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1 Introduction

Imagine the task of assembling a portfolio from different stocks or coordinating an appro-
priate response to changes in the water level of multiple water reservoirs. Understanding
the stochastic relationship between the stock returns or water levels can mean the difference
between a high-risk investment and a hedged portfolio or an adequate water supply and a
shortage. Capturing these interactions and extracting relevant information lies at the heart
of dependence modelling.

Naturally, investigating the joint behaviour of d random variables requires us to shift focus
from their individual behaviour towards their interaction. Sklar’s famous theorem sheds light
on how this interaction is encoded in the joint distribution function: Given d random variables
X1, . . . , Xd, their joint distribution function F can be decomposed into the univariate marginal
distribution functions Fi of Xi for i = 1, . . . , d and a linking function C : [0, 1]d → [0, 1] such
that

F (x) = C(F1(x1), . . . , Fd(xd)) (1.1)

holds for all x = (x1, . . . , xd) ∈ Rd. Since Equation (1.1) couples d marginal distribution
functions into a d-variate cumulative distribution function, C is called a d-copula.

The appeal of copulas in dependence modelling stems from the fact that in case all margins
Fi are continuous, C is the unique copula of X = (X1, . . . , Xd), which we will denote by CX .
Intuitively, CX then encodes all (scale independent) information concerning the interaction
between the random variables. But the mere existence of such a unique copula leaves several
important aspects unanswered, which will be central to this thesis:

• What are suitable dependence concepts?

• How can we compare dependence?

• How can we quantify dependence?

Solutions to these questions might be conflicting: Consider for example the broadest possible
definition of stochastic dependence, where X and Y are called stochastically dependent if they
are not stochastically independent. This classification includes vastly different stochastic be-
haviours as illustrated by Figure 1.1, hindering a precise analysis and meaningful comparison.
Thus, to allow for a comparison of dependence strength, it is important to investigate general
but concise concepts of dependence.

Figure 1.1 already suggests one possible distinction between dependence concepts. While
(a) to (c) appear to follow a global underlying dependence structure (namely conical, elliptical
and functional, respectively), the behaviour depicted in (d) varies locally.

A well-known local type of dependence between random variables, which graphically mani-
fests in the lower left corner of the unit cube [0, 1]d, is the tail dependence. For a random
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Figure 1.1: Plots of samples of size n = 500 generated from different bivariate distributions.

vector1 X = (X1, X2) with continuous univariate marginal distributions F1 and F2, the
(lower) tail dependence coefficient is defined as

λ(X) := lim
s↘0

P(X2 ≤ F−1
2 (s) | X1 ≤ F−1

1 (s)) = lim
s↘0

CX(s, s)

s
. (1.2)

λ(X) was first introduced by Sibuya (1960) and has since then found wide-spread use in many
areas of science, ranging from economics to environmental studies. Revisiting the examples
from the beginning, λ(X) describes the probability of extremely large simultaneous losses in
a portfolio of stock returns, or the probability of dangerously low water levels at all water
reservoirs. λ(X) is thus an important indicator for informed investment or policy decisions
regarding worst-case scenarios. Nevertheless, the tail dependence coefficient has some severe
drawbacks, which have partly been overcome by using the tail dependence function

Λ (w ;X) := Λ (w ;CX) := lim
s↘0

CX(sw)

s
for w ∈ R2

+

as the natural generalization of λ(X). From an analytical perspective, Λ ( · ;CX) governs
the behaviour of CX around zero as it constitutes a Taylor-like expansion of CX in 0, that
is, CX(u) = Λ (u ;CX) + R(u) ∥u∥1 with a function R(u) → 0 as ∥u∥1 → 0 (see Jaworski
(2006)).

Fundamentally different from this extremal dependence, where a high tail dependence
gives no indication about the joint behaviour outside a neighbourhood of zero, functional
dependence describes the global relationship of two random variables. Given a random vector
X = (X1, X2), X2 is called functionally dependent on X1 if there exists a function f such
that X2 = f(X1) holds almost surely. This corresponds to the well-known concept of linear
dependence in case f is affine linear and, in its most general form, to the concept of complete
dependence in case f is merely measurable. Complete dependence captures the perfect pre-
dictability ofX2 givenX1 and, in some sense, constitutes a counterpart to the independence of
random variables. Considering that the precise knowledge of the function f with X2 = f(X1)
is often unattainable and may even be unnecessary, measures of complete dependence have
garnered considerable attention. In recent years, the literature on these measures has ex-
panded significantly and now ranges from theoretical works (see, e.g., Siburg and Stoimenov

1For the sake of a concise notation and a better overview, we present the central ideas in this introduction
for dimension d = 2 only.
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(2010) and Trutschnig (2011)) over statistical analyses (see, e.g., Dette, Siburg and Stoimenov
(2013), Chatterjee (2021) and Junker, Griessenberger and Trutschnig (2021)) to practical ap-
plications in various fields, such as climate studies and biology (see, e.g., Fruciano, Colangelo,
Castiglia and Franchini (2020) and the examples in the previous references).

1.1 Main results of this thesis

Chapter 3: Comparing the extremal behaviour of copulas

Its simplicity and seemingly straightforward interpretation have established the tail depend-
ence coefficient λ as a widely used tool in areas such as finance and hydrology. Despite its
popularity, λ has some apparent deficiencies: Equation (1.2) shows that λ is solely determ-
ined by the behaviour of the copula CX along the diagonal, thereby ignoring any additional
information located in a neighbourhood around zero. Put plainly, one may wonder why the
direction (s, s) should be preferred to any other direction, say (s, 2s).

Therefore, Chapter 3 of this thesis introduces a novel comparison of extremal dependence,
which considers all possible (ray-like) directions. More precisely, a random vector X is called
less tail dependent than Y , in short X ≤tdo Y , if

Λ ( · ;X) ≤ Λ ( · ;Y ) . (1.3)

Although the tail dependence function contains the entire information about the extremal
behaviour of the random vector, it is rather difficult to scan the d-variate tail dependence
function for specific properties in dimensions much higher than d = 2. To this end, we discuss
measures of tail dependence that are consistent with the ordering (1.3) but condense the
whole tail dependence into a single numerical quantity. Contrary to λ, this class of generalized
measures provides a more comprehensive picture of the overall tail behaviour of the random
vector and comprises a variety of natural quantities, such as the average or maximal tail
dependence. In fact, even many formerly introduced coefficients, such as the conditional
version of Spearman’s ρ proposed by Schmid and Schmidt (2007), constitute measures of tail
dependence.

Compared to ≤tdo, the localized stochastic ordering of copulas ≤loc (i.e. a pointwise ordering
on some neighbourhood of 0) is in some sense the strongest possible extremal ordering around
0. Still, using techniques from concordance ordering, we establish an equivalence between ≤tdo

and ≤loc for some important classes of copulas like Archimedean copulas. For these classes,
we find that X <tdo Y not only orders the limit relation

lim
s↘0

CX(sw)

s
< lim

s↘0

CY (sw)

s

but also states that X is in fact less likely than Y to attain very low values in both components
simultaneously.
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Chapter 4: A Markov product for tail dependence functions

The generalized Markov product for copulas

(C1 ∗C C2)(u1, u2, u3) :=

u3∫︂
0

C (∂1C1(t, u1), ∂1C2(t, u2)) dt

finds extensive application as both a theoretical tool and a construction method for multivari-
ate copulas. In Chapter 4, we make use of the similarities between copulas and tail dependence
functions to introduce a (generalized) Markov product for tail dependence functions via

(Λ1 ∗C Λ2)(w1, w2, w3) :=

w3∫︂
0

C (∂1Λ1 (t, w1) , ∂1Λ2 (t, w2)) dt .

Considering our focus on the tail behaviour of copula families in Chapter 3, we then pose the
following question: Is it possible to derive the tail dependence function of (C1 ∗C C2) simply
from the generalized Markov product of the respective tail dependence functions, that is, does

(Λ ( · ;C1) ∗C Λ ( · ;C2))(w) = Λ (w ;C1 ∗C C2) (1.4)

hold? The answer is yes, we can indeed establish (1.4) if we impose certain conditions on the
partial derivatives of the copulas C1 and C2.

After establishing the connection between the two Markov products, we investigate the
algebraic and analytical aspects of the Markov product for tail dependence functions in more
detail. Although the Markov products for copulas and for tail dependence functions share
many properties, the concavity of the tail dependence functions induces several ‘reduction’
properties. Firstly, the Markov product reduces the tail dependence, i.e.

(Λ1 ∗C Λ2)(w1, w2) ≤ min {Λ1(w2, w1),Λ2(w1, w2)} , (1.5)

whenever C is negative quadrant dependent. Secondly, for the ‘original’ Markov product

(Λ1 ∗ Λ2)(w1, w2) :=

∞∫︂
0

∂1Λ1 (t, w1) · ∂1Λ2 (t, w2) dt ,

the concavity enables us to characterize all idempotents (i.e. all tail dependence functions Λ
with Λ ∗ Λ = Λ) and limits of n-fold iterations Λ∗n = Λ ∗ · · · ∗ Λ as either Λ0(w) = 0 or
Λ+(w) = minw.

We conclude Chapter 4 with an investigation of the Markov product for tail dependence
functions from an operator-theoretic point of view. Similar to the connection between the
Markov product for copulas and the Markov operators endowed with the composition, we
establish an isomorphism between tail dependence functions and substochastic operators, such
that the Markov product corresponds to the composition of substochastic operators. Most
importantly, this rephrases the reduction property in Equation (1.5) in terms of a monotonicity
property with respect to the well-known majorization order introduced by Hardy, Littlewood
and Pólya (1952) and Ryff (1965).
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Chapter 5: Stochastic monotonicity and the Markov product for copulas

The Markov product C1 ∗C2 of copulas generates a wide variety of behaviours by combining
the underlying copulas C1 and C2 in a highly nonlinear manner. But this flexibility comes
at a price: In general, the global behaviour of C1 ∗ C2 is virtually unpredictable from either
C1 or C2 alone. In Chapter 5, we investigate copulas where one factor, say C2, does provide
some indication about the behaviour of C1 ∗C2. More precisely, we study copulas C2 that are
maximal with regard to the action of the Markov product, i.e. fulfil

(C1 ∗ C2)(u) ≤ C2(u) (1.6)

for all copulas C1. The fact that C1 ∗ C2 is pointwise smaller than C2 hints at the fact that
Equation (1.6) captures some kind of positive dependence concept.

Indeed, using techniques from majorization theory, we show that C2 fulfils the reduction
property (1.6) if and only if its partial derivative u ↦→ ∂1C2(u, v) is decreasing for all v ∈
[0, 1]. Copulas with such a decreasing partial derivative are known as stochastically increasing.
Examples include Gaussian, extreme-value and certain Archimedean copulas as well as more
complex copulas constructed from these as building blocks. Pursuing the monotonicity of
the partial derivatives further, we prove that if two copulas C1 and C2 are stochastically
increasing, then so is their Markov product C1 ∗ C2. Moreover, sequences of stochastically
increasing copulas possess improved convergence properties, where the pointwise convergence
implies the much stronger pointwise convergence of the partial derivatives.

Similar to our findings for tail dependence functions, the reduction property (1.6) enables
us to characterize idempotents (i.e copulas for which C ∗ C = C holds) and limits of n-
fold iterates C∗n = C ∗ · · · ∗ C of stochastically increasing copulas as ordinal sums of the
independence copula. This greater variety of possible limit behaviours compared to the case
of tail dependence functions in Chapter 4 is owed to the fact that copulas are, in general, not
positive homogeneous.

Chapter 6: Rearranging copulas and dependence measures

Although measures of complete dependence have recently attracted considerable attention,
both theoretically and practically, measures of monotone dependence are still ubiquitous in
applications.2 Consequently, it is quite natural to wonder whether it is possible to infer a
general functional relationship X2 = f(X1) using only measures of monotone dependence. At
first glance, this seems impossible to achieve. After all, any measure of monotone dependence
µ attains its maximal value µ(X1, X2) = 1 whenever X2 = g(X1) holds for some monotone
function g, whereas any more general functional relationship can result in arbitrarily small
values of µ. Furthermore, while µ is necessarily symmetric, complete dependence constitutes
a fundamentally asymmetric concept.

In Chapter 6, we present a method to circumvent these ‘deficiencies’ of monotone de-
pendence measures by rearranging the underlying dependence structure of X1 and X2. This
so-called (SI)-rearrangement C↑

X depends only on the original copula CX and is constructed

2Here, µ is called a measure of monotone dependence if µ(X1, X2) = 1 if and only if X2 = g(X1) holds a.s.
for a monotone function g. Similarly, µ is a measure of complete dependence if µ(X1, X2) = 1 if and only
if X2 = f(X1) holds a.s. for a measurable function f .
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by decreasingly rearranging the conditional probabilities

∂1CX(F1(x1), F2(x2)) = P(X2 ≤ x2 | X1 = x1)

with respect to x1. Most importantly, we show that although CX and C↑
X share the same

degree of complete dependence, µ(CX) and µ(C↑
X) can vary drastically for some measure µ

of monotone dependence. This distinction is essential to construct a measure of complete
dependence from µ: The (SI)-rearrangement transforms arbitrary functional dependence into
a stochastically increasing relationship, which can in turn be accurately quantified using a
measure of monotone dependence µ via

Rµ(X) := Rµ(CX) := µ(C↑
X) . (1.7)

We call measures Rµ of the above form (1.7) rearranged dependence measures, where possible
choices for µ include Spearman’s ρ, Kendall’s τ or the Schweizer-Wolff measures σp with
1 ≤ p < ∞. In stark contrast to the properties of these underlying measures, Rµ constitutes
a genuine measure of complete dependence that precisely detects arbitrary functional rela-
tionships. Rearranged dependence measures also conform to information theoretical concepts
such as the data processing inequality and the self-equitability condition introduced in Kinney
and Atwal (2014). For the special case of measures of concordance κ, we additionally obtain
κ(X) ≤ Rκ(X), i.e. the functional dependence between X1 and X2 is at least as strong as the
monotone relationship. To practically apply the rearranged dependence measures, we provide
a simple estimator ˆ︁Rµ for Rµ based on convergence results for the empirical checkerboard
copulas developed in Junker et al. (2021).



2 Mathematical preliminaries

While the concept of independence is widely employed throughout all areas of probability
theory and statistics, there is no universal notion of the opposite. Rather, it depends heavily
on the setting, e.g., dependence between components of a random vector or serial dependence
in a time series, and the preferred type of association, e.g., a linear, monotone or merely
measurable relationship.

This chapter lays the groundwork to describe the dependence between components of a
random vector by providing the necessary tools and notations. We start by introducing
copulas, our primary tool to capture dependence, in Section 2.1 and discuss their connection
to Markov operators and conditional expectations in Section 2.2. Afterwards, we outline
different local and global dependence concepts in Sections 2.3 and 2.4 and present several
copula families in Section 2.5. We conclude this chapter with a brief introduction to decreasing
rearrangements and majorization theory in Section 2.6. While the sections concerning copula
theory and stochastic dependence mainly follow Nelsen (2006), Joe (2015) and Durante and
Sempi (2016), the review of majorization theory is based on Chong and Rice (1971) and
Bennett and Sharpley (1988). Whenever we require further results, we will provide some
additional references. As a notational convention, we write R+ := [0,∞) and use bold symbols
to denote vectors, e.g. x = (x1, . . . , xd) ∈ Rd.

2.1 Copulas

Copulas are central to modern dependence modelling as a means to separate the influence of
the marginal distributions from the dependence governing the relationship between a collec-
tion of random variables. We will first present copulas from an axiomatic point of view util-
izing d-increasing functions, one possible multivariate generalization of monotonicity. The d-
increasing property is known in the literature under various terms, such as quasi-monotonicity
and, in case of d = 2, supermodularity. Intuitively, a function F is called d-increasing if it
associates a positive volume to each rectangle. In the following, domF denotes the domain
of F and will generally either be [0, 1]d or Rd

+ = [0,∞)d.

Definition 2.1.1. Let F be a d-variate real-valued function with d ≥ 1.

1. The F -volume of a rectangle R := [a, b) ⊆ domF is defined as

VF (R) := ∆bd
ad

· · ·∆b1
a1F ,

where ∆bk
ak

denotes the k-th component difference operator

∆bk
ak
F (tk) := F (t1, . . . , tk−1, bk, tk+1, . . . , td)− F (t1, . . . , tk−1, ak, tk+1, . . . , td)

evaluated in tk := (t1, . . . , tk−1, tk+1, . . . , td).
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2. F is called d-increasing if the F -volume of every rectangle R := [a, b) ⊆ domF is
positive, i.e. VF (R) ≥ 0. We denote the usual measure-theoretic extension of VF onto
the Borel σ-algebra by µF .

A special class of d-increasing functions are copulas.

Definition 2.1.2. A function C : [0, 1]d → [0, 1] is called a d-copula if it fulfils the following
properties

1. C is grounded, i.e. C(u) = 0 if uk = 0 holds for at least one coordinate k.

2. C has uniform margins, i.e. C(u) = uk if all coordinates of u except for possibly uk
equal one.

3. C is d-increasing.

We denote the set of all d-copulas by Cd.

Considering that later chapters rely heavily upon 2-copulas, let us shortly restate the pre-
vious definition for dimension d = 2.

Example 2.1.3. A function C : [0, 1]2 → [0, 1] is called a 2-copula if it fulfils

1. C(u, 0) = 0 and C(0, v) = 0 for all u, v ∈ [0, 1].

2. C(u, 1) = u and C(1, v) = v for all u, v ∈ [0, 1].

3. For every rectangle R = [u1, u2)× [v1, v2), it holds that

VC(R) = C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0 .

At first glance, copulas appear to be of purely analytical interest, but Sklar’s Theorem
stresses the key role they play in the field of dependence modelling and stochastics in general.
In the following, imF denotes the image of F .

Theorem 2.1.4 (Sklar’s Theorem). Let FX be a d-dimensional cumulative distribution func-
tion of an Rd-valued random vector X = (X1, . . . , Xd) with univariate margins F1, . . . , Fd.
Then there exists a d-copula C such that for all x ∈ Rd it holds

FX(x) = C(F1(x1), . . . , Fd(xd)) , (2.1)

where C is uniquely determined on imF1×· · ·×imFd. Conversely, the expression on the right-
hand side of (2.1) constitutes a d-variate cumulative distribution function for any combination
of a d-copula C and univariate margins F1, . . . , Fd.

Theorem 2.1.4 immediately identifies d-copulas as the class of d-variate distribution func-
tions with univariate uniform margins by combining univariate uniform distributions Fi for
1 ≤ i ≤ d with a d-copula C and observing that Fi(xi) = xi holds.
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Remark 2.1.5. The normalization of a continuous univariate marginal distribution on R into
a univariate uniform distribution on [0, 1] will later on play a crucial role in the comparison of
different dependence concepts. Nonetheless, it is decidedly arbitrary as pointed out by Mikosch
(2006) and various other problem-specific normalizations have been applied in the literature.
For instance, Hoeffding (1940) uses uniformly distributed margins on [−1

2 ,
1
2 ] and Resnick

(1987) presents the uses of Fréchet-marginals in multivariate extreme-value theory. For an
extensive discussion, we refer to Embrechts (2009).

Sklar’s Theorem combines two distinct viewpoints relevant to dependence modelling: For
practical applications, the second part entails that every combination as given in Equa-
tion (2.1) defines a proper cumulative distribution function. It thus provides a simple tech-
nique to model the behaviour of real-world phenomena by combining a specific copula (read:
dependence structure) with arbitrary marginal behaviours. Of course, in a real-world setting,
the statistician needs to strike a balance between the ‘best possible’ dependence structure and
keeping the model as concise as possible to facilitate calculations.1

This thesis is mainly concerned with the implications of the first part of Sklar’s Theorem. If
all marginal distributions of the random vector X are continuous, i.e. fulfil imFi = [0, 1], the
induced copula C is unique and we write CX := C. In this case, CX completely determines
any (scale-free) dependence between the components of the random vector. One special case
are random vectors with independent components, whose corresponding copula is called the
product copula:

Example 2.1.6. Suppose X is a random vector with continuous univariate margins and d-
copula CX . Then the components of X are independent if and only if CX = Π holds, where
Π denotes the independence d-copula (or product d-copula) defined as

Π(u) :=
d∏︂

k=1

uk .

Below, we collect some key properties of d-copulas and the set of all d-copulas, which we
will rely upon throughout this thesis without explicitly citing the corresponding propositions.

Proposition 2.1.7. The set Cd of all d-copulas is convex and compact with respect to uniform
convergence. Moreover, pointwise and uniform convergence coincide, i.e. a sequence (Cn)n∈N
in Cd converges pointwise towards C if and only if it converges uniformly towards C.

Proposition 2.1.8. Let C be a d-copula, then the following holds:

1. C is bounded from below and from above by the lower and upper Fréchet-Hoeffding bound
C− and C+, respectively, that is,

C−(u) ≤ C(u) ≤ C+(u)

1Perhaps the most recent folklore example where this balance was struck inappropriately stems from the 2008
financial crisis, where the Gaussian copula was used to model the dependence between financial assets (see
Salmon (2012) and Durante and Sempi (2016) and the references therein for an in-depth review). We will
briefly discuss in Section 2.4 why the Gaussian copula is not an appropriate choice concerning the study
of tail phenomena often relevant in finance.
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holds for all u ∈ [0, 1]d with

C−(u) := max

{︄
d∑︂

k=1

uk − (d− 1), 0

}︄
and C+(u) := min {u1, . . . , ud} .

While C+ is a d-copula for all d ≥ 2, C− is only a d-copula in dimension d = 2 but
constitutes a pointwise lower bound even for d ≥ 3.

2. C is increasing in each component.

3. C is Lipschitz continuous with Lipschitz constant 1 with respect to the ℓ1-norm on Rd,
that is,

|C(u)− C(v)| ≤
d∑︂

k=1

|uk − vk| .

4. The partial derivatives ∂kC(u), k = 1, . . . , d, of C are Borel measurable and bounded.
More precisely, they fulfil 0 ≤ ∂kC(u) ≤ 1.

5. For d = 2, the functions t ↦→ ∂1C(u, t) and t ↦→ ∂2C(t, v) are increasing.

Note that the partial derivative of a copula C is only defined almost everywhere, and the
above theorem has to be read accordingly. For example, Assertion 4 in Proposition 2.1.8
states that 0 ≤ ∂kC(u) ≤ 1 holds for all u1, . . . , uk−1, uk+1, . . . , ud in [0, 1] and almost all
uk in [0, 1] (with respect to the Lebesgue measure). For the remainder of this thesis, we will
often suppress this fact in our notation.

2.2 Markov operators and the Markov product

The mapping t ↦→ ∂1C(u, t) from Assertion 5 of Proposition 2.1.8 is not solely of analytical
interest but contains a fundamental stochastic interpretation.

Proposition 2.2.1. Let U = (U1, U2) be a random vector with 2-copula CU and univariate
uniformly distributed margins U1 and U2 on [0, 1], in short U ∼ CU . Then

P(U2 ≤ u2 | U1 = u1) = E(1[0,u2](U2) | U1 = u1) = ∂1CU (u1, u2)

holds for all u2 ∈ [0, 1] and almost all u1 ∈ [0, 1], where P(U2 ≤ u2 | U1 = u1) and
E(1[0,u2](U2) | U1 = u1) denote the conditional probability and conditional expectation given
U1 = u1, respectively.

Consequently, one might wonder how the copula CU can be related to E(f(U2) | U1 = u1)
for an arbitrary integrable function f using the usual measure theoretic progression. This
generalization leads to the application of Markov operators, a class of linear operators on

L1([0, 1]) := L1([0, 1],B([0, 1]), λ)

closely related to 2-copulas, where B([0, 1]) denotes the Borel σ-algebra on [0, 1] and λ the
Lebesgue measure.
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Definition 2.2.2. A linear operator T : L1([0, 1]) → L1([0, 1]) is called a Markov operator if
the following three properties are fulfilled:

1. T is positive, that is, Tf ≥ 0 holds whenever f ≥ 0.

2. T has the fixed point 1[0,1].

3. T preserves the integral, i.e. for all f ∈ L1([0, 1]), it holds that

1∫︂
0

Tf(t) dt =

1∫︂
0

f(t) dt .

Olsen, Darsow and Nguyen (1996) were the first to establish the direct link between 2-
copulas and Markov operators, using ideas going back to Ryff (1963).

Theorem 2.2.3. Let C be a 2-copula and T be a Markov operator. Then

CT (u, v) :=

u∫︂
0

T1[0,v](t) dt

defines a 2-copula and

TCf(u) := ∂u

1∫︂
0

∂2C(u, t)f(t) dt (2.2)

for f ∈ L1([0, 1]) defines a Markov operator. This correspondence is one-to-one with TCT
= T

and CTC
= C for all 2-copulas C and all Markov operators T .

Remark 2.2.4. Originally, the correspondence between copulas and Markov operators was
given for Markov operators TC on L∞([0, 1]), where TC preserves the integral for any f ∈
L∞([0, 1]). While any such L∞-Markov operator can be uniquely extended to a Markov oper-
ator on L1([0, 1]), it remains to show that Equation (2.2) remains valid for integrable but not
essentially bounded f . This follows from the representation result for linear operators stated
in Theorem 2.3.9 of Dunford and Pettis (1940).

The operator-theoretic formulation of copulas captures the behaviour of the conditional
expectation of f(U2) given U1 = u alluded to at the beginning of this section.

Proposition 2.2.5. Let C be a 2-copula and U = (U1, U2) ∼ C. Then

TCf(u) = E(f(U2) | U1 = u)

holds for almost all u ∈ [0, 1] and for all f ∈ L1([0, 1]).

Proof. A proof of this result can be found in Trutschnig (2011).

Markov operators not only describe the behaviour of the conditional expectation of U2 given
U1 = u, but they also introduce a new view on copula theory. Noting that the composition ◦
of Markov operators again results in a Markov operator, one can define the so-called Markov
product ∗ (or star-product) for 2-copulas as C1 ∗ C2 := CTC1

◦TC2
.
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Proposition 2.2.6. The Markov product of the 2-copulas C1 and C2 is given by

(C1 ∗ C2)(u1, u2) =

1∫︂
0

∂2C1(u1, t) · ∂1C2(t, u2) dt

and is again a 2-copula. Furthermore, it fulfils TC1∗C2 = TC1 ◦ TC2 .

This simple product structure on C2 facilitates the study of various problems, some of which
we will now discuss in more detail. The first is a connection between the algebraic concept
of idempotency of a copula C, i.e. the property C ∗ C = C, and the characterization of
conditional expectations on L1([0, 1]).

Proposition 2.2.7. For a 2-copula C and its corresponding Markov operator TC , the following
assertions are equivalent:

1. C is idempotent, i.e. C ∗ C = C.

2. TC is idempotent, i.e. TC ◦ TC = TC .

3. TC is a conditional expectation restricted to L1([0, 1],B([0, 1]), λ), i.e.

TCf = E(f | G)

holds for all f ∈ L1([0, 1]), where G := {A ∈ B([0, 1]) | TC1A = 1A }.
Proof. A proof can be found for the restriction to L∞([0, 1]) in Durante and Sempi (2016)
and for the restriction to L1([0, 1]) in Albanese and Sempi (2016).

The next two results emphasize the role of invertible elements. We say C is left-invertible if
there exists a 2-copula D such that D ∗ C = C+ holds, and right-invertible if the transposed
copula C⊤ with C⊤(u, v) := C(v, u) is left-invertible. In fact, the left-inverse fulfils D = C⊤,
a property reminiscent of the product of matrices. But unlike matrices, a 2-copula can be
left-invertible but not right-invertible and vice versa.

Proposition 2.2.8. Every 2-copula C can be decomposed (although not uniquely) into a left-
invertible copula L and a right-invertible copula R such that C = R ∗ L holds.

The next result highlights the stochastic significance of the previous algebraic decomposition
(see Darsow, Nguyen and Olsen (1992)).

Theorem 2.2.9. Let X = (X1, X2) be a random vector with continuous univariate margins
and 2-copula CX . Then the following are equivalent:

1. X2 is completely dependent on X1, i.e. X2 = f(X1) holds almost surely for some meas-
urable function f .

2. CX is left-invertible, i.e. C⊤
X ∗ CX = C+.

3. ∂1CX(u1, u2) ∈ {0, 1} for all u2 ∈ [0, 1] and almost all u1 ∈ [0, 1].

4. TCX
f = f ◦ σ holds for all f ∈ L1([0, 1]), where σ : [0, 1] → [0, 1] is a λ-preserving

transformation, i.e. fulfils λ(σ−1(A)) = λ(A) for all Borel measurable sets A.

A copula fulfilling ∂1C(u1, u2) ∈ {0, 1} for all u2 ∈ [0, 1] and almost all u1 ∈ [0, 1] is called
completely dependent.
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2.3 Measures of dependence

Not surprisingly, Theorem 2.2.9 plays a central role in the construction of measures of complete
dependence since the equivalence of the assertions therein allows for a precise detection of
complete dependence. Before introducing specific measures of dependence, let us consider
some axioms a ‘good’ or ‘useful’ measure of complete dependence should fulfil. Such sets of
axioms have been proposed in the literature either explicitly by Rényi (1959) and by Schweizer
and Wolff (1981) or implicitly by Dabrowska (1981). We essentially combine aspects from
Dabrowska (1981) and Schweizer and Wolff (1981) to arrive at the following axioms:

Definition 2.3.1. A measure of complete dependence is a function µ : X ↦→ µ(X) ∈ [0,∞]
defined on the set of bivariate random vectors X = (X1, X2) with continuous univariate
marginal distributions that satisfies the following axioms:

1. µ(X1, X2) exists and takes values in [0, 1].

2. µ(X1, X2) = 0 if and only if X1 and X2 are independent.

3. µ(X1, X2) = 1 if and only if X2 = f(X1) holds almost surely for some measurable
function f .

4. µ(f(X1), X2) = µ(X1, X2) for every measurable bijection f .

5. µ(X1, g(X2)) = µ(X1, X2) for every strictly monotone function g.

6. µ(X1, X2) is a strictly increasing function of the absolute value of the coefficient of
correlation for jointly normal distributed random vectors (X1, X2), where the coefficient
of correlation is defined as

Corr (X1, X2) :=
Cov(X1, X2)√︁

Var(X1)
√︁
Var(X2)

.

In short, µ(X1, X2) = f(|Corr (X1, X2)|) holds for some strictly increasing function f .

Our set of axioms differs from the original ones in Rényi (1959) and Schweizer and Wolff
(1981) in a few key aspects. Firstly, we view dependence to be a directed concept. As an
example, consider the water levels of a river system as presented in Bücher, Irresberger and
Weiss (2017). The river system consists of a main river and one tributary, such that, along
the main river, one water depth gauge (A) is placed before and one gauge (B) is placed after
both streams join. Then, raised water levels at (A) lead to raised levels at (B), while raised
levels at (B) alone could stem from a flood of the tributary. Consequently, we do not impose
symmetry in Definition 2.3.1, i.e. we do not require µ(X1, X2) = µ(X2, X1). Furthermore, any
asymmetric measure of complete dependence µ can easily be symmetrized either by setting

µ(X1, X2) :=
µ(X1, X2) + µ(X2, X1)

2
, (2.3)

which yields a measure of mutual complete dependence, i.e. µ(X1, X2) = 1 if and only if
X2 = f(X1) and X1 = g(X2), or by setting

µ∨(X1, X2) := max {µ(X1, X2), µ(X2, X1)} ,
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where µ∨(X1, X2) equals 1 if and only if either X2 = f(X1) or X1 = g(X2). In contrast, a
symmetric measure cannot be easily turned into an asymmetric measure. Secondly, we require
the ‘if and only if’ formulation in Property 3 of Definition 2.3.1 concerning the detection of
complete dependence. This has been mentioned in Rényi (1959) but was ultimately reduced to
‘µ(X1, X2) = 1 if X2 = f(X1) holds for some measurable function f ’ in favour of convenience
and a broader applicability.2

To the best of our knowledge, the first measure of (mutual) complete dependence fulfilling
all but the fourth of the above axioms was introduced by Siburg and Stoimenov (2010).
Exploiting the fact that copulas are Lipschitz continuous, they transfer the inner product
structure of the Sobolev space onto C2 (or, more precisely, its linear hull span(C2)).

Definition 2.3.2. Let C1 and C2 be 2-copulas. Then

⟨C1 , C2⟩S :=

∫︂
[0,1]2

∇C1(u) · ∇C2(u) dλ(u)

=

1∫︂
0

1∫︂
0

∂1C1(u1, u2) · ∂1C2(u1, u2) + ∂2C1(u1, u2) · ∂2C2(u1, u2) du1 du2

defines the so-called Sobolev inner product on span(C2) with the corresponding Sobolev norm
∥C ∥S :=

√︁
⟨C , C⟩S.

∥ · ∥S establishes a notion of distance on C2 and can be used to investigate complete de-
pendence.

Theorem 2.3.3. The Sobolev-norm ∥ · ∥S induces a measure ω of mutual complete dependence
via

ω2(C) := 3 ∥C −Π ∥2S = 3 ∥C ∥2S − 2

= 3

1∫︂
0

(C⊤ ∗ C + C ∗ C⊤)(t, t) dt− 2 .
(2.4)

Proof. See Siburg and Stoimenov (2008a) and Siburg and Stoimenov (2010) for a proof.

Conceptually, the integrand C⊤ ∗C+C ∗C⊤ appearing in Equation (2.4) stems from Part 2
of Theorem 2.2.9 and quantifies the degree of invertibility of C and C⊤. Thus, exploiting the
connection between invertibility and complete dependence, ω constitutes a measure of mutual
complete dependence.

While Siburg and Stoimenov (2010) follow a geometric approach to quantify mutual com-
plete dependence using ω, Trutschnig (2011) considers an analytic approach utilizing Markov
operators and Markov kernels. It is well-known that the uniform convergence on C2 corres-
ponds to the weak operator topology on the set of Markov operators (see Olsen et al. (1996)).
Unfortunately, the L∞-norm exhibits a major drawback in regard to complete dependence.

2Rényi (1959) writes on p.13 ‘It seems at the first sight natural to postulate that µ(X1, X2) = 1 only if there
is a strict dependence of the mentioned type between X1 and X2, but this condition is rather restrictive,
and it is better to leave it out.’
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Example 2.3.4. The independence copula Π can be approximated arbitrarily close in the L∞-
norm using completely dependent copulas. More precisely, there exists a sequence (Cn)n∈N of
completely dependent copulas such that (Cn)n∈N converges uniformly towards Π, i.e.

