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Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Peter Bella for his continuous and

unconditional support during my PhD study. Not only his great knowledge and also the way

he is looking at mathematics, were and still are inspiring and of great help. Without his

availability and time for all my questions, this thesis could not have been written.

Furthermore, in no specific order, I really want to thank the members and former members

of Lehrstuhl I and the Biomathematics group at the TU Dortmund, including Prof. Dr. Ben
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“Big whorls have little whorls

which feed on their velocity;

And little whorls have lesser whorls,

and so on to viscosity.”

Lewis Fry Richardson, Weather Prediction by Numerical Process, 1922
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The index ε indicates the dependence of functions and sets on the perforation. Further, we

use the standard notation for Lebesgue and Sobolev spaces, and denote them even for vector-

or matrix-valued functions as in the scalar case, e.g., Lq(D) instead of Lq(D;Rd). Bold letters

indicate vector-valued functions. Finally, we will use the symbol a ≲ b whenever there is a

generic constant C > 0 such that a ≤ C b. The specific value of C may change from line to

line.
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Chapter 1

Introduction

The studies of mathematical fluid mechanics have a long history. Here, we will give just a

brief overview without claim of completeness. Already in ancient times, Greek mathematicians

discovered fundamental principles of hydrodynamics. An example is Archimedes’ principle,

stating that a body, partially or completely immersed in a fluid, experiences a buoyancy force

equal to the weight of the displaced fluid. Later on in the 17th century, R. Boyle and E. Mari-

otte investigated the behavior of gases under constant temperature, realizing that the product

of pressure and volume of a gas is constant. This was later extended to the ideal gas law, stat-

ing that the product of pressure and volume of a gas is always a multiple of the temperature,

provided the change of volume is slow enough such that the temperature and pressure can

adjust. For very quick changes, no heat will be produced, giving rise to adiabatic processes as

considered by P. Laplace, S. Poisson, and N. Carnot, among others. I. Newton gave a precise

description of the notion of viscosity, adopted by L. Euler and J. d’Alembert to formulate

mathematical equations of fluid motions. These equations were modified in the 18th and 19th

century by C. Navier and G. Stokes, respectively, yielding the famous Navier-Stokes equations

considered in this thesis. If we take additionally into account that fluids may conduct heat,

we arrive at the Navier-Stokes-Fourier equations, also called the full system. They describe, in

general form, the motion of viscous, heat-conducting, compressible fluids, and are still subject

of intensive mathematical research.

Besides the theory of flows of homogeneous fluids, another question asked is what might

happen, if we put small inclusions (also called holes or obstacles) into the fluid. This question

traces back to a part of Einstein’s PhD thesis [Ein06] from 1906, where he derived an effective

viscosity for such a suspension, provided the inclusions take up little volume in a certain sense.

The process in which such small-scale heterogeneous equations can be well-approximated by

homogeneous ones is called homogenization. In our setting, given a domain in space which

contains many small obstacles, one may ask for an equation that approximates the actual flow,

but somewhat “disregards” about the suspension.

For Stokes equations as a simplification of the whole Navier-Stokes equations, the first re-

sults in homogenization were obtained by L. Tartar in [Tar80]. He considered an incompressible

fluid, moving in a domain perforated by periodically arranged holes, the size of which is propor-

tional to their mutual distance. Letting this distance become smaller, he derived in the limit

a variant of the well-known porous medium equation, which nowadays is known as Darcy’s
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Chapter 1. Introduction

law. Empirically, this was already obtained in 1856 by H. Darcy when studying filter beds in

fountains (see [Dar56] and [Mus37]). A modification of Darcy’s law was given by H. Brinkman

in 1949, taking into account “the damping force caused by the porous mass” (see [Bri49]). He

proposed an additional friction term in the equations, nowadays known as Brinkman’s law. A

similar but rather surprising result was obtained by Cioranescu and Murat in [CM82], where

they considered the Poisson equation ∆u = f in a spatial domain D, periodically perforated

by obstacles the size of which is inverse proportional to their number inside D. In particular,

the volume fraction of the inclusions will vanish as their number grows. At first glance, one

might therefore expect that the holes do not hinder the flow in the limit. However, it turns out

that an additional friction term Mu in the limiting equation ∆u +Mu = f occurs, which is

purely reminiscent from the obstacles. This “strange term coming from nowhere” can be seen

as the first rigorous derivation of Brinkman’s law.

Based on these results, G. Allaire considered in his PhD thesis [All90] the Stokes equations

in a periodically perforated domain Dε ⊂ Rd, d ≥ 3, where the perforations have mutual dis-

tance ε > 0 to each other, and are of size εα for some α ≥ 1. He discovered that there are

three regimes of particle sizes, each of them yielding another limiting system. The subcritical

case is α > d/(d− 2), for which the holes are too tiny to significantly hinder the flow, leading

within the limit ε→ 0 to the same Stokes equations in D. This is, in three dimensions mostly

considered in this thesis, precisely the case when α > 3. We will refer to them as tiny holes.

The supercritical case is α < 3, which we refer to as large holes. Here, the holes are large

enough to stop the flow as ε → 0. Rescaling the velocity by a proper factor, he arrived at

a rigorous verification of Darcy’s law for all 1 ≤ α < 3. The critical case α = 3 is precisely

when the holes are still too small to stop the flow, but large enough to put friction on it.

In accordance with the results obtained by Cioranescu and Murat, Allaire also obtained the

additional Brinkman term. Up to this point, the fluid is still assumed to be incompressible,

meaning that the density is constant.

The works on compressible flows, however, were to this point rather sparse. In his seminal

work in 2002 [Mas02], N. Masmoudi gave a homogenization result for compressible fluids inside

a perforated domain, assuming that the size of the inclusions is proportional to their mutual

distance, or, in the notation above, α = 1. The limiting equations are a density dependent

analogue to Darcy’s law. In the proof he extensively used a right inverse to the divergence

operator to bound the density independently of the perforations. This inverse, nowadays

known as Bogovskĭı’s operator, was known to exist for fixed domains D, acting as an operator

B : L2
0(D) → W 1,2

0 (D), where L2
0(D) is the space of all mean-free functions f ∈ L2(D). How-

ever, the crucial point is to explore its dependence on the perforation (that is, on ε) explicitly.

In Masmoudi’s work, it turns out that the operator norm of B cannot be bounded uniformly in

ε, which corresponds to a kind of bottleneck effect for the flow through the perforated domain.

Heuristically, for fixed f , searching a solution u to the divergence equation divu = f with

zero boundary data on ∂D is equivalent to ask for a flow with given sources and sinks that

“sticks” to the boundary. These sources and sinks will move mass from one point in space

to another. Hence, for the case of large holes, the mass has to be transported along these

perforations, which become denser and denser in the limit, while the flow still has to be zero on

the boundary. Since f is fixed, the velocity gradient ∇u of the flow has to become larger and
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larger in order to pass through the tunnels between obstacles, leading to the unboundedness

of its norm. The same effect should be present for any kind of large holes, meaning for any

α < 3.

For tiny holes with α > 3, one should expect that the inverse to the divergence is bounded.

E. Feireisl and Y. Lu considered in [FL15] the case of periodically arranged tiny holes, where Bo-

govskĭı’s operator is indeed bounded. They improved this together with L. Diening in [DFL17]

to the case of well-separated obstacles for B mapping Lq
0(D) to W 1,q

0 (D) for 1 < q <∞, giving

an explicit dependence of the bounds on ε for any α ≥ 1. Using this inverse divergence, they

bound the density and, accordingly, the velocity independent of the perforations, obtaining

in the limit again the same Navier-Stokes equations. Darcy’s law for large holes α < 3 was

recently rigorously derived by R. Höfer, K. Kowalczyk, and S. Schwarzacher in [HKS21]. As a

matter of fact, the critical case α = 3 for compressible flows is still mainly open. To shorten

the exposition, we refer to more results in the following chapters.

As mentioned before, the available results for compressible fluids required that the per-

forations are in a certain sense well-separated. In this thesis, we leave this assumption in

the direction of stochastic perforations, meaning that the holes are distributed according to a

stochastic process and may be very close to each other. We will see that we are still be able to

construct an inverse operator to the divergence, give explicit bounds on its norm, and apply

it to homogenize the Navier-Stokes as well as Navier-Stokes-Fourier equations for compressible

fluids in randomly perforated domains.

Organization. This thesis consists of several parts. We start to describe the flow of com-

pressible fluids by mathematical equations in Chapter 2, which we derive from several physical

principles. In Chapter 3, we show how to construct an inverse to the divergence in different do-

mains, starting with star-shaped domains and ending in randomly perforated ones. Chapter 4

is devoted to the homogenization of different types of equations. More precisely, we start in

Section 4.1 with the homogenization of stationary Navier-Stokes equations in domains that are

randomly perforated by tiny holes, and assume a certain growth rate for the fluids pressure.

In Section 4.2 we will relax the growth condition and explain how to treat time dependent

equations. Heat-conducting fluids will be considered in Section 4.3. In all the aforementioned,

the limiting equations are the same as in the perforated domain. Section 4.4, however, deals

with the critical case α = 3 in periodically perforated domains. We will show that, under an

additional scaling assumption on the pressure, the limiting equations are of Brinkman type,

thus providing a first step towards the homogenization of compressible Navier-Stokes equations

in the critical regime. Finally, in Chapter 5, we give an outlook on possible future work and

open problems.
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Chapter 2

Derivation of the Navier-Stokes

equations

The Navier-Stokes as well as the Navier-Stokes-Fourier equations are derived from several

physical conservation laws such as conservation of momentum and energy, and Newton’s laws

of motion. Together with the fundamental laws of thermodynamics, in the first section, we give

a short derivation of the equations considered in this thesis. The second part of this chapter is

devoted to dimensional analysis of the Navier-Stokes-Fourier equations, which will be apparent

in further discussion.

2.1 Fundamental assumptions

We assume that we are given a domain D ⊂ R3 and a map S : [0, T ]×D → R3 for some time

T ∈ (0,∞), called motion, such that

1. S(t, ·) is a C1-diffeomorphism from D to Dt := S(t,D).

2. The gradient ∇xS(t, x) satisfies det∇xS(t, x) > 0.

3. S(0, ·) = I.

A motion transforms a particle p, sitting at time t = 0 on the position x ∈ D, to a particle

which sits at time t > 0 on position y = S(t, x) ∈ Dt (see [Bar17]). Thus, if f(t, p) is a physical

quantity according to the particle p, we can view it in two different frames:

1. The Lagrangian frame defines the observable on D instead of Dt. We thus have fL(t, x) =

f(t, S(t, x)), where we use the subscript L to indicate the Lagrangian frame.

2. The Eulerian frame uses Dt as the domain of definition. Thus, using the subscript E to

indicate the Eulerian system, fE(t, y) = f(t, y).

In particular, the time derivatives of f in the different frames are connected through

∂tfL(t, x) = ∂t[fE(t, S(t, x))] = (∂tfE)(t, S(t, x)) +∇yfE(t, S(t, x)) · ∂tS(t, x)
= ∂tfE(t, y) + u(t, y) · ∇yfE(t, y),
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Chapter 2. Derivation of the Navier-Stokes equations

where we used the notation

u(t, y) = ∂tS(t, x), x = S−1(t, y), y ∈ Dt,

for the velocity of the particle. Since this thesis will deal with fluids, which are modeled by

the assumption that they are continuous rather than consisting of many discrete particles, we

may refer to u as the fluid velocity. We further assume that we can characterize the fluid by

the following quantities:

� A non-negative measurable function ϱ(t, y), defined on {(t, y) : t ∈ [0, T ], y ∈ Dt}, called
the mass density ;

� A positive measurable function ϑ(t, y), defined on {(t, y) : t ∈ [0, T ], y ∈ Dt}, called the

fluid temperature;

� The pressure p = p(ϱ, ϑ), the specific internal energy e = e(ϱ, ϑ), and the specific entropy

s = s(ϱ, ϑ), also called the thermodynamic functions ;

� A stress tensor T ∈ R3×3, measuring the force per unit surface area that one part of the

fluid imposes on another part directly opposite of their shared surface element;

� A vector field q(ϑ) measuring the flux of heat ;

� Force terms ϱf and g which represent volumetric (meaning measured per unit volume)

forces such as gravity, and other external forces, respectively.

Here, the functions [ϱ,u, ϑ] represent the main state variables of the fluid, while all other

quantities are recovered from them by constitutive relations. For instance, we assume that the

heat flux is governed by Fourier’s law

q(ϑ) = −κ(ϑ)∇ϑ,

where the thermal conductivity κ is a function of the absolute temperature ϑ. Physically, heat

only flows from warm to cold regions, leading to the assumption κ > 0.

To derive the equations governing the fluid’s motion, we need to take into account at

least two important physical properties: the fundamental laws of thermodynamics have to be

satisfied, and material laws have to be isotropic, that is, invariant under rotations. The laws of

thermodynamics will be used in order to derive balance equations for the energy and entropy;

we will come back to this later. For now, let us focus a bit more on the hypothesis of isotropy.

We call a scalar function f : R3×3 → R isotropic if for any Q ∈ SO(3) and any A ∈ R3×3, we

have

f(QTAQ) = f(A).

Similarly, a tensor-valued function F : R3×3 → R3×3 is called isotropic if

F (QTAQ) = QTF (A)Q.

6



2.1. Fundamental assumptions

We will show that the stress tensor T satisfies Stokes’ law

T = S− pI,

where S is the viscous stress tensor. The physical principle behind viscosity is associated to the

relative motion of different fluid parts. Thus, S just depends linearly on ∇u, hence S = A∇u

for some fourth order tensor A = {Aijkl}1≤i,j,k,l≤3. Following [Ped14], it turns out that the

most general isotropic fourth order tensor is of the form

Aijkl = αδijδkl + βδikδjl + γδilδjk, (2.1)

where δij is the Kronecker delta, and α, β, γ ∈ R. Moreover, as a consequence of the con-

servation of angular momentum, the stress tensor T and hence S are symmetric, see [Bar17,

Satz 3.4.2] for a proof. Consequently, we have Aijkl = Ajikl, implying that β = γ and that S
just depends on the symmetric part of the gradient E = 1

2
(∇u + ∇Tu). To obtain the par-

ticular forms of T and S, we give the following representation lemma on isotropic scalar and

tensor-valued functions.

Lemma 2.1.1. Let f : R3×3
sym → R be an isotropic scalar function, defined on the space of

symmetric 3× 3-matrices, and F : R3×3
sym → R3×3

sym be an isotropic tensor-valued and affine linear

function. Then, f only depends on J(A) := {tr(A), det(A), 1
2
((tr(A)2− tr(A2))}, and F admits

the form

F (A) = 2µA+ (κ+ λ tr(A))I

for some µ, κ, λ ∈ R. Here, we denote by tr(A) the trace of the matrix A.

Proof. We start with f . Obviously, we have J(QTAQ) = J(A) for any Q ∈ SO(3), so we have

to show that f(A) = f(B) whenever J(A) = J(B). Since J(A) contains the coefficients of the

characteristic polynomial pA(x) = det(A− xI), we conclude from J(A) = J(B) that A and B

have the same eigenvalues. Thus, there exist Q ∈ SO(3) with

QTAQ = B,

so f(A) = f(QTBQ) = f(B) since f is isotropic.

Let us now turn to F . Since F is affine linear and F (A)T = F (A) for any A ∈ R3×3
sym, we obtain

from (2.1) that there exist µ, α ∈ R and B ∈ R3×3 such that

F (A) = 2µA+ α tr(A)I+B.

From the isotropy condition, we obtain for any Q ∈ SO(3)

2µQTAQ+ α tr(QTAQ)I+B = F (QTAQ) = QTF (A)Q = 2µQTAQ+ α tr(A)I+QTBQ.

Since tr(QTAQ) = tr(A) for any Q ∈ SO(3), we conclude QTBQ = B and thus B = fI for

some isotropic scalar function f = f(A). Since f does just depend on tr(A), det(A), and

(tr(A))2 − tr(A2), and F is affine linear in A, in particular f has to be, we obtain

f(A) = κ+ (λ− α) tr(A)

7



Chapter 2. Derivation of the Navier-Stokes equations

for some constants κ, λ ∈ R, yielding finally

F (A) = 2µA+ α tr(A)I+ (κ+ (λ− α) tr(A))I = 2µA+ (κ+ λ tr(A))I.

Since S is a linear function of E, we obtain Newton’s rheological law

S(∇u) = S(E) = 2µE − 2µ

3
tr(E)I+ η tr(E)I

= µ

(
∇u+∇Tu− 2

3
div(u)I

)
+ η div(u)I,

where µ and η are scalar functions of the temperature ϑ. The particular splitting of S in the

µ-term and η-term is also physically motivated. Note that

tr

(
∇u+∇Tu− 2

3
div(u)I

)
= 2 tr(∇u)− 2 div(u) = 0,

so the first term is the traceless part of the viscosity tensor, thus representing shear stresses

only. We may thus refer to µ as the shear viscosity coefficient. The second part of S expresses

pure stretching and compression, so we may refer to η as the bulk viscosity coefficient. We will

later see that we shall assume µ > 0 and η ≥ 0 for physical reasons.

2.2 Balance laws

Balance laws are important to describe basic physical principles. In this thesis, we will always

work with the Eulerian frame and assume that the domain D does not change its overall shape

in time, meaning D = Dt for all t ∈ [0, T ]. We will therefore drop the dependence on t and

just write D instead of Dt. In this section, we will further disregard regularity questions and

assume that all considered functions are sufficiently smooth.

Mass conservation: We start with the assumption that the fluid’s mass is conserved in time

for any particular subdomain of D. For B ⊂ D, define the mass inside B by

m(t, B) :=

∫
B

ϱ(t, x) dx.

Together with Reynolds’ transport theorem B.3, the conservation of mass leads to

0 =
d

dt
m(t, B) =

∫
B

∂tϱ+ div(ϱu) dx.

Since we assumed that ϱ and u are smooth and B ⊂ D was arbitrary, we derive the continuity

equation

∂tϱ+ div(ϱu) = 0 in D. (2.2)
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2.2. Balance laws

Multiplying this equation with b′(ϱ), where b : [0,∞) → R is a bounded differentiable function,

we formally arrive at the renormalized continuity equation

∂t(b(ϱ)) + div(b(ϱ)u) + (ϱb′(ϱ)− b(ϱ)) div(u)

= b′(ϱ)∂tϱ+ b′(ϱ)∇ϱ · u+ b(ϱ) div(u) + ϱb′(ϱ) div(u)− b(ϱ) div(u)

= b′(ϱ)(∂tϱ+∇ϱ · u+ ϱ div(u))

= b′(ϱ)(∂tϱ+ div(ϱu)) = 0.

(2.3)

We remark that this renormalized version of mass conservation “hides” the derivatives ∂tϱ and

∇ϱ in the terms ∂tb(ϱ) and div(b(ϱ)u), respectively. Therefore, the form written in the very

first line of (2.3) is a good preparation for the notion of a weak formulation of the renormalized

equation. It will be crucial to obtain a strong convergence of a sequence of densities {ϱε}ε>0,

defined on a perforated domain Dε, when ε→ 0. We will come back to this in further sections.

Momentum balance: Let us turn to the conservation of linear momentum. Assume that

f ,g : [0, T ]×D → R3,

where f is a volumetric (meaning measured per unit volume) force and g an additional outer

force, then the flux of the momentum ϱu is governed by the stress tensor T = S− pI, where we
abbreviate S = S(∇u). According to Newton’s second law of motion “force equals mass times

acceleration”, this yields for any B ⊂ D

d

dt

∫
B

ϱu dx =

∫
B

ϱf + g dx+

∫
∂B

(S− pI) · n dσ,

where n denotes the outward unit normal on ∂B. Using Reynolds’ Theorem B.3 and Gauß’

divergence theorem, we arrive at∫
B

∂t(ϱu) + div(ϱu⊗ u) dx =

∫
B

ϱf + g + div S−∇p dx,

which in differential form gives rise to the balance of linear momentum

∂t(ϱu) + div(ϱu⊗ u) = ϱf + g + div S−∇p in D. (2.4)

Energy balance: A fundamental postulate in physics is that energy can never be created

or destroyed, meaning that energy is conserved and can just be transformed into other forms.

We thus may define the total energy density as

E :=
1

2
|u|2 + e(ϱ, ϑ),

where e(ϱ, ϑ) is the specific internal energy density. According to thermodynamic and mechan-

ical principles (see also [NS04, Section 1.2.7]), the rate of change of the total energy is given

by the sum of the powers of volume and outer forces, surface forces according to stresses, and

9



Chapter 2. Derivation of the Navier-Stokes equations

heat exchange. We therefore get for any volume B ⊂ D

d

dt

∫
B

ϱE dx =

∫
B

(ϱf + g) · u dx+

∫
∂B

[(S− pI)u] · n dσ +

∫
B

ϱr dx−
∫
∂B

q · n dσ,

where r is the density of internal heat sources or sinks, and q is the heat flux through the

boundary. Note that, according to the physical principle that heat travels from warm to cold

only, the sign of q is chosen such that a “hot” body B shall give off its heat to the “colder”

outside, thus losing energy when time goes on. Applying once again Theorem B.3, we obtain∫
B

∂t(ϱE) + div(ϱEu) dx =

∫
B

(ϱf + g) · u+ div(Su− pu) + ϱr − div(q) dx,

finally yielding the balance of total energy

∂t(ϱE) + div(ϱEu) = div(Su− pu− q) + (ϱf + g) · u+ ϱr in D. (2.5)

Moreover, we get from the balance of momentum (2.4) by multiplying with u and using the

continuity equation (2.2) the balance of kinetic energy

∂t

(
1

2
ϱ|u|2

)
+ div

(
1

2
ϱ|u|2u

)
= (ϱf + g) · u+ div(Su− pu)− S : ∇u+ p div(u) (2.6)

and thus, subtracting (2.5) and (2.6), the balance of internal energy

∂t(ϱe) + div(ϱeu) = S : ∇u− p div(u) + ϱr − div(q) in D. (2.7)

Entropy balance: Finally, we turn to the balance of entropy. Firstly, due to the first law

of thermodynamics, the change of the internal energy is given by (infinitesimal) variations of

heat plus the work done by the system to its environment, meaning

De = δQ− δW,

where we stick to the sign convention commonly used in physical literature. The work done by

the system is given by the change of volume due to pressure, meaning δW = pD
(
1
ϱ

)
. By the

second law of thermodynamics, the change of heat is given by the change of the entropy due

to temperature, that is, δQ = ϑDs, leading to Gibb’s equation

ϑDs(ϱ, ϑ) = De(ϱ, ϑ) + p(ϱ, ϑ)D

(
1

ϱ

)
, (2.8)

which in turn forces the expression 1
ϑ

(
De + pD

(
1
ϱ

))
to be a perfect gradient, namely Ds =

1
ϑ

(
De+ pD

(
1
ϱ

))
. This gives rise to

∂ts =
1

ϑ

(
∂te+ p∂t

(
1

ϱ

))
=

1

ϑ

(
∂te−

p

ϱ2
∂tϱ

)
,

∇s = 1

ϑ

(
∇e− p

ϱ2
∇ϱ

)
.

(2.9)

10
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Dividing (2.7) by ϑ and using the continuity equation (2.2), we obtain

1

ϑ
(ϱ∂te+ ϱu · ∇e) = 1

ϑ

(
S : ∇u− q · ∇ϑ

ϑ

)
+
ϱ

ϑ
r − div

(
q

ϑ

)
− p

ϑ
div(u).

Together with (2.9) and (2.2), we get for the left-hand side

1

ϑ
(ϱ∂te+ ϱu · ∇e) = ϱ∂ts+ ϱu · ∇s+ 1

ϑ

(
p

ϱ
∂tϱ+

p

ϱ
u · ∇ϱ

)
= ∂t(ϱs) + div(ϱsu) +

p

ϑϱ
(−ϱ div(u))

= ∂t(ϱs) + div(ϱsu)− p

ϑ
div(u),

so we finally obtain the balance of entropy

∂t(ϱs) + div(ϱsu) = σ +
ϱ

ϑ
r − div

(
q

ϑ

)
in D, (2.10)

where the entropy production rate is given by

σ :=
1

ϑ

(
S : ∇u− q · ∇ϑ

ϑ

)
.

Physically, entropy can be seen as a measure of disorder inside the system. Additionally,

the second law of thermodynamics also states that any physically admissible process can just

produce entropy, leading to the assumption that σ is non-negative. Since we will mostly deal

with the framework of weak solutions in this thesis, which shall dissipate more kinetic energy

than expected from equation (2.4) due to possible concentrations and singularities, we will

assume that σ is a non-negative Radon measure satisfying the entropy inequality

σ ≥ 1

ϑ

(
S : ∇u− q · ∇ϑ

ϑ

)
. (2.11)

We will come back to this when dealing with the full Navier-Stokes-Fourier system in Sec-

tion 4.3.

Ideal fluids and adiabatic pressure law: In subsequent chapters for the case of constant

temperature, we will assume that the pressure satisfies the adiabatic pressure law

p = p(ϱ) = aϱγ (2.12)

for some constant a > 0 and some γ ≥ 1. This dependence is sometimes also known as the

isentropic or barotropic pressure law. It can be derived from Gibb’s equation (2.8), together

with some assumptions on ideal gases. Let us summarize these assumptions as follows.

1. The ideal gas law p = Rϱϑ holds, where R > 0 is the universal gas constant (measured

here in units of molar mass).

2. The only change of energy is due to heat, that is, ∂ϱe = 0 and ∂ϑe = cv, where cv > 0 is

the specific heat capacity at constant volume. This leads to e = cvϑ.

11



Chapter 2. Derivation of the Navier-Stokes equations

3. We are given positive reference values p0, ϱ0, ϑ0 > 0.

4. The adiabatic exponent is given by γ := cp/cv, where cp := cv + R is the specific heat

capacity at constant pressure.

The number γ is also called isentropic exponent or, according to its definition, heat capacity

ratio. From the ideal gas law, we derive

p

p0
=

ϱϑ

ϱ0ϑ0

, or, equivalently,
ϑ

ϑ0

=
p/p0
ϱ/ϱ0

.

Thus, Gibb’s relation leads to

Ds =
1

ϑ
De− p

ϑϱ2
Dϱ =

cv
ϑ
Dϑ− R

ϱ
Dϱ

= cvD log
ϑ

ϑ0

−RD log
ϱ

ϱ0

= cvD log
ϑ

ϑ0

− cv(γ − 1)D log
ϱ

ϱ0

= cvD log
ϑ/ϑ0

(ϱ/ϱ0)γ−1

= cvD log
p/p0

(ϱ/ϱ0)γ
,

yielding the specific entropy for an ideal gas being of the form

s(ϱ, ϑ) = cv log

(
ϑ

ϱγ−1

)
= cv log

(
p

ϱγ

)
. (2.13)

Assuming now that the thermodynamic process is adiabatic, meaning no heat is exchanged, so

δQ = 0 and, in view of δQ = ϑDs, also Ds = 0, we see that (2.13) furnishes (2.12).

Assumptions on coefficients: Together with the entropy inequality and the form of the

viscous stress tensor

S(∇u) = µ

(
∇u+∇Tu− 2

3
div(u)I

)
+ η div(u)I,

we can give more restrictions on the viscosity coefficients µ, η ∈ R. Since the entropy production
rate must be non-negative, we obtain

S : ∇u ≥ 0.

Seeing that ∇u : ∇Tu = | div(u)|2, we may write

S : ∇u = µ|∇u|2 + µ

3
| div(u)|2 + η | div(u)|2

=
µ

2

(
|∇u|2 + 2∇u : ∇Tu+ |∇Tu|2 − 4

3
| div(u)|2

)
+ η | div(u)|2

=
µ

2

(
|∇u+∇Tu|2 − 4

3
div(u)I : (∇u+∇Tu) +

∣∣∣∣23 div(u)I
∣∣∣∣2)+ η | div(u)|2

12



2.3. Scaling considerations

=
µ

2

∣∣∣∣∇u+∇Tu− 2

3
div(u)I

∣∣∣∣2 + η | div(u)|2

to conclude that µ, η ≥ 0. As we shall work in this thesis with viscous fluids, we require for µ

the stronger condition µ > 0.

The same notion gives rise to

−q · ∇ϑ ≥ 0,

which, together with Fourier’s law q(ϑ) = −κ(ϑ)∇ϑ, yields κ ≥ 0 in accordance with the

physical principle of heat conduction already mentioned. In Section 4.3, we will assume that

the heat flux does not vanish, meaning κ > 0.

For the physical intuition behind the adiabatic exponent γ, let us note that the thermody-

namic principle of equipartition of energy states that the energy of a gas in thermal equilibrium

is shared uniformly to all degrees of freedom f , that is,

e

f
=

1

2
Rϑ,

where the factor 1
2
is related to the kinetic energy of the gas; we refer to [Cla57] and [Dem06,

Kapitel 10] for the connection between kinetic and heat theory. This and e = cvϑ leads to

cv =
1
2
Rf . Together with cp = cv +R = 1

2
R(f + 2) and γ = cp/cv, we obtain

γ =
1
2
R(f + 2)

1
2
Rf

= 1 +
2

f
.

For instance, a monoatomic gas has three degrees of freedom, one for each direction in space.

Thus, we get γ = 5
3
in this case. Larger molecules have more degrees of freedom, including

vibrations and rotations around possible symmetry axes. Thus, the physical range for γ is

1 ≤ γ ≤ 5

3
. (2.14)

However, due to mathematical reasons, we are not able to hit this range. Indeed, we will always

assume that at least γ > 2, and comment this issue later on in Chapter 4.

2.3 Scaling considerations

In order to obtain reasonable predictions for small as well as large systems of fluids, it is

convenient to non-dimensionalize the equations derived in the previous section. To this end,

we will take into account the fundamental dimensions length, time, mass, and temperature. In

particular, we assume that the system we are interested in has some characteristic values of

length Lc, time Tc, density ϱc, velocity uc, and temperature ϑc, where the other characteristic

parameters pc, ec, κc, µc, ηc as well as the sources fc, gc, rc are composed quantities of them. By

writing X ′ = X/Xc for any physical quantity X which may represent, for instance, time or

13



Chapter 2. Derivation of the Navier-Stokes equations

velocity, we obtain for the continuity equation (2.2)

∂tϱ+ div(ϱu) =
ϱc
Tc
∂t′ϱ

′ +
ϱcuc
Lc

divx′(ϱ′u′) = 0,

which, omitting primes for simplicity, we may write in the form

Sr ∂tϱ+ div(ϱu) = 0

with the dimensionless Strouhal number Sr := Lc/(Tcuc). Further, due to Gibb’s relation (2.8),

we have the compatibility condition pc = ϱcec. Additionally, the viscosity coefficients µ and

η share the same physical units, so we may measure them in terms of the same characteristic

viscosity, meaning ηc = µc. The same argument leads to gc = ϱcfc. Thus, similar considera-

tions as for the continuity equation lead for the momentum equation (2.4), the kinetic energy

balance (2.6), the internal energy balance (2.7), and the entropy balance (2.10) to

Sr ∂t(ϱu) + div(ϱu⊗ u) =
1

Fr2
(ϱf + g) +

1

Re
div S− 1

Ma2
∇p,

Sr ∂t(ϱ|u|2) + div(ϱ|u|2u) = 1

Fr2
(ϱf + g) +

1

Re
(div(Su)− S : ∇u)

+
1

Ma2
(p div(u)− div(pu)),

Sr ∂t(ϱe) + div(ϱeu) =
Ma2

Re
S : ∇u− p divu+Hrϱr − 1

Pe
div q,

Sr ∂t(ϱs) + div(ϱsu) = σ +Hr
ϱ

ϑ
r − 1

Pe
div

q

ϑ
,

where here

S = µ

(
∇u+∇Tu− 2

3
div(u)I

)
+ η div(u)I,

q = −κ(ϑ)∇ϑ,

σ =
1

ϑ

(
Ma2

Re
S : ∇u− 1

Pe

q · ∇ϑ
ϑ

)
,

and the occurring characteristic numbers are given in Table 2.1. We remark that these num-

bers are not unique. However, due to Buckingham’s famous Π-theorem (see [CLP82]), one may

determine how many of them are independent.

Symbol Name Definition
Sr Strouhal number Lc/(Tcuc)
Fr Froude number uc/

√
Lcfc

Re Reynolds number ϱcucLc/µc

Ma Mach number uc/
√
pc/ϱc

Hr Heat release parameter ϱcrcLc/(pcuc)
Pe Péclet number pcucLc/(ϑcκc)

Table 2.1: Characteristic numbers of fluid motions
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The meaning of such similarity considerations becomes apparent in physical simulations.

For instance, focusing on the Reynolds number, one may describe the behavior of an airplane

wing in a wind tunnel by modeling the real wing with characteristic length Lc by a model

wing of, say, length Lc/2. If the characteristic velocity of air for the real wing is uc, then the

solutions to the equations remain the same if the velocity in the wind tunnel is given by 2uc,

which is due to the fact that the Reynolds number does not change.

Mathematically, the scaled equations are particularly interesting if one of the parameters tends

towards zero or infinity, which gives rise to so-called singular limits. In Section 4.4, we will

consider the case of a vanishing Mach number. Note that in the definition of the Mach number,

the quantity
√
pc/ϱc has the physical unit of a velocity, therefore also called (local) speed of

sound. A vanishing Mach number thus corresponds to a very slow flow (compared to speed of

sound), which is expected to have constant density and thus being incompressible. We will see

in Section 4.4 that this is actually the case.
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Chapter 3

Bogovskĭı’s operator in different

domains

In this chapter, let D ⊂ R3 be a bounded domain, 1 < q <∞, and f ∈ Lq
0(D) be given, where

we denote Lq
0(D) as the space of all functions g ∈ Lq(D) with

∫
D
g = 0. We will search for a

solution u ∈ W 1,q
0 (D) to the equation{

divu = f in D,

u = 0 on ∂D,
(3.1)

such that u obeys a bound

∥u∥W 1,q
0 (D) ≤ C ∥f∥Lq(D),

where the constant C > 0 is independent of u and f . To find a solution u to equation (3.1)

which depends linearly on f is equivalent to ask for a bounded linear operator

B : Lq
0(D) → W 1,q

0 (D)

such that for any f ∈ Lq
0(D),

divB(f) = f in D, ∥B(f)∥W 1,q
0 (D) ≤ C ∥f∥Lq(D). (3.2)

If such an operator exists, then u = B(f) is a solution to (3.1). We will give several results on the

existence of such an operator B, depending on the domain D. We start with domains that are

star-shaped, where B can be defined by an explicit formula, following [Gal11] and the original

work of M. Bogovskĭı [Bog80], and continue with domains having a Lipschitz boundary. The

next section will focus on the case of so-called John domains, where the existence of an operator

B was shown in [DRS10]. The last two sections are devoted to the case of perforated domains

Dε, which will be defined later. For the existence of an operator Bε in the perforated domain

Dε, the outcomes from [DRS10] will be crucial in order to get a bounded linear operator Bε,

where we can give an explicit dependence of the constant C on ε. Under suitable assumptions

on the perforations defining the domain Dε, we will show that for some q we can construct a

bounded linear map

Bε : L
q
0(Dε) → W 1,q

0 (Dε)

17
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such that

divBε(f) = f in Dε, ∥Bε(f)∥W 1,q
0 (Dε)

≤ C ∥f∥Lq(Dε),

where the constant C > 0 is now independent of ε. This operator will be extensively used in

Chapter 4 to obtain uniform bounds on the density.

Since the work to be done is the same in R3 and Rd for d ≥ 2, we will state the results in the

sequel for the general case D ⊂ Rd. We will refer to B as a right inverse to the divergence or,

in dedication to M. Bogovskĭı, as Bogovskĭı’s operator.

3.1 Star-shaped and Lipschitz domains

3.1.1 Bogovskĭı’s operator in star-shaped domains

Let us start with the definition of star-shaped domains. A domain D ⊂ Rd is said to be

star-shaped with respect to some point x0 ∈ D (the star center) if for every point x ∈ D the

line {tx0 + (1 − t)x : t ∈ [0, 1]} ⊂ D. In other words, the point x0 “sees” all other points

x ∈ D. For instance, convex domains are clearly star-shaped with respect to any of their

interior points, but also the domain R2 \{(x1, 0) ∈ R2 : x1 ≤ 0} is star-shaped with respect to

the point x0 = (1, 0). A domain is said to be star-shaped with respect to a ball B ⊂ D, if for

all x0 ∈ B it is star-shaped with respect to x0. Following [Gal11, Lemma III.3.1] and [FN09,

Lemma 10.6], we have the following existence result for the inverse of the divergence.

Lemma 3.1.1. Let D ⊂ Rd be a bounded star-shaped domain with respect to a ball BR(y) ⊂ D,

and let 1 < q < ∞ and f ∈ Lq
0(D). Then, there exists a solution u to problem (3.1), which

depends linearly on f . The constant appearing in (3.2) admits the bound

C ≤ C0(d, q) [diam(D)/R]d (1 + diam(D)/R). (3.3)

If additionally f ∈ C∞
c (D), then u ∈ C∞

c (D).

Proof. First, we assume f ∈ C∞
c (D). By the change of variables x′ = (x− y)/R, we transform

f into a function f ′(x′) = f(x), and D into a domain D′ which is star-shaped with respect to

the ball B = B1(0) and satisfies

diam(D′) = diam(D)/R.

The system (3.1) transforms into

divx′(u′) = Rf ′ =: F ′.

Evidently, we have F ′ ∈ C∞
c (D′) ∩ Lq

0(D
′). Hence, if u′ satisfies divx′ u′ = F ′, then u(x) :=

u′(x′) yields a solution to (3.1). Thus, it is sufficient to show (3.1) for the case that D is

star-shaped with respect to the ball B = B1(0). Note that this also implies diam(D) ≥ 1.

Let η ∈ C∞
c (D) be such that supp η ⊂ B, η ≥ 0, and

∫
B
η dx = 1. We now define u = B(f)

via the formula

u(x) := B(f)(x) :=
∫
D

f(y)

[
x− y

|x− y|d

∫ ∞

|x−y|
η

(
y + ξ

x− y

|x− y|

)
ξd−1 dξ

]
dy. (3.4)
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Using the change of variables r = ξ/|x− y| in (3.4), we recover at once the equivalent formula

u(x) =

∫
D

f(y)(x− y)

∫ ∞

1

η(y + r(x− y))rd−1 dr dy.

This form immediately yields that u has compact support in D. Indeed, set

E := {z ∈ D : z = tz1 + (1− t)z2, z1 ∈ supp(f), z2 ∈ B, t ∈ [0, 1]}.

Since D is star-shaped with respect to every point of B and supp(f) is compact, we see that

E is a compact subset of D. Now, let x ∈ D \ E. Then for all y ∈ supp(f) and any r ≥ 1, we

have

y + r(x− y) /∈ B,

hence η(y + r(x − y)) = 0 and thus, by (3.4), u(x) = 0, which shows that supp(u) ⊂ E. On

the other hand, using the change of variables r = ξ− |x− y| in (3.4) and the fact that we may

extend f outside D to be zero, we obtain

u(x) =

∫
Rd

f(y)
x− y

|x− y|d

∫ ∞

0

η

(
x+ r

x− y

|x− y|

)
(r + |x− y|)d−1 dr dy.

By a further change of variables z = x− y, we obtain

u(x) =

∫
Rd

f(x− z)
z

|z|d

∫ ∞

0

η

(
x+ r

z

|z|

)
(r + |z|)d−1 dr dz.

Note that if L > 0 is large enough such that supp(f)∪B ⊂ BL(0), we get u(x) = 0 on Rd \BL(0)

and for x ∈ BL(0), the function g(r, z) := (4L)d−1χ(0,2L)(r)χB2L(0)(z)|z|1−d is integrable and

dominates z|z|−d(r+ |z|)d−1. Thus, we are allowed to change integration and differentiation up

to any order, showing that u ∈ C∞
c (D).

Let us now show that u satisfies (3.1) and the required estimates. First, we rewrite (3.4)

in the form

u(x) =

∫
D

f(y)N(x, y) dy,

where the kernel N(x, y) is defined as

N(x, y) :=
x− y

|x− y|d

∫ ∞

|x−y|
η

(
y + ξ

x− y

|x− y|

)
ξd−1 dξ.

Observe that by definition of N we have

∂Ni

∂yj
(x, y) = −∂Ni

∂xj
(x, y) +

xi − yi
|x− y|d

∫ ∞

|x−y|
(∂jη)

(
y + ξ

x− y

|x− y|

)
ξd−1 dξ

=: −∂Ni

∂xj
(x, y) + Ñij(x, y).
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Differentiating the i-th component ui with respect to xj thus yields

∂jui(x) =

∫
D

f(y)∂xj
Ni(x, y) dy = −

∫
D

f(y)∂yjNi(x, y) dy +

∫
D

f(y)Ñij(x, y) dy.

Now, let ε > 0 be sufficiently small such that Bε(x) ⊂ D, and split the integral over D into

the integral over Bε(x) and its remainder D \Bε(x). Using integration by parts, we obtain

∂jui(x) =

∫
Bε(x)

∂yjf(y)Ni(x, y) dy −
∫
∂Bε(x)

f(y)Ni(x, y)nj dσ(y)

−
∫
D\Bε(x)

f(y)∂yjNi(x, y) dy +

∫
D\Bε(x)

f(y)Ñij(x, y) dy +

∫
Bε(x)

f(y)Ñij(x, y) dy

=

∫
D\Bε(x)

f(y)∂xj
Ni(x, y) dy +

∫
∂Bε(x)

f(y)Ni(x, y)
xj − yj
|x− y|

dσ(y)

+

∫
Bε(x)

∂yjf(y)Ni(x, y) + f(y)Ñij(x, y) dy.

Since f(y) and ∂yjf(y) are bounded and the singularities of N and Ñ are weak singularities

of order (d − 1), hence integrable over Bε(x), we see that the last term vanishes in the limit

ε→ 0. Thus, we get

∂jui(x) = lim
ε→0

(∫
|x−y|≥ε

f(y)∂jNi(x, y) dy +

∫
∂Bε(x)

f(y)
xj − yj
|x− y|

Ni(x, y) dσ(y)

)
= p.v.

∫
D

f(y)∂jNi(x, y) dy + lim
ε→0

∫
∂Bε(x)

f(y)
xj − yj
|x− y|

Ni(x, y) dσ(y), (3.5)

where we used the prescript p.v. to indicate that the first integral has to be understood in the

Cauchy principal value sense. For the second term, we obtain

lim
ε→0

∫
∂Bε(x)

f(y)
xj − yj
|x− y|

Ni(x, y) dσ(y) = f(x)

∫
D

(xj − yj)(xi − yi)

|x− y|2
η(y) dy, (3.6)

since, by the below change of variables z = (x − y)/ε and r = ξ − ε|z| for the first integral,

the fact that supp(η) ⊂ B, the change z = (x− y)/|x− y| and integration over surfaces in the

second integral, we have

∆ε(x) :=

∣∣∣∣ ∫
∂Bε(x)

f(y)
xj − yj
|x− y|

Ni(x, y) dσ(y)− f(x)

∫
D

(xj − yj)(xi − yi)

|x− y|2
η(y) dy

∣∣∣∣
=

∣∣∣∣ ∫
∂B1(0)

zizjf(x− εz)

∫ ∞

0

η(x+ rz)(r + ε)d−1 dr dσ(z)

− f(x)

∫
∂B1(0)

zizj

∫ ∞

0

η(x+ rz)rd−1 dr dσ(z)

∣∣∣∣.
Thus, if ε is small enough, we obtain

∆ε(x) ≤
∫
∂B1(0)

|f(x)− f(x− εz)| dσ(z) + o(1),

which yields limε→0∆ε(x) = 0 and finally (3.6). To handle the remaining integral in (3.5), we
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apply Calderón-Zygmund theory. First, for fixed y, we find

∂jNi(x, y) = ∂j

[
(xi − yi)

∫ ∞

1

η(y + r(x− y))rd−1 dr

]
= δij

∫ ∞

1

η(y + r(x− y))rd−1 dr + (xi − yi)

∫ ∞

1

(∂jη)(y + r(x− y))rd dr

=
δij

|x− y|d

∫ ∞

0

η

(
x+ s

x− y

|x− y|

)
(s+ |x− y|)d−1 ds

+
xi − yi

|x− y|d+1

∫ ∞

0

(∂jη)

(
x+ s

x− y

|x− y|

)
(s+ |x− y|)d ds.

We now expand the powers of d in the last two integrals to write ∂jNi(x, y) in the form

∂jNi(x, y) = Kij(x, x− y) +Gij(x, x− y),

where we define

Kij(x, x− y) :=
δij

|x− y|d

∫ ∞

0

η

(
x+ s

x− y

|x− y|

)
sd−1 ds

+
xi − yi

|x− y|d+1

∫ ∞

0

(∂jη)

(
x+ s

x− y

|x− y|

)
sd ds

=:
kij(x, x− y)

|x− y|d
,

and Gij(x, x− y) is given by

Gij(x, x− y) :=
d−1∑
k=1

(
d− 1

k

)
δij

|x− y|d−k

∫ ∞

0

η

(
x+ s

x− y

|x− y|

)
sd−1−k ds

+
d∑

k=1

(
d

k

)
xi − yi

|x− y|d+1−k

∫ ∞

0

(∂jη)

(
x+ s

x− y

|x− y|

)
sd−k ds

=
d−1∑
k=1

(
d− 1

k

)
δij

∫ ∞

0

η
(
x+ r(x− y)

)
rd−1−k dr

+
d∑

k=1

(
d

k

)
(xi − yi)

∫ ∞

0

(∂jη)
(
x+ r(x− y)

)
rd−k dr.

By supp(η) ⊂ B, we get for the upper bound of the integrals

1 ≥ |x+ r(x− y)| ≥ r|x− y| − |x| =⇒ r ≤ 1 + |x|
|x− y|

≤ 2 diam(D)

|x− y|

since diam(D) ≥ 1 and 0 ∈ D, thus |x| ≤ diam(D) for any x ∈ D. In turn, we may estimate

d−1∑
k=1

(
d− 1

k

)∫ ∞

0

η
(
x+ r(x− y)

)
rd−1−k dr ≤

(
d− 1

⌈d−1
2
⌉

)
∥η∥L∞(Rd)

d−1∑
k=1

∫ 2 diam(D)
|x−y|

0

rd−1−k dr

= C(η, d)
d−1∑
k=1

1

d− k

(
2 diam(D)

|x− y|

)d−k

≤ C(η, d)
diam(D)d−1

|x− y|d−1
.
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Similarly, we calculate

d∑
k=1

(
d

k

)
(xi − yi)

∫ ∞

0

(∂jη)
(
x+ r(x− y)

)
rd−k dr

≤
(
d

⌈d
2
⌉

)
∥∇η∥L∞(Rd)|x− y|

d∑
k=1

∫ 2 diam(D)
|x−y|

0

rd−k dr

= C(η, d)
d∑

k=1

1

d− k + 1

(2 diam(D))d−k+1

|x− y|d−k

≤ C(η, d) diam(D)
diam(D)d−1

|x− y|d−1
.

