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Abstract
We investigate the mortar finite element method for second order elliptic boundary
value problemsondomainswhich are decomposed into patches�k with tensor-product
NURBS parameterizations. We follow the methodology of IsoGeometric Analysis
(IGA) and choose discrete spaces Xh,k on each patch �k as tensor-product NURBS
spaces of the same or higher degree as given by the parameterization. Our work is an
extension ofBrivadis et al. (ComputMethodsApplMechEng 284:292–319, 2015) and
highlights several aspects which did not receive full attention before. In particular, by
choosing appropriate spaces of polynomial splines as Lagrange multipliers, we obtain
a uniform infsup-inequality. Moreover, we provide a new additional condition on the
discrete spaces Xh,k which is required for obtaining optimal convergence rates of the
mortar method. Our numerical examples demonstrate that the optimal rate is lost if
this condition is neglected.

Mathematics Subject Classification 65N30 · 65N55 · 41A15

1 Introduction

Our main focus is on the theoretical foundation of an IsoGeometric Analysis (IGA)
approach to mixed finite element methods using non-uniform rational B-splines
(NURBS) for the finite element discretization.We investigate themortar finite element
method on domains
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872 W. Dornisch, J. Stöckler

� =
K⋃

k=1

�k ⊂ R
2

which are decomposed into patches �k with tensor-product NURBS parameteriza-
tions

Fk : [0, 1]2 → �k .

For the originalmortarmethodwe refer to [6,7,24].A comprehensive description of the
finite-element discretization using the methodology of IsoGeometric Analysis (IGA)
is given in [12]. Prior uses of the mortar method in IGA have also been documented in
[2,15–17]. Its centerpieces are discrete spaces Xh,k ⊂ H1(�k), which are pushforward
of tensor-product NURBS spaces on the parameter domain [0, 1]2 and which have the
same or higher degree given by the parameterization Fk . Furthermore, discrete spaces
Mh,l of Lagrange multipliers are defined for the representation of weak continuity
conditions across the interfaces γl . In [12] the pushforward of polynomial spline
spaces of the same or lower degree are proposed.

Ourwork is an extension of [12] and highlights several aspectswhich did not receive
full attention before.

1. In our numerical experiments based on themethod in [12], using parameterizations
by quartic NURBS with multiple interior knots and quartic splines as Lagrange
multipliers, we observed that the optimal approximation rate claimed in Theorem
6 of [12] is not obtained. In Sect. 7 we show that a simple additional condition
on the Lagrange multiplier spaces Mh,l is sufficient in order to obtain the optimal
approximation rate, see Assumption 2(b) and Proposition 7.5. We give a short
explanation here. The typical smoothness assumption u|�k ∈ H pk+1(�k) leads

to optimal L2-discretization errors O(h pk+1
k ) in a non-parametric setting, where

pk denotes the polynomial degree of the finite element space Xh,k , see [6,7,24].
For the parametric setting of IGA, the notion of “bent Sobolev spaces” on patches
�k was introduced in [3,4], in order to remedy the lack of smoothness of the
pushforward of tensor-product NURBS with multiple knots. This leads to optimal
rates of the approximation errors

inf
v∈Xh,k

‖u − v‖L2(�k)
= O(h pk+1

k ), inf
w∈Wh,l

‖u|γl − w‖L2(γl )
= O(h pk+1/2

k ),

whereWh,l denotes the trace space of Xh,k on the interface γl . As a third ingredient,
the isogeometric mortar method in [12] requires that the approximation error of
the normal derivative across γl by the Lagrange multiplier space Mh,l satisfies

inf
μ∈Mh,l

∥∥∥∥
∂u

∂νl
− μ

∥∥∥∥
L2(γl )

≤ Chpk−1/2
k ‖u‖H pk+1(�k)

.

We observe in Sect. 7, that this order is not always achieved, if Mh,l satisfies the
assumptions of Theorem 6 in [12]. The defect results from the presence of multiple
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An isogeometric mortar method for the coupling... 873

knots in the original (coarse) knot vector for the parameterization Fk . By a careful
analysis of the trace operator with respect to non-smooth curves, as in the book by
Nečas [19], we provide the following result: assume that ξ ∈ (0, 1) is an interior
knot of the NURBS parameterization of γl (i.e. parameterized by Fk restricted to
a boundary line of [0, 1]2). If ξ has multiplicity 2 or higher, then its multiplicity
as a knot for the Lagrange multiplier space Mh,l should be increased at least by
one, in order to achieve the required approximation errorO(h pk−1/2

k ). The precise
formulation is given in terms of an augmented knot vector in Proposition 7.1.

2. The formulation of themortarmethod as a saddle point problem involves Lagrange
multiplier spaces Mh,l for the representation of weak continuity conditions across
the interfaces γl . In order to achieve the optimal approximation order of the mortar
method, a good choice for Mh,l is the pushforward of the polynomial spline space
of the same degree as Xh,k , if γl is an edge of the patch �k , and with suitable
modifications at both endpoints of γl , see [12, Section 4.3]. It is a conjecture in
[12] that this choice justifies a uniform infsup-condition. In Sect. 4.2 we define a
spline space M1

h,l of the same degree with another type of endpoint modifications,
for which we provide the analytical proof of the infsup-inequality in Sect. 6. As a
side-effect of the new definition of the space of Lagrange multipliers, we show in
Sect. 8 that the sparsity of the mass matrix is increased slightly.

3. In the geometrically conforming case, γkl = ∂�k ∩ ∂�l is either empty, a vertex
or a full edge of both patches. In engineering applications of CAD-tools, the
decomposition of � can often be geometrically non-conforming and includes T-
intersections of the patch boundaries. The setting in [2,12,15–17] allows certain
types of T-intersections, but excludes configurations of staircase type, where γkl is
neither an edge of �k nor of �l . We provide an adaptation of the discrete spaces
Xh,k and allow full flexibility of designing the multi-patch layout of the geometry.

In order to keep the overhead of notations small, we present our analytical results
about the infsup-condition and the a-priori error estimates for a simple class of second
order elliptic problems. We proceed to more elaborate models in elasticity in our
numerical experiments in Sect. 9. The scope of applications of the IGAmortar method
has recently been extended to a class of contact problems in [1,20,22], and the infsup-
condition and the a-priori error estimates by [12] provided the theoretical foundation.
We believe that our results in Sects. 6 and 7 will be valuable ingredients for further
developments in this direction.

We begin with the elliptic problem

−div(α∇u) + βu = f in �

on a Lipschitz domain � ⊂ R
2 with boundary conditions

u|	D = 0, α
∂u

∂ν

∣∣∣∣
	N

= g,

123



874 W. Dornisch, J. Stöckler

where 	D has positive measure and 	N = ∂� \ 	D . For its weak formulation we
define H1

0,D(�) = {v ∈ H1(�) : v|	D = 0} and the bilinear form

a(u, v) =
∫

�

(α∇u · ∇v + βuv) dx, u, v ∈ H1
0,D(�). (1)

We assume that α is a uniformly positive definite matrix with entries αi, j ∈ L∞(�)

and β ∈ L∞(�) is nonnegative. Then the bilinear form a is coercive. In the weak
formulation, we look for u ∈ H1

0,D(�) such that

a(u, v) =
∫

�

f v dx +
∫

	N

gv ds for all v ∈ H1
0,D(�). (2)

We often use Sobolev spaces Hs(�)with smoothness order s ≥ 0 which is not always
an integer. The norm and semi-norm are denoted as usual by ‖v‖s,� and |v|s,�.

We end the introduction by a short outline of our work. We repeat from [12] the
geometric description and the general setting of the weak formulation as a saddle point
problem in Sects. 2 and 3. Section 4 gives the definitions of the discrete spaces Xh,k

and the new spaces M1
h of Lagrange multipliers. Sections 5 and 6 deal with the L2-

stability of the mortar projection and the uniform infsup-inequality. Section 7 provides
a detailed analysis of the approximation order of the discrete solution. In Sect. 8 we
give some information about the implementation, with special emphasis on the mass
matrix, and Sect. 9 provides several numerical results for the Poisson problem and for
elasticity problems.

2 NURBS description of the geometry

The geometrical setting is formulated as in [12]. In order to fix the notations, we repeat
some of the material in the referenced article.

Let �1, . . . , �K ⊂ R
2 define a nonoverlapping decomposition of the domain �

by curvilinear quadrilaterals (patches), i.e.

� =
K⋃

k=1

�k, �k ∩ �l = ∅ for k �= l.

The decompositionmay be geometrically non-conforming, aswe allowT-intersections
at the boundaries of the patches. A sketch of such decomposition is given in Fig. 1.

Each patch �k is parameterized by a homeomorphism Fk : �̂ = [0, 1]2 → �k

which is bi-Lipschitz. Throughout this article, Fk is a bivariate NURBS parameteri-
zation

Fk(ξ1, ξ2) =
∑

i∈Ik
Ck,i N̂k,i(ξ1, ξ2), (ξ1, ξ2) ∈ �̂ = [0, 1]2,
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Ω1

Ω2
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γ1
Ωm(1)

Ωs(1)

γ2

Ωm(2)
Ωs(2)

γ3 Ωm(3)

Ωs(3)

Fig. 1 Decomposition of domains

where (N̂k,i)i∈Ik is the family of NURBS basis functions of degree pk with respect to
the bivariate knot sequence

�k = 

(1)
k × 


(2)
k ⊂ �̂

and with positive weights {ωk,i, i ∈ Ik}. More specifically, N̂k,i is defined by

N̂k,i(ξ1, ξ2) = ωk,i B̂
pk
k,i(ξ1, ξ2)

ŵk(ξ1, ξ2)
, ŵk(ξ1, ξ2) =

∑

i∈Ik
ωk,i B̂

pk
k,i(ξ1, ξ2), (3)

where (B̂ pk
k,i)i∈Ik is the basis of tensor-product B-splines of polynomial degree pk in

both coordinate directions. We assume throughout this article that all knot sequences
are open; i.e., the first and last knot have multiplicity pk + 1.

For 1 ≤ j, k ≤ K , k �= j , we define the interface γ jk as the interior of the
intersection γ jk = ∂� j ∩ ∂�k . We consider only those pairs ( j, k) with non-empty
γ jk and renumber the interfaces as γl , l = 1, . . . , L . For each interface γl , we choose
one of the adjacent patches as master cell �m(l) and the other one as slave cell �s(l),
so that γ l = ∂�m(l) ∩ ∂�s(l). This assignment allows an arbitrary choice for each
interface, i.e. �k can be a master cell for one of its boundary lines and a slave cell for
another boundary line. We define γ̂l = F−1

s(l)(γ l), which may be only a portion of a

boundary line of [0, 1]2, and use the notation Fl := Fs(l)|γ̂l for the parameterization
of the interface.

Remark 2.1 In a geometrically conforming case, every interface γl is a full edge of
�s(l) and �m(l). The pre-image F−1

s(l)(γ l) is a boundary line

γ̂l = [0, 1]) × {0}, [0, 1] × {1}, {0} × [0, 1], or {1} × [0, 1], (4)

of �̂.Without causing confusion, we drop the irrelevant dimension and use γ̂l = [0, 1].
For a geometrically non-conforming decomposition we allow T-intersections of the

interfaces and consider the following two scenarios in parallel.
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876 W. Dornisch, J. Stöckler

NC1 The interface γl is a full edge of the slave patch �s(l). As before, γ̂l is as in (4)
and we use the abbreviated form γ̂l = [0, 1]. This restriction on the choice of the
master/slave correspondence was used in [12]. It limits the applicability of the
mortar method since staircase patch topologies cannot be treated. Furthermore,
an additional error term appears in the a priori estimate, as will be seen in (25).
This term is due to the fact that the approximation of the weak solution u by
NURBS on themaster cell does not interpolate at both endpoints of the interface.

NC2 There is no geometrical restriction on the choice of the master/slave correspon-
dence. Then we introduce a C0-line as an extension of the ending interface of a
T-intersection into the adjacent patch �k . This is done by inserting a knot ζ of
multiplicity pk (or increasing the multiplicity of an existent knot to pk) into the
relevant knot sequence 


(1)
k or 


(2)
k . It does not change the patch geometry, but

affects the initial parameterizationFk by using a larger set of NURBS basis func-
tions. The immediate effect on the discrete space Xh,k is equivalent to splitting
the patch �k along the line Fk(ζ, t) (or Fk(t, ζ )), t ∈ [0, 1], and connecting the
control points by shared degrees of freedom. By doing so, we get a setting where
only geometrical conforming cases are present. Full flexibility in the choice of
the master/slave correspondence is obtained and all forms of multi-patch layouts
can be computed. This extension leads to the additional element lines visible in
Figs. 12 and 27. It is important to note that the required refinement does not
propagate to further patches. No additional error term is introduced in (24), in
contrast to the configuration inNC1. After this initial modification has been done
for all T-intersections, each interface γ l = Fl(γ̂l) is a parameterized NURBS
curve with an open knot sequence 
l ⊂ γ̂l = [ξl,1, ξl,2] ⊂ [0, 1], and ξl,1, ξl,2
are the parameter values of the endpoints of γl .

To unify our notations, we let ξl,1 = 0 and ξl,2 = 1 in the geometrically conforming
case and NC1; then γ̂l = [ξl,1, ξl,2] is valid for all cases.

The interface γl inherits its NURBS parameterization Fl : γ̂l → γ l from the
slave cell �s(l). We denote its degree by ql = ps(l), its knot vector by 
l ⊂ γ̂l , the
polynomial B-splines by B̂ql

l,i , the NURBS weights by wl,i and the univariate NURBS
basis functions by

N̂l,i (ξ) = wl,i B̂
ql
l,i (ξ)

ŵl(ξ)
, ŵl(ξ) =

nl∑

j=1

wl, j B̂
ql
l, j (ξ), ξ ∈ γ̂l .

As usual, both endpoints of the parameter interval γ̂l are knots with multiplicity ql +1,
such that


l = {θl,1 = · · · = θl,ql+1 < θl,ql+2 ≤ · · · ≤ θl,nl < θl,nl+1 = · · · = θl,nl+ql+1}

and nl denotes the dimension of the initial NURBS space on γ̂l before h-refinement.
For later use, we also define the univariate NURBS basis functions N̂m

l, j of degree
pm(l) with respect to the master cell �m(l). The extra superscript m is used here in
order to point out the role of the master cell.
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An isogeometric mortar method for the coupling... 877

The standard inner product on γl is given by

∫

γl

uv ds =
∫

γ̂l

(u ◦ Fl)(ξ) (v ◦ Fl)(ξ) τl(ξ) dξ, u, v ∈ L2(γl),

where τl = |F ′
l | is the length of the tangent vector of γl . More generally, we also use

weighted inner products

〈u, v〉ρl :=
∫

γl

ρluv ds

with positive weight functions ρl and uniform bounds 0 < c ≤ ρl ≤ C for all l. We

will often choose ρl = ŵ2
l

τl
◦ F−1

l , and then obtain

〈u, v〉ρl =
∫

γ̂l

ŵ2
l (ξ) (u ◦ Fl)(ξ) (v ◦ Fl)(ξ) dξ. (5)

The inner products are defined for pairs u, v ∈ L2(γl), or for u ∈ H1/2(γl) and
v ∈ (H1/2(γl))

′. The induced norm is equivalent to the standard L2-norm on γl .
We make the following assumptions on the parameterization which are essential

for our method.

Assumption 1 (a) The geometry is waterproof; i.e. the mapping F−1
m(l) ◦ Fs(l) : γ̂l →

[0, 1] for "switching the sides" at an interface γl is well-defined.
(b) All interfaces γl are C1,1-curves.

Remark 2.2 (a) The methods proposed in this paper can also be used for non-
waterproof geometries, whereby from themathematical point of view a variational
crime is committed. This results in an additional error which does not vanish in
the fine limit. However, as shown in [12], the mortar method is robust with respect
to these kinds of non-matching interfaces and sufficient accuracy for engineering
applications is obtained.

