
International Journal on Software Tools for Technology Transfer (2021) 23:655–677
https://doi.org/10.1007/s10009-021-00630-2

FOUNDATION FOR MASTER ING CHANGE

Regular

Towards language-to-language transformation

Dawid Kopetzki1 ·Michael Lybecait1 · Stefan Naujokat1 · Bernhard Steffen1

Accepted: 18 May 2021 / Published online: 18 June 2021
© The Author(s) 2021

Abstract
This paper proposes a simplicity-oriented approach and framework for language-to-language transformation of, in particular,
graphical languages. Key to simplicity is the decomposition of the transformation specification into sub-rule systems that
separately specify purpose-specific aspects. We illustrate this approach by employing a variation of Plotkin’s Structural
Operational Semantics (SOS) for pattern-based transformations of typed graphs in order to address the aspect ‘computation’
in a graph rewriting fashion. Key to our approach are two generalizations of Plotkin’s structural rules: the use of graph patterns
as the matching concept in the rules, and the introduction of node and edge types. Types do not only allow one to easily
distinguish between different kinds of dependencies, like control, data, and priority, butmay also be used to define a hierarchical
layering structure. The resulting Type-based Structural Operational Semantics (TSOS) supports awell-structured and intuitive
specification and realization of semantically involved language-to-language transformations adequate for the generation of
purpose-specific views or input formats for certain tools, like, e.g., model checkers. A comparison with the general-purpose
transformation frameworks ATL and Groove, illustrates along the educational setting of our graphical WebStory language
that TSOS provides quite a flexible format for the definition of a family of purpose-specific transformation languages that are
easy to use and come with clear guarantees.

Keywords Multi-level transformations · Model-to-model transformation · Graph rewriting · (Typed) structural operational
semantics · Abstraction · Structural aggregation · Rule systems · Meta language · Model checking · Graph pattern

1 Introduction

Today, computational thinking [31,51] is not only important
for computer scientists. Rather, it enters almost everybody’s
life, when, e.g., dealing with modern mobile phones, con-
figuring your TV, or even simply buying a ticket at today’s
vending machines. Domain-specific languages are an ideal
means to support this trend and to ultimately help transfer-
ring a significant part of the application development to the
application expert. Characteristic for this development are
two approaches:

B Stefan Naujokat
stefan.naujokat@tu-dortmund.de

Dawid Kopetzki
dawid.kopetzki@tu-dortmund.de

1 Chair for Programming Systems, Department of Computer
Science, TU Dortmund University, 44227 Dortmund,
Germany

– Language-Oriented Programming (LOP), which aims at
moving program development closer to the application
domain by providing developers with dedicated domain
functionality [13,20,49], and

– Language-Driven Engineering (LDE) which directly
involves the application experts in the application devel-
opment by providing them with dedicated purpose-
specific (graphical) languages that typically enhance the
graphical notation used in the domain already, and that
are meant to evolve during the application lifecycle to
capture arising new needs [44].

Precondition for these approaches are powerful frame-
works, often called language workbenches [21], for the
realization and evolution of the required domain-specific
development environments. This often results in evolution
steps that are not downwards compatible in the following
sense: programs developed in the original version of the lan-
guage are no longer contained in the evolved language. Thus,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00630-2&domain=pdf


656 D. Kopetzki et al.

Fig. 1 Transforming WebStory Language models for model checking

program transformations are required to support the migra-
tion of existing programs to the new language.

In this paper, we propose an approach and framework
for language-to-language transformation of, in particular,
graphical languages1 that is designed for transformingmodel
representations into input formats for, e.g., optimization, ver-
ification and visualization purposes, or even for supporting
the migration of applications after language evolution.

Simplicity [33], in particular compared to the common
graph transformation-based approaches [1,3,17,18,39], was
the guiding principle in the design of the underlying specifi-
cation formalism which can be regarded as a generalization
of Plotkin’s structural operational semantics (SOS) [38] for
pattern-based transformations of typed graphs:

– It clearly separates source and target graphs, and, similar
to a typical compiler, leaves the source graph intact during
the construction of the target graph.2

– It is additive in the sense that the target graphs are suc-
cessively built up.

– It allows for a modular specification of abstraction using
auxiliary transition relations [29].

Technically, this requires two generalizations of Plotkin’s
SOS rules: the use of graph patterns as the matching concept
in the rules, and the introduction of node and edge types, both
for the source and the target graphs. The point is that types
do not only allow one to easily distinguish between different
kinds of dependencies, like control, data, and priority—but

1 Our main application context is Cinco [7,37], a language workbench
for graphical languages. This is the reason for focusing our presentation
of graphical languages. The ideas apply straightforwardly to textual
languages also.
2 This separation distinguishes us from typical graph transformation-
based solutions which, similar to term rewriting systems, successively
transform the source graph (inline) until the target graph is reached
[1,3,17,18,39].

may also be used to define a hierarchical layering structure
where, e.g., micro and macro steps are distinguished.

The resulting Type-based Structural Operational Seman-
tics (TSOS) supports a well-structured and intuitive speci-
fication and realization of complex model-to-model trans-
formations adequate for the generation of purpose-specific
views or input formats for certain tools, like, e.g., model
checkers, or even for the migration of models after the under-
lying modeling language has evolved [6].

We consider TSOS, even though quite restrictive from a
graph transformation perspective, as a format for the defini-
tion of a family of purpose-specific transformation languages
that are easy to use, have clear guarantees, and which we
envisage to semi-automatically derive from the source and
target metamodels of an intended model-to-model transfor-
mation.

This paper, which extends [29], illustrates the purpose-
specific transformation along the setting displayed in Fig. 1.
On the left, it shows the WebStory language (WSL), which
is a graphical domain-specific language we often use for
education [30]. The model on the right represents the input
language required by our model checker GEAR [2]. The
green arrowmarks the transformation between these two lan-
guages, whose specification in terms of TSOS-based rules
will be discussed in detail in this paper.

In order to conveniently make the TSOS format applica-
ble in practice, we use our languageworkbenchCinco [7,37]
to generate domain-specific development environments for
language-to-language transformations that are already tai-
lored to the considered source and target languages. Of
course, the ideas presented in this paper are applicable to
any sophisticated language workbench supporting graphical
languages. We just used Cinco as an example platform for
our implementation, because we naturally were already very
familiar with its meta-metamodel structures.
In the following, Sect. 2 first introduces the WebStory
language—i.e., which kind of modeling elements are avail-
able and what they are used for—by means of a simple ‘find

123



Towards language-to-language transformation 657

Fig. 2 An exemplary WebStory
model reprinted from [29]
(Images by:[11,25,42,50])

Fig. 3 Overview of the Cinco Meta Tooling Suite adapted from [37]

the treasure’ example story, beforeCinco is presented along-
side the metamodel definition of the WebStory language.
Afterwards, Sect. 3 first discusses the common practice of
algebraic approaches to graph transformations, before we
present our design decisions and formalisms for transforma-
tion systems based on TSOS. Subsequently, in Sect. 4, we
apply those concepts to the WebStory language to enable
it for model checking. To illustrate the simplicity of our
DSL-based approach, Sect. 5 sketches the very same transfor-
mation using two well-known general-purpose approaches:
(1) the Atlas Transformation Language (ATL), and (2)
the algebraic, graph transformation framework Groove. We
discuss themeta pattern for the presented transformation lan-

guage in Sect. 6 and conclude the paper with a summary and
indications for future work in Sect. 7.

2 Preliminaries

This section discusses the basics required for understanding
the main contributions presented in Sects. 3 and 4. We first
introduce in Sect. 2.1 the WebStory Language (WSL) for
graphical modeling of small point&click adventure games
which is used throughout the paper as running example. Sub-
sequently, we present in Sect. 2.2 our language workbench
Cinco, which is the technological basis for all graphical lan-
guages developed in the context of this paper.

123



658 D. Kopetzki et al.

Fig. 4 Generated modeling tool (Cinco Product) from a Cinco language specification showing the canvas (1), the element palette (2), the property
view (3), the project explorer (4), and the validation view (5)

2.1 TheWebStory language

TheWebStory Language (WSL) has been designed as a sim-
ple example for Cinco to be used for hands-on experience
in teaching and workshops [30]. Created with simplicity in
mind, WSL’s aim is on the one hand to provide an intuitive
‘game’ modeling language that can even be used by non-
programmers, and, on the other hand, to make it easy for the
workshop/lecture participants (i.e., usually students) to learn
metamodeling and DSL engineering concepts by expanding
a simple language in terms of functionality.

AWebStory ismodeled in a graphical editor and describes
the flow from one screen to the other with conditional paths
depending on values of Boolean variables. Modeled games
can be generated to fully functional websites that can be
executed in any web browser. The resulting story is played
by clicking on certain areas within the screens with the aim
to reach a predefined goal.

