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Meta-analyses of correlation coefficients are an important technique to integrate results
from many cross-sectional and longitudinal research designs. Uncertainty in pooled
estimates is typically assessed with the help of confidence intervals, which can double as
hypothesis tests for two-sided hypotheses about the underlying correlation. A standard
approach to construct confidence intervals for the main effect is the Hedges-Olkin-Vevea
Fisher-z (HOVz) approach, which is based on the Fisher-z transformation. Results from
previous studies (Field, 2005, Psychol. Meth., 10, 444; Hafdahl and Williams, 2009, Psychol.
Meth., 14, 24), however, indicate that in random-effects models the performance of the
HOVz confidence interval can be unsatisfactory. To this end, we propose improvements
of the HOVz approach, which are based on enhanced variance estimators for the main
effect estimate. In order to study the coverage of the new confidence intervals in both
fixed- and random-effects meta-analysis models, we perform an extensive simulation
study, comparing them to established approaches. Data were generated via a truncated
normal and beta distribution model. The results show that our newly proposed
confidence intervals based on a Knapp-Hartung-type variance estimator or robust
heteroscedasticity consistent sandwich estimators in combination with the integral z-to-r
transformation (Hafdahl, 2009, Br. J. Math. Stat. Psychol., 62, 233) provide more accurate
coverage than existing approaches in most scenarios, especially in the more appropriate
beta distribution simulation model.

I. Introduction

Quantifying the association of metric variables with the help of the Pearson correlation
coefficient is a routine statistical technique for understanding patterns of association. It is
abasic ingredient of the data analysis of many cross-sectional and longitudinal designs, and
is also indispensable for various psychometric and factor-analytic techniques. When
several reports are available for comparable underlying populations, meta-analytic
methods allow the available evidence to be pooled (Hedges & Olkin, 1985; Hunter &
Schmidt, 2004), resulting in more stable and precise estimates.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

*Correspondence should be addressed to Thilo Welz, Department of Statistics, Mathematical Statistics and
Applications in Industry, TU Dortmund University, Logistik Campus, Joseph- von-Fraunhofer-Strale 2-4, 44227
Dortmund, Germany (email: thilo.welz@tu-dortmund.de).

DOL:10.1111/bmsp.12242


https://orcid.org/0000-0001-6223-5698
https://orcid.org/0000-0001-6223-5698
https://orcid.org/0000-0001-6223-5698
https://orcid.org/0000-0002-2946-8526
https://orcid.org/0000-0002-2946-8526
https://orcid.org/0000-0002-2946-8526
https://orcid.org/0000-0002-0976-7190
https://orcid.org/0000-0002-0976-7190
https://orcid.org/0000-0002-0976-7190
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbmsp.12242&domain=pdf&date_stamp=2021-05-02

2 Thilo Welz et al.

Systematic reviews based on meta-analyses of correlations are among the most cited in
industrial and organizational psychology, clinical psychology and educational psychology
(e.g. Aldao, Nolen-Hoeksema, & Schweizer, 2010; Barrick & Mount, 1991; Sirin, 2005 each
with several thousand citations), and the methodological monograph on pooling
correlations of Hunter and Schmidt (2004) is approaching 10,000 citations on Google
Scholar at the time of writing. In addition, pooled correlations are the basis for meta-
analytic structural equation modelling (e.g., Cheung, 2015; Jak, 2015, and registered
replication efforts pool correlations to reassess findings of others (e.g., Open Science
Collaboration, 2015).).

I.1. The importance of confidence intervals for pooled correlations

Schulze (2004) provides a comprehensive summary of fixed- and random-effects meta-
analysis of correlations. The best-known approaches are based on Fisher’s z transformation
(Field, 2001, 2005; Hafdahl & Williams, 2009; Hedges & Olkin, 1985) or on direct synthesis
of correlations via the Hunter-Schmidt (HS) method (Hunter & Schmidt, 1994; Schulze,
2004). Regardless of the method and the purpose of the meta-analysis, the point estimate of
the correlation is accompanied by an estimate of its uncertainty, in the form of a standard
error (SE) or a confidence interval (CI). Since the absolute value of a correlation is bounded
by 1, a CI might be asymmetric in this context, that is, not centred around the point estimate.
Also, CIs are often more useful than SEs, because a null hypothesis of the form Hy : p=p,
can be rejected at level a if a 100 (1 — a)% CI does not include p,, (duality of hypothesis
testing and CIs). A CI's coverage is ideally close to the nominal 1 — a level; for example, a
multi-centre registered replication report does want to rely either on an anti-conservative
(too narrow) CI that is overly prone to erroneously rejecting previous research, or on a
conservative (too wide) CI lacking statistical power to refute overly optimistic point
estimates. Despite methodological developments since the late 1970s, the choice of a CI for
a pooled correlation should be a careful one: simulation experiments reported in this paper
reinforce the finding that CIs are too liberal when heterogeneity is present. The main
objective of this paper is a systematic investigation of competing methods, especially when
moderate or even substantial amounts of heterogeneity are present, promising refined meta-
analytic methods for correlations, especially those based on the Fisher z transformation. The
remainder of this introduction reviews results for (z-transformation-based) pooling, and
briefly introduces relevant methods for variance estimation.