∥Cn −Π∥∞ → 0

holds as n tends towards infinity.

This ‘paradoxical’ behaviour led Trutschnig (2011) to investigate the strong operator topo-
logy of Markov operators and metrizations thereof on C2, resulting in a family of metrics that
are essentially Lp-distances of the partial derivatives.

Definition 2.3.5. Let C1 and C2 be 2-copulas. Then

Dp(C1, C2) :=
(︂ ∫︂
[0,1]2

|∂1C1(u)− ∂1C2(u)|p dλ(u)
)︂ 1

p

defines a metric on C2 for any 1 ≤ p <∞. For p = ∞, the corresponding metric is

D∞(C1, C2) := sup
u2∈[0,1]

∫︂
[0,1]

|∂1C1(u1, u2)− ∂1C2(u1, u2)| dλ(u1) .

All Dp-metrics are strictly finer than the uniform convergence and guarantee the closure
of the set of completely dependent copulas, hence circumventing the seemingly paradoxical
behaviour of Example 2.3.4.

Proposition 2.3.6. Convergence with respect to the Dp-metrics implies convergence with
respect to the d∞-metric on C2, that is,

Dp(Cn, C) → 0 =⇒ Cn → C uniformly

as n tends towards infinity. Furthermore, the set of all completely dependent copulas is closed
with respect to Dp for 1 ≤ p ≤ ∞.

Proof. See Trutschnig (2011) for a proof.

Similar to the Sobolev norm in Theorem 2.3.3, the distance between C and Π with respect
to the Dp-metric again induces a measure of complete dependence.

Theorem 2.3.7. The Dp-metric for 1 ≤ p <∞ induces a measure ζp of complete dependence
via

ζp(C) :=
Dp(C,Π)

Dp(C+,Π)
=

(︃
(p+ 1)(p+ 2)

2

)︃1/p

Dp(C,Π) ,

where C is a 2-copula and Π is the independence 2-copula.

Proof. The cases p = 1 and p = 2 are treated in Trutschnig (2011) and Dette et al. (2013),
respectively. An outline for a general p ≥ 1 can be found in the unpublished article Li
(2015).
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Despite the seemingly very different approaches, ω2 and ζ2 are closely linked via

ω2(C) = 3D2
2(C,Π) + 3D2

2(C
⊤,Π) =

ζ22 (C) + ζ22 (C
⊤)

2
,

which is the aforementioned symmetrization stated in Equation (2.3). Independently, the
directed measure ζ22 was investigated by Dette et al. (2013) to create an asymmetric version
of ω2, called a measure of regression dependence

r(C) := 6

∫︂
[0,1]2

|∂1C(u1, u2)− u2|2 dλ(u) = ζ22 (C) . (2.5)

Most notably, Dette et al. (2013) introduced an underlying order of regression dependence
for random vectors based on univariate variability orders for the conditional distribution
functions. This order3 provides the means to discuss the degree of complete (or regression)
dependence, allowing the comparison of intermediate values of r in (0, 1).

2.3.1 Measures of concordance

Though complete dependence has gained much attention in recent years, one of the depend-
ence concepts most commonly used is that of concordance. Intuitively, a random vector
Y is more concordant than X if the components of Y have a higher probability than the
components of X to simultaneously attain small or large values (see Joe (1990)).

Definition 2.3.8. Suppose X and Y are two bivariate random vectors. We say X is smaller
than Y with respect to the concordance ordering, in short X ≤c Y , if

FX(x) ≤ FY (x) and FX(x) ≤ FY (x)

holds for all x ∈ R2, where F denotes the survival function of F .

The concordance ordering for bivariate random vectors with continuous and identical mar-
gins FXi = FYi , i = 1, 2, coincides with the pointwise ordering of copulas, i.e.

X ≤c Y ⇔ CX ≤ CY .

This equivalence does not hold for d-variate random vectors with a dimension d strictly larger
than 2.

Similar to the set of axioms postulated by Rényi (1959), an axiomatic approach to measures
of concordance was established by Scarsini (1984):

Definition 2.3.9. A mapping κ : C2 → [−1, 1] is called a measure of concordance if

1. κ(C−) = −1 ≤ κ(C) ≤ 1 = κ(C+) holds for all 2-copulas C.

2. κ(Π) = 0.
3While technically only a preorder, it is called an order in the context of stochastic orderings (see Shaked

and Shanthikumar (2007)).
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3. κ(C1) ≤ κ(C2) whenever C1 ≤ C2 holds for the 2-copulas C1 and C2.

4. κ(C⊤) = κ(C) holds for all 2-copulas C.

5. κ(C− ∗ C) = κ(C ∗ C−) = −κ(C), where ∗ denotes the Markov product.

6. κ(Cn) → κ(C) whenever Cn converges pointwise towards C.

For a random vector X with continuous univariate margins, we set κ(X) := κ(CX).

There is a wide range of concordance measures, among which the best-known measures are
Spearman’s ρ and Kendall’s τ .

Theorem 2.3.10. Spearman’s ρ and Kendall’s τ , defined as

ρ(C) := 12

∫︂
[0,1]2

C(u) dλ(u)− 3 and τ(C) := 4

∫︂
[0,1]2

C(u) dC(u)− 1 ,

respectively, are measures of concordance.

Let us briefly emphasize the importance of the underlying concordance ordering when using
Spearman’s ρ and Kendall’s τ .

Example 2.3.11. To show that the concordance ordering cannot be dispensed with, we con-
struct two copulas C1 and C2 which fulfil neither C1 ≤ C2 nor C2 ≤ C1 and result in reversely
ordered measures of concordance, that is,

τ(C2) < τ(C1) while ρ(C1) < ρ(C2) .

We consider the diagonal 2-copula (see also Definition 3.4.2)

C1(u, v) := min

{︃
u, v,

u2 + v2

2

}︃
as well as the tent copula Cθ with θ ∈ [0, 1] (see Example 6.1.5), whose support consists of the
two line segments from (0, 0) to (θ, 1) and from (θ, 1) to (1, 0). Then it holds for C2 := Cθ

with θ = 0.65 (see Examples 5.6 and 5.14 in Nelsen (2006)) that

τ(C2) = 2θ − 1 = 0.3 <
1

3
= τ(C1)

as well as

ρ(C1) = 5− 3π

2
≈ 0.288 < 0.3 = 2θ − 1 = ρ(C2) .

Thus, dismissing the underlying concordance order ≤c and simply ordering via some measure
of concordance can result in contradictory notions of concordance.
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2.4 Tail dependence

Fundamentally different from the previous dependence concepts governing the global beha-
viour of two random variables, the tail dependence quantifies extremal dependence between
multiple random variables. Introduced by Sibuya (1960) and further discussed by Joe (1997),
the tail dependence coefficient of a random vector X is defined as

λ(X) := lim
s↘0

P(X2 ≤ F−1
2 (s), . . . , Xd ≤ F−1

d (s) | X1 ≤ F−1
1 (s)) , (2.6)

whenever the limit exists. It captures the extremal behaviour of the whole random vector in
case one component attains extremely low values.

Despite its wide-spread use, the tail dependence coefficient as presented in Equation (2.6)
has some severe drawbacks, which we shall consider more carefully now. Firstly, the influence
of the univariate marginal distributions Fi of Xi on λ(X) is, at first glance, unclear. A short
calculation remedies this problem and yields

λ(X) = lim
s↘0

CX(s, . . . , s)

s
= lim

s↘0

CX(s1)

s
, (2.7)

where CX denotes the unique copula of X and 1 = (1, . . . , 1). The tail dependence coefficient
λ(X), or λ(CX), is therefore a margin-free measure of extremal dependence and, in particular,
independent of the preferred units. However, Equation (2.7) also shows that λ(X) is solely
affected by the behaviour of the copula along the diagonal, thus ignoring any additional
information contained in a neighbourhood around zero. This suggests the following natural
generalization of λ.

Definition 2.4.1. For a d-copula C, the (lower) tail dependence function Λ : Rd
+ → R+ is

defined as

Λ (w) := Λ (w ;C) := lim
s↘0

C(sw)

s
,

provided that the limit exists for all w ∈ Rd
+. We denote the set of all d-variate tail dependence

functions by Td.

The next theorem reveals how the tail dependence function influences the behaviour of C
around zero.

Theorem 2.4.2. Suppose C is a d-copula and L : Rd
+ → R+ is positive homogeneous of order

1, i.e. L(sw) = sL(w) holds for all s > 0 and w ∈ Rd
+. Then the following are equivalent:

1. The tail dependence function Λ (w ;C) exists for all w ∈ Rd
+ and equals L(w).

2. L is the leading part of a uniform lower tail expansion of C, i.e.

C(u) = L(u) +R(u) ∥u∥1 = L(u) +R(u) (u1 + . . .+ ud) ,

where R : [0, 1]d → R is a bounded function fulfilling R(u) → 0 as ∥u∥1 → 0.

In addition, the tail dependence function Λ is concave.
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Proof. A proof can be found in Jaworski (2006) or Jaworski (2010).4

Theorem 2.4.2 shows that the tail dependence function Λ ( · ;C) is the directional derivative
of C in zero such that the remainder term C(u)− L(u) has a certain asymptotic behaviour.
Furthermore, C is (Fréchet-) differentiable in 0 if and only if Λ (w ;C) = 0 holds for all
w ∈ Rd

+. Essentially, any continuity in the directional derivative of C within a neighbourhood
of zero requires a tail independent copula C, an observation also found in Example 2.6.11 of
Durante and Sempi (2016) and underlined by the next example.

Example 2.4.3. Suppose X = (X1, X2) is a jointly normal distributed random vector with
correlation coefficient Corr (X1, X2) ∈ [−1, 1]. Then X is tail independent, i.e. fulfils λ(X) =
0, for Corr (X1, X2) < 1, and tail dependent with λ(X) = 1 for Corr (X1, X2) = 1. This makes
jointly normal distributed random vectors an often unsuitable and even dangerous model in
the context of financial assets since extreme simultaneous losses are severely underestimated.

As Λ ( · ;C) is a local approximation of C around zero, the usual d∞-metric is unable to
discriminate between different tail behaviours of copulas. Let us illustrate this point using
the patchwork technique described in Durante, Fernández Sánchez and Sempi (2013). For
any given d-variate tail dependence function Λ, there exists a family of copulas with tail
dependence function Λ, which is dense in the set of all d-copulas w.r.t. the uniform topology.
This also implies that the class of all tail dependent d-copulas is dense in Cd. On the other
hand, the class of d-copulas which do not allow for a tail dependence function is also dense
in Cd w.r.t. the uniform topology.

Before investigating how the tail dependence function can be used to quantify the extremal
behaviour of the underlying random vector, we briefly present some theoretical properties of
Λ. Many of these properties are directly linked to the properties of the corresponding copula
C and the fact that Λ is the directional derivative of C in 0.

Proposition 2.4.4. A function Λ : Rd
+ → R+ is the tail dependence function of a d-copula

C if and only if

a. Λ is bounded from below by 0 and from above by Λ+ := Λ ( · ;C+), and

b. Λ is d-increasing, and

c. Λ is positive homogeneous of order 1.

Furthermore, for any tail dependence function Λ, we have

1. Λ is Lipschitz continuous. More precisely, it holds for all v and w ∈ Rd
+

|Λ(v)− Λ(w)| ≤
d∑︂

k=1

|vk − wk| .

2. w1 ↦→ ∂1Λ(w1, w2, . . . , wd) is decreasing for almost all w1 ∈ R+ and all w2, . . . , wd ∈ R+.
4While, to the best of our knowledge, not discussed in the literature, Theorem 2.4.2 can be extended to

hold for quasi-d-copulas. The first part relies on the theory of B-differentiability discussed in Scholtes
(2012), while the concavity follows from Theorem 2.10 in König (2003) whenever the quasi-d-copula is
supermodular in a neighbourhood of zero.
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Figure 2.1: Example of two valid tail dependence functions (depicted in black) lying in the
area between 0 and min {t, 1− t} (depicted in grey).

Finally, for d = 2, w2 ↦→ ∂1Λ(w1, w2) is increasing for almost all w1 ∈ R+ and all w2 ∈ R+.

Proof. For a proof, see again Jaworski (2006) or Jaworski (2010).

As is the case for d-copulas, the partial derivatives of d-variate tail dependence functions
are only defined almost everywhere. We will often suppress this fact in our notation.

In dimension d = 2, a characterization of tail dependence functions simpler than the one
provided in Proposition 2.4.4 is known.

Example 2.4.5. Due to the positive homogeneity of the tail dependence function Λ, we can
reduce the domain of Λ from Rd

+ to the simplex Sd−1 :=
{︁
w ∈ Rd

+ | ∥w∥1 = 1
}︁

with no loss
of information. Most notably, for dimension d = 2, this results in a univariate function˜︁Λ : [0, 1] → [0, 1/2] such that

Λ(w) = ∥w∥1 Λ
(︃

w

∥w∥1

)︃
= (w1 + w2)Λ

(︃
w1

w1 + w2
, 1− w1

w1 + w2

)︃
= (w1 + w2)˜︁Λ(︃ w1

w1 + w2

)︃ (2.8)

holds. From Einmahl, Krajina and Segers (2008) and Gudendorf and Segers (2010), it then
follows that Λ is a bivariate tail dependence function if and only if ˜︁Λ : [0, 1] → [0, 1/2] is
a concave function fulfilling 0 ≤ ˜︁Λ(t) ≤ min {t, 1− t}. In short, any concave function lying
in the grey area depicted in Figure 2.1 induces a valid bivariate tail dependence function via
Equation (2.8).

As the reduced function ˜︁Λ contains all necessary information of Λ, we will oftentimes use˜︁Λ instead of the actual tail dependence function Λ. The next remark briefly establishes the
corresponding notation in the bivariate case for later reference.
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Remark 2.4.6. Due to the positive homogeneity of Λ, in the bivariate case, we will often
only consider Λ on the unit simplex S1 :=

{︁
w ∈ R2

+ | w = (t, 1− t) with t ≥ 0
}︁

and identify
S1 with [0, 1] such that ˜︁Λ(t) := Λ(t, 1− t) .

2.5 Constructing families of copulas

While we have extensively discussed the uses of copulas in dependence modelling, we are still
lacking examples of copula families capturing specific types of dependence. Thus, we now
present some common copula families, which we will use both as illustrative examples and for
theoretical applications.

2.5.1 Extreme-value copulas

Although Proposition 2.4.4 provides a theoretical existence result for copulas with a given
tail dependence function, we have yet to construct such copulas. To do so, we introduce the
(lower) extreme-value copulas.

Proposition 2.5.1. Suppose Λ is a bivariate tail dependence function. Then

CEV (u1, u2 ; Λ) := exp (log(u1) + log(u2) + Λ(− log(u1),− log(u2))) (2.9)

is a 2-copula called extreme-value copula. The survival copula of CEV , defined as

CLEV (u1, u2 ; Λ) := ˆ︁CEV (u1, u2 ; Λ) := u1 + u2 − 1 + CEV (1− u1, 1− u2) ,

is called lower extreme-value copula.

The next proposition states that the lower extreme-value copula indeed exhibits the pre-
scribed tail behaviour.

Proposition 2.5.2. Suppose Λ is a bivariate tail dependence function and CLEV its corres-
ponding lower extreme-value copula. Then it holds for all w ∈ Rd

+ that

Λ
(︁
w ;CLEV

)︁
= Λ(w) .

Remark 2.5.3. While the construction of a d-copula with a given tail dependence function is
quite straightforward in dimension d = 2, the general construction for d > 2 is more involved
and can be found in the proof of Proposition 6 of Jaworski (2006).

2.5.2 Archimedean copulas

The next class of copulas we consider are the so-called Archimedean copulas, whose mul-
tivariate behaviour is again determined by a single (although this time, univariate) generator
function.

Definition 2.5.4. We call a function ϕ : [0, 1] → R+ := [0,∞] an Archimedean generator if
it is continuous, strictly decreasing and fulfils ϕ(1) = 0. Furthermore, we call ϕ strict if

lim
s↘0

ϕ(s) = ∞ .



22 2 Mathematical preliminaries

Definition 2.5.5. A d-copula C is called Archimedean if there exists an Archimedean gener-
ator ϕ with

C(u) = ϕ[−1]

(︄
d∑︂

k=1

ϕ(uk)

)︄
(2.10)

for u ∈ [0, 1]d, where ϕ[−1](x) := inf {t ∈ [0, 1] | ϕ(t) ≤ x} denotes the generalized inverse of
ϕ.

Remark 2.5.6. There exist conflicting definitions of Archimedean copulas in the literature,
either using Equation (2.10) or the converse

C(u) = ϕ

(︄
d∑︂

k=1

ϕ[−1](uk)

)︄

with an appropriately modified definition of ϕ. We have adopted the version stated in Equa-
tion (2.10) to simplify some of our later results and proofs.

A necessary and sufficient condition on ϕ to be the generator of an Archimedean d-copula
was developed by McNeil and Nešlehová (2009) and utilizes the concept of d-monotonicity.

Definition 2.5.7. A function f : (0,∞) → R is called d-monotone if for all 0 ≤ k ≤ d− 2

(−1)kf (k)(x) ≥ 0

holds for all x ∈ (0,∞) and (−1)d−2f (d−2) is decreasing and convex, where f (k) denotes the
k-th derivative of f

Theorem 2.5.8. Let ϕ be an Archimedean generator. Then C from Equation (2.10) is an
Archimedean d-copula with generator ϕ if and only if ϕ[−1] is d-monotone.

Example 2.5.9. In dimension d = 2, Theorem 2.5.8 states that C is a 2-copula if and
only if ϕ[−1] is convex. Unfortunately, in higher dimensions, this characterization becomes
increasingly complex. For example, in dimension d = 3, C is a 3-copula with Archimedean
generator ϕ if and only if ϕ[−1] is twice-differentiable, decreasing and ϕ[−1]′ is decreasing and
convex.

Archimedean copulas have become a popular tool both for theoretical as well as practical
considerations. Their simple form allows for the explicit calculation of many dependence
measures, thus enabling a precise understanding of their induced dependencies. Additionally,
there exist fast and reliable methods to sample from Archimedean copulas or to fit them to a
given data set. This simplicity is also their biggest drawback for practical applications since
they only allow for a rather limited range of possible dependencies, all of which are necessarily
exchangeable. For higher dimensional models, this problem is alleviated by using Archimedean
copulas mainly as building blocks, for example in the setting of pair-copula constructions (see
Joe, Li and Nikoloulopoulos (2010) and Czado (2019)) or nested Archimedean copulas (see
McNeil (2008)). Empirical studies have suggested that many pairs of stocks can be modelled
quite successfully by Archimedean copulas (see, e.g., Bücher, Dette and Volgushev (2012) and
Trede and Savu (2013)). This immediately leads to the question of how to calculate the tail
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dependence of Archimedean copulas in order to quantify the probability of large simultaneous
losses.

To obtain a closed-form expression for the tail dependence of an Archimedean copula, the
Archimedean generator ϕ is often assumed to be regularly varying. This condition poses
in practice only a slight restriction since it is fulfilled by virtually all relevant Archimedean
generators as demonstrated by Charpentier and Segers (2009). For an extensive treatment
of regularly varying functions and related topics, we refer to Bingham, Goldie and Teugels
(1987).

Definition 2.5.10. A positive measurable function f on R+ is called regularly varying at ∞
with index α ∈ R if

lim
x→∞

f(tx)

f(x)
= tα (2.11)

holds for all t ∈ R+. f is said to be slowly varying at ∞ if α equals 0, and rapidly varying at
∞ (i.e. regularly varying with parameter α = ∞) if

lim
x→∞

f(tx)

f(x)
=

⎧⎪⎨⎪⎩
0 t < 1

1 t = 1

∞ t > 1

When no ambiguity is possible, we will call all slowly, regularly and rapidly varying functions
regularly varying functions with α ∈ R. f is regularly varying at zero with parameter α ∈ R
if x ↦→ f

(︁
1
x

)︁
is regularly varying at infinity with parameter −α.

Example 2.5.11. Slowly varying functions include (iterated) logarithms or functions possess-
ing a limit at infinity. Furthermore, any product, sum and power of slowly varying functions
is again slowly varying.

Example 2.5.12. Any polynomial xα is regularly varying with parameter α. Furthermore,
for any regularly varying function f , Equation (2.11) yields that ℓ(x) := x−αf(x) is slowly
varying. Thus, f is regularly varying with parameter α ∈ R if and only if f(x) = xαℓ(x) holds
for some slowly varying function ℓ. Examples of functions which are not regularly varying
include oscillating functions such as sin(x).

With these examples in mind to illustrate the behaviour of regularly varying functions, we
now state the closed-form expression for the tail behaviour of Archimedean copulas.

Lemma 2.5.13. Let C be an Archimedean d-copula with Archimedean generator ϕ. If ϕ is
regularly varying at 0 with parameter −α, then

Λ (w ;C) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if α = 0(︃

d∑︁
k=1

w−α
k

)︃− 1
α

if α ∈ (0,∞)

min
k=1,...,d

wk if α = ∞

holds for all w ∈ Rd
+.



24 2 Mathematical preliminaries

2.5.3 Checkerboard copulas

After introducing extreme-value and Archimedean copulas, both of which rely on lower di-
mensional functions to generate more complex behaviour, we will now consider a construction
that exploits the underlying structure of the set of 2-copulas. To do so, we investigate the
relation between copulas and doubly stochastic matrices. Viewing copulas as a continuous
analogue of the latter, we provide a construction method for copulas from doubly stochastic
matrices. But first, we investigate the converse relation, that is, how to discretize a copula
into a doubly stochastic matrix.

Example 2.5.14. For any dimension n ∈ N and any 2-copula C, the induced volume (see
Definition 2.1.1)

(An)kℓ := n · VC
(︃[︃

k − 1

n
,
k

n

]︃
×
[︃
ℓ− 1

n
,
ℓ

n

]︃)︃
defines a doubly stochastic matrix An ∈ Rn×n, i.e. a matrix consisting of nonnegative entries
for which all row and column sums are equal to one.

Conversely, to associate a doubly stochastic matrix with a 2-copula, we need to interpolate
the discrete values continuously on [0, 1]2. This can be done using so-called partitions of
unity (see Li, Mikusiński, Sherwood and Taylor (1997) for an extensive introduction). Here,
we apply the partition of unity ϕk(s) := 1[ k−1

n
, k
n)
(s), k = 1, . . . , n, resulting in an absolutely

continuous copula. In turn, partitions {ϕk}k=1,...,n of higher regularity yield smoother copulas,
an example being the Bernstein polynomials leading to the Bernstein copulas with second
order continuous partial derivatives (see Durante and Sempi (2016)).

Definition 2.5.15. Suppose A = (akℓ)k,ℓ=1,...,n ∈ Rn×n is a doubly stochastic matrix. Then

C#
n (A)(u1, u2) := n

n∑︂
k,ℓ=1

akℓ

u1∫︂
0

1[ k−1
n

, k
n)
(s) ds

u2∫︂
0

1[ ℓ−1
n

, ℓ
n)
(t) dt

is a 2-copula called the checkerboard copula of A.

Combining Example 2.5.14 and Definition 2.5.15, we can smooth any possibly singular
behaviour of the original copula C and generate an absolutely continuous checkerboard copula
that is, in some sense, close to C.

Definition 2.5.16. For a 2-copula C, the induced checkerboard copula is defined as

C#
n (C) := C#

n (An)

for the doubly stochastic matrix An with

(An)kℓ := n · VC
(︃[︃

k − 1

n
,
k

n

]︃
×
[︃
ℓ− 1

n
,
ℓ

n

]︃)︃
.

Example 2.5.17. Consider the upper Fréchet-Hoeffding bound C+ and its induced measure
µC+ (see Definition 2.1.1). While the support of µC+ is evenly distributed on the diagonal from
(0, 0) to (1, 1), the associated checkerboard copulas are supported on the squares

[︁
k−1
n , kn

]︁
×[︁

k−1
n , kn

]︁
for k = 1, . . . , n. Figure 2.2 illustrates the aforementioned smoothing property and

hints at the approximation properties for increasing resolutions n.
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Figure 2.2: Plots depicting the support of the measures of C+, C#
3 (C+) and C#

6 (C+), re-
spectively. The numbers denote the respective mass evenly distributed in each square.

In fact, every copula can be approximated by its induced checkerboard copulas with respect
to various topologies, a result especially useful in our discussion of complete dependence.

Proposition 2.5.18. Suppose C is a 2-copula. Then

Dp(C
#
n (C), C) → 0

as n tends to infinity, where Dp for 1 ≤ p < ∞ denotes the metric introduced in Defini-
tion 2.3.5.

Thus, the absolutely continuous checkerboard copulas are dense in the set of all 2-copulas
C2 with respect to various modes of convergence, including uniform convergence and Dp-
convergence.

2.6 Rearrangement and majorization of functions

In Theorem 2.2.9, we have seen that a copula C is completely dependent if and only if

∂1C(u1, u2) = TC1[0,u2](u1) = ∂1C
+(σ(u1), u2)

holds for some λ-preserving function σ : [0, 1] → [0, 1]. Therefore, for fixed u2 ∈ [0, 1],
the exact behaviour of ∂1C(u1, u2) at certain points u1 ∈ [0, 1] is less important than its
‘similarity’ to ∂1C+(u1, u2). One approach to render this ‘similarity’ mathematically precise is
the concept of the (decreasing) rearrangement of functions. Put plainly, two Borel measurable
functions f and g (for simplicity both defined on [0, 1]) are called rearrangements of each other
if their distribution functions

λ({f > t}) = λ({g > t})
are equal for all t ∈ R. The decreasing rearrangement f∗ of f is then simply the unique
right-continuous and decreasing function that is a rearrangement of f . Most importantly,
while the decreasing rearrangement reduces the variation of the original function, it preserves
the Lp-norms. This property will allow us later on to rearrange the partial derivatives of
copulas while leaving measures of complete dependence based on Lp-norms, such as r and ζp,
invariant. We now briefly collect all necessary notation and concepts, while we refer to Chong
and Rice (1971) and Bennett and Sharpley (1988) for a thorough overview.
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Figure 2.3: Plot of f(x) = 2x mod 1, its decreasing rearrangement f∗ and its increasing
rearrangement f∗.

Definition 2.6.1. Let f be a real-valued Borel measurable function on [0, 1] and let λ denote
the Lebesgue-measure. The decreasing rearrangement f∗ of f is defined as

f∗(x) := inf {t | µf (t) ≤ x}

for x ∈ [0, 1], where µf (t) := λ ({x ∈ [0, 1] | f(x) > t}) is the distribution function of f .
Analogously, the increasing rearrangement f∗ of f is given by

f∗(x) := f∗(1− x) .

Example 2.6.2. To illustrate the concept of a rearrangement, consider the λ-preserving trans-
formation f(x) = 2x mod 1 on [0, 1]. A straightforward calculation yields

µf (t) = λ ({x ∈ [0, 1] | 2x mod 1 > t})

= λ

(︃(︃
t

2
,
1

2

)︃
∪
(︃
t+ 1

2
, 1

)︃)︃
= 1− t

and f∗(x) = 1− x. Figure 2.3 depicts the plots of f , f∗ and f∗.

The literature contains various definitions of decreasing rearrangements, ranging from sym-
metric to asymmetric and from univariate to multivariate ones. We follow the asymmetric and
univariate approach presented in Ryff (1970), Chong and Rice (1971) and Day (1972) and,
due to a lack of one comprehensive introduction, provide separate references to each of the
results and their respective proofs. Take special note of the definition of µf in Definition 2.6.1
since in some references, the f therein is replaced by |f |, in which case the corresponding
‘rearrangement’ f∗ is a genuine rearrangement for nonnegative functions f only.

Proposition 2.6.3. Let f and g be real-valued Borel measurable functions on [0, 1]. Then
the following assertions hold:

1. f∗ is decreasing and right-continuous on [0, 1].

2. f ≤ g implies f∗ ≤ g∗.
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3. The decreasing rearrangement is Lp-invariant, i.e. ∥f∥p = ∥f∗∥p for 1 ≤ p ≤ ∞.

4. There exists a λ-preserving transformation σ : ([0, 1],B([0, 1])) → ([0, 1],B([0, 1])) such
that f = f∗ ◦ σ holds almost everywhere.

Proof. Property 1 is stated in Theorem 4.2, Properties 2 and 3 can be found in Proposition 4.3,
and Property 4 is stated in Theorem 6.2 of Chong and Rice (1971).

Remark 2.6.4. Using the adjoint operator T ′
σ of Tσf := f ◦ σ for some λ-preserving trans-

formation σ, we can ‘invert’ the relation given in Part 4 of Proposition 2.6.3 such that
f∗ = T ′

σf holds. Note, however, that this does not imply the existence of a λ-preserving
transformation σ̃ fulfilling f∗ = f ◦ σ̃.

One origin of majorization theory is the investigation of income inequalities, but today it
has applications in many branches of mathematics, physics and economics. It was discussed
by Hardy et al. (1952) for vectors and generalized to functions by Ryff (1965). We refer to
Bennett and Sharpley (1988) and Marshall, Olkin and Arnold (2011) for a comprehensive
treatment of majorization.

Definition 2.6.5. Let f and g ∈ L1([0, 1]). Then f is majorized by g, denoted by f ⪯ g, if
t∫︂

0

f∗(s) ds ≤
t∫︂

0

g∗(s) ds

holds for all t ∈ [0, 1], as well as

1∫︂
0

f∗(s) ds =

1∫︂
0

g∗(s) ds .

The above definition of the majorization order ⪯ relies on the following idea: Whenever f
and g are decreasing functions with the same mass, f is, intuitively, less concentrated than g
if

t∫︂
0

f(s) ds ≤
t∫︂

0

g(s) ds

holds for all t ∈ [0, 1]. By first rearranging arbitrary functions f and g into decreasing
functions, we can apply this ordering for general measurable functions. The next proposition
provides a more explicit link between the definition of ⪯ and the notion of the degree of
concentration for functions.

Proposition 2.6.6. For f and g ∈ L1([0, 1]), the following statements are equivalent:

1. f is majorized by g, i.e. f ⪯ g.

2. For every convex function ϕ : R → R, we have
1∫︂

0

ϕ(f(s)) ds ≤
1∫︂

0

ϕ(g(s)) ds .
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3. There exists a Markov operator T on L1([0, 1]) such that f = Tg.

Proof. The equivalence of 1 and 2 is contained in Theorem 2.5 of Chong (1974), while that
of 1 and 3 is shown in Theorem 4.9 of Day (1973).

Proposition 2.6.7. For f and g ∈ L1([0, 1]), the following inequalities hold:

1. If f∗g∗ ∈ L1([0, 1]), then

1∫︂
0

|f∗(s)g∗(s)| ds ≤
1∫︂

0

|f(s)g(s)| ds ≤
1∫︂

0

|f∗(s)g∗(s)| ds .

2. f∗ − g∗ ⪯ f − g ⪯ f∗ − g∗.

Proof. The proofs of 1, called the Hardy-Littlewood inequality, and 2 can be found in (6.2)
and (6.1) of Day (1972) (see also Theorem 13.4 in Chong and Rice (1971)).



3 Comparing the extremal behaviour of
copulas

Facing the choice between different portfolios, how do you determine which portfolio has the
highest likelihood to result in a ‘worst-case’ outcome? That is, which portfolio is most likely
to incur extremely large losses in all stocks simultaneously? The tail dependence function of
a d-variate random vector X = (X1, . . . , Xd) aims to capture such a worst-case behaviour
of X. For a random vector X with continuous marginal distributions Xi, i = 1, . . . , d, it is
given by

Λ (w ;X) := w1 lim
s↘0

P(X2 ≤ F−1
2 (sw2), . . . , Xd ≤ F−1

d (swd) | X1 ≤ F−1
1 (sw1))

for w = (w1, . . . , wd) ∈ Rd
+ and describes the comovement in the extreme tail of the compon-

ents X1, . . . , Xd.
One common approach to compare the extremal behaviour of two random vectors X and

Y is to order them using the tail dependence coefficient

λ(X) := lim
s↘0

CX(s · 1)
s

= Λ(1 ;X) ,

and to call Y more tail dependent than X if λ(X) ≤ λ(Y ). Reasonable as this may seem,
Figure 3.1 illustrates the drawbacks of this approach for dimension d = 2: Even though
X = (X1, X2) and Y = (Y1, Y2) possess the same tail dependence coefficient, their overall
tail behaviour varies drastically and is, simply put, not comparable.

Thus, we propose a more comprehensive stochastic order which allows for a meaningful
comparison of X and Y . Given two d-variate random vectors X and Y , we say X is less tail
dependent than Y , in short X ≤tdo Y , if

Λ (w ;X) ≤ Λ (w ;Y )

holds for all w ∈ Rd
+. The tail dependence order now provides a consistent notion of the degree

of tail dependence but can be difficult to (visually) scan for certain aspects for dimensions d
much larger than 2. To alleviate this problem, we introduce measures of tail dependence that
condense complex phenomena into a single numerical value but remain consistent with ≤tdo

(think, e.g., of the average or maximal extremal dependence). The most prominent example
of these measures of tail dependence is the aforementioned tail dependence coefficient λ, as
X ≤tdo Y implies λ(X) ≤ λ(Y ). Although λ is already widely applied in the literature (see,
for example, Christoffersen, Errunza, Jacobs and Langlois (2012) and Chabi-Yo, Ruenzi and
Weigert (2018)), it only provides a consistent notion of the degree of tail dependence in the
presence of an underlying order such as ≤tdo. And, most importantly, λ only incorporates the
extremal behaviour along the diagonal w = (1, . . . , 1) and discards any additional information
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Figure 3.1: Plot depicting the tail dependence functions Λ1(s) = s(1 − s) and Λ2(s) =
min {s/3, 1− s} and their respective tail dependence coefficient λ1 = λ2 = 1/4 (see Pro-
position 2.5.1 for the derivation of a corresponding copula). The upper bound Λ+ is depicted
in grey.

concerning the extremal behaviour of the components of the random vector X away from the
diagonal. This focus on the diagonal is contrary to empirical evidence gathered in recent
years, which often asserts distinctly asymmetric dependencies, for instance, between financial
assets (see Okimoto (2008)).