Figure 2 shows a model of a story where the player is
challenged to get hold of a treasure hidden in a hut by finding
the required key. Although being a simple story with little
challenge, this model uses all types defined in WSL:

– Six Screen nodes (1-6), which correspond to the ‘vis-
itable places’ in the story. The background image (shown
in full-screen in the resulting website) is defined by the
‘backgroundImage’ attribute of the Screen type.

– Eight Click Area nodes (A-H), which define the inter-
action areas for the player. Click Areas are contained in
Screens and define the next element in the story’s control
flow using pink Transition edges.

– Two Variable nodes (v and v1) named ‘key’ and ‘gold’,
which represent aBoolean value.Variables are connected
through gray Data Flow edges to Condition nodes and
ModifyVariable nodes.

– Two Condition nodes (c, c1), which determine the suc-
cessor in the story’s control flow via the True Transition
(represented as solid pink edge) or the False Transition
(represented as dashed pink edge) based on the connected
Variable node’s value .

– TwoModifyVariable nodes (m and m1) which set a con-
stant Boolean value of the connected Variables v1 and
v, respectively. The constant value is represented by the
‘value’ attribute defined in theModifyVariable type. The

123



Towards language-to-language transformation 659

successor of a ModifyVariable node is connected by a
Transition edge.

– One Start Marker node (a) to define the initial Screen of
the story.

The green background on the path A → c → c1 → m → 5
highlights the elements that are subject to our transformation
examples in Sect. 4.

2.2 CINCOmeta tooling suite

We use the Cinco Meta Tooling Suite [37] to generate the
graphical development environments for all languages pre-
sented in this paper: the WebStory language, the state model
used for model checking, as well as the dedicated DSL for
modeling the transformations with TSOS-based rules.

Cinco is a simplicity-driven language workbench provid-
ing the generation of domain-specific graphical modeling
tools. It is built upon the Eclipse Modeling Framework
(EMF) [46] and the RCP [34] ecosystem and specializes
on the (meta-level) domain of graph-based tools (consist-
ing of nodes and edges). Those tools, which are fully
generated from high-level specifications, support the inclu-
sion of other Eclipse-based DSLs (like the ones developed
with Xtext) in a service-oriented fashion [36]. Furthermore,
Language-Driven Engineering (LDE) [44] can be facilitated
with Cinco, and with the Pyro extension [53,54], Cin-
co-generated graphical modeling tools become web-based
collaborative modeling environments.

Figure 3 shows an overview of the Cinco landscape for
the development of the WebStory language presented in
Sect. 2.1. The core of Cinco is the Meta Graph Language
(MGL), which describes the abstract syntax of a graph-based
Domain-Specific Visual Language (DSVL). The Meta Style
Language (MSL) is used to define the concrete syntax of the
DSVL.Thus, the high-level language specifications inCinco
(cf. Fig. 3,WebStory.mgl andWebStory.style) conform to the
MGL and Style metamodels (cf.MGL.ecore and Style.ecore
in Fig. 3). MGL and Style are in turn languages developed
using the Eclipse Modeling Framework (EMF) [46] and
Xtext [19] and thereby conform to the Ecore.ecore meta-
metamodel.

MGL allows for the definition of node types, container
types, and edge types. These types may comprise attributes.
Furthermore, node and container types specify structural
graph constraints: node types define incoming and outgoing
edge constraintswhereas container types additionally specify
constraints for containable elements. Minimum and maxi-
mum cardinalities may be added for elements or groups of
elements referenced in such constraints. When no cardinali-
ties are present, arbitrary numbers of elements are allowed.
Given a high-level specification consisting of instances of
the MGL and Style languages, the Cinco Product Gen-

erator generates a Cinco Product consisting of a specific
metamodel representing the abstract syntax of theDSL (Web-
Story.ecore) and aGraphiti-based [5] graphicalmodeling tool
implemented in Java (simplified in the figure asWebStoryEd-
itor.java).

Listing 1 shows an excerpt of the WebStory.mgl defining
the available modeling elements for the language as intro-
duced in Sect. 2.1. Given this high-level specification of the
WebStory language, the Cinco Product Generator [28] gen-
erates the graphical modeling environment shown in Fig. 4.
The resulting tool provides functionalities commonly known
from (model-based) IDEs: a modeling canvas (1), a palette
from which available elements can be drag&dropped to the
canvas (2), a property view (3) and a project explorer (4). The
generated tool is easily extensible, e.g., by custom validation
rules which are shown in the ‘Model Validation’ view (5).

3 Language-to-language transformations

In this section, we first give a brief introduction to the alge-
braic graph transformation approach and show how Cinco
models can be represented as algebraic graph structures.

123



660 D. Kopetzki et al.

Fig. 5 Excerpt of the WebStory shown in Fig. 2 represented as typed
attributed graph. Dotted arrows represent the type morphism, dashed
arrows represent node attribute edges

Afterwards, we present our ideas towards a transformation
language which aims at providing an intuitive way to specify
transformations involving the aspect of computation.

3.1 Algebraic graph transformations

In the algebraic approach [15,16], graph transformations are
applied to a Typed Attributed Graph (G, t). G = (V , E) is
a graph and t : G → ATG a graph morphism between G
and an Attributed Type Graph ATG = (TG, Z). Node and
edge types are given by the distinguished Type Graph TG,
attribute types are modeled by a data signature Z .3 Attribute
values are realized by an E-Graph which, roughly said, is an
extension of the graph by data nodes (representing a value)
and dedicated attribute edges, connecting graph elements
with data nodes.

Models of DSLs developed with Cinco can generally be
represented as typed attributed graphs. Figure 5 depicts an
excerpt for the WebStory shown in Fig. 2: Screen ‘4’, Click
Area ‘E’, Modify Variable ‘m1’, and the transition from the
Click Area to the Modify Variable node. Since a graph does
not comprise the concept of container nodes and contain-
ment, we represent this relation in the type graph using a
contains edge. The type morphism is given by dotted arrows
and the attribute values are defined by dashed edges to the
corresponding data nodes at the bottom of the figure. For
instance, the dashed edge from node ‘4’ to the data node
’.../key.png : String’ assigns the path to the background image
for the Screen node ‘4’.

3 For a more detailed description on the algebraic approach to graph
transformations, data signatures and Σ-algebras, we recommend [15,
16].

Ehrig et. al. provide in [16] a mapping between the meta-
modeling notions and the corresponding graph terminology,
indicating the strong correspondence between model trans-
formations and graph transformations.

The algebraic approach is used to formalize in-place graph
transformations, i.e., transformations in which elements of
the source language, target language, and possibly further
elements (neither belonging to the source nor target language,
e.g., auxiliary elements helping in bookkeeping during the
transformation) are handled in one model. A transformation
rule p = (L, R), also called production, consists of a left-
hand side graph L and a right-hand side graph R. It is applied
by finding an occurrence of L in the input model (graph)G (a
match of L in G) and replacing L by R in G, where elements
of L \ R are deleted in G. The graphs L and R are also called
patterns.

In [24], the authors identified 60 model transformation
tools, out of which 15 tools were purely graph-based, i.e.,
the entire transformation is specified using productions.
Most transformation systems, however, use programming
languages or provide imperative constructs to treat compu-
tational aspects. In Sect. 5.1, we present a transformation
realized using ATL, a framework which supports the defini-
tion of imperative code.

In a purely graph-based approach, modeling the compu-
tation in the transformation rules requires the addition of
a computational domain which complicates the definition
of transformation rules. In the case of an in-place trans-
formation, the intermediate transformation model and the
rules consist of at least three parts (cf. Fig. 6). Elements
of the source and target model are related by trace links to
bookkeep the origins of created target elements. The com-
putational part consists typically of a structure to reference
the current element of the computation (the ‘Pointer’ node
and outgoing dashed edge) a memory structure (‘Memory’
node) handling information of the computation and possibly
further elements to indicate the current state of the com-
putation (‘Phase’ node), e.g., for rule scheduling. Thus, the
developer of a transformation has to model the initialization
of a computation, the stepping through the model, the data
representation andmanipulation, and the termination control.
Essentially this means that she has to develop a rule-based
specification of an interpreter for the source model.

In Sect. 5.2, we present a transformation modeled using
Groove [39], one of the most prominent purely graph-based
graph transformation tools. We explicitly model the compu-
tation in the transformation rules, as sketched in the previous
paragraph, and highlight the intricacies resulting from using
a general-purpose graph transformation tool.

123



Towards language-to-language transformation 661

Fig. 6 Abstract representation of an intermediate in-place language-to-
language transformation incorporating computational components

3.2 Towards language-to-language transformations
inCINCO

In the context of Cinco, a language-to-language transforma-
tion is a transformation between DSVLs. As one of Cinco’s
fundamental motivations is simplicity [37], we want to intro-
duce a transformation language which follows the Cinco
paradigms as follows:

– modular, graph-based representation,
– domain focus,
– ease of specification.