(b) The assumption γl ∈ C1,1 is natural in the sense that the tangent τl and the unit
normal νl are Lipschitz-continuous along γl . This complies with the practical
experience, that vertices on an interface γl should be treated by splitting the adja-
cent domains accordingly, thus introducing an additional interface. In fact, this
is incorporated in all standard CAD programs. However, modifications by hand
could possibly result in a non-smooth interface or such points ofC0-continuitymay
already exist in industrial CAD files. Therefore, they should be properly treated
by a patch coupling method. If no additional interface is desired, we can keep the
patch geometry, but split γl at the relevant location into two parts γl,1, γl,2 and
then follow the same method described in Remark 2.1 for T-intersections of type
NC2. Thus our results in this article can be extended to geometries with interfaces
containing C0-points.
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878 W. Dornisch, J. Stöckler

3 Weak formulation of the saddle point problem

The natural function space used in mixed finite element methods for the Dirichlet
problem is the direct product

X = {v ∈ L2(�) : vk = v|�k ∈ H1(�k), vk |	D∩∂�k = 0}

endowed with the norm

‖v‖X =
(

K∑

k=1

‖vk‖21,�k

)1/2

.

The bilinear form a in (1) is canonically extended to X × X by

a(u, v) =
K∑

k=1

∫

�k

(α∇u · ∇v + βuv) dx .

The continuity and coercivity of this extension of a are obvious.
Clearly, X is not a subspace of H1

0,D(�). For the formulation of weak continuity
conditions on every interface γl , we define the space of Lagrange multipliers

M =
{

ψ = (ψl) ∈
L∏

l=1

(H1/2(γl))
′ : ∃q ∈ H0(div,�) such that ψl = q · νl

}
,

where νl denotes the outer normal of �s(l) along γl . With the notation [v]l = (vs(l) −
vm(l))|γl for the jump of v ∈ X across γl , and with the weighted inner product (5), we
define the bilinear form

bρ : X × M → R, bρ(v, ψ) =
L∑

l=1

〈[v]l , ψl〉ρl , (6)

with weight functions ρl = ŵ2
l

τl
◦ F−1

l . Based on the fact that

V = {v ∈ X : bρ(v, ψ) = 0 for all ψ ∈ M} = H1
0,D(�),

the weak solution of (2) is obtained from the solution of the following saddle point
problem: Find (u, λ) ∈ X × M such that

a(u, v) + bρ(v, λ) = ∫
�

f v dx + ∫
	N

gv ds, v ∈ X ,

bρ(u, μ) = 0, μ ∈ M .
(7)

This problem has a unique solution (u, λ) ∈ X × M , whose first component u ∈ V
satisfies (2). The second component λ ∈ M represents the (weighted) normal flux.
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An isogeometric mortar method for the coupling... 879

Due to the presence of the weight ρl in (7), its component λl ∈ (H1/2(γl))
′ is

λl = 1

ρl
α∇u · νl . (8)

The usual stability analysis provides the upper bound

‖u‖1,� + ‖λ‖M ≤ C(‖ f ‖L2(�) + ‖g‖L2(	N )).

The reason why we use a weighted inner product instead of the standard inner
product of L2(γl) will become clear when we consider the numerical computation of
the mass matrix in Sect. 8.

4 Discretization of the saddle point problem using NURBS and
B-splines

The discretization of the saddle point problem is obtained by choosing a suitable pair
of finite-dimensional spaces Xh ⊂ X and Mh ⊂ M , where the subscript h represents
a vector h = (hk)k=1,...,K for the spatial resolutions on the patches �k . The mixed
method for the solution of (7) is formulated as follows: Find (uh, λh) ∈ Xh × Mh

such that

a(uh, v) + bρ(v, λh) = ∫
�

f v dx + ∫
	N

gv ds for all v ∈ Xh,

bρ(uh, μ) = 0 for all μ ∈ Mh .
(9)

The solution space for uh will be denoted by

Vh = {v ∈ Xh : bρ(v, μ) = 0 for all μ ∈ Mh}. (10)

If the weak solution u of (2) is locally smooth, i.e. u ∈ H1
0,D(�)∩∏K

k=1 H
pk+1(�k),

we look for error estimates of the form

‖u − uh‖2X + ‖λ − λh‖2−1/2,h ≤ C
K∑

k=1

h2pkk |u|2
H pk+1(�k)

. (11)

Here we use the mesh-dependent norm on Mh as in [11,24]

‖μ‖σ,h =
(

L∑

l=1

h−2σ
s(l) ‖μ‖2L2(γl )

)1/2

(12)

with σ = −1/2. In this article, we follow [12] for the definition of the space Xh , but
we propose an alternative space Mh of Lagrange multipliers.

123



880 W. Dornisch, J. Stöckler

4.1 The space Xh defined by NURBS

The initial knot sequences �k ⊂ [0, 1]2 were used for the parameterizations Fk :
[0, 1]2 → �k of the patches �k . (In a geometrically non-conforming case NC2 of
Remark 2.1, we assume that the knots ξl,1, ξl,2 are already existent with multiplicity
pk in 


(1)
k or 


(2)
k , respectively.) The finite element discretization uses refined knot

sequences on each patch independently. Every refined knot sequence �h,k = 

(1)
h,k ×



(2)
h,k defines a grid of two open knot sequences in [0, 1]. We use shorthand notations

ξ
(r)
j = ξ

(r)
h,k, j for the knots in coordinate direction r = 1, 2, whenever their association

with patch �k and h-refinement is clear from the context. The index j has range
1 ≤ j ≤ n(r) + pk + 1, where n(r) = n(r)

h,k , r = 1, 2, denotes the dimension of

the space of univariate NURBS with knots 

(r)
h,k . To ensure that all NURBS basis

functions are continuous in the patch �k , we require that all interior knots in (0, 1)
have at most multiplicity pk . The relevant parameters for the h-refinement of patch
�k in coordinate direction r are

h(r)
j = ξ

(r)
j+pk

− ξ
(r)
j > 0, 2 ≤ j ≤ n(r),

and the representative mesh-size hk for �k is defined as

hk := max
r=1,2

max
2≤ j≤n(r)

h(r)
j . (13)

The parameters h(r)
j are useful for the Bernstein-type inequalities in (17). They replace

the single stepsizes which are often used for piecewise linear finite elements. The
following terminology for univariate knot sequences is a slight generalization of (local)
quasi-uniformity as defined in [4, Assumption 2.1].

Definition 4.1 Let 
h be a family of open knot sequences with first and last knot of
multiplicity p+1. This family is called locally quasi-uniform of order p, if there exist
0 < c1 ≤ c2 such that for all h

c1 ≤ θh,i+p − θh,i

θh,i+p+1 − θh,i+1
≤ c2, 2 ≤ i ≤ nh − 1. (14)

It is called quasi-uniform of order p, if there exist 0 < c1 ≤ c2 such that for all h

c1 ≤ θh,i+p − θh,i

θh, j+p − θh, j
≤ c2, 2 ≤ i, j ≤ nh .

A family of bivariate knot sequences�h = 

(1)
h × Xi (2)h is called shape-regular, if the

ratio of the diameter and the smallest edge of every rectangle defined by the distinct
knots is uniformly bounded.
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The space X̂h,k is spanned by all bivariateNURBS N̂h,k,i with knots�h,k ⊂ [0, 1]2.
We mention that the vector (ωh,k,i) of weights in the definition (3) of the NURBS
basis functions is obtained from the initial weights (ωk,i) by “knot insertion”; i.e., the
denominator

ŵk =
∑

i∈Ik
ωk,i B̂

pk
k,i =

∑

i∈Ih,k

ωh,k,i B̂
pk
h,k,i

remains the same before and after the refinement. As a common definition in IGA
methods, the space Xh,k is the pushforward

Xh,k = {v̂h ◦ F−1
k : v̂h ∈ X̂h,k}

and

Xh =
K∏

k=1

Xh,k ∩ H1
0,D(�).

Our assumptions about the knots guarantee that Xh,k ⊂ C(�k), so that Xh ⊂ X .
Following Brivadis et al. [12], for each interface γl we define the trace spaces

Wh,l = Xh,s(l)|γl , Wh,l,0 = Wh,l ∩ H1
0 (γl)

and their counterparts on γ̂l

Ŵh,l = span(N̂h,l, j ; 1 ≤ j ≤ nh,l), Ŵh,l,0 = span(N̂h,l, j ; 2 ≤ j ≤ nh,l − 1).

Here, the univariateNURBSbasis functions N̂h,l, j are definedon γ̂l . Theknot sequence

is 
h,l = 

(r)
h,s(l), r = 1 or 2, in the geometrically conforming case and in case NC1

of Remark 2.1, whereas 
h,l is only the part 
(r)
h,s(l) ∩ γ̂l and the multiplicity of both

endpoints is raised to ql+1.We denote by n = nh,l the dimension of Ŵh,l . Note that all
linear combinations y = ∑n

j=1 c j N̂h,l, j satisfy the endpoint interpolation conditions
y(ξl,1) = c1 and y(ξl,2) = cn . This explains that Wh,l,0 can be defined using the
reduced index set 2 ≤ j ≤ n − 1.

4.2 The spaceMh defined by B-splines

The definition of the space Mh of Lagrange multipliers is based on the space of
polynomial splines of degree ql ,

Ŝql (
h,l) = span(B̂ql
h,l, j : 1 ≤ j ≤ nh,l).

Beforewe turn to the definitions on the physical domain, we provide some background
about B-splines on the parameter interval γ̂l and about the local spline projector. We
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882 W. Dornisch, J. Stöckler

drop the indices h, l and mention explicitly, in which way our results depend on the
degree q and the knot vector 
. The fundamental stability result for B-splines [13]
states that there is a constant κ > 0, which only depends on the degree, such that for
arbitrary coefficients c j ∈ R the following inequality holds:

κ−1
n∑

j=1

|c j |2≤
∥∥∥∥

n∑

j=1

c j h
−1/2
j B̂q

j

∥∥∥∥
2

L2(R)

≤
n∑

j=1

|c j |2, h j = θ j+q+1 − θ j

q + 1
. (15)

κ is called the condition number of B-splines of degree q. Another well-known result
for B-splines is the recurrence relation for derivatives

(B̂q
j )

′ = q

θ j+q − θ j
B̂q−1
j − q

θ j+q+1 − θ j+1
B̂q−1
j+1 . (16)

Combined with (15), the Bernstein-type inequality

‖v̂′‖L2(R) ≤ 2
√
q(q + 1)κh−1

min‖v̂‖L2(R) (17)

follows easily for all v̂ ∈ Ŝq(
), where hmin = mini (θi+q − θi ) > 0 is assumed.
An important projector onto the spline space is the local spline projector from [21,

Section 4.6]

�̂ : L2(0, 1) → Ŝq(
), �̂( f ) =
n∑

j=1

σ j ( f )B̂
q
j , (18)

where the linear functionals σ j only take values of f in the support of B̂q
j . Its “local”

approximation properties are given next.

Proposition 4.2 Let 
 be an open knot sequence in the interval [0, 1]. For every index
i with θi < θi+1 we let Ii = (θi , θi+1) and define

Ĩi = (θi−q , θi+q+1),

the so-called support extension of Ii . Then for all 0 ≤ s ≤ q + 1 and f ∈ Hs(γ̂ ) , we
have

‖ f − �̂( f )‖L2(Ii ) ≤ C0| Ĩi |s | f |Hs ( Ĩi ),

and if 
 is locally quasi-uniform of order q, as in Definition 4.1, then

| f − �̂( f )|H1(Ii ) ≤ C1| Ĩi |s−1 | f |Hs ( Ĩi ).

The constant C0 depends only on q, the constant C1 depends on q and the bounds of
local quasi-uniformity in (14).
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Remark 4.3 The second result in [4, Lemma 4.3] is for semi-norms of order 1 ≤ r ≤ s
and for locally quasi-uniform knot sequences, which means that adjacent non-empty
knot intervals have comparable lengths. The proof in [4] uses a Bernstein inequality
for splines. The slightly weaker assumption of “local quasi-uniformity of order q” is
sufficient for the error estimate in the H1-semi-norm.

We are now ready to describe in more detail the choice of two subspaces M̂t
h,l ⊂

Ŝql (
h,l), whose pushforward will be our Lagrange multiplier spaces of dimension
n − 2, with upper index t = 0 or t = 1 denoting the chosen alternative. Choosing
subspaces of co-dimension 2 is typical in order to achieve stable infsup-conditions, as
will be explained in detail.

The definition for t = 0was proposed byBrivadis et al. [12, page 305] and describes
the “p/p settingwith boundarymodification,”where p/p stands for choosing the same
degree for M̂h,l and the trace space Wh,l . As before, we can drop indices h, l without
causing confusion and let 
 be an open knot vector on γ̂ = [0, 1]. The space

M̂0 = {μ̂ ∈ Ŝq(
) : dq

dξq
μ̂(ξ) = 0 for ξ = 0 and ξ = 1} ⊂ Ŝq(
)

contains all splines whose polynomial pieces in the first and last knot intervals have
degree at most q − 1. (This is also a common choice for Lagrange multipliers in FEM
discretizations.) We summarize the results in [12]: If n ≥ q + 2, then

(a) M̂0 has dimension n − 2 and a basis with local support

μ̂0
j = B̂q

j − ρ j B̂
q
1 − σ j B̂

q
n , 2 ≤ j ≤ n − 1,

where

ρ j =
dq
dξq

B̂q
j (θ1)

dq
dξq

B̂q
1 (θ1)

, σ j =
dq
dξq

B̂q
j (θn+1)

dq
dξq

B̂q
n (θn+1)

;

in particular, ρ j = 0 for j ≥ q + 2 and σ j = 0 for j ≤ n − q − 1,
(b) M̂0 contains all polynomials of degree q − 1.

The authors in [12] explain that the discrete infsup-condition

inf
μ̂∈M̂0

sup
v̂∈Ŝq (
)

∫ 1
0 μ̂v̂ dξ

‖v̂‖0 ‖μ̂‖0 ≥ c > 0,

where c does not depend on the h-discretization, has not been proved yet. They provide
numerical evidence for its validity.

We next define an alternative space M̂1 ⊂ Ŝq(
), for which we can prove the
infsup-condition analytically for arbitrary knot vectors, i.e., without any assumptions
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on quasi-uniformity. It is defined as the orthogonal complement of a 2-dimensional
subspace

Ê := span(ê1, ê2) ⊂ Ŝq(
).

For the definition of the space Ê , we use two “boundary” B-splines B̂2q
1 and B̂2q

n−q
of double degree, which are defined with respect to the given knot sequence 
; in
particular, the first knot of B̂2q

1 and the last knot of B̂2q
n−q have multiplicity q + 1.

Therefore, the function value and derivatives up to order q−1 of B̂2q
1 at ξ = 0 vanish,

and the same holds for B̂2q
n−q at ξ = 1. The basis of Ê is

ê1 = dq

dξq
B̂2q
1 =

q+1∑

j=1

α j B̂
q
j , ê2 = dq

dξq
B̂2q
n−q =

n∑

j=n−q

β j B̂
q
j , (19)

where the coefficients α j , β j can be computed recursively via (16). (We take a closer
look at these coefficients in the proof of Lemma 5.3.) We obtain the following prop-
erties of the orthogonal complement M̂1.

Proposition 4.4 Let M̂1 be the orthogonal complement of Ê in Ŝq(
). If n ≥ q + 2,
then

(a) M̂1 has dimension n − 2 and a basis with local support

μ̂1
j = B̂q

j − ρ j ê1 − σ j ê2, 2 ≤ j ≤ n − 1, (20)

where ρ j = 0 for j ≥ 2q + 2 and σ j = 0 for j ≤ n − 2q − 1.
(b) M̂1 contains all polynomials of degree q − 1.

