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Extraction on a Robotic Platform -
Autonomous Solvent Selection under
Economic Evaluation Criteria

Steps and necessary decisions for a liquid-liquid extraction were pointed out for
its automatic design on a robotic platform. A tool for solvent selection based on
Hansen parameters was developed to simplify solvent selection. An approach was
developed for automatic, visual phase boundary detection. Key performance indi-
cators are used to ensure economically motivated decisions. The autonomous
design of an extraction process is demonstrated for the separation of progesterone
from a fermentation broth. The method leads to the selection of methanol and
acetonitrile, with separation cost indicators of 146 and 183€gpr0gf1. This work
constitutes the prospects of using autonomous robotic systems to design entire
production processes.
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1 Introduction

Performance and efficiency of biochemical processes depend
largely on the decisions taken in early process development
stages. However, in the early design stages, only limited data is
available. For fast and reliable process design, automation of
process steps and overall optimization is mandatory [1]. Indus-
trial automation increases the overall production efficiency.
Not only the automation of already established production
processes or process steps is important, but also the smart
automatic design and development of completely new process-
es. Moreover, fermentation broths are often complex, with var-
ious phases containing unknown, newly developed products
[2,3]. Heuristics are limited in their application and thermo-
dynamic model parameters are not available during early pro-
cess design stages [4,5]. Therefore, in biochemical process
design, experiments are indispensable. Furthermore, human
and material resources are limited and the time to market is
crucial. Consequently, an automated process design approach
including experiments and decision making can lead to an
overall improved production process [1, 6].

During the last decades, automation of the upstream section
has been well established [7-11]. The improvements in the
upstream section shifted the bottleneck towards downstream
processing concerning the tremendous influence on the overall
economics [3, 12]. Automation during downstream processing
is currently applied to high-throughput screening (HTS) sys-
tems [3, 6, 12-14], to single-unit operations [13,15], and to
established platform processes [16,17]. Robotic systems
designed for specific experiments, such as liquid-liquid extrac-
tions (LLE) have been overviewed recently [18]. In robotic
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LLE, the pre-set workflow can be executed reproducibly. For
example, the Mettler-Toledo automated LLE workstation
(ALLEX) dispenses and aspirates solvents and detects phase
boundaries by sensors [19]. However, such robotic systems are
used only for experimental purposes. Versatility is missing for
executing different processes on the same platform. The possi-
bility to respond in a self-determined way by the corresponding
software to changes in the purification task is limited.

The question arises which steps and decisions are necessary
to generate an intelligent platform for various purification
purposes. Therefore, this work addresses the development of a
flexible and versatile robotic platform. The concept is intro-
duced and developed based on the autonomous design of an
automated LLE. Thereby, the focus lies on the autonomous
suggestion and selection of suitable solvents. For this purpose,
a systematic solvent selection tool combined with the auto-
matic detection of phase boundaries between two liquids or
a gas and a liquid is presented. The final selection of the
best-performing solvent is based on the overall extraction
performance considering economic issues. All decisions leading
to the selection are made autonomously by the software,
well-founded by key performance indicators (KPI). Here, no
platform dedicated to LLE is needed. The screening experi-
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ments are executed automatically on a custom-built robotic
platform. The platform utilized is introduced in the following
section.

2 Materials and Methods
2.1 Robotic Platform

The custom-built robotic platform in Fig. 1 has been presented
in detail by Schuldt and Schembecker [15] and Thygs et al.
[20]. The control of the robotic platform is ensured using the
Zinsser WinLissy software (Zinsser Analytic GmbH).

Letos TAL d-

Figure 1. Setup of the custom-built robotic platform (Lipos
GXXL; Zinsser Analytic). Modules necessary for an LLE: (1) analyt-
ical scale, (2) camera, (3) centrifuge, (4) capping/decapping sta-
tion, (5) shaking plate, and (6) moveable robotic arm equipped
with two liquid-dosing pipettes.

The modules are: an analytical scale, a camera, a centrifuge, a
capping/decapping station for 1.5- and 8-mL vials, and a tem-
pered shaking plate. A moveable robotic arm ensures sample
transport into the 8- and 1.5-mL vials. Additionally, it is equipped
with two liquid-dosing and two powder-dosing pipettes.