Thus, we get the estimate

|Gij(x, x− y)| ≤ C(η, d) (1 + diam(D))
diam(D)d−1

|x− y|d−1
. (3.7)

Concerning the other part of ∂jNi(x, y), the kernel Ki,j(x, z) respectively its defining function

kij(x, z) satisfies the assumptions of the Calderón-Zygmund Theorem B.9. Indeed, we have

from the definition of kij(x, z) that for any λ > 0, kij(x, z) = kij(x, λz), and also for any

|z| = 1

|kij(x, z)| ≤
∣∣∣∣ ∫ ∞

0

η(x+ rz)rd−1 dr

∣∣∣∣+ ∣∣∣∣ ∫ ∞

0

(∂jη)(x+ rz)rd dr

∣∣∣∣
≤ ∥η∥L∞(Rd)

diam(D)d

d
+ ∥∂jη∥L∞(Rd)

diam(D)d+1

d+ 1
,

therefore

∥kij(x, z)∥L∞(D×{|z|=1}) ≤ C(η, d) diam(D)d(1 + diam(D)). (3.8)

Third, we find with η ∈ C∞
c (Rd),

∫
Rd η dx = 1, and partial integration∫

|z|=1

kij(x, z) dz = δij

∫
|z|=1

∫ ∞

0

η(x+ rz)rd−1 dr dz +

∫
|z|=1

zi

∫ ∞

0

(∂jη)(x+ rz)rd dr dz

=

∫
Rd

δijη(x+ y) + yi(∂jη)(x+ y) dy =

∫
Rd

δijη(z) + (xi − zi)(∂jη)(z) dz

= δij −
∫
Rd

δijη(z) dz = 0.

Hence, the limits in (3.5) exist and (3.5) can be written as

∂jui(x) = p.v.

∫
D

f(y)Kij(x, x− y) dy +

∫
D

f(y)Gij(x, x− y) dy

+ f(x)

∫
D

(xj − yj)(xi − yi)

|x− y|2
η(y) dy

=: F1(x) + F2(x) + F3(x).
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From Theorem B.9 and (3.8), we get that

∥F1∥Lq(D) ≤ C diam(D)d (1 + diam(D)) ∥f∥Lq(D).

Young’s inequality (B.3) and (3.7) furnish

∥F2∥Lq(D) ≤ C diam(D)d (1 + diam(D)) ∥f∥Lq(D).

Finally, we have

∥F3∥Lq(D) =

∥∥∥∥∫
D

(xj − yj)(xi − yi)

|x− y|2
η(y) dy

∥∥∥∥
L∞
x (D)

∥f∥Lq(D) ≤ C ∥f∥Lq(D),

where the constants above may depend on η, d, and q, but not on D. Combining the estimates

above, together with diam(D) ≥ 1, we end up with

∥u∥W 1,q
0 (D) ≤ C(d, q) diam(D)d (1 + diam(D)) ∥f∥Lq(D),

which is inequality (3.3) since we assumed at the beginning R = 1.

It is left to show that u also satisfies (3.1). For that, we calculate

divu(x) =

∫
D

f(y)

[
d

∫ ∞

1

η(y + r(x− y))rd−1 dr

+
d∑

i=1

∫ ∞

1

(xi − yi)(∂iη)(y + r(x− y))rd dr

]
dy

+
d∑

i=1

f(x)

∫
D

|xi − yi|2

|x− y|2
η(y) dy

=

∫
D

f(y)

[
d

∫ ∞

1

η(y + r(x− y))rd−1 dr

+

∫ ∞

1

rd
(

d

dr
η(y + r(x− y))

)
dr

]
dy + f(x)

=
(
rdη(y + r(x− y))

)∣∣∣∣∞
r=1

∫
D

f(y)dy + f(x)

= −η(x)
∫
D

f(y) dy + f(x).

Since f has zero integral over D, this shows (3.1).

Lastly, if f ∈ Lq
0(D) is arbitrary, we choose a sequence {f ∗

n}n∈N ⊂ C∞
c (D) such that f ∗

n → f in

Lq(D), and define

fn := f ∗
n − φ

∫
D

f ∗
n dx,

where φ ∈ C∞
c (D) satisfies

∫
D
φ dx = 1. Then we still have fn ∈ C∞

c (D) and fn → f in Lq(D),

but also fn ∈ Lq
0(D). Thus, to any fn we can find functions un ∈ C∞

c (D) solving (3.1) and

obeying the estimate (3.3). This together with the fact that the operator B in (3.4) is linear
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in f , the sequence {un}n∈N is a Cauchy sequence in W 1,q
0 (D) since

∥un − uk∥W 1,q
0 (D) = ∥B(fn)− B(fk)∥W 1,q

0 (D) = ∥B(fn − fk)∥W 1,q
0 (D) ≤ C ∥fn − fk∥Lq(D),

thus converging strongly in W 1,q
0 (D) to a function u ∈ W 1,q

0 (D). In particular,

f = lim
n→∞

fn = lim
n→∞

divun = divu

in the sense of strong limits in Lq(D), showing that u satisfies (3.1) and (3.3). This finishes

the proof of the Lemma.

Note that the constant appearing in (3.3) is invariant under rotation, scaling, and translation

of the domain D. These invariances will thus be true for any upper bound on the constants

appearing in future theorems on the existence of an operator B, and will also be used in the

proof of Theorem 3.2.9 below.

3.1.2 Bogovskĭı’s operator in Lipschitz domains

We will prove that for bounded domains D ⊂ Rd with Lipschitz boundary, there exists a right

inverse to the divergence operator. To this end, we first give the definition of a Lipschitz

domain, and then state and prove a result on the connection of Lipschitz and star-shaped

domains, which can be found in [Gal11, Lemma II.1.3 and Exercise II.1.5] (see also [SBH19,

Proposition 10.11]).

Definition 3.1.2. Let Bd−1
1 (0) denote the open unit ball in Rd−1, and let D ⊂ Rd be a bounded

domain. Then we say that D has Lipschitz boundary (or D is a Lipschitz domain), if for any

x0 ∈ ∂D there exists a ball Br(x0) and a Lipschitz function ζ : Bd−1
1 (0) → R with Lipschitz

constant L > 0 such that in a proper coordinate system with origin x0, we have

∂D ∩Br(x0) = {(x′, ζ(x′)) : x′ ∈ Bd−1
1 (0)},

D ∩Br(x0) = {(x′, xd) ∈ Bd−1
1 (0)× R : xd < ζ(x′)},

where we used the notation x′ = (x1, . . . , xd−1).

Lemma 3.1.3. Let D ⊂ Rd be a bounded Lipschitz domain. Then there exists a finite collection

of bounded open sets {Di}ki=1 which are star-shaped with respect to a ball such that D =
⋃k

i=1Di.

Proof. Let x0 ∈ ∂D. Since D is a Lipschitz domain, there exists a function ζ : Bd−1
1 (0) → R

with Lipschitz constant L > 0 and a ball Br(x0) such that for any point x = (x′, xd) ∈
∂D ∩Br(x0), we have

xd = ζ(x′), x′ ∈ Bd−1
1 (0),

and for all x ∈ D ∩Br(x0), we have

xd < ζ(x′), x′ ∈ Bd−1
1 (0).

By a proper rotation and translation, without loss of generality we may assume that x0 = 0.

Denote by y0 = (0, . . . , 0, yd) ∈ D the intersection point of Br(x0) and the xd-axis, and let
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C(y0, α) be the cone with vertex y0, opening axis equal to the xd-axis, and semi-aperture

0 < α < π/2. Let R be a ray starting in y0 and lying inside C(y0, α). Then, R intersects

∂D ∩ Br(x0) in exactly one point. Indeed, assume that R cuts ∂D ∩ Br(x0) in two distinct

points z1 ̸= z2, and let α′ < α be the angle between R and the xd-axis. Rotating the coordinate

system as the case may be, we can assume that

z1 = (z11e1, ζ(z
1
1e1)), z11 > 0, z2 = (z12e1, ζ(z

1
2e1)), z12 > 0,

where e1 = (1, 0, . . . , 0) ∈ Rd−1. Since z1, z2 ∈ R, we have

tanα′ =
z11

ζ(z11e1)− yd
=

z12
ζ(z12e1)− yd

=
|z11 − z12 |

|ζ(z11e1)− ζ(z12e1)|
=

|z1 − z2|
|ζ(z11e1)− ζ(z12e1)|

,

hence

|z1 − z2|
|ζ(z11e1)− ζ(z12e1)|

= tanα′ ≤ tanα.

Choosing α so small that

tanα ≤ 1

2L
,

this would yield

|ζ(z11e1)− ζ(z12e1)| ≤ L|z1 − z2| ≤
1

2
|ζ(z11e1)− ζ(z12e1)|,

which is a contradiction. Thus, R intersects ∂D ∩ Br(x0) in exactly one point. Now, let

z = (z′, zd) with zd > yd, and denote by S = S(z) the intersection of C(y0, α/2) with the plane

{(x′, xd) ∈ Rd : xd = zd}. Set further

R(z) = dist(∂S, z).

If z is sufficiently close to y0 (say, z = z0), the set S(z0) ⊂ D and, in addition, any ray

originating from a point in S(z0) that lies completely inside C(y0, α/2) forms with the xd-axis

an angle less than α, hence it intersects ∂D ∩ Br(x0) in only one point. Let Z be a cylinder

with axis equal to the xd-axis that fulfils

∂D ∩ Z = ∂D ∩ C(y0, α/2),

then, by what we have shown till now, the set Z ∩ Br(x0) ∩D is star-shaped with respect to

the ball BR(z0)(z0). Since x0 ∈ ∂D was arbitrary and ∂D is compact, we can choose a finite

number of points {xi}k
′

i=1 ⊂ ∂D, corresponding balls Bri(xi), and corresponding cylinders Zi

such that ∂D ⊂
⋃k′

i=1 Zi ∩Br(xi). Define now Di := Zi ∩Bri(xi) ∩D and consider

Dint := D \
k′⋃
i=1

Di =

(
D

c ∪
( k′⋃

i=1

Di

))c

,

then Dint is compact and separated from ∂D, so we may choose finitely many balls {Bi}ki=k′+1
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which cover Dint and which are strictly contained in D. Since all the sets Di, 1 ≤ i ≤ k′, are

star-shaped with respect to a ball, and the balls Bi, k
′ + 1 ≤ i ≤ k, are obviously star-shaped

with respect to a ball, we may take {Di}ki=1 := {Di}k
′

i=1 ∪ {Bi}ki=k′+1 to finish the proof.

Before we present and prove the fact that in any bounded Lipschitz domain there exists

a right inverse to the divergence, we show the following decomposition result for functions

defined on the union of star-shaped domains (see [Gal11, Lemma III.3.2]).

Lemma 3.1.4. Let D =
⋃k

i=1Di ⊂ Rd be a connected set, where any set Di is a star-shaped

domain with respect to a ball, and the sets are numbered in such a way that |Di∩
⋃k

l=i+1Dl| ≠ 0

for any 1 ≤ i ≤ k − 1. Further, let f ∈ Lq
0(D). Then there exist functions {fi}ki=1 such that

� supp(fi) ⊂ Di,

� fi ∈ Lq
0(Di),

� f =
∑k

i=1 fi,

� ∥fi∥Lq(Di) ≤ Ci ∥f∥Lq(D), where (with the convention
∏0

j=1 aj := 1)

Ci =

(
1 +

|Di|1−1/q

|Fi|1−1/q

) i−1∏
j=1

(
1 +

|Kj \Dj|1−1/q

|Fj|1−1/q

)
, 1 ≤ i ≤ k − 1,

Ck =
k−1∏
j=1

(
1 +

|Kj \Dj|1−1/q

|Fj|1−1/q

)
,

and the sets Fi and Ki are defined via Fi := Di ∩Ki and Ki :=
⋃k

l=i+1Dl.

Proof. First, note that the constants Ci are well-defined since we may always number the sets

Di in such a way that |Fi| ≠ 0 for any i. We will give a graph-theoretical argument for this

and refer to [Gri21] for the basic concepts of graph theory. Let G = (V,E), where V = {Di}ki=1

are the vertices of G, and E is the set of edges, where we connect Di and Dj with an edge if

|Di ∩ Dj| > 0. Since D is connected, G is as well, and therefore contains a spanning tree T .

We may now relabel the sets Di such that D1 is a leaf of T (that is, a vertex with just one

edge), and remove D1 and its edge from T . Now, let D2 be a leaf of T \ {D1}, D3 be a leaf of

T \ {D1, D2}, and so on. Note that if we remove a leaf from the tree T , the remaining graph

is still a tree and in particular connected. Therefore, we may proceed inductively to show the

desired. Now, define

f1(x) :=

{
f(x)− χF1

(x)

|F1|

∫
D1
f dx if x ∈ D1,

0 if x ∈ K1 \D1,

g1(x) :=

{
[1− χF1(x)]f(x)−

χF1
(x)

|F1|

∫
K1\D1

f dx if x ∈ K1,

0 if x ∈ D1 \K1.

Then, clearly, ∫
D1

f1 dx = 0, supp(f1) ⊂ D1, f1 ∈ Lq(D1),

supp(g1) ⊂ K1, g1 ∈ Lq(K1),
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and also, since D = D1 ∪ K1 and by dividing into the cases x ∈ D1 \ K1, x ∈ K1 \ D1, and

x ∈ D1 ∩K1 = F1, we have f(x) = f1(x) + g1(x) in D, thus∫
K1

g1 dx =

∫
K1\D1

g1 dx+

∫
K1∩D1

g1 dx =

∫
K1\D1

g1 dx+

∫
F1

g1 dx

=

∫
K1\D1

g1 dx−
∫
K1\D1

f dx = −
∫
K1\D1

f1 dx = 0.

Setting g0 := f , we define inductively for any 1 ≤ i ≤ k − 1

fi(x) :=

{
gi−1(x)−

χFi
(x)

|Fi|

∫
Di
gi−1 dx if x ∈ Di,

0 if x ∈ Ki \Di,

gi(x) :=

{
[1− χFi

(x)]gi−1(x)−
χFi

(x)

|Fi|

∫
Ki\Di

gi−1 dx if x ∈ Ki,

0 if x ∈ Di \Ki,

and set fk(x) := gk−1(x). Similarly to the case i = 1, we have for all 1 ≤ i ≤ k∫
Di

fi dx = 0, supp(fi) ⊂ Di, fi ∈ Lq(Di).

Now, by Hölder’s inequality (B.2), we get

∥fk∥Lq(Dk) = ∥gk−1∥Lq(Dk) ≤ ∥gk−2∥Lq(Dk) +

∣∣∣∣ ∫
Kk−1\Dk−1

gk−2 dx

∣∣∣∣|Fk−1|
1
q
−1

≤ ∥gk−2∥Lq(D) + ∥gk−2∥Lq(Kk−1\Dk−1)
|Kk−1 \Dk−1|1−1/q

|Fk−1|1−1/q

≤ ∥gk−2∥Lq(D)

(
1 +

|Kk−1 \Dk−1|1−1/q

|Fk−1|1−1/q

)
.

Similarly, for any 1 ≤ i ≤ k − 1,

∥fi∥Lq(Di) ≤ ∥gi−1∥Lq(Di) +

∣∣∣∣ ∫
Di

gi−1 dx

∣∣∣∣|Fi|
1
q
−1

≤ ∥gi−1∥Lq(D) + ∥gi−1∥Lq(Di)
|Di|1−1/q

|Fi|1−1/q

≤ ∥gi−1∥Lq(D)

(
1 +

|Di|1−1/q

|Fi|1−1/q

)
,

which, by supp(gi−1) ⊂ Ki−1 and iterating (i− 1) times, yields for all 1 ≤ i ≤ k − 1

∥fi∥Lq(Di) ≤ ∥gi−1∥Lq(D)

(
1 +

|Di|1−1/q

|Fi|1−1/q

)
= ∥gi−1∥Lq(Ki−1)

(
1 +

|Di|1−1/q

|Fi|1−1/q

)
≤

(
∥gi−2∥Lq(Ki−1) +

∣∣∣∣ ∫
Ki−1\Di−1

gi−2 dx

∣∣∣∣|Fi−1|
1
q
−1

)(
1 +

|Di|1−1/q

|Fi|1−1/q

)
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≤
(
∥gi−2∥Lq(D) + ∥gi−2∥Lq(Ki−1\Di−1)

|Ki−1 \Di−1|1−1/q

|Fi−1|1−1/q

)(
1 +

|Di|1−1/q

|Fi|1−1/q

)
≤ ∥gi−2∥Lq(D)

(
1 +

|Ki−1 \Di−1|1−1/q

|Fi−1|1−1/q

)(
1 +

|Di|1−1/q

|Fi|1−1/q

)
≤ ∥g0∥Lq(D)

(
1 +

|Di|1−1/q

|Fi|1−1/q

) i−1∏
j=1

(
1 +

|Kj \Dj|1−1/q

|Fj|1−1/q

)

= ∥f∥Lq(D)

(
1 +

|Di|1−1/q

|Fi|1−1/q

) i−1∏
j=1

(
1 +

|Kj \Dj|1−1/q

|Fj|1−1/q

)

as well as

∥fk∥Lq(Dk) ≤ ∥f∥Lq(D)

k−1∏
j=1

(
1 +

|Kj \Dj|1−1/q

|Fj|1−1/q

)
.

The next lemma states that we can find and bound a Bogovskĭı operator in any domain that

is a union of star-shaped domains. This can be seen as a prototype for the case of Lipschitz

domains, see Theorem 3.1.6 below.

Lemma 3.1.5. Let D =
⋃k

i=1Di ⊂ Rd be a connected set, where any Di is star-shaped with

respect to a ball Bi with radius ri > 0, and let f ∈ Lq
0(D). Then there exists a bounded linear

map B : Lq
0(D) → W 1,q

0 (D) such that B(f) is a solution to system (3.1) and B satisfies the

bound (3.2), where the constant C obtains an upper bound

C ≤ c0 c1 (1 + s) sd.

Here, c0 = c0(d, q), c1 is an upper bound for the constants Ci arising in Lemma 3.1.4, and s is

defined as

s := max
1≤i≤k

diam(Di)

ri
.

Proof. Decompose f as in Lemma 3.1.4, then by Lemma 3.1.1 we can find in every Di a linear

map Bi : L
q
0(Di) → W 1,q

0 (Di) and a constant c0 = c0(d, q) > 0 satisfying

divBi(fi) = fi in Di,

∥Bi(fi)∥W 1,q
0 (Di)

≤ c0 ∥fi∥Lq(Di)

(
1 +

diam(Di)

ri

)(
diam(Di)

ri

)d

≤ c0Ci ∥f∥Lq(D)

(
1 +

diam(Di)

ri

)(
diam(Di)

ri

)d

.

Extending any Bi to be zero outside its domain of definition, we may set

B(f) :=
k∑

i=1

Bi(fi),
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which finishes the proof since

divB(f) =
k∑

i=1

divBi(fi) =
k∑

i=1

fi = f in Di,

and

∥B(f)∥W 1,q
0 (D) ≤

k∑
i=1

∥Bi(fi)∥W 1,q
0 (Di)

≤ c0 ∥f∥Lq(D)

k∑
i=1

Ci

(
1 +

diam(Di)

ri

)(
diam(Di)

ri

)d

≤ c0 ∥f∥Lq(D) k (max
1≤i≤k

Ci)

(
1 + max

1≤i≤k

diam(Di)

ri

)(
max
1≤i≤k

diam(Di)

ri

)d

≤ c0 c1 (1 + s) sd ∥f∥Lq(D).

Theorem 3.1.6. Let D ⊂ Rd be a bounded domain with Lipschitz boundary. Then there

exists a bounded linear map B : Lq
0(D) → W 1,q

0 (D) obeying the bound (3.2) such that for any

f ∈ Lq
0(D), the function u = B(f) is a solution to system (3.1).

Proof. By Lemma 3.1.3, we may write D as D =
⋃k

i=1Di, where any Di is star-shaped with

respect to a ball. The statement is now a direct consequence of Lemma 3.1.5.

Remark 3.1.7. Let us remark that due to the previous lemmata, the constant C arising in

(3.2) heavily depends on the Lipschitz character L of ∂D. More precisely, we see that the

number k from Lemma 3.1.4 of star-shaped domains that cover D depends proportional on L,

which shows that also the constant c1 from Lemma 3.1.5 tends towards infinity as L does. We

will come back to this observation in Section 3.3 later on.

3.2 John domains

John domains are a class of rather general domains that still satisfy some good regularity

properties. They were first used by F. John in his work [Joh61] in connections with elasticity

problems and are defined as follows.

Definition 3.2.1. For a constant c > 0, a domain U ⊂ Rd is said to be a c−John domain if

there exists a point x0 ∈ U such that for any point x ∈ U there is a rectifiable path Γ : [0, ℓ] → U

which is parametrized by arc length with

Γ(0) = x, Γ(ℓ) = x0, ∀t ∈ [0, ℓ] : |Γ(t)− x| ≤ c dist(Γ(t), ∂U). (3.9)

John domains may have fractal boundaries or internal cusps, whereas external cusps are

forbidden. For instance, the interior of Koch’s snowflake as well as any convex domain are

John domains, see [Pom13, Theorem 5.9]. In the case of bounded domains, there are several

equivalent definitions of John domains, see [Väi88, Section 2.17]. We state the following char-

acterization, which is used in [DRS10, Section 3.1]: a bounded domain U is a c−John domain
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x0

xy

r

R

AR,r

L

Γ

Figure 3.1: The path Γ (red), connecting x ∈ AR,r first to y ∈ L and then to x0 without leaving
L (dashed).

in the sense of Definition 3.2.1 if and only if there is a c1(c) > 0 and a point x0 ∈ U such

that any point x ∈ U can be connected to x0 by a rectifiable path Γ : [0, ℓ] → U which is

parametrized by arc length and ⋃
t∈[0,ℓ]

B
(
Γ(t), t/c1

)
⊂ U. (3.10)

Obviously, if U is a c−John domain, than it is also a c′−John domain for any c′ ≥ c. Further,

the condition (3.9) is invariant under rotation, translation, and scaling of the domain U . We

will give some examples of John domains, which we will use later on for the existence and

boundedness of Bogovskĭı’s operator in perforated domains.

Example 3.2.2. Let 0 < r < R and consider the annulus AR,r := BR(0) \ Br(0). Then AR,r

is a John domain with constant c = 2πR
R−r

. In particular, if 0 < r0 < R is fixed and 0 < r ≤ r0,

then the John constant of AR,r just depends on r0 and R but not on r.

Proof. The ideas given here will show up again later in the proof of Lemma 3.4.4. Let L :=

∂B(R+r)/2(0) be the midline in AR,r, and fix a point x0 ∈ L. Then, for x ∈ AR,r, the path Γ

which connects x to L and then follows L to x0 will do the job. More precisely, let Γ = Γ1∪Γ2,

where Γ1 is the shortest line connecting x to L and hitting L in a point y, and Γ2 ⊂ L is

the shortest arc from y to x0; see Figure 3.1 for an illustration in two dimensions. Since Γ1 is

defined to be the shortest line joining x to L, it is part of the ray {tx : t ≥ 0}, so its length is

bounded by R−r
2
. Similarly, as Γ2 is the shortest arc in L joining y to x0, its length is bounded

by πR+r
2
. Denoting by ℓ the length of Γ, we then have ℓ ≤ πR+r

2
+ R−r

2
, so Γ is rectifiable. Let

t0 ∈ [0, ℓ] be the unique time such that Γ(t0) = y. For t ∈ [0, t0], we obviously have

|Γ(t)− x| = |Γ1(t)− x| = dist(Γ1(t), ∂AR,r)

≤ 2πR

R− r
dist(Γ1(t), ∂AR,r) =

2πR

R− r
dist(Γ(t), ∂AR,r).

For any t ∈ [t0, ℓ], we have dist(Γ2(t), ∂AR,r) =
R−r
2
, thus

|Γ(t)− x| = |Γ2(t)− x| ≤ π
R + r

2
+ |y − x| ≤ π

R + r

2
+
R− r

2
≤ πR
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=
2πR

R− r

R− r

2
=

2πR

R− r
dist(Γ2(t), ∂AR,r) =

2πR

R− r
dist(Γ(t), ∂AR,r),

leading finally to

|Γ(t)− x| ≤ 2πR

R− r
dist(Γ(t), ∂AR,r) ∀t ∈ [0, ℓ].

Example 3.2.3. Let x0 ∈ Rd and S ⊂ Rd be a bounded star-shaped domain with respect to a

ball Br(x0). Then S is a John domain with John constant at least diam(S)/r.

Proof. Let x ∈ S and choose the path Γ as the straight line from x to x0. Since S is star-shaped

with respect to any point of Br(x0) and |x− x0| ≤ diam(S), we have⋃
t∈[0,|x−x0|]

B(Γ(t), rt/ diam(S)) ⊂ S.

Since for straight paths Γ, equations (3.9) and (3.10) coincide with c = c1, we may choose

c = diam(S)/r.

Example 3.2.4. Let x0, y0 ∈ Rd and S1, S2 ⊂ Rd be bounded star-shaped domains with respect

to balls BR1(x0), BR2(y0), respectively. Assume that there exist z ∈ S1 ∩ S2 and 0 < r ≤
1
2
min{diam(B1(x0)), diam(B2(y0))} such that Br(z) ⊂ S1 ∩ S2 and S := S1 ∪ S2 ⊂ Bc0r(z) for

some c0 > 0. Then S is a John domain.

Proof. We will show that the point x0 is a proper John center for S. First, since S1 and

S2 are star-shaped, we see from Example 3.2.3 that they are John domains with constant

c′ := max
{diam(S1)

R1
, diam(S2)

R2

}
. Let x ∈ S. If x ∈ S1, we are in the situation of Example 3.2.3.

If x ∈ S2, then we connect first x to y0 with the path Γ1(t) := x+ t y0−x
|y0−x| , then connect y0 to z

via Γ2(t) := y0 + t z−y0
|z−y0| , and finally connect z to x0 via Γ3(t) := z + t x0−z

|x0−z| . Since x ∈ S2 and

z ∈ S1, both Γ1 and Γ3 are proper paths with John constant c′. Since S2 is star-shaped and

z ∈ Br(z) ⊂ S2, we have dist(Γ2(t), ∂S) ≥ r, leading to

|Γ2(t)− z| ≤ |y0 − z| ≤ diam(S2) ≤ 2c0 r ≤ 2c0 dist(Γ2(t), ∂S).

Finally, we choose Γ = Γ1 ∪ Γ2 ∪ Γ3 to obtain a proper path joining x to x0 in S, where the

constant c occurring in (3.9) can be chosen as c = c′ + 2c0 + c′ = 2(c′ + c0).

Example 3.2.5. Let T ⊂ B1(0) be a simply connected compact set with Lipschitz boundary

and 0 ∈ T . Then B1(0) \ T is a John domain, where the John constant only depends on the

Lipschitz character of ∂T .

Proof. From Lemma 3.1.3, we can cover B1(0) \ T with finitely many open sets {Di}ki=1 such

that each Di is star-shaped with respect to some ball. If Di ∩Dj ̸= ∅ for some i ̸= j, then we

may find a a ball Br ⊂ Di ∩ Dj such that the conditions of Example 3.2.4 are fulfilled. The

statement follows now from iterating the arguments given in Example 3.2.4.

Finally, we will state the following result for shrinking domains, which will be crucial in the

proof of Theorem 3.4.1.
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Lemma 3.2.6. Let T ⊂ B1/2(0) be a simply connected compact set with Lipschitz boundary

and 0 ∈ T , and let 0 < r < 1. Then the domain B1(0) \ (rT ) is a John domain, where the

John constant does not depend on r.

Proof. Since T ⊂ B1/2(0), we have rT ⊂ Br/2(0) ⊂ Br(0) ⊂ B1(0). From Example 3.2.5,

we know that B1(0) \ T is a John domain, where the John constant just depends on the

Lipschitz character of ∂T . Since (3.9) is invariant under scaling, the same holds true for the

set Br(0) \ (rT ). Further, from Example 3.2.2, the set B1(0) \ Br/2(0) is a John domain

with constant independent of r. We now choose a star-shaped domain from the covering of

Br(0) \ (rT ) such that its star center x0 ∈ Br(0) \ Br/2(0). Note that this choice is always

possible: indeed, if all star centers are inside Br/2(0) \ (rT ), then we choose one of the star-

shaped domains that cover Br(0) \ (rT ). This one will also cover a part of Br(0) \ Br/2(0),

which then has Lipschitz boundary, and we may cover this part by finitely many star-shaped

domains with star centers in Br(0) \Br/2(0). Now, let x ∈ B1(0) \ (rT ). If x ∈ B1(0) \Br/2(0),

we are in the situation of Example 3.2.2. If x ∈ Br(0) \ (rT ), then first join x to x0, following

the star-shaped sets that connect them as shown in Example 3.2.4, and finally x0 to the John

center of B1(0) \ Br/2(0). The path we obtained then fulfills (3.9) with a constant c > 0 that

may depend on the Lipschitz character of ∂T , but not on r.

Before we state the existence and boundedness of a right inverse to the divergence in

John domains taken from [DRS10], we give the definition of the so-called emanating chain

condition. Our arguments how to prove the existence of a Bogovskĭı operator are then built

on this definition.

Definition 3.2.7 ([DRS10, Definition 3.5]). Let D ⊂ Rd be a bounded domain and σ1, σ2 ≥ 1.

Then D satisfies the emanating chain condition with constants σ1 and σ2 if there exists a

covering W = {Wi : i ∈ N} of D consisting of open cubes or balls such that:

i) For all i ∈ N, we have σ1Wi ⊂ D and
∑

i∈N χσ1Wi
≤ σ2χD on Rd.

ii) For any Wi ∈ W there exists a chain of pairwise different Wi,0,Wi,1, . . . ,Wi,mi
∈ W such

that Wi,0 = Wi, Wi,mi
= W0 and Wi,k ⊂ σ2Wi,l for all 0 ≤ k ≤ l ≤ mi. Further, for any

0 ≤ k < mi, there exists a ball Bi,k ⊂ Wi,k ∩Wi,k+1 such that Wi,k ∪Wi,k+1 ⊂ σ2Bi,k.

iii) For any compact K ⊂ D, the set {i ∈ N : Wi ∩K ̸= ∅} is finite.

As shown in [DRS10], for bounded domains, this condition is equivalent to be a John

domain. For our purposes, we will just show that any John domain satisfies the emanating

chain condition. The proof of this fact uses a covering result which is known as the Whitney

covering lemma, and occurred first in [Whi34, Section 8] (see also [Shv07, Theorem 2.4] and

[Guz75, Theorem 2.1 and 2.2]).

Lemma 3.2.8 ([DRS10, Proposition 3.3]). There are constants 1 < κ1 < κ2 and N > 0 which

depend only on the dimension d such that for any open proper set D ⊊ Rd there is a family

{Qi, i ∈ N} of open cubes or balls such that

(W1) D =
⋃

i∈N κ1Qi,

(W2) 1
2
κ1 diam(Qi) ≤ dist(Qi, ∂D) ≤ κ2 diam(Qi),
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(W3)
∑

i∈N χ2κ1Qi
≤ NχD on Rd.

We are now in the position to state the following result about existence and boundedness of

a right inverse to the divergence, which is again taken from [DRS10]. We will use the notation

C∞
c,0(D) for functions f ∈ C∞

c (D) with zero mean value over D.

Theorem 3.2.9 ([DRS10, Theorem 5.2]). Let D ⊂ Rd be a bounded domain satisfying the

emanating chain condition with constants σ1, σ2 ≥ 1. In particular, by Theorem 3.2.10 below,

D may be a John domain. Farther, let 1 < q <∞. Then, there is a bounded linear operator

B : Lq
0(D) → W 1,q

0 (D)

such that for any f ∈ Lq
0(D)

divB(f) = f in D, ∥B(f)∥W 1,q
0 (D) ≤ C ∥f∥Lq(D),

where the constant C > 0 just depends on σ1, σ2, q, and d. If, in addition, f ∈ C∞
c,0(D), then

B(f) ∈ C∞
c (D).

To proof Theorem 3.2.9, we need several decomposition and covering results. The first one

states that any John domain satisfies the emanating chain condition.

Theorem 3.2.10 ([DRS10, Theorem 3.8]). Let D ⊂ Rd be a bounded c−John domain with

John center x0 ∈ D, and let {Qi, i ∈ N} be a Whitney covering of D with constants κ1, κ2, N ,

and x0 ∈ Q0. Define σ1 := 4
3
, Wi := 3

2
κ1Qi, and W := {Wi, i ∈ N}. Then there exists a

constant σ2 = σ2(κ1, κ2, c, d) ≥ 1 such that D satisfies the emanating chain condition with

constants σ1 and σ2 and covering W.

Sketch of the proof. The main idea is to construct for any i ∈ N a finite sequence of pairwise

different cubes or balls Qi,1, . . . , Qi,mi
∈ {Qi, i ∈ N} such that:

� Qi,0 = Qi, Qi,mi
= Q0 for i ∈ N.

� κ1Qi,k ∩ κ1Qi,k+1 ̸= ∅ for i ∈ N and 0 ≤ k < mi.

� There is a constant σ2 = σ2(κ1, κ2, c, d) ≥ 1 with Qi,k ⊂ σ2Qi,l for any 0 ≤ k ≤ l ≤ mi.

The sets Qi,k will be defined inductively, starting with Qi,0 := Qi. If we denote by xi the center

of Wi, by the equivalent form (3.10) of the John property (3.9) there is a rectifiable path Γi

with length ℓi joining xi to x0 such that⋃
t∈[0,ℓi]

B(Γi(t), t/c1) ⊂ D.

Since the image of Γi is a compact subset of D, it only intersects finitely many Qi, i ∈ N,
from which the chain will be constructed. Assuming that the sets Qi,0, . . . , Qi,m are already

constructed and Qi,m ̸= Q0, we set

tm+1 := sup{s : Γi(s) ∈ κ1Qi,m}.

Due to (W1) of Lemma 3.2.8, there exists Qi,m+1 ∈ {Qi, i ∈ N} with Γi(tm+1) ∈ κ1Qi,m+1 and,

by construction, also Γi(tm+1) ∈ κ1Qi,m ∩ κ1Qi,m+1. Furthermore, by definition of the tk, we
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have Qi,m+1 ̸= Qi,k for all 0 ≤ k ≤ m. Finally, fixing 0 ≤ k ≤ m + 1 and denote by xi,k and

xi,m+1 the centers of Qi,k and Qi,m+1, respectively, for fixed y ∈ Qi,k one may estimate

|xi,m+1 − y| ≤ tm+1 + diam(Qi,k) + diam(Qi,m+1).

Using the John property as well as the properties from the Whitney covering, one can estimate

every summand in terms of κ1, κ2, c1, and diam(κ1Qi,m+1) to obtain

|xi,m+1 − y| ≤ C (1 + c1)(1 + κ2) diam(κ1Qi,m+1)

for some C = C(d) > 0, which eventually shows that

Qi,k ⊂ C (1 + c1)(1 + κ2) 2κ1Qi,m+1.

Since the constant on the right is independent of m, one may choose

σ2 := C(d) (1 + c1)(1 + κ2) 2κ1.

Now, it is enough to define for any i ∈ N and any 0 ≤ k ≤ mi the sets Wi,k := 3
2
κ1Qi,k and

show that the Wi,k fulfill all the conditions of Definition 3.2.7.

The next step is to show that for a domain satisfying the emanating chain condition with

covering W = {Wi, i ∈ N}, one can decompose a function f ∈ Lq
0(D) into functions fi ∈

Lq
0(Wi). This decomposition result is a generalization of Lemma 3.1.4 to domains satisfying

the emanating chain condition rather than domains that are star-shaped.

Theorem 3.2.11 ([DRS10, Theorem 4.2]). Let D ⊂ Rd be a bounded domain satisfying the

emanating chain condition with constants σ1, σ2 ≥ 1 and covering W = {Wi, i ∈ N}. Then

there are linear operators Ti : C
∞
c,0(D) → C∞

c,0(Wi) such that for all 1 < q <∞ we have:

� For any i ∈ N, Ti is continuous from Lq
0(D) to Lq

0(Wi).

� For any i ∈ N and any f ∈ Lq
0(D), it holds

|Tif | ≤ C(d)σ2χWi
Mf almost everywhere,

where Mf is the Hardy-Littlewood maximal function from Lemma B.6.

� For any f ∈ Lq
0(D), it holds f =

∑
i∈N Tif in Lq

0(D), where the convergence is uncondi-

tional.

� The map f 7→ ∥Tif∥Lq
0(Wi) is bounded and obeys the estimate

1

C
∥f∥Lq(D) ≤

(∑
i∈N

∥Tif∥qLq(Wi)

) 1
q

≤ C ∥f∥Lq(D),

where C = C(d, σ1, σ2, q) > 0.

� If f ∈ C∞
c,0(D), then #{i ∈ N : Tif ̸= 0} <∞.
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Sketch of the proof. The proof of the existence of the operators Ti is constructive. First, we

assume that f ∈ C∞
c,0(D). Since D ⊂

⋃
i∈NWi, one may choose a smooth partition of unity

{ξi}i∈N with supp(ξi) ⊂ Wi and define Sif := ξif . It is immediate to see that the operators

Si are linear from L1(D) to L1(Wi) and from C∞
c (D) to C∞

c (Wi), they are bounded since

|Sif | ≤ χWi
|f |, and also

∑
i∈N Sif = f almost everywhere and in Lq(D) if f ∈ Lq(D). However,

they do not satisfy
∫
D
Sif dx = 0 in general. To fix this issue, let Wi,k and Bi,k be as in

Definition 3.2.7. One may assume that the balls Bi,k stem from a family B such that∑
B∈B

χB ≤ σ2χD on Rd .

Now, for any Bi,k with 0 ≤ k < mi, let ηi,k ∈ C∞
c (Bi,k) be such that ηi,k ≥ 0,

∫
Bi,k

ηi,k dx = 1,

and ∥ηi,k∥L∞(Rd) ≤ C(d)/|Bi,k|. Choose further a function ηi,mi
∈ C∞

c (W0) with ηi,mi
≥ 0,∫

W0
ηi,mi

dx = 1, and ∥ηi,mi
∥L∞(Rd) ≤ C(d)/|W0|. Finally, one defines the operators Ti as

Tif := Sif − ηi,0

∫
Wi

Sif dx+
∑

j>0, j ̸=i

(∫
Wj

Sjf dx
∑

k: 0<k≤mj ,
Wj,k=Wi

(ηj,k−1 − ηj,k)

)
.

Since all cubes (or balls) in a chain are pairwise different, the sum over k consists of at most

one summand. However, the sum over j may still be countable. Thus, one has to proof that

Ti is well-defined. It turns out that the sum converges almost everywhere absolutely and can

be estimated with the help of the maximal function Mf , so Tif is indeed well-defined for any

f ∈ C∞
c,0(D) and any f ∈ Lq

0(D). The fact that
∫
Wi
Tif dx = 0 follows from this convergence

and
∫
Rd ηi,k dx = 1 for all i, k ≥ 0 with 0 ≤ k ≤ mi. The estimate for the map f 7→ ∥Tif∥Lq

0(Wi)

finally follows from the fact that the maximal operator M is bounded from Lq(D) to Lq(D)

for any q > 1 and (∑
i∈N

∥Tif∥qLq(Wi)

) 1
q

≤ C

(∑
i∈N

∥χWi
Mf∥qLq(Wi)

) 1
q

= C

(∑
i∈N

∫
D

χWi
|Mf |q dx

) 1
q

≤ C ∥Mf∥Lq(D)

≤ C ∥f∥Lq(D)

as well as

∥f∥Lq(D) =

∥∥∥∥∑
i∈N

Tif

∥∥∥∥
Lq(D)

≤ C

(∑
i∈N

∥Tif∥qLq(Wi)

) 1
q

.

With the outcomes from Theorems 3.2.10 and 3.2.11 at hand, we are able to prove the

existence of a bounded linear right inverse to the divergence in bounded John domains.

Proof of Theorem 3.2.9. Let W = {Wi, i ∈ N} be the covering of D satisfying the properties

stated in Definition 3.2.7. Further, let Ti : Lq
0(D) → Lq

0(Wi) be as in Theorem 3.2.11. By
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Lemma 3.1.1, there exists a linear bounded operator Bref which is continuous from C∞
c,0(B1(0))

to C∞
c (B1(0)) and also from Lq

0(B1(0)) to W
1,q
0 (B1(0)). Since we may choose Wi as balls and

because of the form of the constant in (3.3), translation and scaling considerations show the

existence of linear bounded operators Bi : L
q
0(Wi) → W 1,q

0 (Wi) such that for any f ∈ Lq
0(Wi),

divBi(f) = f in Wi, ∥Bi(f)∥W 1,q
0 (Wi)

≤ C ∥f∥Lq(Wi),

where the constant C > 0 only depends on q and d, but not on i.

Let f ∈ Lq
0(D) and extend BiTif outside Wi by zero, which yields BiTif ∈ W 1,q

0 (D). We now

define

B(f) :=
∑
i∈N

BiTif almost everywhere in D.

SinceW 1,q
0 (Wi) ⊂ W 1,1

0 (Wi), the sum converges in L1
loc(D) and also in the sense of distributions.

The same argument yields ∇B(f) =
∑

i∈N ∇BiTif in L1
loc(D).

Together with Theorem 3.2.11 and the estimate on Bi, we obtain∑
i∈N

∥BiTif∥qLq(Wi)
≤ C

∑
i∈N

∥Tif∥qLq(Wi)
≤ C ∥f∥qLq(D).

This and the fact that supp(BiTif) ⊂ Wi yields Bf =
∑

i∈N BiTif in W 1,q
0 (D) and also ∇Bf =∑

i∈N ∇BiTif in Lq
0(D) as well as

∥Bf∥q
W 1,q

0 (D)
≤ C

∑
i∈N

∥BiTif∥qLq(Wi)
≤ C ∥f∥qLq(D).

Since ∇Bf =
∑

i∈N ∇BiTif , divBi(f) = f in Wi, and
∑

i∈N Tif = f in Lq(D), we conclude

divB(f) =
∑
i∈N

divBiTif =
∑
i∈N

Tif = f.

Finally, let f ∈ C∞
c,0(D). Then, by Theorem 3.2.11, we have Tif ∈ C∞

c (Wi) for all i ∈ N, and
Tif ̸= 0 for just finitely many i ∈ N, which yields by the properties of Bi that BiTif ∈ C∞

c (Wi)

for any i ∈ N and BiTif ̸= 0 for only finitely many i ∈ N. This shows Bf ∈ C∞
c (D) and the

proof is complete.

3.3 Perforated domains: The case of well separated ob-

stacles

We now turn to the case of perforated domains and the existence and boundedness of a right

inverse to the divergence in this case. Let us emphasize that the bounds on the Bogovskĭı

operator in the previous sections depend on the domain, whereas in the perforated setting,

we want to know the precise dependence on the perforation. This uniform boundedness is the

main issue in the following two sections, and it will be crucial to obtain the homogenization

results in Chapter 4.
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3.3. Perforated domains: The case of well separated obstacles

Let us start to define the perforated domain for the case of well-separated holes. Since

we will apply the results in the sequel for homogenization of the compressible Navier-Stokes

equations in R3, we will focus just on the case d = 3 and rely on the results given in [DFL17].

We will not go into a more detailed analysis of boundary regularity, thus assuming that the

boundaries of all occurring sets are sufficiently smooth.

Let D ⊂ R3 be a bounded domain with smooth boundary. Let ε ∈ (0, 1), α ≥ 1, and

{xεi}i∈N ⊂ R3 be a collection of points such that |xεi − xεk| ≥ 2ε for all i ̸= k. We then define

the perforated domain as

Dε := D \
⋃
i∈Kε

(εαT + xεi ), Kε := {i ∈ N : xεi ∈ D, dist(xεi , ∂D) > ε},

where T ⊂ B1/2(0) is a simply connected compact set with smooth boundary and 0 ∈ T . We

call the sets T ε
i := (εαT + xεi ) obstacles or holes. We also assume that we just removed those

balls from D which are not too close to the boundary in order to avoid boundary issues.

In this section, we will show the following existence theorem:

Theorem 3.3.1 ([DFL17, Theorem 2.3 and Section 3]). Let Dε be defined as above. Then for

all 1 < q <∞ there exists a bounded linear operator

Bε : L
q
0(Dε) → W 1,q

0 (Dε)

such that

divBε(f) = f in Dε, ∥Bε(f)∥W 1,q
0 (Dε)

≤ C

(
1 + ε

(3−q)α−3
q

)
∥f∥Lq(Dε), (3.11)

where the constant C > 0 is independent of ε.

Note that for any fixed ε > 0, the existence of such an operator is guaranteed by the results

obtained in Sections 3.1 and 3.2. However, as mentioned in Remark 3.1.7, the constant in (3.2)

depends on the Lipschitz character of Dε, which becomes unbounded as ε tends towards zero.

The crucial point is to derive the explicit ε-dependence on the Bogovskĭı constant. We will

give the full proof here, since it contains many ideas which we will use later in the case of a

random perforation.

Proof of Theorem 3.3.1. To start, let f ∈ Lq
0(Dε) and denote by f̃ its zero extension to the

whole space, that is,

f̃ = f in Dε, f̃ = 0 in R3 \Dε.

Since we assumed D to have a smooth boundary, by Theorem 3.1.6 there is a vector field

u = BD(f̃) ∈ W 1,q
0 (D) such that

divu = f̃ in D, ∥u∥W 1,q
0 (D) ≤ C ∥f̃∥Lq(D) = C ∥f∥Lq(Dε),

where the constant C > 0 just depends on D and q. Clearly, u does in general not satisfy

u ∈ W 1,q
0 (Dε) since it might not vanish on the holes. We will therefore take a cut-off argument

in order to let u vanish on the holes, however, this will change its divergence. To fix this,

we will use local Bogovskĭı operators around each hole. Estimating the norms of the cut-off
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Chapter 3. Bogovskĭı’s operator in different domains

procedure will finally yield the ε-dependence from (3.11).

