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And if the dam breaks open many years too soon
And if there is no room upon the hill

And if your head explodes with dark forebodings too
I’ll see you on the dark side of the moon

Pink Floyd, Brain Damage
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Abstract
The research conducted in this thesis is focused on property-preserving discretizations of
hyperbolic partial differential equations. Computational methods for solving such prob-
lems need to be carefully designed to produce physically meaningful numerical solutions.
In particular, approximations to some quantities of interest should satisfy local and
global discrete maximum principles. Moreover, numerical methods need to obey certain
conservation relations, and convergence of approximations to the physically relevant
exact solution should be ensured if multiple solutions may exist. Many algorithms based
on the aforementioned design principles fall into the category of algebraic flux correction
(AFC) schemes. Modern AFC discretizations of nonlinear hyperbolic systems express
approximate solutions as convex combinations of intermediate states and constrain
these states to be admissible. The main focus of our work is on monolithic convex
limiting (MCL) strategies that modify spatial semi-discretizations in this way. Contrary
to limiting approaches of predictor-corrector type, their monolithic counterparts are well
suited for transient and steady problems alike. Further benefits of the MCL framework
presented in this thesis include the possibility of enforcing entropy stability conditions
in addition to discrete maximum principles.

Using the AFC methodology, we transform finite element discretizations into property-
preserving low order methods and perform flux correction to recover higher orders of
accuracy without losing any desirable properties. The presented methods produce
physics-compatible approximations, which exhibit excellent shock capturing capabilities.

One novelty of this work is the tailor-made extension of monolithic convex limiting to
the shallow water equations with a nonconservative topography term. Our generalized
MCL schemes are entropy stable, positivity preserving, and well balanced in the sense
that lake at rest equilibria are preserved. Another desirable property of numerical
methods for the shallow water equations is the capability to handle wet-dry transitions
properly. We present two new approaches to dealing with this issue.

To corroborate our computational results with theoretical investigations, we perform
numerical analysis for property-preserving discretizations of the time-dependent linear
advection equation. In this context, we prove stability and derive an a priori error
estimate in the semi-discrete setting. We also compare the monolithic convex limiting
strategy to two representatives of related flux-corrected transport algorithms.

Another highlight of this thesis is the chapter on MCL schemes for arbitrary order
discontinuous Galerkin (DG) discretizations. Building on algorithms developed for
continuous Lagrange and Bernstein finite elements, we extend our MCL schemes to the
high order DG setting. This research effort involves the design of new AFC tools for
numerical fluxes that appear in the DG weak formulation. Our limiting strategy for DG
methods exploits the properties of high order Bernstein polynomials to construct sparse
discrete operators leading to compact-stencil nonlinear approximations.

The proposed numerical methods are applied to various hyperbolic problems. Scalar
equations are considered mainly for testing purposes and to simplify numerical analysis.
Besides the shallow water system, we study the Euler equations of gas dynamics.

vii





Chapter 1

Introduction

Many processes in nature, physics, and other application fields can be described by
mathematical models based on partial differential equations (PDEs). Variables of these
models may represent physical quantities such as density, velocity, or pressure of a
fluid. The laws of physics may impose certain constraints on the main unknowns and/or
derived quantities thereof. For instance, fluid density and internal energy should not
become negative. In real life applications to fluid dynamics, computational methods are
used to solve a continuous model problem approximately. In many cases, it is imperative
that numerical approximations satisfy a subset of constraints that are known to hold
for the exact solutions. However, standard techniques for solving PDEs either produce
rather inaccurate (first order) approximations or may introduce spurious oscillations in
the vicinity of steep fronts. The latter deficiency is known as the Gibbs phenomenon
and can cause simulations to crash due to nonphysical solution values. To enforce
appropriate constraints for approximate solutions, one needs to employ a property-
preserving discretization of the continuous model problem. In essence, one should strive
to design numerical methods capable of producing results that are in agreement with all
important properties of the exact solution. At the same time, the approximation should
be as accurate as possible under the imposed constraints.

This thesis presents some of the author’s recent contributions to the development of
physics-aware numerical methods. Particular emphasis is laid on nonlinear PDE systems
with applications to geophysical fluid dynamics and gas flows. Scalar model problems are
also studied in this work, mainly for testing purposes. Geophysical flows have numerous
applications in environmental modeling and prediction of natural disasters (tsunamis,
storm surges, dam breaks, etc.). These events are commonly modeled with the system
of shallow water equations. Gas dynamics models are important for many industrial
applications. For instance, they are used to study the air flow around certain objects
(e. g., airfoils), to find out how they are affected by external forces, and also to improve
their design. The hydrodynamic behavior of air and other gases can be reasonably well
described by the Euler equations, which represent a simplification of the compressible
Navier–Stokes equations for viscous flows. Both the Euler system and the inviscid shallow
water equations are representatives of nonlinear hyperbolic systems. Such mathematical
models are often challenging to solve (both analytically and numerically) for a number of
reasons. For instance, steep fronts that are difficult to capture numerically may develop
in a finite time, even if the solution is smooth initially. Furthermore, solutions to most
hyperbolic problems are generally nonunique but in many cases there exists a unique
physical solution. However, some computational methods may produce sequences of
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nonphysical approximations. Moreover, the occurrence of inadmissible states such as
negative fluid densities and internal energies in gas dynamics or negative water heights
in shallow water flows, causes simulations to either break down or produce meaningless
results.

The reason why the design of property-preserving methods is still an active research
area can be attributed to the fact that only monotone schemes can be shown to satisfy
all relevant constraints unconditionally. The accuracy of such schemes is limited to first
order, as shown by Godunov [God59] in the linear case and by Harten et al. [Har83b]
in the nonlinear case. The weaker requirement of monotonicity preservation implies
monotonicity for linear schemes but makes it possible to design nonlinear discretizations
that are both non-oscillatory and higher than first order accurate. Such nonlinear
methods are referred to as high resolution schemes. In a typical method of this kind,
the amount of artificial viscosity is adjusted adaptively based on the local regularity
of a numerical solution. For instance, if an approximation is locally smooth, then the
algorithm uses some high order baseline scheme. In the vicinity of steep fronts, a low-
order method is employed instead. Existing schemes differ in the choice of constraints
and algorithms for blending high and low order approximations in this manner.

Many property-preserving schemes for hyperbolic problems are based on finite volume
(FV) space discretizations [Zal79, Swe84, Bar89, Kur07a, Noe07]. These methods
evolve piecewise constant approximations to the exact solution and rely on certain
reconstruction techniques to obtain discretizations that are more than first order accurate
[Har87, Jia96, Aud04, Fjo11, Que21]. Some representatives of such FV methods are
discussed in Section 1.1. In this work, we discretize the governing equations in space using
finite element methods (FEM). The corresponding piecewise polynomial approximations
are evolved without using reconstruction techniques. Numerical analysis of linear finite
element approximations is less involved than the corresponding theory for FV schemes,
and high order baseline methods are easy to derive. Property-preserving FEM are usually
more difficult to construct than their FV counterparts, however, significant advances
have been made in recent years [Bur07, Ric09, Kuz12a, Gue16b, Bad17]. In this thesis,
we focus on the design of algebraic flux correction (AFC) schemes that enforce relevant
constraints using limiting techniques (as in [Kuz05, Bar16, And17, Loh19, Paz21]).
The underlying theory guarantees preservation of certain properties under suitable
assumptions such as time step restrictions for explicit and semi-implicit schemes.

1.1 State of the art
Many AFC approaches and alternative high-resolution schemes were proposed in the
literature over the past 50 years. We briefly review some classical algorithms and recent
trends in this section. The review of the state of the art in the field of modern AFC
tools for finite element discretizations is continued in Sections 3.3.1 and 5.1.
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In the FV context, locally conservative adaptive schemes can be constructed using
convex combinations of first and higher order numerical fluxes, as proposed by Harten
and Zwas [Har72]. The choice of weights for such hybrid flux approximations may
be based on smoothness indicators or nonlinear stability criteria. The first property-
preserving high-resolution scheme of this kind was the flux-corrected transport (FCT)
algorithm introduced by Boris and Book [Bor73, Boo75]. A typical implementation
of FCT splits each solution update into two stages. In the first stage, the numerical
solution is advanced in time using a monotone low order method. In the second stage, the
accuracy is improved by adding limited antidiffusive fluxes. The FCT limiter proposed
by Zalesak [Zal79] is fully multidimensional and applicable to unstructured meshes. It
constrains the fluxes to preserve local maxima and minima of the low order predictor.
An alternative one-step limiting strategy is adopted in total variation diminishing (TVD)
methods [Har84]. The TVD property rules out occurrences of spurious oscillations
and provides nonlinear stability, which is needed in standard proofs of convergence.
A general framework for the design of TVD limiter functions was developed by Sweby
[Swe84], who derived sufficient conditions for a FV scheme to be second order accurate
and TVD in the 1D case. The accuracy of high-resolution schemes with TVD-type
flux limiting varies between second order in smooth regions and first order at local
extrema. One-dimensional TVD schemes can be generalized to 2D/3D using operator
splitting on structured grids (see [LeV92, Ch. 18]) or the concept of local extremum
diminishing (LED) schemes for unstructured grids (see [Jam93]). Such extensions often
exhibit second order convergence behavior in practice, while genuine TVD schemes are
at most first order accurate in multidimensions [LeV92, Thm. 18.3].

As an alternative to flux limiting of FCT and TVD type, Harten and Osher [Har87]
proposed essentially non-oscillatory (ENO) schemes. As this name suggests, ENO
approaches suppress spurious oscillations but are not TVD. Therefore, they can be more
than first order accurate at local extrema and capture smooth traveling peaks much
better than FCT and TVD methods. On the other hand, small undershoots/overshoots
may occur in the vicinity of sharp peaks and discontinuities. The original ENO method
[Har87] selects stencils for polynomial reconstructions adaptively to avoid interpolation
across discontinuities and obtain flux approximations that are uniformly second order
accurate for smooth data. To prevent the occurrence of Gibbs phenomena, a minmod
limiter is applied in the process of computing the reconstructions.

Building on the ENO methodology, Liu et al. [Liu94] introduced the framework of
weighted essentially non-oscillatory (WENO) schemes. One improvement of the latter
approach over ENO is the use of convex combinations of local reconstruction polynomials
with adaptively chosen nonlinear weights. By employing larger nodal stencils than in the
original ENO method [Har87], WENO schemes are capable of producing approximations
of increased resolution. Strategies of WENO type remain popular to this day (see,
e. g., [Jia96, Shu98, Zha11, Dum14, Que21]) due to their high rates of convergence to
smooth solutions and robustness in situations in which discontinuities are present. As
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illustrated in [Zha11, Sec. 1], higher than second order of accuracy comes at the price of
being unable to strictly enforce discrete maximum principles. Similarly to their ENO
predecessors, WENO schemes may accentuate local extrema and violate global bounds.

In contrast to the aforementioned FV approaches, traditional stabilization techniques
for finite elements modify the discrete weak form of the governing equations rather than
the numerical fluxes of a discrete conservation law. In the classical streamline upwind
Petrov–Galerkin (SUPG) method [Bro82] and discontinuity-capturing extensions thereof
[Hug86, Cod93], the stabilization terms represent weighted residuals that vanish at the
continuous level and introduce artificial viscosity at the discrete level. The amount of
numerical dissipation in the streamline and crosswind direction depends on user-defined
parameters. Similarly to ENO schemes, such parameter-dependent stabilized FEM
approaches do not rule out the occurrence of spurious ripples at discontinuities.

Algebraic flux correction schemes for finite elements [Kuz02, Kuz05] are based on
various generalizations of FCT and TVD algorithms, which can also be interpreted as
nonlinear artificial viscosity methods. In contrast to SUPG, the additional dissipative
terms do not represent weighted residuals. They are defined using discrete diffusion
(graph Laplacian) operators and admit a conservative decomposition into adjustable
numerical fluxes. Modern AFC discretizations are guaranteed to be property preserving,
and the amount of numerical viscosity (usually) does not depend on free parameters.

Another promising stabilization approach based on artificial viscosity is the one
proposed by Burman [Bur07]. His finite element scheme for the 1D Burgers equation
employs a continuous Galerkin approximation, and the artificial viscosity operator is
designed to ensure the validity of a discrete maximum principle. This property makes it
possible to prove convergence to a weak solution [Bur07, Thm. 3.7]. Moreover, the limit
of a convergent sequence is shown to satisfy the weak form of an entropy inequality
[Bur07, Thm. 3.8]. However, Burman’s approach does not guarantee the validity of a
semi-discrete or fully discrete entropy inequality for any finite mesh size.

Badia and Bonilla [Bad17] discretize scalar conservation laws using a nonlinear AFC
scheme in which the artificial diffusion coefficients are limited using a nodal shock detector.
The amount of limiting depends on the ratio of jumps and averages of directional
derivatives at the nodal points. Similarly to the sensor analyzed by Barrenechea
et al. [Bar17a], the jump-average indicator employed in [Bad17] is a generalization of
the one that adjusts numerical dissipation in the classical Jameson–Schmidt–Turkel (JST)
scheme [Jam17]. The multidimensional AFC version proposed in [Bad17] ensures the
validity of discrete maximum principles and linearity preservation. The latter property is
an essential requirement for second order consistency and optimal convergence on general
meshes. Another highlight of the methodology developed in [Bad17] is the possibility of
using implicit time integrators and Newton-like solvers for a regularized version of the
nonlinear discrete problem. The proposed regularization of the shock detector makes it
differentiable without losing the LED property of the spatial semi-discretization.

Another framework that shares many similarities with the AFC methodology is that
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of residual distribution (RD) schemes, e. g., [Abg06, Ric09, Abg17]. As pointed out by
Abgrall [Abg06], many well-known finite element and finite volume methods can be
interpreted as RD approaches. For steady problems, the RD formalism can be summed
up as follows: Compute elementwise residuals for a baseline discretization of the PDE
and decompose them into nodal contributions. The weights of these distributions can
be chosen in such a way that the resulting approximations are essentially non-oscillatory
[Abg06] or even LED, as in our own contributions [Haj20b, Haj20c] to the field. In
contrast to classical AFC schemes, the design of property-preserving RD methods for time
dependent problems is more involved than for stationary ones [Abg06, Abg17]. Moreover,
RD discretizations of hyperbolic systems may fail to ensure positivity preservation.

A promising new approach to the design of property preserving schemes is the
multidimensional optimal order detection (MOOD) methodology for a posteriori limiting
[Dio13]. The MOOD procedure developed by Dumbser et al. [Dum14] combines a high
order discontinuous Galerkin (DG) method with a subcell finite volume scheme using
a MOOD-type troubled-cell indicator. In each time step, the approximate solution is
first advanced in time using the baseline DG scheme. If either physical or numerical
admissibility conditions are violated in any cell, the high order DG approximation
in that cell is rejected and replaced by a WENO-FV approximation on subcells of
the element. Local L2 projections are used to ensure conservation when it comes to
calculating the piecewise constant initial data for the FV update and project the result
back into the high order DG space. The validity of all user-defined admissibility criteria
is guaranteed, provided that the subcell FV scheme possesses the desired properties.
However, the binary switch between the DG and subcell FV approximations does not
provide continuous dependence on the data, which may cause convergence problems
in the steady-state limit. In a similar context, Hennemann et al. [Hen21] recently
designed a continuous blending strategy between a DG target scheme and a subcell FV
method. Special care is taken to ensure discrete entropy stability, which is achieved
by using carefully designed numerical fluxes. In contrast to the MOOD approach of
Dumbser et al. [Dum14], preservation of local bounds is not enforced. More recently,
Rueda-Ramírez et al. [Rue22] showed the equivalence of a subcell FV scheme to the low
order method proposed by Pazner [Paz21] in the context of a localized FCT scheme
for DG discretizations of hyperbolic systems. This finding makes it possible to design
DG/subcell FV methods that are not only entropy stable but also bound preserving.
To the best of our knowledge, the work published in [Rue22] represents the first bridge
between subcell FV limiters and AFC schemes for high order DG methods.

1.2 Outline and originality of this thesis
This introductory chapter ends with a section in which we introduce some notation and
commonly used symbols. In the next chapter, we review some important facts about
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weak solutions to hyperbolic problems. Before presenting an excerpt on the mathematical
theory, we address modeling aspects and discuss the structure of the problems under
consideration. The contents of Chapter 2 do not represent any original research by
the author and are to a large degree based on [LeV92, Vre94, Daf00, Fei03, Eck17].
A basic introduction to standard discretizations in space and time is given in Chapter 3.
The remainder of that chapter is focused on algebraic flux correction tools for finite
elements. In particular, monolithic convex limiting (MCL) strategies yielding bound-
preserving [Kuz20a] and entropy-stable [Kuz20c, Kuz22a] schemes are reviewed and
extended. These methods remain relevant throughout this thesis and are therefore
discussed in detail. In Chapter 4, we generalize the MCL framework for conservation
laws to a system of balance laws. Specifically, we consider the shallow water equations
(SWE) with a topography source term. Our tailor-made extension of limiting strategies
to this problem is provably well balanced, positivity preserving, and entropy stable.
Numerical analysis for MCL space discretizations of the advection equation is presented
in Chapter 5. Therein, we slightly improve upon the stability analysis and a priori error
estimates from our preprint [Haj21b]. Finally, Chapter 6 is based on the author’s paper
[Haj21a] on MCL schemes for high order DG discretizations. These methods are applied
to (systems of) conservation laws, which include the SWE and the compressible Euler
equations. In addition to selected contents of [Haj21a], we present some new features
and numerical examples before concluding this thesis in Chapter 7.

1.3 Notation and list of symbols
For the reader’s convenience, we summarize some notational conventions for further use
in this thesis. The most important symbols can be found in Tabs. 1.1 to 1.3.

Bold font lower case letters are reserved for quantities that assume values in Rd,
d ∈ {1, 2, 3}, i. e., vectors in physical space (e. g., velocities or forces). The components
of a vector are denoted using the non-bold font for the same symbol. A subscript is used
to indicate which component of the vector is referred to, e. g., x = (x1, . . . , xd)T ∈ Rd.
Similar notation is used for matrices for which we mostly employ upper case letters,
e. g., A = (aij)ni,j=1 for square matrices or A = (aij) i=1,...,k

j=1,...,n
for (k × n)-matrices, where

k, n ∈ N. Calligraphic upper case letters such as A, are reserved for sets.
The closure of a domain Ω w. r. t. a certain metric is denoted as Ω. The interior of a

set Ω w. r. t. a certain metric is denoted as int(Ω). The diameter of a domain Ω ⊆ Rd is
denoted as diam(Ω) = supx,y∈Ω |x− y|. The open ball of radius r > 0 around x ∈ Rd

w. r. t. the Euclidean norm is Br(x) = {y ∈ Rd : |x− y| < r}. The (d− 1)-dimensional
unit sphere centered at the origin is denoted as Sd−1

1 = {n ∈ Rd : |n| = 1}.
Assignments such as f = f(u) ∈ Rk, k ∈ N are used to indicate that f is an

Rk-valued function of a certain variable u. If a function depends on a single variable,
its derivatives are denoted by apostrophes. In this fashion, if f : Rk → Rn, then
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f ′ : Rk → Rn×k, k, n ∈ N is the Jacobian and f ′ij is the derivative of the ith component
of f w. r. t. the jth component of the variable it depends on. The divergence ∇· of a
vector field a = (ai)di=1 = a(x) is defined as

∇ · a =
d∑
i=1

∂ai(x)
∂xi

.

The divergence ∇· of a matrix-valued function A = (a1, . . . , ad) = A(x) ∈ Rk×d, k ∈ N
with ai(x) ∈ Rk, i ∈ {1, . . . , d} is defined as

∇ ·A =
d∑
i=1

∂ai(x)
∂xi

∈ Rk.

The bold symbol ∇· denotes the divergence operator for (d × d)-valued matrices (as
opposed to the general non-boldface notation for k 6= d).

Symbol Description
| · | Euclidean norm for vectors in Rk, k ∈ N
a · b Euclidean scalar product of two vectors a, b ∈ Rk, k ∈ N
A : B scalar product of two matrices A : B = tr(ATB), where tr is the trace
R+ set of positive real numbers R+ = {t ∈ R : t > 0}
δij Kronecker delta, δij = 1 if i = j, δij = 0 if i 6= j
I identity matrix in Rd×d, where d ∈ {1, 2, 3} is the spatial dimension
Ik×k identity matrix in Rk×k, k ∈ N
suppw support of a function w ∈ C(Ω), suppw = {x ∈ Ω : w(x) 6= 0}
C(Ω) space of continuous functions
Ck(Ω) space of k times continuously differentiable functions, k ∈ N0 ∪ {∞}
Lp(Ω) Lebesgue space of measurable, pth-power integrable functions, p ∈ [1,∞)
L∞(Ω) Lebesgue space of measurable, essentially bounded functions
L1

loc(Ω) space of locally integrable functions
C1

0(Ω) space of continuously differentiable functions with compact support in Ω
Wk,p(Ω) Sobolev space of functions with kth order derivatives in Lp(Ω)
Hk(Ω) Sobolev space Hk(Ω) = Wk,2(Ω)

Table 1.1: Important operators, symbols, and function spaces.
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Symbol Description
d spatial dimension d ∈ {1, 2, 3}
m number of unknowns in the solution vector m ∈ N
Ω spatial domain Ω ⊆ Rd

∂Ω boundary of Ω
Γ boundary segment Γ ⊆ ∂Ω (possibly with sub- and superscripts)
T final time for a model problem
t temporal variable t ∈ [0, T ]
x spatial variable x ∈ Rd

n = n(x) normal vector/outward unit normal to ∂Ω
u = u(x, t) solution vector u(x, t) ∈ Rm

u0 = u0(x) initial data u0(x) ∈ Rm

û = û(x, t) external Riemann data û(x, t) ∈ Rm, as defined in Section 2.2
f = f(u) inviscid flux function f ∈ C1(Rm)m×d
f ′n = f ′n(u) directional Jacobian of the inviscid flux function, n ∈ Sd−1

1
λ = λ(u) wave speeds of hyperbolic problems used in various contexts
ρ = ρ(x, t) density of a fluid
v = v(x, t) velocity of a fluid, depth-averaged in the shallow water equations
p = p(x, t) pressure of a fluid
E = E(x, t) specific total energy of a fluid
h = h(x, t) total water height in the shallow water equations
H = H(x, t) free surface elevation in the shallow water equations
b = b(x) bathymetry/bottom topography in the shallow water equations
η = η(u) mathematical entropy of a hyperbolic PDE (system)
q = q(u) entropy flux q(u) ∈ R1×d corresponding to an entropy η
v = v(u) entropy variable v(u) = ∂

∂u
η(u) ∈ Rm corresponding to η

ψ = ψ(u) entropy potential ψ(u) = v(u)Tf(u)− q(u) corresponding (η, q)

Table 1.2: Important physical and mathematical quantities.

For the shallow water equations with nonflat bottom topography, i. e., b 6= const, the
entropy pair (η, q) and corresponding entropy variable v depend on b in addition to u.
The entropy potential ψ remains independent of b, see Section 2.2.3 for details.
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Symbol Description
E number of elements in a mesh
N number of degrees of freedom
Kh computational mesh with spacing h = maxK∈Kh diam(K)
xi vertex of a mesh, xi ∈ Ω
Ke mesh element/cell with index e ∈ {1, . . . , E}
K generic element/cell K ∈ Kh
Pp(K) space of polynomials of degree at most p in d variables, where K ⊂ Rd

Qp(K) space of polynomials of degree at most p w. r. t. each variable
Vp(K) polynomial space Pp(K) if K is a simplex, Qp(K) otherwise
Vh space of continuous piecewise (multi-)linear functions, Vh = Vh,1(Kh)
ϕi = ϕi(x) Lagrange basis function associated with vertex xi
uh approximate solution uh = uh(x, t) = ∑N

i=1 ui(t)ϕi(x)
ui nodal state of an approximate solution, ui = ui(t) ∈ Rm

fi inviscid flux function evaluated at ui ∈ Rm, fi = f(ui) ∈ Rm×d

fn(·, ·) numerical flux in the space direction n ∈ Sd−1
1 , fn(·, ·) ∈ Rm

Ni nodal stencil, Ni = {j ∈ {1, . . . , N} : int(suppϕi) ∩ int(suppϕj) 6= ∅}
Fi nodal boundary faces, see Definition 3.6
mij entries of the consistent mass matrix M , see (3.8)
mi diagonal entries of the row sum lumped mass matrix ML, see (3.24)
cij entries of the discrete gradient operator, see (3.20)
dij artificial diffusion coefficients, see (3.27) for standard Rusanov values
bki integral of ϕi over a boundary face Γk ∈ Fi, see (3.23)
dki Lax–Friedrichs diffusion coefficient of a boundary node, see (3.30)
ūij, ū

∗
ij low order and limited bar states ūij, ū∗ij ∈ Rm, i 6= j, see (3.28), (3.40)

ūki low order bar state of a boundary node, see (3.31)
fij, f

∗
ij raw antidiffusive fluxes and their limited counterparts, fij, f ∗ij ∈ Rm

u̇L
i approximate low order time derivative of a nodal state, u̇L

i ∈ Rm

umin
i , umax

i lower and upper bounds to be imposed on ui via limiting
αij, βij correction factors for limiting αij = αji ∈ [0, 1], βij = βji ∈ [0, 1]
% first component of the solution u = (%, %φ1, . . . , %φm−1) for systems
φ = (%φ)/% specific quantity corresponding to the conserved unknown (%φ)
%̄ij, %̄

∗
ij low order and limited bar states of %

φ̄ij low order bar states of the specific quantity φ
(%φ)ij low order bar states of the conserved unknown (%φ)
(%φ)∗ij limited bar states of the conserved unknown (%φ)
∆t time step
ν Courant–Friedrichs–Lewy parameter ν ∈ (0, 1]

Table 1.3: Symbols used in descriptions of numerical methods.





Chapter 2

Theory of hyperbolic problems

The development of numerical methods for flow problems requires a profound knowledge
of the underlying mathematical theory. For instance, in order to design property-
preserving discretization techniques for solving PDEs, one needs to be familiar with the
structure of the problem at hand. Indeed, many concepts arising on the continuous level
of a given model have discrete counterparts in computational schemes. In the hyperbolic
case, for example, some methods enforce discrete entropy inequalities, which correspond
to the ones satisfied by vanishing viscosity solutions.

This chapter addresses some theoretical aspects of hyperbolic equations. We begin
with deriving two hyperbolic systems from the Navier–Stokes equations of fluid dynamics
in Section 2.1. In Section 2.2, we discuss the properties of the scalar problem and of
the systems that we investigate in this thesis. Section 2.3 closes this chapter with an
excerpt on the theory of weak admissible solutions to conservation laws.

2.1 Modeling aspects
Since the models that we consider in this thesis are only valid under certain assumptions,
we review the derivation of the corresponding systems of equations. Starting with
the most general flow model, we neglect viscous friction and heat conduction effects.
These simplifications enable us to omit all terms that depend on second order partial
derivatives and to only consider first-order PDE systems. We refer to [Eck17, Sec. 5.6]
for a presentation of constitutive relations for the omitted terms. Moreover, we do not
discuss effects of turbulence and Reynolds averaging, nor the Boussinesq approximation
(see, e. g., [Cus11, Secs. 4.1, 3.7]) since they are irrelevant for the purposes of this
thesis. In Section 2.1.1, we outline the derivation of the compressible Euler equations,
which govern the hydrodynamic behavior of gas flows under the above assumptions. In
Section 2.1.2, we derive the shallow water equations (SWE), an important model for
simulations of geophysical flows.

2.1.1 Compressible Euler equations
The compressible Navier–Stokes equations are among the most general mathematical
models in fluid dynamics. For flows at low Mach numbers, they can be approximated
using a hierarchy of incompressible flow models. The derivation of the Navier–Stokes
system from the principles of continuum physics is discussed in detail in [Eck17, Ch. 5].
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In this section, we consider the system of Euler equations, which are obtained from the
Navier–Stokes model by omitting all terms that include second order derivatives.

To formulate initial boundary value problems that govern the evolution of conserved
quantities in a spatial domain Ω ⊆ Rd, d ∈ {1, 2, 3}, we need to introduce some notation
(cf. Section 1.3). Let ∇· and ∇· denote the divergence operators for vector fields and
tensor-valued quantities, respectively. We write a ⊗ b = a bT ∈ Rk×n for the dyadic
product of two vectors a ∈ Rk, b ∈ Rn. If n = k, the Euclidean scalar product of a and
b is denoted as a · b = aTb. The physical variables of compressible gas dynamics include
the mass density ρ = ρ(x, t), velocity v = v(x, t), specific total energy E = E(x, t), and
pressure p = p(x, t) of the fluid. Furthermore, let g(x, t) represent the density of specific
external forces acting on the fluid at x ∈ Ω and t ≥ 0. If gravity is the only force to be
taken into account, which is usually the case, then g = −g ed, where g is gravitational
acceleration and ed ∈ Rd is the Cartesian unit vector pointing in the upward direction.
Finally, let the identity matrix be denoted as I ∈ Rd×d. With this notation, we are now
ready to present the compressible Euler equations [Eck17, Ch. 5]

∂ρ

∂t
+∇ · (ρv) = 0, (2.1a)

∂(ρv)
∂t

+ ∇ · (ρv ⊗ v + p I) = ρg, (2.1b)

∂(ρE)
∂t

+∇ · ((ρE + p)v) = ρg · v, (2.1c)

also known as the Euler equations of gas dynamics. This system models the flow of
compressible gases at high speeds. Viscous friction and heat conduction effects are
neglected in this model. The gravitation-induced terms on the right hand sides of (2.1b)
and (2.1c) can also be omitted in many applications.

