
J Eng Math:         (2021) 128:15 
https://doi.org/10.1007/s10665-021-10117-3

A finite deformation isogeometric finite element approach to
fibre-reinforced composites with fibre bending stiffness

Carina Witt · Tobias Kaiser · Andreas Menzel

Received: 30 October 2020 / Accepted: 18 February 2021
© The Author(s) 2021

Abstract It is a common technique in many fields of engineering to reinforce materials with certain types of
fibres in order to enhance the mechanical properties of the overall material. Specific simulation methods help
to predict the behaviour of these composites in advance. In this regard, a widely established approach is the
incorporation of the fibre direction vector as an additional argument of the energy function in order to capture
the specific material properties in the fibre direction. While this model represents the transverse isotropy of a
material, it cannot capture effects that result from a bending of the fibres and does not include any length scale
that might allow the simulation of size effects. In this contribution, an enhanced approach is considered which
relies on the introduction of higher-gradient contributions of the deformation map in the stored energy density
function and which eventually allows accounting for fibre bending stiffness in simulations. The respective gradient
fields are approximated by NURBS basis functions within an isogeometric finite element framework by taking
advantage of their characteristic continuity properties. The isogeometric finite element approach that is presented
in this contribution for fibre-reinforced composites with fibre bending stiffness accounts for finite deformations. It
is shown that the proposed method is in accordance with semi-analytical solutions for a representative boundary
value problem. In an additional example it is observed that the initial fibre orientation and the particular bending
stiffness of the fibres influence the deformation as well as the stress response of the material.

Keywords Anisotropic elasticity · Fibre bending stiffness · Fibre curvature · Finite deformations · Fibre stretch
gradient · Generalised continuum · Isogeometric analysis

1 Introduction

In many industrial applications, fibre-reinforced composites are in high demand because of their advanta-
geous properties compared to non-reinforced materials. Specifically speaking, a reinforcement by certain types
of fibres can enhance the stiffness, durability and strength-to-weight ratio of materials to name only a few
benefits, cf. [1,2]. Due to the high popularity of fibre-reinforced composites, efficient simulation methods
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are required to predict the behaviour of these kinds of materials. A broad range of simulation approaches
already exists in which the fibres are assumed to be perfectly flexible. This implies that they exhibit a
stiffness only in the direction of the fibre, which can be modelled by a structural tensor approach as in,
e.g., [3–8].

A more elaborated theory has been presented in [9] where additional higher-gradient energy contributions of
the deformation map are considered to account for the fibre bending stiffness. As a consequence, a length scale is
introduced in the generalised continuum model which is associated with positive size effects in the sense “smaller is
stiffer”. This is characteristic for strain gradient theories and in contrast to stress gradient theories in which negative
size effects in the sense “smaller is softer” are observed, cf. [10–12]. One specific approach to generalised continua
is the couple-stress theory, as discussed in detail in [13,14]. Together with the constitutive equations derived in [9],
it incorporates higher-gradient contributions that are associated with the fibre curvature and fibre stretch gradient.
Consequently, this modelling approach can account for particular deformation modes such as fibre stretching and
bending which have been discussed in detail in [15,16] with further consideration of fibre twisting. Besides taking
one single family of fibres into account, these fibre-related gradient effects have been elaborated in [17] for woven
fibre structures. In [18], fibre bundles have been examined with regard to fibre bending stiffness and twisting.

From the consideration of the respective higher-gradient terms in the balance equations of the couple-stress
theory, a partial differential equation (PDE) of fourth order is obtained. In order to solve the resulting equation
system in a finite element framework, different methods have been employed in past works. In [19–21] the equation
system has been treated by a multi-field method in order to reduce the problem to two PDEs of second order which
can be solved by means of a classic finite element approach with Lagrangian basis functions. In [22], an isogeometric
finite element approach has been used to directly solve the fourth-order PDE, since the therein used Non-Uniform
Rational B-Splines (NURBS) basis functions can fulfil the higher continuity requirements resulting from the weak
form of the respective equation. Due to the omission of additional fields, the number of degrees of freedom can be
significantly reduced in this way. In [22], the isogeometric approach has only been applied to small strain problems,
whereas we will use the method in this contribution for more advanced modelling by assuming finite deformations.
In doing so, the effect of the fibre bending stiffness can be examined together with an overall non-linear material
behaviour and more practical applications can be covered by the proposed simulation method. Furthermore, the
fibre stretch gradient will be incorporated which has so far been neglected in the small strain setting, cf. [9,22].

The contribution is structured as follows: In Sect. 2, the modelling approach for fibre-reinforced composites with
fibre bending stiffness from [9] is presented. After an introduction of all required kinematic quantities, the balance
equations from the couple-stress theory, which will be solved in the simulation of fibre-reinforced composites,
are summarised. In Sect. 3, a discretised and linearised form of the governing equation is derived for the solution
by means of an isogeometric finite element method. Finally, Sect. 4 provides two numerical examples. At first, a
cylindrical tube subject to a pure azimuthal shear deformation is examined. For a transversely isotropic material,
an analysis of this boundary value problem has been conducted in [23]. Considering fibre bending stiffness in
the analysis and assuming small deformations, the azimuthal shear problem has been elaborated in [24,25] by
employing different assumptions on the compressibility of the bulk material and on the extensibility of the fibres. In
[26], the respective boundary value problem for the general case of finite deformations has been discussed. Within
an isogeometric finite element framework, the small strain version of the problem has been analysed in [22] and a
comparison to the semi-analytical solutions provided in [25] has been made. In analogy, the results of the simulation
approach developed in this contribution are compared to the solutions presented in these works. For the second
example, a notched plate is analysed in terms of a uni-axial tensile test. In this more complex example, the influence
of the fibre bending stiffness and of the initial fibre direction will be examined.