Proof Since we assume n ≥ q + 2, there is at least one interior knot and the functions
ê1, ê2 satisfy the boundary conditions

ê1(0)

α1
= ê2(1)

βn
= 1, ê1(1) = ê2(0) = 0. (21)

This proves their linear independence. The basis in (20) is obtained by subtracting the
orthogonal projection on Ê from every B-spline B̂q

j , 2 ≤ j ≤ n − 1. Note that the
basis functions ê1, ê2 have support

supp ê1 = [0, θ2q+2], supp ê2 = [θn−q , 1]. (22)

Hence, we obtain μ̂ j = B̂q
j for all 2q + 2 ≤ j ≤ n − 2q − 1, and the remaining

basis elements have support in [0, θ3q+2] or [θn−2q , 1], respectively. This is the result
in (a). Being q-th derivatives of functions with compact support, both ê1 and ê2 are
orthogonal to all polynomials of degree q − 1. This implies result (b). ��
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Finally, we can define the subspace of Lagrangemultipliers on the physical domain.
In order to gain a positive effect on sparsity of the mass matrix, as will be explained
in Sect. 8, we use a modified pushforward of the spline space M̂1 = M̂1

h,l by

M1
h,l =

{
(ŵ−1

l μ̂) ◦ F−1
l : μ̂ ∈ M̂1

h,l

}
. (23)

Here, ŵl is the denominator of the univariate NURBS basis functions on γ̂l , which is
the same for all h-refinements. This gives

M1
h,l ⊂ Wh,l = Xh,s(l)|γl ,

and we let M1
h = ∏

l M
1
h,l .

4.3 Roadmap to a priori error estimates

Let (uh, λh) ∈ Xh×M1
h be the discrete solution in (9).We follow the standard approach

to a priori error estimates (11) as in [24], and adapt the proofs to the IGA setting. We
will develop our results under the following assumptions on the h-refinement.

Assumption 2 (a) All refinement knot sequences �h,k are quasi-uniform of order pk
and shape-regular with constants independent of h.

(b) If θ ∈ γ̂l is an interior knot for the initial parameterization Fl of γl , and if its
multiplicity is κ ≥ 2 (= multiple knot), then the same knot θ appears at least
with multiplicity κ + 1 in the refinement knot sequence �h,s(l) of the slave cell
associated with γl .

The second assumption (b) is new and was not observed to be required in [12].
Its importance will become clear in Theorem 7.4, where we prove error bounds for
quasi-interpolation of the normal derivative ∂uk

∂n along γl . Multiple knots in the initial
parameterization Fl can have the negative effect, that the normal derivative is not
an element of the bent Sobolev space Hql−1(γ̂l ,
h,l). But this property is needed
for error bounds of the consistency error. We will show, however, that this defect is
repaired by Assumption 2(b).

The following theorems will be proved in Sect. 7.

Theorem 4.5 Assume u ∈ H1(�) and u|�k ∈ H pk+1(�k) for all 1 ≤ k ≤ K. If
Assumptions 1 and 2 are satisfied, we have

‖u − uh‖2X ≤ C
K∑

k=1

h2pkk ‖u‖2
H pk+1(�k)

(24)

in the geometrically conforming case and for type (NC2) of Remark 2.1. Moreover,
we obtain for type (NC1)

‖u − uh‖2X ≤ C1

K∑

k=1

h2pkk ‖u‖2
H pk+1(�k)

+ C2

∑

l∈L0

h
2pm(l)+1
m(l)

hs(l)
‖u‖2

H pm(l)+1
(�m(l))

,
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(25)

where L0 ⊂ {1, . . . , L} denotes the subset of indices such that γl is a proper subset
of an edge of �m(l). The constants C,C1,C2 do not depend on the h-refinement.

Theorem 4.6 With the same assumptions as above we have

‖λ − λh‖2−1/2,h ≤ C
K∑

k=1

h2pkk ‖u‖2
H pk+1(�k )

, (26)

in the geometrically conforming case and type (NC2). The same adaptation as in (25)
is needed for type (NC1). The constant C does not depend on the h-refinement.

Before we prove both theorems, we consider the infsup-condition

inf
μ∈M1

h

sup
v∈Xh

bρ(v, μ)

‖v‖X ‖μ‖−1/2,h
≥ c,

with constant c independent of h, in Sect. 6. The method of proof is well established,
see e.g. [9]. It makes use of the uniform L2-stability of the mortar projections defined
in [5] for all interfaces γl ,

Qh,l : L2(γl) → Wh,l,0, 〈 f − Qh,l f , μl〉ρl = 0 for all μl ∈ M1
h,l . (27)

Here ρl is the positive weight function in (6). We treat the mortar projections in Sect.
5.

For most of the results in the following sections, there is some technical overhead
caused by the IGA setting and the transition between the physical domain and the
parametric domain. This transition is not always trivial, as the necessity of the condition
in Assumption 2(b) indicates.

5 Mortar projection

We investigate the mortar projections (27) and start with the consideration on the
parameter domain. We consider the generic situation of an arbitrary open knot vector

 in the interval [0, 1].

Let Ŝq0 (
) be the subspace of all splines with zero boundary values and M̂1 the
space in Proposition 4.4. The relevant operator on the parameter domain is defined as

Q̂ : L2(0, 1) → Ŝq0 (
),

∫ 1

0
( f − Q̂ f ) μ̂ dξ = 0 for all μ̂ ∈ M̂1. (28)

Our first observation is a simple connection of Q̂ with the orthogonal projection
P̂ : L2(0, 1) → Ŝq(
).
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Lemma 5.1 Let ê1, ê2 be the functions in (19) and assume n ≥ q + 2, i.e. 
 has at
least one interior knot. Then we have for all f ∈ L2(0, 1)

Q̂ f = P̂ f − P̂ f (0)ê1
α1

− P̂ f (1)ê2
βn

. (29)

Proof Since M̂1 ⊂ Ŝq(
), we have

∫ 1

0

(
f − P̂ f

)
μ̂ dξ = 0 for all μ̂ ∈ M̂1,

and the orthogonality remains valid if any combination of ê1 and ê2 is added to P̂ f .
By the property (21) of the boundary values of ê1, ê2, the function on the right-hand
side of (29) has boundary values 0, and thus is an element of Ŝq0 (
). Clearly, it is the
unique element of Ŝq0 (
) with orthogonality in (28). ��

The proof of the L2-boundedness of Q̂ is much more intricate, as it requires a
detailed stability analysis of the basis functions ê1, ê2 in Lemma 5.3. As a profit, we
obtain a precise upper bound which only depends on the degree and does not require
any quasi-uniformity of the knots. We recall the definition of κ in (15).

Theorem 5.2 For every f ∈ L2(0, 1) we have

‖Q̂ f ‖L2(0,1) ≤
(
1 + (2κ)1/2

(
2q

q

)1/2
)

‖P̂ f ‖L2(0,1). (30)

Proof Based on (29), it is sufficient to show that

∥∥∥∥∥
P̂ f (0)ê1

α1
+ P̂ f (1)ê2

βn

∥∥∥∥∥

2

L2(0,1)

≤ 2κ

(
2q

q

)
‖P̂ f ‖2L2(0,1).

Note that the function values of P̂ f at both endpoints are also coefficients in the
B-spline representation

P̂ f =
n∑

j=1

c j h
−1/2
j B̂q

j , h j = θ j+q+1 − θ j

q + 1
,

more precisely

P̂ f (0) = h−1/2
1 c1, P̂ f (1) = h−1/2

n cn .

The general stability result for B-splines in (15) implies

c21 + c2n ≤ κ‖P̂ f ‖2L2(0,1).
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So it remains to prove that

∥∥∥∥∥
c1ê1

h1/21 α1

+ cnê2

h1/2n βn

∥∥∥∥∥

2

L2(0,1)

≤ 2

(
2q

q

)
(c21 + c2n)

holds for arbitrary constants c1, cn ∈ R. This is provided by the second inquality in
(31) in the following Lemma. ��
Lemma 5.3 Let 
 = {θ1, . . . , θn+q+1} be an open knot vector in [0, 1] and h j =
θ j+q+1−θ j

q+1 > 0 for every 1 ≤ j ≤ n. For arbitrary c1, c2 ∈ R we have

κ−1(c21 + c22) ≤
∥∥∥∥

c1ê1
α1

√
h1

+ c2ê2
βn

√
hn

∥∥∥∥
2

L2(0,1)
≤ 2

(
2q

q

)
(c21 + c22), (31)

where κ is the condition number of B-splines of degree q in (15).

Proof Since 
 is an open knot vector (with respect to the given degree), we have
θ1 = . . . = θq+1 = 0 and h1 = θq+2

q+1 . We first look at ê1 in (19). We want to find upper
bounds for the absolute values |α j | in

ê1 = dq

dξq
B̂2q
1 =

q+1∑

j=1

α j B̂
q
j .

We use an inductive argument and define intermediate derivatives

dr

dξ r
B̂2q
1 =

r+1∑

j=1

α
(r)
j B̂2q−r

j , 0 ≤ r ≤ q.

The recurrence relation (16) starts from one coefficient α(0)
1 = 1 and gives

α
(r)
j = 2q − r + 1

θ j+2q−r+1 − θ j
(α

(r−1)
j − α

(r−1)
j−1 ), 1 ≤ j ≤ r + 1. (32)

Within this range of indices for j , we always have θ j = 0. Moreover, the right-hand
side is the sum of two terms of equal sign (−1) j−1. The inequalities

θ2q−r+ j+1 |α(r)
j | ≤

(
r

j − 1

)
θ2q−r+2 α

(r)
1 , 1 ≤ j ≤ r + 1, (33)

are proved by induction: they are obvious for j = 1 and any r , and follow for 2 ≤
j ≤ r + 1 from
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θ2q−r+ j+1

2q − r + 1
|α(r)

j | = |α(r−1)
j | + |α(r−1)

j−1 |

≤
((

r − 1

j − 1

)
+

(
r − 1

j − 2

))
θ2q−r+3

θ2q−r+ j+1
α

(r−1)
1

≤
(

r

j − 1

)
α

(r−1)
1 =

(
r

j − 1

)
θ2q−r+2

2q − r + 1
α

(r)
1 .

For the last identity, we used the recursive relation (32) with j = 1 and α
(r−1)
0 = 0.

For r = q, we obtain the coefficients α j of ê1 and have proved in (33) that

0 < (−1) j−1h jα j ≤
(

q

j − 1

)
h1α1, 1 ≤ j ≤ q + 1.

Since h j ≥ h1, this also implies h j
1/2|α j | ≤ h11/2α1 and

q+1∑

j=1

|α j |2h j

|α1|2h1 ≤
q+1∑

j=1

(
q

j − 1

)2

=
(
2q

q

)
,

where the last identity is well-known in combinatorics. The stability result in (15) is
applied to

ê1
α1

√
h1

= h−1/2
1 B̂q

1 +
q+1∑

j=2

α j
√
h j

α1
√
h1

h−1/2
j B̂q

j

and gives

κ−1 ≤
∥∥∥∥

ê1
α1

√
h1

∥∥∥∥
2

L2(0,1)
≤ 1 +

q+1∑

j=2

|α j |2h j

|α1|2h1 ≤
(
2q

q

)
.

The same upper bound is obtained for the norm of ê2
βn

√
hn
. Therefore, we obtain by

Minkowski’s inequality

∥∥∥∥
c1ê1

α1
√
h1

+ c2ê2
βn

√
hn

∥∥∥∥
2

L2(0,1)
≤ (|c1| + |c2|)2

(
2q

q

)
≤ 2

(
|c1|2 + |c2|2

) (
2q

q

)
,

and this provides the upper bound in (31). Furthermore, the lower bound in (31) comes
for free: by our assumption n ≥ q + 2 and (21), the first and last coefficients of the
spline c1ê1

α1
√
h1

+ c2 ê2
βn

√
hn

are c1h
−1/2
1 and c2h

−1/2
n , respectively. Hence, the stability result

(15) gives the lower bound in the lemma. ��
The mortar projection Qh,l : L2(γl) → Wh,l,0 on the physical domain was defined

in (27) and can be described as follows. The open knot vector 
 = 
h,l in γ̂l is used
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in the definition (28) of Q̂ = Q̂h,l . Then we have

Qh,l f =
(
ŵ−1
l Q̂h,l(ŵl ( f ◦ Fl))

)
◦ F−1

l .

Indeed, with

μl = (ŵ−1
l μ̂l) ◦ F−1

l , μ̂l ∈ M̂1
h,l ,

in (23), we obtain from (5)

〈 f − Qh,l f , μl〉ρl =
∫

γ̂l

( f̂ − Q̂h,l f̂ ) μ̂l dξ, f̂ = ŵl( f ◦ Fl).

Hence, the operator norm in (30) is only changed by the influence of the initial param-
eterization Fl of γl . More precisely, if c denotes the constant on the right-hand side of
(30), we have

‖Qh,l f ‖2L2(γl )
=

∫

γ̂l

τlŵ
−2
l |Q̂h,l f̂ |2 dξ ≤ c2‖τlŵ−2

l ‖∞ ‖ f̂ ‖2L2(γ̂l )
,

and likewise

‖ f̂ ‖2L2(γ̂l )
≤ ‖ŵ2

l τ
−1
l ‖∞ ‖ f ‖2L2(γl )

.

Hence, we obtain the following result.

Theorem 5.4 The mortar projections Qh,l in (27) have uniformly bounded operator
norm on L2(γl)

‖Qh,l‖ ≤ c
(
‖τlŵ−2

l ‖∞ ‖ŵ2
l τ

−1
l ‖∞

)1/2
, (34)

where c is the constant on the right-hand side of (30).

Remark 5.5 The estimate of Theorem 5.4 immediately extends to the mesh-dependent
norm (12)

L∑

l=1

h−2σ
s(l) ‖Qh,l f ‖L2(γl )

≤ C
L∑

l=1

h−2σ
s(l) ‖ f ‖2L2(γl )

= C | f |2σ,h for all f ∈ L2(S).

Moreover, if the knot sequence
h,l is quasi-uniform of order ps(l), we also obtain the
H1
0 -stability of Qh,l by a similar argument as given in Lemma 1.3 in [24]. Indeed, for

a function f̂ ∈ H1
0 (γ̂l) we can find an approximant v̂ ∈ Ŝql0 (
h,l) with homogeneous

boundary conditions such that

‖ f̂ − v̂‖L2(γ̂l )
≤ Chs(l)| f̂ |H1(γ̂l )

, |v̂|H1(γ̂l )
≤ C | f̂ |H1(γ̂l )

,
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where C does not depend on f̂ . (This is property (Sc) in [24, p.12].) By the projection
property Q̂h,l v̂ = v̂ and a Bernstein inequality (here quasi-uniformity of order ps(l)
of the knots is needed), we obtain

|Q̂h,l f̂ |H1(γ̂l )
≤ |Q̂h,l( f̂ − v̂)|H1(γ̂l )

+ |v̂|H1(γ̂l )

≤ Ch−1
s(l)‖Q̂h,l( f̂ − v̂)‖L2(γ̂l )

+ |v̂|H1(γ̂l )
≤ C | f̂ |H1(γ̂l )

.

Furthermore, by a typical interpolation argument, we obtain that

‖Q̂h,l f̂ ‖H1/2
00 (γ̂l )

≤ C‖ f̂ ‖
H1/2
00 (γ̂l )

, f̂ ∈ H1/2
00 (γ̂l).

A further generalization of this result to locally quasi-uniform knot sequences is not
known to us.

6 Discrete infsup-condition

In this section, we prove the uniform infsup-inequality for the h-refined discrete spaces
Xh and M1

h . The method of proof is well known, see e.g. [9], and mainly based on
Theorem 5.4. We include some details as far as explicit constants are concerned. The
infsup-inequality for the spline space Ŝq0 (
) and the space M̂1 in Proposition 4.4 on
the parameter domain is given with respect to L2-norms.

Theorem 6.1 Let 
 be an open knot vector on [0, 1]. Then

inf
μ̂∈M̂1

sup
v̂∈Ŝq0 (
)

∫ 1
0 μ̂v̂ dξ

‖μ̂‖L2(0,1)‖v̂‖L2(0,1)
≥ c−1, (35)

where c is the constant on the right-hand side of (30).

