and discrete least-squares principles (i.e. feasibility setting for implemen-

tation) and proposed some remedies as well.

The real essences of our study is to constitute an agreement among the mathemat-

ical analysis and algorithmic development for defining the least-squares finite element

methods. Throughout, the straightforward L2-norm based functionals are employed

for analysis of least-squares finite element methods. Furthermore, the functionals are

balanced by different viscosity dependent weighted functions. These methods com-

fortably fulfill all the practicality issues and recover the Rayleigh-Ritz settings as well.

The major advantage of practicing L2-norm based functionals is the assembly of the

matrix framework, which can be cultivated in a standard way with the condition num-

ber of order O
(
h−2

)
of system. There are many forms of first order transformations of

least-squares finite element methods used for study purposes in the literature. Some

of the most commonly first order transformations use the Velocity Vorticity Pressure,

Stress Velocity Pressure, Velocity Velocity-Gradient Pressure, that we name as (VVP),

(SVP) and (VVGP) formulations.

In literature, the velocity vorticity pressure and velocity velocity-gradient pressure
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are considered most often for the least-squares finite element analysis. The stress

velocity pressure formulation is not extensively used for the analysis and this provide

an opportunity to dig deep in that domain. The stress velocity pressure first order

transformation is employed for least-squares finite element methods throughout our

study. In the SVP formulation ”stresses” are utilized as a new external variables and

are beneficial for the problems where additional information over stresses is needed. We

introduce a new first order transformation named stress velocity pressure temperature

(SVPT) formulation to analyze the coupled system of equations. Moreover, the inflow-

outflow fluid problems are engaged. We can divide our work into two major types of

fluid problems, i.e. Newtonian and non-Newtonian fluid problems. In the case of

Newtonian fluids, the steady incompressible Stokes and Navier-Stokes type equations

are considered for investigations. The SVP transformation is rarely used for Stokes

problem. Therefore, we are keen to implement Stokes problem for our code validations.

The outcomes of linear problem are used to understand the behavior of nonlinear

solvers for nonlinear problem.

The utilization of least-squares finite element methods for Navier-Stokes problem

is considerably boosted due to some of its computational advantages over Galerkin

method. Such that, the selection of approximation spaces is not liable to any inf-sup

(i.e. Ladyzhenskaya-Babuska-Brezzi) condition as discussed earlier. The resulting ma-

trix from system is always symmetric positive definite and robust iterative methods

can be employed to solve huge and challenging systems. These leverages allow us to

use the conjugate gradient method as our frontline linear Krylov solver and multigrid

method as its preconditioner. The Gauss-Newton method and fixed point methods are

used as nonlinear solvers. The linear and nonlinear solvers are discussed in detail later.

We define stress based least-squares functional [77] which is balanced by weighted func-

tions for Navier-Stokes problem. The main theme of our work is to study least-squares

finite element method for different variations of weighted functions. Furthermore, we

show that along with other factors, the viscosity dependent weighted functions are

equally important for the better performance of the solvers. Both the lower as well

as higher order finite elements are used for computational purpose. We notice that

higher order finite elements are more effective to get optimal results.

The non-Newtonian fluids had caught the attention and used successively for ex-

ploration of least-squares finite element methods. In similar fashion, we investigate,

improve and expand the recent work done by Nickaeen [75] on least-squares finite el-

ement methods for the power law model based non-Newtonian fluids. We restrict our

study only to stress velocity pressure first order formulation and mainly focus on differ-

ent variations of nonlinear weighted functions used to balance the artificial externally

defined energy functionals. In the literature very few people have investigated these

types of weights. The nonlinear weights are dependent exclusively on the viscosity
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functions but not on the mesh size of treated geometries. Next, we extend our study

to non-Newtonian fluids based on Cross law model which represent more complex

fluid problems. We investigate Cross law fluid model of nonlinear viscosity functions

for different types of dependent variables i.e. shear, pressure, temperature. The non-

linear viscosity, depends on shear rate and pressure, is employed to investigate the

least-squares finite element method for Navier-Stokes equations. Number of nonlinear

weighted functions are tested for numerical analysis. Later, the SVPT first order for-

mulation is introduced for coupled system of equations. The non-isothermal effects of

flow combined with Navier-Stokes equations are considered for the exploration. These

types of problems were studied by Damanik [37] for the Galerkin method. We suggest

a new least-squares energy functional and balance it with different nonlinear weighted

functions. To the best of our knowledge, no one has so far used, the Cross law based,

nonlinear weighted least-squares techniques for the solution of Navier-Stokes equations

and for the coupled problem as well.

Throughout our analysis, we deal with a monolithic approach for the subsequent

nonlinear and corresponding discrete linear frameworks. As a nonlinear solver, we hired

the Gauss-Newton (GN) and fixed point (FP) methods while multigrid-preconditioned

conjugate gradient is engaged as linear solver. The goal of our research is to build

a methodology which is robust, highly accurate and handle complex problems in size

and nonlinearities. Therefore, the analysis is carried out for a huge variations of

parametric values for Newtonian and non-Newtonian fluids. The actual focus is to

study the importance as well as the effects of linear and nonlinear weighted functions

on the least-squares finite element methods.

Besides many advantages of least-squares finite element methods there are some

controversies as well. One of the major challenges is the mass conservation in inflow-

outflow problems. Therefore, to study such issues, the flow around cylinder (inflow-

outflow) problems [91], [75] are under considerations. In general, the lack of local

mass conservation appears in all the finite element methods but for least-squares finite

element methods even the mass is not conserved globally. The reason for that is the

continuity equation, which guarantee the divergence free velocity field, presented as

another component of least-squares residual functional. Consequently, if some other

component influence the least-squares functional then mass conservation can turn out

to be very frail. For this reason, the higher order finite element spaces are used to

overcome these issues. Also, the fluid flow is monitored on critical points for global

mass conservation. The nonlinear weighted functions are used with different variations

to develop least-squares finite element methods for highly efficient results and for better

mass conservation.
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1.4 Thesis outline

The objective of our study is to develop least-squares finite element method, which is

balanced by linear and nonlinear weighted functions depending on viscosity, for the

solutions of Newtonian and non-Newtonian fluid flow problems. The thesis is organized

as follow.

In the chapter 2, the basic concepts of least-squares theory are emphasized and

the basic notations used in this work is defined. The elementary framework and least-

squares principles for continuous and discrete problems are explained. Some prac-

ticality issues of least-squares principles are discussed briefly. The straight forward

application of least-squares principle on the second order PDEs leads to complica-

tions. Therefore, the first order formulations of different types are used to transform

the problem into linear first order system. Some first order formulations for Stokes

problem are presented. Finally, the linearization strategies for the nonlinear problem

are studied in detail. In the chapter 3, the nonlinear and linear solvers are explained.

The application of least-squares principle to discrete linear system of equations leads

to symmetric positive definite coefficient matrix. This permit us to employe efficient

Krylov solvers for SPD system. Therefore, we use a multigrid preconditioned conjugate

gradient method for discrete problem. Furthermore, the preconditioned conjugate gra-

dient method is employed also as a smoother for multigrid solver. The Gauss-Newton

and fixed point method are used as nonlinear solvers. A brief introduction of finite

elements is presented as well. The flow around cylinder problem is discussed with two

mesh configurations.

In the chapter 4, the steady incompressible Navier-Stokes problem is modeled for

linear viscosity i.e. the Newtonian fluid. The SVP first order formulation is em-

ployed to transform the problem to linear system of equations. A linear weighted

LSFEM is proposed for Newtonian fluids. The MPCG solver is tested for various flow

parameters of the flow around cylinder problem. The lower and higher order finite

element discretizations are used for numerical investigations. The global mass conser-

vation is computed as well. The iteration based comparison is performed for linear

and nonlinear solvers. In the Chapter 5, the nonlinear weighted LSFEM is proposed

for non-Newtonian fluids. The power law and Cross law fluids are investigated for

vast range of parameters. The Cross law model is never been investigated for least-

squares FEM and we are the first to initiate research by employing it. We use only

higher order finite element discretization for computational purposes. The unbounded

viscosities are investigated for power law viscosity model and the bounded viscosities

for Cross law model. The shear thinning and shear thickening effects of the fluids

are studied. The comparison for solvers is performed as well. In the Chapter 6, the

complexity of the problem is increased. As the fluid considered is non-Newtonian with

non-isothermal properties. The nonlinear weighted LSFEM is proposed for the coupled
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system based on a new SVPT formulation. The SVPT is constructed by introducing

two auxiliary unknown variables, stress and temperature gradient, in the problem’s

model. The Cross law viscosity model is employed for numerical simulations. The

model depends on shear rate, pressure and temperature and it is tested for different

combinations. The solvers perform very well and produce accurate results with grid

independent behavior. The mass conservation is obtained even for very hard problems.

In the Chapter 7, the research is concluded overall and a brief overview of future plan

is presented.



Chapter 2

Least-squares Finite Element

Method

This chapter consists of fundamental theory regarding least-squares finite element

method for solving the system of elliptic linear partial differential equations. The re-

lation between partial differential equations and optimization problems are discussed.

This discourse establishes the framework for the least-squares principle as a general

methodology that connects an optimization problem with a system of given partial

differential equations.

2.1 Introduction

In this work, the SVP formulation and its extension SVPT formulation are employed

for the numerical investigations of Newtonian and non-Newtonian fluids. The theo-

retical aspect of LSFEM are explored in upcoming sections. The basic notations and

definitions, for better understanding of the least-squares theory, are addressed in the

upcoming sections of this chapter. We present a concise synopsis of the fundamental

theory emerged for the investigation of numerous partial differential equations. For an

extensive analysis of theory regarding partial differential equations, one can consult

the following references [1], [5], [51], [53], [68], [84], [90], [96] . The major contribu-

tion in theoretical analysis of LSFEM on elliptic PDEs is done in [2], [3]. Later, the

complex function theory is used in [96] to develop least-squares methods for elliptic

system of PDEs. The need of weighted functions for optimal results was emphasized

for LSFEM. A more general theory for the LSFEM was given in [6] to established a

priori estimates for elliptic systems to get optimal convergence rates. The compre-

hensive analysis on continuous and discrete least-squares principles were provided in

[15]. They highlighted the conflicts between continuous least-squares principles (i.e.

mathematically well-posed) and discrete least-squares principles and proposed some

10
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remedies as well. The Stress based first order formulations are studied in [27], [30],

[43], [55], [15], [17], [77].

2.2 Basic notation

Throughout this thesis an open bounded domain Ω is under consideration which lies in

the real coordinate space Rn of n-dimensions, where n = 1, 2, 3. The boundary region

Ω̂ = ∂Ω of domain is considered to be sufficiently piecewise smooth. In the event that

diverse boundary conditions need to be employed on various sections of the boundary

of a given domain then these particular segments of the boundary are represented as

Dirichlet boundary part Ω̂D and Neumann boundary part Ω̂N respectively. We also

assume a pair of additional characteristic associated with boundary region Ω̂, as

Ω̂ = Ω̂D ∪ Ω̂N and Ω̂D ∩ Ω̂N = ∅.

We define a multi-index representation of partial derivatives for functions of multi-

variables as

D℘ =

(
∂

∂x1

)℘1
(

∂

∂x2

)℘2
(

∂

∂x3

)℘3

· · ·
(
∂

∂xl

)℘l

, (2.1)

where ℘ = (℘1, ℘2, ℘3, ..., ℘l) ∈ Nl. The Functions under consideration have continuous

derivative to the order r̂ and belong to the space C r̂, such that

|℘| = |℘1|+ |℘2|+ |℘3|+ · · ·+ |℘l| ≤ r̂. (2.2)

Now, some differential operators namely gradient ∇, divergence ∇·, and Laplacian

∆ are defined which are very helpful to show the system of partial differential equations

to an operators structure.

Let a = xı̂+yȷ̂ ∈ R2 be a position vector with length |a| =
√
x2 + y2 and its scalar

field given as s (a) = s (x, y) ∈ R and vector filed as v (a) = uı̂+ vȷ̂ ∈ R2, where ı̂, ȷ̂ are

unit vectors. Then gradient is a vector valued operator given as

∇s =
∂s

∂x
ı̂+
∂s

∂y
ȷ̂, (2.3)

and formal vector representation can be shown as

∇ =
∂

∂x
ı̂+

∂

∂y
ȷ̂. (2.4)

Similarly, divergence is a scalar valued operator provided as under

∇ · v =

(
∂

∂x
ı̂+

∂

∂y
ȷ̂

)
· (uı̂+ vȷ̂) (2.5)

=
∂u

∂x
+
∂v

∂y
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= div v

The divergence of a gradient operator produce Laplacian such that

div∇s = ∇ · ∇s = ∇2s = ∆s. (2.6)

By using these definitions we can represent any partial differential equation in operator

form. The modern theories for partial differential equations depend intensively on the

Sobolev spaces ([1], [25]) which contain generalized or weak solutions. We provide

a brief introduction of Hilbert spaces and their connection with different differential

operators. The notations for inner products and norms are ⟨·, ·⟩X and ∥·∥X on the

Hilbert space X, respectively.

Let 1 ≤ p < ∞ and k ≥ 0 be non-negative integers. The space Lp of p-th power

integrable functions can be defined on the domain Ω as

Lp (Ω) :=
{
u | ∥u∥p0,Ω <∞

}
, (2.7)

and the norm

∥u∥0,Ω =

∫
Ω

|u|p dΩ

 1
p

. (2.8)

As a special case for p = 2, we can define the space L2 of all square integrable functions

as

L2 (Ω) :=
{
u | ∥u∥20,Ω <∞

}
, (2.9)

with the inner product

⟨u, v⟩0,Ω =

∫
Ω

u · v dΩ, (2.10)

and the induced L2-norm as

∥u∥0,Ω =
(
⟨u, u⟩0,Ω

) 1
2
=

∫
Ω

|u|2 dΩ

 1
2

. (2.11)

These definitions lead to well known Sobolev spaces Wk
p

Wk
p (Ω) := {u ∈ Lp (Ω) | D℘u ∈ Lp (Ω) ∀ |℘| ≤ k} , (2.12)

with the norm

∥u∥k,Ω =
∑
|℘|≤k

∫
Ω

|D℘u|p dΩ

 1
p

. (2.13)

where D℘ represents the derivatives of ℘ order.
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Now we discuss some special cases of Sobolev spaces for p = 2 and if the considered

domain is sufficiently smooth and bounded, we get

Hk (Ω) = Wk
2 :=

{
u ∈ L2 (Ω) | D℘u ∈ L2 (Ω) ∀ |℘| ≤ k

}
, (2.14)

with the norm

∥u∥k,Ω =
∑
|℘|≤k

∫
Ω

|D℘u|2 dΩ

 1
2

. (2.15)

For k = 0, we get H0 = L2 the space of all square integrable function as defined in

(2.9) . For k = 1, we have the space H1 of all square integrable functions whose first

order derivatives are square integrable as well

H1 (Ω) :=
{
u ∈ L2 (Ω) | ∥u∥21,Ω <∞

}
, (2.16)

and

∥u∥1,Ω =
∑
|℘|≤1

∫
Ω

|D℘u|2 dΩ

 1
2

, (2.17)

=

∫
Ω

|u|2 dΩ

 1
2

+

∫
Ω

|Du|2 dΩ

 1
2

,

= ∥u∥0,Ω + ∥∇u∥0,Ω .

The spaces L2 and H1 are very significant in the development of least-squares finite

element theory. Some important subspaces stem from these spaces are discussed. Let’s

assume a nonempty subset B of boundary Ω̂ of a open bounded domain Ω. We define

the subspace of all square integrable with zero mean value as

L2
0 :=

u ∈ L2 |
∫
Ω

u dΩ = 0

 , (2.18)

and the subspace of H1 (Ω) with zero trace on B as

H1
B :=

{
u ∈ H1 | u = 0 on B

}
, (2.19)

similarly

H1
Ω̂
= H1

0 :=
{
u ∈ H1 | u = 0 on Ω̂

}
. (2.20)

We also define the space H (div, Ω) as

H (div, Ω)n :=
{
u ∈

[
L2 (Ω)

]n | ∇ · u ∈ L2 (Ω)
}
, (2.21)
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with the corresponding inner product and norm defined as under

⟨u, v⟩div = ⟨u, v⟩0,Ω + ⟨∇ · u,∇ · v⟩0,Ω , (2.22)

and

∥u∥div = ∥u∥0,Ω + ∥∇ · u∥0,Ω . (2.23)

We further define the following Hilbert spaces

H1
g,D (Ω) :=

{
q ∈ H1 (Ω) | q = g

Ω̂
D

on Ω̂D

}
, (2.24)

Hg,N (div, Ω) :=
{
v ∈ H (div, Ω) | n · u = g

Ω̂N
on Ω̂N

}
, (2.25)

which are subspaces of H1 (Ω), H (div, Ω).

2.3 Minimization problems and PDEs

In modeling many physical phenomena one can define suitable functionals, for which

the physically significant solutions of the model are described as minimizers. Normally,

these functionals illustrate the energy of the framework and the states of the frame-

work are described by some minimization principle. Hence, a variational problem is

promptly feasible for the possible choice of minimizers. The variational problem is

always constituted on a Hilbert space. Therefore, the system of partial differential

equations as well as the necessary boundary conditions are affiliated with the varia-

tional problem, can easily be restored by following the basic rule of integration by parts.

To begin with variational formulation, an approximation technique for minimizers can

be defined on a finite-dimensional discrete subspace of considered Hilbert space which

contains the required solutions. This discrete form of variational formulation can be

seen as necessary condition for the defined discrete energy functional by the virtue

of Euler-Lagrange equation. The existence and uniqueness of approximate solutions

are then the matters of discussion regarding continuous and its discrete variational

problems.

In case of energy functional, the bilinear form1 is coercive2 and symmetric for the

corresponding variational problem. Eventually the partial differential equation asso-

ciated with such a problem is elliptic and self-adjoint. The existence and uniqueness

1A function B : X × X → S is called a bilinear form if

B (αu+ βv,w) = αB (u,w) + βB (v, w) ,

B (w,αu+ βv) = αB (w, u) + βB (w, v) ,

where X on
(
L2 or H1

)
is a vector space and S is field of scalars.

2The bilinear form B is coercive on H1, if for a constant α > 0, the following relation hold

|B (w,w)| ≥ α ∥w∥21 , ∀w ∈ H1.
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of solution is affirmed for both continuous and discrete problems. Due to the coer-

civity and the symmetric properties of bilinear form, one can define equivalent energy

norm and inner product on approximation space. Consequently, the discrete minimizer

can be distinguished as a true projection with an equivalent inner product onto the

finite-dimensional space. We illustrate the above discussed scenario by the help of an

example.

Let us consider the quadratic energy functional

E (u; f) =

∫
Ω

|∇u|2 dΩ− 2

∫
Ω

fu dΩ, (2.26)

the natural choice of space for the minimization of this particular functional is H1
0 and

the minimization principle associated with the functional is given as

u = arg min
u∈H1

0

E (u; f) . (2.27)

Thus, the necessary condition for the minimization of variational problem is as: Find

u ∈ H1
0, such that

lim
t→0

d

dt
E (u+ tv) = 0, v ∈ H1

0, (2.28)

then

2

∫
Ω

∇u · ∇v dΩ−
∫
Ω

fv dΩ

 = 0, (2.29)

∫
Ω

∇u · ∇v dΩ =

∫
Ω

fv dΩ, (2.30)

the variational equation can be given as:{
Find u ∈ H1

0 such that,

B (u; v) = L (v) , ∀ v ∈ H1
0,

(2.31)

where B and L are bilinear and linear forms respectively.

The relation between minimization problem (2.27) and partial differential equation

is obtain by using integration by parts rule in equation (2.31). We get, assuming the

required regularity of the solution,∫
Ω

(∇u · ∇v− fv) dΩ = 0, (2.32)

−
∫
Ω

v (∆u+ f) dΩ = 0,
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since v is arbitrary, it follows that every sufficiently smooth minimizer of functional

E(·; f) is a solution of well known Poisson problem.{
−∆u = f, in Ω,

u = 0, on Ω̂.
(2.33)

The bilinear form in (2.31) is continuous: Thus for some constant C1 > 0, the following

inequality holds

|B (u; v)| ≤ C1 ∥u∥1 ∥v∥1 ∀ u, v ∈ H1
0, (2.34)

and coercive, for constant C2 > 0, the following condition holds

|B (u; u)| ≥ C2 ∥u∥21 ∀ u ∈ H1
0. (2.35)

Similarly, the existence and uniqueness of minimizer of (2.26) follows from Lax-Milgram

theorem [78].

The Poisson problem in (2.33) requires two continuous derivatives of u. There-

fore, it seems logical for u ∈ H1
0 in (2.27) that vanish on boundary Ω̂. This reveals

an attractive characteristic of unconstraint minimization problem that each classical

solution of Poisson problem (2.33) is also a minimizer of the minimization problem

(2.27). We introduce some non-classical solutions which are known as weak solutions.

An enormous number of physical processes is represented by minimization principles.

One of the major advantage of energy minimization principle is that an equivalent

energy norm on H1
0 can be defined by the functional such as

E (v; 0) =

∫
Ω

|∇v|2 dΩ = ∥v∥21 . (2.36)

Subsequently, the bilinear form define an equivalent inner product on H1
0, such that

B (u; v) = ⟨u; v⟩ . (2.37)

The computational interests for this setting can be explored by finite element method.

Consider, a discrete finite dimensional space X h in H1
0 and let uh be a finite approx-

imate solution of weak solutions u. The approximation principle, that is a restriction

of problem (2.31) to X h, is given as{
Find uh ∈ X h such that,

B
(
uh; vh

)
= L

(
vh
)
, ∀ vh ∈ X h.

(2.38)

We note that Xh ⊂ H1
0 for all h, (2.34) and (2.35) hold for all functional in H1

0. This

implies that uh is an orthogonal projection of u onto X h w.r.t. inner product ⟨·, ·⟩ .
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Since, the exact solution satisfy the discrete problem and (2.38) it follows that uh

approximates the energy norm of error such that∥∥∥∣∣∣u− uh
∣∣∣∥∥∥ = inf

vh∈Xh

∥∥∥∣∣∣u− vh
∣∣∣∥∥∥ . (2.39)

Together with coercivity and continuity this bound provides an error estimate in the

norm of H1
0, such as ∥∥∥u− uh

∥∥∥
1
≤ C inf

vh∈Xh

∥∥∥u− vh
∥∥∥
1
. (2.40)

The linear algebraic system associated to this problem for given basis {ui}Ni=1 has the

following structure

Auh = F, (2.41)

where

Aij = B
(
ui; uj

)
,

Fi = L (ui) .

It comply from (2.31) , (2.34) and (2.35) that system matrix in (2.41) is symmetric and

positive definite which is a key factor for the construction of a powerful preconditioner

for system (2.41). These type of settings refer to the classical Rayleigh-Ritz method

[38].

Generally, the mathematical phenomena can be presented straight away by a sys-

tem of partial differential equations or simply by an equation. Then, by following the

above prescribed procedure in a reverse manner, one can affiliate a functional including

some mandatory conditions, i.e. a minimization principle, with the provided system

of equations. However, It is not necessary that this procedure prompt an optimization

problem with a unique solution.

For more clarification, we consider Stokes problem as follows

−∆u+∇p = f

∇ · u = 0

}
in Ω, (2.42)

u = 0
}

on Ω̂.

This problem gives rise to an important class of mixed variational problem. Let us

consider the above problem for a couple of Hilbert spaces H1
0 and L2

0 with continuous

bilinear forms a (·, ·) on H1
0 ×H1

0 and b (·, ·) on H1
0 × L2

0, respectively. The problem is

define as 
Find (u, p) ∈ H1

0 × L2
0 such that

a (u, v) + b (v, p) = f (v) ∀ v ∈ H1
0,

b (u, q) = g (q) ∀ q ∈ L2
0,

(2.43)
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where

a (u, v) =

∫
Ω

∇u · ∇v dΩ, (2.44)

and

b (u, q) = −
∫
Ω

q (∇ · u) dΩ, (2.45)

along with linear functional f and g on H1
0 and L2

0. The formulation in (2.43) is also

well-known as saddle point problem, as opposed to a minimization problem. It is

clear from (2.44) that the bilinear form a (u, v) is symmetric and based on quadratic

functional. The bilinear form in (2.45) represents constraint’s weak form. For the well-

posedness of problem (2.43), the following conditions [8], [26], [51] must be satisfied,

sup
u∈Z

a (u, v)

∥u∥1
≥ β

a
∥v∥1 ∀ u ∈ Z, (2.46)

Since a (·, ·) is symmetric

a (v, v) ≥ α ∥v∥2 ,

and

sup
v∈H1

0

b (u, q)

∥v∥1
≥ β

b
∥q∥0 ∀ q ∈ L2

0, (2.47)

where the space of divergence-free functions is given by

Z =
{
z ∈ H1

0 | b (z, q) = 0 ∀ q ∈ L2
0

}
. (2.48)

Now we consider the problem on discrete level, let X h and Yh be two finite element

subspaces in the function spaces H1
0 and L2

0, respectively. We then restrict problem

(2.43) to these spaces to obtain the discrete problem,
Find

(
uh, ph

)
∈ X h × Yh such that

a
(
uh, vh

)
+ b

(
vh, ph

)
= f

(
vh
)

∀ vh ∈ X h,

b
(
uh, qh

)
= g

(
qh
)

∀ qh ∈ Yh.

(2.49)

The linear algebraic block representation of the system matrix is as following

Āuh =

[
Auu Bup

B
T

up
0

][
uh

ph

]
=

[
f

g

]
= F̄. (2.50)

The matrix Ā in (2.50) is symmetric and indefinite and it makes the system quite

hard to solve in comparison to matrix in the system (2.41). Since the problem (2.49)

is discrete saddle point problem and solvable as long as matrix (2.50) is nonsingular,

therefore solution of such problem depends on certain conditions. Above all, the well-

posedness of (2.49) depends on the so-called Ladyzhenskaya-Babuska-Brezzi (LBB)

or inf-sup condition on discrete spaces X h and Yh, see [7], [26], [69]. The following

inequality holds for b (·, ·) and βh
b
> 0, such that
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inf
qh∈Yh

sup
vh∈Xh

b
(
vh, qh

)
∥vh∥1 ∥qh∥0

≥ βh
b
, (2.51)

along with the coercive bilinear form a (·, ·) on Zh × Zh, where Zh ⊂ X h is given in

discrete form as

Zh =
{
zh ∈ X h | b

(
zh, qh

)
= 0 ∀ qh ∈ Yh

}
. (2.52)

This is also another contradiction to Rayleigh-Ritz settings. One of the major draw-

backs of inf-sup condition is the exclusion of equal order finite element spaces for

velocity and pressure.

There exists another methodology that can be employed to develop variational set-

tings for partial differential equation. Such type of technique is recognized as Galerkin

method or weighted residual method and is truly based on principle of residual or-

thogonalization. This technique can be applied to any partial differential equation

regardless of whether a minimization principle is associated with or not. But in case

of existence of such an optimization problem, the method has the potential to redeem

the optimality system. This makes the method a popular choice for broadening finite

elements theory beyond minimization principles connected to partial differential equa-

tions. For instance, if we consider the problem (2.42), the standard process in Galerkin

technique is to multiply the first and second equations with the weighted (test) func-

tions v ,vanish on boundary Ω̂, and q, respectively and integrate over the domain Ω.

The following procedure leads to same variational problem as we got in (2.43). This

shows that, if the partial differential equation is related to an optimization principle

then Galerkin approach leads to the optimality system. Beside all these qualities there

are still some uncertainties associated with the Galerkin approach such as

▶ For a given problem, the process can lead to more than one variational problem.

▶ In general, the associated bilinear form is not coercive and/or symmetric.

▶ The bilinear form does not define an equivalent inner product on the finite ele-

ment space.

▶ The bilinear form must satisfy the inf-sup condition for the well-posedness of the

problem.

▶ The analysis and the implementation of method is more difficult than the energy

minimization principle based method.

However, the versatility of the method can be achieved, but at some cost. it is

clear from the above discussion that, by following standard Galerkin procedure one

can easily construct the variational problem for almost any type of partial differential
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equation. The method did not demand any prior information about the naturally

occurring minimization principle.

2.4 Least-squares principle for PDEs

The Rayleigh-Ritz settings have so far provided ideal ground for the exploration of

finite element method. The key features of Rayleigh-Ritz setting can be summarized

as follow

▶ The considered differential equation can be associated to an equivalent naturally

occurring variational problem.

▶ The bilinear form is coercive, symmetric and positive definite.

▶ An equivalent inner product on the considered finite element space can be defined.

▶ No extra condition, i.e. inf-sup condition, required for the existence and unique-

ness of solution of the problem.

▶ A single finite element space can be used for all unknowns for discrete minimiza-

tion problem.