Notation For two tensor-valued quantities T and S of arbitrary order, different types of contractions are
introduced. Using Einstein’s summation convention, the single, double, and triple contractions are represented by

T · S = [Ti j ...kl ei ⊗ e j . . . ⊗ ek ⊗ el ] · [Smn...op em ⊗ en . . . ⊗ eo ⊗ ep]
= Ti j ...kl Sln...op ei ⊗ e j . . . ⊗ ek ⊗ en . . . ⊗ eo ⊗ ep, (1)
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T : S = [Ti j ...kl ei ⊗ e j . . . ⊗ ek ⊗ el ] : [Smn...op em ⊗ en . . . ⊗ eo ⊗ ep]
= Ti j ...kl Skl...op ei ⊗ e j . . . ⊗ eo ⊗ ep, (2)

T : · S = [Ti j ...klm ei ⊗ e j . . . ⊗ ek ⊗ el ⊗ em] : · [Snop...qr en ⊗ eo ⊗ ep . . . ⊗ eq ⊗ er ]
= Ti j ...klm Sklm...qr ei ⊗ e j . . . ⊗ eq ⊗ er (3)

with e1, . . . representing an orthonormal basis system.
For the same tensors, the standard dyadic product as well as two special dyadic products are defined as

T ⊗ S =[Ti j ...kl ei ⊗ e j . . . ⊗ ek ⊗ el ] ⊗ [Smn...op em ⊗ en . . . ⊗ eo ⊗ ep]
= Ti j ...kl Smn...op ei ⊗ e j . . . ⊗ ek ⊗ el ⊗ em ⊗ en . . . ⊗ eo ⊗ ep, (4)

T ⊗ S =[Ti j ...kl ei ⊗ e j . . . ⊗ ek ⊗ el ] ⊗ [Smn...op em ⊗ en . . . eo ⊗ ep]
= Ti j ...km Sln...op ei ⊗ e j . . . ⊗ ek ⊗ el ⊗ em ⊗ en . . . ⊗ eo ⊗ ep, (5)

T ⊗ S =[Ti j ...kl ei ⊗ e j . . . ⊗ ek ⊗ el ] ⊗ [Smn...op em ⊗ en . . . eo ⊗ ep]
= Ti j ...kn Slm...op ei ⊗ e j . . . ⊗ ek ⊗ el ⊗ em ⊗ en . . . ⊗ eo ⊗ ep. (6)

The transposition of a second-order tensor T is denoted as

T t = Tji ei ⊗ e j . (7)

Similarly, two types of transpositions are employed for a fourth-order tensor S, namely

St = S jikl ei ⊗ e j ⊗ ek ⊗ el and ST = Skli j ei ⊗ e j ⊗ ek ⊗ el . (8)

For the differentiation of tensorial quantities, the gradient operator with respect to the (spatial) coordinates x, applied
to a tensor T of arbitrary order, is introduced as

∇xT = ∂Ti j ...kl
∂xm

ei ⊗ e j . . . ⊗ ek ⊗ el ⊗ em . (9)

On this basis, the divergence operator is obtained by the double contraction of the gradient with the second-order
identity tensor I such that

∇x · T = ∇xT : I = ∂Ti j ...kl
∂xl

ei ⊗ e j . . . ⊗ ek . (10)

The curl of a first-order tensor a is defined as

∇x × a = −∇xa : ε = εi jk
∂ak
∂x j

ei (11)

with ε denoting the third-order Levi-Civita tensor.

2 Fibre-reinforced composites possessing fibre bending stiffness

The enhanced approach for the modelling of fibre-reinforced composites, which takes not only the fibre direction
but also a fibre bending stiffness into account by introducing an extended form of the stored energy function, has
been presented in [9]. Along with new material parameters, additional kinematic quantities in terms of the fibre
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Fig. 1 Domain B in the reference configuration (B0) and current configuration (Bt ) assuming a couple-stress theory. Employed vectors
and tensors: placement function ϕ, deformation gradient F, referential outward surface normal unit vector N , current outward surface
normal unit vector n, referential fibre direction vector a0, current fibre direction vector at , body force vector b, body couple vector c,
vector of tractions t1 acting on the surface ∂Bt , vector of couples t2 acting on the surface ∂Bt , vector of displacements u prescribed on
the surface ∂Bt

stretch gradient as well as the fibre curvature are considered, and a generalised continuum theory which includes
higher-gradient contributions in the balance equations is assumed.

2.1 Finite strain kinematics

For a body B undergoing finite deformations, two configurations may be considered, namely a reference config-
uration at time t0 as well as the current configuration which inherits the deformation of the body at time t . As
shown in Fig. 1, the non-linear function ϕ : B0 → Bt describes the mapping of the position of a material point
X of the reference configuration to its position x in the current configuration. The gradient of the mapping with
respect to the reference position X is the deformation gradient F = ∇Xϕ with J = det(F) > 0. The deformation
gradient describes a linear relation between line elements dx in the current configuration and dX in the reference
configuration, while its cofactor and determinant relate infinitesimal area as well as infinitesimal volume elements
in a similar manner, i.e.

dx = F · dX, n da = cof(F) · N dA, dv = J dV . (12)

Vectors N and n denote the outward surface normal unit vectors in the reference and in the current configuration
and the cofactor is defined as cof(F) = J F−t . For the specific modelling approach examined in this contribution
and presented in [9], the second gradient of the placement function is considered further, so that

Υ = ∇X F = ∇X∇Xϕ (13)

is introduced.
Within the scope of modelling fibre-reinforced composites, a unit vector field a0 is commonly incorporated into

the model as an additional directional quantity. It describes the fibre direction in the reference configuration for
a material which is reinforced by a single family of fibres. Under the assumption that the fibres are embedded in
the matrix material and convected with the deformation, the fibre direction vector in the deformed configuration is
obtained as

at = λa at = F · a0 with ‖at‖ = 1. (14)

Since not only the direction but also the length of the fibres changes consequently to the deformation, the fibre
stretch λa occurs in (14).
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Assuming that the embedded fibres are not perfectly flexible but instead exhibit a certain bending stiffness, the
gradient of the fibre direction vector is incorporated into the enhanced material model. With respect to the reference
configuration, this gradient takes the form

Λ = Ft · G with G = ∇Xat = a0 · ∇X Ft + F · ∇Xa0, (15)

cf. [9]. As discussed in detail in [20], the stress and energy contributions related to this gradient term do, in general,
not vanish in the initial state. In order to obtain an initially stress- and energy-free condition, the fibres are assumed
to be straight in the reference configuration, i.e. ∇Xa0 = 0.

2.2 Local balance equations

For the consideration of higher gradients of the placement function, an enhanced continuum model is required. In the
present contribution, the couple-stress theory presented in [14] is applied. The spatial versions of the local balance
equations will be summarised in the following for the quasi-static case and under the assumption of vanishing body
forces and body couples, accordingly b = 0 and c = 0, cf. [9,20].