During the design of an LLE, many different solvents must
be investigated regarding miscibility gaps. Generally, all liquid-
handling pipettes on the robotic platform are equipped with
capacitive sensors for liquid level detection. However, for many
of the solvents utilized (Sect.3), the differences in capacitance
between two phases are too small to be detected by the sensors.
Thus, the camera is utilized for visual liquid phase boundary
detection. Since phase boundaries can only be detected later-
ally, an additional experimental setup was developed (Fig.2a).
It consists of a fixed platform for positioning vials, and a mir-

Figure 2. (a) Dimensions of the setup developed for automated
liquid phase boundary detection. (b) Setup on the robotic plat-
form with an additional LED panel for constant lighting and
camera position.

ror is mounted at a slight angle, resulting in a lateral perspec-
tive in the pictures taken from above (Fig.2b). The images
recorded in grayscale are evaluated by MATLAB® R2018b. The
methodology is explained in detail in the Supporting Informa-
tion (SI). Because of the curvature of the liquid surface and the
perspective distortion by the mirror, the phase volumes can
only be approximated. Nevertheless, they can be applied for
adjusting the liquid height for automatic phase sampling after
extraction on the robotic platform and for solvent exclusion in
the absence of a miscibility gap.

2.2 Model System

For method development and validation, a mixture of the fol-
lowing components mimicked a fermentation broth without
biomass. The broth consisted of an aqueous phase with demin-
eralized water prepared with a Milli-Q Synthesis system using
a Millipak®-Express filter (0.22 um; Millipore) and a soybean
oil phase (Carl Roth). Progesterone (=99 % purity; Sigma
Aldrich) was the target component with a concentration of
1.5gLpg . B-Sitosterol (> 70 % purity; Sigma Aldrich) was one
impurity with a concentration of 0.5 g L . Other components
were Tween®-80 (Merck) at 1 gLps™', corn steep liquor (Sigma
Aldrich) at 5 gLFB_l, sodium nitrate (VWR) at 1.5 gLFB'l, and
diammonium hydrogen phosphate (VWR) at 1 gLFB’l. The
composition followed the fermentation medium described in
the handbook edited by Barredo and Herraiz [21]. The mass
fraction of progesterone in the oily phase was 16 mgg™". Conse-
quently, the aqueous phase was separated and discarded due to
the low content of the target component. The remaining oily
phase was utilized for further experiments.

2.3 Analytics

The samples generated were analyzed by a high-pressure liquid
chromatography (HPLC) system (Knauer) equipped with a di-
ode array detector, an EC 250/4 Nucleodur 100-3 C8 column
(Macherey-Nagel), and a Universal C18 4/3 guard column
(Macherey-Nagel). The oven temperature was set to 30 °C. All
samples were filtered by a syringe top filter (0.2 um; Wicom).
Progesterone was detected at a wavelength of 240nm after
4.5 min. The main impurities were detected at a wavelength of
208 nm. The mobile phase consisted of acetonitrile (VWR) and
demineralized water. The gradient applied can be seen in the SI.

2.4 Key Performance Indicators

Since decisions in early design stages affect the efficiency and
performance of the entire production process, the costs of single
process steps and of the complete process must be considered.
Winkelnkemper and Schembecker [22] developed a quantitative
relation between purification and cost-efficiency, based on the
purification performance index (PPL)Y (Eq. (1)) [22,23].

1)  List of symbols at the end of the paper.
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The PPI; describes the purity improvement of a process step
or step combinations from the input purity x;, to the achieved
purity xou in the framework from the initial purity x, to the
target purity x¢ [22]. The combination of the PPI; with the
experimental yield Y and the specific costs for the upstream
Kconv. and downstream k. results in the separation cost indi-
cator (SCI,) (Eq. (2)) [22-24].

1
- PPI
PPI, 1-y; 1
SCIi = I ! Kconv. + ’Cpur.,i —_— (2)

The SCI; approximates the cost efficiency of single process
steps or step combinations without the need for a finalized pro-
cess concept. Under the assumption that each purification step
performs equally, the single-step performance is extrapolated
towards complete purification. Purification steps with low SCI;
values tend to be more cost-efficient than those with a higher
SCI; [22,23]. The SCI; is utilized for fast and automated deci-
sions in early process stages with the aid of the robotic plat-
form. Relevant parameters for the SCI; can be found in the SI.

