Homogenization of compressible fluids
in perforated domains

Dissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
(Dr. rer. nat.)

Der Fakultat fur Mathematik
der Technischen Universitat Dortmund
vorgelegt von

Florian Oschmann

im Marz 2022



Dissertation

Homogenization of compressible fluids in perforated domains

Fakultat fur Mathematik
Technische Universitat Dortmund

Erstgutachter: Prof. Dr. Peter Bella

Zweitgutachter: Prof. Dr. Eduard Feireisl

Tag der miindlichen Priifung: 05.05.2022



Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Peter Bella for his continuous and
unconditional support during my PhD study. Not only his great knowledge and also the way
he is looking at mathematics, were and still are inspiring and of great help. Without his
availability and time for all my questions, this thesis could not have been written.

Furthermore, in no specific order, I really want to thank the members and former members
of Lehrstuhl I and the Biomathematics group at the TU Dortmund, including Prof. Dr. Ben
Schweizer, JP Dr. Mathias Schéffner, Prof. Dr. Matthias Roger, PD Dr. Andreas Rétz, and
Fiona Drees for interesting discussions, mathematical gimmicks, and for providing an outstand-
ing working atmosphere.

Moreover, I am grateful to my colleagues Sascha Kniittel, Dr. Yohanes Tjandrawidjaja,
Dr. Michael Kniely, and Dr. Peter Furlan, as well as my former colleagues Dr. Nils Dabrock,
Dr. Maik Urban, and Dr. Klaas-Hendrik Poelstra for all the mathematical and non-mathemat-
ical discussions, and for the introduction to the great world of darts.

I would also like to thank my numerous friends I found here in Dortmund during the short
time I have been living here. They made me feel like home from the beginning and are making
the leaving now all the more difficult.

Finally, my great gratitude goes to my family, in particular to my sister Maria for her great
linguistic fluency, and also to my parents Gabriele and Gunter as well as to my sister Katja.
Without their unlimited support I would not have been able to go all the way I went to arrive
at this point.






Contents

List of symbols ix
1 Introduction 1
2 Derivation of the Navier-Stokes equations 5
2.1 Fundamental assumptions . . . . . . . . ... L )
2.2 Balancelaws . . . . . . . . 8
2.3 Scaling considerations . . . . . . ... 13

3 Bogovskii’s operator in different domains 17
3.1 Star-shaped and Lipschitz domains . . . . . . . . ... ... ... ........ 18
3.1.1 Bogovskil’s operator in star-shaped domains . . . . . . . ... ... ... 18

3.1.2  Bogovskil’s operator in Lipschitz domains . . . . . ... ... ... ... 24

3.2 Johndomains . . . . . . . .. .. 29
3.3 Perforated domains: The case of well separated obstacles . . . . . .. ... ... 36
3.4 Perforated domains: The case of a random perforation . . . .. ... ... ... 40
3.4.1 Proofs of Theorem 3.4.2 and Proposition 3.4.3 . . . . .. ... ... ... 43

3.4.2 Proofs of Lemma 3.4.4 and Theorem 3.4.1 . . . .. ... ... .. .... 48

3.5 Extension to negative Sobolev spaces . . . . . . .. ..o 55

4 Homogenization results for perforated domains 61
4.1 The case of constant temperature and v >3 . . . . ... ... 61
4.1.1 Setting and main result . . . . . . ... 61

4.1.2  Proof of Theorem 4.1.4: Uniform bounds . . . . . . ... ... ... ... 66

4.1.3 Proof of Theorem 4.1.4: The limiting system . . . . . . . ... ... ... 69

4.2  Lower v and time-dependent equations . . . . . .. ... ... 71
421 Thecasey>2 . . . . 71

4.2.2 Evolutionary system . . . . . . .. ... L 73

4.3 Heat-conducting fluids . . . . . . .. .. oo 84
4.3.1 Themodel . . . . . . . . . . 84

4.3.2  Weak formulation, weak solutions, and main result . . . .. .. ... .. 86

4.3.3 Uniform bounds . . . . . . . .. ..o 88

4.3.4 Extension of functions . . . . . . ... ... L 92

4.3.5 Equations in fixed domain . . . . . . . ... ... 96

4.4 Brinkman’s law in the Low Mach number limit . . . . . . . ... .. ... .. .. 105
4.4.1 Setting and mainresult . . . . . . ... L oL 106

4.4.2  The cell problem and oscillating test functions . . . . . . ... ... ... 108



4.4.3 Bogovskii's operator and uniform bounds . . . . .. ... o000
4.4.4 Convergence proof . . . . . . ..o

5 Outlook and open problems

A Strong convergence of the density
B Some analytic results

C Some probabilistic results

Bibliography

119

121

127

137

139



“Big whorls have little whorls
which feed on their velocity;

And little whorls have lesser whorls,
and so on to viscosity.”

Lewis Fry Richardson, Weather Prediction by Numerical Process, 1922
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Chapter 1

Introduction

The studies of mathematical fluid mechanics have a long history. Here, we will give just a
brief overview without claim of completeness. Already in ancient times, Greek mathematicians
discovered fundamental principles of hydrodynamics. An example is Archimedes’ principle,
stating that a body, partially or completely immersed in a fluid, experiences a buoyancy force
equal to the weight of the displaced fluid. Later on in the 17th century, R. Boyle and E. Mari-
otte investigated the behavior of gases under constant temperature, realizing that the product
of pressure and volume of a gas is constant. This was later extended to the ideal gas law, stat-
ing that the product of pressure and volume of a gas is always a multiple of the temperature,
provided the change of volume is slow enough such that the temperature and pressure can
adjust. For very quick changes, no heat will be produced, giving rise to adiabatic processes as
considered by P. Laplace, S. Poisson, and N. Carnot, among others. I. Newton gave a precise
description of the notion of viscosity, adopted by L. Euler and J. d’Alembert to formulate
mathematical equations of fluid motions. These equations were modified in the 18th and 19th
century by C. Navier and G. Stokes, respectively, yielding the famous Navier-Stokes equations
considered in this thesis. If we take additionally into account that fluids may conduct heat,
we arrive at the Navier-Stokes-Fourier equations, also called the full system. They describe, in
general form, the motion of viscous, heat-conducting, compressible fluids, and are still subject
of intensive mathematical research.

Besides the theory of flows of homogeneous fluids, another question asked is what might
happen, if we put small inclusions (also called holes or obstacles) into the fluid. This question
traces back to a part of Einstein’s PhD thesis [Ein06] from 1906, where he derived an effective
viscosity for such a suspension, provided the inclusions take up little volume in a certain sense.
The process in which such small-scale heterogeneous equations can be well-approximated by
homogeneous ones is called homogenization. In our setting, given a domain in space which
contains many small obstacles, one may ask for an equation that approximates the actual flow,
but somewhat “disregards” about the suspension.

For Stokes equations as a simplification of the whole Navier-Stokes equations, the first re-
sults in homogenization were obtained by L. Tartar in [Tar80]. He considered an incompressible
fluid, moving in a domain perforated by periodically arranged holes, the size of which is propor-
tional to their mutual distance. Letting this distance become smaller, he derived in the limit
a variant of the well-known porous medium equation, which nowadays is known as Darcy’s
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law. Empirically, this was already obtained in 1856 by H. Darcy when studying filter beds in
fountains (see [Dar56] and [Mus37]). A modification of Darcy’s law was given by H. Brinkman
in 1949, taking into account “the damping force caused by the porous mass” (see [Bri49]). He
proposed an additional friction term in the equations, nowadays known as Brinkman’s law. A
similar but rather surprising result was obtained by Cioranescu and Murat in [CM82], where
they considered the Poisson equation Au = f in a spatial domain D, periodically perforated
by obstacles the size of which is inverse proportional to their number inside D. In particular,
the volume fraction of the inclusions will vanish as their number grows. At first glance, one
might therefore expect that the holes do not hinder the flow in the limit. However, it turns out
that an additional friction term Mw in the limiting equation Au + Mwu = f occurs, which is
purely reminiscent from the obstacles. This “strange term coming from nowhere” can be seen
as the first rigorous derivation of Brinkman’s law.

Based on these results, G. Allaire considered in his PhD thesis [Al190] the Stokes equations
in a periodically perforated domain D. C R% d > 3, where the perforations have mutual dis-
tance € > 0 to each other, and are of size €* for some o > 1. He discovered that there are
three regimes of particle sizes, each of them yielding another limiting system. The subcritical
case is a > d/(d — 2), for which the holes are too tiny to significantly hinder the flow, leading
within the limit ¢ — 0 to the same Stokes equations in D. This is, in three dimensions mostly
considered in this thesis, precisely the case when a > 3. We will refer to them as tiny holes.
The supercritical case is a < 3, which we refer to as large holes. Here, the holes are large
enough to stop the flow as ¢ — 0. Rescaling the velocity by a proper factor, he arrived at
a rigorous verification of Darcy’s law for all 1 < o < 3. The critical case o = 3 is precisely
when the holes are still too small to stop the flow, but large enough to put friction on it.
In accordance with the results obtained by Cioranescu and Murat, Allaire also obtained the
additional Brinkman term. Up to this point, the fluid is still assumed to be incompressible,
meaning that the density is constant.

The works on compressible flows, however, were to this point rather sparse. In his seminal
work in 2002 [Mas02], N. Masmoudi gave a homogenization result for compressible fluids inside
a perforated domain, assuming that the size of the inclusions is proportional to their mutual
distance, or, in the notation above, &« = 1. The limiting equations are a density dependent
analogue to Darcy’s law. In the proof he extensively used a right inverse to the divergence
operator to bound the density independently of the perforations. This inverse, nowadays
known as Bogouvskii’s operator, was known to exist for fixed domains D, acting as an operator
B : L3(D) — W,?(D), where L3(D) is the space of all mean-free functions f € L?(D). How-
ever, the crucial point is to explore its dependence on the perforation (that is, on €) explicitly.
In Masmoudi’s work, it turns out that the operator norm of B cannot be bounded uniformly in
¢, which corresponds to a kind of bottleneck effect for the flow through the perforated domain.
Heuristically, for fixed f, searching a solution u to the divergence equation divu = f with
zero boundary data on 0D is equivalent to ask for a flow with given sources and sinks that
“sticks” to the boundary. These sources and sinks will move mass from one point in space
to another. Hence, for the case of large holes, the mass has to be transported along these
perforations, which become denser and denser in the limit, while the flow still has to be zero on
the boundary. Since f is fixed, the velocity gradient Vu of the flow has to become larger and



larger in order to pass through the tunnels between obstacles, leading to the unboundedness
of its norm. The same effect should be present for any kind of large holes, meaning for any
a < 3.

For tiny holes with o > 3, one should expect that the inverse to the divergence is bounded.
E. Feireisl and Y. Lu considered in [FL15] the case of periodically arranged tiny holes, where Bo-
govskii’s operator is indeed bounded. They improved this together with L. Diening in [DFL17|
to the case of well-separated obstacles for B mapping Li(D) to W,*(D) for 1 < q < oo, giving
an explicit dependence of the bounds on ¢ for any o > 1. Using this inverse divergence, they
bound the density and, accordingly, the velocity independent of the perforations, obtaining
in the limit again the same Navier-Stokes equations. Darcy’s law for large holes o < 3 was
recently rigorously derived by R. Héfer, K. Kowalczyk, and S. Schwarzacher in [HKS21]. As a
matter of fact, the critical case a = 3 for compressible flows is still mainly open. To shorten
the exposition, we refer to more results in the following chapters.

As mentioned before, the available results for compressible fluids required that the per-
forations are in a certain sense well-separated. In this thesis, we leave this assumption in
the direction of stochastic perforations, meaning that the holes are distributed according to a
stochastic process and may be very close to each other. We will see that we are still be able to
construct an inverse operator to the divergence, give explicit bounds on its norm, and apply
it to homogenize the Navier-Stokes as well as Navier-Stokes-Fourier equations for compressible
fluids in randomly perforated domains.

Organization. This thesis consists of several parts. We start to describe the flow of com-
pressible fluids by mathematical equations in Chapter 2, which we derive from several physical
principles. In Chapter 3, we show how to construct an inverse to the divergence in different do-
mains, starting with star-shaped domains and ending in randomly perforated ones. Chapter 4
is devoted to the homogenization of different types of equations. More precisely, we start in
Section 4.1 with the homogenization of stationary Navier-Stokes equations in domains that are
randomly perforated by tiny holes, and assume a certain growth rate for the fluids pressure.
In Section 4.2 we will relax the growth condition and explain how to treat time dependent
equations. Heat-conducting fluids will be considered in Section 4.3. In all the aforementioned,
the limiting equations are the same as in the perforated domain. Section 4.4, however, deals
with the critical case @ = 3 in periodically perforated domains. We will show that, under an
additional scaling assumption on the pressure, the limiting equations are of Brinkman type,
thus providing a first step towards the homogenization of compressible Navier-Stokes equations
in the critical regime. Finally, in Chapter 5, we give an outlook on possible future work and
open problems.






Chapter 2

Derivation of the Navier-Stokes
equations

The Navier-Stokes as well as the Navier-Stokes-Fourier equations are derived from several
physical conservation laws such as conservation of momentum and energy, and Newton’s laws
of motion. Together with the fundamental laws of thermodynamics, in the first section, we give
a short derivation of the equations considered in this thesis. The second part of this chapter is
devoted to dimensional analysis of the Navier-Stokes-Fourier equations, which will be apparent
in further discussion.

2.1 Fundamental assumptions

We assume that we are given a domain D C R? and a map S : [0,7] x D — R? for some time
T € (0,00), called motion, such that

1. S(t,-) is a C'-diffeomorphism from D to D, := S(t, D).

2. The gradient V,S(t, x) satisfies det V,S(¢,z) > 0.

3. 5(0,-) =L
A motion transforms a particle p, sitting at time ¢ = 0 on the position x € D, to a particle
which sits at time ¢ > 0 on position y = S(¢,z) € D, (see [Barl7]). Thus, if f(¢,p) is a physical

quantity according to the particle p, we can view it in two different frames:

1. The Lagrangian frame defines the observable on D instead of D;. We thus have f7(¢,z) =
f(t,S(t,z)), where we use the subscript L to indicate the Lagrangian frame.

2. The Eulerian frame uses D, as the domain of definition. Thus, using the subscript £ to
indicate the Eulerian system, fr(t,y) = f(t,y).

In particular, the time derivatives of f in the different frames are connected through

8th(t, iL') = at[fE(tv S(tv :E))] = (ath)(tv S(tv :L')) + Vny(t, S(t7 $)) ’ ats(tv :L')
= ath(ta y) + u<t7 y) ’ Vny(t, y),
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where we used the notation
ll(t,y) :8t8(t,$>, :E:S_l(tay)v ) S Dt7

for the velocity of the particle. Since this thesis will deal with fluids, which are modeled by
the assumption that they are continuous rather than consisting of many discrete particles, we
may refer to u as the fluid velocity. We further assume that we can characterize the fluid by
the following quantities:

e A non-negative measurable function o(t,y), defined on {(¢,y) : t € [0,T],y € D;}, called
the mass density;

e A positive measurable function J(¢,y), defined on {(t,y) : t € [0,T],y € D}, called the
fluid temperature;

The pressure p = p(p,v), the specific internal energy e = e(p,v), and the specific entropy
s = s(p,1), also called the thermodynamic functions;

A stress tensor T € R**3, measuring the force per unit surface area that one part of the

fluid imposes on another part directly opposite of their shared surface element;

A vector field q(¢) measuring the flux of heat;

Force terms of and g which represent volumetric (meaning measured per unit volume)
forces such as gravity, and other external forces, respectively.

Here, the functions [p,u, ] represent the main state variables of the fluid, while all other
quantities are recovered from them by constitutive relations. For instance, we assume that the
heat flux is governed by Fourier’s law

q(¥) = —k(0)VY,

where the thermal conductivity k is a function of the absolute temperature . Physically, heat
only flows from warm to cold regions, leading to the assumption x > 0.

To derive the equations governing the fluid’s motion, we need to take into account at
least two important physical properties: the fundamental laws of thermodynamics have to be
satisfied, and material laws have to be isotropic, that is, invariant under rotations. The laws of
thermodynamics will be used in order to derive balance equations for the energy and entropy;
we will come back to this later. For now, let us focus a bit more on the hypothesis of isotropy.
We call a scalar function f : R**® — R isotropic if for any Q € SO(3) and any A € R**®, we
have

F(QTAQ) = f(A).

Similarly, a tensor-valued function F : R**® — R**3 is called isotropic if

F(QTAQ) = Q"F(A)Q.



2.1. Fundamental assumptions

We will show that the stress tensor T satisfies Stokes’ law
T=S-pl,

where S is the viscous stress tensor. The physical principle behind viscosity is associated to the
relative motion of different fluid parts. Thus, S just depends linearly on Vu, hence S = AVu
for some fourth order tensor A = {Ajju}t1<ijri<s. Following [Ped14], it turns out that the
most general isotropic fourth order tensor is of the form

Aijir = 0005 + Boidji + 7¥0u0jk, (2.1)

where 6;; is the Kronecker delta, and «, 5,7 € R. Moreover, as a consequence of the con-
servation of angular momentum, the stress tensor T and hence S are symmetric, see [Barl7,
Satz 3.4.2] for a proof. Consequently, we have A;;x = Ajix, implying that § = v and that S
just depends on the symmetric part of the gradient £ = %(Vu + V1Tu). To obtain the par-
ticular forms of T and S, we give the following representation lemma on isotropic scalar and
tensor-valued functions.

Lemma 2.1.1. Let f : R;”;n?; — R be an isotropic scalar function, defined on the space of

symmetric 3 X 3-matrices, and F' : RZ’},XHP; — ngxni’ be an isotropic tensor-valued and affine linear

function. Then, f only depends on J(A) := {tr(A),det(A), 1((tr(A)? —tr(A?))}, and F admits
the form

F(A) =2pA+ (k+ A tr(A))1

for some p, k,\ € R. Here, we denote by tr(A) the trace of the matriz A.

Proof. We start with f. Obviously, we have J(QT AQ) = J(A) for any Q € SO(3), so we have
to show that f(A) = f(B) whenever J(A) = J(B). Since J(A) contains the coefficients of the
characteristic polynomial p4(z) = det(A — zI), we conclude from J(A) = J(B) that A and B
have the same eigenvalues. Thus, there exist ) € SO(3) with

Q"AQ = B,
so f(A) = f(QTBQ) = f(B) since f is isotropic.
Let us now turn to F. Since F is affine linear and F(A)" = F(A) for any A € R2:}, we obtain
from (2.1) that there exist 4, € R and B € R**® such that
F(A) =2pA + atr(A)I + B.
From the isotropy condition, we obtain for any @ € SO(3)
2uQTAQ + atr(QTAQ)I + B = F(QTAQ) = QTF(A)Q = 2uQT AQ + atr(A)I + QT BQ.

Since tr(QT AQ) = tr(A) for any Q € SO(3), we conclude Q* BQ = B and thus B = fI for
some isotropic scalar function f = f(A). Since f does just depend on tr(A), det(A), and
(tr(A))? — tr(A?), and F is affine linear in A, in particular f has to be, we obtain

flA)=r+(A—a)tr(A)

7
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for some constants k, A € R, yielding finally

F(A) = 2uA + atr(A) + (5 + (A — o) tr(A)I = 2uA + (5 + A tr(A))L

Since S is a linear function of E, we obtain Newton’s rheological law
2
S(Vu) = S(F) = 2uE — ?tr(E)]I +ntr(E)I

2
=1 <Vu +VTu— 3 div(u)]l) + ndiv(u)l,

where p and 7 are scalar functions of the temperature ). The particular splitting of S in the
p-term and n-term is also physically motivated. Note that

2
tr (Vu +Viu-— 3 div(u)]I) = 2tr(Vu) — 2div(u) =0,

so the first term is the traceless part of the viscosity tensor, thus representing shear stresses
only. We may thus refer to p as the shear viscosity coefficient. The second part of S expresses
pure stretching and compression, so we may refer to 1 as the bulk viscosity coefficient. We will
later see that we shall assume g > 0 and n > 0 for physical reasons.

2.2 Balance laws

Balance laws are important to describe basic physical principles. In this thesis, we will always
work with the Eulerian frame and assume that the domain D does not change its overall shape
in time, meaning D = D, for all ¢ € [0,7]. We will therefore drop the dependence on ¢ and
just write D instead of D,. In this section, we will further disregard regularity questions and
assume that all considered functions are sufficiently smooth.

Mass conservation: We start with the assumption that the fluid’s mass is conserved in time
for any particular subdomain of D. For B C D, define the mass inside B by

m(t, B) ::/Bg(t,x) dz.

Together with Reynolds’ transport theorem B.3, the conservation of mass leads to

d
0=—m(t,B) = / 0o + div(pu) dz.
at .

Since we assumed that ¢ and u are smooth and B C D was arbitrary, we derive the continuity
equation

0o+ div(pu) =0 in D. (2.2)



2.2. Balance laws

Multiplying this equation with &'(p), where b : [0,00) — R is a bounded differentiable function,
we formally arrive at the renormalized continuity equation

9y(b(0)) + div(b(0)u) + (eb'(e) — b(e)) div(u)

=b'(0)0i0 + V' (0)Vo - u+b(e)div(u) + ob'(0) div(u) — b(e) div(u) 2.3)
=b'(0)(0s0+ Vo -u+ pdiv(u))

= '(0)(dy0 + div(gu)) = 0.

We remark that this renormalized version of mass conservation “hides” the derivatives 0,0 and
Vo in the terms 9;b(p) and div(b(p)u), respectively. Therefore, the form written in the very
first line of (2.3) is a good preparation for the notion of a weak formulation of the renormalized
equation. It will be crucial to obtain a strong convergence of a sequence of densities {o:}-~o,
defined on a perforated domain D,, when ¢ — 0. We will come back to this in further sections.

Momentum balance: Let us turn to the conservation of linear momentum. Assume that
f,g:[0,T] x D — R,

where f is a volumetric (meaning measured per unit volume) force and g an additional outer
force, then the flux of the momentum pu is governed by the stress tensor T = S — pl, where we
abbreviate S = S(Vu). According to Newton’s second law of motion “force equals mass times
acceleration”, this yields for any B C D

d

— Qudw:/gf+gdx+/ (S —pl) - ndo,
dt Jp B OB

where n denotes the outward unit normal on dB. Using Reynolds’ Theorem B.3 and Gauf’
divergence theorem, we arrive at

/ Oi(ou) + div(pu ® u) dx = / of +g+divS — Vpdz,
B B
which in differential form gives rise to the balance of linear momentum

Oi(ou) +div(pu®u) = of + g+ divS — Vp in D. (2.4)

Energy balance: A fundamental postulate in physics is that energy can never be created
or destroyed, meaning that energy is conserved and can just be transformed into other forms.
We thus may define the total energy density as

1
E = §|Ul|2 + e(o,7),

where e(p, 1) is the specific internal energy density. According to thermodynamic and mechan-
ical principles (see also [NS04, Section 1.2.7]), the rate of change of the total energy is given
by the sum of the powers of volume and outer forces, surface forces according to stresses, and

9
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heat exchange. We therefore get for any volume B C D

4 Qde:/(gf+g)-udx+/
B

[(S—pﬂ)u]~nd0+/grdx—/ q-ndo,
dt Jp OB B OB

where r is the density of internal heat sources or sinks, and q is the heat flux through the
boundary. Note that, according to the physical principle that heat travels from warm to cold
only, the sign of q is chosen such that a “hot” body B shall give off its heat to the “colder”
outside, thus losing energy when time goes on. Applying once again Theorem B.3, we obtain

/ O(oF) + div(pFu) dz = / (of +g) - u+ div(Su — pu) + or — div(q) dz,
B

B

finally yielding the balance of total energy
O(oF) + div(oFu) = div(Su —pu —q) + (of +g) -u+ or in D. (2.5)

Moreover, we get from the balance of momentum (2.4) by multiplying with u and using the
continuity equation (2.2) the balance of kinetic energy

1 1
Oy (59\u|2) + div (§g|u|2u) =(of +g) - u+div(Su—pu) —S: Vu+ pdiv(u) (2.6)

and thus, subtracting (2.5) and (2.6), the balance of internal energy

Oi(0e) + div(geu) =S : Vu — pdiv(u) + or — div(q) in D. (2.7)

Entropy balance: Finally, we turn to the balance of entropy. Firstly, due to the first law
of thermodynamics, the change of the internal energy is given by (infinitesimal) variations of
heat plus the work done by the system to its environment, meaning

De = 5Q — W,

where we stick to the sign convention commonly used in physical literature. The work done by

the system is given by the change of volume due to pressure, meaning 0W = pD(é). By the
second law of thermodynamics, the change of heat is given by the change of the entropy due
to temperature, that is, Q) = ¥ Ds, leading to Gibb’s equation

¥Ds(p,9) = De(o,9) + p(o, 19)D<%), (2.8)

which in turn forces the expression %(De + pD(é)) to be a perfect gradient, namely Ds =
%(De + pD(%)). This gives rise to

8258 = % (@e + p@t <1)) = %(ate - %atg>7
e ¢ (2.9)

1 p
Vs = 5<Ve — EV@).

10



2.2. Balance laws

Dividing (2.7) by ¢ and using the continuity equation (2.2), we obtain

1 1/ q- Vv 0 (4 P ..
ﬁ(gﬁte—%gu Ve)—79<S.Vu 3 >+197’ div <Q9) ﬁdlv(u).

Together with (2.9) and (2.2), we get for the left-hand side

1 1

5(@@6 + ou-Ve) = 00;s+ ou-Vs+ 3 (gatg + gu . VQ>
= 0i(ps) + div(psu) + Q%(—Q div(u))
= 0;(0s) + div(psu) — %div(u),

so we finally obtain the balance of entropy

O¢(0s) + div(psu) = o + gr —div (%) in D, (2.10)

where the entropy production rate is given by

1
a::—(S:Vu—

9

q- Vv
3 .

Physically, entropy can be seen as a measure of disorder inside the system. Additionally,
the second law of thermodynamics also states that any physically admissible process can just
produce entropy, leading to the assumption that ¢ is non-negative. Since we will mostly deal
with the framework of weak solutions in this thesis, which shall dissipate more kinetic energy
than expected from equation (2.4) due to possible concentrations and singularities, we will
assume that o is a non-negative Radon measure satisfying the entropy inequality

q-V19>

(2.11)

1
>— : J—
0_19(8 Vu 3

We will come back to this when dealing with the full Navier-Stokes-Fourier system in Sec-
tion 4.3.

Ideal fluids and adiabatic pressure law: In subsequent chapters for the case of constant
temperature, we will assume that the pressure satisfies the adiabatic pressure law

p=p(0) = ag” (2.12)

for some constant a > 0 and some v > 1. This dependence is sometimes also known as the
isentropic or barotropic pressure law. It can be derived from Gibb’s equation (2.8), together
with some assumptions on ideal gases. Let us summarize these assumptions as follows.

1. The ideal gas law p = R holds, where R > 0 is the universal gas constant (measured
here in units of molar mass).

2. The only change of energy is due to heat, that is, d,e = 0 and dye = ¢,, where ¢, > 0 is
the specific heat capacity at constant volume. This leads to e = ¢, 1.

11



Chapter 2. Deriwation of the Navier-Stokes equations

3. We are given positive reference values py, 09, ¥9 > 0.

4. The adiabatic exponent is given by v = ¢,/c,, where ¢, = ¢, + R is the specific heat
capacity at constant pressure.

The number ~ is also called isentropic exponent or, according to its definition, heat capacity
ratio. From the ideal gas law, we derive

P ﬁ, or, equivalently, ﬁ = M.
po 0% Yo 0/00
Thus, Gibb’s relation leads to
1 P Co R
Ds=—-De——Dop=—D%——D
T T 9T Y 0 ¢
9
= c¢,Dlog — — RD log e
Yo Qo

v
= ¢,Dlog 90 co(y — 1)D10g9—90

¥/
(0/00)77!

:chlogp/i

(e/eo)”

yielding the specific entropy for an ideal gas being of the form

v p
s(0,9) = ¢, log (97_1> = ¢, log (E) (2.13)

Assuming now that the thermodynamic process is adiabatic, meaning no heat is exchanged, so
dQ) = 0 and, in view of §QQ = ¥Ds, also Ds = 0, we see that (2.13) furnishes (2.12).

= ¢, D log

Assumptions on coefficients: Together with the entropy inequality and the form of the
viscous stress tensor

S(Vu) = (Vu +V6iu— g div(u)]I) + ndiv(u)l,

we can give more restrictions on the viscosity coefficients u, 7 € R. Since the entropy production
rate must be non-negative, we obtain

S:Vu>0.
Seeing that Vu : VTu = | div(u)|?, we may write
S Vu = p|Vul* + L] div(w) + | div(w)
— ’%(|Vu|2 +2Vu: Viu+ |[VTu)? - %| div(u)|2) + 1| div(w)[?

_ L <|Vu + VTl — % div(w)l : (Va4 V) + ‘;div(u)]l

2
5 > + 1| div(u)?

12



2.3. Scaling considerations

9 2
- g Vu+ Vu = Zdiv(wl| -+ div(w)]’

to conclude that pu,n > 0. As we shall work in this thesis with viscous fluids, we require for
the stronger condition p > 0.
The same notion gives rise to

which, together with Fourier’s law q(¥) = —rx(9)V, yields k > 0 in accordance with the
physical principle of heat conduction already mentioned. In Section 4.3, we will assume that
the heat flux does not vanish, meaning x > 0.

For the physical intuition behind the adiabatic exponent ~, let us note that the thermody-
namic principle of equipartition of energy states that the energy of a gas in thermal equilibrium
is shared uniformly to all degrees of freedom f, that is,

1
== 3R,

where the factor 3 is related to the kinetic energy of the gas; we refer to [Cla57] and [Dem06,
Kapitel 10] for the connection between kinetic and heat theory. This and e = ¢, leads to
¢y = $Rf. Together with ¢, = ¢, + R = $R(f 4+ 2) and v = ¢,/c,, we obtain

IR(f +2) 2
=2 14+
SRS /

For instance, a monoatomic gas has three degrees of freedom, one for each direction in space.
5
3
vibrations and rotations around possible symmetry axes. Thus, the physical range for 7 is

Thus, we get v = 2 in this case. Larger molecules have more degrees of freedom, including

)
However, due to mathematical reasons, we are not able to hit this range. Indeed, we will always

assume that at least v > 2, and comment this issue later on in Chapter 4.

2.3 Scaling considerations

In order to obtain reasonable predictions for small as well as large systems of fluids, it is
convenient to non-dimensionalize the equations derived in the previous section. To this end,
we will take into account the fundamental dimensions length, time, mass, and temperature. In
particular, we assume that the system we are interested in has some characteristic values of
length L., time T, density g., velocity u., and temperature 9., where the other characteristic
parameters pe, €., ke, e, N as well as the sources f., g., r. are composed quantities of them. By
writing X’ = X/X, for any physical quantity X which may represent, for instance, time or

13



Chapter 2. Deriwation of the Navier-Stokes equations

velocity, we obtain for the continuity equation (2.2)

OclUc

L.

o + div(pu) = %@/Q' + div, (o'u’) =0,

which, omitting primes for simplicity, we may write in the form
Sr 0o + div(ou) =0

with the dimensionless Strouhal number Sr := L./(T.u.). Further, due to Gibb’s relation (2.8),
we have the compatibility condition p. = g.e.. Additionally, the viscosity coefficients p and
71 share the same physical units, so we may measure them in terms of the same characteristic
viscosity, meaning 7. = p.. The same argument leads to g. = o.f.. Thus, similar considera-
tions as for the continuity equation lead for the momentum equation (2.4), the kinetic energy
balance (2.6), the internal energy balance (2.7), and the entropy balance (2.10) to

. 1 1 . 1

Sr9;(gu) + div(pu ® u) = @(gf +g)+ e divs — WVp,
1 1

Sr 0, (olul?) + div(e|u|?u) = ﬁ(gf +g)+ ﬁ(div(Su) —S:Vu)

+ Mizf(p div(u) - div(pu)),

. Ma’ . 1
St 0;(pe) + div(geu) = ﬁS : Vu — pdivu + Hror — Pe div q,
Sr0y(0s) + div(gsu) = o + Hrr — i div 3
9 Pe ¥

where here

2
S = u(Vu + VT - 3 div(u)]l) + ndiv(u)L,

q:_ﬁ(ﬁ)VQ97
1 /Ma? 1 q-Vv

and the occurring characteristic numbers are given in Table 2.1. We remark that these num-
bers are not unique. However, due to Buckingham’s famous II-theorem (see [CLP82]), one may
determine how many of them are independent.

Symbol Name Definition

Sr Strouhal number L./(T.u.)

Fr Froude number U/ Lefe

Re Reynolds number OcteLe/ ie
Ma Mach number Ue/\/De/ Oc
Hr Heat release parameter o.r.L./(p.uc)
Pe Péclet number PetteLe/(Veke)

Table 2.1: Characteristic numbers of fluid motions

14



2.3. Scaling considerations

The meaning of such similarity considerations becomes apparent in physical simulations.

For instance, focusing on the Reynolds number, one may describe the behavior of an airplane
wing in a wind tunnel by modeling the real wing with characteristic length L. by a model
wing of, say, length L./2. If the characteristic velocity of air for the real wing is u., then the
solutions to the equations remain the same if the velocity in the wind tunnel is given by 2u..,
which is due to the fact that the Reynolds number does not change.
Mathematically, the scaled equations are particularly interesting if one of the parameters tends
towards zero or infinity, which gives rise to so-called singular limits. In Section 4.4, we will
consider the case of a vanishing Mach number. Note that in the definition of the Mach number,
the quantity /p./o. has the physical unit of a velocity, therefore also called (local) speed of
sound. A vanishing Mach number thus corresponds to a very slow flow (compared to speed of
sound), which is expected to have constant density and thus being incompressible. We will see
in Section 4.4 that this is actually the case.
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Chapter 3

Bogovskii’s operator in different
domains

In this chapter, let D C R? be a bounded domain, 1 < ¢ < oo, and f € L(D) be given, where
we denote L{(D) as the space of all functions g € LI(D) with [, g = 0. We will search for a
solution u € W, (D) to the equation
divu=f in D, (3.1)
u=0>0 on 0D,

such that u obeys a bound

lallypapy < ClfllLaw),

where the constant C' > 0 is independent of u and f. To find a solution u to equation (3.1)
which depends linearly on f is equivalent to ask for a bounded linear operator

B: L{(D) — W,Y(D)
such that for any f € L{(D),

divB(f) =f m D, |B(f)llwrep) < CNfllzap)- (3.2)

If such an operator exists, then u = B(f) is a solution to (3.1). We will give several results on the
existence of such an operator B, depending on the domain D. We start with domains that are
star-shaped, where B can be defined by an explicit formula, following [Galll] and the original
work of M. Bogovskii [Bog80], and continue with domains having a Lipschitz boundary. The
next section will focus on the case of so-called John domains, where the existence of an operator
B was shown in [DRS10]. The last two sections are devoted to the case of perforated domains
D., which will be defined later. For the existence of an operator B in the perforated domain
D., the outcomes from [DRS10] will be crucial in order to get a bounded linear operator B.,
where we can give an explicit dependence of the constant C' on €. Under suitable assumptions
on the perforations defining the domain D., we will show that for some ¢ we can construct a
bounded linear map

B.: LYD.) — W,Y(D,)

17



Chapter 3. Bogouskit’s operator in different domains

such that

divB.(f)=f in D, HBE(f)HW&,q(DE) <C Hf||Lq(D5)7

where the constant C' > 0 is now independent of . This operator will be extensively used in
Chapter 4 to obtain uniform bounds on the density.

Since the work to be done is the same in R? and R? for d > 2, we will state the results in the
sequel for the general case D € R?. We will refer to B as a right inverse to the divergence or,
in dedication to M. Bogovskii, as Bogouvskii’s operator.