System (2.1) consists of d + 2 equations for d + 3 unknowns ρ, v, E, and p. To
formulate a closure for the Euler equations, we use thermodynamic relations and derive
an equation of state for the pressure. Our presentation is based on [LeV92, Sec. 5.1.1]
and [Fei03, Sec. 3.1.1]. First, we assume that the fluid obeys the ideal gas law

p = (cP − cV ) ρ θ, (2.2)

where θ is the absolute temperature, cV is the specific heat at constant volume, and
cP > cV is the specific heat at constant pressure. As remarked in [LeV02, Sec. 14.4]
cP − cV is equal to the universal gas constant divided by the molecular weight of the
gas. In this thesis, we assume the gas to be polytropic, i. e., its specific internal energy
(thermal energy) is given by

e = cV θ. (2.3)
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The specific total energy E of the fluid represents the sum of its specific internal and
kinetic energies. Thus, we have

E = e+ |v|
2

2 . (2.4)

Introducing the adiabatic constant γ = cP/cV > 1, we obtain the equation of state

p = cP − cV
cV

ρe = (γ − 1) ρe = (γ − 1)
(
ρE − ρ|v|2

2

)
(2.5)

from (2.2)–(2.4). Thus, (2.5) provides a closure for system (2.1) valid for ideal polytropic
gases. The value of γ depends on the molecular structure of fluid particles. For
monatomic gases, characterized by the fact that the particles are atoms rather than
molecules, we have γ = 5

3 . The adiabatic constant of diatomic gases such as the main
components of air, nitrogen (N2) and oxygen (O2), assumes the value 7

5 = 1.4 (see
[LeV92, Sec. 5.1.1] for details).

2.1.2 Shallow water equations
Besides the compressible Euler equations, this thesis is concerned with the system of
shallow water equations, which describe the two- or three-dimensional motion of water
under assumptions to be discussed below. The use of depth averaging reduces the
number of velocity components and the dimension of the spatial domain by one. Shallow
water flows arise in geophysics and have a wide range of applications. In particular, the
SWE can be used to model flooding events, for instance, those caused by storm surges,
tsunamis, or breakage of dams. Moreover, (multi-layer generalizations of) the SWE are
widely used in simulation tools for large scale atmospheric and oceanic flows.

In this section, we summarize the derivation of the SWE. Our presentation is based
on [Vre94, Ch. 2]. Once again, we consider the inviscid case, thus we start from the
incompressible Euler equations. Furthermore, we neglect the effects of bottom friction,
rotational effects (Coriolis force) and stratification. These issues are discussed in detail
in [Vre94, Ch. 2] and [Cus11, Pts. II–IV].

Since we are interested in geophysical flows, the fluid under investigation is water,
which can be assumed to be incompressible. That is, its density ρ is approximately
constant. In this setting, the balance law (2.1c) for the total energy of water is omitted,
and the incompressible Euler equations

∇ · v = 0, (2.6a)
∂v

∂t
+ ∇ ·

(
v ⊗ v + p

ρ
I
)

= g (2.6b)
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z = 0

water surface

bathymetry

b(y)
H(y, t)

h(y, t)

Figure 2.1: Cross section of a body of water.

are used as the starting point for the derivation of the SWE in Rd. Contrary to the
Euler equations of gas dynamics, the gravitational source term g = −g ed, cannot be
neglected here. As the name suggests, the derivation of the shallow water equations is
based on the assumption that the water depth is small compared to other dimensions of
the flow domain. Formally, one introduces typical horizontal and vertical length scales L
and A, respectively, and assumes L� A. For geophysical applications this assumption
is justified, for instance, if one considers oceanic flows. The horizontal scale may be
hundreds to ten thousands of kilometers wide, while the deepest point in the Earth’s
ocean (Mariana trench) is a just short of being eleven kilometers below the mean sea
level.

We introduce the following notation to distinguish between horizontal and vertical
spatial directions. Let xT = (yT, z) ∈ Rd be split into the vector y ∈ Rd−1 of horizontal
components and the vertical component z. The horizontal components of the gradient
operator will be denoted by ∇y. Similarly, the velocity vector vT = (uT, w) ∈ Rd is
split into u ∈ Rd−1 and w. The free surface elevation H and bottom topography b
(also called bathymetry) represent the upper and lower boundary of the flow domain,
respectively. The total height of water h is thus equal to H − b, and all three quantities
are independent of z. This setup is illustrated for a cross section of the flow domain in
Fig. 2.1.

To simplify system (2.6) as in [Vre94, Sec. 2.4] or [Cus11, Sec. 4.3], the relative
magnitude of all terms is analyzed w. r. t. the spatial length scales L and A, as well as
w. r. t. a typical horizontal velocity U and a time scale T . If all terms that are small in
magnitude are omitted, the vertical component of (2.6b) becomes

∂p

∂z
= −gρ. (2.7)

The self-evident interpretation of the hydrostatic pressure assumption (2.7) is that any
vertical change in the pressure is caused by the weight of water. This approximation is
valid for most applications of the SWE. From (2.7) we obtain an explicit expression for
the pressure using the fundamental theorem of calculus

p(y, z, t) = p(y, H(y, t), t) +
ˆ z

H(y,t)

∂p

∂ζ
(y, ζ, t) dζ = p(y, H(y, t), t)− gρ (z −H(y, t)) .
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The horizontal pressure gradient thus reads

∇yp(y, z, t) = ∇yp(y, H(y, t), t) + gρ∇yH(y, t).

The first term on the right is the atmospheric pressure gradient, which we assume to be
zero. In general, it appears as a source term in the right hand side.

Let us now define boundary conditions at the top and bottom of the water column.
The corresponding boundaries are formally defined by H(y, t)−z = 0 and b(y, t)−z = 0,
respectively. Taking the material derivatives of these expressions yields

∂H

∂t
+ u · ∇yH − w = 0 at z = H(y, t), (2.8a)

∂b

∂t
+ u · ∇yb− w = 0 at z = b(y, t). (2.8b)

In most applications of the SWE, the bathymetry b plays the role of a parameter and
is often assumed to be independent of time t. If b is known, (2.8b) constitutes the
boundary condition at the bottom of the flow domain. The free surface elevation H, on
the other hand, is the primary unknown of the system, which at this intermediate stage
consists of (2.8a), the continuity equation (2.6a), and d− 1 momentum equations

∂u

∂t
+ ∇ · (u⊗ v) + g∇yH = 0. (2.9)

For d = 3, this system is referred to as the three-dimensional shallow water equations.
The final step towards obtaining the classical SWE is integration over the total depth

of water. To this end, we define the depth-averaged horizontal velocity as

ū(y, t) = 1
h(y, t)

ˆ H(y,t)

b(y,t)
u(y, z, t) dz. (2.10)

Omitting dependencies on y and t for the sake of readability, we integrate (2.6a) using
the Leibniz rule. The boundary conditions (2.8) combined with the definitions of the
total water height h = H − b and depth-averaged velocity (2.10) produce

0 =
ˆ H

b

[
∇y · u+ ∂w

∂z

]
dz = ∇y ·

ˆ H

b

u dz −∇yH · u|H +∇yb · u|b + w|H − w|b

= ∂h

∂t
+∇y · (hū).

Similarly, we integrate the momentum equation (2.9) over the water column, which
yields

0 = ∂(hū)
∂t

+ ∇y ·
ˆ H

b

u⊗ u dz + g

2∇yh
2 + gh∇yb.
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Here we have again made use of the boundary conditions (2.8) and of the definition
h = H − b. Since the integral of u in vertical direction equals the discharge hū (also
referred to as momentum, in analogy to the Euler equations), we obtain
ˆ H

b

(u− ū+ ū)⊗ (u− ū+ ū) dz =
ˆ H

b

(u− ū)⊗ (u− ū) dz + hū⊗ ū. (2.11)

If we assume the difference between u and ū to be small, the integral on the right of
(2.11) is negligible.

We are now in a position to formulate the system of shallow water equations. To
avoid a cumbersome notation, we omit the subscript y of the gradient operator but
keep in mind that only partial derivatives w. r. t. horizontal components constitute
∇ in the SWE context. Thus, the SWE are formulated either in the one- or in the
two-dimensional setting , i. e., for d ∈ {1, 2}. From now on, we again denote the spatial
variable as x ∈ Rd. Moreover, v replaces the symbol ū. Using this convention, we
may denote both the depth-averaged velocity in the SWE and the velocity in the Euler
equations (2.1) by the same symbol. In conclusion, the shallow water equations read

∂h

∂t
+∇ · (hv) = 0, (2.12a)

∂(hv)
∂t

+ ∇ ·
(
hv ⊗ v + g

2h
2I
)

+ gh∇b = 0. (2.12b)

Note that for nonflat bottom topography, i. e., in the case ∇b 6= 0, the SWE are a
system of balance laws rather than conservation equations.

2.2 Structure of the problems under consideration
Having discussed the derivation of the systems of equations considered in this thesis, we
present some basic results regarding their structure. In the remainder of this chapter, the
equations are assumed to be in nondimensional form. The derivation thereof is illustrated
in [Fei03, Sec. 1.2.23] for the compressible Navier–Stokes equations. Dimensionless
forms of the Euler and shallow water systems are derived similarly. The significance
of some of the concepts presented below will become clear in Section 2.3. Besides the
implications for the continuous models, some of the aspects detailed in this section are
also used in numerical methods. We begin with some basic definitions.

Definition 2.1 (Hyperbolicity)
Let u = u(x, t) ∈ Rm, f = (f1(u), . . . , fd(u)) ∈ Rm×d with fi ∈ C1(Rm)m, i ∈ {1, . . . , d},
s = s(u,∇b) ∈ Rm where b = b(x) ∈ R is a known parameter. The system of equations

∂u

∂t
+∇ · f(u) + s(u,∇b) = 0 (2.13)
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is called hyperbolic at u ∈ Rm if for all n on the unit sphere Sd−1
1 the directional Jacobian

f ′n(u) ··=
∂

∂u
(f(u)n) ∈ Rm×m

of f is diagonalizable with real eigenvalues, which are also referred to as wave speeds.
If, in addition, all eigenvalues are distinct, the system is called strictly hyperbolic. The
solution vector u is composed of conserved unknowns. The function f is called the
inviscid flux of system (2.13). We refer to s(u,∇b) as the nonconservative term. ♦

For m > 1, the hyperbolicity requirement may impose certain constraints on the
components of u or functions thereof. As we will see below, these constraints are
important for physical admissibility of u in the case of the Euler and shallow water
equations. In the abstract setting of Definition 2.1 we use the following notion.
Definition 2.2 (Largest admissible set)
The largest admissible set of (2.13) is defined as

Amax ··= {u ∈ Rm : (2.13) is hyperbolic at u} . ♦

For the following definition, as well as for the numerical methods considered in this
work, it is essential that Amax be a convex subset of Rm.
Definition 2.3 (Entropy pairs, functions, variables and potentials)
Let the largest admissible setAmax of (2.13) be convex. Consider a piecewise continuously
differentiable function

η : Amax × R→ R
(u, b) 7→ η(u, b)

and its derivative w. r. t. the first argument

v(u, b) ··=
∂

∂u
η(u, b) ∈ Rm.

If η(·, b) is convex for all b ∈ R, and there exists a corresponding piecewise continuously
differentiable vector field q = (q1, . . . , qd) = q(u, b) ∈ R1×d satisfying the relationships

∂

∂u
qk(u, b) = f ′k(u)Tv(u, b), k ∈ {1, . . . , d}, (2.14a)

∂

∂b
q(u, b) · ∇b = v(u, b) · s(u,∇b), (2.14b)

then (η, q) is called an entropy pair for (2.13). The functions η, v, q are referred to as
entropy function, entropy variable and entropy flux, respectively. The vector field

ψ(u, b) = v(u, b)Tf(u)− q(u, b)

is called the entropy potential of the entropy pair (η, q). ♦
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The motivation for introducing the quantities in Definition 2.3 will become apparent
in Section 2.3. For now, we observe that if we multiply (2.13) by v(u, b)T from the left,
assume smoothness and use the chain rule as well as (2.14), we obtain

0 = v(u, b)T
[
∂u

∂t
+

d∑
k=1

f ′k(u) ∂u
∂xk

+ s(u,∇b)
]

= ∂η(u, b)
∂u

· ∂u
∂t

+
d∑

k=1

∂

∂u
qk(u, b) ·

∂u

∂xk
+ ∂

∂b
q(u, b) · ∇b

= ∂η(u, b)
∂t

+∇ · q(u, b). (2.15)

Here we also used the assumption that the parameter b is independent of time (see
Definition 2.1). The additional conservation law (2.15) holds for any convex entropy
η(u, b) and the corresponding flux q(u, b) if u is a smooth solution to problem (2.13).

2.2.1 Scalar conservation laws
Although we are mainly interested in hyperbolic systems, scalar conservation laws are
considered in this thesis as well. Depending on the application, such problems may
model the evolution of different physical quantities u = u(x, t) ∈ Rm, m = 1. The choice
of a particular model is determined by the formula for the inviscid flux function f(u).
Scalar equations can serve as a stepping stone for analysis and numerical solution of
more advanced problems, which is the main motivation for studying them in this work.
In the scalar case, our investigations are focused on the pure conservation law

∂u

∂t
+∇ · f(u) = 0 (2.16)

to which (2.13) reduces for s(u, b) = 0. No matter how f ∈ C1(R)d is defined, equation
(2.16) is strictly hyperbolic and the largest admissible set is Amax = R.

If (2.16) is considered in a bounded domain Ω ⊂ Rd, boundary conditions need to
be imposed at the inlet

Γ−(t) ··= {x ∈ ∂Ω : f ′(u(x, t)) · n(x) < 0},

where n is the unit outward normal to ∂Ω. No boundary condition is imposed at the
outlet Γ+(t) ··= ∂Ω \ Γ−(t).

Any convex function η ∈ C2(R) serves as an entropy for (2.16). In particular,
we make use of the square entropy η(u) = u2

2 . The corresponding entropy fluxes and
potentials depend on the inviscid flux. They are specified in the subsequent chapters for
each scalar conservation law under consideration.
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2.2.2 Euler equations of gas dynamics
The Euler equations (2.1) with the gravitational force g = −ged can be written in the
form (2.13) with b = xd. The nonconservative source term is given by

s(u,∇xd) = [0, gρ∇xd, ρg∇xd · v]T.

For many applications of gas dynamics, however, gravitational effects are negligible,
which is why, we restrict the following discussion to the case s(u,∇xd) = 0.

There are m = d + 2 equations and unknowns in the d-dimensional Euler system.
The vector of conserved unknowns u and the inviscid flux written in terms of these
unknowns read

u =

 ρρv
ρE

 , f(u) =


(ρv)T

1
ρ
(ρv)⊗ (ρv) + (γ − 1)

(
ρE − |ρv|

2

2ρ

)
I(

γρE − (γ−1)|ρv|2
2ρ

)
(ρv)T

ρ

 .
Here the equation of state for the pressure (2.5) has been inserted into f . Usually, a
formulation similar to (2.1) in combination with (2.5) is chosen to avoid this cumbersome
notation. In this fashion, we use the primitive variables ρ,v, and p from here on out.
One has to keep in mind that v and p are derived quantities, i. e., functions of the
conserved unknowns. For instance, the velocity vector v is defined pointwise as the
quotient of momentum ρv and density ρ.

For n ∈ Sd−1
1 , the eigenvalues of the flux Jacobian f ′n(u) are [Dol15, Sec. 8.1]

λ1(u,n) = v · n−
√
γp/ρ, λ2(u,n) = . . . = λd+1 = v · n,

λd+2(u,n) = v · n+
√
γp/ρ.

Since the adiabatic constant γ is positive (cf. Section 2.1.1), the largest admissible set is{
u = (ρ, ρvT, ρE)T ∈ Rd+2 : p/ρ ≥ 0

}
= {u ∈ Rd+2 : e(u) ≥ 0}, (2.17)

where e(u) = ρE
ρ
− 1

2
|ρv|2
ρ2 is the internal energy (cf. Section 2.1.1). For practical purposes

however, this set is too large since it allows negative densities as long as the corresponding
pressure is also negative. Therefore, we restrict ourselves to the physically relevant case
with nonnegative densities and choose the largest admissible set to be the subset

Amax =
{
u = (ρ, ρvT, ρE)T ∈ Rd+2 : ρ ≥ 0, e(u) ≥ 0

}
=
{
u = (ρ, ρvT, ρE)T ∈ Rd+2 : ρ ≥ 0, p ≥ 0

}
of (2.17). In this work, we do not consider examples in which vacuum states occur,
i. e., the density remains strictly positive. This assumption could also be incorporated



20 Theory of hyperbolic problems

into the definition of the admissible set. The convexity of Amax follows from the fact
that for ρ > 0, the pressure p is a concave function of the vector of conserved unknowns.
For d ∈ {1, 2, 3}, this property can easily be shown by checking that the eigenvalues of
its Hessian are nonpositive.
Remark 2.4
The set (2.17) is not convex. Indeed, the internal energy of some convex combinations
of the one-dimensional states u1 =(1, 1, 1/2)T and u2 = (−1, 0,−1/2)T is negative. ♦

In the absence of vacuum states, the Mach number

M = M(u,n) = |v · n|√
γp/ρ

is well defined and characterizes the behavior of compressible flows. These are called
subsonic for M < 1, sonic for M = 1 and supersonic for M > 1.

For hyperbolic systems of equations, the correct imposition of boundary conditions
is more involved than in the scalar case. In general, the boundary type depends on the
number of nonpositive eigenvalues of f ′n(u), where n is the outward unit normal to the
boundary ∂Ω of a finite domain Ω. The correct type of boundary is determined by the
Mach number and the sign of the normal velocity v · n. Following [Fei03, Sec. 3.3.6],
we summarize the treatment of different boundary types for the compressible Euler
equations in Tab. 2.1. It is possible to prescribe different sets of quantities at subsonic
boundaries. We refer to [Ghi03] for an in-depth discussion of this issue.

M v · n eigenvalues boundary type prescribed quantities
0 0 λ1 < 0 < λm reflecting wall v · n = 0

> 1 < 0 λ1 < . . . < λm < 0 supersonic inlet ρ, v, p
> 1 > 0 0 < λ1 < . . . < λm supersonic outlet none
≤ 1 < 0 λ1 < λd+1 < 0 ≤ λm subsonic inlet ρ, v
≤ 1 > 0 λ1 ≤ 0 < λ2 < λm subsonic outlet p

Table 2.1: Types of boundary conditions for the compressible Euler equations [Fei03, Sec. 3.3.6].

The quantity s(u) = log (pρ−γ) is called the specific entropy of the Euler equations.
For this system, Harten [Har83a] suggests to use the entropy pair

(η(u), q(u)) =
(
ρs(u)
1− γ ,

ρvs(u)
1− γ

)
and proves the convexity of η. Note that the specific entropy s is concave while the
mathematical entropy η is convex. The corresponding entropy variable and potential
read [Paz19]

v(u) =
[
γ − s
γ − 1 −

ρ|v|2

2p ,
ρvT

p
, −ρ

p

]T

, ψ(u) = ρv.
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By using Amax as the largest invariant set, we follow the same approach as pursued, for
instance, by Shu and coauthors [Zha11, Che17]. An additional constraint that could be
incorporated into the admissible set is a minimum principle that holds for the specific
entropy s. This property was proven by Tadmor [Tad86]. Publications that use it as a
criterion for designing numerical methods include [Kho94, Gue18a, Paz21]. Convexity
of the corresponding invariant set can also be proven, see [Gue18a] and the references
therein. It was demonstrated in [Kho94, Gue18a] that strict imposition of the entropy
minimum principle reduces the order of accuracy of numerical methods. Therefore, we
adopt a different criterion for limiting the entropy of the Euler equations in the following
chapters. We remark, however, that the algorithms presented in this thesis could be
modified to additionally enforce Tadmor’s minimum principle on s.

2.2.3 Shallow water equations
For the shallow water equations, we have d ∈ {1, 2} and m = d+ 1. The parameter b of
the nonconservative term represents the bathymetry. The solution vector, inviscid flux
and nonconservative term of the SWE (2.12) read

u =
[
h
hv

]
, f(u) =

[
(hv)T

1
h
(hv)⊗ (hv) + g

2h
2I

]
, s(u,∇b) =

[
0

gh∇b

]
.

The eigenvalues of the flux Jacobian f ′n(u) are given by [LeV02, Secs. 13.1, 18.7]

d = 1 : λ1(u,n) = v · n−
√
gh, λ2(u,n) = v · n+

√
gh,

d = 2 : λ1(u,n) = v · n−
√
gh, λ2(u,n) = v · n, λ3 = v · n+

√
gh

in the one and two-dimensional setting, respectively. The largest admissible set of the
SWE is thus Amax =

{
u = (h, hvT) ∈ Rd+1 : h ≥ 0

}
, which is clearly convex.

Assuming the water height h to be nonzero, we define the quantity

Fr = Fr(u,n) = |v · n|√
gh

,

which is called the Froude number for a given flow direction n ∈ Sd−1
1 . It represents

the ratio of inertia and pressure gradient terms [Vre94, Sec. 2.3] and characterizes the
flow behavior similarly to the Mach number M in gas dynamics. For Froude numbers
smaller than one, the flow is subcritical, Fr = 1 corresponds to critical flows, and Froude
numbers larger than one occur in supercritical flows. Some authors prefer to use the
nomenclature sub-, and supersonic instead of -critical, just as for the characterization of
compressible flows in terms of M (cf. Section 2.2.2).

The number of boundary conditions to be imposed at a point x ∈ ∂Ω on the boundary
of Ω ⊂ Rd equals the number of nonpositive eigenvalues of the Jacobian f ′n(u), where
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n = n(x) is the outward unit normal to ∂Ω at x. In addition to the Froude number,
the sign of the normal velocity v ·n is needed to uniquely determine the boundary type.
Appropriate choices of boundary conditions for the SWE are summarized in Tab. 2.2.

Fr v · n eigenvalues boundary type prescribed quantities
0 0 λ1 < 0 < λm reflecting wall v · n = 0

> 1 < 0 λ1 < . . . < λm < 0 supercritical inlet h, v
> 1 > 0 0 < λ1 < . . . < λm supercritical outlet none
≤ 1 < 0 λ1 ≤ λd < 0 ≤ λm subcritical inlet hv
≤ 1 > 0 λ1 ≤ 0 < λ2 ≤ λm subcritical outlet h

Table 2.2: Types of boundary conditions for the one- and two-dimensional shallow water equations.

When it comes to finding an entropy pair, one has to be careful to account for
the nonconservative term, which vanishes for problems with constant bathymetry. In
general, terms depending on b appear in the entropy function, variable and flux. To
avoid making a distinction between this general case and problems with flat topography,
we place the origin of the Cartesian coordinate system at a point x ∈ Rd where b(x) = 0.
In the case of a constant bathymetry, the obvious consequence of this convention is
b ≡ 0. The sum of potential and kinetic energies

η(u, b) = 1
2
(
gh2 + h|v|2

)
+ ghb

serves as an entropy for the SWE in the general case [Win17]. Convexity of η w. r. t. u
can easily be shown by checking that the Hessian of η is symmetric positive definite.
The entropy variable, flux, and potential

v(u, b) =
[
g(h+ b)− |v|22

v

]
, q(u, b) =

(
g(h+ b) + 1

2 |v|
2
)
hv,

ψ(u, b) = ψ(u) = g

2h
2v

corresponding to η are obtained from a simple calculation.

2.3 Theory of hyperbolic conservation laws
We close this chapter with a review of some theoretical aspects. Our presentation is
focused on concepts that are needed to develop reliable numerical methods for nonlinear
hyperbolic problems. The main challenge is to ensure that approximations converge to
physically admissible exact solutions. The existing theory of hyperbolic PDEs gives an
insight into the qualitative behavior of such solutions that may represent, e. g., shocks
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or rarefaction waves. This section includes a basic introduction to the method of
characteristics and weak solutions. We also introduce the entropy inequality and discuss
its connection to the unique vanishing viscosity solution. Most of the theorems in this
section are taken from Dafermos [Daf00] and their proofs can be found therein.

In the remainder of this chapter, we restrict ourselves to the study of Cauchy
problems for pure conservation laws. Thus, the influence of boundary conditions and
nonconservative terms will not be addressed. In Section 2.3.1, we discuss the scalar
problem in detail. Theoretical results for general systems of conservation laws are
presented in Section 2.3.2. We close our review in Section 2.3.3 with a brief summary
of additional difficulties arising in the study of hyperbolic problems.

Before discussing scalar problems and systems individually in Sections 2.3.1 and
2.3.2, we introduce the general Cauchy problem

∂u

∂t
+∇ · f(u) = 0 in Rd × R+, (2.18a)

u = u0 in Rd. (2.18b)

Here u = u(x, t) ∈ Rm is the vector-valued unknown, f ∈ C1(Rm)m×d is the inviscid flux
function, and u0 ∈ L∞(Rd)m is an initial datum.

Definition 2.5 (Classical solutions, Fei03 Def. 2.6)
Let T ∈ R+ ∪ {∞}. A function u ∈ C1(Rd × (0, T ))m ∩ C(Rd × [0, T ))m is called a
classical solution of (2.18) on Rd × (0, T ) if

i) u(x, t) ∈ Amax for all (x, t) ∈ Rd × (0, T ), where Amax is the largest admissible
set of (2.18a), and

ii) u satisfies (2.18a), (2.18b) pointwise in Rd × (0, T ) and Rd, respectively. ♦

2.3.1 Scalar equations
In this section, we are concerned with the Cauchy problem (2.18) for a single scalar
conservation law, i. e., for m = 1. The theory presented below is to a large extent taken
from [Daf00, Chs. 4–6] and loosely follows [LeV92, Ch. 3].

2.3.1.1 The method of characteristics and its limitations

Classical solutions of (2.18) with m = 1 can sometimes be computed with the method
of characteristics. A characteristic is a curve x(t) parametrized by the temporal variable
and satisfying the ordinary differential equation

x′(t) = f ′(u(x(t), t)), t ∈ (0,∞). (2.19)
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Using the chain rule and (2.19), we find that u remains constant along x(t) because

du(x(t), t)
dt = ∇u(x(t), t) · x′(t) + ∂u(x(t), t)

∂t
= ∂u(x(t), t)

∂t
+∇ · f(u(x(t), t)) = 0.

It follows that the classical solution u(x, t) to (2.18) with m = 1 can be constructed by
backtracking in time along the characteristics. Let x0 = x(0) ∈ Rd be the starting point
of a characteristic x(t). Then we have

u(x(t), t) = u(x(0), 0) = u0(x0). (2.20)

Inserting (2.20) into (2.19), we observe that x′(t) = f ′(u0(x0)). Thus, the characteristics
are straight lines in the (d+ 1)-dimensional (x, t)-hyperplane and satisfy the identity

x(t) = f ′(u0(x0)) t+ x0. (2.21)

Relations (2.20) and (2.21) imply that classical solutions to the scalar conservation law
(2.18) with a general flux function f(u) are implicitly defined by

u(x, t) = u0(x− f ′(u(x, t)) t) = u0(x0). (2.22)

Thus, the value of a smooth solution u at (x, t) ∈ Rd×R+ can be determined by finding
a fixed point ū = u(x, t) of the nonlinear equation ū = u0(x− f ′(ū) t).