1.2. Pooling (transformed) correlation coefficients
Aline of research summarized in Hunter and Schmidt (1994) pools correlation coefficients
on the original scale from —1 to 1. One of the merits of the HS methodology is a clear
rationale for artefact corrections, that is, correlations are disattenuated for differences at
the primary report level in reliability or variable range. While this part of the HS
methodology is beyond the scope of the current paper, CIs originating from Osburn and
Callender (1992) are studied here as an HS-based reference method (see also Field, 2005).
Fisher’s z-transformation (= areatangens byperbolicus) maps the open interval
(—1,1) to the real number line. Working with z values of correlations avoids problems
arising at the bounds and makes normality assumptions of some meta-analytic models
more plausible (Hedges & Olkin, 1985). Field (2001) presents a systematic simulation
study, and describes scenarios with too liberal behaviour of the HS methodology, but also
reports problems with z-transformed pooled values. A simulation strategy is also at the
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core of Field (2005), who places a special emphasis on heterogeneous settings. He finds
similar point estimates for z-transformation-based and HS pooling, with the CIs from the
HS method too narrow in the small-sample case. The simulation study of Hafdahl and
Williams (2009) includes a comprehensive account of random-effects modelling and
related sources of bias in point estimates. Focusing on point estimation, Hafdahl and
Williams (2009) defend z-transformed pooling, but Hafdahl (2009) recommends the
integral z-to-r transformation as a further improvement. In the spirit of Hafdahl and
Williams (2009), the current paper focuses on variance estimators and resulting Cls,
especially in the case of heterogeneity.

1.3. Estimating between-study variance

All CIs studied here are of the form g(é =+ Gé), for an appropriate back-transformation g
(which is not needed in the HS approach), a point estimator 0 and its SE estimator 6,,
which depends on the between-study variance estimation. The quality of the CI will
depend on an appropriate choice. In other words, especially when primary reports are
heterogeneous and the underlying study-specific true correlations vary, good estimators
of the between study variance are needed to obtain neither too wide nor too narrow CIs.

The comprehensive study of Veroniki et al., (2016) supports restricted maximum
likelihood estimation (REML) as a default estimator of the between-study variance. Since
large values of the mean correlation cause REML convergence problems, the robust two-
step Sidik and Jonkman (2006) estimator is adopted here. Recently, Welz and Pauly (2020)
showed that in the context of meta-regression, the Knapp—Hartung (KH) adjustment
(Hartung, 1999; Hartung & Knapp, 2001) aided (co)variance estimation, motivating the
inclusion of KH-type ClIs in the subsequent comparison.

Less well known in the meta-analysis literature are bootstrap methods for variance
estimation, which are not necessarily based on a parametric assumption for the random-
effects distribution. The Wu (1986) wild bootstrap intended for heteroscedastic situations
is evaluated here. Bootstrapping is complemented by sandwich estimators (heteroscedas-
ticity consistent, HC; White, 1980) which Viechtbauer, Lopez-Lopez, Sinchez-Meca, and
Marn-Martnez (2015) introduced in the field of meta-analysis. Recently, a wide range of HC
estimators were calculated by Welz and Pauly (2020), whose comparison also includes the
more recent HC4 and HC5 estimators (Cribari-Neto, Souza, & Vasconcellos, 2007; Cribari-
Neto & Zarkos, 2004). In sum, the following comparison includes a comprehensive
collection of established and current variance estimators and resulting CIs.

In Section 2 we introduce the relevant models and procedures for meta-analyses of
correlations with more technical detail, as well as our proposed refinements. In Section 3
we perform an extensive simulation study and present the results. In Section 4 we present
an illustrative data example on the association of conscientiousness (in the sense of the
NEO-PI-R; Costa Jr and McCrae, 1985, 2008) and medication adherence (Molloy,
O’Carroll, & Ferguson, 2013). Section 5 concludes the paper with a discussion of our
findings and give an outlook for future research.

2. Meta-analyses of Pearson correlation coefficients

For a bivariate metric random vector (X,Y) with existing second moments the correlation
coefficient p=Cov(X,Y)/y/Var(X)Var(Y) is usually estimated with the (Pearson)
correlation coefficient
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i (X —X) (9, ~ )

\/Zz 1 (7 —X) \/Zzl i

where (x;,;), i=1,--+,n, are independent observations of (X,Y).

The Pearson correlation coefficient is asymptotically consistent, that is, for large
sample sizes, its value converges to the true p. It is also invariant under linear
transformations of the data. However, its distribution is difficult to describe analytically
and it is not an unbiased estimator of p, with an approximate bias of
E(r—p)x—1p(1—p?)/(n—1) (Hotelling, 1953).

As correlation-based meta-analyses with » as effect measure occur frequently in
psychology and the social sciences we briefly recall the two standard models (see
Schwarzer, Carpenter, & Riicker, 2015): the fixed- and random-effects models. The fixed-
effect meta-analysis model is defined as

@M

y,=p+eni=1,...,K, ©))

where p denotes the common (true) effect, that is, the (transformed) correlation in our
case, K the number of available primary reports, and y,; the observed effect in the 7 th study.
The model errors €; are typically assumed to be normally distributed with &; ind ~ N (0, Gf) .
In this model the only source of sampling error comes from within the studies. The
estimate of the main effect p is then computed as a weighted mean via

. Kw,

where w:= Y& w, and the study weights w; = 6; 2 are the reciprocals of the (estimated)
sampling variances 3?. This is known as the inverse variance method. The fixed-effect
model typically underestimates the observed total variability because it does not account
for between-study variability (Schwarzer et al., 2015). However, it has the advantage of
being able to pool observations, if individual patient data (IPD) are in fact available,
allowing for greater flexibility in methodology in this scenario.