Therefore, we introduce a broader class of consistent measures of tail dependence that
can distinguish between various extremal characteristics undetected by the tail dependence
coefficient alone. Among these measures of tail dependence are the average and maximal tail
dependence given by

µp(X) := ∥˜︁Λ ( · ;X) ∥p
for p = 1 and p = ∞, respectively. Furthermore, many well-known measures of extremal
dependence from the literature are consistent with the tail dependence order ≤tdo. This
includes, for example, the conditional Spearman’s ρ introduced in Schmid and Schmidt (2007)
or the extremal coefficient given in Frahm (2006).

Having introduced a concept to compare the extremal behaviour of two random vectors, we
then turn to the question raised at the beginning of this chapter: If a random vector X is less
tail dependent than Y , that is, if X ≤tdo Y , is a worst-case scenario, where all components
attain small values simultaneously, less likely to occur for X than for Y ? More precisely,
does

Λ (w ;X) < Λ (w ;Y ) =⇒ CX(u) ≤ CY (u) (3.1)

hold for all u in some neighbourhood Bϵ(0) ∩ [0, 1]d? Considering the approximation

CX(u) = Λ (u ;X) +R(u) (u1 + . . .+ ud)

for u ∈ Bϵ(0) ∩ [0, 1]d with R(u) → 0 as ∥u∥1 → 0 established by Jaworski (2006) (see
Section 2.4 for a more detailed overview), the tail dependence function should in some sense
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dominate the behaviour of the copula at least for small values of ∥u∥1. Trivially, the pointwise
ordering CX(u) ≤ CY (u) in some neighbourhood of zero implies X ≤tdo Y , whereas the
converse result in general does not hold. Nevertheless, we establish (3.1) on any cone bounded
away from the axes. Furthermore, we present various copula families, such as the extreme-
value and Archimedean copulas, for which (3.1) can be recovered.

Note that the ‘tail dependence ordering’, the corresponding order-preserving measures based
on the Lp-norms and some of their properties have been investigated for dimension d = 2 in
the diploma thesis by Harder (2013) under the supervision of Karl Friedrich Siburg.

This chapter is structured as follows: Section 3.1 introduces the ordering of tail dependence
and its key properties. Our new measures of tail dependence are presented in Section 3.2,
together with examples comparing them to the tail dependence coefficient. Section 3.3 then
investigates the connection between the localized stochastic order and the tail dependence
order for general copulas, whereas Section 3.4 focuses on certain parametric classes.

3.1 Tail dependence order

For the rest of this chapter, we assume that all random vectors possess continuous univariate
marginal distributions and a tail dependence function.1 Since our aim is to investigate the
tail behaviour of some random vector X, our proposed tail dependence order is based on its
tail dependence function Λ ( · ;X).

Definition 3.1.1. We say that a random vector X is less tail dependent than Y , written
X ≤tdo Y , if and only if

Λ (w ;X) ≤ Λ (w ;Y )

holds for all w ∈ Rd
+. Similarly, X is strictly less tail dependent than Y , written X <tdo Y ,

if and only if
Λ (w ;X) < Λ (w ;Y )

holds for all w ∈ (0,∞)d.

Whenever the two underlying random vectors X and Y are of no particular importance,
we simply write Λi(w), i = 1, 2, instead of Λ (w ;X) and Λ (w ;Y ). We point out that
≤tdo is only a preorder but following common practice, we will nevertheless call ≤tdo the tail
dependence order.

Proposition 3.1.2. The tail dependence order ≤tdo is a preorder, i.e. it is reflexive and
transitive, but neither antisymmetric nor total. Furthermore,

1. the greatest and maximal elements of this preorder are copulas with a tail dependence
function equal to Λ (w ;C+).

2. the least and minimal elements are copulas with a tail dependence function equal to zero.
1See Feidt, Genest and Nešlehová (2010) for a discussion of tail dependence in the presence of discontinuous

univariate marginal distributions.
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Proof. The first assertion follows immediately from the properties of the pointwise ordering on
the space of continuous functions. Furthermore, ≤tdo is not antisymmetric due to Λ (w ; Π) =
Λ (w ;C−) and Π ̸= C−. To see that ≤tdo is not total, consider the tail dependence functions
0.5·min {2w1, w2, . . . , wd} and 0.5·min {w1, w2, . . . , 2wd} constructed via the gluing technique
introduced in Siburg and Stoimenov (2008b). To obtain the least and greatest elements, we
apply Proposition 2.4.4, stating that

0 ≤ Λ (w ;C) ≤ Λ
(︁
w ;C+

)︁
holds for all d-copulas C. As these bounds are sharp, every copula with 0 = Λ (w ;C) or
Λ (w ;C+) = Λ (w ;C) is a least or greatest element, respectively. If C is a maximal element,
then for every d-copula D, it holds that

C ≤tdo D =⇒ D ≤tdo C .

Thus, for D = C+, we have Λ (w ;C) = Λ (w ;C+). Analogously, every minimal element
must be tail independent.

The tail dependence function Λ (w ;X) of a random vector X is, by definition, a function
on Rd

+. As discussed in Example 2.4.5, Λ is positive homogeneous of order 1, allowing us to
restrict Λ to the compact set

Sd−1 :=

{︄
w ∈ Rd

+

⏐⏐⏐⏐⏐
d∑︂

ℓ=1

wℓ = 1

}︄

with no loss of information. We will denote this restricted function by ˜︁Λ and, abusing notation,
still call ˜︁Λ the tail dependence function.

Example 3.1.3. For a bivariate random vector X, the tail dependence coefficient is given by

λ(X) = 2˜︁Λ(1/2 ;X). (3.2)

For an easier analysis, the following example presents different types of such restricted
bivariate tail dependence functions. Note that some are symmetric with respect to the point
1/2, which is the case, for instance, if the two random variables X1 and X2 are exchangeable
(see Definition 3.2.3 below). However, other tail dependence functions may exhibit a marked
asymmetric pattern. Moreover, some tail dependence functions are ordered while others are
not.

Example 3.1.4. 1. Let X follow a bivariate jointly normal distribution with correlation
ρ ∈ [−1, 1]. Then, by Example 2.4.3, X is tail independent, that is, it fulfils Λ (w ;X) =
0 for all w ∈ R2

+, whenever ρ < 1 holds, and tail dependent with Λ (w ;X) = min {wi}
in case of ρ = 1.

2. Example 2.4.5 yields a straightforward construction method for arbitrary tail dependence
functions. Two asymmetric tail dependence functions are depicted in Figure 3.2.
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Figure 3.2: Following Example 2.4.5 and Remark 2.4.6, this plot depicts two asymmetric tail
dependence functions (in black) and the upper bound min {t, 1− t} (in grey).

Remark 3.1.5. An order similar to ≤tdo was introduced in Li (2013), who orders the copula
values along rays. That is, C1 is smaller than C2 in the so-called ‘tail orthant order’, in short
C1 ≤too C2, if for all w ∈ Rd

+ there exists a tw > 0 such that

C1(sw) ≤ C2(sw)

holds for all s ≤ tw. While ≤too implies ≤tdo, the converse does not hold. To see this,
consider the Archimedean Joe 2-copula (see Family (6) in Charpentier and Segers (2009))
with parameter θ = 2, which we will simply denote by C. Then gluing C and C+ with respect
to the first and second component (see Siburg and Stoimenov (2008b)) results in the copulas
C1 and C2, respectively. On the one hand, as C is tail independent, so are C1 and C2 and
Λ (w ;C1) = Λ (w ;C2) holds for all w ∈ Rd

+. On the other hand, C1 and C2 are strictly
ordered conversely along the directions w1 = (12 , 1) and w2 = (1, 12), and therefore neither
C1 ≤too C2 nor C2 ≤too C1 can hold.

Returning to the tail dependence order, the following simple result shows that the tail
dependence order implies the ordering of the tail dependence coefficient but not vice versa.

Proposition 3.1.6. If X ≤tdo Y then λ(X) ≤ λ(Y ) but the converse is generally not true.

Proof. The first assertion is trivial in view of λ(X) = Λ (1 ;X). The second assertion follows
from the counterexamples in Figure 3.1.

3.2 Measures of tail dependence

While from a theoretical point of view, the tail dependence function encodes all necessary
information about the extremal behaviour of the underlying random vector, a practitioner
may want to pinpoint more specific aspects of the tail dependence into a single quantity. A
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possible application could be the quantification of the overall extremal behaviour or of certain
diversification effects. This leads to the construction of measures of tail dependence, which are
mappings µ that associate to each random vector X a number µ(X) reflecting certain aspects
of the underlying tail behaviour. In order to be able to compare different values of such a
measure, we are looking for measures that are monotone with respect to the tail dependence
order.

Definition 3.2.1. A measure of tail dependence is a function µ : X ↦→ µ(X) ∈ [0,∞] defined
on the set of all d-variate random vectors X that satisfies the monotonicity condition

X ≤tdo Y =⇒ µ(X) ≤ µ(Y ) .

Recall that the tail dependence function can be reduced to the unit simplex Sd−1.

Theorem 3.2.2. Suppose Λ is a d-variate tail dependence function. Then all of the following
quantities are measures of tail dependence:

1. The maximal tail dependence
max

s∈Sd−1
Λ(s) .

2. The average tail dependence ∫︂
Sd−1

Λ(s) ds .

3. Any Lp-norm with 1 ≤ p <∞ ⎛⎝ ∫︂
Sd−1

Λ(s)p ds

⎞⎠1/p

.

Proof. All of the above quantities are well defined since Λ (s) is continuous and hence in-
tegrable on Sd−1 according to Proposition 2.4.4. The monotonicity condition is obviously
satisfied by all quantities.

It is important to note the fundamental role played by the underlying tail dependence order
here. Of course, every measure µ can be used to define a preorder ≤µ on the d-variate random
vectors by setting

X ≤µ Y :⇐⇒ µ(X) ≤ µ(Y ).

This preorder ≤µ is always reflexive, transitive and total but, in general, neither symmetric
nor antisymmetric. Without the underlying tail dependence order, however, this construction
may lead to grave inconsistencies. For instance, take the two measures of tail dependence
from Theorem 3.2.2 for dimension d = 2 given by

µ(Λ) := max
s∈[0,1]

Λ (s, 1− s) and ν(Λ) :=
1∫︂

0

Λ (s, 1− s) ds ,
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Figure 3.3: Plot depicting ˜︁Λ1(s) = min {0.4s, 1− s} and ˜︁Λ2(s) = s(1 − s). While the green
and blue shaded areas mark the respective average tail dependence ν, the dot marks the
maximal value µ.

and the tail dependence functions ˜︁Λ1(s) = min {0.4s, 1− s} and ˜︁Λ2(s) = s(1− s) illustrated
in Figure 3.3. Then Λ1 and Λ2 are not ordered with respect to ≤tdo, however, they fulfil
µ(Λ1) > µ(Λ2) as well as ν(Λ1) < ν(Λ2), so that we would end up with the inconsistent
relations

X >µ Y and X <ν Y ,

where X and Y are random vectors with tail dependence function Λ1 and Λ2, respectively.
In practical applications, the choice of a measure of tail dependence will depend on the

particular aim of the investigation— in some cases the maximal tail dependence may be
appropriate while in others, the average is more relevant. In any case, ‘evaluation measures’
Λ (s0) for s0 ∈ Sd−1, in particular the classical tail dependence coefficient λ, are rather
arbitrary choices. Only in very special cases does the tail dependence coefficient provide a
reasonable measure of tail dependence, as we will subsequently explain.

Definition 3.2.3. A random vector X = (X1, . . . , Xd) is called exchangeable if

P(X1 ≤ x1, . . . , Xd ≤ xd) = P(X1 ≤ xπ(1), . . . , Xd ≤ xπ(d))

holds for all x ∈ Rd and every permutation π of {1, . . . , d}. This is equivalent to saying that
the joint distribution functions of all permutated random vectors Xπ coincide.

Proposition 3.2.4. If X is exchangeable with tail dependence function Λ, then

λ(X) = d · Λ (1/d, . . . , 1/d) = d · max
s∈Sd−1

Λ(s) = d · ∥˜︁Λ∥∞ .

If ˜︁Λ is strictly concave, then λ is the unique maximum.
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Proof. Λ ( · ;X) is a continuous function on a compact set and as such, it attains its maximum
value in some point w ∈ Sd−1. Due to the exchangeability of X, every permutation of w
maximizes Λ ( · ;X) as well. Moreover, the set O of local optima is convex as Λ ( · ;X) is
concave. Therefore, we only need to verify that 1

d1 lies in O. A direct calculation yields

1

d!

∑︂
π∈Pd

wπ =
1

d!
(d− 1)!

d∑︂
ℓ=1

wℓ1 =
1

d
1 ,

where Pd denotes the set of all possible permutations of {1, . . . , d}. The last claim follows
immediately from the strict concavity of ˜︁Λ.

We now give examples of measures of tail dependence that are somewhat more intricate
than the measures described in Theorem 3.2.2.

Example 3.2.5. Suppose Λ1 and Λ2 are bivariate tail dependence functions. Then

Λ1 ≤ Λ2 =⇒ CLEV ( · ,Λ1) ≤ CLEV ( · ,Λ2)

follows immediately from Proposition 2.5.1. Thus, for any concordance measure κ (see Sec-
tion 2.3) it holds

Λ1 ≤ Λ2 =⇒ κ(CLEV ( · ,Λ1)) ≤ κ(CLEV ( · ,Λ2))

and Λ ↦→ κ(CLEV ( · ,Λ)) is a measure of tail dependence.

Example 3.2.6. Spearman’s ρ for lower extreme-value 2-copulas yields the measure of tail
dependence

µ(Λ) := ρ
(︁
CLEV ( · ,Λ)

)︁
= 12

1∫︂
0

1

(2− Λ(t, 1− t))2
dt− 3 .

The final class of measures of tail dependence we present is motivated directly by the
majorization theory outlined in Section 2.6.

Proposition 3.2.7. Suppose X and Y are d-variate random vectors. Then X ≤tdo Y implies
∞∫︂
0

ϕ(∂1Λ (t, w2, . . . , wd ;X)) dt ≤
∞∫︂
0

ϕ(∂1Λ (t, w2, . . . , wd ;Y )) dt

for all (w2, . . . , wd) ∈ Rd−1
+ and all increasing convex functions ϕ : R+ → R+ such that

ϕ(0) = 0 and t ↦→ ϕ(∂1Λ (t, w2, . . . , wd ;C
+)) is integrable.

Proof. The result follows from the equivalence of Λ ( · ;X) ≤ Λ ( · ;Y ) and

w1∫︂
0

∂1Λ (t, w2, . . . , wd ;X) dt ≤
w1∫︂
0

∂1Λ (t, w2, . . . , wd ;Y ) dt

for all w1, . . . , wd ≥ 0. An application of Theorem 2.1 in Chong (1974) then gives the result.
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Example 3.2.8. Given an increasing convex function ϕ : R+ → R+ as in Proposition 3.2.7
and a d-variate random vector X,

µϕ(X) :=

∫︂
Rd
+

ϕ(∂1Λ (w ;X)) dw

is a measure of tail dependence. Similar to the convex order of random variables, measures of
this type quantify the degree of concentration of a tail dependence function.

Finally, we point out that functional combinations f(µ, ν) of measures of tail dependence
µ and ν, where f is real-valued and increasing in each argument, are likewise measures of
tail dependence. A simple example is any linear combination aµ + bν with a, b ≥ 0. Such
combinations can be useful in applications where one would like to consider different aspects
of tail dependence simultaneously.

Example 3.2.9. Frahm (2006) introduced the so-called ‘extremal dependence coefficient’

εL :=
λ

2− λ
=

Λ(1/2)

1− Λ (1/2)
= f(Λ (1/2))

with f(µ) := µ
1−µ , which investigates the asymptotic dependence between the componentwise

minima and maxima of a pair (X1, X2) of random variables. Since the function f is increasing,
the quantity εL is a measure of tail dependence.

Example 3.2.10. Schmid and Schmidt (2007) introduced a local conditional version of Spear-
man’s ρ by setting

ρ(ε ;C) :=

∫︁
[0,ε]d

C(u) du−
(︂
ε2

2

)︂d
εd+1

d+1 −
(︂
ε2

2

)︂d ,

where an application of the dominated convergence theorem yields

ρL(C) := lim
ε↘0

ρ(ε ;C) = (d+ 1) ∥Λ ( · ;C)∥L1([0,1]d) .

Therefore, ρL(C) is a measure of tail dependence and quantifies the scaled average tail de-
pendence. We will now briefly explore a consequence of the assumption ρL(C1) < ρL(C2). It
implies the existence of an ε∗ > 0 such that∫︂

[0,ε]d

C1(u) du ≤
∫︂

[0,ε]d

C2(u) du

holds for all ε < ε∗. Thus, a strict ordering of this measure leads to an ordering of the
averages of the copula on [0, ε]d. In the next section, we will investigate similar results under
the assumption of C1 <tdo C2.
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3.3 The tail behaviour of general copulas

While the copula C uniquely determines the limiting behaviour Λ (w ;C), every tail depend-
ence function Λ captures a wide variety of tail behaviours from different copulas. For ex-
ample, both the product copula Π(u) = u1u2 as well as the lower Fréchet-Hoeffding bound
C−(u) = max {u1 + u2 − 1, 0} for u ∈ [0, 1]2 are tail independent, i.e. they fulfil Λ(w) = 0
for all w ∈ R2

+, even though their stochastic behaviour is markedly different. Thus, when
considering the approximation of C established in Theorem 2.4.2,

C(u) = Λ (u ;C) +R(u) (u1 + . . .+ ud)

with R(u) → 0 as ∥u∥1 → 0, the function Rmay encode a wide variety of local behaviours. We
are therefore interested in the extent to which the tail dependence function alone dominates
the behaviour of the underlying copula near zero, such that

Λ (w ;C1) < Λ (w ;C2) =⇒ C1(u) ≤ C2(u) (3.3)

holds for all u in some neighbourhood Bε(0) ∩ [0, 1]d. Here, we define the neighbourhood
Bε(0) by

{︁
x ∈ Rd | ∥x∥1 ≤ ϵ

}︁
, although the choice of the norm is irrelevant for our purposes.

Note that we do not consider Λ (w ;C1) ≤ Λ (w ;C2) =⇒ C1(u) ≤ C2(u), due to the
counterexample stated in Remark 3.1.5.

The right-hand side of (3.3) defines an adapted version of the usual stochastic dominance
ordering, which has briefly been considered in Hua (2012) under the term ‘ultimate usual
stochastic order.’ It is reminiscent of the concept of the germ of a function.

Definition 3.3.1. Let C1 and C2 be d-copulas. We say

1. C1 is smaller than C2 in the lower orthant order, in short C1 ≤ C2, if C1(u) ≤ C2(u)
holds for all u ∈ [0, 1]d.

2. C1 is smaller than C2 in the local lower orthant order, in short C1 ≤loc C2, if there exists
a neighbourhood Bε(0) of zero such that C1(u) ≤ C2(u) holds for all u ∈ Bε(0)∩ [0, 1]d.

Note that ≤loc is distinctly weaker than ≤, which is easily seen from patchwork or glu-
ing techniques (see Durante and Sempi (2016)). We start by discussing a straightforward
connection between ≤tdo and ≤loc.

Proposition 3.3.2. For any two d-copulas C1 and C2, C1 ≤loc C2 implies C1 ≤tdo C2.

Proof. The result follows immediately from the definitions.

Unfortunately, the following example shows that (3.3) cannot hold in general. This example
was communicated to us by Piotr Jaworski.

Example 3.3.3 (Example due to Piotr Jaworski). Keeping in mind the ray-like definition
of the tail dependence function, we use the path (t, tα) that ‘bends’ around any given cone.
Consider the Marshall-Olkin copula Mα(u) = min

{︁
u1−α
1 u2, u1

}︁
with parameter α ∈ (0, 1)

and the Archimedean Clayton copula Cϑ with ϑ > 0 given by Cϑ(u) =
(︁
u−ϑ
1 + u−ϑ

2 − 1
)︁− 1

ϑ .
While Mα is strictly smaller than Cϑ in the tail dependence order with

Λ (w ;Mα) = 0 < Λ (w ;Cϑ) for all w ∈ (0,∞)2 ,
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setting u := (t, tα) yields

Cϑ(t, t
α) =

t1+α(︁
tϑ + tαϑ − t(1+α)ϑ

)︁ 1
ϑ

=
t(︁

t(1−α)ϑ + 1− tϑ
)︁ 1

ϑ

< t =Mα(t, t
α) .

Thus, even the strict tail dependence ordering does not imply an ordering of the values of the
underlying copulas.

While the general result does not hold, the next result shows that the difficulties arise only
in the vicinity of the axes.

Theorem 3.3.4. Suppose the d-copulas C1 and C2 fulfil C1 <tdo C2. Then for any cone2

S ⊂ (0,∞)d such that S ∪ {0} is closed in [0,∞)d, there exists an ε > 0 such that

C1(u) ≤ C2(u) for all u ∈ S ∩Bε(0) .

Proof. Our proof follows a standard technique in convex analysis (see, e.g., Scholtes (2012)).
For ease of notation, let S0 denote S ∪ {0} and define f : S0 → [−1, 1] as f(u) := C2(u) −
C1(u). Due to C1 <tdo C2, the directional derivative of f in 0 exists and is strictly positive,
i.e. f ′(0 ; s) > 0 for all s ∈ S, and f is Lipschitz continuous with constant 2. We will show
via contradiction that 0 is a local minimum of f on S0, which in turn implies

C2(u)− C1(u) = f(u) ≥ 0

in a neighbourhood of 0. Thus, assume there exists a sequence S ∋ wn → 0 and f(wn) ≤ f(0).
We will decompose wn into sn := wn

∥wn∥1
and rn := ∥wn∥1. Then sn has a convergent

subsequence, again denoted by sn, with sn → s∗ ∈ S and it holds that

0 ≥ f(wn)− f(0)

rn
=
f(rnsn)− f(0)

rn

=
f(rnsn)− f(rns

∗)

rn
+
f(rns

∗)− f(0)

rn
→ f ′(0 ; s∗) > 0 ,

which is a contradiction. The convergence of the first term follows from the Lipschitz con-
tinuity of f ,

0 ≤ |f(rnsn)− f(rns
∗)|

rn
≤

2 ∥rnsn − rns
∗∥1

rn
= 2 ∥sn − s∗∥1 → 0 .

3.4 The tail behaviour of certain copula families

We will now focus on specific copula families which provide better control on the behaviour
near the axes to recover (3.3). The main idea behind our approach is the reduction of the
behaviour of C to a parameter linked to the tail dependence function. The first and most
immediate class are the (lower) extreme-value 2-copulas, which are uniquely determined in
the bivariate case by their tail dependence function Λ (see Section 2.5).

2A set S is called cone if w ∈ S implies λw ∈ S for any λ > 0.
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Proposition 3.4.1. The tail dependence order is equivalent to the lower orthant order for
lower extreme-value 2-copulas. That is,

Λ (w ;C1) ≤ Λ (w ;C2) ⇔ ˆ︁C1 ≤ ˆ︁C2 ⇔ C1 ≤ C2 ⇔ C1 ≤loc C2

holds for all lower extreme-value 2-copulas C1 and C2, where ˆ︁C1 denotes the survival copula
of C1.

Proof. The proof follows immediately from Equation (2.9), Proposition 2.5.1 and the fact that
for all 2-copulas C1 and C2, C1 ≤ C2 holds if and only if ˆ︁C1 ≤ ˆ︁C2 holds.

Another easily parametrized class of 2-copulas for which the strict tail dependence ordering
implies the local orthant ordering are the diagonal copulas.

Definition 3.4.2. A 2-copula C is called a diagonal copula if

C(u) = min

{︃
u1, u2,

δ(u1) + δ(u2)

2

}︃
holds for some function δ : [0, 1] → [0, 1] fulfilling

1. δ(t) ≤ t for all t ∈ [0, 1],

2. δ(1) = 1,

3. δ is increasing, and,

4. |δ(t)− δ(s)| ≤ 2 |t− s| for all s, t ∈ [0, 1].

δ is called the diagonal section of C.

Proposition 3.4.3. For diagonal 2-copulas, the strict extremal order implies the local orthant
order.

Proof. Let C1 and C2 be diagonal 2-copulas with diagonal sections δ1 and δ2, respectively.
Due to C1 and C2 admitting a tail dependence function, we have

lim
s↘0

δ2(s)− δ1(s)

s
= δ′2(0)− δ′1(0) = Λ (1 ;C2)− Λ (1 ;C1) > 0 .

Thus, δ2 − δ1 must be nonnegative on [0, ε) for some ε > 0, which implies

C1(u) = min

{︃
u1, u2,

δ1(u1) + δ1(u2)

2

}︃
≤ min

{︃
u1, u2,

δ2(u1) + δ2(u2)

2

}︃
= C2(u)

for u = (u1, u2) ∈ [0, ε)2.

Lastly, we investigate the more elaborate case of Archimedean d-copulas. We may restrict
our subsequent analysis to strict Archimedean generators ϕ, that is, generators fulfilling

lim
s↘0

ϕ(s) = ∞ ,

as the Archimedean copula is otherwise necessarily equal to zero in a neighbourhood around
zero (see Charpentier and Segers (2009)). The following lemma gives a reformulation of this
fact in our language of stochastic orders.
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Lemma 3.4.4. Let C be an Archimedean d-copula with nonstrict generator ϕ and let ˜︁C be
an arbitrary d-copula. Then C ≤tdo

˜︁C is equivalent to C ≤loc
˜︁C.

Proof. Let C be an Archimedean d-copula with nonstrict generator ϕ. Following Section 3.2
in Charpentier and Segers (2009), there exists an ε > 0 such that

C(u) = 0 for all u ∈ Bε(0) ∩ [0, 1]d

and necessarily C ≤loc
˜︁C for all d-copulas ˜︁C. Moreover, Λ (w ;C) is identically zero for all

w ∈ Rd
+ and therefore Λ (w ;C) = 0 ≤ Λ

(︂
w ; ˜︁C)︂ for all copulas ˜︁C. Thus C ≤tdo

˜︁C is

equivalent to C ≤loc
˜︁C.

Note that for strict Archimedean generators, the generalized inverse reduces to the usual
inverse. Let us now state the main theorem before proving the necessary technical results.

Theorem 3.4.5. Let C1 and C2 be Archimedean d-copulas with regularly varying generators
ϕ1 and ϕ2, respectively. Then

C1 <tdo C2 =⇒ C1 ≤loc C2 .

We will briefly outline the proof, whose detailed version is given at the end of this chapter.
It follows a localized version of Chapter 4.4 in Nelsen (2006).

Outline of the proof of Theorem 3.4.5. The proof consists of several steps:

1. C1 ≤loc C2 whenever (ϕ1 ◦ ϕ−1
2 ) is subadditive around ∞ (see Proposition 3.4.7).

2. (ϕ1◦ϕ−1
2 ) is subadditive around ∞ if ϕ1(x)

ϕ2(x)
is increasing around 0 (see Proposition 3.4.8).

3. λ(C1) < λ(C2) implies that ϕ1(x)
ϕ2(x)

is increasing around 0.

In Nelsen (2006), the lower orthant ordering of two Archimedean copulas C1 and C2 is
characterized in terms of the global subadditivity of (ϕ1 ◦ ϕ−1

2 ). We can relax this condition
and only require subadditivity for large values to ensure the local orthant ordering ≤loc. Such
a localized version has previously also been considered in Hua (2012), where the generator is
assumed to be the Laplace transform of a positive random variable.

Definition 3.4.6. We say a function f : R+ → R+ is subadditive around ∞ if there exists
an M ≥ 0 such that

f(x+ y) ≤ f(x) + f(y)

holds for all x, y ∈ [M,∞).

Proposition 3.4.7. Let C1 and C2 be Archimedean d-copulas generated by ϕ1 and ϕ2, re-
spectively. Then C1 ≤loc C2 whenever (ϕ1 ◦ ϕ−1

2 ) is subadditive around ∞.
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Proof. Consider f : R+ → R+ defined by f(x) := (ϕ1 ◦ ϕ−1
2 )(x). As f is subadditive around

∞, we have

f

(︄
d∑︂

ℓ=1

xℓ

)︄
≤

d∑︂
ℓ=1

f(xℓ) for all x1, . . . , xd ≥M .

Applying the strictly decreasing function ϕ−1
1 to the above inequality yields

ϕ−1
2

(︄
d∑︂

ℓ=1

xℓ

)︄
=
(︁
ϕ−1
1 ◦ f

)︁(︄ d∑︂
ℓ=1

xℓ

)︄
≥ ϕ−1

1

(︄
d∑︂

ℓ=1

f(xℓ)

)︄
for all x1, . . . , xd ≥M .

Since ϕ2 is strictly decreasing, xℓ ≥ M implies ϕ−1
2 (xℓ) ≤ ϕ−1

2 (M). Therefore, for any
u ∈ Bε(0) ∩ [0, 1]d with ε := ϕ−1

2 (M) > 0 and xℓ := ϕ2(uℓ) ≥ ϕ2(ε) =M , we have

ϕ−1
2

(︄
d∑︂

ℓ=1

ϕ2(uℓ)

)︄
= ϕ−1

2

(︄
d∑︂

ℓ=1

xℓ

)︄
≥ ϕ−1

1

(︄
d∑︂

ℓ=1

f(xℓ)

)︄

= ϕ−1
1

(︄
d∑︂

ℓ=1

(︁
ϕ1 ◦ ϕ−1

2

)︁
(ϕ2(uℓ))

)︄
= ϕ−1

1

(︄
d∑︂

ℓ=1

ϕ1(uℓ)

)︄
.

This yields C1(u) ≤ C2(u) for all u ∈ Bε(0) ∩ [0, 1]d and thus C1 ≤loc C2.

Unfortunately, the subadditivity of ϕ1 ◦ϕ−1
2 around ∞ is rather difficult to validate and we

therefore present a sufficient criterion similar to Corollary 4.5 in Nelsen (2006).

Proposition 3.4.8. Let C1 and C2 be Archimedean d-copulas generated by ϕ1 and ϕ2, re-
spectively. Then (ϕ1 ◦ ϕ−1

2 ) is subadditive around ∞ whenever ϕ1

ϕ2
is increasing on (0, ε) for

some ε > 0.

Proof. Define g : (0,∞) → (0,∞) as g(x) := f(x)
x and f(x) := (ϕ1 ◦ ϕ−1

2 )(x) as before. We
now verify that g is decreasing on (M,∞) with M := ϕ2(ε). As ϕ2 is strictly decreasing for
all x ≥ 0, we have for M ≤ x ≤ y

0 < ϕ−1
2 (y) ≤ ϕ−1

2 (x) ≤ ϕ−1
2 (M) = ε .

Combining this with the fact that g ◦ ϕ2 = ϕ1

ϕ2
is increasing on (0, ε), we have

g(x) = (g ◦ ϕ2)
(︁
ϕ−1
2 (x)

)︁
≥ (g ◦ ϕ2)

(︁
ϕ−1
2 (y)

)︁
= g(y) ,

so g is decreasing for x, y ≥M . Thus, for all x, y ∈ [M,∞)

x (g(x+ y)− g(x)) + y (g(x+ y)− g(y)) ≤ 0

or equivalently

f(x+ y) = (x+ y)g(x+ y) ≤ xg(x) + yg(y) = f(x) + f(y) .

Thus, f is subadditive around ∞.
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Up to this point, our approach was entirely independent of the tail dependence function of
the Archimedean copulas. To ensure the existence of a tail dependence function in the follow-
ing, we will assume that the Archimedean generators are regularly varying (see Section 2.5
for a detailed account). We will show that ordered tail dependence functions result in ordered
parameters of regular variation, allowing us to apply Proposition 3.4.8 for Archimedean cop-
ulas with regularly varying generators.

Lemma 3.4.9. Let C1 and C2 be Archimedean d-copulas with strict Archimedean generators
ϕ1 and ϕ2. Furthermore, suppose ϕ1 and ϕ2 are regularly varying at 0 with parameters −α1

and −α2 ∈ [−∞, 0], respectively. Then the following are equivalent:

1. C1 <tdo C2.

2. λ(C1) < λ(C2).

3. α1 < α2.

Proof. The first implication 1 to 2 is immediate. For the second implication 2 to 3, consider
the possible combinations of λ ∈ [0, 1]:

1. If λ(C1) = 0 and λ(C2) ∈ (0, 1), then

0 = λ(C1) < λ(C2) = d
− 1

α2

and thus α2 > 0 = α1 holds.

2. If both λ(C1) and λ(C2) take values in (0, 1), then α1 < α2 due to

d
− 1

α1 = λ(C1) < λ(C2) = d
− 1

α2

3. If λ(C1) ∈ (0, 1) and λ(C2) = 1, then

d
− 1

α1 = λ(C1) < λ(C2) = 1

and thus α1 <∞ = α2.

4. Lastly, if λ(C1) = 0 and λ(C2) = 1, then a1 = 0 <∞ = a2.

The last implication 3 to 1 follows from Example 3.8 of Li (2013).

Proof of Theorem 3.4.5. To show C1 ≤loc C2, we will invoke Proposition 3.4.8, i.e. show that
ψ(x) := ϕ1(x)

ϕ2(x)
is increasing in a neighbourhood of zero. An application of Proposition 3.4.7

then yields the desired result. Due to Lemma 3.4.9, we have α1 < α2, where ϕi is regularly
varying with coefficient −αi in 0. Furthermore, as ϕ1 and ϕ2 are positive, convex, regularly
varying functions, Lemma A.1. in Charpentier and Segers (2009) yields

lim
s↘0

sϕ′i(s)

ϕi(s)
= −αi
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for i = 1 and 2. Here, ϕ′i denotes an increasing representative of the derivative of ϕi, which
is only defined almost everywhere. ψ is almost everywhere differentiable as the ratio of
continuous and almost everywhere differentiable functions, where

ϕ′1(s)ϕ2(s)− ϕ1(s)ϕ
′
2(s)

ϕ2(s)2

is a representative of the derivative of ψ, which we will denote by ψ′. This implies

lim
s↘0

sψ′(s)

ψ(s)
= lim

s↘0

(︃
s
ϕ′1(s)ϕ2(s)− ϕ1(s)ϕ

′
2(s)

ϕ2(s)2

)︃
ϕ2(s)

ϕ1(s)

= lim
s↘0

sϕ′1(s)

ϕ1(s)
− sϕ′2(s)

ϕ2(s)
= −α1 − (−α2) = α2 − α1 > 0 .