Example 2.6 (Linear advection equation)
If the inviscid flux is linear, i. e., f(u) = vu and v ∈ Rd is a constant velocity vector,
(2.18a) is called the linear advection equation. In this case, the solutions to (2.19) are
given by x(t) = vt+ x0. Owing to (2.22), the solution to the advection equation reads

u(x, t) = u0(x− vt). (2.23)

For a smooth initial profile and d = 1, such solutions are displayed in Fig. 2.2 along
with the corresponding characteristics. Note that in the (x, t)-diagram the slope of each
characteristic is 1/v, where v is the constant 1D velocity. ♦

We have established that the characteristics are lines of constant slope in the (x, t)-
hyperplane. For nonlinear fluxes f , these lines may cross. The implication is that u is
multivalued and, therefore, not well defined. Following [LeV92, Fig. 3.4], we sketch this
scenario in Fig. 2.3 for the one-dimensional inviscid Burgers equation

∂u

∂t
+ 1

2
∂(u2)
∂x

= 0. (2.24)

We observe here that intersecting characteristics correspond to a situation in which
the slope of u becomes infinite. The chain rule, which we used to derive the method
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Figure 2.2: Advection equation with smooth initial data. Classical solution at t ∈
{

0, 1
2 , 1
}
(left) and

the corresponding characteristics (right).
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Figure 2.3: Burgers equation (2.24) with initial data u0(x) = max{0, 1− |x|}. Solution at t ∈
{

0, 1
2 , 1
}

(left) and the corresponding characteristics (right).

of characteristics, is generally not applicable in this situation. Therefore, the concept
of classical solutions and the implicit formula (2.22) fail at discontinuities. To develop
a theory that can handle cases such as the one in Fig. 2.3, we need to introduce the
concept of weak solutions to (2.18). To this end, we first define the functional spaces

L1
loc(Ω) ··=

{
w : Ω→ R measurable : w|K ∈ L1(int(K)) ∀ compact K ⊂ Ω

}
,

C1
0(Ω) ··=

{
w ∈ C1(Ω) : suppw ⊂ Ω compact

}
for a general open set Ω 6= ∅. Multiplying the conservation law (2.18a) by a compactly
supported test function w ∈ C1

0(Rd × [0, T )), integrating the weighted residual over the
space-time domain Rd × [0, T ) and performing integration by parts, one arrives at the
following weak formulation that defines a generalized solution to (2.18).

Definition 2.7 (Weak solutions to scalar conservation laws)
For T ∈ R+ ∪ {∞}, a function u ∈ L1

loc(Rd × (0, T )) is said to solve the scalar Cauchy
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problem (2.18) weakly on Rd × [0, T ) if the identityˆ T

0

ˆ
Rd

[
u
∂w

∂t
+ f(u) · ∇w

]
dx dt+

ˆ
Rd
u0w(·, 0) dx = 0 (2.25)

holds for all test functions w ∈ C1
0(Rd × [0, T )). Note that w(·, T ) ≡ 0 by definition. ♦

Remark 2.8
In the literature, there is no unanimous agreement regarding the regularity of w (and
to some extent that of u). LeVeque’s [LeV92] definition is identical to ours. Dafermos
[Daf00] uses locally Lipschitz continuous test functions, while Feistauer et al. [Fei03]
require test functions to be in C∞0 (Rd × (0, T )). In any case, the test function needs to
be compactly supported in order for the integrals in (2.25) to be well defined. ♦

Weak solutions of hyperbolic problems are thus allowed to have certain discontinuities.
However, a particular relationship between the solution values along a discontinuity
can be shown to hold by exploiting conservation properties. To formulate this so-called
Rankine–Hugoniot condition, we first introduce the notion of piecewise smooth solutions.
The details can be found in [Fei03, Sec. 2.3] and are omitted for brevity.
Definition 2.9 (Piecewise smooth functions, Fei03 Def. 2.14)
Let T ∈ R+ ∪ {∞}. A function u defined on Rd × [0, T ) is called piecewise smooth if
there exists a finite number of smooth hypersurfaces Γ in Rd × [0, T ) outside which u is
of class C1 and on which u and its first derivatives have well-defined one-sided limits.♦
Remark 2.10
It can be shown that (2.23) is a weak solution of the linear advection equation in
more general settings than the scenario considered in Example 2.6. In particular, (2.23)
remains valid if u0 is piecewise smooth. ♦

The following theorem is a consequence of [Fei03, Exe. 2.13, Thm. 2.15].
Theorem 2.11 (Rankine–Hugoniot jump condition, Fei03 Sec. 2.3.2)
Let u be a piecewise smooth weak solution of (2.18). Then u is a classical solution in
any subdomain in which it is of class C1. On each smooth hypersurface Γ such that u is
discontinuous in the normal direction (nT

x , nt), the Rankine–Hugoniot condition

(uL − uR)nt + (f(uL)− f(uR))nx = 0 (2.26)

holds for the one-sided limits uL and uR (see Fig. 2.4 for an illustration inspired by
[Fei03, Fig. 2.3.4]). ♦

For nx = 0, condition (2.26) implies continuity of u at (x, t) ∈ Γ. Elsewhere, we can
divide (2.26) by |nx|. Thus, upon setting n ··= nx/|nx| and λ ··= −nt/|nx|, we obtain

λ(uL − uR) = (f(uL)− f(uR))n. (2.27)

The vector n and the scalar λ can be interpreted as the direction and corresponding
speed of propagation of the discontinuity Γ [Fei03, Sec. 2.3].
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Figure 2.4: Illustration of the Rankine–Hugoniot condition along a smooth hypersurface Γ in the
(x, t)-plane. The weak solution is discontinuous and attains values uL and uR on different
sides of Γ. The vector (nx, nt) in the (x, t)-hyperplane is orthogonal to Γ.

Example 2.12 (LeV92 Sec. 3.5)
We consider the following Riemann problem for the one-dimensional Burgers equation

∂u

∂t
+ 1

2
∂(u2)
∂x

= 0 in R× R+, u0(x) =
uL if x < 0,
uR if x > 0,

uL,R ∈ R. (2.28)

The Rankine–Hugoniot condition (2.27) implies that the speed of propagation in direction
n = 1 equals

λ = 1
2
u2
L − u2

R

uL − uR
= uL + uR

2 (2.29)

and the speed of propagation in the opposite direction n = −1 equals −λ. It can be
shown that for uL ≥ uR, the shock solution

u(x, t) =
uL if x < λt,

uR if x > λt
(2.30)

with λ given by (2.29) is the unique weak solution of (2.28).
If uL < uR, (2.30) is also a weak solution. However, there are infinitely many other

functions satisfying the weak formulation (2.25) [LeV92, Daf00]. One of them is the
so-called rarefaction wave solution

u(x, t) =


uL if x ≤ uLt,
x
t

if uLt < x < uRt,

uR if uRt ≤ x.

(2.31)
♦

The characteristics for the weak solutions (2.30) and (2.31) of (2.28) are depicted
in Fig. 2.5. The colored ones correspond to the shock, which satisfies the Rankine-
Hugoniot condition (2.27). Note that the other characteristics in Fig. 2.5a go into the
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one along which the shock propagates, while in Fig. 2.5b they emanate from it. In the
former scenario, the solution remains constant along a characteristic until it bumps
into the shock. When characteristics cross, the constant initial values that they carry
are irretrievably lost. A parallel can be drawn to astrophysics because such loss of
information occurs if mass is sucked into a black hole. Upon crossing the event horizon
of a black hole, mass cannot escape its gravitational pull. In view of this analogy,
the situation displayed in Fig. 2.5b corresponds to the nonphysical situation in which
information escapes from the shock. As we will see below, the solutions corresponding to
Figs. 2.5a and 2.5c are admissible (stable), while the ones associated with characteristics
that emanate from a shock, as in Fig. 2.5b, are not admissible (unstable).

(a) (2.30) with uL = 1, uR = 0
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(b) (2.30) with uL = 0, uR = 1
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(c) (2.31) with uL = 0, uR = 1
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Figure 2.5: Characteristics for the Riemann problem (2.28). Left and center: shock solutions, right: a
rarefaction wave solution.

2.3.1.2 The vanishing viscosity approach for scalar problems

The nonuniqueness of solutions observed in Example 2.12 motivates imposition of
additional admissibility constraints on weak solutions. As pointed out in [LeV92,
Sec. 3.3], the possible existence of discontinuities and characteristics that intersect each
other is a consequence of neglecting the diffusive effects, which prevent formation of real
discontinuities in nature. In fact, the inviscid model (2.18) should be understood as the
ε↘ 0 limit of the viscous Cauchy problem

∂u

∂t
+∇ · f(u) = ε∆u in Rd × R+, (2.32a)

u = u0 in Rd. (2.32b)

A weak solution u to the inviscid problem (2.18) is admissible if a sequence of solutions
{uε}ε>0 to (2.32) converges to u as ε ↘ 0. The limit u = limε↘0 uε is referred to as
vanishing viscosity solution (VVS). Naturally, questions regarding well-posedness of
(2.32) arise just as they do for the inviscid problem (2.18). According to [Daf00, Sec. 6.3],
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if f is sufficiently regular and u0 ∈ L∞(Rd), then there is a unique solution to (2.32). If,
in particular, f is Hölder-continuous, then the solution uε to (2.32) is in C1(Rd× [0,∞)).

Let us now revisit the concept of entropy pairs (see Definition 2.3) and their con-
nection to (2.32). In the setting of a single scalar conservation law, we consider a
convex entropy η ∈ C2(R) and corresponding entropy flux q = q(u) ∈ R1×d satisfying
q′(u) = v(u)f ′(u), where v(u) = η′(u) is the entropy variable. Adapting the derivation
of (2.15) to (2.32a), we obtain the entropy balance equation

∂η(u)
∂t

+∇ · q(u) = εv(u)∆u = ε∆η(u)− εη′′(u)|∇u|2. (2.33)

Integrating (2.33) over a finite domain Ω ⊂ Rd with outward unit normal n to ∂Ω yields
ˆ

Ω

[
∂η(u)
∂t

+∇ · q(u)
]

dx =
ˆ
∂Ω
εv(u)∇u · n ds−

ˆ
Ω
εη′′(u)|∇u|2 dx. (2.34)

It can be argued [LeV92, Sec. 3.8], that the first integral in the right hand side of (2.34)
vanishes in the limit ε→ 0. In particular, this statement is obviously true for solutions
that are piecewise smooth in the sense of Definition 2.9. If u is discontinuous in Ω, the
second integral on the right of (2.34) may not converge to zero as ε↘ 0. However, due
to convexity of η, the right hand side of (2.34) will be nonpositive in the limit ε↘ 0.
This somewhat heuristic observation justifies the use of the entropy inequality

∂η(u)
∂t

+∇ · q(u) ≤ 0 (2.35)

as a selection criterion for weak solutions. The admissible one should satisfy a weak
form of (2.35), which is derived similarly to (2.25) but using nonnegative test functions.
Definition 2.13 (Admissible weak solutions)
For T ∈ R+∪{∞}, a weak solution u of the scalar Cauchy problem (2.18) on Rd× [0, T )
is said to be admissible w. r. t. an entropy pair (η, q) if the inequality

ˆ T

0

ˆ
Rd

[
η(u) ∂ψ

∂t
+ q(u) · ∇ψ

]
dx dt+

ˆ
Rd
η(u0)ψ(·, 0) dx ≥ 0 (2.36)

holds for all test functions ψ ∈ C1
0(Rd × [0, T )) such that ψ(x, t) ≥ 0 for all x ∈ Rd,

t ∈ [0, T ). If (2.36) holds for all entropy pairs (η, q) of (2.18), then we call u an
admissible solution (or entropy solution) of (2.18). ♦

The question of how to verify the admissibility of weak solutions remains. Clearly
neither the fact that these are ε↘ 0 limits of viscous problems, nor the check against
all convex functions η is feasible. However, it suffices to verify the entropy inequality for
the family of Kruzhkov entropy pairs

ηκ(u) = |u− κ|, qκ(u) = sgn(u− κ)(f(u)− f(κ)), (2.37)
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where κ ∈ R is the Kruzhkov parameter. A weak solution can be shown to be admissible
if it satisfies entropy inequalities for all Kruzhkov entropy pairs [Daf00, Sec. 6.2]. Note
that this family of entropy functions and corresponding entropy fluxes is only piecewise
smooth. Nevertheless, the relationship q′κ(u) = η′κ(u) f ′(u) is satisfied for all u ∈ R.

It is shown by Panov [Pan94, Thm. 1] that for scalar one-dimensional conservation
laws (2.18a) with f = f ∈ C2(R) and f ′′ > 0, the admissible weak solution w. r. t. an
arbitrary entropy pair is unique. In this setting, it is therefore sufficient to check the
admissibility of solutions w. r. t. a single entropy pair.
Example 2.14
Let us briefly revisit the two weak solutions for the 1D Burgers equation found in
Example 2.12. The entropy admissibility criterion

q(uL)− q(uR)− λ (η(uL)− η(uR)) ≥ 0, (2.38)

where λ = uL+uR
2 , follows from (2.36) similarly to the Rankine–Hugoniot condition. The

entropy flux corresponding to the square entropy η(u) = u2

2 is q(u) = u3

3 . An algebraic
manipulation of (2.38) for this entropy pair yields

1
12(uL − uR)3 ≥ 0.

Therefore, the weak solution (2.30) is admissible if and only if uL ≥ uR. In this case,
Panov’s theorem [Pan94, Thm. 1] implies that the shock solution is admissible w. r. t. all
entropy pairs. With similar arguments it can be shown that the rarefaction wave (2.31)
is the unique admissible solution to (2.28) if uL < uR. ♦

Using the concepts of weak solutions and entropy inequalities, one can prove well-
posedness of the scalar Cauchy problem (2.18). The following results are taken from
[Daf00, Secs. 6.2–6.3] and demonstrate how this property is shown. We focus on the
vanishing viscosity approach. However, there are several other methods that yield the
same result for the scalar problem (see [Daf00, Ch. 6]).

Theorem 2.15 (Properties of weak admissible solutions, Daf00 Thm. 6.2.2)
Given two initial data functions u0, ū0 taking values in an interval [a, b], let u and ū
be corresponding weak solutions that are admissible in the sense of Definition 2.13 for
T ∈ R+ ∪ {∞}. Then there exists λ = λ(a, b, f) ≥ 0 such that for any t ∈ [0, T ), r > 0

ˆ
Br(0)

max{0, u(·, t)− ū(·, t)} dx ≤
ˆ

Br+λt(0)
max{0, u0 − ū0} dx,

‖u(·, t)− ū(·, t)‖L1(Br(0)) ≤ ‖u0 − ū0‖L1(Br+λt(0)).

Furthermore, if u0 ≤ ū0 almost everywhere (a. e.) in Rd, then u ≤ ū, a. e. in Rd× [0, T ).
In particular the (essential) range of both u and ū is contained in [a, b]. ♦
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Theorem 2.15 has the following immediate implications.

Corollary 2.16 (Uniqueness of weak admissible solutions, Daf00 Cor. 6.2.1)
There is at most one admissible weak solution to the scalar Cauchy problem (2.18). ♦

Corollary 2.17 (Finite speed of propagation, Daf00 Cor. 6.2.2)
The value of an admissible weak solution at (x, t) ∈ Rd × R+ depends only on u0|Bλt(x),
where λ is as in Theorem 2.15. ♦

The following theorem is an important auxiliary result in the process of constructing an
admissible weak solution from solutions uε to (2.32) with ε > 0.

Theorem 2.18 (Admissibility of the VVS, scalar case, Daf00 Thm. 6.3.1)
For a sequence {εk}k∈N with εk ↘ 0 as k →∞, assume that the corresponding viscous
solutions {uεk} converge to a function u boundedly almost everywhere on Rd × [0,∞).
Then u is an admissible weak solution of (2.18) on Rd × [0,∞). ♦

After establishing the validity of Theorem 2.18, it remains to prove that the sequence of
viscous solutions does converge as required. Once this task is accomplished, we obtain
the following existence and uniqueness result for scalar conservation laws.

Theorem 2.19 (Well-posedness for scalar equations, Daf00 Thm. 6.2.1)
There exists a unique admissible weak solution u ∈ C([0,∞); L1

loc(Rd)) to the Cauchy
problem (2.18), provided that u0 ∈ L∞(Rd). ♦

We close our discussion of scalar conservation laws here and proceed to a brief review of
the existing theory for hyperbolic systems. The theorems formulated in the next section
can also be applied to scalar problems, which represent the case m = 1.

2.3.2 Systems of equations
Let us now consider the Cauchy problem (2.18) with u = u(x, t) ∈ Rm and u0 ∈ L∞(Rd)m
for m ≥ 1. We assume that f ∈ C1(Rm)m×d and f ′(u) is diagonalizable with real
eigenvalues for all admissible states u ∈ Amax. No further assumptions regarding f(u)
are made. Thus, the theory to be presented is applicable to general hyperbolic problems
in Rd. We first state some results taken from [Daf00].

2.3.2.1 The vanishing viscosity approach for hyperbolic systems

As in the scalar case, smooth solutions may develop infinite slopes. Thus, classical
solutions may not exist for all times, as the following theorem suggests.
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Theorem 2.20 (Breakdown of classical solutions, Daf00 Thm. 5.1.1)
Assume that the hyperbolic system (2.18) is endowed with an entropy η ∈ C2(Rm)
and the Hessian η′′ is symmetric uniformly positive definite on compact subsets of
Amax. Moreover let u0 ∈ C1(Rd)m assume values in a compact subset of Amax, and let
∇u0 ∈ Hk(Rd)m×d for some k > d/2. Then there exists a critical time 0 < T∞ ≤ ∞,
and a unique classical solution u ∈ C1(Rd × [0, T∞)) of (2.18) taking values in Amax.
Moreover, ∇u ∈ C([0, T∞); Hk(Rd)). The interval [0, T∞) is maximal, in the sense that

lim sup
t↗T∞

‖∇u(·, t)‖L∞(Rd) =∞,

whenever T∞ < ∞ and/or the range of u(·, t) escapes from every compact subset of
Amax as t↗ T∞. ♦

Thus, we again seek weak solutions u ∈ L1
loc(Rd × (0, T ))m of (2.18) that satisfy

ˆ T

0

ˆ
Rd

[
u · ∂w

∂t
+ f(u) : ∇w

]
dx dt+

ˆ
Rd
u0 · w(·, 0) dx = 0 (2.39)

for all w ∈ C1
0(Rd × [0, T ))m. This weak formulation is obtained similarly to the scalar

case. In (2.39), the colon stands for a scalar product of matrix-valued functions. It is
defined by A : B = tr(ATB), where tr(·) is the trace of a square matrix, or equivalently

A : B =
k∑
i=1

n∑
j=1

aij bij, A = (aij) i=1,...,k
j=1,...,n

, B = (bij) i=1,...,k
j=1,...,n

, k, n ∈ N.

Note that Theorem 2.11 is not restricted to scalar conservation laws. Thus, the Rankine–
Hugoniot condition (2.27) applies also to piecewise smooth weak solutions of hyperbolic
systems. For a given entropy pair of such a system, we can derive the scalar entropy
inequality (2.35) just as in the case of a single conservation law. Thus, admissibility of
weak solutions to systems is defined as in the scalar case, see Definition 2.13.

Let us now briefly discuss the vanishing viscosity approach for hyperbolic systems,
as presented in [Daf00, Sec. 4.4]. For i, j ∈ {1, . . . , d}, let Bij = Bij(u) = (bijkl(u))mk,l=1
be matrix valued functions of u ∈ Rm. We consider the viscous problem

∂u

∂t
+∇ · f(u) = ε

d∑
i,j=1

∂

∂xi

(
Bij(u) ∂u

∂xj

)
(2.40)

for which one can show the following compatibility result.

Theorem 2.21 (Admissibility of the VVS, system case, Daf00 Thm. 4.4.1)
Let the hyperbolic system (2.18) be endowed with a designated entropy pair (η, q).
Moreover, let u0 assume values in a compact subset of Amax, and u0 − ū be in L2(Rd),
where ū is a state in which η attains its minimum on Amax. Suppose further that for any



Theory of hyperbolic conservation laws 33

ε > 0, problem (2.40) admits a solution uε on [0, T ) that is locally Lipschitz on Rd×(0, T ),
tends to ū as |x| → ∞, and satisfies u(·, 0) = u0 in the strong sense. Moreover, let the uε
assume values in a compact subset B of Amax, where B is independent of ε. Furthermore,
assume that

d∑
j=1

Bij(uε)
∂uε
∂xj
∈ L2(Rd × (0, T ))m, i ∈ {1, . . . , d}

and
d∑

i,j=1
ξT
i η
′′(u)Bij(u)ξj ≥

d∑
i=1

∣∣∣ d∑
j=1

Bij(u)ξj
∣∣∣2 (2.41)

holds for any u ∈ Amax and all ξi ∈ Rm, i ∈ {1, . . . , d}. If uεk → u a. e. in Rd × (0, T )
for a sequence {εk}k∈N with εk ↘ 0 as k →∞, then u is a weak solution of (2.18) on
[0, T ) and satisfies the entropy admissibility condition w. r. t. (η, q). ♦

For scalar conservation laws equipped with the square entropy η(u) = u2

2 , Theorem 2.21
implies the statement of Theorem 2.18. Indeed, the functions Bij are scalar valued and
by setting Bij(u) ··= δij, we obtain the scalar viscous PDE (2.32a). Therefore, (2.41)
holds by construction if η′′(u) ≥ 1. For the square entropy η(u) = u2

2 , we have ū = 0,
and the regularity requirement u0 ∈ L2(Rd) thus implies that the initial data has to
decay as |x| → ∞. Since the regularity assumptions on the sequence of viscous scalar
solutions hold as discussed in Section 2.3.1 and all other requirements of Theorem 2.21
are met, the inviscid limit u is an admissible weak solution.
Remark 2.22
A result similar to Theorem 2.21 is formulated in [Fei03, Thm. 2.22]. Its statement and
requirements are considerably less complicated than those of Theorem 2.21. One reason
for this discrepancy may be that the definitions of weak solutions in [Daf00] and [Fei03]
differ slightly. In both versions of the above theorem, a main assumption is that the
sequence of viscous solutions converges to a candidate solution of the inviscid problem.
If this is not the case, neither admissibility criterion is applicable. ♦

2.3.2.2 Linear hyperbolic systems

Having discussed the vanishing viscosity approach for systems, we close this section
with reviewing a way to derive a closed-form solution of linear hyperbolic systems as in
[LeV92, Ch. 2]. Let us first consider the one-dimensional Cauchy problem

∂u

∂t
+ A

∂u

∂x
= 0 in R× R+, (2.42a)

u = u0 in R, (2.42b)
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where u = u(x, t) ∈ Rm and A ∈ Rm×m. Hyperbolicity implies that the eigenvalues
λ1 ≤ . . . ≤ λm of A are real and the corresponding eigenvalues r1, . . . , rm are linearly
independent. Thus, there exists a spectral decomposition

A = RΛR−1, R,Λ ∈ Rm×m,

such that Λ = diag(λ1, . . . , λm) and the columns of the invertible matrix R = [r1, . . . , rm]
form an eigenvector basis of Rm. Introducing the characteristic variables w = R−1u and
multiplying (2.42a) by R−1 from the left yields

R−1∂u

∂t
+ ΛR−1∂u

∂x
= 0,

or equivalently
∂w

∂t
+ Λ∂w

∂x
= 0. (2.43)

This linear system for the characteristic variables consists ofm linear advection equations
that can be solved independently from each other. The initial data for w are obtained via
the transformation w0(x) = R−1u0(x). Owing to (2.23), the solution for each component
wi of w reads

wi(x, t) = wi0(x− λit), i ∈ {1, . . . ,m}.

Transforming back to conserved unknowns, we obtain the expression

u(x, t) = Rw(x, t) =
m∑
i=1

wi0(x− λit) ri

for the analytical solution to (2.42). Owing to the linearity of (2.42a), no admissibility
conditions need to be checked, just as for the advection equation.

Using the above transformation to characteristic variables one can, for instance,
derive analytical expressions for the solution of the one-dimensional wave equation, see
[LeV92, Sec. 6.3]. For general linear systems, this approach is limited to the 1D case.
Indeed, the multidimensional (d > 1) version

∂u

∂t
+

d∑
i=1

Ai
∂u

∂xi
= 0

of (2.42a) decouples similarly to (2.43) only in the case in which the matrices Ai,
i ∈ {1, . . . , d} can be simultaneously diagonalized, i. e., they have a common eigenvector
basis. In most practical problems, however, the equations are intricately coupled and
each directional Jacobian matrix has its own set of eigenvectors [LeV02, Sec. 18.5]. For
instance, the multidimensional wave equation cannot be simultaneously diagonalized
and solved in the above manner. This complication is a representative example of issues
that arise when dealing with hyperbolic systems of equations in multidimensions.
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2.3.3 Further approaches and limitations of the theory
The theory of hyperbolic systems extends far beyond what is covered in this section.
Further topics on the subject include the study of shocks and rarefaction waves, other
entropy conditions, as well as generalized characteristics (see [LeV92, Daf00]). Many
theoretical results for systems are limited to the one-dimensional setting, while others
impose strict constraints on the data (e. g., assumptions on the strength of shocks).
Analytical solutions to some 1D Riemann problems for hyperbolic systems are known in
closed form or as expressions that require a simple numerical calculation. For the Euler
equations, the derivation of such exact solutions can be found in [Fei03, Sec. 3.1.6].

The following difficulties, among others, arise in theoretical investigations of hyper-
bolic problems. If, for instance, the Cauchy problem is replaced by an initial-boundary
value problem, more advanced concepts such as boundary entropy flux pairs or semi
Kruzhkov entropy pairs are required. Using the latter, Martin [Mar07] shows existence,
uniqueness, and the validity of a maximum principle for weak admissible solutions of
a scalar nonautonomous balance law. Another complication for the theory is due to
possible violations of the Rankine–Hugoniot condition [LeV92, Sec. 8.4]. Recall that the
assumption in Theorem 2.11 is that solutions along hypersurfaces of discontinuity have
well-defined one-sided limits. This property may be violated if shock collisions occur, as
they do in the one-dimensional Woodward–Colella blast wave [Woo84] example. Finally,
it is remarked in [LeV92, Sec. 7.2.1] that there exist unsolvable Riemann problems. For
example, there might be no solution if the magnitude of the jump between the two
states in the initial condition is too large. Of course, the above issues need to be taken
into account in theoretical and numerical studies of a given problem.

In conclusion, the basic theoretical considerations presented in this section are
fundamental to understanding hyperbolic conservation laws. Theory alone, however, is
not a practical approach for solving real-life problems. If the domain of interest has a
complex geometrical shape and general initial/boundary conditions are imposed, the
use of numerical methods is usually the only way to solve the Euler equations or the
SWE (approximately). The results of theoretical studies for one dimensional Riemann
problems can be valuable, however, when it comes to developing and testing numerical
algorithms. We use existing theory in this way in subsequent chapters.

For practical purposes, it is imperative that approximations converge to the vanishing
viscosity solution (as fast as possible) and preserve its qualitative properties. The
remainder of this thesis is devoted to the design, analysis, and evaluation of property-
preserving high-resolution schemes. Approximate solutions to scalar conservation laws
are required to satisfy the maximum principle stated in Theorem 2.15. For hyperbolic
systems, we use methods based on generalized admissibility criteria (see Definition 2.2).
To avoid convergence to nonphysical weak solutions (such as the one sketched in
Fig. 2.5b), we design algorithms that enforce entropy inequalities. Analytical and
numerical studies confirm the claimed properties of the resulting approximations.





Chapter 3

Property-preserving methods for
conservation laws

Having laid out the theoretical groundwork, we now turn towards the design of compu-
tational methods for solving hyperbolic problems numerically. This chapter is organized
as follows. In Section 3.1, we introduce the standard finite element method (FEM) for
discretizing the governing equations in space. The temporal discretization techniques
used in this thesis are discussed in Section 3.2. What follows in Section 3.3 is a review
of algebraic flux correction (AFC) schemes for enforcing discrete maximum principles
and other constraints. In particular, we present Kuzmin’s [Kuz20a] monolithic convex
limiting (MCL) technique and the semi-discrete entropy correction procedures introduced
by Kuzmin and Quezada de Luna [Kuz20c]. The latter algebraic fixes were first extended
to hyperbolic systems by the author of this thesis in [Kuz22a]. The algorithms presented
in this chapter are designed for continuous (multi-)linear finite element approximations.
Numerical studies for nonlinear scalar conservation laws and the compressible Euler
equations are performed in Section 3.4. In subsequent chapters, we extend the AFC
framework to the shallow water equations and very high order discontinuous Galerkin
discretizations of general hyperbolic problems. We also present theoretical results for
AFC space discretizations of the linear advection equation in Chapter 5.

3.1 Finite element discretization

A straightforward way to discretize a PDE is to approximate all partial derivatives by
difference quotients, i. e., linear combinations of function values at discrete locations in
space and time. This approach is adopted in the finite difference method, which has some
well-known drawbacks. In particular, it is tedious to implement for domains with com-
plicated geometries or in situations, where local refinement may be necessary. Moreover,
the regularity of solutions required to prove a priori error estimates is higher for finite
difference methods than for alternative strategies, such as finite element or finite volume
schemes. This drawback can, in some cases, be resolved by proving the equivalence
of certain finite difference approaches to methods that require less regularity. In the
past, structured grid algorithms used to be the main tool for solving multidimensional
hyperbolic problems. Using this framework one can use operator splitting techniques
and apply 1D property-preserving schemes [Bor73, Har83b, Swe84, Sch85, Tad87] in
each spatial direction. Modern generalizations to unstructured grids are typically
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based on finite volume methods or their discontinuous Galerkin (DG) counterparts
[Aud04, Dio13, Che17, Moe17]. Aside from Chapter 6, we employ continuous (linear or
multilinear) Lagrange finite elements in this thesis. The remainder of this section is
devoted to introducing the standard Galerkin discretization in this context. To begin,
we summarize the required properties of computational meshes (also referred to as grids
or triangulations).