By the assumption that |xεi − xεk| ≥ 2ε for all i ̸= k, we can enclose each T ε
i by

T ε
i ⊂ B2εα(x

ε
i ) ⊂ Bε/2(x

ε
i ) ⊂ Bε(x

ε
i ),

where for any i ̸= k we have Bε(x
ε
i ) ∩ Bε(x

ε
k) = ∅. Now, we consider two cut-off functions,

defined by

χε,i ∈ C∞
c

(
Bε(x

ε
i )
)
, χε,i ↾Bε/2(x

ε
i )
= 1, ∥∇χε,i∥L∞(D) ≤ C ε−1, (3.12)

ζε,i ∈ C∞
c

(
B2εα(xi)

)
, ζε,i ↾T ε

i
= 1, ∥∇ζε,i∥L∞(B2εα (xε

i ))
≤ C ε−α, (3.13)

and set

Dε,i := Bε(x
ε
i ) \Bε/2(xεi ), Eε,i := Bε(x

ε
i ) \ T ε

i .

Defining

bε,i(u) := χε,i(u− ⟨u⟩Dε,i
) ∈ W 1,q

0 (Bε(x
ε
i )),

βε,i(u) := ζε,i ⟨u⟩Dε,i
∈ W 1,q

0

(
B2εα(x

ε
i )
)
,

(3.14)

where we denote the mean value of a function u over a measurable set S ⊂ R3 by

⟨u⟩S :=
1

|S|

∫
S

u dx,

Poincaré’s inequality (B.6) now implies

∥u− ⟨u⟩Dε,i
∥Lq(Dε,i) ≲ ε ∥∇u∥Lq(Dε,i),

and by (3.12) we get

∥∇bε,i(u)∥Lq(Dε,i) ≤ ∥χε,i∇(u− ⟨u⟩Dε,i
)∥Lq(Dε,i) + ∥∇χε,i(u− ⟨u⟩Dε,i

)∥Lq(Dε,i)

≲ ∥∇(u− ⟨u⟩Dε,i
)∥Lq(Dε,i) + ε−1 ∥u− ⟨u⟩Dε,i

∥Lq(Dε,i)

≲ ∥∇u∥Lq(Dε,i).

(3.15)

Similarly, by (3.13) and Hölder’s inequality (B.2), we obtain

∥∇βε,i(u)∥Lq(B2εα (xε
i ))

= ∥∇ζε,i · ⟨u⟩Dε,i
∥Lq(B2εα (xε

i ))

≲ ε

(
3
q
−1
)
α |⟨u⟩Dε,i

| ≲ ε

(
3
q
−1
)
α |Dε,i|−

1
q ∥u∥Lq(Dε,i)

≲ ε

(
3
q
−1
)
α− 3

q ∥u∥Lq(Dε,i).

(3.16)

Since βε,i as well as bε,i do not have vanishing divergence, we need to correct them using a

local Bogovkĭı operator on Eε,i, provided βε,i has been extended by zero outside B2εα(x
ε
i ). By

Lemma 3.2.6, Eε,i is a John domain with a John constant which is independent of ε, so we
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3.3. Perforated domains: The case of well separated obstacles

know from Lemma 3.2.9 that there exists a linear bounded operator BEε,i
such that

BEε,i
: Lq

0(Eε,i) → W 1,q
0 (Eε,i), divBEε,i

(f) = f, ∥BEε,i
(f)∥W 1,q

0 (Eε,i)
≤ C ∥f∥Lq(Eε,i)

for all f ∈ Lq
0(Eε,i), where the constant C > 0 is independent of ε and i. We are now ready to

define the restriction operator from D to Dε via

Rε(u) := u−
∑
i∈Kε

βε,i(u) + bε,i(u)− BEε,i

(
div(βε,i(u) + bε,i(u))

)
, (3.17)

provided BEε,i

(
div(βε,i(u) + bε,i(u))

)
is extended to be zero outside its domain of definition.

Repeating the arguments shown in [DFL17, Section 3], we check that the operator Rε is well

defined and satisfies the desired norm bounds. First, by the definitions of bε,i and βε,i in (3.14),

we have∫
Bε(xε

i )

div(bε,i(u) + βε,i(u)) dx =

∫
Bε(xε

i )

divbε,i(u) dx+

∫
B2εα (xε

i )

div βε,i(u) dx

=

∫
∂Bε(xε

i )

bε,i(u) · n dσ(x) +

∫
∂B2εα (xε

i )

βε,i(u) · n dσ(x) = 0.

On the other hand, χε,i = ζε,i = 1 and divu = f̃ = 0 inside T ε
i , thus

divbε,i(u) = χε,i divu+∇χε,i · (u− ⟨u⟩Dε,i
) = 0 in T ε

i ,

div βε,i(u) = ∇ζε,i · (u− ⟨u⟩Dε,i
) = 0 in T ε

i ,

leading to ∫
Eε,i

div(bε,i(u) + βε,i(u)) dx = 0

as required. Next, for any x ∈ T ε
i , we get

Rε(u)(x) = u(x)−
(
bε,i(u) + βε,i(u))(x)− BEε,i

(
div(bε,i(u) + βε,i(u))

)
(x)

= u(x)− βε,i(u)(x)− bε,i(u)(x)

= u(x)− ζε,i(x)⟨u⟩Dε,i
− χε,i(x)(u(x)− ⟨u⟩Dε,i

)

= 0,

where in the last equality we used that χε,i(x) = ζε,i(x) = 1 in T ε
i . This yields that the operator

Rε is well defined and satisfies

Rε(u) ∈ W 1,q
0 (Dε), divRε(u) = divu = f in Dε.

Finally, by (3.15), (3.16), and the fact that the balls Bε(x
ε
i ) are disjoint, we see that

∥Rε(u)∥W 1,q
0 (Dε)

≤ C

(
ε(

3
q
−1)α− 3

q + 1

)
∥u∥W 1,q

0 (D),
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Chapter 3. Bogovskĭı’s operator in different domains

where the constant C > 0 is independent of ε > 0. For f ∈ Lq
0(Dε) we define

Bε(f) := (Rε ◦ BD)(f̃)

and observe that we get the desired operator, namely Bε(f) ∈ W 1,q
0 (Dε),

divBε(f) = f in Dε, and ∥Bε(f)∥W 1,q
0 (Dε)

≤ C

(
1 + ε

(3−q)α−3
q

)
∥f∥Lq(Dε).

This finishes the proof.

3.4 Perforated domains: The case of a random perfora-

tion

In this section, we will generalize Theorem 3.3.1 to the case of randomly placed holes which

additionally have random radii. Note that we assumed in Section 3.3 the centers xεi fulfill

|xεi − xεk| ≥ 2ε. We drop this assumption and show, under suitable conditions on the radii of

the holes, that the centers for a random perforation rather satisfy |xεi − xεk| ≥ C ε2
+
, where we

indicate with 2+ any number that is greater than 2. Before defining properly the perforated

domain, let us first state an important observation taken from the estimate (3.11):

The operator Bε is uniformly bounded as long as (3 − q)α − 3 ≥ 0, in particular, we need

1 < q < 3 and α ≥ 3/(3− q).

These conditions will occur in a slightly different form later in Theorem 3.4.1, and are optimal

in the sense of capacity, see also Remark 3.4.8 below. Since we will use the Bogovskĭı operator

in the homogenization of compressible Navier-Stokes equations to bound the density of the

fluid independent of ε, we need that it is uniformly bounded. The condition α ≥ 3/(3− q) will

play a crucial role there.

Let us begin with the description of the random distributed holes. Let Φ = {zi}i∈N be a

random collection of points in R3, and denote for any bounded measurable set S ⊂ R3 the

number of points inside S by N(S). We assume that the points are distributed according

to a Poisson process with intensity rate λ > 0, which is characterized by the following two

properties:

1. For any k ∈ N, it holds P(N(S) = k) = (λ|S|)k
k!

e−λ|S|.

2. For any two measurable and disjoint sets S1 and S2, the random sets Φ ∩ S1 and Φ ∩ S2

are independent.

Furthermore, we associate to every point zi ∈ Φ a random radius. For that, let R = {ri}zi∈Φ
be another random process of independent identically distributed random variables ri ∈ (0,∞)

with finite m-th moment, i.e.,

E(rmi ) <∞ for some m > 0,

and which are independent of Φ. The couple (Φ,R) ⊂ R3×R+ is called a marked Poisson

point process and can be seen as a random variable Ω ∋ ω 7→ (Φ(ω),R(ω)), defined on an

40



3.4. Perforated domains: The case of a random perforation

abstract probability space (Ω,A,P). We will omit the dependence on ω in the sequel if no

ambiguity occurs. The exact range of m we can work with will be specified later.

Let D ⊂ R3 be a bounded domain with smooth boundary which is star-shaped with respect to

the origin, that is, for any x ∈ D, the segment {tx : t ∈ [0, 1]} ⊂ D. We define for α > 2 and

ε > 0 the perforated domain Dε as

Φε(D) := {z ∈ Φ ∩ 1

ε
D : dist(εz, ∂D) > ε}, Dε := D \

⋃
zi∈Φε(D)

Bεαri(εzi). (3.18)

The assumption of star-shapedness of D can be dropped, however, it ensures that the sets

Φε(D) are monotonically increasing as ε → 0, thus simplifying some arguments of the proofs.

Moreover, the constraint dist(εz, ∂D) > ε in the definition of Φε(D) prevents us from consid-

ering boundary issues in the homogenization process later on. It will also ensure that boxes

around holes are well inside D, see Theorem 3.4.2 below.

Our main result in this section reads as follows:

Theorem 3.4.1. Let α > 2, D ⊂ R3 be a bounded star-shaped domain with respect to the

origin with smooth boundary, and (Φ,R) = ({zj}, {rj}) be a marked Poisson point process with

intensity λ > 0. We assume the radii rj > 0 fulfill E(rmj ) <∞ for some m > 3/(α− 2). Then

for all 1 < q < 3 which satisfy

α− 3

m
>

3

3− q
(3.19)

there exists a random almost surely strictly positive ε0 = ε0(ω) such that for 0 < ε ≤ ε0 there

exists a bounded linear operator

Bε : L
q
0(Dε) → W 1,q

0 (Dε;R3)

with Dε defined in (3.18), such that for all f ∈ Lq
0(Dε)

divBε(f) = f in Dε, ∥Bε(f)∥W 1,q
0 (Dε)

≤ C ∥f∥Lq(Dε),

where the deterministic constant C > 0 is independent of ε.

To show this result, we will need some preliminaries. The first one states that for small but

positive ε, the holes are well separated and that we may group them to clusters which cannot

have too many elements.

Theorem 3.4.2. Let α > 2 and λ > 0 be the intensity of a marked Poisson point process

(Φ,R) = ({zj}, {rj}) with rj > 0 and E(rmj ) <∞, where m > 0 satisfies

m >
3

α− 2
.

Let 0 < δ < α − 1 − 3
m
, κ ∈ (max(1, δ), α − 1 − 3

m
), and τ ≥ 1. Then there exists a random

variable ε0(ω), which is almost surely strictly positive, satisfying:

1. For every 0 < ε ≤ ε0 holds

max
zi∈Φε(D)

τεαri ≤ ε1+κ,
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Chapter 3. Bogovskĭı’s operator in different domains

and for every zi, zj ∈ Φε(D) with zi ̸= zj

Bτε1+κ(εzi) ∩Bτε1+κ(εzj) = ∅.

2. Let

N := N(δ) := 8

(
1 +

⌈
1

δ

⌉)
. (3.20)

Then for each 0 < ε ≤ ε0 there are finitely many open rectangular cuboids {Iεi } ⊂ D,

having edges parallel to the coordinates axes and which we simply call boxes, satisfying:

(a) The boxes Iεi cover the balls, i.e., for any z ∈ Φε(D) we have Bε1+κ(εz) ⊂
⋃

i I
ε
i .

(b) Any box Iεi contains at most N points from εΦε(D).

(c) Balls are well inside the box: for εz ∈ Iεi ∩ εΦε(D) holds dist(Bε1+κ(εz), ∂Iεi ) ≥
1

16N
ε1+δ.

(d) Any two distinct boxes Iεi and Iεj are well separated: dist∞(Iεi , I
ε
j ) ≥ 1

4N
ε1+δ.

(e) The shortest side of Iεi is at least 1
2N
ε1+δ while the longest side is at most ε1+δ.

The condition α > 2 ensures that the interval for κ is not empty. The proof of the second

part of Theorem 3.4.2 uses that for 0 < ε ≤ ε0 any cube with side length ε1+δ contains at most

N points from the Poisson point process. This can hold only if δ > 0, since the number of

points in a cube of size ε1+0 is Poisson distributed, i.e., any number of points appears there

with small but positive probability.

Proposition 3.4.3. Let d ≥ 1, δ > 0 be fixed, and let {zj} ⊂ Rd be points generated by

a Poisson point process of intensity λ > 0. In addition, let D ⊂ Rd be a bounded star-

shaped domain. Then there exists a deterministic constant N(δ, d) ∈ N and a random variable

ε0(ω, λ,D), which is almost surely positive, such that for all 0 < ε ≤ ε0 and any x ∈ Rd the

cube x+ [0, ε1+δ]d contains at most N points from D ∩ εΦ.

To construct the Bogovskĭı operator Bε in Dε from Theorem 3.4.1 we use local Bogovskĭı

operators for each box Iεi to modify the Bogovskĭı operator in D. Instead of making explicit

construction in each box Iεi , we invoke the result on the existence of Bogovskĭı’s operator for

John domains (see Theorem 3.2.9) and show that each box Iεi minus the balls is a John domain

– for this the outcomes of Theorem 3.4.2 will be crucial. In particular, we need that one box

contains at most N balls, the balls are not close to each other, and they are tiny, compared to

the size of the box. The following lemma states that any perforated Iεi is a c−John domain.

Lemma 3.4.4. Under the assumptions of Theorem 3.4.2 for fixed

0 < δ <
α− 2− 3

m

2
, (3.21)

let 0 < ε ≤ ε0. Then for every box Iεi constructed in Theorem 3.4.2, the domain

U := Iεi \
⋃

zj∈ε−1Iεi ∩Φε(D)

Bεαrj(εzj) (3.22)
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3.4. Perforated domains: The case of a random perforation

is a c−John domain, where c = c(N) is independent of ε, and N is defined in (3.20).

In particular, for any 1 < q < ∞ there exists a uniformly bounded Bogovkĭı operator

BU : Lq
0(U) → W 1,q

0 (U), i.e., there exists a constant C > 0, independent of ε, such that for any

f ∈ Lq
0(U)

divBU(f) = f, ∥BU(f)∥W 1,q
0 (U) ≤ C ∥f∥Lq

0(U).

3.4.1 Proofs of Theorem 3.4.2 and Proposition 3.4.3

The goal of this section is to prove Theorem 3.4.2, the second part of which is based on

Proposition 3.4.3 about the distribution of the random points, modeled by the Poisson point

process. Fixing δ > 0, this proposition states that for ε small enough, for any cube of side

length ε1+δ inside a fixed domain D there are at most N = N(δ, d) of the rescaled points εz

in the cube. The heuristic explanation of this is as follows: assuming we only need to consider

a disjoint set of cubes and fixing ε > 0, the number of cubes in D which we have to consider

scales like ε−(1+δ)d. At the same time, the probability of one cube of side length ε1+δ having

more than N points scales in the case of the Poisson point process like ( ε
(1+δ)d

εd
)N = εδNd. Hence,

choosing N large enough so that ε−(1+δ)d εδNd ≪ 1 should lead to the result.

Proof of Proposition 3.4.3. We start with a special case, which will be later used to prove the

general case:

Claim: There exists N1 ∈ N and an a.s. positive random variable ε0(ω) such that for any

dyadic ε = 2−l smaller than ε0, any half-closed cube Qε,z = ε1+δz + [0, ε1+δ)d, z ∈ Zd, contains

at most N1 points from ε
2
Φ(ω) ∩D.

If rescaled by a factor 2 the claim says that in a cube with side length (2ε)1+δ there are at

most N1 points, and we are considering points (more precisely cubes) inside 2D instead of D

only. The reason for this choice will be clear later in the proof.

For l ∈ N and ε = 2−l, we define

Bl := {ω ∈ Ω : one of the dyadic cubes Q2−l,z contains

at least N1 points from 2−l−1Φ ∩D}.

In order to prove the claim, it is enough to show
∑

l≥0 P(Bl) < ∞ and apply the Borel-

Cantelli Lemma C.1. Recall that for any measurable bounded set S ⊂ Rd, we denote by

N(S) = #(S ∩ Φ) the number of random points in S. First, by rescaling, we see that

Bl = {ω ∈ Ω : there exists a dyadic cube Q2−l,z such that N(2l+1(Q2−l,z ∩D)) ≥ N1}.

Since we can cover D with at most C |D| (2l)d cubes Q2−l,z and due to the stationarity of the

process Φ, we estimate

P(Bl) ≤ C(D) 2ld P
(
N(2l+1Q2−l,0) ≥ N1

)
= C(D) 2ld P

(
N(2l+1 · 2−l(1+δ)[0, 1)d) ≥ N1

)
≤ C(d, λ,D) 2ld · 2(1−lδ)N1d = C(d, λ,D) 2ld(1−N1δ),

(3.23)

where in the last inequality we used that the points in Φ are Poisson-distributed, i.e.,

P(N(S) = n) = e−λ|S| (λ|S|)n

n!
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for any n ∈ N, that for any x > 0 we have

e−x
∑
k≥n

xk

k!
=
xn

n!
e−x

∑
k≥0

xkn!

(n+ k)!
≤ xn

n!
e−x

∑
k≥0

xk

k!
=
xn

n!
(3.24)

since 1 ≤
(
n+k
k

)
= (n+k)!

k!n!
for all n, k ∈ N, and that λn

n!
≤ C(λ) for any λ > 0 and any n ≥ 0.

Choosing now N1 = 1 + ⌈1
δ
⌉ in (3.23), we have P(Bl) ≤ C 2−ql for some q > 0, meaning that∑

l≥0 P(Bl) ≤ C
∑

l≥0 2
−ql <∞. The Borel-Cantelli Lemma C.1 now implies

P
(
lim sup

l→∞
Bl

)
= 0,

meaning that almost surely there is an ε0(ω) > 0 such that for all 0 < ε = 2−l ≤ ε0, any cube

Q2−l,z contains not more than N1 points from ε
2
Φ ∩D, thus proving the claim.

To show the general case, for ω ∈ Ω we consider ε0(ω) coming from the claim. Without

loss of generality we assume ε0 = 2−l0 for some l0 ∈ N (otherwise replace ε0 with the largest

smaller power of 2). To finish the proof we need to show that for any 0 < ε ≤ ε0, any cube

Qε = x + [0, ε1+δ]d, x ∈ Rd, contains at most N points from D ∩ εΦ(ω). Let 0 < ε ≤ ε0 and

Qε = x+[0, ε1+δ]d be chosen arbitrary, and let N := 2dN1. Let l ≥ l0 be the unique l such that

2−(l+1) < ε ≤ 2−l.

Observe that for ϖ > 0 we have #(Qε∩εΦ) = #(ϖQε∩ϖεΦ), where ϖQε = {x+ϖ(y−x) :
y ∈ Qε}, which together with star-shapedness of D yields for ϖ = 2−(l+1)

ε
∈ (0, 1)

#(Qε ∩ εΦ ∩D) = #(ϖQε ∩ϖεΦ ∩ϖD) ≤ #(ϖQε ∩ 2−(l+1)Φ ∩D).

We now cover ϖQε with (at most) 2d cubes Q2−l,z. Observe that even if ϖQε is closed and

Q2−l,z are only half-closed, the covering is possible since ϖε = 2−(l+1) < 2−l. In particular, the

claim implies that any Q2−l,z contains at most N1 points from 2−l

2
Φ ∩ D, thus implying that

ϖQε, being covered by at most 2d cubes Q2−l,z, contains at most 2dN1 points from 2−(l+1)Φ∩D.

This together with the last display implies #(Qε ∩ εΦ ∩D) ≤ 2dN1 = N , thus concluding the

proof of the proposition.

We now turn to the proof of Theorem 3.4.2, the first part of which is based on the following

Strong Law of Large Numbers (see Theorem C.2).

Lemma 3.4.5. Let d ≥ 1 and (Φ,R) = ({zj}, {rj}) be a marked Poisson point process with

intensity λ > 0. Assume that the marks {rj} are positive i.i.d. random variables independent

of Φ such that E(rmj ) <∞ for some m > 0. Then, for every bounded measurable set S ⊂ Rd

which is star-shaped with respect to the origin, we have almost surely

lim
ε→0

εdN(ε−1S) = λ|S|, lim
ε→0

εd
∑

zj∈ε−1S

rmj = λE(rm)|S|.

Remark 3.4.6. Assuming the boundary of the set S from the previous lemma is not too large,

the same argument also shows

lim
ε→0

εd
∑

zj∈Φε(S)

rmj = λE(rm)|S|. (3.25)
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3.4. Perforated domains: The case of a random perforation

In particular, it is enough that S has a C2-boundary.

With Lemma 3.4.5, we obtain for the domain Dε and for ε > 0 small enough

|∂Dε| = |∂D|+
∣∣∣∣ ⋃
zi∈Φε(D)

∂Bεαri(εzi)

∣∣∣∣ ≤ C + C ε2α−3ε3
∑

zi∈Φε(D)

r2i ≤ C,

|D \Dε| =
∣∣∣∣ ⋃
zi∈Φε(D)

Bεαri(εzi)

∣∣∣∣ ≤ C ε3(α−1)ε3
∑

zi∈Φε(D)

r3i ≤ C ε3(α−1),

(3.26)

which implies |Dε| → |D| as ε → 0. Thus, for ε possibly even smaller, we can control the

measure of Dε by
1
2
|D| ≤ |Dε| ≤ 2 |D|.

Using Remark 3.4.6 as well as Proposition 3.4.3 we can prove Theorem 3.4.2.

Proof of Theorem 3.4.2. Part (1): We start with the first part of the theorem, which actually

holds for any dimension d ≥ 1, α > 2, m > d
α−2

, and κ ∈ (1, α − 1 − d
m
). We follow the lines

of [GH19, Proof of Lemma 6.1].

Using (3.25) and the choice of κ, we have for almost all ω

lim sup
ε→0

ε
d
m max

zi∈Φε(D)
ri ≤ lim sup

ε→0
ε

d
m

( ∑
zi∈Φε(D)

rmi

) 1
m

≤
[
λE(rm)|D|

] 1
m .

This implies for ε > 0 small enough

max
zi∈Φε(D)

τεαri ≤ 2τεα−
d
m

[
λE(rm)|D|

] 1
m ≤ ε1+κ, (3.27)

the last inequality coming from α − d
m
> κ + 1, and therefore being true for ε being possibly

even smaller.

To show that two balls do not intersect we consider an event

Aε
τ := {ω ∈ Ω : there are 2 intersecting balls in {Bτε1+κ(εz)}z∈Φε(D)},

and it is enough to show

P
( ⋂

ε0>0

⋃
ε≤ε0

Aε
τ

)
= 0. (3.28)

We reduce this to the case of dyadic ε, by showing

P
( ⋂

l0≥1

⋃
l≥l0

Aεl
τ̄

)
= 0, (3.29)

where εl = 2−l and τ̄ = 21+κτ .

Indeed, let l ∈ N be such that εl+1 ≤ ε < εl. Now suppose zi, zj ∈ Φε(D), zi ̸= zj such that

Bτε1+κ(εzi) ∩Bτε1+κ(εzj) ̸= ∅.
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Then

εl+1|zi − zj| ≤ ε|zi − zj| ≤ 2τε1+κ ≤ 2τε1+κ
l = 2τ(2εl+1)

1+κ = 2 · 21+κτε1+κ
l+1 ,

which means that

B21+κτε1+κ
l+1

(εl+1zi) ∩B21+κτε1+κ
l+1

(εl+1zj) ̸= ∅.

The domain D being star-shaped implies monotonicity of Φε(D) in ε, in particular Φε(D) ⊂
Φεl+1(D), which combined with the previous display yields

Aε
τ ⊂ A

εl+1
τ̄ ,

thus showing that (3.29) implies (3.28).

It remains to show (3.29). Let ε > 0 and τ ≥ 1 be fixed. Observe that if for zi, zj ∈ Φε(D) we

have Bτε1+κ(εzi)∩Bτε1+κ(εzj) ̸= ∅, then ε|zi−zj| ≤ 2τε1+κ and after simplifying |zi−zj| ≤ 2τεκ,

in other words

Aε
τ ⊂ {ω ∈ Ω : ∃x ∈ 1

ε
D : #(Φε(D) ∩B2τεκ(x)) ≥ 2}. (3.30)

Recall that for S ⊂ Rd, we denote by N(S) = #(S ∩ Φ) the random variable providing

the number of points of the process which lie inside S. Let us also note that the points are

distributed according to a Poisson distribution with intensity λ > 0. We now recall a basic

estimate from [GH19, Proof of Lemma 6.1]: for 0 < η < 1, define the set of cubes with side

length η centered at the grid η Zd by

Qη := {y + [−η/2, η/2]d : y ∈ η Zd}.

Since it is not true that any ball of radius η
4
is contained in one of these cubes, we need to add

(finitely many) shifted copies of Qη. For that let Sη be the vertices of the cube [0, η/2]d, i.e.,

Sη = {z = (z1, . . . , zd) ∈ Rd : zk ∈ {0, η/2} for k = 1, . . . , d}.

Observe that for any x ∈ Rd, there exist z ∈ Sη and a cube Q ∈ Qη such that B η
4
(x) ⊂ z +Q,

which immediately implies

P(∃x ∈ 1

ε
D : N(B η

4
(x)) ≥ 2)

≤ P(∃Q ∈ Qη, z ∈ Sη : (z +Q) ∩ 1

ε
D ̸= ∅, N(z +Q) ≥ 2).

Since Sη has 2d elements and the number of cubes Q ∈ Qη that intersect ε−1D is bounded by

C(D)(εη)−d, we use the distribution of the Poisson point process to conclude

P(∃x ∈ 1

ε
D : N(B η

4
(x)) ≥ 2) ≤

∑
z∈Sη

∑
Q

P(N(z +Q) ≥ 2)

≤ 2dC(D)(εη)−de−ληd
∞∑
k=2

(ληd)k

k!
≤ C(d,D) (εη)−d(ληd)2,
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3.4. Perforated domains: The case of a random perforation

where the last inequality follows from (3.24). Letting ηε := 8τεκ, this together with (3.30) and

the fact that #(Φε(D) ∩ S) ≤ N(S) for any S ⊂ Rd, yields

P(Aε
τ ) ≤ C (ε1+κ)−dε2dκ = C εd(κ−1).

To show (3.29) we take a sum over l with ε = εl = 2−l, which using κ > 1 can be estimated as

∞∑
l=0

P(Aεl
τ̄ ) ≤ C

∞∑
l=0

2−ld(κ−1) <∞,

and (3.29) follows from direct application of the Borel-Cantelli Lemma C.1.

Part (2): We now turn to the second part of the theorem, i.e., the construction of boxes Iεi .

Fixing ε, the first step is to construct a finite collection I = {Ĩi} of auxiliary boxes such that:

� these boxes cover the points, i.e.,
⋃

i Ĩi ⊃ εΦε(D),

� dist∞(Ĩi, Ĩj) ≥ 1
2N
ε1+δ ,

� s(Ĩi) ≤ ε1+δ, where s(I) of a box I denotes the size of its longest side,

� each box Ĩi satisfies |Ĩi ∩ εΦε(D)| ≤ N .

Here the crucial condition is the second one, i.e., that the boxes are well-separated.

Let l := 1
2N
ε1+δ. We will grow the boxes Ĩ from the collection I step by step, starting with

cubes of side length l. At every moment of this growth process, every box Ĩ ∈ I will satisfy

the following conditions:

i. Ĩ = [axl, bxl) × [ayl, byl) × [azl, bzl) for some ax, bx, ay, by, az, bz ∈ Z, i.e., each box is a

union of many small cubes;

ii. for each a ∈ [ax, bx) ∩ Z holds [al, (a + 1)l) × [ayl, byl) × [azl, bzl) ∩ εΦε(D) ̸= ∅, and
similarly for y and z, i.e., in every slice there is some point from εΦε(D);

iii. #(Ĩ ∩ εΦε(D)) ≤ N .

At the beginning, let I consist of all cubes [axl, (ax + 1)l)× [ayl, (ay + 1)l)× [azl, (az + 1)l)

which have a point from εΦε(D) in it. Since D is bounded, I consists of finitely many boxes

(cubes). We then repeat the following procedure:

If there exist two different boxes Ĩ , J̃ ∈ I such that dist(Ĩ , J̃) = 0, we fix them and

merge them together. That means, we remove Ĩ = [axl, bxl) × [ayl, byl) × [azl, bzl) and J̃ =

[a′xl, b
′
xl)× [a′yl, b

′
yl)× [a′zl, b

′
zl) from I and add

K̃ = [Axl, Bxl)× [Ayl, Byl)× [Azl, Bzl)

:= [(ax ∧ a′x)l, (bx ∨ b′x)l)× [(ay ∧ a′y)l, (by ∨ b′y)l)× [(az ∧ a′z)l, (bz ∨ b′z)l)

to I instead. Here ∧ and ∨ stand as usual for minimum and maximum, respectively.

First, observe that (i) trivially follows from the definition of K̃. Next, to verify that K̃

satisfies (ii), let us fix i ∈ {x, y, z}, and observe that dist(Ĩ , J̃) = 0 implies [ai, bi] ∩ [a′i, b
′
i] ̸= ∅.
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Hence, for any a ∈ [ai ∧ a′i, bi ∨ b′i) either a ∈ [ai, bi), in which case (ii) for Ĩ implies (ii) for K̃,

or a ∈ [a′i, b
′
i), in which case ii for J̃ implies (ii) for K̃.

It remains to argue that K̃ satisfies also (iii). Since Ĩ satisfies both (ii) and (iii), in particular

to each a ∈ [ai, bi) ∩ Z there is assigned at least one point from εΦε(D) and there are at most

N such points, it follows that [ail, bil) has a length of at most Nl. The same argument applies

verbatim to J̃ , and so the union of [ail, bil) and [a′il, b
′
il) has a length of at most 2Nl. Hence,

each side of K̃ has a length of at most s(K̃) ≤ 2Nl = 2N 1
2N
ε1+δ = ε1+δ. In addition K̃ satisfies

(i), and so there exists a (closed) cube QK̃ with a side length of ε1+δ such that K̃ ⊂ QK̃ . By

Proposition 3.4.3, the number of points in QK̃ is at most N , which implies the same for K̃, i.e.,

#(K̃ ∩ εΦε(D)) ≤ #(QK̃ ∩ εΦε(D)) ≤ N,

which shows (iii) for K̃; moreover, since K̃ also fulfills (ii), this shows that K̃ has a length of

at most s(K̃) ≤ Nl.

Since the collection I was finite at the beginning, and in each iteration we decrease the

number of boxes in I by one (we remove Ĩ and J̃ and add K̃), this process has to terminate.

In particular, at the end I consists of boxes which have positive distance from each other,

since otherwise the process would not terminate at this point. Since all boxes in I satisfy (i),

this in particular implies that this positive distance has to be at least l = 1
2N
ε1+δ. Moreover,

since each box has a side length of at most Nl = 1
2
ε1+δ, and each point in εΦε(D) has at least

distance ε to ∂D, we see that each box (and actually also its small neighborhood) lies inside

D.

Using boxes from I we define boxes Iεi : for each auxiliary box Ĩi ∈ I set Iεi := {x ∈
R3 : dist∞(x, Ĩi) ≤ 1

8N
ε1+δ}, and it remains to show that {Iεi } satisfies (2a)-(2e). First, by the

assumption κ > δ, and so for small enough ε we have ε1+κ ≤ 1
16N

ε1+δ. Therefore, by the triangle

inequality we have for any εz ∈ Ĩi that dist∞(Bε1+κ(εz), ∂Iεi ) ≥ 1
8N
ε1+δ − ε1+κ ≥ 1

16N
ε1+δ,

thus (2a) and (2c) hold. Since by the construction the auxiliary boxes satisfy dist∞(Ĩi, Ĩj) ≥
1
2N
ε1+δ, and all the points from εΦε(D) are inside these boxes, we see that Iεi \ Ĩi contains no

point from εΦε(D). Therefore (iii) for Ĩi ∈ I implies (2b) for Iεi . Finally, (2d) trivially follows

from the definition of Iεi and the separation of elements in I in form of dist∞(Ĩi, Ĩj) ≥ 1
2N
ε1+δ,

and (2e) uses that Iεi consist in each direction of at least one cube and of at most N of them.

3.4.2 Proofs of Lemma 3.4.4 and Theorem 3.4.1

Before proving that a box from which we remove finitely many small well-separated balls is a

John domain, let us recall Definition 3.2.1 for John domains. For a constant c > 0, a domain

U ⊂ Rd is said to be a c−John domain if there exists a point x0 ∈ U such that for any point

x ∈ U there is a rectifiable path Γ : [0, ℓ] → U which is parametrized by arc length with

Γ(0) = x, Γ(ℓ) = x0, ∀t ∈ [0, ℓ] : |Γ(t)− x| ≤ c dist(Γ(t), ∂U). (3.31)

We will use the characterization (3.10), which we also recall here: a bounded domain U ⊂ Rd

is a c−John domain in the sense of Definition 3.2.1 if and only if there is a c1(c) > 0 and a point

x0 ∈ U such that any point x ∈ U can be connected to x0 by a rectifiable path Γ : [0, ℓ] → U
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I

I \G

L

Xx1

x0

(a) The case X ∈ G.

X

B1P(B1)

Bj
P(Bj)

Bj

P(Bj)

C

(b) The case X ∈ U \G.

Figure 3.2: (a) The point X ∈ G, first connected to x1 ∈ L (red) and then to x0 while not
leaving L (blue). (b) The projections (blue) of the balls B1 and Bj onto the sphere S with
midpoint X. The cone C illustrated by the red area hits none of the balls and serves as the
“outgoing” sector from X to L.

which is parametrized by arc length and⋃
t∈[0,ℓ]

B
(
Γ(t), t/c1

)
⊂ U.

Note that for straight lines Γ, the two definitions coincide with c1 = c. One way how to

prove Lemma 3.4.4 is inductively by showing, that under some assumption on a ball one can

remove it from a John domain while changing the John constant of the domain by a fixed

factor at most. In order to do so, we would need to modify arcs which run close to (or through)

this removed ball while estimating how much does this change the situation. For a similar

argument with small balls replaced with points, see [HPW08, Theorem 1.4]. Assuming this,

since we have to remove at most N balls and at the beginning the domain is rectangle with

proportional sides, in particular a John domain, this would lead to the conclusion.

Instead of this, we provide a direct constructive argument.

Proof of Lemma 3.4.4. To start, we use Theorem 3.4.2, part (1), twice: once with κ = κ1 :=

1+ δ and second time with κ = κ2 := α− 1− 3
m
− δ. Observe that both values of κ are within

the admissible range (max(1, δ), α − 1 − 3
m
), and therefore the theorem yields the following:

there exists an a.s. positive random variable ε0(ω), obtained as the smaller of the two ε0, such

that for 0 < ε ≤ ε0 it holds

max
zj∈Φε(D)

εαrj ≤ ε1+κ2 and |εzj − εzk| ≥ 2ε1+κ1 for any zj, zk ∈ Φε(D). (3.32)

Assume now we have 0 < ε ≤ ε0 small enough and recall that we want to show that

U := Iεi \
⋃
j

Bj

is a c(N)−John domain in the sense of Definition 3.2.1, where

{Bj}j := {Bεαrj(εzj) : εzj ∈ Iεi }.

For brevity, we set I := Iεi = p + (−l1/2, l1/2) × (−l2/2, l2/2) × (−l3/2, l3/2) ⊂ R3, where p
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Chapter 3. Bogovskĭı’s operator in different domains

is the center and li are the side lengths of I. Since (3.31) is scale-invariant, we can assume

l1 ≥ l2 ≥ l3. The set

L := {x ∈ I : dist∞(x, ∂I) =
1

32N
ε1+δ}

will serve as a “highway” in the set U , and for the specific point x0 from Definition 3.2.1 we

choose x0 := p + (0, 0, l3/2 − 1
32N

ε1+δ). We also denote the ring around L by G := {x ∈ I :

dist∞(x, L) < 1
32N

ε1+δ}. Let us note that a brief sketch of the ideas developed here for G can

be found in Example 3.2.2.

To show that U is a John domain, for each X ∈ U we need to construct a path from X to

x0 along which | · −X| ≤ c dist(·, ∂U). The idea is first to go from X to L, and then run along

L to x0. Observe that for points x ∈ L the condition is easy to satisfy: for each x ∈ L we have

dist(x, ∂U) = dist(x, ∂G) = 1
32N

ε1+δ and |x−X| ≤ diam(U) ≤
√
3 l1, and so using (2e) to see

l1 ≤ c(N) ε1+δ we get that |x−X| ≤ c(N) dist(x, ∂U) as required.

It remains to describe the path from X to L. For points X ∈ G this is straightforward (see

Figure 3.2a): we just choose the shortest path from X to L and observe that any point x on

that path satisfies dist(x, ∂U) ≥ dist(x, ∂G) ≥ 3−1/2|x−X|. The
√
3 is optimal as can be seen

from points in corners.

For the remaining part of the proof, we deal with the points from the “interior” U \G. For
X ∈ U \ G we need to construct a path from X to L, while not going too close to the balls

{Bj}j. We will use two important properties of these balls: the size of the balls is much smaller

than their mutual distance (see (3.32)), and there are at most N of them. We fix X ∈ U \G and

show that we can actually use a straight line to connect X with L. Along this line we should

be able to move a growing ball without hitting {Bj}j, which is equivalent to the existence of a

cone with an opening c(N) that avoids all the balls. For this, let S be a unit sphere centered

at X, and let P denote the orthogonal projection on S. We further let P := P(
⋃

j Bj) denote

the projection of balls on S. Observe that if we find a disc on S of fixed radius (depending on

N) which does not overlap with P , then we are done since such disc corresponds to a cone at

X avoiding the balls {Bj}j (see Figure 3.2b).

Hence, we reduced our task to a problem of finding a not too small disc in S \ P , with P
being a union of at most N discs with some additional properties. First, it can happen that

X lies very close to one of the balls, so that the projection of this particular ball on S covers

(almost) half of the sphere S. For this reason and without loss of generality, let B1 denote the

ball whose center is closest to X, which we treat separately: let S ′ ⊂ S be a half-sphere with

the pole being exactly opposite to the center of P(B1), in particular P(B1) and S
′ are disjoint.

Since B1 was the closest ball to X, it follows from the second estimate in (3.32) that X is at

least ε1+κ1 away from the centers of the remaining balls {Bj}j≥2. On the other hand, the first

relation in (3.32) bounds the radii of these balls with ε1+κ2 . Therefore, the projections of these

remaining balls are discs of radius at most C ε1+κ2

ε1+κ1
= C εκ2−κ1 . Since κ2−κ1 = α−2− 3

m
−2δ > 0

by the choice of δ in (3.21), we see that for ε small enough these (at most N − 1) projections

are tiny discs (almost points). We can now find a radius r = r(N) with the following property:

there are N discs D1, . . . , DN of radius r in S ′ such that the distance between any two discs

is at least r as well. One option is to arrange them along the boundary of S ′ with necessary

spacing between them, thus achieving r ∼ N−1. Provided now ε is small enough such that the

radii of P(Bj), which are bounded by C εκ2−κ1 , are smaller than r, we are done: there are N

discs D1, . . . , DN and at most N − 1 projections P(Bj), where each projection can touch at

most one Dj, so that one disc will not overlap with any of the projections P(Bj), thus defining
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the cone we are searching for.

This solution to the last question is naturally far from optimal (in r): consider a well-

studied question of finding an optimal cover of a sphere (more precisely half of it) with N

identical discs of smallest radius (see [Tót49]). If ϱ denotes the smallest such radius, then for

any configuration of N − 1 points in S ′ there exists a disc in S ′ of radius ϱ which avoids them,

thus also providing a solution to our problem.

Since the perforated boxes U from Lemma 3.4.4 are uniform John domains, in particular

we have a Bogovkĭı operator on each U , Theorem 3.4.1 can be proven along the lines of the

proof in [DFL17]. First, using a Bogovskĭı operator on the whole of D we obtain a function u

with the correct divergence but that naturally does not vanish on the holes. To achieve that,

we modify u in each box Iεi . More precisely, near ∂Iεi in a boundary layer of size 1
16N

ε1+δ we

change u to its average value over this layer, and then inside the box (where also the balls are

removed) cut off this constant function near each hole over a scale εα. Since we also change

the divergence of the function with this modification, we employ Bogovskĭı’s operator both on

each box as well as near each hole to fix the divergence.

Proof of Theorem 3.4.1. Let us recall the definition of Dε = D \
⋃

zj∈Φε(D)Bεαrj(εzj). To prove

the theorem we construct a linear operator of Bogovskĭı type, bounded independently of ε,

that is,

Bε : L
q
0(Dε) → W 1,q

0 (Dε)

satisfying

divBε(f) = f in Dε, ∥Bε(f)∥W 1,q
0 (Dε)

≤ C ∥f∥Lq
0(Dε). (3.33)

To this end, we will first use a Bogovskĭı operator on the whole domain D and then correct

this function first to its mean value over a large scale and then to zero near each hole without

changing the divergence. The proof is essentially the same as in Section 3.3, however, we will

repeat the proof here in order to see the differences due to the random perforation. We will

also give some remarks on this procedure after the proof.

For 1 < q < ∞ and f ∈ Lq
0(Dε) we denote by f̃ ∈ Lq

0(D) its zero extension in the holes.

Using the classical Bogovskĭı operator in the Lipschitz domain D (see Theorem 3.2.9), the norm

of which depends on the Lipschitz character of D, we can find a function u = BD(f̃) ∈ W 1,q
0 (D)

satisfying

divu = f̃ in D, ∥u∥W 1,q
0 (D) ≤ C ∥f̃∥Lq

0(D) = C ∥f∥Lq
0(Dε)

with C = C(D, q).

Since α−3/m > 2, by applying Theorem 3.4.2 we find for every ε > 0 small enough a finite

collection of boxes Iεi such that for any point zj ∈ Φε(D) there is i such that

Bεαrj(εzj) ⊂ B2εαrj(εzj) ⊂ Bε1+κ(εzj) ⊂ Iε,ini ,

51
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where

Iε,ini := {x ∈ Iεi : dist∞(x, ∂Iεi ) ≥
1

16N
ε1+δ}.

For any box Iεi and any ball Bεαrj(εzj) consider the corresponding cut-off functions

χε,i ∈ C∞
c (Iεi ), χε,i ↾Iε,ini

= 1, ∥∇χε,i∥L∞(D) ≲ ε−(1+δ), (3.34)

ζε,j ∈ C∞
c

(
B2εαrj(εzj)

)
, ζε,j ↾Bεαrj

(εzj)= 1, ∥∇ζε,j∥L∞(B2εαrj
(εzj)) ≲

1

rj
ε−α, (3.35)

and define

Aε
i := Iεi \ I

ε,in
i = {x ∈ Iεi : dist∞(x, ∂Iεi ) <

1

16N
ε1+δ},

bε,i(u) := χε,i(u− ⟨u⟩Aε
i
) ∈ W 1,q

0 (Iεi ),

βε,j(u) := ζε,j ⟨u⟩Aε
i
∈ W 1,q

0

(
B2εαrj(εzj)

)
,

(3.36)

where as before i and j are related through εzj ∈ Iεi , and ⟨u⟩S is the mean value of u over the

set S.

Since all the lengths in the set Aε
i are proportional to ε1+δ (with the proportionality de-

pending on N), Poincaré’s inequality (B.6) implies

∥u− ⟨u⟩Aε
i
∥Lq(Aε

i )
≲ ε1+δ ∥∇u∥Lq(Aε

i )
,

and by (3.34) we get

∥∇bε,i(u)∥Lq(Aε
i )
≤ ∥χε,i∇(u− ⟨u⟩Aε

i
)∥Lq(Aε

i )
+ ∥∇χε(u− ⟨u⟩Aε

i
)∥Lq(Aε

i )

≲ ∥∇(u− ⟨u⟩Aε
i
)∥Lq(Aε

i )
+ ε−(1+δ) ∥u− ⟨u⟩Aε

i
∥Lq(Aε

i )

≲ ∥∇u∥Lq(Aε
i )
.

(3.37)

From (3.35) and Hölder’s inequality (B.2), we obtain

∥∇βε,j(u)∥Lq(B2εαrj
(εzj)) = ∥∇ζε,j · ⟨u⟩Aε

i
∥Lq(B2εαrj

(εzj))

≲ r
3
q
−1

j ε

(
3
q
−1
)
α |⟨u⟩Aε

i
| ≲ r

3
q
−1

j ε

(
3
q
−1
)
α |Aε

i |
− 1

q ∥u∥Lq(Aε
i )

≲ r
3
q
−1

j ε

(
3
q
−1
)
α− 3(1+δ)

q ∥u∥Lq(Aε
i )
.

(3.38)

Since Bεαrj(εzj) ⊂ D, we have rj ≤ ε1+κ2−α = ε−( 3
m
+δ) by (3.32) and the choice of κ2 =

α− 1− 3
m
− δ. This yields

r
3
q
−1

j ε

(
3
q
−1
)
α− 3(1+δ)

q ≤ ε(
3
q
−1)(α− 3

m
−δ)− 3

q
(1+δ).

Thus, for all 1 < q < 3 which satisfy (3.19), we can choose δ such that

0 < δ ≤
(3− q)(α− 3

m
)− 3

6− q
(3.39)

to get uniform bounds on ∥βε,j(u)∥Lq(B2εαrj
(εzj)). Similar to Section 3.3, the functions βε,j
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and bε,i do not have vanishing divergence in general, so we need to correct them using a

Bogovkĭı operator on perforations of Iεi . Since I
ε
i \

⋃
εzj∈Iεi

Bεαrj(εzj) is a uniform John domain,

the existence of the Bogovskĭı operator Bε,i for the set Iεi \
⋃

εzj∈Iεi
Bεαrj(εzj) is content of

Lemma 3.4.4, provided we choose δ from (3.39) possibly even smaller to satisfy also (3.21).