3  Method Development for Autonomous
Solvent Selection

The success of an LLE method depends mainly on the solvent
selection in the beginning. Besides costs, toxicity, viscosity, and
safety, two main criteria are the selectivity towards the target
compound and the presence of a miscibility gap between the
feed solvent and the extraction solvent [25]. To simplify solvent
selection and reduce the experimental effort, different solvent
selection tools have been developed in the past years [25-27].
Two similar tools were developed by Gmehling and Schede-
mann [25] and Gani [27]. Both tools utilize thermodynamic
models to calculate mixture prop-
erties and are connected to several

water partition coefficient, the Hildebrand parameters, and the
Hansen solubility parameters (HSP) [26]. This tool was devel-
oped for the design of a solid-liquid extraction process and
therefore does not consider the interactions between a feed sol-
vent and an extraction solvent. Thus, the tool is not applicable
to an automatic solvent selection for LLE. Up to now, there is
no systematic approach to identify suitable solvents with mini-
mal experimental effort, especially based on lacking informa-
tion about the system present. Thus, a concept for systematic
solvent suggestion is introduced here.

To reduce the number of necessary experiments, the broad
range of commercially available solvents must be limited from
the very start. Furthermore, the remaining solvents should cov-
er a wide range of physical properties to ensure the possibility
of finding suitable solvents for various purification purposes.
Initially, the database from the tool developed by Bergs et al.
[26] is utilized, leading to a list of 83 solvents. The HSP posed
the sound basis of the approach developed to characterize the
reciprocal solubility of two materials in each other. The HSP
consist of three different parts of the total energy of vaporiza-
tion: dispersion forces dp, dipole forces dp and hydrogen
bonding Oy [28]. Materials with similar HSP are more likely to
be soluble in each other [28]. The HSP of the solvents are pic-
tured in Fig. 3a and are listed in the SI. Apparently, the respec-
tive HSP for atomic dispersion forces are in a similar range
around 15MPa”® for the selected solvents. Furthermore, dis-
persion forces in solutions are mostly negligible, according to
Strauss et al. [29]. For the subsequent steps, the two-dimen-
sional (2D) Hansen room referring to the dipole forces dp, rep-
resenting the polarity of the solvents, and to the hydrogen
bonding forces Oy, representing the proticity of the solvents, is
chosen (Fig.3b). Most of the solvents have low dp and Oy
parameters. Furthermore, none could be identified with
extremely low polarity, dp<3MPa®’, but high proticity,
O > 20 MPa’’ (Fig, 3b).

Since setting a defined boundary between, e.g., nonpolar and
polar solvents is impossible, the 2D Hansen room is roughly
divided into four different areas, each with a similar number of
solvents (Fig.3b). Although such classification looks arbitrary
at the first view, the rough division into four different regions

. a) I b) 45 . . . . .
solvent databases. Hereby, handling a0k 1 3 o )
complex fermentation broths with 25 + — 35 }
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. o O e @ s 25 '
plete physical data proves to be s vEYe © T 20! ; o% % o °
challenging. A high number of . 4¢ § 150 o oo
experiments are necessary to obtain % LI ] T 10| o ,Q,,Qo ©0..00. 1
the information needed for the T 57 ——— 5 'Ef &;))%@% & 37
tools. Bergs et al. [26] developed a L 40 0
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database with around 83 solvents
and contains their physical and
chemical properties. The solvent
suggestion is based on a solubility

ranking regarding the I-octanol/  of solvents.

Figure 3. The Hansen parameters are according to Hansen [28]. The solvents selected are ac-
cording to the database of Bergs et al. [26]. (a) 3D Hansen room based on dispersion forces dy,
hydrogen bonding forces dy, and dipole forces dp (b) Solvents located in the 2D Hansen room
based on dp and dy. The area is divided into four different sections each with a similar number
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results in an estimated boundary between long-chain alcohols
(section 1) and short-chain alcohols (section2), and between
ketones (section 3) and acetates (section4). Additionally, ke-
tones (section 3) and acetates (section 4) are differentiated from
alcohols (sections 1 and 2). Overall, solvents with high abilities
to split off protons or to form hydrogen bonds are positioned
in sections 1 and 2. Solvents in sections 1 and 4 tend to be non-
polar, whereas solvents in sections 2 and 3 are more polar.