Considering a closed system, the local form of the balance of mass reads

ρ̇ + ρ ∇x · ϕ̇ = 0 (16)

with spatial mass density ρ and with the material time derivative of • denoted as •̇.
The local form of the balance of linear momentum follows as

ρ ϕ̈ = ∇x · σ t (17a)
quasi-static⇒ 0 = ∇x · σ t (17b)

with an, in general, non-symmetric Cauchy-type stress tensor σ .
From the local form of the balance of angular momentum, its skew-symmetric part can be directly obtained as a

function of the divergence of the couple-stress tensor m, to be specific

0 = ∇x · mt + ε : σ (18a)

⇒ σ skw = −1

2

[∇x · mt] · ε. (18b)

By using the balance equations (17a) and (18a), the local form of the balance of energy follows as

ρ U̇ = σ sym : ∇xϕ̇ + 1

2
mt : ∇x∇x × ϕ̇, (19)

where U denotes the (mass specific) internal energy.
For the isogeometric finite element analysis, the balance equations of linear and angular momentum are combined

into one partial differential equation which is of fourth order since the couple-stress tensor, in general, may contain
second-order derivatives of the placement function. Retaining the assumptions mentioned above, inserting (18b)
into (17b) yields

0 = ∇x · σ sym + 1

2
∇x × [∇x · mt] . (20)

123



   15 Page 6 of 22 C. Witt et al.

As discussed in detail in [14] and typical for the couple-stress theory, only the deviatoric part m = m− 1
3 tr(m) I of

the couple-stress tensor contributes to the energy balance (19) because I : ∇x∇x × ϕ̇ = 0 holds. The same applies
to the partial differential equation (20), where the spherical part of the couple-stress tensor similarly vanishes as
a result of the curl and divergence operation. Consequently, the spherical part of the couple-stress tensor does not
have any impact on the balance equations relevant for the proposed simulation approach and accordingly remains
undetermined as this work proceeds.

2.3 Constitutive model

The constitutive model for fibre-reinforced composites including fibre bending stiffness has been derived in [9]. The
basis for this model is an extended list of invariants for the stored energy density function. Specifically speaking,
the energy is considered as an isotropic function of invariants Ii including three main arguments that have been
introduced in Sect. 2.1, i.e.

W (Ii (C,Λ, a0)). (21)

This purely referential representation is based on the Cauchy–Green tensor C = Ft ·F, the referential fibre direction
vector a0 and the gradient Λ of the deformed fibre vector. In order to reduce the number of invariants, additional
assumptions are made in [9] and adopted in this work. By employing only the directional projection κ0 = Λ · a0,
effects from fibre splay are neglected in addition to effects from fibre twist. Apart from that, the sense of the fibre
orientation is not relevant from a physical point of view so that the fibre vector may appear in the stored energy
only in even powers.

From the general form of the stored energy density function in (21), the stress and couple-stress tensor are derived
in [9] by considering the particular dependencies of the invariants. Accordingly, the symmetric part of the stress
tensor follows as

σ sym = J−1

[

2F · ∂W

∂C
· Ft + G ·

[
∂W

∂Λ

]t

· Ft + F · ∂W

∂Λ
· Gt

]

(22)

and the deviatoric part of the couple-stress tensor takes the form

mt = −2

3
J−1ε :

[
F · ∂W

∂Λ
· [
Ft ⊗ at + Ft ⊗ at

]]
. (23)

The specific form of the energy function used for the determination of the partial derivatives in (22) and (23) in this
work will be presented in Sect. 4.

3 Isogeometric finite element approach

For the solution of the fourth-order partial differential equation in the simulation of fibre-reinforced composites
with fibre bending stiffness, the isogeometric finite element method is employed. Since NURBS basis functions,
used within the isogeometric analysis, provide C p−1-continuity everywhere, except for the locations of repeated
knots or control points, global continuity higher thanC0 can be realised. The NURBS basis functions are used in the
discretised weak form of the balance equation which will be developed in the following section. For the application
of the finite element method, a linearisation is performed afterwards so that the globally assembled system of
equations can be solved by means of the Newton–Raphson method. Detailed information on the isogeometric
analysis and on NURBS is provided in [27–29].
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3.1 Discretised weak form

With regard to a finite element formulation of the governing equation (20), a weak form is derived. For this purpose,
(17b) is multiplied by a test function η and integrated over the spatial domain Bt , accordingly

0 =
∫

Bt

η · [∇x · σ t] dv. (24)

The application of the divergence theorem and of integration by parts yields

0 =
∫

Bt

∇xη : σ t dv −
∫

∂Bt

η · σ t · n da. (25)

Considering an additive decomposition of the stress tensor in the form of

σ = σ sym + σ skw (26)

and making use of the definition of the skew-symmetric stress part from (18b) with σ skw = − [
σ skw

]t
,

(25) can be rewritten as

0 =
∫

Bt

∇xη : σ sym dv −
∫

∂Bt

η · t1 da +
∫

Bt

∇xη : [ 1
2

[∇x · mt] · ε
]

dv. (27)

Therein, Cauchy’s theorem is employed so that the traction vector t1 = σ t · n is introduced.
For the last term in (27), integration by parts as well as the divergence theorem are applied a second time so that

0 =
∫

Bt

∇xη : σ sym dv −
∫

∂Bt

η · t1 da −
∫

Bt

1
2 [ε : ∇x∇xη] : mt dv +

∫

∂Bt

1
2 ∇xη : [t2 · ε] da (28)

is obtained. Vector t2 = mt ·n represents the couples acting on the surface such as the previously introduced vector
t1 accounts for the surface tractions.

The terms which are related to the couple-stress tensor in (28) can be rewritten by using the definition of the curl
operator, so that an alternative representation of the weak form reads

0 =
∫

Bt

∇xη : σ sym dv −
∫

∂Bt

η · t1 da +
∫

Bt

[∇x
[ 1

2 ∇x × η
]] : mt dv −

∫

∂Bt

[ 1
2 ∇x × η

] · t2 da. (29)

This format allows an interpretation of the specific occurrences of the test function from the perspective of the
principle of virtual power. The test function η itself may be regarded as a virtual velocity field which is related
to the classic tensorial quantities in (29). In analogy, the term 1

2 ∇x × η, which corresponds to the higher-gradient
terms in (29), may be interpreted as a virtual spin vector, cf. [20].