This leads to the following design decisions, which are remi-
niscent of the structure of compilers and code generators, but
unusual for graph rewriting-basedmodel transformation sys-
tems where the considered graphs typically closely interlink
source language, target language, and auxiliary aspects—
structures which they often read, write, and delete in a single
step in a so-called ’in-place’ fashion (cf. Sects. 3.1 and 5.2).
Separation of Source Language and Target Language Source
model graphs and target model graphs are clearly separated.
This automatically imposes also a separation of the patterns
used in rules which thereby clearly separate source language,
target language, and auxiliary aspects like computation.
Additive Transformation System Sourcemodels are only read
and target models only successively built up. No model
elements will be deleted, which, e.g., eases cases where
a multi-pass approach is adequate. The application of our
transformations is “target-driven” in the sense that rules are
applied as long as they lead to a change of the target model.
This conforms to the fixpoint iteration in the Rule Iteration
category described in [10].
Aspect-Specific Auxiliary Rules Specific aspects, in our
example application the ‘computation-based aggregation’,
are treated with a separate rule system which can be under-
stood independently of the other rules. The rule system

presented in Sect. 4 for treating computation resembles
the structure of Plotkin’s Structural Operation Semantics
(SOS) [38]. This is why we call the rule format presented
in this paper TSOS (typed structural operational semantics).
It should be noted, however, that this computation-oriented
rule system is only one possible realization of an auxiliary
rule system. We are currently investigating other purposes,
such as migration, and their corresponding aspect-specific
auxiliary rule systems.
This clear structuring of the graph transformation approach
follows our Archimedean point principle [45], which aims at
localizing required changes and maximizing the parts which
remain invariant, the Archimedean points.

3.3 A DSL for language-to-language transformation

Motivated by the preceding descriptions, we introduce a
two-level transformation language. First-level rules define
a global transformation modeling the relation between struc-
tures of the source and target language. This transformation
might depend on internal information that has to be com-
puted before the transformation can be executed. Therefore,
a first-level rule may contain an optional part indicating the
application of an auxiliary rule system.

Schematically, a rule is written as follows:

Source Langauge Pattern , Auxiliary

Target Language Pattern
Condition (1)

Source and target language patterns are constructed using
extended versions of the respective languages. The extension
is typically small, like, e.g. the addition of a wildcard type
to allow for matching of arbitrary types. The auxiliary rule
system is realized by second-level rules:

Source Language Pattern

〈Configuration〉 ��� 〈Configuration〉 Condition (2)

The structure resembles SOS rules [38] which consist of
a premise, a conclusion and a condition. In our case, the
premise specifies a graph pattern composed of elements of
the source language, which has to be matched to execute a
computation step. The definition of that step is again similar
to SOS, i.e., it is defined by a transition (���) between two
configurations, where a configuration consists of the current
position in an input (model) and amemory stateσ (also called
store) of the computation.

We say that this purpose-specific rule system specifies the
typed structural operational semantics (TSOS) of a target
graph model to emphasize its resemblance of Plotkin’s SOS
rule pattern. Moreover, as our two-level structure reminds
of the semantics of so-called synchronous systems which

123



662 D. Kopetzki et al.

distinguish between macro steps (here the relation between
source language and target language elements) and micro
steps (here the computational steps), we call first-level rules
macro rules and second-level rules micro rules.

In the following, Sect. 4 presents the transformation of
graphical WebStory models into model structures that can
directly be handed over to the GEAR model checker [2].

4 EnablingWebStories for model checking

To verify properties of a WebStory model like the one dis-
played in Fig. 2, the model has to be translated into a format
suitable for a model checker.

Kripke Transitions Systems (KTSs), a generalization of
both Kripke structures and labeled transition systems [35],
had turned out to provide an adequate semantic model struc-
ture for graphical program models, as, e.g., supported by the
jABC development environment [32]. Given a set of Atomic
Propositions (AP),KripkeTransition Systems are quadruples

KT S = (S, Act,→, I )

with:

– S, a set of states,
– Act , a set of actions,
– →⊆ S×Act×S, a transition relation (written as s

a−→ s′),
and

– I : S → 2AP, a valuation function.

A WebStory relates to a KTS in an intuitive way: Interact-
ing with the story by clicking Click Areas on a Screen will
cause a sequence of small state changes to happen until the
next Screen is reached. Thus, each Screen combined with the
’initial Screen’ information and a valuation of Variables used
in a WebStory defines a state in the KTS. The transition rela-
tion of a KTS is computed from control flow paths between
Click Areas and Screens in a WebStory.
Formally, a WebStory language model is a ten tuple

WS = (Sc,Ca, V , M,C, ���,→,
tt−→,

ff−→, s0)

with:

– Sc, a Set of Screens,
– Ca, a Set of Click Areas,
– V , a Set of Variables,
– M , a Set of Modify Variable elements,
– C , a Set of Conditions,
– ���⊆ (M × V ) ∪ (V × C), DataFlow relation,
– →⊆ ((Ca∪ M) × (Sc ∪ M ∪C)), a Transition relation,

–
tt−→⊆ (C × (Sc ∪ M ∪ C)), TrueTransition relation,

–
ff−→⊆ (C × (Sc ∪ M ∪ C)), FalseTransition relation,

– s0 ∈ Sc, a screen marked with start marker, the initial
screen of the WebStory.

Given aWebStoryWS, we define for the set of atomic propo-
sitions AP =d f V ∪ {initial} a KTSWS with:

– S ⊆ Sc × Σ , a set of states,
– Act =d f Ca,
– →⊆ S × Ca × S, and
– I : S → 2AP ,

where Σ is the set of all possible Variable valuations in a
WebStory:4

Σ =d f {σ | σ : V → Bool}

In the remainder of this section, we model the trans-
formation from WebStory to KTS using the DSVL for
language-to-language transformations presented in Sect. 3.3.
To illustrate the simplicity of our DSL-based approach,
Sect. 5 subsequently sketches the very same transformation
(as well as arising problems) using two well-known general-
purpose approaches: (1) the Atlas Transformation Language
(ATL) [23], and (2) the graph-transformation transformation
framework Groove [39].

We will see that modeling the rules for the actual
transformation—i.e., the rules mapping WebStory language
elements toKTSelements—ismanageable also in the generic
approaches, but that the modeling of the execution semantics
of an interpreter using graph re-writing techniques introduces
an enormous overhead that can be drastically reduced by
using our transformation language, in which computation is
a purpose-specific aspect.

4.1 A DSL for computational transformations

In the following, we present the transformation rules for the
ideas explained above.We show one rule in a schematic nota-
tion (cf. Rule 3) and as an instance of the Cinco generated
transformation language (cf. Fig. 7).

c

L
l
, 〈l, σ 〉 ���∗ 〈L ′, σ ′〉

(L, σ ) (L ′, σ ′)c

L ′

(3)

4 We use �v�(σ ) to evaluate the value of a variable v ∈ V in the store
σ .

123



Towards language-to-language transformation 663

Fig. 7 Rule (3) represented in concrete syntax of our pattern-based
transformation language

The (schematic) macro rule depicted in Rule (3) consist of
four parts (cf. rule scheme (1)):

1. The upper left-hand side of the rule defines a pattern using
elements of the WSL, where L ∈ Sc, c ∈ Ca and l is a
wildcard placeholder for an arbitrary node type of the
WSL. The Click Area c and the placeholder l are con-
nected through an edge typed as Transition.

2. The lower part describes the KTS-structure that should be
created after application of this rule: Two states connected
by a labeled transition. The state labels L, σ and L ′, σ ′
in the schematic representation as well as in the Cinco
generated rule language representation are used as short
hand notation meaning that a state is identified by the
Screen L (L ′) and the Variable valuation in the store σ

(σ ′).
3. The upper right-hand part of the rule represents an aggre-

gated path of the WebStory: It starts with a store σ in
the node l which is the node defined in the source pattern
of the rule (i.e. the matched successor node of the Click
Area node ‘c’). It terminates in node L ′ with store σ ′ and
may consist of an arbitrary number of computational steps
(indicated by ���∗).

4. The condition ofRule (3) ensures that the aggregation pro-
cess terminates when a Screen node is reached (requiring
L ′ of configuration 〈L ′, σ ′〉 to be a Screen node).

This rule models part of the transformation from a Web-
Story to a KTS: The information represented by Variable,
Condition, and Modify Variable nodes is aggregated in the
store. The global structure of a WebStory is described by the
transition system which models the aggregated information
explicitly in its states. Furthermore, the transformation has
to specify how the valuation function I of the KTS states is
derived from the storeσ andσ ′. In this case, the interpretation
for state (L, σ ) is defined by

I ((L, σ )) = {v ∈ V | �v�(σ ) == true}. (4)

Transforming the information of the initial Screen to a
KTS state is realized by the macro rule depicted in Fig. 8.

Fig. 8 Macro rule used to transform the initial state information

The rule sets the valuation of the corresponding KTS state:

I ((L, σ )) = {initial} (5)

Please note that in the initial state of a WebStory model all
variables are set to false.