To reduce the number of solvents for the screening experi-
ments, green solvent selection guides are applied to exclude
hazardous solvents from the screening set [30]. To further limit
the experimental effort, representative solvents for each section
are selected from the remaining ones. Hereby, the focus is on
covering a broad spectrum of polarities and proticities, mean-
ing that solvents near to the boundaries and solvents nearly
centrally positioned in each section are selected. The procedure
leads to three solvents in each area (Tab. 1). Additionally, water
is selected in section 2 because it generally represents a poten-
tially good solvent for a purification step. Since five different
solvents can be used simultaneously in the robotic system with-
out any further manual intervention, five different solvents are
selected to form a first universal screening set (Fig.4a). There-
by, four solvents, n-hexanol, butyl acetate, ethanol, and ace-

Table 1. Solvents of the first and second screenings.®

Section Solvents for the first Solvents for the second
screening screening

1 n-Hexanol n-Octanol, n-butanol

2 Ethanol Methanol, n-propanol

3 Acetone Acetonitrile, cyclohexanone

4 Butyl acetate n-Heptane, ethyl acetate

2/3 Water Methanol, acetonitrile

¥ If a solvent forms a miscibility gap with the feed phase, the
corresponding solvents in each section, namely, solvents of the
second screening, are tested. The HSP of the solvents used can
be found in the SI.

tone, are chosen as they have nearly central positions in each
section of the 2D Hansen room.

Additionally, water is selected as mentioned before. By this, a
broad spectrum of polarities and proticities is covered during
the initial screening experiments. Of the first screening set,
only n-hexanol is located near the area boundaries in section 1,
which can be traced back to the lack of solvents with
Op <3 MPa" but high proticity of dy; >20 MPa®’.

All solvents are investigated automatically under standard-
ized conditions: lg501“g0i1’1, 25°C, single stage, 20 min of ex-
traction time on the shaker at 1000 rpm, and 10 min of centri-
fugation time at 1500rpm on the robotic platform. If no
miscibility gap can be detected at the initial phase ratio of
1 gSolmgFeed_l> the solvent will result in an inefficient extraction
even when a phase split could be detected at higher solvent-to-
feed solvent ratios. The high cross-solubility would always
result in tremendous solvent loss or low purities of the extract
phase.

Since a low cross-solubility is necessary for efficient extrac-
tion, the samples of the first screening are investigated auto-
matically regarding the presence of a phase boundary between
two liquids (Sect.2.1; see also the SI). If a phase boundary is
detected, the corresponding section of the solvent appears
promising for efficient extraction. Thus, in each section with a
detected liquid-liquid phase boundary, two solvents, one near
the left and one near the right area boundaries in the 2D Han-
sen room, are tested in the next screening run (Fig. 4b, Tab. 1).
All solvents of the second screening set are listed in Tab. 1 and
plotted in the SI. Overall, more extreme solvents regarding
polarity and proticity replace the initially centrally positioned
solvents.

The concept is expandable to more solvents for specific sys-
tems, as it ensures fast identification of suitable solvent candi-
dates without further knowledge of the system. Thereby, the
focus does not lie on identifying an optimal solvent for extrac-
tion but more on fast data generation of a possible complex
unknown system and fast process design. The approach repre-
sents a reliable start even for limited data at the beginning of
the process design procedure and can be executed in a fully
automated way on the robotic platform.