Moreover, note that by construction, any box Iεi contains at least one point from Φε(D) and

at most N of them. We are now ready to define the restriction operator from D to Dε via

Rε(u) := u−
∑
Iεi ⊂D

∑
εzj∈Iεi

(
bε,i(u)

#{εzj ∈ Iεi }
+ βε,j(u)

)
− Bε,i div

(
bε,i(u)

#{εzj ∈ Iεi }
+ βε,j(u)

)
, (3.40)

where all functions were extended by 0 outside their domain of definition. This definition is

a generalization of the one in (3.17). Indeed, if any box Iεi contains just one point εzj, the

definitions are equivalent. Repeating the arguments shown in Section 3.3, we check that the

operator Rε is well defined and satisfies the desired norm bounds. First, by the definitions of

bε,i and βε,j in (3.36), we have∫
Iεi

divbε,i(u) dx = 0,

∫
Iεi

div βε,j(u) dx =

∫
B2εαrj

(εzj)

div βε,j(u) dx = 0.

On the other hand, χε,i = ζε,j = 1 and divu = f̃ = 0 inside Bεαrj(εzj), thus

divbε,i(u) = χε,i divu+∇χε,i · (u− ⟨u⟩Aε
i
) = 0 in Bεαrj(εzj),

div βε,j(u) = ∇ζε,j · (u− ⟨u⟩Aε
i
) = 0 in Bεαrj(εzj),

leading to ∫
Iεi \

⋃
zj∈ε−1Iε

i
∩Φε(D)

Bεαrj
(εzj)

div

(
bε,i(u)

#{εzj ∈ Iεi }
+ βε,j(u)

)
dx = 0

as required. Next, for any hole Bεαrj(εzj) ⊂ Iεi and any x ∈ Bεαrj(εzj), we get

Rε(u)(x) = u(x)−
∑

εzj∈Iεi

(
bε,i(u)

#{εzj ∈ Iεi }
+ βε,j(u)

)
(x)

−
∑

εzj∈Iεi

Bε,i div

(
bε,i(u)

#{εzj ∈ Iεi }
+ βε,j(u)

)
(x)

= u(x)− (bε,i(u) + βε,j(u))(x)− Bε,i div
(
bε,i(u) + βε,j(u)

)
(x)

= u(x)− χε,i(x)(u(x)− ⟨u⟩Aε
i
)− ζε,j(x)⟨u⟩Aε

i

= 0,

where in the last equality we used that χε,i(x) = ζε,j(x) = 1 in Bεαrj(εzj). This yields that the

operator Rε is well defined and satisfies

Rε(u) ∈ W 1,q
0 (Dε), divRε(u) = f in Dε.
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Chapter 3. Bogovskĭı’s operator in different domains

Finally, by (3.37), (3.38) and the fact that the boxes Iεi are disjoint, we see that

∥Rε(u)∥W 1,q
0 (Dε)

≤ C

(
ε(

3
q
−1)(α− 3

m
−δ)− 3

q
(1+δ) + 1

)
∥u∥W 1,q

0 (D), (3.41)

where the constant C > 0 is independent of ε > 0. Note that due to the choice of δ, the

exponent of ε on the right-hand side is non-negative, so we may bound Rε uniformly with

respect to ε. For f ∈ Lq
0(Dε) we define

Bε(f) := (Rε ◦ BD)(f̃)

and observe that we get the desired operator, namely Bε(f) ∈ W 1,q
0 (Dε),

divBε(f) = f in Dε, and ∥Bε(f)∥W 1,q
0 (Dε)

≤ C ∥f∥Lq(Dε).

This finishes the proof of Theorem 3.4.1.

Remark 3.4.7. As holes are well separated, one might think that the construction of the

Bogovskĭı operator is possible in just two steps: first in the whole domain and second with a

cut-off argument near each hole. This construction would follow the one from [All90] and its

Lq-generalization by Lu in [Lu21, Section 5]. However, following Lu’s proof, one recognizes

that we would get a worse exponent of ε: the term 3
q
(1 + δ) would change to 3

q
(2 + δ). This is

due to the fact that in our case, the holes do not have mutual distance of order ε, but rather

(more than) ε2+δ due to the random distribution of centers.

Remark 3.4.8. We note that the ε-dependence in (3.41) seems not to be optimal but “close

to optimal” in the sense of capacity (see also [Lu21, Remark 2.4]): Recall that for 1 < q < ∞
and S ⊂ Rd, the q-capacity is defined as

Capq(S) := inf{∥∇f∥q
Lq(Rd)

: f ∈ W 1,q(Rd), S ⊂ {f ≥ 1}}.

We will here focus on the case d = 3. For a ball of radius r > 0, it is known that for any

1 < q < 3 there exists a constant C = C(q) > 0 such that

Capq(Br(0)) = C r3−q,

see, e.g., [EG15, Theorem 4.15]. Since the capacity is an outer measure, the fact that (for

ε > 0 small enough) the balls are well separated and the expected number of holes inside D is

of order ε−3, together with (3.27) and the choice of κ2 = α− 1− 3
m
− δ, we have

Capq

( ⋃
zi∈Φε(D)

Briεα(εzi)

)
≤

∑
z∈Φε(D)

Capq(Briεα(εzi))

≤ C ε−3
(

max
zi∈Φε(D)

riε
α
)3−q ≤ C ε(1+κ2)(3−q)−3 = C ε(3−q)(α− 3

m
−δ)−3.

(3.42)

We see that the essential quantity (3 − q)(α − 3
m
− δ) − 3 arising here is almost the same as

in (3.41). A possible explanation for the connection between the capacity estimates and the

estimate for the Bogovskĭı operator is as follows. Let u ∈ W 1,q
0 (Dε) and φ ∈ C∞

c (Rd) with

φ = 1 in D. Then φ(1− u) is an admissible function in the definition of the q-capacity for the
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union of all holes, that is,

φ(1− u) ∈ W 1,q(Rd), φ(1− u) = 1 on
⋃

zi∈Φε(D)

Briεα(εzi).

Direct calculations yield

∥φ(1− u)∥W 1,q(Rd) ≤ C(φ) (1 + ∥u∥W 1,q(Dε))

as well as

C(φ) (1 + ∥u∥qW 1,q(Dε)
) ≥ ∥φ(1− u)∥q

W 1,q(Rd)
≥ Capq

( ⋃
zi∈Φε(D)

Briεα(εzi)

)
.

If α is large and the radii ri are almost constant, meaning that the holes inside D should be

very well separated, one might expect that the inequality (3.42) is close to an equality, yielding

∥u∥qW 1,q(Dε)
≥ C

(
ε(3−q)(α− 3

m
−δ)−3 − 1

)
.

For the Bogovskĭı operator obtained in Theorem 3.4.1, we have Bε(f) ∈ W 1,q
0 (Dε), so the

optimal general estimate on ∥u∥W 1,q(Dε) may be of size ε(
3
q
−1)(α− 3

m
−δ)− 3

q . The suboptimal factor

ε−
3
q
(1+δ) in (3.41) is due to the fact our construction does not enable us to have a better estimate

on ∇βε,j(u) in (3.38).

3.5 Extension to negative Sobolev spaces

Here, we will give an extension result for the Bogovskĭı operator Bε constructed in Section 3.4,

for the later use in the homogenization of time-dependent Navier-Stokes equations. We will

need to control the Bogovskĭı operator in some negative Sobolev space to handle terms of the

form Bε(div(ϱ
θ
εuε)) that arise from the renormalized continuity equation (2.3) and the time

derivative in the weak (meaning integral) formulation of the momentum equation (2.4), that

is, from ∂tBε(ϱε) = Bε(∂tϱε). We will get rigorous on this in Section 4.2. The statement and

proof of such an extension to negative Sobolev spaces requires some additional structure on

Lp-functions, precisely, we have to control their divergence in a suitable way. We therefore

introduce some new function spaces according to the definitions made in [FN09, Section 10.3].

Definition 3.5.1. Let D ⊂ R3 be a bounded Lipschitz domain, 1 < p ≤ q < ∞, and denote

the Hölder conjugate of p by p′ := p/(p− 1). Then we define the following function spaces:

1. Eq,p(D) := {u ∈ Lq(D) : divu ∈ Lp(D)}, endowed with the norm ∥u∥Eq,p(D) :=

∥u∥Lq(D) + ∥ divu∥Lp(D);

2. Eq,p
0 (D) := C∞

c (D)
∥·∥Eq,p

;

3.
[
Ẇ 1,p′(D)

]′
:= {g ∈

[
W 1,p′(D)

]′
: ⟨g, 1⟩ = 0}.

These spaces have some important properties and connections, which we state in the next

lemma. Recall that we defined C∞
c,0(D) as the set of smooth functions with zero mean value

over D.
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Lemma 3.5.2. Let D ⊂ R3 be a bounded Lipschitz domain and 1 < p ≤ q < ∞. Then it

holds:

1. Eq,p(D) ⊂ Ep,p(D) and Eq,p
0 (D) ⊂ Ep,p

0 (D).

2. The set C∞(D) is dense in Eq,p(D).

3. C∞
c,0(D) is dense in

[
Ẇ 1,p′(D)

]′
.

4. We have {div f : f ∈ Eq,p
0 (D)} ⊂

[
Ẇ 1,p′(D)

]′
via

⟨div f , φ⟩[Ẇ 1,p′ (D)]′,Ẇ 1,p′ (D) := −
∫
D

f · ∇φ dx for all f ∈ Eq,p
0 (D), φ ∈ W 1,p′(D),

and we may estimate the norms as

∥ div f∥[Ẇ 1,p′ (D)]′ ≤ C ∥f∥Lq(D)

for some constant C = C(p, q, |D|) > 0.

Proof. The first statement is trivial due to q ≥ p and |D| < ∞. The second one can be found

in [FN09, Lemma 10.2]. Since any bounded Lipschitz domain can be decomposed into finitely

many star-shaped domains (see Lemma 3.1.3), we may assume that D is star-shaped with

respect to a ball centered at the origin. For u ∈ Eq,p(D) and τ ∈ (0, 1) write uτ (x) = u(x/τ).

Then, τD ⊂ D, uτ ∈ Eq,p(τD) with div(uτ ) =
1
τ
(divu)τ , and also

∥ div(u− uτ )∥Lp(D) ≤
(
1− τ−1

)
∥ divu∥Lp(D) + τ−1∥ divu− (divu)τ∥Lp(D).

Since translations h 7→ v(·+ h) are continuous for any v ∈ Lr(R3), 1 ≤ r < ∞, we may write

vτ (x) = v(x− (1− 1
τ
)x) to see that also scalings are continuous as τ → 1. Thus, we see that

div(u−uτ ) → 0 in Lp(D) since (divu)τ → divu in Lp(D), and additionally uτ → u in Lq(D),

provided all functions have been extended by zero to the whole space. Hence, it suffices to

approximate uτ in Eq,p(D) by smooth functions. To this end, let 0 < ε < 1
2
dist(τD, ∂D), and

let ηε be a mollifying kernel. Then supp (uτ ∗ ηε) ⊂ D and uτ ∗ ηε ∈ C∞(D) ∩ Eq,p(D), and

uτ ∗ ηε → uτ in Eq,p(D) as ε→ 0 by the properties of mollifiers (see Proposition B.7).

The third statement is again proven in [FN09, Lemmata 10.4 and 10.5]. More precisely, for

fixed f ∈
[
Ẇ 1,p′(D)

]′
there is w ∈ Lp(D) such that

⟨f, φ⟩ =
∫
D

w · ∇φ dx, ∥w∥Lp(D) = ∥f∥[Ẇ 1,p′ (D)]′ ,

which in turn is a consequence of the Hahn-Banach theorem and the Riesz representation

theorem. Approximating w with smooth functions wn such that wn → w in Lp(D) and

∥wn∥Lp(D) ≤ ∥wn −w∥Lp(D) + ∥w∥Lp(D) ≤ 2 ∥f∥[Ẇ 1,p′ (D)]′ , and defining functionals fn via

⟨fn, φ⟩ :=
∫
D

wn · ∇φ dx

yields the desired by sending n → ∞. Assertion four follows from the observation that the

integral on the right is finite for any f ∈ Eq,p
0 (D) since ∥f∥Lp(D) ≤ C ∥f∥Lq(D) by q ≥ p, so the
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dual product is well defined. Further, this immediately yields

⟨div f , 1⟩[Ẇ 1,p′ (D)]′,Ẇ 1,p′ (D) = −
∫
D

f · ∇1 dx = 0

as required. Finally, we have

∥ div f∥[Ẇ 1,p′ (D)]′ = sup
∥φ∥

W1,p′=1

|⟨div f , φ⟩[Ẇ 1,p′ (D)]′,Ẇ 1,p′ (D)|

≤ sup
∥φ∥

W1,p′=1

∫
D

|f | |∇φ| dx ≤ sup
∥φ∥

W1,p′=1

∥f∥Lq(D)∥∇φ∥Lq′ (D)

≤ C sup
∥φ∥

W1,p′=1

∥f∥Lq(D)∥∇φ∥Lp′ (D) ≤ C sup
∥φ∥

W1,p′=1

∥f∥Lq(D)∥φ∥W 1,p′ (D)

= C ∥f∥Lq(D)

for some constant C > 0 just dependent on p, q and |D|, where we used that q′ ≤ p′ by q ≥ p,

so ∥∇φ∥Lq′ (D) ≤ C ∥∇φ∥Lp′ (D).

Additionally, due to the fact Eq,p(D) ⊂ Ep,p(D), we are able to define a generalized normal

trace, which we take from [FN09, Theorem 10.8].

Theorem 3.5.3. Let D ⊂ Rd be a bounded Lipschitz domain and 1 < p < ∞. There exists a

unique bounded linear operator Trn such that

1. Trn : Ep,p(D) →
[
W

1− 1
p′ ,p

′
(∂D)

]′
and Trn(u) = Tr(u) · n almost everywhere on ∂D if

u ∈ C∞(D), where Tr is the usual trace operator on W 1,p(D);

2. For any u ∈ Ep,p(D) and any v ∈ W 1,p′(D), it holds∫
D

v divu dx+

∫
D

∇v · u dx = ⟨Trn(u),Tr(v)⟩,

where ⟨·, ·⟩ denotes the duality product between
[
W

1− 1
p′ ,p

′
(∂D)

]′
and W

1− 1
p′ ,p

′
(∂D).

3. If u ∈ W 1,p(D), then Trn(u) ∈ Lp(∂D) and Trn(u) = Tr(u) · n almost everywhere on

∂D.

4. {u ∈ Ep,p(D) : Trn(u) = 0} = Ep,p
0 (D).

We are now in the position to state and prove the following extension result from [LS18,

Theorem 1.1 and Proposition 2.2] for the case of a random perforation (see also [FN09, The-

orem 10.11]). As mentioned earlier, the regularity assumption on D in the second part of the

statement can be relaxed. It ensures that we can apply all the results obtained in Section 3.4,

however, we will not discuss its optimality here.

Theorem 3.5.4. Let D ⊂ R3 be a bounded Lipschitz domain, B be the corresponding Bogovskĭı

operator from Theorem 3.2.9, and 1 < p < 3. Then we can extend B to an operator

B :
[
Ẇ 1,p′(D)

]′ → Lp(D),
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and, for p ≤ q < 3, to an operator mapping {div f : f ∈ Eq,p
0 (D)} to Lq(D). More precisely, if

f ∈
[
Ẇ 1,p′(D)

]′
, then

⟨B(f),∇φ⟩ = −⟨f, φ⟩ for any φ ∈ W 1,p′(D), ∥B(f)∥Lp(D) ≤ C ∥f∥[W 1,p′ (D)]′

for some constant C > 0 independent of f , and similarly for f ∈ Eq,p
0 (D)

⟨B div f ,∇φ⟩ = ⟨f ,∇φ⟩ for any φ ∈ W 1,p′(D), ∥B div f∥Lq(D) ≤ C ∥f∥Lq(D).

Further, if ∂D is smooth, let Dε be defined as in (3.18), and Bε be the operator constructed in

Theorem 3.4.1. If q > 3/2 and f ∈ Eq,p
0 (Dε), then there is a constant C > 0 independent of ε

and f such that

⟨Bε div f ,∇φ⟩ = ⟨f ,∇φ⟩ for any φ ∈ W 1,p′(Dε), ∥Bε div f∥Lq(Dε) ≤ C ∥f∥Lq(Dε).

Proof. By Lemma 3.5.2, it is enough to prove the first assertion for
[
Ẇ 1,p′(D)

]′
. We will just

summarize the ideas, details can be found in [FN09, Theorem 10.11]. As before, for fixed

f ∈
[
Ẇ 1,p′(D)

]′
there is w ∈ Lp(D) such that

⟨f, φ⟩ =
∫
D

w · ∇φ dx, ∥w∥Lp(D) = ∥f∥[W 1,p′ (D)]′ .

Taking wn ∈ C∞
c (D) such that wn → w in Lp(D) and ∥wn∥Lp(D) ≤ 2 ∥f∥[W 1,p′ (D)]′ , we apply

the decomposition Theorem 3.2.11 to define similarly to the proof of Theorem 3.2.9

B divwn :=
∑
i∈N

BiTi divwn,

where Bi is the standard Bogovskĭı operator from Theorem 3.1.6 on the cube Wi. Since B is

linear, we now conclude by

∥B divwn∥Lp(D) ≤ C
∑
i∈N

∥BiTi divwn∥Lp(D) ≤ C ∥wn∥Lp(D) ≤ C ∥f∥[W 1,p′ (D)]′

and sending n→ ∞.

The second statement for the perforated domain Dε requires more care. Let f ∈ Eq,p
0 (Dε), then

clearly f̃ ∈ Eq,p
0 (D). Setting u = B div f̃ ∈ Lq(D), then

∥u∥Lq(D) ≤ C ∥f∥Lq(D) (3.43)

for some constant C = C(q,D) > 0. We now want to modify u such that it vanishes on the

holes without changing its divergence. Recall the definitions of the cut-off functions χε,i and

ζε,j as well as bε,i and βε,j from (3.34)-(3.36) as

χε,i ∈ C∞
c (Iεi ), χε,i ↾Iε,ini

= 1, ∥∇χε,i∥L∞(D) ≲ ε−(1+δ),

ζε,j ∈ C∞
c

(
B2εαrj(εzj)

)
, ζε,j ↾Bεαrj

(εzj)= 1, ∥∇ζε,j∥L∞(B2εαrj
(εzj)) ≲

1

rj
ε−α,

bε,i(u) = χε,i(u− ⟨u⟩Aε
i
) ∈ Lq(Iεi ),
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βε,j(u) = ζε,j ⟨u⟩Aε
i
∈ Lq

(
B2εαrj(εzj)

)
.

Since div f̃ ∈ Lp(D) with
∫
D
div f̃ = ⟨div f̃ , 1⟩ = 0, we have u ∈ W 1,p

0 (D) and Rε(u) ∈ W 1,p
0 (Dε)

is well-defined, where Rε is the restriction operator from (3.40). The goal is now to get a uniform

estimate

∥Rε(u)∥Lq(Dε) ≤ C ∥f∥Lq(Dε)

for some constant C > 0 independent of ε and ∥ div f∥Lp(Dε). First, we have

∥bε,i(u)∥Lq(Iεi )
≤ ∥u− ⟨u⟩Aε

i
∥Lq(Iεi )

≤ ∥u∥Lq(Iεi )
+ |⟨u⟩Aε

i
| |Iεi |

1
q

≤ ∥u∥Lq(Iεi )
+

|Iεi |
1
q

|Aε
i |

1
q

∥u∥Lq(Aε
i )
≤ C ∥u∥Lq(Iεi )

,

where we used that |Iεi | and |Aε
i | are both of order ε1+δ and Aε

i ⊂ Iεi , so we may choose C

independent of ε. Farther, for ε small enough such that rj ≤ ε−( 3
m
+δ),

∥βε,j(u)∥Lq(Iεi )
≤ |⟨u⟩Aε

i
| |B2εαrj(εzj)|

1
q ≤ C (εαrj)

3
q ε−

3
q
(1+δ)∥u∥Lq(Aε

i )

≤ C ε
3
q
(α−1− 3

m
−2δ)∥u∥Lq(Iεi )

≤ C ∥u∥Lq(Iεi )

since the exponent of ε is non-negative due to the definition of δ in (3.21). Using divu = div f

and abbreviating ni := #{εzj ∈ Iεi } ∈ [1, N ] ∩ N, we write

div

(
bε,i(u)

ni

+ βε,j(u)

)
=

1

ni

(
χε,i divu+∇χε,i · (u− ⟨u⟩Aε

i
)
)
+∇ζε,j · ⟨u⟩Aε

i

=
1

ni

(
χε,i div f +∇χε,i · (u− ⟨u⟩Aε

i
)
)
+∇ζε,j · ⟨u⟩Aε

i

=
1

ni

div(χε,if) +
1

ni

∇χε,i · (u− f) +∇
(
ζε,j −

χε,i

ni

)
· ⟨u⟩Aε

i
.

(3.44)

We will estimate each term separately. Setting U := Iεi \
⋃

zj∈ε−1Iεi ∩Φε(D)Bεαrj(εzj), we have by

χε,i = 0 on ∂Iεi , f ∈ Eq,p
0 (Dε) ⊂ Ep,p

0 (Dε), and Theorem 3.5.3, that

0 = ⟨Trn(f),Tr(χε,i)⟩
[W

1− 1
p′ ,p

′
(∂U)]′,W

1− 1
p′ ,p

′
(∂U)

=

∫
U

χε,i div f dx+

∫
U

∇χε,i · f dx =

∫
U

div(χε,if) dx,

so we may use the fact that U is a uniform John domain by Lemma 3.4.4 and the first part of

the proof to obtain

∥Bε,i(div(χε,if))∥Lq(U) ≤ C ∥χε,if∥Lq(U) ≤ C ∥f∥Lq(Iεi )
.

Since u ∈ W 1,p
0 (D) has a well defined trace, divu = div f , χε,i = 0 on ∂Iεi , and χε,i = 1 on

every hole,

0 = ⟨Trn(u− f),Tr(χε,i)⟩
[W

1− 1
p′ ,p

′
(∂Iεi )]

′,W
1− 1

p′ ,p
′
(∂Iεi )
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=

∫
Iεi

∇χε,i · (u− f) dx =

∫
U

∇χε,i · (u− f) dx.

Similarly, since ζε,j and χε,i are smooth functions, ζε,j = 0 on ∂B2εαrj(εzj), in particular on

∂Iεi , and ζε,j = 1 on every hole, we have∫
U

∇
(
ζε,j −

χε,i

ni

)
· ⟨u⟩Aε

i
dx =

∫
Iεi

∇
(
ζε,j −

χε,i

ni

)
· ⟨u⟩Aε

i
dx

=

∫
Iεi

div

((
ζε,j −

χε,i

ni

)
⟨u⟩Aε

i

)
dx =

∫
∂Iεi

((
ζε,j −

χε,i

ni

)
⟨u⟩Aε

i

)
· n dσ(x) = 0.

Let us show why we assumed q > 3/2. Let q̃ ∈ (1, 3) such that 1/q̃ = 1/q + 1/3. Since U is a

uniform John domain by Lemma 3.4.4, we have from the first part of the proof and by Sobolev

embedding (B.8)

∥Bε,i(∇χε,i · (u− f))∥Lq(U) ≤ C ∥Bε,i(∇χε,i · (u− f))∥W 1,q̃
0 (U)

≤ C ∥∇χε,i · (u− f)∥Lq̃(U)

≤ C ∥∇χε,i∥L3(U)(∥f∥Lq(U) + ∥u∥Lq(U))

≤ C ∥∇χε,i∥L3(Iεi )
(∥f∥Lq(Iεi )

+ ∥u∥Lq(Iεi )
).

Similarly, since |Iεi |/|Aε
i | ≤ C, we get with

|U |
1
q |⟨u⟩Aε

i
| ≤ C |Iεi |

1
q |Aε

i |
− 1

q ∥u∥Lq(Aε
i )
≤ C ∥u∥Lq(U)

and 1 ≤ ni ≤ N for any i the estimate∥∥∥∥Bε,i

(
∇
(
ζε,j −

χε,i

ni

)
· ⟨u⟩Aε

i

)∥∥∥∥
Lq(U)

≤ C ∥Bε,i(∇(ζε,j − χε,i) · ⟨u⟩Aε
i
)∥W 1,q̃

0 (U)

≤ C ∥∇(ζε,j − χε,i) · ⟨u⟩Aε
i
∥Lq̃(U)

≤ C (∥∇ζε,j∥L3(U) + ∥∇χε,i∥L3(U))|⟨u⟩Aε
i
| |U |

1
q

≤ C (∥∇ζε,j∥L3(U) + ∥∇χε,i∥L3(U))∥u∥Lq(U)

≤ C (∥∇ζε,j∥L3(Iεi )
+ ∥∇χε,i∥L3(Iεi )

)∥u∥Lq(Iεi )
.

We further have from ∥∇χε,i∥L∞ ≤ C ε−(1+δ) and ∥∇ζε,j∥L∞ ≤ C (rjε
α)−1

∥∇χε,i∥L3(Iεi )
≤ ∥∇χε,i∥L∞(D) |Iεi |

1
3 ≤ C ε−(1+δ)(ε3(1+δ))

1
3 = C,

∥∇ζε,j∥L3(Iεi )
= ∥∇ζε,j∥L3(B2εαrj

(εzj)) ≤ ∥∇ζε,j∥L∞(B2εαrj
(εzj)) |B2εαrj(εzj)|

1
3 ≤ C

for some constant C > 0 independent of ε, i, j, and ∥ div f∥Lp(Dε). Finally, from (3.43) and the

fact that all boxes Iεi are disjoint, we establish

∥Rε(u)∥qLq(Dε)
≤ C (∥u∥qLq(Dε)

+ ∥f∥qLq(Dε)
) ≤ C ∥f∥qLq(Dε)

.

Recalling the definition of Bε as Bε(f) = (Rε ◦ BD)(f̃), this completes the proof.
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Chapter 4

Homogenization results for perforated

domains

In this chapter, we will give the homogenization results for domains Dε which are perforated

by small holes having radius of order εα. In order to obtain bounds on the density that are

uniform in ε > 0, the outcomes from Chapter 3 and specifically from Sections 3.3, 3.4, and

3.5 are crucial. We split the chapter in several sections. The first section is devoted to the

homogenization of the stationary Navier-Stokes equations for a viscous compressible fluid in a

randomly perforated domain as introduced in Section 3.4, where we assume a pressure growth

of p = aϱγ for some γ > 3. We will relax this to γ > 2 in Section 4.2, as well as give arguments

how to proceed for the evolutionary system. Let us emphasize that the range of γ we can work

with, is far away from the physical range 1 ≤ γ ≤ 5
3
stated in (2.14). This is due to the fact

that we need a good control on the density in certain Lebesgue spaces, see Section 4.1.2. In

Section 4.3, we focus on the homogenization for the stationary Navier-Stokes-Fourier equations,

meaning, that we additionally take into account that the fluid is heat-conducting. In all the

aforementioned sections, we further assume that the size of the holes is subcritical, meaning

α > 3, such that the limiting systems will have the same structure as the ones in the perforated

domain. The last section however differs from the ones before: we focus on the case of critically

sized holes α = 3 for a periodically perforated domain, and scale the pressure by an ε-depending

factor, which corresponds to the so-called Low Mach number limit. We will show that in this

case, we get in the limiting equations an additional friction term being reminiscent from the

holes.

4.1 The case of constant temperature and γ > 3

4.1.1 Setting and main result

In this section, we assume the holes to be small, in the sense that we assume α > 3 in the

definition of Dε in (3.18). Furthermore, we assume the radii ri to satisfy

E(rMi ) <∞ for M = max{3,m} and some m >
3

α− 3
.
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Chapter 4. Homogenization results for perforated domains

The conditions on the moment bound M are needed in order to control the measure of Dε

independently of ε and get a uniformly bounded Bogovskĭı operator

Bε : L
2
0(Dε) → W 1,2

0 (Dε),

see also (3.19) in Theorem 3.4.2. For an explanation on the restriction m > 3/(α− 3), see Re-

mark 4.1.5 below. Now, in the domain Dε, we consider the stationary Navier-Stokes equations
div(ϱεuε) = 0 in Dε,

div(ϱεuε ⊗ uε) +∇p(ϱε) = div S(∇uε) + ϱεf + g in Dε,

uε = 0 on ∂Dε,

(4.1)

where the Newtonian viscous stress tensor S(∇uε) as derived in Section 2.1 is of the form

S(∇u) = µ

(
∇u+∇Tu− 2

3
div(u)I

)
+ η div(u)I, µ > 0, η ≥ 0, (4.2)

and p(ϱ) = aϱγ for some a > 0 and γ > 3. We further assume f ,g ∈ L∞(D).

Before stating our main result, we introduce the notion of finite energy weak solutions.

Definition 4.1.1. Let m > 0 be fixed. We call a couple [ϱ,u] a renormalized finite energy

weak solution to equations (4.1) if:

ϱ ≥ 0 a.e. in Dε,

∫
Dε

ϱ dx = m,

ϱ ∈ Lβ(γ)(Dε) for some γ ≤ β(γ) ≤ ∞, u ∈ W 1,2
0 (Dε),∫

Dε

p(ϱ) divφ+ ϱu⊗ u : ∇φ− S(∇u) : ∇φ+ (ϱf + g) · φ dx = 0

for all all test functions φ ∈ C∞
c (Dε;R3), the energy inequality∫

Dε

S(∇u) : ∇u dx ≤
∫
Dε

(ϱf + g) · u dx (4.3)

holds, and the zero extension [ϱ̃, ũ] satisfies in D′(R3)

div(ϱ̃ũ) = 0, div(b(ϱ̃)ũ) + (ϱ̃b′(ϱ̃)− b(ϱ̃)) div ũ = 0 (4.4)

for any b ∈ C([0,∞)) ∩ C1((0,∞)) such that there are constants

c > 0, λ0 < 1, −1 < λ1 ≤ γ − 1

with

b′(s) ≤ cs−λ0 for s ∈ (0, 1], b′(s) ≤ csλ1 for s ∈ [1,∞).

Remark 4.1.2. Due to the DiPerna-Lions transport theory (see [DL89]), for any smooth
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4.1. The case of constant temperature and γ > 3

domain D ⊂ R3, any r ∈ Lβ(D) with β ≥ 2, and any v ∈ W 1,2
0 (D) such that

div(rv) = 0 in D′(D),

the couple [r,v], extended by zero outside D, satisfies the renormalized equation

div((b(r)v) + (rb′(r)− b(r)) div v = 0 in D′(R3),

where b ∈ C([0,∞)) ∩ C1((0,∞)) is as in (4.4). We remark that if β = β(γ) is as in Defini-

tion 4.1.1, the available existence theory requires γ ≥ 5
3
for β(γ) ≥ 2 to hold, see Theorem 4.1.3

below.

Formally, the energy inequality (4.3) can be derived from the kinetic energy balance (2.6),

which in our stationary case reads

div

(
1

2
ϱ|u|2u

)
= (ϱf + g) · u+ div(Su− pu)− S : ∇u+ p divu. (4.5)

We multiply the continuity equation (2.2) by aϱγ−1 to obtain

0 = aϱγ divu+
a

γ
u · ∇ϱγ = p divu+

1

γ
u · ∇p. (4.6)

Therefore, we get by partial integration and the homogeneous Dirichlet boundary conditions

for u, together with γ > 1,∫
Dε

u · ∇p dx = −
∫
Dε

p divu dx =
1

γ

∫
Dε

u · ∇p dx =⇒
∫
Dε

u · ∇p dx = 0.

Substituting (4.6) into (4.5) and integrating over Dε yields∫
Dε

S : ∇u dx+

∫
Dε

div

(
1

2
ϱ|u|2u− Su+ pu

)
dx =

∫
Dε

(ϱf + g) · u dx.

Since u = 0 on ∂Dε, the second integral is zero, thus we get the energy equality∫
Dε

S(∇u) : ∇u dx =

∫
Dε

(ϱf + g) · u dx.

We remark that this equality was obtained for smooth functions ϱ and u. Since we deal with

mere weak solutions, which are expected to dissipate more energy than indicated from the

momentum equation, we get inequality rather than equality, which precisely yields (4.3).

The existence of renormalized finite energy weak solutions to system (4.1) for fixed ε > 0

is guaranteed by Theorem 4.3 in [NS04], which we cite here for further use.

Theorem 4.1.3. Let D ⊂ R3 be a bounded domain of class C2, f ,g ∈ L∞(D), and m > 0.

Then there exists a renormalized finite energy weak solution [ϱ,u] ∈ Lβ(γ)(D)×W 1,2
0 (D) in the
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sense of Definition 4.1.1, where

β(γ) =

{
2γ if γ > 3,

3(γ − 1) if 3/2 < γ ≤ 3.

Note that the restriction γ > 3
2
is necessary to ensure that the convective term ϱu ⊗ u is

integrable over D, which is needed in order to interpret this term meaningfully. Besides this

interpretation, it is worth mentioning that P. Plotnikov and W. Weigant obtained a similar

existence result for weak solutions for all γ > 1, see [PW15].

Back to the homogenization, our main result in this section reads as follows.

Theorem 4.1.4. Assume α > 3. Let D ⊂ R3 be a bounded star-shaped domain with respect

to the origin with smooth boundary and let (Φ,R) = ({zj}, {rj}) be a marked Poisson point

process with intensity λ > 0, and rj > 0 with E(rMj ) < ∞, M = max{3,m}, m > 3/(α − 3).

Farther let

m > 0, γ > 3.

Then for almost every ω ∈ Ω there exists ε0 = ε0(ω) > 0, such that the following holds: For

0 < ε < 1 let Dε be as in (3.18) and let {[ϱε,uε]}ε be a family of renormalized finite energy

weak solutions to (4.1). Then there is a constant C > 0, which is independent of ε, such that

sup
ε∈(0,ε0)

∥ϱ̃ε∥L2γ(D) + ∥ũε∥W 1,2
0 (D) ≤ C

and, up to a subsequence,

ϱ̃ε ⇀ ϱ weakly in L2γ(D), ũε ⇀ u weakly in W 1,2
0 (D),

where the limit [ϱ,u] is a renormalized finite energy weak solution to the problem (4.1) in the

limit domain D.

Remark 4.1.5. We note that the conditionm > 3/(α−3) on the size of radii of the perforations

is not just needed for technical purposes, but it is in a sense an optimal assumption. Let us

give a heuristic explanation on this. Fix ε > 0, then in Dε we have an expected number of

n ≈ ε−3 holes with n radii ri ∈ (0,∞). We ask for the probability of having at least one “large”

hole inside D, that is, for the distribution of max1≤i≤n ri. Since the radii {ri} are i.i.d. random

variables, we have

P
(
max
1≤i≤n

ri ≤ R
)
= P

( ⋂
1≤i≤n

{ri ≤ R}
)
= P(ri ≤ R)n

for any R > 0. By the assumption on the moment bound for the radii, we have∫ ∞

0

tm dP(t) = E(rm) <∞.
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4.1. The case of constant temperature and γ > 3

This yields

P(ri > R) =

∫ ∞

R

1 dP(t) ≤
∫ ∞

R

tm

Rm
dP(t) ≤ R−mE(rm),

so

P
(
max
1≤i≤n

ri ≤ R
)
= P(ri ≤ R)n =

(
1− P(ri > R)

)n
≳ (1−R−m)n

and hence

P
(
max
1≤i≤n

ri > R
)
= 1− P

(
max
1≤i≤n

ri ≤ R
)
≲ 1− (1−R−m)n ≲ 1− exp(−nR−m),

meaning that the probability of having at least one hole with a radius of size R is of order

1− exp(−nR−m). To obtain a non-vanishing probability on this as n→ ∞, which is equivalent

to ε → 0, we must have nR−m = ε−3R−m ≳ 1, thus R ≲ ε−3/m. Assuming that the largest

radius satisfies rmax = max1≤i≤n ri = ε−3/m, we end up with εαrmax = εα−
3
m . If now m =

3/(α−3), we have εαrmax = ε3, which is precisely the critical scaling of radii in three dimensions.

While one large ball of size ε3 does not necessarily mean that the system should behave as in the

critical case (which is expected to lead to a law of Brinkman type), nevertheless the presence

of such a large ball might change some of the properties of the system. Moreover, in the case

m < 3/(α − 3), the size of the largest ball would scale like εα−
3
m with α − 3

m
< 3, and there

might be many balls of the size at least ε3. Thus, our assumption m > 3/(α − 3) seems to

be necessary to obtain in the limit ε → 0 the same Navier-Stokes equations in D as in the

perforated domain Dε.

The proof of Theorem 4.1.4 in the case of periodically arranged holes with fixed radii

ri = 1 for all i was developed in a series of works [DFL17, FL15, LS18], and can be split

into two parts. First, using Bogovskĭı’s operator, we construct a good test function for the

momentum equation, which leads to uniform in ε estimates on the density as well as the

velocity, subsequently providing the (weak) compactness of {[ϱ̃ε, ũε]}ε. To identify the limiting

“effective” equation, we need to construct a suitable cut-off function in order to compare the

limiting equation with the equation in Dε. The rest of the proof does not refer in any way to

the location or structure of the holes, in particular it applies verbatim in our context, so for

the remaining part we follow [DFL17, FL15].

Before we show the homogenization result, we prove a modification of [LS18, Lemma 2.1]

in the random setting as the last ingredient in the proof of Theorem 4.1.4, which makes a

reference to the randomness in the structure of the holes.

Lemma 4.1.6. Let α > 2, D ⊂ R3 be a bounded star-shaped domain with smooth boundary and

0 ∈ D, and (Φ,R) = ({zi}, {ri}) be a marked Poisson point process with intensity λ > 0 and

ri > 0 with E(rMi ) < ∞ for M = max{3,m}, where m > 3/(α − 2). Then for any 1 < q < 3

such that (3− q)α− 3 > 0 and for almost every ω there exist a positive ε0(ω) and a family of

functions {gε}ε>0 ⊂ C∞(D) such that for 0 < ε ≤ ε0,

gε = 0 in
⋃

zj∈Φε(D)

Bεαrj(εzj), gε → 1 in W 1,q(D) as ε→ 0, (4.7)
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and there is a constant C > 0 such that

∥1− gε∥Lq(D) ≤ C ε
3(α−1)

q , ∥∇gε∥Lq(D) ≤ C ε
(3−q)α−3

q . (4.8)

Proof. By M > 3/(α − 2) and Theorem 3.4.2, there exists an a.s. positive random variable

ε0(ω) such that for 0 < ε ≤ ε0, all the balls {B2εαrj(εzj)}zj∈Φε(D) are disjoint. Thus, there exist

functions gε ∈ C∞(D) such that

0 ≤ gε ≤ 1, gε = 0 in
⋃

zj∈Φε(D)

Bεαrj(εzj), gε = 1 in D \
⋃

zj∈Φε(D)

B2εαrj(εzj),

∥∇gε∥L∞(B2εαrj
(εzj)) ≤ C (εαrj)

−1 for all zj ∈ Φε(D),

where the constant C > 0 is independent of ε and rj. Moreover, since M ≥ 3, (3.25) yields

lim
ε→0

ε3
∑

zj∈Φε(D) r
3
j = C, thus implying

∣∣∣∣ ⋃
zj∈Φε(D)

B2εαrj(εzj)

∣∣∣∣ = |B2| ε3α
∑

zj∈Φε(D)

r3j ≤ C ε3(α−1)

for ε > 0 small enough. This yields for any 1 < q < 3

∥1− gε∥qLq(D) = ∥1− gε∥qLq(
⋃

zj∈Φε(D) B2εαrj
(εzj))

=
∑

zj∈Φε(D)

∥1− gε∥qLq(B2εαrj
(εzj))

≤
∑

zj∈Φε(D)

|B2εαrj(εzj)| ≤ C ε3(α−1)

as well as

∥∇gε∥qLq(D) = ∥∇gε∥qLq(
⋃

zj∈Φε(D) B2εαrj
(εzj))

=
∑

zj∈Φε(D)

∥∇gε∥qLq(B2εαrj
(εzj))

≤ C
∑

zj∈Φε(D)

(εαrj)
−q|B2εαrj(εzj)| ≤ C ε(3−q)α−3 ε3

∑
zj∈Φε(D)

r3−q
j ≤ C ε(3−q)α−3,

which completes the proof of the lemma.

4.1.2 Proof of Theorem 4.1.4: Uniform bounds

We want to give bounds independent of ε for the velocity uε and the density ϱε arising in the

Navier-Stokes equations (4.1). First, we calculate

µ

∫
Dε

|∇uε|2 dx ≤
∫
Dε

µ|∇uε|2 +
(
µ

3
+ η

)
| divuε|2 dx

=

∫
Dε

µ

(
|∇uε|2 + | divuε|2 −

2

3
| divuε|2

)
+ η| divuε|2 dx

=

∫
Dε

µ

(
∇uε +∇Tuε −

2

3
div(uε)I

)
: ∇uε + η div(uε)I : ∇uε dx

=

∫
Dε

S(∇uε) : ∇uε dx,

(4.9)
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where in the two last equalities we used the definition of S(∇uε) and the fact that∫
Dε

| divuε|2 dx = −⟨∇ divuε,uε⟩W−1,2(Dε),W
1,2
0 (Dε)

= −⟨div∇Tuε,uε⟩W−1,2(Dε),W
1,2
0 (Dε)

=

∫
Dε

∇Tuε : ∇uε dx.

By the energy inequality (4.3) and Hölder’s inequality (B.2), (4.9) yields

∥∇uε∥2L2(Dε)
≤ C

(
∥f∥L∞(Dε)∥ϱε∥L 6

5 (Dε)
+ ∥g∥L∞(Dε)

)
∥uε∥L6(Dε).

Since uε ∈ W 1,2
0 (Dε), we can use Poincaré’s inequality (B.6) and Sobolev embedding (B.8) to

obtain ∥uε∥L6(Dε) ≤ C ∥∇uε∥L2(Dε), which combined with the previous display yields

∥∇uε∥L2(Dε) + ∥uε∥L6(Dε) ≤ C
(
∥f∥L∞(Dε)∥ϱε∥L 6

5 (Dε)
+ ∥g∥L∞(Dε)

)
≤ C

(
∥ϱε∥L 6

5 (Dε)
+ 1

)
.

(4.10)

Hence, we have uniform bounds on uε once we establish bounds on the density ϱε. To this end,

we define a test function

φ := Bε

(
ϱγε − ⟨ϱγε ⟩Dε

)
, (4.11)

where ⟨ϱγε ⟩Dε
:= |Dε|−1

∫
Dε
ϱγε dx is the mean value of ϱγε over the domain Dε, and Bε is the

Bogovskĭı operator constructed in Theorem 3.4.1. We remark that φ is well-defined due to the

fact ϱγε ∈ L2(Dε). By the properties of Bε, we obtain divφ = ϱγε − ⟨ϱγε ⟩Dε in Dε and

∥φ∥W 1,2
0 (Dε)

≤ C
(
∥ϱγε∥L2(Dε) + ∥ϱγε∥L1(Dε)

)
≤ C ∥ϱε∥γL2γ(Dε)

.

Integrating the second equation of (4.1) against φ yields∫
Dε

p(ϱε)ϱ
γ
ε dx =

4∑
j=1

Ij,

where the integrals Ij are defined as

I1 :=

∫
Dε

p(ϱε)⟨ϱγε ⟩Dε dx, I2 :=

∫
Dε

µ∇u : ∇φ+

(
µ

3
+ η

)
divuε divφ dx,

I3 := −
∫
Dε

ϱεuε ⊗ uε : ∇φ dx, I4 := −
∫
Dε

(ϱεf + g) · φ dx.

By the definition of the pressure as p(ϱε) = aϱγε , interpolation between Lebesgue spaces (B.4),

and the fact that the total mass of the fluid is fixed and given by m = ∥ϱε∥L1(Dε) > 0, we

estimate I1 by

|I1| ≤
a

|Dε|
∥ϱε∥2γLγ(Dε)

≤ a

|Dε|

(
∥ϱε∥θ1L1(Dε)

∥ϱε∥1−θ1
L2γ(Dε)

)2γ

≤ C ∥ϱε∥2γ(1−θ1)

L2γ(Dε)
,
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where we used (3.26) to control |Dε|, and θ1 ∈ (0, 1) is determined by

1

γ
=
θ1
1
+

1− θ1
2γ

.

For I2, we get with (4.10)

|I2| ≤ C ∥∇u∥L2(Dε)∥∇φ∥L2(Dε) ≤ C (∥ϱε∥L 6
5 (Dε)

+ 1)∥ϱε∥γL2γ(Dε)

≤ C ∥ϱε∥γL2γ(Dε)
(∥ϱε∥L2γ(Dε) + 1).

If ∥ϱε∥L2γ(Dε) ≥ 1, then we obtain

∥ϱε∥γL2γ(Dε)
(∥ϱε∥L2γ(Dε) + 1) ≤ 2 ∥ϱε∥γ+1

L2γ(Dε)
≤ 2

(
1 + ∥ϱε∥γ+1

L2γ(Dε)

)
.

On the other hand, if ∥ϱε∥L2γ(Dε) ≤ 1, we get similar

∥ϱε∥γL2γ(Dε)
(∥ϱε∥L2γ(Dε) + 1) = ∥ϱε∥γ+1

L2γ(Dε)
+ ∥ϱε∥γL2γ(Dε)

≤ ∥ϱε∥γ+1
L2γ(Dε)

+ 1,

so finally,

|I2| ≤ C
(
1 + ∥ϱε∥γ+1

L2γ(Dε)

)
.

For I3, we get analogously

|I3| ≤ ∥ϱε∥L6(Dε)∥uε∥2L6(Dε)
∥∇φ∥L2(Dε) ≤ C ∥ϱε∥L2γ(Dε)(∥ϱε∥2L 6

5 (Dε)
+ 1)∥ϱε∥γL2γ(Dε)

≤ C ∥ϱ∥γ+1
L2γ(Dε)

(∥ϱε∥2θ2L1(Dε)
∥ϱε∥2(1−θ2)

L2γ(Dε)
+ 1) ≤ C (∥ϱ∥γ+3−2θ2

L2γ(Dε)
+ ∥ϱε∥γ+1

L2γ(Dε)
)

≤ C
(
1 + ∥ϱε∥γ+3−2θ2

L2γ(Dε)

)
,

where we used that γ > 3, and θ2 ∈ (0, 1) is obtained by

5

6
=
θ2
1
+

1− θ2
2γ

.

For I4, we get as for I2

|I4| ≤ C (∥ϱε∥L2(Dε) + 1)∥φ∥L2(Dε) ≤ C (∥ϱε∥γ+1
L2γ(Dε)

+ ∥ϱε∥γL2γ(Dε)
)

≤ C
(
1 + ∥ϱε∥γ+1

L2γ(Dε)

)
.