Due to ψ ≥ 0, ψ′ must be positive on (0, ε) for some ε > 0. Finally, given x1, x2 ∈ (0, ε) with
x1 ≤ x2, we have that ϕ1 and ϕ2 are absolutely continuous on [x1, x2]. This yields that ψ
as the ratio of absolutely continuous functions on [x1, x2] is absolutely continuous on [x1, x2]
and therefore increasing on (0, ε) due to

ψ(x2)− ψ(x1) =

x2∫︂
x1

ψ′(s) ds ≥ 0 .



4 A Markov product for tail dependence
functions

The Markov product is an important tool in the analysis of bivariate copulas. Originally
introduced by Darsow et al. (1992) as

(C1 ∗ C2)(u) =

1∫︂
0

∂2C1(u1, t) · ∂1C2(t, u2) dt , (4.1)

the Markov product of the 2-copulas C1 and C2 has since then been generalized in several
ways. By using a weighting of the two factors C1 and C2 other than Π(u, v) = u · v and by
allowing for more than two 2-copulas C1 and C2, we arrive at the generalized Markov product
(see Section 5.5 in Durante and Sempi (2016))

ϕC (C1, . . . , Cd) (u) :=

1∫︂
0

C (∂1C1 (t, u1) , . . . , ∂1Cd (t, ud)) dt . (4.2)

For dimensions d higher than 2, this generalized Markov product has become a popular method
to construct d-copulas, as it combines d bivariate building blocks into one d-copula, while for
dimensions d = 2, it is an important tool to investigate, for instance, complete dependence
(see Section 2.2).

Considering the analytical similarities between copulas and tail dependence functions, one
may wonder whether it is possible to derive the tail dependence function of the d-copula ϕC
simply from the newly-defined product

ϕC (Λ1, . . . ,Λd) (w) :=

∞∫︂
0

C (∂1Λ1 (t, w1) , . . . , ∂1Λd (t, wd)) dt (4.3)

for their respective tail dependence functions.
In this chapter, we will show that the answer is affirmative— but one has to impose certain

Sobolev-type regularity conditions on the underlying copulas C1, . . . , Cd. Then, the general-
ized Markov products on Cd

2 and T d
2 do indeed commute with the tail dependence operation,

such that
ϕC (ΛC1 , . . . ,ΛCd

) = ΛϕC(C1,...,Cd) , (4.4)

where we used the shorthand ΛC(w) := Λ (w ;C). Similar results have been established in
the context of vine-copulas by Joe et al. (2010) and more recently by Jaworski (2015).

Analytically, the Markov products on Cd
2 and T d

2 share many properties, but the additional
concavity of tail dependence functions turns out to have far reaching consequences regarding



46 4 A Markov product for tail dependence functions

the behaviour of the (generalized) Markov product. Aside from stronger convergence results,
the concavity induces a fundamental reduction property:

ϕC (Λ1, . . . ,Λd) (w) ≤ min
k,ℓ=1,...,d

ℓ̸=k

Λk(wℓ, wk) , (4.5)

whenever C is negative quadrant dependent, i.e. whenever C(u) ≤ Π(u) for all u ∈ [0, 1]d.
The concavity of tail dependence functions is also the key ingredient in our analysis of

iterates and idempotents of the Markov product. Since ϕC (Λ1, . . . ,Λd) creates a d-variate
tail dependence function from d bivariate ones, an iterative application requires the limitation
to d = 2. Hence, we consider a Markov product for tail dependence functions analogous to
the original Markov product (4.1) and define

(Λ1 ∗ Λ2)(w) :=

∞∫︂
0

∂2Λ1(w1, t) · ∂1Λ2(t, w2) dt .

Note that ∗ indeed combines two bivariate tail dependence functions into a new bivariate tail
dependence function. In particular, for a bivariate tail dependence function Λ, we can now
define the n-fold iteration

Λ∗n := Λ ∗ . . . ∗ Λ⏞ ⏟⏟ ⏞
n times

.

We then characterize the limits limn→∞ Λ∗n, and thereby the behaviour of idempotents (i.e.
tail dependence functions fulfilling Λ ∗Λ = Λ), as either Λ0(w) = 0 or Λ+(w) = minw using
the concavity of Λ. This characterization for the Markov product on T2 is in stark contrast to
the behaviour of ∗ on C2, where, for example, the iterated application of C− yields a circular
pattern, that is, we have

(︁
C−)︁∗(2k) = C+ and

(︁
C−)︁∗(2k+1)

= C− ,

resulting in a 2-periodic orbit.
Up until now, we have considered the Markov product as a purely analytical operation. But

the Markov product for copulas (4.1) can also be constructed from an isomorphism between
copulas and Markov operators as seen in Section 2.2. In the last part of this chapter, we adopt
this point of view and establish a similar relationship between tail dependence functions and
substochastic operators known from majorization theory. Essentially, a substochastic operator
T is nonexpansive with respect to the Lp-norms ∥ · ∥p for 1 ≤ p ≤ ∞ and maps positive
functions f onto positive functions Tf , thereby generalizing the usual Markov operators.

This chapter is based on Siburg and Strothmann (2021a) and is structured as follows:
Section 4.1 introduces the Markov product for tail dependence functions and establishes a
link to the original Markov product for copulas. Section 4.2 discusses the reduction property
(4.5) unique to tail dependence functions, while Section 4.3 employs the reduction property to
derive the behaviour of iterates and idempotents. Lastly, Section 4.4 establishes a connection
between (T2, ∗) and the substochastic operators equipped with the composition.
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4.1 A Markov product for tail dependence functions

We investigate a generalized version of the Markov product introduced by Darsow et al.
(1992), which was discussed in Durante and Sempi (2016) and, in the context of vine-copulas,
in Jaworski (2015).

Definition 4.1.1. Let C1, . . . , Cd be 2-copulas and let C be a d-copula. Then, the (d + 1)-
copula

ϕu0,C (C1, . . . , Cd) (u1, . . . , ud) :=

u0∫︂
0

C (∂1C1(t, u1), . . . , ∂1Cd(t, ud)) dt

is called the C-lifting of the copulas C1, . . . , Cd. Furthermore, we define the d-copula

ϕC (C1, . . . , Cd) (u1, . . . , ud) :=

1∫︂
0

C (∂1C1(t, u1), . . . , ∂1Cd(t, ud)) dt

= ϕ1,C (C1, . . . , Cd) (u1, . . . , ud)

to be the generalized Markov product of C1, . . . , Cd induced by C.

Similar to this construction of higher dimensional copulas from bivariate copulas, we intro-
duce an operation on bivariate tail dependence functions.

Definition 4.1.2. Let Λ1, . . . ,Λd ∈ T2 and C ∈ Cd. We call

ϕw0,C (Λ1, . . . ,Λd) (w1, . . . , wd) :=

w0∫︂
0

C (∂1Λ1 (t, w1) , . . . , ∂1Λd (t, wd)) dt

the C-lifting of the tail dependence functions Λ1, . . . ,Λd. Similarly, we define the generalized
Markov product of Λ1, . . . ,Λd induced by C as

ϕC (Λ1, . . . ,Λd) (w1, . . . , wd) :=

∞∫︂
0

C (∂1Λ1 (t, w1) , . . . , ∂1Λd (t, wd)) dt .

We now verify that the C-lifting and the generalized Markov product do in fact generate
new tail dependence functions.

Theorem 4.1.3. Suppose C is a d-copula and Λ1, . . . ,Λd ∈ T2. Then ϕ·,C (Λ1, . . . ,Λd) and
ϕC (Λ1, . . . ,Λd) are (d+ 1)-variate and d-variate tail dependence functions, respectively.

Proof. The tail dependence functions Λℓ for ℓ = 1, . . . , d are positive, increasing in each com-
ponent, Lipschitz continuous and thus have partial derivatives almost everywhere. Moreover,
the partial derivatives attain values in [0, 1]. Therefore, we have

0 ≤ ϕw0,C (Λ1, . . . ,Λd) (w1, . . . , wd) ≤
∞∫︂
0

C+ (∂1Λ1(t, w1), . . . , ∂1Λd(t, wd)) dt

≤ min
ℓ=1,...,d

∥∂1Λℓ(t, wℓ)∥1 = min
ℓ=1,...,d

(︂
lim
t→∞

Λℓ(t, wℓ)
)︂

≤ min
ℓ=1,...,d

wℓ <∞ ,
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which establishes the existence of the integral. The last inequality is due to Λℓ being increasing
in each component and bounded from above by Λ+. Thus, we can define

ϕ(w) :=

w0∫︂
0

C (∂1Λ1(t, w1), . . . , ∂1Λd(t, wd)) dt .

It remains to verify Properties a. to c. from the characterization of (d + 1)-variate tail
dependence functions of Proposition 2.4.4. For the first property, note that due to all copulas
being bounded from above by C+ and due to all tail dependence functions having bounded
partial derivatives between 0 and 1, it holds

0 ≤
w0∫︂
0

C (∂1Λ1(t, w1), . . . , ∂1Λ(t, wd)) dt

≤

⎧⎪⎪⎨⎪⎪⎩
w0∫︁
0

1 dt = w0

∞∫︁
0

C+ (∂1Λ1(t, w1), . . . , ∂1Λd(t, wd)) dt ≤ min
ℓ=1,...,d

wℓ

= Λ+(w0, . . . , wd) .

The (d + 1)-increasing property of ϕ needs to be verified on every rectangle R ⊂ Rd+1
+ . A

direct calculation identical to that of Proposition 2.2 in Durante, Klement and Quesada-
Molina (2008) with vℓ < wℓ yields

Vϕ

(︄
d

×
ℓ=0

[vℓ, wℓ)

)︄
=

w0∫︂
v0

VC

(︄
d

×
ℓ=1

[∂1Λℓ(t, vℓ), ∂1Λℓ(t, wℓ))

)︄
dt ≥ 0 ,

which holds due to ∂1Λℓ(t, vℓ) ≤ ∂1Λℓ(t, wℓ). Lastly, the positive homogeneity can be estab-
lished via a change of variables and via the positive homogeneity of order 0 of the partial
derivatives of Λ (see, e.g., Joe et al. (2010)), yielding

ϕ(sw) =

sw0∫︂
0

C (∂1Λ1(t, sw1), . . . , ∂1Λd(t, swd)) dt

=

sw0∫︂
0

C (∂1Λ1(t/s, w1), . . . , ∂1Λd(t/s, wd)) dt

= s

w0∫︂
0

C (∂1Λ1(z, w1), . . . , ∂1Λd(z, wd)) dz = sϕ(w) .

By Proposition 2.4.4, we can thus find a (d+ 1)-copula C with Λ (w ;C) = ϕ(w) for all w ∈
Rd+1
+ . The proof that ϕC (Λ1, . . . ,Λd) is a d-variate tail dependence function is a simplified

version of this proof.

Remark 4.1.4. Note that the first part of the proof of Theorem 4.1.3 only requires that all
Λℓ are 2-increasing functions bounded from below by 0 and from above by Λ+. Furthermore,
ϕ is positive homogeneous of order one if ∂1Λℓ(t, wℓ) is homogeneous of order zero for all
ℓ = 1, . . . , d.
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The next proposition gives some basic algebraic properties for both ϕC (Λ1, . . . ,Λd) and
ϕw0,C (Λ1, . . . ,Λd).

Proposition 4.1.5. Suppose Λ1, . . . ,Λd are bivariate tail dependence functions and C is a
d-copula. Then it holds:

1. Λ+ = Λ( · ;C+) is the unit element in the sense that if Λℓ = Λ+, then

ϕw0,C (Λ1, . . . ,Λd) (w1, . . . , wd) = ϕmin{w0,wℓ},C−ℓ
(Λ1, . . . ,Λℓ−1,Λℓ+1, . . . ,Λd) (w−ℓ)

with w−ℓ := (w1, . . . , wℓ−1, wℓ+1, . . . , wd) and C−ℓ := C(u1, . . . , uℓ−1, 1, uℓ+1, . . . , ud).

2. Λ0 := Λ ( · ; Π) is the null element in the sense that if Λℓ = Λ0, then

ϕw0,C (Λ1, . . . ,Λd) (w1, . . . , wd) = Λ
(︂
w0, . . . , wd ; Π

d+1
)︂
= 0 .

3. If C is convex (concave) in the ℓ-th component, then ϕw0,C ( · ) is convex (concave) in
the ℓ-th component.1

4. For every permutation π on {1, . . . , d} with inverse permutation τ , we have

ϕC (Λ1, . . . ,Λd) (wτ(1), . . . , wτ(d)) = ϕCπ

(︁
Λπ(1), . . . ,Λπ(d)

)︁
(w1, . . . , wd) ,

where Cπ(u1, . . . , ud) := C(uπ(1), . . . , uπ(d)).

5. If C ≤ D pointwise, then ϕ·,C (Λ1, . . . ,Λd) ≤ ϕ·,D (Λ1, . . . ,Λd).

Remark 4.1.6. The term ‘unit-element’ stems from the bivariate case, where the generalized
Markov product ϕC : T2 × T2 → T2 fulfils

ϕC
(︁
Λ+,Λ

)︁
(w1, w2) = Λ(w1, w2) .

Proof. 1. Without loss of generality, we consider ℓ = 1. As ∂1Λ (t, w1 ;C
+) = 1[0,w1](t),

we have

ϕw0,C (Λ1, . . . ,Λd) (w1, . . . , wd) =

min{w0,w1}∫︂
0

C(1, ∂1Λ2(t, w2), . . . , ∂1Λd(t, wd)) dt

=

min{w0,w1}∫︂
0

C−1(∂1Λ2(t, w2), . . . , ∂1Λd(t, wd)) dt

= ϕmin{w0,w1},C−1
(Λ2, . . . ,Λd) (w2, . . . , wd) .

2. The second result follows from Λ (w ; Π) = 0 for w ∈ Rd
+ and C(0,v) = 0 with v ∈

[0, 1]d−1.

3. The third result follows immediately from the componentwise convexity (concavity).
1Chapter 5 discusses such componentwise convex and concave copulas in more detail.
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4. A direct calculation yields

ϕC (Λ1, . . . ,Λd) (wτ(1), . . . , wτ(d)) =

∞∫︂
0

C
(︁
∂1Λ1(t, wτ(1)), . . . , ∂1Λd(t, wτ(d))

)︁
dt

=

∞∫︂
0

Cπ
(︁
∂1Λπ(1)(t, w1), . . . , ∂1Λπ(d)(t, wd)

)︁
dt

= ϕCπ

(︁
Λπ(1), . . . ,Λπ(d)

)︁
(w1, . . . , wd) .

5. The last assertion follows immediately from the pointwise inequality C ≤ D.

We now derive some convergence results for the Markov product of tail dependence func-
tions. In the case of 2-copulas, Siburg and Stoimenov (2008a) and Trutschnig (2011) intro-
duced different metrics allowing for the joint convergence of the (generalized) Markov product
for 2-copulas, i.e.

ϕC(Cn,1, Cn,2) → ϕC(C1, C2) ,

whenever Cn,i converges in some sense towards Ci, i = 1, 2. We will present very similar
conditions in the case of tail dependence functions. Note, however, that due to the different
domains of copulas and tail dependence functions and the concavity of the latter, convergence
of the partial derivatives coincides with the L1-convergence of the partial derivatives in the
case of copulas and with pointwise convergence in the case of tail dependence functions.

Proposition 4.1.7. Suppose Λ1, . . . ,Λd ∈ T2 and C is a d-copula.

1. Let Cn ∈ Cd with Cn → C pointwise. Then

ϕw0,Cn (Λ1, . . . ,Λd) → ϕw0,C (Λ1, . . . ,Λd)

pointwise for all w0 ∈ R+.

2. Let Λn,i ∈ T2 with Λn,i → Λi pointwise. Then

ϕw0,C (Λn,1, . . . ,Λn,d) → ϕw0,C (Λ1, . . . ,Λd)

pointwise.

3. Let Λn,i ∈ T2 with ∥∂1Λn,i( · , w)− ∂1Λi( · , w)∥L1(R+) → 0 for all w ∈ R+, then

ϕC (Λn,1, . . . ,Λn,d) → ϕC (Λ1, . . . ,Λd)

pointwise.

Proof. 1. A combination of Cn(∂1Λ1(t, w1), . . . , ∂1Λd(t, wd)) ≤ ∂1Λ1(t, w1) and the dom-
inated convergence theorem yields the desired result.
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2. Due to the Lipschitz continuity of C, we have

|ϕw0,C (Λn,1, . . . ,Λn,d) (w)− ϕw0,C (Λ1, . . . ,Λd) (w)|

≤
d∑︂

i=1

w0∫︂
0

|∂1Λn,i(t, wi)− ∂1Λi(t, wi)| dt .

Thus, it suffices to consider each integral separately. As tail dependence functions are
concave, Lemma 1 in Tsuji (1952) yields that for all fixed wi ∈ R+, Λn,i(t, wi) →
Λi(t, wi) holds pointwise if and only if ∂1Λn,i(t, wi) → ∂1Λi(t, wi) holds for almost all
t ∈ [0, w0]. Thus, an application of the dominated convergence theorem in combination
with 0 ≤ ∂1Λn,i ≤ 1 yields the desired result.

3. Again, due to the Lipschitz continuity of C, we have

|ϕC (Λn,1, . . . ,Λn,d) (w)− ϕC (Λ1, . . . ,Λd) (w)| ≤
d∑︂

i=1

∞∫︂
0

|∂1Λn,i(t, wi)− ∂1Λi(t, wi)| dt ,

which converges to zero.

Analogously to the binary product ∗ on C2 × C2 induced by Π, we introduce ∗ on T2 × T2
via

(Λ1 ∗ Λ2)(w1, w2) := ϕΠ

(︂
Λ⊤
1 ,Λ2

)︂
(w1, w2) =

∞∫︂
0

∂2Λ1(w1, t) · ∂1Λ2(t, w2) dt .

Its properties closely resemble those of the Markov product on C2×C2. In particular, Λ+ and
Λ0 are the unit and null element of ∗, respectively, and ∗ is skew-symmetric, that is,

(Λ1 ∗ Λ2)
⊤ = Λ⊤

2 ∗ Λ⊤
1 .

With these basic algebraic properties, we will develop two conditions under which the Markov
product commutes with the tail dependence function, i.e.

Λ (w ;C1 ∗ C2) = (Λ ( · ;C1) ∗ Λ ( · ;C2))(w) . (4.6)

The following example shows that we require some condition to ensure that the Markov
product commutes with the tail dependence operation.

Example 4.1.8. Consider the tail independent 2-copulas C− and Π. While they fulfil

Λ
(︁
w ;C−)︁ = 0 = Λ (w ; Π)

for all w ∈ R2
+, their behaviour under the Markov product for copulas is distinctly different:

(Π ∗Π)(u) = Π(u) ≤ C+(u) = (C− ∗ C−)(u)
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for all u ∈ [0, 1]2. Now assume that the Markov product and tail dependence operation com-
mute unconditionally, then

(Λ ( · ; Π) ∗ Λ ( · ; Π)) (w) = Λ (w ; Π)

< Λ
(︁
w ;C+

)︁
=
(︁
Λ
(︁
· ;C−)︁ ∗ Λ (︁ · ;C−)︁)︁ (w)

= (Λ ( · ; Π) ∗ Λ ( · ; Π)) (w)

for all w ∈ (0,∞)2, which is a contradiction.

Our first approach to a condition that ensures (4.6) utilizes the Lipschitz continuity of C
and follows an idea from Jaworski (2015). Theorem 7 therein derives the tail behaviour of
the C-lifting

Λ (w0, . . . , wd ;ϕ·,C (C1, . . . , Cd)) = ϕw0,C (Λ ( · ;C1) , . . . ,Λ ( · ;Cd)) (w1, . . . , wd)

under a Sobolev-type condition imposed on C1, . . . , Cd.

Theorem 4.1.9. Suppose that C is a d-copula and that C1, . . . , Cd are 2-copulas, which fulfil
the Sobolev-type condition

lim
s↘0

∞∫︂
0

⃓⃓⃓
∂1Ci(st, sw)1[0, 1s ]

(t)− ∂1Λ (t, w ;Ci)
⃓⃓⃓
dt = 0 (4.7)

for all w ∈ R+ and all i = 1, . . . , d. Then,

ϕC (Λ ( · ;C1) , . . . ,Λ ( · ;Cd)) (w) = Λ (w ;ϕC (C1, . . . , Cd))

for all w ∈ Rd
+, or, equivalently,

Cd
2 Cd

T d
2 Td

ϕC

Λ(· ; Ci) ⟲ Λ(· ; C)

ϕC

Proof. The Lipschitz continuity and groundedness of C yield⃓⃓⃓
C (∂1C1(sτ, sw1), . . . , ∂1Cd(sτ, swd))1[0, 1s ]

(τ)− C (∂1Λ (τ, w1 ;C1) , . . . , ∂1Λ (τ, wd ;Cd))
⃓⃓⃓

≤
d∑︂

ℓ=1

⃓⃓⃓
∂1Cℓ(sτ, swℓ)1[0, 1s ]

(τ)− ∂1Λ (τ, wℓ ;Cℓ)
⃓⃓⃓
.

Thus,

|Λ (w ;ϕC (C1, . . . , Cd))− ϕC (Λ ( · ;C1) , . . . ,Λ ( · ;Cd)) (w)|

≤ lim
s↘0

d∑︂
ℓ=1

∞∫︂
0

⃓⃓⃓
∂1Cℓ(sτ, swℓ)1[0, 1s ]

(τ)− ∂1Λ (τ, wℓ ;Cℓ)
⃓⃓⃓
dτ = 0 .



4.1 A Markov product for tail dependence functions 53

Using the concept of strict tail dependence functions yields a more feasible sufficient con-
dition for Theorem 4.1.9. We call a tail dependence function strict if it has margins in the
sense of Nelsen (2006).

Definition 4.1.10. Let Λ be a bivariate tail dependence function. We call Λ strict if

lim
t→∞

Λ(w1, t) = w1 and lim
t→∞

Λ(t, w2) = w2

hold for all (w1, w2) ∈ R2
+.

Remark 4.1.11. Assume that in addition to the almost everywhere pointwise convergence of
the partial derivatives, the tail dependence functions of all 2-copulas Ci are strict. Then an
application of Scheffé’s Lemma (see Novinger (1972)) yields

lim
s↘0

∞∫︂
0

⃓⃓⃓
∂1Ci(st, sw)1[0, 1s ]

(t)− ∂1Λ (t, w ;Ci)
⃓⃓⃓
dt = 0

for all i = 1, . . . , d, which in turn implies

ϕC (Λ ( · ;C1) , . . . ,Λ ( · ;Cd)) (w) = Λ (w ;ϕC (C1, . . . , Cd))

due to Theorem 4.1.9.

Example 4.1.12. Suppose Cϕ is an Archimedean 2-copula with generator ϕ, which is regularly
varying in 0 with parameter −α ∈ (−∞, 0). Then its tail dependence function equals (see
Lemma 2.5.13)

Λ (w ;Cϕ) =
(︁
w−α
1 + w−α

2

)︁−1/α
.

Thus, Λ ( · ;Cϕ) is strict. The convergence of the partial derivatives follows similarly to the
proof of Theorem 3.1 in Charpentier and Segers (2009) when combined with Theorem 1 in
Charpentier and Segers (2007). Therefore, Archimedean copulas fulfil the conditions given in
Remark 4.1.11, whenever ϕ is differentiable in a neighbourhood of zero.

The next approach to a condition that ensures (4.6) does not utilize the Lipschitz continuity
of the copula C and yields a different condition in terms of the convergence of the partial
derivatives.

Theorem 4.1.13. Suppose C is a d-copula, C1, . . . , Cd are 2-copulas and that their generalized
Markov product possesses a tail dependence function. If

lim
s↘0

∂1Ci(st, sw) = ∂1Λ (t, w ;Ci)

holds for all w ∈ R+, almost all t ∈ R+ and all i = 1, . . . , d, then

ϕC (Λ ( · ;C1) , . . . ,Λ ( · ;Cd)) (w) ≤ Λ (w ;ϕC (C1, . . . , Cd))

for all w ∈ Rd
+. Additionally, if there exists an ℓ ∈ {1, . . . , d} such that

∂1Cℓ(sτ, swℓ)1[0, 1s ]
(τ) ≤ gwℓ

(τ)

for all wℓ ∈ [0, 1] and some family (gw)w∈[0,1] of integrable functions, it holds

ϕC (Λ ( · ;C1) , . . . ,Λ ( · ;Cd)) (w) = Λ (w ;ϕC (C1, . . . , Cd)) .
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Proof. By the definition of the tail dependence function and an application of Fatou’s lemma
for positive measurable functions, it holds that

Λ (w ;ϕC (C1, . . . , Cd)) = lim
s↘0

1

s

1∫︂
0

C (∂1C1(t, sw1), . . . , ∂1Cd(t, swd)) dt

= lim
s↘0

1

s

1
s∫︂

0

C (∂1C1(sτ, sw1), . . . , ∂1Cd(sτ, swd)) s dτ

= lim
s↘0

∫︂
R+

C (∂1C1(sτ, sw1), . . . , ∂1Cd(sτ, swd))1[0, 1s ]
(τ) dτ

≥
∫︂
R+

lim
s↘0

C (∂1C1(sτ, sw1), . . . , ∂1Cd(sτ, swd))1[0, 1s ]
(τ) dτ

=

∫︂
R+

C (∂1Λ (τ, w1 ;C1) , . . . , ∂1Λ (τ, wd ;Cd)) dτ

= ϕC (Λ ( · ;C1) , . . . ,Λ ( · ;Cd)) (w) .

If component ℓ’s partial derivative is dominated by an integrable function gwℓ
, we have that

for τ ≤ 1/s

C (∂1C1(sτ, sw1), . . . , ∂1Cd(sτ, swd)) ≤ C+ (∂1C1(sτ, sw1), . . . , ∂1Cd(sτ, swd))

≤ ∂1Cℓ(sτ, swℓ) ≤ gwℓ
(τ) .

The desired result follows from the dominated convergence theorem.

Example 4.1.14. If C has a tail dependence function and continuous second-order partial
derivatives, then Joe et al. (2010) have shown that

lim
s↘0

∂1C(st, sw) = ∂1Λ (t, w ;C)

holds for almost all t and all w ∈ R+, thus fulfilling the condition of Theorem 4.1.13.

Example 4.1.15. Consider the lower extreme-value copula CLEV induced by the tail depend-
ence function Λ ∈ T2. It follows from Proposition 2.5.1 that CLEV is the survival copula of
the extreme value copula CEV induced by Λ. Thus, employing the positive homogeneity of
degree 0 of ∂1Λ(u, v), we have

∂1C
LEV (su, sv) = 1− ∂1C

EV (1− su, 1− sv)

= 1− CEV (1− su, 1− sv)

1− su
(1− ∂1Λ(− log(1− su),− log(1− sv)))

= 1− CEV (1− su, 1− sv)

1− su⏞ ⏟⏟ ⏞
→1 as s↘0

⎛⎜⎜⎜⎝1− ∂1Λ

⎛⎜⎜⎜⎝1,
log(1− sv)

log(1− su)⏞ ⏟⏟ ⏞
→v/u as s↘0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .
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As t ↦→ ∂1Λ(w, t) is increasing and bounded from below by 0 and from above by 1, we have

lim
s↘0

∂1C
LEV (su, sv) = ∂1Λ

(︂
1,
v

u

)︂
= ∂1Λ (u, v)

for almost all u and all v ∈ [0, 1].

The lower bound behaviour stated in Theorem 4.1.13 is generally the best result possible,
as can be seen from the following example.

Example 4.1.16. Consider the lower Fréchet-Hoeffding bound C−, which is symmetric and
left invertible, i.e. (C−)⊤ ∗C− = C+. Then an application of Theorem 5.5.3 in Durante and
Sempi (2016) yields

ϕC
(︁
C−, C−)︁ = C− ∗ C− = (C−)⊤ ∗ C− = C+ .

Hence, for w = (w1, w2) ∈ R2
+,

ϕC
(︁
Λ
(︁
· ;C−)︁ ,Λ (︁ · ;C−)︁)︁ (w) = 0 ≤ min {w1, w2}

= Λ
(︁
w ;C+

)︁
= Λ

(︁
w ;ϕC

(︁
C−, C−)︁)︁ ,

which is strict for every w ∈ (0,∞)2.

Let us now study some examples investigating the behaviour of the Markov product on T2
for different 2-copulas C.

Example 4.1.17. Let C be a d-copula and Λ1, . . . ,Λd ∈ T +, where

T + :=
{︂
Λ ∈ T2

⏐⏐⏐ ∂1Λ(w) = α1[0, βαw2](w1) for some α, β ∈ (0, 1]
}︂

= {Λ ∈ T2 | Λ(w) = min {αw1, βw2} for some α, β ∈ (0, 1]} .

Then

ϕC (Λ1, . . . ,Λd) (w) = C (α1, . . . , αd) Λ

(︃
β1
α1
w1, . . . ,

βd
αd
wd ;C

+

)︃
.

The influence of the choice of C on the product is depicted in Figure 4.1. For the two tail
dependence functions Λ1(w1, w2) = min

{︁
2w1
3 , w2

}︁
and Λ2(w1, w2) = min

{︁
w1
2 ,

w2
4

}︁
, the res-

ulting (restricted) generalized Markov product ϕC (Λ1,Λ2) is shown by the green line for the
choices C = C−, C = Π and C = C+, respectively.

Example 4.1.18. Taking the product of Λ1 ∈ T + and an arbitrary Λ2 ∈ T2 yields

ϕC (Λ1,Λ2) (w1, w2) =

β
α
w1∫︂

0

C(α, ∂1Λ2(t, w2)) dt .

The above expression can be explicitly calculated for some choices of C:
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(b) ϕΠ (Λ1,Λ2).
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(c) ϕC+ (Λ1,Λ2).

Figure 4.1: Plots of the product ϕC (Λ1,Λ2) (t, 1− t) (green line) for different choices of C as
described in Example 4.1.17. The tail dependence functions Λ1(t, 1− t) = min

{︁
2t
3 , 1− t

}︁
and

Λ2(t, 1− t) = min
{︁

t
2 ,

1−t
4

}︁
are depicted in black, the upper bound Λ+ in grey.

1. If C = C−, we have

ϕC− (Λ1,Λ2) (w1, w2) = Λ2(p
∗ ∧ β

α
w1, w2) + (α− 1)Λ

(︃
p∗,

β

α
w1 ;C

+

)︃
since the monotonicity of t ↦→ ∂1Λ2(t, w2) yields the existence of a p∗ = p∗(α,w2) ≥ 0
with

∂1Λ2(t, w2) + α− 1 ≥ 0 for all t ≤ p∗ and ∂1Λ2(t, w2) + α− 1 ≤ 0 for all t > p∗ .

2. If C = Π, then ϕΠ (Λ1,Λ2) (w1, w2) = Λ2 (βw1, αw2).

3. By a similar argument as in 1, for C = C+, it holds

ϕC+ (Λ1,Λ2) (w1, w2) = Λ
(︁
αp∗, βw1 ;C

+
)︁
+ Λ2

(︃
β

α
w1, w2

)︃
− Λ2

(︃
p∗ ∧ β

α
w1, w2

)︃
,

where p∗ = p∗(1− α,w2).

The influence of the choice of C on the product is depicted in Figure 4.2, where the resulting
(restricted) generalized Markov product ϕC (Λ1,Λ2) is shown by the green line for the choices
C = C−, C = Π and C = C+, respectively.

4.2 Monotonicity of the Markov product

Figures 4.1 and 4.2 already suggest a monotonicity of the Markov product whenever C fulfils
a negative dependence property. In this section, we will treat this property in more detail.

Theorem 4.2.1. Let Λ1, . . . ,Λd ∈ T2 and C ∈ Cd be negative quadrant dependent, i.e. C(u) ≤
Π(u) for all u ∈ [0, 1]d. Then, for k ∈ {1, . . . , d} and w ∈ Rd

+,

ϕC (Λ1, . . . ,Λd) (w) ≤ ϕΠ (Λ1, . . . ,Λd) (w) ≤ min
ℓ=1,...,d
ℓ ̸=k

Λk(wℓ, wk) .
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(b) ϕΠ (Λ1,Λ2).

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

(c) ϕC+ (Λ1,Λ2).

Figure 4.2: Plots of the product ϕC (Λ1,Λ2) (t, 1− t) (green line) for different choices of C as
described in Example 4.1.18. The tail dependence functions Λ1(t, 1 − t) = min

{︁
t, 1−t

2

}︁
and

Λ2(t, 1− t) = t(1− t) are depicted in black, the upper bound Λ+ in grey.

This result decidedly contrasts with the behaviour of the Markov product for 2-copulas,
where for example

C− ≤ C+ = C− ∗ C− .

Note that Theorem 4.2.1 is incorrect without the assumption that C ≤ Π, as can be seen
in Figure 4.2 (c). We will give two different proofs of Theorem 4.2.1. The first one is given
below, while the second proof is deferred to Section 4.4 since it uses the theory of substochastic
operators developed there.

Proof. Due to Λ1 ≤ Λ+, we have

t∫︂
0

∂1Λ1(s, w1) ds ≤
t∫︂

0

∂1Λ
+(s, w1) ds

for all w1 and t ∈ [0,∞). Hardy’s Lemma (see Proposition 2.3.6 in Bennett and Sharpley
(1988)) yields for any nonnegative decreasing function f : R+ → R+ that

∞∫︂
0

∂1Λ1(s, w1)f(s) ds ≤
∞∫︂
0

∂1Λ
+(s, w1)f(s) ds =

w1∫︂
0

f(s) ds .

Thus, for all tail dependence functions Λ2, . . . ,Λd and any w ∈ Rd
+, it holds

ϕΠ (Λ1, . . . ,Λd) (w) =

∞∫︂
0

∂1Λ1(s, w1)∂1Λ2(s, w2) · · · ∂1Λd(s, wd) ds

≤
w1∫︂
0

∂1Λ2(s, w2) · · · ∂1Λd(s, wd) ds

= ϕw1,Π (Λ2, . . . ,Λd) (w2, . . . , wd) .

An application of Property 4 from Proposition 4.1.5 yields the desired result.
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Corollary 4.2.2. Let C be an idempotent 2-copula, i.e. a copula fulfilling C ∗ C = C. Then
for all w ∈ R2

+,
Λ (w ;C ∗ C) ≥ (Λ ( · ;C) ∗ Λ ( · ;C))(w) .