It is shown in previous section that if the variational principle does not satisfy

few/all of Rayleigh-Ritz properties then it must suffer analytical and computational

difficulties onwards. Therefore, due to the above-mentioned properties of Rayleigh-

Ritz method, there has been made numerous efforts to achieve these qualities for the

problems where it does not appear naturally. Now, an important question arises that

is it feasible for a given problem, i.e. system of partial differential equations, to define

an unconstrained minimization principle such that the finite element method can be

benefited from the properties acquired by Rayleigh-Ritz method.

In literature efforts have been progressed in many ways. One of them is established

on the use of artificial energy functionals which can be defined externally. This tech-

nique is known as least-squares finite element method which has the ability to capture

most of the Rayliegh-Ritz settings. The least-squares finite element method is truly

established on the concept of residual minimization. It can be applied nearly to any

partial differential equation because of the concept of residual minimization is as broad

as the residual orthogonalization used in Galerkin method. But, in contrast to resid-

ual orthogonalization, one can associate the inner product projections with residual

minimization regardless of the given problem is an optimization problem or not. Due

to such a valuable potential of least-squares approach, a suitable energy functional,

as a square sum of all possible residual equations, can be defined and minimized un-

der some appropriate norm. The subsequent artificial energy functional, as a general
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rule, is not practically meaningful, however it provides a tool to converts any partial

differential equation problem into a corresponding minimization problem.

2.5 Elementary framework

The main focus in this section is to present the basic concept of least-squares principle.

The fundamental data or evidence are taken mainly from text books referenced [15] and

[63]. In the upcoming discussions, we consider the system of linear partial differential

equations represented by a differential operator SL in a domain Ω ⊂ R2 with sufficiently

smooth boundary and appropriate boundary conditions denoted by operator TB on the

boundary region Ω̂. We consider the abstract problem form as{
SLu = f in Ω,

TBu = g on Ω̂,
(2.53)

where f and g are given vector-valued functions in and on the boundary, respectively.

The boundary value problem (2.53) also oblige a couple of hypothesis. First, if the

Hilbert spaces X (Ω) and Y (Ω)×Y(Ω̂) exist such that (SL , TB ) is a homeomorphism,

i.e. the mapping u −→ (SLu, TBu) is a homeomorphism on X (Ω) −→ Y (Ω) × Y(Ω̂).

Moreover, the operator (SL , TB ) has a closed range and the kernel as well as the co-

range are finite dimensional. These conditions provide sufficient grounds to consider

wide range of partial differential equations problems. The above assumptions ensure

the well-posedness of boundary value problem (2.53). The fundamental relation among

solution and the boundary value problem can be described by inequality as follows,

C1 ∥u∥X (Ω)
≤ ∥SLu∥Y(Ω)

+ ∥TBu∥Y(Ω̂)
≤ C2 ∥u∥X (Ω)

, (2.54)

where C1and C2 are two positive constants and ∥·∥ is some norm defined on respective

Hilbert spaces. One can also elaborate inequality (2.54) as it illustrates propitious

stability between the residual energy and the solution energy.

Remark 1 It is important to note that there may be several combinations of data and

solution spaces present for any given boundary value problem for which the problem is

well-posed and, in particular, the inequality (2.54) holds for such problem.

Now, we discuss some fundamental principles, namely continuous and discrete, that

are experienced in the early developments of least-squares theory.

2.6 Continuous principles for LSFEM

In this section, we focus mainly on continuous least-squares principles. A continuous

least-squares principle can be explained as an ideal arrangement between the solution
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norm and artificially defined energy functional, i.e. the residual, is mathematically

true. For a given problem (2.53) , a norm equivalent functional can be associated with

partial differential equations and it can also be shown that this function is achieved

by a priori estimates for the PDE problem, see [15].

Let us consider the Hilbert spaces YΩ and Y
Ω̂

as data spaces that give norms

for residual energy while the solution space XΩ provides the minimizer for energy

functional and serves as trial space. Now the quadratic artificial energy functional for

problem (2.53) can be defined as

E (u; f, g) =
1

2

(
∥SLu− f∥2Y

Ω
+ ∥TBu− g∥2Y

Ω̂

)
, (2.55)

and the continuous least-squares principle for the problem (2.55) is given by{
Find u ∈ XΩ such that

E (u; f, g) ≤ E (v; f, g) ∀ v ∈ XΩ .
(2.56)

We can represent energy functional (2.55) as E (u) , if the data functions f and g are

identical zeros.

Theorem 2 ([15]) Assume that the Hilbert spaces XΩ and YΩ × Y
Ω̂
exist such that

the operator (SL , TB ) is a homeomorphism and is of Fredholm type. Then,

I. the functional (2.55) is norm-equivalent in the sense that

1

4
C2
2 ∥u∥

2
X

Ω
≤ E (u) ≤ 1

2
C2
1 ∥u∥

2
X

Ω
∀ u ∈ XΩ , (2.57)

II. there exists a unique minimizer u ∈ XΩ of (2.55) moreover, the unique minimizer

u depends continuously on the data, i.e. u satisfies

∥u∥X
Ω
≤ C

(
∥f∥Y

Ω
+ ∥g∥Y

Ω̂

)
, (2.58)

where C is a constant whose value is independent of f, g and u.

III. u is the unique minimizer of (2.55) if and only if u is the unique solution of

problem (2.53) .

The above theorem describes the well-posedness of continuous least-squares prin-

ciple (2.56) and the unique minimizer of problem (2.55) corresponds to the unique

solution of boundary value problem (2.53) . By using standard calculus of variation,

one can show that the minimizers u ∈ XΩ of (2.55) must satisfy the Euler-Lagrange

equation such as

DE (u) = lim
t→0

dE (u+ tv)

dt
= 0, v ∈ XΩ , (2.59)
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By using basic maths, it can be determined that an equivalent variational problem can

be developed such as {
Find u ∈ XΩ such that,

B (u; v) = L (v) , ∀ v ∈ XΩ ,
(2.60)

where, the bilinear form B (·; ·) is given as

B (u; v) = ⟨SLu,SLv⟩Y
Ω
+ ⟨TBu, TBv⟩Y

Ω̂

, (2.61)

and the linear form L (·) is provided as

L (v) = ⟨f,SLv⟩Y
Ω
+ ⟨g, TBv⟩Y

Ω̂

. (2.62)

Remark 3 From the above discussion, a mathematically well-posed structure is built

in a way that the boundary value problem (2.53), i.e. linear PDEs problem, can be re-

placed by an equivalent unconstraint minimization problem which is well-posed as well.

The construction process of such minimization problems is completely characterized as

the functional space XΩ and the norm equivalent functional E (·) being minimized over

same space XΩ, i.e. the pair {XΩ , E} . The set of all such pairs that can be associated

with a given linear PDE problem constitutes the class of its continuous least-squares

principles (CLSPs).

2.6.1 Treatment for various boundary conditions

The boundary conditions can be served in a couple of distinct manners, see [89] for

further details.

i) To minimize the energy functional (2.55) straight away as the boundary residual

is a part of that functional.

ii) Implementation of boundary condition in such a way that the contribution of

boundary residual ∥TBu− g∥ , in the problem (2.53) , becomes zero, by restriction

of solution space XΩ . Let us define a functional space X̃Ω , as a restriction of

solution space XΩ , such that

X̃Ω =
{
u ∈ XΩ | TBu (z) = g (z) ∀ z ∈ Ω̂

}
,

hence, the residual ∥TBu− g∥ in the system (2.53) will naturally vanish for all

those functions which belong to space X̃Ω .

We use strategy (ii) to deal with the boundary conditions and consider even natural

boundary condition as essential boundary condition by restriction of solution spaces

(See for details [15], Chapter 12).
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2.6.2 An operator form of least-squares principle

In this thesis, more specifically, we studied the least-squares method based on the

minimization of residuals (2.55) defined in L2-norm. Suppose that in problem (2.53) ,

f ∈ L2 and without loss of generality we assume that the vector g is null. We choose

an appropriate subspace XΩ of the Hilbert space L2. The functions in XΩ satisfy the

boundary condition:

TBv = 0 on Ω̂. (2.63)

Then the variational problem (2.60) can be written as{
Find u ∈ XΩ such that,

B (u; v) = L (v) , ∀ v ∈ XΩ ,
(2.64)

where, the bilinear form B (·; ·) is given as

B (u; v) = ⟨SLu,SLv⟩ , (2.65)

and the linear form L (·) is provided as

L (v) = ⟨f,SLv⟩ . (2.66)

Let us now formulate the Euler-Lagrange equation corresponding to the variational

formulation (2.64). Now using the well-known rule of integration by parts on problem

(2.64), we obtain: 〈
S∗

L
SLu− S∗

L
f, v
〉
+ ⟨SLu− f, v⟩Ω̂ = 0. (2.67)

where S∗
L
is the adjoint operator of SL with its range in L2, and ⟨·, ·⟩Ω̂ is the so-called

bilinear form that contains boundary terms generated by the integration by parts rule.

Hence we have the following Euler-Lagrange equation

S∗
L
SLu = S∗

L
f in Ω. (2.68)

The boundary condition TBv = 0 serves as an essential boundary condition for (2.68).

The original first-order equation serves as a natural boundary condition which can be

obtained from the boundary term ⟨SLu− f, v⟩Ω̂ = 0 for all admissible v. Therefore,

the least-squares method for first-order system is formally equivalent to the Galerkin

method for second-order system with the differential equations given in (2.68). The

operator S∗
L
SL in (2.67) is self-adjoint and nonnegative, even though SL itself is not

self-adjoint.

Now we understand the advantage of the least-squares method that it converts a

difficult non-self-adjoint first-order system into a relatively easy self-adjoint second-

order system. For this reason, it is not surprising that the condition number of the

resulting matrix produced by LSFEM is O(h−2) which is the same as that for the

Galerkin method for second-order equations.
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2.7 Discrete principles for LSFEM

The continuous least-squares principle {XΩ , E} , in section 2.6, propose an alternative,

external variational formulation of boundary value problem (2.53). With the help

of pair {XΩ , E}, we can define finite element methods with Rayleigh-Ritz solver like

properties. A discrete least-squares principle (DLSP) can be represented by the pair{
X h

Ω
, Eh
}
, where X h

Ω
denotes a discrete finite dimensional space (space of piecewise

polynomial functions), parameterized by mesh-size parameter h and Eh : X h
Ω

→ R
denotes the energy functional. The discrete least-squares principle under these as-

sumptions can be defined as:{
Find uh ∈ X h

Ω
such that

Eh
(
uh; f, g

)
≤ Eh

(
vh; f, g

)
∀ vh ∈ X h

Ω
.

(2.69)

2.7.1 LSFEM and optimal approximations

To answer this question, we need a couple of more assumptions to establish a connection

among discrete problem (2.69) and boundary value problem (2.53).

Condition 4 The least-squares functional is consistent in the sense that for all smooth

data f and g and all smooth solutions u of (2.53),

Eh (u; f, g) = 0. (2.70)

Condition 5 The least-squares functional is positive, i.e.,

Eh(vh; f, g) > 0 ∀ 0 ̸= vh ∈ X h
Ω
. (2.71)

From the hypothesis (2.71), we can define discrete energy norm ∥·∥h : X h
Ω

→ R
such that

∥·∥h = Eh(·; 0, 0)
1
2 , (2.72)

Hence, we can also associate an energy inner product ⟨·, ·⟩h : X h
Ω
×X h

Ω
→ R defined

as

||vh||h =
√
⟨vh, vh⟩h ∀ vh ∈ X h

Ω
. (2.73)

Let us now state a theorem which is important to show that the above-discussed

conditions are sufficient to solve discrete problem (2.69).

Theorem 6 ([15]) Suppose that assumptions (2.70) and (2.71) hold for the DLSP

(2.69) and let u ∈ XΩ denote a sufficiently smooth solution. Then,

▶ The problem (2.69) has a unique minimizer uh ∈ X h
Ω
.

▶ uh is the orthogonal projection of u w.r.t. the discrete energy inner product (2.73).
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As an immediate consequence of above theorem, we have following corollary:

Corollary 7 ([15]) Let the hypothesis of theorem 6 hold. Then, the least-squares

solution uh minimizes the discrete energy norm error, that is

||u− uh||h = inf
vh∈Xh

Ω

||u− vh||h. (2.74)

It is quite easy to define a discrete equivalent variational problem of (2.69) as

follows {
Find uh ∈ X h

Ω
such that,

B
(
uh; vh

)
= L

(
vh
)
, ∀ vh ∈ X h

Ω
,

(2.75)

where

B (·; ·) = ⟨·, ·⟩h and L (·) = ⟨u, ·⟩h . (2.76)

It is clear that (2.75) is a linear system of algebraic equations. To represent a

matrix-vector form of this problem, let the vector function uh ∈ X h
Ω
be represented as

uh =
∑N

j=1 w⃗jψ
h
j , where w⃗ = (w1 , · · ·, wN )

T denotes the coefficient vector and
{
ψh
j

}
denotes a basis of X h

Ω
. Then a matrix-vector is given by

Aij =
〈
ψh
i , ψ

h
j

〉
h

(2.77)

Fi =
〈
u, ψh

j

〉
h
, (2.78)

respectively. The problem (2.75) is then equivalent to the linear system of algebraic

equations

Aw⃗ = F. (2.79)

with the coefficient vector w⃗ corresponding to uh. It is clear that the matrix A is

symmetric, positive definite and the system (2.79) has a unique solution.

2.8 LSFEM and practicality issues

In this particular section, we discuss briefly some practicality issues regarding least-

squares principles. Although, we can not deny the importance of mathematical well-

posedness of the considered problem but the primary objective is to construct a worthy

computational algorithm. Hence, the proposed techniques must also be practical to

implement. The proposed least-squares finite element method must satisfy the practi-

cality measures such that

▶ The standard discrete finite element spaces should be chosen in a manner that

they must be easy to handle.
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▶ The constructed matrices and vectors should be computed without any difficul-

ties.

▶ The condition number of discrete problem should be regulated conveniently.

2.8.1 Least-squares principle for second order PDEs

The straightforward application of least-squares principle to second order partial dif-

ferential equation makes the problem impractical in least-squares sense. For example,

the equivalent variational equation of the problem (2.33) in section 2.3 must contain

the term ∫
Ω

△u · △v dΩ, (2.80)

with corresponding discrete term ∫
Ω

△uh · △vh dΩ. (2.81)

The terms are well-defined within the finite element space, as it consist of piecewise

polynomial functions but the complications arise at the boundary region of considered

domain. The terms are not well-defined on boundary except for the finite element

spaces which are continuously differentiable in higher order. For multidimensional

problem such spaces are not easy to handle. Subsequently, any technique that adopts

such terms, including the strategies presented here, is unrealistic.

Another disadvantage of the methods based on the discrete variational problem,

containing the term (2.81), is an abrupt growth of order O
(
h−4

)
of the condition

number w.r.t. mesh size, regardless of whether or not we utilize smooth finite element

spaces. This ought to be appeared differently for the problem (2.33) for which the

condition number is of order O
(
h−2

)
for discrete problem in relation to the Rayleigh-

Ritz approach. In this regard, the least-squares finite element approach abandons one

of the practicality conditions. The discrete term (2.81) also provides the information

that a strong regularity is needed for the weak solutions of problem. As it contains

two second order square integrable derivative terms which are double as compared to

the Galerkin approach. Due to these flaws, the least-squares finite element method

did not catch the attention of researchers in early stages of developments.

2.8.2 Least-squares principle for first order linear systems

On the basis of observation discussed above, the researchers came up with a brilliant

idea of transformation of second order partial differential equation to an equivalent

system of linear first order partial differential equations. The development of a prac-

tical and mathematically well-defined least-squares finite element methods requires
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more than just picking the most evident functionals which are not necessarily physi-

cal quantities. The functional is based on the first order system. In this manner, we

overcome majority of the practicality issues of least-squares finite element methods as

listed below.

▶ It allow us to employ simple discrete finite element spaces.

▶ The weak variational problem contains first order square integrable derivative

terms and requires only C0 regularity to solution space.

▶ The matrix constructed from linear algebraic system is symmetric positive defi-

nite and easy to compute.

▶ The condition number is manageable as it is of order O
(
h−2

)
.

The transformation of second order partial differential equation, in primitive vari-

ables, to first order linear system can be done in many ways, as it is not a uniquely

defined process. There are three first order linear formulations employed extensively

that are associated with least-squares finite element methods, which are as follow:

i) The Vorticity Velocity Pressure (VVP) Formulation

ii) The Stress Velocity Pressure (SVP) Formulation

iii) The Velocity Gradient Velocity Pressure (VGVP) Formulation

The transformation process of higher order partial differential equations to the first

order linear system must include some new variables in the resulting system. In this

thesis, we are mainly studying the Stokes and Navier-Stokes problems therefore the

problem (2.42) can be used for better knowing of the transformation process. The first

formulation (i) employs the vorticity ω as a new variable

ω = ∇× u, (2.82)

which is the pseudo vector of the skew-symmetric part 1
2

(
∇u−∇u

T
)
of the velocity

gradient tensor ∇u. Therefore the transformation process leads to a vorticity-based

first-order system.

ην∇× ω +∇p = f

∇× u− ω = 0

∇ · u = 0

 in Ω,

u = 0

n · ω = 0

}
on Ω̂.

(2.83)
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In formulation (ii), we work with the symmetric part D(u) = 1
2

(
∇u+∇uT

)
of the

velocity gradient tensor ∇u and we use stress tensor as

σ = −pI+ 2ηνD (u) . (2.84)

Hence the process gives rise to a stress-based first order system.

−∇ · σ = f

σ + pI− 2ηνD (u) = 0

∇ · u = 0

 in Ω,

u = 0

n · σ = 0

}
on Ω̂.

(2.85)

The formulation (iii) uses the whole velocity gradient tensor∇u as a new dependent

variable of velocity flux. We set velocity flux as

U = (∇u)
T

, (2.86)

so that Uij =
∂ui
∂xj

; i, j = 1, 2 then ∇·U = △u and the transformation process leads to

velocity gradient based first order system.

−ην∇ ·U+∇p = f

U− (∇u)
T

= 0

∇ · u = 0

 in Ω,

u = 0

n ·U = 0

}
on Ω̂.

(2.87)

for all these formulation the zero mean pressure constraint is used i.e.∫
Ω

p dΩ = 0. (2.88)

In literature, more research has been done on VVP formulation in [13], [59], [60], [61],

[63], [74], [76]. The VGVP based first order systems presented in [28], [71]. The SVP

system is used in this work and has been investigated by many researchers, see section

2.1. We further introduce a first order formulation SPVT in chapter 6 for solution of

non-Newtonian fluids with non-isothermal properties.

2.8.3 Conflict aspects of norm equivalence and practicality

A least-squares finite element method can be constructed in a way that it fulfills all the

required features of the Rayleigh–Ritz settings but it does not necessarily be practical.

In general, it is not a difficult task to define a norm-equivalent linear least-squares

functional E(·; ·) for any given partial differential equation problem defined under some
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Hilbert spaces XΩ , YΩ and Y
Ω̂
such that the following inequality (2.54) holds. Also

it can be shown that for the same problem one can define several norm-equivalent

linear functionals but not every functional is implementable, see [15] for more detail.

Therefore a linear functional generated by a straightforward application of least-squares

principle does not necessarily lead to a practical method because sometime it involves

the norms that are not easy to implement mathematically. These functionals may

contain impractical fractional or negative norms.

In this regard, it is an important task to construct a practical least-squares fi-

nite element method. Here, we allude to a standard L2-least-squares finite element

framework enforced to get a first order linear system of equations whose solution is

easily computable in comparison to other numerical techniques. To obtain a practical

scheme, the choice of spaces is a very significant factor. The space XΩ is set to be a

product of H1 Hilbert space and discretized with standard C0 finite elements. The

spaces YΩ and Y
Ω̂
are the product of L2 Sobolev space. In addition to the discussed re-

quirements, if the framework also satisfies the estimate (2.54) then it produces optimal

results but if the framework does not fulfill the estimate (2.54) then some mandatory

adjustments are required to handle optimality issues. The treatment to tackle such

situations is described as under:

▶ Reconstitution of governing system.

▶ Employment of weaker spaces H−1 or intermediate spaces H
1
2 , see [75].

▶ Use of weighted L2 norms to replace impractical norms in the discrete problem.

▶ Appropriate choice of spaces.

▶ Work with non-conforming discretization

Another strategy is to define a non-equivalent least-squares functional for discrete

problem. The main idea is to define least-squares functional in standard L2-norm

for residual energy. In this work, we utilize non-equivalent least-squares finite ele-

ment method based on L2-least-squares framework. The energy functional may not be

mathematically correct but it is easy to implement. Due to the mathematically incor-

rectness of energy balance, nothing can be said about the optimality of the method.

However, the general assumptions, namely consistency (2.70) and positivity (2.71),

established for discrete least-squares principle can easily be satisfied by any sensible

definition of a least-squares functional. The non-equivalent least-squares finite element

method has been the most frequently exploited technique in the least-squares context.

The reason for this is the fact that combination of first-order systems with L2-norms

to measure the residual energy leads to a very simple and easy to implement scheme.



2. Least-squares Finite Element Method 31

2.8.4 Mass conservation of least-squares method

In many standard finite element methods, one of the major drawback appeared to be

the lack of local mass conservation for the incompressible Stokes and Navier-Stokes

equations (cf. for further details [52]). Various procedures have been developed in lit-

erature to overcome this inadequacy. One can reestablish the local mass conservation

of a problem by using discretely divergence-free finite elements [91] or utilizing some

distinctive unifications of element [52]. But in context of least-squares finite element

method even global mass conservation is not preserved for currently existing formu-

lations. The continuity equation, which provides the divergence-free velocity field,

is one of the component of proposed least-squares functional for minimization. The

functional can be written as a sum of squared residuals of system equations and if

an equation other than continuity equation dominates the residuum, can cause a lack

of global mass conservation. The Stokes problem was studied in [29] with weighted

least-squares finite element method for flow around cylinder. The author shown the

lack of mass conservation at narrow channels around cylinder, as more mass flow into

the domain then pass by the cylinder and that is a clear indication of mass inadequacy.

Later, Chang introduced an additional constraint to system of equations to overcome

mass conservation issue. Unfortunately, his suggested idea resulted in a saddle point

problem. The proposed method was impractical as it violated the basic characteristics

of least-squares finite element method.

Furthermore the authors in [42] worked in similar directions and tried to reproduce

the numerical experiments done in [29]. They associated a scaler weight to the equa-

tion (i.e. continuity equation) which establish the mass conservation of the system.

According to the article, small weights can be helpful in the improvement of mass

conservation. Another treatment to deal with such an issue for 2D problems is the use

of higher order finite elements [80]. For very recent techniques and also an overview

of the previous efforts we refer to the works of Bochev et al. [21], [22].The treatment

and calculation of global mass conservation is discussed in Section 3.4.5 for our work.

2.9 Least-squares principle for nonlinear problem

The nonlinear problem, in the context of least-squares finite element method, is a bit

complicated as compared to the Galerkin approach. To solve any nonlinear partial

differential equations, there are two main stages which can be considered i.e. dis-

cretization and linearization. The usual approach, which is commonly used together

with the Galerkin variational principle is to discretized the fully nonlinear problem.

For further elaboration, we consider an arbitrary nonlinear partial differential operator

L̂ as

L̂u = f in Ω, (2.89)
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and the residual of system is given by

R (u) = L̂u− f = 0, (2.90)

the discretization yields a nonlinear algebraic system:

K̄ (u) u = 0, (2.91)

where the finite dimensional vector u represents the approximating finite element func-

tion. Usually this algebraic system is then solved with some appropriate method for

nonlinear systems of equations.

The second way is to linearize the differential nonlinear operator L̂ on the contin-

uous level. Subsequently, a mapping should be defined as L̂ : XΩ → YΩ , where XΩ ,

YΩ are subspaces in W k,p (Ω)n and the operator L̂ is considered to be Fréchet differ-

entiable. The nonlinear problem satisfies the exact solution u∗ ∈ XΩ in a weak sense

such that

R (u∗) = L̂u∗ − f = 0. (2.92)

To find a direct solution u∗ for the problem (2.92) is not possible most of the time.

Therefore, we consult iterative methods with some initial guess uk. The Newton’s

iterative method solves the problem as

DR
(
uk
)
[δu] = −R

(
uk
)
, (2.93)

where the new solution refinement can be given as uk+1 = uk + δu. Undoubtedly,

the refined term uk+1 is not the exact solution of system (2.92), but under few suf-

ficiently strong conditions and with proper choice of initial guess u0 the sequence uk

eventually converge to the exact u∗(cf. [87]). Furthermore, the Galerkin variational

principle applied in both approaches, discussed in the Section 2.3, lead to same sys-

tem of equations. This mean that the order of discretization and linearization do not

matter and can be exchanged in case of Galerkin method.

For the least-squares finite element method, the above observations do not hold

and yield distinct results. The difference among these approaches can be shown by

deriving abstract variational forms for both approaches.

Least-squares variation principle before linearization

In this section we study the behavior of nonlinear least-squares functional as given by

E (u) =
1

2
∥R (u)∥20 , (2.94)

and minimization problem associated with functional is given as min
u∈X

Ω

E (u). The nec-

essary condition or first variant of (2.94) is given as

DE (u) [v] = (R (u)) (DR (u) [v]) = 0, (2.95)
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since DE (u) [v] is nonlinear in u. To apply the Newton method, we need to calculate

the first variant of (2.95) , such that

D2E (u) [v, δu] = (R (u))
(
D2R (u) [v, δu]

)
(2.96)

+ (DR (u) [δu]) (DR (u) [v]) .

One Newton iteration can be written as

(R (u))
(
D2R (u) [v, δu]

)
+ (DR (u) [δu]) (DR (u) [v]) = (2.97)

− (R (u)) (DR (u) [v]) ∀ v ∈ XΩ .

Least-squares variational principle after linearization

In this approach, the least-squares variational principle applies to the functional which

is obtained from the Newton linearization of the nonlinear terms in equation (2.89).

The functional we get is

E (δu) =
1

2
∥DR (u) [δu] +R (u)∥20 , (2.98)

then the first variation of (2.98) gives the following iterative scheme

DE (δu) [v] = 0, (2.99)

(DR (u) [δu]) (DR (u) [v]) + (R (u)) (DR (u) [v]) = 0,

(DR (u) [δu]) (DR (u) [v]) = − (R (u)) (DR (u) [v]) ∀ v ∈ XΩ . (2.100)

It can be observed from the equation (2.97) that it contains an extra term with

second order Fréchet derivative, in comparison to equation (2.100).

Remark 8 The order of the application of least-squares variational principle and lin-

earization influences the nonlinear problem and leads to contrary outcomes.

In literature, both techniques have been employed and numerically examined. The

research analysis for first approach can be found in [12], [14], [16], [20], where the

Navier Stokes equation based on different least-squares formulations had been studied

for the nonlinear least-squares functional. Whereas in least-squares sense, when the

nonlinear problem is initiated by linearization, then the least-squares principle is exer-

cised directly to linear problem and proposed theory of [63] is applicable. The detailed

analysis of these two approaches was done in [33] and concluded that near solution the

first order derivative terms dominate over second order derivative terms. That means,

if the radius of convergent is smaller than the first approach behave same as second

approach. Also the calculation of second order derivative term is a difficult task and

it increases the regularity of the solution’s space. Therefore, in this work the second

approach is used for our research purpose.



Chapter 3

Numerical Methods And

Geometries

If modeling the physical problem is a challenging task then solving it numerically is

not that easy at all and in fact is even harder. The solution strategies for fluid flow

problems have been investigated from many decades, this chapter sorts it out with

references therein. Furthermore, we explain the general differences between the direct

and iterative solvers. The core ideas of iterative solvers like Krylov subspace solver

and multigrid solvers strategies are explained thoroughly with associated references.

3.1 Methods for nonlinear problem

In this section, the numerical techniques for solution of nonlinear stationary incom-

pressible problems are the main focus of our discussion.

3.1.1 Nonlinear basic Iterative methods

The methods are formulated by the following type of abstract nonlinear problem given

by equation (2.89) and proposed to be stationary. The nonlinear basic iteration, cf.

[91], is divided into three stages to solve a nonlinear problem. Let wk be the known

iteration and the residual dk of nonlinear problem is calculated by this known value.

The new solution update δw is approximated as following

34
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Provided: iterate the given value wk

Execute: The following steps to produce wk+1

Step-I: Compute the residual

dk = L̂
(
wk
)
wk − f,

Step-II: Solve a subproblem for δw with residual dk on right hand side

R̃
(
wk
)
δw = dk,

Step-III: Update the solution wk via δw and relaxation parameter ϖ to get wk+1

wk+1 = wk −ϖδw.