3.1 Star-shaped and Lipschitz domains

3.1.1 Bogovskii’s operator in star-shaped domains

Let us start with the definition of star-shaped domains. A domain D C R? is said to be
star-shaped with respect to some point xo € D (the star center) if for every point x € D the
line {tzg + (1 —t)x : t € [0,1]} C D. In other words, the point xy “sees” all other points
x € D. For instance, convex domains are clearly star-shaped with respect to any of their
interior points, but also the domain R*\{(x1,0) € R*: 2; < 0} is star-shaped with respect to
the point 2 = (1,0). A domain is said to be star-shaped with respect to a ball B C D, if for
all xy € B it is star-shaped with respect to xy. Following [Galll, Lemma III.3.1] and [FN09,
Lemma 10.6], we have the following existence result for the inverse of the divergence.

Lemma 3.1.1. Let D C R be a bounded star-shaped domain with respect to a ball Br(y) C D,
and let 1 < ¢ < oo and f € LY(D). Then, there exists a solution u to problem (3.1), which
depends linearly on f. The constant appearing in (3.2) admits the bound

C < Cy(d, q) [diam(D)/R]* (1 + diam(D)/R). (3.3)

If additionally f € C°(D), then u € C°(D).

Proof. First, we assume f € C2°(D). By the change of variables 2’ = (z — y)/R, we transform
f into a function f'(z’') = f(x), and D into a domain D" which is star-shaped with respect to
the ball B = B;(0) and satisfies

diam(D’) = diam(D)/R.
The system (3.1) transforms into
divy(u') = Rf = F'.
Evidently, we have F' € C°(D') N L{(D’). Hence, if u’ satisfies div,y u’ = F’, then u(z) =
u’(z') yields a solution to (3.1). Thus, it is sufficient to show (3.1) for the case that D is
star-shaped with respect to the ball B = B;(0). Note that this also implies diam(D) > 1.

Let n € C°(D) be such that suppn C B, n > 0, and [, ndaz = 1. We now define u = B(f)
via the formula

)= B0 = [ g0\ =l [ (=l e e
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3.1. Star-shaped and Lipschitz domains

Using the change of variables r = £/|x — y| in (3.4), we recover at once the equivalent formula

_ /D f)(e—y) / oy + (e — )t dr dy.

This form immediately yields that u has compact support in D. Indeed, set
E={2z€D:z=tz;+ (1 —t)z0, 21 €supp(f), 22 € B, t € [0,1]}.

Since D is star-shaped with respect to every point of B and supp(f) is compact, we see that
E is a compact subset of D. Now, let x € D\ E. Then for all y € supp(f) and any r > 1, we
have

y+r(z—y) ¢ B,

hence n(y + r(x — y)) = 0 and thus, by (3.4), u(z) = 0, which shows that supp(u) C E. On
the other hand, using the change of variables r = £ — |z — y| in (3.4) and the fact that we may
extend f outside D to be zero, we obtain

u(x):/Rdf<y>|.;‘E—_;Jy|d/0 77<x+r‘i:z‘)(r+\x—y\)dldrdy.

By a further change of variables z = = — y, we obtain

u(r) = Rdf(m—z)@/ooo (334-7"‘ |)(r+|zl)d_1drdz.

Note that if L > 0 is large enough such that supp(f)UB C By(0), we get u(z) = 0 on R*\ B (0)
and for x € Br(0), the function g(r,z) := (4L)* 'X(0.20)(7)XBy.(0)(2)]2|* ¢ is integrable and
dominates z|z|~%(r +|z])¢~!. Thus, we are allowed to change integration and differentiation up
to any order, showing that u € C°(D).

Let us now show that u satisfies (3.1) and the required estimates. First, we rewrite (3.4)

in the form
/ fW)N(z,y)dy,
where the kernel N(z,y) is defined as

rT—Y > L =Y \pd-1
N dé.
(@3) = lﬂf—y!d/ﬂcyn<y+€|x—y|)S :

Observe that by definition of N we have

8Ni 8NZ Ty —Y; /oo ( r—y ) d—1
—(z,y) = —5—(z,y) + 0, + d
ON;
— (920] “(z,y) + N,] (z,y).
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Chapter 3. Bogouskit’s operator in different domains

Differentiating the i-th component u; with respect to z; thus yields

oju;(x /f Oz, Ni(z,y)d /f $ydy+/f ,y) dy.

Now, let ¢ > 0 be sufficiently small such that B.(x) C D, and split the integral over D into
the integral over B.(z) and its remainder D \ B.(x). Using integration by parts, we obtain

Oyuy(x) = /B SN ) dy /a o [Ny oty

- / £ (9)8y, N, ) dy + / F) Ny, y) dy + / )Nz, ) dy
D\B:(x) D\B:(x) < (z)

~ [ NGyt [ N WP as(y)
D\Be(z)

OB (x) Yl

+/ By, () Nil, y) + f(y)Nij (2, ) dy.
Be(z)

Since f(y) and d,, f(y) are bounded and the singularities of N and N are weak singularities
of order (d — 1), hence integrable over B.(x), we see that the last term vanishes in the limit
e — 0. Thus, we get

x .

o) =t ([ swoN@nde [ EEbN o)

e—0 9B:(z) |z —y|

Ni(x,y)do(y), (3.5)

. 37'—yj
:p.v./fyaNi x,y)dy + lim fly)=
D ( ) J ( ) =50 9B. () ( )’x_y’

where we used the prescript p.v. to indicate that the first integral has to be understood in the
Cauchy principal value sense. For the second term, we obtain

lim F) 22— N (2, y) do(y) = f(l‘)/D (; _yj)(xi_yi)n(y) dy, (3.6)

=0 Jop. () |x—y| |z —y[?

since, by the below change of variables z = (x — y)/e and r = £ — €|z| for the first integral,
the fact that supp(n) C B, the change z = (z — y)/|x — y| and integration over surfaces in the
second integral, we have

A (z) =

/83 PO E=EN o) doly) ~ ) [ (2 = 9) (@ =99 g

Iw—yl |z —y|?

‘ /8 o @) / n(z +r2)(r + ) dr do(z)
— )/ zzj/ n(x +rz)rtdrdo(z)|.

0B1(0) 0

Thus, if € is small enough, we obtain
)< [ f(a) = Sl = e dolz) + ol
9B1(0)
which yields lim. o A.(xz) = 0 and finally (3.6). To handle the remaining integral in (3.5), we
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3.1. Star-shaped and Lipschitz domains
apply Calderén-Zygmund theory. First, for fixed y, we find
0yNio) =y (=) [ty r(e - ) ar]
= 5 / o+ rle =) =) [ @)y (e — )t
1
d/ 77( ts2 y)(s+|x—y|)d1ds
u—m |z -yl
Ti — Yi /OO r—Yy d
+— o;n (a:—i—s )S+ x—y|)%ds
|z — y|*T (9m) 7 — o] (s+ | )

We now expand the powers of d in the last two integrals to write 0;V;(x, y) in the form

O;Ni(z,y) = K;j(x,x —y) + Gij(z,x — y),

where we define

Kij(z,x —y) = / / 77<£C+S )sdl ds
’ & —yl* Jo |z —
T — Y /OO T—Y\ g
+— (O;m) (m+s—)s ds
[z =yl Jy |z =yl
N )
[z —ylt -

and Gyj(x,x —y) is given by

- i <Z) (i — i) /Ooo(am) (z+r(x—y))riFdr

By supp(n) C B, we get for the upper bound of the integrals

1 2 diam(D
1>z +r(r—y)|>rlr—yl—|z|=r< +’3€|§ iam (D)
|z — y| |z — y
since diam(D) > 1 and 0 € D, thus |z| < diam(D) for any z € D. In turn, we may estimate

2 dnm(D)

("2 ) [ ot rte =iyt < (5 11)||n||mwd2 JE

=
-1 : d—k : _
1 /2diam(D) diam(D)1
d <Cn,d)—————.
>k_1d k( |z =yl ) = >!$—y!d_1

d—1

k=1
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Chapter 3. Bogouskit’s operator in different domains

Similarly, we calculate

]~

(Z) (@i — i) /Ooo(am) (x4 r(z—y))r**dr

d 2d1am(|D)
(M)nwuw el =l [
2

k=10
Z (2diam(D))4-F+1
Cln.d d— k +1 |r—yldh

diam(D)41
v =yl

B
Il

1

< C(n,d) diam(D)

Thus, we get the estimate

diam (D)1
jz =yl

|Gij(z, 2 —y)| < C(n,d) (1 + diam(D)) (3.7)
Concerning the other part of d;N;(x,y), the kernel K ;(x, z) respectively its defining function
ki;(z,z) satisfies the assumptions of the Calderon—Zygmund Theorem B.9. Indeed, we have
from the definition of k;j(x,2) that for any A > 0, k;;(x,2) = k;j(x, Az), and also for any
2| =1

[Kij (@, 2)| < ‘/0 77($—|-7“z)7’d’_1 dr| +

diam(D)?
R LR

/Ooo(ﬁjn)(:t +r2)rddr

diam (D)1

< nll Lo rey i1

therefore
Kij (2, 2) || oo (D fz1=1y) < C(n, d) diam(D)4(1 + diam(D)). (3.8)

Third, we find with n € C=(R%), fRd ndx = 1, and partial integration

/ kij(x,z)dz = &;; / / n(x +rz)rtdrdz + / 2 / (0m)(x +rz)rtdrdz
|z|=1 |z]=1J0 |z|=1 0
= [ Bunte -+ o)+ w@n e+ ) dy = [ dgn) + (- 2)@m)() s
= 6ij — / 51]7](2) dz =0.
Rd

Hence, the limits in (3.5) exist and (3.5) can be written as

e pv/f K —y)dy+/Df<y>GU<x,x—y>dy

M—yP
= Fi(z) + Fy(z) + F3(x).
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3.1. Star-shaped and Lipschitz domains

From Theorem B.9 and (3.8), we get that

| Fillzopy £ C diam(D)? (1 + diam(D)) | flla(p)
Young’s inequality (B.3) and (3.7) furnish

| Fallzopy £ C diam(D)? (1 + diam(D)) | flla(p)
Finally, we have

7y — Y yi)n(y) dy

<C
|x — y|2 Hf”LQ(D) = ||f||Lq(D)7

Lg=(D)

n&mﬂmzH

where the constants above may depend on 7, d, and ¢, but not on D. Combining the estimates

above, together with diam(D) > 1, we end up with
[ullyracp) < C(d, q) diam(D)* (1 + diam(D)) || ]| za(p)

which is inequality (3.3) since we assumed at the beginning R = 1.
It is left to show that u also satisfies (3.1). For that, we calculate

divu(x)z/f(y) [d/oon(wr(:v—y))rd‘ldr

+Z/ —Ys) 3n)(y+r(x—y))rddr1 dy

3 f) [ g a

D |$—y|2

D

= (r'ny+r(z—y
xyéf@ww+fm>

Since f has zero integral over D, this shows (3.1).
Lastly, if f € L{(D) is arbitrary, we choose a sequence {f;},en C C°(D) such that f* — f in

L4(D), and define
S A
D

where ¢ € C°(D) satisfies [, ¢ dz = 1. Then we still have f,, € C2°(D) and f, — f in LY(D),
but also f, € L{(D). Thus, to any f, we can find functions u, € C(D) solving (3.1) and
obeying the estimate (3.3). This together with the fact that the operator B in (3.4) is linear

23



Chapter 3. Bogouskit’s operator in different domains

in f, the sequence {uy, }nen is a Cauchy sequence in W,"Y(D) since
[, — uk”WOl’q(D) = [|B(f») — B(fk)HWOLq(D) = |B(fn — fk)Hngq(D) <Clfn— fchL‘?(D)a
thus converging strongly in W, ?(D) to a function u € Wy%(D). In particular,

f=lim f, = lim divu, = divu
n—oo n—oo
in the sense of strong limits in L?(D), showing that u satisfies (3.1) and (3.3). This finishes
the proof of the Lemma. O

Note that the constant appearing in (3.3) is invariant under rotation, scaling, and translation
of the domain D. These invariances will thus be true for any upper bound on the constants
appearing in future theorems on the existence of an operator B, and will also be used in the
proof of Theorem 3.2.9 below.

3.1.2 Bogovskii’s operator in Lipschitz domains

We will prove that for bounded domains D ¢ R? with Lipschitz boundary, there exists a right
inverse to the divergence operator. To this end, we first give the definition of a Lipschitz
domain, and then state and prove a result on the connection of Lipschitz and star-shaped
domains, which can be found in [Galll, Lemma II.1.3 and Exercise I1.1.5] (see also [SBH19,
Proposition 10.11]).

Definition 3.1.2. Let B¢(0) denote the open unit ball in R, and let D C R be a bounded
domain. Then we say that D has Lipschitz boundary (or D is a Lipschitz domain), if for any
xoy € OD there exists a ball B.(xy) and a Lipschitz function ¢ : B{(0) — R with Lipschitz
constant L > 0 such that in a proper coordinate system with origin xq, we have

0D N By(xo) = {(«',{(2")) : 2" € B{7(0)},
DN By(zo) = {(2',24) € B&H0) x R : g < C(2')},

where we used the notation ' = (x1,...,24-1).

Lemma 3.1.3. Let D C R? be a bounded Lipschitz domain. Then there exists a finite collection
of bounded open sets { D;}¥_, which are star-shaped with respect to a ball such that D = Ule D;.

Proof. Let xy € D. Since D is a Lipschitz domain, there exists a function ¢ : B{~'(0) — R
with Lipschitz constant L > 0 and a ball B,(xy) such that for any point = = (2/,x4) €
0D N B,(zy), we have

zg=((a"), 2" € B{H0),
and for all x € D N B,(xg), we have
rq < ((2'), 2’ € BH0).

By a proper rotation and translation, without loss of generality we may assume that xq = 0.
Denote by yo = (0,...,0,y4) € D the intersection point of B,.(zy) and the z4-axis, and let
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3.1. Star-shaped and Lipschitz domains

C(yo, ) be the cone with vertex yy, opening axis equal to the x4-axis, and semi-aperture
0 < a < w/2. Let R be a ray starting in y, and lying inside C(yp, ). Then, R intersects
0D N B,(xo) in exactly one point. Indeed, assume that R cuts D N B,.(zy) in two distinct
points z; # z3, and let o’ < a be the angle between R and the z4-axis. Rotating the coordinate
system as the case may be, we can assume that

<1 = (211917C(lee1))7 Z% >0, 2 = (Z%el,ﬁ(%lel))u Z% >0,
where e; = (1,0,...,0) € R™™. Since 2z, 2, € R, we have

/ Gl n |21 — 2| _ 21 = 2

T (Gle) —wa C(eden) —ya [C(ler) = C(zden)|  [C(zler) — ((zen)]

|21 —Z2|

|C<Z%91) - C(Z%elﬂ

=tana’ < tana.

Choosing « so small that

1
t < =
ana < 5T

this would yield

¢(21€1) — ((z3e1)| < L]z — 22| < %\C(Z%el) — ((ze1)],

which is a contradiction. Thus, R intersects 0D N B,(xy) in exactly one point. Now, let
z = (2, zq) with z4 > y4, and denote by S = S(z) the intersection of C(yo, a/2) with the plane
{(z',xq) € R?: 2y = zq}. Set further

R(z) = dist(95S, z).

If 2 is sufficiently close to yo (say, z = zp), the set S(z) C D and, in addition, any ray
originating from a point in S(zy) that lies completely inside C(yo, a/2) forms with the z4-axis
an angle less than «, hence it intersects D N B,(x) in only one point. Let Z be a cylinder
with axis equal to the x4-axis that fulfils

0DNZ=0DnNC(yo,/2),

then, by what we have shown till now, the set Z N B,(xy) N D is star-shaped with respect to
the ball Br(.,)(20). Since o € 0D was arbitrary and dD is compact, we can choose a finite
number of points {z;}¥, € 9D, corresponding balls B, (x;), and corresponding cylinders Z;
such that 9D C Uf;l Z; 0 B.(z;). Define now D; == Z; N B,..(xz;) N D and consider

K K’ c
Dy =D\ | JD; = <Ecu <UD)) :
=1 =1

then Dy, is compact and separated from 9D, so we may choose finitely many balls {B;}¥_,, 41
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Chapter 3. Bogouskit’s operator in different domains

which cover Dj,; and which are strictly contained in D. Since all the sets D;, 1 < ¢ < k/, are
star-shaped with respect to a ball, and the balls B;, ¥ + 1 < i < k, are obviously star-shaped
with respect to a ball, we may take {D;} | == {D;}¥; U{B;}_,,., to finish the proof. O

Before we present and prove the fact that in any bounded Lipschitz domain there exists
a right inverse to the divergence, we show the following decomposition result for functions
defined on the union of star-shaped domains (see [Galll, Lemma II1.3.2]).

Lemma 3.1.4. Let D = Ule D; C R? be a connected set, where any set D; is a star-shaped
domain with respect to a ball, and the sets are numbered in such a way that ]DZﬂUf:Z.H Dy| #0
for any 1 <i <k — 1. Further, let f € L(D). Then there exist functions { f;}*_, such that

e supp(fi) C D;,
4 fl € Lg(Dl)7
o [= Zle is

o | fillLapyy < CillfllLapy, where (with the convention ngl aj=1)

D11/ K.\ D;|t-1/a
C’i:(1+‘ | )H(1+M> 1<i<k-—1,
=1

w1 GIRE
k-1
_ | K\ Dy|' e
Cr = ]1;[ (1 + W ;

and the sets F; and K; are defined via F; .= D; N K; and K; = Uf:iﬂ D;.

Proof. First, note that the constants C; are well-defined since we may always number the sets
D; in such a way that |F;| # 0 for any 7. We will give a graph-theoretical argument for this
and refer to [Gri21] for the basic concepts of graph theory. Let G = (V, E), where V = {D;}¥_,
are the vertices of G, and FE is the set of edges, where we connect D; and D; with an edge if
|D; N D;| > 0. Since D is connected, G is as well, and therefore contains a spanning tree 7.
We may now relabel the sets D; such that D is a leaf of 7 (that is, a vertex with just one
edge), and remove D; and its edge from 7. Now, let Dy be a leaf of 7\ {D;}, D3 be a leaf of
T\ {D1, Dy}, and so on. Note that if we remove a leaf from the tree T, the remaining graph
is still a tree and in particular connected. Therefore, we may proceed inductively to show the
desired. Now, define

fi(x) = {f(w) - X|F151(|I) fpl fdx ifx € Dy,

’ if v € Kl \ D17
g1(x) = [1—xr (@)]f(z) - Xfﬁfr) le\Dl fdx ifz e Ky,
0 if v € Dy \ K.

Then, clearly,

fide =0, supp(f1) C Dy, fi€ LU (Dy),

Dy
supp(g1) C K1, g1 € LK),
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3.1. Star-shaped and Lipschitz domains

and also, since D = D; U K; and by dividing into the cases z € D; \ K, * € K; \ Dy, and
x € DyN Ky = Fy, we have f(z) = fi(z) + ¢g1(x) in D, thus

/ gldx:/ gld:L‘—l—/ gldx:/ gldx—i—/ g1 dx
K Kl\Dl KiNDq Kl\Dl Fy

:/ gldx—/ fdx:—/ fidz =0.
K1\D; Ki\D Ki\D

Setting go := f, we define inductively for any 1 <i < k —1

f) = [ 9@ - ) [ gde ifxe D,
Z 0 if v € K; \ D;,

gi(z) = 1 —xr(7)]gia(x) — Xfpfr) fKi\Di gi1dx if z € K,

and set fr(z) = gr_1(x). Similarly to the case i = 1, we have for all 1 <1i <k
/ fidz =0, supp(f;) C Di, f; € LY(D;).
D;

Now, by Hélder’s inequality (B.2), we get

1
[ frlla(pyy = llgs-1llLapy) < llgh-2llLapy) + ‘/ G2 Az || Fy_q]a ™!
Ki—1\Dg—1
| K1\ Dy_q| 714
< H9k72“Lq(D) + Hgk*2HLq(Kk71\Dk71) ’kalll_l/q

|Ki_1 \ Dy_q|' 714
< ”9k—2HLQ(D) (1 + | Py |2 1/a '

Similarly, for any 1 <¢ <k —1,

1_
1 illzes < lgilzaon + ] [ gradirfi
D;
| Dl e
< Nlgiall ooy + H%4HLQ(D0W

| D[~/
< llgi-1llzao) (1 + ‘E’l—l/q),
which, by supp(g;—1) C K;_; and iterating (i — 1) times, yields for all 1 <i <k —1

| D[~
oo < ol (1+ 2

2
= llgi-1llzaciy) (1 TR

< (gisllire. +] [ s ) (1+—
< (Ki-1) Ket\Dios |Fi|1—1/q
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Chapter 3. Bogouskit’s operator in different domains

< |Ki1\ Diq|' 711 ) | Dy|'
> “gi—QHLq(D) + ”gi_2||Lq(Ki—l\Di—l) |Fi—1|1_1/q + w—_w

[Kiy \ Diy|' 710 | D'~
< |lgi-2llza(p) (1 N AT

i—1
| D'~/ |K; \ Dy|' e
< lgollzeco (1 = [I(1+ B[ 1a

<
|

_ D9\ 5 K\ Dy|'
—Hme(n)(HW—_w 1l HW

J

|
—

as well as

k

-1
K5\ D[t
[ fllzae) < N[ fllzacoy 1;[1 (1 TR )

<

]

The next lemma states that we can find and bound a Bogovskii operator in any domain that
is a union of star-shaped domains. This can be seen as a prototype for the case of Lipschitz
domains, see Theorem 3.1.6 below.

Lemma 3.1.5. Let D = Ule D; C R? be a connected set, where any D; is star-shaped with
respect to a ball B; with radius r; > 0, and let f € L{(D). Then there exists a bounded linear
map B : LY(D) — Wy (D) such that B(f) is a solution to system (3.1) and B satisfies the
bound (3.2), where the constant C' obtains an upper bound

CSCOCl (1+S)Sd.

Here, co = co(d, q), ¢1 is an upper bound for the constants C; arising in Lemma 3.1.4, and s is
defined as

S = max ——.
1<i<k T

Proof. Decompose f as in Lemma 3.1.4, then by Lemma 3.1.1 we can find in every D; a linear
map B; : L(D;) — Wy(D;) and a constant ¢o = ¢o(d, q) > 0 satisfying

diam(Di)> (diam(Dz-))d

T i

1B gy < ol oy {1+

diam(D,)) (diamwi)){

i

< @0 Ci | fll ey (1 "

i
Extending any B; to be zero outside its domain of definition, we may set

k

B(f) = Z Bi(fi),

i=1
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3.2. John domains

which finishes the proof since

div B(f ZdlvB (f) = Zfz— f in D;,

and

k
1B llwzaepy < D IBi(F)llwtaeo,
i=1

k

<l 3 01+ Sn(B ) (D)’

Z

diam(D; diam(D; d
< co||flleapy k (1r£1;a<>§€ Ci) (1 + max J) ( max #>

1<i<k i 1<i<k i

<cocr (1+5) 8[| fllzan)

]

Theorem 3.1.6. Let D C R? be a bounded domain with Lipschitz boundary. Then there
exists a bounded linear map B : LY(D) — WyY(D) obeying the bound (3.2) such that for any
f € L{(D), the function u = B(f) is a solution to system (3.1).

Proof. By Lemma 3.1.3, we may write D as D = Ule D;, where any D; is star-shaped with
respect to a ball. The statement is now a direct consequence of Lemma 3.1.5. O

Remark 3.1.7. Let us remark that due to the previous lemmata, the constant C' arising in
(3.2) heavily depends on the Lipschitz character L of OD. More precisely, we see that the
number k from Lemma 3.1.J of star-shaped domains that cover D depends proportional on L,
which shows that also the constant ¢y from Lemma 3.1.5 tends towards infinity as L does. We
will come back to this observation in Section 3.3 later on.

3.2 John domains

John domains are a class of rather general domains that still satisfy some good regularity
properties. They were first used by F. John in his work [Joh61] in connections with elasticity
problems and are defined as follows.

Definition 3.2.1. For a constant ¢ > 0, a domain U C R is said to be a c—John domain if
there exists a point xg € U such that for any point x € U there is a rectifiable path T : [0,¢] — U
which 1s parametrized by arc length with

T(0) =z, D(f) =gy, Wtel[0,4]:|0(t)— x| <ecdist(D(t),0U). (3.9)

John domains may have fractal boundaries or internal cusps, whereas external cusps are
forbidden. For instance, the interior of Koch’s snowflake as well as any convex domain are
John domains, see [Pom13, Theorem 5.9]. In the case of bounded domains, there are several
equivalent definitions of John domains, see [V&i88, Section 2.17]. We state the following char-
acterization, which is used in [DRS10, Section 3.1]: a bounded domain U is a ¢c—John domain
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Chapter 3. Bogouskit’s operator in different domains

Figure 3.1: The path I' (red), connecting « € Ap, first to y € L and then to z without leaving
L (dashed).

in the sense of Definition 3.2.1 if and only if there is a ¢;(¢) > 0 and a point xy € U such
that any point € U can be connected to zy by a rectifiable path I' : [0,¢] — U which is
parametrized by arc length and

U B(T(t).t/e)) CU. (3.10)

t€[0,4]

Obviously, if U is a ¢—John domain, than it is also a ¢ —John domain for any ¢ > ¢. Further,
the condition (3.9) is invariant under rotation, translation, and scaling of the domain U. We
will give some examples of John domains, which we will use later on for the existence and
boundedness of Bogovskii’s operator in perforated domains.

Example 3.2.2. Let 0 < r < R and consider the annulus Ar, = Bgr(0) \ B.(0). Then Ag,
15 a John domain with constant c = %. In particular, if 0 < rg < R s fivred and 0 < r < 1,

then the John constant of Ar, just depends on ro and R but not on r.

Proof. The ideas given here will show up again later in the proof of Lemma 3.4.4. Let L :=
0B (g+r)/2(0) be the midline in Ag,, and fix a point zy € L. Then, for x € Ag,, the path T’
which connects x to L and then follows L to xy will do the job. More precisely, let I' = 1"y UTs,
where I'y is the shortest line connecting x to L and hitting L in a point y, and I'y C L is
the shortest arc from y to xp; see Figure 3.1 for an illustration in two dimensions. Since I'; is
defined to be the shortest line joining x to L, it is part of the ray {tx : t > 0}, so its length is
as ['y is the shortest arc in L joining y to z, its length is bounded
by ﬂ%. Denoting by ¢ the length of I', we then have ¢ < W% R;”,
to € [0, ] be the unique time such that I'(ty) = y. For ¢ € [0,to], we obviously have

D) — o = [[1(t) — 2| = dist(T' (), 0Ag,)

2T R 2mR

< dlSt(Fl( ), 0AR,) = 7, dist(I'(t), 0AR,,)-

For any t € [to, ], we have dist(I'2(t), 0Ag,) = £, thus

R R R —
+r—|—|y—x|§7r ;—r+ 2T§7TR

I0(t) — 2| = [Ta(t) — 2| <7
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3.2. John domains

2rR R—r  21R . 2tk
=R 3 TR dist(T's(t), 0AR,) = 7, dist(I'(t), 0Ag,),

leading finally to

2R
—r

0(t) — =

IN

dist(T(t), 0AR,) ¥t € [0,4].

]

Example 3.2.3. Let zp € R? and S C R? be a bounded star-shaped domain with respect to a
ball B.(xo). Then S is a John domain with John constant at least diam(S)/r.

Proof. Let x € S and choose the path I' as the straight line from x to zy. Since S is star-shaped
with respect to any point of B,.(zg) and |z — zo| < diam(S), we have

J B@®),rt/diam(s)) c S.

te[0,|z—zol]

Since for straight paths I', equations (3.9) and (3.10) coincide with ¢ = ¢;, we may choose
¢ = diam(S)/r. O

Example 3.2.4. Let z,yo € R? and S1, S, C R? be bounded star-shaped domains with respect
to balls Br,(x0), Br,(yo), respectively. Assume that there exist z € S; N Sy and 0 < r <

 min{diam(B (z)), diam(Bs(yo))} such that B,(z) C Sy NSy and S = S; U Sy C Bey(2) for

some co > 0. Then S is a John domain.

Proof. We will show that the point xg is a proper John center for S. First, since S; and
S, are star-shaped, we see from Example 3.2.3 that they are John domains with constant
¢ = max {dmgfsl), dlar;isﬂ }. Let z € S. If € Sy, we are in the situation of Example 3.2.3.

If x € Sy, then we connect first x to yo with the path I'y(¢) = x + ¢:2== then connect yy to z

lyo—z|’

via I'y(t) = yo + 7=, and finally connect z to xy via I's(t) = z + 2=

lz—yol’ |zo—2z] "

z € S1, both I'y and I's are proper paths with John constant ¢’. Since S; is star-shaped and
z € B,(z) C Sy, we have dist(I'y(t),05) > r, leading to

Since x € S, and

ITa(t) — 2] < |yo — 2| < diam(Sy) < 2¢or < 2¢q dist(Iy(t), 05).

Finally, we choose I' = I'y UT'; U T'; to obtain a proper path joining z to zy in S, where the
constant ¢ occurring in (3.9) can be chosen as ¢ = ¢ + 2¢o + ¢ = 2(¢' + ¢). O

Example 3.2.5. Let T' C B1(0) be a simply connected compact set with Lipschitz boundary
and 0 € T. Then B1(0) \ T is a John domain, where the John constant only depends on the
Lipschitz character of OT.

Proof. From Lemma 3.1.3, we can cover B;(0) \ T with finitely many open sets {D;}*_, such
that each D; is star-shaped with respect to some ball. If D; N D; # ) for some i # j, then we
may find a a ball B, C D; N D; such that the conditions of Example 3.2.4 are fulfilled. The
statement follows now from iterating the arguments given in Example 3.2.4. [

Finally, we will state the following result for shrinking domains, which will be crucial in the
proof of Theorem 3.4.1.
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Chapter 3. Bogouskit’s operator in different domains

Lemma 3.2.6. Let T C By/5(0) be a simply connected compact set with Lipschitz boundary
and 0 € T, and let 0 < r < 1. Then the domain B1(0) \ (rT) is a John domain, where the
John constant does not depend on r.

Proof. Since T' C By/»(0), we have T C B,,2(0) C B,(0) C B;(0). From Example 3.2.5,
we know that By(0) \ T is a John domain, where the John constant just depends on the
Lipschitz character of 0T. Since (3.9) is invariant under scaling, the same holds true for the
set B,(0) \ (rT). Further, from Example 3.2.2, the set B;(0) \ B,/2(0) is a John domain
with constant independent of r. We now choose a star-shaped domain from the covering of
B,(0) \ (rT') such that its star center xy € B,.(0) \ B,/2(0). Note that this choice is always
possible: indeed, if all star centers are inside B,/2(0) \ (r7"), then we choose one of the star-
shaped domains that cover B,(0) \ (r7"). This one will also cover a part of B,(0) \ B,/2(0),
which then has Lipschitz boundary, and we may cover this part by finitely many star-shaped
domains with star centers in B,.(0) \ B,/2(0). Now, let € B1(0) \ (+T). If x € B1(0) \ B,/2(0),
we are in the situation of Example 3.2.2. If x € B,.(0) \ (r7T'), then first join z to zy, following
the star-shaped sets that connect them as shown in Example 3.2.4, and finally xg to the John

center of B;(0) \ B,/2(0). The path we obtained then fulfills (3.9) with a constant ¢ > 0 that
may depend on the Lipschitz character of T, but not on r. O

Before we state the existence and boundedness of a right inverse to the divergence in
John domains taken from [DRS10], we give the definition of the so-called emanating chain
condition. Our arguments how to prove the existence of a Bogovskii operator are then built
on this definition.

Definition 3.2.7 ([DRS10, Definition 3.5]). Let D C R? be a bounded domain and o1, 09 > 1.
Then D satisfies the emanating chain condition with constants oy and oo if there exists a
covering W = {W; 1 i € N} of D consisting of open cubes or balls such that:

i) For alli € N, we have oyW; C D and ZieN Xoww; < O2XD ON RY.

ii) For any W; € W there exists a chain of pairwise different Wi o, Wi1, ..., Wim, € W such
that Wio = Wi, Wi, = Wo and Wi, C ooW,y for all 0 < k <1 < m;. Further, for any
0 <k <m,, there exists a ball B;, C Wi N W, 1 such that W, UW, 41 C 028, .

iii) For any compact K C D, the set {i € N: W; N K # 0} is finite.

As shown in [DRS10], for bounded domains, this condition is equivalent to be a John
domain. For our purposes, we will just show that any John domain satisfies the emanating
chain condition. The proof of this fact uses a covering result which is known as the Whitney
covering lemma, and occurred first in [Whi34, Section 8] (see also [Shv07, Theorem 2.4] and
[Guz75, Theorem 2.1 and 2.2]).

Lemma 3.2.8 ([DRS10, Proposition 3.3]). There are constants 1 < k1 < kg and N > 0 which
depend only on the dimension d such that for any open proper set D C R? there is a family
{Qi,i € N} of open cubes or balls such that

(WI) D = UiEN k1Qsi,

(W2) 3r1diam(Q;) < dist(Q;, D) < ko diam(Q;),
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3.2. John domains

(WS’) ZieN X2k Qi < Nxp on RY.

We are now in the position to state the following result about existence and boundedness of
a right inverse to the divergence, which is again taken from [DRS10]. We will use the notation
C25(D) for functions f € C°(D) with zero mean value over D.

Theorem 3.2.9 ([DRS10, Theorem 5.2]). Let D C R* be a bounded domain satisfying the
emanating chain condition with constants o1,09 > 1. In particular, by Theorem 3.2.10 below,
D may be a John domain. Farther, let 1 < g < oo. Then, there is a bounded linear operator

B:LYD)— W,YD)
such that for any f € L}(D)

divB(f) = in D, BNy < C IS,

where the constant C > 0 just depends on o1,09,q, and d. If, in addition, f € CH(D), then
B(f) € C(D).

To proof Theorem 3.2.9, we need several decomposition and covering results. The first one
states that any John domain satisfies the emanating chain condition.

Theorem 3.2.10 ([DRS10, Theorem 3.8)). Let D C R? be a bounded c—John domain with
John center o € D, and let {Q;,i € N} be a Whitney covering of D with constants ki, ka, N,
and o € Q. Define o = %, W, = %Flei, and W = {W,;,i € N}. Then there exists a
constant oy = 09(K1, ke, ¢,d) > 1 such that D satisfies the emanating chain condition with
constants o1 and oo and covering V.

Sketch of the proof. The main idea is to construct for any ¢ € N a finite sequence of pairwise
different cubes or balls Q; 1, ..., Qim;, € {Q:,7 € N} such that:

® Qio=Qi, Qim, = Qo for i € N.

® £1QirNK1Qiks1 # 0 for i € Nand 0 < k < m,.

e There is a constant oy = 09(k1, ke, ¢, d) > 1 with @, C 02Q;; for any 0 < k <[ < m,.

The sets @, will be defined inductively, starting with Q; := @Q);. If we denote by z; the center
of W;, by the equivalent form (3.10) of the John property (3.9) there is a rectifiable path T';
with length ¢; joining x; to xo such that

J B@i(t).t/cr) C D.

te[O,éi}

Since the image of I'; is a compact subset of D, it only intersects finitely many @Q;, i € N,
from which the chain will be constructed. Assuming that the sets Q.y,...,Q:n are already
constructed and Q; ., # Qo, we set

tmi1 = sup{s: [i(s) € kK1Qim}

Due to (W1) of Lemma 3.2.8, there exists Q;m+1 € {Qi,7 € N} with I';(t;41) € k1Qim+1 and,
by construction, also I';(tm+1) € K1Qim N K1Q4im+1. Furthermore, by definition of the ¢, we
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Chapter 3. Bogouskit’s operator in different domains

have Q;mt+1 7# Qi for all 0 < k < m. Finally, fixing 0 < k£ < m + 1 and denote by z;; and
Z;m+1 the centers of Q); ; and Q); 41, respectively, for fixed y € Q; » one may estimate

|[L'7;7m+1 — y| S tm+1 + dlam(QLk) + diam(Q@mH).