Finally, we obtain

a∥ϱε∥2γL2γ(Dε)
=

∫
Dε

p(ϱε)ϱ
γ
ε dx ≤ C

(
∥ϱε∥2γ−β

L2γ(Dε)
+ 1

)
,

where due to our assumption γ > 3 we can choose

β = min{2γθ1, γ − 1, γ − 3 + 2θ2} > 0,

which yields ∥ϱε∥L2γ(Dε) ≤ C. In view of (4.10), we also have ∥uε∥W 1,2
0 (Dε)

≤ C, where the

constant C > 0 does not depend on ε. This completes the proof for the uniform bounds.
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4.1.3 Proof of Theorem 4.1.4: The limiting system

In the following we want to identify the limiting equations governing the fluid’s motion as

ε→ 0. First, using the fact that [ϱε,uε] is a renormalized weak solution in Dε, we get that the

zero extensions of ϱε and uε solve

div(ϱ̃εũε) = 0, div(b(ϱ̃ε)ũε) + (ϱ̃εb
′(ϱ̃ε)− b(ϱ̃ε)) div ũε = 0 in D′(D),

where b ∈ C([0,∞)) ∩ C1((0,∞)) is as in Definition 4.1.1. Letting ε→ 0, we obtain

div(ϱu) = 0 in D′(D).

Due to the DiPerna-Lions theory (see Remark 4.1.2), this shows that [ϱ,u] also satisfy the

renormalized continuity equations.

Considering the momentum equation in the whole domain, we get an error Fε on the right-

hand side of the equation. Since the balls are tiny (α > 3), this friction term is in the limit

negligible. More precisely, the zero prolongations of the density and velocity satisfy

∇p(ϱ̃ε) + div(ϱ̃εũε ⊗ ũε)− div S(∇ũε) = ϱ̃εf + g + Fε, (4.12)

where Fε is a distribution satisfying for all φ ∈ C∞
c (D)

|⟨Fε, φ⟩D′(D),D(D)| ≤ C
(
εσ∥φ∥Lr2 (D) + ε

3(α−1)σ0
2(2+σ0) ∥∇φ∥L2+σ0 (D)

)
(4.13)

for some constants σ, r2, σ0 defined in (4.14) and (4.15) below. To show this, we will use the cut-

off functions gε from Lemma 4.1.6. For any test function φ ∈ C∞
c (D), we test the momentum

equation in Dε with gεφ to get∫
D

ϱ̃εũε ⊗ ũε : ∇φ+ p(ϱ̃ε) divφ− S(∇ũε) : ∇φ+ (ϱ̃εf + g) · φ dx

= Iε +

∫
D

ϱ̃εũε ⊗ ũε : ∇(gεφ) + p(ϱ̃ε) div(gεφ)− S(∇ũε) : ∇(gεφ)

+ (ϱ̃εf + g) · (gεφ) dx
= Iε,

where we used that gεφ ∈ C∞
c (D) with gεφ = 0 on D \Dε is an appropriate test function, and

the term Iε is given by

Iε :=
4∑

j=1

Iε,j :=

∫
D

ϱ̃εũε ⊗ ũε : (1− gε)∇φ− ϱ̃εũε ⊗ ũε : (∇gε ⊗ φ) dx

+

∫
D

p(ϱ̃ε)(1− gε) divφ− p(ϱ̃ε)∇gε · φ dx

+

∫
D

−S(∇ũε) : (1− gε)∇φ+ S(∇ũε) : (∇gε ⊗ φ) dx

+

∫
D

(ϱ̃εf + g) · (1− gε)φ dx.
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We will estimate each Iε,j separately. For Iε,1, we have

|Iε,1| ≤ C ∥ϱ̃ε∥L2γ(D)∥ũε∥2L6(D)(∥(1− gε)∇φ∥L2(D) + ∥∇gε ⊗ φ∥L2(D)).

By the uniform bounds on ϱε and uε established in Section 4.1.2, we get by Hölder’s inequality

(B.2)

|Iε,1| ≤ C (∥1− gε∥
L

2(2+σ0)
σ0 (D)

∥∇φ∥L2+σ0 (D) + ∥∇gε∥Lr1 (D)∥φ∥Lr2 (D)),

where

σ0 ∈ (0,∞), r1, r2 ∈ (2,∞),
1

2
=

1

r1
+

1

r2
. (4.14)

This together with Lemma 4.1.6 yields

|Iε,1| ≤ C ε
3(α−1)σ0
2(2+σ0) ∥∇φ∥L2+σ0 (D) + ε

(3−r1)α−3
r1 ∥φ∥Lr2 (D),

where the number

σ :=
(3− r1)α− 3

r1
=

3(α− 1)

r1
− α =

3(α− 1)

2
− α− 3(α− 1)

r2
=
α− 3

2
− 3(α− 1)

r2

is strictly positive if we choose

r2 =
12(α− 1)

α− 3
, which yields σ =

α− 3

4
. (4.15)

By the uniform estimates on ϱ̃ε and ũε, we get

∥p(ϱ̃ε)∥L2(D) + ∥S(∇ũε)∥L2(D) ≤ C,

such that the estimates for the integrals Iε,2 and Iε,3 are exactly the same as for Iε,1. For Iε,4,

we obtain

|Iε,4| ≤ C (∥ϱ̃ε∥L2(D) + 1)∥(1− gε)φ∥L2(D) ≤ C ∥1− gε∥Lr1 (D)∥φ∥Lr2 (D)

≤ C ε
3(α−1)

r1 ∥φ∥Lr2 (D) ≤ C εσ∥φ∥Lr2 (D).

Combining the estimates above finally yields (4.12).

By the uniform estimates on ϱε and uε, we can extract a subsequence (not relabeled) such

that

ϱ̃ε ⇀ ϱ weakly in L2γ(D), ũε ⇀ u weakly in W 1,2
0 (D).

By the Rellich-Kondrachev theorem in Proposition B.5, this yields

ũε → u strongly in Lq(D) for any 1 ≤ q < 6,

ϱ̃εũε ⇀ ϱu weakly in Lq(D) for any 1 ≤ q <
6γ

γ + 3
,
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ϱ̃εũε ⊗ ũε ⇀ ϱu⊗ u weakly in Lq(D) for any 1 ≤ q <
6γ

2γ + 3
.

Letting ε → 0 in the first and second equation of (4.1), we get the following equations in the

sense of distributions:
div(ϱu) = 0 in D,

div(ϱu⊗ u) + p(ϱ) = div S(∇u) + ϱf + g in D,

u = 0 on ∂D,

(4.16)

where p(ϱ) is the weak limit of p(ϱ̃ε) in L
2(D). To finish the proof of Theorem 4.1.4, we have

to prove p(ϱ) = p(ϱ), arguing as in [FL15, Section 2.4.2]. This will be shown in Appendix A.

4.2 Lower γ and time-dependent equations

In this section, we give some arguments how one can improve the adiabatic exponent in the

direction of physical relevance, as well as how one can treat also time-dependent equations. In

both cases, for mathematical reasons, we are still not able to achieve γ = 5
3
, which would be

the first “meaningful” exponent, see (2.14). In fact, for the steady setting we may improve γ

to be strictly larger than 2, while for time-dependent equations, we need the even worse bound

γ > 6. We will comment this issue later on in this section.

4.2.1 The case γ > 2

To start, let us state the homogenization result for steady compressible Navier-Stokes equations

(4.1) in Dε for the case 2 < γ ≤ 3.

Theorem 4.2.1. Assume α > 3 and 2 < γ ≤ 3. Let D ⊂ R3 be a bounded star-shaped domain

with respect to the origin with smooth boundary, and let (Φ,R) = ({zj}, {rj}) be a marked

Poisson point process with intensity λ > 0, and rj > 0 with E(rMj ) < ∞, M = max{3,m},
m > 3/(α− 3), and assume

α− 3

m
>

2γ − 3

γ − 2
. (4.17)

Additionally, let m > 0 be given. Then for almost every ω ∈ Ω there exists ε0 = ε0(ω) > 0 such

that the following holds: For 0 < ε < 1 let Dε be as in (3.18) and let {[ϱε,uε]}ε be a family of

renormalized finite energy weak solutions to (4.1) in the sense of Definition 4.1.1. Then there

is a constant C > 0, which is independent of ε, such that

sup
ε∈(0,ε0)

∥ϱ̃ε∥L3(γ−1)(D) + ∥ũε∥W 1,2
0 (D) ≤ C

and, up to a subsequence,

ϱ̃ε ⇀ ϱ weakly in L3(γ−1)(D), ũε ⇀ u weakly in W 1,2
0 (D),

where the limit [ϱ,u] is a renormalized finite energy weak solution to the problem (4.1) in the

limit domain D in the sense of Definition 4.1.1.
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The restriction (4.17) will appear again in Theorem 4.3.3, showing that γ > 2 is necessary

according to the available mathematical theory. The proof of Theorem 4.2.1 is based on the

similar result obtained in [DFL17] for the case of well separated holes as well as the bounds

for the Bogovskĭı operator Bε obtained in Section 3.4. Recall that the bound for Bε is uniform

with respect to ε as long as 1 < q < 3 fulfills condition (3.19).

As it does not seem to cause any trouble or new difficulties at first glance, let us recall from

Theorem 4.1.3 that for γ > 3, the density is known to satisfy ϱε ∈ L2γ(Dε), whereas for γ ≤ 3

we only have the weaker control ϱε ∈ L3(γ−1)(Dε). Thus, we are not allowed to use ϱγε in the

definition of the test function φ in (4.11). Instead, one may use

φ := Bε(ϱ
2γ−3
ε − ⟨ϱ2γ−3

ε ⟩Dε)

as test function in the second equation of (4.1). Note that φ is well defined due to the fact

that by 2 < γ ≤ 3, we have

ϱ2γ−3
ε ∈ L

3(γ−1)
2γ−3 (Dε), 2 ≤ 3(γ − 1)

2γ − 3
< 3,

and also condition (3.19) is satisfied as long as

α− 3

m
>

3

3− 3γ−3
2γ−3

=
2γ − 3

γ − 2
,

which is precisely condition (4.17). This leads to

divφ = ϱ2γ−3
ε − ⟨ϱ2γ−3⟩Dε in Dε,

∥φ∥
W

1,
3(γ−1)
2γ−3

0 (Dε)

≤ C ∥ϱ2γ−3
ε ∥

L
3(γ−1)
2γ−3 (Dε)

= C ∥ϱε∥2γ−3

L3(γ−1)(Dε)
,

where the constant C > 0 is independent of ε. Using the same techniques as shown in the last

section, we will finally arrive at

∥ϱε∥L3(γ−1)(Dε) ≤ C, ∥uε∥W 1,2
0 (Dε)

≤ C,

where the constant C > 0 is independent of ε. Choosing weakly convergent subsequences

ϱ̃ε ⇀ ϱ in L3(γ−1)(D), ũε ⇀ u in W 1,2
0 (D), we may extend the momentum equation to the

whole of D to obtain

∇p(ϱ̃ε) + div(ϱ̃εũε ⊗ ũε)− div S(∇ũε) = ϱ̃εf + g + Fε, (4.18)

where Fε is a distribution now satisfying for all φ ∈ C∞
c (D)

|⟨Fε, φ⟩D′(D),D(D)| ≤ C εν
(
∥φ∥Lr(D) + ∥∇φ∥

L
3(γ−1)
2γ−3 +ξ

(D)

)
,

and ν, ξ, and r are chosen such that

0 < ξ < 1, 0 < h(ξ) := 3 (α− 1)

(
3(γ − 1)

2γ − 3
+ ξ

)−1

− α,
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1 < r <∞,
1

r
+

(
3(γ − 1)

2γ − 3
+ ξ

)−1

=
2γ − 3

3(γ − 1)
,

0 < ν <∞, ν := min

{
3(α− 1)

r
, h(ξ)

}
.

These choices are appropriate since by (4.17),

3 (α− 1)
2γ − 3

3(γ − 1)
− α =

α(γ − 2)− (2γ − 3)

γ − 1
> 0,

and they occur due to various use of Hölder’s inequality (B.2). Let us remark that similar

numbers will occur in Lemma 4.3.10, where we will see how exactly the numbers ν, ξ, and r

show up. Finally, we may pass to the limit ε→ 0 to obtain the desired result.

4.2.2 Evolutionary system

Let us show now how to deal with time-dependent Navier-Stokes equations. We will rely on

the results given in [LS18], where they considered well separated obstacles. First, for T > 0,

the system now reads
∂tϱε + div(ϱεuε) = 0 in (0, T )×Dε,

∂t(ϱεuε) + div(ϱεuε ⊗ uε) +∇p(ϱε) = div S(∇uε) + ϱεf + g in (0, T )×Dε,

uε = 0 on (0, T )× ∂Dε,

(4.19)

where as before f ,g ∈ L∞((0, T )×D),

S(∇u) = µ

(
∇u+∇Tu− 2

3
div(u)I

)
+ η div(u)I, µ > 0, η ≥ 0,

and p(ϱ) = aϱγ for some a > 0 and γ > 6. The main difficulty in the evolutionary case is that,

for γ > 3
2
, the pressure is not known to be in L2(Dε), but only in L

5
3
− 1

γ (Dε) with
5
3
− 1

γ
∈ (1, 5

3
),

which is much worse than for the stationary case. The condition γ > 6 is therefore made to

make sense of the term ∫ T

0

∫
D

p(ϱ̃ε)φ · ∇gε dx dt,

which will arise by testing the momentum equation by φ ∈ D((0, T ) × D) and split φ =

gεφ+(1− gε)φ, where gε are the functions from Lemma 4.1.6. It also ensures that there exists

q ∈ (5
2
, 3) such that

(3− q)α− 3 > 0,

(
5

3
− 1

γ

)−1

+
1

q
< 1,

1

γ
+

1

3
+

1

q
< 1, (4.20)

so the additional distribution Fε in the extended momentum equation, which arises similarly

as in the stationary case (4.18), will vanish in the limit ε → 0. In addition, we will need to

control the Bogovskĭı operator in some negative Sobolev space to handle terms of the form

Bε(div(ϱ
θ
εuε)) that arise from the renormalized continuity equation (4.23) and the time deriva-

tive in the weak formulation (4.21) below, that is, from ∂tBε(ϱε) = Bε(∂tϱε). To this end, we
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will use the outcomes and notations from Section 3.5.

Let us turn to the homogenization of the evolutionary Navier-Stokes equations. To this

end, we will transfer the notion of finite energy weak solutions to the time-dependent case.

Definition 4.2.2. Let T > 0 be fixed, and assume for the initial data

ϱ(0, ·) = ϱ0, (ϱu)(0, ·) = p0,

together with the compatibility conditions

ϱ0 ≥ 0 a.e. in Dε, ϱ0 ∈ Lγ(Dε), p0 = 0 whenever ϱ0 = 0,
|p0|2

ϱ0
∈ L1(Dε).

We call a couple [ϱ,u] a renormalized finite energy weak solution to equations (4.1) in the

space-time cylinder (0, T )×Dε if:

� It holds

ϱ ≥ 0 a.e. in (0, T )×Dε, ϱ ∈ C(0, T ; Lγ
weak(Dε)),

u ∈ L2(0, T ; W 1,2
0 (Dε)), ϱu ∈ C(0, T ; L

2γ
γ+1

weak(Dε)),

where C(0, T ; Lq
weak(Dε)) is defined as the set of all functions f , defined on (0, T )×Dε,

such that f(t, ·) ∈ Lq(Dε) for all t ∈ [0, T ], and the map

t 7→
∫
Dε

f(t, x)g(x) dx

is continuous for all g ∈ L
q

q−1 (Dε);

� We have for any 0 ≤ τ ≤ T and any φ ∈ C∞
c ([0, T )×Dε)∫ τ

0

∫
Dε

ϱ∂tφ+ ϱu · ∇φ dx dt =

∫
Dε

ϱ(τ, ·)φ(τ, ·)− ϱ0φ(0, ·) dx;

� We have for any 0 ≤ τ ≤ T and any ψ ∈ C∞
c ([0, T )×Dε;R3)∫ τ

0

∫
Dε

ϱu · ∂tψ + p(ϱ) divψ + ϱu⊗ u : ∇ψ − S(∇u) : ∇ψ + (ϱf + g) · ψ dx dt

=

∫
Dε

(ϱu)(τ, ·)ψ(τ, ·)− ϱ0u0ψ(0, ·) dx;
(4.21)

� The energy inequality∫
Dε

(
1

2
ϱ|u|2 + aϱγ

γ − 1

)
(τ, ·) dx+

∫ τ

0

∫
Dε

S(∇u) : ∇u dx dt

≤
∫
Dε

(
|p0|2

2 ϱ0
+

aϱγ0
γ − 1

)
dx+

∫ τ

0

∫
Dε

(ϱf + g) · u dx dt

(4.22)

holds for almost every 0 ≤ τ ≤ T ;
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� The zero extension [ϱ̃, ũ] satisfies in D′((0, T )× R3)

∂tϱ̃+ div(ϱ̃ũ) = 0, ∂tb(ϱ̃) + div(b(ϱ̃)ũ) + (ϱ̃b′(ϱ̃)− b(ϱ̃)) div ũ = 0 (4.23)

for any b ∈ C([0,∞)) ∩ C1((0,∞)) such that there are constants

c > 0, λ0 < 1, −1 < λ1 ≤ γ − 1

with

b′(s) ≤ cs−λ0 for s ∈ (0, 1], b′(s) ≤ csλ1 for s ∈ [1,∞).

Here, we chose the integrability of the initial data such that the right-hand side of the

energy inequality is finite. Similar to the stationary case in Section 4.1, the energy inequality

(4.22) is formally obtained as an equality from (2.6). Recalling

∂t

(
1

2
ϱ|u|2

)
+ div

(
1

2
ϱ|u|2u

)
= (ϱf + g) · u+ div(Su− pu)− S : ∇u+ p divu, (4.24)

we again multiply the continuity equation (2.2) by aϱγ−1 to obtain

0 =
a

γ
∂tϱ

γ + aϱγ divu+
a

γ
u · ∇ϱγ =

1

γ
∂tp+ p divu+

1

γ
u · ∇p.

Hence, we integrate by parts and use the zero boundary data on u to get∫
Dε

u · ∇p dx = −
∫
Dε

p divu dx =
1

γ

∫
Dε

∂tp+ u · ∇p dx

=⇒ (γ − 1)

∫
Dε

u · ∇p dx =

∫
Dε

∂tp dx

=⇒ −
∫
Dε

p divu dx =
1

γ − 1
∂t

∫
Dε

p dx = ∂t

∫
Dε

a

γ − 1
ϱγ dx.

(4.25)

Substituting (4.25) into (4.24), integrating over (0, T )×Dε, and noting that the space integral

over divergence parts vanish, we obtain for any τ ∈ [0, T ]∫
Dε

(
1

2
ϱ|u|2 + aϱγ

γ − 1

)
(τ, ·) dx+

∫ τ

0

∫
Dε

S(∇u) : ∇u dx dt

=

∫
Dε

(
1

2
ϱ0|u0|2 +

aϱγ0
γ − 1

)
dx+

∫ τ

0

∫
Dε

(ϱf + g) · u dx dt

=

∫
Dε

(
|p0|2

2ϱ0
+

aϱγ0
γ − 1

)
dx+

∫ τ

0

∫
Dε

(ϱf + g) · u dx dt.

As before, this equality was obtained for smooth functions ϱ and u, but we expect inequality

rather than equality for mere weak solutions, thus yielding (4.3). We remark that the composed

quantity p0 is the “right” quantity rather than working with ϱ0 and u0 as separate variables.

Indeed, identifying ϱu with the momentum of the fluid, it enjoys some additional time conti-

nuity, which is not (known to be) true for the velocity u itself.
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For any fixed ε > 0 and any γ > 3
2
, the existence of a renormalized finite energy weak

solution to (4.19) is guaranteed by the results of Lions [Lio98] and Feireisl-Novotný-Petzeltová

[FNP01]. Our main theorem concerning the homogenization of time-dependent Navier-Stokes

equations now reads as follows.

Theorem 4.2.3. Assume α > 3. Let D ⊂ R3 be a bounded star-shaped domain with respect to

the origin with smooth boundary, let (Φ,R) = ({zj}, {rj}) be a marked Poisson point process

with intensity λ > 0, and rj > 0 with E(rMj ) < ∞, M = max{3,m}, where m > 3/(α − 3).

Furthermore, let Dε be defined as in (3.18) and

m > 0, γ > 6.

For 0 < ε < 1 let {[ϱε,uε]}ε be a family of finite energy weak solutions for the no-slip com-

pressible Navier-Stokes equations (4.19) in (0, T )×Dε. Assume that the initial conditions

ϱε(0, ·) = ϱ0,ε and (ϱεuε)(0, ·) = pε,0

satisfy

ϱ0,ε ∈ Lγ(Dε), pε,0 = 0 whenever ϱε,0 = 0,

∥∥∥∥ |pε,0|2

ϱε,0

∥∥∥∥
L1(Dε)

≤ C,

ϱ̃ε,0 ⇀ ϱ0 weakly in Lγ(D), p̃ε,0 ⇀ p0 weakly in L
2γ
γ+1 (D),

where C > 0 is independent of ε. Then for almost every ω ∈ Ω there exists ε0 = ε0(ω) > 0

such that

sup
ε∈(0,ε0)

(
∥ϱε∥L∞(0,T ;Lγ(Dε)) + ∥ϱε∥

L
5γ
3 −1((0,T )×Dε)

+ ∥uε∥L2(0,T ;W 1,2
0 (Dε))

)
≤ C

and, up to a subsequence, the zero extensions satisfy

ϱ̃ε
∗
⇀ ϱ weakly-∗ in L∞(0, T ;Lγ(D)), ũε ⇀ u weakly in L2(0, T ;W 1,2

0 (D)),

where the limit [ϱ,u] is a renormalized finite energy weak solution to the problem (4.19) in the

limit domain D with initial data ϱ(0, ·) = ϱ0 and (ϱu)(0, ·) = p0, provided

γ − 6

2γ − 3

(
α− 3

m

)
> 3. (4.26)

The uniform bounds on ϱε and uε are obtained from the energy inequality (4.22). For the

force term on the right-hand side, we use Hölder’s inequality (B.2), Poincaré’s inequality (B.7),

ab
1
p ≤ b+ ap

′ ∀a, b ≥ 0,
1

p
+

1

p′
= 1 (4.27)

as a consequence of Young’s inequality (B.1), and (4.9) to estimate∫
Dε

(ϱεf + g) · uε dx ≤ C (1 + ∥ϱε∥Lγ(Dε))∥uε∥L2(Dε)

≤ C (1 + ∥ϱε∥2Lγ(Dε)) +
µ

2
∥uε∥2L2(Dε)
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≤ C (1 + ∥ϱγε∥
2
γ

L1(Dε)
) +

µ

2
∥∇uε∥2L2(Dε)

≤ C (1 + ∥ϱγε∥L1(Dε)) +
1

2

∫
Dε

S(∇uε) : ∇uε

≤ C + C

∫
Dε

aϱγε
γ − 1

dx+
1

2

∫
Dε

S(∇uε) : ∇uε dx,

yielding for the whole energy inequality∫
Dε

(
1

2
ϱε|uε|2 +

aϱγε
γ − 1

)
(T, ·) dx+ 1

2

∫ T

0

∫
Dε

S(∇uε) : ∇uε dx dt

≤
∫
Dε

(
|pε,0|2

2ϱε,0
+
aϱγε,0
γ − 1

)
dx+ C + C

∫ T

0

∫
Dε

1

2
ϱε|uε|2 +

aϱγε
γ − 1

dx dt.

By application of Grönwall’s lemma (B.5), we deduce

{ϱε}ε>0 uniformly bounded in L∞(0, T ;Lγ(Dε)),

{ϱε|uε|2}ε>0 uniformly bounded in L∞(0, T ;L1(Dε)),

{uε}ε>0 uniformly bounded in L2(0, T ;W 1,2
0 (Dε)).

Moreover, due to Proposition B.5, we get for any 1 ≤ q ≤ 6

{uε}ε>0 uniformly bounded in L2(0, T ;Lq(Dε)).

Further, for fixed ε, the results from [NS04, Theorem 7.7] show

ϱε ∈ L
5γ
3
−1((0, T )×Dε).

However, the bound on ϱε is not uniform in ε. As in the stationary case, using the Bogovskĭı

operator from Theorem 3.5.4, we test the second equation in (4.19) with

φ(t, x) = ψ(t)Bε

(
ϱ

2γ
3
−1

ε − ⟨ϱ
2γ
3
−1

ε ⟩Dε

)
for some function ψ ∈ C∞

c (0, T ), where ⟨f⟩Dε is the mean value of a function f over Dε.

Abbreviating θ := 2γ
3
− 1, this yields

φ ∈ W
1, 5γ−3

2γ−3

0 ((0, T )×Dε), divφ = ψ(t)(ϱθε − ⟨ϱθε⟩Dε).

Recall from Theorem 3.4.1, the bound on the Bogovskĭı operator for q = 5γ−3
2γ−3

is uniform as

long as

1 < q < 3, α− 3

m
>

3

3− q
.

Indeed, we obviously have q > 5/2 > 1, and from γ > 6 we obtain

q < 3 ⇐⇒ 5γ − 3 < 6γ − 9 ⇐⇒ γ > 6.
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Moreover, we calculate

α− 3

m
>

3

3− 5γ−3
2γ−3

= 3
2γ − 3

γ − 6
,

which is precisely condition (4.26). Thus, we get

∥φ∥
W

1,
5γ−3
2γ−3

0 ((0,T )×Dε)
≤ C ∥ϱθε − ⟨ϱθε⟩Dε∥

L
5γ−3
2γ−3 ((0,T )×Dε)

≤ C ∥ϱε∥θ
L

5γ
3 −1((0,T )×Dε)

for some constant C > 0 independent of ε. Moreover,

∥φ∥
L∞(0,T ;W

1,
γ
θ

0 (Dε))
≤ C ∥Bε(ϱ

θ − ⟨ϱθ⟩Dε)∥
L∞(0,T ;W

1,
γ
θ

0 (Dε))

≤ C ∥ϱθε − ⟨ϱθε⟩Dε∥L∞(0,T ;L
γ
θ (Dε))

≤ C ∥ϱε∥θL∞(0,T ;Lγ(Dε)) ≤ C

since γ/θ = 3γ/(2γ − 3) is strictly less than 3 for all γ > 3, so we may apply Theorem 3.5.4

with q = γ/θ. Using the function φ as test function in the momentum equation, we get∫ T

0

∫
Dε

ψp(ϱε)ϱ
θ
ε dx dt =

6∑
j=1

Ij,

where

I1 :=

∫ T

0

∫
Dε

ψp(ϱε)⟨ϱθε⟩Dε dx dt, I2 := −
∫ T

0

∫
Dε

ψ′(t)ϱεuε · Bε(ϱ
θ
ε − ⟨ϱθε⟩Dε) dx dt,

I3 := −
∫ T

0

∫
Dε

ψϱεuε ⊗ uε : ∇Bε(ϱ
θ
ε − ⟨ϱθε⟩Dε) dx dt,

I4 :=

∫ T

0

∫
Dε

ψS(∇uε) : ∇Bε(ϱ
θ
ε − ⟨ϱθε⟩Dε) dx dt,

I5 := −
∫ T

0

∫
Dε

ψϱεuε · Bε(∂tϱ
θ
ε − ∂t⟨ϱθε⟩Dε) dx dt,

I6 := −
∫ T

0

∫
Dε

ψ(ϱεf + g) · Bε(ϱ
θ
ε − ⟨ϱθε⟩Dε) dx dt.

We estimate each integral separately, following [LS18, Section 3.2]. However, due to our uniform

bounds on Bε, we do not have to bootstrap the integrability from θ = γ
2
to θ = 2γ

3
− 1 but

rather start with the desired value θ = 2γ
3
− 1. For I1, we get with θ ≤ γ and θ + γ = 5γ

3
− 1

|I1| ≤ C sup
t∈[0,T ]

|⟨ϱθε(t)⟩Dε|
∫
Dε

|ϱγε (t)| dx ≤ C ∥ϱε∥θL∞(0,T ;Lθ(Dε))
∥ϱε∥γL∞(0,T ;Lγ(Dε))

≤ C ∥ϱε∥
5γ
3
−1

L∞(0,T ;Lγ(Dε))
≤ C.

For I2, we obtain by 1− 1
γ
− 1

6
= 5γ−6

6γ
and γ

θ
= 3γ

2γ−3
≥ 6γ

5γ−6
for any γ ≥ 0

|I2| ≤ C ∥ϱε∥L∞(0,T ;Lγ(Dε))∥uε∥L2(0,T ;L6(Dε))∥Bε(ϱ
θ
ε − ⟨ϱθε⟩Dε)∥

L∞(0,T ;L
6γ

5γ−6 (Dε))

≤ C ∥Bε(ϱ
θ
ε − ⟨ϱθε⟩Dε)∥L∞(0,T ;L

γ
θ (Dε))

≤ C ∥ϱθε − ⟨ϱθε⟩Dε∥L∞(0,T ;L
γ
θ (Dε))

≤ C.
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For I3 with 1
γ
+ 2

6
+ θ

γ
= 1,

|I3| ≤ C ∥ϱε∥L∞(0,T ;Lγ(Dε))∥uε∥2L2(0,T ;L6(Dε))
∥∇Bε(ϱ

θ
ε − ⟨ϱθε⟩Dε)∥L∞(0,T ;L

γ
θ (Dε))

≤ C ∥ϱθε − ⟨ϱθε⟩Dε∥L∞(0,T ;L
γ
θ (Dε))

≤ C.

For I4 with 2θ = 4γ
3
− 2 ≤ 5γ

3
− 1 for all γ ≥ 0,

|I4| ≤ C ∥∇uε∥L2(0,T ;L2(Dε))∥∇Bε(ϱ
θ
ε − ⟨ϱθε⟩Dε)∥L2(0,T ;L2(Dε)) ≤ C ∥ϱθε∥L2(0,T ;L2(Dε))

≤ C ∥ϱε∥θL2θ(0,T ;L2θ(Dε))
≤ C ∥ϱε∥θ

L
5γ
3 −1((0,T )×Dε)

.

For I6,

|I6| ≤ C (∥ϱε∥L∞(0,T ;L2(Dε)) + 1)∥ϱθε∥L2(0,T ;L2(Dε))

≤ C ∥ϱε∥θL2θ(0,T ;L2θ(Dε))
≤ C ∥ϱε∥θ

L
5γ
3 −1((0,T )×Dε)

.

Let us turn to I5, which is the most challenging term. We will first assume that ϱθεuε ∈

E
6(5γ−3)
17γ−21

, 10γ−6
9γ−9

0 (Dε), and later give arguments how to eliminate this assumption using time reg-

ularization. Let us further note that

10γ − 6

9γ − 9
=

2(5γ − 3)

9γ − 9
≤ 6(5γ − 3)

17γ − 21
⇐⇒ 17γ − 21 ≤ 27γ − 27 ⇐⇒ γ ≥ 5

3

as well as, by γ > 6,

6(5γ − 3)

17γ − 21
>

3

2
,

6(5γ − 3)

17γ − 21
< 3 ⇐⇒ 10γ − 6 < 17γ − 21 ⇐⇒ γ >

15

7
.

To handle the time derivative of ϱθε, we use the extended Bogovskĭı operator from Theorem 3.5.4.

The renormalized continuity equation (4.23) for b(s) = sθ yields

∂t(ϱ
θ
ε) + (θ − 1)ϱθε divuε + div(ϱθεuε) = 0.

Since ϱθεuε ∈ E
6(5γ−3)
17γ−21

, 10γ−6
9γ−9

0 (Dε), we have with Lemma 3.5.2

⟨div(ϱθεuε), 1⟩
[Ẇ

1,(
10γ−6
9γ−9 )′

(Dε)]′,Ẇ
1,(

10γ−6
9γ−9 )′

(Dε)
= 0,

so we may write

I5 =

∫ T

0

∫
Dε

ψϱεuε · Bε(div(ϱ
θ
εuε)) dx dt

+ (θ − 1)

∫ T

0

∫
Dε

ψϱεuε · Bε(ϱ
θ
ε divuε − ⟨ϱθε divuε⟩Dε) dx dt

=: I7 + I8.
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Let us start to estimate ϱεuε, which we do in the same way as in [LS18]. Since(
2

(
5γ

3
− 1

))−1

+
1

2
=

3

10γ − 6
+

1

2
=

5γ

10γ − 6
,

we get by the uniform estimate on ϱε|uε|2 in L∞(0, T ;L1(Dε))

∥ϱεuε∥
L

10γ−6
3 (0,T ;L

10γ−6
5γ (Dε))

= ∥√ϱε
√
ϱεuε∥

L
10γ−6

3 (0,T ;L
10γ−6

5γ (Dε))

≤ ∥√ϱε∥
L

10γ−6
3 (0,T ;L

10γ−6
3 (Dε))

∥√ϱεuε∥L∞(0,T ;L2(Dε)) ≤ C ∥ϱε∥
1
2

L
5γ
3 −1((0,T )×Dε))

.

Similarly, (
5γ

3
− 1

)−1

+
1

2
=

5γ + 3

10γ − 6
,

(
5γ

3
− 1

)−1

+
1

6
=

5γ + 15

6(5γ − 3)
,

so we estimate

∥ϱεuε∥
L

10γ−6
5γ+3 (0,T ;L

6(5γ−3)
5γ+15 (Dε))

≤ ∥ϱε∥
L

5γ
3 −1((0,T×Dε))

∥uε∥L2(0,T ;L6(Dε)) ≤ C ∥ϱε∥
L

5γ
3 −1((0,T×Dε))

.

Using interpolation between Lebesgue spaces (B.4), we have

γ + 3

10γ − 6
=

4

5

3

10γ − 6
+

1

5

5γ + 3

10γ − 6
,

13γ + 3

6(5γ − 3)
=

4

5

5γ

10γ − 6
+

1

5

5γ + 15

6(5γ − 3)
,

which yields

∥ϱεuε∥
L

10γ−6
γ+3 (0,T ;L

6(5γ−3)
13γ+3 (Dε))

≤ C ∥ϱε∥
3
5

L
5γ
3 −1((0,T )×Dε)

.

We further have

γ + 3

10γ − 6
+

9γ − 9

10γ − 6
= 1,

13γ + 3

6(5γ − 3)
+

17γ − 21

6(5γ − 3)
= 1, (4.28)

and also

1

2
+

2γ − 3

5γ − 3
=

9γ − 9

10γ − 6
,

1

6
+

2γ − 3

5γ − 3
=

17γ − 21

6(5γ − 3)
<

2

3
, (4.29)

so we recall θ = 2γ
3
− 1 to get for I7 the estimate

|I7| ≤ C ∥ϱεuε∥
L

10γ−6
γ+3 (0,T ;L

6(5γ−3)
13γ+3 (Dε))

∥Bε div(ϱ
θ
εuε)∥

L
10γ−6
9γ−9 (0,T ;L

6(5γ−3)
17γ−21 (Dε))

≤ C ∥ϱε∥
3
5

L
5γ
3 −1((0,T )×Dε)

∥ϱθεuε∥
L

10γ−6
9γ−9 (0,T ;L

6(5γ−3)
17γ−21 (Dε))

≤ C ∥ϱε∥
3
5

L
5γ
3 −1((0,T )×Dε))

∥ϱθε∥
L

5γ−3
2γ−3 ((0,T )×Dε))

∥uε∥L2(0,T ;L6(Dε))

≤ C ∥ϱε∥
3
5
+θ

L
5γ
3 −1((0,T )×Dε))

= C ∥ϱε∥
2γ
3
− 2

5

L
5γ
3 −1((0,T )×Dε))

.
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For I8, Hölder’s inequality (B.2) and (4.29) imply

∥ϱθε divuε∥
L

10γ−6
9γ−9 ((0,T )×Dε)

≤ ∥ϱθε∥
L

5γ−3
2γ−3 ((0,T )×Dε)

∥ divuε∥L2((0,T )×Dε) ≤ C ∥ϱε∥θ
L

5γ
3 −1((0,T )×Dε)

.

Thus, we obtain by Sobolev embedding (B.8),(
10γ − 6

9γ − 9

)∗

=
3 10γ−6

9γ−9

3− 10γ−6
9γ−9

=
(10γ − 6)/(3γ − 3)

(17γ − 21)/(9γ − 9)
=

6(5γ − 3)

17γ − 21
,

and the fact 10γ−6
9γ−9

< 3 for any γ > 21/17 the estimate

∥Bε(ϱ
θ
ε divuε − ⟨ϱθε divuε⟩Dε)∥

L
10γ−6
9γ−9 (0,T ;L

6(5γ−3)
17γ−21 (Dε))

≤ C ∥Bε(ϱ
θ
ε divuε − ⟨ϱθε divuε⟩Dε)∥

L
10γ−6
9γ−9 (0,T ;W

1,
10γ−6
9γ−9

0 (Dε))

≤ C ∥ϱθε divuε∥
L

10γ−6
9γ−9 ((0,T )×Dε)

≤ C ∥ϱε∥θ
L

5γ
3 −1((0,T )×Dε)

.

Together with (4.28), we estimate I8 as

|I8| ≤ C ∥ϱεuε∥
L

10γ−6
γ+3 (0,T ;L

6(5γ−3)
13γ+3 (Dε))

∥Bε(ϱ
θ
ε divuε − ⟨ϱθε divuε⟩Dε)∥

L
10γ−6
9γ−9 (0,T ;L

6(5γ−3)
17γ−21 (Dε))

≤ C ∥ϱε∥
3
5

L
5γ
3 −1((0,T )×Dε)

∥ϱε∥θ
L

5γ
3 −1((0,T )×Dε)

= C ∥ϱε∥
2γ
3
− 2

5

L
5γ
3 −1((0,T )×Dε)

,

which eventually yields for I5

|I5| ≤ |I7|+ |I8| ≤ C ∥ϱε∥
2γ
3
− 2

5

L
5γ
3 −1((0,T )×Dε)

.

Finally, since θ = 2γ
3
− 1 < 2γ

3
− 2

5
, we arrive at∫ T

0

∫
Dε

ψ aϱ
5γ
3
−1

ε dx dt =

∫ T

0

∫
Dε

ψp(ϱε)ϱ
θ
ε dx dt ≤ C

(
1 + ∥ϱε∥

2γ
3
− 2

5

L
5γ
3 −1((0,T )×Dε)

)
for arbitrary ψ ∈ C∞

c (0, T ), so we may choose a sequence ψn → 1 strongly in L∞(0, T ) to

obtain a uniform bound on ϱε in L
5γ
3
−1((0, T )×Dε), provided ϱ

θ
εuε ∈ E

6(5γ−3)
17γ−21

, 10γ−6
9γ−9

0 (Dε).

To overcome this additional assumption on ϱθεuε, we briefly sketch the arguments from

[FN09, Section 2.2.5]. First, note that the exponents are optimal in the sense that, by (4.29),

∥ϱθεuε∥
L

6(5γ−3)
17γ−21 (Dε)

≤ ∥ϱθε∥
L

5γ−3
2γ−3 (Dε)

∥uε∥L6(Dε) ≤ C ∥ϱε∥θ
L

5γ
3 −1(Dε)

∥uε∥W 1,2
0 (Dε)

,

∥ϱθε divuε∥
L

10γ−6
9γ−9 (Dε)

≤ ∥ϱθε∥
L

5γ−3
2γ−3 (Dε)

∥ divuε∥L2(Dε) ≤ ∥ϱε∥θ
L

5γ
3 −1(Dε)

∥∇uε∥L2(Dε).

The main observation now is that all estimates above remain valid if we choose as test function

φδ(t, x) = ψ(t)Bε[ϱ
θ
ε − ⟨ϱθε⟩Dε ]δ,
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where [f ]δ denotes the mollification in the time variable t (see Proposition B.7 for the definition

and properties of mollifiers). Since ϱε and uε fulfill the renormalized continuity equation (4.23),

we have

∂t[ϱ
θ
ε]δ + (θ − 1)[ϱθε divuε]δ + div[ϱθεuε]δ = 0,

or, equivalently,

div[ϱθεuε]δ = (1− θ)[ϱθε divuε]δ − ∂t[ϱ
θ
ε]δ.

Thus, we estimate by Young’s inequality (B.3)

∥[ϱθε divuε]δ∥
L

10γ−6
9γ−9 (Dε)

≤ ∥ϱθε divuε∥
L

10γ−6
9γ−9 (Dε)

≤ ∥ϱε∥θ
L

5γ
3 −1(Dε)

∥∇uε∥L2(Dε)

and

∥∂t[ϱθε]δ∥
L

10γ−6
9γ−9 (Dε)

≤ C ∥ϱθε∥
L

10γ−6
9γ−9 (Dε)

= C ∥ϱε∥θ
L

5γ
3 −1(Dε)

,

so indeed div[ϱθεuε]δ ∈ L
10γ−6
9γ−9 (Dε) and [ϱθεuε]δ ∈ E

6(5γ−3)
17γ−21

, 10γ−6
9γ−9 (Dε), hence [ϱθεuε]δ has a well-

defined normal trace on ∂Dε. Since uε = 0 on ∂Dε, Theorem 3.5.3 now yields∫
Dε

div[ϱθεuε]δ dx = ⟨Trn(ϱθεuε), 1⟩ = 0,

so [ϱθεuε]δ ∈ E
6(5γ−3)
17γ−21

, 10γ−6
9γ−9

0 (Dε) and further

∂tBε[ϱ
θ
ε − ⟨ϱθε⟩Dε ]δ = −Bε div[ϱ

θ
εuε]δ − Bε[ϱ

θ
ε divuε − ⟨ϱθε divuε⟩Dε ]δ.

Seeing finally that, by Theorem 3.5.4,

∥Bε[ϱ
θ
ε − ⟨ϱθε⟩Dε ]δ∥

W
1,

10γ−6
9γ−9

0 (Dε)
≤ C ∥[ϱθε]δ∥

L
10γ−6
9γ−9 (Dε)

≤ C ∥ϱε∥θ
L

5γ
3 −1(Dε)

,

∥∂tBε[ϱ
θ
ε − ⟨ϱθε⟩Dε ]δ∥

L
10γ−6
9γ−9 (Dε)

≤ C
(
∥[ϱθεuε]δ∥

L
10γ−6
9γ−9 (Dε)

+ ∥[ϱθε divuε]δ∥
L

10γ−6
9γ−9 (Dε)

)
≤ C ∥ϱε∥θ

L
5γ
3 −1(Dε)

∥uε∥W 1,2
0 (Dε)

for some constant C > 0 independent of ε and δ, we follow the lines above to get a uniform

bound on [ϱε]δ in L
5γ
3
−1((0, T ) × Dε). Letting δ → 0, this yields uniform bounds on ϱε in

L
5γ
3
−1((0, T )×Dε) since [ϱε]δ → ϱε strongly in L

5γ
3
−1((0, T )×Dε).

Once established the uniform bounds on ϱε and uε, the remaining homogenization proof

follows essentially the same lines as done in previous sections. Let us briefly sketch the occurring

differences here, following [LS18]. For the extended momentum equation, we obtain

∂t(ϱ̃εũε) + div(ϱ̃εũε ⊗ ũε) +∇p(ϱ̃ε) = div S(∇ũε) + ϱ̃εf + g + Fε in D′((0, T )×D),

82



4.2. Lower γ and time-dependent equations

where the additional distribution Fε satisfies

|⟨Fε, φ⟩| ≤ C ε(3−q)α−3
(
∥∂tφ∥L2(0,T ;L2(D)) + ∥∇φ∥Lr(0,T ;L3(D)) + ∥φ∥Lr(0,T ;Lr(D))

)
for any φ ∈ C∞

c ((0, T ) × D). Here, 1 < r < ∞ occurs out of various interpolations between

Lebesgue spaces (B.4), C and r are independent of ε, and 5/2 < q < 3 satisfies (4.20). The

extended continuity equation

∂tϱ̃ε + div(ϱ̃εũε) = 0 in (0, T )× R3 (4.30)

is obtained as follows. Let ψ ∈ C∞
c ((0, T ) × R3), and {φn}n≥1 ⊂ C∞

c (Dε) be a sequence of

smooth functions with 0 ≤ φn ≤ 1, |∇φn| ≤ 4n, and

φn = 1 on {dist(x, ∂Dε) ≥ 1/n}, φn = 0 on {dist(x, ∂Dε) ≤ 1/(2n)}.

Note that this implies for any 1 ≤ q ≤ ∞

∥1− φn∥Lq(Dε) = ∥1− φn∥Lq({dist(x,∂Dε)}<1/n}) ≤ |{dist(x, ∂Dε) < 1/n}|
1
q ≤ C n− 1

q (4.31)

as well as

∥ dist(x, ∂Dε)∇φn∥Lq(Dε) ≤ ∥∇φn∥L∞(Dε)∥ dist(x, ∂Dε)∥Lq({dist(x,∂Dε)}<1/n})

≤ 4n · 1
n
· |{dist(x, ∂Dε)} < 1/n}|

1
q ≤ C n− 1

q .
(4.32)

Then we may split∫ T

0

∫
D

ϱ̃ε∂tψ + ϱ̃εũε · ∇ψ dx dt =

∫ T

0

∫
Dε

ϱε∂t(ψφn) + ϱεuε · ∇(ψφn) dx dt

+

∫ T

0

∫
Dε

ϱε(1− φn)∂tψ + ϱεuε · (1− φn)∇ψ − ϱεuε · ψ∇φn dx dt

=

∫ T

0

∫
Dε

ϱε(1− φn)∂tψ + ϱεuε · (1− φn)∇ψ − ϱεuε · ψ∇φn dx dt,

where we used that ψφn is a good test function for the continuity equation ∂tϱε+div(ϱεuε) = 0.

By the uniform estimates on ϱε and ϱεuε, the first two terms vanish as n→ ∞ by (4.31). The

third term is handled by Hardy’s inequality (B.10) and (4.32).

The convergence of the non-linear terms ϱ̃εũε and ϱ̃εũε⊗ ũε to ϱu and ϱu⊗u, respectively,

are obtained by getting the uniform bounds

∥∂tϱ̃ε∥
L2(0,T ;W

−1,
6γ
6+γ (Dε))

+ ∥ϱ̃εũε∥
L∞(0,T ;L

2γ
γ+1 (Dε))

≤ C

from equation (4.30) and the uniform bounds on ϱεuε already mentioned. Together with

Lemma 5.1 in [Lio98], this yields

ϱ̃εũε → ϱu in D′((0, T )×D),
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and also

ϱ̃ε → ϱ in C(0, T ;Lγ
weak(D)), ϱ̃εũε → ϱu in C(0, T ;L

2γ
γ+1

weak(D)).