Algorithm 3.1: Nonlinear Basic Iteration

the operator R̃
(
wk
)
is the Fréchet derivative of nonlinear operator L̂ w.r.t. to last

approximate solution wk. The value ϖ is an extra damping parameter which has to be

selected properly. The nonlinear iteration scheme may be terminated if a maximum

number of iterations Nmax have been achieved, i.e. k + 1 ≥ Nmax, or if the residual

of considered system is smaller enough to some tolerance parameter TOL set by user

and it is given in a certain norm, such as∥∥∥L̂(wk+1
)
wk+1 − f

∥∥∥ < TOL. (3.1)

In the least-squares context, we approximate the squares of residual (2.94) of the given

problem. Then, the method mentioned in Algorithm 3.1 take a different form due to

the application of least-squares principle as shown in Algorithm 3.2.

If we consider R̃ = ∥DR∥20 = ⟨DR,DR⟩ and R
def

= ⟨R,DR⟩ then the following

nonlinear iterative scheme is achieved,

wk+1 = wk −ϖ
[〈

DR
(
wk
)
,DR

(
wk
)〉]−1 [〈

R
(
wk
)
,DR

(
wk
)〉]

, (3.2)

or for simplicity

wk+1 = wk −ϖ
[
DR

(
wk
)∗

DR
(
wk
)]−1 [

R
(
wk
)∗

DR
(
wk
)]
. (3.3)

whereDR represents the Fréchet derivatives of operator L̂. This scheme is called Gauss-

Newton method and known to have super linear/linear convergence. The convergence

radius of the Gauss-Newton method is very narrow and it requires a very good ini-

tial guess to acquire a convergent scheme. The stopping criterion for Gauss-Newton

method is given as ∥∥∥〈R(wk+1
)
,DR

(
wk+1

)〉∥∥∥ < TOL. (3.4)
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Provided: iterate the given value wk,

We define a least squares functional as

E
(
wk
)
=

1

2

∥∥∥R(wk
)∥∥∥2

0
=

1

2

∥∥∥L̂(wk
)
wk − f

∥∥∥2
0
.

Execute: The following steps to produce wk+1,

Step-I: Calculate the residual Rk
def

for LS problem as

Rk
def

=
〈
R
(
wk
)
,DR

(
wk
)〉

.

Step-II: Solve a subproblem for auxiliary solution δw with defect residual Rk
def

on

right hand side

R̃
(
wk
)
δw = Rk

def
.

Step-III: To get wk+1, update the solution wk with auxiliary solution δw and relax-

ation parameter ϖ as

wk+1 = wk −ϖδw.

Algorithm 3.2: Nonlinear Basic Iteration for LS

We use another iterative scheme so-called fixed point iterative method for the

operator R̃. In such type of method, the nonlinear operator L̂ may be chosen itself

as an approximate Fréchet derivative or only its linear part. Since, the least-squares

principle leads to the following minimization system∥∥∥R(wk
)∥∥∥2 = 〈R(wk

)
,R
(
wk
)〉

= 0, (3.5)

Therefore, we only consider linear part in the residual of nonlinear system R to develop

fixed point method. The iterative scheme can be given as

wk+1 = wk −ϖ
[〈

R
(
wk
)
,R
(
wk
)〉]−1 [〈

R
(
wk
)
,R
(
wk
)〉]

, (3.6)

or

wk+1 = wk −ϖ
[
R
(
wk
)∗

R
(
wk
)]−1 [

R
(
wk
)∗

R
(
wk
)]
, (3.7)

the general convergence behavior of such scheme is linear or some time super linear as

well. The stopping criterion is similar as inequality (3.4) , but the term DR
(
wk+1

)
is

replaced by the term R
(
wk+1

)
. In many cases it is helpful to generate a good initial

guess for Gauss-Newton method.
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3.2 Methods for sparse linear systems

A linear system of equations of form given as

Ku = b, (3.8)

with sparse and large coefficient matrixK can be constructed either from discretization

of linear problem or linearization and discretization of a nonlinear problem. The

modelling and simulation process for such sparse and large problem is a challenging

task, as it may be done at huge computational cost. A huge amount of research efforts

have been made to develop efficient algorithms for problem (3.8). In general, these

methods split into two important branches, the direct methods and iterative methods.

In the forthcoming subsections, we provide the brief description of the methods which

are adopted for our research problems and citations are presented additionally for

further details.

3.2.1 Direct methods

The direct methods can be seen as an efficient development of Gaussian elimination

method and these methods generate the exact solution after performing limited num-

bers of operations to a linear system in the absence of round off error. These methods

are only applicable when K is a square matrix in the problem (3.8) . In our case, we

employed the direct Gaussian elimination solver (UMFPACK [39]) as a coarse grid

solver, where the small sparse systems are under consideration in 2D. Also it gives a

very robust linear scheme, despite the fact that the memory and CPU time require-

ments are too high when the provided linear system is large. For further detail on

sparse direct solvers one can see [40], [41], [45].

3.2.2 Iterative methods

The iterative methods refer to the schemes that adopt iterative procedures to obtain the

accurate approximation towards the solution of a large linear system at each iteration.

The solvers are subdivided into two major categories, namely the Krylov Subspace

solvers and the Multigrid solver. In the following subsections general description of

these methods is documented and the solution algorithms to solve our problem is

incorporated. One may go through [85] for comprehensive discernment on the iterative

methods.

Krylov space methods

In the twentieth century, the Krylov space methods are considered among the top

rated [32] iterative methods to deal with large sparse linear systems. The distinct
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approximation properties and modest storage requirements make them popular. In

this thesis, we encounter large sparse linear system, due to the characteristic of the

interpolation functions utilized in the finite element discretization, and direct methods

are not practical in this scenario. The Krylov methods are considered to be very

effective schemes for large linear problems with suitable choice of preconditioners and

it obtain approximate solution from a finite m-dimension subspace u0 +Km, where u0

represents an arbitrary initial guess and Km is the Krylov subspace defined as:

Km (K, r0) = span
{
r0 ,Kr0 ,K

2r0 , · · ·,Km−1r0
}
, (3.9)

with r0 = b − Ku0 . For simplicity Km (K, r0) is denoted by Km later on. A com-

mon practice is to proceed with initial guess u0 = 0 which permits r0 = b, and the

corresponding Krylov subspace is Km (K,b) achieved by the given linear system.

The Krylov space schemes are based on projection processes, both orthogonal and

incline, onto Krylov subspaces which are subspaces spanned by vectors of the form

p(K)v, where p is a polynomial. More precisely, theses techniques approximate K−1b

by p(K)b, where p is unique minimal polynomial [62] of smallest degree for which

p(K) = 0. It can be easily seen that K−1b is a member of Krylov subspace and

approximation obtained is of following form

K−1b ≈ q
k−1

(K) b, (3.10)

where q
k−1

is a minimal polynomial of degree k− 1. In simple words the linear system

K−1b is approximated by a polynomial q
k−1

(K) b. The convergence of Krylov method

is depends on the degree of minimal polynomial, if it is small the Krylov method

converge faster. Because, the corresponding Krylov subspace has small dimension

which contain the solution vector.

Conjugate gradient method The Conjugate Gradient (CG) method is well known

to solve the linear problem (3.8) by using concepts of orthogonal or conjugate vectors.

This class of methods was first introduced by Hestenes and Stiefel [56] in early 50s of

twentieth century. The CG method is very efficient to deal with symmetric positive

definite systems. Then, the minimization problem minQ of a quadratic form

Q(u) =
1

2
uTKu− uTb, (3.11)

is an equivalent problem of finding solution for the linear system, if

DQ(u) = grad Q (u) = Ku− b = 0. (3.12)

So, the CG method can be seen as an iterative scheme to find the minimizer u
k
∈

u0 + Kk (K, r0), at kth-iteration, of form (3.11) and eventually an iterative solver of
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linear system (3.8). The working mechanism of CG method is given in the Algorithm

3.3 below.

Compute: r0 := b−Ku0 with initial values u0 , v0 := r0 .

If r0 is sufficiently small, then return u0 as result and exit.

FOR k := 0, 1, · · ·, till convergence, DO

w
k
:= Kv

k

α
k
:=

(rk ,rk)
(wk

,vk)
u

k+1
:= u

k
+ α

k
v
k

r
k+1

:= r
k
− α

k
w

k

β
k
:=

(rk+1
,r

k+1)
(rk ,rk)

v
k+1

:= r
k+1

+ β
k
v
k

If r
k+1

is sufficiently small, then exit the loop.

END DO

Output: Return u
k+1

.

Algorithm 3.3: Conjugate Gradient Method

It can be observed from the algorithm that the vector v
k
which gives the search

direction is highly significant for optimality of scheme. If the iterative solution at u
k+1

is optimal w.r.t. v
k
̸= 0, then the next iteration u

k+2
must be optimal and it is possible

only when the following condition hold, Kv
k+1

⊥ v
k
, i.e.(

Kv
k+1

, v
k

)
= 0, (3.13)

where the direction vectors v
k+1

and v
k
are orthogonal or pair wise conjugate to each

other. As each new search direction is generated by the remaining residual and conju-

gate to the prior search direction, it is also conjugate to all previously generated search

directions. Therefore a system of conjugate directions is developed or an equivalent

system of orthogonal residuals.

Theorem 9 (For proof see [70]) Suppose the CG method applied to a SPD system

Ku = b. Then, the following inequality for errors, at kth iteration, will hold

∥u− u
k
∥
K

∥u− u0∥K

≤ 2

(√
κ− 1√
κ+ 1

)k

; for k ≥ 0, (3.14)

where κ is 2-norm condition number1 of matrix K.

1The Condition Number κ (A) is defined as

κ (A) =
λmax

λmin
,

where λmax and λmin are maximum and minimum eigen values of SPD matrix A.
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From above theorem, It is observed that the convergence rate of CG scheme is

linear and depends on the spectral condition number of matrix K. Although, with

help of proper super linear preconditioning techniques one can achieve a super linear

convergence for CG method. For more discussion on the convergence of CG method

cf. [25], [34] and [95].

Preconditioning

It is an absolute truth that lack of robustness/stability are common flaws of iterative

methods, if compared to direct methods. But still we can not fully ignore them as they

are applicable to large linear systems. To counter such situations, the proper use of

suitable techniques, for instant precoditioning, can substantially improve the efficiency

and robustness of iterative schemes. Earlier in this section, we have discussed briefly

that the convergence rate of Krylov subspace solvers for symmetric linear systems is

strongly dependent on the spectral properties of the system matrix. Particularly, the

conjugate gradient method produces best results when the condition number of matrix

κ (K) is small or eigenvalues cumulate around one [11].

Preconditioning techniques are usually exercised to the systems with built-in de-

ficiencies as discussed above. The main idea of preconditioning is to reconstruct the

new systems having common solution as the original systems but the properties of

new systems are favorable for the iterative solvers. For the linear system (3.8) , the

preconditioner P can be defined as

P−1Ku = P−1b, (3.15)

where P is an invertible matrix2. This system is expected to be solved easily by the

Krylov space methods and has same solution as system (3.8). A preconditioner is

considered to be good when the choice of matrix P is close to coefficient matrix K. In

this regard, the condition number of preconditioned matrix is closed to one and the

method will converge fast.

Multigrid method

The geometric multigrid method (GMG) is another renown alternative approach to

solve large and sparse linear systems generated from discretization of partial differential

equations. Initially, multigrid scheme was developed only for elliptic problems but later

on it was also used for other type of PDEs problem. For general introduction on the

2A nonsingular square martix A is said to be invertible if and only if there exists a square matrix
B such that

AB = BA = I,

where I is identity matrix.
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method, one can consults the book [54]. From numerical point of view, the multigrid

method can be described as a procedure that combines a set of algorithms which solve

the discrete problem (3.8) of differential equations on different hierarchical mesh levels.

This makes it one of the successful and fastest method for CFD problems [97].

To explain the working cycle of geometric multigrid method, we assume that there

exists the hierarchical mesh levels l+1; j = 0, · · ·.l ,where l is the finest mesh level and

the index c represents any coarse mesh level such that 0 ≤ c < l. The linear problem

(3.8) on finest level can be written as

Klul = bl. (3.16)

The multigrid procedure for one coarse grid correction is given as follow:

Pre-Smoothing: The actual vector as initial guess at level l is ukl . On this

level, few iterations of a basic iterative scheme are performed to remove highly oscil-

lating errors presented in the solution vector ukl and obtain a smoothed error field.

These schemes are known as smoothers and process on this specific level is called pre-

smoothing. The improved solution u
k+ 1

3
l obtained after smoothing process with step

size ϵ1 and corresponding residual vector r
k+ 1

3
l is shown as under[

u
k+ 1

3
l , r

k+ 1
3

l

]
:= Smoother

(
Kl, u

k
l ,bl, ϵ1

)
. (3.17)

Restriction: Now multigrid perform a transformation Icl := Rnl → Rnc of residual

vector from fine mesh level to coarse mesh level. This procedure is named as restriction

process and given as

r
k+ 1

3
c := Icl r

k+ 1
3

l . (3.18)

Coarse level correction: Now the smoothed error is approximated efficiently on

the coarse level for a smaller linear system

Kcu
e
c := r

k+ 1
3

c , (3.19)

and get a potential correction uec for the solution at finest level.

Prolongation: Now a reverse transformation Ilc := Rnc → Rnl from coarse level

to fine level is performed by prolongation or interpolation process

uel := Ilcuec, (3.20)

and a significant correction is made to solution vector on finest level

u
k+ 2

3
l := u

k+ 1
3

l + uel . (3.21)

Post-Smoothing: Few more iterations on the obtained solution u
k+ 2

3
l by a smoother

lead to the refined approximate solution vector uk+1
l with corresponding residual rk+1

l[
uk+1
l , rk+1

l

]
:= Smoother

(
Kl, u

k+ 2
3

l ,bl, ϵ2

)
, (3.22)
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where ϵ2 is step size for pre-smoothing process. This is a complete two level process

for the multigrid method.

The main goal in multigrid method is to obtain a small sparse linear system on

coarse grid level and common exercise to solve such system is by employing an appro-

priate direct solver. However, if the system matrix is not small on coarse level then the

choice of solver is very crucial. The direct solver is not a good option for such situation

as it requires more memory and eventually is very expensive for large linear system.

In this case, the multigrid method will shift the problem to more coarsest grid level

and this hierarchical process will continue until the requirements for coarse grid solver

meet. This hierarchical grid process in multigrid is multigrid cycle. The most common

and famous multigrid cycles are V-cycle,W-cycle and F-cycle. The type of the multi-

grid cycle along with other multigrid components play a vital role in the convergence

behavior of MG method. We investigate F-multigrid cycle for study purposes.

Figure 3.1: Multigrid V, F and W cycles with (\) restriction, (/) prolongation and (•)
pre/post smoothing operations

Multigrid-preconditioned conjugate gradient solver

The CG method, as discussed in previous sections, is highly dependent upon the

condition number of the considered linear system. However, the convergence rate of CG

solver can be reasonably enhanced by employing suitable preconditioning approaches

[85]. For the solution of least-squares finite element method, a lot of research has

to be done on preconditioned conjugate gradient (PCG) method. One of the most

employed candidate for this purpose is PCG based on Jacobi method (JPCG) [85].

Poles apart from Jacobi solver, the multigrid scheme is another powerful successor for

PCG method used in [58], [59] and [60]. The LSFEM for Navier-Stokes equations is

studied in [82] with geometric multigrid preconditioned CG method and observed that

MPCG’s convergence rate is better than the JPCG method. The Algorithm 3.4 of

MPCG solver is described below.
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Compute: r0 := b−Ku0 with initial values u0 , MGz0 := r0 and v0 := z0 .

If r0 is sufficiently small, then return u0 as result and exit.

FOR k := 0, 1, · · ·, till convergence, DO

w
k
:= Kv

k

α
k
:=

(rk ,zk)
(wk

,vk)
u

k+1
:= u

k
+ α

k
v
k

r
k+1

:= r
k
− α

k
w

k

MGzk+1
:= r

k+1

β
k
:=

(rk+1
,z

k+1)
(rk ,zk)

v
k+1

:= z
k+1

+ β
k
v
k

If r
k+1

is sufficiently small, then exit the loop.

END DO

Output: Return u
k+1

.

Algorithm 3.4: Multigrid Preconditioned Conjugate Gradient Method

In this work, we use geometric multigrid scheme as preconditioner of CG method

which serve as main solver for linear system. Apart from that, we also use CG method

as a pre/post smoother for multigrid method to enhance convergence and robustness,

see [48] and [66] for more detail. Since, at each smoothing step CG smoother deter-

mines the size of the solution updates accordingly, therefore it leads to productive

and specially parameter-free smoothing sweeps. Additionally, the smoothing process

is further accelerated by SSOR preconditioner. At the coarsest level of the problem,

the direct Gaussian elimination [39] procedure is followed.

3.3 Finite element approximation

The Discrete variational problem for least-squares finite element scheme has been dis-

cussed already in Section 2.7. The construction of finite elements approximation is

explained briefly in this section.

3.3.1 Basic idea

The basic concept behind finite elements approximation is to break the considered

domain Ω ⊂ Rn into small partitions Ωek such that the problem becomes easy to

approximate. For the problems in 1-dimension these partitions are referred to as inter-

vals, for 2-dimensional problems the partitions are picked as triangles or quadrilaterals

and similarly tetrahedron or hexahedron are chosen for 3-dimensional cases. To find

an approximate solution uh of discrete variational problem (2.75), the computational

domain is divided into Ne numbers of finite partitions Ωek , which are called elements,
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with following properties

Ω̄ :=
Ne⋃
k=1

Ω̄ek , Ωek

⋂
Ωel = ∅; k ̸= l.

The finite element spaces are described by the range of basis functions characterized

on the partitions studied in [44]. The approximations are considered as follow

uh := uh
Ω̂D

+

Ne∑
j=1

ujϕj , (3.23)

where uh
Ω̂D

is discrete value on Dirichlet boundary Ω̂D and

vh :=

Ne∑
i=1

viψi, (3.24)

where Ne is the total number of elements, the piecewise polynomials ϕj and ψi are

called basis functions, which vanish on boundary Ω̂D. The approximate uh in (3.23)

in some finite-dimensional trial space X h
Ω̂D

⊂ H1
Ω̂D

is referred to as a trial function.

Similarly, an approximate vh in the finite-dimensional test space X h
0 ⊂ H1

0 is defined

as test function. For more information one can consult [25], [50], [65], [72] and [73].

Remark 10 From equation (3.23) it is very clear that the Dirichlet boundary con-

ditions are essentially contained in the considered spaces, hence, they are sometimes

referred to as essential boundary conditions. The Neumann boundary conditions are

named natural boundary conditions occasionally, because they are automatically built

in the variational form, and are not explicitly imposed in trial and test spaces.

Construction of shape functions

In practice, the finite element implementation is allocated element-wise using the local

basis termed as shape functions ϕj . Therefore, the finite element construction critically

depends on these shape functions. A local approximate solution uh
local

inside an element

Ωek can be represented as a combination of local basis functions and nodal approximate

values uj on the local degrees of freedom n
dof

of an element and defined as

uh
local

(w) :=

n
dof∑
j=1

ujϕ
k
j (w) , ∀ w ∈ Ωek . (3.25)

Now, we can expand this concept for all the elements in the domain Ω. So, a global

approximate solution uh is constructed by summing up all local basis functions ϕj over

the domain with total N
dof

degree of freedom in region Ω.

uh (w) :=

N
dof∑

j=1

ujϕj (w) , ∀ w ∈ Ω. (3.26)
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The shape functions ϕj : Ω̄ → R are enforced to have the following general properties,

▶ The shape function at any node wi must have value one at that specific nodal

point and value zero for all other nodes of domain at the same time. It can be

given as

ϕj (wi) := δij =

{
1 when i = j,

0 when i ̸= j,
(3.27)

where δij is referred to as Kronecker delta function.

▶ The summation of all local basis functions ϕkj on nodal points should be equiva-

lent to one for each element Ωek ⊂ Ω, that is

N
dof∑

j=1

ϕj (w) = 1. (3.28)

▶ The summation of derivatives of all basis functions should be zero in each element,

such that
N

dof∑
j=1

∇ϕj (w) = 0. (3.29)

▶ The local basis function should vanish on any element point other then nodal

points for computational efficiency. Consequently, a compact local support es-

tablished for the global basis functions to achieve an approximation which tends

to sparse linear system.

Now in next section, we discuss some particular elements used in this work.

3.3.2 Types of finite element

The finite elements can be divided into two groups, one with continuous pressure and

the other with discontinuous pressure. In this thesis, we deal with two-dimensional

problems and use quadrilateral finite elements for the problem’s discretization. There-

fore, we present brief description for few quadrilateral finite elements below.

Q1-Finite element

The Q1-Finite Element is also known as bilinear element. It is composed of 4 nodes,

which are named as degrees of freedom, by including all the 4 corners of quadrilateral as

presented in the Figure 3.2. For computational point of view, the shape functions are

constructed on some reference element Ωeref with smooth shape rather than directly

on physical element Ωek . Let
(
ξx, ξy

)
be a local coordinate system and a reference

element Ωeref := [−1, 1] × [−1, 1] is defined at the origin coordinates of the system.
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Figure 3.2: Quadrilateral finite elements

A bilinear mapping ψ
Ω

: Ωeref → Ωek transforms the reference element to physical

element. In similar fashion, one can define an inverse mapping ψ−1
Ω

: Ωek → Ωeref

which map physical element to reference element.

In general, the bilinear shape functions on reference element are obtained by the

tensor product of 1D linear Lagrange polynomials3. So, the local basis for Q1 (Ωek) is

defined as

Q1 (Ωek) :=
{
p ◦ ψ−1

Ω
: p ∈ span

{
1, ξx, ξy, ξxξy

}}
, (3.30)

and

Q1 (Ωek) = span

{(
1

4
(1− ξx)

(
1− ξy

))
,

(
1

4
(1− ξx)

(
1 + ξy

))
(3.31)(

1

4
(1 + ξx)

(
1− ξy

))
,

(
1

4
(1 + ξx)

(
1 + ξy

))}
,

with four degrees of freedom at corners of the quadrilateral. For more details cf. [35].

Q2- Finite element

The Q2-Element is also known as biquadratic element which consists of nine nodes or

degrees of freedom of a quadrilateral, specifically with four corners or vertices, four mid-

points of edges and one center point see Figure 3.2. In general, the biquadratic shape

functions on reference element are obtained by the tensor product of 1D quadratic

3The linear Lagrange polynomials in 1D are defined by [73] as

p1 =
1− ξ

2
, p2 =

1 + ξ

2
, − 1 ≤ ξ ≤ 1.
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Lagrange polynomials4. So, the local basis for Q2 (Ωek) is defined as

Q2 (Ωek) :=
{
p ◦ ψ−1

Ω
: p ∈ span

{
1, ξx, ξy, ξxξy, ξ

2
x, ξ

2
y, ξ

2
xξy, ξxξ

2
y, ξ

2
xξ

2
y

}}
, (3.32)

and

Q2 (Ωek) = span

{((
1− ξ2x

) (
1− ξ2y

))
,

(
−1

2

(
1− ξ2x

) (
ξy − ξ2y

))
, (3.33)(

1

2

(
1− ξ2x

) (
ξy + ξ2y

))
,

(
−1

2

(
ξx − ξ2x

) (
1− ξ2y

))
,(

1

4

(
ξx − ξ2x

) (
ξy − ξ2y

))
,

(
−1

4

(
ξx − ξ2x

) (
ξy + ξ2y

))
,(

1

2

(
ξx + ξ2x

) (
1− ξ2y

))
,

(
−1

4

(
ξx + ξ2x

) (
ξy − ξ2y

))
,(

1

4

(
ξx + ξ2x

) (
ξy + ξ2y

))}
,

with nine degrees of freedom of the quadrilateral. For more details cf. [35].

P dc
1
-Finite element

The P dc
1
-Element is a discontinuous bilinear element which consists of one node with

the function value and both partial derivatives as its three local degrees of freedom

located at the center of the quadrilateral, see Figure 3.2. The basis function for this

element is linear (discontinuous) polynomial on the reference element and the local

basis for P dc
1

(Ωek) is defined as following

P dc
1

(Ωek) :=
{
p ◦ ψ−1

Ω
: p ∈ span

{
1, ξx, ξy

}}
, (3.34)

and on each element the space P dc
1

(Ωek) considered in [4], [83] is as following

P dc
1

(Ωek) = span
{
1, ξx, ξy

}
. (3.35)

3.4 Geometry of computational domain

In this section, we discuss the geometry of computational domain which is flow around

cylinder in our case. Also a couple of mesh variations are explained as well.

4The quadratic Lagrange polynomials in 1D, for −1 ≤ ξ ≤ 1 we have

p1 =
−ξ (1− ξ)

2
, p2 =

ξ (1 + ξ)

2
, p3 = 1− ξ2.
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3.4.1 Flow around cylinder

The benchmark ”flow around cylinder (FAC)” is established on the research outcome

provided in [86] and [91]. In two dimensional case, the geometry of domain Ω is defined

as a rectangular channel

Ω := {(x, y) : 0 ≤ x ≤ 2.2, 0 ≤ y ≤ 0.41} \Br (c) , (3.36)

where c = (0.2, 0.2) is the center and r :=
D

B
2 = 0.1

2 = 0.05 m refer to the radius of a

circular cylinder Cr (c) excluded from domain as shown in Figure 3.3. The incompress-

Figure 3.3: Geometry of flow arround cylinder problem in 2D

ible Newtonian fluids can be used to describe the domain for more details. Consider

the fluid with velocity u=(u (x, y) , v (x, y)) is flowing through FAC domain. The kine-

matic viscosity is taken as η
ν
= 0.001 m2/s and the density as ρ = 1.0 kg/m3. When

the fluid with maximum velocity umax of 0.3 m/s passes through inlet of rectangular

channel then the characteristic or mean velocity umean of parabolic flow profile can be

obtained as

umean =
2

3
umax =

2

3
(0.3) = 0.2 m/s.

The Reynolds number Re correlated to stationary laminar flow is calculated as

Re =
umeanDB

η
ν

=
(0.2) (0.1)

0.001
= 20.

Boundary conditions

The boundary conditions associated with domain are described as following:

▶ The boundary condition on lower wall Ω̂E2 := {0 ≤ x ≤ 2.2, y = 0}, upper wall
Ω̂E4 := {0 ≤ x ≤ 2.2, y = 0.41} and circular cylinder Ω̂∂Br with center at (0.2, 0.2)

is defined as no-slip boundary such that u = v = 0.

▶ The inflow boundary condition on left wall or at inlet

Ω̂E1 := {x = 0, 0 ≤ y ≤ 0.41} ,
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of domain is exercised as a parabolic profile and given as

u (0, y) =

(
4umaxy (Hy − y)

(Hy)
2

)
,

v (0, y) = 0,

where Hy is the total width, which is 0.41 m of rectangular domain along y-axis.

▶ The outflow boundary condition on right wall

Ω̂E3 := {x = 2.2, 0 ≤ y ≤ 0.41} ,

of domain is described as stress-free or do-nothing condition.

σ · n =
(
η
ν
∇u− pI

)
· n, (3.37)

where n is the outward unit vector normal to the outflow boundary.

The quadrilateral finite elements of different types, as discussed in previous section

3.3.2, are employed to discretize the domain. A couple of computational meshes are

used for the analysis purpose and also discussed briefly as under.

3.4.2 Computational mesh configuration-I

The first FAC mesh configuration consists of 130 quadrilateral elements at coarse level

one as shown in the Figure 3.4. The fine meshes are generated by linking the mid

segment points of the opposite line segments of each element of the immediate coarse

level mesh which is also called mesh refinement.

Figure 3.4: The computational mesh-I at coarse grid level

The hierarchy of uniform mesh refinements is presented in the Table 3.1.

Level NEL NVT NMP

1 130 156 286
2 520 572 1, 092
3 2, 080 2, 184 4, 264
4 8, 320 8, 528 16, 848
5 33, 280 33, 696 66, 976
6 1, 33, 120 1, 33, 952 2, 67, 072

Table 3.1: Computational mesh-I information
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where NEL is the number of total elements, NVT is the number of vertices and

NMP is the number of midpoints for respective coarse (top) to finer (bottom) mesh

levels.

3.4.3 Computational mesh configuration-II

The second FAC mesh configuration consists of 346 quadrilateral elements at coarse

level one as shown in Figure 3.5.

Figure 3.5: The computational mesh-II at coarse grid level

The hierarchy of fine meshes generated by uniform mesh refinements is presented

in the Table 3.2.