Using the John property as well as the properties from the Whitney covering, one can estimate
every summand in terms of Ky, ko, ¢1, and diam(k1Q; m+1) to obtain

|Zimt1 — y] < C (14 ¢1)(1 + ko) diam(k1 Qi mt1)
for some C' = C(d) > 0, which eventually shows that
Qir CC (14 c1)(1+ Ka)2K1Qim+1-
Since the constant on the right is independent of m, one may choose
o9 :=C(d) (14 ¢1)(1 + K2) 2 k1.

Now, it is enough to define for any 7 € N and any 0 < k < m; the sets W, = %/@1@% and
show that the W, fulfill all the conditions of Definition 3.2.7. O

The next step is to show that for a domain satisfying the emanating chain condition with
covering W = {W;,i € N}, one can decompose a function f € LI(D) into functions f; €
LE(W;). This decomposition result is a generalization of Lemma 3.1.4 to domains satisfying
the emanating chain condition rather than domains that are star-shaped.

Theorem 3.2.11 ([DRS10, Theorem 4.2]). Let D C R% be a bounded domain satisfying the
emanating chain condition with constants o1,09 > 1 and covering W = {W,,i € N}. Then
there are linear operators T; : C2o(D) — C25(Ws) such that for all 1 < q < oo we have:

e For any i € N, T; is continuous from L{(D) to LE(W;).
e For anyi € N and any f € L{(D), it holds
|T:f| < C(d)ooxw,M f almost everywhere,
where M f is the Hardy-Littlewood mazimal function from Lemma B.6.

o For any f € L{(D), it holds f = >,y Tif in L§(D), where the convergence is uncondi-
tional.

o The map f = ||T;f|Laow,) is bounded and obeys the estimate

1
1 q
ol < (UM ugwy ) < €l

ieN
where C' = C(d, 01,09,q) > 0.
o If f € C(D), then #{i € N: T;f # 0} < c0.
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Sketch of the proof. The proof of the existence of the operators 7T; is constructive. First, we
assume that f € C23(D). Since D C J,cy Wi, one may choose a smooth partition of unity
{&}ienw with supp(&;) € W; and define S;f = & f. It is immediate to see that the operators
S; are linear from L'(D) to LY(W;) and from C°(D) to C°(W;), they are bounded since
1Sif] < xw;|f|, and also Y. Sif = f almost everywhere and in L9(D) if f € L(D). However,
they do not satisfy fD Sifdx = 0 in general. To fix this issue, let W;; and B, be as in
Definition 3.2.7. One may assume that the balls B, ; stem from a family ‘B such that

ZXB <oyxp on R%.
Be®

Now, for any B, with 0 < k < my, let 0, € C°(B; ) be such that n,;, > 0, fB nigde =1,
and ||ni x| peowsyy < C(d)/|Bix|. Choose further a function 7;,,, € C(Wo) Wlth Nim; > 0,
fWo Nigm; Az =1, and ||1;m, | Lo ey < C(d)/|Wol. Finally, one defines the operators T; as

(/ S, f du

Since all cubes (or balls) in a chain are pairwise different, the sum over k consists of at most

Tf = Sif — mo/ Sifdz+ >

J>0,j#i

(Mj—1 — Uj,k))-

k: 0<k<m
W] k= Wl

one summand. However, the sum over j may still be countable. Thus, one has to proof that
T; is well-defined. It turns out that the sum converges almost everywhere absolutely and can
be estimated with the help of the maximal function M f, so T} f is indeed well-defined for any
f € Cx(D) and any f € L{(D). The fact that fWi T, f dx = 0 follows from this convergence
and [panixde =1 for all i,k > 0 with 0 < & < m,. The estimate for the map f — ||T; f|l Lsow,)
finally follows from the fact that the maximal operator M is bounded from L4(D) to L4(D)
for any ¢ > 1 and

Q=

(10 5y) = € (S I,

€N ieN

~o (3 [ bisras)

< C M fllza(py
<O\ fllzep)

as well as

¢ (Z rmfuiq(wi)) |

La(D) ieN

1 llzapy =

€N

]

With the outcomes from Theorems 3.2.10 and 3.2.11 at hand, we are able to prove the
existence of a bounded linear right inverse to the divergence in bounded John domains.

Proof of Theorem 3.2.9. Let W = {W;,i € N} be the covering of D satisfying the properties
stated in Definition 3.2.7. Further, let T; : L3(D) — L(W;) be as in Theorem 3.2.11. By
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Chapter 3. Bogouskit’s operator in different domains

Lemma 3.1.1, there exists a linear bounded operator Byt which is continuous from C25(B1(0))
to C°(B;(0)) and also from L¥(B;(0)) to Wy%(B;(0)). Since we may choose W; as balls and
because of the form of the constant in (3.3), translation and scaling considerations show the
existence of linear bounded operators B; : LE(W;) — W, 9(W;) such that for any f € LL(W;),

divBi(f) = f i Wi, |Bi(f)llwraw,) < CNfllewn,

where the constant C' > 0 only depends on ¢ and d, but not on .
Let f € LY(D) and extend B,T,f outside W; by zero, which yields B;T;f € Wy (D). We now
define

B(f) = Z B;T;f almost everywhere in D.

1€EN

Since Wy 9(W;) € Wy (W;), the sum converges in L (D) and also in the sense of distributions.
The same argument yields VB(f) = >, VBT, f in L (D).

loc

Together with Theorem 3.2.11 and the estimate on B;, we obtain

S BT W auny < C Tl Way < C 1 1oy
ieN ieN
This and the fact that supp(B,T;f) C W; yields Bf = >, BiT;f in W(D) and also VBf =
Y ien VBT, f in LY(D) as well as

1By < € S IBT sy < C 1750y

ieN

Since VBf =3, .y VBT f, divB;(f) = fin Wy, and Y, T f = f in L9(D), we conclude

divB(f) =Y divBTf =Y T,f = f.
ieN ieN
Finally, let f € C23(D). Then, by Theorem 3.2.11, we have T;f € C°(W;) for all i € N, and
T, f # 0 for just finitely many ¢ € N, which yields by the properties of B; that B;T;f € C°(W;)
for any ¢ € N and B;T;f # 0 for only finitely many ¢ € N. This shows Bf € C2°(D) and the
proof is complete. O

3.3 Perforated domains: The case of well separated ob-
stacles

We now turn to the case of perforated domains and the existence and boundedness of a right
inverse to the divergence in this case. Let us emphasize that the bounds on the Bogovskii
operator in the previous sections depend on the domain, whereas in the perforated setting,
we want to know the precise dependence on the perforation. This uniform boundedness is the
main issue in the following two sections, and it will be crucial to obtain the homogenization
results in Chapter 4.
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3.3. Perforated domains: The case of well separated obstacles

Let us start to define the perforated domain for the case of well-separated holes. Since
we will apply the results in the sequel for homogenization of the compressible Navier-Stokes
equations in R?, we will focus just on the case d = 3 and rely on the results given in [DFL17].
We will not go into a more detailed analysis of boundary regularity, thus assuming that the
boundaries of all occurring sets are sufficiently smooth.

Let D C R® be a bounded domain with smooth boundary. Let ¢ € (0,1), @ > 1, and
{25}ien C R? be a collection of points such that |z5 — 25| > 2¢ for all i # k. We then define
the perforated domain as

D.=D\ U (e*T +x5), K. ={ieN:z;e D, dist(z,0D) > e},
ieK.

where T C Bj/2(0) is a simply connected compact set with smooth boundary and 0 € 7. We
call the sets T¢ := (e*T + z5) obstacles or holes. We also assume that we just removed those
balls from D which are not too close to the boundary in order to avoid boundary issues.

In this section, we will show the following existence theorem:

Theorem 3.3.1 ([DFL17, Theorem 2.3 and Section 3]). Let D, be defined as above. Then for
all 1 < q < oo there exists a bounded linear operator

B.:LYD.) — W,Y(D,)

such that

(B=—q)a—3

divB.(f)=f in Dy [B(Hllyrogp, < C (1 te o )||f||Lq(Ds), (3.11)

where the constant C' > 0 is independent of €.

Note that for any fized € > 0, the existence of such an operator is guaranteed by the results
obtained in Sections 3.1 and 3.2. However, as mentioned in Remark 3.1.7, the constant in (3.2)
depends on the Lipschitz character of D., which becomes unbounded as € tends towards zero.
The crucial point is to derive the explicit e-dependence on the Bogovskii constant. We will
give the full proof here, since it contains many ideas which we will use later in the case of a
random perforation.

Proof of Theorem 3.3.1. To start, let f € L{(D.) and denote by f its zero extension to the
whole space, that is,

f=finD. f=0in R*\D..

Since we assumed D to have a smooth boundary, by Theorem 3.1.6 there is a vector field
u = Bp(f) € Wy?(D) such that

diva=fin D, |ullyrepy < Cllfllzapy = C I f e,

where the constant C' > 0 just depends on D and ¢. Clearly, u does in general not satisfy
u € W,(D,) since it might not vanish on the holes. We will therefore take a cut-off argument
in order to let u vanish on the holes, however, this will change its divergence. To fix this,
we will use local Bogovskii operators around each hole. Estimating the norms of the cut-off
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Chapter 3. Bogouskit’s operator in different domains

procedure will finally yield the e-dependence from (3.11).
By the assumption that |x5 — x5| > 2¢ for all i # k, we can enclose each T by

T7 C Byea(x) C B€/2($§) C B.(z5),

where for any ¢ # k we have B.(z5) N B.(z5) = (). Now, we consider two cut-off functions,
defined by

Ve € C2(Be(@f)), Xei Imaen= 10 [IVXeillimmy < O™ (3.12)
Goi € O (Bosa (@)}, Cas Ie= 1 IVGillimBratary < O™, (3.13)
and set
D.; = Buaf)\ Bop(D),  Bes = Bo(a)\ T7.
Defining

bei(u) = x=i(u — (u)p_,) € Wy*(Be(x7)),

3.14
Bealu) = G ()., € Wy (Bowe(2)). S

where we denote the mean value of a function u over a measurable set S C R?® by

7.
w)g = — [ udxz,
W= g g

Poincaré’s inequality (B.6) now implies

lu— (Wb, llzep.) S ellVullLep. ),

and by (3.12) we get

Vb i(w)||ap, ) < IxeiV(u = ()b, )llrap.) + [VXei(w — () p, ) Lap...)
SV = (yp. )rap.y +e lu—= () lLep. ) (3.15)
S VUl zeo. -

Similarly, by (3.13) and Hélder’s inequality (B.2), we obtain

IV Bei(u) || La(Byea (25)) = IVCeii - (W) .,

< (1) uyp

L9(Bgea (mf))

<GV D e, (3.16)

< ) Jul o,

~Y

Since ., as well as b.; do not have vanishing divergence, we need to correct them using a
local Bogovkil operator on E, ;, provided f.; has been extended by zero outside Ba.o(z5). By
Lemma 3.2.6, E.; is a John domain with a John constant which is independent of €, so we
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3.3. Perforated domains: The case of well separated obstacles

know from Lemma 3.2.9 that there exists a linear bounded operator Bg, ; such that
BEW- : Lg(Ea,i> — W()Lq(Ea,i>7 div BEEz(f) = f: ”BEa,i(f)”WOl’q(Em) <C ||f||Lq(Ee,i)

for all f € L{(FE.;), where the constant C' > 0 is independent of £ and i. We are now ready to
define the restriction operator from D to D, via

a =u-—- Z Ba % + ba ) ) BEs,i ( div(ﬁa,i(u) + baﬂ'(u)))? (317)

€K

provided Bg_, (div(S.;(u) + b.;(u))) is extended to be zero outside its domain of definition.
Repeating the arguments shown in [DFL17, Section 3], we check that the operator R, is well
defined and satisfies the desired norm bounds. First, by the definitions of b, ; and . ; in (3.14),
we have

/ div(be;(u) + f-:(u)) dz = / divb,;(u)dx + / div 3. ;(u) dz
Be(x5) <(25)

B2s"Y (If)

:ié&@ﬂbm@g.nmﬂ@4i/ B..(w) - ndo(z) = 0

0Bjca (If)
On the other hand, x.; = (.; =1 and divu = f = 0 inside 77, thus

divb,;(u) = x.;divu+ Vyx.; - (u—(u)p.,) =0 in 77,

£,1

div 3z s(u) = V(. - (u = (u)p, ;) = 0 in 77,

leading to
/ div(b.;(u) + B:(u))dz =0
Ea,i

as required. Next, for any x € T7, we get

R$M@=M@—®M®+&AD®)BEUMWMM+&NWN@
=u(z) = fei(u)(x) — bei(u)(x)

u(z) — Gi(@)(Wp., — Xei(x)(a(z) — (wp.,)
=0,

where in the last equality we used that x.;(z) = (.;(z) = 1 in T7. This yields that the operator
R, is well defined and satisfies

R.(u) € WyY(D,), divR.(u) =divu= fin D,.

Finally, by (3.15), (3.16), and the fact that the balls B.(x%) are disjoint, we see that

3_1)y_3
HRE(LI)”WOI’(I(DE) S C <€(q 1) q _'_ 1) HUHWOI,q(D),
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Chapter 3. Bogouskit’s operator in different domains

where the constant C' > 0 is independent of € > 0. For f € L{(D.) we define

B.(f) = (R o Bp)(f)
and observe that we get the desired operator, namely B.(f) € Wy (D),

B=9)a—3

ANB(f) = fin Dy and (B oo, < € (14557 ) o

This finishes the proof. O

3.4 Perforated domains: The case of a random perfora-
tion

In this section, we will generalize Theorem 3.3.1 to the case of randomly placed holes which
additionally have random radii. Note that we assumed in Section 3.3 the centers z§ fulfill
|25 — 5| > 2e. We drop this assumption and show, under suitable conditions on the radii of
the holes, that the centers for a random perforation rather satisfy |25 — z5| > C'e*", where we
indicate with 27 any number that is greater than 2. Before defining properly the perforated
domain, let us first state an important observation taken from the estimate (3.11):

The operator B. is uniformly bounded as long as (3 — q)a — 3 > 0, in particular, we need
l<g<3anda>3/(3—q).

These conditions will occur in a slightly different form later in Theorem 3.4.1, and are optimal
in the sense of capacity, see also Remark 3.4.8 below. Since we will use the Bogovskii operator
in the homogenization of compressible Navier-Stokes equations to bound the density of the
fluid independent of e, we need that it is uniformly bounded. The condition o > 3/(3 — ¢) will
play a crucial role there.

Let us begin with the description of the random distributed holes. Let ® = {z;};en be a
random collection of points in R, and denote for any bounded measurable set S C R? the
number of points inside S by N(S). We assume that the points are distributed according
to a Poisson process with intensity rate A > 0, which is characterized by the following two
properties:

1. For any k € N, it holds P(N(S) = k) = %eﬁ‘m.

2. For any two measurable and disjoint sets S and S5, the random sets ® NS} and & N Sy
are independent.

Furthermore, we associate to every point z; € ® a random radius. For that, let R = {r;}.,co
be another random process of independent identically distributed random variables r; € (0, c0)
with finite m-th moment, i.e.,

E(r) < oo for some m > 0,

and which are independent of ®. The couple (P, R) C R® x R, is called a marked Poisson
point process and can be seen as a random variable 2 3 w — (®(w), R(w)), defined on an
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3.4. Perforated domains: The case of a random perforation

abstract probability space (£2,2(,P). We will omit the dependence on w in the sequel if no
ambiguity occurs. The exact range of m we can work with will be specified later.

Let D C R? be a bounded domain with smooth boundary which is star-shaped with respect to
the origin, that is, for any x € D, the segment {tz : t € [0,1]} C D. We define for a > 2 and
€ > 0 the perforated domain D, as

(D) ={zedn %D dist(ez,0D) > ¢}, D.=D\ U Beoy, (). (3.18)

z,€P(D)

The assumption of star-shapedness of D can be dropped, however, it ensures that the sets
®(D) are monotonically increasing as ¢ — 0, thus simplifying some arguments of the proofs.
Moreover, the constraint dist(ez, D) > ¢ in the definition of ®°(D) prevents us from consid-
ering boundary issues in the homogenization process later on. It will also ensure that boxes
around holes are well inside D, see Theorem 3.4.2 below.

Our main result in this section reads as follows:

Theorem 3.4.1. Let o > 2, D C R® be a bounded star-shaped domain with respect to the
origin with smooth boundary, and (®,R) = ({#;},{r;}) be a marked Poisson point process with
intensity A > 0. We assume the radii r; > 0 fulfill E(r7") < oo for some m > 3/(a —2). Then
for all 1 < q < 3 which satisfy

a— 2> (3.19)

there exists a random almost surely strictly positive g = eo(w) such that for 0 < e < gq there
exists a bounded linear operator

B.: LYD.) — Wy%(D.;R?)
with D, defined in (3.18), such that for all f € L{(D,)

divB.(f) = fin De,  |B-(Nllwpep,) < CllfllLaw.),

where the deterministic constant C' > 0 is independent of €.

To show this result, we will need some preliminaries. The first one states that for small but
positive ¢, the holes are well separated and that we may group them to clusters which cannot
have too many elements.

Theorem 3.4.2. Let a« > 2 and A > 0 be the intensity of a marked Poisson point process
(@, R) = ({z},{rj}) with r; >0 and E(r]") < oo, where m > 0 satisfies

3

a—2

m >

Let0<d<a—-1-2 ke (max(1,8),a—1—2) and 7 > 1. Then there exists a random
variable eo(w), which is almost surely strictly positive, satisfying:

1. For every 0 < e < gq holds

max 7e%; < 't
2z, €P¢(D)
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Chapter 3. Bogouskit’s operator in different domains

and for every z;, z; € (D) with z; # z;

Brorie(22) O Bomton(e2,) = 0.
9. Let
N = N(9) = 8(1 + H ) (3.20)

Then for each 0 < € < €q there are finitely many open rectangular cuboids {If} C D,
having edges parallel to the coordinates axes and which we simply call bozes, satisfying:
(a) The bozes I cover the balls, i.e., for any z € (D) we have Ba+x(cz) C U, If.
(b) Any box I contains at most N points from e®(D).
(¢) Balls are well inside the box: for ez € If N e®(D) holds dist(Ba+x(e2),01F) >

1 _1+6
6NE .
(d) Any two distinct bozes If and IS are well separated: disteo (I, 15) > gee't.

(e) The shortest side of If is at least ﬁslﬂs while the longest side is at most e'+°.

The condition o > 2 ensures that the interval for  is not empty. The proof of the second
part of Theorem 3.4.2 uses that for 0 < ¢ < g any cube with side length £'*° contains at most
N points from the Poisson point process. This can hold only if § > 0, since the number of

1+0

points in a cube of size '™ is Poisson distributed, i.e., any number of points appears there

with small but positive probability.

Proposition 3.4.3. Let d > 1, § > 0 be fived, and let {z;} C R* be points generated by
a Poisson point process of intensity X > 0. In addition, let D C RY be a bounded star-
shaped domain. Then there exists a deterministic constant N(0,d) € N and a random variable
go(w, A\, D), which is almost surely positive, such that for all 0 < e < gy and any = € R? the
cube x + (0,119 contains at most N points from D N e®.

To construct the Bogovskii operator B, in D, from Theorem 3.4.1 we use local Bogovskii
operators for each box I7 to modify the Bogovskil operator in D. Instead of making explicit
construction in each box I7, we invoke the result on the existence of Bogovskii’s operator for
John domains (see Theorem 3.2.9) and show that each box If minus the balls is a John domain
— for this the outcomes of Theorem 3.4.2 will be crucial. In particular, we need that one box
contains at most /N balls, the balls are not close to each other, and they are tiny, compared to
the size of the box. The following lemma states that any perforated I7 is a c—John domain.

Lemma 3.4.4. Under the assumptions of Theorem 3.4.2 for fixed

_9_3
let 0 < e <eg. Then for every box I7 constructed in Theorem 3.4.2, the domain
U =1\ U Bor, (£2) (3.22)

zjee—1IEN®=(D)
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3.4. Perforated domains: The case of a random perforation

is a c—John domain, where ¢ = ¢(N) is independent of €, and N is defined in (3.20).

In particular, for any 1 < q < oo there exists a uniformly bounded Bogovkii operator
By : LYU) — Wy (U), i.e., there exists a constant C > 0, independent of €, such that for any
fe LgU)

divBu(f) = f,  1Bu(Nllwpew) < C I gy

3.4.1 Proofs of Theorem 3.4.2 and Proposition 3.4.3

The goal of this section is to prove Theorem 3.4.2, the second part of which is based on
Proposition 3.4.3 about the distribution of the random points, modeled by the Poisson point
process. Fixing § > 0, this proposition states that for ¢ small enough, for any cube of side
length €' inside a fixed domain D there are at most N = N(J,d) of the rescaled points £z
in the cube. The heuristic explanation of this is as follows: assuming we only need to consider
a disjoint set of cubes and fixing € > 0, the number of cubes in D which we have to consider
scales like (1494 At the same time, the probability of one cube of side length £'*° having
more than N points scales in the case of the Poisson point process like (%)N = ¢9Nd Hence,
choosing N large enough so that =494 29V « 1 should lead to the result.

Proof of Proposition 3.4.3. We start with a special case, which will be later used to prove the
general case:

Claim: There exists N; € N and an a.s. positive random variable £y(w) such that for any
dyadic € = 27! smaller than &y, any half-closed cube Q. , = etz 4+0,e'9)4, 2 € Z4, contains
at most N1 points from $®(w) N D.

If rescaled by a factor 2 the claim says that in a cube with side length (2¢)'*? there are at
most N7 points, and we are considering points (more precisely cubes) inside 2D instead of D
only. The reason for this choice will be clear later in the proof.

For I € N and ¢ = 27!, we define

By = {w € Q : one of the dyadic cubes Q)5-: , contains
at least N} points from 27"'® N D}.

In order to prove the claim, it is enough to show » . P(B;) < oo and apply the Borel-
Cantelli Lemma C.1. Recall that for any measurable bounded set S C RY, we denote by
N(S) = #(S N @) the number of random points in S. First, by rescaling, we see that

By = {w € O : there exists a dyadic cube Qy-1, such that N(2'"1(Qy-1, N D)) > Ny }.

Since we can cover D with at most C'|D| (2")? cubes Q,-1, and due to the stationarity of the
process @, we estimate

P(B) < C(D)2"P(N (2" Qq-19) > N,) = C(D) 2 P(N (2" - 2710 [0, 1)) > N,)

< O(d, A, D) 214 . 20=0ONd _ (g \, D) 2Wd(1=N18) (3.23)

where in the last inequality we used that the points in ® are Poisson-distributed, i.e.,

oIS (ALS])"

n!

P(N(S) = n) =
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Chapter 3. Bogouskit’s operator in different domains

for any n € N, that for any x > 0 we have

71 ko xkn! " kg
T b Sl 2 (3:24)
k>n k>0 k>0
since 1 < ("zk) = (’;:rk, for all n,k € N, and that 27 < C(A) for any A > 0 and any n > 0.
Choosing now Ny = 1+ [$] in (3.23), we have IP’(BZ) < C274 for some ¢ > 0, meaning that

Ym0 P(B) < C Y5027 " < co. The Borel-Cantelli Lemma C.1 now implies

IP’( lim sup Bl) =0,
=00

meaning that almost surely there is an g¢(w) > 0 such that for all 0 < & = 27! < g, any cube
()21 . contains not more than N; points from $® N D, thus proving the claim.

To show the general case, for w € 2 we consider €g(w) coming from the claim. Without
loss of generality we assume gy = 27% for some [, € N (otherwise replace gy with the largest
smaller power of 2). To finish the proof we need to show that for any 0 < & < &g, any cube
Q. =+ [0,e1)% x € R?, contains at most N points from D Ne®(w). Let 0 < & < gy and
Q. =+ [0,&']? be chosen arbitrary, and let N := 2¢N;. Let [ > Iy be the unique [ such that
27 < g <27,

Observe that for w > 0 we have #(Q.Ne®) = #(wQ:Nwed), where wQ. = {r+w(y—=x) :
y € Q.}, which together with star-shapedness of D yields for @ = 27D ¢ (0,1)

#(Q-NedN D) = #(@wQ- Nwed NwD) < #(wQ. N2~ HVd N D).

We now cover @@, with (at most) 2¢ cubes (Qo-1,. Observe that even if w(). is closed and
()51, are only half-closed, the covering is possible since we = 2~ < 2L Tn particular, the
claim implies that any Q-1 , contains at most N; points from %@ N D, thus implying that
@(Q., being covered by at most 2¢ cubes Qo1 > contains at most 2¢ N, points from 2=HDdN D.
This together with the last display implies #(Q. Ne® N D) < 2¢N; = N, thus concluding the
proof of the proposition. O

We now turn to the proof of Theorem 3.4.2, the first part of which is based on the following
Strong Law of Large Numbers (see Theorem C.2).

Lemma 3.4.5. Let d > 1 and (®,R) = ({z;},{r;}) be a marked Poisson point process with
intensity A > 0. Assume that the marks {r;} are positive i.i.d. random variables independent
of ® such that E(rT") < oo for some m > 0. Then, for every bounded measurable set S C R?
which 1s star-shaped with respect to the origin, we have almost surely

—1 - : d m o m
limeN(e™'S) = A|S|,  lime D= AE(™)[S).

J
zjee~18

Remark 3.4.6. Assuming the boundary of the set S from the previous lemma is not too large,
the same argument also shows

lim 2 Z rm ™). (3.25)

e—0
z;€®e(S
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3.4. Perforated domains: The case of a random perforation

In particular, it is enough that S has a C*-boundary.

With Lemma 3.4.5, we obtain for the domain D, and for € > 0 small enough

0D =10D]+| |J 9Ban(ez)| < C+ 00 Y a2
#ePe (D) zi€9°(D) (3.26)
IDAD.]=| |J Buanlez)| <C¥ebed 3 48 < oo,
2;€9¢(D) 2,€0°(D)

which implies |D.| — |D| as ¢ — 0. Thus, for € possibly even smaller, we can control the
measure of D, by 3 |D| < |D.| <2|D|.

Using Remark 3.4.6 as well as Proposition 3.4.3 we can prove Theorem 3.4.2.

Proof of Theorem 3.4.2. Part (1): We start with the first part of the theorem, which actually

holds for any dimension d > 1, a > 2, m > -4 and x € (1, — 1 — £). We follow the lines

a—2" m
of [GH19, Proof of Lemma 6.1].

Using (3.25) and the choice of k, we have for almost all w

1

™ 1

limsupae% max riglimsupegn( Z TZ”) < [AE(r™)|D|] ™.
e—0 z€®4(D) e—0 wic®e (D)

This implies for € > 0 small enough

1
max Te%r; < 2re® [AE(r™)|D[] ™ < e't", (3.27)
2, €P¢(D)

the last inequality coming from a — % > Kk + 1, and therefore being true for ¢ being possibly
even smaller.

To show that two balls do not intersect we consider an event
AZ = {w € Q: there are 2 intersecting balls in {B,.1+x(€2)}.ca:(n) },

and it is enough to show

]P’( N U Ai) = 0. (3.28)

e0>0e<eg

We reduce this to the case of dyadic €, by showing

]P’( Ny Ail) =0, (3.29)

lo=>11>lo

where ¢, = 27! and 7 = 2**%7.
Indeed, let [ € N be such that /41 < e < . Now suppose z;, z; € (D), z; # z; such that

B, ax(2;) N Brasn(e2;) # 0.
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Chapter 3. Bogouskit’s operator in different domains

Then
ez — zj] < elz — 25| < 27 < 27/ = 27(2e49) T = 2 21T
which means that
Bgl+nfa}j{~ (Er12:) N le+nfsll++;~ (e1412;) # 0.

The domain D being star-shaped implies monotonicity of (D) in ¢, in particular (D) C
d=+1(D), which combined with the previous display yields

I3
A2 C AT,

thus showing that (3.29) implies (3.28).

It remains to show (3.29). Let ¢ > 0 and 7 > 1 be fixed. Observe that if for z;, z; € ®°(D) we
have B, .1+x(€2;)NBaitn(€2;) # 0, then e|2;— z;| < 27 and after simplifying |z;—z;| < 27e",
in other words

Ac{we: e %D : 4#(9°(D) N Barex (z)) > 2} (3.30)

Recall that for S € R?, we denote by N(S) = #(S N ®) the random variable providing
the number of points of the process which lie inside S. Let us also note that the points are
distributed according to a Poisson distribution with intensity A > 0. We now recall a basic
estimate from [GH19, Proof of Lemma 6.1]: for 0 < n < 1, define the set of cubes with side
length 7 centered at the grid nZ? by

Q, = {y+[-n/2,n/2]" : y € nZ%.

Since it is not true that any ball of radius 7 is contained in one of these cubes, we need to add

(finitely many) shifted copies of Q,. For that let S, be the vertices of the cube [0,71/2]%, i.e
S,={z=(21,...,24) ER": 2, €{0,n/2} for k=1,...,d}.

Observe that for any = € R?, there exist z € Sy and a cube @ € Q, such that By (x) C z+Q,
which immediately implies

(z)) = 2)
P(3Q € QU,ZESW:(z—l—Q)ﬂéD%@,N(z%—Q) > 2).

FNE)

1
P(3z € -D: N(B
9

Since S, has 27 elements and the number of cubes Q € Q, that intersect 7' D is bounded by
C(D)(en)~%, we use the distribution of the Poisson point process to conclude

P(HmEéD:N( e ZZP (z4Q) >2)
2€8y
o0 d\k
< 20 en) e SO L < e, 0) (en)-out
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3.4. Perforated domains: The case of a random perforation

where the last inequality follows from (3.24). Letting 7. = 87¢", this together with (3.30) and
the fact that #(®°(D) N S) < N(S) for any S C R?, yields

]P(Af_) < C (€1+:‘i)—d€2dﬁ _ C«gd(n—l)‘

To show (3.29) we take a sum over [ with ¢ = g; = 27!, which using x > 1 can be estimated as

Y PAY) <C ) 27D < oo,
=0 =0

and (3.29) follows from direct application of the Borel-Cantelli Lemma C.1.

Part (2): We now turn to the second part of the theorem, i.e., the construction of boxes If.
Fixing ¢, the first step is to construct a finite collection Z = {I;} of auxiliary boxes such that:

e these boxes cover the points, i.e., |, I; D e®(D),

o distoo(f;, [;) > 551t

o s(I;) < % where s(I) of a box I denotes the size of its longest side,
e each box I; satisfies |I; N e®*(D)| < N.

Here the crucial condition is the second one, i.e., that the boxes are well-separated.
Let | = 5™

cubes of side length [. At every moment of this growth process, every box I € T will satisfy

. We will grow the boxes I from the collection Z step by step, starting with

the following conditions:

i T = [agl, byl) x layl, byl) X [a,l,b.l) for some ag, b, ay,by,a.,b, € Z, ie., each box is a
union of many small cubes;

ii. for each a € [ag,b,) NZ holds [al, (a + 1)I) X [a,l,b,l) X [a.l,b,l) NeD(D) # 0, and
similarly for y and z, i.e., in every slice there is some point from ®¢(D);

iii. #(INed*(D)) < N.

At the beginning, let Z consist of all cubes [a,l, (a; + 1)) X [a,l, (a, + 1)) X [a,l, (a, + 1)I)
which have a point from ¢®°(D) in it. Since D is bounded, Z consists of finitely many boxes
(cubes). We then repeat the following procedure:

If there exist two different boxes I,J € T such that dist(I, j) = 0, we fix them and
merge them together. That means, we remove [ = [a,l, b,l) X [a,l,b,) X [a,l,b,]) and J =
lall,bL1) x [all,b)]) x [a l,V.]) from Z and add

z" Y y"r Yy 2" Yz

K = [A,l, B,l) x [A,l, B,l) x [A.l, B.I)
= [(ag A al)l, (b, VL)) x [(ay Adl)l, (b, VU)) x [(az Adl)l, (b, VL))

to Z instead. Here A and V stand as usual for minimum and maximum, respectively.
First, observe that (i) trivially follows from the definition of K. Next, to verify that K
satisfies (ii), let us fix i € {x,y, 2}, and observe that dist(I, J) = 0 implies [a;, b;] N [a}, b]] # 0.

R
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Chapter 3. Bogouskit’s operator in different domains

Hence, for any a € [a; A a/,b; V b)) either a € [a;, b;), in which case (i) for I implies (ii) for K,
or a € [al, b)), in which case ii for .J implies (ii) for K .

It remains to argue that K satisfies also (iii). Since I satisfies both (i) and (iii), in particular
to each a € [a;,b;) N 7Z there is assigned at least one point from ¢®°(D) and there are at most
N such points, it follows that [a,l, b;l) has a length of at most Ni. The same argument applies
verbatim to J, and so the union of [a;l, b;l) and [a}l, b)) has a length of at most 2NI. Hence,
each side of K has a length of at most s(K) < 2Nl = 2N 3L+ = £+ In addition K satisfies
(i), and so there exists a (closed) cube Qz with a side length of £+ such that K € Q. By

Proposition 3.4.3, the number of points in )z is at most /N, which implies the same for K, i.e.,
#(K Ned*(D)) < #(Qg Ned*(D)) < N,

which shows (iii) for K; moreover, since K also fulfills (i), this shows that K has a length of

at most s(K) < NI.

Since the collection Z was finite at the beginning, and in each iteration we decrease the
number of boxes in Z by one (we remove I and J and add K), this process has to terminate.
In particular, at the end Z consists of boxes which have positive distance from each other,

since otherwise the process would not terminate at this point. Since all boxes in Z satisfy (i),

this in particular implies that this positive distance has to be at least [ = ﬁ&“l”

since each box has a side length of at most NI = %5”5, and each point in e®°(D) has at least

. Moreover,

distance € to 0D, we see that each box (and actually also its small neighborhood) lies inside
D.

Using boxes from Z we define boxes I¢: for each auxiliary box I; € T set IF = {z €
R? : distoo(z, I;) < awve' ™}, and it remains to show that {If} satisfies (2a)-(2¢). First, by the

assumption s > 4§, and so for small enough ¢ we have e!*t# < 1@%\[51”' Therefore, by the triangle
inequality we have for any ez € I; that distec(Basr(c2),0I7) > ghel®® — gltr > _Lol¥d,
thus (2a) and (2c) hold. Since by the construction the auxiliary boxes satisfy disto.(Z;, ;) >
7€', and all the points from e®¢(D) are inside these boxes, we see that IF \ I; contains no
point from e®°(D). Therefore (iii) for /; € Z implies (2b) for I7. Finally, (2d) trivially follows
from the definition of I7 and the separation of elements in Z in form of distoo(lzi, I ;) > %51”,

and (2e) uses that I7 consist in each direction of at least one cube and of at most N of them. [

3.4.2 Proofs of Lemma 3.4.4 and Theorem 3.4.1

Before proving that a box from which we remove finitely many small well-separated balls is a
John domain, let us recall Definition 3.2.1 for John domains. For a constant ¢ > 0, a domain
U C R? is said to be a c—John domain if there exists a point g € U such that for any point
x € U there is a rectifiable path ' : [0,¢] — U which is parametrized by arc length with

o)==z, TI'{)=uzy, Vte[0,:|I(t)— x| <cdist(I'(t),0U). (3.31)

We will use the characterization (3.10), which we also recall here: a bounded domain U C R*
is a c—John domain in the sense of Definition 3.2.1 if and only if there is a ¢;(¢) > 0 and a point
xo € U such that any point x € U can be connected to xy by a rectifiable path T": [0,¢] — U
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3.4. Perforated domains: The case of a random perforation

Zo I
| G
1 X
! T1s
Lo |
(a) The case X € G. (b) The case X € U \ G.