Proof The proof follows [9]. Let μ̂ ∈ M̂1. By duality, the definition of Q̂ and the
bound in (30), we have

‖μ̂‖L2(0,1) = sup
f ∈L2(0,1)

c
∫ 1
0 f μ̂ dξ

c‖ f ‖L2(0,1)
≤ sup

f ∈L2(0,1)

c
∫ 1
0 Q̂ f μ̂ dξ

‖Q̂ f ‖L2(0,1)

= sup
v̂∈Ŝq0 (
)

c
∫ 1
0 μ̂v̂ dξ

‖v̂‖L2(0,1)
.

This gives the result in (35). ��
Remark 6.2 (i) The result of Theorem 6.1 holds for arbitrary open knot sequences 
.

As mentioned before, an analogous result for the Lagrange multiplier space M̂0

(“p/p setting with boundary modification”) in [12] is not known.
(ii) Since the dimensions of M̂1 and Ŝq0 (
) agree, the order of the spaces in the infsup-

inequality can be switched, i.e.

inf
v̂∈Ŝq0 (
)

sup
μ̂∈M̂1

∫
0,1 μ̂v̂ dξ

‖μ̂‖L2(0,1)‖v̂‖L2(0,1)
≥ c−1. (36)
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In fact, the best possible lower bound on the right-hand side of (35) and (36) is
the smallest singular value of the “mixed Gramian” (〈φ j , ψk〉) j,k=1,...,n−2 with
respect to L2-orthonormal bases of both spaces. For more details see [14].

In order to obtain the infsup-condition on the physical interfaces γl , we follow the
arguments in [24, Lemma 1.9] with the necessary changes caused by the parameter-
ization. We use the mesh-dependent norm ‖μ‖−1/2,h in (12) of elements μ ∈ M1

h
and the bilinear form bρ in (6) with weight functions ρl which depend only on the
parameterizations Fs(l).

Theorem 6.3 Let Assumption 2(a) be satisfied. Then

inf
μ∈M1

h

sup
v∈Xh

bρ(v, μ)

‖v‖X ‖μ‖−1/2,h
≥ C > 0, (37)

where the constant C only depends on the initial parameterization.

Proof Let μ = (μl : 1 ≤ l ≤ L) ∈ M1
h . By duality and by writing the weighted inner

product 〈φ,μl〉ρl as a standard product 〈ρlφ,μl〉 in L2(γl), we have

h1/2l ‖μl‖L2(γl )
= sup

φ∈L2(γl )

〈φ,μl〉ρl
h−1/2
l ‖ρlφ‖L2(γl )

≤ C1 sup
φ∈L2(γl )

〈φ,μl〉ρl
h−1/2
l ‖φ‖L2(γl )

where C1 = max1≤l≤L ‖1/ρl‖∞. The definition of the mortar projection in (27) and
Theorem 5.4 give

|〈φ,μl〉ρl |
‖φ‖L2(γl )

= |〈Qh,lφ,μl〉ρl |
‖φ‖L2(γl )

≤ C
|〈Qh,lφ,μl〉ρl |
‖Qh,lφ‖L2(γl )

with C = ‖Qh,l‖ in (34). Hence, we have

h1/2l ‖μl‖L2(γl )
≤ C1C max

φ∈Wh,l,0

〈φ,μl〉ρl
h−1/2
l ‖φ‖L2(γl )

.

With the maximizing element φl ∈ Wh,l,0, which is normalized by h−1/2
l ‖φl‖L2(γl )

=
1, we obtain

‖μ‖2−1/2,h =
L∑

l=1

hl‖μl‖2L2(γl )
≤ (C1C)2

L∑

l=1

〈φl , μl〉2ρl . (38)

Next we let φ̃l be the extension by zero to all of ∂�s(l). Lemma 5.1 in [8] provides us
with a function vl ∈ Xh , which is zero on all patches �k with k �= s(l) and which is
an extension of φ̃l to �s(l), such that

‖vl‖21,�s(l)
≤ C2‖φ̃l‖2H1/2(∂�s(l))

= C2‖φl‖2
H1/2
00 (γl )

.
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The constant C2 depends only on the geometry of the patches �k , not on their dis-
cretization. By Assumption 2(a) and a Bernstein inequality for φl , there is a constant
C3 > 0 depending only on ps(l) such that

‖vl‖21,�s(l)
≤ C2C3h

−1
l ‖φl‖2L2(γl )

= C2C3. (39)

Since vl satisfies

vl |�k = 0 for k �= s(l), vl |γm = 0 for l �= m, (40)

the linear combination

vμ =
∑

l

〈φl , μl〉ρl vl ∈ Xh

has jumps [vμ]l = 〈φl , μl〉ρlφl for 1 ≤ l ≤ L . Therefore, we obtain

bρ(vμ, μ) =
∑

l

〈φl , μl〉2ρl . (41)

Let rl denote the number of times the patch �s(l) is counted as a slave domain. Then
the Cauchy-Schwarz inequality and (39) and (40) imply

‖vμ‖2X =
K∑

k=1

‖vμ‖21,�k
=

L∑

l=1

1

rl
‖vμ‖21,�s(l)

≤
L∑

l=1

〈φl , μl〉2ρl‖vl‖21,�s(l)
≤ C2C3

L∑

l=1

〈φl , μl〉2ρl .

Combined with (38) and (41), this gives

‖vμ‖X ‖μ‖−1/2,h ≤ (C2C3)
1/2C1C bρ(vμ, μ).

This allows us to choose c = (C2C3)
−1/2(C1C)−1 in (37). ��

7 A priori error estimate

We let (u, λ) ∈ X × M be the solution of (7) and (uh, λh) ∈ Xh × M1
h be the solution

of (9). Recall from (8) that λ|γl is the weighted flux

λ|γl = 1

ρl
α∇u · νl .

The restrictions to �k and γl will be denoted by uk , uh,k , and λl , λh,l , respectively.
We will assume from now on, that the matrix-valued function α in (1) is Cq−1,1(�k)
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for 1 ≤ k ≤ K ; this means that all partial derivatives up to order q − 1 exist and are
Lipschitz continuous.

The standard approach to estimates of the a-priori error uses the coercivity of a(v, v)

on Xh and the identities (7), (9), in order to arrive at

c1‖u − uh‖2X ≤ a(u − uh, u − uh)
= inf

vh∈Vh
(
a(u − uh, u − vh) + a(u − uh, vh − uh)

)

= inf
vh∈Vh

(
a(u − uh, u − vh) + bρ(uh − vh, λ)

)
.

Note that bρ(uh − vh, λh) = 0 was used here, which follows from the definition of
Vh in (10). Then the approximation error

Ea := inf
vh∈Vh

‖u − vh‖X

and the consistency error

Eb := sup
vh∈Vh

bρ(vh, λ)

‖vh‖X (42)

lead to the estimate (cf. [10])

‖u − uh‖X ≤ C(Ea + Eb). (43)

Our results in Sects. 7.2–7.3 provide bounds for Ea and Eb and yield the proof of
Theorem 4.5. The proof of Theorem 4.6 follows in Sect. 7.4. Because our setting
differs from [24, Section 1.2], we include a step-by-step description, although some
of the arguments are similar. We start with some new results on the approximation
order by splines on physical interfaces in Sect. 7.1.

7.1 Spline approximation on interfaces

In this part, we provide some new results on the approximation order by splines
on physical interfaces γl . Some difficulties arise from the lack of a “standard” trace
theorem for Sobolev spaces on domains with non-smooth boundary.We use the notion
of Ck,1-curves for k-times differentiable regular curves with Lipschitz continuous k-
th derivative. We use results from the book [19] about Sobolev spaces Hs(γ ) with
non-integer s and non-smooth curves γ . To keep the notations simple, we consider a
bounded domain� ⊂ R

2 and a boundary curve γ ⊂ ∂�, which is a regularC1,1-curve
and which has a NURBS parameterization F : [0, 1] → R

2 of degree q with open
knot vector
 in [0, 1]. The following notations appear frequently: the denominator of
all NURBS basis functions is ŵ, the length of the tangent is τ = |F ′|, the unit normal
on γ is ν and the weight in (6) is ρ = ŵ2

τ
.

Note that non-smooth interfaces γ are typical for the IGA mortar method, as soon
as B-splines of degree q with interior knots are used for the parameterization F (rather
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than just Bernstein polynomials for a polynomial curve). Moreover, knot sequences
with multiple knots occur in practical examples as the output of standard CAD surface
models (e.g. Rhino, CGAL). If the open knot vector 
 contains an interior knot θi of
multiplicity κi ≥ 1, then the parameterization F has local smoothness Cq−κi near θi ,
and γ is a Ck,1-curve near F(θi ) with k = q − κi . This has the following effect on
the trace of u ∈ Hq+1(�): we do not obtain u|γ ∈ Hq+1/2 as for smooth curves, but
only u|γ ∈ Hkmin+1 with kmin = mini (q − κi ), as stated in [19, Remark 4.3, p. 85].

One step towards the resolution of this defect was already described by Bazilevs
et al. [3], and used in [12]. They introduce the notion of bent Sobolev spaces on the
parameter domain. By the result in [4, Lemma 4.1], the (univariate) bent Sobolev space
of integer order 0 ≤ s ≤ q + 1 is

Hs((0, 1);
) = Hs(0, 1) + Ŝq(
).

Its norm is the broken Sobolev norm of order s with respect to the knot intervals of

. The result of [4, Lemma 4.1] provides us with a linear projector

	 : Hs((0, 1);
) → Ŝq(
), (44)

such that f − 	 f ∈ Hs(0, 1) and (	 f )|Ii is a polynomial of degree s − 1 in every
knot span Ii = (θi , θi+1). The spline 	 f is constructed in order to “swallow up” all
jumps of derivatives Dk f , 1 ≤ k ≤ s − 1, at the knots θi .

Our goal in this subsection are optimal approximation rates of the local spline
projector

�̂h : L2(0, 1) → Ŝq(
h)

in (18), applied to the pullback of u ∈ Hq+1(�) and its normal derivative on γ . As
a first step, we specify the order of the bent Sobolev spaces for both pullbacks. It is
at this point, where multiple knots of 
 play a special role. We define an augmented
knot vector 
+ by increasing the multiplicity of θi by one, if θi is an interior knot of
multiplicity κi ≥ 2. Later on, Assumption 2(b) on the h-refinement requires that 
h

should be a refinement of 
+.

Proposition 7.1 Let u ∈ Hq+1(�) and λ = 1
ρ

α∇u · ν be the weigthed flux on γ , with

matrix-valued α ∈ Cq−1,1(�). Here γ = F((0, 1)) is a C1,1-curve as in Assumption
1(b). Then

v := ŵ (u ◦ F) ∈ H1(0, 1) ∩ Hq((0, 1),
)

and

η := ŵ (λ ◦ F) ∈ Hq−1((0, 1);
+).

Proof The standard trace theorem gives v ∈ Hq+1/2(Ii ) for all non-empty intervals
Ii = (θi , θi+1), because ŵ and F are polynomials on Ii . By Assumption 1(b) we have
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ŵ, F ∈ C1,1(0, 1), and therefore v ∈ H1(0, 1). At each interior knot θi , the left-sided
and right-sided derivatives satisfy

D j
−v(θi ) = D j

+v(θi ) for all 0 ≤ j ≤ q − κi ,

where κi is the multiplicity of θi . The condition v ∈ Hq((0, 1),
), as written in the
definition of bent Sobolev spaces in [4, Eq. (4.1)], requires this identity for the range
0 ≤ j ≤ min{q − κi , q − 1}, so it is satisfied.

In a similar way, we have η ∈ Hq−1/2(Ii ) for all i . Here we note that the unit
normal ν and the weight ρ on γ are piecewise analytic functions. The smoothness
across θi , however, is reduced by one, because the tangent and normal vectors of γ

reduce the smoothness of η. We obtain

D j
−η(θi ) = D j

+η(θi ) for all 0 ≤ j ≤ q − 1 − κi .

With regard to Hq−1((0, 1),
), [4, Eq. (4.1)] requires this identity for all 0 ≤ j ≤
min{q − κi , q − 2}. So it is satisfied, if θi is a simple knot, but it is violated, if θi
has multiplicity κi ≥ 2. We conclude that η ∈ Hq−1((0, 1),
+) is satisfied for the
augmented knot vector 
+. ��
Remark 7.2 Note that there is no need to enlarge 
, when 
 has only simple knots,
which means that γ is a Cq−1,1-curve. Therefore, the defect of the smoothness of the
pullback η with regard to Hq−1((0, 1),
) could not be observed in the numerical
examples of [12], where knot sequences with simple knots were used throughout. In
Sect. 9 and Appendix A we provide some numerical examples to demonstrate this
defect.

The method in [3,4] provides error estimates of integer order hq and hq−1, respec-
tively, for the pullbacks v and η in Proposition 7.1. The following result combines
Proposition 7.1 with [4, Propositions 4.3 and 4.25].

Proposition 7.3 Let 
h be a refinement of 
, which is quasi-uniform of order q, and
let h = maxi (θh,i+q − θh,i ). With the same assumptions as in Proposition 7.1, the
local spline projector �̂h : L2(0, 1) → Ŝq(
h) satisfies

‖D j (id − �̂h)v‖L2(Ih,i )
≤ C | Ĩh,i |q− j |v|Hq ( Ĩh,i )

, j = 0, 1. (45)

If, in addition, 
h is a refinement of 
+, then

‖(id − �̂h)η‖L2(Ih,i )
≤ C | Ĩh,i |q−1 |η|Hq−1( Ĩh,i )

.

Here we denote by Ĩh,i = (θh,i−q , θh,i+q+1) the support extension of a non-empty
interval Ih,i = (θh,i , θh,i+q) and use the broken Sobolev semi-norm on Ĩh,i . The
constant C does not depend on h.

Without change, we can replace the local spline projector in (45) by the projector
�̃h in [4, Eq. (2.29)] to match the boundary values v(0) and v(1).
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Our additional work in this subsection is devoted to an extension of [4, Propositions
4.3 and 4.25] to non-integer s for both pullbacks v and η: there appears an extra factor
h1/2 in the error estimates of the next theorem as compared to the results in [4].
This will provide the optimal order for the approximation error Ea in Sect. 7.2 and
the consistency error Eb in Sect. 7.3. For the corresponding error estimates on the
physical interface γ , we define the push-forward of the local spline projector as in [4,
Eq. (3.5)]

�h : L2(γ ) → Wh, �h f =
(
1

ŵ
�̂h(ŵ ( f ◦ F))

)
◦ F−1. (46)

Note that F provides the connection between the parameter domain and the physical
interface, whereas the factor ŵ is responsible for switching between NURBS basis
functions and B-splines. The following error estimates are obtained by performing an
analysis of super-convergence similar to the techniques in [23]. We present its proof
in Appendix A.

Theorem 7.4 Let
h be a quasi-uniform refinement of
 and h = maxi (θh,i+q −θh,i ).
With the same assumptions as in Proposition 7.1, we have

‖v − �̂hv‖L2(0,1) + h‖v′ − (�̂hv)′‖L2(0,1) ≤ Chq+1/2 ‖u‖Hq+1(�) (47)

and

‖u|γ − �h(u|γ )‖L2(γ ) + h‖D(u|γ − �h(u|γ ))‖L2(γ ) ≤ Chq+1/2 ‖u‖Hq+1(�),

(48)

where D denotes the tangential derivative.
If, in addition, 
h is a refinement of 
+, then

‖η − �̂hη‖L2(0,1) ≤ Chq−1/2 ‖u‖Hq+1(�) (49)

and

‖λ − �hλ‖L2(γ ) ≤ Chq−1/2 ‖u‖Hq+1(�). (50)

The constants C do not depend on h.

We mention without proof that the same estimates as in Theorem 7.4 are valid for
themodified local spline projector �̃h : Hq+1(0, 1) → Ŝq(
h) in [4, Proposition 2.3]
which matches the boundary values at ξ = 0 and ξ = 1. This operator will be used in
the proof of Theorem 7.6.