Definition 3.1 (Meshes, Ern04 Def. 1.49)
A mesh over a domain Ω ⊂ Rd, d ∈ {1, 2, 3} is a collection K = {K1, . . . , KE} of E ∈ N
compact, connected Lipschitz sets with nonempty interiors such that

Ω =
E⋃
e=1

Ke and int(Ki) ∩ int(Kj) = ∅, i 6= j, i, j ∈ {1, . . . , E}.

The elements in K are also referred to as (mesh) cells or (mesh) elements. ♦

All meshes used in our numerical experiments consist of d-dimensional simplices (intervals
for d = 1, triangles for d = 2, tetrahedra for d = 3) or box elements (intervals for d = 1,
quadrilaterals for d = 2, hexahedra for d = 3). Furthermore, we consider only affine
and geometrically conforming meshes (see [Ern04, Def. 1.53, Def. 1.55]). Conceptually,
it is also possible to apply the methods discussed in this thesis to prismatic elements
in 3D. Nonaffine meshes consisting of cells with curved boundaries can be employed in
combination with quadrature rules of appropriate order. Extensions to geometrically
nonconforming meshes are expected to work similarly to [Bit13], where flux correction
tools are combined with hp-adaptivity and arbitrary-level hanging nodes.

The boundaries of simplex and box elements that we use in this thesis consist of
(d− 1)-dimensional faces, which we define as follows for affine meshes.

Definition 3.2 (Element and mesh faces)
Let K be an affine mesh over a domain Ω ⊂ Rd, d ∈ {1, 2, 3}. The faces of an element
K ∈ K represent the largest (d − 1)-dimensional open sets ΓKi ⊂ ∂K such that the
outward unit normal n to ∂K = ⋃nF

i=1 ΓKi is constant on ΓKi for i ∈ {1, . . . , nF}, where
nF = d+ 1 for simplices and nF = 2d for box elements. The set of mesh faces

F = F(K) ··= {Γ ⊂ Ω : ∃K ∈ K such that Γ is a face of K}

can be split into the subsets of interior and boundary faces defined by

FΩ = FΩ(K) ··= {Γ ⊂ Ω : ∃K ∈ K such that Γ is a face of K},
F∂Ω = F∂Ω(K) ··= {Γ ⊂ ∂Ω : ∃K ∈ K such that Γ is a face of K},

respectively. Clearly, we have F = FΩ ∪ F∂Ω and FΩ ∩ F∂Ω = ∅. ♦
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Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a domain with Lipschitz boundary ∂Ω. Following [Ern04,
Def. 1.47], we assume that Ω is a finite interval if d = 1, a polygon if d = 2, and
a polyhedron if d = 3. Let Kh = {K1, . . . , KE} be a mesh over Ω that is affine,
geometrically conforming, and consists of E = E(h) elements. We use the notation

hK ··= diam(K), K ∈ Kh and h ··= max
K∈Kh

hK

for the local and global mesh sizes. For d-dimensional simplices K, we denote by Pp(K)
the space of polynomials of degree p ∈ N0 in d variables. For box elements K, the space
Qp(K) consists of products of d one-dimensional polynomials of degree p ∈ N0 in the
spatial variables. To avoid a distinction of these two cases, we define

Vp(K) ··=
Pp(K) if K is a simplex,
Qp(K) if K is a box element.

The scalar and vector-valued spaces of continuous linear finite elements are defined as

Vh = Vh,1(Kh) ··=
{
wh ∈ C(Ω) : wh|K ∈ V1(K) ∀K ∈ Kh

}
, Vm

h = (Vh)m, m ∈ N.

The Lagrange polynomials, which are uniquely defined by the properties

ϕi|K ∈ V1(K) ∀K ∈ Kh, ϕi(xj) = δij ∀i, j ∈ {1, . . . , N},

form a basis of Vh. The dimension N = N(h) corresponds to the number of vertices
x1, . . . ,xN of Kh. The Lagrange basis functions form a partition of unity, i. e.,

N∑
j=1

ϕj ≡ 1.

Let us now apply the finite element method to the hyperbolic PDE (system)

∂u

∂t
+∇ · f(u) = 0 in Ω× R+. (3.1)

Here u = u(x, t) ∈ Rm is the vector of conserved unknowns and f = f(u) ∈ Rm×d is the
inviscid flux function. Additionally, we require an initial condition u0 = u0(x) ∈ Rm

for u and choose the external Riemann data û = û(x, t) ∈ Rm in accordance with the
general rules outlined in Section 2.2 for each model problem under consideration. We
assume that u(x, t) ∈ Amax, where Amax ⊆ Rm is the largest admissible set for (3.1)
(cf. Definition 2.2). Before discussing the spatial discretization of (3.1), we introduce
the following concept.
Definition 3.3 (Numerical fluxes)
Let Sd−1

1 denote the unit sphere. A function f : Amax ×Amax × Sd−1
1 → Rm is called a

numerical flux (consistent with f) if it satisfies the following assumptions
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• f(u, u,n) = f(u)n for all u ∈ Amax, n ∈ Sd−1
1 (consistency),

• f(uL, uR,n) = −f(uR, uL,−n) for all uL, uR ∈ Amax, n ∈ Sd−1
1 (conservation), and

• f(·, u,n) and f(u, ·,n) are Lipschitz continuous functions on Amax for all u ∈
Amax, n ∈ Sd−1

1 (continuity).

Instead of f(uL, uR,n), we write fn(uL, uR) for uL, uR ∈ Amax, n ∈ Sd−1
1 in most in-

stances. ♦

Example 3.4 (Local Lax–Friedrichs flux)
Let %(A) denote the spectral radius of a matrix A ∈ Rm×m, i. e., its largest absolute
eigenvalue. Then the function f : Amax ×Amax × Sd−1

1 → Rm defined by

f(uL, uR,n) ··=
1
2 [(f(uL) + f(uR))n+ λn(uL, uR)(uL − uR)] , (3.2a)

λn(uL, uR) ··= sup
ω∈[0,1]

%(f ′n(ωuL + (1− ω)uR)), f ′n(u) ··=
∂

∂u
(f(u)n) (3.2b)

is called the local Lax–Friedrichs flux and can be shown to satisfy the requirements of
Definition 3.3. The approximation

λn(uL, uR) ≈ max {%(f ′n(uL)), %(f ′n(uR))} (3.3)

to the maximum wave speed (3.2b) is often employed in practice. In the case of a scalar
conservation law with an isotropic flux, that is, for f(u) = f(u)v, where v ∈ Rd is a
fixed vector, (3.3) is exact if f ∈ C2(R) and the sign of f ′′ does not change on the set
{ωuL + (1− ω)uR : ω ∈ [0, 1]}. An exact formula for the wave speed (3.2b) of arbitrary
scalar conservation laws can be found in [Gue17, Lem. 3.8]. Alternatively, one can
use an upper bound on λn(uL, uR), which makes the numerical flux more diffusive. In
general, (3.2b) cannot be evaluated exactly for hyperbolic systems. Upper bounds on
the wave speeds for the Euler and shallow water equations can be found in in [Gue16a,
Sec. 4] and [Aze17, Prop. 3.7], [Gue18b, Sec. 4]), respectively. ♦

We are now in a position to discuss the semi-discrete finite element spatial discretization
for (3.1). First, we approximate the exact solution u by uh ∈ Vm

h such that

uh(x, t) =
N∑
j=1

uj(t)ϕj(x), uj(t) ··= uh(xj, t) ∈ Rm, j ∈ {1, . . . , N}. (3.4)

Inserting (3.4) into (3.1), multiplying by a test function wh ∈ Vm
h , and using integration

by parts, we obtain the weak formulation (also called variational formulation)
ˆ

Ω

[
wh ·

∂uh
∂t
−∇wh : f(uh)

]
dx+

ˆ
∂Ω
wh · fn(uh, û) ds = 0 (3.5)
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for all wh ∈ Vm
h , where n ∈ Sd−1

1 denotes the outward unit normal to ∂Ω and the
dependence on time t has been suppressed. In the boundary integral, we replaced the
term f(uh)n with a numerical flux, which incorporates the external Riemann data û
into the formulation. For our purposes, it is convenient to write (3.5) in the strong form

ˆ
Ω
wh ·

[
∂uh
∂t

+∇ · f(uh)
]

dx+
ˆ
∂Ω
wh · [fn(uh, û)− f(uh)n] ds = 0, (3.6)

which is obtained by reversing integration by parts. Again, (3.6) must hold for all
wh ∈ Vm

h or, equivalently, for a finite set of basis functions spanning the space Vm
h . In

the standard Galerkin method, these basis functions are the same as those chosen for
the representation of uh ∈ Vm

h . Let ek = (δkl)ml=1 denote the kth Cartesian unit vector in
Rm. Then ϕiek, i ∈ {1, . . . , N}, k ∈ {1, . . . ,m} is a basis function for Vm

h . Substituting
ϕie1, . . . , ϕiem for wh in (3.6), we obtain the continuous Galerkin approximation

N∑
j=1
mij

duj
dt = −

ˆ
Ω
ϕi∇ · f(uh) dx+

ˆ
∂Ω
ϕi [f(uh)n− fn(uh, û)] ds, (3.7)

where mij are scalar-valued entries of the consistent mass matrix

M = (mij)Ni,j=1, mij =
ˆ

Ω
ϕi ϕj dx, i, j ∈ {1, . . . , N}. (3.8)

Note that (3.7) is just a shorthand notation for a set of m equations that are associated
with the m components of the vector-valued degree of freedom ui ∈ Rm.

The mass matrix (3.8) is invertible and independent of the numerical solution uh.
Therefore, (3.7) is equivalent to a system of ordinary differential equations. An initial
condition uh(·, 0) = Ihu0 for the semi-discrete problem can be constructed using a
suitable projection or interpolation operator Ih : L∞(Ω)m → Vm

h . Then numerical time
integration can be performed using the methods presented in Section 3.2.1.

3.2 Temporal discretization

Two types of temporal discretizations are employed in this thesis. In Section 3.2.1, we
discuss the class of strong stability preserving Runge–Kutta schemes, which update uh
step by step. The other strategy, which we describe in Section 3.2.2, is to treat the time
in the same way as the spatial variables. In such space-time Galerkin approaches, the
time derivative acts as a linear advection term for the temporal direction and uh(·, 0)
becomes an inflow boundary data for the (d+ 1)-dimensional domain.
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3.2.1 Strong stability preserving Runge–Kutta methods
A standard approach to discretization of time-dependent PDEs is the method of lines in
which the space derivatives are discretized first, as in Section 3.1. In general, the result
of the spatial semi-discretization is an initial value problem of the form

y′(t) = z(y(t), t) t ∈ (0, T ), (3.9a)
y(0) = y0, (3.9b)

where y : [0, T ]→ RM defines the vector y(t) of discrete unknowns, z : RM×[0, T ]→ RM

is a Lipschitz continuous function, and y0 ∈ RM is a given initial datum.
In numerical methods for (3.9), the continuous function y(t) is usually replaced by a

sequence of approximations y0 = y0, y
1 ≈ y(t1), . . . , yn ≈ y(tn) at discrete time instants

0 = t0 < t1 < · · · < tn = T . The accuracy of such approximations depends, among other
things, on the (local) time step ∆t = ∆t(k) = tk+1 − tk, k ∈ {0, . . . , n− 1}. One of the
simplest time stepping schemes is the explicit forward Euler method

yk+1 = yk + ∆t z(yk, tk), k ∈ {0, . . . , n− 1}, (3.10)

which belongs to the family of Runge–Kutta (RK) schemes and is first order accurate.
Higher order accuracy can be achieved by using additional RK stages to approximate
y(t) at the nodes of a quadrature rule for numerical time integration on [tk, tk+1].

In this work, we use strong stability preserving (SSP) RK schemes that were developed
by Shu and Osher [Shu88] to preserve the total variation diminishing (TVD) property
of spatial semi-discretizations at the fully discrete level. For that reason, such time
integrators were originally called TVD RK schemes. The name SSP was introduced by
Gottlieb et al. [Got01] to reflect the following useful property [Shu88, Got11].

Definition 3.5 (SSP property, Got11 Sec. 2.2)
Let ‖ · ‖ be a norm on RM and z(y, t) a Lipschitz-continuous function such that the
forward Euler update (3.10) satisfies the stability condition

‖y + ∆t z(y, t)‖ ≤ ‖y‖ ∀y ∈ RM

for all ∆t such that 0 < ∆t ≤ (∆t)FE. A general RK scheme is said to be strong stability
preserving w. r. t. ‖·‖ if there exists an SSP coefficient CSSP > 0 such that ‖yk+1‖ ≤ ‖yk‖
holds for yk+1 generated from yk using the time step ∆t ≤ CSSP (∆t)FE. ♦

An explicit s-stage RK method is commonly defined using the Butcher tableau. The
SSP property can be shown using the equivalent Shu–Osher form [Got11, Sec. 2.3]

y(0) = yk,

y(i) =
i−1∑
l=0

[
αily

(l) + ∆t βil z(y(l), t(l))
]
, i ∈ {1, . . . , s},
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yk+1 = y(s).

The SSP property is guaranteed to hold under a time step restriction if αil and βil are
nonnegative for all indices i and l [Got11, Thm. 2.1].

The simplest SSP RK schemes are the forward Euler (SSP1) method

yk+1 = y(1) = yk + ∆t z(yk, tk), (3.11)

Heun’s predictor-corrector (SSP2) method

y(1) = yk + ∆t z(yk, tk), (3.12a)

yk+1 = y(2) = 1
2y

k + 1
2
(
y(1) + ∆t z(y(1), tk+1)

)
, (3.12b)

and the Shu–Osher (SSP3) scheme [Shu88]

y(1) = yk + ∆t z(yk, tk), (3.13a)

y(2) = 3
4y

k + 1
4
(
y(1) + ∆t z(y(1), tk+1)

)
, (3.13b)

yk+1 = y(3) = 1
3y

k + 2
3
(
y(2) + ∆t z

(
y(2), tk + ∆t/2

))
. (3.13c)

These methods are optimal in the sense that their SSP coefficient is CSSP = 1, and pth
order accuracy is achieved with p stages [Shu88]. Note that each stage in (3.11), (3.12),
and (3.13) is a convex combination of yk and forward Euler updates. Many property-
preserving discretizations of hyperbolic problems exploit this fact [Zha11, Gue16b,
Moe17]. Other explicit SSP methods admit representations similar to (3.12) and (3.13)
and are thus also suitable for our purposes. For instance, the four-stage third order
method, referred to as SSP(4,3) RK [Got11, Prog. 6.3], has the SSP coefficient CSSP = 2.
The SSP coefficient CSSP = 1.508 of the five-stage fourth order SSP(5,4) RK method
is also greater than unity. Such schemes allow the use of time steps larger than those
required for SSPp RK p ∈ {1, 2, 3}, at the cost of having to compute approximations
at additional intermediate stages. Unfortunately, there exists no four-stage fourth
order SSP method such that all coefficients βil are nonnegative [Got98, Prop. 3.3].
Moreover, this requirement imposes a fourth order accuracy barrier on explicit SSP RK
methods [Ruu02, Thm. 4.1]. The issue of negative coefficients βil can be cured by using
downwinding strategies to adjust the spatial discretization operator in a manner that
ensures relevant stability properties for a given RK stage (see [Got11, Ch. 10]).

The initial value problem (3.9) can also be solved implicitly, for instance, using the
backward Euler method

yk+1 = yk + ∆t z(yk+1, tk+1), k ∈ {0, . . . , n− 1}. (3.14)
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In general, some iterative procedure is needed to solve (3.14) for yk+1. Under the
assumption that (3.14) is satisfied exactly, the backward Euler method is unconditionally
SSP. That is, no restriction needs to be imposed on the time step ∆t [Got11, Ch. 7].
Unfortunately, the SSP property without restrictions on ∆t can only hold for first order
methods [Got11, Thm. 5.1] or RK schemes that have negative coefficients βil [Got01,
Sec. 6]. Therefore, the only implicit approach considered in this work is the backward
Euler scheme. A detailed discussion on SSP methods including implicit and multi-step
approaches can be found in the book by Gottlieb et al. [Got11].

To construct a space-time discretization that is high order accurate and SSP regardless
of the time step ∆t, intermediate stages and/or the final stage of a general RK time
integrator can be constrained using algebraic flux correction tools similar to the ones
that we use for space discretizations in this thesis. Examples of such flux limiters for
explicit and implicit RK schemes can be found in [Kuz22b] and [Que21], respectively.

3.2.2 Space-time finite element formulation
As an alternative to using SSP RK methods as time integrators for (3.7), we discuss the
possibility of a finite element discretization on the space-time cylinder Ω̃ = Ω× (0, T ),
where T > 0 is a finite end time. This approach may be appropriate, e. g., if the exact
solution changes periodically in time, or for shock-fitting purposes.

On the continuous level, the time-dependent problem (3.1) is equivalent to

∇̃ · f̃(u) = 0 in Ω̃ ⊂ Rd+1, (3.15)

where the divergence operator ∇̃· now yields the sum of partial derivatives w. r. t. the
d + 1 independent variables x1, . . . , xd, t and f̃(u) = [f(u), u] ∈ Rm×(d+1). The wave
speeds in direction (nT

x , nt) ∈ Sd1 are the eigenvalues of the Jacobian matrix

∂

∂u

(
f̃(u)

[
nx
nt

])
= ∂

∂u
(f(u)nx) + nt Im×m. (3.16)

Characteristic boundary conditions need to be imposed on the boundary of the cylindrical
space-time domain Ω̃ ⊂ Rd+1. The external state û of the original time-dependent
problem provides the Riemann data for the lateral surface ∂Ω × (0, T ) of Ω̃. At the
“bottom” Ω× {0}, the outward unit normal to ∂Ω̃ is given by (0T,−1). It follows that
all eigenvalues of (3.16) are negative, as for a supersonic inlet of the spatial domain Ω
(see Section 2.2). Therefore, we use the initial condition û = u0 as external Riemann
state on Ω× {0}. Similarly to a supersonic outlet of Ω, no boundary condition needs
to be imposed at the “top” Ω× {T} of the space-time cylinder Ω̃. The corresponding
external state is û = u. These choices of û are consistent with the boundary and initial
conditions that we use for the time dependent problem (3.1).
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To discretize (3.15) in space-time, we will use the Galerkin method discussed in
Section 3.1 and the limiting techniques presented in the next sections. If the governing
equation and/or the discretization method is nonlinear, steady-state approximate so-
lutions uh to (3.15) can only be obtained by employing an iterative scheme. Given a
suitable initial iterate u0

h, one may use, e. g., the forward Euler-type fixed-point iteration

uk+1
h = ukh + ∆τ zh(ukh, τ k), (3.17)

where ∆τ = ∆τ(k) > 0 is a pseudo time step and zh(·, τ k) is a consistent discretization
of ∇̃ · f̃(u) with built-in lateral boundary conditions at pseudo time τ k ∈ [0,∞). Since
we are interested in marching uh to the steady state, it usually makes little sense to
employ iterative schemes corresponding to higher order temporal discretizations. We say
that (3.17) has converged to uh = ukh if the discrete l2 norm of the residual zh(ukh, τ k)
becomes smaller than a prescribed tolerance ε > 0, i. e., ‖zh(ukh, τ k)‖l2 < ε.

If the time interval (0, T ) is subdivided into M subintervals, then the cells of the
computational mesh for the space-time domain Ω̃ are given by K × [tn, tn+1] for K ∈ Kh
and n = 0, . . . ,M − 1. Instead of solving an N -dimensional discrete problem in each
stage of an SSP RK method for (3.7), we now have to solve an NM -dimensional one
in each fixed-point iteration (3.17) for the FEM discretization of (3.15). Since the
cost of a solution update is much higher for (a serial implementation of) the latter
approach, the SSP RK version is usually preferable. However, the use of space-time
finite elements for slices of Ω × R+ may be worthwhile, e. g., if the larger size of the
discrete problems leads to more efficient parallel implementations, the space-time mesh
is adaptive (aligned with interfaces), and/or the number of fixed-point iterations for a
steady-state computation is much smaller than M . To speed up convergence, one could
replace (3.17) by an implicit pseudo time stepping scheme [Gur09] or use a quasi-Newton
solver [Möl08, Bad17, Loh21] for the (flux-corrected) space-time discretization of (3.15).
In this thesis, we use the space-time formulation solely to test the ability of algebraic
flux correction schemes to enforce discrete maximum principles for steady hyperbolic
problems. In this context, the basic iteration (3.17) turned out to be sufficient.

3.3 Algebraic flux correction schemes
The standard spatial discretization techniques discussed in Section 3.1 are, in general,
unreliable, particularly for solving hyperbolic problems with nonsmooth solutions. To
overcome this issue, one can use methods such as the ones mentioned in Section 1.1. In
this thesis, we focus on algebraic flux correction tools for finite element approximations
[Kuz12b, Bar16, And17, Gue18a, Paz21].

This section begins with a review of some literature on AFC schemes. Then we
derive a property preserving low order method that represents the well-behaved part of
the baseline space discretization. By construction, the difference between the residuals
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of the two semi-discrete schemes admits a decomposition into numerical fluxes that
can be adjusted in an adaptive manner. For this purpose, we use a monolithic convex
limiting technique [Kuz20a] and a semi-discrete entropy fix [Kuz20c].

3.3.1 Literature
The flux-corrected transport (FCT) methodology introduced by Boris and Book [Bor73,
Boo75] laid the foundations of what we call AFC in this thesis. The original FCT
algorithm is a one-dimensional conservative finite difference scheme that consists of a
transport + diffusion stage and an anti-diffusion stage. As a result of the first stage, one
obtains a property-preserving low order approximation, which is usually very diffusive.
This drawback can be cured using antidiffusive fluxes such that a higher order accurate
approximation is recovered if these fluxes are added to the low order predictor. Since
even stable high order schemes may produce unacceptable under- and overshoots, a
limiter is applied to (potentially) offending fluxes. The corresponding correction factors
are inferred from inequality constraints based on local discrete maximum principles.
Importantly, the scheme remains conservative because each flux has a counterpart that
has the same magnitude and opposite sign. A fully multidimensional generalization of
FCT was proposed in the context of finite volume approximations and structured grids
by Zalesak [Zal79]. We review his flux limiting strategy in Chapter 5.

Löhner et al. [Löh87] were the first to develop an FCT algorithm for finite element
discretizations of compressible flow problems on unstructured grids. Their original
method uses an element-based version of Zalesak’s multidimensional limiter. In the first
stage, an explicit second-order Taylor-Galerkin scheme is stabilized using a low order
artificial viscosity operator that represents the difference between the consistent and
lumped mass matrices. In the second stage, limited antidiffusive element contributions
are added to recover second order accuracy in smooth regions. Edge-based implementa-
tions of FEM-FCT use decompositions into fluxes rather than element contributions
[Kuz12b, Chs. 5-7]. In this context, an edge (of the sparsity graph) links two degrees of
freedom corresponding to a pair of nonvanishing off-diagonal matrix entries.

Kuzmin and Turek [Kuz02] extended FEM-FCT to implicit time stepping and
derived a discrete upwinding formula for edge-based artificial diffusion coefficients.
Further studies have revealed interesting relationships to some classical total variation
diminishing (TVD) methods [Har84] and local extremum diminishing (LED) finite
volume schemes for unstructured meshes [Jam93]. The unification of seemingly different
approaches under the common roof of algebraic flux correction produced many new
limiting algorithms for scalar conservation laws and nonlinear systems [Kuz12b, Chs. 6–8].
In particular, FCT-type finite element schemes for the Euler equations were developed in
[Kuz10b, Loh16, Dob18] using an algebraic version of the local Lax–Friedrichs method
in the first stage and different choices of quantities to be limited in the second stage.
These choices are further discussed in [Löh08, Sec. 9.5.1] and [Kuz12b, Ch. 7].



Algebraic �ux correction schemes 47

The edge-based AFC scheme presented by Gurris [Gur09, Sec. 5.1.6] applies TVD-
type limiters to local characteristic variables, transforms back to the conservative
variables, and inserts limited antidiffusive fluxes into the right hand side of the semi-
discrete scheme. In contrast to FCT-like methods, such monolithic AFC approaches
produce nonlinear problems that have well-defined residuals and steady state solutions.
Another highlight of the work presented in [Gur09] is the application of AFC to coupled
systems of balance laws using operator splitting to include the source terms.

A theoretical framework for FEM-AFC discretizations of scalar conservation laws
was introduced by Barrenechea et al. [Bar16] in the context of monolithic schemes
for stationary convection-diffusion equations. Lohmann [Loh19, Ch. 4] extended this
methodology to linear hyperbolic equations. Further advances regarding the analysis of
AFC methods for linear problems are discussed in Chapter 5.

Explicit schemes for nonlinear systems were analyzed by Guermond and Popov
[Gue16b]. Their work provides valuable insights into the properties of the low order
method for convex limiting procedures [Gue18a]. As an alternative to the FCT-type
localized limiters developed in [Gue18a] and their scalar prototypes [Loh17b], Kuzmin
[Kuz20a] introduced a monolithic convex limiting (MCL) strategy for general hyperbolic
problems. Similarly to the generalized TVD limiters employed by Gurris [Gur09], it can
be applied to steady and transient problems alike. Another advantage of MCL compared
to FCT-type predictor-corrector schemes is the possibility of enforcing semi-discrete
entropy stability via flux limiting [Kuz20c]. In Chapter 4, we extend entropy stable
MCL schemes to the shallow water equations with topography. Our approach ensures
positivity preservation for the water height and does not use operator splitting algorithms
such as the ones proposed in [Gur09].

The development of accuracy-preserving AFC schemes for very high order baseline
discretizations requires careful generalizations of existing algorithms. The approaches
developed in [And17, Loh17b, Kuz20e, Haj21a] employ Bernstein polynomials as local
basis functions for finite element approximations. The high order FCT scheme developed
by Pazner [Paz21] uses a collocated discontinuous Galerkin method. As shown in
[Loh17b, Kuz20e, Paz21], convex limiting for high order finite element discretizations
requires sparsification of discrete operators and localization of correction procedures to
subcells. The author’s own contributions to the development of such AFC schemes for
continuous and discontinuous finite elements can be found in [Haj20b, Haj20c, Haj21a].
Chapter 6 describes the sparse high order MCL scheme for Bernstein DG discretizations
of hyperbolic systems in some detail. In the present section, we explain the underlying
design philosophy in the simpler context of continuous FEM discretizations.

3.3.2 Low order method
In Section 3.1, we discretized an initial-boundary value problem for the generic system
of conservation laws (3.1) using the continuous Galerkin method and (multi-)linear finite
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elements. Recall that the resulting system of semi-discrete equations (3.7) is given by
N∑
j=1
mij

duj
dt = −

ˆ
Ω
ϕi∇ · f(uh) dx+

ˆ
∂Ω
ϕi [f(uh)n− fn(uh, û)] ds (3.18)

for i ∈ {1, . . . , N}. This baseline space discretization can be expected to deliver second
order accuracy at least for linear advection problems with smooth solutions on uniform
meshes. On general meshes, the provable order of accuracy is one in the linear scalar
case [Qua94, Sec. 14.3.1], although second order superconvergence may be observed in
practice.

We now modify (3.18) to construct a low-order discretization that is bound preserving
and entropy stable [Gue16b]. To this end, we first use the group finite element formulation
[Fle83] in the volume integral, i. e., we linearize the inviscid flux as follows

f(uh) = f
( N∑
j=1

uj ϕj
)
≈

N∑
j=1

fj ϕj =·· fh = fh(uh), fj ··= f(uj), j ∈ {1, . . . , N}.

Substituting fh(uh) for f(uh) in (3.18), one obtains a second order accurate quadrature-
based approximation [Bar17b]. We use a similar nodal quadrature rule for the boundary
integral that appears in (3.18). Specifically, we replace uh and û by their nodal val-
ues ui = uh(xi) and ûi ··= û(xi) in the ith equation of (3.18). This approach can be
interpreted as mass lumping for numerical fluxes, see [Sel96, Haj20b, Kuz20a].