Proof. Theorem 4.2.1 in combination with C ∗ C = C immediately yields

Λ (w ;C ∗ C) = Λ (w ;C) ≥ (Λ ( · ;C) ∗ Λ ( · ;C))(w) .

The next lemma shows that the behaviour of the restricted bivariate tail dependence func-
tion ˜︁Λ at zero and at one has a surprising influence on the global behaviour of Λ, connecting
the derivative of ˜︁Λ in zero to the behaviour of Λ near ∞.

Lemma 4.2.3. Let Λ be a bivariate tail dependence function. Then the right-hand derivative
of ˜︁Λ in 0 fulfils ˜︁Λ′(0) ∈ [0, 1] and

lim
y→∞

Λ(x, y) = ˜︁Λ′(0) · x (4.8)

holds for all x ∈ R+.

Proof. As tail dependence functions are concave, the right-hand derivative ˜︁Λ′(0) exists and
lies between 0 and 1. Then, for all x ∈ (0,∞), it holds that

lim
y→∞

Λ(x, y) = lim
y→∞

(x+ y)Λ

(︃
x

x+ y
,

y

x+ y

)︃
= lim

y→∞
x
x+ y

x
˜︁Λ(︃ x

x+ y

)︃
= lim

t↘0
x
˜︁Λ(t)
t

= x · ˜︁Λ′(0) .

The equality for x = 0 follows immediately.

In light of Lemma 4.2.3, we can now strengthen Theorem 4.2.1 for bivariate tail depend-
ence functions at zero and at one. Due to the concavity of tail dependence functions and
Remark 2.4.6, an application of Theorem 4.2.1 yields

( ˜︂Λ1 ∗ Λ2)
′(0) = lim

s↘0

( ˜︂Λ1 ∗ Λ2)(s)

s
≤ lim

s↘0

min
{︂˜︂Λ1(s),˜︂Λ2(s)

}︂
s

= min
{︂˜︂Λ1

′
(0),˜︂Λ2

′
(0)
}︂
,

despite of Figure 4.3 suggesting a much stronger result.

Proposition 4.2.4. For Λ1 and Λ2 ∈ T2, it holds

( ˜︂Λ1 ∗ Λ2)
′(0) = ˜︁Λ′

1(0) · ˜︁Λ′
2(0) and ( ˜︂Λ1 ∗ Λ2)

′(1) = −˜︁Λ′
1(1) · ˜︁Λ′

2(1) .

Furthermore, for any negative quadrant dependent 2-copula C, i.e. C ≤ Π, it holds

−˜︁Λ′
1(1) · ˜︁Λ′

2(1) ≤ ( ˜︂Λ1 ∗C Λ2)
′(t) ≤ ˜︁Λ′

1(0) · ˜︁Λ′
2(0)

for all t ∈ [0, 1].

Proof. Since the proof relies on techniques developed in Section 4.4, we will again defer the
proof to the end of Section 4.4.
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Figure 4.3: Plots of the products (Λ1 ∗Λ2)(t, 1− t) and (Λ2 ∗Λ3)(t, 1− t) (green line). The tail
dependence functions Λ1(t, 1−t) = min

{︁
t, 1−t

2

}︁
,Λ2(t, 1−t) = 1

2 min
{︁
t, 1−t

2

}︁
and Λ3(t, 1−t) =

t(1− t) are depicted in black, the upper bound Λ+ in grey.

We now present a general smoothing property concerning the Markov product on T2, which
is reminiscent of the one for the Markov product on C2 stated in Trutschnig (2013). Note that
a convex function is differentiable on an open and convex set U if and only if it is continuously
differentiable on U (see Corollary 25.5.1 in Rockafellar (1997)).

Theorem 4.2.5. The Markov product of tail dependence functions Λ1 ∗ Λ2 is continuously
differentiable whenever Λ1 or Λ2 is continuously differentiable.

To prove the above theorem, we require the following lemma, which may also be of inde-
pendent interest.

Lemma 4.2.6. Suppose f : R2
+ → R+ is a positive homogeneous function of degree 1, i.e.

f(sx) = sf(x) for all s > 0. Then, for every x ∈ (0,∞)2, ∂1f(x) exists and is finite if and
only if ∂2f(x) exists and is finite.

Proof. Without loss of generality, suppose ∂1f(x) exists and is finite for some x ∈ (0,∞)2,
otherwise consider f⊤(x1, x2) := f(x2, x1). Then it holds for h small enough

f(x1, x2 + h)− f(x1, x2)

h

=
x2+h
x2

f( x2
x2+hx1, x2)− f(x1, x2)

h

=
x2 + h

x2

f(x1 − h
x2+hx1, x2)−

x2
x2+hf(x1, x2)

h

=
x2 + h

x2

f(x1 − h
x2+hx1, x2)− f(x1, x2)

h
+
x2 + h

x2

f(x1, x2)− x2
x2+hf(x1, x2)

h

=
x2 + h

x2

f(x1 − h
x2+hx1, x2)− f(x1, x2)

h
+
f(x1, x2)

x2
.
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Now, setting s := h
x2+hx1 yields

f(x1, x2 + h)− f(x1, x2)

h
=
x2 + h

x2

f(x1 − h
x2+hx1, x2)− f(x1, x2)

hx1
x2+h

x2+h
x1

+
f(x1, x2)

x2

=
x1
x2

f(x1 − s, x2)− f(x1, x2)

s
+
f(x1, x2)

x2
.

Thus, the assertion now follows for h→ 0 from

∂2f(x1, x2) = lim
h→0

f(x1, x2 + h)− f(x1, x2)

h
=
f(x1, x2)− x1∂1f(x1, x2)

x2
.

Proof of Theorem 4.2.5. Without loss of generality, suppose Λ1 is differentiable. Otherwise,
consider (Λ1∗Λ2)

⊤ = Λ⊤
2 ∗Λ⊤

1 . By Theorem 25.2 in Rockafellar (1997), Λ1∗Λ2 is differentiable
in w whenever the two partial derivatives ∂1(Λ1 ∗Λ2)(w) and ∂2(Λ1 ∗Λ2)(w) exist in w and
are finite. Since Λ1 ∗ Λ2 is positive homogeneous, Lemma 4.2.6 implies that we only need to
show that ∂1(Λ1 ∗ Λ2)(w) exists and is finite for every w ∈ (0,∞)2. Using the right-hand
partial derivative of Λ2, it holds

∂1(Λ1 ∗ Λ2)(w) = lim
h→0

(Λ1 ∗ Λ2)(w1 + h,w2)− (Λ1 ∗ Λ2)(w1, w2)

h

= lim
h→0

1

h

⎛⎝ ∞∫︂
0

∂2Λ1(w1 + h, t)∂+1 Λ2(t, w2) dt−
∞∫︂
0

∂2Λ1(w1, t)∂
+
1 Λ2(t, w2) dt

⎞⎠
= lim

h→0

1

h

⎛⎝ ∞∫︂
0

∂+1 Λ2(t, w2) Λ1(w1 + h,dt)−
∞∫︂
0

∂+1 Λ2(t, w2) Λ1(w1,dt)

⎞⎠ ,

due to Λ1(w1, · ) being continuously differentiable. Here, Λ1(x,dt) for x ∈ {w1, w1 + h}
denotes the Lebesgue-Stieltjes measure. An application of integration by parts (see Hewitt
(1960) or Carter and Brunt (2000)) yields

∞∫︂
0

∂+1 Λ2(t, w2) Λ1(x, dt) = −
∞∫︂
0

Λ1(x, t) ∂
+
1 Λ2(dt, w2) ,

where we used that ∂+1 Λ2(t, w2) and Λ1(x, t) have no common discontinuities in combination
with

lim
t→∞

∂+1 Λ2(t, w2) = 0 ,
⃓⃓
∂+1 Λ2(t, w2)

⃓⃓
≤ 1 and 0 ≤ Λ1(x,w2) ≤ min {x,w2} .
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Thus,

∂1(Λ1 ∗ Λ2)(w) = lim
h→0

−1

h

⎛⎝ ∞∫︂
0

Λ1(w1 + h, t) ∂+1 Λ2(dt, w2)−
∞∫︂
0

Λ1(w1, t) ∂
+
1 Λ2(dt, w2)

⎞⎠
= lim

h→0
−

∞∫︂
0

Λ1(w1 + h, t)− Λ1(w1, t)

h
∂+1 Λ2(dt, w2)

= −
∞∫︂
0

∂1Λ1(w1, t) ∂
+
1 Λ2(dt, w2) ∈ [0, 1] .

The last equality follows from an application of the dominated convergence theorem due to⃓⃓⃓⃓
Λ1(w1 + h, t)− Λ1(w1, t)

h

⃓⃓⃓⃓
≤ 1 and

∞∫︂
0

1
⃓⃓
∂+1 Λ2(dt, w2)

⃓⃓
= ∂+1 Λ2(0, w2) ≤ 1 .

Note that repeating the same reasoning as above for the second component only yields that
∂2(Λ1 ∗ Λ2)(w) exists almost everywhere, such that we apply Lemma 4.2.6 instead.

While the left-inverse with respect to the Markov product for 2-copulas can be used to
analyse complete dependence and extremal points of C2, the reduction property impedes an
analogy for tail dependence functions.

Theorem 4.2.7. Suppose Λ is a bivariate tail dependence function.

1. If Λ is left-invertible, i.e. if there exists a bivariate tail dependence function ξ such that
ξ ∗ Λ(w) = Λ (w ;C+), then Λ(w) = Λ (w ;C+).

2. If ∂1Λ(w1, w2) ∈ {0, 1} for almost all w1 ∈ R+, then Λ(w1, w2) = Λ (w1, αw2 ;C
+) for

some α ∈ [0, 1].

Proof. 1. If Λ is left-invertible with left-inverse ξ, then

Λ
(︁
w ;C+

)︁
= (ξ ∗ Λ)(w) ≤ Λ(w) ≤ Λ

(︁
w ;C+

)︁
.

2. Assume Λ is a tail dependence function with ∂1Λ(w1, w2) ∈ {0, 1} for almost all w1 ∈
R+. Then there exists a mapping α : [0,∞) → [0, 1] such that

∂1Λ(w1, w2) = 1[0,α(w2)w2](w1) .

The positive homogeneity of Λ implies that ∂1Λ is positive homogeneous of order 0, i.e.
constant along rays. Thus, for all s > 0, this leads to

1[0,α(sw2)w2](w1) = 1[0,α(sw2)sw2](sw1) = ∂1Λ(sw1, sw2)

= ∂1Λ(w1, w2) = 1[0,α(w2)w2](w1) .

Consequently, α(sw2) = α(w2) = α.
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Lastly, we derive a monotonicity property of the Markov product with respect to the point-
wise order of tail dependence functions.

Proposition 4.2.8. For Λ1,Λ2 ∈ T2, the following are equivalent:

1. Λ1(w) ≤ Λ2(w) for all w ∈ R2
+.

2. (Λ1 ∗ Λ)(w) ≤ (Λ2 ∗ Λ)(w) for all w ∈ R2
+ and all Λ ∈ T2.

Proof. The implication 2 to 1 follows immediately from the choice Λ = Λ+. Conversely,
assuming Λ1(w) ≤ Λ2(w) for all w ∈ R2

+, we have

w2∫︂
0

∂2Λ1(w1, t) dt = Λ1(w) ≤ Λ2(w) =

w2∫︂
0

∂2Λ2(w1, t) dt .

Since t ↦→ ∂1Λ(t, w2) is nonnegative and decreasing for any tail dependence function Λ ∈ T2,
Proposition 2.3.6 in Bennett and Sharpley (1988) yields

(Λ1 ∗ Λ)(w) =

∞∫︂
0

∂2Λ1(w1, t)∂1Λ(t, w2) dt ≤
∞∫︂
0

∂2Λ2(w1, t)∂1Λ(t, w2) dt = (Λ2 ∗ Λ)(w) .

4.3 Iterates of the Markov product

In the context of 2-copulas, the concepts of iterates and idempotents of the Markov product
are widely investigated (see, for instance, Darsow and Olsen (2010) or Trutschnig (2013)).
To investigate these concepts in the setting of tail dependence functions, we define the n-th
iterate of the Markov product for 2-copulas and tail dependence functions as

C∗n := C ∗ C∗(n−1) and Λ∗n := Λ ∗ Λ∗(n−1)

with C∗0 := C+ and Λ∗0 := Λ+, respectively. In this section, we study the asymptotic
behaviour of Λ∗n and apply the results to idempotents of the Markov product. First, we
develop a basic understanding using two simple examples.

Example 4.3.1. Consider a copula C with

∂1Λ (w ;C) = 1[0,αw2](w1) for some α ∈ [0, 1] .

A simple calculation yields

Λ ( · ;C)∗2 (w) =

∞∫︂
0

∂2Λ (w1, t ;C)1[0,αw2](t) dt = Λ(w1, αw2 ;C)

and iteratively

Λ ( · ;C)∗n (w) = Λ
(︁
w1, α

n−1w2 ;C
)︁
→

{︄
0 for α ∈ [0, 1)

min {w1, w2} for α = 1
.

Thus, in this example, the limiting behaviour of Λ∗n is either given by Λ0 or Λ+.



4.3 Iterates of the Markov product 63

The next example treats a class of tail dependence functions, which will be utilized to
dominate arbitrary tail dependence functions and ultimately characterize idempotents.

Example 4.3.2. For 0 ≤ p ≤ 1
2 , define the (restricted) tail dependence function

˜︁Λ(s) :=
⎧⎪⎨⎪⎩
s for 0 ≤ s < p

p for p ≤ s ≤ 1− p

1− s for 1− p < s ≤ 1

. (4.9)

Following Remark 2.4.6, ˜︁Λ can be extended to a tail dependence function on R2
+. A straight-

forward calculation yields the recurrence equation

Λ∗(n+1)(w1, w2) = (1− p)Λ∗n
(︃
1

q
w1, w2

)︃
+ pΛ∗n (qw1, w2)

with q := 1−p
p . It can be solved in two steps. First, it holds

Λ∗(n+1)(w1, w2) =

n∑︂
ℓ=0

anℓΛ
(︂
qn−2ℓw1, w2

)︂
with anℓ ∈ R+ such that

a00 = 1 , an+1
0 = pn , an+1

n+1 = (1− p)n and an+1
ℓ = (1− p)anℓ−1 + panℓ for 1 ≤ ℓ ≤ n .

The general solution to multivariate recurrences of this type was derived by Neuwirth (2001)
and Mansour and Shattuck (2013) and is given by

anℓ =

(︃
n

ℓ

)︃
(1− p)ℓpn−ℓ for 0 ≤ ℓ ≤ n .

Using the positive homogeneity of Λ, we arrive at the solution

Λ∗(n+1)(w1, w2) = pn
n∑︂

ℓ=0

(︃
n

ℓ

)︃
Λ
(︂
qn−ℓw1, q

ℓw2

)︂
.

An example of the behaviour of Λ∗n is shown in Figure 4.4 for different n and p = 1
3 . We will

now derive the asymptotic behaviour of Λ∗n for n → ∞. Due to the iterated Markov product
being symmetric and due to the monotonicity of ∗, it suffices to consider w1 = w2 = 1

2 and
uneven n = 2k + 1. Then, it holds

Λ∗(2k+1)

(︃
1

2
,
1

2

)︃
=
p2k

2

2k∑︂
ℓ=0

(︃
2k

ℓ

)︃
Λ
(︂
q2k−ℓ, qℓ

)︂
=
p2k

2

2k∑︂
ℓ=0

(︃
2k

ℓ

)︃(︂
q2k−ℓ + qℓ

)︂ ˜︁Λ(︃ q2k−ℓ

q2k−ℓ + qℓ

)︃

≤ p2k
k∑︂

ℓ=0

(︃
2k

ℓ

)︃
qℓ − p2k+1qk

(︃
2k

k

)︃

=

k∑︂
ℓ=0

(︃
2k

ℓ

)︃
(1− p)ℓp2k−ℓ −

(︃
2k

k

)︃
pk+1(1− p)k ,
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(d) ˜︃Λ∗5(s)

Figure 4.4: Plots of the tail dependence function Λ from Equation (4.9) and its iterations Λ∗n

for n = 2, 3 and 5 and p = 1
3 .

where the inequality is due to the definition of ˜︁Λ(s) and equality holds in case of p = 1/2.
While the second part converges to zero as n→ ∞, the first part is a truncated binomial sum
and by the weak law of large numbers, we have

lim
k→∞

max
w1+w2=1

Λ∗(2k+1) (w1, w2) = lim
k→∞

Λ∗(2k+1)

(︃
1

2
,
1

2

)︃
≤ lim

k→∞

k∑︂
ℓ=0

(︃
2k

ℓ

)︃
(1− p)ℓp2k−ℓ −

(︃
2k

k

)︃
pk+1(1− p)k

=

{︄
0 for p < 1

2
1
2 for p = 1

2

.

Due to 0 ≤ Λ∗(2k+1), the above inequality is in fact an equality.

Using the monotonicity property of the Markov product from Proposition 4.2.8 and the fact
that the previous examples dominate any tail dependence function, we arrive at the following
result.

Theorem 4.3.3. Let Λ be a bivariate tail dependence function. Then

lim
n→∞

Λ∗n(w) =

{︄
Λ (w ;C+) for Λ = Λ ( · ;C+)

Λ (w ; Π) for Λ ̸= Λ( · ;C+)
.

This result gives another indication that the Markov product has smoothing properties, as
tail independence, i.e. Λ (w ;C) = 0, corresponds to Fréchet-differentiability of C in zero.

Proof. If Λ = Λ+, the result is immediate. Thus, consider a tail dependence function Λ with
Λ ̸= Λ+. Define

p := max
t∈[0,1]

˜︁Λ(t) < 1

2

and set

˜︁Λp(s) :=

⎧⎪⎨⎪⎩
s for 0 ≤ s < p

p for p ≤ s ≤ 1− p

1− s for 1− p < s ≤ 1

.
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Thus, Λp dominates Λ, i.e. Λ ≤ Λp, and Proposition 4.2.8 yields by induction

Λ∗n(w) = Λ ∗ Λ∗(n−1)(w) ≤ Λp ∗ Λ∗(n−1)(w) ≤ Λ∗n
p (w) → 0

for any p < 1
2 as seen in Example 4.3.2.

Theorem 4.3.3 has two immediate corollaries, one regarding idempotent tail dependence
functions, and the other considering the tail behaviour of idempotent copulas.

Corollary 4.3.4. A bivariate tail dependence function Λ ∈ T2 is idempotent, i.e. Λ ∗ Λ = Λ,
if and only if Λ = Λ+ or Λ = Λ0.

Proof. If Λ is idempotent, we have

Λ(w) = lim
n→∞

Λ∗n(w) =

{︄
Λ (w ;C+) for Λ = Λ ( · ;C+)

Λ (w ; Π) for Λ ̸= Λ( · ;C+)
.

Conversely, Λ0 and Λ+ are idempotent.

Finally, we link the previous results to the tail behaviour of idempotent 2-copulas.

Corollary 4.3.5. Suppose C is a twice continuously differentiable idempotent 2-copula with
a strict tail dependence function. Then Λ (w ;C) = Λ (w ;C+).

Proof. As C is twice differentiable with strict tail dependence function, it holds

Λ (w ;C) = Λ (w ;C ∗ C) = Λ ( · ;C) ∗ Λ ( · ;C) (w) .

Thus Λ (w ;C) is idempotent. The assertion now follows from Λ (w ;C) ̸= Λ(w ; Π), as
Λ (w ;C) is a strict tail dependence function.

4.4 Substochastic operators

We previously saw the close resemblance between the set of 2-copulas and the set of bivariate
tail dependence functions endowed with their respective Markov products. For the set of
2-copulas, Olsen et al. (1996) derived an isomorphism to integral-preserving linear operators.
Along those lines, we will subsequently draw a connection between a certain class of linear
operators and bivariate tail dependence functions. For this, we define the underlying space

L1(R+) + L∞(R+) :=
{︁
g + h

⏐⏐ g ∈ L1(R+) and h ∈ L∞(R+)
}︁
,

where both L1(R+) and L∞(R+) are subsets of L1(R+) + L∞(R+). Furthermore, we can
equip L1(R+) + L∞(R+) with a norm based on its two constituent spaces (see Bennett and
Sharpley (1988))

∥f∥L1+L∞ := inf
{︁
∥g∥1 + ∥h∥∞

⏐⏐ f = g + h with g ∈ L1(R+) and h ∈ L∞(R+)
}︁
.

Definition 4.4.1. A linear operator T : L1(R+) + L∞(R+) → L1(R+) + L∞(R+) is called
doubly substochastic if
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1. T is positive, i.e. Tf ≥ 0 whenever f ≥ 0.

2. T (L1(R+)) ⊂ L1(R+) and T (L∞(R+)) ⊂ L∞(R+).

3. T is nonexpansive on L1(R+) and on L∞(R+), i.e. ∥Tg∥1 ≤ ∥g∥1 and ∥Th∥∞ ≤ ∥h∥∞
for all g ∈ L1(R+) and all h ∈ L∞(R+).

4. For all positive h ∈ L∞(R+) and hn ∈ L1(R+) ∩ L∞(R+) such that hn ↗ h pointwise,
we have

Th = sup
n∈N

Thn .

For arbitrary h ∈ L∞(R+), we have Th = Th+ − Th−, where h± := max {±h, 0}.

We call T equivariant if
T (f ◦ σ) = (Tf) ◦ σ

holds for all dilations σ(x) := x
s with s > 0.

Substochastic operators can be seen as a generalization of Markov operators, in the same
way as doubly substochastic matrices generalize doubly stochastic matrices. Property 4 of
Definition 4.4.1 is a technical requirement to ensure the unique continuation from Lp(R+)
to L∞(R+) for 1 ≤ p < ∞. This property is often used in the study of (sub-)Markovian
operators and semigroups (see, for example, Section 1.6 in Fukushima, Oshima and Takeda
(2010)) but unnecessary in the case of 2-copulas and bounded domains. A comprehensive
introduction to substochastic operators can be found in Bennett and Sharpley (1988).

In the following, we establish a one-to-one correspondence between substochastic operat-
ors and subdistribution functions. While many of the proofs work similarly to the case of
compact spaces in Olsen et al. (1996), some modifications are needed due to the underlying
nonfiniteness of the measure space R+.

Definition 4.4.2. A function F : Rd
+ → R+ is called a subdistribution function if it is

positive, d-increasing, bounded by Λ+ and Lipschitz continuous with Lipschitz constant 1 with
respect to the ℓ1-norm on Rd.

Subdistribution functions constitute a generalization of tail dependence functions, for which
the condition of positive homogeneity is relaxed.

Remark 4.4.3. The class of d-variate tail dependence functions exactly corresponds to the
class of positive homogeneous subdistribution functions.

Lemma 4.4.4. Let T be a doubly substochastic operator. Then

FT (x, y) :=

x∫︂
0

T1[0,y](s) ds

is a bivariate subdistribution function. If T is additionally equivariant, then FT is a bivariate
tail dependence function, i.e. FT ( · ) = Λ ( · ;C) for some 2-copula C.
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Proof. 1. Because 0 ≤ FT is immediate for positive T , we only need to show that FT is
bounded from above by Λ ( · ;C+):

x∫︂
0

T1[0,y](s) ds ≤

⎧⎪⎪⎨⎪⎪⎩
∞∫︁
0

T1[0,y](s) ds ≤
∞∫︁
0

1[0,y](s) ds = y

x∫︁
0

T1R+(s) ds ≤ x
.

2. Let R = [x1, x2)× [y1, y2) with x1 < x2 and y1 < y2. Then the linearity of T yields

VFT
(R) =

x2∫︂
x1

T1[y1,y2](s) ds ≥ 0 .

3. Finally, we check the Lipschitz continuity of FT with Lipschitz constant 1. To do so, let
x1, x2, y1 and y2 ∈ R+. Then

|FT (x2, y2)− FT (x1, y1)| ≤ |FT (x2, y2)− FT (x1, y2)|+ |FT (x1, y2)− FT (x1, y1)|

≤
max{x1,x2}∫︂

min{x1,x2}

T1[0,y2](s) ds+

x1∫︂
0

T1[min{y1,y2},max{y1,y2}](s) ds

≤
⃦⃦
T1[0,y2]

⃦⃦
∞ |x2 − x1|+

⃦⃦
T1[min{y1,y2},max{y1,y2}]

⃦⃦
1

≤
⃦⃦
1[0,y2]

⃦⃦
∞ |x2 − x1|+

⃦⃦
1[min{y1,y2},max{y1,y2}]

⃦⃦
1

= |x2 − x1|+ |y2 − y1| .

Hence, FT is a bivariate subdistribution function. Finally, the positive homogeneity of FT

follows from

FT (sx, sy) =

sx∫︂
0

T1[0,sy](t) dt =

sx∫︂
0

T1[0,y]

(︃
t

s

)︃
dt =

x∫︂
0

T1[0,y] (z) s dz = sFT (x, y)

for any s > 0. Thus, FT is a positive homogeneous, bounded and 2-increasing function, and
the claim follows from Proposition 2.4.4.

Lemma 4.4.5. Let F be a bivariate subdistribution function. Then

TF : L1(R+) + L∞(R+) → L1(R+) + L∞(R+)

TF f(x) = ∂x

∞∫︂
0

∂2F (x, t)f(t) dt

defines a doubly substochastic operator. Moreover, if F is a bivariate tail dependence function,
then TF is equivariant.

Sketch of the proof of Lemma 4.4.5. The proof can be outlined as follows:



68 4 A Markov product for tail dependence functions

1. We show that

Tf(x) := ∂x

∞∫︂
0

∂2F (x, t)f(t) dt (4.10)

defines an operator from L∞(R+) to L∞(R+). Furthermore, T fulfils the (adapted)
Properties 1 to 4 of Definition 4.4.1, where T is nonexpansive with respect to ∥ · ∥1 for
L1(R+) ∩ L∞(R+) only. Furthermore, T is equivariant whenever F is positive homo-
geneous.

2. We extend (the restricted operator) T : L1(R+)∩L∞(R+) → L1(R+)∩L∞(R+) uniquely
to a continuous linear operator T1 : L1(R+) → L1(R+). The operator T1 is positive,
equivariant, nonexpansive with respect to ∥ · ∥1 and again follows the form given in
(4.10).

Combining 1 and 2, we define for f ∈ L1(R+) + L∞(R+)

TF f := T1g + Th = ∂x

∞∫︂
0

∂2F (x, t)f(t) dt ,

where f = g + h for some g ∈ L1(R+) and h ∈ L∞(R+). By construction, T and T1 agree on
L1(R+) ∩ L∞(R+), yielding that TF is independent of the choice of g and h. In particular,
TF fulfils Properties 1 to 4 of Definition 4.4.1.

Part 1 of the proof of Lemma 4.4.5. Since x ↦→ ∂2F (x, t) is increasing for all fixed t ∈ R+,
we have for any f ∈ L∞(R+) that |f | ± f ≥ 0 and thus

∞∫︂
0

∂2F (x, t) (|f | ± f) (t) dt

is again an increasing function in x and its derivative exists almost everywhere. Thus, rep-
resenting f as a linear combination of |f |+ f and |f | − f implies that Tf exists. Let us now
verify the Properties 1 to 4 of Definition 4.4.1 adapted to L∞(R+).

a) Let f be positive. As ∂2F (x2, t)− ∂2F (x1, t) ≥ 0 for x1 ≤ x2, we have that

∞∫︂
0

∂2F (x2, t)f(t) dt−
∞∫︂
0

∂2F (x1, t)f(t) dt ≥ 0

and hence Tf ≥ 0.

b) To prove Properties 2 and 3, we note that

g(x) :=

∞∫︂
0

∂2F (x, t)f(t) dt
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is Lipschitz continuous with Lipschitz constant L = ∥f∥∞: For x1 ≤ x2, we have

|g(x2)− g(x1)| =

⃓⃓⃓⃓
⃓⃓
∞∫︂
0

(∂2F (x2, t)− ∂2F (x1, t)) f(t) dt

⃓⃓⃓⃓
⃓⃓

≤ ∥f∥∞

∞∫︂
0

|∂2F (x2, t)− ∂2F (x1, t)| dt

= ∥f∥∞

∞∫︂
0

(∂2F (x2, t)− ∂2F (x1, t)) dt

= ∥f∥∞ lim
R→∞

[F (x2, t)− F (x1, t)]
R
0 ≤ ∥f∥∞ |x2 − x1| ,

(4.11)

where the second equality is due to x ↦→ ∂2F (x, t) being increasing since F is 2-
increasing. The last inequality follows from the Lipschitz continuity and grounding
of F . Thus, T is nonexpansive on L∞(R+).
Now let f be in L1(R+) ∩ L∞(R+). Combining the linearity and positivity of T leads
to

|Tf | =
⃓⃓
T (f+ − f−)

⃓⃓
≤ Tf+ + Tf− = T |f | .

Thus, without loss of generality, let f be positive. Using the absolute continuity of g,
we have

∞∫︂
0

Tf(x) dx =

∞∫︂
0

∂x

∞∫︂
0

∂2F (x, t)f(t) dt dx = lim
R→∞

R∫︂
0

∂x

∞∫︂
0

∂2F (x, t)f(t) dt dx

= lim
R→∞

∞∫︂
0

∂2F (R, t)f(t) dt ≤ lim
R→∞

∞∫︂
0

f(t) dt =

∞∫︂
0

f(t) dt ,

due to 0 ≤ ∂2F (R, t) ≤ 1 and therefore T is nonexpansive on L1(R+) ∩ L∞(R+) with
∥Tf∥1 ≤ ∥f∥1.

c) It remains to show Property 4. To do so, we assume f ≥ 0, otherwise one can use
the decomposition f = f+ − f− and treat f+ and f− separately. We first choose
fn := f1[0,n] ↗ f and set hn := f − fn ↘ 0. As Thn ≥ 0 is a decreasing sequence due
to the positivity of T , it converges towards a measurable h ≥ 0. Moreover,

gn(x) :=

∞∫︂
0

∂2F (x, t)hn(t) dt =

∞∫︂
n

∂2F (x, t)f(t) dt→ 0 ,

as ∂2F (x, t) ∈ L1(R+) ∩ L∞(R+) and f ∈ L∞(R+). Thus, for all x ∈ R+, we have by
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the absolute continuity of gn

0 = lim
n→∞

gn(x) = lim
n→∞

x∫︂
0

g′n(t) dt = lim
n→∞

x∫︂
0

Thn(t) dt

=

x∫︂
0

lim
n→∞

Thn(t) dt =

x∫︂
0

h(t) dt ≥ 0 ,

where the exchange of the integral and limit is legitimate due to an application of the
monotone convergence theorem. Therefore, h = 0 holds almost everywhere and

T (f − fn) = Thn ↘ 0 =⇒ Tfn ↗ Tf .

Finally, suppose fn, gk ∈ L1(R+) ∩ L∞(R+) and fn ↗ f and gk ↗ f . Due to
min {fn, gk} ↗ fn as k → ∞, it holds that

Tfn = sup
k∈N

TF (min {fn, gk}) ≤ sup
k∈N

Tgk .

Switching the roles of fn and gk yields the independence from the approximating se-
quence.

Combining the previous three results, one sees that T indeed constitutes an operator from
L∞(R+) onto L∞(R+) which fulfils the adapted Properties 1 to 4. If F is also positive
homogeneous, then for any s > 0 and σ(x) := x

s

T (f ◦ σ)(x) = ∂x

∞∫︂
0

∂2F (x, t)f

(︃
t

s

)︃
dt

= ∂x

∞∫︂
0

∂2F (x, sz)f (z) s dz

= ∂x

∞∫︂
0

∂2F
(︂x
s
, z
)︂
f (z) dz = Tf

(︂x
s

)︂
.

Part 2 of the proof of Lemma 4.4.5. It remains to show that Equation (4.10) also defines an
operator from L1(R+) to L1(R+). Crucially, L1(R+) ∩ L∞(R+) is dense in L1(R+) with
respect to ∥ · ∥1 and T is nonexpansive on L1(R+) ∩ L∞(R+) with respect to ∥ · ∥1. Thus,
using the continuous linear extension theorem (see, e.g., Theorem 1.9.1 in Megginson (1998)),
we can extend T uniquely from L1(R+) ∩ L∞(R+) to L1(R+) via

T1f := lim
n→∞

Tfn ,

where f ∈ L1(R+) and fn ∈ L1(R+) ∩ L∞(R+) such that ∥f − fn∥1 → 0. It follows from the
properties of T that T1 is positive, nonexpansive on L1(R+) and equivariant. An application
of the representation theorem 2.3.9 in Dunford and Pettis (1940) then yields

T1f(x) = ∂xSf(x) := ∂x

∞∫︂
0

K(x, t)f(t) dt
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with a kernel function K : R+ × R+ → R such that, among other properties, Sf(x) is
absolutely continuous and K(x, · ) ∈ L∞(R+). Using the Lipschitz continuity of F in the first
component, we have

F (x, y) =

x∫︂
0

∂1F (t, y) dt =

x∫︂
0

T1[0,y](t) dt =

x∫︂
0

T11[0,y](t) dt

=

x∫︂
0

∂tS1[0,y](t) dt =

∞∫︂
0

K(x, t)1[0,y](t) dt =

y∫︂
0

K(x, t) dt

Since F is also absolutely continuous in the second component, it holds ∂2F (x, y) = K(x, y)
for all x ∈ R+ and almost all y ∈ R+. Thus, T1 takes again the form (4.10).

As a consequence of Lemmas 4.4.4 and 4.4.5, we obtain our main result, establishing the
correspondence between subdistribution functions and substochastic operators.

Theorem 4.4.6. Let F be a bivariate subdistribution function and T a substochastic operator,
and define Φ(T ) := FT and Ψ(F ) := TF . Then Φ ◦ Ψ and Ψ ◦ Φ define identities on their
respective spaces. Furthermore, F is positive homogeneous if and only if TF is equivariant.

Proof. Starting with a subdistribution function F , we can use its Lipschitz continuity to
obtain

(Φ ◦Ψ(F ))(x, y) =

x∫︂
0

Ψ(F )1[0,y](s) ds =

x∫︂
0

∂s

∞∫︂
0

∂2F (s, t)1[0,y](t) dt ds

=

x∫︂
0

∂s

y∫︂
0

∂2F (s, t) dt ds =

x∫︂
0

∂sF (s, y) ds = F (x, y) .