The aggregation process of the transformation is defined
by the micro rules depicted in Fig. 9. The lower part of a
micro rule describes one computation step. For instance, the
Modify Variable rule describes the step from node m
to node l, updating the store by substituting the value of the
Boolean variable v by the value of theModify Variable node
m.5 Note that the identifiers used in the configurations refer
to elements defined in the pattern in the upper part of the rule.

TheConditionTT and ConditionFF rules (cf. Fig. 9
bottom) determine the successor of a Condition node,
depending on the value of the connected Variable node v.

Figure 10 shows the transformation process of the high-
lighted path in Fig. 2, with the variable configuration:

– �key�(σ ) = true
– �gold�(σ ) = false

The value of key and gold is represented by the index of σt,f.
Please note, that the figure does not show the rules, but their
instantiation, i.e., the elements of the input model matched
by pattern elements of the rules.

TheMacro rule ‘Multi Step Screen2Screen’ creates two
KTS states corresponding to Screen ‘2’ and Screen ‘5’,
respectively, and one transition connecting both states. The
aggregation process starts in the configuration 〈c, σt,f〉, i.e.
the Condition node ‘c’ connected to the Click Area ‘A’ and
the variable valuation described above. It terminates result-
ing in the configuration 〈5, σt,t〉, i.e. reaching Screen ‘5’
and finding the treasure. The aggregation consists of three
individual steps.

1. In the first step Condition node ‘c’, which evaluates
the ‘key’ variable, is the current element. The variable’s

5 We use �m� to evaluate the value of the Modify Variable node in the
WebStory model which is represented by the type’s Boolean attribute
value.

123



664 D. Kopetzki et al.

Fig. 9 Micro rules defining the
aggregation in the WSL to KTS
transformation

Fig. 10 An exemplary execution of the Macro rule (3). The applica-
tion of this rule on the Screen (2) and the Click Area (A) leads to the
rule instantiations depicted below the dotted arrow. Micro rules Con-

ditionTT, ConditionFF and Modify Variable (above the dotted arrow)
represent the aggregation steps resulting from the execution of themacro
rule

value equals true and consequently, rule ConditionTT
is applied. The rule determinesCondition node ‘c1’ as the
next element in the aggregation process without modify-
ing the store (cf. Micro1, 〈c, σt,f〉 ��� 〈c1, σt,f〉).

2. Variable ‘gold’ is evaluated by Condition ‘c1’ and since
its value equals false, the ConditionFF rule is applied
determining theModify Variable node ‘m’ as next element
(cf.Micro2, 〈c1, σt,f〉 ��� 〈m, σt,f〉 ).

3. Now, the Modify Variable rule is applied, which contin-
ues the aggregation process to Screen ‘5’ and updates the
store by substituting the value of the ‘gold’ Variable by

the value of the ModifyVariable node ‘m’ (cf. Micro3,
〈m, σt,f〉 ��� 〈5, σt,f{�m�/gold}〉).

Applying the entire transformation system to the WebStory
shown in Fig. 2 results in the KTS shown in Fig. 11.

4.2 Application: model checking

Model checking allows for formal verification of finite state
systems. Properties to verify are usually given in Linear Time
Logic (LTL) or Computation Tree Logic (CTL) [9]. Given a
model M of the system and a property ϕ, a model checker

123



Towards language-to-language transformation 665

Fig. 11 KTS for the WebStory shown in Fig. 2. State labels indicate
the valuation function I as described in (4). The colors highlight the
valuation: σff (white), σtf (gray) , and gold σt t (yellow). An incoming
start edge for a state s ∈ S indicates initial ∈ I (s)

checks if the model satisfies the property, written as M |
 ϕ.
As an example, one may want to verify for the initial state of
the WebStory in Fig. 2 that:

1. there is always a way to get hold of the key and
2. the gold is only accessible with the key.

In CTL [8] these properties can be formulated as follows:

1. AGEF(key)
2. A(¬gold U key)

In Fig. 11, gray states satisfy key (but not gold) and yellow
states satisfy key ∧ gold. In this case, the resulting KTS sat-
isfies the formulated properties.
The transformation of WebStories to KTS is an interest-
ing combination of the partial evaluation [22] concerning
the assignments and conditions with the property-oriented
expansion (POE) [43] according to the store. There is no
abstraction, and the POE prohibits information loss due to
the introduction of non-determinism. Thus, the subsequent
model checking is correct and complete for WebStories.

5 Computational transformation using a
general purpose transformation language

Thediscussion in this section aims at illustrating the impact of
special-purpose transformation languages. On the one hand,
using a DSL instead of a powerful general-purpose tool, not
all kinds of transformations can be modeled conveniently.
On the other hand, DSLs supporting specific aspects of a
transformation require the transformation developer to only
understand a set of specialized language constructs, and, even
more importantly, free the transformation developer from

technical concerns like dealing with rule scheduling, book-
keeping, and termination conditions.

In Sect. 4, we used our SOS-based special-purpose lan-
guage for realizing the transformation from WebStorys to
KTS. In order to illustrate the impact of our DSL-based
approach in comparison to general-purpose approaches,
Sect. 5.1 shows specification excerpts of the same transfor-
mation in ATL [23], while Sect. 5.2 discusses how to realize
the transformation within the graph transformation frame-
work Groove [39].

5.1 WebStory to KTS using ATL

The most prominent Eclipse-based model transformation
languages, like theATLASTransformationLanguage (ATL) [23],
the Epsilon Transformation Language (ETL) [26], Via-
tra [48], and Xtend, support a text-based specification of
transformations. Xtend, which is described as ‘Java with
Spice’ [52], is a general-purpose programming language
featuring special methods supporting tracing in model trans-
formation.

ATL, ETL, and Viatra are hybrid languages comprising
declarative and imperative language aspects. The declarative
parts are used to traverse and define constraints for elements
of the source language and their mapping to elements of
the target language. The imperative parts are typically used
to define transformations where ‘significant processing and
complex mappings are involved’ [26]. In our example, the
mapping between Screens, computed variable valuations,
and KTS states is such a complex mapping requiring sig-
nificant processing to compute the variable valuations.

Our aim is to highlight the easy and elegant way to
define these kinds of transformations. Viatra and ETL do
not focus on this aspect. Viatra focuses on scalable reactive
model transformations and provides a text-based language to
define source language patterns. The actual transformation is
then defined in code referring those patterns. ETL is part of
Epsilon, a family consisting of ten languages used to solve
problems in MDE. To define a transformation using Epsilon,
one has to learn these languages. Since those aspects con-
tradict our simplicity-oriented approach, we focus on ATL
which provides an easy and direct access to model transfor-
mations and, similar to our approach, does not burden the
transformation developer with technical details of the execu-
tion process.

In ATL, transformations are organized in modules. A
module consists of a set of transformation rules and helper
methods. Rules are preferably expressed in a declarative way
and define mappings between elements of the source lan-
guage and target language in form of patterns. Furthermore,
they define how to traverse elements to retrieve information
required to create target model elements.

123



666 D. Kopetzki et al.

ATL executes a transformation by applyingmatched rules
whose source language patternmatch structures in the source
model, creating the corresponding target model structure.
Similar to our approach, source model and target model are
separated, and the transformation modifies only the target
model. On rule application, a trace model is constructed
managing bookkeeping information between the matched
elements in the source model and created elements of the tar-
get model. In addition to the automatic rule execution, rules
can be invoked from different parts of a transformation rule
giving the developer more control over the rule execution.

ATL provides three types of rules to define transforma-
tions which are structured into different sections:

– A from section facilitating the definition of source lan-
guage patterns,

– a to section facilitating the definition of target language
patterns,

– a using section to define local variables, and
– a do section used to define imperative code.

The rule types are structurally similar, but differ in the way
they are invoked:

– Matched rules provide a from section, a to section, and an
optional using and do section.Matched rules are automat-
ically executed, if the source model contains structures
conforming to the pattern defined in the from section and
create an instance of the structure defined in the to sec-
tion.

– Lazy rules are syntactically similar to matched rules, but
have to by explicitly called by other rules. Whenever a
lazy rule is executed it creates an instance of the struc-
ture defined in the to section. Thus calling a lazy rule for
the same match in the source model several times results
in multiple occurrences of similar instances in the tar-
get model. This can be avoided using unique lazy rules
(adding a unique flag in a lazy rule’s definition), which
query the constructed trace model before creating a new
element.

– Called rules consist of a to section, a using section, and a
do-section. All sections are optional. A called rule does
not provide a from section but is parameterized to define
the input for the transformation rule. In contrast to lazy
and matched rules, they can be called from imperative
code sections.

In addition to rules, ATL provides helpers and attribute
helpers to define factorized ATL code, which can be called
from different points of a transformation. Helpers and
attribute helpers correspond to methods and global variables
of programming languages. We will use them in our trans-

formation to realize the computation process and manage
crucial bookkeeping information.