To properly define the quadrature-based form of our semi-discrete problem, we need
to introduce the set of boundary faces associated with a node.
Definition 3.6 (Nodal boundary faces)
Let F∂Ω denote the set of boundary faces of Kh (see Definition 3.2). Then the sets of
nodal boundary faces are defined by

Fi =
∅ if xi /∈ ∂Ω,
{Γ ∈ F∂Ω : int(supp(ϕi)) ∩ Γ 6= ∅} otherwise,

i ∈ {1, . . . , N}. ♦

Following Selmin [Sel96, Sec. 5], we evaluate the Riemann data û at the boundary
vertices. For nodes xi that lie on more than one boundary segment (e. g., in domain
corners), we need to define individual nodal states for each face. Thus, we denote by ûki
the external state û of the Riemann problem associated with node xi and the normal
vector nk orthogonal to the face Γk ∈ Fi. Using the above definition of Fi, we write the
quadrature-based approximation to (3.18) as

N∑
j=1
mij

dũj
dt = −

ˆ
Ω
ϕi∇ · fh(ũh) dx+

∑
Γk∈Fi

ˆ
Γk
ϕi
[
f(ũi)nk − fnk(ũi, ûki )

]
ds. (3.19)

In the next lemma, we show that discretizations (3.18) and (3.19) are conservative.
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Lemma 3.7 (Conservation property of finite element methods, Sel93)
Let uh, ũh ∈ Vm

h be finite element approximations satisfying (3.18) and (3.19), respec-
tively, for i ∈ {1, . . . , N}. Then the following conservation properties hold

d
dt

ˆ
Ω
uh dx = −

ˆ
∂Ω

fn(uh, û) ds, d
dt

ˆ
Ω
ũh dx = −

N∑
i=1

∑
Γk∈Fi

ˆ
Γk
ϕi fnk(ũi, ûki ) ds. ♦

Proof:
Summing (3.18) over i ∈ {1, . . . , N}, using the partition of unity property ∑N

i=1 ϕi ≡ 1
of the Lagrange basis functions and the definition of the mass matrix (3.8), we obtain

d
dt

ˆ
Ω
uh dx = −

ˆ
Ω
∇ · f(uh) dx+

ˆ
∂Ω

[f(uh)n− fn(uh, û)] ds.

Thus, the use of the divergence theorem proves the global conservation property of the
Galerkin approximation uh. Similarly, from (3.19) we infer that

d
dt

ˆ
Ω
ũh dx = −

N∑
j=1

ˆ
∂Ω
ϕj f(ũj)n ds+

N∑
i=1

∑
Γk∈Fi

ˆ
Γk
ϕi
[
f(ũi)nk − fnk(ũi, ûki )

]
ds

= −
N∑
i=1

∑
Γk∈Fi

ˆ
Γk
ϕi fnk(ũi, ûki ) ds,

which proves the global conservation property of ũh satisfying (3.19). �

Remark 3.8
Note that in 1D the boundary faces are vertices, and the flux-lumped approximation
in (3.19) is equivalent to the consistent boundary integral in (3.18). Indeed, for a node
xi ∈ ∂Ω = {x1, xN}, the set Fi contains just one face Γ = xi and the boundary integrals
reduce to point evaluations in xi. Thus, ũh|Γ = ũi and û|Γ = ûi. It follows that

ϕi(xi) [f(ũi)n− fn(ũi, ûi)] = ϕi(xi) [f(ũh)n− fn(ũh, û)] , n = ±1. ♦

The quadrature-based approximation (3.19) is of the same order as (3.18) for (multi-)
linear finite elements. Therefore, we will use (3.19) as a target scheme for the AFC
methods to be discussed in this section. For higher order finite element spaces, quadrature
errors should be compensated in the process of flux correction (as in [Kuz20e]).

We now introduce the discrete gradient operator [Kuz02]

C = (cij)Ni,j=1, cij =
ˆ

Ω
ϕi∇ϕj dx, i, j ∈ {1, . . . , N}, (3.20)
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which obviously possesses the properties [Sel93, Sel96]
N∑
j=1

cij = 0 i ∈ {1, . . . , N}, (3.21)

cij = − cji +
ˆ
∂Ω
ϕi ϕj n ds, i, j ∈ {1, . . . , N}. (3.22)

Thus, we have cij = −cji for all pairs of indices (i, j) for which the boundary integral in
(3.22) vanishes. For further reference, we also define

bki =
ˆ

Γk
ϕi ds, Γk ∈ Fi, i ∈ {1, . . . , N}. (3.23)

Next, we modify the left hand side of the quadrature-based target scheme (3.19) by
employing row sum mass lumping. That is, we replace the consistent mass matrix M ,
which is defined by (3.8), with its lumped counterpart

ML = (miδij)Ni,j=1, mi ··=
N∑
j=1

mij =
ˆ

Ω
ϕi dx, i ∈ {1, . . . , N}. (3.24)

This approximation can be interpreted as second order nodal quadrature for mij.
Renaming ũh into uh again, introducing the nodal stencils

Ni = {j ∈ {1, . . . , N} : int(suppϕi) ∩ int(suppϕj) 6= ∅}, i ∈ {1, . . . , N}

and invoking (3.21), the lumped mass version of (3.19) can be written as

mi
dui
dt = −

∑
j∈Ni\{i}

(fj − fi) cij +
∑

Γk∈Fi
bki [fink − fnk(ui, ûki )]. (3.25)

Note that mass lumping does not interfere with the conservation properties stated in
Lemma 3.7 because

N∑
i=1

mi
dui
dt =

N∑
i=1

N∑
j=1

mij
dui
dt =

N∑
j=1

N∑
i=1

mij
duj
dt = d

dt

ˆ
Ω
uh dx.

Remark 3.9
For well-posedness of (3.25), it is essential that mi > 0 for all i ∈ {1, . . . , N}. This
property holds for (multi-)linear Lagrange elements but is violated, for instance, if
quadratic Lagrange polynomials on triangles are employed. In addition, high order finite
element approximations are not necessarily bounded by their values at the nodal points.
These observations illustrate why higher order Lagrange elements are not well suited for
algebraic flux correction purposes [Kuz08]. Instead, one may employ bases of Bernstein
polynomials as in [Abg10, Loh17b]. This approach will be discussed in Chapter 6. ♦
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The lumped mass approximation (3.25) to (3.19) is equivalent to a vertex centered
finite volume method with centered numerical fluxes [Sel93]. The addition of artificial
viscosity on the right hand side of (3.25) is the final modification we need to make to
obtain a property-preserving low order method of the form [Kuz05, Gue16b]

mi
dui
dt =

∑
j∈Ni\{i}

[dij(uj − ui)− (fj − fi) cij] +
∑

Γk∈Fi
bki [fink − fnk(ui, ûki )]. (3.26)

The matrix of artificial viscosity coefficients dij has the properties of a discrete Laplacian
(also called graph Laplacian or discrete diffusion operator in the AFC literature).

In the terminology adopted in [Gue18a, Paz21], the fluxes dij(uj − ui) inserted in
(3.26) introduce large amounts of graph viscosity. Already the one-dimensional FCT
schemes of Boris and Book [Bor73, Boo75] used artificial viscosity of this kind in the low
order method of the first stage. In the context of FEM-FCT schemes for unstructured
meshes, Löhner et al. [Löh87, Eqs. (18)–(19)] used element-level numerical viscosity.
Their elementwise diffusion matrix is a discrete Laplacian defined as the difference of
lumped and consistent element mass matrices. While this approach works reasonably
well in practice, there is no guarantee that it introduces the correct amount of artificial
viscosity. Indeed, the authors of [Löh87] remark that they observed some nonphysical
artifacts. Kuzmin and Turek [Kuz02, Eq. (33)] constructed the low order method for
their FEM-FCT discretization of the linear advection equation using a definition of dij
that can be interpreted as edge-based discrete upwinding (see also [Sel93, Sec. 3.1] or
[Jam93, Sec. 2.1]). This approach will be further discussed in Chapter 5.

In the low order method (3.26) for systems, we employ [Abg06, Kuz10b, Gue16b]

dij = max{λij|cij|, λji|cji|}, λij ≥ λn(ui, uj), i, j ∈ {1, . . . , N}, i 6= j, (3.27)

where λn(·, ·) in (3.27) is given by (3.2b) for n = cij/|cij| ∈ Sd−1
1 . For this choice of dij,

the addition of dij(uj − ui) transforms the centered flux of an equivalent vertex-centered
finite volume approximation into the local Lax–Friedrichs (Rusanov) flux [Sel93, Sec. 2.2].
Therefore, we call (3.26) with dij defined by (3.27) the algebraic local Lax–Friedrichs
(LLF) method. Guermond and Popov [Gue16b] proved that this approximation is
property preserving even for systems. An element-based version of the LLF scheme was
proposed in [Abg06] and analyzed in [Gue16b].

Replacing sums over the nodal stencils by sums over all degrees of freedom and using
the fact that dij = dji for all i ∈ {1, . . . , N}, j ∈ Ni \ {i} yields

N∑
i=1

∑
j∈Ni\{i}

dij(uj − ui) =
N∑

i,j=1
i<j

dij(uj − ui) +
N∑

i,j=1
i<j

dji(ui − uj) = 0.

Thus, the low order discretization (3.26) is conservative in the sense of Lemma 3.7,
[Löh87, Sel93, Kuz02]. To see that it preserves other relevant properties of the entropy
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solution to (3.1), we introduce the low order bar states [Har83b, Aud15, Gue16b]

ūij ··=
ui + uj

2 − (fj − fi) cij
2dij

, i ∈ {1, . . . , N}, j ∈ Ni \ {i}. (3.28)

A bar state concept similar to (3.28) was developed by the author of this thesis [Haj21a]
for lumped flux terms arising in discontinuous Galerkin discretizations. We apply this
concept here as well to incorporate external Riemann data in a property-preserving
manner. To this end, we restrict ourselves to using the local Lax–Friedrichs flux (3.2)
for fnk(·, ·). This choice allows us to express the boundary terms in (3.26)

bki
[
fink − fnk(ui, ûki )

]
= bki

2
[
λnk(ui, ûki ) (ûki − ui)− (f(ûki )− fi)nk

]
= 2dki (ūki − ui) (3.29)

in terms of the nodal quantities

dki ··=
bki
2 λnk(ui, ûki ), (3.30)

ūki ··=
ui + ûki

2 − (f(ûki )− fi)nk
2λnk(ui, ûki )

. (3.31)

The so-defined bar states ūki of boundary nodes exhibit the same structure as their
edge-based counterparts ūij defined by (3.28). Using (3.29), we rewrite the low order
method (3.26) in terms of (3.28) and (3.31) as follows (cf. [Gue16b, Haj21a])

mi
dui
dt =

∑
j∈Ni\{i}

2dij(ūij − ui) +
∑

Γk∈Fi
2dki (ūki − ui), i ∈ {1, . . . , N}. (3.32)

Remark 3.10
Note that the structure of volume and boundary terms in the right hand side of (3.32) is
similar, which is convenient for designing flux correction schemes. In the discontinuous
Galerkin version of (3.26), the set Fi includes internal faces Γk ∈ FΩ. The interfacial
bar states ūki are defined similarly to (3.31) using the external limits ûki as Riemann
data. Guermond et al. [Gue19, Sec. 4] combine the volume terms and boundary fluxes
of such DG-AFC approaches into a single sum formulation using a unified notation for
the corresponding discrete operators. Such a representation is also possible for (3.32)
but obstructs the different origin of the terms that appear in the two sums. For that
reason, we prefer the split form (3.32) of the low order method. In this chapter, we do
not perform antidiffusive corrections for the sum over Γk ∈ Fi because such corrections
have little influence on the accuracy of continuous finite element approximations. ♦
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Using the bar state form (3.32) of the LLF method (3.26), one can show that
numerical approximations stay in a subset A of Amax. Guermond and Popov [Gue16b]
prove this property for convex invariant sets, which are defined as follows.
Definition 3.11 (Invariant sets, Gue16b Sec. 2)
Let Amax 6= ∅ be the largest admissible set for (3.1). Assume that there exists a unique
entropy solution u to each one-dimensional Riemann problem of the form

∂u

∂t
+ (n · ∇) (f(u)n) = 0 in R× R+, u(x, 0) =

uL if x < 0,
uR if x > 0,

(3.33)

where (uL, uR) ∈ Amax × Amax and n ∈ Sd−1
1 . A generalization of Corollary 2.17 to

systems guarantees the existence of finite speeds λL and λR such that u(x, t) = uL for
x ≤ λLt and u(x, t) = uR for x ≥ λRt. A subset A ⊆ Amax is called an invariant set of
(3.1) if for any initial data (uL, uR) ∈ A×A the spatial average

ūLR = 1
(λR − λL)t

ˆ λRt

λLt

u(x, t) dx

of the entropy solution u(x, t) to (3.33) remains in A for all times t ≥ 0. ♦

Discretizations that keep the values (or averages) of numerical solutions in an
invariant set A of the continuous problem (3.1) are referred to as invariant domain
preserving (IDP), positivity preserving, or structure preserving in the literature.

Guermond and Popov [Gue16b] discretize (3.32) in time using an explicit SSP RK
method and show that the resulting fully discrete scheme is IDP. Additionally, they prove
that a fully discrete entropy inequality holds for every entropy pair of the hyperbolic
problem [Gue16b, Sec. 4]. Their IDP analysis of the LLF method can be readily extended
to SSP RK time discretizations of other semi-discrete schemes that can be expressed
in terms of admissible bar states similarly to (3.32). If a given scheme has the same
structure as (3.32), then the proof requires the IDP property of the corresponding bar
states. We first prove it for the low order method in the following lemma.
Lemma 3.12 (Admissibility of the bar states, Har83b, Gue16b)
Let (uL, uR) ∈ A×A, where A is a convex invariant set of (3.1). Assume that for all
n ∈ Sd−1

1 the one dimensional Riemann problem (3.33) has a unique entropy solution u.
Then the bar states (3.28) and (3.31) corresponding to (uL, uR) are also in A. ♦

Proof:
For hyperbolic systems, the property that ūij ∈ A for ui, uj ∈ A can be shown by
integrating (3.1) over space-time control volumes, using the definition of an invariant
set and exploiting convexity. See [Gue16b, Lem. 2.1 and Sec. 3.3] for details. For
scalar conservation laws, definition (3.27) of dij and the mean value theorem imply that
ūij ∈ A is a convex combination of ui and uj [Kuz20a]. Virtually the same arguments
can be used to verify that ūki ∈ A provided that ui, ûki ∈ A [Haj21a, Thm. 1]. �



54 Property-preserving methods for conservation laws

Remark 3.13
The statement of Lemma 3.12 is valid for general hyperbolic systems. To avoid the
computation of λn(uL, uR) defined by (3.2b), overestimation of the maximum wave speed
was proposed by Harten et al. [Har83b, Sec. 3B]. Computable bounds for λn(uL, uR)
can be found in [Gue16a] for the Euler equations and in [Aze17, Gue18b] for the SWE.
The wave speeds of the two systems are bounded by v ·n± a, where a denotes the speed
of sound

√
γp/ρ or the celerity

√
gh, respectively (cf. Section 2.2). Thus, the spectral

radius of the directional Jacobian is given by |v ·n|+a. We use this formula to construct
bounds for λij = λcij/|cij |(ui, uj) as in [Kuz10b, Sec. 6] for the Euler equations and in
[Wu21, Sec. 3.1] for the SWE. That is, we set (cf. [Sel93, Sec. 3.1])

λij = max
{
|vi · cij|
|cij|

+ ai,
|vj · cji|
|cji|

+ aj

}
. (3.34)

As illustrated in [Gue16a, Appendix B], such definitions are not necessarily upper
bounds for the actual wave speeds λcij/|cij |(ui, uj). Nevertheless, we observed no practical
problems when using the two-state wave speed estimate (3.34). In fact, this choice of λij
guarantees positivity preservation for the systems we are interested in. Wu et al. [Wu21,
Thm. 3.1] proved that (3.34) ensures nonnegativity of the water height of the SWE.
Positivity preservation for the density and internal energy of the Euler system follows
from a combination of [Lin22, Lem. 5.1] and [Zha17, Lem. 6]. We conclude that the
IDP property for particular systems can sometimes be shown under weaker assumptions
than those made in Lemma 3.12. ♦

At this stage, we depart from the fully discrete approach pursued by Guermond
et al. [Gue16b, Gue18a] and instead continue the discussion in the semi-discrete setting
following Kuzmin [Kuz20a]. A summary on FCT limiters that could alternatively be
used in combination with the low order method (3.26) can be found in Section 5.2.3.

3.3.3 Definition of raw antidiffusive fluxes
The difference between the residuals of the target scheme (3.19) and of the low order
LLF method is caused by mass lumping on the left hand side and addition of dissipative
fluxes dij(uj − ui) on the right hand side of (3.26). To recover (3.19) from (3.26) in
nodes that lie in regions of smoothness, we use raw antidiffusive fluxes fij ∈ Rm such
that fij = −fji for all i ∈ {1, . . . , N}, j ∈ Ni \ {i} and fij = 0 if j /∈ Ni \ {i}. In the
FCT context, the fluxes fij are called phoenical (“like a phoenix”) if the high order
solution can be resurrected exactly in the second stage [Boo75]. In general AFC schemes,
the fluxes fij are used to write a target scheme in the equivalent form

mi
dui
dt =

∑
j∈Ni\{i}

[dij(uj − ui)− (fj − fi) cij + fij] +
∑

Γk∈Fi
2dki (ūki − ui). (3.35)
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Such algebraic splittings (3.35) of semi-discrete schemes offer many possibilities to
modify fij similarly to antidiffusive components of numerical fluxes in finite volume
schemes. For example, a high order dissipative component may be added to fij or the
magnitude of fij may be reduced using a flux limiter. The scheme remains conservative
if the modified fluxes f ∗ij and f ∗ji satisfy f ∗ij = −f ∗ji for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}.

To design an algebraic flux correction scheme based on (3.35), we need to define
the raw antidiffusive fluxes fij, formulate additional constraints for f ∗ij, and devise an
algorithm for enforcing these constraints. We begin with the first task, the choice
of fluxes fij such that (3.35) is stable and second order accurate. Clearly, fij must
compensate the diffusive flux dij(uj − ui), which can be accomplished by using

fij = dij(ui − uj).

This definition of fij is phoenical w. r. t. the lumped mass version of (3.19). We use it in
time marching schemes for steady problems. In the context of Galerkin approximations
to time dependent problems, mass lumping introduces significant phase errors (see
[Tho16]) and should be avoided. The consistent mass version (3.19) can be recovered
using

fij = mij

(
dui
dt −

duj
dt

)
+ dij(ui − uj). (3.36)

Indeed, the sum of additional terms depending on mij can be rewritten as

∑
j∈Ni\{i}

mij

(
dui
dt −

duj
dt

)
=

N∑
j=1

mij

(
dui
dt −

duj
dt

)
= mi

dui
dt −

N∑
j=1

mij
duj
dt ,

which recovers the consistent mass matrix in the left hand side of (3.35). Definition
(3.36) is phoenical w. r. t. (3.19) if the solution of the linear system

N∑
j=1

miju̇
G
j = −

∑
j∈Ni\{i}

(fj − fi) cij +
∑

Γk∈Fi
2dki (ūki − ui), i ∈ {1, . . . , N} (3.37)

is used to calculate the time derivatives dui
dt = u̇G

i for (3.36). In principle, this is a viable
option. However, it corresponds to an unstabilized Galerkin (hence superscript G) target
scheme, which tends to produce spurious oscillations. Evidence for the occurrence of
such ripples is provided by the test problems studied in Sections 3.4.3.2 and 5.5.2.

To stabilize the raw antidiffusive fluxes (3.36), the oscillatory time derivatives u̇G
i

may be replaced by their low order (hence superscript L) counterparts

u̇L
i = 1

mi

∑
j∈Ni\{i}

[dij(uj − ui)− (fj − fi) cij] + 1
mi

∑
Γk∈Fi

2dki (ūki − ui) (3.38)

for i ∈ {1, . . . , N}. Note that the right hand side of (3.38) corresponds to that of the
low order method (3.26) and there is no need to invert the consistent mass matrix.
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Remark 3.14
The need for stabilization of fij arises due to the use of a continuous finite element
approximation. For a conforming discretization of the linear advection equation, a priori
error analysis guarantees the suboptimal convergence rate of O(hp) if polynomial bases
of degree p and general meshes are employed [Qua94, Sec. 14.3.1]. Optimal convergence
behavior for p = 1 is usually observed if the fluxes fij of the target scheme (3.35) are
defined using the low order time derivatives (3.38) [Kuz20a]. As shown in [Haj21b], the
replacement of u̇G

i by u̇L
i generates fourth order background dissipation. Higher order

finite element methods require different stabilization techniques because the amount of
artificial diffusion introduced by the low order time derivatives is too large to preserve
optimal orders of accuracy. The list of available stabilization techniques for FEM is
too long to be properly covered here. Stabilization of target fluxes in AFC schemes for
linear problems is discussed in [Loh17b, Sec. 5]. State of the art strategies for high order
discretizations of nonlinear conservation laws can be found in [Kuz20d].

Guermond et al. [Gue18a] define the raw antidiffusive fluxes (3.36) using nodal
time derivatives corresponding to a truncated series approximation to the solution of
(3.37). For stabilization purposes, they include nonlinear high order dissipation of the
form dEV

ij (uj − ui), where dEV
ij is an entropy viscosity coefficient. The magnitude of dEV

ij

depends on the residual of the discretized identity η′(u)T∇ · f(u) = ∇ · q(u) for a specific
entropy pair (η, q). Details on this algorithm can be found in [Gue18a, Sec. 3.4]. To the
best of our knowledge, AFC schemes using such residual-based flux stabilization have so
far only been tested in the context of continuous (multi-)linear finite elements. ♦

In principle it is also possible to include correction terms compensating quadrature
errors in the antidiffusive fluxes. Such schemes will be discussed in Chapter 6.

3.3.4 Monolithic convex limiting

3.3.4.1 Design philosophy

Having discussed the possible definitions of raw (unlimited) antidiffusive fluxes for
the phoenical splitting (3.35) of the target scheme, we now present the monolithic
convex limiting strategy proposed by Kuzmin [Kuz20a]. This semi-discrete alternative
to fractional-step FCT algorithms is derived from a flux-corrected version of the LLF
method (3.32). Rewriting (3.35) in terms of the bar states (3.28) and replacing the
fluxes fij with their limited counterparts f ∗ij ∈ Rm (to be specified below), we obtain

mi
dui
dt =

∑
j∈Ni\{i}

2dij
(
ūij − ui +

f ∗ij
2dij

)
+

∑
Γk∈Fi

2dki (ūki − ui) (3.39)

for i ∈ {1, . . . , N}. Introducing the limited bar states [Kuz20a]

ū∗ij ··= ūij +
f ∗ij
2dij

, i ∈ {1, . . . , N}, j ∈ Ni \ {i}, (3.40)
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the flux-corrected semi-discrete scheme (3.39) can be written as

mi
dui
dt =

∑
j∈Ni\{i}

2dij(ū∗ij − ui) +
∑

Γk∈Fi
2dki (ūki − ui), i ∈ {1, . . . , N}. (3.41)

Note that (3.41) has the same structure as the bar state form (3.32) of the low order
LLF scheme. If we discretize (3.41) in time using an explicit SSP Runge–Kutta method,
each stage is a forward Euler update of the form [Gue16b, Kuz20a]

ũi =
[
1− ∆t

mi

( ∑
j∈Ni\{i}

2dij +
∑

Γk∈Fi
2dki

)]
ui

+ ∆t
mi

( ∑
j∈Ni\{i}

2dijū∗ij +
∑

Γk∈Fi
2dki ūki

)
, i ∈ {1, . . . , N}. (3.42)

Here ũi is the updated solution and ∆t > 0 is the current time step. Below we discuss
ways of enforcing various admissibility constraints for the limited bar states (3.40). In
general, we constrain the states ū∗ij to lie in a certain convex set Ai ⊆ Amax that also
contains ui and the boundary term bar states ūki . Thus, if the time step ∆t is small
enough to satisfy the Courant–Friedrichs–Lewy (CFL)-like condition [Gue16b, Kuz20a]

1− ∆t
mi

( ∑
j∈Ni\{i}

2dij +
∑

Γk∈Fi
2dki

)
≥ 0, (3.43)

then the updated solution ũi is a convex combination of elements in Ai due to (3.42).
Hence, convexity of Ai implies ũi ∈ Ai for all i ∈ {1, . . . , N}.

Similarly to the approach presented in [Gue18a], we use condition (3.43) to calculate
suitable values of the time step ∆t for SSP RK methods. Our version of the algorithm
for adaptive time step control based on (3.43) consists of the following steps:

• Pick a fixed CFL parameter ν ∈ (0, 1] during the initialization step.

• In stage s of every Runge–Kutta cycle, use u(s−1) to compute

τ (s) ··= min
i∈{1,...,N}

mi∑
j∈Ni\{i} 2dij +∑

Γk∈Fi 2dki
.

• After performing the first RK stage update, set the time step to ∆t = ντ (1).

• If it turns out that τ (s) < ∆t for some s, then reject the intermediate results of all
RK stages and repeat the whole RK cycle using the time step ∆t = ντ (s).
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The question of how to define the limited antidiffusive fluxes f ∗ij for the semi-discrete
scheme (3.41) remains. We already mentioned that these fluxes must satisfy f ∗ij = −f ∗ji
and ensure that ū∗ij ∈ Ai ⊆ Amax for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}. The remainder of
our presentation on MCL is devoted to the construction of limited antidiffusive fluxes,
which meet these requirements. Our approach adjusts (individual components of) the
antidiffusive fluxes step by step until all relevant constraints are satisfied by f ∗ij.

In the process of multistage flux limiting for fij, we first enforce numerical admissi-
bility conditions, which are meant to eliminate/reduce spurious oscillations, e. g., due to
Gibbs phenomena. Next, we constrain the antidiffusive fluxes to ensure the IDP property.
In other words, we impose physical admissibility conditions. Finally, we further limit
the bound-preserving MCL fluxes f ∗ij if they violate a semi-discrete entropy stability
condition based on Tadmor’s theory [Tad03, Sec. 3], see also [Tad87, Kuz20c].

3.3.4.2 Scalar conservation laws

Let us begin with a discussion on numerical admissibility conditions for m = 1, i. e., for
a scalar conservation law. As a general rule, the admissible set Ai ⊂ R for the degree of
freedom i ∈ {1, . . . , N} must contain both the low order bar states ūij and their limited
counterparts ū∗ij for all j ∈ Ni \ {i}. By default, we constrain ū∗ij to be contained in the
interval [umin

i , umax
i ] with local bounds defined by [Kuz20a, Sec. 4]

umin
i
··= min

j∈Ni
uj, umax

i
··= max

j∈Ni
uj. (3.44)

The mean value theorem implies that there exist ξ ∈ [min{ui, uj},max{ui, uj}] and,
owing to (3.27), µ ··= f ′(ξ) · cij/dij ∈ [−1, 1] such that the low order bar states satisfy

ūij = ui + uj
2 − (uj − ui) f ′(ξ) · cij

2dij
= 1 + µ

2 ui + 1− µ
2 uj.

Therefore, ūij ∈ [min{ui, uj},max{ui, uj}]. It follows that ūij ∈ [umin
i , umax

i ] for umin
i and

umax
i defined by (3.44). Let us now constrain the limited bar states in such a manner

that umin
i ≤ ū∗ij ≤ umax

i will hold for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}. Using (3.40) and
taking into account that similar conditions must hold for f ∗ji = −f ∗ij, local maximum
principles for ū∗ij and ū∗ji can be converted into the flux constraints

fmin
ij ≤ f ∗ij ≤ fmax

ij (3.45)

with local bounds defined by

fmin
ij = −fmax

ji
··= max

{
2dijumin

i − w̄ij, w̄ji − 2dijumax
j

}
≤ 0, (3.46a)

fmax
ij = −fmin

ji
··= min

{
2dijumax

i − w̄ij, w̄ji − 2dijumin
j

}
≥ 0. (3.46b)
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In practical implementations, the products w̄ij ··= 2dijūij are calculated directly instead
of ūij to avoid division by diffusion coefficients dij that may approach zero [Kuz20a].

The scalar version of Kuzmin’s [Kuz20a] monolithic convex limiter yields

f ∗ij =
 min

{
fij, f

max
ij

}
if fij ≥ 0,

max
{
fij, f

min
ij

}
if fij ≤ 0

(3.47)

for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}. Note that (3.47) is equivalent to

f ∗ij = max
{
fmin
ij ,min

{
fij, f

max
ij

}}
= min

{
fmax
ij ,max

{
fij, f

min
ij

}}
. (3.48)

That is, the MCL method simply trims the flux fij to satisfy the box constraints (3.45).

Remark 3.15
Since the low order bar states correspond to averaged solutions of a Riemann problem,
a natural alternative to definition (3.44) is given by (cf. [Gue18a])

umin
i
··= min

j∈Ni\{i}
ūij, umax

i
··= max

j∈Ni\{i}
ūij. (3.49)

We tested this approach for nonlinear conservation laws in 1D for which we did not
observe any significant differences to the numerical results obtained with (3.44). The
disadvantage of using (3.49) is that the computation of low order bar states ūij can no
longer be avoided in general. Hence, we use (3.44) for scalar conservation laws. ♦

The reader will have noticed that so far we did not specify at which time instant
the bounds (3.44) or (3.49) are evaluated. Owing to the monolithic limiting approach,
the scheme under investigation is still in semi-discrete form. In explicit RK methods
for (3.41), the bar states and local bounds are computed from the nodal values at the
current stage. Similarly, nonlinear iterations for approximating the update of an implicit
method use the nodal values of the current iterate. This approach distinguishes the
MCL approach from FCT algorithms in which the local bounds umin

i and umax
i for the

second stage are usually computed using a low order predictor [Bor73, Kuz02, Loh17b].
Some FCT limiters, however, define the bounds using the current solution instead of
[And17, Gue18a, Paz21] or in addition to [Zal79, Löh87] the low order values.