2 3 hcetone & cner D A Cyclohexanane (2nd) 4 Results and
4 Water A Acetonitrile (2nd) Discussion
45 T T ‘ 45 j

_ 4or1 29 40p1 21  Merging the automated solvent sug-
gm gg . gw gg ] gestion tool (Sect.3) and the liquid
% 25t % 25 phase boundary detection (Sect. 2.1)
<2/ - = 20 3 leads to an automatic design of an
& 15} 5 c 15 3 entire LLE process on the robotic
20 R T R A0 . platform. All decisions made are

5r4 ‘ * ) ) ) 31 5f4 A * . A . ) 37 well-founded on SCI; as the KPI

0 0 5 10 15 20 25 30 0 0 5 10 15 20 25 30 (Sect.2.4). Theimplemented auton-

HSP 5, MPa®d]

omous workflow on the robotic

HSP §_[MPa’]
P platform coupled with external ana-

Iytics is pictured in Fig. 5.
The target compound progester-
one and the feed solvent soybean

Figure 4. 2D Hansen room based on hydrogen bonding forces dy and dipole forces dp The Han-
sen parameters are according to Hansen [28]. (a) A first universal screening set of five solvents.
(b) Exemplary acetone of the first screening set and the subsequent solvents cyclohexanone
and acetonitrile of the second screening set.
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Figure 5. Automatic workflow on the robotic platform coupled
with external analytics for the autonomous design of an LLE.
Standardized conditions: 1 gs(,,\,.go”'ﬂ 25 °C, single stage, 20 min
of extraction time at 1000 rpm, 10 min of centrifugation time at
1500 rpm.

oil are both nonpolar. Thus, a solvent must be found that forms
a miscibility gap with soybean oil, providing high solubility for
progesterone, and which thereby should be medium polar.
Nevertheless, to demonstrate the solvent selection approach
presented in Sect.3, n-hexanol, water, ethanol, butyl acetate,
and acetone are tested regardless of the physical properties of
the current system. For each solvent, the automated workflow
on the robotic platform is executed according to Fig. 5.

During the first screening, water and ethanol form a misci-
bility gap with the feed phase (Fig. 6a). Due to the absence of a
miscibility gap for butyl acetate and n-hexanol, solvents of sec-
tions 1 and 4 are excluded from the further screening (Fig. 6b).
The solvent neighbors of ethanol in section 2, methanol and
n-propanol, are tested in the second screening (Tab. 1). Addi-
tionally, the miscibility gap with water leads to the subsequent
solvents: methanol in section 2 and acetonitrile in section 3.

During the second screening run, only the solvents methanol
and acetonitrile show a miscibility gap with the feed phase
(Fig. 6). Thus, solvents close to the boundary of dp = 6.0 MPa%®
from sections 2 and 3 are no longer considered for LLE. The
procedure demonstrates that a second screening is always
necessary since the solubility of solvents in the same section

a) b)
1a) Water / feed 2a) Ethanol / feed

B n-Hexanol (1st)
%*  Acetone (1st)
&  Water (1st)

A Methanol (2nd)

towards the feed phase might differ. Due to the stepwise
screening, the number of experiments necessary to identify
potential solvents for an LLE is reduced.

To evaluate the performance of the extraction step, the KPI
introduced in Sect. 2.4 are utilized (see the SI). The PPI; values
are calculated based on the initial weight fraction of progester-
one and the peak area purity obtained by HPLC analysis. Fur-
thermore, the experimental yields of progesterone are com-
pared (Fig. 7). Accordingly, ethanol leads to a PPI; of 40 % and
an experimental yield of 53 %. Compared to methanol and ace-
tonitrile, the lower purification performance can be traced back
to a higher cross-solubility between ethanol and soybean oil
[31]. A low PPI; of 37 % is obtained for the extraction with
water and yields around 1 %.

o PPIi A Yield Yprog.
100 100
80 80 §'
= 60 é i ¢ 60 9
-~ NG
Q
o 40 @ 40 o
2
20 20 >
0 A 0
S X > o
&S ‘x&o RONIRNS

Figure 7. Purification performance indices (PPl;) and experimen-
tal yields () for the purification of progesterone out of a fer-
mentation broth. The solvents forming a miscibility gap with
the feed phase are ethanol (EtOH), methanol (MeOH), acetoni-
trile (ACN), and water (H,0).