The random-effects model extends the fixed-effect model by incorporating a random
effect that accounts for between-study variability, such as differences in study population
or execution. It is given by

uz:p+ui+8ia izl,“'aKa (4)

where the random effects u; are typically assumed to be independent and N(0,t?)dis-
tributed with between-study variance t?and ¢g;ind ~ I (0, cf). Furthermore, the random
effects (u,); and the error terms (€;), are jointly independent. Thus, for 72 =0, the fixed-
effect model is a special case of the random-effects model. The main effect is again
estimated via the weighted mean ji given in equation (3) with study weights now defined
as w; = (67 +42)7!

A plethora of approaches exist for estimating the heterogeneity variance t2. Which
estimator should be used has been discussed for a long time, without reaching a definitive
conclusion. However, a consensus has been reached that the popular and easy-to-
calculate DerSimonian-Laird estimator is not the best option. Authors such as Veroniki
etal., (2016) and Langan et al., (2019) have recommended using iterative estimators for t2.
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‘We therefore (initially) followed their suggestion and used the REML estimator. However,
in some settings, such as large pvalues, the REML estimator had trouble converging, even
after the usual remedies of utilizing step halving and/or increasing the maximum number
of permitted iterations. We therefore opted to use the two-step estimator suggested by
Sidik and Jonkman (§)), which is defined by starting with a rough initial estimate of

;=LY% (y,—»)’ and is then updated via the expression

1 K
A2 AN2
Ty = m; wi(y; — )", &

K K
where w; = (15/(6; +%(2)))71 and fi= Y w;y,/ Y w;, Sidk & Jonkman, 2005). A
i=1 i=1

comprehensive comparison of heterogeneity estimators for t%in the context of random-
effects meta-analyses for correlations would be interesting but is beyond the scope of this
paper.

Before discussing different CIs for the common correlation p within model (4), we take
a short excursion on asymptotics for » in the one-group case.

2.1. Background: Asymptotic confidence intervals
Assuming bivariate normality of (X, Y), r is approximately distributed as A" (p, (1 — p2)? /n)
for large sample sizes n (Lehmann, 2004). Here, bivariate normality is a necessary
assumption to obtain (1— p2)2 in the asymptotic variance (Omelka & Pauly, 2012).
Plugging in 7, we obtain an approximate 100(1—a)% CI of the form
r+uy_o2(1—7*)/\/n, where u,_,/, denotes the (1—a/2) quantile of the standard
normal distribution.

In fixed-effect meta-analyses, when IPD are available, this result can be used to
construct a CI based on pooled data: calculating p,, the pooled sample correlation
coefficient, we obtain an approximate CI for p as

. (1 - ﬁgool)
Ppool £ ”1701/27, (©)

where N := Zf:ln,- is the pooled sample size. As this pooling of observations only makes
sense if we assume that each study has the same underlying effect, this approach is not
feasible for a random-effects model, even if IPD were available. In any case, even under IPD
and a fixed-effects model, this CI is sensitive to the normality assumption and the
underlying sample size, as we demonstrate in Table 1 for the case K = 1. We simulated
bivariate data from standard normal and standardized lognormal distributions' with
correlation pe{.3, .7}and study size n€{20, 50, 100}. In each setting we performed
N = 10,000 simulation runs. For the lognormal data coverage is extremely poor in all
cases, ranging from 53-80%. For the normally distributed case coverage was somewhat
low at 90% for n = 20 but improved for larger sample sizes. This case study clearly
illustrates that alternatives are needed when the data cannot be assumed to stem from a
normal distribution or sample sizes are small.

! Further details regarding the data generation can be found in the online supplementary materials.
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Table 1. Empirical coverage of the asymptotic confidence interval for K=1, study size
n€{20, 50,100} and correlation p€{0.3,0.7}

N
Distribution P 20 50 100
Normal 3 .90 93 .94
7 .90 .92 94
Lognormal 3 79 .80 .79
7 .63 57 53

After this short excursion we return to model (4) and ClIs for p.

2.2. The Hunter--Schmidt approach
The aggregation of correlations in the Hunter—-Schmidt approach is done by sample size
weighting:

K
1T
ras = 721}1 . @)

i1

Several formulae have been recommended for estimating the sampling variance of this
mean effect size estimate. We opted for a suggestion by Osburn and Callender (1992),

o (X (i —ras)®
Zf:l"i ,

Ore =
HS K

®

which is supposed to perform reasonably well in both heterogeneous and homogeneous
settings (Schulze, 2004). In the simulation study we will investigate whether this is in fact
the case for the resulting CI, rgs £ 2| _/20mns-

2.3. Confidence intervals based on the Fisher z transformation

A disadvantage of the asymptotic confidence interval (6) is that the variance of the limit
distribution depends on the unknown correlation p. This motivates a variance-stabilizing
transformation. A popular choice for correlation coefficients is the Fisherz transforma-
tion (Fisher, 1915),

1
p—z==In

1
5 <ﬂ> =atanh(p). ©))

I-p

The corresponding inverse Fisher transformation is z—tanh(z)= (exp(2z)—1)/
(exp(2z)+1).

The variance-stabilizing property of the Fisher transformation follows from the
Smethod (Lehmann, 2004); that is, if +/z%(r—p)—947(0,(1—p?)>) then
Vn(2 —z) = y/n(atanh(r) —atanh(p))—4.47(0, 1). Following, it is reasonable to substitute
\/nby, v/n —3that is, to approximate the distribution of Zby, .4"(atanh(r),1/(n — 3)) still
assuming bivariate normality. Thus, a single-group approximate 100(1 —a)% CI can be
constructed via tanh (2 + 2_,/2/VN —3).
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In the random-effects model (4), the z transformation may also be used to construct a
CI for the common correlation p. Here, the idea is again to use inverse variance weights to
define

a0

where z; = atanh(r;). A rough estimate of the variance of Z is given by (Zf:lw,‘)il. In the
fixed-effect case with 1>=0 this yields the variance estimate
(X5, (ni— 3))71 =(N—3K)"'. Then Z/N—3K approximately follows a standard
normal distribution and an approximate 100(1—a)% CI is given by
tanh (Z+ Ul q)2 /v/N —3K). Proceeding similarly in the random-effects model (4), one
obtains the Hedges—Olkin—Vevea Fisher-z(HOV z) CI

X 1/2
tanh(Eiul,a/z/(gwi) ), an

with w; = (1/(n; —3) 4—1?2)71 (Hafdahl & Williams, 2009; Hedges & Olkin, 1985; Hedges
& Vevea, 1998).