ATL’s strength lies in the definition of transformations
between models with a similar structure, where the map-
ping between source language elements and target language
elements is straightforward. The preferred way to define a
transformation in ATL is to use mainly matched rules and
lazy rules with a unique flag to define the mappings between
source language and target language elements, and then let
ATL execute the transformation by applying the matched
rules for each match of their source pattern in the source
model.

In our example, the mapping between Screens and KTS
states relies on the variable valuation (σ ), which, as we will
see, poses the biggest challenge when defining a transforma-
tion in ATL.

In the following, we sketch a possible transformation
which creates a KTS transition with its corresponding source
and target states for each possible variable valuation. Given
an initial variable valuation σ our algorithm executes the fol-
lowing four steps for each Click Area (ca) in the WebStory
model:

1. Create KTS transition trans from ca
2. Create KTS state source from (parent, σ ) where parent

is ca’s parent Screen and set it as the trans’ source state.
3. Create KTS state target from (next, σ ′), with

– next as the reachable Screen from ca given σ , and
– σ ′ as the variable valuation resulting from the reach-

able Screen computation.

Set target as trans’ target state.
4. Repeat the transformation for all discovered variable val-

uations.

The integration of computed information concerns the opera-
tions ’Create KTS state source from (parent, σ )’ and ’Create
KTS state target from (next,σ ′)’ (Steps 2 and 3, respectively)
and the recursive call for discovered variable valuations (Step
4). More precisely, in these steps the following problems
occur:

– Step 2: Since a Screen can contain multiple Click Areas,
this step is executed several timeswith the same combina-
tionofScreen andσ requiring abookkeepingmechanism,
to either create or retrieve the corresponding KTS state.

– Step 3: A Screen can be reachable via two different
Click Areas with the same variable valuation, requiring a
bookkeeping mechanism, to create or retrieve the corre-
sponding KTS state.

– Step 4: Variable valuations, which can be discovered dur-
ing the computation of the reachable Screen in Step 3,

123



Towards language-to-language transformation 667

have to be provided as input for the transformation to
capture all possible states of a WebStory model.

Realizing Step 4 using a matched rule would require to
provide a pattern for variable valuations in a rule’s from sec-
tion and presume that all possible variable valuations are
represented in the source model facilitating ATL to match
them and thereby execute the transformation.

Implementing Steps 2 and 3 usingmatched rules or unique
lazy rules demand for a correct bookkeeping between a KTS
state and the tuple t ∈ Sc×Σ fromwhich that state is created.
Since ATL’s trace model only manages relations between
elements contained in the source model and target model,
this also would require to represent the variable valuation
explicitly in the source model.

Consequently, we cannot provide a correct implementa-
tion of these steps using matched rules or unique lazy rules,
since the variable valuation is not persisted in the source
model but a transient information.

In the following, we focus on the problems described for
Steps 2 and 3, and exemplify the effect of using

– ATL’s bookkeeping mechanism,
– no bookkeeping mechanism, and
– a bookkeeping mechanism integrating the variable valu-
ation

to manage the relation between Screens and KTS states for
the transformation sketched above. All transformations are
executed for theWebStory model represented in Fig. 12 with
the initial variable valuation v = false. For this examples,
we assume that theClick Areas are iterated in an alphabetical
order.

5.1.1 ATL’s bookkeeping

The transformation implemented using ATL’s bookkeeping
mechanism, i.e. realized utilizing unique lazy rules, creates
the KTS structure

(1, σ f )
A−→ (2, σ f )

forClick Area ‘A’, its parent Screen ‘1’, and reachable Screen
‘2’, along with the bookkeeping information that relates

– Screen ‘1’ with (1, σ f ) and
– Screen ‘2’ with (2, σ f ) .6

For Click Area ‘B’, only the new transition ‘
B−→’ is created.

The transition’s source state and target state are retrieved

6 Please recall that we use σ in the representation of a KTS state as
short hand notation for the valuation function of this state. (cf. Sect. 4)

Fig. 12 WebStorymodel used to exemplify the usage of different book-
keeping mechanism (cf. Sects. 5.1.1, 5.1.2, 5.1.3) in the WebStory to
KTS transformation

from the tracemodel, since theKTSstates for theClickArea’s
parent Screen ‘1’ and reachable Screen ‘2’were created in the
previous iteration. The subsequent iterations for the discov-
ered variable valuation (v = true) and Click Areas ‘A’ and
‘B’ create duplicate KTS transitions, and, sinceATL does not
consider the variable valuation in its trace model, retrieves
the existing KTS states, which were created for Screens ‘1’
and ‘2’. This transformation results in a KTS representing
the reachability between Screens in a WebStory neglecting
the computed information as illustrated in Fig. 13(a).

5.1.2 No bookkeeping

To realize the transformation in ATL without using its book-
keeping mechanism, we have to use called rules and lazy
rules. Please recall that those types of rules create an instance
of the structure defined in their to section each time they are
executed. Without considering the trace model, the execu-
tion of Steps 2 and 3 result in the creation of a disconnected
KTS containing duplicate states, since in each iteration and
for each variable valuation a new instance of the structure
consisting of two states, connected by a transition, is cre-
ated. For the WebStory shown in Fig. 12 a resulting KTS is
represented in Fig. 13b.

5.1.3 Manual bookkeeping with variable valuation

A correct transformation requires elaborate bookkeeping in
order to avoid the problems of the previous realizations.
Implementing a bookkeeping mechanism that integrates σ

results in the bookkeeping information, relating

– (Screen ‘1’, σ f ) with (1, σ f ),
– (Screen ‘2’, σ f ) with (2, σ f ),
– (Screen ‘1’ , σt ) with (1, σt ), and
– (Screen ‘2’ , σt ) with (2, σt ).

In contrast to the execution using ATL’s bookkeeping mech-
anism, the states (1, σt ) and (2, σt ) are created in the iteration
for the variable valuation v = true. Furthermore, the KTS

123



668 D. Kopetzki et al.

(b)

(a)

(c)

Fig. 13 Transformation results for the WebStory model represented in
Fig. 12 omitting the variable valuations in the bookkeeping between
Screens and KTS states (a), without any kind of bookkeeping (b), and
considering the variable valuation in the bookkeeping (c)

is connected, since the bookkeeping information can be used
to find a transition’s source and target states, if they where
created in preceding transformation steps, resulting in the
KTS represented in Fig. 13c.
To implement a correct transformation in ATL, i.e. integrat-
ing σ into the bookkeeping mechanism, we augmented the
approach using only called rules and lazy rules (i.e., the no
bookkeeping mechanism approach) by our own bookkeep-
ing implementation. Therefore, we add the following helper
attributes:

– Amap called transformedScreensmapping tuples
of Screens and variable valuations to KTS states, man-
aging bookkeeping information to avoid the creation of
duplicate KTS states, thereby helping to correctly imple-
ment Steps 2 and 3.

– Two sets called oldSigmas, newSigmas monitoring
the progress of the transformation, helping to implement
Step 4 correctly.

Their realization is shown in Listing 2. In Line 2, the
set newSigmas is initialized by the invocation of the
initSigmas helper method, which creates a variable for
each Variable node of the input WebStory and sets it to
false.7 These helpers are used in the following transfor-
mation rules:

– Acalled ruleTransform, whichmanages the execution
of the transformation using the sets oldSigmas and
newSigmas. This rule is the implementation of Step 4
in the sketched transformation.

– A lazy rule Ca2Transition, which creates the target
model structures, i.e., a KTS transition for a given Click
Area along with the associated source and target states.
Therefore, it is the implementation of Steps 2 and 3 of
the sketched transformation.

– A lazy rule Screen2State, which creates a KTS state
for a given Screen and σ .

The Transform rule is shown in Listing 3. It is flagged by
entrypoint, which leads to its invocation at the beginning
of ATL’s transformation process. It consists of a do section
with two nested loops, iterating over all Click Areas of the
input WebStory (Line 6) and all discovered variable valua-
tions (Line 7), calling the Ca2Transition rule in each
iteration.

7 Please note that thisModule has to be prepended to call helpers or
rules defined in the current ATL module.

123



Towards language-to-language transformation 669

Listing 4 shows the realization of Ca2Transition.
The KTS transition for the given Click Area, its source state
and target state are created in Lines 12-26. To prevent the
creation of duplicate KTS states, Lines 15 and 21 check
if a corresponding state already exists using the local vari-
ables sourceState and targetState defined in the
using section of the rule (cf. Lines 8 and 9). If they do not
exist, they are created by calling the Screen2State rule
(cf. Listing 5). The code defined in the do section of rule
Ca2Transition updates the set newSigmas and the
transformedScreens map.