Level NEL NVT NMP

1 346 391 737
2 1, 384 1, 474 2, 858
3 5, 536 5, 716 11, 252
4 22, 144 22, 504 44, 648
5 88, 576 89, 296 1, 77, 872
6 3, 54, 304 3, 55, 744 7, 10, 048

Table 3.2: Computational mesh-II information

where NEL, NVT and NMP are the number of elements, vertices and midpoints

for different refinement levels respectively.

3.4.4 Benchmark values for numerical comparisons

The performance of LSFEM methods is examined by computing some well-known

quantities across the surface Sc of the circular cylinder, named as the lift CL , drag CD

coefficients and the pressure drop △p. The comprehensive detail of these quantities

can be seen in [93]. The SVP first order formulation is employed throughout our work.

Therefore, we compute the stress σ as a separate variable and the body forces can be

computed directly as

(FD , FL)
T =

∫
Sc

σn dSc, (3.38)
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where stress tensor σ = ν∇u−pI and n is the normal vector of circle’s surface Sc. By

simple maths one can obtain lift and drag coefficients for Re = 20, as following

CD =
2

u2
meanDBr

FD = 500FD , (3.39)

CL =
2

u2
meanDBr

FL = 500FL .

3.4.5 Global mass conservation in LSFEM

The lack of mass conservation generally presents in all finite element methods for the

incompressible Stokes and Navier-Stokes problems. But in case of LSFEM, the mass

conservation is not preserved globally. Because, the continuity equation is computed

as another component of minimized energy functional. In case, if another equation of

the system have more influence than the continuity equation in the functional. Then,

this leads to loss of mass in the system. As, the continuity equation is one which

established that the velocity field is divergence-free. The global mass conservation

was investigated in [29] for LSFEM. He observed the mass loss in narrow channels

when flow passed around the circular cylinder. Later, the global mass conservation

was explored in [42] and introduced some weights with continuity equation component

in the functional to improve mass conservation.

We study the traditional mass conservation problems of the LSFEM through the

numerical investigations of the flow around cylinder problem. The lack of global mass

conservation is one of the significant issues for least-squares finite element method.

Therefore, we calculate the global mass conservation (m
GMC

) in terms of the fractional

change of mass flow rate, defined as

m
GMC

=

∫
Ω̂i
ρ(n · u)dΩ̂i −

∫
Ω̂0
ρ(n · u)dΩ̂o∫

Ω̂i
ρ(n · u)dΩ̂i

× 100, (3.40)

where Ω̂i is the inflow boundary of the domain and Ω̂o is any vertical section between

the inflow and the outflow boundaries, including the outflow, n is normal vector and

u represents the velocity.

3.5 Newtonian and non-Newtonian fluids

In this work, we study two prominent types of fluids, namely Newtonian and non-

Newtonian fluids. The details are given briefly as under.
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If a real fluid which obeys the Newton’s law of viscosity, i.e. the shear stress τ is

directly proportional to the strain rate D(u) , then it is known as the Newtonian fluid.

τ = ηνD (u) , (3.41)

where η is the constant viscosity of fluid and D(u) = 1
2

(
∇u+∇uT

)
. It is therefore

very clear that viscosity is independent of strain rate.

On the other hand, the fluid that does not follow Newton’s law of fluid is called

the non-Newtonian fluid, i.e. equation (3.41) does not hold and τ ̸= ηνD(u) . But, if

a fluid holds equation (3.41) and viscosity ην depends on strain rate D(u) then it is

called generalized Newtonian fluid.

For the incompressible fluids, the second invariant or shear rate γ̇
II

is defined as

γ̇
II

=
√
trD2 =

√
D : D. Hence, the constitutive equation for generalized Newtonian

fluid can be given as

τ = ην
(
γ̇

II

)
D (u) . (3.42)

Fluid flow models

There are many fluid models, for nonlinear viscosity ην
(
γ̇

II

)
, have been given in

literature. In our work, we employ a couple of models for analysis purposes. A brief

discussion of these models is provided below.

Power law fluid model The power law fluid model is one of the common choices

to investigate some important properties of non-Newtonian fluids. It can be defined

as

ην(γ̇II
) = η0

(
ϵ+ γ̇2

II

) r
2
−1
, (3.43)

where r is the power law index. The values of index r are very significant and used to

represent different types of fluids:
r
2 < 1 : Shear thinning fluids.
r
2 = 1 : Newtonian fluids (Constant viscosity).
r
2 > 1 : Shear thickening fluids.

In this model, the viscosity may be unbounded during the numerical computation

such that it no longer has a physical meaning. Therefore, we consider another model

for bounded viscosity.

Cross law fluid model This model bounds the viscosity between η1 and η0 and

defined as

ην(γ̇II
, p,θ) = η0 +

η1 − η0(
1 +

(
λγ̇

II

)r1)r exp (αpp
)
e
a1+

a2
a3+θ , (3.44)
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where η0 is the minimum shear viscosity, θ is the temperature, r is the Power law

index to generalize the model to cover both shear-thickening and shear-thinning. r1 is

dimensionless and known as Cross Rate Constant. It is used to measures the degree of

the dependency of viscosity on the shear rate in the shear-thickening or shear-thinning

region. λ is the Cross Time Constant. Here, we set the values to r1 = 1 and λ = 8.2.



Chapter 4

Newtonian Fluid Flows

The stationary incompressible Navier-Stokes equations are solved by least-squares fi-

nite element method based on first-order formulations, which are the outcome of suit-

able substitutions of some physical quantities in the governing equations. These phys-

ical quantities represent different characteristics of fluid flow. In this work, we build

the first-order formulation by substitution of physical fields present in the fluid flow.

In the upcoming sections, we present a brief introduction and discuss the problem

formulation for Navier-Stokes equations in details. The numerical validation of pro-

posed method is given for linear Stokes problem. Afterwards, the nonlinear problem is

considered for further analysis by using quadrilateral finite elements of different orders.

4.1 Introduction

The least-squares finite element method is a true variational method used to solve sec-

ond order elliptic partial differential equations. But, the straight forward application

of least-squares principle to second order PDEs gives rise to some practically issues.

To avoid these problems, the second order PDEs can be transformed into first order

system of equations by substituting the new auxiliary unknown variables i.e. vortic-

ity, velocity gradient, stresses etc. Therefore, we use stress as new auxiliary variable

and the formulation based on such variable is called stress-velocity-pressure or SVP

formulation. The least-squares principle on SVP formulation always leads to symmet-

ric positive definite system [15]. This allows us to employ a robust Krylov subspace

solver named conjugate gradient method. We use the combination of conjugate gra-

dient and multigrid method for the solution of discrete linear system. The conjugate

gradient method was preconditioned by multigrid solver [57], as the Krylov method

uses eigenmode for error reduction. Moreover, the preconditioned conjugate gradi-

ent method is used as smoother of multigrid solver, as the size of solution updates is

suitably determine by Krylov methods at each smoothing step [98]. Also, it led to

parameter-free smoothing sweeps. The algebraic MPCG was studied for the solutions

54
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of Stokes problem [57] and NS problem [58], [59], [60] using LSFEM. The geometric

MPCG was employed in [82] for solution of NS problem using Spectral/hp LSFEM

and established fast convergence than Jacobi PCG solver. We employed the multigrid

preconditioned conjugate gradient solver to the discrete linear system based on SVP

formulation. Furthermore, the SSOR preconditioned conjugate gradient solver is used

as smoother for multigrid method to get better and parameter-free smoother.

We conduct various numerical tests for the variety of parametric values to analyze

the efficiency of MPCG method. The flow around cylinder domain is employed for a

couple of mesh configurations and investigated for the solutions of NS problem with

lower and higher order finite element discretizations. The studies [29], [79], [88] on

LSFEM had shown poor performance and drawbacks for lower order finite elements.

The use of higher order finite elements is a remedy to such problem as illustrated

in [79] and [81]. Therefore, we use both types of finite elements for the numerical

investigations. The lack of mass conservation is another topic of discussion in the

study of LSFEM. To overcome this deficiency, numerous research has been conducted

in [21], [22], [23], [42], [80] and many others. We use the weighted function depending

on the viscosity of fluid to get overall optimal results. The results produced by our

weighted LSFEM are very accurate and robust. The grid independent behavior is

shown by the solver for flow around cylinder domain.

4.2 LSFEM for Stokes equations

In the following section, we demonstrate the numerical validity of our weighted least-

squares finite element method. The results are presented for the Stokes problem (2.85)

with SVP formulation. The investigation is made withQ1Q1Q1, Q2P
dc
1 Q2 andQ2Q2Q2

finite element discretizations for two mesh configurations (3.4.2) and (3.4.3) of flow

around cylinder problem.
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4.2.1 Numerical validation

At lev. 6 Drag CD Lift CL ∆p m
GMC

x=2.2

Mesh Configuration− I
Q1Q1Q1 3.158050E + 00 3.076306E − 02 4.453144E − 02 1.192327E − 01

Q2P
dc

1 Q2 3.142273E + 00 3.019508E − 02 4.556511E − 02 9.569492E − 05
Q2Q2Q2 3.142273E + 00 3.019508E − 02 4.556508E − 02 9.563460E − 05

Mesh Configuration− II
Q1Q1Q1 3.153172E + 00 2.916881E − 02 4.535571E − 02 4.318738E − 02

Q2P
dc

1 Q2 3.142408E + 00 3.019559E − 02 4.557725E − 02 9.904366E − 06
Q2Q2Q2 3.142408E + 00 3.019559E − 02 4.557659E − 02 9.902297E − 06

Ref [37] : Drag CD = 3.142292E + 00, Lift CL = 3.019366e− 02

Table 4.1: Numerical validation of the proposed solver

The outcomes presented in Table 4.1 are very accurate for the higher order finite

elements in comparison to the lower order finite elements and got on mesh refinement

level 6. The results calculated by configuration-I (3.4.2) are more closer to reference

solution [37] but the global mass conservation is more promising for mesh configuration-

II (3.4.3) .

Figure 4.1: Velocity profile for Stokes problem

4.3 LSFEM for the Navier-Stokes equations

The most of the work in this section is from our research paper cited as [77]. In

addition to that we present approximate solutions of Navier-Stokes equations for the

lower and higher order finite elements for different nonlinear schemes.
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4.3.1 Governing equations

The incompressible Navier-Stokes (NS) equations on a bounded domain Ω ⊂ R2 for a

stationary flow are given by

u · ∇u+∇p− η
ν
∆u = f

∇ · u = 0

}
in Ω, (4.1)

with the boundary conditions

u = f
Ω̂
D

n ·
(
η
ν
∇u− pI

)
= f

Ω̂
N

 on Ω̂, (4.2)

and along with the zero mean pressure constraint as given by (2.88). The notation

used for the system is described below as

u (u, v) : is the velocity of the fluid passing through domain Ω,

p = P
ρ : stands for the normalize pressure term,

η
ν
= µ

ρ : expresses the kinematic viscosity of fluid,

f : act as the external source term,

f
Ω̂
D

: be the value of Dirichlet boundary conditions on the boundary

region Ω̂D ,

f
Ω̂
N

: represents the value of Neumann boundary conditions on the

boundary region Ω̂N ,

n : represents the outward unit normal on the boundary regions

Ω̂ = ∂Ω = Ω̂D ∪ Ω̂N and Ω̂D ∩ Ω̂N = ∅.

The kinematic viscosity and the density of the fluid are assumed to be constant.

In system (4.1) the first equation represents the momentum equation where velocity

u = [u, v]T has two components, which are further functions of x, y and pressure

p are the unknowns to be calculated. Whereas, the second equation represents the

divergence of velocity field of fluid flow in the domain and also known as continuity

equation.

4.4 Stress-based first order system

As it is discussed previously that the straightforward application of least-squares prin-

ciple on the second-order equations require C1 finite elements for approximation [15].

The practical implementation of such finite elements is an arduous task. To overcome

these difficulties, we first reduce the second-order equations into first-order system of

equations. Another consequences of straightforward application of least-squares prin-

ciple to the second-order Navier-Stokes equation is that it results into ill-conditioned
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system matrices [19]. Therefore the transformation of second-order system into the

first-order system is an essential requirement to develop a practical scheme.

To construct the stress based formulation also named Stress-Velocity-Pressure

(SVP) formulation, we introduce a physical quantity called Cauchy stress tensor σ

as a new variable defined as

σ = vσ − pσ, (4.3)

= 2η
ν
D (u)− pI,

where pσ = pI is the inviscid reactive component and vσ = 2η
ν
D(u) is the active

viscous component of the Cauchy stress tensor σ, which is the symmetric part of the

gradient of velocity D(u) = 1
2

(
∇u+∇uT

)
. Now by using the Navier Stokes equations

(4.1) and the Cauchy stress equation (4.3), we obtain the following first-order SVP

system of equations

u · ∇u−∇ · σ = f

∇ · u = 0

σ + pσ − vσ = 0

 in Ω, (4.4)

along with general homogeneous boundary conditions

u = 0

n · σ = 0

}
on Ω̂. (4.5)

4.5 Linearization of nonlinear terms

Due to the presence of the convective term u · ∇u in the momentum equation, the

system (4.4) is nonlinear. Now before the application of least-squares principle the

Newton’s linearization is applied to the nonlinear convection term u · ∇u such that

u · ∇u ≈ u · ∇uk + uk · ∇u.

Let the sum of residuals for the system of equations (4.4) be denoted by R. To

approximate the nonlinear residuals, the nonlinear iteration is updated with the cor-

rection uk+1 = uk + δu. Then, the residual approximation given by Taylor series

expansion as

R
(
uk+1

)
= R

(
uk + δu

)
, (4.6)

≃ R
(
uk
)
+
[
DR

(
uk
)]
δu,

where
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R
(
uk
)
=

 Rk
1

Rk
2

Rk
3

 =

 uk · ∇uk −∇ · σk − f

∇ · uk

σk + pσ

(
uk
)
− vσ

(
uk
)
 , (4.7)

and the system of equations after substitution, δu =
(
u, p,σ

)
is as following

DR
(
uk
)
δu =

 u · ∇uk + uk · ∇u−∇ · σ − f

∇ · u
σ + pσ − vσ

 . (4.8)

By following the procedure discussed in Algorithm 3.2, i.e. the nonlinear basic

iteration for least-squares scheme, one can obtain a solution update δu as

R̃
(
uk
)
δu = R

def

(
uk
)
, (4.9)

▶ For the Gauss-Newton method, the values of R̃ and R
def

are consider to be

R̃
(
uk
)
= DR

(
uk
)∗DR

(
uk
)
, (4.10)

and

R
def

(
uk
)
= −R

(
uk
)∗DR

(
uk
)
. (4.11)

▶ For the fixed point method, the value of DR is simply replaced by R in above

equations (4.10) and (4.11).

4.6 Continuous least-squares principle

We introduce the spaces XΩ of admissible functions based on the residuals of the first-

order systems (4.4)

XΩ := H1
0,D

(
Ω
)
× L2

0

(
Ω
)
×H0,N

(
div,Ω

)
. (4.12)

The quadratic linearized functional Esvp in term of the L2-norm is obtained by

using least-squares principles on linearized residual (4.6) as

Esvp

(
δu;0

)
=

1

2

∥∥R(uk
)
+
[
DR

(
uk
)]
δu
∥∥2
0
, (4.13)

and the L2-norm based S-V-P energy functionals can be expanded as follows

Esvp

(
δu; 0

)
= 1

2

(∥∥Rk
1 + u · ∇uk + uk · ∇u−∇ · σ

∥∥2
0
+
∥∥Rk

2 +∇ · u
∥∥2
0

+
∥∥Rk

3 + σ + pσ − vσ

∥∥2
0

)
∀
(
u, p,σ

)
∈ XΩ ,

(4.14)

and weighted functional associated with the weighted function is
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E
wην

svp

(
δu; 0

)
= 1

2

(∥∥Rk
1 + u · ∇uk + uk · ∇u−∇ · σ

∥∥2
0
+ αm

∥∥Rk
2 +∇ · u

∥∥2
0

+w
n

ην

∥∥Rk
3 + σ + pσ − vσ

∥∥2
0

)
∀
(
u, p,σ

)
∈ XΩ ,

(4.15)

where w
n

ην
is the weighted function multiplied only with residual part of additional

Cauchy stress variable. Here, to improve mass conservation, a scaling parameter αm

is used for the least-squares formulation [42], [23], [24].

The minimization problem associated with the least-squares formulation in (4.15)

is to find δu =
(
u, p,σ

)
∈ XΩ such that

δu = argmin
v∈X

Ω

E
wην

svp

(
v; 0
)
. (4.16)

The first variant of the quadratic linearized functional (4.16) leads to an equivalent

problem of finding δu such that

[
R
(
uk
)
+DR

(
uk
)
δu
]
DR

(
uk
)
v = 0, ∀ v ∈XΩ . (4.17)

The variational problem based on the optimality condition (4.17) of the minimiza-

tion problem (4.16) is given by{
Find δu =

(
u, p,σ

)
∈ XΩ such that,

K
(
δu,v

)
= F

(
v
)
∀ v =

(
v, q,τ

)
∈ XΩ .

(4.18)

where K is the bilinear form defined on XΩ ×XΩ → R as follows

K (δu,v) =
〈
DR

(
uk
)
δu,DR

(
uk
)
v
〉

(4.19)

=
〈(
u · ∇uk + uk · ∇u−∇ · σ

)
,
(
v · ∇uk + uk · ∇v−∇ · τ

)〉
+ w

n

ην

〈
σ + pσ

(
p
)
− vσ

(
u
)
, τ + pτ

(
q
)
− vτ

(
v
)〉

+ αm

〈(
∇ · u

)
,
(
∇ · v

)〉
,

and the linear form F is defined on XΩ → R as follows

F(v) = −
〈
R
(
uk
)
,DR

(
uk
)
v
〉

(4.20)

= −
[〈(

uk · ∇uk + uk · ∇uk −∇ · σk
)
,
(
v · ∇uk + uk · ∇v−∇ · τ

)〉
+ w

n

ην

〈(
σk + pσ

(
pk
)
− vσ

(
uk
))
,
(
τ + pτ

(
q
)
− vτ

(
v
)〉

+ αm

〈(
∇ · uk

)
,
(
∇ · v

)〉]
.

For detailed analysis of the least-square problem, one can build the coefficient

matrix K as follows
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K (δu,v) =

 Kvu Kvp Kvσ

Kqu Kqp Kqσ

Kτu Kτp Kτσ

 , (4.21)

where

Kvu =
〈
− vσ

(
u
)
,−vτ

(
v
)〉

+
〈
uk · ∇u, uk · ∇v

〉
+ αm

〈
∇ · u,∇ · v

〉
(4.22)

+
〈
u · ∇uk, v · ∇uk + uk · ∇v

〉
+
〈
uk · ∇u, v · ∇uk

〉
.

Kvp = w
n

ην

〈
pσ

(
p
)
,−vτ

(
v
)〉
,

Kvσ = w
n

ην

〈
σ,−vτ

(
v
)〉

+
〈
−∇ · σ, uk · ∇v

〉
+
〈
−∇ · σ, v · ∇uk

〉
,

Kqu = w
n

ην

〈
− vσ

(
u
)
,pτ

(
q
)〉
,

Kqp = w
n

ην

〈
pσ

(
p
)
,pτ

(
q
)〉
,

Kqσ = w
n

ην

〈
σ,pτ

(
q
)〉
,

Kτu = w
n

ην

〈
− vσ

(
u
)
, τ
〉
+
〈
uk · ∇u,−∇ · τ

〉
+
〈
u · ∇uk,−∇ · τ

〉
,

Kτp = w
n

ην

〈
pσ

(
p
)
, τ
〉
,

Kτσ = w
n

ην

〈
σ, τ

〉
+
〈
−∇ · σ,−∇ · τ

〉
.

Here, the terms in the boxes have contributions in the coefficient matrix K due to

the nonlinear terms. These terms will be add to coefficient matrix K after defect

calculation. The resulting system matrix (4.19) is symmetric and positive definite.

However, the stress-based SVP formulation leads to the system matrix (4.22) which

is not differentially diagonal dominant. These properties are very significant when we

design a multigrid solver for higher order finite elements, see [57] [59].

4.7 Discrete least-squares principle

The discrete form of the problem (4.18) with approximation spaces

X h
Ω
:=
{
δuh ∈ H1,h

0,D

(
Ω
)
× L2

0

(
Ω
)
×Hh

0,N

(
div,Ω

)}
, (4.23)

where δuh=
(
uh, ph,σh

)
can be written as{

Find δuh ∈ X h
Ω

s.t.

Kh
(
δuh,vh

)
= Fh

(
vh
)
,

(4.24)

where vh=
(
vh, qh, τ h

)
∈ X h

Ω
and Kh is the approximate bilinear form defined on

X h
Ω
×X h

Ω
→ R.

We are able to use different combinations of finite element approximations since

least-squares formulation allows a free choice of finite element spaces [19]. We restrict
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our study here only to Q1, Q2 and P dc
1 elements. Our aim is to develop an efficient

solver which takes full advantage of the sparse and symmetric positive definite systems.

We use conjugate gradient method as a Krylov subspace solver and accelerate it with

multigrid preconditioning. The SSOR-preconditioned conjugate gradient as smoother,

with various range of smoothing steps, is used for MPCG. The direct Gaussian elim-

ination (UMFPACK [39]) is employed as coarse-grid solver. In order to demonstrate

the solver flexibility with respect to different flow problems, an ’F-cycle’ of multigrid

is used with various smoothing steps in the numerical tests. The Gauss-Newton and

fixed point methods are considered as nonlinear solvers

4.8 Numerical results and analysis

In this section, we analyze the steady state flow around cylinder problem for two

different configurations. The main aim of this analysis is to understand the importance

of the choice of finite elements and the weighted functions to achieve the desired results.

We use three distinct combinations of finite elements for velocity, pressure and stress

variables. We employ both lower and higher order conforming finite elements for our

numerical investigations. The Navier-Stokes equations are solved for Reynold number

Re = 20 with constant viscosity ην = 0.001 and ρ = 1.0. The weighted functions used

in least-squares functional (4.15) are given as

w
n

ην
=
(
1.0/ην

)n
; n = 1.0 and αm = 1.0

For the reference solutions, we use the well known benchmark results [91] and results

from [37] as given below.

References: Drag CD Lift CL ∆p

Turek [91] 5.579535E + 00 1.061894E − 02 1.175201E − 01
Damanik [37] 5.579313E + 00 1.061503E − 02

4.8.1 Numerical results for mesh configuration-I

The numerical investigation in this section is motivated by the well known flow around

cylinder benchmark [64], [91], [92], [93]. The computational grid (3.4.2) contains 130

quadrilateral elements on the coarse grid level and further finer levels are achieved

by the multilevel grid refinements. In the refinement process, each element from the

coarse grid or level one is divided into four fine elements by joining the mid-points of

the opposite edges [67]. Then we use the hierarchy of the multilevel grids, as shown

by Table 3.1, in our multigrid preconditioner. The inflow/outflow details can be found
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in section 3.4.1.The bilinear finite element Q1 is used for all unknowns i.e. velocity,

pressure and stress.

Level NDoF u NDoF p NDoF σ Total NDoF

1 312 156 468 936
2 1144 572 1716 3432
3 4368 2184 6552 13104
4 17056 8528 25584 51168
5 67392 33696 101088 202176
6 267904 133952 401856 803712

Table 4.2: Total unknowns for Q1Q1Q1-element in mesh-I

The total number of degrees of freedom computed on each level for the stress-

velocity-pressure problem are presented by Table 4.2.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 4.708725E + 00 7.654299E − 02 8.102117E − 02 2.833422E + 00
5 5.258712E + 00 4.092649E − 02 9.982358E − 02 8.433074E − 01
6 5.480722E + 00 2.119097E − 02 1.097471E − 01 2.267643E − 01

Fixed Point Method
4 4.789604E + 00 4.644177E − 02 8.295211E − 02 2.387085E + 00
5 5.298038E + 00 2.177232E − 02 1.010048E − 01 6.962395E − 01
6 5.495277E + 00 1.312701E − 02 1.102622E − 01 1.858159E − 01

Table 4.3: Flow parameters for Q1Q1Q1-element in mesh-I

Now, we use biquadratic finite elements Q2 for our numerical investigation for mesh

configuration 3.4.2. The Q2 element is employed for all the unknown variables.

Level NDoF u NDoF p NDoF σ Total NDoF

1 1144 572 1716 3432
2 4368 2184 6552 13104
3 17056 8528 25584 51168
4 67392 33696 101088 202176
5 267904 133952 401856 803712
6 1068288 534144 1602432 3204864

Table 4.4: Total unknowns for Q2Q2Q2-elements in mesh-I

The total number of unknowns on each level for the stress-velocity-pressure problem

are given by Table 4.4.
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Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 5.556446E + 00 1.115572E − 02 1.162045E − 01 3.618464E − 02
5 5.576758E + 00 1.066844E − 02 1.172607E − 01 4.701878E − 03
6 5.579248E + 00 1.062216E − 02 1.174601E − 01 5.885212E − 04

Fixed Point Method
4 5.556770E + 00 1.028484E − 02 1.162086E − 01 2.663399E − 02
5 5.576749E + 00 1.057478E − 02 1.172595E − 01 3.416974E − 03
6 5.579242E + 00 1.061386E − 02 1.174598E − 01 4.229598E − 04

Table 4.5: Flow parameters for Q2Q2Q2-element in mesh-I

Next, the flow parameters are computed by employing Q2-element for velocity and

stress variables in the problem and the discontinuous pressure element P dc
1 is considered

for pressure variable.

Level NDoF u NDoF p NDoF σ Total NDoF

1 1144 390 1716 3250
2 4368 1560 6552 12480
3 17056 6240 25584 48880
4 67392 24960 101088 193440
5 267904 99840 401856 769600
6 1068288 399360 1602432 3070080

Table 4.6: Total unknownss for Q2P
dc
1 Q2-elements in mesh-I

The total number of unknowns on each level for the stress-velocity-pressure problem

are presented by Table 4.6.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−NewtonMethod
4 5.556063E + 00 1.103601E − 02 1.163489E − 01 3.695583E − 02
5 5.576732E + 00 1.066008E − 02 1.172852E − 01 4.754437E − 03
6 5.579246E + 00 1.062159E − 02 1.174647E − 01 5.920616E − 04

Fixed Point Method
4 5.556490E + 00 1.020864E − 02 1.163587E − 01 2.710671E − 02
5 5.576730E + 00 1.056945E − 02 1.172843E − 01 3.448818E − 03
6 5.579241E + 00 1.061348E − 02 1.174644E − 01 4.251011E − 04

Table 4.7: Flow parameters for Q2P
dc
1 Q2-element in mesh-I
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The comparison of nonlinear (N) and linear (L) iterations for the solvers is pre-

sented in the Table 4.8 for different combinations of finite elements. The nonlinear

and linear solver relative errors are kept below 1E-6 and 1E-3, respectively.

Level Q1Q1Q1 (N/L) Q2Q2Q2 (N/L) Q2P
dc
1 Q2 (N/L)

Gauss−Newton Method
2 7/3 9/8 9/12
3 7/7 5/12 5/13
4 7/10 4/17 4/17
5 5/14 4/22 4/22

Fixed Point Method
2 8/2 14/7 14/10
3 9/5 10/9 10/10
4 11/7 9/11 9/10
5 11/10 8/21 8/18

Table 4.8: Comparison of nonlinear (N) versus linear (L) iterations

4.8.2 Numerical results for mesh configuration-II

In this section, the numerical investigation is performed by using computational mesh

(3.4.3) for the solution of Navier Stokes equations. The computational mesh is dis-

cussed in detail in section 3.4. It consists of 346 quadrilateral elements. For the

numerical investigation, we perform the same tests as we did in the above section and

this work is taken from our research done in [77].

We employ the bilinear finite element Q1 for the unknown variables such as velocity,

stress and pressure. At first, we calculate and present the total number of degrees of

freedom NDoF for all the variable to be computed as given in the Table 4.9.

Level NDoF u NDoF p NDoF σ Total NDoF

1 782 391 1173 2346
2 2948 1474 4422 8844
3 11432 5716 17148 34296
4 45008 22504 67512 135024
5 178592 89296 267888 535776
6 711488 355744 1067232 2134464

Table 4.9: Total unknowns for Q1Q1Q1-elements in mesh-II

Also, the flow parameters such as coefficients of drag, lift, pressure difference and

global mass conservation at x = 2.2 are presented in the Table 4.10 below.
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Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 5.171635E + 00 2.105224E − 02 1.031347E − 01 1.114499E + 00
5 5.444013E + 00 1.429395E − 02 1.117922E − 01 2.997717E − 01
6 5.541546E + 00 1.175843E − 02 1.152451E − 01 7.786550E − 02

Fixed Point Method
4 5.257355E + 00 1.575412E − 02 1.055235E − 01 9.842843E − 01
5 5.479349E + 00 1.186275E − 02 1.127035E − 01 2.621342E − 01
6 5.552244E + 00 1.074011E − 02 1.155112E − 01 6.741351E − 02

Table 4.10: Flow parameters for Q1Q1Q1-element in mesh-II

Now, the biquadratic finite element Q2 is used to solve the problem 4.4 for all

the variables. The total number of unknowns or degrees of freedom generated for Q2

element on each level for the velocity, pressure and stress variables are presented by

Table 4.11.