From the weak form (28) that has been derived for the deformed configuration, the respective formulation in
the reference configuration is obtained by making use of the relations specified in (12). From the third term on the
right-hand side in (28), which includes the second-order gradient of the test function, two separate terms follow
from the pull-back operation. The weak form in the reference configuration accordingly reads
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0 =
∫

B0

∇Xη : [
σ sym · cof(F)

]
dV −

∫

∂B0

η · σ t · cof(F) · N dA

−
∫

B0

1
2 ∇X∇Xη : · [[ε · mt] : [

F−t ⊗ cof(F)
]]

dV

−
∫

B0

1
2 ∇Xη :

[[
ε · mt · cof(F)

] :
[ [[

−F−t ⊗ F−1
]

: Υ
]

: [
I ⊗ I

] ]]
dV

+
∫

∂B0

1
2 ∇Xη : [[

ε · mt] : [
cof(F)⊗ F−t]] · N dA. (30)

Following the isoparametric concept and employing a Bubnov–Galerkin interpolation scheme, domain B0, test
function η and placement function ϕ are approximated by the same basis functions. Within the scope of this work,
NURBS basis functions R are employed so that the discretised kinematic quantities are

ηh =
nen∑

A=1

ηeARA, ϕh =
nen∑

A=1

ϕeARA, (31)

with the number of active basis functions on one element e denoted as nen. Inserting both relations into the referential
weak form (30), a representation is obtained which includes derivatives of the basis functions up to second order.
Accordingly, the internal force vector takes the discretised form

f h
int =

nel

A
e=1

nen∑

A=1

∫

Be
0

σ sym · cof(F) · ∇X R
A dV −

∫

Be
0

[ 1
2 ε · mt · F−t] : [

cof(F) · [∇X∇XR
A]]

dV

−
∫

Be
0

[ 1
2 ε · mt · cof(F)

] :
[ [[

−F−t ⊗ F−1
]

: Υ
]

: [
I ⊗ I

] ]
· ∇X R

A dV , (32)

where nel denotes the total number of elements. The external force vector respectively is

f h
ext =

nel

A
e=1

nen∑

A=1

∫

∂Be
0

σ t · cof(F) · N RA dA −
∫

∂Be
0

[ 1
2 ε · mt · F−t] : [

cof(F) · ∇XR
A ⊗ N

]
dA. (33)

Operator A establishes an assembly of the local force contributions to the global degrees of freedom.
From the integrability condition of the weak form, it follows that global C0-continuity is not sufficient for a

proper approximation of the field variable and test function, since, e.g., products of second-order gradients occur in
the second integral in (32). Within the examples presented in this work, an at least C1-continuous NURBS-based
interpolation is employed throughout the whole domain.

3.2 Linearisation

The solution of the equation system (30) within the isogeometric finite element framework is obtained by employing
a Newton–Raphson scheme. The residuum is determined by the internal and external force vectors discussed in
detail in Sect. 3.1, i.e.

rh = f h
int − f h

ext. (34)
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In the kth iteration step, the linearised form of the residuum reads

rh
k+1 = rh

k + Δrh. (35)

Due to the particular dependencies of the residual function rh = r̃h(Fh(ϕ̂),Υ h(ϕ̂)), two contributions are consid-
ered for the increment Δrh, to be specific

Δrh = drh

dϕ̂
· Δϕ̂ =

[
∂ rh

∂Fh : ∂Fh

∂ϕ̂
+ ∂ rh

∂Υ h : · ∂Υ h

∂ϕ̂

]

· Δϕ̂ = K · Δϕ̂ (36)

with the global list of degrees of freedom ϕ̂, the tangent stiffness matrix K and with the partial derivatives

∂Fh

∂ϕ̂
=

nel

A
e=1

nen∑

A=1

I ⊗ ∇X R
A,

∂Υ h

∂ϕ̂
=

nel

A
e=1

nen∑

A=1

[
I ⊗ ∇X∇X R

A
]

: [
I ⊗ I

]
(37)

in the discretised form. Under the assumption of dead loads, only the sensitivities of the internal force contributions
need to be considered. The global system of equations is finally obtained as

−
[
rh

]

k
= [K ]k · [

Δϕ̂
]
k . (38)

The general form of the tangent stiffness matrix K is derived in Appendix A.

4 Representative numerical examples

Two numerical examples are presented in this section to demonstrate the behaviour of a material reinforced by fibres
possessing bending stiffness. The first example is used for a comparison of the numerical results obtained by the
proposed isogeometric approach against the semi-analytical solution provided in [25]. The second model contains
a more complex geometry and is more closely related to practical applications. For both examples, a plane strain
condition is employed and the constitutive equations are based on the same energy function.

4.1 Specific form of the energy function and stress tensors

In (21), the general form of the stored energy density function for the material model introduced in [9] has been
provided. For the particular examples presented in this contribution, the energy takes an additive decomposition
and, as in [20], specifically consists of three parts, namely

W = W iso + W λa + W κ0 . (39)

The isotropic part resembles the behaviour of the matrix material without taking into account the reinforcement by
fibres. It takes the form

W iso = λ
I3 − 1

4
−

[
λ

2
+ μ

]
ln(

√
I3) + μ

2
[I1 − 3] with I1 = C : I, I3 = det(C). (40)

The Lamé-type constants are set to λ = 1.037×105 N mm−2 and μ = 4.4444×104 N mm−2. The second part W λa

corresponds to the classic fibre stretch-related transversely isotropic contributions of the fibre-reinforced material.
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It has already been studied extensively, e.g. in [7,30,31], and is thus not in the focus of the present contribution. As
this work proceeds, the part W λa is accordingly assumed to be constant. The last contribution

W κ0 = c I6 with I6 = [Λ · a0] · [Λ · a0] = κ0 · κ0 (41)

incorporates the energy which is related to the higher-gradient terms that are specific for the material model proposed
in [9]. From the particular form of the referential gradient of the fibre direction vector (15), it follows that invariant I6
in (41) includes the gradient of the fibre stretch as well as the fibre curvature, see the discussion in [19]. In accordance
with the latter, parameter c is associated with a bending stiffness of the fibres. However, the contributions of the fibre
stretch gradient are not to be neglected when finite deformations are considered. The sense of the fibre orientation
does not have any impact on the energy contribution in (41) since invariant I6 is of even order in the fibre direction
vector a0. In the examples presented in this contribution, parameter c as well as the fibre direction will take different
values in order to examine their influence on the simulation results.