To create a transition’s target KTS state, we have to com-
pute the Screen which is reachable from the corresponding
Click Area given σ . This is realized using the helpers shown
in Listing 6. Given a node of the input model and a variable
valuation, thereachableScreen helper retrieves the suc-
cessor of the node by calling

– traverseClickArea,
– traverseCondition, and
– traverseModifyVariable

until a Screen is reached. Traversing a Modify Variable can
change the variable valuation (cf. updateSigma in Line
18). Consequently, reachableScreen returns a tuple
consisting of the reached Screen and the resulting variable
valuation.
Summarizing, ATL’s rule format, which can be regarded as
a de-facto standard for transformations in the model-driven
community, is not adequate to express transformations that
comprise computational aspects like the one discussed here

123



670 D. Kopetzki et al.

for the WebStory. Rather, correctness can only be guaran-
teed via involved rule scheduling that has to be enforced
using auxiliary information (via helpers) about variable val-
uations and other forms of bookkeeping, e.g., for managing
the required target structures and guaranteeing termination.

In our setting, enforcing the correct rule scheduling is
particularly challenging, as can be seen when looking at
the small example transformation above: it requires auxil-
iary computations, e.g. reading bookkeeping information (cf.
Listing 4, Lines 8-9, 15, and 21) and updating auxiliary struc-
tures (cf. Lines 28-35), which clutters the transformation
rules. In fact, the resulting ATL transformation essentially
resembles an imperative program as only a few parts can be
defined in ATL’s preferred declarative way.

5.2 WebStory to KTS using groove

Rules specified in Groove use a compact syntax comprising
colour coding:

– Solid black lines defineReader. They have to occur in the
input graph. Applying a rule does not manipulate these
elements.

– Dashed blue lines define Erasers. They have to occur in
the input graph to apply the rule and are deleted after rule
application.

– Solid green lines define Creators. They are created after
rule application.

– Dashed red lines define Embargoes. They are forbidden
in the input graph. Thus, if an embargo occurs in the input
graph, the rule is not applicable.

To model the transformation in Groove, we define an
attributed type graph comprising WebStory types and KTS
types. Furthermore, modeling the computational part with
Groove requires to manage every aspect that is implicitly
given when using our domain-specific approach, explicitly
in the transformation rules. Therefore, we introduce addi-
tional types managing the computation:

– A Phase type which distinguishes between the stages of
the transformation, e.g., target model creation or compu-
tation.

– AMemory type, used to temporarily save the name of a
Click Area, until the corresponding LabeledTransition is
created.

– A Graph Pointer type (GP)
– A Current edge type to connect GP typed node with the
currently considered node in the input model.

– A Bool type containing a Boolean attribute value. For
each Variable node in the input WebStory, a Bool node
is created to store the Variable node’s value.

Fig. 14 Creation of the KTS state corresponding to a Screen in the
WebStory

– Attributes source and target for theKTS state type, help-
ing to connect created state nodes correctly.

Wemodel the transition type of KTS as a node type Labeled-
Transition containing a string attribute label, since Groove
does not support attributed edge types.

Given an input graph conforming to the attributed type
graph, our transformation starts with an initialization, in
which

1. we set the Boolean values for Variable nodes,
2. create a Phase node,
3. identify the Start Screen of theWebStory model, and cre-

ate a GP node, referencing that Screen using a Current
edge.

After the initialization, the actual transformation starts.
We create two KTS states connected through a labeled tran-
sition by executing the following steps.

1. Create the source KTS state for the Screen node refer-
enced by the GP (cf. Fig. 14).8 For each Variable node
whose Boolean values equals true an atomic proposi-
tion node (AP) named after the Variable node’s name, is
created.

2. Choose a Click Area node contained in the current Screen
node.

8 The ’∀’ node allows for matching of sub-graphs. Refer to [39,40] for
a detailed explanation.

123



Towards language-to-language transformation 671

(b) (c)

(a)

Fig. 15 Computational rules from the transformation shown in Fig. 9
modeled in Groove: Modify Variable (a), ConditionTT (b),
and ConditionFF (c). In the rules green elements will be created
after rule application, blue elements are matched and deleted after rule
application

Fig. 16 Connecting the created KTS states after one computation

Fig. 17 Rule for the identification andmerging of equivalentKTS states

3. Aggregate the path between that Click Area node and a
Screen node using the rules shown in Fig. 15.

4. Create the target KTS state for the reached Screen node.
5. Connect the source KTS state and target KTS state by a

labeled transition (cf. Fig. 16).

In addition to these steps, we have to take care of the
following global transformation aspects:

– Identify and merge equivalent states in the target KTS
(cf. Fig. 17).

– Fix-point recognition for detecting when a transforma-
tion can terminate. In essence, it requires to carefully
control the order of transformation rule applications, in
particular using the merge rule, in order to identify when
a fixpoint has been reached. This is a quite tedious task,
which, when the rules are modeled accordingly, is sup-
ported by Groove.

– Erasure of all the elements that are not part of the
target model. This concerns elements of the source
model (WebStory), as well as all the introduced auxiliary
elements, e.g., for computation and bookkeeping. The
corresponding transformation rules are typically quite
straightforward, if one took care of adequately typing
of all the involved artefacts (Fig. 18).

123



672 D. Kopetzki et al.

Fig. 18 The Groove type graph for the transformation from WebStory to KTS

Fig. 19 Resulting KTS from the transformation using Groove

123



Towards language-to-language transformation 673

Fig. 20 Migration of the WSL after a metamodel change: removed Condition type,Modify Variable type, and Variable type, added an Assignment
type and Guarded Transition type

Applying the transformation on the same path considered
in Sect. 4.1 (the highlighted path in Fig. 2)with the same vari-
able configuration (�key�(σ ) = true, �gold�(σ ) = f alse)
results in a series of in-place graph transformations. An
excerpt of the corresponding transformation sequence,which
highlights the actual transformation steps while omitting the
‘passive’ context, is shown in Fig. 21.

The first part, Fig. 21a, shows the situation after the
creation of the source KTS state. Fig. 21b represents two
computation steps: the result after the application of the
ConditionTT rule (‘movement’ of the Current edge
from position current to current′) and ConditionFF rule
(‘movement’ of the Current edge from position current′
to current′′). The subsequent application of the Modify
Variable rule results in the situation shown in Fig. 21c,
where the value of the Variable ‘gold’ is set to true and the
current edge refers to the Screen named ‘Gold’.

Figure 21d shows the situation after the target KTS state
was created and the source state and the target state are con-
nected by a transition labeled with the name of theClick Area
node ‘A’.

The entire KTS resulting from the Webstory example is
depicted in Fig. 19.
Using Groove, the main challenge was to model the trans-
formation’s execution which resulted in a big overhead.
For instance, assuring a correct transformation using graph
rewriting rules, confluence is an important requirement, i.e.,
if several rules are applicable in one situation the order in
which these rules are applied must not have an effect on
the final result. We solved this problem by adding additional
structures to the input model and rules that prohibit transfor-
mation steps that might violate the confluence requirement.
Interestingly, the rules responsible for the creation of KTS
structures and the rules defining the atomic computational
steps are straightforward (cf. Figs. 14, 15).

5.3 Comparison

In order to discuss the state-of-the art of model-to-model
transformation languages when it comes to transformations
that comprise computational aspects like the one discussed
here for the WebStory, we have investigated two prominent
solutions:

– ATL, a de-facto standard of themodel-drivendesign com-
munity, and

– Groove, one of the leading tools for graph transformation.

Both solutions are known to elegantly capture static trans-
formations like data model conversions (e.g. Families to
Persons [47], Tree to Lists [47], Java to UML [4], or UML
to RDB schema [10]). However, even transformations that
appear to be more semantic (e.g. UML+OCL to Java [41]
or Petri Nets from finite state automata [27] and state
charts [14]) usually capture purely syntactic translations,
which often operate on structurally quite similar models for
which the mapping between elements is straightforward.
However, treating computational structures is more intri-
cate, as their correctness depends, e.g., on the concrete rule
scheduling, an aspect transformation languages are meant to
hide from the user:

– Using ATL, helper functionality is required which turn
the ATL rule specification essentially into an imperative
program (cf. Sect. 5.1), while

– Groove requires to model the rules scheduling via auxil-
iary structures in its graph format, which is not particu-
larly well-suited for this purpose (cf. Sect. 5.2).

In contrast, the rule format of our SOS-based DSL for
program transformation is designed for dealing with com-

123



674 D. Kopetzki et al.

(a)

(c)(b)

(d)

Fig. 21 Aggregation of the highlighted WebStory path depicted in Fig. 2

123



Towards language-to-language transformation 675

putational structures and does not require any complicated
encodings.

6 Meta pattern of our approach

In this paper, we have introduced (and extensively discussed
a single instantiation of) a meta pattern for transformation
languages, which advocates a decomposition of graph trans-
formations into aspect-specific transformation sub-DSLs.
This meta pattern can be flexibly instantiated:

– The graphical source language: E.g., writing the rules for
extracting the labeled transition system for a (graphical)
Petri Net is an easy exercise.

– The not necessarily graphical target language: As indi-
cated in Fig. 20, the graphical syntax that specifies
dynamic links between the Web pages in the center of
the left picture of Fig. 20 can also be nicely aggregated
into a textual form that serves as edge labels in the right
picture of Fig. 20.