A similar argument can be used to show

ϱ̃εũε ⊗ ũε → ϱu⊗ u in D′((0, T )×D),

leading for the continuity equation, momentum equation, and renormalized continuity equation

to

∂tϱ+ div(ϱu) = 0 in D′((0, T )×D),

∂t(ϱu) + div(ϱu⊗ u) +∇p(ϱ) = div S(∇u) + ϱf + g in D′((0, T )×D),

∂tb(ϱ) + div(b(ϱ)u) + (ϱb′(ϱ)− b(ϱ)) divu = 0 in D′((0, T )×D),

where p(ϱ) is the weak limit of p(ϱ̃ε) in L
5
3
− 1

γ ((0, T ) ×D). The proof of p(ϱ) = p(ϱ) requires

as before the strong convergence of the density, which can be handled similar to Appendix A.

4.3 Heat-conducting fluids

4.3.1 The model

In this section, we consider the stationary compressible Navier-Stokes-Fourier equations in per-

forated domains Dε, which describe the steady motion of a compressible and heat-conducting

Newtonian fluid. In contrast to the previous sections, we additionally have to take into account

equations that cover the behavior of energy as well as entropy. However, we will assume that

there are no internal sources or sinks of heat inside the fluid, meaning r = 0 in (2.5) and

(2.10). As derived in Section 2.2, for ε > 0, the unknown density ϱε : Dε → [0,∞), velocity

uε : Dε → R3, and temperature ϑε : Dε → (0,∞) of a viscous compressible fluid are described

by 
div(ϱεuε) = 0 in Dε,

div(ϱεuε ⊗ uε) +∇p(ϱε, ϑε) = div S(ϑε,∇uε) + ϱεf + g in Dε,

div(ϱεEεuε + p(ϱε, ϑε)uε − S(ϑε,uε)uε + qε) = (ϱεf + g) · uε in Dε,

div
(
ϱεsεuε +

qε

ϑε

)
= σε in Dε,

(4.33)

where S denotes the Newtonian viscous stress tensor, which is now given by

S(ϑ,∇u) = µ(ϑ)

(
∇u+∇Tu− 2

3
div(u)I

)
+ η(ϑ) div(u)I, (4.34)

and the entropy production rate σ ∈ M+(Dε) is a non-negative Radon-measure satisfying

σ ≥ S(ϑ,∇u) : ∇u

ϑ
− q · ∇ϑ

ϑ2
. (4.35)
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We further assume the viscosity coefficients µ(·), η(·) being continuous functions on (0,∞), µ(·)
is moreover Lipschitz continuous, and

C1(1 + ϑ) ≤ µ(ϑ) ≤ C2(1 + ϑ), 0 ≤ η(ϑ) ≤ C2(1 + ϑ). (4.36)

We also impose boundary conditions on ∂Dε as

uε = 0,

qε · n = L(ϑε − ϑ0),
(4.37)

where ϑ0 ≥ T0 > 0 is a prescribed temperature distribution in D and L > 0 a given constant,

and fix the total mass by ∫
Dε

ϱε dx = m > 0, (4.38)

where m > 0 is independent of ε.

For the constitutive law of the pressure, we assume that it can be written as the sum of

adiabatic pressure and the pressure of an ideal gas, meaning

p(ϱ, ϑ) = aϱγ + cv(γ − 1)ϱϑ, (4.39)

where a > 0, γ > 2 is the adiabatic exponent, and cv > 0 is the specific heat capacity at

constant volume, see also Section 2.2 for a derivation of this. The heat flux is governed by

Fourier’s law

q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ, (4.40)

where we assume the heat conductivity κ to satisfy

C3(1 + ϑmϑ) ≤ κ(ϑ) ≤ C4(1 + ϑmϑ) (4.41)

for some mϑ > 2. The total energy density is given by

E =
1

2
|u|2 + e, (4.42)

where the specific energy e satisfies Gibb’s relation

1

ϑ

(
De+ p(ϱ, ϑ)D

(
1

ϱ

))
= Ds(ϱ, ϑ). (4.43)

Assuming the specific entropy for an ideal fluid as s(ϱ, ϑ) = cv log
(

ϑ
ϱγ−1

)
(see (2.13)), this leads

to

ϑDs(ϱ, ϑ) = ϑ∂ϱsDϱ+ ϑ∂ϑsDϑ = cvDϑ− cv(γ − 1)
ϑ

ϱ
Dϱ.
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By Gibb’s relation, this should be equal to

De+ (aϱγ + cv(γ − 1)ϱϑ)D

(
1

ϱ

)
= ∂ϱeDϱ+ ∂ϑeDϑ− aϱγ−2Dϱ− cv(γ − 1)

ϑ

ϱ
Dϱ.

Comparing the differentials of ϱ and ϑ, we obtain

∂ϑe = cv, ∂ϱe = aϱγ−2,

yielding

e(ϱ, ϑ) = cvϑ+
aϱγ−1

γ − 1
. (4.44)

Further, the entropy s fulfills formally the balance of entropy

div

(
ϱsu+

q

ϑ

)
= σ =

S : ∇u

ϑ
− q · ∇ϑ

ϑ2
,

see also (2.10) for its derivation. Since weak solutions are expected to dissipate more kinetic

energy than indicated from the second equation in (4.33), we should for the entropy production

rate σ expect inequality rather than equality, which is precisely the notion of (4.35); see [FN09,

Chapter 2] for details. Finally, we assume the external forces f ,g ∈ L∞(R3).

The existence of classical solutions to (4.33) is known only if the data are in a certain sense

“small” (see, e.g., [DV87, PP14] and the references therein). Therefore, we will work with

weak solutions, which are known to exist under even weaker assumptions of mϑ and γ as made

above.

4.3.2 Weak formulation, weak solutions, and main result

Here, we state the weak formulation of the problem in Dε. To simplify notation, we will identify

a function with Dε as its domain of definition with its zero extension to the whole of R3.

First, the weak formulation of the continuity equation reads∫
R3

ϱεuε · ∇ψ dx = 0 (4.45)

for all ψ ∈ C1
c (R

3). We will moreover work with a renormalized version of this, that is,∫
R3

b(ϱε)uε · ∇ψ + (b(ϱε)− ϱεb
′(ϱε)) div(uε)ψ dx = 0 (4.46)

for any ψ ∈ C1
c (R

3), where b ∈ C([0,∞)) ∩ C1((0,∞)) is as in (4.4).

The weak formulation of the momentum equation reads∫
Dε

p(ϱε, ϑε) divφ+ (ϱεuε ⊗ uε) : ∇φ− S(ϑε,∇uε) : ∇φ+ (ϱεf + g) · φ dx = 0 (4.47)

for any φ ∈ C1
c (Dε;R3).
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The weak formulation of the energy balance reads

−
∫
Dε

(
ϱεEεuε + p(ϱε, ϑε)uε − S(ϑε,∇uε)uε + qε

)
· ∇ψ dx+

∫
∂Dε

L(ϑε − ϑ0)ψ dσ(x)

=

∫
Dε

(ϱεf + g) · uεψ dx

(4.48)

for all ψ ∈ C1(Dε). Farther, we also have the balance of entropy

⟨σε, ψ⟩M+ +

∫
∂Dε

Lϑ0

ϑε

ψ dσ(x) = −
∫
Dε

(
ϱεs(ϱε, ϑε)uε +

qε

ϑε

)
· ∇ψ dx+ L

∫
∂Dε

ψ dσ(x)

(4.49)

for all ψ ∈ C1(Dε) with ψ ≥ 0, where we used the notation ⟨σε, ψ⟩M+ =
∫
Dε
ψ dσε(x).

Definition 4.3.1. The triple [ϱ,u, ϑ] is said to be a renormalized weak entropy solution to

problem (4.33)–(4.44) if ϱ ≥ 0, ϑ > 0 a.e. in Dε, ϱ ∈ Lγ(Dε), u ∈ W 1,2
0 (Dε;R3), ϑmϑ/2

and log ϑ ∈ W 1,2(Dε) such that ϱ|u|3, |S(ϑ,∇u)u| and p(ϱ, ϑ)|u| ∈ L1(Dε), and the relations

(4.45)–(4.49) are fulfilled.

For ε > 0 fixed, the existence of weak solutions is guaranteed by the following result, see

[NP11] for details.

Theorem 4.3.2. Let f ,g ∈ L∞(R3), ϑ0 ∈ L1(∂Dε), ϑ0 ≥ T0 > 0 a.e. on ∂Dε, L > 0 and

m > 0. Let γ > 5
3
and mϑ > 1. Then there exists a renormalized weak entropy solution [ϱ,u, ϑ]

to problem (4.33)–(4.44) in the sense of Definition 4.3.1.

We are now in the position to state our main result, which generalizes [LP21, Theorem 2.2]

to the case of a random perforation.

Theorem 4.3.3. Let (Φ,R) = ({zi}, {ri}) and Dε be defined as in Section 3.4. Let f ,g ∈
L∞(R3), m > 0, L > 0, and ϑ0 ≥ T0 > 0 in D be defined such that it possesses a uniform

finite upper bound on its Lq-norm over all smooth two-dimensional surfaces with finite surface

area contained in D for some q > 1. Let {[ϱε,uε, ϑε]}ε>0 be a sequence of renormalized weak

entropy solutions to problem (4.33)–(4.44), extended in a suitable way to the whole domain D

as shown in Section 4.3.4 below. Let α > 3, γ > 2, mϑ > 2, and m > max{3/(α−3), 3} satisfy

the relation

α− 3

m
> max

{
2γ − 3

γ − 2
,
3mϑ − 2

mϑ − 2

}
. (4.50)

Then, there exists an almost surely positive random variable ε0(ω) such that for all 0 < ε ≤
ε0 there hold the uniform bounds

∥ϱε∥Lγ+Θ(Dε) + ∥uε∥W 1,2
0 (Dε)

+ ∥ϑε∥W 1,2(Dε)∩L3mϑ (Dε) ≤ C,

where Θ := min{2γ − 3, γ 3mϑ−2
3mϑ+2

}. Moreover, the corresponding weak limit as ε → 0 is a

renormalized weak solution to problem (4.33)–(4.44) in the limit domain D, i.e., ϱ ≥ 0 and

ϑ > 0 a.e. in D, and the equations (4.45)-(4.48) are fulfilled.

Note that we are not able to prove the balance of entropy (4.49), which is due to the mere

weak control on 1/ϑε; see Remark 4.3.12 for a more detailed explanation on this issue.
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4.3.3 Uniform bounds

In this section, we give uniform bounds on the velocity and the density. Note that the assump-

tion m ≥ 3 is made to control the measure of the boundary ∂Dε and the measure of Dε itself.

The entropy balance (4.49) together with (4.35) enables us to get several bounds on the

sequence {[ϱε,uε, ϑε]}ε>0 in Dε. With the help of (3.26), we obtain for the entropy balance

(4.49) with ψ ≡ 1

σε(Dε) +

∫
∂Dε

Lϑ0

ϑε

dσ(x) ≤ L |∂Dε| ≤ C,

and in view of (4.35), (4.40) and (4.41) also∫
Dε

S(ϑε,∇uε) : uε

ϑε

+
(1 + ϑmϑ

ε )|∇ϑε|2

ϑ2
ε

dx ≤ C σε(Dε) ≤ C. (4.51)

If we take also ψ ≡ 1 in the weak formulation of the energy balance (4.48), we obtain

L

∫
∂Dε

ϑε dσ(x) ≤ C

(
1 +

∫
Dε

(ϱε + 1)|uε| dx
)

≤ C
(
1 + (∥ϱε∥L 6

5 (Dε)
+ 1)∥uε∥L6(Dε)

)
.

Hence, due to the form of the stress tensor in (4.34) and similar to the calculation made in

(4.9), we have

σε(Dε) + ∥uε∥W 1,2
0 (Dε)

+ ∥∇ log ϑε∥L2(Dε) + ∥∇|ϑε|
mϑ
2 ∥L2(Dε) + ∥ϑ−1

ε ∥L1(∂Dε) ≤ C,

∥ϑε∥L1(∂Dε) ≤ C (1 + ∥ϱε∥L 6
5 (Dε)

).
(4.52)

Note that the bounds in (4.52) imply, by Sobolev inequality (B.8) and Poincaré’s inequality

(B.7), that we can control the norm ∥ϑε∥L3mϑ (Dε) by

∥ϑε∥
mϑ
2

L3mϑ (Dε)
= ∥ϑ

mϑ
2

ε ∥L6(Dε) ≤ C ∥ϑ
mϑ
2

ε ∥W 1,2(Dε)

≤ C
(
∥∇|ϑε|

mϑ
2 ∥L2(Dε) + ∥ϑε∥L1(∂Dε)

)
≤ C

(
1 + ∥ϱε∥L 6

5 (Dε)

)
.

However, we do not know whether ϑε is uniformly bounded. To prove this, we need some

additional tools. We will do this in the next subsection independent of the following results.

For now, we will assume that ϑε is uniformly bounded in L3mϑ(Dε) and prove this fact later

on.

To get uniform bounds on the density, we will use Lemma 3.4.1 and proceed similar to

[BO21, DFL17, LP21].

Lemma 4.3.4 (see [LP21, Lemma 3.3]). Under the assumptions of Lemma 3.4.1, assume

additionally that ∥ϑε∥L3mϑ (Dε) is uniformly bounded. Then, for ε > 0 small enough, we have

∥ϱε∥Lγ+Θ(Dε) ≤ C,
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where C > 0 is independent of ε, and

Θ := min

{
2γ − 3, γ

3mϑ − 2

3mϑ + 2

}
. (4.53)

Proof. In the weak formulation of the momentum balance (4.47), we will use the test function

φ := Bε

(
ϱΘε − ⟨ϱΘε ⟩Dε

)
, ⟨ϱΘε ⟩Dε

:=
1

|Dε|

∫
Dε

ϱΘε dx,

where Bε is the operator from Theorem 3.4.1, and Θ to be determined. We then have for any

1 < q < 3 satisfying (3.19)

∥∇φ∥Lq(Dε) ≤ C(q) ∥ϱΘε ∥Lq(Dε).

Using φ as test function in (4.47) and recalling the pressure as p(ϱ, ϑ) = aϱγ + cv(γ − 1)ϱϑ, we

get ∫
Dε

aϱγ+Θ
ε dx =

∫
Dε

p(ϱε, ϑε)⟨ϱΘε ⟩Dε − cv(γ − 1)ϱΘ+1
ε ϑε + S(ϑε,∇uε) : ∇φ dx

−
∫
Dε

(ϱεuε ⊗ uε) : ∇φ− (ϱεf + g) · φ dx.

(4.54)

We will estimate the right-hand side term by term and start with the most restrictive ones,

which will give bounds on Θ. First, we take the convective term to estimate∫
Dε

∣∣(ϱεuε ⊗ uε) : ∇φ
∣∣ dx ≤ ∥uε∥2L6(Dε)

∥ϱε∥Lγ+Θ(Dε)∥∇φ∥Lq1 (Dε)

≤ C(q1) ∥uε∥2L6(Dε)
∥ϱε∥Lγ+Θ(Dε)∥ϱ

Θ
ε ∥Lq1 (Dε)

= C(q1) ∥uε∥2L6(Dε)
∥ϱε∥Lγ+Θ(Dε)∥ϱε∥

Θ
Lq1Θ(Dε)

,

where q1 is determined by

1

q1
= 1− 2

6
− 1

γ +Θ
.

In order to get as high integrability of ϱε as possible, we choose Θ such that q1Θ = γ+Θ. This

together with γ > 2 leads to

Θ = Θ1 := 2γ − 3 > 1, q1 =
3(γ − 1)

2γ − 3
∈ (

3

2
, 3),

3

3− q1
=

2γ − 3

γ − 2
.

Note that the exponents Θ1 = 2γ−3 and 3(γ−1)
2γ−3

showed up earlier in the proof of Theorem 4.2.1

due to the same reasons. Using Sobolev embedding (B.8) and the uniform bound on uε from

(4.52) to obtain ∥uε∥L6(Dε) ≤ C ∥uε∥W 1,2
0 (Dε)

≤ C, we deduce∫
Dε

∣∣(ϱεuε ⊗ uε) : ∇φ
∣∣ dx ≤ C ∥ϱε∥1+Θ1

Lγ+Θ1 (Dε)
,

where C > 0 is independent of ε, and 1 + Θ1 < γ +Θ1.
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Second, we consider the diffusive term to obtain∫
Dε

∣∣S(ϑε,∇uε) : ∇φ
∣∣ dx ≤ C (1 + ∥ϑε∥L3mϑ (Dε))∥∇uε∥L2(Dε)∥∇φ∥Lq2 (Dε)

≤ C(q2) ∥∇uε∥L2(Dε)∥ϱΘε ∥Lq2 (Dε)

= C(q2) ∥∇uε∥L2(Dε)∥ϱε∥ΘLq2Θ(Dε)
,

where we set (recall mϑ > 2)

q2 :=
6mϑ

3mϑ − 2
∈ (2, 3),

3

3− q2
=

3mϑ − 2

mϑ − 2
.

As before, we choose Θ such that q2Θ = γ +Θ, which leads to

Θ = Θ2 := γ
3mϑ − 2

3mϑ + 2
> 1.

This yields ∫
Dε

∣∣S(ϑε,∇uε) : ∇φ
∣∣ dx ≤ C ∥ϱε∥ΘLγ+Θ(Dε)

.

In particular, if we set

Θ := min{Θ1,Θ2} > 1, α− 3

m
> max

{
2γ − 3

γ − 2
,
3mϑ − 2

mϑ − 2

}
> 3,

then q1 and q2 satisfy (3.19) and we infer∫
Dε

∣∣(ϱεuε ⊗ uε) : ∇φ
∣∣ dx+ ∫

Dε

∣∣S(ϑε,∇uε) : ∇φ
∣∣ dx ≤ C

(
1 + ∥ϱε∥1+Θ

Lγ+Θ(Dε)

)
.

Since mϑ > 2, we have Θ ≤ γ 3mϑ−2
3mϑ+2

< γ, yielding 2Θ < γ +Θ. Thus we deduce∫
Dε

∣∣(ϱεf + g) · φ
∣∣ dx ≤ C (∥ϱε∥L2(Dε) + 1)∥φ∥L2(Dε)

≤ C(2) (∥ϱε∥Lγ+Θ(Dε) + 1)∥ϱε∥ΘL2Θ(Dε)

≤ C(2) (∥ϱε∥Lγ+Θ(Dε) + 1)∥ϱε∥ΘLγ+Θ(Dε)

≤ C(2) (∥ϱε∥1+Θ
Lγ+Θ(Dε)

+ 1),

where in the last inequality we used (4.27) for a = 1, b = ∥ϱε∥1+Θ
Lγ+Θ(Dε)

, and p = (1 + Θ)/Θ.

Furthermore, the estimate for the pressure reads∫
Dε

∣∣p(ϱε, ϑε)⟨ϱΘε ⟩Dε

∣∣ dx ≤ C

∫
Dε

(ϱγε + ϱεϑε)⟨ϱΘε ⟩Dε dx

≤ C

(
∥ϱε∥γLγ(Dε)

+ ∥ϱε∥L 6
5 (Dε)

∥ϑε∥L6(Dε)

)
∥ϱε∥ΘLΘ(Dε)

≤ C

(
∥ϱε∥γLγ(Dε)

+ ∥ϱε∥Lγ(Dε)

)
∥ϱε∥ΘLΘ(Dε)

.
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Here we assumed that ϑε is bounded in L3mϑ(Dε) ⊂ L6(Dε). Using (4.27) for b = ∥ϱε∥γLγ(Dε)
,

p = γ, and a = 1, we get

∥ϱε∥Lγ(Dε) ≤ ∥ϱε∥γLγ(Dε)
+ 1.

Together with Θ < γ, which implies ∥ϱε∥ΘLΘ(Dε)
≤ 1 + ∥ϱε∥γLγ(Dε)

∥ϱε∥ΘLΘ(Dε)
, and interpolation

between the norms of L1(Dε) and L
γ+Θ(Dε) (see (B.4)), this yields∫

Dε

∣∣p(ϱε, ϑε)⟨ϱΘε ⟩Dε

∣∣ dx ≤ C

(
∥ϱε∥γLγ(Dε)

+ ∥ϱε∥Lγ(Dε)

)
∥ϱε∥ΘLΘ(Dε)

≤ C

(
∥ϱε∥γLγ(Dε)

∥ϱε∥ΘLΘ(Dε)
+ ∥ϱε∥ΘLΘ(Dε)

)
≤ C

(
∥ϱε∥γLγ(Dε)

∥ϱε∥ΘLΘ(Dε)
+ 1

)
≤ C

(
∥ϱε∥γ+Θ

Lγ(Dε)
+ 1

)
≤ C

(
∥ϱε∥(1−ϖ)(γ+Θ)

L1(Dε)
∥ϱε∥ϖ(γ+Θ)

Lγ+Θ(Dε)
+ 1

)
≤ C

(
∥ϱε∥ϖ(γ+Θ)

Lγ+Θ(Dε)
+ 1

)
,

where we used that we control the total mass m = ∥ϱε∥L1(Dε), and ϖ ∈ (0, 1) is determined by

1

γ
=

1−ϖ

1
+

ϖ

γ +Θ
.

Lastly, we estimate∫
Dε

|ϱΘ+1
ε ϑε| dx ≤ ∥ϑε∥Lq(Dε)∥ϱΘ+1

ε ∥
L

γ+Θ
Θ+1 (Dε)

≤ C ∥ϱε∥Θ+1
Lγ+Θ(Dε)

,

where we set q := (γ + Θ)/(γ − 1). Recalling that Θ < γ and γ > 2, this yields q ∈ (1, 4),

which entails in ∥ϑε∥Lq(Dε) ≤ C since we assumed ∥ϑε∥L3mϑ (Dε) ≤ C and mϑ > 2.

Finally, we obtain from (4.54)

∥ϱε∥γ+Θ
Lγ+Θ(Dε)

≤ C

(
1 + ∥ϱε∥βLγ+Θ(Dε)

)
for some 1 < β < γ +Θ,

which yields the uniform bound on ϱε in Lγ+Θ(Dε), provided ϑε is uniformly bounded in

L3mϑ(Dε).

Combining the uniform estimates on ϱε with those from (4.52), we obtain

∥uε∥W 1,2
0 (Dε)

+ ∥ϱε∥Lγ+Θ(Dε) + ∥∇ log ϑε∥L2(Dε) + ∥∇|ϑε|
mϑ
2 ∥L2(Dε) ≤ C,

∥ϑε∥L1(∂Dε) + ∥ϑ−1
ε ∥L1(∂Dε) ≤ C.

Note that these bounds are obtained by using the assumption that ϑε is uniformly bounded in

L3mϑ(Dε). This assumption will be proven in the next section.
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4.3.4 Extension of functions

In order to work in the fixed domain D instead of the variable domain Dε, we can extend

the functions uε and ϱε as well as the measure σε simply by zero, which will preserve their

regularity and their norms. In particular, the extended functions are still uniformly bounded.

In the sequel we will denote this zero extension of a function f by f̃ .

However, the extension of the temperature is more delicate since an extension by zero will

in general not preserve its regularity. This extension was previously done in [LP21, Section 3],

so we rely on their proofs. First recall that, by Theorem 3.4.2 and for ε > 0 small enough, the

balls {B2εαri(εzi)}zi∈Φε(D) are disjoint. The first lemma we need thus follows the same lines of

the proof of [LP21, Lemma 3.1].

Lemma 4.3.5. Let Dε be defined as in (3.18) and let the assumptions of Theorem 3.4.2 hold.

Then there is an almost surely positive random variable ε0(ω) such that for all 0 < ε ≤ ε0 there

exists an extension operator Ẽε : W 1,2(Dε) → W 1,2(D) such that for any φ ∈ W 1,2(Dε) and

any zi ∈ Φε(D),

Ẽεφ = φ in Dε,

∥∇Ẽεφ∥L2(Bεαri
(εzi)) ≤ C ∥∇φ∥L2(B2εαri

(εzi)\Bεαri
(εzi))

and hence ∥∇Ẽεφ∥L2(D) ≤ C ∥∇φ∥L2(Dε). Farther, for any 1 ≤ q ≤ ∞,

∥Ẽεφ∥Lq(Bεαri
(εzi)) ≤ C ∥φ∥Lq(B2εαri

(εzi)\Bεαri
(εzi))

and therefore ∥Ẽεφ∥Lq(D) ≤ C ∥φ∥Lq(Dε), where the constant C > 0 is independent of ε and

i. Furthermore, there exists an operator Eε : W
1,2
≥0 (Dε) → W 1,2

≥0 (D) with the same properties as

above. HereW 1,2
≥0 denotes the Sobolev space of all non-negative functions inW 1,2. In particular,

one may choose Eεφ := max{0, Ẽεφ}.

Proof. To begin, let φ ∈ W 1,2(B2(0) \B1(0)), and write it in the form

φ =Mφ+ ψ, Mφ :=
1

|B2(0) \B1(0))|

∫
B2(0)\B1(0)

φ dx, Mψ = 0.

Since B2(0) \ B1(0) is a bounded Lipschitz domain, from [Ste70, Chapter VI, Theorem 5] we

infer that there exists an extension operator S̃ : W 1,2(B2(0) \B1(0)) → W 1,2(B2(0)) such that

S̃ψ = ψ in B2(0) \B1(0),

∥S̃ψ∥W 1,2(B2(0)) ≤ C ∥ψ∥W 1,2(B2(0)),

∥S̃ψ∥Lq(B2(0)) ≤ C ∥ψ∥Lq(B2(0)\B1(0))
∀1 ≤ q ≤ ∞,

where the constant C > 0 is independent of q. SinceMψ = 0, we further deduce with Poincaré’s

inequality (B.6)

∥S̃ψ∥W 1,2(B2(0)) ≤ C ∥ψ∥W 1,2(B2(0)\B1(0))

≤ C ∥∇ψ∥L2(B2(0)\B1(0))
= C ∥∇φ∥L2(B2(0)\B1(0))

.
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Setting

Sφ :=Mφ+ S̃ψ in B2(0),

then still

Sφ = φ in B2(0) \B1(0),

∥Sφ∥W 1,2(B2(0)) ≤ C ∥φ∥W 1,2(B2(0)\B1(0))
,

∥Sφ∥Lq(B2(0)\B1(0))
≤ C ∥φ∥Lq(B2(0)\B1(0))

∀1 ≤ q ≤ ∞.

Now, for φ ∈ W 1,2(B2εαri(εzi) \Bεαri(εzi)), set

φ̃(y) := φ(εzi + riε
αy),

then φ̃ ∈ W 1,2(B2(0) \B1(0)). We can now define the extension operator in each hole Ẽi
ε by

Ẽi
εφ(x) := (Sφ̃)

(
x− εzi
riεα

)
.

By the properties of the operator S, we clearly have Ẽi
εφ ∈ W 1,2(B2εαri(εzi)) and Ẽ

i
εφ = φ in

B2εαri(εzi) \Bεαri(εzi). Farther,∫
B2εαri

(εzi)

|∇xẼ
i
εφ|2 dx =

∫
B2εαri

(εzi)

∣∣∣∣∇xSφ̃

(
x− εzi
riεα

)∣∣∣∣2 dx
=

∫
B2εαri

(εzi)

(riε
α)−2

∣∣∣∣(∇ySφ̃)

(
x− εzi
riεα

)∣∣∣∣2 dx
= riε

α

∫
B2(0)

|(∇ySφ̃)(y)|2 dy

≤ C riε
α

∫
B2(0)\B1(0)

|∇yφ̃(y)|2 dy

= C

∫
B2εαri

(εzi)\Bεαri
(εzi)

|∇xφ(x)|2 dx.

Similarly,

∥Ẽi
εφ∥Lq(B2εαri

(εzi)) ≤ C ∥φ∥Lq(B2εαri
(εzi)\Bεαri

(εzi))
∀1 ≤ q ≤ ∞.

Finally, the extension operator Ẽε is defined by

Ẽεφ := φχ+
∑

zi∈Φε(D)

Ẽi
εφ ∀φ ∈ W 1,2(Dε),

provided each Ẽi
εφ is extended to be zero outside its domain of definition, and χ is the char-

acteristic function of D \
⋃

zi∈Φε(D)B2riεα(εzi). This operator clearly obeys all the required

properties of the lemma. The last assertion for Eεφ = max{0, Ẽεφ} is a simple consequence of

∥∇Eεφ∥L2(D) ≤ ∥∇Ẽεφ∥L2(D)
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and

∥Eεφ∥Lq(D) ≤ ∥Ẽεφ∥Lq(D) ∀1 ≤ q ≤ ∞.

With the help of the extension operator Eε, we can bound the temperature uniformly with

respect to ε.

Lemma 4.3.6. For ε > 0 small enough, we have ∥Eεϑε∥W 1,2(D)+∥Eεϑε∥L3mϑ (D) ≤ C for some

C > 0 independent of ε. In particular, we have ∥ϑε∥W 1,2(Dε) + ∥ϑε∥L3mϑ (Dε) ≤ C uniformly in

ε.

Proof. First, as ϑε ∈ W 1,2(Dε) and ϑε > 0 almost everywhere in Dε, we have Eεϑε ∈ W 1,2(D)

and Eεϑε ≥ 0 almost everywhere in D. By mϑ > 2, the fact that ϑ2
ε ≤ 1 + ϑmϑ

ε , and (4.51), we

get ∫
Dε

|∇ϑε|2 dx ≤
∫
Dε

(1 + ϑmϑ
ε )|∇ϑε|2

ϑ2
ε

dx ≤ C

uniformly in ε. By Lemma 4.3.5, the same holds true for Eεϑε ∈ W 1,2(D). As we also have

uniform control on the L1-norm of ϑε over ∂D (see (4.52)) and this value does not change by

applying the extension, we have a uniform L6-control of Eεϑε over the whole of D. As Eεϑε

coincides with ϑε in Dε, we have also a uniform control on the L6-norm of ϑε in Dε.

Assume for now mϑ ≤ 12, and recall that ∇|ϑε|
mϑ
2 is uniformly bounded in L2(Dε) by (4.52).

By the arguments given above, we already know that ϑ
mϑ
2

ε has uniform controlled L1-norm over

Dε, so we may estimate with the help of Poincaré’s inequality (B.6)

∥ϑ
mϑ
2

ε ∥L2(Dε) ≤ ∥ϑ
mϑ
2

ε − ⟨ϑ
mϑ
2

ε ⟩Dε∥L2(Dε) + ⟨ϑ
mϑ
2

ε ⟩Dε|Dε|
1
2

≤ C ∥∇|ϑε|
mϑ
2 ∥L2(Dε) + |Dε|−

1
2∥ϑ

mϑ
2

ε ∥L1(Dε) ≤ C,

where we used the notation ⟨ϑ
mϑ
2

ε ⟩Dε for the mean value of ϑ
mϑ
2

ε over Dε, and the fact that, for

ε small enough, the measure of Dε is controlled by (3.26). Thus, ϑ
mϑ
2

ε is uniformly bounded in

W 1,2(Dε), and by Lemma 4.3.5, the same holds true for (Eεϑε)
mϑ
2 in W 1,2(D). By the Rellich-

Kondrachev theorem from Proposition B.5, (Eεϑε)
mϑ
2 is bounded uniformly in L6(D), that is,

Eεϑε is uniformly bounded in L3mϑ(Dε). Again by Lemma 4.3.5, this yields a uniform bound

on ϑε in L
3mϑ(Dε).

Let now mϑ > 12. From the steps done above, we have a uniform control on ϑε in L36(Dε).

By repeating the arguments for 2 < mϑ ≤ 12, we may cover all 2 < mϑ ≤ 36. Going further

yields the desired for any mϑ > 2.

We further need to estimate the trace of ϑε in ∂Dε. Indeed, for fixed ε > 0, the trace of ϑε

belongs to L2mϑ(∂Dε), as can be seen from the standard trace theorem, see also the proof of

the next lemma. This lemma enables us to control the norm of the trace of ϑε in a quantitative

way.
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Lemma 4.3.7. Under the assumptions of Theorem 4.3.3, we have for any zi ∈ Φε(D) and for

ε > 0 small enough

∥ϑε∥2mϑ

L2mϑ (∂Bi)
≤ C

(
∥∇|ϑε|

mϑ
2 ∥2

L2(2Bi\Bi)
+ ∥ϑε∥3mϑ

L3mϑ (2Bi\Bi)
+ ∥ϑε∥2mϑ

L3mϑ (2Bi\Bi)

)
,

where we set Bi := Bεαri(εzi) and 2Bi := B2εαri(εzi).

Proof. Following the standard proof of the trace theorem for Sobolev functions (see, for in-

stance, [Eva10, Chapter 5.5, Theorem 1]), we may arrive at∫
∂Bi

|ϑε|2mϑ dσ(x) ≤ C

∫
2Bi\Bi

|∇(φε|ϑε|2mϑ)| dx,

where φε ∈ C∞
c (2Bi) is a non-negative smooth cut-off function satisfying φε|∂Bi

= 1 and

∥∇φε∥L∞(2Bi) ≤ C (riε
α)−1. Since ∇|ϑε|2mϑ = 4ϑ

3mϑ
2

ε ∇|ϑε|
mϑ
2 and |2Bi \ Bi| ≲ (riε

α)3, we see

at once that ϑε ∈ L2mϑ(∂Dε). Using further Hölder’s inequality (B.2) and Young’s inequality

(B.1), we calculate

∥ϑε∥2mϑ

L2mϑ (∂Bi)
=

∫
∂Bi

|ϑε|2mϑ dσ(x) ≲
∫
2Bi\Bi

|∇(φε|ϑε|2mϑ)| dx

≲
∫
2Bi\Bi

|∇φε| |ϑε|2mϑ + φε

∣∣∇|ϑε|2mϑ
∣∣ dx

≲ (riε
α)−1

∫
2Bi\Bi

|ϑε|2mϑ +
∣∣∇|ϑε|

mϑ
2

∣∣ |ϑε|
3mϑ
2 dx

≲

(∫
2Bi\Bi

|ϑε|3mϑ dx

) 2
3

+

(∫
2Bi\Bi

∣∣∇|ϑε|
mϑ
2

∣∣2 dx) 1
2
(∫

2Bi\Bi

|ϑε|3mϑ dx

) 1
2

≲

(∫
2Bi\Bi

|ϑε|3mϑ dx

) 2
3

+

∫
2Bi\Bi

∣∣∇|ϑε|
mϑ
2

∣∣2 dx+ ∫
2Bi\Bi

|ϑε|3mϑ dx

= ∥ϑε∥2mϑ

L3mϑ (2Bi\Bi)
+ ∥∇|ϑε|

mϑ
2 ∥2

L2(2Bi\Bi)
+ ∥ϑε∥3mϑ

L3mϑ (2Bi\Bi)
.

The last ingredient we need is a trace estimate for the whole boundary of the holes.

Corollary 4.3.8. Under the assumptions of Theorem 3.4.2 and Theorem 4.3.3, we have for

any zi ∈ Φε(D) and for ε > 0 small enough

∥ϑε∥L2mϑ (∪zi∈Φε(D)∂Bεαri
(εzi)) ≤ C ε

− 1
2mϑ .

Proof. For zi ∈ Φε(D), we set again Bi := Bεαri(εzi) and 2Bi := B2εαri(εzi). Then, using

Hölder’s inequality (B.2) and Lemma 4.3.7, we get∫
∪zi∈Φε(D)∂Bi

|ϑε|2mϑ dσ(x) =
∑

zi∈Φε(D)

∫
∂Bi

|ϑε|2mϑ dσ(x)

≤ C
∑

zi∈Φε(D)

(∫
2Bi\Bi

|ϑε|3mϑ dx

) 2
3
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+
∑

zi∈Φε(D)

∫
2Bi\Bi

∣∣∇|ϑε|
mϑ
2

∣∣2 dx+ ∑
zi∈Φε(D)

∫
2Bi\Bi

|ϑ|3mϑ dx

≤ C

( ∑
zi∈Φε(D)

∫
2Bi\Bi

|ϑε|3mϑ dx

) 2
3
( ∑

zi∈Φε(D)

1

) 1
3

+

∫
Dε

∣∣∇|ϑε|
mϑ
2

∣∣2 dx+ ∫
Dε

|ϑ|3mϑ dx

≤ C
[(
#{zi ∈ Φε(D)}

) 1
3 + 1

]
,

where in the last inequality we used the uniform bounds on ϑε and∇|ϑε|
mϑ
2 . From Remark 3.4.6,

for ε > 0 small enough, the number of points zi ∈ Φε(D) is bounded by C ε−3, which immedi-

ately implies our desired assertion.

Summarizing all the above results, we know the existence of an almost surely positive

random variable ε0(ω) such that for all 0 < ε ≤ ε0 the solution [ϱε,uε, ϑε] to (4.33)-(4.44) and

the measure σε, suitably extended to the whole of D, satisfy

σ̃ε(D) + ∥ũε∥W 1,2
0 (D) + ∥ϱ̃ε∥Lγ+Θ(D) + ∥Eεϑε∥W 1,2(D)∩L3mϑ (D) + ∥Eε log(ϑε)∥W 1,2(D) ≤ C, (4.55)

where Θ is defined in (4.53). Furthermore, ϑε has a well-defined trace on each ∂Bεαri(εzi), the

norm of which is controlled by Corollary 4.3.8.

4.3.5 Equations in fixed domain

This section is devoted to show the the homogenization result for the Navier-Stokes-Fourier

equations in a randomly perforated domain in the subcritical case α > 3. The proof of such

a result in the case of well separated holes is given in [LP21, Section 4]. Their methods apply

almost verbatim to our situation, so we will mainly focus on the differences due to the random

setting. Again, we will always assume that the moment bound m ≥ 3 in (3.19) to bound the

measures of Dε and ∂Dε.

First, the bounds in (4.52) and (4.55) enable us to extract subsequences (not relabeled)

such that

ũε ⇀ u weakly in W 1,2
0 (D), ũε → u strongly in Lq(D) for all 1 ≤ q < 6,

ϱ̃ε ⇀ ϱ weakly in Lγ+Θ(D),

Eεϑε ⇀ ϑ weakly in W 1,2(D), Eεϑε → ϑ strongly in Lq(D) for all 1 ≤ q < 3mϑ,

Eε log(ϑε)⇀ log(ϑ) weakly in W 1,2(D),

where we denote by log(ϑ) the weak limit of Eε log(ϑε) in W
1,2(D).

Let us start with the limit passage for the energy, continuity, and momentum equations.

To pass to the limit in the energy balance in (4.33), we use its weak formulation (4.48) and the

96



4.3. Heat-conducting fluids

fact ũε = 0 in D \Dε to write

−
∫
D

(
ϱ̃εE(ϱ̃ε, ũε, ϑ̃ε)ũε + p(ϱ̃ε, ϑ̃ε)ũε − S(ϑ̃ε,∇ũε)ũε − κ(ϑ̃ε)∇Eεϑε

)
· ∇ψ dx

+ L

∫
∂D

(ϑε − ϑ0)ψ dσ(x)−
∫
D

(ϱ̃εf + g) · ũεψ dx

=

∫
D\Dε

κ(ϑε)∇ϑε · ∇ψ dx− L

∫
∪zi∈Φε(D)∂Bεαri

(εzi)

(ϑε − ϑ0)ψ dσ(x)

=: I1 + I2

(4.56)

for any ψ ∈ C1(D), where E(ϱε,uε, ϑε) is the total energy from (4.42). We want to show that

both integrals on the right-hand side vanish as ε→ 0. For I1, by Hölder’s inequality (B.2), we

get

|I1| ≤ C ∥∇ψ∥L∞(D)(1 + ∥ϑε∥mϑ

L3mϑ (D\Dε)
) ∥∇ϑε∥L2(D\Dε) |D \Dε|

1
6 → 0,

where we used that |D \ Dε| → 0 by (3.26). For I2, let us set Bi := Bεαri(εzi). Using

Corollary 4.3.8 and that ∥ϑ0∥Lq(∂Dε) is uniformly bounded for some q > 1 with respect to ε,

together with α > 3, m > 2, and Lemma 3.4.5, we obtain

|I2| ≤ C

[
∥ϑε∥L2mϑ (∪zi∈Φε(D)∂Bi)

∣∣∣∣ ⋃
zi∈Φε(D)

∂Bi

∣∣∣∣
2mϑ−1

2mϑ

+ ∥ϑ0∥Lq(∪zi∈Φε(D)∂Bi)

∣∣∣∣ ⋃
zi∈Φε(D)

∂Bi

∣∣∣∣ q−1
q
]

≤ C

[
ε
− 1

2mϑ

( ∑
zi∈Φε(D)

ε2αr2i

) 2mϑ−1

2mϑ

+

( ∑
zi∈Φε(D)

ε2αr2i

) q−1
q
]

≤ C

[
ε

(2α−3)(2mϑ−1)−1

2mϑ + ε
(2α−3)(q−1)

q

]
→ 0,

where we used that (2α − 3)(2mϑ − 1) > 1 due to our assumptions α > 3mϑ−2
mϑ−2

and mϑ > 2.

Hence, letting ε → 0 on the left-hand side of (4.56), we get by the strong convergences of uε

and ϑε

−
∫
D

((
ϱe(ϱ, ϑ) +

1

2
ϱ|u|2 + p(ϱ, ϑ)− S(ϑ,∇u)

)
u− κ(ϑ)∇ϑ

)
· ∇ψ dx

+ L

∫
∂D

(ϑ− ϑ0)ψ dσ(x) =

∫
D

(ϱf + g) · uψ dx.

Here, f(ϱ, ϑ) denotes the weak limit of a function f(ϱε, ϑε) in some suitable Lq-space. Also,

the temperature ϑ > 0 almost everywhere in D and log(ϑ) = log(ϑ), which can be proven as

shown in [LP21, Lemma 4.1]. For convenience, we repeat the proof here.

Lemma 4.3.9. The limiting temperature ϑ > 0 a.e. in D, and further log(ϑ) = log(ϑ).

Proof. First, since Eεϑε → ϑ strongly in, say, L2(D), we can extract a subsequence (not

relabeled) such that Eεϑε → ϑ a.e. in D, which yields that the limit temperature cannot be

negative. It thus suffices to prove that it can be zero just on a set of measure zero. To this end

we assume the contrary, that is, there exists δ > 0 such that |{ϑ = 0}| = δ. Take a sequence

{εl}l∈N ⊂ (0, ε0(ω)) with εl ≤ l−1, where ε0(ω) > 0 is as in Theorem 3.4.2, and consider the
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sets

Dl0 :=
∞⋃
l=l0

⋃
zi∈Φεl (D)

Bεαl ri
(εlzi).

Since for εl > 0 small enough we have∣∣∣∣ ⋃
zi∈Φεl (D)

Bεαl ri
(εlzi)

∣∣∣∣ ≤ C

l3(α−1)

by (3.26) and α > 3, we can find l0 ∈ N such that |Dl0| ≤ δ
2
.

We have Eεl log(ϑεl)⇀ log(ϑ) weakly in Lq(D) for all 1 ≤ q ≤ 2, in particular log(ϑ) > −∞
a.e. in D. Since we have also ϑ̃εl → ϑ a.e. in D and thus a.e. in D \Dl0 , we infer by Vitali’s

convergence theorem (see Proposition B.8) log(ϑ̃εl) → log(ϑ) in Lq(D \ Dl0) for some q > 1.

Since by definition of Eε we have log(ϑ̃εl) = Eεl log(ϑεl) in D \ Dl0 , we have log(ϑ) = log(ϑ)

a.e. in D \Dl0 , which yields log(ϑ) > −∞ a.e. in D \Dl0 . This means that ϑ can be zero at

most on the set Dl0 which has a measure less than δ/2, which is a contradiction. Thus ϑ > 0

and log(ϑ) = log(ϑ) a.e. in D.

It remains to show the energy balance for the limit functions, which is in fact a consequence

of the strong convergence of the density ϱε to ϱ at least in L1(D). More precisely, the strong

convergence holds in Lq(D) for any 1 ≤ q < γ + Θ. The proof of this fact follows the same

lines as done in Appendix A.

We now turn to the continuity and momentum equation. Recall that the continuity equa-

tion holds in the weak and renormalized sense (4.45) and (4.46), so we obtain by the strong

convergence of ũε to u

div(ϱu) = 0 in D′(R3). (4.57)

Moreover, by Remark 4.1.2, (4.57) implies that the couple [ϱ,u] fulfills the renormalized con-

tinuity equation (4.46) for any b ∈ C([0,∞)) ∩ C1((0,∞)) satisfying the conditions of Re-

mark 4.1.2.

To pass to the limit in the momentum equation, we need to construct suitable test functions.

To this end, we recall Lemma 4.1.6, which guarantees for any 1 < r < 3 with (3− r)α− 3 > 0

the existence of a family of functions {gε}ε>0 ⊂ W 1,r(D) such that for 0 < ε ≤ ε0,

gε = 0 in
⋃

zj∈Φε(D)

Bεαrj(εzj), gε → 1 in W 1,r(D) as ε→ 0, (4.58)

and there is a constant C > 0 such that

∥1− gε∥Lr(D) ≤ Cε
3(α−1)

r ∥∇gε∥Lr(D) ≤ C ε
(3−r)α−3

r = C ε
3(α−1)

r
−α. (4.59)

Using these cut-off functions, we obtain a similar statement as given in Lemma 4.2 in [LP21].
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Lemma 4.3.10. Under the assumptions of Theorem 4.3.3, there holds

div(ϱ̃εũε ⊗ ũε) +∇p(ϱ̃ε, Eεϑε)− div S(Eεϑε,∇ũε) = ϱ̃εf + g + Fε in D′(D),

where Fε is a distribution satisfying

|⟨Fε, φ⟩D′(D),D(D)| ≤ Cεν
(
∥∇φ∥

L
γ+Θ
Θ

+ξ(D)
+ ∥φ∥Lr(D)

)
for all φ ∈ D(D), where Θ is defined in (4.53), and ν, ξ, r are defined such that the following

conditions are fulfilled:

0 < ξ < 1, 0 < h(ξ) := 3 (α− 1)

(
γ +Θ

Θ
+ ξ

)−1

− α,

1 < r <∞,
1

r
+

(
γ +Θ

Θ
+ ξ

)−1

=
Θ

γ +Θ
,

0 < ν <∞, ν := min

{
3(α− 1)

r
, h(ξ)

}
.

Let us remark that the conditions on ξ, r, and ν occurred earlier in Section 4.2 for the case

of constant temperature, γ > 2, and Θ = 2γ − 3, where we have γ+Θ
Θ

= 3(γ−1)
2γ−3

.