Figure 3.2: (a) The point X € G, first connected to x; € L (red) and then to x, while not
leaving L (blue). (b) The projections (blue) of the balls By and B; onto the sphere S with
midpoint X. The cone C' illustrated by the red area hits none of the balls and serves as the
“outgoing” sector from X to L.

which is parametrized by arc length and

U B(r(t).t/e) C U.

t€[0,4]

Note that for straight lines I', the two definitions coincide with ¢; = ¢. One way how to
prove Lemma 3.4.4 is inductively by showing, that under some assumption on a ball one can
remove it from a John domain while changing the John constant of the domain by a fixed
factor at most. In order to do so, we would need to modify arcs which run close to (or through)
this removed ball while estimating how much does this change the situation. For a similar
argument with small balls replaced with points, see [HPWO08, Theorem 1.4]. Assuming this,
since we have to remove at most N balls and at the beginning the domain is rectangle with
proportional sides, in particular a John domain, this would lead to the conclusion.

Instead of this, we provide a direct constructive argument.

Proof of Lemma 3.4.4. To start, we use Theorem 3.4.2, part (1), twice: once with Kk = k; =
1+ and second time with Kk = ky = a—1— % — 0. Observe that both values of k are within
the admissible range (max(1,d),ac —1 — ), and therefore the theorem yields the following:
there exists an a.s. positive random variable €y(w), obtained as the smaller of the two &g, such
that for 0 < e < g it holds

max )60‘7"]- <& and ez —ez| > 2e'T for any zj, 2 € 9°(D). (3.32)
z; €0 (D

Assume now we have 0 < € < ¢y small enough and recall that we want to show that
U=1\{JB;
J

is a ¢(IN)—John domain in the sense of Definition 3.2.1, where
{B;}j = {Bear,(e2j) : €25 € I} }.
For brevity, we set I = If = p+ (=11/2,11/2) x (—12/2,15/2) x (—l3/2,13/2) C R* where p
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Chapter 3. Bogouskit’s operator in different domains

is the center and [; are the side lengths of /. Since (3.31) is scale-invariant, we can assume

ll Z lg Z 13. The set

1 146
Ne

will serve as a “highway” in the set U, and for the specific point zy from Definition 3.2.1 we

choose g == p + (0,0,l3/2 — 735£ ). We also denote the ring around L by G := {z € I :

distoo (2, L) < 535"} Let us note that a brief sketch of the ideas developed here for G can

be found in Example 3.2.2.

L={z el :disty(z,0I) =

To show that U is a John domain, for each X € U we need to construct a path from X to
xo along which |- —X| < edist(-,0U). The idea is first to go from X to L, and then run along
L to zy. Observe that for points x € L the condition is easy to satisfy: for each x € L we have
dist(z,0U) = dist(z, 0G) = g3ve'™® and |z — X| < diam(U) < v/31;, and so using (2e) to see
I} < c(N)e'*? we get that |z — X| < (V) dist(z, OU) as required.

It remains to describe the path from X to L. For points X € G this is straightforward (see
Figure 3.2a): we just choose the shortest path from X to L and observe that any point z on
that path satisfies dist(x, OU) > dist(z, 0G) > 37Y/?|z — X|. The v/3 is optimal as can be seen
from points in corners.

For the remaining part of the proof, we deal with the points from the “interior” U \ G. For
X € U\ G we need to construct a path from X to L, while not going too close to the balls
{B;};. We will use two important properties of these balls: the size of the balls is much smaller
than their mutual distance (see (3.32)), and there are at most N of them. We fix X € U\ G and
show that we can actually use a straight line to connect X with L. Along this line we should
be able to move a growing ball without hitting {B,};, which is equivalent to the existence of a
cone with an opening ¢(NV) that avoids all the balls. For this, let S be a unit sphere centered
at X, and let P denote the orthogonal projection on S. We further let P := P({J; B;) denote
the projection of balls on S. Observe that if we find a disc on S of fixed radius (depending on
N) which does not overlap with P, then we are done since such disc corresponds to a cone at
X avoiding the balls {B;}; (see Figure 3.2b).

Hence, we reduced our task to a problem of finding a not too small disc in S\ P, with P
being a union of at most N discs with some additional properties. First, it can happen that
X lies very close to one of the balls, so that the projection of this particular ball on S covers
(almost) half of the sphere S. For this reason and without loss of generality, let B; denote the
ball whose center is closest to X, which we treat separately: let S C S be a half-sphere with
the pole being exactly opposite to the center of P(By), in particular P(Bjy) and S” are disjoint.
Since By was the closest ball to X, it follows from the second estimate in (3.32) that X is at
least e!**1 away from the centers of the remaining balls {B,};52. On the other hand, the first
relation in (3.32) bounds the radii of these balls with e'*#2. Therefore, the projections of these
remaining balls are discs of radius at most C ii—:i = (Cef ", Since ko—k] = ®—2— % —-20>0
by the choice of ¢ in (3.21), we see that for € small enough these (at most N — 1) projections
are tiny discs (almost points). We can now find a radius r = (V) with the following property:
there are N discs Dq,..., Dy of radius r in S’ such that the distance between any two discs
is at least r as well. One option is to arrange them along the boundary of S’ with necessary
spacing between them, thus achieving » ~ N~!. Provided now ¢ is small enough such that the
radii of P(B;), which are bounded by Ce"2~"1  are smaller than r, we are done: there are N
discs Dy, ..., Dy and at most N — 1 projections P(B;), where each projection can touch at
most one D;, so that one disc will not overlap with any of the projections P(B;), thus defining
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3.4. Perforated domains: The case of a random perforation

the cone we are searching for.

This solution to the last question is naturally far from optimal (in 7): consider a well-
studied question of finding an optimal cover of a sphere (more precisely half of it) with N
identical discs of smallest radius (see [T6t49]). If o denotes the smallest such radius, then for
any configuration of N — 1 points in S’ there exists a disc in S’ of radius ¢ which avoids them,
thus also providing a solution to our problem. O

Since the perforated boxes U from Lemma 3.4.4 are uniform John domains, in particular
we have a Bogovkii operator on each U, Theorem 3.4.1 can be proven along the lines of the
proof in [DFL17]. First, using a Bogovskii operator on the whole of D we obtain a function u
with the correct divergence but that naturally does not vanish on the holes. To achieve that,
we modify u in each box 7. More precisely, near 07 in a boundary layer of size ﬁsl” we
change u to its average value over this layer, and then inside the box (where also the balls are
removed) cut off this constant function near each hole over a scale £*. Since we also change
the divergence of the function with this modification, we employ Bogovskii’s operator both on

each box as well as near each hole to fix the divergence.

Proof of Theorem 3.4.1. Let us recall the definition of D. = D\, cg:(p) Beer,(€2;). To prove
the theorem we construct a linear operator of Bogovskii type, bounded independently of ¢,
that is,

B.: LY(D.) — WyY(D,)
satisfying

divB.(f) = f in Dey BN lwpagoy < C 1 fllzgon (3.33)

To this end, we will first use a Bogovskii operator on the whole domain D and then correct
this function first to its mean value over a large scale and then to zero near each hole without
changing the divergence. The proof is essentially the same as in Section 3.3, however, we will
repeat the proof here in order to see the differences due to the random perforation. We will
also give some remarks on this procedure after the proof.

For 1 < ¢ < oo and f € LY(D.) we denote by f € Li(D) its zero extension in the holes.
Using the classical Bogovskii operator in the Lipschitz domain D (see Theorem 3.2.9), the norm
of which depends on the Lipschitz character of D, we can find a function u = Bp(f) € W, (D)
satisfying

divu= fin D, HUHW(}ﬂ(D) < Cfllsy = Cllfll Lo,

with C' = C(D, q).
Since a —3/m > 2, by applying Theorem 3.4.2 we find for every € > 0 small enough a finite
collection of boxes I7 such that for any point z; € ®°(D) there is i such that

Bear,(£25) C Baeor,(€2)) C Bae(ez)) € I7™,
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Chapter 3. Bogouskit’s operator in different domains

where

If’in = {z € If : distoo(z, 0IF) > ——e'*o).

16N

For any box I; and any ball B.a,,(cz;) consider the corresponding cut-off functions

Xe,i € Ofo([f), Xe,i r[f»i“: L HVXE,Z'HL‘X’(D) S 87(1+5)’ (3‘34)
[e'e] ]' —«
Ceg € G <B2earj (5%‘))7 G IBuaryezp= 1 IVCellrmBaa 2 S €77 (3.35)
J
and define
AS =[5\ [P = I¢ : distog (2, 0IF) < ——£'+°
1 7 \ (3 {x e k3 1S (ﬂf, ’L) 16N€ }7

b.i(u) = xci(u— (u)a:) € Wol’q([‘-s), (3.36)

2

Beg(u) = Coj (uhar € Wo ! (Baee, (7)) ).

where as before ¢ and j are related through ez; € If, and (u)g is the mean value of u over the
set S.

Since all the lengths in the set AS are proportional to *° (with the proportionality de-
pending on N), Poincaré’s inequality (B.6) implies

Hu - (11>A§ La(Af) S gt HVUHLQ(Af)v

and by (3.34) we get

Vb i(u)[|Laas) < [[xeiV(u = (@) as) || Lagas) + [[Vxe(a — (w)as) || 2a(as)
SNV = @)as) || nogas) + & lu = (a) ae | pogasy (3.37)
S IVullzagas).

From (3.35) and Hoélder’s inequality (B.2), we obtain

IV Be i (| Lo (Boeey (o230 = 1V e - {0)

La(Byear, (e25))

3_ 3_

<o e e vy e G e gy (339)
3_ (1+9)

<t e )e e

Since B.o,.(g2;) C D, we have r; < gttre=e = e~GatD) by (3.32) and the choice of ry =

J

a—1-— % — 0. This yields

3_1 3(1+6
. 5(3_1)0“ (146 < cG-Da-E-0-20+s)

Thus, for all 1 < ¢ < 3 which satisfy (3.19), we can choose ¢ such that

B—q)la—2)—3
6—g¢

0<6< (3.39)

to get uniform bounds on |[|3; ;(W)||ze(Bya,. (=) Similar to Section 3.3, the functions j; ;
J
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3.4. Perforated domains: The case of a random perforation

and b,; do not have vanishing divergence in general, so we need to correct them using a

Bogovkii operator on perforations of I7. Since 7\ Beay,;(g2;) is a uniform John domain,

ezjelf

the existence of the Bogovskil operator B.; for the set I7 \ J car; (€2;) is content of

€2; EI5
Lemma 3.4.4, provided we choose ¢ from (3.39) possibly even smaller to satisfy also (3.21).

Moreover, note that by construction, any box If contains at least one point from ®¢(D) and
at most N of them. We are now ready to define the restriction operator from D to D, via

—u- Y > (#{6% e + 5€,j(u)) — B.,;div (#@I} + ﬁe,j(u)), (3.40)

I5CD ez €l?

where all functions were extended by 0 outside their domain of definition. This definition is
a generalization of the one in (3.17). Indeed, if any box I contains just one point €z;, the
definitions are equivalent. Repeating the arguments shown in Section 3.3, we check that the
operator R, is well defined and satisfies the desired norm bounds. First, by the definitions of
b.; and . ; in (3.36), we have

/ div b, ;(u)dz =0, / div 3. ;(u) dz = / div S; ;(u) dz = 0.
I Is

Byeoy (sz])
On the other hand, x.; = (.; = 1 and divu = f =0 inside B.a, ,(ez;), thus

divb.;(u) = xc;divu+ Vx.; - (u—(u)4:) =0 in Beay, (£2;),
div B j(u) = V(. ;- (u = (u)as) =0 in Bear,(€2;),

leading to

: b.i(u) )
div [ —=""L 4 B (u) ) dz =0
/If\ U BEC““]' (e25) <#{€Z] € IE} ]( )

zjee~1IEN®e(D)

as required. Next, for any hole B.a,,(c2;) C I and any & € B.a,,(cz;), we get

R(u)(x) = u(zx) = Y (L‘”} ' /58,j<u>) (@)

er el #{SZ]‘ € ]ZE
b.;
- Y B.div <#{ - (E)F} +5€,j(u))(x)
ez;elf J

(2) = (bes(u) + Bz () () = Bei div (b s(u) + Bz ;(u)) ()
(%) = Xei(@)(u(z) = () = G () ) a

I
£ =

I
o

where in the last equality we used that x.;(x) = (. j(z) = 1 in Bea,, (g2;). This yields that the
operator R. is well defined and satisfies

R.(u) € Wy(D.), divR.(u)= f in D,.
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Chapter 3. Bogouskit’s operator in different domains

Finally, by (3.37), (3.38) and the fact that the boxes I{ are disjoint, we see that
3 _ 1) (a—=3—§)=32 5
IRl < € (2670050941l (3.41)

where the constant C' > 0 is independent of ¢ > 0. Note that due to the choice of §, the
exponent of € on the right-hand side is non-negative, so we may bound R. uniformly with
respect to . For f € LI(D.) we define

B.(f) = (R. o Bp)(f)

and observe that we get the desired operator, namely B.(f) € Wy (D),

divB.(f)=fin D, and [IB.(f) ey < C lfllocon)
This finishes the proof of Theorem 3.4.1. O

Remark 3.4.7. As holes are well separated, one might think that the construction of the
Bogouvskii operator is possible in just two steps: first in the whole domain and second with a
cut-off argument near each hole. This construction would follow the one from [All90] and its
Li-generalization by Lu in [Lu21, Section 5]. However, following Lu’s proof, one recognizes
that we would get a worse exponent of €: the term %(1 +9) would change to %(2 +9). This is
due to the fact that in our case, the holes do not have mutual distance of order e, but rather
(more than) e+ due to the random distribution of centers.

Remark 3.4.8. We note that the e-dependence in (3.41) seems not to be optimal but “close
to optimal” in the sense of capacity (see also [Lu2l, Remark 2.4]): Recall that for 1 < q < oo
and S C R%, the g-capacity is defined as

Cap,(S) = inf{|Vf]], ) : f € WH(RY), S C {f > 1}}.

La(R¢

We will here focus on the case d = 3. For a ball of radius r > 0, it is known that for any
1 < q < 3 there exists a constant C' = C(q) > 0 such that

Clap,(B,(0)) = 7,

see, e.g., [EG15, Theorem 4.15]. Since the capacity is an outer measure, the fact that (for
e > 0 small enough) the balls are well separated and the expected number of holes inside D is
of order 73, together with (3.27) and the choice of ko = a — 1 — % — 0, we have

Capq( U Bn.sa<ezi)) < Y Cap,(Bpea(ez)

2 €0¢(D) 2€d(D) (3.42)
< Ce®( max risa)g_q < O e1Hr)B-a)=3 — ¢ (B-a)(a—=6)=3,
- ZiECDE(D) -

We see that the essential quantity (3 — q)(o — 2 — &) — 3 arising here is almost the same as
in (3.41). A possible explanation for the connection between the capacity estimates and the
estimate for the Bogovskii operator is as follows. Let u € Wy'(D.) and ¢ € C>(RY) with
p=11in D. Then ¢(1 —u) is an admissible function in the definition of the q-capacity for the
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3.5. Extension to negative Sobolev spaces

union of all holes, that is,

p(l—u) e WH(RY), o(l-u)=1on |J Bre(ez).

2z, €P¢(D)

Direct calculations yield

(1 = w)llyragesy < C(@) 1+ [[uflwran.))

as well as

Ol ><1+Huuwwg>>||so<1—u>uW1qu)_Capq( U Boee )

2, €P%(D)

If a 1s large and the radii v; are almost constant, meaning that the holes inside D should be
very well separated, one might expect that the inequality (3.42) is close to an equality, yielding

3

Hu”W1 a( > C (5(3—q)(a—a_5)_3 _ 1)‘

For the Bogouskii operator obtained in Theorem 3.4.1, we have B.(f) € Wol’q(Da), so the
3

(E-1)a-2-5)-F

optimal general estimate on ||u|lwi.ap.y may be of size €4 The suboptimal factor

e=a+) i (3.41) is due to the fact our construction does not enable us to have a better estimate

on V. ;(u) in (3.38).

3.5 Extension to negative Sobolev spaces

Here, we will give an extension result for the Bogovskii operator B. constructed in Section 3.4,
for the later use in the homogenization of time-dependent Navier-Stokes equations. We will
need to control the Bogovskil operator in some negative Sobolev space to handle terms of the
form B.(div(0%u.)) that arise from the renormalized continuity equation (2.3) and the time
derivative in the weak (meaning integral) formulation of the momentum equation (2.4), that
is, from 0:B.(0.) = B.(0:0:). We will get rigorous on this in Section 4.2. The statement and
proof of such an extension to negative Sobolev spaces requires some additional structure on
LP-functions, precisely, we have to control their divergence in a suitable way. We therefore
introduce some new function spaces according to the definitions made in [FN09, Section 10.3].

Definition 3.5.1. Let D C R? be a bounded Lipschitz domain, 1 < p < q < oo, and denote
the Hélder conjugate of p by p’' == p/(p — 1). Then we define the following function spaces:

1. E9°(D) = {u € LYD) : divu € LP(D)}, endowed with the norm ||u||gerpy =
[l ooy + [ div ul| ()

9. E9(D) = C=(D) 177
3. [W¥(D)] = {g e [W'7(D)]": (g,1) = 0}.

These spaces have some important properties and connections, which we state in the next
lemma. Recall that we defined C25(D) as the set of smooth functions with zero mean value
over D.

95



Chapter 3. Bogouskit’s operator in different domains

Lemma 3.5.2. Let D C R® be a bounded Lipschitz domain and 1 < p < q < oo. Then it
holds:

1. E®?(D) C EPP(D) and E*(D) C EY? (D).
2. The set C=(D) is dense in E¥?(D).
3. C2y(D) is dense in [Wl’p/(D)}/.
4. We have {divf : f € E{"(D)} C [Wl’p,(D)}/ via
(div £, 0) i oy i (o) = — /D f-Vodr forall f € EJP(D), o € W'(D),
and we may estimate the norms as
| div £ i oy < C [ La(p)

for some constant C = C(p,q,|D|) >0

Proof. The first statement is trivial due to ¢ > p and |D| < co. The second one can be found
in [FN09, Lemma 10.2]. Since any bounded Lipschitz domain can be decomposed into finitely
many star-shaped domains (see Lemma 3.1.3), we may assume that D is star-shaped with
respect to a ball centered at the origin. For u € E%?(D) and 7 € (0,1) write u,(z) = u(x/7).
Then, 7D C D, u, € E%?(rD) with div(u,) = 1(divu),, and also

| div(u—u)||repy < (1 =771 divul|zepy + 77| divu — (divu). || zo(n)

Since translations h — v(- + h) are continuous for any v € L"(R?), 1 < r < 0o, we may write
v, (z) = v(z — (1 — £)z) to see that also scalings are continuous as 7 — 1. Thus, we see that
div(u—u,) — 0 in LP(D) since (divu), — divu in LP(D), and additionally u, — u in L(D),
provided all functions have been extended by zero to the whole space. Hence, it suffices to
approximate u, in E%?(D) by smooth functions. To this end, let 0 < ¢ < %dist(TD, dD), and
let n. be a mollifying kernel. Then supp (u, *7.) C D and u, xn. € C*°(D) N EY?(D), and
u, * 1. = u, in E9%?(D) as ¢ — 0 by the properties of mollifiers (see Proposition B.7).

The third statement is again proven in [FN09, Lemmata 10.4 and 10.5]. More precisely, for
fixed f € [Wl’p'(D)}, there is w € LP(D) such that

() = /D w Vodn,  [wlmm = |l o)

which in turn is a consequence of the Hahn-Banach theorem and the Riesz representation
theorem. Approximating w with smooth functions w,, such that w, — w in L?(D) and
IWallLop) < |Wn — Wllzeo) + [[WllLep) < 2| fllgirs (pyy» and defining functionals f, via

fn7 / W, - Vg&dx

yields the desired by sending n — oo. Assertion four follows from the observation that the
integral on the right is finite for any £ € E§”(D) since ||f|r(py < C||f||zapy by ¢ > p, so the
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3.5. Extension to negative Sobolev spaces

dual product is well defined. Further, this immediately yields

<d1V f, 1>[W1,p/(D)]/7W1,p/(D) = — /; f- Vl dzr =0

as required. Finally, we have

|| le f||[W1*p/(D)]’ = sup |<d1V f, QO) [Wl,p/(D)]/7W1,p/(D)’

lell 1 pr =1

< sw_ [[HIVeldr< sw Bl Vel

\le\wl p' =1 el y1,pr =1

<C  sup |l IVellripy <C  sup IEllLo)lollwrr p)
ol 1, =1 ol 1y =1

= C'||f||za(p)

for some constant C' > 0 just dependent on p, ¢ and |D|, where we used that ¢' < p’ by ¢ > p,
50 ||V90||Lq’(D) < CHVSD”LP’(D)- 0

Additionally, due to the fact E??(D) C EPP(D), we are able to define a generalized normal
trace, which we take from [FN09, Theorem 10.8].

Theorem 3.5.3. Let D C R? be a bounded Lipschitz domain and 1 < p < oo. There ezists a
unique bounded linear operator Try such that

1. Try : EPP(D) — [Wl—iﬂ”(ap)]’ and Try(u) = Tr(u) - n almost everywhere on 0D if
u € C*(D), where Tr is the usual trace operator on W'P(D);

2. For any u € EPP(D) and any v € WY (D), it holds
/ v divudz +/ Vou-udz = (Try(u), Tr(v)),
D D

where (-,-) denotes the duality product between [Wl_i’p/ (0D)], and Wl_i’p,((‘?D).

3. If u € W'?(D), then Trp(u) € LP(OD) and Try(u) = Tr(u) - n almost everywhere on
oD.

4. {u€ EPP(D) : Tra(u) = 0} = EP(D).

We are now in the position to state and prove the following extension result from [LS18,
Theorem 1.1 and Proposition 2.2] for the case of a random perforation (see also [FN09, The-
orem 10.11]). As mentioned earlier, the regularity assumption on D in the second part of the
statement can be relaxed. It ensures that we can apply all the results obtained in Section 3.4,
however, we will not discuss its optimality here.

Theorem 3.5.4. Let D C R? be a bounded Lipschitz domain, B be the corresponding Bogouskii
operator from Theorem 3.2.9, and 1 < p < 3. Then we can extend B to an operator

B: [W'(D)]' = L*(D),
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Chapter 3. Bogouskit’s operator in different domains

and, for p < q < 3, to an operator mapping {divf : f € EJ?(D)} to LY(D). More precisely, if
fe [W(D)], then

(B(f), V) = =(f,) for any o € W'(D), [B(f)llze(py < C |l oy
for some constant C' > 0 independent of f, and similarly for £ € EJ"(D)
(Bdivf, Vo) = (£, V) for any ¢ € Wwt(D), ||Bdiv fllLapy < C|lf]|La(py-

Further, if 9D is smooth, let D. be defined as in (3.18), and B. be the operator constructed in
Theorem 3.4.1. If ¢ > 3/2 and £ € EJ*(D.), then there is a constant C > 0 independent of €
and £ such that

(B.divf, V) = (£, V) for any o € W' (D), |B.divf||zap.) < C ||f|lLap.)-

Proof. By Lemma 3.5.2; it is enough to prove the first assertion for [Wl’p/(D)}/. We will just
summarize the ideas, details can be found in [FN09, Theorem 10.11]. As before, for fixed
f € [W'(D)] there is w € LP(D) such that

<f,90>=/DW~Vsodw, IWllLooy = |l (pyy -

Taking w, € C°(D) such that w, — w in LP(D) and [[w,||Lry < 2| flljw10(pyy» We apply
the decomposition Theorem 3.2.11 to define similarly to the proof of Theorem 3.2.9

Bdivw,, = Z B, T; divw,,

1€EN

where B; is the standard Bogovskii operator from Theorem 3.1.6 on the cube W;. Since B is
linear, we now conclude by

1B divwl ey < C Y BT divwal op) < C[Wall oy < C Il Fllpwrw oy
1€N

and sending n — oo.
The second statement for the perforated domain D, requires more care. Let f € E¢"(D,), then
clearly f € EJ*(D). Setting u = Bdivf € LI(D), then

[ullzepy < C If]|ze(p) (3.43)

for some constant C' = C(q, D) > 0. We now want to modify u such that it vanishes on the
holes without changing its divergence. Recall the definitions of the cut-off functions x., and
(.; as well as b.; and S, ; from (3.34)-(3.36) as

Xe,i € Cé)o([f)? Xei r];_fvin: 1, ||VX€,1'HL°°(D) S 57(1+6),

Gy €O <BQsarj (5Zj)>, Cej starj(gzj)z 1, ||VC€,j||Loo(B2€aTj(EZj)) < —e
b.i(u) = xei(u— (u)4:) € LIU([7),
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3.5. Extension to negative Sobolev spaces

Be(w) = Gy (Wag € L9 (B, (25) ).
Since div f € LP(D) with I divf = (divf, 1) = 0, we have u € W, *(D) and R.(u) € W, ?(D.)
is well-defined, where R, is the restriction operator from (3.40). The goal is now to get a uniform

estimate

1B ()l[Lap.) < C Il ()

for some constant C' > 0 independent of ¢ and || div f||.»(p,). First, we have

1
[bei() || zarsy < l[u— (W) ae || Loy < [allzasy + [{)as| [ ]9
I5k
< HUHLq(If) + 1 ||‘1HLQ(A§) <C HUHLQ(IS)»
| A [

where we used that |If| and |A¢| are both of order 7% and A C If, so we may choose C

independent of €. Farther, for € small enough such that r; < 5_(%”),

1 o N3 3
18 (Wl zaczzy < 1) az ] [Bacer, (e2)| 7 < C (%) 7e ™5 | paga)
3

3(q1-3
< Cealel-m 26)||11||Lq(15) < ClhullLogs)

since the exponent of ¢ is non-negative due to the definition of ¢ in (3.21). Using divu = div f
and abbreviating n; == #{ecz; € If} € [1, NN N, we write

div (bw-(u) + ﬁs,j(u)) = %(Xm‘ divu+ Ve, - (u— (u)a:)) + V¢ - (u) 4

7 7

1 .
= —(Xea divf + Ve - (u— (W) + VG - (w)a: (3.44)

1

1 1 ci
= v (at) Vi (a0 V(G = X )

. 2
K3 3

We will estimate each term separately. Setting U := If \ U, c.-1zrnpe () Beor, (€75), We have by
Xei =0 on 0If, f € EY*(D,) C Ef*(D,), and Theorem 3.5.3, that

0 = (Tru(f), Tr(Xm)>[W1,

= / Xeidivfde +/ Ve -fdz = / div(y..f) dz,
U U U

.’ 1—L pf

(o)y,w ' (0U)

|

so we may use the fact that U is a uniform John domain by Lemma 3.4.4 and the first part of
the proof to obtain

|1 Bei(div(xeif )o@y < Clixeifllawy < C Il pars).-

Since u € W,”(D) has a well defined trace, divu = divf, x.; = 0 on 9I¢

1

and x.; = 1 on
every hole,

0 = T n —f ,T €1 -5 o
(Tra(u —f), Tr(xe, )>[W1 P @ors) W' A (or17)
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Chapter 3. Bogouskit’s operator in different domains

/VX€z<u_ dCC—/VXEZ u_f)d
IE

Similarly, since (. ; and x.; are smooth functions, (. ; = 0 on 0B, (c2;), in particular on
0I7, and (. ; = 1 on every hole, we have

/UV(Cs,j - Xn—[j) ~(u) 4s do = / V<§EJ — %Z) () 4o dar
= /1; div ((Cs,j - %) <u>A§) de = /8]; ((Cs,j _ 9;11) <u>A§> ndo(z) = 0.

Let us show why we assumed ¢ > 3/2. Let ¢ € (1,3) such that 1/¢ =1/g +1/3. Since U is a
uniform John domain by Lemma 3.4.4, we have from the first part of the proof and by Sobolev
embedding (B.8)

1Bei(Vxe,i - (=)l zaw) < ClIBei(Vxei - (0= 1))l
<O Vxei - (u =) za
< ClIVxeill sy (Il Loy + lall o))
< CIIVxeillsasy (Il Laey + [l Lagrs))-

Similarly, since |If]/]A] < C, we get with

1 1 _1
Ule [(w)az| < CIE | | ATl ogas) < Cllullzo)

and 1 < n; < N for any ¢ the estimate

‘ ( (CE] XT)'(“M?)

S C ||Be,i<v(CE,j - Xa,i) : <u>Af>

La(U)
<C HV(CE,J’ - Xe,i) : <U>Ag
< C(”VCEJ‘HLS + I VXeillLa@)) [{u) ac
< CUIVEillswy + 1Vxellsw))llall o
< C(IVCijlleaasy + [IVxeill sz lal zae).

o (U)

We further have from ||V ||z~ < C e~ and |V |~ < C (rje*)~!

IV xeillzszy < 1V Xeillzooy | IE]3 < C e~ (2049)5 = ¢,
IVCillsus) = IVCillisBacar, (e2)) S NVCeijllioe(Baca,, e2)) [ Bacor; (€25)]F

W=

<C

for some constant C' > 0 independent of ¢, ¢, j, and || div f||z»(p,). Finally, from (3.43) and the
fact that all boxes I7 are disjoint, we establish

IR 7ap,y < C (Illzep,) + IEl7ap.) < ClIEN7o

Recalling the definition of B, as B.(f) = (R. o Bp)( f ), this completes the proof. O]
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Chapter 4

Homogenization results for perforated
domains

In this chapter, we will give the homogenization results for domains D, which are perforated
by small holes having radius of order £*. In order to obtain bounds on the density that are
uniform in € > 0, the outcomes from Chapter 3 and specifically from Sections 3.3, 3.4, and
3.5 are crucial. We split the chapter in several sections. The first section is devoted to the
homogenization of the stationary Navier-Stokes equations for a viscous compressible fluid in a
randomly perforated domain as introduced in Section 3.4, where we assume a pressure growth
of p = ap” for some v > 3. We will relax this to v > 2 in Section 4.2, as well as give arguments
how to proceed for the evolutionary system. Let us emphasize that the range of v we can work
with, is far away from the physical range 1 < v < g stated in (2.14). This is due to the fact
that we need a good control on the density in certain Lebesgue spaces, see Section 4.1.2. In
Section 4.3, we focus on the homogenization for the stationary Navier-Stokes-Fourier equations,
meaning, that we additionally take into account that the fluid is heat-conducting. In all the
aforementioned sections, we further assume that the size of the holes is subcritical, meaning
a > 3, such that the limiting systems will have the same structure as the ones in the perforated
domain. The last section however differs from the ones before: we focus on the case of critically
sized holes a = 3 for a periodically perforated domain, and scale the pressure by an e-depending
factor, which corresponds to the so-called Low Mach number limit. We will show that in this
case, we get in the limiting equations an additional friction term being reminiscent from the
holes.

4.1 The case of constant temperature and v > 3

4.1.1 Setting and main result
In this section, we assume the holes to be small, in the sense that we assume o > 3 in the
definition of D, in (3.18). Furthermore, we assume the radii r; to satisfy

E(rM) < oo for M = max{3,m} and some m > i

61



Chapter 4. Homogenization results for perforated domains

The conditions on the moment bound M are needed in order to control the measure of D,
independently of € and get a uniformly bounded Bogovskii operator

B.: L}(D.) — W,*(D.),

see also (3.19) in Theorem 3.4.2. For an explanation on the restriction m > 3/(a — 3), see Re-
mark 4.1.5 below. Now, in the domain D., we consider the stationary Navier-Stokes equations

div(geu.) =0 in D,,
div(g.u. @ u.) + Vp(o.) = divS(Vu.) + o.f +g in D,, (4.1)
u. =0 on 0D,

where the Newtonian viscous stress tensor S(Vu.) as derived in Section 2.1 is of the form
2
S(Vu) = #(Vu + VTa - 3 div(u)]I> +ndiv(u)l, p>0,n>0, (4.2)

and p(p) = ap” for some a > 0 and v > 3. We further assume f,g € L>(D).
Before stating our main result, we introduce the notion of finite energy weak solutions.

Definition 4.1.1. Let m > 0 be fized. We call a couple [p,u] a renormalized finite energy
weak solution to equations (4.1) if:

0>0 ae in D, / odr =m,
0€E LB(V)(DE) for some v < fB(y) < o0, uce W01’2(D5),

/ plo)dive+ pu®@u: Ve —S(Vu): Vo + (of +g) - odx =0

€

for all all test functions o € C°(D,;R?), the energy inequality
/ S(Vu) : Vudz < / (of +g)-ude (4.3)

holds, and the zero extension [,1] satisfies in D'(R?)
div(gu) =0, div(b(o)u)+ (ab'(0) — b(0))diva =0 (4.4)
for any b € C([0,00)) N C*((0,00)) such that there are constants
c>0, N<1l, —-1<A©<~y-1
with

V(s) <cs™ fors e (0,1], b(s) <cs™ forse[l,00).

Remark 4.1.2. Due to the DiPerna-Lions transport theory (see [DL89]), for any smooth
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4.1. The case of constant temperature and v > 3

domain D C R®, any r € LP(D) with 3 > 2, and any v € W, (D) such that
div(rv) =0 in D'(D),
the couple [r,v], extended by zero outside D, satisfies the renormalized equation
div((b(r)v) + (v (r) — b(r)) divv = 0 in D'(R?),

where b € C([0,00)) N CY((0,00)) is as in (4.4). We remark that if § = B(~) is as in Defini-
tion 4.1.1, the available existence theory requires v > g for B(y) > 2 to hold, see Theorem 4.1.3
below.

Formally, the energy inequality (4.3) can be derived from the kinetic energy balance (2.6),
which in our stationary case reads

1
div (§Q\u|2u) =(of +g) - u+div(Su—pu) —S: Vu+ pdivu. (4.5)
We multiply the continuity equation (2.2) by ag”~! to obtain
. a _ 1
0=ap"divu+ —u-Vo’ =pdivu+ —u- Vp. (4.6)
Y Y

Therefore, we get by partial integration and the homogeneous Dirichlet boundary conditions
for u, together with v > 1,

1
/u-Vpdx:—/ pdivudx:—/ u-Vpdr —= u-Vpdr =0.
€ € /y € DE

Substituting (4.6) into (4.5) and integrating over D. yields

1
/S:Vudx—i—/ div(§g|u|2u—Su+pu)dm:/ (of +g)-udz.

Since u = 0 on dD,, the second integral is zero, thus we get the energy equality

/ES(Vu) :Vudz = /E(gf+g) -udz.

We remark that this equality was obtained for smooth functions ¢ and u. Since we deal with
mere weak solutions, which are expected to dissipate more energy than indicated from the
momentum equation, we get inequality rather than equality, which precisely yields (4.3).

The existence of renormalized finite energy weak solutions to system (4.1) for fized € > 0
is guaranteed by Theorem 4.3 in [NS04], which we cite here for further use.

Theorem 4.1.3. Let D C R? be a bounded domain of class C?, f,g € L*>(D), and m > 0.
Then there exists a renormalized finite energy weak solution [p,u] € LPO) (D) x W,*(D) in the

63



Chapter 4. Homogenization results for perforated domains

sense of Definition 4.1.1, where

)2y if v >3,
A = {3(7—1) if3/2 <~ <3.

Note that the restriction v > % is necessary to ensure that the convective term ou ® u is
integrable over D, which is needed in order to interpret this term meaningfully. Besides this
interpretation, it is worth mentioning that P. Plotnikov and W. Weigant obtained a similar
existence result for weak solutions for all v > 1, see [PW15].

Back to the homogenization, our main result in this section reads as follows.

Theorem 4.1.4. Assume o > 3. Let D C R® be a bounded star-shaped domain with respect
to the origin with smooth boundary and let (®,R) = ({#;},{r;}) be a marked Poisson point
process with intensity X\ > 0, and r; > 0 with E(r)) < oo, M = max{3,m}, m > 3/(a —3).
Farther let

m>0, v>3.