Conversely, for the function f(t) = 1[0,y](t), the absolute continuity shown in the proof of
Lemma 4.4.4 yields

(Ψ ◦ Φ(T ))f(x) = ∂x

∞∫︂
0

∂2Φ(T )(x, t)f(t) dt = ∂x

∞∫︂
0

∂t

x∫︂
0

T1[0,t](s) dsf(t) dt

= ∂x

y∫︂
0

∂t

x∫︂
0

T1[0,t](s) ds dt = ∂x

x∫︂
0

T1[0,y](s) ds = T1[0,y](x) .

Thus, Ψ ◦ Φ(T ) and T are substochastic operators which agree for every 1[0,y] and therefore
agree on L1(R+). Property 4 of Definition 4.4.1 now ensures that T and Ψ ◦ Φ coincide on
L1(R+)+L

∞(R+). Finally, Lemmas 4.4.4 and 4.4.5 yield the equivalence between the positive
homogeneity of F and the equivariance of TF .

The correspondence between substochastic operators and subdistribution functions is a
structure-preserving isomorphism translating ∗ into ◦ and vice versa. To verify the structure
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preservation property, we need to introduce a slight generalization of the previously introduced
Markov product for tail dependence functions. The Markov product of two subdistribution
functions F and G is analogously defined for all w ∈ R2

+ as

(F ∗G)(w) =

∞∫︂
0

∂2F (w1, t) · ∂1G(t, w2) dt .

We want to show that F ∗ G is again a subdistribution function. Applying Remark 4.1.4, it
only remains to show the Lipschitz continuity of F ∗G, which follows as in Equation (4.11).

Theorem 4.4.7. Let F and G be subdistribution functions. Then

TF∗G = TF ◦ TG .

Proof. In view of Theorem 4.4.6, it suffices to prove that

Φ (TF ◦ TG) (w) = Φ (TF∗G) (w) = (F ∗G)(w)

for all w ∈ R2
+. To do so, we use the Lipschitz continuity to obtain

Φ (TF ◦ TG) (w) =

w1∫︂
0

(TF ◦ TG)1[0,w2](s) ds =

w1∫︂
0

∂s

∞∫︂
0

∂2F (s, t)TG1[0,w2](t) dt ds

=

∞∫︂
0

∂2F (w1, t)TG1[0,w2](t) dt

=

∞∫︂
0

∂2F (w1, t)∂t

∞∫︂
0

∂2G(t, s)1[0,w2](s) ds dt

=

∞∫︂
0

∂2F (w1, t)∂1G(t, w2) dt = (F ∗G)(w) .

The next result establishes a connection between the doubly substochastic operator of F
and the doubly substochastic operator of its transpose F⊤ where F⊤(x, y) := F (y, x).

Proposition 4.4.8. Let f ∈ L∞(R+), g ∈ L1(R+) and F be a bivariate subdistribution
function. Then

∞∫︂
0

(TF f)(x)g(x) dx =

∞∫︂
0

f(x)TF⊤g(x) dx .

Proof. As the space of compactly supported and smooth functions is dense in L1(R+), we
only need to show the desired result for g ∈ C∞

0 (R+). A calculation identical to the proof of
Lemma 2.4 from Olsen et al. (1996) yields the result, except that for the integration by parts
formula, we apply that g is compactly supported as well as ∂2F (0, t) = 0, which holds due to
F (0, t) ≡ 0.
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Using this connection between the ‘adjoint’ of T and the transpose of F , we can establish
a relation between strict subdistribution functions and Markov operators.

Definition 4.4.9. Let F be a bivariate subdistribution function. Then we call F strict if

lim
t→∞

F (w1, t) = w1 and lim
t→∞

F (t, w2) = w2

for all (w1, w2) ∈ R2
+.

Definition 4.4.10. Let T be a doubly substochastic operator. T is called a doubly stochastic
operator or Markov operator if

T1R+ = 1R+ and
∞∫︂
0

Tf(x) dx =

∞∫︂
0

f(x) dx

for all f ∈ L1(R+).

Proposition 4.4.11. Let F be a bivariate subdistribution function. Then F is strict if and
only if TF and TF⊤ are Markov operators.

Proof. First, let F be strict. Then,

TF1R+(x) = ∂x

∞∫︂
0

∂2F (x, t)1R+(t) dt = ∂x

∞∫︂
0

∂2F (x, t) dt

= ∂x

(︂
lim
t→∞

F (x, t)− F (x, 0)
)︂
= ∂xx = 1R+(x)

for all x ∈ R+. Now let f be in L1(R+), then it holds

∞∫︂
0

f(x) dx =

∞∫︂
0

1R+(x)f(x) dx =

∞∫︂
0

(TF⊤1R+)(x)f(x) dx

=

∞∫︂
0

1R+(x)TF f(x) dx =

∞∫︂
0

TF f(x) dx

using Proposition 4.4.8 and the strictness of F⊤. The claims for TF⊤ can be proven analog-
ously. Conversely, if TF is doubly stochastic, then

lim
t→∞

F (t, w2) = lim
t→∞

t∫︂
0

TF1[0,w2](s) ds =

∞∫︂
0

TF1[0,w2](s) ds =

∞∫︂
0

1[0,w2](s) ds = w2

and, analogously, lim
t→∞

F (w1, t) = w1 whenever TF⊤ is doubly stochastic.

Finally, using the theory of substochastic operators, we present an alternative proof of
Theorem 4.2.1 and a proof of Proposition 4.2.4.
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Proof of Theorem 4.2.1. For every substochastic operator T and every t ≥ 0, it holds

t∫︂
0

(Tf)∗(s) ds ≤
t∫︂

0

f∗(s) ds

or, in short, Tf ≺ f , where f∗ denotes the decreasing rearrangement of f (see Chapter 1 in
Bennett and Sharpley (1988)). Thus,

∂1(Λ1 ∗ Λ2)(w1, w2) = ∂1

∞∫︂
0

∂2Λ1(w1, s)∂1Λ2(s, w2) ds

= TΛ1∂1Λ2( · , w2)(w1)

≺ ∂1Λ2(w1, w2),

and together with the concavity of the tail dependence function, the assertion follows from

(Λ1 ∗ Λ2)(w1, w2) =

w1∫︂
0

∂1(Λ1 ∗ Λ2)(t, w2) dt ≤
w1∫︂
0

∂1Λ2(t, w2) dt = Λ2(w1, w2) .

Proof of Proposition 4.2.4. The same argument as the one applied in the proof of Proposi-
tion 4.4.11 shows

lim
y→∞

Λ2(x, y) = ˜︂Λ2
′
(0) · x =⇒ TΛ21R+(x) =

˜︂Λ2
′
(0)1R+(x) .

Combined with the continuity property of substochastic operators (see Property 4 in Defini-
tion 4.4.1), we have

lim
y→∞

∂1Λ2(x, y) = lim
y→∞

TΛ21[0,y](x) = TΛ21R+(x) =
˜︂Λ2

′
(0)1R+(x) .

An application of the dominated convergence theorem then yields

( ˜︂Λ1 ∗ Λ2)
′(0) = lim

y→∞
(Λ1 ∗ Λ2)(1, y)

= lim
y→∞

∞∫︂
0

∂2Λ1(1, t)∂1Λ2(t, y) dt

=

∞∫︂
0

∂2Λ1(1, t)˜︂Λ2
′
(0)1R+(t) dt

= ˜︂Λ2
′
(0) lim

t→∞
Λ1(1, t) = ˜︂Λ2

′
(0) ·˜︂Λ1

′
(0) .

The second claim can be derived by observing that ˜︁Λ′(1) = −˜︂Λ⊤
′
(0). Finally, the last assertion

stems from the fact that ˜︂Λ1 ∗C Λ2 is concave and thus has a monotone derivative.



5 Stochastic monotonicity and the Markov
product for copulas

The Markov product for tail dependence functions exhibits many analytical and dynamical
properties which simply do not hold in the case of 2-copulas. From the convergence properties
in Proposition 4.1.7 to the dynamical behaviour of iterates and idempotents in Section 4.3, the
analytical properties of tail dependence functions play a fundamental role. But why do tail
dependence functions yield such strong results when combined with the Markov product? One
key aspect is that the partial derivatives w1 ↦→ ∂1Λ(w1, w2) as well as w2 ↦→ ∂2Λ(w1, w2) are
decreasing, thereby fitting into the context of majorization theory presented in Section 2.6.
In combination with the equivalence between the pointwise ordering and the majorization
ordering ⪯ introduced in Definition 2.6.5 and adapted to the domain R+ (see Bennett and
Sharpley (1988)) via

Λ1 ≤ Λ2 ⇔ ∂1Λ1( · , w2) ⪯ ∂1Λ2( · , w2) for all w2 ∈ R+ ,

many results of Chapter 4 follow quite naturally, such as Λ1 ∗ Λ2 ≤ min {Λ1,Λ2}. A similar
result cannot hold for copulas in general, consider for instance (C− ∗ C−)(u) = C+(u) >
C−(u) for u ∈ (0, 1)2. So, is it worthwhile to investigate these results for concave or convex
copulas? Unfortunately, it is well-known that concavity is too strong a concept for copulas
(see, e.g., Section 3.4.3 in Nelsen (2006)). In fact, any concave d-copula C fulfils

λ ≥ C(λ, . . . , λ) = C(λ1+ (1− λ)0) ≥ λC(1) + (1− λ)C(0) = λ

with λ ∈ [0, 1], implying C = C+. Similarly, the only convex copula is C− in dimension
2, and none exist in dimension d > 2. Thus, we first have to find an appropriate notion
of multivariate concavity to transfer the above ideas and results. Nelsen (2006) and Alvoni,
Durante, Papini and Sempi (2007) present an extensive comparison of such concepts in the
setting of copulas, including global concavity, directional concavity (that is, concavity in every
component whenever the other components are held fixed), componentwise concavity (that
is, concavity in only one specific component when the other components are held fixed) and
Schur-concavity.

In light of the techniques applied in Chapter 4, we study the consequences of monotonicity
of u ↦→ ∂1C(u, v) for all v. Exploiting the connection between the partial derivative and
the conditional expectation stated in Proposition 2.2.1, componentwise concavity captures
a monotone influence of one random variable on another one. More precisely, we say X2 is
stochastically increasing in X1 whenever the corresponding conditional distribution functions
are pointwise decreasing, i.e.

x1 ↦→ P(X2 ≤ x2 | X1 = x1)
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is decreasing. Similarly, X2 is called stochastically decreasing in X1 if P(X2 ≤ x2 | X1 = x1) is
increasing in x1. We will discuss stochastically increasing as well as stochastically decreasing
pairs of random variables under the term stochastically monotone.

In applications, stochastic monotonicity is extensively used to account for directed rela-
tions between random variables as it enables, e.g., the study of the long-term behaviour of
economic models such as stochastic recursions of the form Xn+1 = f(Xn, Zn) (see Stokey, Lu-
cas and Prescott (1989) or Foss, Shneer, Thomas and Worrall (2018) for details). Illustrative
data examples which exhibit stochastic monotonicity are given by the connection between
expenditures and income of a household or the income mobility from one generation to the
next and can be found in Lee, Linton and Whang (2009). Furthermore, many parametric
distribution families such as the multivariate Gaussian distribution, extreme-value copulas
and certain Archimedean copulas are stochastically monotone, thereby providing a common
framework to treat features of these seemingly disparate models (see Joe (2015)).

Aside from a stochastic introduction given in Nelsen (2006), the notion of stochastic mono-
tonicity has mainly been considered from a geometric— and, crucially, symmetric— point
of view under the term ‘directional concavity’. This more restrictive concept of directional
concavity requires that a copula C is stochastically monotone in every component (see, e.g.,
Alvoni et al. (2007), Durante and Papini (2009) and Dolati and Nezhad (2014) for an extens-
ive treatment). One obvious drawback of this symmetric approach is the loss of a directed
influence between random variables, as it suggests a circular interaction: An increase in X1

leads to an increase in X2, which in turn leads to higher values in X1, and so on. We there-
fore focus on a directed approach, which still possesses many of the advantageous analytical
properties seen in Chapter 4.

Building upon the isomorphism between 2-copulas and Markov operators given in The-
orem 2.2.3, we show that stochastically monotone copulas are in one-to-one correspondence
with monotonicity-preserving Markov operators. As a by-product, this implies that the set
of stochastically monotone copulas is closed under the application of the Markov product,
i.e. C1 ∗ C2 is again stochastically monotone if both factors C1 and C2 are. We also show
that for stochastically monotone copulas, many notions of convergences, such as uniform con-
vergence and convergence of the partial derivatives, coincide. Similar results have recently
been established in Kasper, Fuchs and Trutschnig (2021) for Archimedean and extreme-value
copulas.

Furthermore, we characterize stochastically increasing copulas by their reduction property
under the Markov product with respect to the stochastic dominance ordering. More precisely,
we prove that a copula C is stochastically increasing if and only if

(D ∗ C)(u) ≤ C(u)

holds for all u ∈ [0, 1]2 and all 2-copulas D. Similar to our findings for tail dependence
functions (see Section 4.3), this reduction property enables us to characterize idempotents
and the asymptotic behaviour of limits of stochastically monotone copulas as ordinal sums of
the independence copula. The greater variety of possible behaviours of the idempotents and
the limits as compared to the case of tail dependence functions is due to the fact that copulas
are, in general, not positive homogeneous.

This chapter is based on Siburg and Strothmann (2021b) and is structured as follows: Sec-
tion 5.1 establishes a connection between stochastically monotone copulas and monotonicity-



5.1 Stochastic monotonicity for copulas and Markov operators 77

preserving Markov operators, as well as some topological closure properties of stochastically
monotone copulas. Section 5.2 contains the aforementioned characterization of stochastic
monotonicity in terms of a reduction property concerning the Markov product. Section 5.3
identifies idempotent, stochastically monotone copulas as ordinal sums of Π.

5.1 Stochastic monotonicity for copulas and Markov operators

Definition 5.1.1. A 2-copula C is called stochastically increasing (decreasing) in the i-th
component if ui ↦→ ∂iC(u1, u2) is decreasing (increasing) for almost all ui ∈ [0, 1].

Whenever the meaning is clear, we will drop the specification ‘in the i-th component’. If the
distinction between ui ↦→ ∂iC(u1, u2) being increasing or decreasing is of no concern, we simply
call C stochastically monotone. Furthermore, we will state many results only with respect to
the first component, from which the results in the other component follow by transposition.
We denote the set of all in the first component stochastically increasing (decreasing) copulas
by C↑ (C↓). Note that stochastically increasing 2-copulas have a decreasing partial derivative.
This is due to the fact that for real-valued random variables X and Y , X is smaller than Y
in the usual stochastic dominance order, X ≤st Y in short, if

FX(t) ≥ FY (t)

holds for all t ∈ R.
From now on, we drop the vector notation u = (u1, u2) as we will be exclusively considering

bivariate copulas, unless explicitly stated otherwise. Instead, we use (u, v) for a generic ele-
ment of [0, 1]2. We begin by presenting some well-known examples of stochastically monotone
2-copulas.

Example 5.1.2. Suppose C is an Archimedean 2-copula (see Definition 2.5.5),

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) ,

with Archimedean generator ϕ. If the generalized inverse ϕ[−1] is twice-differentiable, C is
stochastically increasing in both components if and only if log

(︂
−ϕ[−1]′

)︂
is convex (see Pro-

position 3.3 in Capéraà and Genest (1993)). In particular, the independence copula Π with
generator ϕ(t) = − log(t) is stochastically increasing.

Example 5.1.3. The class of extreme-value 2-copulas

CEV (u, v ; Λ) := exp

(︃
log(uv)

(︃
1− ˜︁Λ(︃ log(u)

log(uv)

)︃)︃)︃
(5.1)

given in Proposition 2.5.1, where ˜︁Λ : [0, 1] → [0, 1/2] is a concave function fulfilling 0 ≤˜︁Λ(t) ≤ min {t, 1− t} for all t ∈ [0, 1], is stochastically increasing in both components (see
Theorem 1 in Garralda Guillem (2000)). This class includes both Π and C+ as examples with˜︁Λ(t) = 0 and ˜︁Λ(t) = min (t, 1− t), respectively.
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Figure 5.1: Plots depicting the partial derivatives of the checkerboard copula C#
3 (A) with

respect to the first and second component. The doubly stochastic matrix A is given in
Example 5.1.4.

All of these examples are stochastically increasing in both components, and thus do not
allow for an only unidirectional positive influence between the random variables. Additionally,
many common construction methods using 2-copulas as building blocks also preserve the
stochastic increasing property in both components, such as convex combinations and ordinal
sums of stochastically increasing 2-copulas (see Durante and Papini (2009)). A 2-copula
which is stochastically increasing in the first but not in the second component is given by the
following example.

Example 5.1.4. A straightforward calculation shows that the checkerboard-copula

C#
3 (A)(u, v) = 3

3∑︂
k,ℓ=1

akℓ

u∫︂
0

1[ k−1
n

, k
n)
(s) ds

v∫︂
0

1[ ℓ−1
n

, ℓ
n)
(t) dt

with the doubly stochastic matrix A = (akℓ)k,ℓ=1,2,3 ∈ R3×3,

A =

⎛⎝2/3 0 1/3
1/3 1/3 1/3
0 2/3 1/3

⎞⎠ ,

is stochastically increasing in the first but not the second component. A plot of the partial
derivatives of C#

3 (A) is depicted in Figure 5.1. A necessary and sufficient condition for a
checkerboard copula to be stochastically increasing can be found in Section 6.2.

To simplify subsequent proofs, we will first present a direct connection between stochastic-
ally increasing and stochastically decreasing copulas, allowing us to transfer results obtained
for stochastically increasing copulas to stochastically decreasing ones and vice versa.

Lemma 5.1.5. The mapping C ↦→ (C− ∗ C) is an involution between C↑ and C↓.
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Proof. The claim follows immediately from ∂1(C
− ∗C)(u, v) = ∂1C(1− u, v) for almost all u

and all v ∈ [0, 1] and any 2-copula C.

The class of stochastically monotone copulas also provides additional structure to strengthen
convergence properties since the monotonicity yields the equivalence of uniform convergence
and pointwise convergence of the partial derivative.

Proposition 5.1.6. Let (Cn)n∈N be a sequence of stochastically monotone 2-copulas (in the
first component). Then the following are equivalent:

1. Cn converges uniformly towards C.

2. ∂1Cn(u, v) converges pointwise towards ∂1C(u, v) for all v and almost all u ∈ [0, 1].

Proof. Using the dominated convergence theorem, 2 implies 1. Conversely, suppose Cn con-
verges uniformly towards C. Due to Cn( · , v) and C( · , v) being concave (convex) for all
v ∈ [0, 1], Lemma 1 in Tsuji (1952) implies

lim
n→∞

∂1Cn(u, v) = ∂1C(u, v)

for almost all u ∈ [0, 1] and all v ∈ [0, 1]. This yields the implication 1 to 2.

Remark 5.1.7. Together with an application of the dominated convergence theorem, Pro-
position 5.1.6 yields the equivalence of uniform convergence and D1-convergence (see Defini-
tion 2.3.5) for stochastically monotone copulas. More precisely, for a sequence of stochastically
monotone copulas (Cn)n∈N, ∥Cn − C∥∞ → 0 if and only if D1(Cn, C) → 0. Moreover, C↑ and
C↓ are closed with respect to d∞ and D1.

Remark 5.1.8. The equivalence of 1 and 2 in Proposition 5.1.6 also holds for completely
dependent copulas and their corresponding Markov operators, the so-called Markov embeddings,
a proof of which can be found in Theorem 13.11 in Eisner, Farkas, Haase and Nagel (2015).

We now give the main result of this section and characterize the behaviour of stochastically
monotone 2-copulas and their corresponding Markov operators. We say f ∈ L1([0, 1]) is
monotone if there exists a monotone function g : [0, 1] → R such that f = g holds almost
everywhere.

Theorem 5.1.9. Suppose X and Y are continuous random variables with copula CXY . Then
the following are equivalent

1. Y is stochastically increasing (decreasing) in X.

2. CXY is stochastically increasing (decreasing) in the first component.

3. CXY (u, v) is concave (convex) in u for all v ∈ [0, 1].

4. TCXY
is a monotonicity-preserving (monotonicity-reversing) Markov operator, i.e. it

maps decreasing integrable functions onto decreasing (increasing) functions.

5. E(f(Y ) | X = x) is decreasing (increasing) for every decreasing function f for which
the expectation E(f(Y )) exists.
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Proof of Theorem 5.1.9. We give the proof for stochastically increasing random variables; the
case of stochastically decreasing random variables is analogous. The equivalence of the first
three assertions is shown in Nelsen (2006). Suppose 4 holds, then f = 1[0,v] yields 2. For
the implication 2 to 4, note that TCXY

maps decreasing indicator functions onto decreasing
functions due to

TCXY
1[0,v]( · ) = ∂1CXY ( · , v)

being decreasing for all v ∈ [0, 1]. Using the approximation of monotone functions via mono-
tone indicator functions and applying the monotone convergence theorem, Assertion 4 follows.
Similarly, 1 and 5 are equivalent due to

E(1[0,y](Y ) | X = x) = P(Y ≤ y | X = x) .

5.2 The Markov product of stochastically monotone copulas

Theorem 5.1.9 guarantees that the composition of two monotonicity-preserving Markov oper-
ators is again monotonicity-preserving. Using the isomorphism between (C2, ∗) and Markov
operators equipped with the composition, we establish the following closure property of C↑

and C↓ with respect to the Markov product.

Corollary 5.2.1. Suppose C1 and C2 ∈ C2 are stochastically monotone in the first component.
Then C1 ∗ C2 is again stochastically monotone in the first component. More precisely:

1. C1 ∗C2 is stochastically increasing if both C1 and C2 are either stochastically increasing
or stochastically decreasing.

2. C1 ∗ C2 is stochastically decreasing if one of C1 and C2 is stochastically increasing and
the other one is stochastically decreasing.

Proof. If C1 and C2 are stochastically monotone in the first component, using Theorem 5.1.9,
TC1 and TC2 map monotone functions onto monotone functions. Their composition therefore
also maps monotone functions onto monotone functions. Assertions 1 and 2 follow immedi-
ately from a case-by-case analysis using Property 4 of Theorem 5.1.9.

The above closure property is only one aspect of the interplay between stochastically mono-
tone 2-copulas and the Markov product. The next result shows that stochastically increasing
2-copulas maximize the Markov product. Note that we observed a similar property for tail
dependence functions in Theorem 4.2.1.

Theorem 5.2.2. Let C be a 2-copula. C is stochastically increasing in the first component if
and only if

(D ∗ C)(u, v) ≤ C(u, v) .

holds for all 2-copulas D and all u, v ∈ [0, 1]. On the other hand, C is stochastically decreasing
in the first component if and only if

C(u, v) ≤ (D ∗ C)(u, v)

holds for all 2-copulas D and all u, v ∈ [0, 1].
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Theorem 5.2.2 also yields that the Markov operator TC is monotonicity-preserving if and
only if

u∫︂
0

(TD ◦ TC)f(t) dt ≤
u∫︂

0

TCf(t) dt

holds for all decreasing functions f ∈ L1([0, 1]), all u ∈ [0, 1] and all Markov operators TD.

Proof. We will only show the first equivalence, the second one then follows from Lemma 5.1.5.
Since

v∫︂
0

∂2D(u, t) dt = D(u, v) ≤ C+(u, v) =

v∫︂
0

1[0,u](t) dt

holds for all u, v ∈ [0, 1], an application of Hardy’s Lemma (see Proposition 2.3.6 in Bennett
and Sharpley (1988)) yields

(D ∗ C)(u, v) =
1∫︂

0

∂2D(u, t)∂1C(t, v) dt ≤
1∫︂

0

1[0,u](t)∂1C(t, v) dt = C(u, v) .

Now, we turn to the converse implication and assume D ∗ C ≤ C holds for all 2-copulas D.
Let v ∈ (0, 1) be arbitrary and set f(u) := ∂1C(u, v). Using Proposition 2.6.3, there exists
a measure-preserving transformation σ : [0, 1] → [0, 1] and a decreasing function g : [0, 1] →
[0, 1] such that

∂1C(u, v) = f(u) = g(σ(u)) = Tσg(u) ,

where Tσ is a left-invertible Markov operator (commonly known as a Koopman operator).
Using Theorem 2.2.3, Tσ corresponds to a left-invertible 2-copula Cσ. An application of the
adjoint T ′

σ together with the left-invertibility of Tσ (see Remark 2.6.4) yields

g(u) = T ′
σ∂1C( · , v)(u) = ∂1(C

⊤
σ ∗ C)(u, v) .

Setting D := C⊤
σ ∗C, we have ∂1D(u, v) = g(u) almost everywhere. Therefore u ↦→ ∂1D(u, v)

is decreasing and fulfils by assumption

D(u, v) = (C⊤
σ ∗ C)(u, v) ≤ C(u, v) .

On the other hand, the Hardy-Littlewood inequality (see Proposition 2.6.7) yields

C(u, v) =

u∫︂
0

∂1C(t, v) dt ≤
u∫︂

0

∂1D(t, v) dt = D(u, v) ≤ C(u, v) .

Thus, C( · , v) = D( · , v) and u ↦→ ∂1C(u, v) must be decreasing.

Remark 5.2.3. Theorem 5.2.2 yields an alternative approach to derive the positive quadrant
dependence of stochastically increasing copulas, that is, the fact that

Π(u, v) = (Π ∗ C)(u, v) ≤ C(u, v)

holds for any stochastically increasing 2-copula C.
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Remark 5.2.4. Analogously to the previous remark, any stochastically decreasing 2-copula C
is negative quadrant dependent due to

C(u, v) ≤ (Π ∗ C)(u, v) = Π(u, v) .

Theorem 5.2.2 also characterizes stochastically increasing, completely dependent copulas.

Remark 5.2.5. A 2-copula C is called completely dependent if it is left-invertible, i.e. fulfils
C⊤ ∗C = C+. Due to Theorem 5.2.2, any completely dependent and stochastically increasing
copula C fulfils

C+ = C⊤ ∗ C ≤ C ≤ C+ ,

so that C = C+ holds.

5.3 Idempotents of stochastically monotone copulas

The rest of this chapter aims to characterize idempotent, stochastically monotone 2-copulas
and monotonicity-preserving conditional expectations. While the idempotency of C appears
to be a purely algebraic property, it translates to the fundamental stochastic property of TC
being a conditional expectation on L1([0, 1]) (see Proposition 2.2.7).

It is well-known that any idempotent 2-copula C is necessarily symmetric (see, for example,
Darsow and Olsen (2010) or Trutschnig (2013)). Therefore, whenever it is stochastically
monotone in one component, it is stochastically monotone in the same sense in the other
component. Thus, it suffices to require C to be stochastically monotone in either component
and we will simply call C stochastically monotone. Before stating the main result of this
section, let us define the ordinal sum of copulas (see Durante and Sempi (2016)).

Definition 5.3.1. Let ((ak, bk))k∈I be a countable family of disjoint intervals in (0, 1) and
(Ck)k∈I a family of 2-copulas. A 2-copula C is called an ordinal sum of (Ck)k∈I with respect
to ((ak, bk))k∈I if

C(u, v) =

{︄
ak + (bk − ak)Ck

(︂
u−ak
bk−ak

, v−ak
bk−ak

)︂
for (u, v) ∈ (ak, bk)

2 for some k ∈ I
C+(u, v) else

.

We adopt the short-hand notation C = (⟨(ak, bk) , Ck⟩)k∈I from Durante and Sempi (2016).

Theorem 5.3.2. Suppose C is a 2-copula. C is stochastically monotone and idempotent if
and only if it is an ordinal sum of Π.

We split the proof of Theorem 5.3.2 into two parts. We will begin with the result concerning
stochastically decreasing copulas.

Proposition 5.3.3. The product copula Π(u, v) = uv is the only idempotent 2-copula which
is stochastically decreasing.

Proof. Let C be a stochastically decreasing idempotent copula. Corollary 5.2.1 together with
C being idempotent yields that C = C ∗C is stochastically increasing. Thus, ∂1C(u, v) = cv ∈
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[0, 1] must hold for almost all u ∈ [0, 1], which, combined with the uniform margin property
of copulas, leads to

v =

1∫︂
0

∂1C(u, v) du =

1∫︂
0

cv du = cv .

Integrating then gives the assertion C(u, v) = uv = Π(u, v).

Proposition 5.3.3 states that the only idempotent copula in the class of stochastically de-
creasing copulas is the product copula. It is natural to ask whether the same holds true inside
the larger class of negative quadrant dependent copulas (see Remark 5.2.4). Indeed, this is
the case, as the following proposition shows.

Proposition 5.3.4. The product copula Π(u, v) = uv is the only idempotent 2-copula which
is negative quadrant dependent.

Proof. Since every idempotent copula C is symmetric (see Theorem 6.1 in Darsow and Olsen
(2010)), Lemma 5.1 in Fernández Sánchez, Trutschnig and Tschimpke (2021) yields

(C ∗ C)(u, u) = (C ∗ C⊤)(u, u) ≥ Π(u, u)

for all u ∈ [0, 1]. Combining this with the negative quadrant dependence of C, we obtain

Π(u, u) ≥ C(u, u) = (C ∗ C)(u, u) ≥ Π(u, u) .

Therefore, C has diagonal section C(u, u) = Π(u, u) = u2 and Theorem 8.7 in Darsow et al.
(1992) asserts that C = Π.

Since Proposition 5.3.3 already characterizes all idempotent, stochastically decreasing cop-
ulas, it remains to analyse the behaviour of stochastically increasing copulas. The next lemma
provides a crucial technical property for the proof of Theorem 5.3.2 by relating the partial
derivative of a stochastically increasing copula C to the rate with which C changes from
C(v, v) to v.

Lemma 5.3.5. Let C be an idempotent, stochastically increasing 2-copula. Then

(v − C(v, v))∂−2 C(u, v) = C(u, v)− C(u,C(v, v))

holds for all u, v ∈ (0, 1), where ∂−2 C denotes the left-hand derivative of C with respect to the
second component.

Proof. As C is stochastically increasing, the left-hand partial derivative ∂−2 C(u, t) exists every-
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where on (0, 1) and is decreasing. Furthermore, due to C(t, v) ≤ C+(t, v) ≤ t, we have

(C ∗ C)(u, v) =
1∫︂

0

∂2C(u, t)∂1C(t, v) dt =

1∫︂
0

∂−2 C(u, t)∂1C(t, v) dt

≤
1∫︂

0

∂−2 C(u,C
+(t, v))∂1C(t, v) dt

≤
v∫︂

0

∂−2 C(u,C(t, v))∂1C(t, v) dt+

1∫︂
v

∂−2 C(u,C
+(t, v))∂1C(t, v) dt

≤
1∫︂

0

∂−2 C(u,C(t, v))∂1C(t, v) dt =

C(1,v)=v∫︂
C(0,v)=0

∂−2 C(u, z) dz = C(u, v) .

The change of variables is possible due to the Riemann-integrability of t ↦→ ∂1C(t, v) and
t ↦→ ∂2C(u, t). Now, as (C ∗ C)(u, v) = C(u, v) holds, all inequalities are in fact equalities.
This yields

C(u, v) =

v∫︂
0

∂−2 C(u,C(t, v))∂1C(t, v) dt+

1∫︂
v

∂−2 C(u,C
+(t, v))∂1C(t, v) dt

=

v∫︂
0

∂−2 C(u,C(t, v))∂1C(t, v) dt+

1∫︂
v

∂−2 C(u, v)∂1C(t, v) dt

=

C(v,v)∫︂
C(0,v)=0

∂−2 C(u, z) dz + ∂−2 C(u, v) (v − C(v, v))

= C(u,C(v, v)) + ∂−2 C(u, v) (v − C(v, v)) .

The above property of the partial derivative is the main ingredient to prove the desired
characterization of idempotent, stochastically increasing copulas. The only difficulty remains
in the term (v − C(v, v)) ≥ 0. Whenever the latter is strictly positive, the following lemma
characterizes the corresponding copula completely. If (v − C(v, v)) = 0 for some v ∈ (0, 1),
we will need to consider the behaviour of C more closely in Theorem 5.3.7.

Lemma 5.3.6. Suppose C is a 2-copula with C(v, v) < v for all v ∈ (0, 1). Then C is
stochastically monotone and idempotent if and only if C(u, v) = uv = Π(u, v).

Proof. The assertion for stochastically decreasing copulas follows from Proposition 5.3.3.
Thus, applying Lemma 5.3.5 in combination with C being stochastically increasing, we obtain
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for arbitrary u, v ∈ (0, 1)

∂−2 C(u, v) =
C(u, v)− C(u,C(v, v))

v − C(v, v)
=

1

v − C(v, v)

v∫︂
C(v,v)

∂−2 C(u, t) dt

≥ 1

v − C(v, v)

v∫︂
C(v,v)

∂−2 C(u, v) dt = ∂−2 C(u, v) .

Therefore, the inequality above is actually an equality, and the partial derivative, not only
the left-hand derivative, fulfils ∂2C(u, t) = cu ∈ [0, 1] almost everywhere on the interval
(C(v, v), v). Since C(v, v) < v holds for all v ∈ (0, 1), {(C(v, v), v)}v∈(0,1) is a (nondis-
joint) covering of (0, 1) with intervals having nonempty interior. Consequently, we must have
∂2C(u, t) = cu for almost all t ∈ (0, 1). Hence,

u = C(u, 1) =

1∫︂
0

∂2C(u, t) dt =

1∫︂
0

cu dt = cu ,

which implies C(u, v) = uv = Π(u, v).

With the previous lemma, we are now able to characterize all idempotent, stochastically
increasing 2-copulas. Theorem 5.3.2 then follows from a combination of Proposition 5.3.3 and
Theorem 5.3.7 below.

Theorem 5.3.7. Ordinal sums of the independence copula are the only idempotent 2-copulas
which are stochastically increasing.

Proof. The proof treats three distinct cases, depending on the behaviour along the diagonal.
Suppose C is stochastically increasing and idempotent. If C(v, v) < v for all v ∈ (0, 1), then
C = Π = ⟨(0, 1) , Π⟩ due to Lemma 5.3.6. If on the other hand C(v, v) = v holds for all
v ∈ (0, 1), then C = C+ = ⟨(ak, bk) , Π⟩k∈∅. Lastly, if C(v, v) = v holds for some v ∈ (0, 1)
and C ̸= C+, Corollaries 3.2 and 3.3 from Mesiar and Sempi (2010) yield that C is the ordinal
sum of ordinally irreducible 2-copulas

C = (⟨(ak, bk) , Ck⟩)k∈I .