2.3.1. Knapp-Hartung-type Cl

The above approximation of the variance of z via (Zl{ilw,‘)ilcan be rather inaccurate,
especially in random-effects models. Although this is the exact variance of Z when the
weights are chosen perfectly as w; = (67 + 12)71, this variance estimate does not protect
against (potentially substantial) errors in estimating 6; and 7 (Sidik & Jonkman, 2006).
Therefore, we propose an improved CI based on the KH method (Hartung & Knapp,
2001). Knapp and Hartung proposed the following variance estimator for the estimate fiof
the main effect yin a random-effects meta-analysis (REMA):

A 1 K
Gk = Varkn (1) = —— 3 (1, — )%, a2

where again w= ZlK:lw, showed that if {i is normally distributed, then (i —p)/6xn
follows a t distribution with K —1 degrees of freedom. Therefore an approximate
100 (1 — a)% CI for p is given by

tanh (E:l:tK—l,l—(x/Z . 6KH)7 as

where tx_y1_q/2 is the 1 —a/2 quantile of the ¢ distribution with K —1 degrees of
freedom. Because of the approximately normal distribution of z-transformed correlations,
the CI ((13)) seems justified. Various authors have highlighted the favourable perfor-
mance of the KH approach compared to alternative meta-analytic methods (IntHout,
Ioannidis, & Borm, 2014; Viechtbauer et al., 2015; Welz & Pauly, 2020). Analogously to
(13), we can construct further CIs by using other variance estimation procedures for
Var(it).



8 Thilo Welz et al.

2.3.2. Wild bootstrap approach

Another possibility for estimating the variance of Z is through bootstrapping. Bootstrap-
ping belongs to the class of resampling methods. It allows the estimation of the sampling
distribution of most statistics using random sampling methods. The wild bootstrap is a
subtype of bootstrapping that is applicable in models which exhibit heteroscedasticity.
Roughly speaking, the idea of the wild bootstrap approach is to resample the response
variables based on the residuals. The idea was originally proposed by Wu (1986) for
regression analysis.

We now propose a confidence interval for p based on a (data-dependent) wild
bootstrap (WBS) approach combined with the ztransformation. The idea works as
follows. We assume an REMA model with Pearson’s correlation coefficient as the effect
estimate (and K >3 studies). Given the estimated study-level correlation coefficients
r;, i=1,---,K, we transform these using ztransformation to 2;, i =1, ---,K, and estimate
z=atanh(p)via 2= (w;/w)z;, where again w;=(6; —|—'Ar2)_1 with 67 = o and
w =) ,w;. Here, #2 may be any consistent estimator of the between-study heterégeneity
72, where we have chosen the SJ estimator. We then calculate the estimated residuals
&=2—2; and use these to generate B new sets of studylevel effects
ﬁjb,...,zib,b: 1,...,B. Typical choices for Bare 1,000 or 5,000. The new study-level
effects are generated via

ZA':b SZZA','—FE'Z"UI’, (14)

where v; ~.4°(0,y). The usual choice of variance in a WBS is y=1. However, we
propose a data-dependent choice of either y, = (K —1) /(K —3) oryxy = (K —2)/(K —3).
These choices are based on simulation results, which will be discussed in detail in
Section 3. We will later refer to these approaches as WBS1, WBS2 and WBS3, respectively.
The corresponding values foryare 1, (K — 1) /(K —3) and (K — 2) /(K — 3). This allows us
to generate B new estimates of the main effect z by calculating

K % g%
2 Wit

K 5 ’
i1 Wa

. * . . oo PR . ¥ ¥
with w;, =w;. We then estimate the variance of £ via the empirical variance of z,---, 2,

K
Zp=

as

1 B .
6.2 =——Y (%

_*)2 .th_* 1 % K3
-z)7, withz ==Y 2z,
* B-145"" Bio!

It is now possible to construct a CI for z as in equation (13) but with this new variance
estimate of —z. The ClI is back-transformed via the inverse Fisher transformation to obtain
a CI for the common correlation p, given by

tanh (,ZA'j:&:'tK,l,l,a/z). (16)
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Ti | M Commetons 1o 7 Zi | M| G
0.37 | 43 ffxﬁt?fi?fiual; 0.39 | 43 |-0.22
0.14 | 35 0.14 | 35 | 0.03
0.07 | 29 20.07 | 29 | 0.24 b
0.21 | 112 0.21 | 112 | -0.04 |_—| mntomiy
0.19 | 85 0.19 | 85 | -0.02
Repeat B
* / & U €i Vi
Rlep 0222 — 039 | 43 |-022] 0.7
- et en 0.14 | 35 | 0.03 | -0.20
: -0.071 29 | 0.24 | 1.53
B Fitnew REMA 0.21 | 112 | -0.04 | 1.57
estimate 0.19 | 85 |-0.02| 0.32

Figure 1. Visual illustration of the wild bootstrap procedure for generating B bootstrap samples of
the main effect estimate on the z scale. REMA, random-effects meta-analysis.