3.3.4.3 Systems of conservation laws

The question of how to define numerical admissibility conditions is more involved for
hyperbolic systems than it is for scalar problems. Appropriate choices are certainly
peculiar to particular systems of equations. Much more so than for scalar conservation
laws, the best choice of local bounds for limiting depends on the specific problem setting.
Before presenting the approach pursued in this chapter, we list a few suggestions from
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the literature. A natural first step is to treat each component of the degree of freedom
ui ∈ Rm as a scalar unknown and limit it separately. Even though this approach produces
the least diffusive results, Löhner et al. [Löh87] advise against using such independent
limiters because they lead to spurious oscillations in all quantities of interest. Instead,
the authors of [Löh87] propose synchronized limiters such that f ∗ij = αijfij for fij ∈ Rm,
where αij ∈ [0, 1] is a scalar correction factor. Different ways to choose αij are discussed in
[Löh87, p. 1099] for the compressible Euler equations. Examples of modern synchronized
flux correction schemes can be found in [Loh16, Gue18a, Paz21].

An alternative to independent or synchronized limiting is the sequential limiting
technique, originally proposed in [Dob18] and further developed in [Haj19, Kuz20a]. This
approach is designed to enforce numerical admissibility constraints not for the conserved
unknowns but for quantities that are derived from them. Particular representatives of
such derived quantities are, for instance, the components of the velocity vector, which
are defined as the quotients of momentum ρv components and density ρ in case of the
Euler equations, and as the quotients of discharge hv components and water height h
for the SWE. Another important derived quantity of the Euler system is the specific
total energy E. It is defined as the quotient of the conserved unknown ρE and density ρ.
Vector-valued unknowns, such as the velocity, are limited by imposing local maximum
principles on each component separately. Alternative strategies, in particular ones that
guarantee rotational invariance of results, are explored in [Haj19].

Below we discuss the sequential limiting approach, as presented in the context of the
Euler equations in [Kuz20a, Sec. 5.1] for products of the form %φ, where % is a positive
scalar conserved unknown and φ is a specific quantity of the fluid. The requirement
% > 0 is met both for the SWE, where % = h and for the Euler equations, where % = ρ.
The challenge is to limit the fluxes of %φ in a way that guarantees preservation of local
bounds for φ. We first discuss the general concept, before specifying appropriate bounds
for limiting. To ease the presentation, we consider a fixed set of nodes i ∈ {1, . . . , N},
j ∈ Ni \ {i} with corresponding low order bar states ūij and unlimited antidiffusive
fluxes fij . The components of these quantities w. r. t. the conserved unknowns % and %φ
are denoted as %̄ij, (%φ)ij, and f

%
ij, f

%φ
ij , respectively.

In the first step of the sequential approach, the flux f%ij is limited in exactly the same
way as for scalar problems. Thus, we obtain limited bar states

%̄∗ij = %̄ij +
f%,∗ij
2dij

, (3.50)

where f%,∗ij is the limited counterpart of f%ij. Next, we define the low order bar states of
the derived quantity φ via

φ̄ij ··=
(%φ)ij + (%φ)ji

%̄ij + %̄ji
. (3.51)
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Note that while there may be pairs of nodes for which ūij 6= ūji, we certainly have
φ̄ij = φ̄ji by definition. To ensure consistency, (3.50) should be accounted for in the
process of limiting the bar states of unknowns depending on %, i. e.,

(%φ)∗ij = (%φ)ij +
f%φ,∗ij

2dij
= %̄∗ijφ̄ij +

g%φ,∗ij

2dij
, (3.52)

where g%φ,∗ij is a limited counterpart of

g%φij = f%φij + 2dij
(
(%φ)ij − %̄

∗
ijφ̄ij

)
. (3.53)

To control φi by limiting f%φ,∗ij , we impose the numerical admissibility constraints

%̄∗ijφ
min
i ≤ (%φ)∗ij ≤ %̄∗ijφ

max
i (3.54)

with generic bounds φmin
i , φmax

i on φi to be specified below. To derive a limiter that
enforces (3.54), we first observe that g%φij = −g%φji . This property is proved in the last
formula on p. 13 of [Kuz20a]. Let us remark that in this reference, the last term
appearing before the final identity should contain the limited fluxes for the variable
% instead of the unlimited ones. Inserting (3.53) into (3.52), converting (3.54) into
flux constraints for g%φ,∗ij as in the scalar case, and imposing similar constraints on the
companion flux g%φ,∗ji = −g%φ,∗ij , we define

g%φ,∗ij =
 min

{
gij, 2dij min

{
%̄∗ij(φmax

i − φ̄ij), %̄∗ji(φ̄ij − φmin
j )

}}
if gij ≥ 0,

max
{
gij, 2dijmax

{
%̄∗ij(φmin

i − φ̄ij), %̄∗ji(φ̄ij − φmax
j )

}}
if gij ≤ 0.

(3.55)

This formula corrects a typo (min ↔ max, i ↔ j) in [Kuz20a, Eq. (85)] and exploits
the fact that φ̄ij = φ̄ji. Reversing (3.53), we finally obtain

f%φ,∗ij = g%φ,∗ij − 2dij
(
(%φ)ij − %̄

∗
ijφ̄ij

)
.

The corresponding bar state can then be computed from (3.52). The following property
of the sequential limiter is important for the design of additional limiters.
Lemma 3.16 (Compatibility of sequential MCL with synchronized limiters)
Suppose that the component %̄∗ij and the product variable components (3.52) of the
limited bar state ū∗ij satisfy the numerical admissibility constraints

%min
i ≤ %̄∗ij ≤ %max

i

and (3.54), respectively, for i ∈ {1, . . . , N}, j ∈ Ni \ {i}. Assume further that the
bounds for φ are defined in such a way that the following constraints hold

%̄ijφ
min
i ≤ (%φ)ij ≤ %̄ijφ

max
i , i ∈ {1, . . . , N}, j ∈ Ni \ {i}. (3.56)
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Let αij = αji ∈ [0, 1] be a synchronized correction factor for

ū∗∗ij ··= ūij +
αijf

∗
ij

2dij
. (3.57)

Then the local maximum principles

%min
i ≤ %̄∗∗ij ≤ %max

i , %̄∗∗ij φ
min
i ≤ (%φ)∗∗ij ≤ %̄∗∗ij φ

max
i , i ∈ {1, . . . , N}, j ∈ Ni \ {i}

hold for the components %̄∗∗ij , and (%φ)∗∗ij of the bar state ū∗∗ij . ♦

Proof:
By design, the sequential limiter enforces the inequalities

max
{

2dij(%min
i − %̄ij), 2dij(%̄ji − %max

j )
}
≤ f%,∗ij ≤ min

{
2dij(%max

i − %̄ij), 2dij(%̄ji − %min
j )

}
.

These estimates remain true if f%,∗ij is replaced by αijf%,∗ij for αij ∈ [0, 1]. The situation
is slightly more involved for derived unknowns. By (3.50), (3.52), and (3.54), we have

f%φ,∗ij ≤ min
{

2dij
(
%̄∗ijφ

max
i − (%φ)ij

)
, 2dij

(
(%φ)ji − %̄

∗
jiφ

min
j

)}
= min

{
2dij

(
%̄ijφ

max
i − (%φ)ij

)
+ f%,∗ij φ

max
i , 2dij

(
(%φ)ji − %̄jiφ

min
j

)
− f%,∗ji φmin

j

}
.

Multiplying this inequality by αij ∈ [0, 1] and invoking (3.56) yields

αijf
%φ,∗
ij ≤ min

{
2dij

(
%̄ijφ

max
i − (%φ)ij

)
αij + αijf

%,∗
ij φ

max
i ,

2dij
(
(%φ)ji − %̄jiφ

min
j

)
αij − αijf%,∗ji φmin

j

}
≤ min

{
2dij

(
%̄∗∗ij φ

max
i − (%φ)ij

)
, 2dij

(
(%φ)ji − %̄

∗∗
ji φ

min
j

)}
. (3.58)

In a similar way, we find that αijf%φ,∗ij is bounded below as follows

max
{

2dij
(
%̄∗∗ij φ

min
i − (%φ)ij

)
, 2dij

(
(%φ)ji − %̄

∗∗
ji φ

max
j

)}
≤ αijf

%φ,∗
ij . (3.59)

Inserting (3.58) and (3.59) into (3.57) yields the claimed inequalities. �

We conclude the presentation of the sequential approach by specifying the local
bounds for flux limiting based on numerical admissibility conditions. Recall that in
the scalar case the choice of bounds (3.44) implies that all low order bar states ūij
j ∈ Ni \ {i} are contained in [umin

i , umax
i ] for i ∈ {1, . . . , N} by the mean value theorem.

For systems, we need to ensure that the low order bar states are admissible. Otherwise
the limiter may not be able to enforce the imposed constraints. For the main unknown
% we use

%min
i
··= min

j∈Ni\{i}
%̄ij, %max

i
··= max

j∈Ni\{i}
%̄ij. (3.60)
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We choose local bounds for derived quantities in a way that ensures the validity of
condition (3.56) in Lemma 3.16. Since in this chapter our numerical experiments for
systems are restricted to the 1D case in which φ̄ij = (%φ)ij/%̄ij for all i ∈ {1, . . . , N},
j ∈ Ni \ {i}, we may define the local bounds for φ as follows

φmin
i
··= min

j∈Ni\{i}
φ̄ij, φmax

i
··= max

j∈Ni\{i}
φ̄ij. (3.61)

To preserve the validity of (3.56) in the multidimensional case, a modification of (3.61)
for boundary nodes is required. Definition (3.60) differs from the one proposed in
[Kuz20a, Sec. 5.1], where the main unknown is constrained exactly as in the scalar case.
The bounds of numerical admissibility conditions can be further adjusted, e. g., using
smoothness indicators, alternative data sets and/or the principle of linearity preservation.
Since all approximations obtained with (3.60)–(3.61) were of satisfactory quality in our
1D numerical experiments, we did not attempt to construct better bounds.

3.3.5 Invariant domain preservation
Thus far, we have only enforced numerical admissibility conditions through limiting. In
general, there is no guarantee, however, that the resulting approximations will remain
in an invariant domain of the given system. On the other hand, the low order method
produces approximations that are provably IDP, owing to the fact that the low order
bar states belong to convex invariant sets. This argument allows us to perform invariant
domain fixes for our flux-corrected scheme if necessary. In this section, we discuss the
corresponding modifications for all problems under consideration. First, we show that
no IDP corrections are needed in the case of scalar conservation laws.
Lemma 3.17 (Invariant domain preservation for scalar conservation laws)
Let ũi, i ∈ {1, . . . , N} be the result of a forward Euler update (3.42) for the MCL
scheme using formula (3.47) to constrain ū∗ij. Suppose that the time step ∆t satisfies
the CFL-like condition (3.43). Then ũi ∈ Ai ⊆ [umin, umax], where

umin ··= min
{

min
j∈{1,...,N}

uh(xj, 0), inf
t∈R+

min
xj∈∂Ω

û(xj, t)
}
,

umax ··= max
{

max
j∈{1,...,N}

uh(xj, 0), sup
t∈R+

max
xj∈∂Ω

û(xj, t)
}

are the global bounds to be preserved (cf. Theorem 2.15). ♦

Proof:
By construction, the limited bar states satisfy umin

i ≤ ū∗ij ≤ umax
i for all i ∈ {1, . . . , N},

j ∈ Ni \ {i}. Moreover, ūki ∈ [umin, umax]. From (3.42) and (3.43), we deduce that

ũi =
[
1− ∆t

mi

( ∑
j∈Ni\{i}

2dij +
∑

Γk∈Fi
2dki

)]
ui + ∆t

mi

( ∑
j∈Ni\{i}

2dijū∗ij +
∑

Γk∈Fi
2dki ūki

)
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≤
[
1− ∆t

mi

( ∑
j∈Ni\{i}

2dij +
∑

Γk∈Fi
2dki

)]
umax + ∆t

mi

( ∑
j∈Ni\{i}

2dijumax +
∑

Γk∈Fi
2dki umax

)
= umax, i ∈ {1, . . . , N}. (3.62)

The lower bound umin for ũi is derived analogously. �

Similarly, we observe that no IDP fix is needed for the shallow water equations because
the water height remains nonnegative under the numerical admissibility conditions.

Lemma 3.18 (Invariant domain preservation for the SWE)
Consider the SWE with flat topography (see Section 2.2.3). Suppose that the water
heights of the discrete initial condition and external Riemann data are nonnegative in Ω
and on ∂Ω× [0,∞), respectively. Furthermore, let ∆t satisfy the CFL-like condition
(3.43). Then the water heights h̃i produced by forward Euler stages (3.42) of the
sequential MCL approximation remain nonnegative for all i ∈ {1, . . . , N}. ♦

Proof:
Let h̄∗ij be the water height component of ū∗ij. Since the low order bar states ūij and
ūki are in the invariant set Ai ⊆ Amax, their water heights are nonnegative. Thus, by
construction of the water height limiter, we have 0 ≤ hmin

i ≤ h̄∗ij . An estimate similar to
(3.62) now shows that the water height computed from (3.42) remains nonnegative.

Contrary to scalar problems and the SWE, the Euler equations require at least one IDP
fix. Recall that the largest (physical) admissible set of this system (cf. Section 2.2.2) is
Amax = {(ρ, ρvT, ρE) ∈ Rd+2 : ρ ≥ 0, e ≥ 0}. While positivity of ρ can be shown using
the arguments of Lemma 3.18, nonnegativity of the internal energy e (cf. Section 2.1.1)
is not guaranteed by the scheme presented thus far. In fact, the MCL approximation
applied to many classical benchmarks of compressible flow problems does produce
negative internal energies in some nodes, which causes simulations to break down. On
the other hand, the low order approximation is provably IDP under the usual time step
restriction (3.43). Thus, nonnegativity of e can be enforced by further reducing the
magnitude of the antidiffusive fluxes that violate physical admissibility conditions for the
bar states. In the context of FEM-FCT schemes for the Euler equations, nonnegative
local bounds were imposed on the pressure p = (γ − 1)ρe in [Loh16] using a Zalesak-like
limiter. For MCL schemes, we use the Lipschitz-continuous IDP fix proposed in [Kuz20a,
Sec. 5.1]. We summarize it here for completeness.

Applying the sequential MCL limiter based on numerical admissibility conditions,
we obtain the prelimited bar states

ū∗ij = ūij +
f ∗ij
2dij

=·· ūij + 1
2dij

[
fρ,∗ij , (f

ρv,∗
ij )T, fρE,∗ij

]T
.
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If the corresponding internal energy ē∗ij becomes negative, then ū∗ij /∈ Amax and an IDP
fix is required. Let αij = αji ∈ [0, 1] be synchronized correction factors such that

ū∗∗ij = ūij +
αijf

∗
ij

2dij
∈ Amax, i ∈ {1, . . . , N}, j ∈ Ni \ {i}. (3.63)

Then the IDP property can be shown as for the low order method, which corresponds
to the choice αij = 0 for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}. Kuzmin [Kuz20a, Sec. 5.1]
derived two formulas that ensure positivity preservation for the internal energy of the
bar state ū∗∗ij with nontrivial αij . Similarly to the FCT limiter developed in [Loh16], his
estimates linearize quadratic inequality constraints for αij ∈ [0, 1] using the property
α2
ij ≤ αij. A potential disadvantage of synchronized limiting in (3.63) is the lack of

continuous dependence on the data. The IDP fix proposed in [Kuz20a, Eq. (92)] adapts
the formula for αij to ensure Lipschitz-continuity of αijf ∗ij and thus preserve a desirable
property of f ∗ij. The resulting values of αij may be smaller than necessary to satisfy
ū∗∗ij ∈ Amax but intentional underestimation of αij does not significantly degrade the
overall accuracy compared to the non-Lipschitz version [Kuz20a, Eq. (90)] of the energy
fix.

Let w̄ij = (w̄ρij, (w̄
ρv
ij )T, w̄ρEij )T = 2dijūij denote the scaled low order bar states. Then

the Lipschitz-continuous version [Kuz20a, Eq. (92)] of the IDP fix reads

αij =

Qij
Rij

if Rij > Qij,

1 otherwise,
(3.64)

where

Qij = Qji = min
{
w̄ρijw̄

ρE
ij −

1
2 |w̄

ρv
ij |2, w̄

ρ
jiw̄

ρE
ji −

1
2 |w̄

ρv
ji |2

}
,

Rij = Rji = max{|w̄ρv
ij |, |w̄

ρv
ji |}|f

ρv,∗
ij |+ max{|w̄ρij|, |w̄

ρ
ji|}|f

ρE,∗
ij |

+ max{|w̄ρEij |, |w̄
ρE
ji |}|f

ρ,∗
ij |+ max

{
0, 1

2 |f
ρv,∗
ij |2 − f

ρ,∗
ij f

ρE,∗
ij

}
for i ∈ {1, . . . , N}, j ∈ Ni \ {i}. The IDP property can be verified as follows.
Lemma 3.19 (Invariant domain preservation for the Euler equations)
Consider the forward Euler stage (3.42) of the sequential MCL scheme for the compress-
ible Euler equations. Replace the prelimited bar states ū∗ij with their IDP counterparts
(3.63) that use the correction factors (3.64). Let uh(x, 0) ∈ Amax for all x ∈ Ω and
û(x, t) ∈ Amax for all (x, t) ∈ ∂Ω× [0,∞). If the CFL-like condition (3.43) is satisfied,
then ũi ∈ Amax for all i ∈ {1, . . . , N}. ♦

Proof:
Positivity preservation for the density is shown as in the proof of Lemma 3.18. By
definition of αij in (3.64), we have ū∗∗ij ∈ Amax. In particular, the internal energy of the
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bar state ū∗∗ij is guaranteed to be nonnegative [Kuz20a, Sec. 5.1]. Moreover, ūki ∈ Amax.
Owing to (3.43), the result ũi for each forward Euler stage is again a convex combination
of states belonging to Amax = {(ρ, ρvT, ρE) ∈ Rd+2 : ρ ≥ 0, e ≥ 0}. The claim follows
from convexity of Amax. �

Remark 3.20
In addition to the nonnegativity of density and internal energy, Guermond et al. [Gue18a]
enforce a minimum principle for the logarithmic specific entropy s (see Section 2.2.2).
We believe that a limiter similar to the IDP fix for the internal energy can be constructed
to satisfy this constraint as well. The definition of the convex admissible set Amax needs
to be modified accordingly. If no closed-form expression can be derived for the IDP
correction factor αij as in [Kuz20a], a line search will need to be performed as in
[Gue18a]. We do not recommend imposition of tight local bounds on nonlinear derived
quantities such as e and s. The corresponding constraints may be violated even if the
conserved unknowns are linear functions and all bar states belong to Amax. Therefore,
it is usually impossible to achieve second order accuracy without using smoothness
indicators [Kho94, Dob18, Gue18a].

In our experience, a well-tuned combination of numerical admissibility conditions
with IDP fixes that enforce global bounds is the best limiting strategy for hyperbolic
systems [Haj20c]. The bounds of local maximum principles for conserved unknowns
and ratios φ thereof may be relaxed using smoothness sensors. However, all physical
constraints built into the definition of Amax are nonnegotiable. They must be enforced
even in smooth regions, where all numerical admissibility criteria are satisfied. ♦

3.3.6 Semi-discrete entropy fix
For certain hyperbolic problems, even approximations obtained with bound-preserving
methods may converge to weak solutions that violate entropy conditions. The MCL
scheme presented thus far is no exception and may require an entropy fix.

A variety of entropy conservative/stable schemes for hyperbolic problems can be
found in the literature. Some of them employ numerical fluxes that ensure entropy
stability of spatial semi-discretizations [Har83b, Fjo11, Che17, Win17, Wu21]. Other
methods are designed to satisfy discrete entropy (in-)equalities, see for instance [Hen21].
Such strategies are promising because fully discrete entropy stability is a prerequisite to
proving Lax–Wendroff-type theorems, which state that converging bounded sequences
of approximations converge to entropy solutions [Krö94, Thms. 3.14 and 4.11].

Let us attempt to summarize some important results on the topic of entropy-aware
numerical methods in a few sentences. Jiang and Shu [Jia94] derived discrete cell
entropy inequalities w. r. t. the square entropy for discontinuous Galerkin discretizations
of scalar conservation laws. In the context of continuous finite element methods, the
corresponding inequality is satisfied as an identity [Tad87, Kuz20d]. Gassner [Gas13]
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derived a criterion for the artificial viscosity of numerical fluxes in DG discretizations
to ensure entropy/energy stability in the semi-discrete case. Kuzmin and Quezada de
Luna [Kuz20c] combine bound-preserving flux correction schemes with a limiter that
enforces nodal entropy inequalities. Generalizations of this approach to higher order
finite element spaces and strategies that achieve fully discrete entropy stability can
be found in [Kuz20d] and in our paper [Kuz22a], respectively. The method proposed
by Berthon et al. [Ber20] performs a somewhat similar fully discrete entropy fix by
adjusting the amount of artificial viscosity in Godunov-type methods.

We conclude our summary of the literature by commenting on the necessity to employ
algorithms that are entropy stable in the fully discrete case. For practical purposes, semi-
discrete entropy fixes are usually sufficient as long as the target discretization is based
on entropic fluxes (see [Kuz22a] for details). Further corrections aimed at achieving
fully discrete entropy stability have marginal effects on the quality of approximations
to discontinuous weak solutions but may degrade the rates of convergence to smooth
ones. In fact, one-dimensional three-point schemes satisfying local fully discrete entropy
inequalities cannot be second order accurate in the explicit case [Sch85]. Implicit flux-
corrected schemes can circumvent this order barrier [Kuz22a, Sec. 6.2] but are, of course,
computationally more expensive. Therefore, we chose to enforce only semi-discrete
entropy inequalities in this thesis.

Let us now discuss how to ensure entropy stability by modifying the MCL scheme

mi
dui
dt =

∑
j∈Ni\{i}

2dij(ū∗∗ij − ui) +
∑

Γk∈Fi
2dki (ūki − ui), i ∈ {1, . . . , N}, (3.65)

which, at this stage, guarantees preservation of local bounds and invariant domains. For
the purposes of entropy limiting, we depart from our previous strategy of writing the
scheme in terms of bar states and reformulate (3.65) as

mi
dui
dt =

∑
j∈Ni\{i}

[
dij(uj − ui)− (fj − fi) cij + αijf

∗
ij

]
(3.66a)

+
∑

Γk∈Fi

bki
2
[
λnk(ui, ûki ) (ûki − ui)− (f(ûki )− fi)nk

]
, (3.66b)

where we invoked (3.63), (3.28), and (3.29). To keep the following presentation concise,
we exploit the fact that the volume terms on the right of (3.66a) and the boundary fluxes
in (3.66b) have similar structure. First, we introduce the set S ··= {1, . . . , N}∪B, where
B ··= {N + 1, . . . , N̂} contains the indices of all ghost nodes {x̂j}N̂j=N+1 corresponding
to boundary vertices. Here we use the convention that for each vertex xi, there is
exactly one ghost node per boundary segment Γk ∈ Fi. Thus, each pair of indices
(i, j) ∈ {1, . . . , N} × B can be associated with at most one boundary segment Γk. We
exploit this observation to define an index mapping ω : {1, . . . , N} × B → N such that
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k = ω(i, j) is the index of a boundary segment Γk and the fictitious degree of freedom
uj represents the external state ûki for the approximate Riemann solver.

Using the above notation, we define volume and boundary term fluxes as follows

gij ··=


dij(uj − ui) + αijf

∗
ij if j ∈ Ni \ {i},

1
2 b

k
i λnk(ui, ûki )(ûki − ui) if j ∈ B and ω(i, j) = k,

0 otherwise

for i ∈ {1, . . . , N}, j ∈ S. A similar generalization yields

fj ··=


fj if j ∈ {1, . . . , N},
f(ûki ) if j ∈ B and ω(i, j) = k,

0 otherwise,

cij ··=


cij if j ∈ {1, . . . , N},
1
2b
k
i nk if j ∈ B and ω(i, j) = k,

0 otherwise

for i ∈ {1, . . . , N}, j ∈ S. Using these conventions, we may write (3.66) as

mi
dui
dt =

∑
j∈S

[gij − (fj − fi) cij] =
∑
j∈S

[gij − (fj + fi) cij] + 2fi
∑
j∈S

cij. (3.67)

Similar notation is used in [Gue19, Sec. 4.3] to write volume terms and numerical fluxes
of bound-preserving DG discretizations in a unified compact form.

We are now in a position to formulate entropy stability conditions for (3.67). Let
(η, q) be an entropy pair of the given hyperbolic system, v(u) = η′(u) the corresponding
entropy variable, and ψ(u) = v(u)Tf(u) − q(u) the associated entropy potential (see
Definition 2.3). Evaluations of these quantities in the nodal states of the discrete solution
uh are denoted using a subscript i ∈ {1, . . . , N̂}. For instance, ηi is the shorthand
notation for η(ui). A scheme of the form (3.67) is entropy stable in the sense of Tadmor
[Tad87, Tad03, Kuz20c] if the following inequalities hold

(vi − vj)T

2 [gij − (fj + fi) cij] ≤ (ψj −ψi) · cij, i ∈ {1, . . . , N}, j ∈ S. (3.68)

Our intention is to enforce (3.68) through limiting. Before presenting such limiter-based
entropy fixes, let us discuss the implications of Tadmor’s condition for scheme (3.67).
Theorem 3.21 (Local semi-discrete entropy inequality, Kuz20c, Thm. 1)
Suppose that condition (3.68) holds for all i ∈ {1, . . . , N} and j ∈ S. Then a solution
to (3.67) satisfies the semi-discrete entropy inequalities

mi
dηi
dt ≤

∑
j∈S

(
Gij − (qj − qi) · cij

)
(3.69)
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for all i ∈ {1, . . . , N}. The numerical fluxes Gij that appear in (3.69) are given by

Gij ··=
(vi + vj)T

2 gij + (vi − vj)T

2 (fi − fj) cij, i ∈ {1, . . . , N}, j ∈ S. ♦

Proof:
Following [Tad03, Kuz22a], we multiply (3.67) by the nodal entropy variable vi, which
is split into its symmetric part 1

2(vi + vj) and the antisymmetric remainder 1
2(vi − vj).

The rest of the proof is as in [Fjo11]. We refer to [Kuz22a, Sec. 4.1] for a version that is
directly applicable to the AFC scheme (3.67). �

Remark 3.22
The fluxes Gij modify ∑j∈S(qj − qi) · cij ≈ mi(∇ · q)i in the same manner as the fluxes
gij = dij(uj − ui) + αijf

∗
ij modify the centered approximation to (∇ · f)i in the flux-

corrected version (3.41) of the target scheme (3.19). ♦

The implications of Theorem 3.21 are most striking in settings in which boundary
terms vanish or have no influence on the finite element approximation. To discuss this
case, we introduce the following concept.
Definition 3.23 (Boundary indifference for AFC schemes)
We say that the flux-corrected finite element discretization (3.41) of (3.1) is boundary
indifferent for a given uh(t) ∈ Vm

h if cij = −cji or ui(t) = uj(t) for all i ∈ {1, . . . , N},
j ∈ Ni \ {i}, and, furthermore, ûki (t) = ui(t) for all i ∈ {1, . . . , N}, Γk ∈ Fi. ♦

Example 3.24
For (initial-)boundary value problems with periodic Riemann data û, continuous finite
element discretizations of (3.1) are boundary indifferent regardless of uh. In general,
periodic boundary conditions are formulated using identity mappings for certain nodes
on ∂Ω. If all boundaries of the domain Ω are periodic, then F∂Ω = ∅ and therefore the
sum over Γk ∈ Fi vanishes in (3.41). The matrix C becomes fully skew symmetric and
all of its diagonal entries are zero in the fully periodic case. The identities cij = −cji
and Gij = −Gji are also satisfied for all i ∈ {1, . . . , N}, j ∈ Ni \ {i} on nonperiodic 1D
meshes consisting of more than one element. There are many examples in which uh
coincides with the discretized Riemann data ûh on (subsets of) ∂Ω. For instance, this
must be the case for a supersonic outlet by definition. If uh = ûh on the remaining
boundaries of ∂Ω as well, then the approximation is boundary indifferent. ♦

Corollary 3.25 (Global semi-discrete entropy inequality)
Let the assumptions of Theorem 3.21 be fulfilled. Additionally, assume that the spatial
semi-discretization (3.41) is boundary indifferent w. r. t. uh(t) for all t ≥ 0. Then uh(t)
satisfies the global semi-discrete entropy inequality

d
dt

ˆ
Ω

( N∑
i=1

ηi ϕi
)

dx+
ˆ
∂Ω

( N∑
i=1
qi ϕi

)
· n ds ≤ 0. (3.70)

♦
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Proof:
Following [Kuz20c, Sec. 3], we sum (3.69) over i ∈ {1, . . . , N} using (3.21), which yields
N∑
i=1

mi
dηi
dt ≤

N∑
i=1

∑
j∈Ni\{i}

(
Gij − (qj − qi) · cij

)
=

N∑
i=1

[ ∑
j∈Ni
i<j

Gij +
∑
j∈Ni
i>j

Gij −
N∑
j=1
qj · cij

]
,

where all boundary terms cancel by assumption. Furthermore, boundary indifference
implies that the numerical fluxes Gij are skew symmetric. Thus, an application of the
divergence theorem concludes the proof. �

Remark 3.26
Integration of the strong form entropy inequality ∂η(u)

∂t
+∇ · q(u) ≤ 0 over Ω yields

d
dt

ˆ
Ω
η(u) dx+

ˆ
∂Ω
q(u) · n ds ≤ 0. (3.71)

Hence, (3.70) is a semi-discrete analogue of the inequality constraint (3.71) for global
entropy production in Ω. In the case of fully periodic domains, all boundary integrals
vanish and (3.71) reduces to d

dt

´
Ω η(u) dx ≤ 0, while (3.70) reduces to [Kuz20c]

d
dt

ˆ
Ω

( N∑
i=1

ηi ϕi
)

dx ≤ 0. ♦

We have thus established that Tadmor’s condition is indeed a valuable criterion for
proving semi-discrete entropy inequalities. The question of how to enforce (3.68) in
the context of flux correction schemes remains. Clearly, FCT-type algorithms are not
suited for entropy limiting based on the semi-discrete inequality constraint (3.68) for
gij = dij(uj − ui) + αijf

∗
ij. An alternative approach for enforcing entropy inequalities

in fully discrete FCT-type difference schemes was proposed by Kivva [Kiv22]. In his
fully discrete method, a global optimization problem is solved in every time step to find
correction factors that yield bound-preserving and entropy-stable approximations.