Level NDoF u NDoF p NDoF σ Total NDoF

1 2948 1474 4422 8844
2 11432 5716 17148 34296
3 45008 22504 67512 135024
4 178592 89296 267888 535776
5 711488 355744 1067232 2134464
6 2840192 1420096 4260288 8520576

Table 4.11: Total unknowns for Q2Q2Q2-elements in mesh-II

The coefficients of drag and lift, pressure difference and global mass conservation

are displayed below.
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Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 5.576975E + 00 1.053552E − 02 1.173265E − 01 4.246499E − 03
5 5.579242E + 00 1.060640E − 02 1.174766E − 01 5.550170E − 04
6 5.579503E + 00 1.061714E − 02 1.175098E − 01 6.810928E − 05

Fixed Point Method
4 5.576955E + 00 1.049599E − 02 1.173236E − 01 3.021125E − 03
5 5.579238E + 00 1.060355E − 02 1.174762E − 01 3.952429E − 04
6 5.579503E + 00 1.061696E − 02 1.175098E − 01 4.815527E − 05

Table 4.12: Flow parameters for Q2Q2Q2-element in mesh-II

In the last test, we employ biquadratic element Q2 for velocity, stress and discon-

tinuous pressure element P dc
1 for pressure.

Level NDoF u NDoF p NDoF σ Total NDoF

1 2948 1038 4422 8408
2 11432 4152 17148 32732
3 45008 16608 67512 129128
4 178592 66432 267888 512912
5 711488 265728 1067232 2044448
6 2840192 1062912 4260288 8163392

Table 4.13: Total unknowns for Q2P
dc
1 Q2-elements in mesh-II

The total number of unknowns calculated on each level for the stress-velocity-

pressure problem are presented by Table 4.13. The fluid flow quantities are given in

Table 4.14.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 5.576955E + 00 1.053593E − 02 1.173867E − 01 4.266894E − 03
5 5.579240E + 00 1.060643E − 02 1.174910E − 01 5.564637E − 04
6 5.579503E + 00 1.061715E − 02 1.175130E − 01 6.821582E − 05

Fixed Point Method
4 5.576939E + 00 1.049607E − 02 1.173839E − 01 3.033199E − 03
5 5.579237E + 00 1.060354E − 02 1.174907E − 01 3.961265E − 04
6 5.579503E + 00 1.061699E − 02 1.175130E − 01 4.821435E − 05

Table 4.14: Flow parameters for Q2P
dc
1 Q2-element in mesh-II
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The iterative comparison of solvers is illustrated in table 4.15. The nonlinear and

linear solver relative errors are kept below 1E-6 and 1E-3, respectively.

level Q1Q1Q1 (N/L) Q2Q2Q2 (N/L) Q2P
dc
1 Q2 (N/L)

Gauss−Newton Method
2 8/4 7/7 7/7
3 7/7 4/15 4/15
4 6/12 4/21 4/21
5 5/21 5/23 5/23

Fixed Point Method
2 9/3 14/6 14/6
3 9/5 9/9 9/7
4 11/10 8/20 8/17
5 10/21 6/23 6/23

Table 4.15: Comparison of solvers with nonlinear and averaged linear iterations

From Tables 4.8 and 4.15, it can be seen that linear solver take more and more

iterations with respective mesh refinements and it effects also the performance of non-

linear solvers. As it is explained in the section 4.6 that the coefficient matrix 4.19

generated by SVP formulation is not differentially diagonal dominant [59]. Therefore,

the smoother has slow convergence rate and ultimately effects the multigrid solver. In

the Table 4.16, the numerical test is performed for pre/post smoothing steps SmSt 2,

4, 8 and 16 using Q2Q2Q2 finite elements.

level SmSt− 2 SmSt− 4 SmSt− 8 SmSt− 16

Gauss−Newton Method
2 7/12 7/7 7/4 7/2
3 4/20 4/15 4/7 4/4
4 6/24 4/21 3/14 3/7
5 8/25 5/23 3/19 3/15

Fixed Point Method
2 14/10 14/6 14/4 14/2
3 9/15 9/9 9/4 9/2
4 8/24 8/20 8/9 8/4
5 9/25 6/23 6/22 6/11

Table 4.16: Iterative comparison of solvers for vaious smoothin steps

It is observed that for the higher smoothing steps the performance of linear can be

enhanced. The fixed point method is outperformed by Gauss-Newton method. From
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Table 4.16 it is shown that the efficiency of the solvers can be improved in term of

nonlinear iterations but at the cost of some additional computations.

Figure 4.2: Velocity profile for Navier-Stokes problem

Figure 4.3: Pressure Difference for Navier-Stokes problem

4.9 Summary

We have presented a numerical study to develop an efficient linear weighted least-

squares finite element method (Lw-LSFEM) for Stokes and Navier-Stokes problems

using stress-velocity-pressure first order systems. We have used two mesh configura-

tions (3.4.2) and (3.4.3) for the the numerical investigations of flow around cylinder

problem and computed the flow parameters such as coefficients of drag and lift, pres-

sure difference across cylinder at Reynolds number Re = 20. The SVP formulation

is rarely used for Stokes problem because it appears to have more unknowns and

consequently more computational cost. But, we are working only with SVP type for-

mulations therefore we employed it to validate our solver for both lower and higher

order finite element discretizations. It is also observed that for a the linear problem

we got equal approximations for nonlinear solvers i.e. Gauss-Newton and fixed point

methods. Because, the defect computed in both methods for the linear problem is

equivalent. In case of Navier-Stokes problem or nonlinear problem the results are

slightly different. The reason behind it, is the application of least-squares principle

after the linearization of nonlinear terms in the given problem. We got different defect
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for each method. The application of least-squares principle on system of equations,

based on SVP formulation, leads to a coefficient matrix which is not differentially diag-

onal dominant. Therefore, the linear solver show slow convergence and the optimality

of linear solver is an open problem.

We use three types of finite element discretizationsQ1Q1Q1, Q2P
dc
1 Q2 andQ2Q2Q2

for analysis in both mesh configurations referred above. The overall results computed

for all respective discretizations using mesh-II (3.4.3) are better than those for mesh-

I (3.4.3). Also, the results for higher order finite element discretizations are much

more accurate than the results for lower order finite element discretizations. The

results obtained from mesh-II for higher order finite element discretizations are more

promising toward benchmark results [91] than the outcomes produced by mesh-I. The

convergence behavior is also mesh independent for both cases.

One of the main objectives of the study is to find the proper weighted function

w
n

ην
used in least-squares energy functional to develop an accurate and robust solver.

The weighted function used for the analysis is a function depending on the viscosity

of fluid and the viscosity used in this chapter is constant ην = 0.001. It is observed

from numerical tests that the choice of weighed function played an important role in

the convergence of our solver. The numerical test carried out only for the weighted

function w
n

ην
= (1.0/ην)

n = (1.0/0.001)n in this chapter. We got the optimal results

only for the parametric value n = 1.0 in weighted function w
n

ην
.

The mass conservation is another important factor in the study of least-squares

finite element methods. The aim of our research is to get the global mass conservation

m
GMC

x=2.2 on outflow at x = 2.2 of flow domain without activating weight or scaling

parameter αm associated with continuity equation. Therefore, we use αm = 1.0 in

our tests so that the scaling parameter has no effect in computation of global mass

conservation. The only weighted function employed in our least-squares functional is

w
n

ην
and we used only this weight to study overall behavior of Lw-LSFEM. The lack

of global mass conservation has been obtained in numerical tests when it is carried

out for lower order finite element discretization but for higher order finite element

discretizations it is outperformed, especially for Q2 elements for mesh-II in Table 4.12

and 4.14.

We can conclude that for higher order finite elements the highly accurate results

are achieved. The mesh independent convergence behavior is observed for all the

performed test. The global mass conservation is achieved with higher order finite

element discretizations. We got excellent results for mesh configuration 3.4.3 over the

mesh 3.4.2 but at some computational cost.



Chapter 5

Isothermal non-Newtonian Fluid

Flows

In this chapter, the non-Newtonian fluid flow problems are simulated numerically for

the power law and the Cross law viscosity models. We develop the least-squares finite

element method balanced by different nonlinear weighted functions as suitable physical

quantities in the flow model. The numerical investigation of the power law fluids

is followed by the analysis of Cross law fluid flow problems. We designed special

nonlinear weighted least-squares finite element techniques for stationary incompressible

Navier-Stokes 2D problem for nonlinear models approximated with higher order finite

elements. We used nonlinear viscosity as nonlinear weighted function and obtained

the optimal results for a vast range of parameters. The shear thickening and thinning

behavior of the fluids are examined for power law viscosity model. The Cross law

model is used to study complex fluids with bounded viscosities. We employ conjugate

gradient scheme preconditioned by multigrid solver to approximate the systems based

on SVP formulation with accuracy and efficiently.

5.1 Introduction

The general motivation behind using least-squares finite element methods is to achieve

the providential properties of Rayleigh-Ritz methods. For instance, in contrast to

standard mixed finite element methods (MFEM), the selection of finite element spaces

is independent of compatibility condition (i.e. the LBB stability condition) and the

linear system is always symmetric and positive definite [15]. This allows to build an

efficient MPCG solver to approximate linear systems which is the key task in this

work. The non-Newtonian fluid is an important class of fluids and used extensively for

research activities. We study the solution of the time independent fluids, which are also

known as ”generalized Newtonian fluid”. We consider two types of nonlinear viscosity

71
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models namely power law model and Cross law model for the problem formations and

numerical investigations.

In Literature, the non-Newtonian fluids have been investigated for many first order

formulations and nonlinear viscosity models in LSFEM. The stress based formulation

is used in [94] to investigate the power law fluids and the results for shear thinning

and shear thickening fluids for the variations of power law index were presented. The

power law fluids explored for p-version least-squares finite element method in [10],

[46], [47] and optimal results were presented. The least-squares finite element was

developed for Carreau fluid model in [31]. In 3D spaces, the power law fluids were

studied in [36] and the Carreau-Yasuda model was solved in [49] using LSFEM. For

the flow around cylinder domain, the NS problem was investigated for power law model

in [37] (MFEM), [75] (LSFEM) and for Cross law fluids in [37] using MFEM. We use

these results as reference for our investigations and study the NS problem for nonlinear

weighted LSFEM for both power law and Cross law models. The Cross law model is

employed first time to investigate least-squares finite element method for flow around

cylinder domain.

5.2 System of governing equations

The system of equations considered for the steady problem of generalized Newtonian

flow on a bounded domain Ω ⊂ R2 is given as

u · ∇u+∇p−∇ ·
(
2η

ν

(
γ̇

II
, p
)
D
(
u
))

= f

∇ · u = 0

}
in Ω (5.1)

where u is the velocity of fluid, p = P/ρ the normalized pressure, f is the external

source term, ην (·) is the nonlinear viscosity depending on shear rate or pressure or

both.

5.3 Formulation of first order system

To formulate the first order system, we consider the Cauchy stress tensor σ as a new

externally defined variable as follows

σ = vσ − pσ (5.2)

= 2η
ν

(
γ̇

II
, p
)
D
(
u
)
− pI

where pσ = pI is called the inviscid reactive component of Cauchy stress tensor and

vσ = 2η
ν

(
γ̇

II
, p
)
D
(
u
)
is the active viscous component of the Cauchy stress tensor,

which is a function of deformation gradient of velocity as D
(
u
)

and the second
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invariant of the shear rate tensor as γ̇
II

as defined in section 3.5, but the only

difference is in the active viscous part vσ of the fluid. Here, the viscosity of the fluid

in this case is nonlinear.

Now the first order stress-velocity-pressure (SVP) formulation for the steady prob-

lems of generalized Newtonian flow has the following form.

u · ∇u−∇ · σ = f,

∇ · u = 0,

σ + pσ − vσ = 0,

 in Ω, (5.3)

The Dirichlet boundary conditions f
Ω̂
D

on the Dirichlet boundary region Ω̂D and

the Neumann boundary condition f
Ω̂
N

on the outward unit normal n of Neumann

boundary region Ω̂D is given as

u = f
Ω̂
D

n · σ = f
Ω̂
N

 on Ω̂ (5.4)

and it also satisfy the zero mean pressure constraint (2.88).

5.4 Linearization of nonlinear problem

To overcome the computational difficulties, we first linearize the nonlinear terms

present in the considered problem. In the given problem there are two nonlinear

terms, the convection term u ·∇u and the viscus nonlinear term vσ = 2ην
(
γ̇

II
, p
)
D
(
u
)
.

We apply the Newton’s linearization to the nonlinear terms before the application of

least-squares principle to the problem. Therefore, the following substitutions are made

for the nonlinear term

u · ∇u ≈ u · ∇uk + uk · ∇u (5.5)

and

vσ ≈ Dvσ

(
p
)
+ vσ

(
u
)
+Dvσ

(
u
)

(5.6)

2ην
(
γ̇

II
, p
)
D
(
u
)

≈ 2
∂ην
∂p

D
(
uk
)
p+ 2ην

(
γ̇k

II
, pk
)
D
(
u
)

+
2

γ̇
II

∂ην
∂γ̇

II

[
D
(
u
)
: D
(
uk
)]

D
(
uk
)
. (5.7)

Let R be the sum of residuals for the system of equations (5.3). To approximate

the residuals, the nonlinear iteration is updated with the correction uk+1 = uk + δu.

Then, the residual approximation is obtained by Taylor series expansion as
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R
(
uk+1

)
= R

(
uk + δu

)
, (5.8)

≃ R
(
uk
)
+
[
DR

(
uk
)]
δu,

where

R
(
uk
)
=

 Rk
1

Rk
2

Rk
3

 =

 uk · ∇uk −∇ · σk − f

∇ · uk

σk + pσ

(
uk
)
− vσ

(
uk
)
 , (5.9)

and the system of equations after substitution is as following

DR
(
uk
)
δu =

 u · ∇uk + uk · ∇u−∇ · σ − f

∇ · u
σ + pσ

(
p
)
−Dvσ

(
p
)
− vσ

(
u
)
−Dvσ

(
u
)
 . (5.10)

By following the procedure discussed in Algorithm 3.2, i.e. the nonlinear basic

iteration for least-squares scheme, one can obtain a solution update δu as

R̃
(
uk
)
δu = R

def

(
uk
)
, (5.11)

and for different choices of R̃ and R
def

, as discussed in section 4.5, one can obtain

Newton and fixed point approximation schemes.

5.5 Continuous least-squares principle

We introduce the spaces XΩ of admissible functions based on the residuals of the first-

order systems (5.3)

XΩ := H1
0,D

(
Ω
)
× L2

0

(
Ω
)
×H0,N

(
div,Ω

)
. (5.12)

The linearized functional Esvp in term of the L2-norm is obtained by using least-

squares principles on linearized residual (5.8) as

Esvp

(
δu;0

)
=

1

2

∥∥R(uk
)
+
[
DR

(
uk
)]
δu
∥∥2
0
. (5.13)

and the L2-norm based SVP energy functionals can be expanded as following

Esvp

(
δu; 0

)
= 1

2

(∥∥Rk
1 + u · ∇uk + uk · ∇u−∇ · σ

∥∥2
0
+
∥∥Rk

2 +∇ · u
∥∥2
0

+
∥∥Rk

3 + σ + pσ

(
p
)
−Dvσ

(
p
)
− vσ

(
u
)
− Dvσ

(
u
)∥∥2

0

)
,

∀
(
u, p,σ

)
∈ XΩ .

(5.14)

and weighted functional associated with the nonlinear weighted function w
n

ην
is
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E
wην

svp

(
δu; 0

)
= 1

2

(∥∥Rk
1 + u · ∇uk + uk · ∇u−∇ · σ

∥∥2
0
+ αm

∥∥Rk
2 +∇ · u

∥∥2
0

+ w
n

ην

∥∥Rk
3 + σ + pσ

(
p
)
−Dvσ

(
p
)
− vσ

(
u
)
− Dvσ

(
u
)∥∥2

0

)
,

∀
(
u, p,σ

)
∈ XΩ .

(5.15)

where the nonlinear weighted functions are defined as w
n

ην
=
(
1.0/ην

)n
; n ≥ 1 and these

functions applied only to the residual part of additional Cauchy stress equation. Here,

to improve mass conservation, a scaling parameter αm is used for the least-squares

formulation [42], [23], [24].

The minimization problem associated with the least-squares formulation in (5.15)

is to find δu =
(
u, p,σ

)
∈ XΩ such that

δu = argmin
v∈X

Ω

E
wην

svp

(
v; 0
)
. (5.16)

The first variant of the quadratic linearized functional (5.16) leads to an equivalent

problem of finding δu such that

[
R
(
uk
)
+DR

(
uk
)
δu
]
DR

(
uk
)
v = 0, ∀ v ∈XΩ . (5.17)

The variational problem based on the optimality condition (5.17) of the minimiza-

tion problem (4.16) is given by{
Find δu =

(
u, p,σ

)
∈ XΩ such that,

K
(
δu,v

)
= F

(
v
)

∀ v =
(
v, q,τ

)
∈ XΩ .

(5.18)

where K is the bilinear form defined on XΩ ×XΩ → R as following

K : =
〈
uk · ∇u+ u · ∇uk −∇ · σ, uk · ∇v+ v · ∇uk −∇ · τ

〉
(5.19)

+αm

〈
∇ · u,∇ · v

〉
+ w

n

ην

〈
σ, τ

〉
+w

n

ην

〈
σ,pτ

(
q
)
−Dvτ

(
q
)〉

+ w
n

ην

〈
σ,−vτ

(
v
)
−Dvτ

(
v
)〉

+w
n

ην

〈
pσ

(
p
)
−Dvσ

(
p
)
, τ + pτ

(
q
)
−Dvτ

(
q
)〉

+w
n

ην

〈
pσ

(
p
)
−Dvσ

(
p
)
,−vτ

(
v
)
−Dvτ

(
v
)〉

+w
n

ην

〈
− vσ

(
u
)
−Dvσ

(
u
)
, τ + pτ

(
q
)
−Dvτ

(
q
)〉

+w
n

ην

〈
− vσ

(
u
)
−Dvσ

(
u
)
,−vτ

(
v
)
−Dvτ

(
v
)〉

and the linear forms F is defined on XΩ → R as following

F : =
〈
Rk

1, v · ∇uk + uk · ∇v−∇ · τ
〉
+ αm

〈
Rk

2,∇ · v
〉

(5.20)

+w
n

ην

〈
Rk

3, τ + pτ

(
q
)
−Dvτ

(
q
)
− vτ

(
v
)
−Dvτ

(
v
)〉

To analyze the properties of the least-square problem the operator form is as fol-

lowing
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K =
[
DR

(
uk
)]∗[DR

(
uk
)]

(5.21)

=

 Kvu Kvp Kvσ

Kqu Kqp Kqσ

Kτu Kτp Kτσ

 ,
where

Kvu = w
n

ην

〈
− vσ

(
u
)
,−vτ

(
v
)〉

+
〈
uk · ∇u, uk · ∇v

〉
+ αm

〈
∇ · u,∇ · v

〉
+
〈
u · ∇uk, v · ∇uk + uk · ∇v

〉
+
〈
uk · ∇u, v · ∇uk

〉
+w

n

ην

〈
− vσ

(
u
)
,−Dvτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
u
)
,−vτ

(
v
)〉

+w
n

ην

〈
−Dvσ

(
u
)
,−Dvτ

(
v
)〉
,

Kvp = w
n

ην

〈
pσ

(
p
)
,−vτ

(
v
)〉

+ w
n

ην

〈
pσ

(
p
)
,−Dvτ

(
v
)〉

+w
n

ην

〈
−Dvσ

(
p
)
,−vτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
p
)
,−Dvτ

(
v
)〉
,

Kvσ = w
n

ην

〈
σ,−vτ

(
v
)〉

+ w
n

ην

〈
σ,−Dvτ

(
v
)〉

+
〈
−∇ · σ, uk · ∇v

〉
+
〈
−∇ · σ, v · ∇uk

〉
,

Kqu = w
n

ην

〈
− vσ

(
u
)
,pτ

(
q
)〉

+ w
n

ην

〈
− vσ

(
u
)
,−Dvτ

(
q
)〉

+w
n

ην

〈
−Dvσ

(
u
)
,pτ

(
q
)〉

+ w
n

ην

〈
−Dvσ

(
u
)
,−Dvτ

(
q
)〉
,

Kqp = w
n

ην

〈
pσ

(
p
)
,pτ

(
q
)〉

+ w
n

ην

〈
pσ

(
p
)
,−Dvτ

(
q
)〉

+w
n

ην

〈
−Dvσ

(
p
)
,pτ

(
q
)〉

+ w
n

ην

〈
−Dvσ

(
p
)
,−Dvτ

(
q
)〉
,

Kqσ = w
n

ην

〈
σ,pτ

(
q
)〉

+ w
n

ην

〈
σ,−Dvτ

(
q
)〉
,

Kτu = w
n

ην

〈
− vσ

(
u
)
, τ
〉
+
〈
uk · ∇u,−∇ · τ

〉
+
〈
u · ∇uk,−∇ · τ

〉
+w

n

ην

〈
−Dvσ

(
u
)
, τ
〉
,

Kτp = w
n

ην

〈
pσ

(
p
)
, τ
〉
+ w

n

ην

〈
−Dvσ

(
p
)
, τ
〉
,

Kτσ = w
n

ην

〈
σ, τ

〉
+
〈
−∇ · σ,−∇ · τ

〉
,

Here, the terms shown in the boxes have contributions in the coefficient matrix K due

to the nonlinear terms. These terms will be add to coefficient matrix K after defect

calculation The resulting system matrix (5.21) is symmetric and positive definite but

the matrix is not differentially diagonal dominant. We are able to use the conjugate

gradient method to efficiently solve the system of equations.
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5.6 Discrete least-squares principle

The discrete form of the problem (5.18) with approximation spaces X h
Ω
is defined as

X h
Ω
=
{
δuh ∈ H1,h

0,D

(
Ω
)
× L2,h

0

(
Ω
)
×Hh

0,N

(
div,Ω

)}
. (5.22)

where δuh =
(
uh, ph,σh

)
can be written as{

Find δuh ∈ X h
Ω

such that,

Kh
(
δuh,vh

)
= Fh

(
vh
)
,

(5.23)

where, for all vh = (vh, qh, τ h) ∈ X h
Ω
, Kh is the approximated bilinear form defined on

X h
Ω
×X h

Ω
→ R and the linear forms Fh is defined on X h

Ω
→ R.

5.7 Numerical results and analysis

In this section, we analyze the nonlinear weighted least-squares finite element method

(Nw-LSFEM) for the solution of stationary incompressible flow problems of non-

Newtonian fluids by using SVP first order formulation. The power law and Cross law

models are examined for unbounded and bounded nonlinear viscosities, respectively.

The Q2 biquadratic finite element is used for the discretization of all the unknown vari-

ables, which are velocity, stress and pressure. The multigrid preconditioned conjugate

gradient method is employed as a linear solver with multigrid solver as a precondi-

tioner. For the nonlinear solver, the Gauss-Newton and the fixed point like methods

are used. The efficiency of the method is measured by its performance and accuracy.

The results are compared with the reference solutions calculated by Damanik [37] and

Nickaeen [75].

We computed and analyzed the numerical outcomes for a variety of nonlinear

weighted functions w
n

ην
used in the least-squares energy functionals. The main ob-

jective of the study is to find the significant impact of nonlinear weights on the solver’s

performance. The computational mesh configuration (3.4.2) is used for numerical tests.

The total number of unknowns computed for Q2 element discretization are presented in

the Table 5.1 for the stress-velocity-pressure problem, where unknowns are computed

in hierarchical order from coarser(top) to finer(bottom) levels.
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Level NDoF u NDoF p NDoF σ Total NDoF

1 1144 572 1716 3432
2 4368 2184 6552 13104
3 17056 8528 25584 51168
4 67392 33696 101088 202176
5 267904 133952 401856 803712
6 1068288 534144 1602432 3204864

Table 5.1: Total number of unknows using Q2Q2Q2 discretization

5.7.1 Power law model

The power law viscosity model (3.43) is used for variants of power law index r to

represent the shear thinning and shear thickening fluids. The tests are carried out for

nonlinear weight w
n

ην
; n = 1.0 which is a function dependent on nonlinear viscosity

and other useful parametric values are ϵ = 0.1, η0 = 10−3.

Shear thinning fluid flow for w1.0
ην

The nonlinear viscosity ην in power law model (3.43) depends on shear rate γ̇
II

of the

fluid. The shear thinning effects of the flow are obtained for the power law index value

r = 1.5 with weighted function w1.0
ην

and is shown in Table 5.2.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 3.246358E + 00 −1.149702E − 02 9.382544E − 02 1.103180E − 01
5 3.269706E + 00 −1.318620E − 02 9.610286E − 02 2.514482E − 02
6 3.276482E + 00 −1.331922E − 02 9.664751E − 02 5.122436E − 03

Fixed Point Method
4 3.207203E + 00 −1.332608E − 02 9.314482E − 02 8.133711E − 02
5 3.260655E + 00 −1.335087E − 02 9.594829E − 02 1.747758E − 02
6 3.275091E + 00 −1.332572E − 02 9.663882E − 02 3.140688E − 03

[37] 3.27833E + 00 −1.332E − 02
[75] 3.02080E + 00 −1.52413E − 02 9.42107E − 02

Table 5.2: Shear thinning effects for r = 1.5 with weighted function w1.0

Newtonian fluid flow for w1.0
ην

For power law index value r = 2.0, the fluid behaves as Newtonian and flow parameters

computed for flow around cylinder problem are shown in Table 5.3. As it can be seen

that global mass is conserved very well for both methods.
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Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 5.556446E + 00 1.115572E − 02 1.162045E − 01 3.618464E − 02
5 5.576758E + 00 1.066844E − 02 1.172607E − 01 4.701878E − 03
6 5.579248E + 00 1.062216E − 02 1.174601E − 01 5.885206E − 04

Fixed Point Method
4 5.556770E + 00 1.028484E − 02 1.162086E − 01 2.663399E − 02
5 5.576749E + 00 1.057478E − 02 1.172595E − 01 3.416974E − 03
6 5.579242E + 00 1.061386E − 02 1.174598E − 01 4.229640E − 04

[37] 5.579313E + 00 1.061503E − 02
[75] 5.579242E + 00 1.060640E − 02 1.174766E − 01

Table 5.3: Newtonian fluid flow for r = 2.0 with weighted function w1.0

Figure 5.1: Horizontal velocity profile u at different cross sections x of the shear
thinning and Newtonian flow for r = 1.5 and r = 2.0

In Figure 5.2, the comparison of the Gauss-Newton and fixed point method for

the global mass conservation in the Tables 5.2 and 5.3 is presented on the outflow

cross-section at x = 2.2. It is observed that the mass is conserved globally for both

methods.

Shear thickening fluid flow for w1.0
ην

The shear thickening effects of the fluid flow are simulated for the power law index

r = 2.5 and the results are shown in Table 5.4.
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Figure 5.2: Comparison of nonlinear solvers for global mass conservation at outflow
cross section of flow at x = 2.2 with corresponding levels for shear thinning flow (left)
and Newtonian fluid flow (right).