Figure 1 provides a visual illustration of the WBS procedure discussed above.

2.3.3. HC-type variance estimators

Last but not least, we employ beteroscedasticity consistent variance estimators [sandwich
estimators; White, 1980). Different forms (HCO,...,.HC5) are in use for linear models
(Rosopa, Schaffer, & Schroeder, 2013). The motivation for the robust HC variance
estimators is that in a linear regression setting the usual variance estimate is unbiased
when unit-level errors are independent and identically distributed. However, when the
unit-level variances are unequal, this approach can be biased. If we apply this to the meta-
analysis context, the study-level variances are almost always unequal due to varying
sample sizes. Therefore, it makes sense to consider variance estimators that are unbiased
even when the variances of the unit (study) level variances are different.

The extension of HC estimators to the meta-analysis context can be found in
Viechtbauer etal., (2015) for HCy and HC; and in Welz and Pauly (2020) for the remaining
HC,,---,HCs. Statistical tests based on these robust estimators have been shown to
perform well, especially those of types HC3; and HCy. In the special case of an REMA they
are defined as
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withé; =2, —2,x; =w;/ Z w;andx =K' Z x;; [see the Appendix S1 of Welzand Pauly,
2020 for details). Plugg]ng them into equatlon (13) leads to the confidence intervals

tanh (2 +6uc,  tk—1,1-a/2), = 3.4 an

2.3.4. Integral z-to-r transformation

There is a fundamental problem with back-transforming CIs on the z scale using the
inverse Fisher transformation tanh. Consider a random variable & : ./"(artanh(p), %) with
some variance 6% >0 and p#0. Then p = tanh(E(£))#E(tanh(€)) by Jensen’s inequality.
This means the back-transformation introduces an additional bias. A remedy was
proposed by Hafdahl (2009), who suggested back-transforming from the z scale using an
integral z-to-r transformation. This transformation is the expected value of tanh(z) where
z: N (py,72) that is,

winted) = [ tanh(elr (e, as)

where fis the density of z. In practice we apply this transformation to the lower and upper
confidence limits on the z scale, plugging in the estimates £ and %2 For example, for the
KH-based CI (13) with z scale confidence bounds (=Z—tg_ 11 4 /2 0xn and
U=Z+1Ig_11-a/2 Oxn, With an estimated heterogeneity 17 (on the z scale), the CI is
given by

(w(elz2), w(ulz)).

If the true distribution of 2 is well approximated by a normal distribution and %ﬁ isa
good estimate of the heterogeneity variance (on the z scale), y should improve the CIs as
compared to simply back-transformation with tanh (Hafdahl, 2009). Following this
argument, we also suggest using y instead of tanh. We calculate the integral with
Simpson’s rule (Siili & Mayers, 2003), which is a method for the numerical approximation
of definite integrals. Following Hafdahl (2009), 150 subintervals over £+ 5 - 75y were used.
Note that the HOVz CI is implemented in its original formulation, using tanh.

3. Simulation study

We have suggested several new CIs for the mean correlation p, all based on the z
transformation, applicable in both, fixed- and random-effects models. In order to
investigate their properties (especially coverage of p), we perform extensive Monte Carlo
simulations. We focus on comparing the coverage of our newly suggested ClIs with
existing methods.

3.1. Simulation study design
The Pearson correlation coefficient is constrained to lie in the interval [—1,1]. The typical
random-effects model p; = p+u; + ¢;, assuming a normal distribution for the random
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effect u;, ~ N (0,12) and error term & ~ A" (O,Gf), needs to be adjusted, since values
outside of [—1, 1] could result when sampling without any modification.

3.1.1. Model |

As a first option for generating the (true) study-level correlations, we consider a truncated
normal distribution p, ~ ./"(p,7?): Sampling of p, is repeated until a sample lies within the
interval [—0.999, 0.999]. This type of truncated normal distribution model was also used
in Hafdahl and Williams (2009) and Field (2005). A problem with this modelling approach
is that the expected value of the resulting truncated normal distribution is in general not
equal to p. For a random variable X stemming from a truncated normal distribution with
mean p, variance 62, lower bound @ and upper bound b,

where Ay = (a—p)/o, A= (b—p)/c and § = D(A;) — D(A;) Johnson, Kotz, & Balakr-
ishnan, 1994). Here ¢(-) is the probability density function of the standard normal
distribution and ®(+) its cuamulative distribution function. Figure $15 shows the bias in our
setting with a=—0.999 and b =0.999. The bias is equal to o($p(A;) —P(Az))/d. In
addition to generating a biased effect, the truncation also leads to a reduction of the overall
variance, which is smaller than 2.

3.1.2. Model 2

We therefore studied a second model, in which we generate the (true) study-level effects
p, from transformed beta distributions: Y; =2(X; —0.5) with X; ~Beta(a, ) for studies
i=1,---,K. The idea is to choose the respective shape parameters a,} such that

E(Y:)=2- (L—os) =,
a+p

4
Var(Y;) = ap =77

(a+p)(a+p+1)

The solution to the system of equations above is

_(l—p)(1+p)—rz.<1+p>’

o T2 2

1 —
= (_p) a.
1+p
In this second simulation scenario we also truncate the sampling distribution of the
correlation coefficients to [—0.999,0.999], but values outside of this interval are

considerably rarer. The second model has the advantages that the expected value and
variance are approximately correct, unlike in the first (truncated) model. A disadvantage is
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that for extreme 12 values, the above solution for a (and thus ) may become negative,
which is undefined for parameters of a beta distribution. However, this was not a concern
for the parameters considered in our simulation study and only occurs in more extreme
scenarios.