Due to Theorem 3.2.1 in Nelsen (2006), ordinally irreducible copulas Ck fulfil Ck(v, v) < v for
all v ∈ (0, 1). Theorem 3.1 from Albanese and Sempi (2016) then states that C is idempotent if
and only if every Ck is idempotent. Moreover, the ordinal sum C is stochastically increasing if
and only if every Ck is stochastically increasing. Thus, every Ck is idempotent, stochastically
increasing and fulfils Ck(v, v) < v on (0, 1). Lemma 5.3.6 then implies Ck = Π, which yields

C = (⟨(ak, bk) , Π⟩)k∈I .

Example 5.3.8. Apart from the extreme cases Π and C+, ordinal sums of Π can take various
forms. Three different configurations, namely(︃⟨︃(︃

0,
1

3

)︃
, Π

⟩︃
,

⟨︃(︃
5

6
, 1

)︃
, Π

⟩︃)︃
,

⟨︃(︃
1

3
, 1

)︃
, Π

⟩︃
and

(︃⟨︃(︃
k

6
,
k + 1

6

)︃
, Π

⟩︃)︃
k∈{0,...,5}

,

are depicted in Figure 5.2.
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(0, 0) (1, 0)

(1, 1)(0, 1)

(a)
(︁⟨︁
(0, 13 ) , Π

⟩︁
,
⟨︁
( 56 , 1) , Π

⟩︁)︁
.

(0, 0) (1, 0)

(1, 1)(0, 1)

(b)
⟨︁
( 13 , 1) , Π

⟩︁
.

(0, 0) (1, 0)

(1, 1)(0, 1)

(c)
(︁⟨︁
(k6 ,

k+1
6 ) , Π

⟩︁)︁
k∈{0,...,5}.

Figure 5.2: Idempotent, stochastically monotone ordinal sums of Π with respect to different
families of disjoint intervals.

Proposition 5.3.9. Suppose C is stochastically increasing in the first component. Then there
exists a countable family of intervals ((ak, bk))k∈I such that

C∗n(u, v) → (⟨(ak, bk) , Π⟩)k∈I (u, v)

holds pointwise.

A similar behaviour was established for Cesàro averages of iterates of quasi-constrictive
Markov operators in Trutschnig and Fernández Sánchez (2015).

Remark 5.3.10. Since the 2-copulas C∗n are stochastically increasing in the first component
(see Corollary 5.2.1), an application of Proposition 5.1.6 yields that the pointwise convergence

C∗n(u, v) → (⟨(ak, bk) , Π⟩)k∈I (u, v)

is equivalent to the pointwise convergence of the partial derivatives.

Proof of Proposition 5.3.9. Due to Corollary 5.2.1, C∗n is stochastically increasing for all
n ∈ N. By Theorem 5.2.2,

0 ≤ C∗n(u, v) = (C ∗ C∗(n−1))(u, v) ≤ C∗(n−1)(u, v)

follows for all u, v ∈ [0, 1]. Thus, C∗n is a decreasing sequence of copulas and as such, converges
pointwise against some C∗ ∈ C2. The pointwise limit of the concave functions u ↦→ C∗n(u, v) is
again concave, therefore C∗ is stochastically increasing in the first component. Furthermore,
due to the Markov product being continuous with respect to the pointwise convergence in one
component, we have that

C ∗ C∗ = lim
n→∞

C ∗ C∗n = C∗

holds. An inductive argument now yields

C∗ ∗ C∗ = lim
n→∞

C∗n ∗ C∗ = lim
n→∞

C∗ = C∗ .

Thus C∗ is idempotent. An application of Theorem 5.3.7 then guarantees the existence of a
countable family of intervals ((ak, bk))k∈I such that C∗ = (⟨(ak, bk) , Π⟩)k∈I .
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Finally, we translate the results of this section into the language of Markov operators and
conditional expectations. Following Proposition 2.2.7, a 2-copula C is idempotent if and
only if TC is a conditional expectation restricted to L1([0, 1],B([0, 1]), λ). Thus, it follows
immediately that a conditional expectation is monotonicity-preserving if and only if it is
pointwise either an averaging operation or the identity.

Theorem 5.3.11. Suppose T is a conditional expectation on L1([0, 1],B([0, 1]), λ). Then T
preserves or reverses monotonicity if and only if there exists a countable family of disjoint
intervals ((ak, bk))k∈I in (0, 1) with P := ∪k∈I(ak, bk) such that

TCf(u) =
∑︂
k∈I

1(ak,bk)(u)
1

bk − ak

bk∫︂
ak

f(t) dt+ 1PC (u)f(u)

for any f ∈ L1([0, 1]).





6 Rearranging copulas and dependence
measures

When investigating the relationship between several components of a complex system, e.g.,
multiple financial returns, the water levels at different locations or the concentration of various
air pollutants, we often have to reduce the entire information into easier to grasp statistics.
In Chapters 3 and 4, we have approached dependence from an extremal point of view, where
the tail dependence function was an indicator for worst-case scenarios. In contrast to this
local notion of dependence, we will now focus on a global relationship between two random
variables X and Y .

While independence as one extreme case of global dependence is clearly defined, its converse
is not. Asymmetric dependence can be described by Y = f ◦X, where f is either affine linear,
or strictly monotone, or continuous, or, in the most general case, measurable. The abstract
question about the existence of a function f with certain smoothness properties has led to the
development of various measures of dependence. Fundamentally, a measure of dependence
takes values between 0 and 1 and can exactly identify one type of dependence structure, or in
our context, one class of functions. For example, Pearson’s correlation coefficient (see Nelsen
(2006)), defined by

Corr(X,Y ) :=
Cov(X,Y )√︁

Var(X) ·
√︁
Var(Y )

whenever X and Y have finite second moments, is a measure of the linear relationship between
X and Y . Most importantly, |Corr(X,Y )| equals 1 if and only if Y = aX + b holds for some
a, b ∈ R with a ̸= 0. In short, Corr detects whether Y = f(X) holds for some affine function
f . Similarly, the Schweizer-Wolff measures (see Schweizer and Wolff (1981))

σp(X,Y ) := σp(CXY ) :=
∥CXY −Π∥p
∥C+ −Π∥p

for p ≥ 1 attain their maximal value 1 if and only if Y = f(X) holds for some strictly monotone
function f . Thus, Schweizer-Wolff measures are measures of monotone relationships.

Other successfully applied concepts of— for the lack of a better term— ‘global dependence’
also include symmetric dependencies such as the mutual information discussed in Cover and
Thomas (2006), concordance as outlined in Section 2.3 or, more recently, pure dependence
introduced by Geenens and Lafaye de Micheaux (2020). But we view asymmetry as a crucial
component of the dependence between random variables, a standpoint underlined by empirical
evidence found in finance (e.g., the connection between commodities and exchange rates in
Okimoto (2008)), hydrology (e.g., flood events considered in Bücher et al. (2017)), and even
nutritional data (see Genest, Nešlehová and Quessy (2012)). A similar case for asymmetry
in dependence modelling has recently been made by Chatterjee (2021) and by Junker et al.
(2021).
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In this chapter, we introduce a new class of measures of complete dependence, where (X,Y )
is called completely dependent if Y = f(X) holds almost surely for some measurable function
f , while building upon well-known measures of dependence. We start by briefly recalling the
key features of a ‘measure of complete dependence’ from the list of axioms given in Defini-
tion 2.3.1. A mapping µ : (X,Y ) ↦→ µ(X,Y ) ∈ [0, 1] is a measure of complete dependence if
the following three axioms are met:

(C1) µ(X,Y ) = 0 if and only if X and Y are independent.

(C2) µ(X,Y ) = 1 if and only if Y = f(X) holds for some measurable f .

Ideally, certain types of data processing should leave the value of µ invariant. For ex-
ample, a reversible affine transformation of X and Y results in the same correlation, i.e.
Corr(aX + b, cY + b) = Corr(X,Y ) for a, c ̸= 0, and strictly monotone transformations
leave the Schweizer-Wolff measures σp invariant. Considering that our measure of complete
dependence is asymmetric, we aim for the following invariance property:

(C3) µ(f(X), g(Y )) = µ(X,Y ), where g is strictly monotone and f is a measurable bijection.

Property (C3) yields that µ only depends on the copula of X and Y , i.e. µ(X,Y ) = µ(CXY )
and, in particular, does not depend on the choice of the unit.

Note that combining (C1) with (C2) already has profound implications on the global beha-
viour of µ. For any random vector (X,Y ) with independent components X and Y and con-
tinuous univariate marginal distributions, CXY can be approximated pointwise by CXnYn for
some completely dependent random variables Xn and Yn (see Example 2.3.4). Consequently,
any measure of complete dependence which is continuous with respect to pointwise conver-
gence of copulas fails entirely to detect complete dependence since there is always a copula C
corresponding to mutually completely dependent random variables with µ(C) arbitrarily close
to 0 = µ(Π). This is the case, for instance, for the Schweizer-Wolff measures and, by design,
for all measures of concordance, such as Spearman’s ρ or Kendall’s τ . However, there exist
measures of dependence that do satisfy µ(X,Y ) = 1 if and only if Y is a measurable (and not
necessarily monotone) function of X. To the best of our knowledge, the first measure with
this property was introduced in Siburg and Stoimenov (2010) to capture a symmetric variant
of complete dependence. Later, unidirectional measures of complete dependence detecting
measurable functional dependence Y = f ◦X have been introduced in Trutschnig (2011), in
Dette et al. (2013) and, in a more statistical setting, in Chatterjee (2021).

In the following, we propose a new class of complete dependence measures fulfilling (C1),
(C2) and (C3), which eliminates some of the above-described shortcomings of measures such
as ρ, τ and σp. As an essential tool in the construction of these measures, we propose a
transformation of an arbitrary copula C into a stochastically increasing copula C↑ (a property
extensively discussed in Chapter 5). Most importantly, C↑ contains the entire complete
dependence in the sense of Trutschnig (2011), Dette et al. (2013) and Chatterjee (2021).

The so-called (SI)-rearrangement C↑ is constructed from the original copula C via the
rearrangement for each v ∈ [0, 1] of the conditional expectation

∂1C(u, v) = E(V ≤ v | U = u)
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in a decreasing order with respect to u. This rearrangement technique is known as (the
Hardy-Littlewood-Pólya) majorization (see Section 2.6). Most importantly, the rearrange-
ment of C can drastically differ from the rearrangement of C⊤. In the most extreme cases C↑

equals C+, whereas (C⊤)↑ is close to Π. This corresponds to the case that Y is completely
dependent on X while X is ‘almost’ independent of Y . Precisely this asymmetry is the key
to converting symmetric measures of dependence into (directed or asymmetric) measures of
complete dependence that satisfy the axioms (C1) to (C3). Loosely speaking, the underlying
construction principle is as follows: The rearrangement transforms arbitrary measurable de-
pendence into a stochastically monotone relationship, which can then be quantified using a
measure of dependence µ with

Rµ(X,Y ) := Rµ(C) := µ(C↑) .

We call measures of complete dependence Rµ of the above form rearranged dependence meas-
ures, where choices for µ include Spearman’s ρ, Kendall’s τ or the Schweizer-Wolff measures
σp with 1 ≤ p < ∞. Contrary to the properties of the underlying measure µ, Rµ consti-
tutes a genuine measure of complete dependence detecting arbitrary functional relationships.
In case the underlying measure µ is a concordance measure κ, the rearranged concordance
measure even yields a consistent notion of functional dependence. That is, the general func-
tional influence of X on Y is at least as strong as the monotone influence given by κ, i.e.
|κ(X,Y )| ≤ Rκ(X,Y ). All rearranged dependence measures Rµ also comply with the data
processing inequality known from information theory, i.e.

Rµ(X,Y ) = sup
g
Rµ(g(X), Y ) ,

where the supremum is taken over all measurable functions g. This immediately implies an
asymmetric version of the self-equitability condition recently introduced in Kinney and Atwal
(2014), which in turn yields Axiom (C3).

To empirically apply the rearranged dependence measures, we construct a simple estimatorˆ︁Rµ for Rµ based on the convergence results for empirical checkerboard copulas established
in Junker et al. (2021), which impose no regularity conditions on the underlying copula C.
We investigate the performance of ˆ︁Rµ in a simulation study and show its fast convergence
properties with Spearman’s ρ as the underlying dependence measure.

This chapter is structured as follows: Section 6.1 introduces the (SI)-rearrangement of
a copula, while Section 6.2 provides an approximation result for the (SI)-rearrangement.
Section 6.3 presents the majorization order as an order of variability. Section 6.4 establishes
the class of rearranged dependence measures and their properties and Section 6.5 constructs
a consistent estimator of Rµ.

6.1 The (SI)-rearrangement of copulas

Recall from Chapter 5 that a copula is called stochastically increasing (decreasing) in the
first component if u ↦→ ∂1C(u, v) is decreasing (increasing) for all v ∈ [0, 1]. Again, we will
generally drop the specification ‘in the first component’ and refer to such a copula simply
as ‘stochastically increasing.’ All copulas in this section are assumed to be 2-copulas, unless
explicitly stated otherwise.



92 6 Rearranging copulas and dependence measures

In this section, we decompose an arbitrary copula C into a unique stochastically increasing
copula C↑ and a family of shuffles (Cv)v∈[0,1] via

C(u, v) = (Cv ∗ C↑)(u, v) ,

where C↑ contains the entire information about the complete dependence in the sense that

ζp(C) = ζp(C
↑) and r(C) = r(C↑)

holds, where ζp and r are given in Definition 2.3.7 and Equation (2.5), respectively. We would
like to point out that this is in sharp contrast to the well-known decomposition C = R ∗ L
of a copula C into the product of a left- and a right-invertible copula, where, in general,
neither factor contains the entire information about the complete dependence, as the following
proposition shows.

Proposition 6.1.1. Let Π = R ∗L be a decomposition of the independence copula Π into the
product of a right-invertible copula R and a left-invertible copula L. Then neither R nor L
contains the entire information about the complete dependence, i.e. neither r(R) = r(Π) = 0
nor r(L) = r(Π) = 0 holds.

Proof. By Theorem 2.2.8, Π can be decomposed into the product of a right- and a left-
invertible copula. Assume Π = R ∗ L with r(R) = 0. Then, in view of r(C) = 0 if and
only if C = Π, we must have R = Π which is a contradiction since Π is not right-invertible.
Analogously, we see that the case r(L) = 0 is not possible.

For the remainder of this chapter, (∂1C)
∗(u, v) denotes the decreasing rearrangement of

∂1C(u, v) with respect to u, and, analogously, (∂1C)∗(u, v) denotes the increasing rearrange-
ment (see Section 2.6).

Definition 6.1.2. The stochastically increasing rearrangement, (SI)-rearrangement in short,
of a copula C is defined as

C↑(u, v) :=

u∫︂
0

(∂1C)
∗(s, v) ds

for all u, v ∈ [0, 1]. Analogously, the stochastically decreasing rearrangement, (SD)-rearrange-
ment in short, of C is defined as

C↓(u, v) :=

u∫︂
0

(∂1C)∗(s, v) ds .

The following central result establishes that the (SI)-rearrangement C↑ is indeed a copula
and, most importantly, contains (in some sense) the entire information about the complete
dependence of C.1

Theorem 6.1.3. 1. The (SI)-rearrangement C↑ of a copula C is a stochastically increasing
copula. Analogously, the (SD)-rearrangement C↓ is a stochastically decreasing copula.

1Note that Ansari and Rüschendorf (2021) independently applied the decreasing rearrangement of a copula
to investigate order properties of the generalized Markov product.
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2. A copula C is stochastically increasing if and only if C = C↑.

3. For any copula C, there exists a (not necessarily unique) family of completely dependent
copulas (Cv)v∈[0,1] such that

C(u, v) = (Cv ∗ C↑)(u, v) .

4. The (SD)-rearrangement C↓ satisfies C↓ = C− ∗ C↑.

5. C↑ exhibits the same degree of complete dependence as C with regard to several measures
of complete dependence. More precisely, for any copula C, we have

ζp(C) = ζp(C
↑) = ζp(C

↓) as well as r(C) = r(C↑) = r(C↓) .

Proof. 1. We give the proof for C↑; the proof for C↓ follows from Lemma 5.1.5. In order
to show that C↑ is a copula, we verify the Properties 1 to 3 of Example 2.1.3 for the
function C↑.

a) Considering (∂1C)
∗(u, 0) = 0∗ = 0, we have C↑(u, 0) = 0, whereas C↑(0, v) = 0

follows from the integral representation of C↑.

b) By definition, we have

C↑(u, 1) =

u∫︂
0

(∂1C)
∗(s, 1) ds =

u∫︂
0

1∗ ds = u ,

and in view of Part 4 of Proposition 2.6.3, we further obtain that

C↑(1, v) =

1∫︂
0

∂1C
↑(t, v) dt =

1∫︂
0

∂1C
↑(σ(t), v) dt =

1∫︂
0

∂1C(t, v) dt = v .

c) Part 5 of Proposition 2.1.8 states that 0 ≤ ∂1C( · , v1) ≤ ∂1C( · , v2) whenever
v1 ≤ v2. Combining this with Part 2 of Proposition 2.6.3 yields (∂1C)

∗( · , v1) ≤
(∂1C)

∗( · , v2). Thus, the C↑-volume of the rectangle [u1, u2)× [v1, v2) satisfies

VC↑ ([u1, u2)× [v1, v2)) = C↑(u2, v2)− C↑(u1, v2)− C↑(u2, v1) + C↑(u1, v1)

=

u2∫︂
u1

(∂1C)
∗(s, v2)− (∂1C)

∗(s, v1) ds

≥ 0

and is indeed nonnegative.

Finally, the fact that C↑ is stochastically increasing follows from the fact that ∂1C↑(u, v)
equals (∂1C)

∗(u, v), which is decreasing in u due to Proposition 2.6.3.
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2. First, C = C↑ implies that u ↦→ C(u, v) is concave for all v ∈ [0, 1], which is equivalent
to C being stochastically increasing. Conversely, suppose C is stochastically increasing
and let f denote the right-hand derivative of u ↦→ C(u, v). Then f is decreasing and
right-continuous due to the concavity of C. An application of Theorem 4.2 in Chong
and Rice (1971) yields f = f∗ and therefore

C(u, v) =

u∫︂
0

∂1C(u, v) dt =

u∫︂
0

∂1C
∗(u, v) dt = C↑(u, v) .

3. Property 4 of Proposition 2.6.3 yields for each v ∈ [0, 1] the existence of a λ-preserving
map σv such that

∂1C(u, v) = ∂1C
↑(σv(u), v)

holds for almost all u ∈ [0, 1]. Note that Tvf := f ◦ σv constitutes a Markov oper-
ator on L1([0, 1]) and in turn corresponds to a completely dependent copula Cv by
Theorem 2.2.9. Integrating the above equality gives the pointwise relationship

C(u, v) = (Cv ∗ C↑)(u, v) .

4. This follows immediately from ∂1(C
− ∗C)(u, v) = ∂1C(1−u, v), which holds for almost

all u ∈ [0, 1] and every copula C.

5. This assertion is a consequence of Proposition 2.6.3, stating that the decreasing re-
arrangement preserves Lp-norms, i.e.

1∫︂
0

|∂1C(u, v)− v|p du =

1∫︂
0

⃓⃓⃓
∂1C

↑(u, v)− v
⃓⃓⃓p

du

for all v ∈ (0, 1). Integrating with respect to v yields the desired result.

Let us illustrate the construction of C↑ by two examples.

Example 6.1.4 (Shuffles of C+). Suppose σ : [0, 1] → [0, 1] is a λ-preserving transformation.
The (generalized) shuffle of C+ with respect to σ is defined as

∂1Cσ(u, v) := ∂1C
+(σ(u), v) ∈ {0, 1} .

Thus, Cσ is a rearrangement of C+ and its (SI)-rearrangement fulfils C↑
σ = C+. This property

plays a central role in the characterization of complete dependence using copulas (see, for
example, Lemma 10 in Trutschnig (2011)).

The next example illustrates that independence is a symmetric concept, whereas ‘almost’
independence is not.

Example 6.1.5 (n-fold gluing of the tent copula). Let us now construct a copula C for which
r(C) and r(C⊤) differ dramatically, that is, a copula with a highly asymmetric dependence
structure. To this end, we use the well-known tent copula (see Example 3.2.5 in Durante and
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Figure 6.1: Figures (a) and (c) depict the support of the transposed tent copula C⊤
1 and of

the transposed n-fold glued iteration C⊤
n , respectively. Additionally, the values of ∂1C⊤

1 (u, v)
and ∂1C⊤

n (u, v) on their respective triangles are shown. Figures (b) and (d) depict the values
of the partial derivative for the (SI)-rearrangement of C⊤

1 and C⊤
n , respectively.

Sempi (2016)) as a building block in the iterated application of the gluing technique introduced
in Siburg and Stoimenov (2008b). The tent copula is given by

C1 := C+ ⊛u=1/2 C
− ,

where ⊛ denotes the gluing of C+ and C− along u = 1/2, and its n-fold gluing by

Cn+1 = Cn ⊛u=1/2 Cn .

Following Example 1 in Siburg and Stoimenov (2015), Cn is completely dependent and there-
fore fulfils C↑

n = C+. In contrast, C⊤
n is almost independent with r(C⊤

n ) → 0 as n tends to
infinity. The support of the transposed n-fold gluing of the tent copula is depicted in Fig-
ure 6.1 (a) and (c). A short calculation yields

(∂1C
⊤
n )∗(u, v) =

k

2n
+

1

2n
1[0,2n(v−k2−n)](u) (6.1)

for v ∈ [k2−n, (k + 1)2−n). Integrating the above equation leads to (C⊤
n )↑, which converges

towards Π uniformly and with respect to the metric Dp for 1 ≤ p <∞, due to⃓⃓⃓
∂1(C

⊤
n )↑(u, v)− ∂1Π(u, v)

⃓⃓⃓
≤ 1

2n

for almost all u ∈ [0, 1] and all v ∈ [0, 1]. Alternatively, the convergence with respect to Dp

follows from Proposition 5.1.6 by exploiting the uniform convergence together with the fact
that all C↑

n are stochastically increasing. The values of the partial derivatives of the (SI)-
rearrangement of C⊤

1 and C⊤
n are depicted in Figure 6.1 (b) and (d), respectively.

The rearrangement of copulas can also be used to construct new copulas from existing
families. This is illustrated by the following example.



96 6 Rearranging copulas and dependence measures

Example 6.1.6 (Convex combinations). While the (SI)-rearrangement of λC + (1− λ)Π for
λ ∈ [0, 1] with an arbitrary copula C equals

(λC + (1− λ)Π)↑ = λC↑ + (1− λ)Π ,

the (SI)-rearrangement does not, in general, commute with convex combinations. To see this,
consider the convex combination

Cλ := λC+ + (1− λ)C− .

A short calculation yields

(∂1Cλ)
∗(u, v) =

{︄
λ∗1[0,v](u) + (1− λ∗)1(v,2v](u) for v ∈

[︁
0, 12
)︁

λ∗1[0,v](u) + (1− λ∗)1[0,2v−1](u) + (1− λ∗)1(v,1](u) otherwise

with λ∗ := max {λ, 1− λ}. By integrating the above equation, we obtain the closed-form
expression for the (SI)-rearrangement of Cλ:

λ∗C+(u, v) + (1− λ∗)min {u, (2v − 1)+}+ (1− λ∗)min {(u− v)+, v} ,

where (x)+ denotes max {x, 0}. Therefore, (Cλ)
↑ = (λC++(1−λ)C−)↑ differs from λ(C+)↑+

(1− λ)(C−)↑ = C+ whenever λ ∈ (0, 1).

While the exact behaviour of convex combinations under the rearrangement can generally
not be derived, the convex combination of the (SI)-rearrangements establishes an upper bound.

Proposition 6.1.7. Let C1 and C2 be copulas. Then it holds for all λ ∈ [0, 1]

(λC1 + (1− λ)C2)
↑ ≤ λC↑

1 + (1− λ)C↑
2 .

Proof. First, a simple rephrasing of the (SI)-rearrangement yields

C↑
1 =

u∫︂
0

∂1C
∗
1 (s, v) ds = u · 1

u

u∫︂
0

∂1C
∗
1 (s, v) ds =: u(∂1C1)

∗∗(u, v) ,

where (∂1C1)
∗∗(u, v) is the so-called maximal function of ∂1C1. Contrary to the decreas-

ing rearrangement, the maximal function is subadditive (see Theorem 2.3.4 in Bennett and
Sharpley (1988)), i.e. fulfils

(∂1(λC1 + (1− λ)C2))
∗∗(u, v) ≤ λ(∂1C1)

∗∗(u, v) + (1− λ)(∂1C2)
∗∗(u, v)

for all u, v ∈ [0, 1], which yields the assertion.

It turns out that the rearrangements C↓ and C↑ yield lower and upper bounds for C,
improving the Fréchet-Hoeffding bounds C− and C+.2

Theorem 6.1.8. For any copula C, we have for all u, v ∈ [0, 1],

C↓(u, v) ≤ C(u, v) ≤ C↑(u, v) .
2Of course, the Fréchet-Hoeffding bounds are uniform bounds independent of C, in contrast to C↓ and C↑.
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Proof. The Hardy-Littlewood inequality (see Property 1 of Proposition 2.6.7) yields

C(u, v) = (C+ ∗ C)(u, v) =
1∫︂

0

∂2C
+(u, t)∂1C(t, v) dt

≤
1∫︂

0

∂2C
+(u, t)(∂1C)

∗(t, v) dt

= (C+ ∗ C↑)(u, v) = C↑(u, v) .

The lower bound follows analogously using

(∂1C)
∗(1− t, v) = ∂1(C

− ∗ C↑)(t, v) = ∂1C
↓(t, v) .

These pointwise bounds immediately extend to bivariate concordance measures κ, such as
Spearman’s ρ and Kendall’s τ .3

Corollary 6.1.9. For every copula C and every concordance measure κ, we have the bounds

−κ(C↑) = κ(C↓) ≤ κ(C) ≤ κ(C↑) .

Considering that the (SI)-rearrangement C↑ of C is a rearrangement of the partial deriv-
atives, the pointwise bounds given in Theorem 6.1.8 appear rather crude. Therefore, we will
now investigate the behaviour of the rearrangement with regard to Dp, i.e. the Lp-distance of
the partial derivatives.

Theorem 6.1.10. Let C and D be copulas. Then, for 1 ≤ p <∞,

Dp(C
↑, D↑) ≤ Dp (C,D) ≤ Dp(C

↑, D↓) = Dp(C
↑, C− ∗D↑) .

Remark 6.1.11. Of course, the lower and upper bounds in Theorem 6.1.10 are also attained
by any other copula pair Cσ∗C↑ and Cσ∗D↓ instead of C↑ and D↓, where Cσ is a left-invertible
copula. This follows immediately from Proposition 2.6.3 due to

Dp
p(Cσ ∗A,Cσ ∗B) =

∫︂
[0,1]2

|∂1A(σ(u), v)− ∂1B(σ(u), v)|p dλ(u, v)

=

∫︂
[0,1]2

|∂1A(u, v)− ∂1B(u, v)|p dλ(u, v)

= Dp
p(A,B)

for all copulas A and B.

Proof of Theorem 6.1.10. Property 2 of Proposition 2.6.7 yields

∂1C
↑( · , v)− ∂1D

↑( · , v) ⪯ ∂1C( · , v)− ∂1D( · , v)
3Concordance measures are monotone with respect to the pointwise ordering C1 ≤ C2 (see Section 2.3).
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for all v ∈ [0, 1], where ⪯ denotes the majorization order given in Definition 2.6.5. Thus, due
to Proposition 2.6.6, we have for all v ∈ [0, 1] and any 1 ≤ p <∞ that

1∫︂
0

⃓⃓⃓
∂1C

↑(u, v)− ∂1D
↑(u, v)

⃓⃓⃓p
du ≤

1∫︂
0

|∂1C(u, v)− ∂1D(u, v)|p du

and integrating with respect to v yields the desired result. The second inequality follows in
the same way.

Theorem 6.1.10 implies the continuity of the mapping C ↦→ C↑ with respect to Dp. This
property will play a crucial role in approximating the (SI)-rearrangement via checkerboard
copulas in Section 6.2.

Corollary 6.1.12. The mapping C ↦→ C↑ is continuous with respect to Dp for all 1 ≤ p ≤ ∞.

Proof. First, suppose (Cn)n∈N converges towards C with respect to Dp for some 1 ≤ p <∞.
Then an application of Theorem 6.1.10 yields

0 ≤ Dp(C
↑
n, C

↑) ≤ Dp(Cn, C) → 0 .

The continuity with respect to D∞ follows from the equivalence of D1 and D∞.

Example 6.1.13. Consider two completely dependent copulas C1 and C2. Then their (SI)-
rearrangement is C+, while their (SD)-rearrangement is C−. Thus,

0 = Dp(C
+, C+) ≤ Dp (C1, C2) ≤ Dp(C

↑
1 , C

↓
2 ) = Dp(C

+, C−) =
1

21/p
.

This result is reminiscent of the diameter of (C2, ⟨ · , · ⟩S) presented in Corollary 15 of Siburg
and Stoimenov (2008a).

The final theorem of this section gives a geometric characterization quite similar to the
findings of Siburg and Stoimenov (2011) in the setting of inner products.

Theorem 6.1.14. Let C1, C2 be copulas with r(C1) = ρ1 and r(C2) = ρ2. Then the following
assertions are equivalent:

1. D2(C1, C2) = min {D2(C,D) | r(C) = ρ1, r(D) = ρ2 }.

2. ⟨∂1C1 , ∂1C2⟩L2([0,1]2) = max
{︂
⟨∂1C , ∂1D⟩L2([0,1]2) | r(C) = ρ1, r(D) = ρ2

}︂
.

Moreover, in each of the two cases, C1 and C2 can be chosen to be stochastically increasing.

Proof. A straightforward calculation yields

D2
2(C,D) =

∫︂
[0,1]2

∂1C(u, v)
2 − 2∂1C(u, v)∂1D(u, v) + ∂1D(u, v)2 dλ(u, v)

=
r(C)

6
+
r(D)

6
+

2

3
− 2

∫︂
[0,1]2

∂1C(u, v)∂1D(u, v) dλ(u, v)

=
ρ1
6

+
ρ2
6

+
2

3
− 2 ⟨∂1C , ∂1D⟩L2([0,1]2) ,
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where we have used the identity

r(C) = 6

∫︂
[0,1]2

∂1C(u, v)
2 dλ(u, v)− 2 .

Thus, D2(C,D) is minimal if and only if ⟨∂1C , ∂1D⟩ is maximal. Due to Theorem 6.1.3 and
Theorem 6.1.10, C1 and C2 can be chosen to be stochastically increasing.

6.2 Approximating the (SI)-rearrangement

In general, the computation of the rearrangement of a function, and hence the computation
of C↑, may be a difficult task. In this section, we propose a simple approximation scheme for
C↑ based on the concept of checkerboard copulas, thereby circumventing the need to treat
partial derivatives. Checkerboard copulas are an important tool in statistical applications and
are constructed from doubly stochastic matrices. Recall from Definitions 2.5.15 and 2.5.16,
that for a doubly stochastic matrix A, the copula

C#
n (A)(u, v) := n

n∑︂
k,ℓ=1

akℓ

u∫︂
0

1[ k−1
n

, k
n)
(s) ds

v∫︂
0

1[ ℓ−1
n

, ℓ
n)
(t) dt

is called checkerboard copula.4 For a copula C, the induced checkerboard copula is defined as

C#
n (C) := C#

n (An)

for the doubly stochastic matrix An with

(An)kℓ := n · VC
(︃[︃

k − 1

n
,
k

n

]︃
×
[︃
ℓ− 1

n
,
ℓ

n

]︃)︃
.

We point out that the partial derivatives of C#(A) are piecewise constant. Moreover, a
direct calculation shows that C#(A)↑ = C#(A) if and only if

ℓ∑︂
j=1

ak2j ≤
ℓ∑︂

j=1

ak1j (6.2)

for all ℓ ∈ {1, . . . , n} and all k1 ≤ k2, that is, if and only if the rows of A are ordered with
respect to the majorization ordering of vectors (see Marshall et al. (2011)). This suggests the
following algorithm to calculate the (SI)-rearrangement of an arbitrary checkerboard copula:

Theorem 6.2.1. For a doubly stochastic matrix A ∈ Rn×n, it holds

C#
n (A)↑ = C#

n (A↑) ,

where A↑ = (a↑kℓ) is the doubly stochastic matrix constructed via the following algorithm:

4Whenever it is unambiguous, we will drop the index n and simply write C#(A).
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1. Calculate Bℓ
k := ∂1C

#
n (A)

(︁
k
n ,

ℓ
n

)︁
=
∑︁ℓ

j=1 akj and set B0
k := 0.

2. For each fixed ℓ = 0, . . . , n, sort Bℓ in a decreasing manner and denote the result by ˜︁Bℓ.
Then ˜︁Bℓ

k = ∂1C
#
n (A)↑

(︁
k
n ,

ℓ
n

)︁
holds.

3. Calculate a↑kℓ iteratively using

a↑kℓ :=
˜︁Bℓ
k − ˜︁Bℓ−1

k ≥ 0 .

Proof. The equality C#
n (A)↑ = C#(A↑) follows directly from the definition of the algorithm.

It remains to show that A↑ is indeed doubly stochastic. To do so, we simply calculate

n∑︂
ℓ=1

a↑kℓ =
n∑︂

ℓ=1

˜︁Bℓ
k − ˜︁Bℓ−1

k = ˜︁Bn
k − ˜︁B0

k = ˜︁Bn
k = 1

as well as
n∑︂

k=1

a↑kℓ =
n∑︂

k=1

˜︁Bℓ
k − ˜︁Bℓ−1

k =
n∑︂

k=1

Bℓ
k −Bℓ−1

k

=
ℓ∑︂

j=1

n∑︂
k=1

akj −
ℓ−1∑︂
j=1

n∑︂
k=1

akj = ℓ− (ℓ− 1) = 1 .

The nonnegativity of a↑kℓ follows from the algorithm.