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 8.694916E + 00 9.399892E − 02 1.479648E − 01 1.621211E − 02
5 8.704340E + 00 9.405548E − 02 1.489464E − 01 1.854955E − 03
6 8.705402E + 00 9.406192E − 02 1.491260E − 01 2.208340E − 04

Fixed Point Method
4 8.694395E + 00 9.352406E − 02 1.479553E − 01 1.227045E − 02
5 8.704326E + 00 9.398930E − 02 1.489491E − 01 1.376196E − 03
6 8.705408E + 00 9.405171E − 02 1.491274E − 01 1.626526E − 04

[75] 9.660710E + 00 13.20204E − 02 1.600681E − 01

Table 5.4: Shear thickening effect for r = 2.5 with weighted function w1.0

Now we increase the power law index value to r = 3.0, which made the fluid thicker,

hard to flow and challenging to solve. Even for this configuration our solver performs

very well and generates accurate results, which are mesh independent as well.
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Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 1.381088E + 01 3.525638E − 01 2.034762E − 01 2.211654E − 02
5 1.382478E + 01 3.525774E − 01 2.048400E − 01 3.103754E − 03
6 1.382730E + 01 3.527192E − 01 2.049490E − 01 4.511015E − 04

Fixed Point Method
4 1.381416E + 01 3.510574E − 01 2.035904E − 01 1.265699E − 02
5 1.382558E + 01 3.526187E − 01 2.048686E − 01 1.503496E − 03
6 1.382746E + 01 3.528160E − 01 2.049549E − 01 1.833629E − 04

[37] 1.382715E + 01 3.5294E − 01
[75] 1.800581E + 01 5.486194E − 01 2.545056E − 01

Table 5.5: Shear thickening effect for r = 3.0 with weighted function w1.0

Figure 5.3: Horizontal velocity profile u at different cross sections x of the shear
thickening flow for r = 2.5 and r = 3.0

In the following Table 5.6, we make a comparison of total nonlinear iterations

and the corresponding averaged number of linear solver iterations for flow around

cylinder. The relative errors for nonlinear and linear solvers are retained 1E-6 and

1E-3, respectively. It can be clearly seen from the table below that the Gauss-Newton

worked very well in comparison to fixed point technique.
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Level r = 1.5 r = 2.0 r = 2.5 r = 3.0

Gauss−Newton Method
2 15/12 9/8 7/6 9/6
3 12/23 5/12 5/10 5/11
4 10/24 4/17 4/19 5/22
5 6/25 4/22 4/23 5/25

Fixed Point Method
2 23/8 14/7 14/6 94/5
3 20/12 10/9 14/11 242/12
4 22/18 9/11 12/19 628/20
5 19/23 8/20 10/24 1211/25

Table 5.6: Solvers comperison based on nonlinear/linear iterations

The shear thickening fluid for r = 3.0 at higher refinement levels the Gauss-Newton

method converges in very few number of iterations but the fixed point method takes

too many iterations to get approximate solutions. We observe an increase in the linear

iterations as the level of mesh refinement is increased. We employ preconditioned

conjugate gradient as a linear solver therefore the increase in the iterations is due to

the increase in the condition number of the matrices generated on different levels. The

Figure 5.4: Comparison of nonlinear solvers for global mass conservation at outflow
cross section of flow at x = 2.2 with corresponding levels for shear thickening flows at
r = 2.5 (left) and r = 3.0 (right).

global mass computed in the Tables 5.4 and 5.5 is conserved for the shear thickening

fluid flows and the comparison of nonlinear solvers on different levels is shown in the

Figure 5.4.
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5.7.2 Cross law model

The nonlinear viscosity ην
(
γ̇

II
, p
)
, depends on shear rate γ̇

II
and pressure p, is em-

ployed for the numerical tests. The Cross law model is used for different parametric

values of shear rate and pressure. The flow parameters for flow around cylinder prob-

lem with two different nonlinear weighted functions w1.0
ην
, w1.5

ην
with different variants of

the viscosity function are simulated. The weighting parameter associated with conti-

nuity equation is kept constant i.e. αm = 1.0. The tests are performed for the bounded

viscosities range between η0 = 10−3 and η1 = 10−2.

Viscosity depends on shear rate with w1.0
ην

For the first test, the nonlinear viscosity function ην
(
γ̇

II

)
depends on shear rate only.

The results are obtained for the following set of parameters

r = 1, αp = 0, η0 = 10−3, η1 = 10−2,

and the nonlinear weighted function is defined as

w1.0
ην

=
(
1/ην

(
γ̇

II

))1.0
.

The Table 5.7 presents the solutions for above mentioned parameters for flow around

cylinder problem.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 6.302004E + 00 2.508582E − 02 1.262176E − 01 3.631986E − 02
5 6.324114E + 00 2.510212E − 02 1.273364E − 01 4.498997E − 03
6 6.326834E + 00 2.510995E − 02 1.275341E − 01 5.338835E − 04

Fixed Point Method
4 6.305141E + 00 2.472376E − 02 1.263343E − 01 2.707871E − 02
5 6.324500E + 00 2.506052E − 02 1.273604E − 01 3.323894E − 03
6 6.326877E + 00 2.510415E − 02 1.275495E − 01 3.925826E − 04

Ref [37] : Drag CD = 6.32691E + 00, Lift CL = 2.510E − 02

Table 5.7: Shear dependent viscosity with weighted function w1.0

Viscosity depends on pressure with w1.0
ην

Now, the numerical test is conducted for the nonlinear viscosity ην
(
p
)
which is a

function of pressure variable. The results are approximated for the parametric values

as given by

r = 0, αp = 0.1, η0 = 10−3, η1 = 10−2,
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and nonlinear weighted function is defined as

w1.0
ην

=
(
1/ην

(
p
))1.0

,

and given in the Table 5.8.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 3.330691E + 01 8.216384E − 01 4.870698E − 01 1.673726E − 02
5 3.331938E + 01 8.222597E − 01 4.927083E − 01 1.574403E − 03
6 3.332084E + 01 8.223553E − 01 4.942405E − 01 1.589661E − 04

Fixed Point Method
4 3.330757E + 01 8.216474E − 01 4.870709E − 01 1.407247E − 02
5 3.331943E + 01 8.222604E − 01 4.927076E − 01 1.356518E − 03
6 3.332085E + 01 8.223554E − 01 4.942397E − 01 1.400759E − 04

Ref [37] : Drag CD = 3.331069E + 01, Lift CL = 8.2217E − 01

Table 5.8: Pressure dependent viscosity with weighted function w1.0

Viscosity depends on shear rate and pressure with w1.0
ην

The nonlinear viscosity ην
(
γ̇

II
, p
)
is a function of shear rate and pressure variables and

the outcomes are generated for the following values

r = 1, αp = 0.1, η0 = 10−3, η1 = 10−2,

and the weighted function is

w1.0
ην

=
(
1/ην

(
γ̇

II
, p
))1.0

.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 6.306605E + 00 2.515882E − 02 1.262980E − 01 3.639816E − 02
5 6.328733E + 00 2.517751E − 02 1.274168E − 01 4.507904E − 03
6 6.331455E + 00 2.518569E − 02 1.276143E − 01 5.349343E − 04

Fixed Point Method
4 6.309764E + 00 2.479951E − 02 1.264156E − 01 2.708711E − 02
5 6.329122E + 00 2.513629E − 02 1.274413E − 01 3.325034E − 03
6 6.331499E + 00 2.517993E − 02 1.276302E − 01 3.927158E − 04

Ref [37] : Drag CD = 6.33151E + 00, Lift CL = 2.518E − 02

Table 5.9: Shear and pressure dependent viscosity with weighted function w1.0
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The global mass conservation is calculated at each level and it is worth noting that

in all the cases mentioned above the global mass conservation of the system is very well-

preserved. It can be seen from the Table 5.10 that the performance of Gauss-Newton

method in term of nonlinear iterations is better than that of fixed point method. The

nonlinear and linear solver relative errors are kept below 1E-6 and 1E-3, respectively.

Lev. r = 1, αp = 0 r = 0, αp = 0.1 r = 1, αp = 0.1

Gauss−Newton Method with w1.0
ην

2 9/7 5/7 9/6
3 6/15 4/20 6/15
4 5/21 4/23 5/21
5 6/23 7/25 6/23

Fixed Point Method with w1.0
ην

2 15/6 7/6 15/6
3 11/10 5/13 11/10
4 10/18 5/23 10/18
5 9/23 7/25 9/23

Table 5.10: Comparison of nonlinear and linear iterrations

Now, we continue with the same configuration of parameters and repeat the per-

formed test again for a different nonlinear weighted function. Here, the nonlinear

weighted function under consideration is w1.5
ην

. The purpose of doing this is to observe

the effects of the weighted functions on the approximation of results and convergence

of solver.

Viscosity depends on shear rate with w1.5
ην

The Table 5.11 represents the results of shear dependent nonlinear viscosity ην
(
γ̇

II

)
function for the following set of considered values

r = 1, αp = 0, η0 = 10−3, η1 = 10−2.

The nonlinear weighted function is defined as

w1.5
ην

=
(
1/ην

(
γ̇

II

))1.5
.

which is a function of the shear dependent viscosity.
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Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 6.303997E + 00 2.511087E − 02 1.265522E − 01 5.829458E − 02
5 6.324761E + 00 2.512897E − 02 1.274333E − 01 6.330799E − 03
6 6.326923E + 00 2.511514E − 02 1.275873E − 01 7.225744E − 04

Fixed Point Method
4 6.308014E + 00 2.457609E − 02 1.266852E − 01 4.383738E − 02
5 6.325208E + 00 2.507243E − 02 1.275129E − 01 4.713574E − 03
6 6.326975E + 00 2.510679E − 02 1.276384E − 01 5.328366E − 04

Ref [37] : Drag CD = 6.32691E + 00, Lift CL = 2.510E − 02

Table 5.11: Shear dependent viscosity with weighted function w1.5

Viscosity depends on pressure with w1.5
ην

The nonlinear viscosity function ην
(
p
)
depends on the pressure variable and the pa-

rameters are as under

r = 1, αp = 0, η0 = 10−3, η1 = 10−2,

and the weighted function is proposed as

w1.5
ην

=
(
1/ην

(
p
))1.5

.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 3.330658E + 01 8.215899E − 01 4.915623E − 01 2.620138E − 02
5 3.331923E + 01 8.222500E − 01 4.939690E − 01 2.623409E − 03
6 3.332081E + 01 8.223538E − 01 4.945947E − 01 2.828488E − 04

Fixed Point Method
4 3.330765E + 01 8.215850E − 01 4.915738E − 01 2.105093E − 02
5 3.331933E + 01 8.222498E − 01 4.939700E − 01 2.124295E − 03
6 3.332082E + 01 8.223538E − 01 4.945948E − 01 2.307281E − 04

Ref [37] : Drag CD = 3.331069E + 01, Lift CL = 8.2217E − 01

Table 5.12: Pressure dependent viscosity with weighted function w1.5
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Viscosity depends on shear rate and pressure with w1.5
ην

The nonlinear viscosity function ην
(
γ̇

II
, p
)
depends on shear rate and pressure. The

numerical test is performed for the set of parameters as

r = 1, αp = 0.1, η0 = 10−3, η1 = 10−2

and the respective nonlinear weighted function is defined as

w1.5
ην

=
(
1/ην

(
γ̇

II
, p
))1.5

,

and the numerical results are presented in Table 5.13.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 6.308623E + 00 2.518586E − 02 1.266326E − 01 5.845167E − 02
5 6.329383E + 00 2.520474E − 02 1.275142E − 01 6.347563E − 03
6 6.331545E + 00 2.519086E − 02 1.276685E − 01 7.245894E − 04

Fixed Point Method
4 6.312650E + 00 2.465365E − 02 1.267679E − 01 4.385262E − 02
5 6.329831E + 00 2.514840E − 02 1.275960E − 01 4.715183E − 03
6 6.331596E + 00 2.518252E − 02 1.277205E − 01 5.330296E − 04

Ref [37] : Drag CD = 6.33151E + 00, Lift CL = 2.518E − 02

Table 5.13: Shear and pressure dependent viscosity with weighted function w1.5

The numerical tests are performed for the same set of parameters but with two

different types of nonlinear weighted functions. It is observed that the change in the

weighted function can slightly improved the results. The tables generated by nonlinear

weighted functions w1.5
ην

give better approximation solutions than those produced by

the weighted function w1.0
ην
. It can be seen from the Table 5.14 that the change in the

weighted functions also improve the performance of nonlinear and linear solvers. Also,

the weighted function w1.5
ην

is helpful in production of more accurate approximations.

The global mass conservation is computed for each numerical test and it is preserved

as well. The comparison of solvers by their iterations is provided in Table 5.14. It is

shown that the Gauss-Newton method approximate the problem more efficiently than

that of the fixed point method. The nonlinear and linear solver relative errors are kept

below 1E-6 and 1E-3, respectively.
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Lev. r = 1, αp = 0 r = 0, αp = 0.1 r = 1, αp = 0.1

Gauss−Newton Method with w1.5
ην

2 10/4 5/3 10/4
3 6/5 3/9 6/5
4 4/8 3/18 4/9
5 3/16 3/21 3/16

Fixed Point Method with w1.5
ην

2 15/2 7/3 15/2
3 12/3 5/6 12/3
4 10/5 5/13 10/5
5 8/11 4/22 8/11

Table 5.14: Comparison of nonlinear and averaged linear iterations of solvers

From Table 5.10 and 5.14, it is clearly seen that weighted functions improve the

linear solver but still it is not satisfactory. This is because of the SVP formulation which

does not lead to the differentially diagonal dominant matrix. Therefore, the smoother,

which is SSOR-PCG, lacks to provide efficient smoothing sweeps and results into more

linear iterations with mesh refinements. The Table 5.15 shows that the performance of

linear solver can be improved by increasing the pre/post smoothing steps in the linear

solver.

r = 1, αp = 0.1, w1.5
ην

Lev SmSt− 4 SmSt− 8 SmSt− 16 SmSt− 32

Gauss−Newton Method
2 10/4 10/2 10/1 10/1
3 6/5 6/2 6/2 6/1
4 4/9 4/4 4/2 4/1
5 3/16 3/9 3/5 3/3

Fixed Point Method
2 15/2 15/1 15/1 15/1
3 12/3 12/1 12/1 12/1
4 10/5 10/2 10/1 10/1
5 8/11 8/5 8/2 8/1

Table 5.15: Comparison of solvers for different smoothing steps

We have observed from previous conducted test cases for η1 = 10−2 that the results

generated by weighted function w1.5
ην

are more optimal, therefore we use it for further

work. Now, for further investigation we make our problem more complex and harder

by considering the bounded viscosities between η1 = 10−3 and η1 = 10−1.
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Viscosity depends on shear rate with w1.5
ην

The results are generated for the viscosity function depends on shear rate ην
(
γ̇

II

)
for

the set of values

r = 1, αp = 0, η0 = 10−3, η1 = 10−1,

and

w1.5
ην

=
(
1/ην

(
γ̇

II

))1.5
,

is the nonlinear weight.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 1.492521E + 01 1.378197E − 01 2.609283E − 01 6.584484E − 02
5 1.494282E + 01 1.377123E − 01 2.608543E − 01 7.300716E − 03
6 1.494457E + 01 1.376976E − 01 2.600338E − 01 8.549437E − 04

Fixed Point Method
4 1.492936E + 01 1.372102E − 01 2.615617E − 01 7.991103E − 02
5 1.494332E + 01 1.376342E − 01 2.612626E − 01 8.184891E − 03
6 1.494463E + 01 1.376915E − 01 2.602365E − 01 8.776746E − 04

Ref [37] : Drag CD = 1.494420E + 01, Lift CL = 1.3769E − 01

Table 5.16: Shear dependent viscosity with weighted function w1.5

Viscosity depends on pressure with w1.5
ην

The results nonlinear viscosity is pressure dependent ην
(
p
)
and test performed for the

parameters

r = 0, αp = 0.1, η0 = 10−3, η1 = 10−1,

and

w1.5
ην

=
(
1/ην

(
p
))1.5

,

is nonlinear weighted function. The flow parameters are computed for flow around

cylinder problem are shown in Table 5.17.
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Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
3 4.212870E + 02 4.392329E + 00 5.054963E + 00 2.572146E + 01
4 5.164601E + 02 6.171659E + 00 7.005304E + 00 4.579241E + 00
5 5.365891E + 02 6.560752E + 00 7.745609E + 00 4.195456E − 01

Fixed Point Method
3 4.738928E + 02 5.138614E + 00 5.597942E + 00 6.469141E + 00
4 5.302715E + 02 6.402106E + 00 7.174572E + 00 7.764225E − 01
5 5.379536E + 02 6.584248E + 00 7.763042E + 00 6.322954E − 02

Ref [37] : Drag CD = 5.358480E + 02, Lift CL = 6.56621E + 00

Table 5.17: Pressure dependent viscosity with weighted function w1.5

Viscosity depends on shear rate and pressure with w1.5
ην

The considered nonlinear viscosity function ην
(
γ̇

II
, p
)
is shear rate and pressure-

dependent. and the simulations are performed for parameters

r = 1, αp = 0.1, η0 = 10−3, η1 = 10−1,

and nonlinear weighted function in this case is defined as

w1.5
ην

=
(
1/ην

(
γ̇

II
, p
))1.5

,

The Table 5.18 represents the approximated fluid flow values for different parameters.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 1.517453E + 01 1.400115E − 01 2.651726E − 01 6.914758E − 02
5 1.519248E + 01 1.398618E − 01 2.650040E − 01 7.618641E − 03
6 1.519426E + 01 1.398432E − 01 2.641678E − 01 8.866902E − 04

Fixed Point Method
4 1.517883E + 01 1.393550E − 01 2.657012E − 01 8.128097E − 02
5 1.519299E + 01 1.397783E − 01 2.654335E − 01 8.319800E − 03
6 1.519432E + 01 1.398367E − 01 2.643736E − 01 8.908413E − 04

Ref [37] : Drag CD = 1.519262E + 01, Lift CL = 1.3982E − 01

Table 5.18: Shear and pressure dependent viscosity with weighted function w1.5

In term of nonlinear iterations the Gauss-Newton method perform better than

that of fixed point method as given in the Table 5.19. The nonlinear and linear solver

relative errors are kept below 1E-6 and 1E-3, respectively.
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Level r = 1, αp = 0 r = 0, αp = 0.1 r = 1, αp = 0.1

Gauss−Newton Method with w1.5
ην

2 11/4 15/18 11/4
3 7/9 10/24 7/9
4 5/21 9/24 5/21
5 6/23 18/25 6/23

Fixed Point Method with w1.5
ην

2 39/2 8/10 39/2
3 29/4 9/23 29/4
4 24/8 10/24 24/9
5 19/18 25/25 19/18

Table 5.19: Comparison of nonlinear and linear iterations

Now, we continue with the same configuration of parameters and repeat the test for

w1.5
ην

again with a different nonlinear weighted function. Here, the nonlinear weighted

function under consideration is w2.0
ην

. The purpose of this numerical investigations is

to observe the effects of the weighted functions on the approximation of results and

convergence of the solvers.

Viscosity depends on shear rate with w2.0
ην

Now we simulate the problem with the nonlinear viscosity function ην
(
γ̇

II

)
for the set

of given values

r = 1, αp = 0, η0 = 10−3, η1 = 10−1,

and the nonlinear weighted function

w2.0
ην

=
(
1/ην

(
γ̇

II

))2.0
.

The aim of test is to observe the behavior of solvers for different nonlinear weight. The

Table 5.20 represent the results for shear dependent viscosity and nonlinear weight w2.0
ην

.



92 5. Isothermal non-Newtonian Fluid Flows

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 1.487019E + 01 1.370977E − 01 2.644543E − 01 2.728245E − 01
5 1.493569E + 01 1.377148E − 01 2.617246E − 01 3.441961E − 02
6 1.494370E + 01 1.376949E − 01 2.604787E − 01 4.233133E − 03

Fixed Point Method
4 1.487101E + 01 1.354280E − 01 2.618610E − 01 3.857796E − 01
5 1.493608E + 01 1.375135E − 01 2.615512E − 01 4.427182E − 02
6 1.494378E + 01 1.376783E − 01 2.605034E − 01 5.023333E − 03

Ref [37] : Drag CD = 1.494420E + 01, Lift CL = 1.3769E − 01

Table 5.20: Shear dependent viscosity with weighted function w2.0

Viscosity depends on pressure with w2.0
ην

The outcomes for pressure dependent viscosity function ην
(
p
)
under the given param-

eters

r = 0, αp = 0.1, η0 = 10−3, η1 = 10−1,

and nonlinear weighted function

w
2.0

ην
=
(
1/ην

(
p
))2.0

,

are presented in the Table 5.21.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
3 4.142216E + 02 4.259511E + 00 4.986134E + 00 2.784193E + 01
4 5.153436E + 02 6.149515E + 00 7.054644E + 00 4.888113E + 00
5 5.365108E + 02 6.559204E + 00 7.767027E + 00 4.422426E − 01

Fixed Point Method
3 4.686562E + 02 5.025892E + 00 5.538630E + 00 7.232882E + 00
4 5.298441E + 02 6.391330E + 00 7.232002E + 00 8.396302E − 01
5 5.379280E + 02 6.583574E + 00 7.784692E + 00 6.758960E − 02

Ref [37] : Drag CD = 5.358480E + 02, Lift CL = 6.56621E + 00

Table 5.21: Pressure dependent viscosity with weighted function w2.0
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Viscosity depends on shear rate and pressure with w2.0
ην

The results for shear and pressure dependent viscosity function ην
(
γ̇

II
, p
)
and for given

values

r = 1, αp = 0.1, η0 = 10−3, η1 = 10−1,

with nonlinear weight function

w2.0
ην

=
(
1/ην

(
γ̇

II
, p
))2.0

.

are presented in Table 5.22.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 1.511920E + 01 1.393265E − 01 2.687517E − 01 2.897741E − 01
5 1.518534E + 01 1.398707E − 01 2.659321E − 01 3.621753E − 02
6 1.519338E + 01 1.398408E − 01 2.646239E − 01 4.423254E − 03

Fixed Point Method
4 1.512010E + 01 1.376272E − 01 2.660693E − 01 3.912867E − 01
5 1.518572E + 01 1.396613E − 01 2.657554E − 01 4.480156E − 02
6 1.519347E + 01 1.398238E − 01 2.646467E − 01 5.074837E − 03

Ref [37] : Drag CD = 1.519262E + 01, Lift CL = 1.3982E − 01

Table 5.22: Shear and pressure dependent viscosity with weighted function w2.0

From above discussed cases, it is observed that the weighted function w2.0
ην

play an

important role to get approximated results and better convergence behavior. The Table

5.23 represents a comparison of nonlinear iterations and averaged linear iterations

taken by solvers. The nonlinear and linear solver relative errors are kept below 1E-6

and 1E-3, respectively.



94 5. Isothermal non-Newtonian Fluid Flows

Level r = 1, αp = 0 r = 0, αp = 0.1 r = 1, αp = 0.1

Gauss−Newton Method with w2.0
ην

2 14/8 13/11 14/8
3 13/7 10/23 12/7
4 5/15 8/24 5/15
5 5/22 19/24 5/22

Fixed Point Method with w2.0
ην

2 40/3 8/7 40/3
3 31/3 9/19 32/3
4 27/4 9/24 26/4
5 20/8 19/24 21/7

Table 5.23: Comparison of nonlinear/linear iterations

From Table 5.19 and 5.23, it is clearly observed that the nonlinear weighted func-

tions w1.5
ην

and w2.0
ην

improve the linear solver but still it lack in performance. The

reason for this issue is the SVP formulation which does not leads to the differentially

diagonal dominant matrix. Therefore, the smoother, which is SSOR-PCG, needs more

smoothing steps to provide efficient smoothing sweeps and results into more linear iter-

ations with mesh refinements. In the following Table 5.24, the results for different pre

and post smoothing steps are calculated. It shows that the linear solver’s convergence

can be improved by increasing smoothing step size.

r = 1, αp = 0.1, η1 = 10−1, w2.0
ην

Level SmSt− 4 SmSt− 8 SmSt− 16 SmSt− 32

Gauss−Newton Method
2 14/8 14/4 14/2 15/1
3 12/7 12/4 12/2 13/1
4 5/15 5/8 5/4 5/2
5 5/22 5/19 5/11 5/6

Fixed Point Method
2 40/3 40/1 40/1 40/1
3 32/3 31/2 32/1 32/1
4 26/4 27/2 26/1 26/1
5 21/7 20/3 20/2 20/1

Table 5.24: Comparison of nonlinear/linear iterations taken by the solvers for smooth-
ing steps 4, 8, 16 and 32
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5.8 Summary

The nonlinear weighted least-squares finite element method (Nw-LSFEM) has been

proposed for the solutions of power law fluids and Cross law fluids. The stress, ve-

locity and pressure (SVP) based first order system formulation is employed for the

transformation of second order systems. From the previous chapter, it is observed

that lower order finite elements are less accurate and lack global mass conservation.

Therefore, the higher order finite element Q2 is used for the discretizations of all un-

known variables. The least-squares principle leads to symmetric and positive definite

matrix. The conjugate gradient method is the best choice to solve linear system in

such a situation. Additionally, the conjugate gradient is preconditioned by multigrid

solver. Furthermore, the SSOR preconditioned conjugate gradient method is employed

as smoother for multigrid method. But, the performance of linear solver needs more

improvement because the coefficient matrix is not differentially diagonal dominant.

The numerical discussion is divided into two parts. The first part of discussion is

composed of results related to power law viscosity model and the second part deals

with the Cross law viscosity model. The power law model (3.43) is employed to study

the effects of unbounded viscosities for non-Newtonian fluids. The power law viscosity

model depends only on shear rate of the fluid flow. Therefore, the shear thinning and

shear thickening effects are investigated for different values of power law index r. The

fluid flow quantities, such as drag, lift and pressure gradient, are obtained with great

accuracy for flow around cylinder problem. It is observed that with parametric value

r = 1.5 the fluid becomes less viscous and shear thinning features are being seen. The

value r = 2.0 corresponds to the Newtonian fluid and for r = 2.5, 3.0 the fluid has

behaved as shear thickening fluid as it becomes more viscous. Moreover, the nonlinear

weighted functions w1.0
ην

are observed to be mandatory for better convergence of the

solutions. The grid independent convergence has been achieved for both nonlinear

solvers. The comparison of nonlinear and averaged linear iterations taken by the

solvers is presented as well. The performance of Gauss-Newton method is outstanding

verses fixed point method.

The second part of our investigation is based on the Cross law viscosity model

(3.44). We are the first to use this model for numerical investigations of least-squares

finite element method. The Cross law viscosity model is used to discuss the fluid flow

with bounded viscosities. The nonlinear viscosities employed in this chapter depend

on shear rate and pressure only. The flow parameters for flow around cylinder prob-

lem are explored for bounded viscosities between η0 = 0.001 and η1 = 0.01, 0.1. The

numerical outcomes are compared with the solutions of Damanik [37]. A variety of

nonlinear weighted functions wn
ην
; n = 1.0, 1.5, 2.0, which depend on nonlinear viscosi-

ties ην
(
γ̇

II

)
, ην
(
p
)
and ην

(
γ̇

II
, p
)
, are used for the calculations of flow parameters. We

have observed that the parametric values n in the weighted functions increase with the
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increase in the complexity of the problem. The solvers have shown gird independent

behavior towards the solutions.

The mass conservation of the inflow-outflow systems is another important topic in

the study of least-squares finite element method. The lack of global mass conservation

in the flow problem is the source of motivation for us to consider flow around cylinder

problem for our numerical investigations. Therefore, we have computed global mass

conservation, at the outflow cross-section x = 2.2 of considered domain, in almost

each test case. In the power law fluids the global mass conservation is achieved in

each test case with higher refinement levels. For the Cross law fluids, the global mass

conservation for fluids, in which the viscosities depend on shear rate ην
(
γ̇

II

)
, shear

rate and pressure ην
(
γ̇

II
, p
)
, is very promising. But in the case when viscosity depends

only on pressure ην
(
p
)
the global mass conservation is achieved at a slow pace even

on higher refinement levels. The iterative comparison is studied for the nonlinear and

linear solvers and the independence of the solver w.r.t. mesh refinement are observed.

We can conclude that the nonlinear weighted least-squares finite element method

performs very well overall for both nonlinear viscosity models. The convergence be-

havior of Gauss-Newton method is very promising over fixed point method. The linear

solver has performed very well and the grid independent convergence is obtained for

our numerical investigations with very good accuracy and robustness.



Chapter 6

Non-isothermal non-Newtonian

Fluid Flows

The non-Newtonian fluids with non-isothermal effects, for the Cross law (3.44) fluid

flow problems, are considered in this chapter. We develop a physically motivated non-

linear weighted least-squares finite element method to generate accurate and robust

solutions for the non-Newtonian fluid flows. We implement a MPCG solver to ef-

ficiently approximate the newly proposed SVPT formulation for the non-Newtonian

fluid flow models.

6.1 Introduction

The non-Newtonian fluids have been explored for last few decades and most of the

research work have been carried out for power law fluids with nonlinear viscosity. The

p-version LSFEM was developed by [10], [46], [47] for two dimensional incompressible

non-Newtonian fluids along with isothermal and non-isothermal conditions. The vis-

cosity function dependent on shear rate and temperature with power law index between

0.25 ≤ n ≤ 1.5 was used for numerical investigations of Newtonian and generalized

Newtonian fluid flow.

We designed special nonlinear weighted least-squares finite element techniques for

the solution of stationary incompressible NS equations coupled with energy equation.

The Cross law fluids with nonlinear viscosity depending on shear rate, pressure and

temperature is employed for numerical investigations. The first order formulation

SVPT is the composite of two additional auxiliary variables stress and temperature

gradient along with velocity-pressure-temperature. The MPCG solver is tested for

discrete linear system discretized with higher equal order finite elements.