3.1.3. Parameter choices

In order to get a broad overview of the performance of all methods, we simulated various
configurations of population correlation coefficient, heterogeneity, sample size and
number of studies. Here we chose the correlations pef{0,.1,.3,.5,.6,.7,.8,.9}and
heterogeneity T1€{0,0.16,0.4}. We used the same values for t as Hafdahl and Williams
(2009), to enable comparability of our simulation studies. Moreover, we considered small
to large numbers K €{5, 10, 20, 40} of studies with different study sizes. For K = 5, we
considered 77 = (15, 16, 19, 23, 27) as vector of ‘small’ study sizes and 4 - 7 for larger study
sizes, corresponding to an average study size (72) of 20 and 80 subjects, respectively. For all

other choices of K we proceeded similarly, stacking copies »n behind each other, for
example, the sample size vectors (ﬁ, ﬁ) and 4 - (ﬁ, ﬁ) for K = 10. By way of comparison,

Hafdahl and Williams (2009) considered 5 < K <30. As we wanted to capture the
methods’ behaviour when many studies are present, we also included the setting K = 40
in our simulation study. Additionally, we accounted for variability in study sizes, which
will be present in virtually any meta-analysis in practice. Additionally, we considered two
special scenarios: the case of few and heterogeneous studies, with study size vector

(23,19,250,330,29) and the case of many large studies, with study size vector (ﬁ n )

withz = (210,240,350, 220,290, 280,340,400,380,290). The latter case corresponds to
K = 20 studies with an average of 300 study subjects.

Thus, in total we simulated 8(p) x 3(1?) x 10(K, studysizevector) x (models) = 480
different scenarios for each type of confidence interval discussed in this paper. For each
scenario we performed N = 10,000 simulation runs, where for the WBS CI each run was
based upon B=1,000 bootstrap replications. The primary focus was on comparing
empirical coverage, with nominal coverage being 1 —a=.95. For 10,000 iterations, the
Monte Carlo standard error of the simulated coverage will be approximately
/95 %x.05/10000~0.218% , using the formula provided in the recent work on simulation
studies by Morris, White, and Crowther (2019).

All simulations were performed using the open-source software R. The R scripts
written by the first author especially make use of the metafor package for meta-analysis
(Viechtbauer, 2010).

3.2. Results

For ease of presentation, we aggregated the multiple simulation settings with regard to
number and size of studies. The graphics therefore display the mean observed coverage
for each confidence interval type and true main effect p. Results are separated by
heterogeneity 12 and simulation design. The latter refers to the truncated normal
distribution approach and the transformed beta distribution approach, respectively. More
detailed simulation results for all settings considered are given in the Appendix S1.
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Figure 2. Mean Coverage for truncated normal distribution model with T = 0, aggregated across all
number of studies and study size settings. HC, heteroscedasticity-consistent; HOVz, Hedges—
Olkin—Vevea Fisher z; HS, Hunter-Schmidt; KH, Knapp-Hartung; WBS, wild bootstrap

3.2.1. Coverage

We first discuss the results based on the truncated normal distribution (model 1). In the
case of no heterogeneity (fixed-effect model), Figure 2 shows that the new methods
control the nominal coverage of 95% well. Only the first wild bootstrap (WBS1) CI
exhibits liberal behaviour, yielding empirical coverage of approximately 93.5% . The HS
approach only provides 90% coverage, and HOVz was slightly conservative with (mean)
coverage of around 97-98% . Moreover, in the fixed-effect model the value of p did not
affect any of the methods.

In the truncated normal set-up with moderate heterogeneity of T =0.16 in Figure 3,
several things change. First, there is a strong drop-off in coverage for higher correlations
p > .8. For HS this drop-off occurs earlier for p > .7. Second, for p <.7, HS is even more
liberal than for =0, with coverage around 87.5%. Additionally, HOVz is no longer
conservative but becomes more liberal than WBS1 with estimated coverage probabilities
around 90-94% for p <.7. For all new methods a slight decrease in coverage can be
observed for increasing values of p from O to .7. Moreover, there is a slight uptick at p= .8
for HOVz, followed by a substantial drop-off. Overall the WBS3, HC;, HC4 and KH ClIs
show the best control of nominal coverage in this setting.

We now consider model 2 with a transformed beta distribution model. In the fixed-
effects case (72 = 0) the two models are equivalent so we obtain the same coverage as in
Figure 2. For moderate heterogeneity (t=0.16; see Figure 4), our newly proposed
methods clearly outperform HOVz and HS, with a good control of nominal coverage. Only
for p=.9 is their coverage slightly liberal. WBS1 performs just slightly worse than the
other new CIs. The observed coverage for HS is around 86-88% for p < .7 and drops to just
below 80% for p=.9. For p>.6 the HOVz CI is even worse, with values dropping
(substantially) below 75%.
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Figure 3. Mean coverage for truncated normal distribution model with T = 0.16, aggregated across
all number of studies and study size settings. HC, heteroscedasticity-consistent; HOVz, Hedges—
Olkin—Vevea Fisher z; HS, Hunter-Schmidt; KH, Knapp—Hartung; WBS, wild bootstrap

Cltype
(r =.16)
o HC3
A HC4
v HOVz
x HS
* KH
A WBSI
+ WBS2
e WRBS3

Empirical Coverage

0.0 0.2 0.4 0.6 0.8 1.0
%

Figure 4. Mean coverage for transformed beta distribution model with T = 0.16, aggregated across
all number of studies and study size settings. HC, heteroscedasticity-consistent; HOVz, Hedges—
Olkin—Vevea Fisher z; HS, Hunter-Schmidt; KH, Knapp-Hartung; WBS, wild bootstrap