Nevertheless, due to the selection of water, the solvent tool
suggests acetonitrile for the next round, which achieves higher
yields and purities. Acetonitrile results in a slightly higher PPL;
of 64% and methanol leads to a PPL of 60% (Fig.7). The
extraction with acetonitrile leads to
an experimental yield of 43 % and
with methanol, to 53 %. Besides
water, each solvent shows a similar
extraction performance. To further
narrow down the solvent selection,
purification costs must be taken

%  Butyl acetate (1st)
+  Ethanol (1st)

A n-Propanol (2nd)
A Acetonitrile (2nd)

3a) Methanol / feed 4a) Acetonitrile / feed

HSPo,, mPa’3)
NN
oom

E into account as well.

The resulting SCI; values are
pictured in Fig.8, aiming at low
values for an efficient overall pro-
cess. The SCI; values shown are
based on one purification step ex-
trapolated towards an entire pro-

HSP 5, MPa’%]

cess, under the assumption of iden-
tical step performance. The highest
SCI; of > 1 million € gpmg_'l is calcu-
lated for the extraction with water.

15 20 25 30

Figure 6. (a) Detected miscibility gaps between the extraction solvents and the oily phase of the  Thyus, water can be excluded.

fermentation broth (1a to 4a). Pictures are taken by the camera on the robotic platform. (b) All
solvents tested from the screening set according to the solvent selection approach developed.
Solvents forming a miscibility gap with the oily phase are marked with a bisected rectangle.

Extraction with ethanol leads to an
SCI; of 242€gpr0g_’1, which is sig-
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Figure 8. Separation cost indicators (SC/;) for the purification of
progesterone out of a fermentation broth. Solvents forming a
miscibility gap with the feed phase are ethanol (EtOH), metha-
nol (MeOH), acetonitrile (ACN), and water (H,0).

nificantly higher than the SCI; for extraction with methanol.
Thereby, ethanol can be excluded from further screening as
well. The software of the robotic platform selects the solvent
with the lowest SCI; for the process step. In this case, the selec-
tion is not explicit due to the overlapping error bars of metha-
nol and acetonitrile (Fig. 8). Thus, for subsequent experiments,
methanol and acetonitrile are suggested. Nevertheless, the step-
wise screening gradually leads to solvents with low cross-solu-
bility with the feed phase and high solubility towards the target
component.

By further experiments, it should be investigated whether a
possibly better performance compensates the higher purifica-
tion costs of acetonitrile. Here, the solvent-to-feed ratio and
the number of extraction stages should be automatically varied
to highlight potentially different performances and to identify
the optimal operating point, meaning the lowest SCI,. Since the
steps mentioned can be covered by the basic workflow of liquid
handling platforms, they are not discussed further in the pres-
ent work.

5 Conclusion and Outlook

This work addresses steps necessary for the intelligent and au-
tomatic design of an extraction process on a robotic platform.
The extraction is designed and executed by the robotic plat-
form itself. Thereby, the combination of automatic solvent sug-
gestion, autonomous detection of liquid phase boundaries, and
economic rating by KPI leads to a powerful tool for down-
stream process design. The experiments confirm, for the sys-
tem tested, that the tool developed leads to two suitable sol-
vents, methanol and acetonitrile. Thus, the solvent set, reduced
from the very start, results in an intelligent, fast, and systematic
approach for solvent selection for an LLE. To identify optimal
operating conditions concerning the temperature and the sol-
vent-to-feed ratio, further experiments can be executed on the
same robotic platform. Thereby, the most suitable solvent for
the specific purification task should be selected.

The methodology can be applied to further purification tasks
as well. Since the method has already proven its suitability for
the purification of progesterone out of a fermentation broth,

various dissolved high-value steroids or steroid precursors, like
cholesterol, further gestagens, or even estrogens can also be
purified out of fermentation broths. Additionally, in future
works, the developed methodology can be utilized for the puri-
fication of heat-sensitive materials like flavors. Another oppor-
tunity is the removal of high-boiling organics from wastewater,
e.g., phenol.