Then for almost every w € Q there exists eg = eo(w) > 0, such that the following holds: For
0 <e<1let D be asin (3.18) and let {[o:,uc]}e be a family of renormalized finite energy
weak solutions to (4.1). Then there is a constant C > 0, which is independent of €, such that

sup || 0cl|z2v(py + [0y 2 p) < €
e€(0,e0)

and, up to a subsequence,
0. — o weakly in L*'(D), . — u weakly in W, (D),

where the limit [p,u] is a renormalized finite energy weak solution to the problem (4.1) in the
limit domain D.

Remark 4.1.5. We note that the condition m > 3/(a—3) on the size of radii of the perforations
s not just needed for technical purposes, but it is in a sense an optimal assumption. Let us
giwe a heuristic explanation on this. Fix € > 0, then in D, we have an expected number of
n =~ =3 holes with n radii r; € (0,00). We ask for the probability of having at least one “large”
hole inside D, that is, for the distribution of maxi<;<, ;. Since the radii {r;} are i.i.d. random
variables, we have

P(max ry < R) :IP’< M {ni < R}) — P(r; < R)"

1<i<n
1<i<n

for any R > 0. By the assumption on the moment bound for the radii, we have
/ t"dP(t) = E(r™) < oo.
0
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4.1. The case of constant temperature and v > 3

This yields

o0 oo tm
P(r; > R) = / 1dP(t) < / ™ 4y < R,
R r ™
S0
]P’(lrgzaglri < R) =P(r;<R)"=(1-P(r; >R))"Z(1—-R™)"
and hence

P(max Ty > R> =1- ]P(max ri < R) S1—-(1-R™"<1—exp(—nR™™),
1<i<n 1<i<n
meaning that the probability of having at least one hole with a radius of size R is of order
1 —exp(—nR™™). To obtain a non-vanishing probability on this as n — oo, which is equivalent
to e — 0, we must have nR™™ = ¢ 3R™™ > 1, thus R < e73/™. Assuming that the largest

. 3
=3/mwe end up with €rpax = €% . If now m =

radius satisfies Tmax = MaXi<i<nTi = €
3/(a—3), we have eryax = €2, which is precisely the critical scaling of radii in three dimensions.
While one large ball of size €* does not necessarily mean that the system should behave as in the
critical case (which is expected to lead to a law of Brinkman type), nevertheless the presence
of such a large ball might change some of the properties of the system. Moreover, in the case
m < 3/(a — 3), the size of the largest ball would scale like £ with o — % < 3, and there
might be many balls of the size at least €3. Thus, our assumption m > 3/(a — 3) seems to
be necessary to obtain in the limit € — O the same Navier-Stokes equations in D as in the

perforated domain D..

The proof of Theorem 4.1.4 in the case of periodically arranged holes with fixed radii
r; = 1 for all ¢ was developed in a series of works [DFL17, FL15, LS18], and can be split
into two parts. First, using Bogovskii’s operator, we construct a good test function for the
momentum equation, which leads to uniform in ¢ estimates on the density as well as the
velocity, subsequently providing the (weak) compactness of {[o., G.|}.. To identify the limiting
“effective” equation, we need to construct a suitable cut-off function in order to compare the
limiting equation with the equation in D.. The rest of the proof does not refer in any way to
the location or structure of the holes, in particular it applies verbatim in our context, so for
the remaining part we follow [DFL17, FL15].

Before we show the homogenization result, we prove a modification of [LS18, Lemma 2.1]
in the random setting as the last ingredient in the proof of Theorem 4.1.4, which makes a
reference to the randomness in the structure of the holes.

Lemma 4.1.6. Let o > 2, D C R? be a bounded star-shaped domain with smooth boundary and
0€ D, and (®,R) = ({z:},{r:}) be a marked Poisson point process with intensity X > 0 and
r; > 0 with E(rM) < oo for M = max{3,m}, where m > 3/(a —2). Then for any 1 < q <3
such that (3 — q)a — 3 > 0 and for almost every w there exist a positive eo(w) and a family of
functions {g:}eso C C®(D) such that for 0 < e < &y,

g-=0 in U Bay;(e25), ge—1 inW™(D) ase — 0, (4.7)
z;€®¢(D)
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Chapter 4. Homogenization results for perforated domains

and there is a constant C' > 0 such that

3(a—1) )a—3

(8—q
11— gellpapy <Ce v, IVgellpapy <Ce . (4.8)

Proof. By M > 3/(ac — 2) and Theorem 3.4.2, there exists an a.s. positive random variable
go(w) such that for 0 < & < g, all the balls { By.ay,(£25) }2,c0-(p) are disjoint. Thus, there exist
functions g. € C*°(D) such that

0<g.<1, ¢g-=0in U Bao‘rj (52j)7 ge =11in D\ U B25“7"j (gzj)v
z;€P¢(D) z2;€®¢(D)

vas”LOO(B2aarj(azj)) < C (%)~ for all z; € (D),

where the constant C' > 0 is independent of ¢ and 7;. Moreover, since M > 3, (3.25) yields
lim 3 > cos(D) r? = C, thus implying

e—0

U Bacar,(£2))

Z]'G‘I)E(D)

— |B2| 83(1 Z T? S 053((1—1)

Zqu)E(D)

for ¢ > 0 small enough. This yields for any 1 < ¢ < 3

It - gaH%q(D) =1~ gaH%q(UZjG(I)S(D) Boear(e7j) — Z It~ gEH(}ﬂ(B%arj (e2))

zj€®<(D)
< D Baey(ez)| <O
z;€P¢ (D)

as well as

IV9 30y = IVl o Boronyeon = 2 VSN, oo

ZjG‘PE(D)
<C Z (e%75) Y Bacar, (e25)| < C B-9a=3 3 Z T?fq < 0 gB-aa=3
2 €®<(D) 2;€0%(D)

which completes the proof of the lemma. =

4.1.2 Proof of Theorem 4.1.4: Uniform bounds

We want to give bounds independent of € for the velocity u. and the density o. arising in the
Navier-Stokes equations (4.1). First, we calculate

u/ |Vu€\2dx§/ p|Vue)? + (%+n>|divu€|2dx

2

— / u(\VuE\z + | divue]? — | divu5]2) + ] divu.|* dx
D 3

‘ , (4.9)

— / M(Vu8 + VT, — 3 div(ug)]l) : Vu, + ndiv(u)l : Vu. dz

:/ S(Vu,) : Vu.dz,

€
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4.1. The case of constant temperature and v > 3

where in the two last equalities we used the definition of S(Vu.) and the fact that

/ | div u5|2 dr = —(Vdivu,, u€>W*1v2(DE),W§’2(DE)

= —(div V'u,, uE>W_1,2(DE)7W01,2(DE) = VTu, : Vu, dz.
De

By the energy inequality (4.3) and Holder’s inequality (B.2), (4.9) yields

IVuclzzin, < C (Ifle=mollecll g, + l8lleeon) el zoco.)-

Since u. € Wy*(D.), we can use Poincaré’s inequality (B.6) and Sobolev embedding (B.8) to
obtain ||uc||zs(p.) < C'||Vu.||r2(p.), which combined with the previous display yields
IVu:|lz2(p.y + el zsp.) < C (”fHLoo(DE)HQeHLg(DE) + lIgllze(p.))

4.10
<C(lel s +1). (10

L8 (D)

Hence, we have uniform bounds on u. once we establish bounds on the density p.. To this end,
we define a test function

¢ = B.(0 — (e)p.), (4.11)

where (02)p, = |D:|™" [ p. 02 dz is the mean value of ¢I over the domain D, and B. is the
Bogovskii operator constructed in Theorem 3.4.1. We remark that ¢ is well-defined due to the
fact o7 € L*(D.). By the properties of B., we obtain divy = ¢ — (¢2)p, in D, and

lellwe 2,y < C (le2llz2w.) + 2z o.)) < Cllosllep,

Integrating the second equation of (4.1) against ¢ yields

/DE p(ee) dix_z

where the integrals /; are defined as

I :—/ p(o:)(0d)p. dz, I :—/ pVu: Vo + (§+77> div u divp da,

I3 = _/ P:U: ® U, : VSOd-ra Iy = _/ (Q5f+g) ) Sde

By the definition of the pressure as p(g.) = ap?, interpolation between Lebesgue spaces (B.4),
and the fact that the total mass of the fluid is fixed and given by m = ||o:||z1(p.) > 0, we
estimate I by

11| < <

2y
a 2v(1—0
llelFp,) < lo=l % oo llecllizlin, ) < CllelTiny,
\D\ | D |
13
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Chapter 4. Homogenization results for perforated domains

where we used (3.26) to control |D,|, and #; € (0,1) is determined by

L 6, 16

vl 2

For Iy, we get with (4.10)
|112| < CIVullzoIVellizp < Clle:ll g )+ Dlleellzzn .
<C ||QE||12’Y(D6)(||95||L2’Y(D5) +1).

If ||oc||L2v(p.y > 1, then we obtain

1 1
||Qe||L2v (D) (HQEHLQV(DE) +1)<2 ||Qa||zgv(pg) > (1 + ||Qa||z—z:(DE )

On the other hand, if | o||r2v(p.) < 1, we get similar

1 1
||Qe||L2w (D.) (HQEHL?V(DE) +1) = ||96||7;; () T ||Qe||L2w (D.) < ”QEHZ—Z: y L

so finally,
L] < C (1 [le-ll}2 )

For I3, we get analogously

| Is| < ozl o ooy lucllZs (o) IVl 20 < C lloell ooy (||Qe||2

D.) + 1)”96”1;% (D)
(1-6 0
< Cllelih o el o, llecll iy + 1) < C(||Q||Z;3(1>252 +lle-ll72p.)
0
C(1+ ||Q€|’Z;F3D2E2)

where we used that v > 3, and 6, € (0,1) is obtained by

62+1—92'

For I, we get as for I

1] < C(IIQslle oy + Dllellzzmy < Cle-li3p,) + o720,y
1
C (L + lle:llzzp.y)-

Finally, we obtain

2 o
all ol p.) = / ples)el du < C (le:I35 /), + 1),
where due to our assumption v > 3 we can choose
B =min{270,,7 — 1,7 — 3+ 20} > 0,

which yields | oc||2vp.y < C. In view of (4.10), we also have HueHngQ(De) < C, where the
constant C' > 0 does not depend on €. This completes the proof for the uniform bounds.

68



4.1. The case of constant temperature and v > 3

4.1.3 Proof of Theorem 4.1.4: The limiting system

In the following we want to identify the limiting equations governing the fluid’s motion as
e — 0. First, using the fact that [o., u.] is a renormalized weak solution in D., we get that the
zero extensions of g, and u. solve

div(get) =0,  div(b(g:)u:) + (0:'(0:) — b(o:)) diva. = 0 in D'(D),
where b € C([0,00)) N C'((0,00)) is as in Definition 4.1.1. Letting ¢ — 0, we obtain
div(pu) = 0 in D'(D).

Due to the DiPerna-Lions theory (see Remark 4.1.2), this shows that [, u] also satisfy the
renormalized continuity equations.

Considering the momentum equation in the whole domain, we get an error F. on the right-
hand side of the equation. Since the balls are tiny (o > 3), this friction term is in the limit
negligible. More precisely, the zero prolongations of the density and velocity satisfy

V(o) + div(g.u. ® 0.) — divS(Vu,) = o.f + g+ Fy, (4.12)

where Fy is a distribution satisfying for all ¢ € C'°(D)

3(a—1)og
[(F, ©) ooy p(o)| < C (7]|@llra (D) + € 2070 [|[ V| 2100 (1)) (4.13)

for some constants o, 19, 0¢ defined in (4.14) and (4.15) below. To show this, we will use the cut-
off functions g. from Lemma 4.1.6. For any test function ¢ € C°(D), we test the momentum
equation in D, with g.¢ to get

/ 0:0. @, : Vo + p(o.)dive —S(Va,) : Vo + (o.f +g) - pdx
D

=1, +/ 0:0: @ 0. : V(gep) + p(0:) div(gep) — S(Ve) : V(gep)
D
+ (0:f + 8) - (gep) dw
= [E7
where we used that g.¢ € C°(D) with g.¢ = 0 on D\ D, is an appropriate test function, and
the term I is given by
4

]e = Z ]s,j ::/ éaﬁe 0% ﬁa : (1 - 96>V90 - éaﬁe 0% ﬁs : (VQE X 90) dw

j=1 p

+ /Dp(§€)<1 —g-)divee — p(0:)Vge - o da
t /D —S(Vit.) : (1 — g.)Ve +S(Vi.) : (Vg ® ) da

+/D(éef+g)-(1—ge)sodx'
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Chapter 4. Homogenization results for perforated domains

We will estimate each I, ; separately. For ., we have

[ea] < Ol 2o o) 0|76 (o) (11 = 92) Vel 2py + Vg @ @l r2(p)).

By the uniform bounds on p. and u. established in Section 4.1.2, we get by Holder’s inequality
(B.2)

[Lea| < C (|1 = gaHL?(?TJrJ’(Q(D)HV@OHL?”O(D) IVl el zrz ),

where

1 1 1
oo € (0,00), 711,79 € (2,00), 5= + . (4.14)
1 2

This together with Lemma 4.1.6 yields

(G

3(a—=1)og 1) 3
[Iea] < C 2050 |Vl p2raopy +€ 0 l9llLr2(),

where the number

B-—r)a—-3 3a-1) 3(a—1) 3a—=1) a-3 3a—-1)
o= = —a=——"—a— = -
(8} 1 2 To 2 Ty

is strictly positive if we choose

12(c — 1 -
= (a—3)7 which yields o = a_3. (4.15)
a —_—

T9 4

By the uniform estimates on ¢. and u., we get

Ip(22)l[z2(py + [IS(Ve) || 22y < €

such that the estimates for the integrals I. » and I, 3 are exactly the same as for I, ;. For I, 4,
we obtain

[eal < C(llee]lz2py) + DI = go)pll 20y < CHL = gell oy lepll e 0)

(a

3(a—1)
<Ce v |¢ller2py £ CE%l@llLr2(py-

Combining the estimates above finally yields (4.12).

By the uniform estimates on g. and u., we can extract a subsequence (not relabeled) such
that

0 — o weakly in L*(D), 1. — u weakly in W, (D).
By the Rellich-Kondrachev theorem in Proposition B.5, this yields

. — u strongly in LY(D) for any 1 < g < 6,
6
0:u. — pu weakly in LY(D) for any 1 < ¢ < _’y’
v+3
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4.2. Lower ~y and time-dependent equations

67
27+ 3

0:U: ® U, — pou ® u weakly in LY(D) for any 1 < ¢ <

Letting ¢ — 0 in the first and second equation of (4.1), we get the following equations in the
sense of distributions:

div(ou) =0 in D,
div(ou ® u) + p(o) = divS(Vu) + of +g in D, (4.16)
u=20 on 0D,

where p(p) is the weak limit of p(g.) in L?(D). To finish the proof of Theorem 4.1.4, we have

to prove p(o) = p(p), arguing as in [FL15, Section 2.4.2]. This will be shown in Appendix A.

4.2 Lower 7 and time-dependent equations

In this section, we give some arguments how one can improve the adiabatic exponent in the
direction of physical relevance, as well as how one can treat also time-dependent equations. In
both cases, for mathematical reasons, we are still not able to achieve v = g, which would be
the first “meaningful” exponent, see (2.14). In fact, for the steady setting we may improve =y
to be strictly larger than 2, while for time-dependent equations, we need the even worse bound

v > 6. We will comment this issue later on in this section.

4.2.1 The case v > 2

To start, let us state the homogenization result for steady compressible Navier-Stokes equations
(4.1) in D, for the case 2 < v < 3.

Theorem 4.2.1. Assume o > 3 and 2 <y <3. Let D C R? be a bounded star-shaped domain
with respect to the origin with smooth boundary, and let (®,R) = ({2;},{r;}) be a marked
Poisson point process with intensity X > 0, and r; > 0 with E(TJ]VI) < 00, M = max{3,m},
m > 3/(a —3), and assume

3 2y—3

- > .
“ m v —2

(4.17)

Additionally, let m > 0 be given. Then for almost every w € Q there exists g = £o(w) > 0 such
that the following holds: For 0 < e <1 let D. be as in (3.18) and let {[o:, u.]} be a family of
renormalized finite energy weak solutions to (4.1) in the sense of Definition 4.1.1. Then there
1s a constant C' > 0, which is independent of €, such that

sup ”éSHL?’(V*l)(D) + ||ﬁ8||W01‘2(D) <C
€€(0,e0)

and, up to a subsequence,
0. — o weakly in L*07Y(D), @, — u weakly in W, (D),

where the limit [p,u] is a renormalized finite energy weak solution to the problem (4.1) in the
limit domain D in the sense of Definition 4.1.1.
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Chapter 4. Homogenization results for perforated domains

The restriction (4.17) will appear again in Theorem 4.3.3, showing that v > 2 is necessary
according to the available mathematical theory. The proof of Theorem 4.2.1 is based on the
similar result obtained in [DFL17] for the case of well separated holes as well as the bounds
for the Bogovskii operator B, obtained in Section 3.4. Recall that the bound for B, is uniform
with respect to € as long as 1 < ¢ < 3 fulfills condition (3.19).

As it does not seem to cause any trouble or new difficulties at first glance, let us recall from
Theorem 4.1.3 that for v > 3, the density is known to satisfy o. € L*(D,), whereas for v < 3
we only have the weaker control o, € L*O0~Y(D,). Thus, we are not allowed to use ¢ in the
definition of the test function ¢ in (4.11). Instead, one may use

¢ = B-(02 = (0 *)p.)

as test function in the second equation of (4.1). Note that ¢ is well defined due to the fact
that by 2 < v < 3, we have

(=1 3(y—1
ng:ﬂeszé(De), 232(2—_3)<3,
and also condition (3.19) is satisfied as long as
3 3 %y — 3
o—— > = ,
m =~ 33— ;’3—:3 v—2

which is precisely condition (4.17). This leads to
divp = 023 — (0 *)p, in D,

2v—-3 2v—-3
HSDHW;,B,;;%?(D < Clle™M s ) = Cllellzian o,y

€

where the constant C' > 0 is independent of €. Using the same techniques as shown in the last
section, we will finally arrive at

HQSHL?’(%U(DE) <, HUEHW12 < C,

where the constant C' > 0 is independent of €. Choosing weakly convergent subsequences
0. — o in L30~V(D), &, — u in W, ?(D), we may extend the momentum equation to the
whole of D to obtain

Vp(0:) + div(o.0. ® u.) — divS(Vu,) = o.f +g+ I, (4.18)
where Fy is a distribution now satisfying for all ¢ € C°(D)

[{E%, ) ()| < C&‘”(HSOHLT(D) + HV<P||L%(3_;+§(D))7

and v, &, and r are chosen such that

0<é<1, 0<h(§) 123(a—1)(%+€>_ —a,
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4.2. Lower ~y and time-dependent equations

1 [3(y-1) 273
l<r< - - =——
Te T+<27—3 +£> 3(y—1)’

3la—1
O<v<oo, V= min{M,h(g)}.
r
These choices are appropriate since by (4.17),
2v —3 —2)—(2v—-3
3(v-1) v-1

and they occur due to various use of Holder’s inequality (B.2). Let us remark that similar
numbers will occur in Lemma 4.3.10, where we will see how exactly the numbers v, £, and r
show up. Finally, we may pass to the limit € — 0 to obtain the desired result.

4.2.2 Evolutionary system

Let us show now how to deal with time-dependent Navier-Stokes equations. We will rely on
the results given in [LS18], where they considered well separated obstacles. First, for 7" > 0,
the system now reads

Oro. + div(p-u.) =0 in (0,7) x D¢,
dy(0-u.) + div(p.u. @ u.) + Vp(p.) = divS(Vu.) + o.f +g in (0,7) x D, (4.19)
u. =0 on (0,7) x 0D,

where as before f,g € L>*°((0,T) x D),
2
S(Vu) = M(Vu +vVTu— 3 div(u)]I) +ndiv(w)l, p>0,1n>0,
and p(o) = ap” for some a > 0 and v > 6. The main difficulty in the evolutionary case is that,

for v > 3, the pressure is not known to be in L?(D,), but only in Lg*%(DE) with g—% € (1,2),
which is much worse than for the stationary case. The condition v > 6 is therefore made to

T
/ / p(6.) o - V. da dt,
0 D

which will arise by testing the momentum equation by ¢ € D((0,7) x D) and split ¢ =

make sense of the term

gep + (1 — g- ), where g. are the functions from Lemma 4.1.6. It also ensures that there exists
q € (2,3) such that

5 1\ ' 1 11 1
(3—¢q)a—3>0, <3 7) +q<1, ’y+3+q<1’ (4.20)
so the additional distribution F. in the extended momentum equation, which arises similarly
as in the stationary case (4.18), will vanish in the limit ¢ — 0. In addition, we will need to
control the Bogovskii operator in some negative Sobolev space to handle terms of the form
B.(div(0%u.)) that arise from the renormalized continuity equation (4.23) and the time deriva-
tive in the weak formulation (4.21) below, that is, from 0;B.(0.) = B:(0:0:). To this end, we
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Chapter 4. Homogenization results for perforated domains

will use the outcomes and notations from Section 3.5.
Let us turn to the homogenization of the evolutionary Navier-Stokes equations. To this
end, we will transfer the notion of finite energy weak solutions to the time-dependent case.

Definition 4.2.2. Let T' > 0 be fized, and assume for the initial data
Q(Oa ) = 0o, (QU)(O, ) = Po,
together with the compatibility conditions

\p0|
0o

00 >0 ae in D, o€ L(D:), po=0 whenever gy =0, c L'(D.).

We call a couple [p,u] a renormalized finite energy weak solution to equations (4.1) in the
space-time cylinder (0,T) x D, if:

o [t holds
0>0ae in(0,T)xD., p€C(0,T; szeak(D )),

u e L*0,T; Wy*(D.)), oueC(0,T; L (D.)),

weak

where C(0,T; LL .., (D.)) is defined as the set of all functions f, defined on (0,T) x D¢,
such that f(t, ) € LYD,) for allt € [0,T], and the map

t— f(t,z)g(z)dz
D,
is continuous for all g € Lﬁ(Da);

o We have for any 0 <7 <T and any ¢ € C°([0,T) x D,)
/ / 00ip + ou - Vodrdt = / o(t, (T, ) — 00p(0, -) dx;
o Jb. 2
o We have for any 0 < 7 < T and any ¢ € C>2([0,T) x D.;R?)

/T/ ou- )+ plo)divy + pu®@u: Vi) —S(Vu) : Vip + (of + g) - dadt
0 e

(4.21)
— [ {ew( 0t ) = ovuv 0,
e The energy inequality
/ (%Q|u|2+ af ) dx+/ / S(Vu) : Vudz dt
: ! 0 I (4.22)

g/ (|p°| “"0>dx+ / (of +g) - udzdt
p. \ 200 - o Jb.

holds for almost every 0 < 1 < T';
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4.2. Lower ~y and time-dependent equations
o The zero extension [§, 1] satisfies in D'((0,T) x R?)
00 + div(gu) =0, 9,b(0) + div(b(g)u) + (ab'(0) — b(g)) diva =0 (4.23)
for any b € C([0,00)) N C*((0,00)) such that there are constants
c>0, N<l1l, —-1<A©<~y-1
with

V(s) <cs™ fors e (0,1], b(s) <cs™ forse[l,00).

Here, we chose the integrability of the initial data such that the right-hand side of the
energy inequality is finite. Similar to the stationary case in Section 4.1, the energy inequality
(4.22) is formally obtained as an equality from (2.6). Recalling

1 1
Oy (§g\u\2> + div (ig\u\2u> =(of +g) - u+div(Su—pu) —S: Vu+ pdivu, (4.24)
we again multiply the continuity equation (2.2) by ag”~! to obtain
a . a 1 . 1
0=—-0;0"+ap"divu+ —u-Vo' = —-0;p+pdivu+ —u- Vp.
g g 8 8
Hence, we integrate by parts and use the zero boundary data on u to get

1
/u-Vpdx:—/ pdivudx:; Op+u-Vpdx
£ € DE

= (y— 1)/ u-Vpdr = Oypdx (4.25)

De

1
— — pdivuadzr = 8t/ pdxz@t/ a o dx.
v—1 . -1

D.

Substituting (4.25) into (4.24), integrating over (0,7") x D,, and noting that the space integral
over divergence parts vanish, we obtain for any 7 € [0, T

1 5 ag’ T
solul®+ —— | (7, -)dz + S(Vu) : Vudz dt
- \2 71 0 JD.
1 2 agg !
= 5@0\110’ +T dz + (of +g)-udxdt
€ 2 e
:/ (|p0| a0 )d +/ / (of +g)-udzrdt.
2@0 —1 3

As before, this equality was obtained for smooth functions ¢ and u, but we expect inequality
rather than equality for mere weak solutions, thus yielding (4.3). We remark that the composed
quantity po is the “right” quantity rather than working with gy and ug as separate variables.
Indeed, identifying ou with the momentum of the fluid, it enjoys some additional time conti-
nuity, which is not (known to be) true for the velocity u itself.
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Chapter 4. Homogenization results for perforated domains

For any fixed ¢ > 0 and any v > %, the existence of a renormalized finite energy weak
solution to (4.19) is guaranteed by the results of Lions [Li098] and Feireisl-Novotny-Petzeltova
[ENPO1]. Our main theorem concerning the homogenization of time-dependent Navier-Stokes

equations now reads as follows.

Theorem 4.2.3. Assume o > 3. Let D C R* be a bounded star-shaped domain with respect to
the origin with smooth boundary, let (®,R) = ({2;},{r;}) be a marked Poisson point process
with intensity X > 0, and r; > 0 with E(r}) < oo, M = max{3,m}, where m > 3/(a — 3).
Furthermore, let D, be defined as in (3.18) and

m>0, v>6.

For 0 < e < 1 let {[oe,uc]}e be a family of finite energy weak solutions for the no-slip com-
pressible Navier-Stokes equations (4.19) in (0,T) x D.. Assume that the initial conditions

Qe(ou ) = 00, and (Qeus)(oa ) = Peo
satisfy

|p€,0|2
O¢,0

00 € L7(D.), Peo =0 whenever p.o =0, ‘ <C,

LY(De)

0-0 — 0o weakly in L7(D), P-o — po weakly in L%(D),

where C > 0 is independent of €. Then for almost every w € Q there exists eg = eg(w) > 0
such that

cc(0s) (leellzorinooy +lleel 51 g 1y e,y + 10l 20 imy200) <€

and, up to a subsequence, the zero extensions satisfy
o- = o0 weakly" in L=(0,T; L"(D)), @.— u weakly in L*(0,T;Wy*(D)),

where the limit [p,u] is a renormalized finite energy weak solution to the problem (4.19) in the
limit domain D with initial data 0(0, -) = 0o and (ou)(0, -) = po, provided

(o)
- — . 4.2
>3 a—— >3 (4.26)

The uniform bounds on . and u. are obtained from the energy inequality (4.22). For the
force term on the right-hand side, we use Holder’s inequality (B.2), Poincaré’s inequality (B.7),

1 ’ 1 ].
abr <b+d Va,b >0, -+ =1 (4.27)
b D

as a consequence of Young’s inequality (B.1), and (4.9) to estimate

/ (o.f+g) u.dr <C(1+ ||Qs||L"/(D5))||u€||L2(D5)

€

0
<O+ floelzo ) + Flellzz o,
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2
3 H
<C (1 + “QZHLI(DE)) + EHVU‘EH%Q(DE)
1
5/ S(Vu,) : Vu,

€

< O+l o) +

ao] 1
<C+C ] dz + 3 S(Vu,) : Vu.dz,
(> DS

yielding for the whole energy inequality

1 2 apl
_Qs‘u€’ + — (T, )dx + S Vus) Vus dx dt
. \2 71 D.

2 a Y
s/ ('p”)' + QE’O)d +C+C/ / Z ol +
e 2@6,0 ry_l €

By application of Gronwall’s lemma (B.5), we deduce

{0c}eso unmiformly bounded in L*(0,7; L7(D.)),
{o-[u.|*}.50 uniformly bounded in  L*(0,T; L*(D.)),
{u.}.>o uniformly bounded in L*(0,T; W,*(D.)).

Moreover, due to Proposition B.5, we get for any 1 < ¢ <6
{u.}eso uniformly bounded in  L*(0,T; LY(D,)).
Further, for fixed ¢, the results from [NS04, Theorem 7.7] show
0. € L77Y(0,T) x D.).

However, the bound on p. is not uniform in €. As in the stationary case, using the Bogovskii
operator from Theorem 3.5.4, we test the second equation in (4.19) with

olt,2) = w8 (o7 = (07 )

for some function w € C(0,7T), where (f)p
Abbreviating 6 := =L — 1, this yields

is the mean value of a function f over D..

€

573

o € Wy T ((0,T) x D), divep = w(t)(e! — (¢)p.):

Recall from Theorem 3.4.1, the bound on the Bogovskii operator for ¢ = % is uniform as

long as

Indeed, we obviously have ¢ > 5/2 > 1, and from 7 > 6 we obtain

q<3<4<=57—-3<b6y—9<~v>60.
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Chapter 4. Homogenization results for perforated domains

Moreover, we calculate

3 3 2y -3
o — — > 5,7_3 - 3 /7 6 9
m 3 - 2v—3 7
which is precisely condition (4.26). Thus, we get
_ < 4 < 0
||90||W; 52 omyny) C oz — <QE>DE = (o) = C IIQEIIng_l((O,T)XDE)
for some constant C' > 0 independent of €. Moreover,
< o _ /.0
1N 0 it # gy < CIBLE = (VI i3

< ¢ “Qg - <Q§>DEHLOO(O’T;L%(DE)) < ¢ HQEH%OO(O,T;LW(DE)) < ¢

since /0 = 3v/(2y — 3) is strictly less than 3 for all v > 3, so we may apply Theorem 3.5.4
with ¢ = /6. Using the function ¢ as test function in the momentum equation, we get

T
| nteretasai - Z
0 D

where
T T
I = / Up(o){())p, dzdt, I = —/ V' (t)o-u. - Be(of — (o) p.) dz dt,
0 D. 0 D,
T
I3 = —/ ¢95u5 ® u; . VBE(QE - <Q§>Ds) dl’ dt’
0 D
T
I / US(Vu.) : VB.(o! — (o)p.) de dt,
0 D,
T
Iy = —/ boeu. - B(0y0! — 0:(0?)p.) dz dt,
0 D
T
I = —/ V(o-f +g) - Bo(o! — (o) p.) ddt.
0 D,

We estimate each integral separately, following [LLS18, Section 3.2]. However due to our uniform
bounds on B., we do not have to bootstrap the integrability from ¢ = 3 to 6 = 5' — 1 but
rather start with the desired value 8 = <t — 1. For I, we get with 6 <~ and 0 + 'y = 57 -1

Bl <€ sup (6!t DE|/ 182(0)] dz < C 0 oizinoqo 0 0211 (0
c

5v_4q
<C HQE”LSOO(O,T;LV(De)) <C.

: 57—6 3 6
Forlg,weobtalnbyl—%—%:'é—wand%:TlgZﬁforanyVZO

|| < C | 0el| oo 0,750 (Do 10 220,718 (0. || B (02 <Qs>DE)||
< C||B.(o? - <Cllo? -

OTLBWTG(D )

<C.

<05>D5)||Loo(0T L3 (D. (&) p. HLOO(D,T;L%(Dg)) =
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4.2. Lower ~y and time-dependent equations

Forlgwith%—l—%—i—%:l,

|‘[3| S C ||95|ILOO(O7T§LW(D5))||u5||%2(0,T;L6(D5)) |VB5(QS - <92>D5)||L°°(O,T;L%(Dg))

< Clle? =)Dl o3 ) < C-

ForI4With26:%7—2§5%—1f0r311720,

IVB-(02 — (02 ) | 200,m502(0.)) < C o2l 20,m502(02))

<C HQaH?:?e(O,T;LZ"(Ds)) <C H&Hié}—l((o T)x D)

14| < C|IVue||z20,1:22(0.))

For I,

6| < C (lo=ll L 0.7:020.y) + Dl 62N 2200m:22(D2)

<C ||Q€||i29(O,T;L29(Dg)) <C ng”i%*l((o T)xD.)

Let us turn to I5, which is the most challenging term. We will first assume that o’u. €
6(57y—3) 10v—6

E;77#7 7 (D,), and later give arguments how to eliminate this assumption using time reg-

ularization. Let us further note that

10y—6 257 —3) _ 6(57—3)
= < <<= 17y =21 < 2Ty = 2T <=~ >
99—9  9y-9 — 177 -21 T A=l T=

W] ot

as well as, by v > 6,

6(57 — 3)

6(5by —3 15
L<3<:>107—6<177—21<:>7>—.
17y —21

3
>_
2" 17y -—21 7

To handle the time derivative of o/, we use the extended Bogovskif operator from Theorem 3.5.4.
The renormalized continuity equation (4.23) for b(s) = s? yields

6t(gg) + (6 — 1)92 divu, + div(ggue) = 0.

6(57—3) 1076
Since o%u. € E,;7*"" 77 (D,), we have with Lemma 3.5.2

.0 - -
(div(gue), 1>[Wl,(%y(Da)]',Wl’(%y(De) -0

SO we may write

T
o= [ [ von Bty drar
0 De

T
+(0—1) / Yo.u, - Bo(o? divu, — (o divu.)p,.) dz dt
o Jb.

= [7 + Ig.
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Chapter 4. Homogenization results for perforated domains

Let us start to estimate g.u., which we do in the same way as in [LS18]. Since

3

5
il +
10y —6

=L
3

(1))

5:

57
10y — 6’

we get by the uniform estimate on o.|u.|? in L>(0,T; L'(D,))

10 —6
(0,750 5

= [Voevoeue| 10,

HQEU-EHLLOB—G

Qell

(0,73 L (Ds))
1

||\/Eua||L°0 (0,7;L2(Dz)) < Cllo:? 5, 1

L3 1((0,1)x D))

Similarly,
5 11 5y+3 5 11 s5vy415
1_1 +_— ”)/—i- 1_1 +_:L7
3 2 10y—6 3 6  6(5y—3)
SO we estimate
locwell sgnce sz S el s o el z0s ) < Clleell 51 g o

Using interpolation between Lebesgue spaces (B.4), we have

v+3 3 1 5y+3  13y+3

oy 1 5y+15

4 4
10y—6 510y—6 5101—6 6(y—3) 5107—6  56(57—3)’
which yields
HQeusH 10v—6 6(5v—3) < C ||Qz—:||5 .
L 73 (0,T:L 137F38 (D,)) ~1((0,1)xD.)
We further have
v+3 -9 13y +3 17y —21 (4.28)
10y —6 10y —6 6(5y—3)  6(5y—3) ‘
and also
2y —3 9y -9 1 2v-3 17y =21 2
STt . L e It . L <z (4.29)
2 5y—-3 10y—-6" 6 5y—3 6(by—3) 3
so we recall § = =L — 1 to get for I7 the estimate
‘17‘ < CHQEUEH 10y—6 6(5v—3) HB le(QEuE)H 1Ov 6(5v—3)
3 (0,T;L 137+3 (OTL T7y=21 (D))
3
< 0”98”54, HQeua” 1076 6(5v—3)
L3 ~1((0,1)xD.) 9 (0,7;L 17721 (D,))
3
< 5 5v—3 .
C ||QsH % -1((0.1)xD.)) ”QEHL; g (0.7)x Dg))Hue”LQ(O,T,m(DE))
<C st
le-11? 57 om0
= Cllell *s, 38

((o T)xD.))
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4.2. Lower ~y and time-dependent equations

For I5, Holder’s inequality (B.2) and (4.29) imply

HQe leUsH 10y 796((0T) D.) HQS”ngig((OT) H CthlaHL2 ((0,T)xD¢) <C HQ&H

L% L((0,T)x D2

Thus, we obtain by Sobolev embedding (B.8),

(107—6)*: 39 _ (10v—6)/(37—3) _ 6(57—3)
3

10v—6 - ’
9y —9 — 8 T 17y —21)/(9y—9) ~ 17y 21

and the fact 10” 6 <3 for any v > 21/17 the estimate

IB(Ldiva. — (e divup)l g wey
0 .
< C||B.(of divu, — {? div u6>DE)||L1077:6(0,T;W()1 1077_6(D5))
< 0 :
C || dlvua|| L CHQ&”L%*((O,T)xDS)
Together with (4.28), we estimate Ig as
sl < Clleeue]| sorze - sercs HBE(gﬁ divu. — (ol divu)p )l 1 oy
3 (0,T;L 15775 (D) W(OTLT”—*TT(De))
< 5 0
Clleliy . D€)||ga||ﬁ_1(mws)
2y 2
= Clleell %, ° :
L3 ~Y((0,T)x D:)
which eventually yields for I3
15| < |I7| + |1s] < CHQEII%“I :
((0,T)x D.)
Finally, since § = %7 —-1< = 2 — %, we arrive at

T g T ; 2y _2
/ b agd dxdt:/ plo)dldrdt < C (14 ool 7
0o JD. 0o JD. L3 77((0,T)xDe)

for arbitrary ¢ € C2°(0,7), so we may choose a sequence ¢, — 1 strongly in L>(0,7) to

6(57y—3) 10v—6

obtain a uniform bound on g in L ~1((0,T) x D.), provided ofu. € E;7 2" (D,).