For ease of presentation, the results for the case of extreme heterogeneity with T = 0.4
are given in the Appendix S1. Here, we only summarize important points from Figures
S13-S14. In the truncated normal distribution model we observe that HS again has



Confidence Intervals of Correlations 15

unsatisfactory coverage, compared with the other approaches. For our new CIs based on
the Fisher transformation, for small K, coverage is approximately correct for p < .6 and
then drops off considerably. HOVz is slightly liberal with coverage around 90% for p < .6
and then drops off strongly. This holds for both smaller and larger studies with
7€{20,80}, respectively. For an increasing number of studies K, HOVz remains largely
unchanged, whereas coverage of the new methods gets progressively worse (i.e., the
drop-off in coverage occurs earlier for an increasing number of studies). For K = 40 the
new CIs only have correct coverage for p < .3. In the case of the beta distribution model
with T = 0.4 the new ClIs provide correct coverage for p < .7 in all scenarios, dropping off
after this threshold. HOVz is highly inadequate, with coverage growing progressively
worse for increasing K. HOVz only has correct coverage for simultaneously p <.1 and
large K. For K =5, HS has coverage up to 82%, decreasing for increasing values of p.
However, for increasing number of studies (whether large or small), HS appears to
converge towards nominal coverage. In particular, for K =40 and p>.7, HS provides the
most accurate coverage under the beta distribution model.

3.2.2. Interval lengths

We simulated the expected confidence interval lengths for all methods discussed in this
paper. The detailed results are provided in Figures S7-S12. The results again depend on
both the assumed model and the amount of heterogeneity .

Generally we observe that the confidence intervals become increasingly narrow for
increasing values of p and increasingly wide for larger values of t. For the truncated normal
distribution model and t = 0, HS (on average) yields the shortest confidence intervals and
HOVz the widest, with the other CIs lying in between with quite similar lengths. Only for
K =5 are the CIs based on the wild bootstrap quite wide, indicating that potentially more
studies are required to reliably use WBS-based approaches. For T =0.16, HS again yields
the shortest Cls in all scenarios. For small K, the WBS approaches yield the widest CIs, and
for more studies, HOVz is the widest, when p is small, but becoming nearly as narrow as HS
when p is close to 1. The lengths of the other CIs are nearly identical for K = 40, whereas
for fewer studies there are considerable differences. This relative evaluation also holds for
T=0.4.

‘When the underlying model is the beta distribution model and t =0, the results are
equivalent to the truncated normal distribution model. For T =0.16 and K =5 the widths
of the new Cls decrease with increasing p until p = .7. Interestingly, the widths of these CIs
then increase again for p > .7, which was not observed in the truncated normal model. This
effect becomes much less pronounced for increasing number of studies K. HS is always
narrower than the new CIs, and, for K > 20, HOVz is the widest at p = 0 but even narrower
than HS for p > .8. For T = 0.4 the results are similar, except that the widths of the CIs now
decrease monotonously for increasing p and HOVz is narrowest for p>.5.

3.2.3. Recommendations

We summarize our findings by providing recommendations to practitioners wishing to
choose between the methods considered. The recommendations will depend on the
assumed model and how much heterogeneity is present in the data. We believe the beta
distribution model is better suited for random-effects meta-analyses of correlations. Recall
that HOVz employs the inverse Fisher transformation, whereas our newly proposed
confidence intervals employ the integral z-to-r transformation suggested by
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o 1 =0 (fixed-effect model). HS and HOVz are not recommended. We recommend using
KH, HC3 or HCA4.

e 7 =0.16. For the truncated normal model, HS and HOVz are not recommended and we
recommend using KH, HC3 or HC4. For |p| > .7, all methods are unsatisfactory and only
in the case of K = 40 may HOVz be preferable. For the beta distribution model, HS and
HOVz are not recommended. All new confidence intervals exhibit satisfactory
coverage. For small K, WBS approaches yield wider confidence intervals, therefore
preferably use KH, HC3 or HC4.

e T=0.4. For the truncated normal model, HS is not recommended. For K =5 and
|p| < .7 we again recommend KH, HC3 or HC4. For K > 10 and |p| < .7 we recommend
HOVz. For |p|>0.7 none of the methods is satisfactory. For the beta distribution
model, HOVz is not recommended. For |p| < .7 we recommend KH, HC3 or HC4. For
K >40 and |p|>.7 we recommend using HS. For K <20 and |p|>.7 none of the
methods is satisfactory.

4. lllustrative data analyses

Between 25% and 50% of patients fail to take their medication as prescribed by their
caregiver (Molloy et al., 2013). Some studies have shown that medication adherence tends
to be better in patients who score higher on conscientiousness (from the five-factor model
of personality). Table 2 contains data on 16 studies, which investigated the correlation
between conscientiousness and medication adherence. These studies were first analysed
in the form of a meta-analysis in Molloy et al. (2013). The columns of Table 2 contain
information on the authors of the respective study, the year of publication, the sample size
of study 7 (n,), the observed correlation in study 7, the number of variables controlled for
(controls), study design, the type of adherence measure (a_measure), the type of
conscientiousness measure (c_measure), the mean age of study participants (mean_age)
and the methodological quality (as scored by the authors on a scale from 1 to 4, with higher
scores indicating higher quality).

Regarding the measurement of conscientiousness, where NEO (Neuroticism-
Extraversion-Openness) is indicated as c_measure, the personality trait of conscientious-
ness was measured by one of the various types of NEO personality inventories (PIs; Costa
Jr and McCrae, 1985, 2008).