Furthermore, the tool developed will be utilized for the
design of entire downstream processes on the robotic platform.
For this purpose, the methodology developed for extraction
will be transferred to further unit operations in future works.
Here, systematic approaches are also necessary for the screen-
ing of, e.g., adsorbents for adsorption steps. Those must cover a
broad range of physical properties to ensure that suitable can-
didates are identified, like in the present study. Each decision is
based on the comparison of KPI, resulting in the ranking of
process alternatives. Afterward, the obtained results are com-
pared to the boundaries set at the beginning of the process
design. This methodology will ensure efficient automatic pro-
cess development of entire production processes, independent
of initial data and even for complex systems.
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PPI; [%] purification performance index
SCI; leg] separation cost indicator

X [-] purity
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solubility parameter
cost factor

Sub- and superscripts

0 initial
conv. conversion
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Chem. Eng. Technol. 2021, 44, No. 9, 1578-1584  © 2021 The Authors. Chemical Engineering & Technology published by Wiley-VCH GmbH www.cet-journal.com



Chemical Engineering Research Article 1584
Technology
f final [13] M. Bensch, B. Selbach, ]J. Hubbuch, Chem. Eng. Sci. 2007,
FB fermentation broth 62 (7),2011-2021. DOL: https://doi.org/10.1016/
Feed feed phase j.ces.2006.12.053
H hydrogen bonding forces [14] A. Susanto, E. Knieps-Griinhagen, E. von Lieres, J. Hubbuch,
i step Chem. Eng. Technol. 2008, 31 (12), 1846-1855. DOL https://
in inlet doi.org/10.1002/ceat.200800457
0il soybean oil [15] S. Schuldt, G. Schembecker, Chem. Eng. Technol. 2013, 36
out outlet (7), 1157-1164. DOI: https://doi.org/10.1002/ceat.201200725
P dipole forces [16] G. Linshiz, N. Stawski, G. Goyal, C. Bi, S. Poust, M. Sharma,
Prog. progesterone V. Mutalik, J. D. Keasling, N. J. Hillson, ACS Synth. Biol.
pur. purification 2014, 3 (8), 515-524. DOLI https://doi.org/10.1021/
Solv. solvent sb4001728
[17] T. Wu, Y. Zhou, J. Lab. Autom. 2014, 19 (4), 381-393. DOL:
Abbreviations https://doi.org/10.1177/2211068213499756
[18] M. Alexovi¢, Y. Dotsikas, P. Bober, J. Sabo, J. Chromatogr. B:
HPLC  high-pressure liquid chromatography Anal. Technol. Biomed. Life Sci. 2018, 1092, 402-421. DOI:
HSP  Hansen solubility parameter https://doi.org/10.1016/j.jchromb.2018.06.037
KPI key performance indicator [19] S. Jordan, B. Moshiri, R. Durand, JALA 2002, 7 (1), 74-77.
LLE liquid-liquid extraction DO https://doi.org/10.1016/S1535-5535-04-00178-9
[20] E B. Thygs, J. Merz, G. Schembecker, Chem. Eng. Technol.
2016, 39 (6), 1049-1057. DOL: https://doi.org/10.1002/
References ceat.201500572
[21]  Microbial Steroids: Methods and Protocols (Eds: J.-L. Barredo,
[1] M. Harre, U. Tilstam, H. Weinmann, Org. Process Res. Dev. I. Herraiz), Methods in Molecular Biology, Vol. 1645,
1999, 3 (5), 304-318. DOIL https://doi.org/10.1021/ Springer, New York 2017.
0p990020p [22] T. Winkelnkemper, G. Schembecker, Sep. Purif. Technol.
(2] P. Baumann, J. Hubbuch, Eng. Life Sci. 2017, 17 (11), 1142- 2010, 72 (1), 34-39. DOI https://doi.org/10.1016/