Considering the stored energy density function specified in (39) and using the general derivations of the symmetric
part of the stress tensor and the couple-stress tensor (22) and (23), their specific forms follow as

σ sym = J−1F ·
[

λ
2 [I3 − 1] C−1 + μ

[
I − C−1

]]
· Ft

+ 2 c J−1 [
G · [a0 ⊗ Λ · a0] · Ft + F · [Λ · a0 ⊗ a0] · Gt] (42)

and

mt = −4

3
c J−1ε : [

F · [Λ · a0 ⊗ a0] · [
Ft ⊗ at + Ft ⊗ at

]]
. (43)

Recapitulating the structure of the stored energy density function (39), the first term in the above given form of the
stress tensor represents the isotropic part, whereas the second term and the contributions of the couple-stress tensor
correspond to the part that incorporates the fibre properties. For a vanishing fibre bending stiffness, i.e. c = 0, the
model reduces to a classic neo-Hookean material.

In the small strain version of the model that has been discussed in detail in [9,22], the contributions from the
fibre stretch gradient are neglected in the derivation of the stress and couple-stress tensor because they are of higher
order. In contrast thereto, both contributions, namely the fibre curvature and the fibre stretch gradient, are included
in the form of the stress tensors in (42) and (43).

In order to obtain the specific form of the tangent stiffness matrix for the considered energy function, the
sensitivities of the stress and couple-stress tensor are derived and presented in Appendix A.

4.2 Cylindrical tube subject to a pure azimuthal shear deformation

The pure azimuthal shear deformation of a cylindrical tube with radially aligned fibres is considered in order to
compare the numerical results with the semi-analytical solution provided in [25]. In [22], the same problem has
been analysed by means of an isogeometric finite element method for a small strain setting. The model including
finite deformations has been elaborated in [21] by employing a multi-field method.

For an accurate comparison of the results, dimensionless versions of the stress and couple-stress tensor are used,
to be specific

σ ∗ = ri
uϕ μ

ζ 2 − 1

ζ
σ , m∗ = 1

uϕ μ

ζ 2 − 1

ζ
m with ζ = ro

ri
. (44)
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Fig. 2 Boundary conditions and mesh of the cylindrical tube with ncp = 1260 and nel = 832

By using a cylindrical base system {er , eϕ, ez}, uϕ represents the prescribed azimuthal displacement on the surface
of a tube with inner radius ri and outer radius ro, see Fig. 2. The particular values for these quantities will be
determined in Sect. 4.2.1.

4.2.1 Isogeometric model

The isogeometric model for the cylindrical tube with radii ri = 1 mm and ro = 2.5 mm is adopted from [22]. A
polynomial degree of p = 4 is chosen. The employment of linear constraints for the location as well as displacement
of repeated control points leads to global C1-continuity which is sufficient for the fulfilment of the integrability
condition posed by (32). More details on the construction of the cylindrical tube model can be found in [22] and
references cited therein.

In accordance with the calculations in [25], the tube is analysed under a pure azimuthal shear deformation which
is prescribed on the outer radius by means of Dirichlet boundary conditions, whereas the inner radius is fixed.
The azimuthal displacement is chosen in such a way that the outer surface undergoes a rotation of π/9 around the
tube’s middle axis. The outer radius of the tube is not changed by this deformation so that the applied boundary
conditions yield the total volume of the tube to be conserved. Along with this observation, extensible fibres are
assumed in order to obtain pure azimuthal shear in the finite deformation setting, cf. [26]. Surface tractions and
surface couples are assumed to vanish at the outer cylinder radius, i.e. t1 = 0 and t2 = 0. The discretised model
including the particular boundary conditions is shown in Fig. 2. The mesh contains nel = 832 elements and is based
on ncp = 1260 control points.

4.2.2 Numerical results

In the present example, the fibre bending stiffness is represented by the non-dimensional parameter

λ∗ = d f

2 μ ri [ro − ri ] with d f = 8

3
c, (45)
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cf. [22,25]. Within the simulations performed by means of the proposed isogeometric approach, different values
have been employed for this parameter, namely λ∗ ∈ {0.0, 0.005, 0.03, 0.1}. In all cases, the fibres are initially
aligned in radial direction.

In Fig. 3, the deformation pattern of the tube is shown. In the case where λ∗ = 0, no fibres are present in the
material. As the energy contributions belonging to the fibres become active by employing non-zero values for the
parameter, a resistance against bending, which increases in accordance with higher values of λ∗, can be observed.

In Fig. 4a, the results for the dimensionless stress contributions [σrϕ]∗ and [σϕr ]∗ are presented as a function of the
cylinder radius. Fig. 4b shows the respective results for the symmetric stress part [σ sym

rϕ ]∗ as well as for the only non-
zero couple-stress contribution [mrz]∗. The presented solutions for the finite strain setting are not only in accordance
with the results from [21] produced by a multi-field method by using the same constitutive model, but also with those
obtained by the linearised formulation documented in [22]. For a prescribed rotation up to π/9, as employed in this

(a) Detailed view on the deformation pattern of the
cylindrical tube for λ∗ ∈ {0.0, 0.005, 0.03, 0.1}

λ∗ = 0.0
λ∗ = 0.005
λ∗ = 0.03
λ∗ = 0.1

(b) Detailed view on the deformation of a fibre with initial
alignment in e1-direction for λ∗ ∈ {0.0, 0.005, 0.03, 0.1}

Fig. 3 Deformation plots of the cylindrical tube
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tions [σrϕ]∗ and [σϕr]∗ for λ∗ ∈ {0.0, 0.005, 0.03, 0.1}

0

0.5

1

1.5

1.5

2

2

λ∗ = 0.0
λ∗ = 0.005
λ∗ = 0.03
λ∗ = 0.1

radius r

[σsym
rϕ ]∗

[mrz ]∗

(b) Distribution of the dimensionless stress contribu-
tion [σsym

rϕ ]∗ and couple-stress contribution [mrz ]∗ for
λ∗ ∈ {0.0, 0.005, 0.03, 0.1}

Fig. 4 Distribution of the dimensionless stress and couple-stress contributions
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contribution, both formulations show quantitatively coinciding results. Also the semi-analytical solution, which has
been obtained in [25] from the application of a power series method, is in quantitative agreement with the results
as shown in [22]. Whereas these observations hold for the prescribed rotation of π/9 of the outer tube radius, a
deviation from the small strain results in [22,25] is observable when significantly larger deformations are considered.
In Fig. 5a–d, simulation results corresponding to rotations of π/9, π/6 and 2π/9 around the tube’s middle axis
are presented for λ∗ = 0.03. With an increasingly large deformation, the difference between the linearised and the
non-linear modelling approach becomes more pronounced in all stress and couple-stress contributions considered.