A further extension of (49) will provide the main ingredient for finding the upper
bound of the consistency error in Sect. 7.3. We let M̂1

h ⊂ Ŝq(
h) be the subspace in
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Proposition 4.4. The basis functions êh,1 and êh,2 of its orthogonal complement have
local support

Jh,1 = [0, θh,2q+2], Jh,2 = [θh,n−q , 1], (51)

as stated in (22), where θh,n denotes the largest interior knot of 
h . For a quasi-
uniform refinement, and if h = maxi (θh,i+q −θh,i ) is small enough, these intervals are
disjoint and,more importantly, contained in the first/last knot interval of the initial knot
sequence 
. Therefore, F |Jh,i , i = 1, 2, is analytic. This is an important observation
in order to obtain the following result.

Proposition 7.5 Let 
h be a refinement of 
+, which is quasi-uniform of order q,
and let h = maxi (θh,i+q − θh,i ) be small enough, such that the intervals in (51) are
disjoint and contained in the first/last knot interval of the initial knot vector 
. With
the same assumptions as in Proposition 7.1, we have

inf
μ̂∈M̂1

h

‖η − μ̂‖L2(0,1) ≤ Chq−1/2 ‖u‖Hq+1(�).

Proof Let ηh be the orthogonal projection of η = ŵ(λ ◦ F) onto the spline space
Ŝq(
h). By (49), we have

‖η − ηh‖L2(0,1) ≤ Chq−1/2 ‖u‖Hq+1(�).

In order to obtain the orthogonal projection of η onto M̂1
h , we subtract the function

ψ := d1
êh,1

‖êh,1‖L2(0,1)
+ d2

êh,2

‖êh,2‖L2(0,1)
, di =

∫

Jh,i

η êh,i

‖êh,i‖L2(0,1)
dξ.

Here we used the assumption that the supports of êh,1 and êh,l are disjoint. Orthogo-
nality of êh,i to all polynomials of degree q − 1 and the Cauchy-Schwarz inequality
give

|di | ≤ inf
p∈Pq−1

‖η − p‖L2(Jh,i )
, i = 1, 2.

The assumption on h allows us to use η ∈ Hq−1/2(Jh,i ), by the standard trace theorem.
This gives

|di | ≤ C |Jh,i |q−1/2|η|Hq−1/2(Jh,i )
≤ Chq−1/2‖u‖Hq+1(�)

and

‖ψ‖L2(0,1) ≤ |d1| + |d2| ≤ Chq−1/2‖u‖Hq+1(�).

ByMinkowski’s inequality, the desired upper bound is obtained for μ̂ = ηh−ψ ∈ M̂1
h .��
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7.2 Approximation error

The method in [24, Section 1.2] shows how to find an optimal bound for the approxi-
mation error Ea . We consider the geometrically conforming case in Theorem 7.6 and
provide the extension to the non-conforming cases (NC1) and (NC2) without proof in
Remark 7.7.

Theorem 7.6 Let Assumptions 1 and 2(a) be satisfied, let hk be the meshsize in (13),
and assume that every interface γl is a full edge of �s(l) and �m(l). Further assume
that the weak solution u of (2) satisfies u ∈ H1(�) and uk = u|�k ∈ H pk+1(�k) for
all 1 ≤ k ≤ K, where pk is the degree of the NURBS parameterization of �k . Then

inf
vh∈Vh

‖u − vh‖2X ≤ C
K∑

k=1

h2pkk ‖u‖2
H pk+1(�k )

(52)

where the constant C does not depend on the h-refinement.

Proof The method described in [24, Lemma 1.4] can be used almost verbally. The
constant C in the following estimates may change from step to step, but remains
independent of h.

First, we choose wh = (wh,k)1≤k≤K ∈ Xh such that the pullback ŵh,k = wh,k ◦
Fk ∈ X̂h,k is a tensorized NURBS approximant of uk ◦ Fk with boundary conditions,
see e.g. [4, Proposition 4.26]. By Assumption 1 the parameterization satisfies Fk ∈
C1,1([0, 1]2). The continuity and local smoothness of the NURBS function ŵh,k gives
at least ŵh,k ∈ C0,1([0, 1]2). The error analysis in [4, Corollary 4.21] can be adapted
to the spline projector with boundary conditions, see [4, Remark 4.22]. It provides the
estimate

‖uk − wh,k‖0,�k + hk |uk − wh,k |1,�k ≤ Chpk+1
k ‖uk‖H pk+1(�k )

,

where C does not depend on hk . Moreover, for each interface γl , 1 ≤ l ≤ L , and
k = s(l), the tensor-product approach implies that wh,k |γl is a local approximant of
uk |γl and interpolates uk at both endpoints of γl , so (uk−wh,k)|γl ∈ H1

0 (γl).Moreover,
by Theorem 7.4 we obtain the bound on the physical interface

‖(uk − wh,k)|γl‖L2(γl )
+ hk‖D((uk − wh,k)|γl )‖L2(γl )

≤ Chpk+1/2
k ‖uk‖H pk+1(�k )

.

Standard interpolation theory of Banach spaces provides the error estimate in the
H1/2
00 -norm

‖uk − wh,k‖H1/2
00 (γl )

≤ Chpk
k ‖uk‖H pk+1(�k)

.

Since we restrict ourselves to the geometrically conforming case here, we also obtain

‖um(l) − wh,m(l)‖H1/2
00 (γl )

≤ Ch
pm(l)
m(l) ‖um(l)‖H pm(l)+1

(�m(l))
.

123



900 W. Dornisch, J. Stöckler

The assumptions on the weak solution u imply that the jump [u]l is zero. Nevertheless,
the jump

[wh]l = wh,k |γl − wh,m(l)|γl = (u − wh,m(l))|γl − (u − wh,k)|γl (53)

can be non-zero, due to different refinements of the NURBS parameterizations Fk and
Fm(l). By the interpolation conditions at both endpoints of γl , we still have [wh]l ∈
H1
0 (γl) (here, the geometrically conforming case is assumed) and

‖[wh]l‖H1/2
00 (γl )

≤ ‖u − wh,k‖H1/2
00 (γl )

+ ‖u − wh,m(l)‖H1/2
00 (γl )

≤ C
(
h pk
k ‖u‖H pk+1(�k)

+ h
pm(l)
m(l) ‖u‖H pm(l)+1

(�m(l))

)
.

(54)

Next we describe the construction of the approximant vh ∈ Vh . We use the mortar
projection Qh,l and define φl = Qh,l([wh]l) ∈ Wh,l,0. Let φ̃l be the extension of φl

to ∂�k by zero. Then we choose vl ∈ Xh , which is zero in all patches � j �= �k and
satisfies

vl |∂�k = φ̃l , ‖vl‖1,�k ≤ C‖φl‖H1/2
00 (γl )

,

where C only depends on the geometry of �k . We obtain from the quasi-uniformity,
the H1/2

00 -stability of Qh,l in Remark 5.5 and (54) that

‖vl‖1,�k ≤ C‖[wh]l‖H1/2
00 (γl )

≤ C
(
h pk
k ‖u‖H pk+1(�k)

+ h
pm(l)
m(l) ‖u‖H pm(l)+1

(�m(l))

)
.

Finally, we define the function

vh = wh −
L∑

l=1

vl ∈ Xh .

It is an element of Vh , because

[vh]l = [wh]l −
L∑

j=1

[v j ]l = [wh]l − φl = (I − Qh,l)[wh]l

for every 1 ≤ l ≤ L , so that the definitions (6) and (27) give bρ(vh, μ) = 0 for every
μ ∈ M1

h . For each k let Lk be the set of indices 1 ≤ l ≤ L with �s(l) = �k . Then we
obtain the error bound

‖u − vh‖1,�k ≤ ‖u − wh‖1,�k +
∑

l∈Lk

‖vl‖1,�k

≤ Chpk
k ‖u‖H pk+1(�k)

+C
∑

l∈Lk

(
h pk
k ‖u‖H pk+1(�k)

+ h
pm(l)
m(l) ‖u‖H pm(l)+1

(�m(l))

)
.
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Note that the cardinality of Lk is bounded by a constant which depends only on the
global geometry; in our case of 2-D tensor-product patcheswe have Lk ≤ 4. Therefore,
summing the squared norms leads to the result. ��
Remark 7.7 The geometrically non-conforming scenario NC1 of Remark 2.1 is treated
as follows. Let L0 ⊂ {1, . . . , L} be the subset of indices such that γl is a proper subset
of an edge of �m(l). Then we cannot assume, as done in the proof of Theorem 7.6,
that wh,m(l) interpolates u at both endpoints of γl . Hence, the jump [wh]l in (53) is
not in H1

0 (γl). However, the method in [24, p.18] describes a way how we obtain the
upper bound

inf
vh∈Vh

‖u − vh‖2X ≤ C

⎛

⎝
K∑

k=1

h2pkk ‖u‖2
H pk+1(�k )

+
∑

l∈L0

h
2pm(l)+1
m(l)

hs(l)
‖u‖2

H pm(l)+1 (�m(l))

⎞

⎠ .

(55)

The norm of the last term can be reduced by considering the restriction of u to a strip
�̃l ⊂ �m(l) adjacent to γl and of width hm(l). For more details we refer to [24].

Things are much easier in the geometrically non-conforming scenario NC2. Recall
from Remark 2.1 that the elements of Xh,k need only be continuous across the pro-
longations of T-intersections from adjacent patches. Therefore, in the first step of the
proof of Theorem 7.6, both components wh,s(l) and wh,m(l) can be chosen to interpo-
late u at both endpoints of γl . Then we obtain the same result as for the geometrically
conforming case.

7.3 Consistency error

The upper bound for the consistency error Eb is obtained as in [24, Lemma 1.8].

Theorem 7.8 Let Assumptions 1 and 2 and the assumptions in Proposition 7.1 and 7.5
be satisfied for all cells �k and interfaces γl . Further assume that the weak solution
u of (2) satisfies u ∈ H1(�) and uk = u|�k ∈ H pk+1(�k) for all 1 ≤ k ≤ K. Then
we have

Eb = sup
vh∈Vh

bρ(vh, λ)

‖vh‖X ≤ C

(
L∑

l=1

h2qls(l) ‖u‖2
Hql+1(�s(l))

)1/2

, (56)

where the constant does not depend on the h-refinement.

Proof For each interface γl , we define the pullback

ηl = ŵl λl ◦ Fl ∈ Hql−1(γ̂l , ;
+
l )

as in Proposition 7.1. Let vh = (vh,k)1≤k≤K ∈ Vh and μ̂ = (μ̂l)1≤l≤L ∈ M̂1
h be arbi-

trary elements. The definitions (10) of Vh , (23) of Mh,l and the standard computations
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in (5) give

bρ(vh, λ) = bρ(vh, λ − μ) =
L∑

l=1

∫

γ̂l

(ηl − μ̂l) ŵl [vh]l ◦ Fl dξ.

The Cauchy–Schwarz inequality gives

|bρ(vh, λ)|2 ≤
L∑

l=1

inf
μ̂l∈M̂1

h,l

hs(l)‖ηl − μ̂l‖2L2(γ̂l )

L∑

l=1

h−1
s(l)‖ŵl [vh]l ◦ Fl‖2L2(γ̂l )

. (57)

For the first sum in (57), we apply the result of Proposition 7.5 and obtain

L∑

l=1

inf
μ̂l∈M̂1

h,l

hs(l)‖ηl − μ̂l‖2L2(γ̂l )
≤ C

L∑

l=1

h2qls(l)‖u‖2
Hql+1(�s(l))

.

A bound for the second sum in (57) is obtained in analogy to [11, Lemma 3.5] as

L∑

l=1

h−1
s(l)‖ŵl [vh]l ◦ Fl‖2L2(γ̂l )

≤ C
L∑

l=1

(
‖vh,s(l)‖2H1(�s(l))

+ ‖vh,m(l)‖2H1(�m(l))

)
≤ C‖vh‖2X .

So we have obtained the upper bound in (56). ��
We can now combine the upper bounds for the approximation error in (52) or (55)

and the consistency error in (56). Hence, by (43) we have proved the result of Theorem
4.5.

7.4 Error bound for the Lagrangemultiplier

We next prove Theorem 4.6 for the error bound of the Lagrange multiplier It is derived
from the infsup-condition and the approximation error in the standard way as shown
in [24, p. 26]. We only describe the geometrically conforming case. For the non-
conforming situation, the same adaptation as in (55) is needed.

Proof of Theorem 4.6 The same method as in [24, p.25] leads to

‖λ − λh‖−1/2,h ≤ inf
μh∈M1

h

(‖λ − μh‖−1/2,h + ‖λh − μh‖−1/2,h)

≤ C

(
‖u − uh‖X + inf

μh∈M1
h

‖λ − μh‖−1/2,h

)
.

The result follows from Theorem 4.5 and Proposition 7.5. ��
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8 Implementation and stability of mass matrices

For our implementation of the mortar finite element method, we follow [5, p. 194] and
use the mass matrixMh,l for the substitution of all nodal coefficients of �s(l), which
are associated with degrees of freedom in the interior of the interface γl . We show
that the local basis for the Lagrange multiplier space M1

h,l is uniformly stable with
respect to the h-refinement; this means that the condition number for this substitution
is uniformly bounded.

Let 1 ≤ l ≤ L , k = s(l), q = ps(l) and n = nh,l be the parameters associated
with the interface γl . We often drop the indices h, l without further notice. First, we
develop the expressions for the entries of the mass matrix which are associated with
the basis elements of M̂1

h,l in Proposition 4.4. The rows of the mass matrix are indexed

by 2 ≤ i ≤ n − 1 according to the enumeration of the basis elements of M̂1
h,l .

There are two blocks of columns in the mass matrix. The first block is associated
with finite elements on �k which are non-zero on γl ,

ml,i, j = 〈N j , μ
1
i 〉ρl = w j

∫

γ̂l

μ̂1
i B̂q

j dξ, 2 ≤ i ≤ n − 1, 1 ≤ j ≤ n. (58)

Here, w j is the weight factor in the numerator of the NURBS function N̂ j = N̂h,l, j .
Both functions μ̂1

i , B̂
q
j are splines in Ŝq(
h,l), so there are fast methods for the

computation of these integrals. The analysis in Appendix B shows the following.

Proposition 8.1 The square submatrices

Mh,l = (ml,i, j )2≤i, j≤nh,l−1

have a uniformly bounded condition number for arbitrary knot sequences.

This property is the same as the “spectral equivalence” in [24, p.13]. Note that this
block is banded due to the local support of the basis.

The second block is associated with finite elements on the master cell �m(l) which
are non-zero on γl . Note that the parameter interval γ̃ = F−1

m(l)(γl) can be a proper
subset of (0, 1) in the geometrically non-conforming case. We denote the univariate
NURBS, which are associated with the master cell and are non-zero on γ̃l , by N̂m

j ,
1 ≤ j ≤ ñ. Note that a sign factor is introduced by the jump operation. In both
geometrically conforming and non-conforming cases, we have

m̃l,i, j = −
∫

γ̂l

μ̂1
i ŵl N̂

m
j ◦ F−1

m(l) ◦ Fl dξ, 2 ≤ i ≤ n − 1, 1 ≤ j ≤ ñ. (59)

In a conforming geometry, we often have F−1
m(l) ◦ Fl = id, so this term can be omitted,

but it must be included in the integral for a non-conforming geometry. The function
ŵl is the denominator of the initial NURBS basis functions of the parameterization.

123



904 W. Dornisch, J. Stöckler

As an alternative basis of M̂1
h,l in our current implementation,we use basis functions

(η̂i : 2 ≤ i ≤ n − 1) of M̂1
h,l such that the corresponding entries in the first block are

mη
l,i, j = w j

∫

γ̂l

η̂i B̂
q
j dξ, 2 ≤ i ≤ n − 1, 1 ≤ j ≤ n,

instead of (58), and in the second block

m̃η
l,i, j = −

∫

γ̂l

η̂i ŵl N̂
m
j ◦ F−1

m(l) ◦ Fl dξ, 2 ≤ i ≤ n − 1, 1 ≤ j ≤ ñ (60)

instead of (59). The basis will be chosen such that the square submatrix

Mη
h,l = (mη

l,i, j )2≤i, j≤n−1 (61)

is a diagonal matrix. For this definition, we use the dual B-splines

B̃q
j ∈ Ŝq(
h,l), 1 ≤ j ≤ n,

which satisfy the biorthogonality relation

∫

γ̂l

B̃q
i B̂

q
j dξ = δi, j for all 1 ≤ i, j ≤ n. (62)

Here δi, j denotes the Kronecker delta. The support of the dual B-splines is the whole
interval γ̂l . Although the new basis will have global support γ̂l , the mass matrix is
sparse due to the biorthogonality.