Proof of Lemma 4.3.10. The proof is similar to the one given earlier in Section 4.1.3. For leg-

ibility, we will identify functions [ϱε,uε, ϑε], defined on the domain Dε, with their extensions

[ϱ̃ε, ũε, Eεϑε] to the whole of D.

Let φ ∈ D(D) and decompose φ = gεφ + (1 − gε)φ, then gεφ is a proper test function in

the second equation of (4.33). Hence,∫
D

ϱεuε ⊗ uε : ∇φ+ p(ϱε, ϑε) divφ− S(ϑε,∇uε) : ∇φ+ (ϱεf + g) · φ dx

=

∫
Dε

ϱεuε ⊗ uε : ∇(gεφ) + p(ϱε, ϑε) div(gεφ) dx

+

∫
D

−S(ϑε,∇uε) : ∇(gεφ) + (ϱεf + g) · (gεφ) dx+ Iε

= Iε,

where the remainder is given by

Iε :=
4∑

j=1

Ij,ε :=

∫
D

ϱεuε ⊗ uε : (1− gε)∇φ− ϱεuε ⊗ uε : (∇gε ⊗ φ) dx

+

∫
D

p(ϱε, ϑε)(1− gε) divφ− p(ϱε, ϑε)∇gε · φ dx

+

∫
D

−S(ϑε,∇uε) : (1− gε)∇φ+ S(ϑε,∇uε) : (∇gε ⊗ φ) dx

+

∫
D

(ϱεf + g) · (1− gε)φ dx.

We start with Iε,2, which is the most restrictive one. We split the integral due to the definition
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of the pressure as p = aϱγ + cv(γ − 1)ϱϑ into

Iε,2 =

∫
D

p(ϱε, ϑε)[(1− gε) divφ−∇gε · φ] dx

=

∫
D

aϱγε [(1− gε) divφ−∇gε · φ] dx

+

∫
D

cv(γ − 1)ϱεϑε[(1− gε) divφ−∇gε · φ] dx

=: I1 + I2.

For I1, we estimate

|I1| ≤ C ∥ϱγε∥
L

γ+Θ
γ (D)

(
∥(1− gε) divφ∥

L
γ+Θ
Θ (D)

+ ∥∇gε · φ∥
L

γ+Θ
Θ (D)

)
= C ∥ϱε∥γLγ+Θ(D)

(
∥(1− gε)∇φ∥

L
γ+Θ
Θ (D)

+ ∥∇gε · φ∥
L

γ+Θ
Θ (D)

)
≤ C

(
∥(1− gε)∇φ∥

L
γ+Θ
Θ (D)

+ ∥∇gε · φ∥
L

γ+Θ
Θ (D)

)
≤ C

(
∥1− gε∥Lr(D)∥∇φ∥

L
γ+Θ
Θ

+ξ(D)
+ ∥∇gε∥

L
γ+Θ
Θ

+ξ(D)
∥φ∥Lr(D)

)
,

where we used the uniform bound on ϱε in Lγ+Θ(D), and ξ ∈ (0, 1) and r ∈ (1,∞) are

determined by

1

r
+

(
γ +Θ

Θ
+ ξ

)−1

=
Θ

γ +Θ
. (4.60)

From (4.59), we obtain

∥1− gε∥Lr(D) ≤ C ε
3(α−1)

r , ∥∇gε∥
L

γ+Θ
Θ

+ξ(D)
≤ C ε3(α−1)

(
γ+Θ
Θ

+ξ
)−1

−α

as well as

3 (α− 1)

(
γ +Θ

Θ

)−1

− α =
3(α− 1)Θ− α(γ +Θ)

γ +Θ
=
α(2Θ− γ)− 3Θ

γ +Θ
> 0

⇐⇒ α(2Θ− γ) > 3Θ.

We distinguish two cases of Θ from its definition in (4.53). First, we assume that

Θ = min

{
2γ − 3, γ

3mϑ − 2

3mϑ + 2

}
= 2γ − 3,

then

α(2Θ− γ) = α(3γ − 6) > 3Θ = 3(2γ − 3) ⇐⇒ α >
2γ − 3

γ − 2
,

which is true by condition (4.50). Second, if

Θ = min

{
2γ − 3, γ

3mϑ − 2

3mϑ + 2

}
= γ

3mϑ − 2

3mϑ + 2
,
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then

α(2Θ− γ) = αγ

(
6mϑ − 4

3mϑ + 2
− 1

)
> 3Θ = γ

9mϑ − 6

3mϑ + 2

⇐⇒ α
3mϑ − 6

3mϑ + 2
>

9mϑ − 6

3mϑ + 2

⇐⇒ α >
3mϑ − 2

mϑ − 2
,

which again holds by (4.50). We therefore may choose ξ ∈ (0, 1) small enough such that

h(ξ) := 3 (α− 1)

(
γ +Θ

Θ
+ ξ

)−1

− α > 0.

For this ξ, let r be defined by (4.60), and

ν := min

{
3(α− 1)

r
, h(ξ)

}
> 0,

then we may estimate I1 by

|I1| ≤ C εν
(
∥∇φ∥

L
γ+Θ
Θ

+ξ(D)
+ ∥φ∥Lr(D)

)
.

Let us further note that

3(γ +Θ)

2(γ +Θ)− 3
≤ γ +Θ

Θ
⇐⇒ 3Θ ≤ 2(γ +Θ)− 3 ⇐⇒ Θ ≤ 2γ − 3, (4.61)

which is always true by the definition of Θ in (4.53). Now, we get for I2

|I2| ≤ C ∥ϱε∥Lγ+Θ(D)∥ϑε∥L3(D)

(
∥(1− gε) divφ∥

L
3(γ+Θ)

2(γ+Θ)−3 (D)
+ ∥∇gε · φ∥

L
3(γ+Θ)

2(γ+Θ)−3 (D)

)
≤ C

(
∥(1− gε)∇φ∥

L
3(γ+Θ)

2(γ+Θ)−3 (D)
+ ∥∇gε · φ∥

L
3(γ+Θ)

2(γ+Θ)−3 (D)

)
≤ C

(
∥(1− gε)∇φ∥

L
γ+Θ
Θ (D)

+ ∥∇gε · φ∥
L

γ+Θ
Θ (D)

)
,

where we used the uniform bounds on ϱε in L
γ+Θ(D) and on ϑε in any Lq(D) for 1 ≤ q ≤ 3mϑ.

We may therefore proceed as for I1 to eventually get for Iε,2 the bound

|Iε,2| ≤ |I1|+ |I2| ≤ C εν
(
∥∇φ∥

L
γ+Θ
Θ

+ξ(D)
+ ∥φ∥Lr(D)

)
.

For Iε,1, we get

|Iε,1| ≤ ∥ϱε∥Lγ+Θ(D)∥uε∥2L6(D)

(
∥(1− gε)∇φ∥

L
3(γ+Θ)

2(γ+Θ)−3 (D)
+ ∥∇gε ⊗ φ∥

L
3(γ+Θ)

2(γ+Θ)−3 (D)

)
≤ C

(
∥(1− gε)∇φ∥

L
γ+Θ
Θ (D)

+ ∥∇gε ⊗ φ∥
L

γ+Θ
Θ (D)

)
,

where we used the uniform bounds on ϱε and uε as well as (4.61). Arguing similar as for Iε,2,
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we deduce for Iε,1 the bound

|Iε,1| ≤ C
(
∥1− gε∥Lr(D)∥∇φ∥

L
γ+Θ
Θ

+ξ(D)
+ ∥∇gε∥

L
γ+Θ
Θ

+ξ(D)
∥φ∥Lr(D)

)
≤ C εν

(
∥∇φ∥

L
γ+Θ
Θ

+ξ(D)
+ ∥φ∥Lr(D)

)
.

For Iε,3, we estimate

|Iε,3| ≤ C (1 + ∥ϑε∥
L

2(γ+Θ)
γ−Θ (D)

)∥∇uε∥L2(D)

(
∥(1− gε)∇φ∥

L
γ+Θ
Θ (D)

+ ∥∇gε ⊗ φ∥
L

γ+Θ
Θ (D)

)
≤ C

(
∥(1− gε)∇φ∥

L
γ+Θ
Θ (D)

+ ∥∇gε ⊗ φ∥
L

γ+Θ
Θ (D)

)
,

where we used the uniform bound on ϑε in L
q(D) for any 1 ≤ q ≤ 3mϑ, and the fact that

2(γ +Θ)

γ −Θ
≤ 3mϑ ⇐⇒ 2γ + 2Θ ≤ 3γmϑ − 3Θmϑ ⇐⇒ Θ ≤ γ

3mϑ − 2

3mϑ + 2
,

which is true by (4.53).

For Iε,4, we repeat the arguments for Iε,2 since

|Iε,4| ≤ C (1 + ∥ϱε∥
L

γ+Θ
γ (D)

)∥(1− gε)φ∥
L

γ+Θ
Θ (D)

≤ C (1 + ∥ϱε∥Lγ+Θ(D))∥(1− gε)φ∥
L

γ+Θ
Θ (D)

≤ C ∥(1− gε)φ∥
L

γ+Θ
Θ (D)

.

We want now to pass to the limit in the entropy balance (4.49) and show that the limits

[σ,u, ϑ] fulfill also (4.35). Since this point is missing in [LP21], we follow the proof of [PS21].

We first show that the entropy balance (4.49) is satisfied for the extended functions “up to a

small error”.

Lemma 4.3.11. Under the assumptions of Theorem 4.3.3, we have

⟨σ̃ε, ψ⟩M+(D) +

∫
∂Dε

Lϑ0

ϑε

ψ dσ(x) = −
∫
D

(
ϱ̃εs(ϱ̃ε, ϑ̃ε)ũε − κ(ϑ̃ε)∇Eε log(ϑε)

)
· ∇ψ dx

+ L

∫
∂D

ψ dσ(x) + ⟨Rε, ψ⟩
(4.62)

with ⟨Rε, ψ⟩ → 0 for any ψ ∈ C1(D) with ψ ≥ 0. Here, we denote ϱ̃εs(ϱ̃ε, ϑ̃ε) = cvϱ̃εEε log(ϑε)−
cv(γ − 1)ϱ̃ε log(ϱ̃ε) with the convention 0 · log(0) = 0.

Proof. Let ψ ∈ C1(D) with ψ ≥ 0, then ψχDε
is a proper test function in the entropy balance

(4.49) in Dε. We further have ψ = ψχDε
+ ψχD\Dε

and hence

⟨σ̃ε, ψ⟩M+(D) +

∫
∂Dε

Lϑ0

ϑε

ψ dσ(x) +

∫
D

(
ϱ̃εs(ϱ̃ε, ϑ̃ε)ũε − κ(ϑ̃ε)∇Eε log(ϑε)

)
· ∇ψ − L

∫
∂D

ψ dx

= ⟨σε, ψ⟩M+(Dε)
+

∫
∂Dε

Lϑ0

ϑε

ψ dσ(x)

+

∫
Dε

(
ϱεs(ϱε, ϑε)uε − κ(ϑε)∇ log(ϑε)

)
· ∇ψ dx− L

∫
∂Dε

ψ dσ(x)
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+ ⟨σ̃ε, ψ⟩M+(D\Dε)
+

∫
D\Dε

(
ϱ̃εs(ϱ̃ε, ϑ̃ε)ũε − κ(ϑ̃ε)∇Eε log(ϑε)

)
· ∇ψ dx+ L

∫
∂(D\Dε)

ψ dσ(x)

=:
7∑

i=1

Ii.

Clearly
4∑

i=1

Ii = 0 because of (4.49). Further, I5 = 0 since σε has been extended to zero outside

Dε. For I7 we obtain I7 → 0 by (3.26). By ϱ̃ε = 0 outside Dε, we get

I6 = −
∫
D\Dε

κ(ϑ̃ε)∇Eε log(ϑε) · ∇ψ dx

≤ C ∥∇ψ∥L∞(D\Dε)∥∇ log(ϑε)∥L2(D\Dε)∥κ(ϑε)∥L3(D\Dε)|D \Dε|
1
6 → 0,

where we used that κ(ϑ) ≤ C(1 + ϑmϑ) for some mϑ > 2 and ∥ϑε∥L3mϑ (Dε) ≤ C as well as

|D \Dε| → 0 by (3.26).

Remark 4.3.12. Note that due to the mere low control ∥ϑ−1
ε ∥L1(∂Dε) ≤ C, we are not able

to prove
∫
∂Dε\∂D Lψϑ0/ϑε → 0 as ε → 0, which would finally yield that the weak-* limit

of σ̃ε in M+(D) would satisfy the balance of entropy in the limiting domain D. Due to∫
∂Dε\∂D Lϑ0ψ/ϑε ≥ 0 we rather have that lim supε→0 σ̃ε ≤ σ in the sense of measures, where

σ ∈ M+(D) is defined as the entropy production rate for the limiting system in D.

We now turn to the limit ε → 0 in (4.62). We will again follow the arguments given in

[PS21, Section 3.2]. First, by the uniform estimates developed in (4.52) and (4.55) and the

strong convergence of the temperature and velocity, we have

ϱ̃εs(ϱ̃ε, ϑ̃ε)⇀ ϱs(ϱ, ϑ) = cvϱ log(ϑ)− cv(γ − 1)ϱ log(ϱ)

weakly in Lq(D) for some q > 1 as well as

ϱ̃εs(ϱ̃ε, ϑ̃ε)ũε ⇀ ϱs(ϱ, ϑ)u = cvϱ log(ϑ)u− cv(γ − 1)ϱ log(ϱ)u

weakly in Lq(D) for some q > 1. The term κ(ϑ̃ε)∇Eε log(ϑε) can be handled by ϑ̃ε → ϑ

strongly in Lq(D) for any 1 ≤ q < 3mϑ and ∇Eε log(ϑε) ⇀ ∇ log(ϑ) weakly in L2(D). As

mentioned in Remark 4.3.12, we infer

⟨σ, ψ⟩M+(D) +

∫
∂D

Lϑ0

ϑ
ψ dσ(x) ≥ −

∫
D

(
ϱs(ϑ, ϱ)u− κ(ϑ)∇ log(ϑ)

)
· ∇ψ dx+ L

∫
∂D

ψ dσ(x).

Last, let us prove that σ fulfills inequality (4.35). To this end, we notice that

S(ϑ̃ε,∇ũε) : ∇ũε

ϑ̃ε

=
1

2

∣∣∣∣
√
µ(ϑ̃ε)

ϑ̃ε

(
∇ũε +∇T ũε −

2

3
div ũεI

)∣∣∣∣2 + ∣∣∣∣
√
η(ϑ̃ε)

ϑ̃ε

div ũε

∣∣∣∣2
and use weak lower semi-continuity of the L2-norm to infer

S(ϑ,∇u) : ∇u

ϑ
≤ lim inf

ε→0

S(ϑ̃ε,∇ũε) : ∇ũε

ϑ̃ε
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in the sense of distributions. Let us now focus on the term

κ(ϑ̃ε)|∇Eε log(ϑε)|2.

By assumption (4.41), it is enough to consider this term for κ(ϑ) = 1 + ϑmϑ . In this case, we

get

κ(ϑ̃ε)|∇Eε log(ϑε)|2 = |∇Eε log(ϑε)|2 + ϑ̃mϑ−2
ε |∇ϑ̃ε|2,

where we used that Eεφ = φ in Dε and ϑ̃ε(x) = 0 whenever x ∈ Bεαrj(εzj).

Let us focus on the first term and fix δ > 0. Then∫
D

|∇Eε log(ϑε)|2 dx

≥ −
∫
D\Dε

|∇Eε log(ϑε)|2−δχ{|∇Eε log(ϑε)|>1} dx+

∫
D

|∇Eε log(ϑε)|2−δ dx

+

∫
Dε

(
|∇Eε log(ϑε)|2 − |∇Eε log(ϑε)|2−δ

)
χ{|∇Eε log(ϑε)|≤1} dx =:

3∑
i=1

Ii.

(4.63)

We now estimate, using Hölder’s inequality (B.2),

|I1| =
∫
D\Dε

|∇Eε log(ϑε)|2−δχ{|∇Eε log(ϑε)|>1} dx ≤ ∥∇Eε log(ϑε)∥2−δ
L2(D)|D \Dε|

2
δ .

Hence, for fixed δ > 0, we have I1 → 0 as ε → 0 since |Dε| → |D| by (3.26). Further, we get

|I3| ≤ C(δ) → 0 as δ → 0 uniformly in ε, since the function z 7→ |z2 − z2−δ| obtains in (0, 1)

its maximum at z0 =
(
1− δ

2

) 1
δ . Thus, I3 is bounded independently of ε.

Let us now pass to the limit ε→ 0 in (4.63). Due to the strong convergence of the temperature,

the fact that the second term in (4.63) is bounded in Lq(D) for some q > 1, and the weak lower

semicontinuity of the Lq-norm, we obtain

lim inf
ε→0

∫
D

|∇Eε log(ϑε)|2 dx ≥
∫
D

|∇ log(ϑ)|2−δ dx+ C(δ).

Since |∇ log(ϑ)|2−δ converges for δ → 0 almost everywhere in D to |∇ log(ϑ)|2 and is bounded

by

|∇ log(ϑ)|2−δ = |∇ log(ϑ)|2−δχ{|∇ log(ϑ)|>1} + |∇ log(ϑ)|2−δχ{|∇ log(ϑ)|≤1}

≤ |∇ log(ϑ)|2 + 1 ∈ L1(D),

together with Lebesgue’s convergence theorem, we infer in the limit δ → 0

lim inf
ε→0

∫
D

|∇Eε log(ϑε)|2 dx ≥
∫
D

|∇ log(ϑ)|2 dx.

Seeing that the above inequalities remain valid if the integrands are multiplied by arbitrary

ψ ∈ C1(D), ψ ≥ 0, and that the term ϑ̃mϑ−2
ε |∇ϑ̃ε|2 can be handled similarly due to the fact
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that ∇|ϑ̃ε|
mϑ
2 = mϑ

2
ϑ̃

mϑ−2

2
ε ∇ϑ̃ε is bounded in L2(D), we arrive at

lim inf
ε→0

∫
D

κ(ϑ̃ε)|∇Eε log(ϑε)|2 dx ≥
∫
D

κ(ϑ)|∇ log(ϑ)|2 dx,

which eventually yields for any ψ ∈ C1(D) with ψ ≥ 0∫
D

(
S(ϑ,∇u) : ∇u

ϑ
+ κ(ϑ)|∇ log(ϑ)|2

)
ψ dx

≤ lim inf
ε→0

∫
D

(
S(ϑ̃ε,∇ũε) : ∇ũε

ϑ̃ε

+ κ(ϑ̃ε)|∇Eε log(ϑε)|2
)
ψ dx

≤ lim inf
ε→0

⟨σ̃ε, ψ⟩ ≤ ⟨σ, ψ⟩.

To finish the proof of Theorem 4.3.3, we have to show

ϱe(ϱ, ϑ) = ϱe(ϱ, ϑ), ϱs(ϱ, ϑ) = ϱs(ϱ, ϑ), ϱs(ϱ, ϑ)u = ϱs(ϱ, ϑ)u, p(ϱ, ϑ) = p(ϱ, ϑ).

By the strong convergence of ϑε to ϑ in any Lq(D) for 1 ≤ q < 3mϑ, it is sufficient to show the

strong convergence of ϱε to ϱ, which is done in Appendix A. To summarize, we finally proved

that the weak limit [ϱ,u, ϑ] is a solution to problem (4.33)–(4.44) in the limit domain D. This

completes the proof of Theorem 4.3.3.

4.4 Brinkman’s law in the Low Mach number limit

This section is devoted to the homogenization of compressible Navier-Stokes equations in a

perforated domain with critical perforations. As mentioned in the introduction to this chapter

and in contrast to the previous sections, the radii of the holes will not scale like εα for some

α > 3 but rather like ε3. For the scalar Laplace equation ∆uε = f , this scaling was first

considered by Cioranescu and Murat in [CM82], where they obtained an additional term Mu

(which they called “strange term”) that occurs just in the limiting equation ∆u +Mu = f

and is reminiscent from the holes. An even more general framework of having randomly placed

holes with random radii was considered by Giunti, Höfer, and Velázquez in [GHV18] for “almost

minimal assumptions on the size of the holes”. In the language of Section 3.4, they assumed

E(r) < ∞. This assumption, however, allows clusters of holes, meaning the obstacles may

overlap. Nonetheless, the additional coefficient M also occurs there, and is related to the

harmonic capacity of the holes. The assumption E(r) < ∞ is minimal in the sense that this

capacity is finite in average.

Back to the case of periodically arranged holes, Allaire showed in [All90], that for the Stokes

equations for an incompressible fluid, the limiting system has an extra friction termMu, called

Brinkman term, that is not seen in the equations for the perforated domain. This “strange

term” is related to the drag force around each particle and represents a kind of “boundary layer

energy” of the holes (see [All90, Remark 2.1.5]). As a matter of fact, if the holes are spherical

with common radius r > 0, the matrix M is equal to 6πrI, which is Stokes’ famous drag law.

Generalizations to these results were given by several authors. For instance, Hillairet left in

[Hil18] the periodic setting and considered randomly placed obstacles, but he still required some

kind of hard sphere condition on the perforations. He considered the incompressible Stokes
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equations, putting on each hole a different prescribed velocity instead of the no-slip condition.

These velocities will show up in the limit system as an additional forcing term working against

the frictional Brinkman term. As a continuation to [GHV18], Giunti and Höfer considered in

[GH19] the case of randomly placed holes with E(r1+β) < ∞ for some β > 0. This tighter

assumption gives some information on the geometry of the holes and rules out clusters that

are made of many holes of similar size. In turn, this enables one to enclose these clusters in a

tiny bit larger set that can be controlled better than the clusters itself, thus showing that the

randomness does not effect the limiting behavior of the equations.

The setting for compressible fluids, however, is rather different. In order to be able to pass

to the limit ε → 0 here, we need to control the density near each obstacle in a good way.

We will do this by imposing the so-called Low Mach number limit, which scales the pressure

by a negative power of ε, hence forcing the density to become constant in the limit. The

homogenized system will therefore be the incompressible Navier-Stokes equations with the

additional Brinkman term, which will be the same as found by Allaire.

4.4.1 Setting and main result

As before, we consider a bounded domain D ⊂ R3 with smooth boundary. This time, let ε > 0

and {xεi}i∈Z ⊂ R3 be a collection of points in space with |xεi − xεj| ≥ 2ε for any i ̸= j. For

simplicity, we will assume that the points xεi lie on a regular mesh of size 2ε, that is, xεi ∈ (2εZ)3

is the center of the i-th cell P ε
i := xεi + (−ε, ε)3. Further, let T ⊂ B1(0) be a compact and

simply connected set with smooth boundary and 0 ∈ T , and set T ε
i := xεi +ε

3 T . We now define

the perforated domain as

Dε := D \
⋃
i∈Kε

T ε
i , Kε := {i : P ε

i ⊂ D}. (4.64)

By the periodic distribution of the holes, the number of holes inside Dε satisfies

|Kε| ≤ C
|D|
ε3

for some C > 0 independent of ε.

This in particular yields

|D \Dε| =
∣∣∣∣ ⋃
i∈Kε

T ε
i

∣∣∣∣ ≤ |Kε| |T ε
i | ≤ C ε6.

In Dε, we consider the steady compressible Navier-Stokes equations
div(ϱεuε) = 0 in Dε,

div(ϱεuε ⊗ uε)− div S(∇uε) +
1
εβ
∇ϱγε = ϱεf + g in Dε,

uε = 0 on ∂Dε.

(4.65)

Note that in contrast to the previous sections, the pressure term ϱγε is now scaled by a factor

ε−β, which represents the vanishing Mach number, and corresponds to Ma2 = εβ and setting

all other characteristic numbers in Section 2.3 equal to one. Further, we assume that γ ≥ 3,

β > 3 (γ + 1), and f ,g ∈ L∞(D) are given. Since the equations (4.65) are invariant under
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4.4. Brinkman’s law in the Low Mach number limit

adding a constant to the pressure term ε−βϱγε , we define

pε := ε−β(ϱγε − ⟨ϱγε ⟩Dε), (4.66)

where ⟨ · ⟩Dε denotes the mean value over Dε, given by

⟨f⟩Dε
:=

1

|Dε|

∫
Dε

f dx.

Formally, let us assume that the Low Mach limit and the limit in the perforated domain

decouple, meaning the pressure reads pδ,ε = δ−β(ϱγε − ⟨ϱγε ⟩Dε) in a perforated domain Dε. Just

focusing on the limit δ → 0 in the second equation of (4.65) in a fixed domain Dε, we obtain

∇pε = 0 =⇒ pε = C =⇒ ϱε = C

for some constant C (which may depend on ε). Thus, we expect the limit system to be

incompressible rather than compressible as the system we started with. Back to the perforated

domain, we now have an incompressible system inDε, which by the results of Allaire in [All90] is

expected to converge to a system of Brinkman type as ε→ 0. We will indeed show convergence

of the velocity uε and the pressure pε to limiting functions u and p, respectively, such that the

couple [p,u] solves the incompressible steady Navier-Stokes-Brinkman equations
div(u) = 0 in D,

div(ϱ0u⊗ u)− µ∆u+∇p+ µMu = ϱ0f + g in D,

u = 0 on ∂D,

where the resistance matrix M is introduced in the next section, and the constant ϱ0 is the

strong limit of ϱε in L2γ(D), which is determined by the mass constraint on ϱε as formulated

in Definition 4.4.1 below.

Before stating our main result, we recall the concept of finite energy weak solutions as done

in Definition 4.1.1.

Definition 4.4.1. Let Dε be as in (4.64) and γ ≥ 3, m > 0 be fixed. We say a couple [ϱ,u] is

a finite energy weak solution to system (4.65) if

ϱ ∈ L2γ(Dε), u ∈ W 1,2
0 (Dε),

ϱ ≥ 0 a.e. in Dε,

∫
Dε

ϱ dx = m,∫
Dε

ϱu · ∇ψ dx = 0,∫
Dε

ε−βϱγ divφ+ (ϱu⊗ u) : ∇φ− S(∇u) : ∇φ+ (ϱf + g) · φ dx = 0

for all test functions ψ ∈ C∞
c (Dε) and all test functions φ ∈ C∞

c (Dε;R3), and the energy
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inequality ∫
Dε

S(∇u) : ∇u dx ≤
∫
Dε

(ϱf + g) · u dx (4.67)

holds.

Remark 4.4.2. Existence of finite energy weak solutions to system (4.65) is known for all

values γ > 3/2, see Theorem 4.1.3. However, we need the assumption γ ≥ 3 to bound the

convective term div(ϱεuε ⊗ uε) in a proper way, see Section 4.4.3.

Let us as before denote the zero extension of a function f with Dε as its domain of definition

by f̃ , that is,

f̃ = f in Dε, f̃ = 0 in R3 \Dε.

Our main result for the stationary Navier-Stokes equations now reads as follows.

Theorem 4.4.3. Let D ⊂ R3 be a bounded domain with smooth boundary, 0 < ε < 1, Dε be

as in (4.64), γ ≥ 3, m > 0 and f ,g ∈ L∞(D). Let {[ϱε,uε]}ε>0 be a sequence of finite energy

weak solutions to problem (4.65) and assume

β > 3 (γ + 1). (4.68)

Then, with pε defined in (4.66), we can extract subsequences (not relabeled) such that

ϱ̃ε → ϱ0 strongly in L2γ(D),

p̃ε ⇀ p weakly in L2(D),

ũε ⇀ u weakly in W 1,2
0 (D),

where ϱ0 = m/|D| is constant and [p,u] ∈ L2(D) ×W 1,2
0 (D) with

∫
D
p = 0 is a weak solution

to the steady incompressible Navier-Stokes-Brinkman equations
div(u) = 0 in D,

div(ϱ0u⊗ u) +∇p− µ∆u+ µMu = ϱ0f + g in D,

u = 0 on ∂D,

(4.69)

where M is defined in (4.75) below.

Remark 4.4.4. It is well known that the solution to system (4.69) is unique if f and g are

“sufficiently small”, see, e.g., [Tem77, Chapter II, Theorem 1.3]. This smallness assumption

can be dropped in the case of Stokes equations, i.e., without the convective term div(ϱ0u⊗ u).

4.4.2 The cell problem and oscillating test functions

In this section, we introduce oscillating test functions and define the resistance matrix M ,

following the original work of Allaire [All90]. Here, we repeat the definition of these functions

as well as the estimates given in [HKS21].
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4.4. Brinkman’s law in the Low Mach number limit

Consider for a single particle T the solution [qk,wk] to the cell problem
div(wk) = 0 in R3 \T,
∇qk −∆wk = 0 in R3 \T,
wk = 0 on ∂T,

wk = ek at infinity,

(4.70)

where ek is the k-th unit basis vector of the canonical basis of R3. Note that the solution exists

and is unique, see, e.g., [Gal11, Chapter V]. Let us further recall the definition of oscillating

test functions as made in [All90] (see also [HKS21]):

We set

wε
k = ek, qεk = 0 in P ε

i ∩D

for each P ε
i with P ε

i ∩ ∂D ̸= ∅. Now, we denote Br
i := Br(x

ε
i ) and split each cell P ε

i entirely

included in D into the following four parts:

P ε
i = T ε

i ∪ Cε
i ∪Dε

i ∪Kε
i ,

where Cε
i is the open ball centered at xεi with radius ε/2 and perforated by the hole T ε

i ,

Dε
i = Bε

i \B
ε/2
i is the ball with radius ε perforated by the ball with radius ε/2, andKε

i = P ε
i \Bε

i

are the remaining corners, see Figure 4.1.

ε3 ε 2ε

Kε
i

Dε
i

Cε
i

T ε
i

Figure 4.1: Splitting of the cell P ε
i

In these parts, we define{
wε

k = ek

qεk = 0
in Kε

i ,

{
∇qεk −∆wε

k = 0

div(wε
k) = 0

in Dε
i ,{

wε
k(x) = wk

(
x
ε3

)
qεk(x) =

1
ε3
qk
(

x
ε3

) in Cε
i ,

{
wε

k = 0

qεk = 0
in T ε

i ,

where we impose matching Dirichlet boundary conditions, and [qk,wk] is the solution to the

cell problem (4.70). As shown in [HKS21, Lemma 3.5], we have for the functions [qεk,w
ε
k] the

following estimates:
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Lemma 4.4.5. Let p > 3
2
. Then

∥∇wε
k∥Lp(D) + ∥qεk∥Lp(D) ≤ C ε3

(
2
p
−1
)
, (4.71)

∥∇qεk∥Lp(∪iCε
i )
≤ C ε6

(
1
p
−1
)
, (4.72)

∥∇wε
k∥L2

(
∪iBε

i \B
ε/4
i

) + ∥qεk∥L2
(
∪iBε

i \B
ε/4
i

) ≤ C ε, (4.73)

where the constant C > 0 does not depend on ε.

Proof. By the rescaling x′ = (x− xεi )/ε
3 in each Cε

i , we first find

∥∇wε
k∥Lp(∪iCε

i )
+ ∥qεk∥Lp(∪iCε

i )
≤ C ε−

3
p ε−3+ 9

p (∥∇wk∥Lp(R3 \T ) + ∥qk∥Lp(R3 \T )),

∥∇qεk∥Lp(∪Cε
i )
≤ C ε−

3
p ε−6+ 9

p∥∇qk∥Lp(R3 \T ),

where the factor ε−
3
p occurs due to the fact that the number of holes in D is of order ε−3. By

the standard regularity theory for Stokes equations (see [Gal11, Chapter V]), we have for any

l ∈ N

|wk(x)− ek| ≤
C

|x|
, |∇l+1wk(x)|+ |∇lqk(x)| ≤

Cl

|x|l+2
in R3 \T, (4.74)

in particular ∇wk ∈ Lp(R3 \T ) and qk ∈ W 1,p(R3 \T ) for any p > 3
2
, so (4.72) holds. Thus,

since ε ≤ ε3
(

2
p
−1
)
for any p ≥ 3

2
, we infer (4.71) if we prove (4.73).

To show (4.73), we split Bε
i \ B

ε/4
i = Dε

i ∪ (B
ε/2
i \ Bε/4

i ) and estimate with the change of

variables x′ = (x− xεi )/ε

∥∇wε
k∥Lp(∪iDε

i )
+ ∥qεk∥Lp(∪iDε

i )
≤ C ε−1(∥∇vε

k∥Lp
(
B1(0)\B 1

2
(0)
) + ∥pεk∥Lp

(
B1(0)\B 1

2
(0)
)),

where [pεk,v
ε
k] is the solution to the homogeneous Stokes problem

∇pεk −∆vε
k = 0 in B1(0) \B 1

2
(0),

div vε
k = 0 in B1(0) \B 1

2
(0),

vε
k = 0 on ∂B1(0),

vε
k = wk

(
ε ·
2ε3

)
− ek on ∂B 1

2
(0).

Again, by standard theory for the Stokes equations, we have

∥∇vε
k∥Lp

(
B1(0)\B 1

2
(0)
) + ∥pεk∥Lp

(
B1(0)\B 1

2
(0)
) ≤ C∥wk

( ε ·
2ε3

)
− ek∥

W
1− 1

p ,p
(
∂B 1

2
(0)
)

≤ C∥∇φ∥
Lp
(
B1(0)\B 1

2
(0)
)

for any φ ∈ W 1,p(B1(0) \ B 1
2
(0)) that satisfies the same boundary conditions as vε

k. We thus

may choose φ = η (wk

(
ε ·
2ε3

)
− ek), where η ∈ C∞

c (B1(0)) with η = 1 on ∂B 1
2
(0). By (4.74), we
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4.4. Brinkman’s law in the Low Mach number limit

have ∥∇φ∥L∞(B1(0)) ≤ C ε2, leading to

∥∇wε
k∥Lp(∪iDε

i )
+ ∥qεk∥Lp(∪iDε

i )
≤ C ε.

For B
ε/2
i \Bε/4

i , the same scaling and cut-off arguments as made above yield

∥wε
k∥Lp

(
∪iB

ε/2
i \Bε/4

i

) + ∥qεk∥Lp
(
∪iB

ε/2
i \Bε/4

i

) ≤ C ε,

thus proving (4.73).

The choice of Bε
i \ B

ε/4
i instead of Dε

i in the estimate (4.73) will become important when

passing to the limit ε→ 0, see Section 4.4.4. Moreover, we have the following theorem due to

Allaire.

Theorem 4.4.6 ([All90, page 214, Proposition 1.1.2 and Lemma 2.3.6]).

The functions [qεk,w
ε
k] fulfill:

(H1) qεk ∈ L2(D), wε
k ∈ W 1,2(D);

(H2) divwε
k = 0 in D and wε

k = 0 on the holes T ε
i ;

(H3) wε
k ⇀ ek weakly in W 1,2(D), qεk ⇀ 0 weakly in L2(D)/R;

(H4) For any νε, ν ∈ W 1,2(D) with νε = 0 on the holes T ε
i and νε ⇀ ν weakly in W 1,2(D), and

any φ ∈ D(D), we have

⟨∇qεk −∆wε
k, φνε⟩W−1,2(D),W 1,2

0 (D) → ⟨Mek, φν⟩W−1,2(D),W 1,2
0 (D),

where the resistance matrix M ∈ W−1,∞(D) is defined by its entries Mik via

⟨Mik, φ⟩D′(D),D(D) = lim
ε→0

∫
D

φ∇wε
i : ∇wε

k dx (4.75)

for any test function φ ∈ D(D).

Further, for any p ≥ 1,

∥wε
k − ek∥Lp(D) → 0.

Remark 4.4.7. This definition of M yields that the matrix is symmetric and positive definite

in the sense that for all test functions φi ∈ D(D) and Φ = (φi)1≤i≤3,

⟨MΦ,Φ⟩D′(D),D(D) = lim
ε→0

∫
D

∣∣∣∣ 3∑
i=1

φi∇wε
i

∣∣∣∣2 dx ≥ 0,

thus implying that there exists at least one solution to system (4.69).
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4.4.3 Bogovskĭı’s operator and uniform bounds

From Theorem 3.3.1, we obtain the following result for the inverse of the divergence operator.

Theorem 4.4.8. Let 1 < q <∞ and Dε be defined as in (4.64). There exists a bounded linear

operator

Bε : L
q
0(Dε) → W 1,q

0 (Dε)

such that for any f ∈ Lq
0(Dε),

divBε(f) = f in Dε, ∥Bε(f)∥W 1,q
0 (Dε)

≤ C

(
1 + ε3

(
2
q
−1
))

∥f∥Lq(Dε),

where the constant C > 0 does not depend on ε.

We will use this result to bound the pressure pε by the density ϱε. Since the main ideas

how to get uniform bounds on uε, ϱε, and pε are given in [HKS21], we just sketch the proof in

our case. First, by (4.9) and (4.67), we find

µ∥∇uε∥2L2(Dε)
≤ ∥ϱε∥L 6

5 (Dε)
∥uε∥L6(Dε)∥f∥L∞(D) + ∥g∥L∞(D)∥uε∥L1(Dε).

Together with Sobolev embedding (B.8), we obtain

∥uε∥L6(Dε) ≤ C ∥∇uε∥L2(Dε),

which yields

∥uε∥L6(Dε) + ∥∇uε∥L2(Dε) ≤ C (∥ϱε∥L 6
5 (Dε)

+ 1). (4.76)

To get uniform bounds on the velocity, we first have to estimate the density. To this end,

let Bε be as in Theorem 4.4.8. Testing the second equation in (4.65) with Bε(pε) ∈ W 1,2
0 (Dε)

yields

∥pε∥2L2(Dε)
=

∫
Dε

pε divBε(pε) dx

=

∫
Dε

S(∇uε) : ∇Bε(pε)− (ϱεuε ⊗ uε) : ∇Bε(pε)− (ϱεf + g) · Bε(pε) dx.

Recalling ϱε ∈ L2γ(Dε) and γ ≥ 3, this leads to

∥pε∥2L2(Dε)
≤ C (∥∇uε∥L2(Dε) + ∥ϱε∥L6(Dε)∥uε∥2L6(Dε)

)∥∇Bε(pε)∥L2(Dε)

+ C
(
∥f∥L∞(Dε)∥ϱε∥L2γ(Dε) + ∥g∥L∞(Dε)

)
∥Bε(pε)∥L2(Dε)

(4.76)

≤ C (∥ϱε∥L 6
5 (Dε)

+ 1 + ∥ϱε∥L6(Dε)(∥ϱε∥2L 6
5 (Dε)

+ 1))∥∇Bε(pε)∥L2(Dε)

+ C (∥ϱε∥L2γ(Dε) + 1)∥Bε(pε)∥L2(Dε)

≤ C (∥ϱε∥L2γ(Dε) + ∥ϱε∥L6(Dε)∥ϱε∥2L 6
5 (Dε)

+ 1)∥Bε(pε)∥W 1,2
0 (Dε)

≤ C (∥ϱε∥L2γ(Dε) + ∥ϱε∥3L2γ(Dε)
+ 1)∥Bε(pε)∥W 1,2

0 (Dε)
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≤ C (∥ϱε∥L2γ(Dε) + ∥ϱε∥3L2γ(Dε)
+ 1)∥pε∥L2(Dε),

that is,

∥pε∥L2(Dε) ≤ C (∥ϱε∥L2γ(Dε) + ∥ϱε∥3L2γ(Dε)
+ 1). (4.77)

Further, we have

⟨ϱε⟩Dε =
1

|Dε|

∫
Dε

ϱε dx =
m

|Dε|

and, using Lemma B.14,

1

εβ
∥ϱγε − ⟨ϱε⟩γDε

∥L2(Dε) ≤
C

εβ
∥ϱγε − ⟨ϱγε ⟩Dε∥L2(Dε)

(4.66)
= C ∥pε∥L2(Dε).

This yields

1

εβ
∥ϱγε − ⟨ϱε⟩γDε

∥L2(Dε) ≤ C ∥pε∥L2(Dε) ≤ C (∥ϱε∥L2γ(Dε) + ∥ϱε∥3L2γ(Dε)
+ 1)

≤ C

(
∥ϱγε − ⟨ϱε⟩γDε

∥
1
γ

L2(Dε)
+

m

|Dε|1−1/(2γ)
+ ∥ϱγε − ⟨ϱε⟩γDε

∥
3
γ

L2(Dε)
+

m3

|Dε|3−3/(2γ)
+ 1

)
.

Together with (4.27), we obtain, using γ ≥ 3 and the fact that we may assume ε ≤ 1 small

enough,

1

εβ
∥ϱγε − ⟨ϱε⟩γDε

∥L2(Dε) ≤
1

4εβ
∥ϱγε − ⟨ϱε⟩γDε

∥L2(Dε) + C +
1

4εβ
∥ϱγε − ⟨ϱε⟩γDε

∥L2(Dε) + C ′

=
1

2εβ
∥ϱγε − ⟨ϱε⟩γDε

∥L2(Dε) + C.

Using that |ϱε − ⟨ϱε⟩Dε|γ ≤ |ϱγε − ⟨ϱε⟩γDε
|, which is a consequence of the triangle inequality for

the metric d(a, b) = |a− b|
1
γ for γ ≥ 1, we conclude

1

εβ
∥ϱε − ⟨ϱε⟩Dε∥

γ
L2γ(Dε)

≤ 1

εβ
∥ϱγε − ⟨ϱε⟩γDε

∥L2(Dε) ≤ C,

which further gives rise to

∥ϱε∥L2γ(Dε) ≤ ∥ϱε − ⟨ϱε⟩Dε∥L2γ(Dε) + C ⟨ϱε⟩Dε ≤ C.

In view of (4.76) and (4.77), we finally establish

∥uε∥W 1,2
0 (Dε)

≤ C,

∥ϱε∥L2γ(Dε) ≤ C,

∥pε∥L2(Dε) ≤ C,

∥ϱε − ⟨ϱε⟩Dε∥L2γ(Dε) ≤ C ε
β
γ

(4.78)

for some constant C > 0 independent of ε.
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4.4.4 Convergence proof

The proof of convergence we give here is essentially the same as in [HKS21]. We thus just

sketch the steps done there while highlighting the differences.

Proof of Theorem 4.4.3. Step 1: Recall that, for a function f defined on Dε, we denote by f̃

its zero prolongation to R3. By the uniform estimates (4.78), we can extract subsequences (not

relabeled) such that

ũε ⇀ u weakly in W 1,2
0 (D),

p̃ε ⇀ p weakly in L2(D),

ϱ̃ε → ϱ0 strongly in L2γ(D),

where ϱ0 = m/|D| > 0 is constant. The strong convergence of the density is obtained by

∥ϱ̃ε − ϱ0∥L2γ(D) ≤ ∥ϱ0∥L2γ(D\Dε) + ∥ϱε − ⟨ϱε⟩Dε∥L2γ(Dε) + ∥⟨ϱε⟩Dε − ϱ0∥L2γ(Dε)

≤ ϱ0|D \Dε|
1
2γ + C ε

β
γ +m|Dε|

1
2γ

(
1

|Dε|
− 1

|D|

)
→ 0,

since |Dε| → |D|. Due to the Rellich-Kondrachev theorem stated in Proposition B.5, we further

have

ũε → u strongly in Lq(D) for all 1 ≤ q < 6.

Step 2: We begin by proving that the limiting velocity u is solenoidal. To this end, let

φ ∈ D(R3). By the second equation of (4.65), we have

0 =

∫
R3

ϱ̃εũε · ∇φ dx→ ϱ0

∫
D

u · ∇φ dx.

This together with the compactness of the trace operator yields{
divu = 0 in D,

u = 0 on ∂D.
(4.79)

Step 3: To prove convergence of the momentum equation, let φ ∈ D(D) and use φwε
k as

test function in the first equation of (4.1). This yields∫
D

S(∇ũε) : ∇(φwε
k) dx =

∫
D

(ϱ̃εũε ⊗ ũε) : ∇(φwε
k) dx+

∫
D

p̃ε div(φw
ε
k) dx

+

∫
D

(ϱ̃εf + g) · (φwε
k) dx.

Using the definition of S in (4.2) and the fact that div(wε
k) = 0 by (H2) of Theorem 4.4.6, we

rewrite the left-hand side as∫
D

S(∇ũε) : ∇(φwε
k) dx = µ

∫
D

∇ũε : ∇(φwε
k) dx+

(
µ

3
+ η

)∫
D

div(ũε) div(φw
ε
k) dx
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= µ

∫
D

∇wε
k : ∇(φũε) +∇ũε : (w

ε
k ⊗∇φ)−∇wε

k : (ũε ⊗∇φ) dx

+

(
µ

3
+ η

)∫
D

div(ũε)w
ε
k · ∇φ dx

and add the term −
∫
D
qεk div(φũε) dx to both sides to obtain

µ

∫
D

∇wε
k : ∇(φũε)− qεk div(φũε) dx︸ ︷︷ ︸

I1

+ µ

∫
D

∇ũε : (w
ε
k ⊗∇φ)−∇wε

k : (ũε ⊗∇φ) dx︸ ︷︷ ︸
I2

+

(
µ

3
+ η

)∫
D

div(ũε)w
ε
k · ∇φ dx︸ ︷︷ ︸

I3

=

∫
D

(ϱ̃εũε ⊗ ũε) : ∇(φwε
k) dx︸ ︷︷ ︸

I4

+

∫
D

p̃εw
ε
k · ∇φ+ (ϱ̃εf + g) · (φwε

k) dx︸ ︷︷ ︸
I5

−
∫
D

qεk div(φũε) dx︸ ︷︷ ︸
I6

.

Since νε := ũε and ν := u fulfill hypothesis (H4) of Theorem 4.4.6, we have

I1 → µ ⟨Mek, φu⟩,

where ⟨·, ·⟩ denotes the dual product between W−1,2(D) and W 1,2
0 (D). Further, by ũε → u

strongly in L2(D) and ∇wε
k ⇀ 0 by hypothesis (H3),

I2 → µ

∫
D

∇u : (ek ⊗∇φ) dx.

Because of wε
k → ek strongly in L2(D) and (4.79), we deduce

I3 → 0, I5 →
∫
D

p ek · ∇φ+ (ϱ0f + g) · (φek) dx.

Step 4: To show convergence of I4, we proceed as follows. First, since uε = 0 on ∂Dε

and ũε ⇀ u weakly in W 1,2(D), we have ∇̃uε = ∇ũε ⇀ ∇u weakly in L2(D). Second, as

shown above for γ ≥ 3, ϱ̃ε → ϱ0 strongly in L2γ(D) and ũε → u strongly in Lq(D) for any

1 ≤ q < 6, in particular in L4(D). Together with the strong convergence of wε
k in any Lp(D)

(see Theorem 4.4.6), in particular in L12(D), we get

ϱ̃εũε ⊗wε
k → ϱ0u⊗ ek strongly in L2(D).