4.3 Tensile test of a notched plate

A more complex example is represented by the fibre-reinforced notched plate shown in Fig. 6. By employing an
offset between the notches, a bending deformation mode is activated as a tensile test is performed. The influence of
the fibre bending stiffness parameter c as well as of the initial fibre direction field will be elaborated in this example.

4.3.1 Isogeometric model

In Fig. 6, the mesh for the notched plate is shown and the dimensions of the model are presented. The width of the
inner part of the plate is w = 12 mm and the total length is l = 120 mm. Between the centre points of the circular
notches with radii r = 3

8 w = 4.5 mm, an offset of d = 3
2 w = 18 mm is employed.

The discretisation of the notched plate is obtained by nel = 990 elements. For the approximation of the placement
field and the test function, NURBS basis functions with a polynomial degree of p = 4 are used in accordance with
the previous example. The control polygon thus consists of ncp = 1410 control points. Within the whole domain, a
global continuity of C p−1, accordingly C3, is ensured due to the characteristic properties of NURBS, cf. [27–29].

In analogy to a uni-axial tensile test, the plate is clamped at both ends, meaning that displacements in e2-direction
of the left and right boundary nodes are prevented. In e1-direction, a uniform displacement is prescribed on both
sides. The total elongation of the plate is set to 1/5 of its length so that ‖u‖ = 12 mm. Similar to the previous
example, it is assumed that no surface tractions or surface couples are present, i.e. t1 = 0 and t2 = 0.

4.3.2 Numerical results

Within the isogeometric finite element analysis of the notched plate, two different values of the fibre bending stiffness
parameter are employed and two initial fibre orientations are considered. Specifically speaking, a reinforcement
with fibres that are aligned in e1-direction as well as diagonally aligned fibres are taken into account for fibre
bending stiffness parameters c ∈ {2 × 104 N, 3 × 104 N}. In the case of diagonally aligned fibres, the fibre direction
vector exhibits an angle of α = π/4 to the e1-direction.

In Fig. 7, the deformed configuration of the notched plate is shown after the analysis under the above-mentioned
boundary conditions without the presence of fibres. Due to the particular boundary conditions discussed in Sect.
4.3.1, the plate is stretched in e1-direction and the notches change their shape significantly. The middle part of the
plate undergoes a bending deformation in consequence of the offset between the two notches.

Figure 8 provides a more detailed view on the deformed mesh and compares the deformation pattern for c = 0
and c = 3 × 104 N for fibres aligned with the e1-direction, i.e. α = 0. The largest influence of the fibres on the
overall deformation is obtained in the region of the notches. Due to the bending deformation, the fibre curvature
part in the energy contribution (41) is activated. For the different fibre orientations, Fig. 9 presents the deformed
mesh in more detail. It is shown that for fibres which are aligned with the e1-direction in the initial configuration,
the deformation of the vertical element edges is rather similar to the case of a non-reinforced material. However, if
a fibre angle of α = π/4 is employed in the initial state, a different deformation pattern is obtained in the region
of the circular notches. In particular, the vertical element edges are bent into one preferred direction near the lower
boundary, cf. Fig. 9b.

123



   15 Page 14 of 22 C. Witt et al.

0.5

1

1.5

1.5

2

2 2.5

π/9
π/6

2π/9

radius r

[σ
r
ϕ
]∗

(a) Distribution of the dimensionless stress contribu-
tion [σrϕ]∗ for λ∗ = 0.03 and for a rotation of π/9, π/6
and 2π/9 around the tube’s middle axis

0.5

1

1.5

1.5 2 2.5

π/9
π/6

2π/9

radius r

[σ
ϕ

r
]∗

(b) Distribution of the dimensionless stress contribution
[σϕr]∗ for λ∗ = 0.03 and for a rotation of π/9, π/6 and
2π/9 around the tube’s middle axis

0.5

1

1.5

1.5 2 2.5

π/9
π/6

2π/9

radius r

[σ
sy

m
r
ϕ

]∗

(c) Distribution of the dimensionless stress contribu-
tion [σsym

rϕ ]∗ for λ∗ = 0.03 and for a rotation of
π/9, π/6 and 2π/9 around the tube’s middle axis

0

−0.01

−0.02

−0.03

−0.04

−0.05

1.5 2 2.5

π/9
π/6

2π/9

radius r

[m
r
z
]∗

(d) Distribution of the dimensionless couple-stress contri-
bution [mrz ]∗ for λ∗ = 0.03 and for a rotation of π/9, π/6
and 2π/9 around the tube’s middle axis

Fig. 5 Distribution of the dimensionless stress and couple-stress contributions for different prescribed rotations
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Fig. 6 Boundary conditions and mesh of the notched plate with ncp = 1410 and nel = 990

Fig. 7 Deformed configuration of the notched plate without fibres
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Fig. 8 Detailed view on the
deformed configuration of
the notched plate without
fibres (solid lines) and with
fibres initially aligned in
e1-direction (dashed lines)
with c = 3 × 104 N

(a) Detailed view on the deformed configuration of
the notched plate without fibres (solid lines) and with
fibres initially aligned in e1-direction (α = 0, dashed
lines) with c = 3 × 104 N

(b) Detailed view on the deformed configuration of
the notched plate without fibres (solid lines) and with
diagonally aligned fibres (α = π/4, dashed lines) with
c = 3 × 104 N

Fig. 9 Detailed views on the deformed configurations of the notched plate
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8900−8900

Fig. 10 Distribution of the couple-stress contribution m13 for the notched plate with fibres aligned in e1-direction (top) and with
diagonally aligned fibres (bottom) with c = 2 × 104 N