Example 6.2.2. For the doubly stochastic matrix A and its rearrangement A↑ given by

A :=

⎛⎜⎜⎝
3/8 1/8 1/6 2/6
1/8 3/8 2/6 1/6
1/8 3/8 2/6 1/6
3/8 1/8 1/6 2/6

⎞⎟⎟⎠ and A↑ =

⎛⎜⎜⎝
3/8 1/8 2/6 1/6
3/8 1/8 2/6 1/6
1/8 3/8 1/6 2/6
1/8 3/8 1/6 2/6

⎞⎟⎟⎠ ,

the partial derivatives of the corresponding checkerboard copulas are depicted in Figure 6.2. A
corresponding λ-preserving transformation is, for example,

σv(u) =

{︄
(u+ 1/4) mod 1 for v ∈

[︁
0, 12
)︁

(u+ 3/4) mod 1 for v ∈
[︁
1
2 , 1
]︁ .

Note that the choice of σv is not unique since the same rearrangement is also attained by

σv(u) =

{︄
(u+ 1/21(1/4,1/2]∪(3/4,1](u)) mod 1 for v ∈

[︁
0, 12
)︁

(u+ 1/21(0,1/4]∪(1/2,3/4](u)) mod 1 for v ∈
[︁
1
2 , 1
]︁ .

While the decreasing rearrangement is well-defined for all copulas, the partial derivative may
not always be tractable. Nevertheless, we will be able to approximate the (SI)-rearrangement
using checkerboard copulas, as the next result shows.
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(a) Plot of u ↦→ ∂1C
#(A)(u, v).
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(b) Plot of u ↦→ ∂1C
#(A↑)(u, v).

Figure 6.2: Plots of the partial derivative of the checkerboard copulas C#(A) and C#(A↑) for
fixed v. The plots for v = 1/4, 1/2 and 3/4 are depicted by the dash-dotted, solid and dashed
line, respectively.

Theorem 6.2.3. For any copula C, we have Dp(C
#
n (A↑

n), C↑) → 0, where A↑
n is the doubly

stochastic matrix associated with C#
n (C)↑.

Due to Theorem 6.2.3, C↑ can be approximated using the algorithm presented in The-
orem 6.2.1.

Proof. This follows from the continuity result in Corollary 6.1.12 and Proposition 2.5.18, due
to

Dp(C
#(A↑

n), C
↑) = Dp(C

#
n (C)↑, C↑) ≤ Dp(C

#
n (C), C) → 0 .

6.3 Majorization order

In this section, we introduce the majorization order for copulas, which measures the variability
of conditional distributions with respect to the conditioning variable in a similar way to the
convex order of random variables. Recall that the majorization order ⪯ for functions in
Definition 2.6.5 uses the concept of a decreasing rearrangement and that we always rearrange
a bivariate function with respect to its first variable.

Definition 6.3.1. A copula C1 is said to be smaller than a copula C2 in the majorization
order, written C1 ⪯m C2, if and only if ∂1C1( · , v) ⪯ ∂1C2( · , v) holds for all v ∈ [0, 1].

Note that in view of Definition 2.6.5, C1 ⪯m C2 is equivalent to the condition

u∫︂
0

(∂1C1)
∗(s, v) ds ≤

u∫︂
0

(∂1C2)
∗(s, v) ds
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for all u, v ∈ [0, 1].5

On the subset of stochastically increasing copulas, the majorization order is equivalent to
the usual stochastic order as the following proposition shows.

Proposition 6.3.2. If C1 and C2 are stochastically increasing copulas, then C1 ⪯m C2 is
equivalent to C1 ≤ C2.

Proof. The proof is a simple application of the identity

C(u, v) =

u∫︂
0

∂1C(s, v) ds =

u∫︂
0

(∂1C)
∗(s, v) ds ,

which is valid for stochastically increasing copulas C since then ∂1C = (∂1C)
∗. Furthermore,

equality holds in case of u = 1 due to the uniform margin property of copulas.

The following result collects various equivalent descriptions of two copulas being ordered
with respect to ⪯m.

Theorem 6.3.3. For any two copulas C1 and C2, the following assertions are equivalent:

1. C1 ⪯m C2.

2. C↑
1 ≤ C↑

2 .

3. There exists a family (Cv)v∈[0,1] of copulas such that

C↑
1 (u, v) =

(︂
Cv ∗ C↑

2

)︂
(u, v) .

4. There exists a family (Cv)v∈[0,1] of copulas such that

C1(u, v) = (Cv ∗ C2) (u, v) .

Proof. The equivalences follow from the respective definitions in combination with Proposi-
tion 6.3.2 and Part 3 of Proposition 2.6.6.

The next proposition states that the Markov product preserves the ordering with respect
to the majorization order.

Proposition 6.3.4. For two copulas C1 and C2, we have

(C1 ∗ C2) ⪯m C2

as well as Π ⪯m C1 ⪯m C+. If C1 is additionally stochastically increasing, Π ≤ C1 ≤ C+

holds.
5The majorization order is called Schur order in Definition 2.15 of Ansari (2019), where it was defined as a

technical notion.
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Proof. The first result is a direct consequence of Proposition 2.6.6 and the fact that

∂1(C1 ∗ C2)(u, v) = ∂u

1∫︂
0

∂2C1(u, t)∂1C2(t, v) dt = TC1∂1C2( · , v)(u) .

In turn, the first result implies the second one since (Π ∗ C1) = Π and C1 = (C1 ∗ C+). The
third result follows from a combination of the second result and Proposition 6.3.2.

Recall the two measures of complete dependence r and ζp as well as the measure of mutual
complete dependence ω from Section 2.3. It turns out that all these measures are monotone
with respect to the majorization order.

Theorem 6.3.5. The measures of complete dependence r and ζp for 1 ≤ p <∞ are monotone
with respect to the majorization order. Likewise, on the subset of symmetric copulas, the
measure of complete dependence ω is monotone with respect to the majorization order.

Proof. If C1 ⪯m C2, then r(C1) ≤ r(C2) as well as ζp(C1) ≤ ζp(C2) due to the definitions of
the respective measures together with Theorem 2.6.6. The same is true for the symmetrized
measure ω if both C1 and C2 are symmetric themselves.

Theorem 6.3.6. Let C1 and C2 be stochastically increasing copulas with C1 ≤ C2. Then
either r(C1) < r(C2) or C1 = C2.

Proof. Since C1 ⪯m C2 and both C1 and C2 are stochastically increasing, an application of
Hardy’s Lemma (see Proposition 2.3.6 in Bennett and Sharpley (1988)) yields

1∫︂
0

∂1C1(u, v)∂1C1(u, v) du ≤
1∫︂

0

∂1C1(u, v)∂1C2(u, v) du

for all v ∈ [0, 1]. Integrating leads to
1∫︂

0

1∫︂
0

∂1C1(u, v)∂1C1(u, v) du dv ≤
1∫︂

0

1∫︂
0

∂1C1(u, v)∂1C2(u, v) du dv ,

which is the first component of the inner product structure introduced in Siburg and Stoi-
menov (2008a). A straightforward calculation similar to that of Theorem 6.1.14 then yields

0 ≤ D2
2(C1, C2)

=
r(C2)

6
+
r(C1)

6
+

2

3
− 2

1∫︂
0

1∫︂
0

∂1C1(u, v)∂1C2(u, v) du dv

≤ r(C2)

6
+
r(C1)

6
+

2

3
− 2

1∫︂
0

1∫︂
0

∂1C1(u, v)∂1C1(u, v) du dv

=
r(C2)

6
+
r(C1)

6
− 2

r(C1)

6

=
r(C2)− r(C1)

6
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and the statement follows from Theorem 6.3.5.

Corollary 6.3.7. For arbitrary copulas C1 and C2 with C1 ⪯m C2, we have either r(C1) <

r(C2) or C↑
1 = C↑

2 .

In other words, any two ordered copulas C1 and C2 with C1 ⪯m C2 are either rearrange-
ments of each other, i.e. C1 = (Cv ∗ C2) for a family of shuffles (Cv)v∈[0,1], or possess strictly
different degrees of complete dependence as measured by r or ζ2.

6.4 Rearranged dependence measures

According to Section 6.1, the (SI)-rearrangement contains the entire information about the
(directed) complete dependence between two random variables. This property lays the found-
ation for our new class of complete dependence measures henceforth called rearranged de-
pendence measures. The underlying construction principle for these rearranged dependence
measures can be described as follows: The (SI)-rearrangement transforms arbitrary functional
dependence into a stochastically increasing relationship, which we can quantify using other
measures of dependence, such as concordance measures. The rearranged dependence meas-
ures are shown to be monotone with respect to the majorization order ⪯m, which immediately
implies the so-called data processing inequality, and they are shown to satisfy axioms similar
to those of a measure of regression dependence stated in Definition 2 of Dette et al. (2013).

Recall that we denote the set of all stochastically increasing copulas by C↑.

Definition 6.4.1. We call µ : C↑ → [0, 1] a measure of (SI)-dependence if µ satisfies the
following conditions:

1. µ(C) = 0 if and only if C = Π.

2. µ(C) = 1 if and only if C = C+.

3. µ(C1) ≤ µ(C2) whenever C1 ≤ C2.

4. µ( ˆ︁C) = µ(C), where ˆ︁C(u, v) := u+ v − 1 +C(1− u, 1− v) denotes the survival copula.

5. µ is continuous with respect to pointwise convergence.

Due to the fact that µ is defined on C↑ instead of C, Properties 1 to 5 of Definition 6.4.1
are significantly weaker than the properties of general concordance or dependence measures.
For example, Spearman’s ρ, when restricted to C↑, constitutes a measure of (SI)-dependence,
even though Property 1 does not hold for arbitrary copulas since

ρ(Π) = 0 = ρ

(︃
C+ + C−

2

)︃
.

The following definition introduces the main concept of this section.

Definition 6.4.2. Let X and Y be continuous random variables with copula CXY and µ a
measure of (SI)-dependence. Then the associated rearranged dependence measure Rµ is defined
as

Rµ(X,Y ) := Rµ(CXY ) := µ(C↑
XY ) .
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Whenever we subsequently write Rµ(X,Y ), we implicitly assume X and Y to be continuous
random variables. Note that if Y is stochastically increasing in X, we have C↑ = C and the
rearranged dependence measure reduces to the underlying measure, i.e. Rµ(C) = µ(C). This
observation will simplify the calculation of Rµ(C) for many common copula families later on.

Before investigating various properties of rearranged dependence measures, we introduce
two specific classes, Rp and Rκ, based on Schweizer-Wolff measures σp and measures of con-
cordance κ, respectively. The ability of Rp and Rκ to measure complete dependence is in
stark contrast to the behaviour of the underlying Lp-distances and measures of concordance,
which are only able to detect strictly monotone and monotone relationships between the two
random variables, respectively.

Example 6.4.3. Each Lp-norm with 1 ≤ p <∞ can be used to define the so-called Schweizer-
Wolff measure (see Schweizer and Wolff (1981))

σp(C) :=
∥C −Π∥p
∥C+ −Π∥p

.

We now show that each σp is a measure of (SI)-dependence by checking the five conditions
stated in Definition 6.4.1:

1. σp(Π) = 0 follows from Π↑ = Π. Moreover, 0 = σp(C) = ∥C↑ − Π∥p implies C↑ = Π.
Thus, C↑ is convex and concave in the first component, i.e. u ↦→ C(u, v) is linear for all
v ∈ [0, 1], which is equivalent to C = Π.

2. Now suppose C is completely dependent. Then C↑ = C+, which yields σp(C↑) = 1.
On the other hand, if C is not completely dependent, then C↑ < C+ holds on a set of
positive measure. Thus,

σp(C) =

⃦⃦
C↑ −Π

⃦⃦
p

∥C+ −Π∥p
<

∥C+ −Π∥p
∥C+ −Π∥p

= 1 .

3. The assertion follows from |C1 −Π|p ≤ |C2 −Π|p due to Π ≤ C1 ≤ C2.

4. This follows from Π(u, v) = ˆ︁Π(u, v).
5. The continuity property of σp is a consequence of the corresponding property of the

Lp-norm.

The rearranged Schweizer-Wolff measure Rp associated with σp is defined as

Rp(C) := Rσp(C) =

⃦⃦
C↑ −Π

⃦⃦
p

∥C+ −Π∥p
.

For simplicity, we denote the rearranged Schweizer-Wolff measure R1 by R.

Surprisingly, it turns out that R allows a representation in terms of Spearman’s ρ.

Proposition 6.4.4. The rearranged Schweizer-Wolff measure R can be written in terms of
Spearman’s ρ as

R(C) = ρ(C↑) =
ρ(C↑)− ρ(C↓)

2
.
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Proof. In view of Π ≤ C↑, we have

R(C) = 12

∫︂
[0,1]2

C↑(u, v)−Π(u, v) dλ(u, v)

= 12

∫︂
[0,1]2

C↑(u, v) dλ(u, v)− 3 = ρ(C↑) =
ρ(C↑)− ρ(C↓)

2
.

The last equality follows from ρ(C↓) = ρ(C− ∗C↑) = −ρ(C↑), using the identity for reflected
copulas (see Property 5 of Definition 2.3.9).

We now turn to the aforementioned second class of rearranged dependence measures, those
based on measures of concordance.

Example 6.4.5. Any concordance measure κ fulfils Properties 3, 4 and 5 of Definition 6.4.1 by
virtue of the axioms stated in Definition 2.3.9. In particular, it also holds that −1 ≤ κ(C) ≤ 1
with κ(Π) = 0 and κ(C+) = 1. Thus, in order to obtain measures of (SI)-dependence, we only
have to impose the following nondegeneracy condition: Assume that for every stochastically
increasing copula C, we have

κ(C) = 0 ⇐⇒ C = Π

as well as
κ(C) = 1 ⇐⇒ C = C+ .

This condition can be verified for Spearman’s ρ, Kendall’s τ and Gini’s γ using their repres-
entations via the concordance functional Q (see Section 5.1 in Nelsen (2006)). In contrast,
Blomqvist’s β (see Nelsen (2006)) does not satisfy the nondegeneracy condition since the or-
dinal sum

C(u, v) =

{︄
2Π(u, v) if (u, v) ∈ (0, 1/2)2

C+ else

is stochastically increasing with C ̸= C+, yet β(C) = 4C(1/2, 1/2)− 1 = 1 = β(C+).
Any measure of concordance κ satisfying the nondegeneracy condition is, by definition, a

measure of (SI)-dependence, and the corresponding rearranged concordance measure Rκ is
given by

Rκ(C) = κ(C↑) .

We point out that R = R1 = Rκ is both a rearranged Schweizer-Wolff measure (for p = 1)
and a rearranged concordance measure (for κ = ρ).

Remark 6.4.6. For the sake of completeness, let us discuss the rearranged dependence meas-
ures constructed from measures of complete dependence such as r. By definition, r fulfils
Properties 1 and 2 of Definition 6.4.1, whereas Properties 3 and 5 follow from Theorem 6.3.3
and Proposition 5.1.6, respectively. A short calculation also yields Property 4, such that r
is a measure of (SI)-dependence. With Theorem 6.1.3, the associated rearranged dependence
measure reduces to

Rr(C) = r(C↑) = r(C) .
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The following key result shows that rearranged dependence measures are genuine measures
of complete dependence. In particular, they characterize the two extreme cases of independ-
ence and general functional dependence.

Theorem 6.4.7. Let X and Y be continuous random variables and let µ be a measure of (SI)-
dependence. Then the associated rearranged dependence measure Rµ satisfies the following
properties:

1. Rµ(X,Y ) ∈ [0, 1].

2. Rµ(X,Y ) = 0 if and only if X and Y are independent.

3. Rµ(X,Y ) = 1 if and only if Y is a measurable function of X.

4. Rµ is monotone with respect to ⪯m, i.e. CXY ⪯m CX′Y ′ implies Rµ(X,Y ) ≤ Rµ(X
′, Y ′).

5. Rµ is an increasing function of |r| for bivariate jointly normal distributed random vectors
(X,Y ) with correlation coefficient r. Moreover, if µ is strictly increasing in |r|, so is
Rµ.

6. Rµ is continuous with respect to the metric Dp.

In many situations, Rµ is actually a strictly increasing function of |r| for Gaussian copulas.
For instance, this is the case for Rp and Rκ since the underlying measures σp and κ already
possess this property.

Proof. 1. Since Π ≤ C↑ ≤ C+ holds, we obtain 1.

2. Using that C = Π if and only if C↑ = Π, the assertion follows from the properties of µ.

3. Since C is completely dependent if and only if C↑ = C+, the result follows from the
properties of µ.

4. Suppose CXY ⪯m CX′Y ′ holds, then Theorem 6.3.3 yields C↑
XY ≤ C↑

X′Y ′ . The assertion
then follows from the monotonicity of µ with respect to ≤.

5. We denote the Gaussian copula with correlation coefficient r ∈ [−1, 1] by Cr. The
assertion then follows from Cr1 ≤ Cr2 for r1 ≤ r2 and C↑

r = C↑
|r| = C|r|. In case µ is

strictly increasing in |r|, the assertion follows immediately from the definition.

6. Dp(Cn, C) → 0 implies that C↑
n converges pointwise towards C↑, from which the asser-

tion follows.

6.4.1 Data processing inequality and self-equitability

We now turn towards the significance of the monotonicity of Rµ with respect to ⪯m and its
connection to the so-called data processing inequality. Informally, the data processing inequal-
ity states that a (functional) modification of the input data cannot increase the information
contained in the data. We refer to Cover and Thomas (2006) for an in-depth treatment of
the data processing inequality in the context of information theory.
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Proposition 6.4.8 (Data processing inequality). Suppose X,Y and Z are continuous random
variables such that Y and Z are conditionally independent given X. Then the data processing
inequality

Rµ(Z, Y ) ≤ Rµ(X,Y )

holds. In particular, Rµ(f(X), Y ) ≤ Rµ(X,Y ) holds for all measurable functions f .6

Proof. By assumption, Y and Z are independent given X, and by Theorem 3.1 of Darsow
et al. (1992), CZY = CZX ∗ CXY holds. Thus, Proposition 6.3.4 yields

CZY = CZX ∗ CXY ⪯m CXY

and the data processing inequality Rµ(CZY ) ≤ Rµ(CXY ) follows immediately from The-
orem 6.4.7. Lastly, setting Z = f(X) for a measurable function f , Y and f(X) are condition-
ally independent given X and the second assertion follows.

Following Proposition 2.1 of Geenens and Lafaye de Micheaux (2020), our proof of the
data processing inequality also immediately yields an asymmetric version of the so-called
self-equitability introduced in Kinney and Atwal (2014).

Corollary 6.4.9. Suppose f is a measurable function such that X and Y are conditionally
independent given f(X). Then

Rµ(f(X), Y ) = Rµ(X,Y ) .

Intuitively, self-equitability states that, for example, under the regression model Y = f(X)+
ε with independent continuous random variables X and ε, the dependence measure Rµ should
depend on the strength of the signal-to-noise ratio of the model and not on the knowledge of
the underlying function f . A similar idea is captured in Figures 3 and 4 of Junker et al. (2021).
Corollary 6.4.9 also implies the invariance of Rµ under strictly monotone transformations of
the random variables.

Proposition 6.4.10. Suppose X and Y are continuous random variables, then

Rµ(f(X), g(Y )) = Rµ(X,Y )

holds for any measurable bijective function f and any strictly monotone function g.

Proof. First, for any measurable bijection f , we have

Rµ(f(X), g(Y )) = Rµ(X, g(Y )) ,

using that X and Y are conditionally independent given f(X) in combination with Corol-
lary 6.4.9. If g is strictly increasing, the assertion follows immediately from the rank invariance
of copulas. Otherwise, a straightforward calculation yields C↑

Xg(Y ) =
ˆ︂C↑

XY for any strictly de-
creasing function g. Together with Property 4 of µ, Rµ(f(X), g(Y )) = Rµ(X,Y ) follows.

6Note that for Rµ(f(X), Y ) to be well-defined, f(X) needs to be a continuous random variable.
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6.4.2 Rearranged concordance measures

Let κ be a measure of concordance satisfying the nondegeneracy condition stated in Ex-
ample 6.4.5. While κ measures the strength of the monotone relationship between two ran-
dom variables X and Y , the corresponding rearranged concordance measure Rκ measures the
strength of their (directed) functional relationship. Thus, intuitively, κ should always attain
smaller values than Rκ, which is the consistency result given in the next theorem.

Theorem 6.4.11. For all continuous random variables X and Y , we have

|κ(X,Y )| ≤ Rκ(X,Y ) .

Proof. For C := CXY , the assertion follows immediately from Corollary 6.1.9, due to

−κ(C↑) = κ(C↓) ≤ κ(C) ≤ κ(C↑) =⇒ |κ(C)| ≤ κ(C↑) = Rκ(C) .

The next corollary treats the case of equality, i.e. |κ(X,Y )| = Rκ(X,Y ), which allows for
a simpler calculation of the regression dependence measure Rκ.

Corollary 6.4.12. If Y is stochastically monotone in X, then Rκ(X,Y ) = |κ(X,Y )|.

Proof. The assertion follows from the fact that Y is stochastically monotone in X if and only
if C is stochastically monotone in the first component.

Note that the symmetry of κ does not imply Rκ(X,Y ) = |κ(X,Y )| = Rκ(Y,X) as X is, in
general, not stochastically monotone in Y .

Many of the frequently used copula families are either stochastically increasing or stochastic-
ally decreasing, which simplifies the (possibly complex) calculation of Rκ(C) to that of κ(C).
This property is similar to that of the Schweizer-Wolff measure σ1, as observed in Nelsen
(2006).

Example 6.4.13 (Gaussian copulas). Suppose (X,Y ) is a jointly normal distributed random
vector with correlation coefficient r ∈ [−1, 1]. Then Y is stochastically increasing in X if r ≥ 0
and stochastically decreasing if r ≤ 0. Together with the well-known formula for Spearman’s
ρ, we have

R(X,Y ) = R(Y,X) =
6

π
arcsin

(︃
|r|
2

)︃
.

Thus, R is a strictly increasing function of |r|.

Example 6.4.14 (Extreme-value copulas). The class of extreme value 2-copulas

CEV (u, v ; Λ) = exp

(︃
log(uv)

(︃
1− ˜︁Λ(︃ log(u)

log(uv)

)︃)︃)︃
given in Proposition 2.5.1 is stochastically increasing in both components (see Theorem 1 in
Garralda Guillem (2000)). The rearranged Spearman’s ρ for extreme value copulas is then
given by

R(C) = ρ(C↑) = ρ(C) = 12

1∫︂
0

1

(2− ˜︁Λ(t))2 dt− 3 .
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Most notably, although C is not necessarily symmetric, the degree of complete dependence
between X and Y is identical, i.e.

Rµ(X,Y ) = R(C) = ρ(C) = ρ(C⊤) = R(C⊤) = Rµ(Y,X) .

Example 6.4.15 (Archimedean copulas). Suppose C is an Archimedean 2-copula,

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) ,

with Archimedean generator ϕ (see Definition 2.5.5). If the generalized inverse ϕ[−1] is twice-
differentiable, C is stochastically increasing in both components if and only if log

(︂
−ϕ[−1]′

)︂
is

convex (see Proposition 3.3 in Capéraà and Genest (1993)). Then, we have for the rearranged
Kendall’s τ

Rτ (C) = 4

1∫︂
0

ϕ(s)

ϕ′(s)
ds+ 1 .

Moreover, the class of Archimax copulas, which combines the convex generator ˜︁Λ and the
Archimedean generator ϕ, is again stochastically increasing if and only if log

(︂
−ϕ[−1]′

)︂
is

convex.

Example 6.4.16 (Shuffles of C+). Let Cσ be a shuffle of C+ as defined in Example 6.1.4.
Since C↑

σ = C+ holds for any shuffle Cσ of C+ with some λ-preserving transformation σ, we
obtain

R(Cσ) = ρ(C+) = 1 .

Example 6.4.17 (n-fold gluing of the tent copula). Suppose Cn is the n-fold gluing of the tent
copula as presented in Example 6.1.5. Following the previous example, we have R(Cn) = 1 for
all n. In contrast, using the computation of (∂1C⊤

n )∗ from Equation (6.1) in Example 6.1.5,
we obtain

R(C⊤
n ) = 12

∫︂
[0,1]2

(C⊤
n )

↑
(u, v) dλ(u, v)− 3 = 12

(︃
1

4
+ 2−(n+1) 1

6

)︃
− 3 = 2−n .

Therefore, R(C⊤
n ) → 0 as n→ ∞.

The combination of R(Cn) = 1 and R(C⊤
n ) → 0 reflects the heuristic idea that the ran-

dom variable Y is completely dependent on X for every n, whereas X becomes ‘increasingly
independent’ of Y as n grows larger (see also Siburg and Stoimenov (2015) and Trutschnig
(2011)).

Finally, we remark that the scope of Corollary 6.4.12 is not limited to parametric fam-
ilies. Many construction methods for copulas, such as ordinal sums (see Definition 5.3.1),
convex combinations and the gluing construction (see Siburg and Stoimenov (2008b)), create
stochastically increasing copulas if all input copulas are stochastically increasing.
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6.5 Estimation of Rµ

If Y is not stochastically monotone in X, the measure Rµ(C) may be quite hard to calculate
analytically. Using the induced checkerboard copulas C#

n of C, however, Rµ(C) can be ap-

proximated by Rµ(C
#
n ) due to the uniform convergence of C#

n
↑

towards C↑. This motivates
the construction of the estimator ˆ︁Rµ of Rµ(C).

The main ingredients for the construction of ˆ︁Rµ are the approximation result for checker-
board copulas in Theorem 6.2.3, and the convergence of the empirical checkerboard copulas
established in Junker et al. (2021). For a sample (x1, y1), . . . , (xn, yn) of a random vector
(X,Y ) with continuous univariate margins, the empirical checkerboard copula with band-
width N is defined as

C#
N,n(

ˆ︁An) := C#
N

(︁
C#
n ( ˆ︁An)

)︁
,

where ˆ︁An = (âij)1≤i,j≤n is the n× n permutation matrix defined by

âij :=

{︄
1 if there exists some k ∈ {1, . . . , n} with rank(xk) = i and rank(yk) = j

0 else
,

where rank(xk) denotes the position of xk in the ordered sample x(1) ≤ x(2) ≤ . . . ≤ x(n).

Theorem 6.5.1. Let (X1, Y1), . . . , (Xn, Yn) be a random sample from (X,Y ), where (X,Y )
is defined on some probability space (Ω,A,P) and has continuous univariate marginal dis-
tributions and copula C. For the empirical checkerboard copula C#

N(n),n(
ˆ︁An) with bandwidth

N(n) := ⌊ns⌋ for s ∈
(︁
0, 12
)︁
, we then have that

ˆ︁Rµ := µ(C#
N(n),n(

ˆ︁A↑
n)) → Rµ(C)

holds P-almost surely as n→ ∞.

Note that C#
N(n),n(

ˆ︁A↑
n) can be explicitly calculated via the algorithm described in The-

orem 6.2.1.

Proof. By Theorem 3.12 in Junker et al. (2021), there exists a set M ∈ A with P(M) = 1 such
that D1(C

#
N(n),n(

ˆ︁An(ω)), C) converges towards 0 for all ω ∈ M . Note that C#
N(n),n(

ˆ︁An(ω))
is a genuine copula for all ω ∈ M . Thus, an application of the continuity property given in
Theorem 6.2.3 yields

0 ≤ D1(C
#
N(n),n(

ˆ︁A↑
n(ω)), C

↑) ≤ D1(C
#
N(n),n(

ˆ︁An(ω)), C) → 0 .

Since C#
N(n),n(

ˆ︁A↑
n(ω)) converges towards C↑ with respect to D1 if and only if C#

N(n),n(
ˆ︁A↑
n(ω))

converges pointwise towards C↑,

µ(C#
N(n),n(

ˆ︁A↑
n)(ω)) → µ(C↑) = Rµ(C)

for all ω ∈M now follows from Property 5 of Theorem 6.4.1.
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As many copula families are stochastically monotone, Corollary 6.4.12 suggests a simpler
estimator for Rκ. Provided that the given data set displays stochastic monotonicity, which
can be tested, for example, via Lee et al. (2009), the estimation of Rκ(C) reduces to the well-
known problem of estimating |κ(C)| for which, in many cases, fast and reliable estimators
already exist.

In the final subsection, we will practically explore the behaviour of the estimator ˆ︁Rµ and,
if applicable, the behaviour of |κ̂| for the copula families discussed throughout this chapter.
Our aim is to gain an overview over the statistical properties of ˆ︁Rµ, while a more detailed
investigation (considering, e.g., the influence of the bandwidth choice N(n) or the behaviour
with respect to various underlying (SI)-measures) will be addressed in future work.

6.5.1 Simulation study

In the subsequent simulation study, we choose Spearman’s ρ as the underlying measure of
(SI)-dependence since it induces the rearranged Schweizer-Wolff measure σ1 as well as the re-
arranged Spearman’s ρ. We generate samples of size n ∈ {50, 100, 500, 1000, 5000, 10000} and
calculate ˆ︁Rρ and additionally |ρ̂| whenever the underlying copula is stochastically monotone.
The presented results are based on 1000 replications each.

All simulations have been conducted using the statistical software ‘R’ (see R Core Team
(2021)). With the exception of the n-fold tent copula, the samples have been generated using
the package ‘copula’ (see Hofert, Kojadinovic, Mächler and Yan (2020)). The package ‘qad’
(see Griessenberger, Junker, Petzel and Trutschnig (2021)) was used to calculate the doubly
stochastic matrix ˆ︁An of the the empirical checkerboard copula. Figures 6.3 to 6.7 have been
created using ‘ggplot2’ (see Wickham (2016)).

Remark 6.5.2. As discussed in Junker et al. (2021), the optimal choice of the bandwidth
N(n) = ⌊ns⌋ with s ∈

(︁
0, 12
)︁

for the empirical checkerboard copula is determined by the under-
lying (but unknown) copula C. Generally speaking, smaller values of s are more advantageous
in case of an ‘almost independent’ copula C, whereas larger values of s improve the conver-
gence rate of ˆ︁Rµ for a completely dependent copula C. Thus, motivated by Theorem 6.2.3,
we propose a simple adaptive choice of s based on the threshold value |ρ̂(C)|. In additional
simulations not reported here, we found the following rule of thumb for the bandwidth choice
to yield good results:

s =

{︄
0.5 if |ρ̂(C)| > 2

3

0.4 if |ρ̂(C)| ≤ 2
3

.

Example 6.5.3 (Gaussian copulas). A jointly normal distributed random vector (X,Y ) with
correlation coefficient Corr(X,Y ) = r ∈ [−1, 1] and copula Cr is stochastically monotone.
Therefore, the rearranged Spearman’s ρ equals

R(Cr) = R(X,Y ) = |ρ(X,Y )| = 6

π
arcsin

(︃
|r|
2

)︃
≈ r .

The estimated values of ˆ︁Rρ and |ρ̂| for the 1000 replications are presented as boxplots for
r = 0.25 and 0.75 in Figure 6.3 and 6.4, respectively, next to a plot of a sample of size
n = 1000 generated from the underlying copula. For ease of comparison, we use a similar
visualization of the results as in Junker et al. (2021).
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Figure 6.3: The left panel depicts a sample of 1000 datapoints generated from the Gaussian
copula with r = 0.25, while the right panel depicts the boxplots of the 1000 estimates of ˆ︁Rρ(Cr)
and |ρ̂(Cr)| in green and blue, respectively, for growing sample sizes n. The horizontal black
line marks the true value of R(Cr).
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Figure 6.4: The left panel depicts a sample of 1000 datapoints generated from the Gaussian
copula with r = 0.75, while the right panel depicts the boxplots of the 1000 estimates of ˆ︁Rρ(Cr)
and |ρ̂(Cr)| in green and blue, respectively, for growing sample sizes n. The horizontal black
line marks the true value of R(Cr).
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Figure 6.5: The left panel depicts a sample of 1000 datapoints generated from the Marshall-
Olkin copula with α = 0.3 and β = 1, while the right panel depicts the boxplots of the 1000
estimates of ˆ︁Rρ(C

MO
α,β ) and |ρ̂(CMO

α,β )| in green and blue, respectively, for growing sample sizes
n. The horizontal black line marks the true value of R(CMO

α,β ).
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Figure 6.6: The left panel depicts a sample of 1000 datapoints generated from the 3-fold
gluing of the tent copula C3, while the right panel depicts the boxplots of the 1000 estimates
of ˆ︁Rρ(C3) with bandwidth ⌊ns⌋ for s = 0.3, 0.4 and 0.5 and for growing sample sizes n. The
horizontal black line marks the true value of R(C3).
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Figure 6.7: The left panel depicts a sample of 1000 datapoints generated from the transposed
3-fold gluing of the tent copula C⊤

3 , while the right panel depicts the boxplots of the 1000
estimates of ˆ︁Rρ(C

⊤
3 ) with bandwidth ⌊ns⌋ for s = 0.3, 0.4 and 0.5 and for growing sample

sizes n. The horizontal black line marks the true value of R(C⊤
3 ).

Example 6.5.4 (Marshall-Olkin copulas). In contrast to Gaussian copulas, the Marshall-
Olkin copulas

CMO
α,β (u, v) = min

{︂
u1−αv, uv1−β

}︂
with α, β ∈ [0, 1] can exhibit asymmetric dependence and can contain a singular component.
As CMO

α,β is an extreme-value 2-copula, it is stochastically increasing for all choices of α and
β. A short calculation (see Nelsen (2006)) yields

R(CMO
α,β ) = ρ(CMO

α,β ) =
3αβ

2α− αβ + 2β
.

The results for the Marshall-Olkin copula with α = 0.3 and β = 1 are given in Figure 6.5.
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Example 6.5.5 (Completely dependent copulas). The, in some sense, most pronounced
asymmetric relationship between two random variables can be achieved by completely depend-
ent copulas. We consider the n-fold gluing of the tent copula Cn from Examples 6.1.5 and
6.4.17. As seen in these examples, Cn exhibits a strongly asymmetric dependence structure
with R(Cn) = 1 and R(C⊤

n ) → 0. Since neither Cn nor C⊤
n are stochastically increasing, |ρ̂|

does not yield an estimator for R(Cn). This fact is underlined by the fact that ρ(Cn) = 0 for
all n ∈ N. Figures 6.6 and 6.7 therefore present the estimates of ˆ︁Rρ for the copulas C3 and
C⊤
3 , respectively, and for the three bandwidth choices s = 0.3, 0.4 and 0.5.
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