To overcome this additional assumption on e’u., we briefly sketch the arguments from
[FN09, Section 2.2.5]. First, note that the exponents are optimal in the sense that, by (4.29),

el sgomp < el oy, ellision < Clleclg, , Ielhigaqony
e divacl s <Nl g ) vl < lledls ) IV 0l

The main observation now is that all estimates above remain valid if we choose as test function
ps(t, z) = (t)B:[o? — (o) p.]s.
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Chapter 4. Homogenization results for perforated domains

where [f]s denotes the mollification in the time variable ¢ (see Proposition B.7 for the definition
and properties of mollifiers). Since g, and u, fulfill the renormalized continuity equation (4.23),
we have

Ahlol]s + (6 — 1)[of divuc]s + div[olu.]s = 0,
or, equivalently,
divielu]s = (1 - 0)[ef divu.]s — d,[el]s.

Thus, we estimate by Young’s inequality (B.3)

0 1- 0 q: 0
Il divalsl g < leldivul s < lodll 1980,
and
0
Jodetlall g, < el g = Clecltg,

6(57y—3) 10v—6

so indeed div[ou.]; € Lo (D) and [¢’u.]s € ET=21"99 (D,), hence [¢’u.|s has a well-
defined normal trace on dD,. Since u. = 0 on 0D,, Theorem 3.5.3 now yields

/ div[o’u.]s dz = (Try(o’u.), 1) =0,
De

6(56v—3) 104y—6

so [ou]s € EJ7 7% (D,) and further

0 B. [ <Q€>Ds] = —B. diV[qua]d - 86[92 divu. — <Q§ divu.)p.]s.

Seeing finally that, by Theorem 3.5.4,

1B.loz = (2o sl ».1mes o =€ Iethsll g [, < Clleell s

0 (D2)’

10810t = (ool s, < O (llefudsl e+l divuds] e )

<C HQsHi%w,l(D )HuEHWOl’Q(Dg)

for some constant C' > 0 independent of ¢ and d, we follow the lines above to get a uniform
bound on [o.]s in L% ~1((0,T) x D.). Letting § — 0, this yields uniform bounds on o. in
L%~ 1((0,T) x D,) since [g:]s — 0. strongly in L%*l((O,T) X D.).

Once established the uniform bounds on o. and u., the remaining homogenization proof
follows essentially the same lines as done in previous sections. Let us briefly sketch the occurring
differences here, following [LS18]. For the extended momentum equation, we obtain

Dy(0e0e) + div(g.u. @ u.) + Vp(0:) = divS(Vae) + o.f + g+ F. in D'((0,T) x D),
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4.2. Lower ~y and time-dependent equations

where the additional distribution F. satisfies

[(Fe )| < Ce® 931100l 20220y + IVl e 0220y + 1)l 20,7507 () )

for any ¢ € C°((0,7) x D). Here, 1 < r < oo occurs out of various interpolations between
Lebesgue spaces (B.4), C' and r are independent of ¢, and 5/2 < ¢ < 3 satisfies (4.20). The
extended continuity equation

0,0. + div(g.u.) =0 in (0,7) x R? (4.30)

is obtained as follows. Let 1 € C°((0,T) x R?), and {¢y}n>1 € C°(D,) be a sequence of
smooth functions with 0 < ¢, <1, |[V¢,| < 4n, and

0, = 1 on {dist(z,0D.) > 1/n}, ¢, =0 on {dist(z,0D.) < 1/(2n)}.
Note that this implies for any 1 < g < oo
11 = @alliap = 11 = eullioaisieonoy<ijmy < Hdist(z, D.) < 1/n}s < Cn7a  (431)
as well as

|| dist(x, 0D:)VullLan.) < |Venll e || dist(z, 0D;) || La(taist(z,00-)} <1/n})

1 1 1 (4.32)
<dn- . {dist(z,0D.)} < 1/n}|s < Cn”a.

Then we may split

T T

/ / éaatqu) + éeﬁa : qub dzdt = / / Qsat<¢¢n) + OsU; - v(l/}g)n) dx dt
0 D 0 B
T
+ / / Qe(l - (Pn)atd) + o0-u; - (1 - SDn)Vl/} — OeUg - ¢V¢n da dt
0 £
T
= / / Qa(l - Spn)at¢ + o-u. - (1 - %)V¢ — OeUg - @ZJVSOn dw dt,
0 B

where we used that ¥, is a good test function for the continuity equation 0,0, +div(g.u.) = 0.
By the uniform estimates on g, and g.u., the first two terms vanish as n — oo by (4.31). The
third term is handled by Hardy’s inequality (B.10) and (4.32).

The convergence of the non-linear terms g.u. and g.u. ® U, to pu and pu ® u, respectively,
are obtained by getting the uniform bounds

~ 5 T <
Hatge”Lz(o,T;W‘l’%(De)) * HQEUEHL“(&T;L%(DJ) =¢

from equation (4.30) and the uniform bounds on p.u. already mentioned. Together with
Lemma 5.1 in [Lio98], this yields

¢-u. — ou in D'((0,T) x D),
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Chapter 4. Homogenization results for perforated domains

and also

0 — o0in C(0, 7L (D)), 0.0 — ouin C(0,T; L”Jrl (D)).

weak

A similar argument can be used to show
0:u. ® U, = pou®uin D'((0,T) x D),

leading for the continuity equation, momentum equation, and renormalized continuity equation
to

o + div(pu) =0 in D'((0,T) x D),
d,(ou) + div(pu ® u) + Vp(p) = divS(Vu) + of +g  in D'((0,T) x D),
ib(e) + div(b(e)u) + (eb'(e) — b(e)) divu =0 in D'((0,T) x D),

where p(p) is the weak limit of p(g.) in L3 ((0 T) x D). The proof of p(0) = p(p) requires
as before the strong convergence of the density, which can be handled similar to Appendix A.

4.3 Heat-conducting fluids

4.3.1 The model

In this section, we consider the stationary compressible Navier-Stokes-Fourier equations in per-
forated domains D., which describe the steady motion of a compressible and heat-conducting
Newtonian fluid. In contrast to the previous sections, we additionally have to take into account
equations that cover the behavior of energy as well as entropy. However, we will assume that
there are no internal sources or sinks of heat inside the fluid, meaning » = 0 in (2.5) and
(2.10). As derived in Section 2.2, for ¢ > 0, the unknown density g. : D. — [0, 00), velocity
u. : D, — R?, and temperature 9, : D, — (0,00) of a viscous compressible fluid are described
by

div(geu.) =0 in D.,
div(geu. ® u.) + Vp(oe,9.) = divS(de, Vu,) + o.f + g in D., (4.33)
div(o-Eeue + p(0z, 9o )u. — S(., w)ue + q.) = (o-f +g) - u.  in D, '
div (ggsgug + g—z) =0, in D,
where S denotes the Newtonian viscous stress tensor, which is now given by
2
S, Vu) = pu(9) (Vu +Viu-— 3 div(u)ﬂ) + n(9) div(u)l, (4.34)

and the entropy production rate o € M*(D,) is a non-negative Radon-measure satisfying

o> S(¥, Vu) : Vu q-V19‘

> 5 -5 (4.35)
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4.3. Heat-conducting fluids

We further assume the viscosity coefficients u(-), () being continuous functions on (0, c0), u(-)
is moreover Lipschitz continuous, and

Ci(1+9) < p() < Co(1+7), 0<n() < Ca(149). (4.36)
We also impose boundary conditions on 0D, as

115:0,

(4.37)
q: ‘N = L<19e - 190)7

where 9y > Ty > 0 is a prescribed temperature distribution in D and L > 0 a given constant,
and fix the total mass by

/ o-dz =m >0, (4.38)

where m > 0 is independent of ¢.

For the constitutive law of the pressure, we assume that it can be written as the sum of
adiabatic pressure and the pressure of an ideal gas, meaning

p(0,9) = a0’ + ¢,(y — 1)o7, (4.39)

where a > 0, v > 2 is the adiabatic exponent, and ¢, > 0 is the specific heat capacity at
constant volume, see also Section 2.2 for a derivation of this. The heat flux is governed by
Fourier’s law

q(v, V) = —k(9) V1, (4.40)
where we assume the heat conductivity s to satisfy
C3(14+9™) < k() < Cy(1 +9™?) (4.41)
for some my > 2. The total energy density is given by
E= %|u|2 +e, (4.42)

where the specific energy e satisfies Gibb’s relation

% (De +p(0,9)D (é)) = Ds(o,9). (4.43)

Assuming the specific entropy for an ideal fluid as s(o,9) = ¢, log (=) (see (2.13)), this leads

g"/
to

UDs(0,9) = 00,5sDo + 90ysDV = ¢,DI — ¢, (y — 1)%])9,
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Chapter 4. Homogenization results for perforated domains
By Gibb’s relation, this should be equal to
1 5 9
De + (ag” + ¢,(y — 1)p?)D| = | = 0,eDo+ 0geDVI — ap”’ Do — ¢,(y — 1)—Do.
o o
Comparing the differentials of ¢ and ¥, we obtain
dge = ¢,  O,e = a2,

yielding

y—1
e(0,9) = c,¥ + C;Q_ T (4.44)

Further, the entropy s fulfills formally the balance of entropy

div <gsu + 4

_U_S:Vu_q-V19
5)=0=

) V2R

see also (2.10) for its derivation. Since weak solutions are expected to dissipate more kinetic
energy than indicated from the second equation in (4.33), we should for the entropy production
rate o expect inequality rather than equality, which is precisely the notion of (4.35); see [FN09,
Chapter 2] for details. Finally, we assume the external forces f,g € L=(R?).

The existence of classical solutions to (4.33) is known only if the data are in a certain sense
“small” (see, e.g., [DV87, PP14] and the references therein). Therefore, we will work with
weak solutions, which are known to exist under even weaker assumptions of my and v as made
above.

4.3.2 Weak formulation, weak solutions, and main result

Here, we state the weak formulation of the problem in D.. To simplify notation, we will identify
a function with D, as its domain of definition with its zero extension to the whole of R?.

First, the weak formulation of the continuity equation reads
/ o-u. - Vipdr =0 (4.45)
R3
for all 1 € C}(R?). We will moreover work with a renormalized version of this, that is,
/3 b(o)ue - Vb + (b(0:2) — 0:b'(02)) div(u)pde =0 (4.46)
R

for any ¢ € C}(R?), where b € C([0,00)) N C*((0,00)) is as in (4.4).

The weak formulation of the momentum equation reads

/ p(0:,9:)divep + (o.u. @ u.) : Vo — S0, Vu.) : Vo + (o.f + g) - pdr =0 (4.47)

£

for any ¢ € C1(D_;R?).
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4.3. Heat-conducting fluids

The weak formulation of the energy balance reads

- / (QsEsus +p<96a 196)116 - S(ﬂa vus)us + qe) : V¢ dz + / L(ﬁe - 190)#’ dO‘(l’)
: oDe (4.48)
=/ (0cf +g) - uypda

£

for all ¢» € C1(D,). Farther, we also have the balance of entropy

<0-€7,¢>M+ + / il

0D, 195

¢d0<x) = _/ (985(967796)115 + %) : V@/) dz + L oD %Udff(fﬂ)
E O (4.49)

for all ¢ € C1(D.) with ¥ > 0, where we used the notation (0., ¥) y+ = st Ydo.(z).

Definition 4.3.1. The triple [o,u, V] is said to be a renormalized weak entropy solution to
problem (4.33)~(4.44) if 0 > 0,0 > 0 a.e. in D., o0 € L'(D.), u € Wy*(D.;R?), 9m/?
and logy € WY2(D,) such that olul?, |S(¥, Vu)u| and p(e,9)|u| € L'(D.), and the relations
(4.45)—(4.49) are fulfilled.

For ¢ > 0 fixed, the existence of weak solutions is guaranteed by the following result, see
[NP11] for details.

Theorem 4.3.2. Let f,g € L®(R*), ¥y € LY(OD.), ¥y > Tp > 0 a.e. on dD., L > 0 and
m>0. Lety > g and my > 1. Then there exists a renormalized weak entropy solution [p, u, V]
to problem (4.33)—(4.44) in the sense of Definition 4.3.1.

We are now in the position to state our main result, which generalizes [LP21, Theorem 2.2]
to the case of a random perforation.

Theorem 4.3.3. Let (P, R) = ({z:},{r:}) and D. be defined as in Section 3.4. Let f g €
L®R*, m >0, L >0, and ¥y > Ty > 0 in D be defined such that it possesses a uniform
finite upper bound on its LY-norm over all smooth two-dimensional surfaces with finite surface
area contained in D for some q > 1. Let {[o:,u.,0:|}cs0 be a sequence of renormalized weak
entropy solutions to problem (4.33)—(4.44), extended in a suitable way to the whole domain D
as shown in Section 4.3.4 below. Let o> 3, v > 2, my > 2, and m > max{3/(a—3),3} satisfy
the relation

3 %y —3 3my—2
- — . 4.
o m>max{7_2,mﬂ_2} (4.50)

Then, there exists an almost surely positive random variable eo(w) such that for all 0 < e <
€o there hold the uniform bounds

HQEHLW@(DE) + Huz-:HWOLQ(DE) + Hﬁi-IHWLQ(DE)ﬂL3m19(DE) <C,

3my—2
Imy+2
renormalized weak solution to problem (4.33)—(4.44) in the limit domain D, i.e., o > 0 and

¥ >0 a.e. in D, and the equations (4.45)-(4.48) are fulfilled.

where © = min{2y — 3,y }. Moreover, the corresponding weak limit as ¢ — 0 is a

Note that we are not able to prove the balance of entropy (4.49), which is due to the mere
weak control on 1/1,; see Remark 4.3.12 for a more detailed explanation on this issue.
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Chapter 4. Homogenization results for perforated domains
4.3.3 Uniform bounds

In this section, we give uniform bounds on the velocity and the density. Note that the assump-
tion m > 3 is made to control the measure of the boundary 0D, and the measure of D, itself.

The entropy balance (4.49) together with (4.35) enables us to get several bounds on the
sequence {[oz, ue, V;]}eso in D.. With the help of (3.26), we obtain for the entropy balance
(4.49) with ¢ =1

— LY
(D) + /BD 3 0

and in view of (4.35), (4.40) and (4.41) also

do(z) < L|0D.| < C,

dz < Co.(D.) <C. (4.51)

/ S(0., Vo) swe | (14970) |V,
] V. 92

€

If we take also ¢ = 1 in the weak formulation of the energy balance (4.48), we obtain

Lf ﬁadcr(x)so(u / (Qe+1)lua|dw) < C (Ut (el g, + Dlluelison):
aD. 5 :

Hence, due to the form of the stress tensor in (4.34) and similar to the calculation made in
(4.9), we have

0.(De) + lucllypaep, + 11V 1og Oellrzo.) + 1V10:] 2 2o + 192 [l on.) < C.

(4.52)

Note that the bounds in (4.52) imply, by Sobolev inequality (B.8) and Poincaré’s inequality
(B.7), that we can control the norm ||| zsmy (p,) by

m

9 my my
191y = 1952 2500y < C 1925 o,
my
< C(IVI91= | 2.y + 19l 2 op.y) < C (1 + ||Q€||L%(DE)>'
However, we do not know whether 9. is uniformly bounded. To prove this, we need some
additional tools. We will do this in the next subsection independent of the following results.

For now, we will assume that ¢, is uniformly bounded in L*™(D,) and prove this fact later
on.

To get uniform bounds on the density, we will use Lemma 3.4.1 and proceed similar to
[BO21, DFL17, LP21].

Lemma 4.3.4 (see [LP21, Lemma 3.3]). Under the assumptions of Lemma 3.4.1, assume
additionally that ||9. || 3m, p,) s uniformly bounded. Then, for e > 0 small enough, we have

[0zl Lr+ep.) < C,
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4.3. Heat-conducting fluids
where C' > 0 s independent of €, and

. 3m19—2
0= 2y — 3y 2L 4.53
mln{ 7y 773m19+2} (4.53)

Proof. In the weak formulation of the momentum balance (4.47), we will use the test function

1

(S}
= o; dx,
|De| Jp.

o =B (02 —(e)p.), (). :

where B, is the operator from Theorem 3.4.1, and © to be determined. We then have for any
1 < g < 3 satisfying (3.19)

IVl e, < C) 162 zap.)-

Using ¢ as test function in (4.47) and recalling the pressure as p(g,9) = ag” + ¢,(v — 1) 09, we
get

/ 0g?*® dz = / P02 9:)(62)p. — coly — 1)@*10, + (9., Vu.) : Vpda
) ) (4.54)
— / (ocu:@u.) : Vo — (0.f + g) - pduz.

€

We will estimate the right-hand side term by term and start with the most restrictive ones,
which will give bounds on ©. First, we take the convective term to estimate

/ |(0ev: ® ) : Voo do < [Juc]|Zo(p,) 0zl ve (oo IVl Lo (2

De

< Clq) luellZoo.) l0cllve ool €€l (o2

= Clq) luellZo .y loll e ooy el Fase .

where ¢ is determined by

1 2 1

Ch_

6 ~+6

In order to get as high integrability of o. as possible, we choose © such that ¢;© = v+ ©. This
together with v > 2 leads to

3(yv—1) 3 3 2y-3

€ <_a3>7

O=0,=2y—-3>1, =% = :
L= =93 5 3—q -2

Note that the exponents ©; = 2v—3 and % showed up earlier in the proof of Theorem 4.2.1
due to the same reasons. Using Sobolev embedding (B.8) and the uniform bound on u. from
(4.52) to obtain |[u.||zs(py < C ||u€||Wg,2(DE) < C, we deduce

) 1+6
/;E |(Q5us ® 115) : ch‘ dz < C HQSHL’H-él(Dg)?
where C' > 0 is independent of ¢, and 1 + 0 < v+ ;.
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Chapter 4. Homogenization results for perforated domains

Second, we consider the diffusive term to obtain

[ 180 u): Vel do £ 0 (04 [9ullsmaon) IVl Vo,

€

< C(q) [IVue 2(p,)
= C(g2) Vel 2o [l 0]l Faze .

02| ze2(p.)

where we set (recall my > 2)

-2
677w c (2’3)’ 3 . Bmg

QQ:ZSmg—Q 3—q my—2°
As before, we choose © such that ¢,© =~ + O, which leads to

3m19—2
O=0y =y——>1.
2 7377119-1-2

This yields

[ 180910 : V| do < CllulSrve o
D,

In particular, if we set

2y — -2
O = min{O;, 05} > 1, a—%>max{ Y =3 3my }>3,

v—2" my—2

then ¢, and ¢ satisfy (3.19) and we infer
/ ‘(quE ®u,): Vgo! dx +/ ‘S(ﬁg,Vua) : Vgp‘ de < C (1 + ||QE||;“?@(DE)).
£ D5

3my—2
Imy+2

Since my > 2, we have © < v < 7, yielding 20 < v+ O. Thus we deduce

/\@J+g%¢m$§0m&hmm+lwﬂmwa

€

< 0) (lle-liro(on) + le:|Sego,

< 0(2) (”QEHLV*@(DE) + 1)||Qs||?w+@(ps)

< C@) (ll2% p, + 1.

where in the last inequality we used (4.27) for a = 1, b = || 0.||*T%,,, |, and p = (1 4+ ©)/06.

L+9(D

Furthermore, the estimate for the pressure reads

/ |p(0e,9:) (02 p.

€

(Qg + Qsﬁs><Q?>Ds dz
< O (l:0c0, + el 102501 ) N Bo

SC@&MWM+MJmmOMJ%@y
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4.3. Heat-conducting fluids

Here we assumed that 9, is bounded in L*™(D.) C L%(D.). Using (4.27) for b = ||o:||7.p
p=r-,and a =1, we get

10zl 7Dy < Nleellzop,) + 1

Together with © < ~, which implies ||Qa||?@(DE) < 1+ llo=llzvp, g£||LO(D > and interpolation
between the norms of L*(D,) and L"*®(D,) (see (B.4)), this yields

/Ds p(0-,9:)(02)

XA X PPNy [ P
< € (e 1 o0 + 1800,

<o
(
< ¢l
(
(

QEHLG (De) ‘l'l)
< (Jled7t, +1)
w 0) w o)
<0 (el e 7058, +1)

0)
<0 (ledFreE, +1)

where we used that we control the total mass m = ||o-||1(p.), and @ € (0,1) is determined by

1_1—w+ w
v 1 Y+ 0O

Lastly, we estimate

162700 < 0o 1627 s, < C el

D.

where we set ¢ == (v + ©)/(v — 1). Recalling that © < v and v > 2, this yields ¢ € (1,4),
which entails in [|¥|[Le(p,) < C since we assumed ||V, || smy(p,) < C and my > 2.
Finally, we obtain from (4.54)

o7, < C (1 T ugguiw%e)) for some 1< f < 7+6,

which yields the uniform bound on o. in L""®(D,), provided 9. is uniformly bounded in
¥ (D). O

Combining the uniform estimates on . with those from (4.52), we obtain

my
e llyr2 o,y + leellre o) + IV 10g Vel L2(p,) + (V0] > (| 2(p.) < C,
19l 1 @02y + 102 |22 ap.) < C-

Note that these bounds are obtained by using the assumption that 9. is uniformly bounded in
L3 (D,). This assumption will be proven in the next section.
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Chapter 4. Homogenization results for perforated domains

4.3.4 Extension of functions

In order to work in the fixed domain D instead of the variable domain D., we can extend
the functions u. and p. as well as the measure o. simply by zero, which will preserve their
regularity and their norms. In particular, the extended functions are still uniformly bounded.
In the sequel we will denote this zero extension of a function f by f.

However, the extension of the temperature is more delicate since an extension by zero will
in general not preserve its regularity. This extension was previously done in [LP21, Section 3],
so we rely on their proofs. First recall that, by Theorem 3.4.2 and for € > 0 small enough, the
balls { Bycar, (%) }2,c0:(p) are disjoint. The first lemma we need thus follows the same lines of
the proof of [LP21, Lemma 3.1].

Lemma 4.3.5. Let D, be defined as in (3.18) and let the assumptions of Theorem 3.4.2 hold.
Then there is an almost surely positive random variable eo(w) such that for all0 < e < gy there
exists an extension operator E. : WY2(D,) — WVY2(D) such that for any ¢ € WY*(D.) and
any z; € ®*(D),

E.p=¢ in D,
IVEpl 2 (8ea, ) < C VO L2(Bya,, (c2\Bror o)

and hence |V E.¢||12(p) < C IVollL2(p.y. Farther, for any 1 < q < oo,
1Eepllzap.0,, ) < CUON Lo By, 2B )

and therefore || E-¢||zaipy < C|l¢llza(p.), where the constant C' > 0 is independent of ¢ and
i. Furthermore, there exists an operator E. : Wiz (D,.) — WiZ(D) with the same properties as
above. Here Wig denotes the Sobolev space of all non—negatw_e functions in W2, In particular,
one may choose E. = max{0, E.p}.

Proof. To begin, let p € W12(By(0) \ B1(0)), and write it in the form

1
p=Mp+vy, Mp:= — odw, My =0.
|B2(0) \ B1(0))] /B (0)\B: (0)

Since By(0) \ B1(0) is a bounded Lipschitz domain, from [Ste70, Chapter VI, Theorem 5] we
infer that there exists an extension operator S : W1H2(By(0) \ B1(0)) — WH2(By(0)) such that

Sy =1 in By(0)\ By(0),
1S llwrz,0) < CllYllwres, o),
||S77DHL‘1(BQ(O)) <C ||1/)||Lq(32(0)\m) V1l < q < 00,

where the constant C' > 0 is independent of ¢q. Since M1 = 0, we further deduce with Poincaré’s
inequality (B.6)

||S¢||W1’2(Bg(0)) <C ||¢||W1,2(32(o)\31(0))
< C VYl L2 y0p B0 = C IV 2800\ Br0)-
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4.3. Heat-conducting fluids

Setting
Sp = Mo+ S in By(0),

then still

Sp=¢ in By(0)\ B:1(0),
[1Sellwrzmao) < C llellwres, 0B
||S90||L¢Z(BQ(0)\T(0)) S C ”SOHLQ(BQ(O)\T(O)) V1 S q S Q.

Now, for ¢ € Wl’z(Bzeari (5751) \ Ba"‘n(gzi))7 set
o(y) = p(ez; + rie®y),

then ¢ € W12(By(0) \ B1(0)). We can now define the extension operator in each hole E! by

Biota) = (59)( 22

;€%

By the properties of the operator S, we clearly have E'¢ € W2(By.a,,(c2;)) and Elp = ¢ in
Bsear.(£2;) \ Bear,(£2;). Farther,

| WP [
BQsav‘i (Ezi) BZEO‘T (Ezi)

7

= / (’T’Z'Ea)_2
BZsari (521)

e / MAEEOIRY
B>

0)

IN

Cnea/ V)P dy
B>(0)

\B1(0)

=C / |V.o(2)]? da.
BQsari(

€2i)\Beay, (€2i)
Similarly,
1E20l 4 (Bacar, (e2) < C NN Laya, oy Frmmmy VL < 4 < 00
Finally, the extension operator E. is defined by

E.o =y + Z Eip Yo e WH(D,),

2, €P¢(D)

provided each E;p is extended to be zero outside its domain of definition, and y is the char-
acteristic function of D \ U, cge(p) Barea(€2:). This operator clearly obeys all the required

properties of the lemma. The last assertion for F.¢ = max{0, Eego} is a simple consequence of
IVE-#ll 20y < IIVE 2(p)
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Chapter 4. Homogenization results for perforated domains

and
IE-¢l|ap) < |Bepllrapy V1< g < oo

]

With the help of the extension operator E., we can bound the temperature uniformly with
respect to €.

Lemma 4.3.6. For ¢ > 0 small enough, we have || E.0.||w12(p) + | EcVe|| psmy (py < C for some
C > 0 independent of . In particular, we have ||[Vc||w12(p,) + [Vl 3mo(p.) < C uniformly in
€.

Proof. First, as 9. € Wh2?(D,) and 9. > 0 almost everywhere in D,, we have E.J. € W2(D)
and E.J. > 0 almost everywhere in D. By my > 2, the fact that 92 < 1+ 9™ and (4.51), we
get

1 my 52
/ |V195|2dx§/ ( +19€02)|w| dz < C

£

uniformly in e. By Lemma 4.3.5, the same holds true for E.J. € Wh2(D). As we also have
uniform control on the L'-norm of 9, over D (see (4.52)) and this value does not change by
applying the extension, we have a uniform LS-control of E.J. over the whole of D. As E.v.
coincides with ¥, in D,, we have also a uniform control on the L%-norm of ¥, in D..

Assume for now my < 12, and recall that V|J.| 2" is uwrlliformly bounded in L?*(D,) by (4.52).

my
By the arguments given above, we already know that 9.2 has uniform controlled L'-norm over
D., so we may estimate with the help of Poincaré’s inequality (B.6)

m m

my my my 1
10% 2.y < [10e* = (9 )b L2,y + (9 ) .| De |
my S LS
< OVl 2 (2. + [Del 2192 (1302 < C,

m,

my
where we used the notation (9.2 )p_ for the mean value of ¥.2 over D., and the fact that, for

¢ small enough, the measure of D, is controlled by (3.26). Thus, 195719 is uniformly bounded in
WL2(D,), and by Lemma 4.3.5, the same holds true for (E.0.)2" in W'2(D). By the Rellich-
Kondrachev theorem from Proposition B.5, (Egﬁg)% is bounded uniformly in L5(D), that is,
E_9. is uniformly bounded in L3 (D,). Again by Lemma 4.3.5, this yields a uniform bound
on ¥, in L3 (D,).

Let now my > 12. From the steps done above, we have a uniform control on 9. in L3¢(D,).
By repeating the arguments for 2 < my < 12, we may cover all 2 < my < 36. Going further
yields the desired for any my > 2. m

We further need to estimate the trace of 1, in dD,.. Indeed, for fixed ¢ > 0, the trace of ¥,
belongs to L™ (0D,), as can be seen from the standard trace theorem, see also the proof of
the next lemma. This lemma enables us to control the norm of the trace of 1, in a quantitative
way.
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4.3. Heat-conducting fluids

Lemma 4.3.7. Under the assumptions of Theorem 4.3.3, we have for any z; € ®(D) and for
e > 0 small enough

191352, 05y < C (V1012 3oy + 1061750 + 10 ).

L?>™9(dB;) L3™9 (2B;\B;) L3 (2B;\B;)/’

where we set B; = B.a,.(¢2;) and 2B; = Baa,.(£2;).

Proof. Following the standard proof of the trace theorem for Sobolev functions (see, for in-
stance, [Eval0, Chapter 5.5, Theorem 1]), we may arrive at

| opmas@ <o [ wiedo ol
dB; B;

2B;\B;

where ¢. € CX(2B;) is a non-negative smooth cut-off function satisfying ¢.|sp, = 1 and

3my —
Vel ro@p) < C (rie®)~t. Since V]9 [*™ = 492 and [2B; \ B;| < (r;e®)3, we see
at once that . € L*™(9D,). Using further Holder’s inequality (B.2) and Young’s inequality
(B.1), we calculate

my

9222 oy = [ P do@) S [ WGl da
9B; 2B\B;
S [ TR0 4 | 0|
B\B;

< (re) ! / 9,20 1 V19| 5| 9. 5 da
2B;\B;

1

: s\ :
(o) e[t ([ o)
2B;\B; 2B;\B; 2B;\B;
2
3 m,
< (/ |0, |3 dx) +/ |V\195\29|2dx+/ |9 |*™ da
2B;\B; 2B;\B; 2B;\B;

- Hﬁ Higlgﬁ 2B;\B;) + ||V|19 |7HL2 2B;\B;) + Hﬁe”igniﬁ@&\ﬁi)'

The last ingredient we need is a trace estimate for the whole boundary of the holes.

Corollary 4.3.8. Under the assumptions of Theorem 3.4.2 and Theorem 4.5.3, we have for
any z; € ®*(D) and for e > 0 small enough

1
10| L2mo <Ce .

(Uzieq,a(D)aBEaTi (ez1))

Proof. For z; € ®°(D), we set again B; = Bea,,(¢z) and 2B; = Ba.a,,(£2;). Then, using
Holder’s inequality (B.2) and Lemma 4.3.7, we get

19,12 dor(a / 19,12 dor(z)
/uzieqﬁ(D)BB Z 0B;

z,€P¢(D)

<C ( / 9. [3mo da;) ’
Z QBZ'\E| |

2, €P(D
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PO L S DY L

z,€®¢(D) 2Bi\B; z;€d¢(D 2B;\B;
3 3
<o % / o) (32 )
zeds(D) 7 2B\ 2 €0 (D)

/ / |9)P" da
De

<CO[(#{z € @6(1))})% +1],

where in the last inequality we used the uniform bounds on 9. and V|1, | 2" From Remark 3.4.6,
for £ > 0 small enough, the number of points z; € ®°(D) is bounded by C'¢~3, which immedi-
ately implies our desired assertion. O]

Summarizing all the above results, we know the existence of an almost surely positive
random variable €q(w) such that for all 0 < & < gy the solution [g., u., ¥.] to (4.33)-(4.44) and
the measure o, suitably extended to the whole of D, satisfy

5&(5) + Hﬁ€||W01’2(D) + HéEHL‘H@(D) + ”EEQ%HWL?(D)QL%MD) + ||Ea logwa>|’W1’2(D) <C, (4-55)

where O is defined in (4.53). Furthermore, 9. has a well-defined trace on each 0B.a,,(£2;), the
norm of which is controlled by Corollary 4.3.8.

4.3.5 Equations in fixed domain

This section is devoted to show the the homogenization result for the Navier-Stokes-Fourier
equations in a randomly perforated domain in the subcritical case @ > 3. The proof of such
a result in the case of well separated holes is given in [LP21, Section 4]. Their methods apply
almost verbatim to our situation, so we will mainly focus on the differences due to the random
setting. Again, we will always assume that the moment bound m > 3 in (3.19) to bound the
measures of D, and 0D..

First, the bounds in (4.52) and (4.55) enable us to extract subsequences (not relabeled)
such that

i, — u weakly in Wy*(D), 1. — u strongly in L9(D) for all 1 < ¢ < 6,

0. — o weakly in L7T9(D),

E.9. — 9 weakly in W'*(D), E.J. — 9 strongly in LY(D) for all 1 < ¢ < 3my,
E.log(¥.) — log(V) weakly in W'2(D),

where we denote by log(1) the weak limit of E.log(v.) in W?(D).

Let us start with the limit passage for the energy, continuity, and momentum equations.
To pass to the limit in the energy balance in (4.33), we use its weak formulation (4.48) and the
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4.3. Heat-conducting fluids
fact i, = 0in D \ D, to write
o [ (8B e D0+ (000 = 8 T~ KIVED,) - Vs
D

+ L/aD(ﬁg — Jp)pdo(x) — /D(égf +g)-uyde

- / K(0.)V0. - Vi — L / (9. — Do) do(z)
D\D:. U, e@E(D)aB ap (EZZ)
= Il + IQ

(4.56)

for any ¢ € C*(D), where E(o.,u.,?.) is the total energy from (4.42). We want to show that
both integrals on the right-hand side vanish as ¢ — 0. For I;, by Hélder’s inequality (B.2), we
get

1
L] < CNVY ooy (1 + 19el oy o)) Vel 20\Doy [P\ Del® — 0,

where we used that |D \ D.| — 0 by (3.26). For I, let us set B; = B.a,,(c2). Using
Corollary 4.3.8 and that ||| zaop.) is uniformly bounded for some ¢ > 1 with respect to ¢,
together with @ > 3, m > 2, and Lemma 3.4.5, we obtain

- Qmﬂ 1 1
2my
L] < C | [0ellpzmo o, coemory | U 9B +[Woll o, carmory | | 0B
- 2,€9¢(D) 2,€®¢(D)
_ 2my—1 q—1
1 2my q
<Cle 2’”19< E 520‘7“1-2) + ( E 520‘7"1-2) }
- z,€P¢(D) 2, €P¢(D)
[ (2a—3)(2my—1)—1 (2a—3)(q—1)
<Cle 2y S — 0,

3m19 2

where we used that (2a — 3)(2my — 1) > 1 due to our assumptions a > and my > 2.