The distribution of the couple-stresses for the current example is presented in Figs. 10, 11, 12 and 13. Due to
the two-dimensional setting, the only non-zero couple-stress contributions are m13 and m23. The highest values
of these two quantities concentrate in the region of the notches. In addition, non-zero couple-stresses occur in the
transition zones between the middle and end sections of the plate and at the boundary nodes on the left and on the
right ends where the displacement in e2-direction is prevented.
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Fig. 11 Distribution of the couple-stress contribution m13 for the notched plate with fibres aligned in e1-direction (top) and with
diagonally aligned fibres (bottom) with c = 3 × 104 N
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Fig. 12 Distribution of the couple-stress contribution m23 for the notched plate with fibres aligned in e1-direction (top) and with
diagonally aligned fibres (bottom) with c = 2 × 104 N

Regarding the different fibre orientations employed in the simulation, a varying distribution of the couple-stresses
can be observed. In the case of an initial fibre alignment in e1-direction, couple-stresses especially appear in the
region of the notches throughout the whole width of the plate. The absolute values of the contribution m13 are
significantly larger than those of m23. If, on the other hand, the fibres are initially aligned diagonally in the material,
the stresses are more localised at the notches and decrease over the width of plate. Besides, m13 and m23 show
similar distributions.

The distribution of the shear stress contribution σ12 is shown in Fig. 14 together with its symmetric and skew-
symmetric parts exemplary for the case of fibres initially aligned in e1-direction. Similar to the couple-stresses, the
stresses take their maximum values in the inhomogeneously deforming regions close to the notches. In the presented

123



A finite deformation isogeometric FE approach to fibre-reinforced composites with fibre bending stiffness Page 17 of 22    15 

m23 in Nmm−1

m23 in Nmm−1

0

0

6300−6300

630−630

Fig. 13 Distribution of the couple-stress contribution m23 for the notched plate with fibres aligned in e1-direction (top) and with
diagonally aligned fibres (bottom) with c = 3 × 104 N
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c = 3 × 104 N
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Fig. 15 Integrated reaction force in e1-direction in dependence of the prescribed displacement on the right boundary of the notched
plate

example the skew-symmetric stresses take values of the same order as their symmetric counterparts so that both
contributions have a significant impact on the total stress values. This relation, however, depends on the prescribed
fibre bending stiffness parameter. For rather small values, the symmetric part of the stress tensor becomes more
prominent in comparison to the skew-symmetric part, whereas for an increasing fibre bending stiffness, the skew-
symmetric stresses exceed the symmetric contributions. For a fibre bending stiffness parameter of c = 3 × 104 N,
as employed in the results in Fig. 14, the skew-symmetric part of the stress contribution σ12 is dominant.

Figure 15 presents the integrated reaction force in e1-direction over the prescribed displacement value for the
different cases of initial fibre alignment and fibre bending stiffness. It can be observed that the curvature of the
graphs, which show an overall non-linear behaviour, is slightly different depending on the initial fibre direction
and fibre bending stiffness. Especially in the last simulation steps an alignment in e1-direction yields the highest
reaction force. For higher values of the fibre bending stiffness parameter, the material response becomes stiffer and
increasingly distinguishable from the case of a non-reinforced material.

Remark 1 In Sect. 4.1, the energy contribution belonging to a transversely isotropic material behaviour has been
assumed to be constant in order to examine the influence of the higher-gradient contributions, respectively of the
fibre bending stiffness, exclusively. If the influence of this energy part had additionally been taken into account
instead, a more significant difference in the deformations and in the reaction force would have been expected when
comparing the non-reinforced with the fibre-reinforced material.
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5 Concluding remarks

In extension to the isogeometric finite element approach to fibre-reinforced composites possessing fibre bending
stiffness developed in [22] subject to a small strain setting, an isogeometric approach to the general finite strain
version of the problem has been presented in this contribution.

On the basis of the framework introduced in [9], a referential form of the fibre direction gradient has been included
in the stored energy density function through an additional invariant. In particular, this gradient includes the fibre
curvature as well as the gradient of the fibre stretch. For the incorporation of these higher-gradient contributions
into the continuum model, the couple-stress theory has been employed and a partial differential equation of fourth
order has been obtained.

Due to the continuity properties of NURBS basis functions, an isogeometric approach has been used to solve a
discretised version of this equation within a finite element framework. To this end, a global continuity of at least
C1 has been realised for both examples presented in this contribution.

The analysis of a cylindrical tube under pure azimuthal shear with radially aligned fibres has shown that the results
obtained by the presented method are in accordance with the finite element results from [20,22] as well as with the
semi-analytical solution from [25] up to a certain amount of prescribed shear. For significantly large deformations,
a deviation from the results obtained by the linearised formulation can, however, be observed. By the analysis of
a plate with circular offset notches, a more detailed view on the impact of the fibre bending stiffness and initial
fibre direction has been achieved. Especially in the region of the inhomogeneous deformation, the higher-gradient
contributions to the stored energy density function significantly influence the deformation pattern as well as the stress
and couple-stress distribution in the material. Depending on the value of the fibre bending stiffness parameter, the
skew-symmetric and symmetric stress contributions can take similar values. Thus, both parts contribute significantly
to the total stresses.

Overall, this contribution established a basis for the modelling of complex boundary value problems including
fibre-reinforced composites with fibre bending stiffness in a general finite deformation setting. In future works,
this basic approach shall be used for advanced constitutive modelling such as for materials with initially curved
fibres and extended by employing additional deformation modes like fibre twist. Also complex three-dimensional
structures shall be analysed with the proposed method.
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Appendix A: Tangent stiffness and sensitivities

The tangent stiffness matrix which is used in the iterative solution scheme (38) is derived as

K =
nel

A
e=1

nen∑

A=1

nen∑

B=1

∫

Be
0

∇X R
A · J F−1 · ∂σ sym

∂F
· ∇X R

B + ∇X R
A · F−1 · σ sym ⊗ cof(F) · ∇X R

B

− ∇X R
B · F−1 · σ sym ⊗ cof(F) · ∇X R

A + ∇X R
A · J F−1 · ∂σ sym

∂Υ
: ∇X∇X R

B dV

+ 1

2

∫

Be
0

− ε ·
[
∇X R

A ·
[
F−1 ⊗ cof(F)

]
: Υ · F−1

]
: ∂mt

∂F
· ∇X R

B

− ε ·
[
∇X R

A ·
[
F−1 ⊗ cof(F)

]
: Υ · F−1

]
: mt ⊗ F−t · ∇X R

B

+ ε ·
[
∇X R

A ·
[
F−1 ⊗ cof(F)