Instead of enforcing fully discrete entropy stability using optimization-based FCT,
we exploit the semi-discrete nature of the bound-preserving MCL scheme (3.66) and
employ a limiter that enforces Tadmor’s entropy stability condition (3.68) in addition to
discrete maximum principles. First, we notice that removal of the term αijf

∗
ij in (3.66)

reproduces the low order method (3.26) again. Entropy stability for αij = 0 follows from
arguments used by Chen and Shu [Che17, Sec. 3.5] to prove it for DG schemes that use
Godunov-type approximate Riemann solvers such as the local Lax–Friedrichs flux.
Lemma 3.27 (Entropy stability of the low order method, Che17 Sec. 3.3)
Let (η, q) be an entropy pair for (3.1). Assume that the assumptions of Lemma 3.12 are
satisfied. In addition, for arbitrary space directions n ∈ Sd−1

1 , let the one-dimensional
entropy inequalities

∂η(u)
∂t

+ (∇ · n) q(u) · n ≤ 0 in R× R+



Numerical examples 71

hold for the unique admissible solution u. If η ∈ C2(Amax), then Tadmor’s entropy
stability condition (3.68) is satisfied for the numerical fluxes gij = dij(uj − ui). ♦

Proof:
Adapting the proof techniques of Chen and Shu [Che17, Thm. 3.6 and Cor. 3.2] to the
AFC version (3.26) of the local Lax–Friedrichs method, the validity of the claim can be
readily established using similar arguments. �

Let us now discuss a way to enforce Tadmor’s entropy stability condition (3.68).
Since it holds for gij = dij(uj − ui) by Lemma 3.27, it also holds for fluxes of the
form gij = dij(uj − ui) + βijαijf

∗
ij if βij = βji ∈ [0, 1] is sufficiently small. The

corresponding criterion for calculation of the entropy correction factors βij for the final
limited antidiffusive fluxes βijαijf ∗ij of the MCL scheme is given by [Kuz20c]

(vi − vj)T

2
[
dij(uj − ui) + βijαijf

∗
ij − (fj + fi) cij

]
≤ (ψj −ψi) · cij (3.72)

for i ∈ {1, . . . , N}, j ∈ Ni \ {i}, or equivalently,
βij
2 Rij ≤ Qij −

dij
2 Pij, i ∈ {1, . . . , N}, j ∈ Ni \ {i},

where

Pij ··= (vi − vj)T(uj − ui) = Pji, Rij ··= αij(vi − vj)Tf ∗ij = Rji, (3.73a)

Qij ··=
[
(ψj −ψi) + 1

2(vi − vj)T(fj + fi)
]
· cij (3.73b)

for i ∈ {1, . . . , N}, j ∈ Ni \ {i}. In addition to (3.72), the correction factors of the
semi-discrete entropy fix must satisfy the symmetry condition βij = βji. Under these
linear constraints, the optimal value of βij is given by [Kuz20c, Eq. (43)]

βij =


2 min{Qij, Qji} − dijPij

Rij

if Rij > 2 min{Qij, Qji} − dijPij,

1 otherwise.
(3.74)

Note that 2 min{Qij, Qji} − dijPij is nonnegative for all i ∈ {1, . . . , N}, j ∈ Ni \ {i} by
Lemma 3.27. We close this section by pointing out that practical calculation of the
correction factors βij is further discussed in Remark 6 of our paper [Kuz22a].

3.4 Numerical examples
We now illustrate the performance of bound-preserving and entropy-stable schemes for a
variety of test problems. First we consider two nonlinear scalar conservation laws before
moving on to the Euler equations of gas dynamics.
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The strategies under investigation include the algebraic local Lax–Friedrichs scheme,
i. e., the low order method (LOW), the bound-preserving monolithic convex limiting
approach without entropy fix (MCL), as well as the MCL algorithm enhanced by the
semi-discrete entropy limiter (MCL-SDE). If bound-preserving flux correction is disabled
and only semi-discrete entropy stability is enforced, the scheme is referred to as SDE.

In most examples, we employ a uniform one-dimensional mesh consisting of 128
elements. Unless stated otherwise, the SSP2 RK method is used for temporal discretiza-
tion in combination with adaptive time stepping as discussed in Section 3.3.4.1. The
CFL parameter ν = 1 is used for scalar equations whereas, by default, we set ν = 0.5
for the Euler equations.

For simplicity, we interpolate u0 in Vm
h to obtain discrete initial data (although

this approach is, strictly speaking, not possible if the initial profiles are discontinuous).
Compared to interpolations, projections have the benefit of being conservative in the
case of exact integration. The lumped L2 projection is a suitable approach to use in
real-life applications because the resulting loss of accuracy is usually dominated by the
discretization error. The consistent L2 projection should generally not be employed as
an alternative because it produces oscillatory approximations at discontinuities. If initial
profiles obtained in that manner are evolved, bound-preserving limiters such as the ones
discussed in this chapter are not capable of curing these spurious features. In the worst
case, the L2 projected initial condition can even be outside the largest admissible set
of a system of conservation laws. Instead of either type of L2 projection, one can use
FCT constrained initialization, see for instance [Kuz10b, Sec. 8–9]. To enforce IDP
properties for the discrete initial data, one can employ FCT-type limiters such as the
one in [Gue18a].

3.4.1 Burgers equation
Some theoretical concepts of hyperbolic conservation laws were already illustrated for
the inviscid Burgers equation (2.24). Let us now perform numerical studies for the
problem

∂u

∂t
+ 1

2
∂(u2)
∂x

= 0 in Ω× (0, T ),

u = u0 in Ω× {0},

where the spatial domain Ω ⊂ R is equipped with periodic boundaries. Since the
flux function f(u) = u2

2 is convex, we may safely employ the wave speeds λn(ui, uj) =
max{|f ′(ui)|, |f ′(uj)|} = max{|ui|, |uj|} for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}. To enforce
entropy stability, we use the entropy pair (η(u), q(u)) = (u2

2 ,
u3

3 ) with the corresponding
entropy potential ψ(u) = u3

6 . If u0 ∈ C1(Ω), the exact solution to this problem can be
found by the method of characteristics (cf. Section 2.3.1, in particular, (2.22)). Hence,



Numerical examples 73

we solve the nonlinear equation u = u0(x − ut) via Newton’s method to obtain the
solution value in (x, t). However, unless u0 is monotonically increasing, there exists a
critical time [LeV92, Sec. 3.3]

tc = − 1
minx∈Ω u

′
0(x)

after which this approach is no longer valid because a shock starts to develop.

1/h LOW EOC MCL EOC MCL-SDE EOC
32 3.18E-02 4.03E-03 5.84E-03
64 1.65E-02 0.95 1.37E-03 1.56 1.62E-03 1.85
128 9.25E-03 0.83 3.83E-04 1.83 3.93E-04 2.05
256 4.96E-03 0.90 9.81E-05 1.96 9.74E-05 2.01
512 2.57E-03 0.95 2.40E-05 2.03 2.47E-05 1.98

Table 3.1: Convergence history for the one-dimensional Burgers equation. The ‖ · ‖L1(Ω) errors at
T = 0.1 and the corresponding EOC for Ω = (0, 1), u0(x) = sin(2πx).

1/h LOW EOC MCL EOC MCL-SDE EOC
32 2.05E-01 2.55E-02 2.98E-02
64 1.03E-01 1.00 7.19E-03 1.82 7.59E-03 1.97
128 5.29E-02 0.96 1.79E-03 2.00 1.86E-03 2.03
256 2.71E-02 0.97 4.56E-04 1.98 4.58E-04 2.02
512 1.37E-02 0.99 1.12E-04 2.03 1.14E-04 2.00

Table 3.2: Convergence history for the one-dimensional Burgers equation. The ‖ · ‖L1(Ω) errors at
T = 0.5 and the corresponding EOC for Ω = (0, 2π), u0(x) = 0.5 + sin(x).

In the first example, we evolve the initial condition u0(x) = sin(2πx) in the spatial
domain Ω = (0, 1) [Kuz20c, Sec. 7.3]. Here the critical time is tc = 1

2π and the shock
remains stationary at location x = 0.5. We solve this problem up to the final time
T = 0.1 < tc and perform convergence analysis for LOW, MCL and MCL-SDE, employing
a hierarchy of uniform meshes for spatial discretization. The obtained L1(Ω) errors at
the final time and the corresponding experimental orders of convergence (EOC) are
reported in Tab. 3.1. Next, we repeat this test in Ω = (0, 2π) and replace the previously
employed initial condition with u0(x) = 0.5 + sin(x) [Kur00, Sec. 6.2]. In this example,
the shock develops at tc = 1 and propagates to the right. The results of this convergence
test for end time T = 0.5 are reported in Tab. 3.2. In both examples, we observe
optimal first order rates for the low order method and second order of accuracy for the
flux-limited schemes with and without the entropy fix.

Next, we increase the end times in both simulations, to run them longer than the
respective critical times tc. Snapshots for both cases are displayed in Fig. 3.1. Here we
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(a) Ω = (0, 1), T = 0.5, and u0(x) = sin(2πx).
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(b) Ω = (0, 2π), T = 2, and u0(x) = 0.5 + sin(x).
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Figure 3.1: Approximations to the one-dimensional Burgers equation obtained with adaptive SSP2 RK
time stepping and ν = 1 on uniform meshes consisting of 128 elements.

additionally present approximations obtained with the SDE scheme, i. e., with the bound-
preserving limiter disabled. The corresponding curves exhibit over- and undershoots
around the shocks, which are suppressed by the standard MCL limiter. Aside from these
ripples the approximations are satisfactory. In contrast, the target scheme without any
limiting introduces more severe oscillations, which propagate and increase in magnitude,
causing the simulation to blow up before the respective final time T . For this test
problem, we see no benefit in using the MCL-SDE scheme rather than the merely
bound-preserving but not necessarily entropy stable MCL method. Thus, we consider a
more delicate scalar problem in the following section.

3.4.2 KPP problem
We study a benchmark proposed by Kurganov et al. [Kur07b, Sec. 5.3] that is commonly
known as the KPP problem. In this 2D test case, we solve the scalar conservation law
with the nonconvex flux function f(u) = (sin(u), cos(u))T. The spatial domain is chosen
as Ω = (−2, 2)× (−2.5, 1.5) and the initial condition reads

u0(x) =
umax ··= 7

2π if |x| < 1,
umin ··= 1

4π if |x| ≥ 1.

According to [Kur07b], the unique vanishing viscosity solution exhibits a spiral structure
that many high-resolution schemes fail to capture correctly.

For the end time T = 1, we may treat all boundaries as outlets. In our exper-
iments, we overestimate the wave speeds by setting λij = 1 for all i ∈ {1, . . . , N},
j ∈ Ni \ {i} [Kuz20c]. Sharper estimates can be found in [Gue17]. Since f is not iso-
tropic, setting λij to max{|f ′(ui) · n|, |f ′(uj) · n|} produces approximations that violate
global discrete maximum principles.
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The numerical results displayed in this section are visualized with the open source
C++ software GLVis. In Fig. 3.2 we present the LOW approximation obtained on a
uniform quadrilateral mesh of 10242 elements. SSP2 RK time stepping with constant
time step ∆t = 2−10 is employed to match the spatial accuracy and to satisfy the CFL
condition (3.43). Since fully discrete entropy inequalities w. r. t. every entropy pair hold
for the low order method [Gue16b, Thm. 4.7], we may expect the profiles in Fig. 3.2 to
capture the qualitative behavior of the vanishing viscosity solution reasonably well.

(a) “Side” view (b) “Back” view (c) “Top” view

Figure 3.2: LOW approximation at T = 1 to the KPP problem [Kur07b] obtained with SSP2 RK time
stepping and ∆t = 2−10 on a uniform quadrilateral mesh consisting of 10242 elements.

Let us now investigate the performance of the flux-limited schemes under consider-
ation by choosing a much coarser uniform mesh with 1282 quadrilateral elements. In
accordance with the CFL condition (3.43), we employ a constant time step of ∆t = 2−7

for SSP2 RK time stepping. In Fig. 3.3 we display the MCL results without any entropy
fixes as well as two variants of MCL-SDE approximations. The first one enforces entropy
stability w. r. t. the quadratic entropy η(u) = u2

2 for which the entropy flux and potential
of the KPP problem read

q(u) = (u sin(u) + cos(u), u cos(u)− sin(u)), ψ(u) = (− cos(u), sin(u)),

respectively. Secondly, we use a Kruzhkov entropy pair (2.37) with corresponding
entropy potential ψκ(u) = sign(u−κ) f(κ). In all experiments performed in this section,
the Kruzhkov parameter is set to κ = 1

2(umin + umax) = 15
4 π.

Remark 3.28
Note that Lemma 3.27 does not apply to Kruzhkov entropy pairs because of their
insufficient regularity. Thus, we continually check whether the entropy production
bounds min{Qij, Qji} − dijPij/2 (see (3.73)) become negative for any pair of nodes,
which could pose difficulties for entropy limiting. In all numerical experiments of this
section, the inequality min{Qij, Qji} − dijPij/2 ≥ 0 was always satisfied up to machine
precision for the Kruzhkov entropy with κ = 15

4 π. ♦
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(a) MCL without entropy fix (b) MCL-SDE, η(u) = u2

2 (c) MCL-SDE, η(u) = |u− 15
4 π|

Figure 3.3: Flux-corrected approximations at T = 1 to the KPP problem [Kur07b] obtained with
SSP2 RK time stepping and ∆t = 2−7 on a uniform quadrilateral mesh consisting of 1282

elements.

None of the profiles in Fig. 3.3 is in satisfactory agreement with the approximation
displayed in Fig. 3.2c. Specifically, the gap between the spiral-shaped shocks visible
in Fig. 3.2c cannot be made out in Figs. 3.3a and 3.3b. Based on the profile shown
in Fig. 3.3c this issue seems to be resolved if the entropy fix is performed w. r. t. this
Kruzhkov entropy pair. By taking a close look at the contour lines of this approximation,
we can tell that this scheme does not capture the exact solution very well either. None of
the results in Fig. 3.3 can be improved by merely increasing the spatial and/or temporal
resolution. We illustrate this fact by displaying the MCL-SDE results for the square
entropy obtained on a sequence of refined meshes in Fig. 3.4. The kink visible in the
approximations does not vanish, even upon further refinement.

This issue can be fixed by employing additional stabilization techniques. For instance,
entropy viscosity can be introduced into the high order scheme as in [Gue17, Kuz20c].
In [Kuz22a] we alternatively enforce Tadmor’s condition w. r. t. entropy dissipative
bounds (see [Kuz22a, p. 8] for details). To further diversify the available options, we
follow another strategy here. Note that, thus far, we have enforced entropy stability
of flux-corrected approximations w. r. t. a single entropy pair. But what if the MCL-
SDE approximations in Figs. 3.3b and 3.3c do in fact converge to respective weak
solutions that are entropic w. r. t. only a specific entropy pair? The limits of such
approximations would be different from the vanishing viscosity solution, which satisfies
entropy inequalities w. r. t. every entropy pair. This argument suggests that one would
have to enforce entropy inequalities for every Kruzhkov entropy, which is not feasible.
We may however perform entropy fixes for n ∈ N entropy pairs and choose the smallest
of the n correction factors βij for each pair of nodes. To test this approach, we repeat
the MCL-SDE run with both of the above entropy pairs. This time we employ three
unstructured triangular meshes with mesh sizes h ∈ {0.08, 0.04, 0.02}. For time stepping
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(a) 2562 elements, ∆t = 2−8 (b) 5122 elements, ∆t = 2−9 (c) 10242 elements, ∆t = 2−10

Figure 3.4: MCL-SDE approximations at T = 1 to the KPP problem [Kur07b], where entropy limiting is
performed w. r. t. η(u) = u2

2 . Solutions obtained with SSP2 RK time stepping and constant
time steps on uniform quadrilateral meshes.

we use the SSP2 RK method with a total of 125, 250, and 500 time steps of constant
size, respectively. In Fig. 3.5 we display the results obtained with SDE and MCL-SDE
schemes. Since the bound preserving limiter is disabled in the former, oscillations in
the vicinity of shocks do arise but the entropy fixes lead to well-separated spiral shock
patterns in all cases. Similar results are obtained if structured triangular or quadrilateral
meshes are employed. Moreover, variations of the temporal discretization do not seem
to affect the results as long as the CFL condition (3.43) is satisfied.

A conclusion that can be drawn from this section is that for certain problems, it is
imperative to enforce entropy stability in addition to using a bound-preserving limiter.
For fixes (3.74) based on Kruzhkov entropy pairs (2.37), the Kruzhkov parameter κ must
be an element of the interval [umin, umax]. Otherwise both sides of Tadmor’s condition
(3.68) are zero (if the approximations are bound-preserving) and the antidiffusive fluxes
are not modified. For problems satisfying the conditions of Panov’s theorem [Pan94,
Thm. 1], it suffices to perform a single entropy fix at most. For general scalar conservation
laws it may be necessary to employ these corrections w. r. t. more than one entropy pair.
It is unclear a priori, how many fixes are required, and, in particular, which entropy
pairs should be considered. Therefore, entropy limiting for a single entropy pair with
entropy-dissipative bounds as in [Kuz22a, Sec. 6.2] seems to be a better option for such
problems.

3.4.3 Euler equations of gas dynamics
We now apply the schemes under consideration to classical test problems for the
compressible Euler equations (cf. Section 2.2.2). In the below tests, the ratio of specific
heats/adiabatic constant is set to γ = 1.4. Our experiments are restricted to the 1D



78 Property-preserving methods for conservation laws

(a) SDE for h = 0.08 (b) SDE for h = 0.04 (c) SDE for h = 0.02

(d) MCL-SDE for h = 0.08 (e) MCL-SDE for h = 0.04 (f) MCL-SDE for h = 0.02

Figure 3.5: SDE and MCL-SDE approximations at T = 1 to the KPP problem [Kur07b], where entropy
limiting is performed w. r. t. η(u) = u2

2 and η(u) = |u− 15
4 π|. Solutions obtained with SSP2

RK time stepping and constant time steps on unstructured triangular meshes.

case. For numerical studies of the MCL scheme applied to the two-dimensional Double
Mach reflection problem [Woo84], we refer to [Kuz20a, Sec. 6.6].

3.4.3.1 Sod’s shock tube

A very common test case for the Euler equations is the shock tube problem studied by
Sod [Sod78]. This benchmark constitutes a classical Riemann problem and is a relatively
mild example. The spatial domain is Ω = (0, 1) and the initial condition expressed in
conservative variables reads

u0(x) =
(1, 0, 2.5)T if x < 0.5,

(0.125, 0, 0.25)T if x > 0.5.

This Riemann problem has a semi-analytical solution, in the sense that one can derive
a closed form expression for u(x, t) that depends on a parameter, which can only be
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approximated numerically (see [Fei03, Sec. 3.1.6] or [Tor09, Chap. 4] for details).
We solve Sod’s shock tube numerically up to time T = 0.25, which constitutes

a time instant before the flow reaches either of the domain boundaries. Indeed, no
boundary treatment is necessary in this example although the classical setting suggests to
employ reflecting walls at x ∈ {0, 1}. Fig. 3.6 displays the LOW, MCL, and MCL-SDE
approximations obtained for this setup. We also report the accumulated L1(Ω) error at
the final time

e1
T
··= ‖u(T )− uh(T )‖L1(Ω)3 .

In other words, we sum the errors in each component of the vector of conserved unknowns.

(a) LOW, e1
T=1.08E-01
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(b) MCL, e1
T=2.74E-02
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(c) MCL-SDE, e1
T=3.09E-02
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Figure 3.6: Sod’s shock tube problem for the Euler equations [Sod78]. Density, velocity, and pressure
profiles at T = 0.25 obtained with adaptive SSP2 RK time stepping and ν = 0.5 on a
uniform mesh consisting of 128 elements.

The low order method produces quite diffusive profiles for each displayed field, while
the MCL and MCL-SDE approximations are in very good agreement with the exact
solutions. There is no qualitative difference between the approximations with and
without entropy fix. Only the numerical error is slightly higher in the entropy-limited
scheme. For these high resolution schemes, there seems to be an overshoot in the
velocity profile on the right of the rarefaction wave. Actually, this feature can also be
observed in the low order solution, on very fine meshes [Gue16b, Sec. 5.3.2]. Thus, it is
not a spurious artifact but a result of the Eulerian solution approach (as opposed to a
Lagrangian framework). Moreover, convergence to the exact solution is not inhibited.

Next, we modify the CFL parameter ν and report the total number of employed
time steps #TS, the number of repeated Runge–Kutta stages #RK, as well as the total
number of Euler steps #Euler=2#TS+#RK in Tab. 3.3. Here the factor 2 is due to the
employed SSP2 RK method. Among the three CFL parameters under investigation, the
most economical choice is ν = 0.9 because it requires the smallest number of forward
Euler updates. Of course, smaller values for ν may be employed, since they can be
expected to produce approximations of increased temporal accuracy.

Either of the flux-corrected profiles shown in Fig. 3.6 are satisfactory for this test
problem. The slight smearing of the contact discontinuity (jump in the blue curve,
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ν = 0.5 ν = 0.9 ν = 1
scheme #TS #RK #Euler #TS #RK #Euler #TS #RK #Euler
LOW 274 0 548 152 1 305 138 109 385
MCL 280 0 560 156 2 314 141 84 366

MCL-SDE 280 0 560 156 2 314 141 89 371

Table 3.3: Sod’s shock tube problem for the Euler equations [Sod78]. Number of employed time steps,
repeated Runge–Kutta stages and total number of forward Euler updates for different values
of the CFL parameter ν.

located at roughly x = 0.73) may be worthy of improving. This task can be achieved
by increasing the spatial and temporal resolution. A full convergence history for each
method is presented in Tab. 3.4. We observe convergence rates of at least

√
h, which

1/h LOW EOC MCL EOC MCL-SDE EOC
32 2.36E-01 9.84E-02 1.10E-01
64 1.65E-01 0.52 5.37E-02 0.87 6.00E-02 0.87
128 1.08E-01 0.61 2.74E-02 0.97 3.09E-02 0.96
256 6.79E-02 0.67 1.41E-02 0.96 1.61E-02 0.94
512 4.17E-02 0.70 6.89E-03 1.04 7.96E-03 1.02

Table 3.4: Convergence history of Sod’s shock tube problem for the Euler equations [Sod78]. The
‖ · ‖L1(Ω) errors at T = 0.25 and the corresponding EOC.

is the optimal order to be expected. Here the benefit of employing the high-resolution
schemes MCL or MCL-SDE over the low order method is clearly visible in the improved
convergence rates.

We conclude our experiments of Sod’s shock tube problem with a remark on the need
for employing an IDP fix to enforce nonnegativity of the pressure/internal energy. Since
this is a relatively mild test problem, all of the runs in this section can be performed
without using such a limiter. However, the pressure fix is activated a few times in
the course of the simulation. The occurrence of negative internal energies in the bar
states does not automatically imply a violation of the nonnegativity constraint for
the updated solution, because the convex combination of multiple bar states may still
produce nonnegative nodal pressures. In general, however, we need to employ such
an IDP fix. Therefore, all approximations for Sod’s shock tube in this section were
computed with the pressure fix. The next test problem is one where MCL and MCL-SDE
simulations break down unless a pressure fix is employed.

3.4.3.2 Woodward–Colella blast wave problem

Another classical benchmark for the Euler equation is the one-dimensional blast wave
problem proposed by Woodward and Colella [Woo84]. As for Sod’s shock tube, the
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spatial domain Ω = (0, 1) has reflecting walls at x ∈ {0, 1}. Here the initial condition
expressed in conserved unknowns reads

u0(x) =


(1, 0, 2500)T if x < 0.1,
(1, 0, 0.025)T if 0.1 < x < 0.9,
(1, 0, 250)T if 0.9 < x

and is evolved up to end time T = 0.038. Strong shock waves develop from the
discontinuities present in the initial profile and travel towards the domain center. By
the end time, a collision of these waves occurs. Therefore, no closed form expression for
the exact solution is available.

We solve the blast wave problem numerically with LOW, MCL, and MCL-SDE
schemes using a fine uniform mesh consisting of 1 000 elements. This mesh resolves the
initial condition accurately everywhere but at the points x = 0.1 and x = 0.9. As for the
previous example, no repetition of any Runge–Kutta stages needs to be performed if the
CFL parameter is set to ν = 0.5. Numerical solutions for density, velocity and pressure
are displayed in Fig. 3.7, along with respective reference solutions that were computed
with a finite volume method on a very fine mesh. We observe satisfactory agreement of
flux-corrected approximations with the respective reference solutions. Again, the low
order method produces profiles that are drastically more diffusive than their limited
counterparts. This behavior is most prominent in the density and pressure profiles and
less pronounced for the velocity. Once more, the MCL and MCL-SDE results are almost
indistinguishable from each other, which suggests that no entropy fixes are necessary for
this problem.

(a) Density

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
Reference
LOW
MCL
MCL-SDE

(b) Velocity

0 0.2 0.4 0.6 0.8 1

0

5

10

15 Reference
LOW
MCL
MCL-SDE

(c) Pressure

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400
Reference
LOW
MCL
MCL-SDE

Figure 3.7: One-dimensional blast wave problem for the Euler equations [Woo84]. Approximations at
T = 0.038 obtained with adaptive SSP2 RK time stepping and ν = 0.5 on a uniform mesh
consisting of 1 000 elements.

Since the value ranges of the conserved unknowns are quite different, we present the
L1(Ω) errors in density, momentum, and total energy separately, along with the total
number of time steps #TS needed for each run. These results can be found in Tab. 3.5.

Next, we study a few variants of the schemes under investigation for the blast wave
problem. First, we repeat the above experiment with backward Euler time stepping and
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LOW MCL MCL-SDE
‖ρ(T )− ρh(T )‖L1(Ω) 2.66E-01 5.30E-02 5.35E-02

‖(ρv)(T )− (ρv)h(T )‖L1(Ω) 3.99E-01 1.29E-01 1.31E-01
‖(ρE)(T )− (ρE)h(T )‖L1(Ω) 8.69E00 1.66E00 1.71E00

#TS 8720 8628 8628

Table 3.5: One-dimensional blast wave problem for the Euler equations [Woo84]. Errors in each
conserved unknown and number of employed time steps.

leave the rest of the setup unmodified. In particular, we continue to employ adaptive
time stepping with ν = 0.5. Given the solution at the previous time step, the backward
Euler updated solution is computed by solving the nonlinear equations

ũi = ui + ∆t
mi

∑
j∈Ni\{i}

2d̃ij(˜̄uij − ũi) + ∆t
mi

∑
Γk∈Fi

2d̃ki (˜̄uki − ũi) (3.75)

for i ∈ {1, . . . , N}. Here all quantities featuring a ∼ refer to values at the new time
level. To solve the implicit equation (3.75), we implement the forward Euler type fixed
point iteration

u
(n+1)
i = ui + ∆t

mi

∑
j∈Ni\{i}

2d(n)
ij (ū(n)

ij − u
(n)
i ) + ∆t

mi

∑
Γk∈Fi

2(dki )(n)((ūki )(n) − u(n)
i ) (3.76)

for i ∈ {1, . . . , N}. The iteration (3.76) is stopped once the residual of (3.75) combined
for all degrees of freedom becomes less than 10−8 in magnitude in the discrete l2 norm.
In the process of calculating numerical solutions, we continually check whether the
time step is in accordance with the CFL condition (3.43). With our choice of ν = 0.5
this prerequisite is never violated in any of the schemes under consideration. Thus,
all iterates in (3.76) are admissible and therefore, so are the approximate solutions
produced by the backward Euler method.