This, together with div(ϱεuε) = 0, yields

I4 =

∫
Dε

(ϱεuε ⊗ uε) : ∇(φwε
k) dx = −

∫
Dε

ϱεuε · ∇uε · φwε
k dx = −

∫
Dε

φ∇uε : (ϱεuε ⊗wε
k) dx

= −
∫
D

φ∇ũε : (ϱ̃εũε ⊗wε
k) dx→ −

∫
D

φ∇u : (ϱ0u⊗ ek) dx =

∫
D

(ϱ0u⊗ u) : ∇(φek) dx.

In the case γ > 3, one can also proceed by seeing that

ϱ̃εũε ⊗ ũε → ϱ0u⊗ u strongly in L2(D),
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where we used that ũε → u strongly in Lq(D) for q = 4γ/(γ − 1) < 6.

Step 5: It remains to show convergence of I6. Denote again Br
i = Br(x

ε
i ). We follow the

idea of [HKS21] and introduce a further splitting of the integral:

Let ψ ∈ C∞
c (B1/2(0)) be a cut-off function with ψ = 1 on B1/4(0), define for x ∈ B

ε/2
i

the function ψi
ε(x) := ψ((x − xεi )/ε), and extend ψi

ε by zero to the whole of D. Set finally

ψε(x) :=
∑

i:P ε
i ⊂D

ψi
ε(x), where P

ε
i is the cell of size 2ε with center xεi ∈ (2εZ)3. Then we have

ψε ∈ C∞
c (

⋃
iB

ε/2
i ) and

ψε = 1 in
⋃
i

B
ε/4
i , |∇ψε| ≤ Cε−1. (4.80)

With this at hand, we write

⟨ϱε⟩Dε · I6 = ⟨ϱε⟩Dε

∫
Dε

qεkψε div(φuε) dx+ ⟨ϱε⟩Dε

∫
Dε

qεk(1− ψε)φ div(uε) dx

+ ⟨ϱε⟩Dε

∫
Dε

qεk(1− ψε)uε · ∇φ dx

=: I1 + I2 + I3.

Observe that since supp ψε ⊂ ∪iB
ε/2
i , the term I1 covers the behavior of qεk “near” the holes,

whereas I2 and I3 cover the behavior “far away”. Since qεk and ψε are (2ε)-periodic functions

and qεkψε ∈ L2(D), we have qεkψε ⇀ 0 weakly in L2(D)/R. This together with ũε → u strongly

in L2(D) yields

|I3| → 0.

For I2, we use the definition of qεk and (4.73) to find

|I2| ≤ C

∫
D\∪iB

ε/4
i

|qεk| | div(uε)| dx
(4.78)

≤ C ∥qεk∥L2
(
D\∪iB

ε/4
i

)
= C ∥qεk∥L2

(
∪iBε

i \B
ε/4
i

) ≤ C ε→ 0.

To prove I1 → 0, we write, using div(ϱεuε) = 0,

I1 =

∫
Dε

∇(qεkψεφ) · (ϱεuε) dx−
∫
Dε

∇(qεkψεφ) · (⟨ϱε⟩Dεuε) dx+ ⟨ϱε⟩Dε

∫
Dε

qεkψεuε · ∇φ dx

=

∫
Dε

∇(qεkψεφ)(ϱε − ⟨ϱε⟩Dε) · uε dx+ o(1).

Here, we used again the periodicity of qεk and ψε to conclude qεkψε ⇀ 0 weakly in L2(D)/R.
This and the strong convergence of ũε to u in L2(D) show that the last term vanishes in the

limit ε→ 0. For the remaining integral, we find, recalling supp ψε ⊂ ∪iB
ε/2
i and Cε

i = B
ε/2
i \T ε

i ,

|I1| ≤ ∥∇(qεkψεφ)∥
L

2γ
γ−1 (∪iCε

i )
∥ϱε − ⟨ϱε⟩Dε∥L2γ(Dε)∥uε∥L2(Dε) + o(1)
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≤ C ε
β
γ ∥∇(qεkψεφ)∥

L
2γ
γ−1 (∪iCε

i )
+ o(1).

Since |∇ψε| ≤ C ε−1, we have

|∇(qεkψεφ)| ≤ C

(
|∇qεk|+

1

ε
|qεk|

)
,

thus

|I1| ≤ C ε
β
γ

(
∥∇qεk∥

L
2γ
γ−1 (∪iCε

i )
+

1

ε
∥qεk∥

L
2γ
γ−1 (∪iCε

i )

)
+ o(1).

Together with (4.71), (4.72) for p = 2γ/(γ − 1) > 3/2, and the assumption β > 3 (γ + 1) from

(4.68), we establish

|I1| ≤ C ε
β
γ

(
ε−3− 3

γ + ε−1− 3
γ

)
+ o(1) ≤ C ε−3+β−3

γ + o(1) → 0.

To summarize, we have in the limit ε→ 0 for all functions φ ∈ D(D)

µ ⟨Mek, φu⟩ − µ ⟨∆u, φek⟩ = −⟨div(ϱ0u⊗ u), φek⟩+ ⟨ϱ0f + g −∇p, φek⟩.

Since M is symmetric, this is

∇p+ ϱ0u · ∇u− µ∆u+ µMu = ϱ0f + g in D′(D),

which is the second equation of (4.69). This finishes the proof.
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Chapter 5

Outlook and open problems

In this chapter, we give some remarks on how the results obtained in this thesis could be

extended, as well as state still open problems in the field of homogenization of Navier-Stokes

equations.

Let us start to give some remarks on the construction of the Bogovskĭı operator as done in

Chapter 3. From Theorem 3.3.1, we see that for the case of well-separated obstacles the con-

struction of a uniformly bounded Bogovskĭı operator Bε : L
2
0(Dε) → W 1,2

0 (Dε) is possible even

for the critical case α = 3. However, our construction of Bε in Theorem 3.4.1 for a randomly

perforated domain requires α > 3 for the L2-setting. A natural question is how to avoid this

stricter assumption on the size of the holes. In view of the applications of the operator Bε for

stationary Navier-Stokes equations in Section 4.1, we see that the need to bound the gradient

of Bε in L
2 is unavoidable to get proper estimates on the density and the velocity. However, we

have some freedom on the space where the operator is defined on. Thus, one possible way is to

extend Bε as an operator acting on Lq
0 for some q > 2 rather than L2

0, but still maps into W 1,2
0 .

This might change the dependence of the Bogovskĭı constant on ε into the correct direction,

thus one may reach the borderline case α = 3. On the other hand, according to the functions

φ = Bε(ϱ
Θ
ε − ⟨ϱΘε ⟩Dε) used as test functions in the momentum equation, this procedure might

give a worse restriction on the allowed exponent Θ and, in turn, on the adiabatic exponent γ.

Another necessary condition in Theorem 3.4.1 is α > 2. As we have seen in Theorem 3.4.2,

it is needed in order to show that the balls Bεαri(εzi) do not overlap, so we can take some space

around each single hole and, loosely speaking, cut off constants without paying too much, as

shown in the proof of Theorem 3.4.1. One is willing to believe that this condition is not optimal,

in particular, one could be “smarter” to allow also clusters of not too many overlapping holes.

One particular problem arising is the possibility that holes might not even overlap but rather

touch, producing an external cusp in the perforated box Iεi as introduced in Theorem 3.4.2.

For domains exhibiting such cusps, it is known that an inverse to the divergence does not

exist in general, see, for instance, [ADLG13]. To overcome this issue, one needs a much better

understanding of the geometry of holes. A better geometrical understanding would probably

also yield the optimal dependence on the Bogovskĭı constant on ε as mentioned in Remark 3.4.8.

Back to homogenization of compressible Navier-Stokes equations, there are still many open

questions. One is how the limiting system would look like, if we assumed the holes to be
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large, that is, α < 3. For periodic obstacles and without assuming that the Mach number

vanishes, there are results only for the case α = 1, see, e.g., [Mas02], and also [FNT10] for

heat-conducting fluids. As mentioned in Section 4.4, the supercritical case α ∈ (1, 3) for the

low Mach number limit was considered in [HKS21], even if the exponent of the additional

ε-dependent scaling of the pressure is rather large (see also (4.68)). One might therefore ask

whether this can be improved. Furthermore, to the best of the author’s knowledge, there is no

literature for the homogenization of Navier-Stokes-Fourier equations in the supercritical regime

α ∈ (1, 3), even assuming vanishing Mach number. Another aspect apart of the size of the

obstacles is the question whether one can improve the range of the adiabatic exponent γ in

the pressure law p(ϱ) = aϱγ from the known case γ > 2 to the direction of physical relevance

γ ∈ [1, 5
3
]. The most interesting open question, however, is that of the possible homogenization

for the borderline case α = 3, even for the seemingly simpler setting of periodically arranged

holes, without the assumption of a vanishing Mach number, and even for large enough adiabatic

exponents γ.
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Appendix A

Strong convergence of the density

In order to complete the proofs of Theorems 4.1.4, 4.2.1, 4.2.3, and 4.3.3, we need to show

the strong convergence of ϱ̃ε → ϱ at least in L1(D). The proof of this fact is nowadays well

understood, see, e.g., [FL15, LP21]. For simplicity and legibility, we will focus on the case of

constant temperature and γ > 3, and assume that the equations are stationary. The proof in

the case of variable temperature follows the same lines with slight changes of the exponents of

ϱ̃ε. For the time-dependent setting, one has to apply an Aubin-Lions type argument. We will

comment these issues in Remark A.2 below. To simplify notation, we will identify a function

f , defined on Dε, with its zero prolongation f̃ to the whole of R3.

First, we start with the compactness of the so-called effective viscous flux:

Lemma A.1. Under the assumptions of Theorem 4.1.4, there holds for any ψ ∈ C∞
c (D)

lim
ε→0

∫
D

ψ

(
p(ϱε)−

(
4µ

3
+ η

)
divuε

)
ϱε dx =

∫
D

ψ

(
p(ϱ)−

(
4µ

3
+ η

)
divu

)
ϱ dx. (A.1)

Proof. (See [FN09, Section 3.6.5].) The main idea is to use test functions

ψ∇∆−1(χDϱε), ψ∇∆−1(χDϱ),

where ψ ∈ D(D). By the Sobolev embedding theorem (see (B.8)), we conclude from Lem-

ma B.11

∥∇∆−1(f)∥Lr∗ (R3) ≤ C ∥f∥Lr(R3), r∗ =
3r

3− r
if 1 < r < 3,

∥∇∆−1(f)∥Lr∗ (R3) ≤ C ∥f∥Lr(R3) for any r∗ <∞ if r ≥ 3.

By the uniform estimates on ϱε and ϱ as well as the fact γ ≥ 3, we get for any 1 ≤ r <∞

∥ψ∇∆−1(χDϱε)∥Lr(D) + ∥ψ∇∆−1(χDϱ)∥Lr(D) ≤ C,

∥∇(ψ∇∆−1(χDϱε))∥L2γ(D) + ∥∇(ψ∇∆−1(χDϱ))∥L2γ(D) ≤ C.

Hence, by (4.13), we get with ς := min
(
σ, 3(α−1)σ0

2(2+σ0)

)
> 0

|⟨Fε, ψ∇∆−1(χDϱε)⟩|
≤ Cες

(
∥ψ∇∆−1(χDϱε)∥Lr(D) + ∥∇(ψ∇∆−1(χDϱε))∥L2+σ0 (D)

)
≤ Cες → 0.
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Now we choose ψ∇∆−1(χDϱε) as test function in (4.12). We obtain∫
D

p(ϱε) div
(
ψ∇∆−1(χDϱε)

)
+ (ϱεuε ⊗ uε) : ∇

(
ψ∇∆−1(χDϱε)

)
dx

+

∫
D

−S(∇uε) : ∇
(
ψ∇∆−1(χDϱε)

)
+ (ϱεf + g) · ψ∇∆−1(χDϱε) dx

= −⟨Fε, ψ∇∆−1(χDϱε)⟩.

Using product rule for differentiation and the definition of the Riesz operators R = (Rij)1≤i,j≤3

in Definition B.10, we obtain for the first integral∫
D

p(ϱε) div
(
ψ∇∆−1(χDϱε)

)
+ (ϱεuε ⊗ uε) : ∇

(
ψ∇∆−1(χDϱε)

)
dx

=

∫
D

p(ϱε)
(
∇ψ · ∇∆−1(χDϱε) + ψϱε

)
dx

+

∫
D

(ϱεuε ⊗ uε) :
(
∇ψ ⊗∇∆−1(χDϱε) + ψ(∇⊗∇)∆−1(χDϱε)

)
dx

=

∫
D

p(ϱε)
(
∇ψ · ∇∆−1(χDϱε) + ψϱε

)
dx

+

∫
D

(ϱεuε ⊗ uε) : ∇ψ ⊗∇∆−1(χDϱε) + ψ(ϱεuε ⊗ uε) : R[χDϱε] dx.

For the second integral, we similarly have∫
D

S(∇uε) : ∇
(
ψ∇∆−1(χDϱε)

)
dx

=

∫
D

S(∇uε) :
(
∇ψ ⊗∇∆−1(χDϱε) + ψ(∇⊗∇)∆−1(χDϱε)

)
dx

=

∫
D

S(∇uε) :
(
∇ψ ⊗∇∆−1(χDϱε)

)
+ ψS(∇uε) : R[χDϱε] dx.

By the standard theory for elliptic problems, the operator∇∆−1 maps L2γ(D) toW 1,2γ(D). By

Morrey’s inequality (B.9) and 2γ > 3, we have W 1,2γ(D) ⊂ C(D), thus ∇∆−1(χDϱε) converges

strongly to ∇∆−1(χDϱ) in L
∞(D). Similarly, choosing ψ∇∆−1(χDϱ) as test function in (4.16),

we get the same integral relations with ϱε and uε replaced by ϱ and u, respectively. Subtracting

both outcomes, performing the limit ε→ 0, and using the strong convergences of uε → u and

∇∆−1(χDϱε) → ∇∆−1(χDϱ), we obtain

lim
ε→0

∫
D

ψ
(
p(ϱε)ϱε + (ϱεuε ⊗ uε) : R[χDϱε]− S(∇uε) : R[χDϱε]

)
dx

=

∫
D

ψ
(
p(ϱ)ϱ+ (ϱu⊗ u) : R[χDϱ]− S(∇u) : R[χDϱ]

)
dx.

Further, using χD∇∆−1(ψϱεuε) as test function in the weak formulation of the continuity

equation (4.1)1, and using χD∇∆−1(ψϱu) as test function in (4.16)1, we obtain∫
D

χDϱεuε · R[ψϱεuε] dx = 0,

∫
D

χDϱu · R[ψϱu] dx = 0,
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so

lim
ε→0

∫
D

ψ
(
p(ϱε)ϱε − S(∇uε) : R(χDϱε)

)
dx−

∫
D

ψ
(
p(ϱ)ϱ− S(∇u) : R(χDϱ)

)
dx

=

∫
D

(ϱu⊗ u) : R[χDϱ]− χDϱu · R[ψϱu] dx

− lim
ε→0

∫
D

(ϱεuε ⊗ uε) : R[χDϱε]− χDϱεuε · R[ψϱεuε] dx.

By Lemma B.13, the right-hand side vanishes, yielding

lim
ε→0

∫
D

ψ
(
p(ϱε)ϱε − S(∇uε) : R[χDϱε]

)
dx =

∫
D

ψ
(
p(ϱ)ϱ− S(∇u) : R[χDϱ]

)
dx. (A.2)

It remains to show that we might replace the terms S(∇uε) : R[χDϱε] and S(∇u) : R[χDϱ] by(
4µ
3
+ η

)
divuε and

(
4µ
3
+ η

)
divu, respectively. By (B.11), we write∫

D

ψµ
(
∇uε +∇Tuε

)
: R[χDϱε] dx =

∫
D

ϱεR :
[
µψ

(
∇uε +∇Tuε

)]
dx,∫

D

ψµ
(
∇u+∇Tu

)
: R[χDϱ] dx =

∫
D

ϱR :
[
µψ

(
∇u+∇Tu

)]
dx.

Observing that

R :
[
∇u+∇Tu

]
=

∑
i,j

∂i∂j∆
−1(∂iu

j + ∂ju
i)

=
∑
i,j

∂j∂
2
i ∆

−1uj + ∂i∂
2
j∆

−1ui = 2divu,

we rewrite

R :
[
µψ

(
∇u+∇Tu

)]
= 2µψ divu+K(u)

with the commutator

K(u) := R :
[
µψ

(
∇u+∇Tu

)]
− µψR :

[
∇u+∇Tu

]
,

and similar for ϱ and u replaced by ϱε and uε, respectively. It now remains to show that

K(uε)ϱε ⇀ K(u)ϱ weakly in L1(D) to finish the proof. Since K is linear in u and ∇uε ⇀ ∇u

weakly in L2(D), we have K(uε) ⇀ K(u) weakly in L2(D). By the continuity equation, we

obtain div(ϱεuε) = 0, in particular, it is bounded in W−1,p(D) for some p > 1. Furthermore,

since R = ∇⊗∇∆−1, we see that curlR = 0. Using the uniform bounds on uε, we thus obtain

a uniform bound on curlK(uε) in W
−1,p(D). Defining the vector fields

Uε = ϱεuε and Vε = K(uε),

we have a uniform bound on {Uε}ε>0 in L
6γ
γ+3 (D), and also on {Vε}ε>0 in L2(D). Together

with γ+3
6γ

+ 1
2
= 2

3
+ 1

2γ
< 1 for any γ > 3/2, an application of Lemma B.12 yields the desired.

Remark A.2. Let us remark that the proof of equation (A.1) applies also in the case of temper-
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Appendix A. Strong convergence of the density

ature dependent viscosity coefficients µ = µ(ϑ) and η = η(ϑ) as well as to the time-dependent

case [ϱ,u] = [ϱ,u](t, x). For the Navier-Stokes-Fourier equations, the proof is verbatim to the

one given above, only replacing the estimate on ∇(ψ∇∆−1(χDϱε)) and ∇(ψ∇∆−1(χDϱ)) by

∥∇(ψ∇∆−1(χDϱε))∥Lγ+Θ(D) + ∥∇(ψ∇∆−1(χDϱ))∥Lγ+Θ(D) ≤ C,

which holds since γ +Θ > 3. By Θ > 1, we may choose ξ > 0 in Lemma 4.3.10 such that

γ +Θ

Θ
+ ξ ≤ γ +Θ,

yielding

|⟨Fε, ψ∇∆−1(χDϱε)⟩| ≤ C εν → 0.

The same argument holds for the case of constant temperature and γ > 2 as Θ = 2γ − 3 there.

The main difference for the evolutionary case is that we have to replace integrals in space by

integrals over space and time, and use the bounds on ϱε and uε in their particular space-time

spaces Lp(0, T ;Lq(D)). Precisely for the density, we get

∥φψ∇∆−1(χDϱε)∥L∞(0,T ;Lr(D)) + ∥φψ∇∆−1(χDϱ)∥L∞(0,T ;Lr(D)) ≤ C,

∥∇(φψ∇∆−1(χDϱε))∥L∞(0,T ;Lγ(D)) + ∥∇(φψ∇∆−1(χDϱ))∥L∞(0,T ;Lγ(D)) ≤ C

for any φ ∈ C∞
c (0, T ), ψ ∈ C∞

c (D), and any r ∈ (1,∞) since γ > 6. From the continuity

equation, we get

∂t(∇∆−1ϱε) = −∇∆−1 div(ϱεuε) = − div∇∆−1(ϱεuε) = −ϱεuε,

thus

∥∂t(∇∆−1(χDϱε))∥
L2(0,T ;L

6γ
6+γ (D))

≤ C ∥ϱε∥L∞(0,T ;Lγ(D))∥uε∥L2(0,T ;W 1,2
0 (D)) ≤ C.

The Aubin-Lions-Simon theorem [Sim86, Section 8, Corollary 4] thus states that for any r ∈
(1,∞), the sequence {∇∆−1(χDϱε)}ε>0 is relatively compact in L∞(0, T ;Lr(D)). Thus, up to

a choice of a subsequence, we obtain

∇∆−1(χDϱε) → ∇∆−1(χDϱ) strongly in C(0, T ;Lr
weak(D)),

so again |⟨Fε, φψ∇∆−1(χDϱε)⟩| → 0 as ε → 0. Finally, we may replace S(∇uε) : R[χDϱε] by(
4µ
3
− η

)
divuε in (A.2) by applying Lemma B.12 to the four-component vector fields

Uε = (ϱε, ϱεuε), Vε = (K(uε), 0, 0, 0).

The last ingredient we need to show the strong convergence of the density is a monotonicity

lemma, which can be found in [FN09, Theorem 10.19].

Lemma A.3. Let P,G ∈ C(R) be non-decreasing functions and let {ϱn}n∈N ⊂ L1(D) be a
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sequence such that

P (ϱn)⇀ P (ϱ),

G(ϱn)⇀ G(ϱ),

P (ϱn)G(ϱn)⇀ P (ϱ)G(ϱ)

 weakly in L1(D).

Then we have

P (ϱ) G(ϱ) ≤ P (ϱ)G(ϱ) a.e. in D.

If additionally G(z) = z and (with the notation ϱ = G(ϱ))

P (ϱ)ϱ = P (ϱ)ϱ,

then

P (ϱ) = P (ϱ).

Lemma A.4. It holds ϱγ+1 = ϱγϱ a.e. in D and thus ϱε → ϱ strongly in L1(D) and Lr(D),

1 ≤ r < 2γ.

Remark A.5. We note that the range 1 ≤ r < 2γ should be replaced by 1 ≤ r < 3 (γ − 1)

if γ > 2, and by 1 ≤ r < γ + Θ in the case of Navier-Stokes-Fourier equations. For the

evolutionary setting, it is enough to observe that ϱγ+1 = ϱγϱ a.e. in (0, T )×D is sufficient to

conclude p(ϱ) = p(ϱ).

Proof of Lemma A.4. We will follow the proof of [LP21, Lemma 4.6], which applies similarly

in the case when γ > 2, the viscosity coefficients µ and η are temperature dependent, and

in time-dependent setting. First, we take the function b(s) = s log(s) in the renormalized

continuity equation (4.4), integrate over D and send ε→ 0 to obtain∫
D

ϱ divu dx = 0. (A.3)

Now, we use the same function b in the renormalized equations for the limit [ϱ,u] to get∫
D

ϱ divu dx = 0. (A.4)

Let us further write (A.1) in the form∫
D

ψ

(
ϱγ+1 −

(
4µ

3
+ η

)
ϱ divu

)
dx =

∫
D

ψ

(
ϱγϱ−

(
4µ

3
+ η

)
ϱ divu

)
dx,

which yields due to the fact 4µ
3
+ η > 0 that

ϱγ+1

4µ
3
+ η

− ϱ divu =
ϱγϱ

4µ
3
+ η

− ϱ divu (A.5)
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Appendix A. Strong convergence of the density

a.e. in D. Integrating over D, we deduce with (A.3) and (A.4)∫
D

ϱγ+1

4µ
3
+ η

dx =

∫
D

ϱγϱ
4µ
3
+ η

dx.

Together with Lemma A.3, we see that

ϱγϱ ≤ ϱγ+1 a.e. in D,

which finally leads to ϱγϱ = ϱγ+1 and thus, applying again Lemma A.3,

ϱγ = ϱγ a.e. in D.

Hence, we get (up to the choice of a subsequence) ϱ̃ε → ϱ strongly in Lγ(D), hence also a.e. in

D and in Lr(D) for all 1 ≤ r < 2γ.

Remark A.6. We remark that for time-dependent equations, the renormalized continuity equa-

tion yields

∂t(ϱ log ϱ) + div (ϱ log ϱ)u+ ϱ divu = 0.

Thus, we may obtain for any τ ∈ [0, T ]∫
D

(ϱ log ϱ− ϱ log ϱ)(τ, ·) dx+
∫ τ

0

∫
D

ϱ divu− ϱ divu dx dt = 0. (A.6)

Integrating (A.5) over (0, T )×D and using (A.6), we get∫
D

(ϱ log ϱ− ϱ log ϱ)(τ, ·) dx+
(
4µ

3
+ η

)−1 ∫ τ

0

∫
D

(
ϱγ+1 − ϱγϱ

)
dx dt = 0.

By convexity of s 7→ s log(s) and s 7→ sγ, we obtain with Lemma A.3 that ϱ log ϱ ≥ ϱ log ϱ and

ϱγ+1 ≥ ϱγϱ. Hence, by the same token,

ϱ log ϱ = ϱ log ϱ, ϱγ+1 = ϱγϱ,

which finally yields the desired convergence ϱ̃ε → ϱ a.e. in D.
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Some analytic results

Lemma B.1 (Derivative of the determinant). Let A(t) = (aij(t))
d
i,j=1 ∈ C1([0, T ];Rd×d) be an

invertible matrix. Then det(A(t)) is differentiable with

d

dt
det(A(t)) = det(A(t)) tr(Ȧ(t)A−1(t)),

where tr(A) is the trace of the matrix A, and Ȧ = d
dt
A.

Proof. Let Aij be the matrix that arises from A by removing the i-th row and j-th column.

Then we have by expansion along the i-th row

det(A) =
d∑

j=1

(−1)i+jaij det(Aij)

and so for any l ∈ {1, . . . , d}

∂ det(A)

∂ail
= (−1)i+l det(Ail).

Differentiation with respect to t yields

d

dt
det(A) =

d∑
i,l=1

∂ det(A)

∂ail

dail
dt

=
d∑

i,l=1

(−1)i+l det(Ail) ȧil.

Since

A−1 =
1

det(A)
Adj(A), where Adj(A) := ((−1)i+j det(Aji))

d
i,j=1,

we conclude

d

dt
det(A) =

d∑
l=1

(Adj(A)Ȧ)ll = det(A) tr(A−1Ȧ).
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Definition B.2. A motion of a domain D ⊂ Rd is a map

S : [0, T ]×D → Rd

having the following properties:

1. S(t, ·) is a C1-diffeomorphism from D to Dt := S(t,D).

2. The gradient ∇yS(t, y) satisfies det(∇yS(t, y)) > 0.

3. S(0, ·) = I.

Theorem B.3 (Reynolds’ transport theorem). Let D ⊂ Rd be a domain, S : [0, T ]×D → Rd

be a motion, Dt := S(t,D), and f ∈ C1 ({(t, x) : t ∈ [0, T ] and x ∈ Dt};R). Then for any test

volume V (t) ⊂ Dt it holds

d

dt

∫
V (t)

f(t, x) dx =

∫
V (t)

[∂tf + div(fu)](t, x) dx

with u(t, x) := ∂tS(t, y), y = S−1(t, x). If further f ∈ C1
(
{(t, x) : t ∈ [0, T ] and x ∈ Dt};Rd

)
,

then

d

dt

∫
V (t)

f(t, x) dx =

∫
V (t)

[∂tf + div(f ⊗ u)](t, x) dx.

Proof. With x = S(t, y), we first obtain

F(t) :=

∫
V (t)

f(t, x) dx =

∫
V0

f(t, S(t, y)) | det(∇yS(t, y))| dy,

where V0 := V (0) ⊂ D and y ∈ V0. Since det(∇yS(t, y)) > 0, we get

Ḟ =

∫
V0

d

dt
[f(t, S(t, y)) det(∇yS(t, y))] dy

=

∫
V0

(
∂tf(t, S(t, y)) +∇xf(t, S(t, y)) · ∂tS(t, y)

)
det(∇yS(t, y))

+ f(t, S(t, y))
d

dt
det(∇yS(t, y)) dy.

Together with Lemma B.1, x = S(t, y), and (∇yS(t, y))
−1 = (∇xS

−1)(t, x) we have

d

dt
det(∇yS(t, y)) = det(∇yS(t, y)) · tr

(
(∇yS(t, y))

−1∂t∇yS(t, y)
)

= det(∇yS(t, y)) · tr
(
(∇xS)

−1(t, x) ∂t∇yS(t, y)
)

= det(∇yS(t, y)) · tr
(
∇x[(∂tS)(t, S

−1(t, x))]
)

= det(∇yS(t, y)) · tr(∇xu(t, x))

= det(∇yS(t, y)) · divx(u)(t, S(t, y)),

thus

Ḟ =

∫
V0

[
∂tf + u · ∇xf + f divx(u)

]
(t, S(t, y)) det(∇yS(t, y)) dy
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=

∫
V (t)

[∂tf + div(fu)](t, x) dx.

The second statement follows the same lines, yielding similarly

d

dt

∫
V (t)

f(t, x) dx =

∫
V0

f(t, S(t, y)) | det(∇yS(t, y))| dy

=

∫
V0

[
∂tf +∇xf · u+ f divx(u)

]
(t, S(t, y)) det(∇yS(t, y)) dy

=

∫
V (t)

[∂tf + div(f ⊗ u)](t, x) dx.

Lemma B.4. The following inequalities hold:

1. (Young’s inequality for products.) Let 1 < p, q < ∞ with 1
p
+ 1

q
= 1. Then, for any

a, b ≥ 0,

ab ≤ ap

p
+
bq

q
. (B.1)

2. (Hölder’s inequality.) Let (D,A, µ) be a measure space, 1 ≤ p, q, r ≤ ∞ with 1
p
+ 1

q
= 1

r
,

and let f ∈ Lp(D) and g ∈ Lq(D). Then fg ∈ Lr(D) with

∥fg∥Lr(D) ≤ ∥f∥Lp(D)∥g∥Lq(D). (B.2)

3. (Young’s inequality for convolutions.) Let 1 ≤ p, q, r ≤ ∞ with

1

p
+

1

q
= 1 +

1

r
,

and let f ∈ Lp(Rd), g ∈ Lq(Rd). Then, f ∗ g ∈ Lr(Rd) and

∥f ∗ g∥Lr(Rd) ≤ ∥f∥Lp(Rd) ∥g∥Lq(Rd). (B.3)

4. (Interpolation in Lq-spaces.) Let D ⊂ Rd be a domain, 1 ≤ p ≤ q ≤ ∞, θ ∈ (0, 1), and

p ≤ r ≤ q be defined as

1

r
=
θ

p
+

1− θ

q
.

If u ∈ Lp(D) ∩ Lq(D), then u ∈ Lr(D), and

∥u∥Lr(D) ≤ ∥u∥θLp(D)∥u∥1−θ
Lq(D). (B.4)

5. (Grönwall’s inequality.) Let T > 0 and u ∈ L1([0, T ]) with

u(t) ≤ C1

∫ t

0

u(s) ds+ C2

129



Appendix B. Some analytic results

for any t ∈ [0, T ]. Then

u(t) ≤ C2 (1 + C1te
C1t). (B.5)

Proof. The proof of 3. can be found in [Duo01, Corollary 1.21]. All other proofs are given in

[Eva10, Section B.2].

Proposition B.5. Let D ⊂ Rd be a bounded Lipschitz domain, 1 ≤ p <∞, and u ∈ W 1,p(D)

be real-, vector-, or matrix-valued. Then, the following assertions hold true:

1. (Poincaré’s inequality.) Denoting by ⟨u⟩D the mean value of u over D, we have

∥u− ⟨u⟩D∥Lp(D) ≤ C ∥∇u∥Lp(D) (B.6)

for some constant C > 0 independent of u. If additionally u ∈ W 1,p
0 (D), then

∥u∥Lp(D) ≤ C ∥∇u∥Lp(D). (B.7)

2. (Gagliardo-Nirenberg-Sobolev inequality.) If 1 < p < d, then W 1,p(D) ⊂ Lp∗(D) with

p∗ := dp/(d− p). Moreover,

∥u∥Lp∗ (D) ≤ C ∥u∥W 1,p(D). (B.8)

3. (Morrey’s inequality.) If d < p ≤ ∞, then W 1,p(D) ⊂ C0,1− d
p (D) with

∥u∥
C

0,1− d
p (D)

≤ C ∥u∥W 1,p(D). (B.9)

4. (Rellich-Kondrachev theorem.) The embedding W 1,p(D) ⊂ Lq(D) is compact for any

1 ≤ q < p∗.

5. (Hardy’s inequality.) Let u ∈ W 1,2
0 (D). Then dist(x, ∂D)−1u ∈ L2(D) and

∥ dist(x, ∂D)−1u∥L2(D) ≤ C ∥∇u∥L2(D). (B.10)

Proof. For statements 1.–4., see [Eva10]. More precisely, the first assertion can be found in

Theorem 3 in Section 5.6 and Theorem 1 in Section 5.8, the second and third are Theorem 6

in Section 5.6, and the fourth one is Theorem 1 in Section 5.7. Statement 5. can be found in

[Neč62, Theorem 1.6].

Lemma B.6. For f ∈ L1
loc(R

d), we define the Hardy-Littlewood maximal function by

(Mf)(x) := sup
Q∋x

1

|Q|

∫
Q

|f(y)| dy,

where the supremum runs over all cubes Q ⊂ Rd that contain x. Then, we have for any

1 < q ≤ ∞ and any f ∈ Lq(Rd)

∥Mf∥Lq(Rd) ≤ C(q, d) ∥f∥Lq(Rd).
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Proof. See [Duo01, Theorem 2.5].

Proposition B.7 (Properties of mollifiers). Let η ∈ C∞(Rd) such that supp(η) ⊂ B1(0) and∫
Rd η = 1. Define for ε > 0

ηε(x) := ε−dη(x/ε).

Let U ⊂ Rd be open and set Uε := {x ∈ U : dist(x, ∂U) > ε}. Further, let u ∈ L1
loc(U ;R

n), and

define for x ∈ Uε

uε := ηε ∗ u =

∫
U

ηε(· − y)u(y) dy.

Then, we have the following properties:

1. uε ∈ C∞(Uε).

2. uε → u almost everywhere for ε→ 0.

3. If 1 ≤ p <∞ and u ∈ Lp
loc(U), then uε → u strongly in Lp

loc(U). Further, if U is bounded,

then ∥uε∥Lp(U) ≤ ∥u∥Lp(U) for ε small enough.

Proof. The case d = 1 is proven in [Eva10, Section C.5, Theorem 7] and applies verbatim to

any d ≥ 1.

Proposition B.8 (Vitali’s convergence theorem). Suppose that D ⊂ Rd is a bounded domain,

1 ≤ p <∞, and {fn}n∈N ⊂ Lp(D) are measurable. Then fn → f strongly in Lp(D) if and only

if

1. fn → f in measure, that is, for any ε > 0 it holds limn→∞ |{|fn − f | ≥ ε}| = 0, and

2. {|fn|p}n∈N is uniformly integrable, that is, for any ε > 0 there is a δ > 0 such that for all

U ⊂ D with |U | < δ and any n ∈ N, we have
∫
U
|fn|p < ε.

In particular, if fn → f almost everywhere in D, ∥fn∥Lp(D) ≤ M uniformly in n for some

M > 0, and 1 ≤ q < p, then fn → f strongly in Lq(D).

Proof. See [Bog07, Theorem 4.5.4] for the case p = 1. Let us show how 1. and 2. imply the

convergence fn → f if p > 1. Set for ε > 0 and n ∈ N

An := {|fn − f | ≥ ε}.

Then |An| < η for η > 0 arbitrary and n large enough, so∫
D

|fn − f |p dx =

∫
An

|fn − f |p dx+
∫
D\An

|fn − f |p dx ≤ C η + εp|D|

by uniform integrability. The second statement follows from fn → f in measure since fn → f

almost everywhere, and for any ε > 0 we set δ > 0 such that Mδ
pq2

p−q = ε to get for any |U | < δ∫
U

|fn|q dx ≤ ∥fn∥qLp(U)|U |
pq2

p−q < ε.
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Theorem B.9 (Calderón-Zygmund theorem). Assume D ⊂ Rd and K(x, y) = k(x,y)
|y|d , where k

is a given regular function and satisfies:

� For any x ̸= y and any λ > 0 we have

k(x, y) = k(x, λy).

� For any x ∈ D, k(x, y) ∈ L1({|y| = 1}) and∫
|y|=1

k(x, y) dy = 0.

� There exists a constant A > 0 such that

∥k(x, y)∥L∞(D×{|y|=1}) ≤ A.

Then for any 1 < q <∞ and any f ∈ Lq(Rd), the principal value integral

Ψ(x) := p.v.

∫
Rd

K(x, x− y)f(y) dy := lim
ε→0

∫
|x−y|≥ε

K(x, x− y)f(y) dy

exists for a.e. x ∈ D and satisfies

Ψ ∈ Lq(Rd), ∥Ψ∥Lq(Rd) ≤ C ∥f∥Lq(Rd),

where the constant C > 0 satisfies C ≤ C(q)A.

Proof. See [CZ57, Section 5, Theorem 2].

Definition B.10. The Riesz operators (Rij)1≤i,j≤d are defined as

Rij[f ](x) :=
1

(2π)d/2

∫
Rd

ξiξj
|ξ|2

Fx→ξ[f ]e
ix·ξ dξ = F−1

ξ→x

[
ξiξj
|ξ|2

Fx→ξ[f ]

]
,

where we denote for a function in the Schwartz space f ∈ S(Rd) its Fourier transform by

Fx→ξ[f ] ∈ S(Rd).

Obviously, the Riesz operators can be written as

(Rij)1≤i,j≤d = (∇⊗∇)∆−1,

where ∆−1 is the Fourier multiplier with symbol −|ξ|2. For a short survey through the con-

cept of Fourier multipliers and Riesz transforms, see, for instance, [NS04, Section 1.3.7.2]

and [Duo01]. We recall also that the Riesz operators satisfy for any f, g ∈ S(Rd) and any

1 ≤ i, j ≤ d ∫
Rd

Rij[f ]g dx =

∫
Rd

fRij[g] dx, (B.11)

which is a consequence of Plancherel’s theorem and the Fourier multiplier property of Rij, and

note that this relation can be extended to any f ∈ Lp(Rd) and g ∈ Lp′(Rd) by density.
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Lemma B.11. For any 1 < p <∞, the Riesz operators satisfy

∥(∇⊗∇)∆−1(f)∥Lp(Rd) ≤ C(p, d)∥f∥Lp(Rd).

Proof. This is a special case of Theorem 1.56 in [NS04, Section 1.3.7.2].

Lemma B.12 (Div-Curl lemma). Let 1 < p, q <∞ with

1

p
+

1

q
= 1.

Suppose

Un ⇀ U weakly in Lp(Rd;Rd), Vn ⇀ V weakly in Lq(Rd;Rd),

and that

divUn is bounded in W−1,p(Rd),

curlVn = (∇Vn −∇TVn) is bounded in W−1,q(Rd;Rd×d).

Then

Un ·Vn → U ·V in D′(Rd).

Moreover, if

Un ⇀ U weakly in Lp(Rd;Rd), Vn ⇀ V weakly in Lq(Rd;Rd),

where

1

p
+

1

q
=

1

r
< 1,

and

divUn is bounded in W−1,s(Rd), curlVn is bounded in W−1,s(Rd;Rd×d)

for some s > 1, then

Un ·Vn ⇀ U ·V weakly in Lr(Rd).

Proof. See [FN09, Lemma 10.11 and Theorem 10.21].

Lemma B.13. Let 1 < p, q <∞ satisfy

1

r
:=

1

p
+

1

q
< 1.

Suppose

uε ⇀ u weakly in Lp(Rd), vε ⇀ v weakly in Lq(Rd).
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Then for all 1 ≤ i, j ≤ d we have

uεRij[vε]− vεRij[uε]⇀ uRij[v]− vRij[u] weakly in Lr(Rd). (B.12)

Proof. We follow [FNP01, Lemma 3.4]. We will prove the more general statement

Uε · R[Vε]−Vε · R[Uε]⇀ U · R[V]−V · R[U] weakly in Lr(Rd) (B.13)

for vector fields Uε ⇀ U weakly in Lp(Rd), Vε ⇀ V weakly in Lq(Rd), where we denote

R = (Rij)1≤i,j≤d. Indeed, embedding the functions uε and vε as functions Uε = uεei ∈
Lp(Rd;Rd) and Vε = vεej ∈ Lq(Rd;Rd), where ei denotes the i-th vector of the canonical

basis of Rd, then (B.12) is equivalent to (B.13). To show (B.13), we rewrite

Uε · R[Vε]−Vε · R[Uε] = (Uε −R[Uε]) · R[Vε]− (Vε −R[Vε]) · R[Uε]

and consider the k-th component of the vector R[Uε], that is,

(R[Uε])k = ((∂i∂j)1≤i,j≤d∆
−1[Uε])k =

d∑
j=1

∂k∂j∆
−1[Uε]j. (B.14)

Using the divergence operator, we get

divR[Uε] =
d∑

k=1

∂k

d∑
j=1

∂k∂j∆
−1[Uε]j =

d∑
j=1

∂j

d∑
k=1

∂2k∆
−1[Uε]j =

d∑
j=1

∂j[Uε]j = divUε.

The same argument applies to Vε, hence

div(Uε −R[Uε]) = div(Vε −R[Vε]) = 0.

Similarly, we get from (B.14)

R[Uε] = ∇(∆−1(divUε)), R[Vε] = ∇(∆−1(divVε)),

which entails in

curlR[Uε] = curlR[Vε] = 0.

Thus, Lemma B.12 yields (B.13).

Lemma B.14. Let D ⊂ Rd be a bounded smooth domain and q ∈ (1
2
,∞). Then there exist

constants C1, C2 > 0 such that for any f ∈ L2q(D; [0,∞)), we have

⟨|f q − ⟨f⟩qD|
2⟩D ≤ C1 ⟨|f q − ⟨f q⟩D|2⟩D ≤ C2 ⟨|f q − ⟨f⟩qD|

2⟩D,

where we set

⟨f⟩D :=
1

|D|

∫
D

f dx.

Proof. This lemma occurred earlier in [GS19, Lemma 2.2]. We will use the symbol a ∼ b to
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express that there are constants C1, C2 > 0 with a ≤ C1 b ≤ C2 a. First, by the fundamental

theorem of calculus and the fact that
∫
D
a(f − ⟨f⟩D) = 0 for any constant a ∈ R, we have∫

D

|f q − ⟨f⟩qD|
2 dx ∼

∫
D

|f 2q − ⟨f⟩2qD | dx ∼
∫
D

(f 2q−1 − ⟨f⟩2q−1
D )(f − ⟨f⟩D) dx

=

∫
D

(f 2q−1 − ⟨f q⟩
2q−1

q

D )(f − ⟨f⟩D) dx.

Noting that for any a, b ≥ 0 and q > 1
2

a2q−1 − b2q−1

a− b
∼ (a+ b)2q−2,

we get with a = f and b = ⟨f q⟩
1
q

D

|f 2q−1 − ⟨f q⟩
2q−1

q

D | ∼ (f + ⟨f q⟩
1
q

D)
2q−2|f − ⟨f q⟩

1
q

D|.

Now, we divide into the cases |f − ⟨f⟩D| ≤ C |f − ⟨f q⟩
1
q

D| and |f − ⟨f⟩D| ≥ C |f − ⟨f q⟩
1
q

D| to
conclude∫

D

|f q − ⟨f⟩qD|
2 dx ∼

∫
D

(f + ⟨f q⟩
1
q

D)
2q−2|f − ⟨f q⟩

1
q

D||f − ⟨f⟩D| dx

∼
∫
D

(f + ⟨f q⟩
1
q

D)
2q−2|f − ⟨f q⟩

1
q

D|
2 dx =

∫
D

|(f + ⟨f q⟩
1
q

D)
q−1(f − ⟨f q⟩

1
q

D)|
2 dx

∼
∫
D

|f q − ⟨f q⟩D|2 dx.
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Appendix C

Some probabilistic results

Lemma C.1 (Borel-Cantelli lemma). Let (Ω,A,P) be a probability space and {Ak}k∈N ⊂ A be

a sequence of measurable sets. Define

lim sup
k→∞

Ak :=
⋂
k∈N

⋃
n≥k

An.

Assume further

∞∑
k=0

P(Ak) <∞. (C.1)

Then P(lim sup
k→∞

Ak) = 0.

Proof. Let ε > 0 be fixed. Then by (C.1) there exists an N ∈ N such that∑
k≥N

P(Ak) < ε.

Since also for any k ∈ N we have lim sup
k→∞

Ak ⊂
⋃

n≥k An and the subadditive property of the

measure P, we get

0 ≤ P(lim sup
k→∞

Ak) ≤ P(
⋃
n≥N

An) ≤
∑
k≥N

P(Ak) < ε.

Since ε > 0 was arbitrary, this finishes the proof.

Theorem C.2 (Strong Law of Large Numbers). Let {Xi}i∈N be pairwise independent identi-

cally distributed random variables with E(Xi) <∞. Then

1

n+ 1

n∑
i=0

Xi → E(Xi)

almost surely as n→ ∞.

In particular, for the Poisson point process (Φ,R) defined in Section 3.4, we have

lim
ε→0

εdN(ε−1S) = λ|S|, lim
ε→0

εd
∑

zj∈ε−1S

rmj = λE(rm)|S|
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Appendix C. Some probabilistic results

almost surely for any bounded measurable set S ⊂ Rd which is star-shaped with respect to the

origin.

Proof. For the first statement see, e.g., [Dur19, Theorem 2.4.1]. The second statement (in more

general settings) can be found, e.g., in [GHV18, Lemma 6.1] and [LP17, Theorem 8.14]. We

remark that the proof in [LP17], although showing just convergence in L1(P), remains valid

if one uses Birkhoff’s ergodic theorem instead of the Mean ergodic theorem, provided their

sequence {an}n∈N grows fast enough.
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[GHV18] Arianna Giunti, Richard Matthias Höfer, and Juan J. L. Velázquez, Homogenization

for the Poisson equation in randomly perforated domains under minimal assump-

tions on the size of the holes, Comm. Partial Differential Equations 43 (2018), no. 9,

1377–1412. MR 3915491

[Gri21] Christopher Griffin, Lecture notes on graph theory,

http://www.personal.psu.edu/cxg286/Math485.pdf, 2021.

[GS19] Ugo Gianazza and Sebastian Schwarzacher, Self-improving property of the fast dif-

fusion equation, Journal of Functional Analysis 277 (2019), no. 12, 108291.

[Guz75] Miguel de Guzmán, Differentiation of Integrals in Rn, vol. 481, Springer, 1975.

[Hil18] Matthieu Hillairet, On the homogenization of the Stokes problem in a perforated

domain, Arch. Ration. Mech. Anal. 230 (2018), no. 3, 1179–1228. MR 3851058
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