– The purpose: E.g., the language-to-language transforma-
tion sketched in Fig. 20 is almost as easy as extracting a
labeled transition systems from aWeb story as discussed
in this paper in detail. Other aspects, like, e.g., security,
will require to define other dedicated sub-rule systems.
The definition of such sub-rule systems and theirmodular
use is topic of our current research.

In our experience, it is surprising how much can be specified
with the very basic setting sketched here, and a lot more is
possible in enriched settings, characterized, e.g., by allowing
negative premises in SOS rules. In fact, there are workshop
series that discuss the according potential (cf., e.g., the latest
proceedings of EPTCS [12]). However, it is neither the goal
of this paper to propose a dedicated, particularly expressive
language, nor to investigate the possible range. Rather, we
intend to illustrate the potential that comes with the purpose-
oriented decomposition of rule-based specifications when
using aspect-specific sub-rule systems.

With the TSOS format, we exemplified an instance of the
meta pattern for dealing with the aspect of computation: The
essence of theWSL-to-KTS transformation is the SOS-based
partial evaluation of the structure that specifies the dynamic
links between the Web pages in order to arrive at the right
graph of Fig. 1. It was our goal to illustrate that achieving
this effect with our computation-oriented sub-rule systems
is straightforward, but very cumbersome in generic graph
transformation systems like, e.g., ATL [47] and Groove [39].

7 Conclusions and perspectives

Wehave sketched a simplicity-oriented framework for graph-
based language-to-language transformation which is charac-
terized by its modular, graph-based representation, domain
focus, and ease of specification. Technically, these proper-
ties are achieved by a clear separation of source language and
target language patterns in the rules, purely additive transfor-
mation steps, and a separate rule system for treating dedicated
aspects, like, e.g., computation. These restrictions lead to
a localization of the changes imposed by individual steps
and thereby maximize the parts of the models which remain
invariant following our Archimedean point principle, which
proposes to control change by understanding what remains
invariant [45]. A detailed comparative discussion of ATL,
a de-facto standard of the model-driven design community,
andGroove, oneof the leading tools for graph transformation,
illustrates the impact of our simplicity-oriented approach.

It should be noted, however, that TSOS is just an instance
of our framework which is meant to be instantiated with
other purpose-specific formats and aspects at need. A cor-
responding study currently in progress for the purpose of
model migration after a change of the underlyingmetamodel
shows very promising results. In that study, we investigate
the migration of WSL models into models of a refined mod-
eling language WSL’ which allows one to label edges with
guarded assignments as shown in the right picture of Fig. 20.
Although the purpose of this transformation is quite differ-
ent from the transformation presented in this paper it turns
out that the migration transformation from WSL to WSL’
can also elegantly be specified in the basic version TSOS.
A dedicated article that covers migration as transformation
purpose for our meta pattern is currently in preparation [6].
Of course, the migration step that introduces guarded assign-
ments also builds on a computation-based aggregation. Other
purposes may require (computation-based) expansion: E.g.,
a transformation for securing the communication of a Web
application has to expand the model with security means.We
are currently investigation how far our basic version of TSOS
carries here, and where it needs to be extended (Fig. 21).

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

123



676 D. Kopetzki et al.

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: Advanced concepts and tools for in-place EMF model
transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
Model Driven Engineering Languages and Systems, pp. 121–135.
Springer, Berlin (2010)

2. Bakera, M., Margaria, T., Renner, C., Steffen, B.: Tool-supported
enhancement of diagnosis inmodel-driven verification. Innov. Syst.
Softw. Eng. 5, 211–228 (2009). https://doi.org/10.1007/s11334-
009-0091-6

3. Balasubramanian, D., Narayanan, A., van Buskirk, C., Karsai, G.:
The graph rewriting and transformation language: GReAT. Elec-
tron. Commun. EASST 1, 1–8 (2007)

4. Bergmayr, A., Troya, J., Wimmer, M.: From out-place transforma-
tion evolution to in-place model patching. In: Proceedings of the
29th ACM/IEEE International Conference onAutomated Software
Engineering, ASE ’14, pp. 647–652. Association for Computing
Machinery, New York, NY, USA (2014). https://doi.org/10.1145/
2642937.2642946

5. Brand, C., Gorning, M., Kaiser, T., Pasch, J., Wenz, M.: Graphiti
- Development of high-quality graphical model editors. Eclipse
Magazine (2011)

6. Busch, D., Kopetzki, D., Lybecait, M., Naujokat, S., Steffen, B.:
Co-Evolution asLanguage-to-LanguageTransformation (2021). In
preparation

7. Cinco SCCE Meta Tooling Suite (2018). http://cinco.scce.info.
Accessed 31 May 2021

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and
abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542
(1994)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The
MIT Press, Cambridge (1999)

10. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45, 621–645 (2006)

11. Dachis, A.: Dsc00318 gold coins. https://www.flickr.com/photos/
dachis/14569056769/ (2014). Available under Attribution 2.0
Generic (CC BY 2.0) https://creativecommons.org/licenses/by/2.
0/

12. Dardha, O., Rot, J.: Proceedings Combined 27th International
Workshop on Expressiveness in Concurrency and 17th Workshop
on Structural Operational Semantics, EXPRESS/SOS 2020, and
17th Workshop on Structural Operational SemanticsOnline, 31
August 2020. In: EXPRESS/SOS (2020)

13. Dmitriev, S.: Language oriented programming: the next program-
ming paradigm. JetBrains onBoard Online Mag. 1, 1–14 (2004).
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/

14. Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-
Gyapay, S.: Termination criteria for model transformation. In:
Cerioli, M. (ed.) Fundamental Approaches to Software Engineer-
ing, pp. 49–63. Springer, Berlin (2005)

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals
of Algebraic Graph Transformation (Monographs in Theoretical
Computer Science. An EATCS Series). Springer, Berlin (2006)

16. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model
Transformation. Springer, Berlin (2015)

17. Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.):
Graph Transformations: 5th International Conference, ICGT 2010,
Enschede, The Netherlands, September 27–October 2, 2010. Pro-
ceedings. Lecture Notes in Computer Science. Springer (2010).
https://doi.org/10.1007/978-3-642-15928-2

18. Ermel, C., Rudolf, M., Taentzer, G.: The AGG approach: language
and environment. In:HandbookOfGraphGrammarsAndComput-
ing By Graph Transformation: Volume 2: Applications, Languages
and Tools, pp. 551–603. World Scientific (1999)

19. Eysholdt, M., Behrens, H.: Xtext: Implement your language faster
than the quick and dirty way. In: Proceedings of the ACM Inter-
national Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, OOPSLA ’10,
pp. 307–309. ACM, New York, NY, USA (2010). https://doi.org/
10.1145/1869542.1869625

20. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay,
E., McCarthy, J., Tobin-Hochstadt, S.: A programmable program-
ming language. Commun. ACM 61(3), 62–71 (2018). https://doi.
org/10.1145/3127323

21. Fowler, M.: Language Workbenches: The Killer-App for
Domain Specific Languages? http://martinfowler.com/articles/
languageWorkbench.html (2005). Accessed 05 July 2020

22. Futamura, Y.: Partial evaluation of computation process-
an approach to a compiler–compiler. Higher-Order Symb.
Comput. 12(4), 381–391 (1999). https://doi.org/10.1023/A:
1010095604496

23. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: Amodel trans-
formation tool. Sci. Comput. Program. 72(1–2), 31–39 (2008).
https://doi.org/10.1016/j.scico.2007.08.002

24. Kahani, N., Bagherzadeh, M., Cordy, J.R., Dingel, J., Varró, D.:
Survey and classification of model transformation tools. Softw.
Syst. Model. (2018). https://doi.org/10.1007/s10270-018-0665-6

25. Knowles, C.: Salmon cabin and sawtooths. https://www.flickr.com/
photos/theknowlesgallery/4756008375/ (2010). Available under
Attribution 2.0 Generic (CCBY 2.0) https://creativecommons.org/
licenses/by/2.0/

26. Kolovos, D., Rose, L., García-Domínguez, A., Paige, R.: The
Epsilon Book. Published online: http://eclipse.org/epsilon/doc/
book/ (2015). Last update: February 4, (2015)

27. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.:
Explicit transformation modeling. In: Ghosh, S. (ed.) Models in
Software Engineering, pp. 240–255. Springer, Berlin (2010)

28. Lybecait, M.: Meta-Model Based Generation of Domain-Specific
Modeling Tools. Dissertation, TU Dortmund University, Dort-
mund,Germany (2019). https://doi.org/10.17877/DE290R-20418.
http://hdl.handle.net/2003/38499

29. Lybecait, M., Kopetzki, D., Steffen, B.: Design for ‘X’ through
model transformation. In: Proceedings of the 8th International
Symposium on Leveraging Applications of Formal Methods, Veri-
fication and Validation, Part I Modeling (ISoLA 2018), LNCS, vol.
11244, pp. 381–398. Springer (2018). https://doi.org/10.1007/978-
3-030-03418-4_23