97
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6.2 System of governing equations

In this section, we consider the system of equations on a bounded domain Ω ⊂ R2

for the steady problem of generalized Newtonian flow which is similar to the system

studied in section 5.2. But the main difference here is the nonlinear viscosity depends

also on temperature of the fluid. The non-isothermal effects of the flow are given in

terms of the Boussinesq approximation where the coupling with the Navier Stokes

problem is written as

u · ∇u+∇p−∇ ·
(
2η

ν
(γ̇

II
, p,θ)D (u)

)
= f

∇ · u = 0(
u · ∇

)
θ − k1∇2θ − k2

[
D
(
u
)
:D
(
u
)]

= 0

 in Ω, (6.1)

where u is the velocity of the flowing fluid, p is the normalized pressure,θ is the temper-

ature of the flowing fluid, f is the external source term, ην (·) is the nonlinear viscosity
depending on shear rate, pressure and temperature,

[
D
(
u
)
:D
(
u
)]

is the additional

viscous dissipation term due to fluid friction among flowing particles, k1 and k2 are

thermal diffusively and friction parameter.

6.3 First order system formulation

To derive the stress-velocity-pressure-temperature (SVPT) formulation, we introduce

the Cauchy stress tensor σ as a new variable defined as

σ = vσ − pσ, (6.2)

= 2η
ν
(γ̇

II
, p,θ)D (u)− pI,

where pσ = pI is called the inviscid reactive part and vσ = 2η
ν
(γ̇

II
, p,θ)D(u) is the

active viscous part of the Cauchy stress tensor σ, which is a function of deformation

gradient of velocity D(u) and the second invariant of the shear rate tensor γ̇
II

defined

in section 5.3.

Also, we introduce temperature gradientΘ as another new variable which is defined

as

Θ = k1∇θ. (6.3)

Using equations (6.2) and (6.3) in (6.1) , the first order Stress-Velocity-Pressure-

Temperature (SVPT) system of equations obtained on a bounded domain Ω ⊂ R2 is

given as
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u · ∇u−∇ · σ = f

∇ · u = 0

σ + pσ − vσ = 0(
u · ∇

)
θ −∇ ·Θ− k2

[
D
(
u
)
:D
(
u
)]

= 0

Θ− k1∇θ = 0


in Ω, (6.4)

The Dirichlet boundary conditions f
u,Ω̂

D

, f
θ,Ω̂

D

on the Dirichlet boundary region Ω̂D

u = f
u,Ω̂

D

θ = f
θ,Ω̂

D

 on Ω̂D , (6.5)

and the Neumann boundary conditions f
u,Ω̂

N

, f
θ,Ω̂

N

on the outward unit normal n of

Neumann boundary region Ω̂D is given as

n · σ = f
u,Ω̂

N

n ·Θ = f
θ,Ω̂

N

 on Ω̂N . (6.6)

6.4 Linearization of system

We first linearize the nonlinear terms present in the considered system (6.4) . In the

given problem there are four nonlinear terms, first is the convection term u · ∇u, the

second is due to the nonlinear viscosity in the term vσ = 2ην
(
γ̇

II
, p,θ

)
D
(
u
)
, the third

is coupled term
(
u · ∇

)
θ and Fourth nonlinear term is friction term k2

[
D
(
u
)
:D
(
u
)]
.

We apply the Newton’s linearization to the nonlinear terms before the application of

least-squares principle to the problem. Therefore, the following substitutions are made

for the nonlinear terms

u · ∇u ≈ u · ∇uk + uk · ∇u, (6.7)

and

vσ ≈ Dvσ

(
p
)
+Dvσ

(
θ
)
+ vσ

(
u
)
+Dvσ

(
u
)
, (6.8)

2ην
(
γ̇

II
, p,θ

)
D
(
u
)

≈ 2
∂ην
∂p

D
(
uk
)
p+ 2

∂ην
∂θ

D
(
uk
)
θ + 2ην

(
γ̇k

II
, pk,θk

)
D
(
u
)

+
2

γ̇
II

∂ην
∂γ̇

II

[
D
(
u
)
:D
(
uk
)]

D
(
uk
)
, (6.9)

and (
u · ∇

)
θ ≈

(
u · ∇

)
θk +

(
uk · ∇

)
θ, (6.10)

and

k2
[
D
(
u
)
:D
(
u
)]

≈ k2
[
D
(
u
)
:D
(
uk
)]

+ k2
[
D
(
uk
)
:D
(
u
)]
. (6.11)
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Let R be the sum of residuals for the system of equations (6.4). To approximate

the residuals, the nonlinear iteration is updated with the correction uk+1 = uk + δu.

Then, the residual approximation is obtained by Taylor series expansion as

R
(
uk+1

)
= R

(
uk + δu

)
, (6.12)

≃ R
(
uk
)
+
[
DR

(
uk
)]
δu,

where

R
(
uk
)
=


Rk

1

Rk
2

Rk
3

Rk
4

Rk
5

 =


uk · ∇uk −∇ · σk − f

∇ · uk

σk + pσ

(
uk
)
− vσ

(
uk
)(

uk · ∇
)
θk −∇ ·Θk − k2

[
D
(
uk
)
:D
(
uk
)]

Θk − k1∇θk = 0

 , (6.13)

and the system of equations after substitution is as following

DR
(
uk
)
δu =



u · ∇uk + uk · ∇u−∇ · σ − f

∇ · u
σ + pσ

(
p
)
−Dvσ

(
p
)
−Dvσ

(
θ
)
− vσ

(
u
)
−Dvσ

(
u
)(

u · ∇
)
θk +

(
uk · ∇

)
θ −∇ ·Θ− k2

[
D
(
u
)
:D
(
uk
)]

· ··
− k2

[
D
(
uk
)
:D
(
u
)]

Θ− k1∇θ


. (6.14)

By following the procedure discussed in Algorithm 3.2, i.e. the nonlinear basic

iteration for least-squares scheme, one can obtain a solution update δu as

R̃
(
uk
)
δu = R

def

(
uk
)
, (6.15)

and for different choices of R̃ and R
def
, as discussed in section 4.5, one can obtain

different approximation schemes. We use Gauss-Newton and Fixed point scheme in

this thesis.

6.5 Continuous least-squares principle

In this section, the L2-norm least-squares energy functional based on the residual (6.12)

is defined. Based on the Newton approximation, we define the functional as

Esvpt

(
δu;0

)
=

1

2

∥∥R(uk
)
+
[
DR

(
uk
)]
δu
∥∥2
0
, (6.16)

and the unweighted functional for the SVPT problem has following form
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Esvpt := 1
2

[∥∥Rk
1 + uk · ∇u+ u · ∇uk −∇ · σ

∥∥2
0
+
∥∥Rk

2 +∇ · u
∥∥2
0

+
∥∥Rk

3 + σ + pσ

(
p
)
−Dvσ

(
p
)
−Dvσ

(
θ
)
− vσ

(
u
)
−Dvσ

(
u
)∥∥2

0

+
∥∥Rk

4 +
(
uk · ∇

)
θ +

(
u · ∇

)
θk −∇ ·Θ− k2

[
D
(
u
)
:D
(
uk
)]

−k2
[
D
(
uk
)
:D
(
u
)]∥∥2

0
+
∥∥Rk

5 +Θ− k1∇θ
∥∥2
0

]
∀
(
u, p,σ,θ,Θ

)
∈ XΩ

(6.17)

and the weighted form of the least-squares functional is

Ewην
svpt := 1

2

[∥∥Rk
1 + uk · ∇u+ u · ∇uk −∇ · σ

∥∥2
0
+ αm

∥∥Rk
2 +∇ · u

∥∥2
0

+w
n

ην

∥∥Rk
3 + σ + pσ

(
p
)
−Dvσ

(
p
)
−Dvσ

(
θ
)
− vσ

(
u
)
−Dvσ

(
u
)∥∥2

0

+
∥∥Rk

4 +
(
uk · ∇

)
θ +

(
u · ∇

)
θk −∇ ·Θ− k2

[
D
(
u
)
:D
(
uk
)]

−k2
[
D
(
uk
)
:D
(
u
)]∥∥2

0
+ w

n

ην

∥∥Rk
5 +Θ− k1∇θ

∥∥2
0

]
∀
(
u, p,σ,θ,Θ

)
∈ XΩ

(6.18)

where nonlinear weight

w
n

ην
=
(
1/ην

(
γ̇

II
, p,θ

))n
; n ≥ 2.0,

is a function of nonlinear viscosity and XΩ is the space of admissible functions

XΩ :=
{
H1

0,D

(
Ω
)
× L2

0

(
Ω
)
×H0,N

(
div,Ω

)
×H1

0,D

(
Ω
)
×H0,N

(
div,Ω

)}
. (6.19)

The minimization problem associated with the weighted functional (6.18) is defined,

such that  Find δu =
(
u, p,σ,θ,Θ

)
∈ XΩ such that,(

u, p,σ,θ,Θ
)
= argmin

(v,q,τ ,θ̃,Θ̃)∈XΩ

Ewην
svpt

(
v, q, τ , θ̃, Θ̃

)
, (6.20)

where v =
(
v, q, τ , θ̃, Θ̃

)
.Then, the variational problem at each nonlinear iteration step

based on the optimality condition of the problem(6.20) is to find
(
u, p,σ,θ,Θ

)
∈ XΩ

such that

K
((
u, p,σ,θ,Θ

)
;
(
v, q, τ , θ̃, Θ̃

))
= F

(
v, q, τ , θ̃, Θ̃

)
∀
(
v, q, τ , θ̃, Θ̃

)
∈ XΩ , (6.21)

where K is the bilinear form defined on XΩ ×XΩ → R as follows

K :=
〈
uk · ∇u+ u · ∇uk −∇ · σ, uk · ∇v+ v · ∇uk −∇ · τ

〉
(6.22)

+ αm

〈
∇ · u,∇ · v

〉
+ w

n

ην

〈
σ, τ + pτ

(
q
)
−Dvτ

(
q
)〉

+ w
n

ην

〈
σ,−Dvτ

(
θ̃
)
− vτ

(
v
)
−Dvτ

(
v
)〉

+ w
n

ην

〈
pσ

(
p
)
, τ
〉

+ w
n

ην

〈
pσ

(
p
)
,pτ

(
q
)
−Dvτ

(
q
)〉

+ w
n

ην

〈
pσ

(
p
)
,−Dvτ

(
θ̃
)〉
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+ w
n

ην

〈
pσ

(
p
)
,−vτ

(
v
)
−Dvτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
p
)
, τ
〉

+ w
n

ην

〈
−Dvσ

(
p
)
,pτ

(
q
)
−Dvτ

(
q
)
−Dvτ

(
θ̃
)〉

+ w
n

ην

〈
−Dvσ

(
p
)
,−vτ

(
v
)
−Dvτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
θ
)
, τ + pτ

(
q
)
−Dvτ

(
q
)
−Dvτ

(
θ̃
)
− vτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
θ
)
,−Dvτ

(
v
)〉

+ w
n

ην

〈
− vσ

(
u
)
, τ + pτ

(
q
)〉

+ w
n

ην

〈
− vσ

(
u
)
,−Dvτ

(
q
)
−Dvτ

(
θ̃
)
− vτ

(
v
)
−Dvτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
u
)
, τ + pτ

(
q
)
−Dvτ

(
q
)
−Dvτ

(
θ̃
)
− vτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
u
)
,−Dvτ

(
v
)〉

+
〈(
u · ∇

)
θk,
(
uk · ∇

)
θ̃
〉

+
〈(
u · ∇

)
θk,
(
v · ∇

)
θk
〉
+
〈(
uk · ∇

)
θ,
(
uk · ∇

)
θ̃
〉

+
〈(
uk · ∇

)
θ,
(
v · ∇

)
θk
〉
+
〈(
u · ∇

)
θk,−∇ · Θ̃

〉
+
〈(
u · ∇

)
θk,−k2

[
D
(
v
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
v
)]〉

+
〈(
uk · ∇

)
θ,−∇ · Θ̃

〉
+
〈(
uk · ∇

)
θ,−k2

[
D
(
v
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
v
)]〉

+
〈
−∇ ·Θ,

(
uk · ∇

)
θ̃
〉

+
〈
−∇ ·Θ,

(
v · ∇

)
θk
〉
+
〈
− k2

[
D
(
u
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
u
)]
,
(
uk · ∇

)
θ̃
〉

+
〈
− k2

[
D
(
u
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
u
)]
,
(
v · ∇

)
θk
〉
+
〈
−∇ ·Θ,−∇ · Θ̃

〉
+
〈
−∇ ·Θ,−k2

[
D
(
v
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
v
)]〉

+
〈
− k2

[
D
(
u
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
u
)]
,−∇ · Θ̃

〉
+
〈
− k2

[
D
(
u
)
:D
(
uk
)]
,−k2

[
D
(
v
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
v
)]〉

+
〈
− k2

[
D
(
uk
)
:D
(
u
)]
,−k2

[
D
(
v
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
v
)]〉

+ w
n

ην

〈
Θ, Θ̃

〉
+ w

n

ην

〈
Θ,−k1∇θ̃

〉
+ w

n

ην

〈
− k1∇θ, Θ̃

〉
+ w

n

ην

〈
− k1∇θ,−k1∇θ̃

〉
.

and the linear form F is defined on XΩ → R as

F : =
〈
Rk

1, v · ∇uk + uk · ∇v−∇ · τ
〉
+ αm

〈
Rk

2,∇ · v
〉

(6.23)

+w
n

ην

〈
Rk

3, τ + pτ

(
q
)
−Dvτ

(
q
)
−Dvτ

(
θ̃
)
− vτ

(
v
)
−Dvτ

(
v
)〉

+
〈
Rk

4,
(
uk · ∇

)
θ̃ +

(
v · ∇

)
θk −∇ · Θ̃− k2

[
D
(
v
)
:D
(
uk
)]

−k2
[
D
(
uk
)
:D
(
v
)]〉

+ w
n

ην

〈
Rk

5, Θ̃− k1∇θ̃
〉
.

To analyze the properties of the least-square problem the operator form is as fol-

lowing

K =
[
DR

(
uk
)]∗ [

DR
(
ukk
)]

(6.24)
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=


Kvu Kvp Kvσ Kvθ KvΘ

Kqu Kqp Kqσ Kqθ 0

Kτu Kτp Kτσ Kτθ 0

Kθ̄u Kθ̄p Kθ̄σ Kθ̄θ Kθ̄Θ

KΘ̄u 0 0 KΘ̄θ KΘ̄Θ

 ,

where

Kvu = w
n

ην

〈
− vσ

(
u
)
,−vτ

(
v
)〉

+
〈
uk · ∇u, uk · ∇v

〉
+ αm

〈
∇ · u,∇ · v

〉
+
〈
u · ∇uk, v · ∇uk + uk · ∇v

〉
+
〈
uk · ∇u, v · ∇uk

〉
+w

n

ην

〈
− vσ

(
u
)
,−Dvτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
u
)
,−vτ

(
v
)〉

+w
n

ην

〈
−Dvσ

(
u
)
,−Dvτ

(
v
)〉

+
〈(
u · ∇

)
θk,
(
v · ∇

)
θk
〉

+
〈(
u · ∇

)
θk,−k2

[
D
(
v
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
v
)]〉

+
〈
− k2

[
D
(
u
)
:D
(
uk
)]
,
(
v · ∇

)
θk
〉

+
〈
− k2

[
D
(
u
)
:D
(
uk
)]
,
(
v · ∇

)
θk
〉

+
〈
− k2

[
D
(
u
)
:D
(
uk
)]
,−k2

[
D
(
v
)
:D
(
uk
)]

− k2
[
D
(
uk
)
:D
(
v
)]〉

+
〈
− k2

[
D
(
uk
)
:D
(
u
)]
,−k2

[
D
(
v
)
:D
(
uk
)]〉

+
〈
− k2

[
D
(
uk
)
:D
(
u
)]
,−k2

[
D
(
uk
)
:D
(
v
)]〉

,

Kvp = w
n

ην

〈
pσ

(
p
)
,−vτ

(
v
)〉

+ w
n

ην

〈
pσ

(
p
)
,−Dvτ

(
v
)〉
,

+w
n

ην

〈
−Dvσ

(
p
)
,−vτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
p
)
,−Dvτ

(
v
)〉
,

Kvσ = w
n

ην

〈
σ,−vτ

(
v
)〉

+ w
n

ην

〈
σ,−Dvτ

(
v
)〉

+
〈
−∇ · σ, uk · ∇v

〉
+
〈
−∇ · σ, v · ∇uk

〉
,

Kvθ = w
n

ην

〈
−Dvσ

(
θ
)
,−vτ

(
v
)〉

+ w
n

ην

〈
−Dvσ

(
θ
)
,−Dvτ

(
v
)〉

+
〈(
uk · ∇

)
θ,
(
v · ∇

)
θk
〉

+
〈(
uk · ∇

)
θ,−k2

[
D
(
v
)
:D
(
uk
)]〉

+
〈(
uk · ∇

)
θ,−k2

[
D
(
uk
)
:D
(
v
)]〉

,

KvΘ =
〈
−∇ ·Θ,

(
v · ∇

)
θk
〉

+
〈
−∇ ·Θ,−k2

[
D
(
v
)
:D
(
uk
)]〉

+
〈
−∇ ·Θ,−k2

[
D
(
uk
)
:D
(
v
)]〉

,

Kqu = w
n

ην

〈
− vσ

(
u
)
,pτ

(
q
)〉

+ w
n

ην

〈
− vσ

(
u
)
,−Dvτ

(
q
)〉

+w
n

ην

〈
−Dvσ

(
u
)
,pτ

(
q
)〉

+ w
n

ην

〈
−Dvσ

(
u
)
,−Dvτ

(
q
)〉
,

Kqp = w
n

ην

〈
pσ

(
p
)
,pτ

(
q
)〉

+ w
n

ην

〈
pσ

(
p
)
,−Dvτ

(
q
)〉
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+w
n

ην

〈
−Dvσ

(
p
)
,pτ

(
q
)〉

+ w
n

ην

〈
−Dvσ

(
p
)
,−Dvτ

(
q
)〉
,

Kqσ = w
n

ην

〈
σ,pτ

(
q
)〉

+ w
n

ην

〈
σ,−Dvτ

(
q
)〉
,

Kqθ = w
n

ην

〈
−Dvσ

(
θ
)
,pτ

(
q
)〉

+ w
n

ην

〈
−Dvσ

(
θ
)
,−Dvτ

(
q
)〉
,

Kτu = w
n

ην

〈
− vσ

(
u
)
, τ
〉
+
〈
uk · ∇u,−∇ · τ

〉
+
〈
u · ∇uk,−∇ · τ

〉
+w

n

ην

〈
−Dvσ

(
u
)
, τ
〉
,

Kτp = w
n

ην

〈
pσ

(
p
)
, τ
〉
+ w

n

ην

〈
−Dvσ

(
p
)
, τ
〉
,

Kτσ = w
n

ην

〈
σ, τ

〉
+
〈
−∇ · σ,−∇ · τ

〉
,

Kτθ = w
n

ην

〈
−Dvσ

(
θ
)
, τ
〉
,

Kθ̂u = w
n

ην

〈
− vσ

(
u
)
,−Dvτ

(
θ̃
)〉

+ w
n

ην

〈
−Dvσ

(
u
)
,−Dvτ

(
θ̃
)〉

+
〈(
u · ∇

)
θk,
(
uk · ∇

)
θ̃
〉

+
〈
− k2

[
D
(
u
)
:D
(
uk
)]
,
(
uk · ∇

)
θ̃
〉

+
〈
− k2

[
D
(
uk
)
:D
(
u
)]
,
(
uk · ∇

)
θ̃
〉
,

Kθ̂p = w
n

ην

〈
pσ

(
p
)
,−Dvτ

(
θ̃
)〉

+ w
n

ην

〈
−Dvσ

(
p
)
,−Dvτ

(
θ̃
)〉
,

Kθ̂σ = w
n

ην

〈
σ,−Dvτ

(
θ̃
)〉
,

Kθ̂θ = w
n

ην

〈
−Dvσ

(
θ
)
,−Dvτ

(
θ̃
)〉

+
〈(
uk · ∇

)
θ,
(
uk · ∇

)
θ̃
〉

+w
n

ην

〈
− k1∇θ,−k1∇θ̃

〉
,

Kθ̂Θ =
〈
−∇ ·Θ,

(
uk · ∇

)
θ̃
〉
+ w

n

ην

〈
Θ,−k1∇θ̃

〉
,

KΘ̂u =
〈(
u · ∇

)
θk,−∇ · Θ̃

〉
+
〈
− k2

[
D
(
u
)
:D
(
uk
)]
,−∇ · Θ̃

〉
+
〈
− k2

[
D
(
uk
)
:D
(
u
)]
,−∇ · Θ̃

〉
,

KΘ̂θ =
〈(
uk · ∇

)
θ,−∇ · Θ̃

〉
+ w

n

ην

〈
− k1∇θ, Θ̃

〉
,

KΘ̂Θ =
〈
−∇ ·Θ,−∇ · Θ̃

〉
+ w

n

ην

〈
Θ, Θ̃

〉
,

Here, the terms shown in the boxes have contributions in the coefficient matrix K

due to the nonlinear terms. These terms will be add to coefficient matrixK after defect

calculation. The resulting system matrix (6.22) is symmetric and positive definite. It

can be observed from system matrix that it is not differentially diagonal dominant

which can effect the performance of linear solver. We are able to use the Krylov

method to efficiently solve the system of equations. As, the system matrix is SPD

matrix.
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6.6 Discrete least-squares principle

Now we approximate the problem (6.21) with the finite element method to finite di-

mension space X h
Ω
defined as

X h
Ω
:=
{
δuh ∈ H1,h

0,D

(
Ω
)
× L2,h

0

(
Ω
)
×Hh

0,N

(
div,Ω

)
×H1,h

0,D

(
Ω
)
×Hh

0,N

(
div,Ω

)}
,

(6.25)

where δuh =
(
uh, ph,σh,θh,Θh

)
and consider the approximation form of variational

problem as {
Find δuh ∈ X h

Ω
such that

Kh
(
δuh;vh

)
= Fh

(
vh
)
,

(6.26)

for all vh =
(
vh, qh, τ h, θ̃h, Θ̃h

)
∈ X h

Ω
where Kh and Fh are bilinear and linear forms

respectively.

6.7 Numerical discussions

In this section, we employ the Cross law model (3.44) with nonlinear viscosities de-

pendent on velocity, pressure and temperature. We simulate steady state flow passed

by a circular cylinder (3.4.2) with the nonlinear weighted LSFEM and use higher

order finite element Q2 for discretization of all the unknown variables. For the ap-

proximation of the discrete system, we employ a multigrid-preconditioned conjugate

gradient solver and also compare the performance of the nonlinear solvers which are

the Gauss-Newton method and the fixed-point linearization method respectively. We

further investigate the nonlinear weighted functions dependent on nonlinear viscosity

for different parametric values and show their importance to obtain optimal results.

Now our problem is composed of nine unknowns which are velocity u =(u, v),

stress σ =(σxx, σxy, σyy) pressure p, temperature θ and gradient of temperature Θ =

(Θx,Θy). We named this formulation as stress-velocity-pressure-temperature (SVPT)

first order formulation. The SVPT formulation has 1.6 million (at finest level) more

unknowns than SVP formulation, i.e. 50% more unknowns on each level repetitively,

as referred to in Table 6.1 and Table 5.1. If we do a comparison with the reference

results of Damanik [37], the SVPT formulation has 2.8 million unknowns more than

the unknowns computed by VTP formulation (see Table V) of [37], i.e. 140% more

unknowns.
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Level NDoF u NDoF p NDoF σ NDoF θ NDoF Θ Total NDoF

1 1144 572 1716 572 1144 5148
2 4368 2184 6552 2184 4368 19656
3 17056 8528 25584 8528 17056 76752
4 67392 33696 101088 33696 67392 303264
5 267904 133952 401856 133952 267904 1205568
6 1068288 534144 1602432 534144 1068288 4807296

Table 6.1: Total number of equations for the SVPT problem

6.7.1 Case-I: Temperature with viscous dissipation effects

For the SVPT formulation we consider two different configurations to study the tem-

perature effects on the fluid flow. In the first case we include an additional viscous

dissipation term in our computational formulation and calculate results for η0 = 10−3,

k1 = k2 = 10−2, a1 = 0, a3 = 1.

Viscosity depends on temperature

The results for temperature dependent nonlinear viscosity ην
(
θ
)
for given parameters

r = 0, αp = 0, η1 = 10−2, a2 = 1,

and the nonlinear weighted function

w2.0
ην

=
(
1/ην

(
θ
))2.0

,

are shown in Table 6.2.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 7.440319E + 01 1.319147E + 00 1.082454E + 00 9.511158E − 02
5 7.447729E + 01 1.321487E + 00 1.088388E + 00 1.430703E − 02
6 7.448320E + 01 1.321575E + 00 1.089755E + 00 3.731521E − 03

Fixed Point Method
4 7.442628E + 01 1.319479E + 00 1.082738E + 00 9.314405E − 02
5 7.448006E + 01 1.321521E + 00 1.088419E + 00 1.354745E − 02
6 7.448367E + 01 1.321577E + 00 1.089759E + 00 3.353438E − 03

Ref [37] : Drag CD = 7.447830E + 01, Lift CL = 1.32129E + 00

Table 6.2: Temperature dependent viscosity with weighted function w2.0
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Viscosity depends on shear rate and temperature

The outcomes of temperature and shear dependent nonlinear viscosity ην
(
γ̇

II
,θ
)
for

the given values

r = 0.1, αp = 0, η1 = 10−2, a2 = 1,

and the weighted function

w2.0
ην

=
(
1/ην

(
γ̇

II
,θ
))2.0

,

are given in Table 6.3.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 5.387592E + 01 1.057640E + 00 7.964457E − 01 1.020152E − 01
5 5.392096E + 01 1.059151E + 00 7.997985E − 01 1.906031E − 02
6 5.392301E + 01 1.059041E + 00 8.005498E − 01 6.101257E − 03

Fixed Point Method
4 5.388962E + 01 1.057827E + 00 7.966298E − 01 1.030678E − 01
5 5.392294E + 01 1.059162E + 00 7.998315E − 01 1.821827E − 02
6 5.392346E + 01 1.059038E + 00 8.005572E − 01 5.512035E − 03

Ref [37] : Drag CD = 5.391770E + 01, Lift CL = 1.05863E + 00

Table 6.3: Temperature and shear dependent viscosity with weighted function w2.0

Viscosity depends on shear rate, pressure and temperature

The Table 6.4 is generated for temperature, shear rate and pressure dependent non-

linear viscosity ην
(
γ̇

II
, p,θ

)
for provided parametric values

r = 0.1, αp = 10−3, η1 = 10−2, a2 = 1,

and the weighted function

w2.0
ην

=
(
1/ην

(
γ̇

II
, p,θ

))2.0
,
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Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 5.390952E + 01 1.058079E + 00 7.969481E − 01 1.022693E − 01
5 5.395465E + 01 1.059592E + 00 8.003066E − 01 1.908287E − 02
6 5.395670E + 01 1.059483E + 00 8.010592E − 01 6.101391E − 03

Fixed Point Method
4 5.392328E + 01 1.058267E + 00 7.971330E − 01 1.030582E − 01
5 5.395663E + 01 1.059604E + 00 8.003397E − 01 1.821093E − 02
6 5.395715E + 01 1.059480E + 00 8.010666E − 01 5.508308E − 03

Ref [37] : Drag CD = 5.395115E + 01, Lift CL = 1.05907E + 00

Table 6.4: Temperature, shear and pressure dependent viscosity with weighted function
w2.0

In the Table 6.5, the nonlinear and linear iterations are compared for both the

solvers. The nonlinear and linear solver relative errors are kept below 1E-6 and 1E-3,

respectively. The Gauss-Newton perform better in terms of nonlinear iterations. The

SVPT formulation does not produce differentially diagonal dominant system matrix.

So, the linear solver does not generate satisfactory outcomes for 4 pre/post smoothing

steps.

Level r = 0, αp = 0 r = 0.1, αp = 0 r = 0.1, αp = 10−3

Gauss−Newton Method
2 7/4 7/3 7/3
3 4/8 4/6 4/6
4 4/18 4/15 4/15
5 5/23 4/22 4/22

Fixed Point Method
2 8/3 9/1 9/2
3 7/5 7/1 8/3
4 6/11 7/1 7/7
5 5/23 6/2 6/15

Table 6.5: Comparison of nonlinear/linear iterations

In the following Table 6.6 results are produced for different values of pre/post

smoothing steps. It can be clearly seen that increase in smoothing steps can improve

the solvers.
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r = 0.1, αp = 10−3, η1 = 10−2, a2 = 1, w2.0
ην

Lev SmSt− 4 SmSt− 8 SmSt− 16 SmSt− 32

Gauss−Newton Method
2 7/3 7/1 7/1 7/1
3 4/6 4/3 4/2 4/1
4 4/15 4/8 4/4 4/2
5 4/22 3/15 3/9 3/5

Fixed Point Method
2 9/2 9/1 9/1 9/1
3 8/3 8/2 7/1 7/1
4 7/7 7/4 7/2 7/1
5 6/15 6/8 6/5 6/2

Table 6.6: Nonlinear/linear iterations for smoothing steps

Figure 6.1: Comparison of nonlinear solvers for global mass conservation at outflow
cross section of flow at x = 2.2 with corresponding levels for the nonlinear weight w2.0

ην

and bounded viscosities η
1
= 10−2(left) and η

1
= 10−1(right).