Hence, letting € — 0 on the left-hand side of (4.56), we get by the strong convergences of u,
and 1,

o /D ((96(97 ﬁ) + %Q|u|2 _I'p(Qv 19) - S(ﬁv Vu))u - /{(ﬁ)Vﬁ> : VZD dx

+ L/aD(ﬁ — V) do(x) = /D(Qf +g)-uyde.

Here, f(p,v) denotes the weak limit of a function f(o., 7)) in some suitable L%-space. Also,
the temperature ¥ > 0 almost everywhere in D and log(¥) = log(1)), which can be proven as
shown in [LP21, Lemma 4.1]. For convenience, we repeat the proof here.

Lemma 4.3.9. The limiting temperature 9 > 0 a.e. in D, and further log(9) = log(¥).

Proof. First, since E.9. — 9 strongly in, say, L*(D), we can extract a subsequence (not
relabeled) such that E.J. — ¥ a.e. in D, which yields that the limit temperature cannot be
negative. It thus suffices to prove that it can be zero just on a set of measure zero. To this end
we assume the contrary, that is, there exists § > 0 such that [{ = 0}| = §. Take a sequence
{eihen C (0,e0(w)) with g, < 17!, where g¢(w) > 0 is as in Theorem 3.4.2, and consider the
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sets
Dlo = U U Bsfri(glzi>-
I=lo z;€PEL (D)
Since for ¢; > 0 small enough we have

< C
— [3(a-1)

U Bsf‘n (e12:)
)

2, €®°1(D

by (3.26) and a > 3, we can find [y € N such that |Dy,| < 2.
We have E, log(V.,) — log(v) weakly in L9(D) for all 1 < ¢ < 2, in particular log(?) > —oo

a.e. in D. Since we have also 9., — ¥ a.e. in D and thus a.e. in D \ D,,, we infer by Vitali’s

convergence theorem (see Proposition B.8) log(?,,) — log(?¥) in LY(D \ D,,) for some ¢ > 1.

Since by definition of E. we have log(9.,) = E;, log(¥,,) in D \ D,,, we have log(?) = log(v)
a.e. in D\ Dy,, which yields log(¥) > —oo a.e. in D \ D;,. This means that ¥ can be zero at
most on the set D;, which has a measure less than 0/2, which is a contradiction. Thus ¥ > 0

and log(¥) = log(¥) a.e. in D. O

It remains to show the energy balance for the limit functions, which is in fact a consequence
of the strong convergence of the density p. to ¢ at least in L'(D). More precisely, the strong
convergence holds in LI(D) for any 1 < ¢ < 7+ O. The proof of this fact follows the same
lines as done in Appendix A.

We now turn to the continuity and momentum equation. Recall that the continuity equa-
tion holds in the weak and renormalized sense (4.45) and (4.46), so we obtain by the strong
convergence of u. to u

div(ou) = 0 in D'(R?). (4.57)

Moreover, by Remark 4.1.2, (4.57) implies that the couple [g, u] fulfills the renormalized con-
tinuity equation (4.46) for any b € C([0,00)) N C'((0,00)) satisfying the conditions of Re-
mark 4.1.2.

To pass to the limit in the momentum equation, we need to construct suitable test functions.
To this end, we recall Lemma 4.1.6, which guarantees for any 1 < r < 3 with (3 —7)a—3 >0
the existence of a family of functions {g.}.~o C W7 (D) such that for 0 < & < &,

9:=0 in | Ben(ez), g-—1 inW'Y(D)ase—0, (4.58)
zj€<1>€(D)

and there is a constant C' > 0 such that

3(a—1) (3—r)a—3 3(a—=1)

11— gellzrpy £ Ce™ 7 |IVgllrpy <Ce 7 =Ce “. (4.59)

Using these cut-off functions, we obtain a similar statement as given in Lemma 4.2 in [LP21].
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Lemma 4.3.10. Under the assumptions of Theorem 4.3.3, there holds
div(g.u. @ u.) + Vp(o., E.9.) — divS(E.9.,Vu.) = o.f + g+ F. in D'(D),
where F; is a distribution satisfying

(e pho oy ol < Ce(IIVell 2o e ) + 0l m)

+5(D

for all ¢ € D(D), where © is defined in (4.53), and v,&,r are defined such that the following
conditions are fulfilled:

-1
0<¢é<, O<h(£)::3(a—1)(%+§> — a,
1 v+ 0O - S
1 - L -
<r < oo, T+( 5 +£) e

O<v<oo, V= min{@,h(f)}.

Let us remark that the conditions on &, r, and v occurred earlier in Section 4.2 for the case

_ 1+© _ 3(y-1)
of constant temperature, v > 2, and © = 27 — 3, where we have 15= = 3

Proof of Lemma 4.3.10. The proof is similar to the one given earlier in Section 4.1.3. For leg-
ibility, we will identify functions [g., u., J.|, defined on the domain D, with their extensions
[0, 0., E.0.] to the whole of D.

Let ¢ € D(D) and decompose ¢ = g.¢ + (1 — g.)¢, then g.¢ is a proper test function in
the second equation of (4.33). Hence,

/ 0:u: @ U 1 Vo + p(o,9:)dive — S, Vu,) : Vo + (0f + g) - pdx
D
2/ 0-u. @, : V(ge) + p(oe, V:) div(g.p) dz

+ / (9., VL) : Vi(gep) + (0.f +8) - (g9) d + L.
D

= Iea

where the remainder is given by

I = ZIJVE ::/DgguE @u.: (1—9¢.)Vep—pu.®@u.: (Vg ® p)de

J=1

- /Dp(@s, Ue)(1 = ge) div o — p(oe, J:) Ve - pda
+ /D S0, Vue) : (1= g:)Vep + 8(0e, Vue) : (Vg @ ) d
+ /D(st +8) (1 -g)pdr.
We start with I, o, which is the most restrictive one. We split the integral due to the definition
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Chapter 4. Homogenization results for perforated domains

of the pressure as p = ap” + ¢,(y — 1) 0¥ into

La= [ ploat0l(1 - g)diveo ~ Vo ¢l da
D
= / aol[(1 — g.)divp — Vg. - p]dx
D

+ / co(y = 1)oYc[(1 — go) divp — V. - ¢] dz
D
= I"+ I
For I', we estimate

1< Cllel, e ) (L= g divell sge ) + IV 6l 250 )

:C||Q€||Lw+6(D)(H(1_QE)VSOH 7+9 +|| Ge - SDH 146 )

18 (D)
<O (1= g)Veell s )+ 1V sOII 50 )

<C(llh- gsHLr(D)HV@HL%H(D) F VGl g0 e 12r ).

where we used the uniform bound on g. in L7*®(D), and £ € (0,1) and r € (1,00) are
determined by

1 v+ 0O _1_ S}
- + <T +§) = —-". (4.60)

From (4.59), we obtain

3(a—1) 3(a—1) ﬂ+§ 71_0[
1= gl < C*5, VAl age ,, < CMe V(5540

as well as

v+0\ ! 3a—1)0—a(y+06) w20 —7)—30
-1l —= —a = =
3(a )< S ) “ v+ 0O v+ 0O >0

<— a(20 — v) > 30.

We distinguish two cases of © from its definition in (4.53). First, we assume that

. 3m19—2
0 = 2y =3,y 7——= ¢ =27v—3

then

a20 —vy) =a(37y—6) >30 =327y —3) <= a >

which is true by condition (4.50). Second, if

@:min{27—3,73mﬂ_2} = Smy — 2

3mg+ 2] 3my+2
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then

6m79—4 9m19—6

20 — ) = “1)>30=
(26 -7) 0‘7<3mﬂ+2 >> T 3my + 2

3m19—6 9m19—6

< >

3y +2 3my + 2
3771,9—2
—a>—" =
m19—2

which again holds by (4.50). We therefore may choose £ € (0,1) small enough such that

h(€) ::3(a—1)<¥+§>_1—a>0.

For this &, let r be defined by (4.60), and

v = min {M,h(f)} > 0,

r

then we may estimate I' by
1 v
1) < O (19l 28 e, + Bellireo).

Let us further note that

3(y+0O) <7—|—@
20+©)-3~ ©

<= 30<2(y+0) -3+ 0 <2y-3, (4.61)

which is always true by the definition of © in (4.53). Now, we get for I?

I < Clleellirsom19: sy (11 = ge) divepll stz +HV95 ol suier )

(+©)=3(D ﬁ(D)
<O =g)Vell sove + Vg - SOH ECEL) )
L20+9)=3(D (+8)=3 (D)

<C(Il- ge)VSOHL#g(D) + HVgE : 80||L77+§(D)),

where we used the uniform bounds on g. in LY*®(D) and on 9. in any L4(D) for 1 < g < 3my.
We may therefore proceed as for I' to eventually get for I. 5 the bound

Lo < |1+ 17 < Ce(IIVell, 04, )+||‘P||L’“(D))-
For I, we get

L. < 2 1-—
11| < loell ooy luellZo o ([[(1 = go) Veol| JREIcE . +1Vge ® ¢ %(D))

< C(I =gVl e ) + IV @2l 2o ).

where we used the uniform bounds on g. and u. as well as (4.61). Arguing similar as for I, o,
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Chapter 4. Homogenization results for perforated domains

we deduce for I, ; the bound

[Leal < C (11 = gellr o Vel L52+ep) T ”Vg&HL%Jrg(D)||90||LT(D))

<Ce(IvVel 50 e )+||90||LT(D>)-
For I 3, we estimate

eal < C A+ 0] Arte) )HVusHm(D (I = g:)Veell, e +HV95®90HL%(D))

<C (11 =g:)Vel e+ Vg @0l 2o

L e (D) (D))

where we used the uniform bound on 9. in L(D) for any 1 < ¢ < 3my, and the fact that

2 S) 3my — 2
M §3m19<:>27+2@§37m19—3@m19<:>@§7m19—
v—0 3my + 2
which is true by (4.53).
For I 4, we repeat the arguments for I, 5 since
< ol - Ye i
Tl £ C 0+ el 2 ) L= 009l 250

< C 1+ o)1= el s ) < C = g)elsge

O]
We want now to pass to the limit in the entropy balance (4.49) and show that the limits
[0, u,J] fulfill also (4.35). Since this point is missing in [LP21], we follow the proof of [PS21].

We first show that the entropy balance (4.49) is satisfied for the extended functions “up to a
small error”.

Lemma 4.3.11. Under the assumptions of Theorem /.3.3, we have

. LY
<U€7 1/}>M+(5) + / -

0D 196

wdo(w) = = [ (2:5(0.0.)8 ~ w7V E log(0)) - Verds
b (4.62)

L /a wdo(@) + (Re.)

with (R., ) — 0 for any+ € CY(D) with+ > 0. Here, we denote égs(éa,”@a) = ¢,0:F-log(v.)—
co(y — 1)0e log(0:) with the convention 0 -log(0) = 0.

Proof. Let ) € CY(D) with ¢ > 0, then Yxp. is a proper test function in the entropy balance
(4.49) in D.. We further have ¢ = ¢xp_+ Yxp\p. and hence

Gethary + [ dola) + [ (@estandiyin = IV EAog(0) - Vo~ L [ v

0D 195 oD
Ly
= <Je,¢>M+(§E) + /8D ﬁsow do(z)
+/ (0=5(0z, 9 )ue — K(0:)V log(d;)) - v¢dx—L/ Y do(z)
5 6Da
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e thaemm [ (26000 — IV I0g(0)) - Vodr +L [ ol

D\D: d(D\Dx)
7
= Z I;.
i=1

Clearly Z I; = 0 because of (4.49). Further, I5 = 0 since o. has been extended to zero outside
D.. For ]7 we obtain I; — 0 by (3.26). By g. = 0 outside D., we get

Iy = _/ k(D) V E. log(V.) - Vi d
D\D-
< C|IVY| o\ [V 10g (V) || L2 (0\ o) |6 (9e) | L3 o\ [ D\ Dele — 0,

where we used that x(J) < C(1 + 9™) for some my > 2 and ||[U.[|p3myp,y < C as well as
1D\ D.| — 0 by (3.26). O

Remark 4.3.12. Note that due to the mere low control |[97||11op.) < C, we are not able
to prove faDE\BD Ly /9. — 0 as € — 0, which would finally yield that the weak-* limit

of 6. in M*(D) would satisfy the balance of entropy in the limiting domain D. Due to
faDE\aD LYoy /9. > 0 we rather have that limsup,_,,6. < o in the sense of measures, where

o € MT(D) is defined as the entropy production rate for the limiting system in D.

We now turn to the limit ¢ — 0 in (4.62). We will again follow the arguments given in
[PS21, Section 3.2]. First, by the uniform estimates developed in (4.52) and (4.55) and the
strong convergence of the temperature and velocity, we have

0:5(02,7.) — 05(0,9) = cyolog(¥) — c,(y — 1)olog(o)

weakly in L?(D) for some ¢ > 1 as well as

éss(@ea ﬁe)ﬁs — QS(Qa 19)11 = CvQIOg(ﬁ)u - CU(’Y - 1)Qlog(9)u

weakly in L(D) for some ¢ > 1. The term x(J.)VE.log(d.) can be handled by 9. — 9
strongly in L¢(D) for any 1 < ¢ < 3my and VE_log(d.) — Vlog(¥) weakly in L?*(D). As
mentioned in Remark 4.3.12, we infer
LY -
(0,9) pm+ () —I—/ —0@/) do(z) > / (95(19, o)u — ﬁ(ﬁ)Vlog(ﬁ)) -Viyda + L Ydo(x).
D

oD oD

Last, let us prove that o fulfills inequality (4.35). To this end, we notice that

2 2

()

£

div u,

S(., Vi) : Vi, 1’ p(9.)

5 5 (Vo + V', — %div a.I)

‘

and use weak lower semi-continuity of the L?-norm to infer

S(¥, Vu) : Vu < liminf S(ﬁg,Vlja) VAT
9 e—0 Y.
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Chapter 4. Homogenization results for perforated domains

in the sense of distributions. Let us now focus on the term
k(0.)|V E. log(9.) .

By assumption (4.41), it is enough to consider this term for k() = 1 4+ ¢¥™?. In this case, we
get

K£(02)|V E. log(0.)* = |V E. log(9.)]* + 9™ 2|V, %,

where we used that F.¢ = ¢ in D, and 9.(z) = 0 whenever # € Bea, (e25).
Let us focus on the first term and fix 6 > 0. Then

[ IV tog(0.) da
D

> — / |VE€ 10g(195)|2_5}({|VE6 log(9<)|>1} de + / ‘VEE log(ﬁg)F_d dx (4 63)
D\D: D :

3

/ (\VE log(¥)[* — |V E. log(0):)|* 5)X{|VEslogwe>|s1} de =) I

=1

We now estimate, using Holder’s inequality (B.2),
5= [ VB loa(0 v, ooy 4 < [V E. g0 5t 1D Dol
D\D-

Hence, for fixed 6 > 0, we have I; — 0 as ¢ — 0 since |D.| — |D| by (3.26). Further, we get
|I3] < C(6) — 0 as 6 — 0 uniformly in ¢, since the function z +— |22 — 2279| obtains in (0, 1)
its maximum at zo = (1 — g)%. Thus, I3 is bounded independently of €.

Let us now pass to the limit ¢ — 0 in (4.63). Due to the strong convergence of the temperature,
the fact that the second term in (4.63) is bounded in L4(D) for some ¢ > 1, and the weak lower
semicontinuity of the L9-norm, we obtain

11m1nf/ VE. log(v. \de>/ IV log(9) 2" dar + C(0).

Since |V 1log(¥)]?~? converges for § — 0 almost everywhere in D to |V log(#)|? and is bounded
by

|V log(9)[*~° = |V 1og(9) > X (v 10a@)>1} + |V 10g(D) > x (1% 1og(9)<1}
< |Vlog(9)]* + 1 € LY(D),

together with Lebesgue’s convergence theorem, we infer in the limit 6 — 0

hmmf/ |V E. log (V. |2d93>/ |V log ()| da.

Seeing that the above inequalities remain valid if the integrands are multiplied by arbitrary
Y € CY(D), ¢ > 0, and that the term 97 ~2|V1,|? can be handled similarly due to the fact
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4.4. Brinkman’s law in the Low Mach number limit

meg—2

that V|J.| 2" = %@EﬁT V4. is bounded in L*(D), we arrive at

e—0

lim inf / (0.)|V B, Tog(0.) dz > / k(9)|V Log(9)|? da.
D D

which eventually yields for any ¢ € C*(D) with 1 > 0

/ (S(ﬁ’ TRV “(’9)|V10g(?9)|2)¢dm

v
S lim inf/ (S(DQE’VEIE) : qu + ﬁ<1§e)|VE6 10g(ﬁ€)|2)¢d1‘
D

e—0 196

< liminf (6., ¥) < (0,9)).

To finish the proof of Theorem 4.3.3, we have to show

oe(0,9) = oe(o,9), 0s(0,V) = 0s(0,V), 0s(0,9)u=os(g,9)u, p(o,V)=p(o,V).

By the strong convergence of ¥, to ¢ in any L4(D) for 1 < g < 3my, it is sufficient to show the
strong convergence of o. to o, which is done in Appendix A. To summarize, we finally proved
that the weak limit [, u, 9] is a solution to problem (4.33)—(4.44) in the limit domain D. This
completes the proof of Theorem 4.3.3.

4.4 Brinkman’s law in the Low Mach number limit

This section is devoted to the homogenization of compressible Navier-Stokes equations in a
perforated domain with critical perforations. As mentioned in the introduction to this chapter
and in contrast to the previous sections, the radii of the holes will not scale like ¢* for some
a > 3 but rather like 3. For the scalar Laplace equation Awu, = f, this scaling was first
considered by Cioranescu and Murat in [CM82], where they obtained an additional term Mu
(which they called “strange term”) that occurs just in the limiting equation Au + Mu = f
and is reminiscent from the holes. An even more general framework of having randomly placed
holes with random radii was considered by Giunti, Hofer, and Veldzquez in [GHV 18] for “almost
minimal assumptions on the size of the holes”. In the language of Section 3.4, they assumed
E(r) < oo. This assumption, however, allows clusters of holes, meaning the obstacles may
overlap. Nonetheless, the additional coefficient M also occurs there, and is related to the
harmonic capacity of the holes. The assumption E(r) < oo is minimal in the sense that this
capacity is finite in average.

Back to the case of periodically arranged holes, Allaire showed in [All90], that for the Stokes
equations for an incompressible fluid, the limiting system has an extra friction term Mu, called
Brinkman term, that is not seen in the equations for the perforated domain. This “strange
term” is related to the drag force around each particle and represents a kind of “boundary layer
energy” of the holes (see [All90, Remark 2.1.5]). As a matter of fact, if the holes are spherical
with common radius r» > 0, the matrix M is equal to 67rl, which is Stokes’ famous drag law.
Generalizations to these results were given by several authors. For instance, Hillairet left in
[Hil18] the periodic setting and considered randomly placed obstacles, but he still required some
kind of hard sphere condition on the perforations. He considered the incompressible Stokes

105



Chapter 4. Homogenization results for perforated domains

equations, putting on each hole a different prescribed velocity instead of the no-slip condition.
These velocities will show up in the limit system as an additional forcing term working against
the frictional Brinkman term. As a continuation to [GHV18], Giunti and Hoéfer considered in
[GH19] the case of randomly placed holes with E(r'*#) < oo for some 8 > 0. This tighter
assumption gives some information on the geometry of the holes and rules out clusters that
are made of many holes of similar size. In turn, this enables one to enclose these clusters in a
tiny bit larger set that can be controlled better than the clusters itself, thus showing that the
randomness does not effect the limiting behavior of the equations.

The setting for compressible fluids, however, is rather different. In order to be able to pass
to the limit ¢ — 0 here, we need to control the density near each obstacle in a good way.
We will do this by imposing the so-called Low Mach number limit, which scales the pressure
by a negative power of e, hence forcing the density to become constant in the limit. The
homogenized system will therefore be the incompressible Navier-Stokes equations with the
additional Brinkman term, which will be the same as found by Allaire.

4.4.1 Setting and main result

As before, we consider a bounded domain D C R? with smooth boundary. This time, let ¢ > 0
and {z5}icz C R® be a collection of points in space with |25 — x5| > 2¢ for any i # j. For
simplicity, we will assume that the points z¢ lie on a regular mesh of size 2¢, that is, 25 € (2¢ Z)?
is the center of the i-th cell Pf := 25 + (—¢,¢)%. Further, let T C B;(0) be a compact and
simply connected set with smooth boundary and 0 € T', and set TF := x5 +3T. We now define
the perforated domain as

D.=D\ |75, K.:={i:P:cD} (4.64)

1€ K,

By the periodic distribution of the holes, the number of holes inside D, satisfies

D
K| <C % for some C' > 0 independent of .
£
This in particular yields
D\D = | U 77| < K| 17] < <"

1€ K,

In D., we consider the steady compressible Navier-Stokes equations

div(p-u:) =0 in D,,
div(o.u: ® u.) — divS(Vu.) + Vol = o.f +g in D., (4.65)
u. =0 on 0D..

Note that in contrast to the previous sections, the pressure term p? is now scaled by a factor
£=#, which represents the vanishing Mach number, and corresponds to Ma? = ¢? and setting
all other characteristic numbers in Section 2.3 equal to one. Further, we assume that v > 3,
f > 3(y+1), and f,g € L*(D) are given. Since the equations (4.65) are invariant under
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4.4. Brinkman’s law in the Low Mach number limit

adding a constant to the pressure term ¢ ? g7, we define

pe = (0! = (e)p.). (4.66)

where (-)p. denotes the mean value over D,, given by

<f>D : !

L= fdx.
| De| Jp.
Formally, let us assume that the Low Mach limit and the limit in the perforated domain
decouple, meaning the pressure reads ps. = 6 ?(0) — (02)p.) in a perforated domain D,. Just
focusing on the limit § — 0 in the second equation of (4.65) in a fized domain D., we obtain

Vp.=0=p.=C = p.=C

for some constant C' (which may depend on ¢). Thus, we expect the limit system to be
incompressible rather than compressible as the system we started with. Back to the perforated
domain, we now have an incompressible system in D, which by the results of Allaire in [A1190] is
expected to converge to a system of Brinkman type as ¢ — 0. We will indeed show convergence
of the velocity u. and the pressure p. to limiting functions u and p, respectively, such that the
couple [p, u] solves the incompressible steady Navier-Stokes-Brinkman equations

div(u) =0 in D,
div(gou® u) — pAu+ Vp+ pMu = gof +g in D,
u=20 on 0D,

where the resistance matrix M is introduced in the next section, and the constant oq is the
strong limit of g. in L?7(D), which is determined by the mass constraint on g. as formulated
in Definition 4.4.1 below.

Before stating our main result, we recall the concept of finite energy weak solutions as done
in Definition 4.1.1.

Definition 4.4.1. Let D, be as in (4.64) and v > 3, m > 0 be fized. We say a couple [0, u] is
a finite energy weak solution to system (4.65) if

o€ LY(D.), ueWy?*D,),

0>0 a.e in D, / odr =m,

/ ou-Viydr =0,

€

/ e Pl divp+ (pu®u) : Vo —S(Vu) : Vo + (of +g)-odz =0

€

or all test functions ¢ € C®(D,) and all test functions ¢ € C®(D.:R?), and the energy
c ' c
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inequality
/ S(Vu) : Vudz < / (of +g)-ude (4.67)

holds.

Remark 4.4.2. Ezxistence of finite energy weak solutions to system (4.65) is known for all
values v > 3/2, see Theorem 4.1.3. However, we need the assumption v > 3 to bound the
convective term div(p-u. ® u.) in a proper way, see Section 4.4.3.

Let us as before denote the zero extension of a function f with D, as its domain of definition
by f, that is,

f=finD. f=0in R*\D..
Our main result for the stationary Navier-Stokes equations now reads as follows.

Theorem 4.4.3. Let D C R? be a bounded domain with smooth boundary, 0 < e < 1, D, be
as in (4.64), v >3, m >0 and f,g € L>(D). Let {[o-,u.]}es0 be a sequence of finite energy
weak solutions to problem (4.65) and assume

B>3(y+1). (4.68)
Then, with p. defined in (4.66), we can extract subsequences (not relabeled) such that

0. — 0o strongly in L*(D),
p- —p weakly in L*(D),
. —u  weakly in Wy?(D),

where go = m/|D| is constant and [p,u] € L*(D) x Wy*(D) with [, p =0 is a weak solution
to the steady incompressible Navier-Stokes-Brinkman equations

div(u) =0 in D,
div(gou @ u) + Vp — pAu + uMu = gof +g in D, (4.69)
u=>0 on 0D,

where M is defined in (4.75) below.

Remark 4.4.4. It is well known that the solution to system (4.69) is unique if £ and g are
“sufficiently small”, see, e.g., [Tem77, Chapter II, Theorem 1.3]. This smallness assumption
can be dropped in the case of Stokes equations, i.e., without the convective term div(gou ® u).

4.4.2 The cell problem and oscillating test functions

In this section, we introduce oscillating test functions and define the resistance matrix M,
following the original work of Allaire [All90]. Here, we repeat the definition of these functions
as well as the estimates given in [HKS21].
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4.4. Brinkman’s law in the Low Mach number limit

Consider for a single particle T' the solution [gx, W] to the cell problem

div(wy) =0 in R*\T,
Vg, —Aw, =0 in R*\T,
o ¢ \ (4.70)
wi =0 on 0T,
W, = €y at infinity,

where e}, is the k-th unit basis vector of the canonical basis of R®. Note that the solution exists
and is unique, see, e.g., [Galll, Chapter V]. Let us further recall the definition of oscillating
test functions as made in [All90] (see also [HKS21]):

We set
wp=ep ¢=0inP ND

for each Pf with Pf N 9D # (). Now, we denote B} := B,.(x%) and split each cell Pf entirely

included in D into the following four parts:

P =T;uC;UD; UK,

where Cf is the open ball centered at z5 with radius £/2 and perforated by the hole TF,

)

Ds = B{\ B; / is the ball with radius € perforated by the ball with radius e /2, and K = PF\ B;
are the remaining corners, see Figure 4.1.

Figure 4.1: Splitting of the cell P?
In these parts, we define
{ Wi = e
q, =0

{wz@ = wi(%)

ai(z) = Laqu (2

s (3
in K;,

where we impose matching Dirichlet boundary conditions, and [gx, W] is the solution to the
cell problem (4.70). As shown in [HKS21, Lemma 3.5], we have for the functions [¢f, wf] the
following estimates:
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Lemma 4.4.5. Let p > % Then

2_
19wl ooy + Nl oy < C2GY), (471)
1_
IVaillruics) < o) (4.72)
IVWll 2 (o pevgemy + 16N 2 (o ey = €& (4.73)

where the constant C' > 0 does not depend on ¢.

Proof. By the rescaling 2/ = (x — z£)/¢? in each Cf, we first find

_3 _349
IVWill ooy + il rics) < Cere o (VW oges vy + gkl o @e )
3 _g49
HVQZHLP(UCE) <Ce re 6+pHqu||LP(R3\T)a
where the factor e » occurs due to the fact that the number of holes in D is of order =, By

the standard regularity theory for Stokes equations (see [Galll, Chapter V]), we have for any
leN

(wi(z) —ex| < 2] | V' wi(2)] + [ Vige (@) in R*\T, (4.74)

S |z|2 |l+2
in particular Vwy, € LP(R*\T) and ¢, € W'"?(R*\T) for any p > 2, so (4.72) holds. Thus,

since € < &° 3(3-1) for any p > 2, we infer (4.71) if we prove (4.73).

To show (4.73), we split BS \ B/* = Ds U (BY?\ B*) and estimate with the change of
variables ' = (z — 25) /e

IVwillron + Nakllrmn < = VYL (5,0,07) + 198 lis (5,005, @)

where [pf, vi] is the solution to the homogeneous Stokes problem

/

Vp, —Avi, =0 in B1(0) \ B%(O),
divvi =0 in B,(0) \ B1(0),
vi=0 on 0B4(0),
vi=wi(55) —ex on GB%(O).

£
IVl , »(B1( 9 3) ’“” (aB )

_ o
< C||V90||Lp(31(o)\3%(0))

(0)) that satisfies the same boundary conditions as vi. We thus
— e;), where ) € C2°(B1(0)) with =1 on 9B1(0). By (4.74), we

-
2e3

for any ¢ € WH?(By(0) \ B

may choose ¢ =1 (Wi (<5
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have || V|| s, 0y < Ce?, leading to
VWil e pey + |Gkl ruips) < Ce.
For B; /2 \ B; / 4, the same scaling and cut-off arguments as made above yield

[wi

WkHLp (UiB;/z\W) + HquLP(UiB.Eﬂ\W) < CS,

thus proving (4.73). O

The choice of B \ B; /* instead of D5 in the estimate (4.73) will become important when

passing to the limit € — 0, see Section 4.4.4. Moreover, we have the following theorem due to
Allaire.

Theorem 4.4.6 ([All90, page 214, Proposition 1.1.2 and Lemma 2.3.6]).
The functions [q;, w3 fulfill:

(H1) ¢; € L*(D), w{ € W'?(D);
(H2) divws; =0 in D and wi, = 0 on the holes T;;
(H3) w5 — ey, weakly in WY2(D), ¢ — 0 weakly in L*(D)/R;

(H4) For any v.,v € WY(D) with v. = 0 on the holes Tf and v. — v weakly in W'(D), and
any ¢ € D(D), we have

<VQIi - Awi, SOV6>W71,2(D)7W01’2(D) — <Meka 901/>W*1’2(D),W01‘2(D)’
where the resistance matriz M € W=1°°(D) is defined by its entries My, via

(Mii, ©)pr(pyppy = lim | oVw; : Vwi dx (4.75)

=0 [
for any test function ¢ € D(D).
Further, for any p > 1,
|wi — ex||zr(py = 0.

Remark 4.4.7. This definition of M yields that the matrixz is symmetric and positive definite
in the sense that for all test functions @; € D(D) and ® = (p;)1<i<3,

3
> eiVws
=1

thus implying that there exists at least one solution to system (4.69).

2

<M(I), (I)>D’(D),D(D) = hm/ dz Z 0,
e=0 Jp
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Chapter 4. Homogenization results for perforated domains

4.4.3 Bogovskil’s operator and uniform bounds

From Theorem 3.3.1, we obtain the following result for the inverse of the divergence operator.

Theorem 4.4.8. Let 1 < ¢ < oo and D, be defined as in (4.64). There exists a bounded linear
operator

B.: LYD.) — W,Y(D,)

such that for any f € L3(D.),

divB.(f) = f in D., HBE(f)HWOl*q(DS) <C (1 +53(3—1)) | fllza(p.ys

where the constant C' > 0 does not depend on €.

We will use this result to bound the pressure p. by the density p.. Since the main ideas
how to get uniform bounds on u., g., and p. are given in [HKS21], we just sketch the proof in
our case. First, by (4.9) and (4.67), we find

lIVUclzz o, < llesll s o, Iuellomo Il L) + I8l () lue oo,
Together with Sobolev embedding (B.8), we obtain
luclzop.) < CIVuc|L2(p.),
which yields
lacllzooo) + 1V uellzp,y < C (el g ) +1)- (4.76)

To get uniform bounds on the velocity, we first have to estimate the density. To this end,
let B. be as in Theorem 4.4.8. Testing the second equation in (4.65) with B.(p.) € Wy*(D.)
yields

1ol = /D p. div B.(p.) dz

= / S(Vu.) : VB.(p:) — (0u: @ u.) : VB.(p:) — (0.f + g) - Bo(p:) dz.

€

Recalling 0. € L?7(D,.) and ~ > 3, this leads to

1p:lZ20.) < C(IVucllzzo. + leellzs o luellie o)) IV B (0e) | 2.
+ C (Il zoe 0oy 102l 223 (0.) + 18]I o (D)) 1B (pe) | 22102

(4.76)
< Cllecl g, + 1+ leclzsonleclg )+ DIVBp) o,

+ C ([l ell 0y + DIIB:(pe)l| 2202

)

< Cllecllzrw + lo:llswallecllys o, + DIB(pPe)llwpz o,

< C (||Qa||L2“/(Ds) + ||Qa||3i27(D€) + 1)||Ba(p£)||w(}»2(1)g)
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4.4. Brinkman’s law in the Low Mach number limit

C (lgell ooy + N0ellzov (. + Dllpellzz(o.),

that is,
111220y < C 10zl 220y + e 7z (p,) + 1)- (4.77)
Further, we have
1 m
0:)p. = o~ [ cedx =
=15 ), = o]

and, using Lemma B.14,
L. - . (4.66)
sglloc = (e)p.llezp) < 5 ||9€ (@)p.lz200) = Cllpell 2o,
This yields
1 Y Y 3
glloc = (ea)p.llizpy < Clipellzzon) < C(lleell ooy + 10z llzar () + 1)
1 m 3 m3
¢ (12 = (@b + sy *+ 122 = @b Mo + i + 1)

Together with (4.27), we obtain, using v > 3 and the fact that we may assume ¢ < 1 small
enough,

1
oz = {e)p Iz, < 4 ﬂl\ga (0)p. e +C+—H95 {0)D. 2.y +

= @ng — () p 2oy + C.
Using that |o. — (0:)p.|” < |02 — (0:) .|, which is a consequence of the triangle inequality for
the metric d(a, b) = |a — b|% for v > 1, we conclude
1 ol
glles = {ee)p 1o, = ||Qe {02)p 20y < C,

which further gives rise to

10zl 22 D2y < llee = (o). Ml z2v(pe) + € {ee)p. < C.
In view of (4.76) and (4.77), we finally establish
HuEHWOI’2(DE) <C,

||Q€||L2’Y(Dg) <C,

(4.78)
Pl z2(p.) < C,

8
|0c = (o) p. |27 (Do) < Cen

for some constant C' > 0 independent of ¢.

113



Chapter 4. Homogenization results for perforated domains

4.4.4 Convergence proof

The proof of convergence we give here is essentially the same as in [HKS21]. We thus just
sketch the steps done there while highlighting the differences.

Proof of Theorem 4.4.3. Step 1: Recall that, for a function f defined on D,, we denote by f
its zero prolongation to R®. By the uniform estimates (4.78), we can extract subsequences (not
relabeled) such that

. — u weakly in W, (D),
P — p weakly in L*(D),
0. — 0o strongly in L*7(D),

where go = m/|D| > 0 is constant. The strong convergence of the density is obtained by

|0 — QOHL%(D) < HQO”L%(D\DE) + [loe — (0:) p. L2/(D.) T l{0:)p. — QOHL%(DS)

1 B 1 1 1
sQO|D\Da|w+Oev+m|Dg|2v( ——) S0,
D] D

since |D.| — |D|. Due to the Rellich-Kondrachev theorem stated in Proposition B.5, we further
have

u. — u strongly in LY(D) for all 1 < ¢ < 6.

Step 2: We begin by proving that the limiting velocity u is solenoidal. To this end, let
¢ € D(R?). By the second equation of (4.65), we have

0:/ égﬁa-V¢dx—>Qo/u-dew.
R3 D

This together with the compactness of the trace operator yields

(4.79)

divu=0 in D,
u=20 on 0D.