30. Lybecait, M., Kopetzki, D., Zweihoff, P., Fuhge, A., Naujokat,
S., Steffen, B.: A tutorial introduction to graphical modeling and
metamodeling with cinco. In: Proceedings of the 8th International
Symposium on Leveraging Applications of Formal Methods, Veri-
fication and Validation, Part I Modeling (ISoLA 2018), LNCS, vol.
11244, pp. 519–538. Springer (2018). https://doi.org/10.1007/978-
3-030-03418-4_31

31. Margaria, T.: From computational thinking to constructive design
with simple models. In: Proceedings of the 8th International
Symposium on Leveraging Applications of Formal Methods, Veri-
fication and Validation, Part I Modeling (ISoLA 2018), LNCS, vol.
11244, pp. 261–278. Springer (2018). https://doi.org/10.1007/978-
3-030-03418-4_16

32. Margaria, T., Steffen, B.: Business process modelling in the jABC:
the one-thing-approach. In: Cardoso, J., van der Aalst, W. (eds.)
Handbook of Research on Business ProcessModeling. IGI Global,
Pennsylvania (2009)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11334-009-0091-6
https://doi.org/10.1007/s11334-009-0091-6
https://doi.org/10.1145/2642937.2642946
https://doi.org/10.1145/2642937.2642946
http://cinco.scce.info
https://www.flickr.com/photos/dachis/14569056769/
https://www.flickr.com/photos/dachis/14569056769/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
https://doi.org/10.1007/978-3-642-15928-2
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/s10270-018-0665-6
https://www.flickr.com/photos/theknowlesgallery/4756008375/
https://www.flickr.com/photos/theknowlesgallery/4756008375/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
http://eclipse.org/epsilon/doc/book/
http://eclipse.org/epsilon/doc/book/
https://doi.org/10.17877/DE290R-20418
http://hdl.handle.net/2003/38499
https://doi.org/10.1007/978-3-030-03418-4_23
https://doi.org/10.1007/978-3-030-03418-4_23
https://doi.org/10.1007/978-3-030-03418-4_31
https://doi.org/10.1007/978-3-030-03418-4_31
https://doi.org/10.1007/978-3-030-03418-4_16
https://doi.org/10.1007/978-3-030-03418-4_16


Towards language-to-language transformation 677

33. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation.
Computer 43(6), 90–92 (2010). https://doi.org/10.1109/MC.2010.
177

34. McAffer, J., Lemieux, J.M., Aniszczyk, C.: Eclipse Rich Client
Platform, 2nd edn. Addison-Wesley Professional, Boston (2010)

35. Müller-Olm, M., Schmidt, D., Steffen, B.: Model-checking—a
tutorial introduction. In: Proceedings of the 6th International Sym-
posium on Static Analysis (SAS ’99), pp. 330–354 (1999). https://
doi.org/10.1007/3-540-48294-6_22

36. Naujokat, S.: HeavyMeta. Model-Driven Domain-Specific Gener-
ation ofGenerativeDomain-SpecificModelingTools.Dissertation,
TU Dortmund, Dortmund, Germany (2017). https://doi.org/10.
17877/DE290R-18076. http://hdl.handle.net/2003/36060

37. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: A
simplicity-driven approach to full generation of domain-specific
graphicalmodeling tools. Softw.ToolsTechnol. Transf.20(3), 327–
354 (2017). https://doi.org/10.1007/s10009-017-0453-6

38. Plotkin, G.D.: A Structural Approach to Operational Semantics.
Tech. rep., University of Aarhus (1981). DAIMI FN-19

39. Rensink, A.: The GROOVE simulator: a tool for state space gen-
eration. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) Applications
of Graph Transformations with Industrial Relevance, pp. 479–485.
Springer, Berlin (2004)

40. Rensink, A., Kuperus, J.: Repotting the geraniums: on nested graph
transformation rules. ECEASST 18, 4–15 (2009). https://doi.org/
10.14279/tuj.eceasst.18.260

41. Sánchez Cuadrado, J.: Towards a family of model transformation
languages. In: Hu, Z., de Lara, J. (eds.) Theory and Practice of
Model Transformations, pp. 176–191. Springer, Berlin (2012)

42. Sierralupe, D.G.: Middle fork bike path. https://www.flickr.com/
photos/sierralupe/29262085202/ (2016). Available under Attri-
bution 2.0 Generic (CC BY 2.0) https://creativecommons.org/
licenses/by/2.0/

43. Steffen, B.: Property-oriented expansion. In: Cousot, R., Schmidt,
D.A. (eds.) Third International Symposium on Static Analysis
(SAS ’96), Lecture Notes in Computer Science, vol. 1145, pp. 22–
41. Springer, Berlin (1996). https://doi.org/10.1007/3-540-61739-
6_31

44. Steffen,B.,Gossen, F.,Naujokat, S.,Margaria, T.: Language-driven
engineering: from general-purpose to purpose-specific languages.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Sci-
ence: State of theArt andPerspectives, LNCS, vol. 10000. Springer,
Berlin (2019). https://doi.org/10.1007/978-3-319-91908-9_17

45. Steffen, B., Naujokat, S.: Archimedean points: the essence formas-
tering change. LNCS Trans. Found. Mastering Change (FoMaC)
1(1), 22–46 (2016). https://doi.org/10.1007/978-3-319-46508-
1_3

46. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework, 2nd edn. Addison-Wesley, Boston
(2008)

47. The Atlas Transformation Language. https://www.eclipse.org/atl/
atlTransformations/ (2017). Accessed 09 Apr 2020

48. Varró, D., Balogh, A.: The model transformation language of
the VIATRA2 framework. Sci. Comput. Program. 68(3), 214–234
(2007). https://doi.org/10.1016/j.scico.2007.05.004. Special Issue
on Model Transformation

49. Ward, M.P.: Language oriented programming. Softw. Concepts
Tools 15(4), 147–161 (1994)

50. Watson, I.: Day 161 - keys. https://www.flickr.com/photos/
dagoaty/4707352284/ (2010). Available under Attribution 2.0
Generic (CC BY 2.0) https://creativecommons.org/licenses/by/2.
0/

51. Wing, J.M.: Computational thinking. Commun.ACM 49(3), 33–35
(2006). https://doi.org/10.1145/1118178.1118215

52. Xtend - Modernized Java. http://xtend-lang.org. Accessed 8 Feb
2019

53. Zweihoff, P.: Cinco Products for the Web. Master thesis, TU Dort-
mund (2015)

54. Zweihoff, P., Naujokat, S., Steffen, B.: Pyro: Generating Domain-
Specific Collaborative Online Modeling Environments. In: Pro-
ceedings of the 22nd International Conference on Fundamental
Approaches to Software Engineering (FASE 2019) (2019). https://
doi.org/10.1007/978-3-030-16722-6_6

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/MC.2010.177
https://doi.org/10.1109/MC.2010.177
https://doi.org/10.1007/3-540-48294-6_22
https://doi.org/10.1007/3-540-48294-6_22
https://doi.org/10.17877/DE290R-18076
https://doi.org/10.17877/DE290R-18076
http://hdl.handle.net/2003/36060
https://doi.org/10.1007/s10009-017-0453-6
https://doi.org/10.14279/tuj.eceasst.18.260
https://doi.org/10.14279/tuj.eceasst.18.260
https://www.flickr.com/photos/sierralupe/29262085202/
https://www.flickr.com/photos/sierralupe/29262085202/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://doi.org/10.1007/3-540-61739-6_31
https://doi.org/10.1007/3-540-61739-6_31
https://doi.org/10.1007/978-3-319-91908-9_17
https://doi.org/10.1007/978-3-319-46508-1_3
https://doi.org/10.1007/978-3-319-46508-1_3
https://www.eclipse.org/atl/atlTransformations/
https://www.eclipse.org/atl/atlTransformations/
https://doi.org/10.1016/j.scico.2007.05.004
https://www.flickr.com/photos/dagoaty/4707352284/
https://www.flickr.com/photos/dagoaty/4707352284/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://doi.org/10.1145/1118178.1118215
http://xtend-lang.org
https://doi.org/10.1007/978-3-030-16722-6_6
https://doi.org/10.1007/978-3-030-16722-6_6

	Towards language-to-language transformation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The WebStory language
	2.2 Cinco meta tooling suite

	3 Language-to-language transformations
	3.1 Algebraic graph transformations
	3.2 Towards language-to-language transformations inCinco
	3.3 A DSL for language-to-language transformation

	4 Enabling WebStories for model checking
	4.1 A DSL for computational transformations
	4.2 Application: model checking

	5 Computational transformation using a general purpose transformation language
	5.1 WebStory to KTS using ATL
	5.1.1 ATL's bookkeeping
	5.1.2 No bookkeeping
	5.1.3 Manual bookkeeping with variable valuation

	5.2 WebStory to KTS using groove
	5.3 Comparison

	6 Meta pattern of our approach
	7 Conclusions and perspectives
	References