For the definition of the alternative basis, we recall the definition (19) of the basis
functions of the orthogonal complement Ê of M̂1

h,l with

ê1 = dq

dξq
B̂2q
h,l,1 =

n∑

j=1

α j B̂
q
j , ê2 = dq

dξq
B̂2q
h,l,n−q =

n∑

j=1

β j B̂
q
j

and note that all coefficients α j with j > q + 1 and β j with j < n − q are zero.

Proposition 8.2 Assume that n ≥ q + 2.

(a) The functions

η̂i = B̃q
i − αi

α1
B̃q
1 − βi

βn
B̃q
n , i = 2, . . . , n − 1, (63)

are a basis of M̂1
h,l . In particular, if n ≥ 2q + 3, then η̂i = B̃q

i for j = q +
2, . . . , n − q − 1.
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(b) The entries of the mass matrix in (61) are

mη
l,i, j = w j

∫

γ̂l

B̂q
j η̂

1
i dξ

= w j

(
δi, j − αi

α1
δ j,1 − βi

βn
δ j,n

)
, 1 ≤ j ≤ n, 2 ≤ i ≤ n − 1.

In particular, the block Mη
h,l in (61) is diagonal.

Proof Part (a) follows from two simple observations. First, the specified splines η̂i ,
2 ≤ i ≤ n−1, are linearly independent, because B̃q

i only appears in the representation
of η̂i . Secondly, their orthogonality to ê1 and ê2 is evident. Part (b) follows directly
from the biorthogonality of B-splines and dual B-splines. ��

Based on this result, we can implement the substitution method as follows. We let
uh = (uh,k)1≤k≤K be an element of Xh and fix 1 ≤ l ≤ L . Recall the notation for the
jump

[uh]l = us(l)|γl − um(l)|γl .

• We use U for the coefficients associated with the slave cell and Um for the coeffi-
cients associated with the master cell, so

uh,s(l) |γl =
n∑

j=1

U j N̂ j ◦ F−1
s(l), uh,m(l)| γl =

ñ∑

j=1

Um
j N̂

m
j ◦ F−1

m(l). (64)

• Fix 2 ≤ i ≤ n − 1. When we use the biorthogonality (62) and the representation
(63) in the weak continuity condition, we obtain

0 = 〈[uh]l , ηi 〉ρl =
n∑

j=1

w jU j

∫

γ̂l

η̂i B̂
q
j dξ

−
ñ∑

j=1

Um
j

∫

γ̂l

η̂i ŵl N̂
m
j ◦ F−1

m(l) ◦ Fl dξ

= wiUi − w1αi

α1
U1 − wnβi

βn
Un +

ñ∑

j=1

m̃η
l,i, jU

m
j .

Hence, the substitution

Ui = 1

wi

⎛

⎝w1αi

α1
U1 + wnβi

βn
Un −

ñ∑

j=1

m̃η
l,i, jU

m
j

⎞

⎠ (65)

can be used for all coefficients Ui , 2 ≤ i ≤ n − 1.
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Remark 8.3 (i) Note that the nodal coefficients U1 and Un associated with the two
endpoints of γl in the slave-cell are treated as free parameters. Indeed, as in [5]
and for the geometrically conforming case, we define separate control points for
each cell �k meeting at a vertex of the decomposition. Hence, different interfaces
are completely decoupled and there is no interference of the control points on γl
with other cells than �s(l) and �m(l). The same decoupling remains valid for the
geometrically non-conforming types NC1 and NC2 in Remark 2.1. This is clear
for NC1, because both endpoints of γl are vertices of �s(l) and can be treated
in the same way as in the geometrically conforming case. For the type NC2, the
control points U1 and Un in (64) can be non-vertex points of �s(l). This occurs
if one (or both) of them are endpoints of the prolongation of a T-intersection at a
vertex of the master patch �m(l). If this is the case, the same control point is used
as an endpoint of another interface γm , m �= l, and can either belong to the slave
patch or the master patch of γm . Since it is treated as a free parameter in both cases
(slave or master control point for γm), there is no complication as compared to the
geometrically conforming case.

(ii) The computation of m̃η
l,i, j in (60) requires explicit expressions for the dual B-

splines B̃q
j , 1 ≤ j ≤ n, with knot sequence 
h,l . In our implementation, these are

computed via the inversion of the Gram matrix (〈B̂q
i , B̂q

j 〉)1≤i, j≤n of the B-spline

basis for Ŝq(
h,l). In [16]we described amodification of themortarmethodwhich
avoids matrix inversion by the use of approximate dual B-splines. It introduces a
second consistency error for the error analysis in Sect. 7. The error analysis will
be presented in our forthcoming work.

9 Numerical examples

Wepresent our numerical results for two examples. In Sect. 9.1we consider the Poisson
equation on the unit square, and Sect. 9.1.1 considers a benchmark problem of linear
elasticity, namely an elastic plate with hole. In both cases, the numerical results can be
compared to an analytical solution. Thus, the convergence behavior of the proposed
mortar formulation can be assessed properly. Several discretizations are tested for each
example. All computations are performed using an in-house isogeometric analysis
code within Matlab.

9.1 Poisson equation solved on the unit square

In this example the Poisson equation −�u = f is solved on the unit square
� = (0, 1)2. The manufactured analytical solution for the body load f (x, y) =
13 sin(3x) sin(2y) is u(x, y) = sin(3x) sin(2y). The associated boundary conditions
are g = ∇u ·ν on Neumann boundaries 	N with the outer normal vector ν, and u = 0
on the Dirichlet boundary 	D . Within this work the lower edge (x ∈ (0, 1), y = 0) is
chosen as Dirichlet boundary, whereas all other edges are Neumann boundaries. Other
choices are possible, but do not yield significantly different results, see the work of
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Zou et al. [25] where different combinations of boundary conditions are compared.
In the following, we study several different possibilities to discretize the domain with
NURBS patches. The accuracy of the computations is assessed with the help of the
L2-error ‖u − uh‖0,� which is plotted over the maximal element diagonal h. Since
f is infinitely smooth, optimal error bounds for discretizations of degree p have the
order O(h p+1) according to the general theory of finite elements [10].

9.1.1 Two conforming patches with straight interface

The first discretization scheme serves as a reference and uses a decomposition into two
rectangular patches which intersect at x = 0.5. The discrete spaces Xh,k , k = 1, 2, are
tensor-product splines relative to conforming, equally spaced knot sequences and equal
degrees 2 ≤ p ≤ 5 in both patches. The canonical parameterizations F1(ξ1, ξ2) =
(ξ1/2, ξ2) and F2(ξ1, ξ2) = ((1 + ξ1)/2, ξ2) and the constant NURBS denominator
ŵk = 1, k = 1, 2, lead to a constant weight function ρ = 1/2 for the bilinear form
bρ . Figure 2a shows the resulting error, if strong continuitiy conditions across the
interface γ are used; here the two patches are coupled by shared degrees of freedom
along γ and no consistency error occurs. Equivalently, the space Vh consists of all
tensor-product splines of coordinate degree p on the full unit square with Dirichlet
boundary conditions for y = 0, whose knot vector 
(1) ⊂ [0, 1] has a knot ξ = 0.5
of multiplicity p and simple knots with uniform stepsize h in both intervals [0, 0.5],
[0.5, 1]. The results for degrees 2 ≤ p ≤ 5 are shown as the solid lines in the double
logarithmic diagram of Fig. 2a and labeled by ’conf’. The expected rates O(h p+1) are
obtained, as can be seen by direct comparison with the dashed lines of slope p+1.We
use the same ordinates in all figures in order to facilitate the comparison of the mortar
method with this reference case. The results for the mortar coupling using Lagrange
multiplier spaces Mt

h , t = 0, 1, for weak continuity conditions across the interface are
given in Fig. 2b, c.

Both proposed methods yield the same accuracy level and the same expected con-
vergence rates as the conforming reference computations (Fig. 2a). Thus, the global
error of uh is not affected by using the mortar method instead of a direct connection
by shared degrees of freedom.

9.1.2 Two non-conforming patches with curved interface with internal C1-continuity

Our next example demonstrates the importance of Assumption 2(b), if an interface
has limited smoothness. We choose two NURBS patches with a curved interface
with initial degree pini = 2, knot sequence � = {0, 0, 0, 0.5, 1, 1, 1} and control
points as listed in Table 1. The point (x, y) = (0.5, 0.5) corresponds to the parameter
ξ = 0.5 on the interface, where the curve has onlyC1-smoothness. A non-conforming
discretization with an element ratio of 2 : 3 along the interface is obtained by choosing
this ratio for the coarsest mesh and then performing uniform subdivision in both
patches. The same degrees are chosen in both patches. The maximal element diameter
h is alike in both patches; see Fig. 3.

In order to demonstrate the effect of the limited smoothness of γ on the a priori
error in Sec. 7, we first perform computations for degrees 2 ≤ p ≤ 5 without reduced
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(a)

(b) (c)

Fig. 2 Poisson equation: Comparison of error level and convergence rates for the discretization scheme
with straight interface and conforming knot sequences

Table 1 Poisson equation:
Control points for the initial
interface curve with an interior
knot with C1-continuity

x 0.5 0.6 0.4 0.5

y 0 0.3 0.7 1

w 1 1 1 1

Control points

Dirichlet boundary condition

Neumann boundary condition
Ω2

Interface condition

Ω1

Fig. 3 Poisson equation:Discretization schemewith curved interface and an interior knotwithC1-continuity
(left). Coarsest non-conforming mesh for this scheme with control points for the parameterization of degree
2 (right)
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(a) (b)

Fig. 4 L2-error for spline approximation of degree 2 ≤ p ≤ 5 of the normal derivative ∂u/∂ν of u(x, y) =
sin 3x sin 2y on a spline curve γ with C1-smoothness at knot ζ = 0.5

(a) (b)

Fig. 5 Poisson equation: Comparison of L2-error level and convergence rates for the discretization scheme
with curved interface and an interior knot with C1-continuity. No reduction of continuity at internal knots

smoothness. The initial parameterization of γ is rewritten with B-splines of degree p
by raising themultiplicity of the endpoints to p+1 and of ζ = 0.5 to p−1. The uniform
refinement uses an open knot sequence 
h with endpoints of multiplicity p + 1, knot
ζ = 0.5 of multiplicity p − 1, and additional simple knots of stepsize h in both
intervals (0, 0.5) and (0.5, 1). We demonstrate in Fig. 4 that the orthogonal projection
of ∇u · ν onto the spline space of degree p has an L2-error of size O(h3/2), regardless
of the degree 2 ≤ p ≤ 5. Therefore, the order of approximation in Proposition 7.5
is not achieved for 3 ≤ p ≤ 5. This results in a defect of the consistency error Eb

and, finally, in a degraded a-priori error as can be seen in Figs. 5 and 6. The effect
for p = 3 is somehow damped for the L2-error in Fig. 5, but clearly visible for the
L∞-error in Fig. 6. On the other hand, when we increase the multiplicty of ζ = 0.5 to
p as described in Assumption 2(b) (at least for p ≥ 3), then the optimal convergence
rate p + 1 for the a-priori error is recovered for all considered degrees and both cases
t = 0 and 1, see Figs. 7 and 8. This clearly shows that the reduction of smoothness at
interior knots is needed in order to recover the optimal convergence rates.

123



910 W. Dornisch, J. Stöckler

(a) (b)

Fig. 6 Poisson equation: Comparison of L∞-error level and convergence rates for the discretization scheme
with curved interface and an interior knot with C1-continuity. No reduction of continuity at internal knots

(a) (b)

Fig. 7 Poisson equation: Comparison of L2-error level and convergence rates for the discretization scheme
with curved interface and an interior knot with C1-continuity. Reduction of continuity at internal knots
according to Assumption 2(b)

(a) (b)

Fig. 8 Poisson equation: Comparison of L∞-error level and convergence rates for the discretization scheme
with curved interface and an interior knot with C1-continuity. Reduction of continuity at internal knots
according to Assumption 2(b)
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Table 2 Poisson equation: Control points for the initial interface curve with p = 3 and different internal
continuities

x 0.5 0.55 0.52 0.5 0.4 0.42 0.56 0.55 0.5 0.5

y 0 0.1 0.2 0.32 0.45 0.55 0.69 0.8 0.95 1

w 1 1.2 1.4 0.8 1 1.3 1.1 1.5 0.9 1

1C

0C

2C
Dirichlet boundary condition

Neumann boundary condition
Ω2

Interface condition

Ω1

Control points

Fig. 9 Poisson equation: Discretization scheme with curved interface with initial order p = 3 and different
internal continuities (left). Coarsest non-conforming mesh for this scheme with control points for the
parameterization of degree 3 (right). The points at the interface with limited internal continuity are labeled
by C2, C1 and C0

9.1.3 Two non-conforming patches with higher order curved interface with different
continuities

Our next discretization scheme defines two NURBS patches with a curved interface γ

with initial degree p = 3, knot sequence � = {0, 0, 0, 0, 0.3, 0.3, 0.5, 0.5, 0.5, 0.7,
1, 1, 1, 1} and control points as listed in Table 2. At the points ξ = 0.3 and ξ = 0.7,
the interface curve is only C1 and C2-continuous, respectively. At the point ξ = 0.5,
the curve is C0-continuous, and has a kink as can be seen in Fig. 9. The points on
the interface with reduced internal continuity are marked on the right side of Fig. 9.
With this example we demonstrate the importance of Assumption 2(b) for different
orders of smoothness and also include the treatment of points with C0-continuity as
explained in Remark 2.2(b).

A non-conforming discretization with an element ratio of 2 : 3 along the interface is
obtained by choosing a coarse decomposition with this ratio and subsequent uniform
subdivision, see Fig. 9. The same degree 3 ≤ p ≤ 5 is chosen for both patches. The
error of ‖u − uh‖0,� is shown in Fig. 11a, b for both spaces of Lagrange multipliers
(t = 0 or 1) and for different choices of the reduction of smoothness at interior knots
of �. The mortar method which employs reduced smoothness in the definition of the
discrete spaces Xh,k according to Remark 2.2 and Assumption 2(b) shows optimal
convergence (solid lines in 11(a) and (b)). For comparison, in computations labeled
by NR we perform no reduction of smoothness; i.e. the knot vectors 
h related to
the interface have knots 0.3, 0.5, 0.7 with multiplicities p− 1, p, p− 2, respectively.
The convergence rate is not optimal for all considered degrees 3 ≤ p ≤ 5. It seems
to be limited to O(h1.5), which follows the mathematical reasoning in Appendix A.
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(a) (b)

Fig. 10 L2-error for spline approximation of degree 3 ≤ p ≤ 5 of the normal derivative y = ∂u/∂ν of
u(x, y) = sin 3x sin 2y on a spline curve γ with a C0-point ζ = 0.5, a C1-point ζ = 0.3 and a C2-point
ζ = 0.7

An intermediate case for the reduction of smoothness is labeled N1, if the C0-point
at ξ = 0.5 is treated by the method in Remark 2.2, but no reduction of smoothness
is performed at 0.3, 0.7; then the convergence rate is optimal only for p = 3, but
deficient for higher degrees. Another case is labeled N2, if in addition to N1 we use
reduced smoothness at ξ = 0.3, but not at ξ = 0.7; then the optimal convergence rate
is obtained and the results cannot be distinguished by the eye from the solid lines.
It seems that the defect of the consistency error shown in Fig. 10 is damped, but we
have no analytical explanation yet. These results give further numerical evidence for
the a priori error estimate in Sect. 7 and at the same time indicate that it might be
sufficient to reduce the continuity in C0 and C1-points. However, a reduction at all
initial internal knots is not counterproductive.