We performed both a fixed- and random-effects meta-analysis, using all methods
considered. For the random-effects model we used the SJ estimator to estimate the
between-study heterogeneity variance t2. Combining all available studies yielded
e = .130, rgg =.154 and 'ESJ =0.012. In addition to a complete-case study, we also
examined the cross-sectional and prospective studies separately. In total there were five
cross-sectional and 11 prospective studies in the data set. For the cross-sectional studies
rgg = .168 and rgg = .170 resulted and slightly lower values for the prospective studies
(rpg = . 108, rgg = .147). Heterogeneity estimates were %§J =0.007 (cross-sectional) and
%SJ = 0.016 (prospective), respectively. In Table 3 we provide values of all Cls discussed in
this paper.

In the case of all studies (K = 16), all methods yield quite similar CIs except for HS.
Additional simulations for this situation (K = 16, t> = 0.012, 5, as in Table 3) are given in
the Appendix S1 and show a coverage of around 80% for HS, while all other methods
exhibit a fairly accurate coverage of around 95% and HOVz with around 94%. Thus, the
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Table 3. Random-effects model confidence intervals for all studies and subgroups separated by
study design, original data from Molloy et al. (2013)

Study design
Approach All designs Cross-sectional Prospective
HOVz [.081, .221] [.067, .260] [.050, .240]
HS [.073, .174] [.100, .220] [.035, .160]
KH [.080, .218] [.037, .291] [.043, .239]
WBS1 [.086, .213] [.063, .267] [.051, .232]
WBS2 [.079, .219] [.053, .270] [.043, .239]
WBS3 [.084, .215] [.058, .272] [.048, .234]
HC3 [.081, .218] [.041, .288] [.041, .241]
HC4 [.083, .210] [.054, .276] [.045, .237]

HC, heteroscedasticity-consistent; HOVz, Hedges-Olkin-Vevea Fisher z; HS, Hunter—-Schmidt; KH,
Knapp-Hartung; WBS, wild bootstrap.

price paid for the narrow HS Cls is poor coverage. Additional analyses of other data sets are
given in the Appendix S1.

5. Discussion

We introduced several new methods to construct confidence intervals for the main effect
in random-effects meta-analyses of correlations, based on the Fisher z transformation. We
compared these to the standard HOVz and Hunter-Schmidt confidence intervals and,
following the suggestion by Hafdahl (2009), utilized an integral z-to-r transformation
instead of the inverse Fisher transformation. We performed an extensive Monte Carlo
simulation study in order to assess the coverage and mean interval length of all CIs. In
addition to the truncated normal distribution model considered by Hafdahl and Williams
(2009) and Field (2005), we investigated a transformed beta distribution model which
exhibits less bias in the generation of the study-level effects.

The results of our simulations show that for low and moderate heterogeneity and
correlations of |p| < .7, our newly proposed confidence intervals improved coverage
considerably over the classical HOVz and Hunter-Schmidt approaches. However, for
extreme heterogeneity and |p|>.7 all confidence intervals performed poorly. Therefore,
further methodological research is necessary in order to fill this gap. Also, the choice of
data-generating model (truncated normal or transformed beta distribution) has substantial
influence on results. For various reasons, which we discussed when introducing the two
models, the beta distribution model is arguably more appropriate. Based on our findings,
we provide recommendations to practitioners looking for guidance in choosing a method
for data analysis. These are listed in Section 3.2.3.

5.1. Limitations and further research

In the present paper we focused on the Pearson correlation coefficient, as it is the most
commonly used dependence measure. However, a limitation of the Pearson correlation
coefficient is that it only considers the linear relationship between variables. If variables
are related via some nonlinear function or significant outliers are present, other
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correlation coefficients such as Spearman’s rank correlation may be more appropriate.
The Spearman correlation coefficient is the Pearson correlation coefficient of the rank
values of the variables considered. Moreover, it shares similar properties with Pearson’s
correlation such as taking values in [—1,1] and even being asymptotically normal under
relatively weak assumptions (Schmid & Schmidt, 2007). The confidence intervals we
discussed in this paper can be calculated analogously for Spearman correlation
coefficients, for example when dealing with ordinal data. Evaluating their performance,
as we did in our simulation study, in conjunction with Spearman correlations is a topic for
future research. A detailed analysis of Spearman’s and more general correlations as in
Schober, Boer, and Schwarte (2018),, however, is outside the scope of this paper.

When dealing with different underlying data than we considered in our paper, it
should be kept in mind that although the underlying normal-normal model (4) is often very
useful, it has some limitations. For example, when dealing with binomial variables with
extreme observations, normal approximations may perform poorly (Agresti & Coull,
1998).. A context where this might occur are ceiling or floor effects on questionnaires or
ability tests; that is, when many participants obtain a near maximal (or minimal) score on
some questionnaire, a normal approximation may be invalid. Count data may also be
problematic, due to their ordinal nature and especially when zeros frequently occur.
Therefore researchers should carefully consider the data being analysed when choosing a
fitting model in practical applications.

In reallife data sets model (4) may be improved by including meaningful moderator
variables, leading to meta-regression as considered in Viechtbauer et al., (2015) and Welz
and Pauly (2020).. This can considerably reduce the heterogeneity present in the model.

We attempted to further improve the proposed confidence intervals with the help of a
bias correction for the Pearson correlation coefficient r, given by
r'=r(1-7?)/(2(n—1)), as the (negative) bias of r is usually approximated by
B,=—p(1—p?)/(2(n— 1)) (Hotelling, 1953; Schulze, 2004). However, this bias correc-
tion actually made coverage worse in the settings studied.
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