]
: Υ

]
:
[
mt · F−t · ∇X R

B ⊗ F−1
]

− [
ε · mt · cof(F)

] :
[
F−t · ∇X R

B ⊗
[
F−t ·

[
∇X R

A · F−1 · Υ
]]t

]

− [
ε · mt · cof(F)

] :
[
F−t ·

[
∇X R

B · F−1 · Υ
]]

⊗ F−t · ∇X R
A

+
[
ε · [

F−t ⊗ cof(F)
] : ∇X∇X R

A
]

: ∂mt

∂F
· ∇X R

B

+
[[

ε · mt · cof(F)
] :

[
F−t ⊗ ∇X R

B
]]

· ∇X∇X R
A · F−1

+ [
ε · mt · cof(F)

] :
[
F−t · ∇X R

B ⊗
[
F−t · ∇X∇X R

A
]

: [
I ⊗ I

]]

− [
ε · mt · cof(F)

] :
[
F−t · ∇X∇X R

A
]

⊗ F−t · ∇X R
B

−
[
ε ·

[
∇X R

A ·
[
F−1 ⊗ cof(F)

]
: Υ · F−1

]]
: ∂mt

∂Υ
: ∇X∇X R

B

+ [
ε · mt] : [

F−t ⊗ cof(F)
] : ∇X∇X R

B ⊗ F−t · ∇X R
A

+
[
ε · [

F−t ⊗ cof(F)
] : ∇X∇X R

A
]

: ∂mt

∂Υ
: ∇X∇X R

B dV . (46)

The sensitivities of the symmetric part of the stress tensor as well as of the couple-stress tensor which are employed
in the representation of the tangent stiffness matrix (46) are based on the stored energy density function (39) and
read

∂σ sym

∂F
=

[
λ

2
[I3 − 1] F · C−1 + μ F ·

[
I − C−1

]]
· Ft ⊗ ∂ J−1

∂F

+ J−1 I ⊗ F ·
[
λ

2
[I3 − 1] C−1 + μ

[
I − C−1

]]

+ J−1F ·
[
λ

2
[I3 − 1] C−1 + μ

[
I − C−1

]]
⊗ I + λ

2
J−1F ·

[
C−1 · Ft

]
⊗ ∂ I3

∂F

+ J−1
[
λ

2
[I3 − 1] − μ

] [
F ⊗ F

] : ∂C−1

∂F

+ 2 c

[
[G · a0 ⊗ F · Λ · a0 + F · Λ · a0 ⊗ G · a0] ⊗ ∂ J−1

∂F

+ J−1 [
G · a0 ⊗ I ⊗ Λ · a0 + I ⊗ [G · a0 ⊗ Λ · a0]

]
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+ J−1 [
I ⊗ I

] :
[

[F · Λ · a0 ⊗ a0] ·
[
[
I ⊗ I

] : ∂G
∂F

]]
+ J−1 [G · a0 ⊗ F ⊗ a0] : ∂Λ

∂F

+ J−1 [
I ⊗ I

] :
[

[G · a0 ⊗ F ⊗ a0] : ∂Λ

∂F

]
+ J−1F · Λ · a0 ⊗ a0 · ∂Gt

∂F

]
, (47)

∂σ sym

∂Υ
= 2 c J−1

[
[
I ⊗ I

] :
[
[
a0 ⊗ [Λ · a0] · Ft]t · ∂Gt

∂Υ

]
+ [G · a0 ⊗ F ⊗ a0] : ∂Λ

∂Υ

+ [
F ⊗ [

a0 · Gt ⊗ a0
]] : ∂Λ

∂Υ
+ [F · Λ · a0 ⊗ a0] · ∂Gt

∂Υ

]
, (48)

∂mt

∂F
= −4

3
c

[
ε : [

F · Λ · a0 ⊗ a0 · Ft ⊗ at
] ⊗ ∂ J−1

∂F
+ ε : [

F · Λ · a0 ⊗ a0 · Ft ⊗ at
] ⊗ ∂ J−1

∂F

+ J−1 [ε · at ] ⊗ [
a0 · Ft ⊗ Λ · a0

] + J−1 [ε · F · a0] ⊗ [at ⊗ Λ · a0]

+ J−1 [
I ⊗ I

] :
[[
a0 · Ft] ⊗ [[ε · at ] · F ⊗ a0] : ∂Λ

∂F

]

+ J−1 [
I ⊗ I

] :
[
at ⊗ [[

ε · [
a0 · Ft]] · F ⊗ a0

] : ∂Λ

∂F

]

+ J−1 [ε : [F · Λ · a0 ⊗ at ] ⊗ a0] ⊗ I − J−1 [ε · F · Λ · a0] ⊗ [at ⊗ a0]

+ J−1ε :
[[

F · Λ · a0 ⊗ a0 · Ft] ⊗ ∂at
∂F

]
+ J−1ε : [

F · Λ · a0 ⊗ a0 · Ft] ⊗ ∂at
∂F

]
, (49)

∂mt

∂Υ
= −4

3
c J−1ε :

[
[F ⊗ at ] :

[
I ⊗ [

I ⊗ [
a0 · Ft ⊗ a0

]] ]

+ [
F ⊗ a0 · Ft] :

[
I ⊗ [

I ⊗ [at ⊗ a0]
] ]]

: ∂Λ

∂Υ
. (50)

The sensitivities of the kinematic quantities with respect to the deformation gradient as well as to the second gradient
of the placement function are

∂C−1

∂F
= ∂C−1

∂C
: ∂C

∂F
with

∂C−1

∂C
= − 1

2

[
C−1 ⊗C−1 + C−1 ⊗C−1

]
,

∂C
∂F

= I ⊗ Ft + Ft ⊗ I, (51)

∂ J−1

∂F
= −J−1F−t,

∂ I3
∂F

= 2 I3 F−t,
∂at
∂F

= I ⊗ a0,
∂G
∂F

= I ⊗ [∇Xa0]t , (52)

∂Λ

∂F
= I ⊗ [

a0 · [
I ⊗ I

] : Υ
] : [

I ⊗ I
] + I ⊗ [

[F · ∇Xa0] : [
I ⊗ I

]] + Ft ⊗ [∇Xa0]t , (53)

∂C
∂Υ

= 0,
∂G
∂Υ

= I ⊗ I ⊗ a0,
∂Λ

∂Υ
= Ft ⊗ I ⊗ a0. (54)
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