For a better understanding of the size of the consistency error Eb in (42), Fig. 10
shows the L2-error of the orthogonal projection of ∇u · ν onto the full spline space
Ŝ p(
h) for 3 ≤ p ≤ 5. The labels NR, N1, and N2 indicate the partial reduction
of smoothness as explained before. No label is used for the solid line in Fig. 10b,
which shows the results where the reduction of smoothness at both knots 0.3 and 0.7
is performed according to Assumption 2(b) and the point ξ = 0.5 is treated as in
Remark 2.2.

9.1.4 Discretization with ten patches and different kinds of intersections

Our final discretization scheme is with ten non-conforming patches, where seven T-
intersections and two star-intersections are present. A sketch of the patch layout is
given on the left side in Fig. 12. The interfaces are straight lines and the geometry is
waterproof, i.e., the parametrizations match along the interfaces. In the convergence
studies, every patch is uniformly subdivided by the same refinement factor and equal
degrees are used. The presence of T-intersections, where one patch boundary borders
two other patches, togetherwith the additional knots in the patcheswith T-intersections
yields non-conforming meshes at most interfaces. In the initial mesh given on the right
of Fig. 12, no interior knots are present besides the additional knots at T-intersections,
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(a) (b)

Fig. 11 Poisson equation: Comparison of error level and convergence rates for the discretization scheme
with curved interface with initial degree p = 3 and different internal continuities. Reductions of continuity
at internal knots are labeled N2, N1, NR as explained in the text

Dirichlet boundary condition

Neumann boundary condition

Interface condition

Control points

Ω3Ω1 Ω2 Ω4

Ω5
Ω6

Ω7

Ω10
Ω9

Ω8

Fig. 12 Poisson equation: Discretization scheme with ten non-conforming patches and different kinds of
intersections (left). Coarsest non-conforming mesh for this scheme (right)

(a) Refinement factor of 4 (b) Refinement factor of 7 (c) Refinement factor of 10

Fig. 13 Poisson equation: Sample meshes for the discretization scheme with ten non-conforming patches
and different kinds of intersections

which are resolved by the method described as NC2 in Remark 2.1. Three sample
meshes are given in Fig. 13 for a better depiction of the obtained non-conformity.

From a mathematical point of view there is no criterion for an optimal choice of
patches to bemaster or slave. However, experience in numerical simulations in [12,16]
suggests to use the patch with more elements as slave patch. The numerical results
for this case are given in Fig. 14. We obtain optimal convergence rates for all degrees
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(a) (b)

Fig. 14 Poisson equation: Comparison of error level and convergence rates for the discretization scheme
with ten patches and different kinds of intersections

Fig. 15 Elastic plate with hole: Sketch of geometry and boundary conditions

2 ≤ p ≤ 5 and for both choices of Lagrange multipliers Mt
h,l , t = 0 or 1, see Fig. 14a,

b. This shows that the proposed formulation is able to handle multiple interfaces with
different kinds of intersections properly. We also performed the same computation for
an inverted master/slave classification with essentially no changes.

9.2 Linear elasticity solved on an elastic plate with hole

In this example the differential equations for linear elasticity are solved for an
infinite plate with hole, where uniaxial tension is applied in x → ±∞. Themechanical
equilibrium on a domain � ⊂ R

2 is given by

div σ + f = 0
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with the boundary conditions u|	D = 0 and σ ·n|	N = g, where n is the outer normal
vector with respect to 	N . In the chosen planar linear elastic context with isotropic
constitutive law, the relations between stresses σ , strains ε and displacements u are
given by

σ = λ tr (ε) I + 2με and ε = 1
2

(
∇u + ∇Tu

)
,

where λ and μ are the Lamé parameters, I is the identity matrix and ∇ is the gradient
operator. Accordingly, the saddle point problem (7) changes to: Find (u,λ) ∈ X × M
such that

a(u, v) + bρ(v,λ) = ∫
�

vT f dx + ∫
	N

vTg ds, v ∈ X ,

bρ(u,μ) = 0, μ ∈ M,

where X and M are vector valued extensions of the spaces used in Eq. (7). The bilinear
forms a(u, v) and bρ(u,μ) are given by

a(u, v) =
K∑

k=1

∫

�k

(∇v)Tσ dx and bρ(u,μ) =
L∑

l=1

〈[u]l ,μl〉ρl ,

respectively.
For our computations, we limit the domain to finite size and apply the tractions of

the exact solution, which can be found e.g. in [2], as Neumann boundary conditions
on the relevant edges. Furthermore, we consider only one quarter due to symmetry
and apply the associated symmetry boundary conditions. Thus, we consider a domain
� = {

(x, y) ∈ (−4, 0) × (0, 4) : x2 + y2 ≥ 1
}
, see Fig. 15. The known analytical

solution of this problem allows performing convergence studies for a complex stress
distribution and is thus commonly used for numerical studies, especially in the frame-
work of isogeometric analysis.

In the following, we study three different possibilities to discretize the domain with
NURBS patches. In all cases the geometry is modeled exactly. The accuracy of the
computations is assessed with the help of the L2-error norm ‖σ − σ h‖0,� which is
plotted over themaximal element diagonal h. According to the theory of finite elements
[10], the slope in the double logarithmic diagram should be p, which is indicated by
the dashed lines in the same diagram. In order to allow a straightforward comparison
of the mortar results to the reference case, we use the same axes in all figures for this
example. The reference example for a conforming method of degrees 2 ≤ p ≤ 5 is
provided in Fig. 17a.

9.2.1 Two patches with curved interface with internal C1-continuity and conforming
meshes

The first decomposition is with two NURBS patches with a curved interface with
initial order pini = 2, knot sequence � = {0, 0, 0, 0.5, 1, 1, 1} and control points as
listed in Table 3. At the point ξ = 0.5, the interface γ is onlyC1-continuous. Themesh
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Table 3 Elastic plate with hole:
Control points for the initial
interface curve with an interior
knot with C1-continuity

x −√
2/2 −1.5 −2.5 −4

y
√
2/2 1.5 3 4

w 1 0.5 2 1

Dirichlet boundary condition

Neumann boundary condition

Ω1

x

y

R = 1

Control points

Interface condition

Ω2

Fig. 16 Elastic plate with hole: Discretization scheme with curved interface (left). Coarsest mesh with
conforming discretization for this scheme (right)

(a)

(b) (c)

Fig. 17 Elastic plate with hole: Comparison of error level and convergence rates for the discretization
scheme with curved interface and conforming discretization
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Fig. 18 Elastic plate with hole: Logarithmic error of the von Mises stress for a subdivision factor of 20 and
order p = 5

is chosen conforming in both patches. A sketch of this discretization scheme along
with the coarsest computed mesh is given in Fig. 16. Finer meshes for the convergence
analysis are obtained by uniform subdivision. This discretization is used to assess the
ability of the mortar method to capture the same approximation rate as conforming
finite element methods. A computation where the two patches are coupled by shared
degrees of freedom along the interface, is used as reference. These results are labeled
by conf. in Fig. 17a. The numerical results for the mortar method with Lagrange
multiplier space Mt

h,l , t = 0 or 1, are given in Fig. 17b, c. While both methods yield
a lower accuracy level for coarse discretizations than the conforming method, they
seem to catch up in terms of accuracy for fine meshes as almost the same error level
as in the reference computations is obtained for small stepsizes h. Thus, the expected
convergence rates are obtained, even though the error level is higher for coarsemeshes.
The mortar method does not improve the error as compared to conforming FEM, but it
is clearly competitive.Wemention that the use of themortarmethod does not primarily
lie in computations with conforming meshes, after all.

Another way of comparing the conforming FEM and the proposed mortar methods
is obtained by plotting the logarithmic error log(‖σvM − σ h

vM‖/‖σvM‖) of the von

Mises stresses σvM =
√

σ 2
11 + σ 2

22 − σ11σ22 + 3σ 2
12 for a fixed discretization. We use

a subdivision factor of 20 and degree p = 5 in Fig. 18. In the stress error plot of
the reference computations (Fig. 18a) the largest error is inside the domain, while for
both proposed methods (Fig. 18b, c) the largest errors are at the end points of the
interface. This peculiarity can be explained as follows: In the conforming case, the
number of control points along the interface is equal on both sides of the interface,
i.e. nh,l = ñh,l . By using the endpoint modification for Mt

h,l , the control points at
both endpoints of the slave patch become free parameters. This leads to a situation,
where the number nh,l − 2 of slave control points is smaller than the number of
master control points, which can result in a substantial increase of the consistency
error near both endpoints. As a simple work-around, we subdivide the first and last
two rows of elements in patch �2. By doing so, the mesh turns into a non-conforming
mesh, where the number of interface slave control points is larger than the number of
interface master control points. This reduces the concentrated error at the endpoints
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(a) Mesh for one-sided interface
end refinement

(b) Mortar coupling using t = 0 ap-
proach

(c) Mortar coupling using t = 1 ap-
proach

Fig. 19 Elastic plate with hole: Mesh for one-sided interface end refinement and logarithmic error of the
von Mises stress for a subdivision factor of 20 and order p = 5

(a) (b)

Fig. 20 Elastic plate with hole: Sample meshes for the discretization with curved interface with internal
C1-continuity and non-conforming mesh

of the interface significantly. A sample mesh is given in Fig. 19a. The corresponding
stress error plots are given in Fig. 19b, c.

9.2.2 Two patches with curved interface with internal C1-continuity and
non-conformingmesh

The second discretization scheme uses the same initial discretization as in Sect. 9.2.1,
but now non-conforming meshes are chosen. This is obtained by using a subdivision
factor of 2 j + 1 along the interface in patch �2 and j in patch �1. This yields a
ratio of 2 j + 1 : j elements along the interface. In the second parametric direction,
the subdivision factor is chosen in a complementary way in order to obtain a similar
number of elements in both patches. The patch �2 with the smaller stepsize along the
interface is chosen as the slave patch. The obtained meshes for a subdivision factor of
j = 5 and j = 10 of this discretization scheme are given in Fig. 20.
This discretization is used to assess the ability of the proposed methods to use

discretizations with curved NURBS interfaces with limited internal smoothness and
strongly non-conforming knot sequences. The error norms of the global stress distri-
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(a) (b)

Fig. 21 Elastic plate with hole: Comparison of error level and convergence rates for the discretization
scheme with curved interface and non-conforming discretization

(a) (b) (c)

Fig. 22 Elastic plate with hole discretized by two patches: Comparison of the CPU time in seconds for the
formation of the global stiffness matrix

bution computed using the Lagrange multiplier spaces Mt
h,l , t = 0, 1, are given in

Fig. 21a, b. Both methods yield optimal convergence rates and the error levels are
comparable to the conforming case using shared degrees of freedom given in Fig. 17a.

Besides accuracy, also efficiency of the methods is studied. This is done by compar-
ing computational costs for the individual stages of the computations. Furthermore,
the stability of the methods is assessed by means of the condition number of the
global stiffness matrix. The results of Sect. 9.2.1 for the coupling by shared degrees
of freedom are used as reference. These results are labeled by conf.

The computational cost for the formation of the global stiffness matrix is compared
in Fig. 22, where the results are shown in CPU seconds on a contemporary dual core
notebook with 8 GB of RAM. The peaks in the diagrams are due to background
activity of the operating system. The entries are computed by optimal integration as
proposed in [18] and directly assembled into the sparse matrix format of Matlab,
whereby vectorized assembly is used. The computational cost for conforming meshes
given in Fig. 22a is lower than for the mortar methods (Fig. 22b, c), but they range in
the same order of magnitude. The difference occurs in the assembly process, when the
entries of the slave interface control points are assembled to master interface degrees
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(a) (b)

Fig. 23 Elastic plate with hole discretized by two patches: Comparison of the CPU time in seconds for the
formation of the coupling matrices

of freedom according to (65). The excessive growth of computational costs in the fine
limit is attributed to limitations of RAM, which was restricted to 8 GB for this study.

The computational cost for the formation of themassmatrices as explained in Sect. 8
are given in Fig. 23 for both proposed mortar methods with Mt

h,l , t = 0, 1. There is no
significant difference between both methods. In the conforming case, this cost is saved
since a direct connection by shared degrees of freedom is used. Note that the cost is
in the same order of magnitude as the cost for the formation of the global stiffness
matrix, besides the fact that the coupling matrices require the computation of a line
integral only, whereas the global stiffness matrix requires computations of a global
surface integral. However, there is some potential for a speed-up of the computation
of the entries m̃η

l,i, j of the mass matrices in (60). First, the computation of the line
integrals in (60) uses the time-consuming iterative point inversion algorithm for the
mapping from the slave to the master patch, which is required in every integration
point. This routine could be written as an external routine in C or Fortran. Secondly,
we did not yet implement a fast method for the inversion of the Gram matrix of the
B-splines on the slave patch in order to compute the dual B-splines in (63), see also
Remark 8.3.

The computational cost for the solution of the global system of equations is given
in Fig. 24. There are no significant differences between the computations using shared
degrees of freedom (Fig. 24a) and both proposed mortar methods (Fig. 24b, c). The
computational cost for the solution grows almost linearly, as can be expected for the
used sparse matrix format. It is roughly two orders of magnitude smaller than the cost
for the formation of the stiffness matrix.

The influence of the proposed mortar methods on the sparsity of the global stiffness
matrix is depicted in Fig. 25, whereby the number of non-zero entries (nz) of the
stiffness matrix is given below the diagrams. The sparsity pattern of computations
using about 3200 elements are compared between coupling by shared degrees of
freedom and the mortar method. The upper left block represents the stiffness matrix
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(a) (b) (c)

Fig. 24 Elastic plate with hole discretized by two patches: Comparison of the CPU time in seconds for the
solution of the global system of equations

for the master patch �1, the lower right block is for the slave patch �2. The sparsest
pattern is clearly generatedbyusing shareddegrees of freedom, seeFig. 25a.Theglobal
support along the interface of the dual B-splines used in the proposed implementation
in Sect. 8 generates a coupling between all interface degrees in the master patch.
This explains the quadratic structure of the upper left block, whereas the lower right
block of the slave patch has a banded structure. The nonzero entries in the upper right
and lower left corners appear by the substitution (65). The difference between both
choices of Lagrange multiplier spaces Mt

h,l is quite small in this case: The number
of non-zero entries for t = 1 in Fig. 25c is about 0.5% smaller than for t = 0 in
Fig. 25b). It can be observed in the very last rows and columns of the stiffness matrix.
The nonzero entries for t = 0 result from the interrelation between all interface control
pointsUi in the slave patch with both control pointsU1 and Un at the endpoints of the
interface, see (65). This interrelation is reduced to only few interface control points
near the endpoints for t = 1, because most coefficients αi and βi in (65) are zero.
This advantage is only small for 2D-problems, but will be more pronounced for 3D-
problems. Moreover, in our planned extension of the mortar method by the use of an
h-dependent bilinear form bh,ρ in our future work, we reduce all blocks of the stiffness
matrix to banded form by the application of locally supported “approximate duals”
instead of the dual B-splines.

The condition number of the global stiffness matrix is compared in Fig. 26 between
computations using shared degrees of freedom and the proposed mortar methods.
The results show that the condition number is not perceivably affected by using the
proposed mortar methods, which is an important requirement for robust and accurate
computations.