The Figure 6.2 shows the temperature generated by additional viscous dissipation

term in the SVPT system (6.4). The boundary setting for the temperature in this

case is set as Dirichlet data (prescribed as θ = 0) for inflow section. On the side walls

and outflow section, temperature is set to natural boundary condition (prescribed as

n.∇θ = 0).

6.7.2 Case-II: Pre-heated cylinder with viscous dissipation

In the second case the temperature effects on fluid flow due to a pre-heated cylinder

along with viscous dissipation are studied. The nonlinear viscosity in this case is
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0.09  0.2   0 0.27

Figure 6.2: Temperature field generated by viscous dissipation

also temperature, shear and pressure dependent. The constant parametric values are

η0 = 10−3, r = 0.1, αp = 10−3, a1 = 0, a2 = 1, a3 = 1.

The outcomes for

k1 = k2 = 10−2, η1 = 10−2,

and

w2.0
ην

=
(
1/ην

(
γ̇

II
, p,θ

))2.0
,

are given in the Table 6.7.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 4.532036E + 01 9.040044E − 01 6.981777E − 01 1.145043E − 01
5 4.537452E + 01 9.062238E − 01 7.007059E − 01 1.297251E − 02
6 4.538099E + 01 9.065056E − 01 7.012602E − 01 1.523507E − 03

Fixed Point Method
4 4.532380E + 01 9.037922E − 01 6.982330E − 01 1.068142E − 01
5 4.537488E + 01 9.062024E − 01 7.007234E − 01 1.216337E − 02
6 4.538103E + 01 9.065032E − 01 7.012658E − 01 1.434071E − 03

Ref [37] : Drag CD = 4.537988E + 01, Lift CL = 9.0649E − 01

Table 6.7: Temperature, shear and pressure dependent viscosity with weighted function
w2.0

The results in Table 6.8 are generated for

k1 = k2 = 10−2, η1 = 10−1,

and

w2.0
ην

=
(
1/ην

(
γ̇

II
, p,θ

))2.0
.
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Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 4.619743E + 02 4.847925E + 00 6.895207E + 00 5.810764E − 01
5 4.649844E + 02 4.921026E + 00 7.071875E + 00 4.694081E − 02
6 4.652347E + 02 4.928061E + 00 7.112045E + 00 3.761342E − 03

Fixed Point Method
4 4.623893E + 02 4.846103E + 00 6.903091E + 00 5.993212E − 01
5 4.650186E + 02 4.921043E + 00 7.072412E + 00 4.824062E − 02
6 4.652373E + 02 4.928093E + 00 7.112023E + 00 3.866474E − 03

Ref [37] : Drag CD = 4.652119E + 02, Lift CL = 4.92828E + 00

Table 6.8: Temperature, shear and pressure dependent viscosity with weighted function
w2.0

It is shown in the Tables 6.7 and 6.8 that the mass is conserved very well as

we increase the refinement levels. The Table 6.9 represent the iterations comparison

of Gauss-Newton and fixed point method for two cases of η1. For η1 = 10−2 and

k1 = k2 = 10−2 the Gauss-Newton performs better than the fixed point method in

terms of nonlinear iterations. The nonlinear and linear solver relative errors are kept

below 1E-6 and 1E-3, respectively.

Level η1 = 10−2 η1 = 10−1

Gauss−Newton Method
2 6/3 13/13
3 4/5 7/23
4 3/11 7/25
5 3/19 12/25

Fixed point Method
2 8/2 8/9
3 6/3 7/19
4 6/6 8/24
5 5/11 12/25

Table 6.9: Comparison of nonlinear/linear iterations

The outcomes for

k1 = k2 = 10−3, η1 = 10−2,

and nonlinear weighted function

w2.0
ην

=
(
1/ην

(
γ̇

II
, p,θ

))2.0
,



112 6. Non-isothermal non-Newtonian Fluid Flows

are shown in the Table 6.10.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 4.963237E + 01 9.611518E − 01 7.722800E − 01 1.211410E − 01
5 4.970489E + 01 9.636684E − 01 7.752118E − 01 1.389537E − 02
6 4.971342E + 01 9.639941E − 01 7.758310E − 01 1.643185E − 03

Fixed Point Method
4 4.964555E + 01 9.608884E − 01 7.725296E − 01 1.193354E − 01
5 4.970625E + 01 9.636444E − 01 7.752499E − 01 1.366896E − 02
6 4.971356E + 01 9.639918E − 01 7.758384E − 01 1.617713E − 03

Ref [37] : Drag CD = 4.971239E + 01, Lift CL = 9.6399E − 01

Table 6.10: Temperature, shear and pressure dependent viscosity with weighted func-
tion w2.0

Now, we consider a bit harder case as

η1 = 10−1, k1 = k2 = 10−3.

The optimal convergence is obtained for the value of nonlinear weighted function

w4.0
ην

=
(
1/ην

(
γ̇

II
, p,θ

))4.0
,

as shown in the Table 6.11.

Lev. Drag CD Lift CL ∆p m
GMC

x=2.2

Gauss−Newton Method
4 4.688078E + 02 4.430503E + 00 7.099451E + 00 6.881007E + 00
5 5.072187E + 02 5.253643E + 00 7.800688E + 00 9.329903E − 01
6 5.132120E + 02 5.381100E + 00 7.925989E + 00 1.154749E − 01

Fixed Point Method
4 4.780946E + 02 4.404470E + 00 7.289815E + 00 7.657795E + 00
5 5.094555E + 02 5.268389E + 00 7.846948E + 00 9.884661E − 01
6 5.135090E + 02 5.383273E + 00 7.932421E + 00 1.205632E − 01

Ref [37] : Drag CD = 5.140215E + 02, Lift CL = 5.39856E + 00

Table 6.11: Temperature, shear and pressure dependent viscosity with weighted func-
tion w4.0

It is observed from Table 6.11 that our solvers are struggling as mass conservation

is not very well preserved. The Gauss-Newton method performs better as fixed point
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in comparison to nonlinear iterations for η1 = 10−2 and k1 = k2 = 10−3. For more

challenging case at η1 = 10−1 both solvers worked in a similar fashion. The nonlinear

and linear solver relative errors are kept below 1E-6 and 1E-3, respectively.

Level η1 = 10−2, w2.0
ην

η1 = 10−1, w4.0
ην

Gauss−Newton Method
2 7/3 15/11
3 4/5 19/16
4 3/11 10/22
5 3/19 9/23

Fixed Point Method
2 9/2 10/7
3 7/3 8/10
4 6/7 7/20
5 5/12 10/23

Table 6.12: Comparison of solvers based on nonlinear/linear iterations

In the following Table 6.13, the results are produced for different values of pre/post

smoothing steps. It can be clearly seen that increase in smoothing steps can improve

the solvers.

r = 0.1, αp = 10−3, η1 = 10−1, a2 = 1, w4.0
ην

Lev SmSt− 4 SmSt− 8 SmSt− 16 SmSt− 32

Gauss−Newton Method
2 15/11 15/6 14/4 15/3
3 19/16 19/10 19/7 19/5
4 10/22 10/18 10/11 10/6
5 9/23 5/21 5/19 5/12

Fixed Point Method
2 10/7 10/4 10/2 11/2
3 8/10 8/6 9/3 9/3
4 7/20 7/10 8/6 8/3
5 10/23 7/20 7/12 7/7

Table 6.13: Nonlinear/linear iterations for varios smoothing steps

In this particular case heat is not only generated by the viscous dissipation but is

also coming from the heated cylinder. The inflow boundary setting for the temperature

is set to be zero, but prescribing no-slip condition at walls and inhomogeneous Dirichlet

data θ = 1 at the cylinder.
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Figure 6.3: Comparison of nonlinear solvers for global mass conservation calculated
at outflow cross section of flow at x = 2.2 with corresponding levels with bounded
viscosities and nonlinear weights η

1
= 10−2, w2.0

ην
(left) and η

1
= 10−1, w4.0

ην
(right).

0.3   0.7   0 1

Figure 6.4: Temperature generated by the heated cylinder and viscous dissipation
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6.8 Summary

In this chapter, we have presented an analysis on the non-Newtonian fluid flows with

different levels of complexities. These complexities are determined by the choices

of nonlinear viscosity functions. Again the problem under consideration is fluid flow

passed circular cylinder (3.4.2) satisfying Cross law model (3.44). In addition, the fluid

flow holds some thermal properties as given in problem model (6.1). Then, the second

order problem is transformed into first order problem (6.4) by suitable substitutions

and named as SVPT formulation. We are the first ones to introduce such a formulation

for least-squares finite element method. Furthermore, the nonlinear weighted functions

are employed to get more stable solver. The monolithic Newton-multigrid like solver

is proposed to efficiently solve the huge problems. The MPCG solver is employed as

linear solver because of SPD system. The SSOR preconditioned conjugate gradient

(SSOR-PCG) method is used as smoother for multigrid method to get parametric

free smoothing. But it requires to improve the performance of linear solver as SVP

formulation leads to coefficient matrix which is not differentially diagonal dominant.

The Newton linearization is performed to the nonlinear system to apply the least-

squares principle. To building a robust and accurate linear solver is a challenging

task in such scenarios. The Gauss-Newton and fixed point methods are the considered

nonlinear solvers.

We have investigated two types of flow cases for numerical tests. In first case, the

flow parameters are computed and the temperature effects are obtained from viscous

dissipation or friction in the fluid flow. In second case, we have performed the nu-

merical tests for pre-heated cylinder with additional temperature produced by viscous

dissipation in the flow. The nonlinear viscosity functions are based on shear rate,

pressure and temperature which are used with various combinations. The nonlinear

weighted functions wn
ην
; n = 2.0, 4.0, with different nonlinear viscosity functions are

employed to develop the stable solver for complex problems. Without the weighted

function, we are unable to get accurate and robust results. The solvers have shown

grid independent convergence behaviors except few cases. The Gauss-Newton method

performs better than the fixed point method.

The global mass conservation is computed on outflow cross-section of the domain.

It is observed from Table 6.11 that the increase in the difficulty level of a problem

leads to lack in global mass conservation. It also effects the performance of the solvers,

thus the nonlinear weighted function w4.0
ην

is used in such situation. Overall, the global

mass conservation is achieved for all other cases.



Chapter 7

Summary and Outlook

In this chapter, we sum up the tasks briefly and present the final thoughts on the

conducted research work. The possible scope of LSFEM is projected for future work

as well.

Conclusion

In this thesis, an alternative monolithic method based on least-squares finite element

formulations is proposed for Newtonian and non-Newtonian fluids. The least-squares

finite element method is based on the minimization of energy functional. Since, it is

considered as one of the true variational methods among weighted residual schemes.

Therefore, it has the capability to generate the ‘best’ approximation to the exact so-

lution of the modeled systems. The Least-Squares method provides a more general,

adaptable and robust process for system formulation than weak form-based Galerkin

finite element methods. Moreover, it has several theoretical and computational advan-

tages. The least-squares framework has the capability to avoid the ’inf-sup’ stability

condition of LBB and make it possible to employ equal order interpolation for all the

unknowns. The least-squares principle on a discrete model leads to a symmetric and

positive definite coefficient matrix. Hence, it opens the door for the implementation

of robust and fast iterative schemes to approximate the system of equations.

The above features of the least-squares method captured our attention for devel-

oping a weighted least-squares finite element method. The main objective of our work

is to establish an effective and powerful monolithic technique equipped with multigrid

features for solving the discrete system of equations. Another aim of this study is to

emphasis the importance of weighted functions for the stability of least-squares energy

functional. Therefore, we have employed both linear and nonlinear weighted functions

for numerical investigations of Newtonian and non-Newtonian fluids. We have applied

our methodology on wide range of problem complexity from easy to hard or complex

fluid flow problems. The constant viscosity is used for Newtonian fluids and nonlinear

116
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viscosity models, namely power law viscosity model and Cross law viscosity model for

unbounded and bounded viscosities cases, are used for non-Newtonian fluid flow prob-

lems. We consider only an inflow-outflow flow around cylinder problem for numerical

computation. The reason to stick to the inflow-outflow problem is to emphasis on the

lack of global mass conservation issues. The calculations associated with least-squares

based method encounters lack of global mass conservation in inflow-outflow problems.

Therefore, we focused on developing a weighted least-squares finite element method

that can provide robust and accurate approximations without affecting the global mass

conservation of the system.

We have presented the introduction, motivation and brief overview of the work

in the first chapter. The theoretical aspects of the least-squares method are covered

in the second chapter. The least-squares principles for continuous and discrete prob-

lems are given with practicality issues are explained in detail. The second-order elliptic

PDEs problem in least-squares sense is quite difficult to handle, therefore we use differ-

ent transformation procedures to convert the problem to the first-order formulations.

Some first-order formulations are discussed and we also introduced the SVP, SVPT

formulations which are used in this thesis for research purposes. The nonlinear prob-

lem in least-squares sense is elaborated as well. The linearization techniques for the

nonlinear problem are studied in detail. We have used the linearization before the

application of the least-squares principle to formulate our systems. In the following

chapter, we presented the method used for numerical simulations which included both

linear and nonlinear solvers. The multigrid preconditioned conjugate gradient method

is employed to compute the discrete linear problems. The coefficient matrix generated

by the application of least-squares principle based on SVP formulation is not differ-

entially diagonal dominant. This lack of differentially diagonal dominance property

directly effects the performance of linear solver. Therefore, the linear solver is an open

problem and still requires to improve. The Gauss-Newton and fixed point methods

have been used as nonlinear solvers. The linear and quadric finite elements are em-

ployed. The flow around cylinder domain is examined and two mesh configurations

(3.4.2) and (3.4.3) are used for the numerical investigations.

The second part of the thesis is concerned with the implementation, numerical

testing and discussions of different fluid flow models. The numerical discussions are

followed on by a similar pattern in chapter four, five and six. We have calculated

the flow parameters such as coefficients drag/lift, pressure difference of across the

cross-sections of the circular domain and global mass conservation on cross-section

of FAC domain at x = 2.2 as well. Then, the solvers are compared based on their

performance. The nonlinear iterations performed by nonlinear solvers and averaged

linear iterations taken by linear solver are compared as well. The weighted functions

depending on the viscosity of the fluids are employed in the energy functionals for
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a more stable least-squares method. Since, we have used SVP transformation for

the model’s formulation which consists of stress, velocity and pressure as unknown

variables which is rarely used for the Stokes problem. So, we have discussed the Stokes

problem for numerical validations of the solver. The Navier-Stokes problem has been

modeled by SVP formulation and the variational problem has been defined by the

application of the straight forward least-squares principle in L2-norm. Further, the

least-squares energy functional has been balanced by linear weighted function. The

flow parameters are computed for two mesh configurations using lower and higher-order

finite element discretizations. It has been observed the solutions for higher-order finite

element discretization are more accurate and global mass is well preserved. Moreover,

the Lw-LSFEM has shown robust and grid-independent convergence.

The major contribution of this thesis is the results obtained for non-Newtonian

fluids with additional viscous dissipation and non-isothermal effects. In chapter five,

we have developed the least-squares based method i.e. Nw-LSFEM for the solutions

of power law and Cross law fluid problems. The power law fluids are relied on the

shear rate of fluid viscosity which is unbounded. The shear thinning and shear thick-

ening effects of fluids have been computed for different values of power law index. To

study the bounded viscosities, we employed Cross law viscosity model and produced

results for different ranges of viscosity. The analysis has been made on the viscosities

depending on shear rate, pressure and correspondingly weighted functions. We have

concluded that the weighted functions are important for both the optimal convergence

and accuracy of the Nw-LSFEM. The solver has shown grid-independent behavior for

a huge range of conducted tests. Finally, a nonlinear weighted least-squares finite ele-

ment method has been developed for non-Newtonian fluids with non-isothermal effects.

We have introduced a new first-order formulation named SVPT formulation for the

coupled system of equations. The temperature effects are computed for two test cases

of fluid flow. In the first case, the heat is generated by additional viscous dissipation

of flow while in the second case, the heat is obtained from a pre-heated cylinder along

with friction term. The viscosity taken for the study is stress, velocity, pressure and

temperature dependent. The nonlinear weighted functions with corresponding viscos-

ity functions have been used for the stable solver. We have observed that the choice

of weighted functions varied with the complexity of the problem. The proposed mono-

lithic solver has shown great accuracy, robustness, and efficiency for the complex fluids

flow problem. We have obtained accurate results for flow around cylinder problem and

solver has generated the grid-independent results.

Future work

A numerical study of Newtonian and non-Newtonian fluids have been presented for

flow around cylinder problem. The performance of the linear and nonlinear solvers have
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been tested for variety of complex problems. The recommendations for the future work

is outlined in this section.

3D Extension: The numerical solutions of 2D NS problems are discussed in this

research work. The 3D extension for the current least square finite element framework

is the next milestone to be achieved. This will make the LSFEM more practical to

handle real life situations.

Viscoelastic Problem: Another aim is to develop the LSFEM for the equations

governing generalized Newtonian and viscoelastic flows such as those occurring in

polymer processes. The Giesekus viscoelastic constitutive equation will be considered

as

(u · ∇) τ −∇uτ − τ∇uT +
1

Λ

(
τ − I+α (τ − I)2

)
= 0,

where the parameter α is Giesekus mobility factor, τ is additional stress known as

conformation tensor, and Λ is the relaxation time of the polymer. The parameter

α = 0 yields to the Oldroyd-B model, i.e.

(u · ∇) τ −∇uτ − τ∇uT +
1

Λ
(τ − I) = 0.

The total stress is consist of viscus and elastic part as well. This will increase the

numerical complexity of problem and will be very challenging to compute.

Time Dependent Study: The straightforward application of least-squares prin-

ciple on the time dependent flow problems for Newtonian fluids can easily be adapted,

see e.g. [55], [63]. In this work, the non-Newtonian fluids, without time dependency

constant, have been studied. The time dependent non-Newtonian fluids lead to highly

complex problems as the relation between shear stress and shear rate depend on the

duration of shearing and their kinematic history. The solution to the time dependent

non-Newtonian fluid problems will be the challenging task of proposed future work.

First Order Formulations and Geometries: The stress based formulation has

been used throughout this work for inflow/outflow problem. The coefficient matrix

generated by the application of least-squares principle on system based on SVP formu-

lation is not differentially diagonal dominant. This effects the linear solver and gives

slow convergence toward the solution. Many other first order formulation haven used

by researchers in literature. Therefore, we will investigate the LSFEM for different

formulations and will consider different geometries for our future research work.



Appendix A

Block Matrices

Calculation of blocks in coefficient matrix

The NS problem 4.4 for SVP formulation is studied in chapter 4. The application of
least-squares principle leads to a SPD matrix which is called a coefficient matrix K.
The coefficient matrix for the NS problem is given by the equation (4.21) and presented
in block form as under

K
(
δu,v

)
=

 Kvu Kvp Kvσ

Kqu Kqp Kqσ

Kτu Kτp Kτσ

 , (A.1)

where

Kvu =
〈
u · ∇uk, v · ∇uk

〉
+
〈
u · ∇uk, uk · ∇v

〉
+
〈
uk · ∇u, v · ∇uk

〉
(A.2)

+
〈
uk · ∇u, uk · ∇v

〉
+
〈
∇ · u,∇ · v

〉
+
〈
− vσ

(
u
)
,−vτ

(
v
)〉
.

We consider only the first diagonal block matrix Kvu of the coefficient matrix K and
it consists of velocity terms only. In the following sections, we are going to discuss the
construction of matrix in detail on minor levels.

The trail and test functions of velocity

The trail and test functions for the velocity field are defined as

δu =

Ndof∑
j=1

[[
φj

0

]
uj +

[
0
φj

]
vj

]
, (A.3)

v =

[
φi

0

]
,

[
0
φi

]
,

The construction of sub-block matrices

The matrix Kvu can be shown as the sum of six block matrices because of the six
terms in equation (A.2) . Each term contributes further to sub-matrices.
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Kvu = K1
vu +K2

vu +K3
vu +K4

vu +K5
vu +K6

vu =
6∑

i=1

Ki
vu (A.4)

The integrals are calculated term by term.∫
Ω

((
u · ∇uk

)
·
(
v · ∇uk

))
dΩ =

[
K1

uu K1
uv

K1
vu K1

vv

]
(A.5)

where

K1
uu =

[(∂uk
∂x

)2
+
(∂vk
∂x

)2]
φiφj ,

K1
uv =

[(∂uk
∂x

∂uk

∂y

)
+
(∂vk
∂x

∂vk

∂y

)]
φiφj ,

K1
vu =

[(∂uk
∂x

∂uk

∂y

)
+
(∂vk
∂x

∂vk

∂y

)]
φiφj ,

K1
vv =

[(∂uk
∂y

)2
+
(∂vk
∂y

)2]
φiφj ,

∫
Ω

((
u · ∇uk

)
·
(
uk · ∇v

))
dΩ =

[
K2

uu K2
uv

K2
vu K2

vv

]
(A.6)

where

K2
uu =

[(
uk
∂uk

∂x

)(∂φi

∂x
φj

)
+
(
vk
∂uk

∂x

)(∂φi

∂y
φj

)]
,

K2
uv =

[(
uk
∂uk

∂y

)(∂φi

∂x
φj

)
+
(
vk
∂uk

∂y

)(∂φi

∂y
φj

)]
,

K2
vu =

[(
uk
∂vk

∂x

)(∂φi

∂x
φj

)
+
(
vk
∂vk

∂x

)(∂φi

∂y
φj

)]
,

K2
vv =

[(
uk
∂vk

∂y

)(∂φi

∂x
φj

)
+
(
vk
∂vk

∂y

)(∂φi

∂y
φj

)]
,

∫
Ω

((
uk · ∇u

)
·
(
v · ∇uk

))
dΩ =

[
K3

uu K3
uv

K3
vu K3

vv

]
(A.7)

where

K3
uu =

[(
uk
∂uk

∂x

)(
φi

∂φj

∂x

)
+
(
vk
∂uk

∂x

)(
φi

∂φj

∂y

)]
,

K3
uv =

[(
uk
∂vk

∂x

)(
φi

∂φj

∂x

)
+
(
vk
∂vk

∂x

)(
φi

∂φj

∂y

)]
,
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K3
vu =

[(
uk
∂uk

∂y

)(
φi

∂φj

∂x

)
+
(
vk
∂uk

∂y

)(
φi

∂φj

∂y

)]
,

K3
vv =

[(
uk
∂vk

∂y

)(
φi

∂φj

∂x

)
+
(
vk
∂vk

∂y

)(
φi

∂φj

∂y

)]
,

∫
Ω

((
uk · ∇u

)
·
(
uk · ∇v

))
dΩ =

[
K4

uu K4
uv

K4
vu K4

vv

]
(A.8)

where

K4
uu =

[(
uk
)2(∂φi

∂x

∂φj

∂x

)
+ ukvk

{(∂φi

∂y

∂φj

∂x

)
+
(∂φi

∂x

∂φj

∂y

)}
+
(
vk
)2(∂φi

∂y

∂φj

∂y

)]
,

K4
uv = 0,

K4
vu = 0,

K4
vv =

[(
uk
)2(∂φi

∂x

∂φj

∂x

)
+ ukvk

{(∂φi

∂y

∂φj

∂x

)
+
(∂φi

∂x

∂φj

∂y

)}
+
(
vk
)2(∂φi

∂y

∂φj

∂y

)]
,

∫
Ω

(
∇ · u

)
·
(
∇ · v

)
dΩ =

[
K5

uu K5
uv

K5
vu K5

vv

]
(A.9)

where

K5
uu =

(∂φi

∂x

∂φj

∂x

)
,

K5
uv =

(∂φi

∂x

∂φj

∂y

)
,

K5
vu =

(∂φi

∂y

∂φj

∂x

)
,

K5
vv =

(∂φi

∂y

∂φj

∂y

)
,

∫
Ω

(
− 2ηνD

(
u
))

·
(
− 2ηνD

(
v
))
dΩ =

[
K6

uu K6
uv

K6
vu K6

vv

]
(A.10)

where

K6
uu =

(
− 2ην

)2{(∂φi

∂x

∂φj

∂x

)
+

1

2

(∂φi

∂y

∂φj

∂y

)}
,

K6
uv =

(
− 2ην

)2{1

2

(∂φi

∂y

∂φj

∂x

)}
,
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K6
vu =

(
− 2ην

)2{1

2

(∂φi

∂x

∂φj

∂y

)}
,

K6
vv =

(
− 2ην

)2{1

2

(∂φi

∂x

∂φj

∂x

)
+
(∂φi

∂y

∂φj

∂y

)}
,

The matrix Kvu in equation (A.4) can be written as

Kvu =

[
Kuu Kuv

Kvu Kvv

]
=

6∑
i=1

[
Ki

uu Ki
uv

Ki
vu Ki

vv

]
(A.11)

where

Kuu = K1
uu +K2

uu +K3
uu +K4

uu +K5
uu +K6

uu

=

[(∂uk
∂x

)2
+
(∂vk
∂x

)2]
φiφj +

[(
uk
∂uk

∂y

)(∂φi

∂x
φj

)
+
(
vk
∂uk

∂y

)(∂φi

∂y
φj

)]
+

[(
uk
∂uk

∂x

)(
φi

∂φj

∂x

)
+
(
vk
∂uk

∂x

)(
φi

∂φj

∂y

)]
+

[(
uk
)2(∂φi

∂x

∂φj

∂x

)
+ukvk

{(∂φi

∂y

∂φj

∂x

)
+
(∂φi

∂x

∂φj

∂y

)}
+
(
vk
)2(∂φi

∂y

∂φj

∂y

)]
+
(∂φi

∂x

∂φj

∂x

)
+
(
− 2ην

)2{(∂φi

∂x

∂φj

∂x

)
+

1

2

(∂φi

∂y

∂φj

∂y

)}

Kuv = K1
uv +K2

uv +K3
uv +K4

uv +K5
uv +K6

uv

=

[(∂uk
∂x

∂uk

∂y

)
+
(∂vk
∂x

∂vk

∂y

)]
φiφj +

[(
uk
∂uk

∂y

)(∂φi

∂x
φj

)
+
(
vk
∂uk

∂y

)(∂φi

∂y
φj

)]
+

[(
uk
∂vk

∂x

)(
φi

∂φj

∂x

)
+
(
vk
∂vk

∂x

)(
φi

∂φj

∂y

)]
+ 0+

(∂φi

∂x

∂φj

∂y

)
+
(
− 2ην

)2{1

2

(∂φi

∂y

∂φj

∂x

)}

Kvu = K1
vu +K2

vu +K3
vu +K4

vu +K5
vu +K6

vu

=

[(∂uk
∂x

∂uk

∂y

)
+
(∂vk
∂x

∂vk

∂y

)]
φiφj +

[(
uk
∂vk

∂x

)(∂φi

∂x
φj

)
+
(
vk
∂vk

∂x

)(∂φi

∂y
φj

)]
+

[(
uk
∂uk

∂y

)(
φi

∂φj

∂x

)
+
(
vk
∂uk

∂y

)(
φi

∂φj

∂y

)]
+ 0+

(∂φi

∂y

∂φj

∂x

)
+
(
− 2ην

)2{1

2

(∂φi

∂x

∂φj

∂y

)}

Kvv = K1
vv +K2

vv +K3
vv +K4

vv +K5
vv +K6

vv

=

[(∂uk
∂y

)2
+
(∂vk
∂y

)2]
φiφj +

[(
uk
∂vk

∂y

)(∂φi

∂x
φj

)
+
(
vk
∂vk

∂y

)(∂φi

∂y
φj
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+

[(
uk
∂vk

∂y

)(
φi

∂φj

∂x

)
+
(
vk
∂vk
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)(
φi

∂φj

∂y

)]
+

[(
uk
)2(∂φi

∂x

∂φj
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)
+ukvk

{(∂φi

∂y

∂φj

∂x

)
+
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∂x

∂φj

∂y

)}
+
(
vk
)2(∂φi

∂y

∂φj

∂y
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+
(∂φi

∂y

∂φj

∂y

)
+
(
− 2ην

)2{1

2

(∂φi

∂x

∂φj

∂x

)
+
(∂φi

∂y

∂φj
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