1158. DOL: https://doi.org/10.1002/elsc.201600033 j.seppur.2009.12.025
[3] R. Bhambure, K. Kumar, A. S. Rathore, Trends Biotechnol. [23] T. Winkelnkemper, S. Schuldt, G. Schembecker, Sep. Purif.
2011, 29 (3), 127-135. DOIL https://doi.org/10.1016/ Technol. 2011, 77 (3), 355-366. DOI: https://doi.org/10.1016/
j.tibtech.2010.12.001 j.seppur.2011.01.004
[4] H. Chmiel, Bioprozesstechnik, 3rd ed., Spektrum Akade- [24] K. Brandt, G. Schembecker, Chem. Eng. Technol. 2016, 39
mischer Verlag, Heidelberg 2011. (2), 354-364. DOL: https://doi.org/10.1002/ceat.201500428
[5] J.Strube, E. Grote, J. P. Josch, R. Ditz, Chem. Ing. Tech. 2011, [25] J. Gmehling, A. Schedemann, Ind. Eng. Chem. Res. 2014, 53
83 (7), 1044-1065. DOT: https://doi.org/10.1002/ (45), 17794-17805. DOL: https://doi.org/10.1021/ie502909k
cite.201100017 [26] D. Bergs, J. Merz, A. Delp, M. Joehnck, G. Martin, G. Schem-
[6] M. Wiendahl, P. Schulze Wierling, J. Nielsen, D. Fomsgaard becker, Chem. Eng. Technol. 2013, 36 (10), 1739-1748. DOLI:
Christensen, J. Krarup, A. Staby, J. Hubbuch, Chem. Eng. https://doi.org/10.1002/ceat.201300276
Technol. 2008, 31 (6), 893-903. DOI: https://doi.org/ [27] R. Gani, Chem. Eng. Res. Des. 2004, 82 (11), 1494-1504.
10.1002/ceat.200800167 DOIL: https://doi.org/10.1205/cerd.82.11.1494.52032
[7] P. Xu, C. Clark, T. Ryder, C. Sparks, J. Zhou, M. Wang, [28] C. M. Hansen, Hansen Solubility Parameters: A User’s Hand-
R. Russell, C. Scott, Biotechnol. Prog. 2017, 33 (2), 478-489. book, 2nd ed., CRC Press, Boca Raton, FL 2007.
DOT: https://doi.org/10.1002/btpr.2417 [29] M. A. Strauss, H. A. Wegner, Angew. Chem. 2019, 131 (51),
[8] H. F. Zimmermann, J. Rieth, JALA 2006, 11 (3), 134-137. 18724-18729. DOL https://doi.org/10.1002/ange.201910734
DO https://doi.org/10.1016/j.jala.2006.03.003 [30] E P.Byrne, S. Jin, G. Paggiola, T. H. M. Petchey, J. H. Clark,
[9] M. G. Petroff, J. Feliciano, D. J. Pollard, H. Li, T. O. Linden, T. J. Farmer, A. J. Hunt, C. R. McElroy, J. Sherwood,
J. M. Pollard, Eng. Life Sci. 2016, 16 (2), 114-123. DOL Sustainable Chem. Processes 2016, 4 (1), 7. DOL https://
https://doi.org/10.1002/elsc.201400250 doi.org/10.1186/s40508-016-0051-z
[10] A. Knepper, M. Heiser, F. Glauche, P. Neubauer, J. Lab. [31] L. A. Follegatti-Romero, M. Lanza, C. A. S. da Silva, E. A. C.
Autom. 2014, 19 (6), 593-601. DOI: https://doi.org/10.1177/ Batista, A. J. A. Meirelles, J. Chem. Eng. Data 2010, 55 (8),
2211068214547231 2750-2756. DOL: https://doi.org/10.1021/je900983x
[11] R. Huber, D. Ritter, T. Hering, A.-K. Hillmer, E. Kensy, [32] W. Burger, M. J. Burge, Digitale Bildverarbeitung: Eine
C. Miiller, Le Wang, J. Biichs, Microb. Cell Fact. 2009, 8 (1), algorithmische Einfiihrung mit Java, 3rd ed., X.media.press,
42. DOL: https://doi.org/10.1186/1475-2859-8-42 Springer Vieweg, Berlin 2015.
[12] M. Bensch, P. Schulze Wierling, E. von Lieres, ]. Hubbuch, [33] E. Heinzle, A. P. Biwer, C. L. Cooney, Development of

Chem. Eng. Technol. 2021, 44, No. 9, 1578-1584

Chem. Eng. Technol. 2005, 28 (11), 1274-1284. DOI: https://
doi.org/10.1002/ceat.200500153

© 2021 The Authors. Chemical Engineering & Technology published by Wiley-VCH GmbH

Sustainable Bioprocesses: Modeling and Assessment, John
Wiley & Sons, Chichester 2006.

www.cet-journal.com