9.2.3 Discretization with ten patches and different kinds of intersections

In order to assess the ability of our method to deal with different types of geometry, we
use a discretization schemewith ten non-conforming patches with four T-intersections
and three star-intersections. A sketch of the patch layout is given on the left side in
Fig. 27. The interfaces are straight and have infinite internal continuity, soAssumptions
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Fig. 25 Elastic plate with hole discretized by two patches: Sparsity pattern of the global stiffness matrix. For
the conforming mesh a subdivision factor of 28 and p = 4 is used (total number of elements is 3136). For
the non-conforming meshes a subdivision factor of 20 and order p = 4 is used (total number of elements
is 3280)

(a) (b) (c)

Fig. 26 Elastic plate with hole discretized by two patches: Comparison of the inverse condition number of
the global system of equations

1 and 2(b) can be neglected. The geometry is waterproof, as the parametrizations along
the interfaces are matching. On the right side in Fig. 27 the coarsest initial mesh is
drawn, where the prolongation of all T-intersections as C0-continuous lines is already
included (type NC2 in Remark 2.1). In the convergence studies, every patch is refined
using a number of a · j + b elements, where the values of a and b are given in
Fig. 28a for each parametric direction within each patch. The refinement is performed
in a way that the lengths of the element spans are as similar as possible in the knot
vector under consideration of the prescribed element boundaries which arise due to the
prolongation of ending interfaces at T-intersections. The order of the basis functions is
chosen uniformly within the whole domain. Three sample meshes are given in Fig. 28
for a better depiction of the obtained non-conformity.

The error norm of the global stress distributions is given in Fig. 29. Both proposed
methods (Fig. 29a, b) yield optimal convergence rates. The error levels are slightly
higher than in the conforming case (Fig. 17a), where shared degrees of freedom are
used. It is to be noted that in the conforming case the difference between the individual

123



An isogeometric mortar method for the coupling... 923

Fig. 27 Elastic plate with hole: Discretization scheme with ten non-conforming patches and different kinds
of intersections (left). Coarsest initial mesh with order p = 2 for this scheme, whereby the patches are not
refined except for the prolongation of ending interfaces at T-intersections (right)

(a) (b) (c)

Fig. 28 Elastic plate with hole: Sample meshes for the discretization scheme with ten non-conforming
patches and different kinds of intersections. The applied refinement rule is given in a). All finer meshes are
obtained by choosing a factor j ∈ N

element diameters h is smaller than in the case with ten patches, and thus naturally a
lower error level is produced.

The computational costs for the formation of the global stiffness matrix ranges in
the same order of magnitude as for the conforming case. The difference occurs in the
assembly process and grows with the ratio of interface degrees of freedom to domain
degrees of freedom, see Sect. 9.2.2. The same statements as in Sect. 9.2.2 can be made
about the computational cost for the formation of the mass matrix and for the global
solution.

The influence of the proposed mortar methods on the sparsity of the global stiffness
matrix is studied in Fig. 30. The sparsity pattern of computations using 3141 elements
are compared between both proposedmortar methods. The number of non-zero entries
for t = 1 is about 0.8% smaller than for t = 0. It can be observed that the proposed
approach for t = 1 creates fewer interrelations between patches than for t = 0. Fur-
thermore, the interrelation within patches is less pronounced, see the banded structure
of the block in the center of the diagrams: For t = 0, there is an interrelation between
the control points at both ends of the interface (visualized by the square around the
banded structure). For t = 1, there is no such interrelation.
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(a) (b)

Fig. 29 Elastic plate with hole: Comparison of error level and convergence rates for the discretization
scheme with ten non-conforming patches and different kinds of intersections

Fig. 30 Elastic plate with hole discretized by ten non-conforming patches: Sparsity pattern of the global
stiffness matrix. A subdivision factor j = 5 and order p = 5 is used (total number of elements is 3141)

(a) (b) (c)

Fig. 31 Elastic plate with hole: Inverse condition number of the global system of equations. Comparison
between the conforming discretization of Sect. 9.2.1 and the discretization scheme with ten patches of this
section
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The condition number of the global stiffness matrix is compared in Fig. 31 between
computations using shareddegrees of freedomand the proposedmortarmethods.Apart
from very coarse meshes, the behavior of the condition number is very similar, both in
magnitude and in slope. No negative impact of the proposed coupling method on the
condition number can be detected. This shows that robust and accurate computations
are possible with the proposed mortar method.
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Appendix A

We give the proof of Theorem 7.4. The main idea of the proof is similar to the tech-
niques in [23] to show super-convergence of local spline projectors. The numerical
example in Sect. 9.1.2 demonstrates, that Assumption 2(b) is relevant in order to
achieve the optimal approximation order.

Proof Wefirst prove (47). Letu ∈ Hq+1(�) andv = ŵ(u◦F), where F : [0, 1] → R
2

is a NURBS parameterization of γ ⊂ ∂�, with degree q, smoothness at leastC1,1 and
knot vector 
. Since no h-refinement will be considered in the first part of the proof,
all constantsC > 0 do not depend on h. It will be convenient to work with the reduced
knot vector (ζi ) which consists of all knots of 
, but assigns multiplicity 1 to all of
them, so ζ1 = 0 < ζ2 = θq+2 < . . . < ζN = 1. We use the notation Ii = (ζi , ζi+1)

with 1 ≤ i ≤ N − 1 from now on.
By the trace theorem for smooth curves, we have v ∈ Hq+1/2(Ii ) for every 1 ≤

i ≤ N − 1. Moreover, the projector 	 in (44) defines a spline v1 ∈ Ŝq(
), such that

v − v1 ∈ Hq(0, 1) and Dqv1|Ii = 0 for all i .

Note that the q-th derivative w = Dq(v − v1) ∈ L2(0, 1) has pieces

w|Ii = Dqv|Ii ∈ H1/2(Ii ), 1 ≤ i ≤ N − 1,

and possible singularities at the knots ζi .
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The difficult part of the proof is the split w = w1 + w2, with global smoothness of
w1 ∈ H1/2(0, 1) and local smoothness of

w2,i := w2|Ii ∈ H1(Ii ), Ii = (ζi , ζi+1), 1 ≤ i ≤ N − 1.

Then the imbedding H1(Ii ) ⊂ C(Ii ) allows us to define the jumps

di = w2,i (ζi+) − w2,i−1(ζi−), 2 ≤ i ≤ N − 1. (66)

The spline

v2(ξ) =
N−1∑

i=2

di (ξ − ζi )
q
+

q! (67)

has degree q and simple knots, so it is in Hq(0, 1). It is defined to carry all disconti-
nuities of w2, such that we obtain global smoothness Dqv2 − w2 ∈ H1(0, 1) by local
smoothness in H1(Ii ) and continuity across ζi .

We now provide more details on this splitting of w = Dq(v − v1). Consider the
expansion of Dq(v − v1) by means of Leibniz’ and Faa di Bruno’s formulas. By
collecting all terms with partial derivatives of u of order q, we obtain

w1 := ŵ
∑

r1+r2=q

(F ′
1)

r1(F ′
2)

r2 (D(r1,r2)u) ◦ F, (68)

where we let F1, F2 denote the coordinate functions of F : [0, 1] → R
2. By Assump-

tion 1(b), all factors ŵ(F ′
1)

r1(F ′
2)

r2 are in C0,1[0, 1]. Combined with D(r1,r2)u ∈
H1(�), the trace theorem in [19, Theorem 5.5, p. 95] gives

w1 ∈ H1/2(0, 1), |w1|H1/2(0,1) ≤ C
∑

r1+r2=q

|(D(r1,r2)u) ◦ F |H1/2(0,1)

≤ C‖u‖Hq+1(�). (69)

All other terms of Dq(v − v1) contain partial derivatives of u of order less than or
equal to q −1 and derivatives of ŵ, F1, F2 up to order q. Therefore, by u ∈ Hq+1(�)

and analyticity of ŵ and F on every Ii , we have

w2 := Dq(v − v1) − w1 ∈ H1(Ii ), ‖w2‖H1(Ii ) ≤ C‖u‖Hq+1(�). (70)

Consequently, the jumps di in (66) are bounded by

|di | ≤ C(‖w2‖H1(Ii ) + ‖w2‖H1(Ii−1)
) ≤ C‖u‖Hq+1(�), 2 ≤ i ≤ N − 2.

The numbers di define the spline v2 in (67) which is an element of Hq(0, 1).
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Finally, the last piece in our splitting is the function

v3 := (v − v1) − v2 ∈ Hq(0, 1). (71)

In order to show global smoothness v3 ∈ Hq+1/2(0, 1), we observe that

Dqv3 = w1 + Dq(v − v1) − w1 − Dqv2 = w1 + w2 − Dqv2.

The first term w1 is in H1/2(0, 1) and its H1/2-seminorm has the bound in (69). The
second part w2 − Dqv2 has global smoothness H1(0, 1) as explained in (67). Its
H1/2-seminorm is bounded by

|w2 − Dqv2|H1/2(0,1) ≤ C
N−1∑

i=1

|w2 − Dqv2|H1/2(Ii )

≤ C
N−1∑

i=1

(|w2|H1/2(Ii ) + |Dqv2|H1/2(Ii )

)
.

Because Dqv2 is constant on every interval Ii , its seminorm vanishes. By (70) and the
(local) imbedding H1(Ii ) → H1/2(Ii ), we obtain

|w2 − Dqv2|H1/2(0,1) ≤ C
N−1∑

i=1

‖w2‖H1(Ii ) ≤ C‖u‖Hq+1(�).

(The constant C from (70) has grown by a factor N .) Therefore, we have shown the
global smoothness v3 ∈ Hq+1/2(0, 1) and obtain the upper bound for its seminorm

|v3|Hq+1/2(0,1) ≤ C‖u‖Hq+1(�).

Now we obtain the error estimate (47) for any quasi-uniform refinement 
h of 
.
Since v1 + v2 ∈ Ŝq(
) can be ignored, the local spline projector in Proposition 4.2
provides the approximation

‖D j (v − �̂hv)‖L2(0,1) = ‖D j (v3 − �̂hv3)‖L2(0,1) ≤ Chq+1/2− j |v3|Hq+1/2(0,1)

≤ Chq+1/2− j‖u‖Hq+1(�)

for j = 0 and j = 1.
(b) A similar proof can be given for

η := ŵ λ ◦ F = τ

ŵ
((α∇u) ◦ F) · (ν ◦ F)

in (49).We describe the required adaptations and leave further details aside. Especially
the last step of the error estimate for �̂h requires more attention, because we use a
spline η2 outside of the space Ŝq(
+), which is not reproduced by �̂h .
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We start with the same steps as before. The trace theorem provides the local smooth-
ness η ∈ Hq−1/2(Ii ) for every 1 ≤ i ≤ N − 1. The projector 	 in (44) is now chosen
to define a spline η1 ∈ Ŝq(
+), such that

η − η1 ∈ Hq−1(0, 1) and Dq−1η1|Ii = 0 for all i .

Note that the augmented knot vector 
+ appears here, and this fact requires that 
h

should be a refinement of 
+. Then ψ = Dq−1(η − η1) ∈ L2(0, 1) is split into
ψ = ψ1 + ψ2, with global smoothness of ψ1 ∈ H1/2(0, 1) and local smoothness of
ψ2 ∈ H1(Ii ). The explicit definition of ψ1 uses all parts of the expansion of ψ with
highest partial derivatives of u, similar to (68),

ψ1 = τ

ŵ

∑

r1+r2=q−1

(F ′
1)

r1(F ′
2)

r2
(
(αD(r1,r2)∇u) ◦ F

)
· (ν ◦ F).

The presence of ∇u in the definition of ψ1 implies that the same maximal order
q of the partial derivatives of u as in (68) appears here. All factors, including the
pullback of the normal vector ν on γ , are inC0,1[0, 1]. This implies global smoothness
ψ1 ∈ H1/2(0, 1), with a bound of the H1/2-seminorm as in (69). The remaining part
ψ2 = ψ − ψ1 has local smoothness H1(Ii ), by the same argument as in (70) and
the assumption α ∈ Cq−1,1(�). This enables us to define the jumps d̃i of ψ2 and a
corresponding spline of degree q − 1

η2(ξ) =
N−1∑

i=2

d̃i (ξ − ζi )
q−1
+

(q − 1)! .

It has simple knots and is an element of Hq−1(0, 1). As we concluded for v3 in (71),
the function η3 = (η − η1) − η2 has larger smoothness Hq−1/2(0, 1) and satisfies

|η3|Hq−1/2(0,1) ≤ C‖u‖Hq+1(�).

Therefore, we obtain the desired error bound

‖η3 − �̂hη3‖L2(0,1) ≤ Chq−1/2|η3|Hq−1/2(0,1) ≤ Chq−1/2‖u‖Hq+1(�).

Note, however, that η2 does not belong to Ŝq(
+), so that η2 �= �̂hη2 and an extra
consideration of its approximation order is needed. Here, the local definition of �̂h

allows us to draw the following conclusion: since η2 is a spline of degree q − 1
with knots ζi of the original parameterization, the identity �̂hη2(ξ) = η2(ξ) holds
everywhere in (0, 1) except for intervals

Jh,i ⊂ (ζi − ch, ζi + ch), 2 ≤ i ≤ N − 1.
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The constant c does not depend on h. The Lebesgue measure of the union of these
intervals is at most 2cNh, and the standard error analysis for η2 ∈ Cq−2,1[0, 1] gives

‖η2 − �̂hη2‖L2(0,1) ≤ Chq−1/2|Dq−1η2|L∞(0,1) ≤ Chq−1/2‖u‖Hq+1(�).

This completes the proof of (49).
The upper bounds in (48) and (50) are directly obtained from the definition of �h

in (46). Indeed, for the L2-bound in (48), we use

∫

γ

∣∣u|γ − �h(u|γ )
∣∣2 ds =

∫ 1

0

τ

ŵ2 |ŵ u ◦ F − �̂h(ŵ u ◦ F)|2 dξ,

and a similar expression if u|γ is replaced by λ in (50). For the tangential derivative
in (48) we use

D(u|γ ) ◦ F = 1

τ
(u ◦ F)′ = 1

τŵ

(
(ŵ u ◦ F)′ − ŵ′

ŵ
ŵ u ◦ F

)

in comparison with

D
(
�h(u|γ )

) ◦ F = 1

τ

(
1

ŵ
�̂h(ŵ u ◦ F)

)′

= 1

τŵ

((
�̂h(ŵ u ◦ F)

)′ − ŵ′

ŵ
�̂h(ŵ u ◦ F)

)

and obtain the desired upper bound from (47). ��

Appendix B

We prove the uniform stability of the block Mh,l of the mass matrix in Proposition
8.1. For this purpose, we let 
 be an arbitrary open knot vector in [0, 1] and n be the
dimension of Ŝq(
). We define the normalized basis functions

φ j = h−1/2
j μ̂1

j , ψ j = h−1/2
j B̂q

j , 2 ≤ j ≤ n − 1,

of M̂1 and Ŝq0 (
) and let

M0 = (〈φ j , ψk〉) j,k=2,...,n−1.

Note that Mh,l is obtained from M0 by diagonal scaling. For a quasi-uniform knot
vector 
h,l , the condition numbers of both matrices are comparable. Because the
matrices are banded, with bandwidth independent of 
, local quasi-uniformity is
sufficient to make the condition numbers ofMh,l and M0 comparable.
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Proposition B.1 The condition number ofM0 is bounded by κ1/2c, where κ, c are the
constants in (15) and (30).

Proof We define the orthogonal projection PM : Ŝq(
) → M̂1. By (20) we have
μ̂1

j = PM B̂q
j and therefore φ j = PMψ j . This implies that the matrix M0 has the

entries

m j,k =
∫ 1

0
φ jψk dξ =

∫ 1

0
φ jφk dξ,

so it is the Gramian matrix of the basis (φ j : 2 ≤ j ≤ n − 1) of M̂1. The result of the
proposition follows, if we can show that

κ−1c−2
n−1∑

j=2

d2j ≤
∥∥∥∥
n−1∑

j=2

d jφ j

∥∥∥∥
2

≤
n−1∑

j=2

d2j (72)

holds for arbitrary coefficients d j . Let v = ∑n−1
j=2 d j h−1/2 B̂q

j . Then (15) implies

κ−1
n−1∑

j=2

d2j ≤ ‖v‖2 ≤
n−1∑

j=2

d2j ,

and (36) implies

c−1‖v‖ ≤ sup
μ̂∈M̂1

∫ 1
0 μ̂v dξ

‖μ̂‖ = sup
μ̂∈M̂1

∫ 1
0 μ̂ PMv dξ

‖μ̂‖ = ‖PMv‖,

where the last identity is a standard duality argument. Both results combined give (72).
��
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