Step 3: To prove convergence of the momentum equation, let ¢ € D(D) and use pw; as
test function in the first equation of (4.1). This yields

/D S(Vii.) : V(ews) de = /D (6.1 @ ) : V(W) do + /D b div(ews) da
+ [ (@t+e) (owd)de

Using the definition of S in (4.2) and the fact that div(w§) = 0 by (H2) of Theorem 4.4.6, we
rewrite the left-hand side as

/D S(ViL.) : V(ow?) dz = s /D Vii, : V(ow?) dz + <§ +n) /D div(ii.) div(pws) da
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4.4. Brinkman’s law in the Low Mach number limit
= u/ Vwi : V(pu,) + V. : (w, ® V) — Vw; : (0. ® V) dz
D
u TN
+ (— + 7]) / div(t.)wy, - Ve dz
3 D
and add the term — [, ¢; div(¢u.) dz to both sides to obtain

,u/Vwi : V(pue) — q; div(pu,) dz
D

J/

-~

I

+ ,u/Vﬁg (W ® V) — Vwy @ (. @ Vo) do + (g + 77) /div(ﬁg)wi -Vepdz
D D

12 13

D D D

-~ -~ -~

Iy I5 Is

Since v, := . and v = u fulfill hypothesis (H4) of Theorem 4.4.6, we have
-[1 — M <Meka ngl>7

where (-,-) denotes the dual product between W~12(D) and W, (D). Further, by @i, — u
strongly in L?(D) and Vw{ — 0 by hypothesis (H3),

I —>u/ Vu: (e ® Vi) dz.
D
Because of wi — e, strongly in L*(D) and (4.79), we deduce

I3 — 0, 15—>/pek-VsD+(@of+g)-(soek)dfﬂ~
D

Step 4: To show convergence of I, we proceed as follows. First, since u. = 0 on 0D,
and 01, — u weakly in W1?(D), we have Vu, = Vi, — Vu weakly in L?*(D). Second, as
shown above for v > 3, 9. — g strongly in L?*7(D) and u. — u strongly in L9(D) for any
1 < ¢ < 6, in particular in L*(D). Together with the strong convergence of w$ in any L?(D)
(see Theorem 4.4.6), in particular in L'?(D), we get

0.0, @ W5, — oou ® ey, strongly in L*(D).

This, together with div(g.u.) = 0, yields

I, = / (0:u: ®u.) : V(pwy)dr = —/ 0:-u. - Vu, - pwy do = —/ eVu, @ (o-u. @ wi)dx

£ £

= —/ eV, : (0.0, @ wy)dz — —/ eVu: (pou ® eg) da = / (oou®u) : V(pey)dz.
D D D
In the case v > 3, one can also proceed by seeing that
0.0, ® 0, — gou ® u strongly in L*(D),
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Chapter 4. Homogenization results for perforated domains

where we used that 0. — u strongly in L9(D) for ¢ = 4v/(y — 1) < 6.

Step 5: It remains to show convergence of Is. Denote again B = B,(z5). We follow the
idea of [HKS21] and introduce a further splitting of the integral:

(2

the function ¢! (z) := ¥((x — z5)/e), and extend ¢! by zero to the whole of D. Set finally
Ye(x) := > i(z), where P is the cell of size 2 with center 25 € (2¢Z)?. Then we have
i:FfCD

. € C2(, BY?) and

Let ¢ € C°(B1/2(0)) be a cut-off function with ¢ = 1 on By/4(0), define for x € B?

Yo =1lin | JB/, |V <O (4.80)

With this at hand, we write

<@9Da-k:=<&>ai/ qmadhwwm»dx+«ggD{/“qal-wawdh«uadx

+ <IQ€>D5 / QE(l - ¢e)u€ : VQO dw
= '+ 1+

€/2
%

, the term I' covers the behavior of ¢ “near” the holes,

Observe that since supp . C U; B
whereas I? and I® cover the behavior “far away”. Since ¢f and 1. are (2¢)-periodic functions
and ¢;1). € L*(D), we have ¢i¢p. — 0 weakly in L*(D)/R. This together with . — u strongly

in L*(D) yields
1I°| — 0.

For I?, we use the definition of ¢ and (4.73) to find

, o (4.78) .
|usol)mwmmmm:scmm

\UiB~5/4

= C gl

12 (D)

12 (0.5 57) <Ce—0.

To prove I' — 0, we write, using div(g.u.) = 0,

Il = V(QZ%SD) : (qus) do — V(ine@ : <<Q€>D5u€) dx + <Q€>D5 / qzwsue : VSO dx

D, D, e

=/ V(givep) (0= = (02)p.) - v dz + o(1).

Here, we used again the periodicity of ¢f and 1. to conclude ¢5i). — 0 weakly in L?(D)/R.
This and the strong convergence of 0. to u in L?(D) show that the last term vanishes in the
limit ¢ — 0. For the remaining integral, we find, recalling supp . C UZB;-E/2 and Cf = Bf/z\Tf,

11 < IV (gie=p) oryllo= = {ee) bl zzvon e[ 2. + 0(1)

| 2r
L1 (Ui
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4.4. Brinkman’s law in the Low Mach number limit

é £
< Ce||V(g-9)|| 2o + o(1).

HL’Y_I (U;C%)

Since |Vi).| < Ce!, we have

& & 1 £
IV(gpv=p)| < C (Iqul + E|Qk|>7
thus

1 8 €
< V
| <Cer (H C]k”m?%(

1 UZCZE)

1
R )

L7=T(U;C%)

Together with (4.71), (4.72) for p = 2v/(y — 1) > 3/2, and the assumption 5 > 3 (y+ 1) from
(4.68), we establish

I < o (5_3_i + 8_1_3) +o(1) < Ce5 4 o(1) — 0.
To summarize, we have in the limit ¢ — 0 for all functions ¢ € D(D)
p(Mey, pu) — 11 (Au, pey,) = —(div(gou ® u), ey) + (oof + g — Vp, pey).
Since M is symmetric, this is
Vp+ oou - Vu — pAu + pMu = gof + g in D'(D),

which is the second equation of (4.69). This finishes the proof. O
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Chapter 5

Outlook and open problems

In this chapter, we give some remarks on how the results obtained in this thesis could be
extended, as well as state still open problems in the field of homogenization of Navier-Stokes
equations.

Let us start to give some remarks on the construction of the Bogovskii operator as done in
Chapter 3. From Theorem 3.3.1, we see that for the case of well-separated obstacles the con-
struction of a uniformly bounded Bogovskii operator B, : L3(D,) — W,*(D.) is possible even
for the critical case @ = 3. However, our construction of B, in Theorem 3.4.1 for a randomly
perforated domain requires o > 3 for the L2-setting. A natural question is how to avoid this
stricter assumption on the size of the holes. In view of the applications of the operator B, for
stationary Navier-Stokes equations in Section 4.1, we see that the need to bound the gradient
of B. in L? is unavoidable to get proper estimates on the density and the velocity. However, we
have some freedom on the space where the operator is defined on. Thus, one possible way is to
extend B. as an operator acting on L{ for some ¢ > 2 rather than L2, but still maps into I/VO1 2,
This might change the dependence of the Bogovskii constant on ¢ into the correct direction,
thus one may reach the borderline case &« = 3. On the other hand, according to the functions
0 = B.(02 — (0°)p.) used as test functions in the momentum equation, this procedure might
give a worse restriction on the allowed exponent © and, in turn, on the adiabatic exponent ~.

Another necessary condition in Theorem 3.4.1 is a > 2. As we have seen in Theorem 3.4.2,
it is needed in order to show that the balls B.a,,(€2;) do not overlap, so we can take some space
around each single hole and, loosely speaking, cut off constants without paying too much, as
shown in the proof of Theorem 3.4.1. One is willing to believe that this condition is not optimal,
in particular, one could be “smarter” to allow also clusters of not too many overlapping holes.
One particular problem arising is the possibility that holes might not even overlap but rather
touch, producing an external cusp in the perforated box I; as introduced in Theorem 3.4.2.
For domains exhibiting such cusps, it is known that an inverse to the divergence does not
exist in general, see, for instance, [ADLG13]. To overcome this issue, one needs a much better
understanding of the geometry of holes. A better geometrical understanding would probably
also yield the optimal dependence on the Bogovskii constant on ¢ as mentioned in Remark 3.4.8.

Back to homogenization of compressible Navier-Stokes equations, there are still many open
questions. One is how the limiting system would look like, if we assumed the holes to be
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large, that is, a < 3. For periodic obstacles and without assuming that the Mach number
vanishes, there are results only for the case a = 1, see, e.g., [Mas02], and also [FNT10] for
heat-conducting fluids. As mentioned in Section 4.4, the supercritical case a € (1,3) for the
low Mach number limit was considered in [HKS21], even if the exponent of the additional
e-dependent scaling of the pressure is rather large (see also (4.68)). One might therefore ask
whether this can be improved. Furthermore, to the best of the author’s knowledge, there is no
literature for the homogenization of Navier-Stokes-Fourier equations in the supercritical regime
a € (1,3), even assuming vanishing Mach number. Another aspect apart of the size of the
obstacles is the question whether one can improve the range of the adiabatic exponent ~ in
the pressure law p(9) = ao” from the known case v > 2 to the direction of physical relevance
v € (1, g] The most interesting open question, however, is that of the possible homogenization
for the borderline case a = 3, even for the seemingly simpler setting of periodically arranged
holes, without the assumption of a vanishing Mach number, and even for large enough adiabatic
exponents .
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Appendix A

Strong convergence of the density

In order to complete the proofs of Theorems 4.1.4, 4.2.1, 4.2.3, and 4.3.3, we need to show
the strong convergence of g. — ¢ at least in L'(D). The proof of this fact is nowadays well
understood, see, e.g., [FL15, LP21]. For simplicity and legibility, we will focus on the case of
constant temperature and v > 3, and assume that the equations are stationary. The proof in
the case of variable temperature follows the same lines with slight changes of the exponents of
0-. For the time-dependent setting, one has to apply an Aubin-Lions type argument. We will
comment these issues in Remark A.2 below. To simplify notation, we will identify a function
f, defined on D., with its zero prolongation f to the whole of R,

First, we start with the compactness of the so-called effective viscous flux:

Lemma A.1. Under the assumptions of Theorem 4.1.4, there holds for any v € C(D)

lig%/D@b(p(gg) - (%M + 17) div ug) o.dr = /D@b(@— (%ﬂ + n) div u)gdx. (A.1)

Proof. (See [FN09, Section 3.6.5].) The main idea is to use test functions

WVA  (xpo:), YVA T (xpo),

where ¢ € D(D). By the Sobolev embedding theorem (see (B.8)), we conclude from Lem-
ma B.11

_ . 3r .
VA 1(f)||L’“*(R3) S COfllpr@ey, = 3, if1<r<3,

VAT (Dl @) < Cllfllr@sy  for any r* < oo if 7 > 3.

By the uniform estimates on p. and g as well as the fact v > 3, we get for any 1 < r < oo

[V A (xpo) -y + W VA™ (xpo) [ Lrp) < C,
IV (VA (xpo)) 2y + [IVWVAT (xp0)) |l 2vpy < C.

Hence, by (4.13), we get with ¢ := min (o, 32((0‘2;250) >0

[(Fe, ¥ VAT (xpe.))|
< Ce*([vVA™ (xpo:)lerpy) + [VW@VAT (xpoe)ll L2+e0 () < Ce® = 0.
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Now we choose VA (xpo.) as test function in (4.12). We obtain

/ ploe) div (¥VA™ (xpo.)) + (0-u: ® u.) : V(¥VA (xpo.)) dz

/ —S(Vu.) : V(¢VA  (xpo:)) + (o-f + g) - VA (xpo-) dz
= anVA (XDQe»

Using product rule for differentiation and the definition of the Riesz operators R = (R;)1<i j<3
in Definition B.10, we obtain for the first integral

/Dp(ga) div (¥ VA (xpe:)) + (ecu- @ ) : V(PVA  (xpo.)) do
= /Dp(gs) (V- VAT (xpoe) + o) dx

+ /D(qua ®u.): (Vi @ VA  (xpo:) + ¥(V ® V)A™ (xpe.)) dz
~ [ pl) (V098 (xp) + Vo) do

+ /D(qus & us) . V?/J & VAil(XDQE) + ¢<qus & uz—:) : R[XDQE] dz.

For the second integral, we similarly have

/ S(Vu.) : V(¥VA™ (xpo.)) dz
_ / S(Vu.) : (V@ VA~ (xpo.) +9(V & V)A (xpe.)) dz
D
= / S(Vu,) : (Vw ® VA_l(XDQE)) + Y¥S(Vu,) : Rlxpo.] dz.
D
By the standard theory for elliptic problems, the operator VA~ maps L?Y(D) to WH*'(D). By
Morrey’s inequality (B.9) and 2y > 3, we have W'?(D) C C(D), thus VA~ (xpo.) converges
strongly to VA™!(xppe) in L>=(D). Similarly, choosing VA~ (xpo) as test function in (4.16),
we get the same integral relations with g, and u, replaced by p and u, respectively. Subtracting

both outcomes, performing the limit ¢ — 0, and using the strong convergences of u. — u and
VA~ (xpo:) = VA~ (xpo), we obtain

hm/ Qe 0: + Qeua X 115) : R[XDQE] - S(vua‘) : R[XDQED dx

~ [ 6(pl@ie+ (a9 w: Rlxpe] ~8(Va) s Rixodl) do.

Further, using xpVA™(¢o.u.) as test function in the weak formulation of the continuity
equation (4.1);, and using xpVA ™ (¢ou) as test function in (4.16);, we obtain

/ XDO:U. - R[Yo.uc]dr =0, / xpou - R[ou]dz = 0,
D D
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SO

lim w(p(@s)@e - S(Vu.) : R(XDQE)) dz — /Dw(@@ —S(Vu) : R(XM)) da

e—0 D

= /D(Qu ® u) : R[XDQ] — Xpou- RWJQU] dx

— lim (qug ® 115) : R[XDQE] — XDOeU¢ - R[wQEUE] dz.

e—0 D

By Lemma B.13, the right-hand side vanishes, yielding

ing [ (plec)o. —S(Vae) s Rivoed) do = [ o(p(ale ~S(Va): Rivodl) de. (A2)

e—0 D

It remains to show that we might replace the terms S(Vu.) : R[xpo:] and S(Vu) : R[xpe| by
(%” + 77) divu, and (%“ + 77) div u, respectively. By (B.11), we write

/ Yp(Vue + Viue) : R[xpo:] dv = / 0-R : [ (Ve + Viue)| d,
D D

/ wu(Vu + VTu) : R[xpo]dx = / oR : [uw(Vu + VTu)} dx.
D D
Observing that

R:[Vu+ Vi) =) 00,47 (04 + ')
0]
= 0,0}AT'0 + 0,0!Aa’ = 2div,

1]
we Tewrite
R: [p(Vu+ V)] = 2ue divu + K(u)
with the commutator
K(u)=R: [p(Vu+ V)] — R : [Vu+ V'u],

and similar for ¢ and u replaced by p. and u., respectively. It now remains to show that
K(u.)p. — K(u)p weakly in L'(D) to finish the proof. Since K is linear in u and Vu, — Vu
weakly in L?(D), we have K(u.) — K(u) weakly in L?(D). By the continuity equation, we
obtain div(p.u.) = 0, in particular, it is bounded in W~1?(D) for some p > 1. Furthermore,
since R = V@ VA~ we see that curl R = 0. Using the uniform bounds on u., we thus obtain
a uniform bound on curl K (u.) in W~'?(D). Defining the vector fields

U.=p.u. and V.= K(u,),

we have a uniform bound on {U.}.-¢ in L%(D), and also on {V_.}.so in L*(D). Together
with 76—?3%—% = %—i—% < 1 for any v > 3/2, an application of Lemma B.12 yields the desired. [

Remark A.2. Let us remark that the proof of equation (A.1) applies also in the case of temper-
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ature dependent viscosity coefficients p = u(9) and n = n(9) as well as to the time-dependent
case [p,u] = [p,u|(t,x). For the Navier-Stokes-Fourier equations, the proof is verbatim to the
one given above, only replacing the estimate on V(YVA™(xpo.)) and V(YVA™(xpo)) by

IV VA (xpoe)) |l r+emy + [VWVAT (xpo)) e my < C,
which holds since v+ © > 3. By © > 1, we may choose & > 0 in Lemma 4.3.10 such that

©

yielding
[(FL, VA (xpo.))| < Ce” — 0.

The same argument holds for the case of constant temperature and v > 2 as © = 2y — 3 there.
The main difference for the evolutionary case is that we have to replace integrals in space by
integrals over space and time, and use the bounds on o. and u. in their particular space-time
spaces LP(0,T; LY(D)). Precisely for the density, we get

|y VA (xpoe) ||z o.1:07p)) + [0 VAT (X Do) | 10,707 (D)) < C,
IV (VA" (X Do)l o052 () + IV (VA (xp0)) | 2 0.1:07(p)) < C

for any ¢ € C=(0,T), ¢ € CX(D), and any r € (1,00) since v > 6. From the continuity
equation, we get

8t(VA_1QE) = _VA~! div(geu.) = —div VA_I(Qaug) = —p.u,,
thus

—1
[0:(VA (XD&))HLz(o,T;Le%(D)) < Clleellzeeo,zsev oy el 2o w2 (py) < C-

The Aubin-Lions-Simon theorem [Sim86, Section 8, Corollary 4] thus states that for any r €
(1,00), the sequence {VA~ (xpoe)}eso is relatively compact in L>(0,T; L"(D)). Thus, up to
a choice of a subsequence, we obtain

VA Y (xpo.) = VA (xpo) strongly in C(0,T; L. .. (D)),

weak

so again |(F., opNV A Y (xpo:))| = 0 as e = 0. Finally, we may replace S(Vu.) : R[xpo:] by
(%“ — 77) divu. in (A.2) by applying Lemma B.12 to the four-component vector fields

U, = (QaaQaua)a V. = (K(ua),0,0,0).
The last ingredient we need to show the strong convergence of the density is a monotonicity

lemma, which can be found in [FN09, Theorem 10.19].

Lemma A.3. Let P,G € C(R) be non-decreasing functions and let {on}nen C LY(D) be a
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sequence such that

P(Qﬂ) - m,

G(on) — G(o), weakly in L' (D).
P(0,)G(0n) = P(0)G(0)

Then we have

P(0) G(0) < P(0)G(p) a.e. in D.

If additionally G(z) = z and (with the notation o = G(p))

P(o)o = P(0)o,

then

Lemma A.4. It holds ¢! = 07p a.e. in D and thus o. — o strongly in L*(D) and L"(D),
1<r<2y.

Remark A.5. We note that the range 1 < r < 2v should be replaced by 1 < r < 3(y — 1)
if v > 2, and by 1 < r < v+ O in the case of Navier-Stokes-Fourier equations. For the
evolutionary setting, it is enough to observe that o7+t = ¢7p a.e. in (0,T) x D is sufficient to

conclude p(g) = p(o).

Proof of Lemma A.4. We will follow the proof of [LP21, Lemma 4.6], which applies similarly
in the case when v > 2, the viscosity coefficients © and n are temperature dependent, and
in time-dependent setting. First, we take the function b(s) = slog(s) in the renormalized
continuity equation (4.4), integrate over D and send € — 0 to obtain

/ngivud:c =0. (A.3)

Now, we use the same function b in the renormalized equations for the limit [0, u] to get

/ngivudm =0. (A4)

Let us further write (A.1) in the form

/D@/J(W—(%L-i—n)gdivu) dx:/D¢<EQ— <4§+n)gdivu) dz,

which yields due to the fact %’i +n > 0 that

o+t o7
45 —odivu = 45 € —odivu (A.5)
3 TN 3 T
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a.e. in D. Integrating over D, we deduce with (A.3) and (A.4)

o+l o
/ 45 dx:/ 45 0 dz.
D3+ D5 +1n

Together with Lemma A.3, we see that

00 < ptlae. in D,
which finally leads to 070 = ¢7*! and thus, applying again Lemma A.3,
07 =" a.e. in D.

Hence, we get (up to the choice of a subsequence) g. — o strongly in L7(D), hence also a.e. in
D and in L"(D) for all 1 <r < 2. O

Remark A.6. We remark that for time-dependent equations, the renormalized continuity equa-
tion yields

Oi(olog o) + div (plog o)u + odivu = 0.

Thus, we may obtain for any 7 € [0,T]
/ (olog o — olog o)(r,-)dx +/ / odivu — pdivudzdt = 0. (A.6)
D 0o Jp
Integrating (A.5) over (0,T) x D and using (A.6), we get
-1 r
S 4 — =
(elogo —ologo)(r,-)dz + | — +n (071 —¢70) dw dt = 0.
D 3 o Jp

By convezity of s — slog(s) and s — s7, we obtain with Lemma A.3 that olog o > plog o and
07t > 070. Hence, by the same token,

ologo=ologo, o+ =y,

which finally yields the desired convergence 0. — o0 a.e. in D.
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Appendix B

Some analytic results

Lemma B.1 (Derivative of the determinant). Let A(t) = (a;;(t))},_, € CY([0, TT; R™%) be an
invertible matriz. Then det(A(t)) is differentiable with

S det(A(1)) = det(A(®) tr(A() A~ (1),

where tr(A) is the trace of the matriz A, and A = 44

Proof. Let A;; be the matrix that arises from A by removing the i-th row and j-th column.
Then we have by expansion along the i-th row

det(A) = i(— 1)“”%‘ det(A;)

j=1
and so for any [ € {1,...,d}

Odet(A)

1)+ )
aail —( 1) det(All).

Differentiation with respect to ¢ yields
d

ddet(A) day
_d t ¥ = 1 Z+ld t A i
Z aazl dt le:l( ) € ( )Cll

Since

a1

= Tt A>AdJ(A), where  Adj(A) == ((—1)" det(A;))%

ij=1>

we conclude

< det(4) = ;(Adj(A)A)” — det(A) tr(A1A).
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Definition B.2. A motion of a domain D C R is a map
S:[0,T] x D —R?
having the following properties:
1. S(t,-) is a C*-diffeomorphism from D to D; = S(t, D).
2. The gradient V,S(t,y) satisfies det(V,S(t,y)) > 0.

3. 5(0,) =1

Theorem B.3 (Reynolds’ transport theorem). Let D C R? be a domain, S : [0,T] x D — R?
be a motion, D; .= S(t, D), and f € C* ({(t,x) : t € [0,T] and x € D;};R). Then for any test
volume V (t) C Dy it holds

d .
&/V(t) f(t,z) dz = /V(t)[ﬁtf + div(fu)](t,z) dzx

with u(t,z) = 8,S(t,y), y = S~ (¢, x). If further £ € C* ({(t,x) : t € [0,T] and x € D;}; R?),
then

d

ST b4, 0) de = / 0,f + div(f ® ) (¢, z) da.
dt Jyu V(t)

Proof. With x = S(t,y), we first obtain
— [ e do= [ £ |den(V, St 0)] dy,
V(t) Vo
where Vj = V(0) C D and y € V;. Since det(V,S(t,y)) > 0, we get
F= [ 17509 det(V,5(, )] dy
Vo
= [ (O S() + Vs (1500 - 0S(1.) det(9,(1.0)
d
+f(t5(ty)) 5 det(V,,S(ty)) dy.

Together with Lemma B.1, x = S(t,y), and (V,S(t,y))"' = (V.S (¢, z) we have

%det(vyS(t y)) = det(V,S(t,y)) - tr((V,S(t y) )7'oV,S(t,y))
— det(V,S(t,y)) - tr((V (t,:c) 8, V,5(t,y))
— det(V,S(t,y)) - tr(V, t,S7'(t,x))])
= det(V,S(t,y)) - tr(V, u(t x))
= det(V,S(t,y)) - div,(u)(t, S(t, y)),

thus
F_ /V [Ouf + 1= Vof + fdiva(w)](t, S(t,y)) det(V,S(t,y)) dy
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= /V(t) [0:f + div(fu)](t, z) dz.

The second statement follows the same lines, yielding similarly

d

i [, f e = /V (0, 5(4,9)) | 4et(9, St ) | dy

_ / [0 + V£ - u + £ dive (w)] (£, S(t, ) det(V,S(t,y)) dy
Vo

- / O£ + div(f @ w)](t, ) da.
V(t)

Lemma B.4. The following inequalities hold:

1. (Young’s inequality for products.) Let 1 < p,q < oo with ]lj —i—% = 1. Then, for any

a,b>0,

a? b
ab < — + —.
p q

2. (Hélder’s inequality.) Let (D,2, 1) be a measure space, 1 < p,q,r < 0o with % + é =

and let f € LP(D) and g € LY(D). Then fg € L"(D) with
1f9llroy < [ f1ler o)l 9llLacp)-

3. (Young’s inequality for convolutions.) Let 1 < p,q,r < oo with

11 1
Sp-=1+-,
P oq r

and let f € LP(RY), g € LY(RY). Then, f*g € L'(R?) and

||f*g||LT(]Rd) < ”fHLP(Rd) ||g||Lq(Rd)'

4. (Interpolation in Li-spaces.) Let D C R be a domain, 1 < p < q < 0o, § € (0,1), and

p <r <q be defined as

If we LP(D) N LYD), then w € L"(D), and
el oy < NullZo o) 1l ).

5. (Gronwall’s inequality.) Let T > 0 and u € L*([0,T)) with
t
u(t) < Cl/ u(s)ds + Cy
0
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for any t € [0,T]. Then

u(t) < Cy (1 + Cytert). (B.5)

Proof. The proof of 3. can be found in [Duo01, Corollary 1.21]. All other proofs are given in
[Eval0, Section B.2]. O

Proposition B.5. Let D C R? be a bounded Lipschitz domain, 1 < p < oo, and u € WHP(D)
be real-, vector-, or matriz-valued. Then, the following assertions hold true:

1. (Poincaré’s inequality.) Denoting by (u)p the mean value of u over D, we have
[ = {w)pllzrp) < C [Vl Loy (B.6)
for some constant C' > 0 independent of u. If additionally u € Wol’p(D), then

||u||Lp(D) S O“VUHLP(D). (B?)

2. (Gagliardo-Nirenberg-Sobolev inequality.) If 1 < p < d, then WYP(D) C LP (D) with
p*:=dp/(d —p). Moreover,

[ull v (py < C llullwrr(p)- (B.8)

3. (Morrey’s inequality.) If d < p < oo, then WlP(D) C CO’I_%(D) with

lull oa-g, ) < Cllullwiew). (B.9)

(D)

4. (Rellich-Kondrachev theorem.) The embedding W'P(D) C Li(D) is compact for any
1 <qg<p.

5. (Hardy’s inequality.) Let u € Wy*(D). Then dist(x,0D) 'u € L*(D) and
Hdist(.%,(?D)_luHLQ(D) S C“VU”LQ(D) (BlO)
Proof. For statements 1.—4., see [Eval(O]. More precisely, the first assertion can be found in
Theorem 3 in Section 5.6 and Theorem 1 in Section 5.8, the second and third are Theorem 6

in Section 5.6, and the fourth one is Theorem 1 in Section 5.7. Statement 5. can be found in
[Nec62, Theorem 1.6]. O

Lemma B.6. For f € L} (Rd), we define the Hardy-Littlewood mazimal function by

loc

= Ssu L
(Mf)(e) = sup oo /Q £l dy,

Q>3x

where the supremum runs over all cubes Q@ C RY that contain x. Then, we have for any
1 <q<o0and any f € LI(RY)

M [l parey < Cg, d) | fl| aray-
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Proof. See [Duo01, Theorem 2.5]. O
Proposition B.7 (Properties of mollifiers). Let n € C®(R?) such that supp(n) C Bi(0) and
fRdn = 1. Define for e >0

ne(x) = e~ "(z/e).

Let U C R* be open and set U. == {x € U : dist(x,0U) > e}. Further, let u € L _(U;R"), and
define for x € U.

Ue = Te ¥ U = /Urr]e(' - y>u(y) dy.

Then, we have the following properties:
1. u. € C(U,).
2. u. — u almost everywhere for e — 0.

3. Ifl1<p<ooandu€ L} (U), thenu. — u strongly in LY (U). Further, if U is bounded,

loc loc
then ||uc|| oy < ||ull Loy for € small enough.

Proof. The case d = 1 is proven in [Eval0, Section C.5, Theorem 7] and applies verbatim to
any d > 1. O]

Proposition B.8 (Vitali’s convergence theorem). Suppose that D C R? is a bounded domain,
1 <p<oo, and {fn}nen C LP(D) are measurable. Then f, — f strongly in LP(D) if and only

if

1. fu — [ in measure, that is, for any € > 0 it holds lim,, oo [{|fn — f| > €}| =0, and

2. {|fal? }nen is uniformly integrable, that is, for any e > 0 there is a § > 0 such that for all
U C D with |U| <6 and any n € N, we have [, |fu|? <e.

In particular, if f, — f almost everywhere in D, | fullir(py < M uniformly in n for some
M >0, and 1 < q < p, then f, — f strongly in LY(D).

Proof. See [Bog07, Theorem 4.5.4] for the case p = 1. Let us show how 1. and 2. imply the
convergence f, — fif p>1. Set fore >0 and n € N

An = {|fn_f|28}

Then |A,| < n for n > 0 arbitrary and n large enough, so
[lf=gvar=[ \n=frars [ 1f-sParsCntep)
D A D\A,

by uniform integrability. The second statement follows from f,, — f in measure since f, — f

almost everywhere, and for any ¢ > 0 we set § > 0 such that Méra = ¢ to get for any |U| < §

2
pqg—
[ e < 1l U155 <
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Theorem B.9 (Calderén-Zygmund theorem). Assume D C R? and K (z,y) = kl(;"g), where k

1s a given reqular function and satisfies:

e For any x # y and any A > 0 we have
k(x,y) = k(z, Ay).

e Foranyz € D, k(z,y) € L'({|ly| = 1}) and

/ k(z,y)dy = 0.
ly|=1

e There exists a constant A > 0 such that
[k (@, )|l oo (Dxflyl=1}) < A

Then for any 1 < g < oo and any [ € Lq(Rd), the principal value integral

U(z) =pv. | K(z,z—-y)f(y)dy=lm K(z,x —y)f(y)dy

R4 e—0 |I—y|2€

exists for a.e. x € D and satisfies
v e LY(RY), 19N erey < C Nl fll Lagays

where the constant C > 0 satisfies C' < C(q)A.
Proof. See [CZ57, Section 5, Theorem 2]. O]

Definition B.10. The Riesz operators (R;;)1<ij<a are defined as

1 §i&;
(2m)42 Jra [§J?

Fooselfle™6de = Fi 2, [%fﬁg [f]} :

Rijlf](z) =

where we denote for a function in the Schwartz space f € S(Rd) its Fourier transform by
Obviously, the Riesz operators can be written as

(Rij)i<ijca = (V@ V)A™

where A™! is the Fourier multiplier with symbol —|¢|?. For a short survey through the con-
cept of Fourier multipliers and Riesz transforms, see, for instance, [NS04, Section 1.3.7.2]
and [Duo01]. We recall also that the Riesz operators satisfy for any f,¢g € S(R?) and any
1<4,j<d

/Rd Rijlflgde = /Rd fRi;lg) da, (B.11)

which is a consequence of Plancherel’s theorem and the Fourier multiplier property of R,;;, and
note that this relation can be extended to any f € LP(R?) and g € L” (R?) by density.
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Lemma B.11. For any 1 < p < oo, the Riesz operators satisfy

IV @ V)AT (Nl oy < C0, DI Nl oesy.
Proof. This is a special case of Theorem 1.56 in [NS04, Section 1.3.7.2].

Lemma B.12 (Div-Curl lemma). Let 1 < p,q < oo with

1 1
-4 - = 1
P q
Suppose
U, — U weakly in LP(R:RY),  V,, =V weakly in LY(R%;RY),
and that
divU,, is bounded in W~1P(R?),
curl V,, = (VV,, — VI'V,,) is bounded in W~14(R% R,
Then

U, -V, —=U-V in DR,
Moreover, if
U, — U weakly in L*(R%;RY), 'V, — V weakly in LI(R%R?),

where

and
div U, is bounded in W"5(RY), curl V,, is bounded in W~ (R% R
for some s > 1, then
U, -V, = U-V weakly in L"(R?).
Proof. See [FN09, Lemma 10.11 and Theorem 10.21].

Lemma B.13. Let 1 < p,q < oo satisfy

1 1 1
—= -4+ -<1.
r p q

Suppose

ue — u weakly in LP(RY), v, — v weakly in LI(R?).
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Then for all 1 < 1,7 < d we have
uRij[ve] — vRij[ue] — uRij[v] — vRi;[u] weakly in L™ (RY). (B.12)
Proof. We follow [FNPO1, Lemma 3.4]. We will prove the more general statement
U.-R[V.] - V. -R[U.] = U-R[V] - V- R[U] weakly in L"(R?) (B.13)

for vector fields U, — U weakly in LP(R?Y), V. — V weakly in L¢(R?), where we denote
R = (Rij)i<ij<d- Indeed, embedding the functions u. and v. as functions U, = u.e; €
LP(R%:RY) and V, = v.e; € LI(R%RY), where e; denotes the i-th vector of the canonical
basis of R%, then (B.12) is equivalent to (B.13). To show (B.13), we rewrite

U.-R[V.] - V. -R[U,] = (U.-R[U.]) - R[V.] — (V. —R[V.]) - R[U,]

and consider the k-th component of the vector R[U,], that is,
d
(RIU)k = ((0:0)1<ij<aD U = > 00547 U], (B.14)
j=1

Using the divergence operator, we get

d d d
divR[U] = 0> 00, AT U] =Y 9; ) GAT U =) 9[U.]; = divU..
k=1 j=1 k=1

The same argument applies to V., hence
div(U.; — R[U,]) = div(V. — R[V.]) = 0.

Similarly, we get from (B.14)

which entails in
curl R[U,] = curl R[V.] = 0.

Thus, Lemma B.12 yields (B.13). O

Lemma B.14. Let D C R? be a bounded smooth domain and q € (3,00). Then there ezist
constants C,Cy > 0 such that for any f € L*1(D;[0,00)), we have

(f7 = (NDP)p < CLlf* = ()l < Co (I£7 = ()b b,

where we set

1
=5 /D f da.

Proof. This lemma occurred earlier in [GS19, Lemma 2.2]. We will use the symbol a ~ b to

134



express that there are constants C,Cy > 0 with a < C1b < Cya. First, by the fundamental
theorem of calculus and the fact that [, a(f — (f)p) = 0 for any constant a € R, we have

L=~ [ 1= i~ [ = 03 - o) ds
= [ =T = (Do) d

Noting that for any a,b > 0 and ¢ > %

2q—1 __ b2q71
e
a[ —

1
we get with a = f and b = (f9)},

P T |~ (F 4 (Y5921 — (f))]

Now, we divide into the cases |f — (f)p| < C'|f — <f‘1)%D| and |f — (f)p| > C|f — <fq>%D| to
conclude
[ 1= P ae~ [ (7 (s = I - (Dol da
~/(f+<fq>é)2q If = D dz = / I(f + ( fq% <fQ>§))dex
D

~ / 17— () pl? d.
D
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Appendix C

Some probabilistic results

Lemma C.1 (Borel-Cantelli lemma). Let (2, 2(,P) be a probability space and {Ax}ren C U be
a sequence of measurable sets. Define

limsup A, = ﬂ U A,.

k—roo keN n>k

Assume further

ZP(Ak) < 0. (C.1)

Then P(limsup Ay) = 0.

k—o0

Proof. Let € > 0 be fixed. Then by (C.1) there exists an N € N such that

Z ]P)(Ak) <e.

k>N

Since also for any & € N we have limsup Ay C J,», An and the subadditive property of the
k—o00 -
measure P, we get

0 < P(limsup A;) < P( U A,) < Z P(A;) <e.

ko0 n>N k>N
Since € > 0 was arbitrary, this finishes the proof. O

Theorem C.2 (Strong Law of Large Numbers). Let {X;}ien be pairwise independent identi-
cally distributed random variables with B(X;) < co. Then

1
n+1

1=0

almost surely as n — 0.
In particular, for the Poisson point process (®,R) defined in Section 3./, we have

. d -1 _ : d m __ m
llg(l)e N(e'S) = )|S|, lli%e lerj = AE(r™)|S|
zjE€e™
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almost surely for any bounded measurable set S C R? which is star-shaped with respect to the
origin.

Proof. For the first statement see, e.g., [Durl9, Theorem 2.4.1]. The second statement (in more
general settings) can be found, e.g., in [GHV18, Lemma 6.1] and [LP17, Theorem 8.14]. We
remark that the proof in [LP17], although showing just convergence in L!(P), remains valid

if one uses Birkhoft’s ergodic theorem instead of the Mean ergodic theorem, provided their
sequence {a, }nen grows fast enough. O
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