It should be remarked that, in this example, we employ implicit time stepping
solely for demonstrative purposes. Clearly, our nonlinear iteration (3.76) is very basic,
and significantly more expensive than explicit time stepping. Indeed, our (serial, non-
vectorized) Matlab implementation of the explicit methods required approximately 265
seconds on a laptop to compute the profiles of the three schemes shown in Fig. 3.7,
while for backward Euler more than 45 minutes were needed on the same machine.
The slow convergence of (3.76) motivates the use of Newton-like solvers, and suitable
preconditioners for iterations. To employ the former in the context of high-resolution
schemes, one needs to modify the merely Lipschitz-continuous schemes to depend
smoothly on the unknowns (see [Bad17, Loh21]). We also refer to [Gur09, Chap. 8] for a
detailed discussion on advanced nonlinear iterations for implicit schemes in combination
with algebraic flux correction techniques.
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The density profiles of our implicit run are shown in Fig. 3.8a along with a zoom
to the region around the left peak in the profiles. These results look quite similar
to those in Fig. 3.7 with the exception, that the leftmost discontinuity is significantly
more smeared by the implicit approach. This increase in diffusivity is an unsurprising
drawback of backward Euler time discretizations.

Next, we modify some of the setup of the numerical experiments with which the
results in Fig. 3.7 were obtained. In Fig. 3.8b we show the LOW profile obtained on a
very fine uniform mesh consisting of 104 elements. This curve is compared to those of
MCL, and MCL-SDE schemes on the original mesh with 1 000 elements but with the
bound-preserving limiter disabled. In other words, the MCL scheme only constrains the
flux-corrected bar states to have nonnegative pressures, while the MCL-SDE scheme
additionally enforces the semi-discrete entropy inequality. No bounds for numerical
admissibility are enforced in either case.

(a) Backward Euler approximations
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Figure 3.8: One-dimensional blast wave problem for the Euler equations [Woo84]. Density profiles for
variants of LOW, MCL, and MCL-SDE at T = 0.038 obtained with adaptive SSP RK time
stepping and ν = 0.5 on uniform meshes.

We observe significant improvement in the low order solution compared to the one
obtained on the coarser mesh. Nevertheless smearing around discontinuities is still
more pronounced than in the flux-corrected profiles obtained on a mesh with 10 times
fewer elements. If bound-preserving limiting is disabled we observe spurious oscillations
around the discontinuities but, otherwise, the approximations are acceptable. Both
the MCL and MCL-SDE profiles now require a total of 8746 time steps to reach the
final simulation time. The fact that it is possible to obtain these profiles suggests that
the only flux-correction necessary to solve the blast wave problem is the IDP pressure
fix. Oscillations in the density, although present, do not cause the simulations to break
down. Nevertheless, one should generally enforce local bounds to prevent these Gibbs
phenomena in the vicinity of steep fronts. We remark that without the pressure fix for
the flux-corrected bar states, both high resolution schemes produce inadmissible states,
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which shows that these methods are not IDP if the pressure fix is disabled.
Interestingly enough, the small scale oscillations, which can be spotted in the zoomed

region of Fig. 3.8a are not present in either the green or red curves in Fig. 3.8b. Indeed,
the over- and undershoots are more local to the discontinuities if the bound-preserving
limiter is disabled. This observation suggests that our local bounds for limiting (3.60)–
(3.61) impose too restrictive constraints in this example. Recall that we define local
bounds based solely on the low order bar states, a strategy that may be inappropriate
here. In fact, admissibility of the bar states is proven by invoking the theory of simple
Riemann problems in which no shock collisions occur (cf. Lemma 3.12).

Let us perform a final test with the MCL scheme using different definitions of raw
antidiffusive fluxes. Our default option fij = mij(u̇L

i − u̇L
j ) + dij(ui − uj), where u̇L

i are
the low order time derivatives (3.38) is compared with fij = mij(u̇G

i − u̇G
j ) + dij(ui − uj),

where u̇G
i are the nodal Galerkin time derivatives defined by (3.37). In Fig. 3.9 we

present the results of this test in which the problem setup is the same as in our first
simulation for the blast wave problem.

(a) fij = mij(u̇L
i − u̇L

j ) + dij(ui − uj)
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Figure 3.9: One-dimensional blast wave problem for the Euler equations [Woo84]. MCL density profiles
at T = 0.038 obtained using different choices of fij with adaptive SSP2 RK time stepping
and ν = 0.5 on a uniform mesh consisting of 1 000 elements.

Both density profiles exhibit oscillations, which are clearly visible in the zoomed
regions. However, these are significantly more pronounced if the unstabilized Galerkin
version of antidiffusive fluxes is employed. Similar unsatisfactory profiles are obtained if
the approximate time derivatives correspond to the lumped Galerkin method (same as
u̇G
i but with inversion of ML instead of the consistent mass matrix M) and with the

lumped mass version fij = dij(ui − uj). This experiment demonstrates the benefit of
using the low order nodal time derivatives (3.38). As an alternative to our approach, one
may employ the Galerkin time time derivative as long as some other form of stabilization
is introduced into the algorithm. The use of low order time derivatives is an inexpensive
strategy because the consistent mass matrix does not need to be inverted.



Chapter 4

Limiting for the shallow water
equations with nonflat topography

In the previous chapter, we discussed monolithic convex limiting strategies and related
concepts that were developed in [Kuz20a, Kuz20c, Kuz22a] for conservation laws. We
now extend these techniques to a system of balance laws. In particular, we consider
the shallow water equations (SWE) with a nonconservative topography term. This
important nonlinear system of partial differential equations reads (cf. Section 2.2.3)

∂

∂t

[
h
hv

]
+∇ ·

[
hvT

hv ⊗ v + g
2h

2I

]
+
[

0
gh∇b

]
= 0 in Ω× R+. (4.1)

Additional theoretical and numerical challenges arise when it comes to solving (4.1)
instead of the system of conservation laws corresponding to the case b ≡ const. We
refer to [Bou04, Ch. 3] and references cited therein for a review of the theory of balance
laws and some aspects of the shallow water equations with topography. A summary on
finite volume schemes for general hyperbolic problems with nonconservative terms can
be found in [LeV02, Ch. 17]. Another useful reference on the shallow water equations is
the paper by Delestre et al. [Del13]. In particular, it presents numerical benchmarks
and shows how exact solutions to some of the test problems can be obtained.

We begin this chapter by specifying its main objectives in Section 4.1. Next, in
Section 4.2, we review some of the literature on property-preserving schemes for the SWE.
Our algebraic limiters for system (4.1) are introduced in Section 4.3. In Section 4.4,
we combine them with algorithmic strategies for handling wet-dry transitions. The
one-dimensional numerical examples presented in Section 4.5 conclude this chapter.

4.1 Objectives
The goal of this chapter is to generalize the bound-preserving and entropy-stable MCL
schemes to the inhomogeneous SWE (4.1). One key requirement that we deemed
essential in the development of our algorithms is that they represent generalizations of
the corresponding schemes from Section 3.3 for the flat bottom case. Another desirable
property of numerical methods for balance laws is their well-balancedness. For some
hyperbolic systems, there exist certain steady states, i. e., solutions u(x) that are
independent of t because the flux and source terms are in equilibrium. A numerical
method for solving such a system is called well balanced if it captures the simplest steady
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states exactly in the discrete setting. Recall that in Section 2.1.2 we used the chain
rule to rewrite the term gh∇(h+ b) as g

2∇h
2 + gh∇b. This decomposition suggests that

system (4.1) admits the so-called lake at rest steady state solution

v = 0, h∇(h+ b) = 0. (4.2)

This configuration corresponds to a still body of water that is unperturbed by external
forces, such as in- and outflows through domain boundaries. Note that the second
identity in (4.2) does not imply that the free surface elevation H = h+ b has to be a
global constant, as is the case for a classical lake at rest. In fact, (4.2) allows variations
in H, as long as the water height h is zero at the same physical location. This case
corresponds to a so-called dry state that occurs whenever the topography b exceeds the
water depth h. For an island that rises from a body of water, every point on the surface
of the island represents a dry state.

Besides lake at rest configurations, other types of equilibria exists for the SWE.
In the absence of friction and/or Coriolis forces, (4.1) admits so-called moving water
equilibria steady states. In 1D, such configurations occur if the discharge hv as well as the
expression 1

2v
2 + g(h+ b) remain constant [Bou04, Ch. 3], [Kur07a]. A two-dimensional

analogue of the moving water equilibrium reads

∇ · (hv) = 0, (∇v)v + g∇(h+ b) = 0.

These relations are derived from (4.1) by employing the product rule. They remain
valid for discontinuous solutions with steady shocks. While lake at rest scenarios can be
preserved with simple numerical treatments (see, e. g., [Aud04, Kur07a, Fjo11, Aze17,
Ber19]), moving water equilibria require advanced well-balancing techniques (see for
instance [Noe07]). The incorporation of such approaches into our flux correction schemes
is a topic of its own and will not be attempted in this work. Instead, we focus on
well-balancing w. r. t. lake at rest configurations. Nevertheless, some numerical examples
of moving water equilibria are solved numerically in this chapter.

Another important aspect of numerical methods for the SWE and related models is
the need to deal with wetting and drying scenarios (see, e. g., [Ric09, Bar15, Vat15]) in
which simulations may crash if no special measures are implemented. In many examples
of practical interest, there exist islands rising from the body of water but the interface
between these islands and the water surface is moving. The dry land masses are then
modeled by allowing the bottom topography to exceed the values of the free surface
elevation at the same location (cf. Fig. 2.1). Even in the case that the resolution is
sufficient to capture the interface, it can be quite difficult to accurately resolve the
moving shoreline with numerical methods. In this chapter, we present two new ways of
dealing with this issue and compare our results with some existing approaches.
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4.2 Literature

Before presenting our generalization of the MCL methodology to system (4.1), let us
mention some existing approaches that, in our opinion, represent important contributions
to the field. Our brief discussion of these methods is by no means a comprehensive
review of all property-preserving schemes proposed in the SWE literature.

Many well-balanced methods use the hydrostatic reconstruction technique developed
by Audusse et al. [Aud04]. Originally proposed in the context of finite volume methods,
it yields approximations that preserve lake at rest scenarios, ensure nonnegativity
of water heights under standard CFL conditions, and satisfy a semi-discrete entropy
inequality. Hydrostatic reconstructions achieve these properties by properly balancing
flux and source terms. However, even the original low order hydrostatic reconstruction
method does not satisfy fully discrete entropy inequalities [Aud04, Sec. 2.2]. This issue
is addressed by Berthon et al. [Ber19], who increase the amount of artificial viscosity
to construct a method that is entropy stable in the fully discrete sense. However, the
final numerical example of their study indicates that their scheme still violates the fully
discrete entropy inequality in the presence of nonflat bathymetry and dry states.

Noelle et al. [Noe07] transform to equilibrium variables and use equilibrium-limited
reconstructions in their high order finite volume methods. The main focus of their
work is on exact preservation of moving water equilibria in addition to lakes at rest.
They show that their method captures such states exactly if all stationary shocks are
located at cell interfaces and Roe’s numerical flux is employed. Additionally, they prove
a Lax–Wendroff-type theorem [Noe07, Thms. 3.14 and 3.17, respectively].

Another type of well-balanced finite volume discretizations of the SWE is the family
of central-upwind schemes. The ones presented by Kurganov and Petrova [Kur07a] are
well balanced for the lake at rest and positivity preserving for the water height. As in
[Aud04], these properties are achieved by performing compatible reconstructions for the
conserved unknowns and the bathymetry. To ensure positivity preservation for the water
heights, the algorithm is enhanced with a generalized minmod limiter. Additionally,
a modification for numerical treatment of wetting and drying is proposed in [Kur07a].
In Section 4.5, we test this approach and some new alternatives in the context of our
flux-limited finite element schemes. In contrast to the central-upwind methods presented
in [Kur07a], the applicability of AFC tools is not restricted to Cartesian grids.

Fjordholm et al. [Fjo11] present well-balanced and entropy-conservative/-stable finite
volume schemes for the SWE with topography. Contrary to [Aud04], their approach
does not rely on reconstructions of the bathymetry. Instead, a transformation to
equilibrium variables is used to ensure well-balancedness for moving water equilibria.
Moreover, Fjordholm et al. generalize Tadmor’s entropy stability condition to the case
of nonflat topography and use it to design numerical fluxes. It is admitted in [Fjo11]
that oscillations around discontinuities may produce negative water heights. This
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shortcoming could be cured by employing a positivity-preserving limiter.
In [Ric09], Ricchiuto and Bollermann design residual distribution schemes for the

shallow water equations. As in our case, linear continuous finite elements are used in
the baseline discretization. The method preserves lake at rest scenarios and guarantees
nonnegativity of the water height under CFL-like constraints. Some similarities and
differences of algebraic flux correction schemes and residual distribution methods were
already discussed in Section 1.1. In the SWE context, the latter approach introduces
some complications, as mentioned in the conclusions of [Ric09].

Wintermeyer et al. [Win17] discretize the SWE using high order discontinuous
Galerkin spectral element methods. A proof of entropy conservation/stability is provided
for suitable choices of numerical fluxes. Well-balancedness w. r. t. lake at rest scenarios
is achieved despite difficulties caused by the presence of metric terms in the case of
curvilinear elements. Although the entropy-stable DG scheme developed in [Win17] is
not bound preserving, it seems to be well suited for algebraic flux correction. Thus, we
envisage that under- and overshoots can be avoided using MCL-type approaches.

Azerad et al. [Aze17] present a property-preserving finite element method that is well
balanced w. r. t. the lake at rest. Their scheme incorporates hydrostatic reconstructions
into a nodal continuous Galerkin formulation. Detailed analysis is performed in [Aze17]
for a low order version, which is a generalization of the algebraic Lax–Friedrichs method
to the case of a nonflat bottom. Second order of accuracy is recovered by adjusting
the numerical viscosity. Extensions [Gue18b] of the schemes in [Aze17] are based on
FCT-type limiting and incorporate a regularized friction term into the model. The AFC
methodology that we propose in the present chapter differs from the one developed
in [Aze17] in the formulation of the low order method and in the limiting strategy.
Adopting the MCL design philosophy, we incorporate discretized bathymetry gradients
into the bar states of a well-balanced and positivity-preserving semi-discrete scheme. Our
algorithm provides all desired properties and does not use hydrostatic reconstructions.
Indeed, our strategy of adjusting bathymetry sources is based solely on limiting.

4.3 Algebraic flux correction schemes
Let us now extend the schemes discussed in Section 3.3 to the inhomogeneous hyperbolic
system (4.1) step by step. As before, we first choose a target discretization suitable for
flux correction procedures. Next, we derive a low order method for which all desirable
properties (conservation, numerical and physical admissibility, entropy stability) are
guaranteed. Then we recover the target scheme by including raw antidiffusive fluxes
into the algorithm. Finally, these fluxes are limited in a way that ensures preservation
of both local and global bounds, as well as semi-discrete entropy stability.

The most important considerations regarding the low order method and flux-corrected
schemes were already discussed in the context of general systems of conservation laws.
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For brevity, we focus solely on aspects that need to be modified and refer to Section 3.3
for the rest. In particular, the treatment of boundary terms does not present any
additional difficulties because these terms are the same for discretizations of (4.1) with
constant and spatially variable bathymetry b. Therefore, we omit all boundary terms in
the following presentation but remark that they generally need to be incorporated into
the algorithm. This task is achieved in exactly the same manner as in Section 3.3.

Conceptually, the only difference compared to the case of a flat topography is the
presence of the nonconservative term gh∇b in the momentum equation. The consistent
Galerkin discretization of this term produces the nodal contribution

g
∑
k∈Ni

hk

ˆ
Ω
ϕi ϕk∇b dx (4.3)

to the ith component of the momentum equation. In this formula, hk denotes the value
of the discretized water height at node xk. It is common [Kur07a] to approximate b by
its piecewise (multi)-linear continuous interpolant bh ∈ Vh, defined by

bh(x) =
N∑
j=1

bjϕj(x), bj ··= b(xj).

If the bathymetry b is discontinuous in node xj, one may set bj equal to any of the
one-sided limits in cells containing xj or to an average of these limits. Alternatively, a
projection can be used to obtain bh from b.

In Section 3.3.2, we approximated the inviscid flux f(uh) using a group finite element
formulation to derive a quadrature rule for the corresponding integral. Discretization
(4.3) of the source term must be approximated similarly for our method to be well
balanced. With this goal in mind, we replace (4.3) by the quadrature-based version

g
∑

j∈Ni\{i}

hi + hj
2 (bj − bi) cij, (4.4)

which is similar to what is done, for instance, in [Aud04, Eq. (3.8)], [Kur07a, Eq. (2.6)],
and [Fjo11, Eq. (2.7)]. Note that if hk ≡ const for k ∈ Ni, then (4.4) equals (4.3) with b
replaced by bh. In this sense, (4.4) is similar to the quadrature rule based on the group
finite element approximation of f(uh). The approximation (4.4) to (4.3) is second order
accurate if hk is constant for k ∈ Ni and first order accurate otherwise.

Remark 4.1
In principle, it is possible to compensate the quadrature error due to the source term
approximation (4.4) in the process of flux correction. If this is desired, one needs
to decompose the difference between (4.3) and (4.4) into edge contributions, add the
corresponding correction terms f bij to the raw antidiffusive fluxes fhvij = −fhvji of the
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momentum equation, and modify the limiting formula because f bij 6= −f bji in general.
At an early stage of developing our method, we performed a preliminary study that
showed the feasibility of this approach. In the final version, we disregard first order
quadrature errors caused by using (4.4) instead of (4.3) because in real-life applications
such errors are likely to be negligible compared to measurement errors in the bathymetry
data. ♦

Inserting (4.4) into the semi-discrete momentum equation and approximating other
terms as in (3.19), we obtain the quadrature-based target scheme

N∑
j=1

mij
dhj
dt = −

∑
j∈Ni\{i}

((hv)j − (hv)i)Tcij, (4.5a)

N∑
j=1

mij
d(hv)j

dt = −
∑

j∈Ni\{i}

[
fhvj − fhvi + g

hi + hj
2 (bj − bi) I

]
cij, (4.5b)

where

fhvi = 1
hi

(hv)i ⊗ (hv)i + g

2h
2
i I, i ∈ {1, . . . , N}.

It is worth checking at this stage whether (4.5) is well balanced for lake at rest configu-
rations (4.2) and clarify the meaning of well-balancedness in this context. If (hv)i = 0
for all i ∈ {1, . . . , N}, then (4.5b) reduces to

N∑
j=1

mij
d(hv)j

dt = −
∑

j∈Ni\{i}

g

2[h2
j − h2

i + (hi + hj)(bj − bi)] cij

= −
∑

j∈Ni\{i}

g

2(hj + hi)[hj − hi + bj − bi] cij.

Assuming for now that hi ≥ 0 for all i ∈ {1, . . . , N} (a condition that we enforce later
on), we see that the right hand side of this expression is zero if and only if

hi = hj = 0 or Hi = Hj ∀i ∈ {1, . . . , N}, j ∈ Ni \ {i}, (4.6)

where Hi ··= hi + bi, i ∈ {1, . . . , N} are the coefficients of the discrete free surface
elevation Hh ∈ Vh. If (4.6) holds, the discharge is unperturbed, and thus the right hand
side of the continuity equation (4.5a) is zero.

4.3.1 Low order method
As in the case of a system of conservation laws, we need to modify (4.5) to obtain a
property-preserving semi-discretization. To this end, we perform row sum mass lumping
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and include Rusanov (local Lax–Friedrichs) artificial dissipation. However, the presence
of the nonconservative term makes matters more involved. Special care needs to be
taken, for instance, to ensure semi-discrete entropy stability, positivity preservation for
water heights, and well-balancedness. To construct a low order method that meets all
of our requirements, let us begin with the straightforward generalization

mi
dhi
dt =

∑
j∈Ni\{i}

[
dij(hj − hi)− ((hv)j − (hv)i)Tcij

]
, (4.7a)

mi
d(hv)j

dt =
∑

j∈Ni\{i}

[
dij((hv)j − (hv)i)− (fhvj − fhvi ) cij

− g

2(hi + hj)(bj − bi) cij
]

(4.7b)

of the algebraic Lax–Friedrichs method (3.26) applied to the SWE with flat bathymetry.
As before, the artificial viscosity coefficients dij are defined by (3.27). We will modify
(4.7) step by step until we are able to prove the desired properties.

A first observation regarding (4.7) is that this scheme does not preserve the lake at rest
(4.2) if the given velocity is zero, the free surface elevation is constant (hi+bi = H = hj+bj
for all pairs of nodes) but hi 6= hj for some j 6= i. In this scenario, the flux dij(hj − hi)
of the semi-discrete continuity equation (4.7a) will disturb the equilibrium and produce
nonphysical waves. This issue can be resolved by replacing (4.7a) with

mi
dhi
dt =

∑
j∈Ni\{i}

[
dij(Hj −Hi)− ((hv)j − (hv)i)Tcij

]
. (4.8)

This discretization preserves the lake at rest in the case H ≡ const. However, the theory
that was used to derive the low order method in Section 3.3.2 does not carry over to
systems of balance laws. For the SWE with flat bottom, nonnegativity of water heights
follows from the fact that the low order bar states are averaged exact solutions of the
Riemann problem [Gue16b]. If source terms are included, the so-defined intermediate
states may fail to stay in the admissible set Amax of the homogeneous SWE. Thus, we
need to enforce the nonnegativity constraint for hi by modifying the discretization of
the continuity equation. To this end, we notice that Hj −Hi = hj − hi + (bj − bi) and
introduce a bathymetry limiter αbij ∈ [0, 1] that transforms (4.8) into

mi
dhi
dt =

∑
j∈Ni\{i}

[
dij(hj − hi + αbij(bj − bi))− ((hv)j − (hv)i)Tcij

]
(4.9)

=
∑

j∈Ni\{i}
2dij

[
h̄ij − hi +

αbij
2 (bj − bi)

]
=

∑
j∈Ni\{i}

2dij(h̄bij − hi).

Here h̄ij is the first component of the usual low order bar state (3.28) and

h̄bij ··= h̄ij +
αbij
2 (bj − bi). (4.10)
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The correction factor αbij is used to ensure that h̄bij ≥ 0. This condition holds for αbij = 0
by definition of h̄bij. However, the largest admissible value of αbij ∈ [0, 1] should be
employed for consistency reasons. To maintain the conservation property of the semi-
discrete continuity equation, we impose the usual symmetry condition αbij = αbji. Note
that for bj − bi ≥ 0, the use of αbij = 1 in (4.10) cannot produce negative h̄bij provided
that h̄ij ≥ 0. In this case, however, the limiter may need to act to enforce the condition
h̄bji ≥ 0. These considerations lead to the definition

αbij =


min

{
1, 2h̄ji

bj−bi

}
if bi − bj < 0,

1 if bi − bj = 0,
min

{
1, 2h̄ij

bi−bj

}
if bi − bj > 0.

(4.11)

This approach to enforcing the nonnegativity of water heights in the low order method
is equivalent to the correction procedure proposed by Audusse et al. [Aud15, Sec. 2.2].
The authors of [Aud15] also impose the conservation and positivity requirements, which
yields a 1D finite volume version of our water height limiter based on (4.11).

It is worth checking how the limiter (4.11) behaves for lake at rest configurations.
Lemma 4.2 (Well-balancedness of the positivity-preserving limiter)
Let uh ∈ Vd+1

h be a lake at rest solution, i. e., assume that (4.6) holds in addition to
hi ≥ 0 and (hv)h = 0. Then for any i ∈ {1, . . . , N} and j ∈ Ni \ {i} we have

i) αbij(bj − bi) = 0 if hi = hj = 0 and

ii) αbij = 1 if Hi = Hj.

In either case, the application of the bathymetry limiter (4.11) does not perturb the
lake at rest state because the right hand side of (4.9) is zero for the given data. ♦

Proof:
i) For hi = hj = 0 and (hv)h ≡ 0, the maximum wave speed λij is actually not well
defined because the calculation of nodal velocities requires division by zero. The wetting
and drying models that we present in Section 4.4 ensure that vi remains finite as hi
goes to zero. If this additional requirement is met, any positive upper bound for λij will
produce dij > 0 and h̄ij = h̄ji = 1

2(hi + hj) = 0 in the case under consideration. The
claim then follows from the definition (4.11) of the correction factor αbij.

ii) If bi > bj then 2h̄ij = hi+hj = 2Hi−(bi+bj) and h̄ij−(bi−bj)/2 = Hi−bi = hi ≥ 0 or,
equivalently, 2h̄ij/(bi−bj) ≥ 1. Similarly, for bi < bj we deduce h̄ji−(bj−bi)/2 = hj ≥ 0
and 2h̄ji/(bj − bi) ≥ 1.
If case i) applies to a pair of nodes i ∈ {1, . . . , N}, j ∈ Ni \ {i} then the corresponding
term on the right hand side of (4.9) is zero. Otherwise, in case ii), the right hand side
term reduces to dij(Hj −Hi) = 0 because αbij = 1. �
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At this stage, one may be tempted to use the spatial semi-discretization consisting
of (4.9) and (4.7b) as a low order method for algebraic flux correction. While this
version is already usable, it does not yet ensure semi-discrete entropy stability for general
bathymetry. For this reason, we modify the momentum equation (4.7b) as follows

mi
d(hv)i

dt =
∑

j∈Ni\{i}

[
dij
(
(hv)j − (hv)i + vi + vj

2 αbij(bj − bi)
)

− (fhvj − fhvi ) cij − g
hi + hj

2 αbij(bj − bi) cij
]
. (4.12)

The term 1
2(vi + vj)αbij dij(bj − bi) is included for entropy stabilization purposes. For

consistency reasons, we apply the correction factor αbij to all bathymetry fluxes.

Remark 4.3
Even though the bathymetry plays the role of a parameter in the SWE model, the
correction factor αbij adjusts the source term contribution to the momentum equation.
The consistency error introduced in this way is acceptable because αbij 6= 1 is used
only for (neighbors of) dry states. A similar concept is used in the popular hydrostatic
reconstruction approach [Aud04, Aze17, Ber19] in which topography values are locally
adjusted to guarantee nonnegativity of water heights and well-balancedness. ♦

Let us now discuss how to generalize Tadmor’s entropy stability condition (3.68) to our
setting and verify it for the low order method. Recall that an entropy pair of the SWE
with nonflat topography is given by (cf. Section 2.2.3)

η(u, b) = 1
2
(
gh2 + h|v|2

)
+ ghb, q(u, b) =

(
g(h+ b) + 1

2 |v|
2
)
hv. (4.13)

As of now, our proofs of entropy stability are, in fact, limited to this entropy pair. The
entropy variable and potential corresponding to (4.13) read

v(u, b) =
[
g(h+ b)− 1

2 |v|
2

v

]
= v(u, 0) +

[
gb
0

]
, ψ(u, b) = ψ(u) = g

2h
2v. (4.14)

A generalized version of Tadmor’s entropy stability condition (3.68) was derived by
Fjordholm et al. [Fjo11, Sec. 2.1] in the context of finite volume methods for structured
grids. Adapting this generalization to our continuous FEM setting, we arrive at

dij
2 Pij ≤ (ψj −ψi) · cij + (v(ui, 0)− v(uj, 0))T

2 (fj + fi) cij

+ g

[
hi + hj

2
vi + vj

2 − (hv)i + (hv)j
2

]T

cijαbij(bj − bi) =·· Qij, (4.15)
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where

Pij ··=
[
g[hi − hj + αbij(bi − bj)]−

|vi|2−|vj |2
2

vi − vj

]T [
hj − hi + αbij(bj − bi)

(hv)j − (hv)i + vi+vj
2 αbij(bj − bi)

]
.

Inequality (4.15) imposes the upper bound (ψj −ψi) · cij on the rates of entropy
production/dissipation due to low order fluxes and source terms. We now show that
the parameters dij of our low order method (4.9), (4.12) can be chosen sufficiently large
(overestimating the maximum speed if necessary) to ensure the validity of (4.15).

Lemma 4.4 (Entropy stability of the low order method)
There exist coefficients dij ≥ 0 such that condition (4.15) holds for the numerical fluxes
of the semi-discrete low order method defined by (4.9) and (4.12). ♦

Proof:
Clearly, (4.15) holds for sufficiently large dij > 0 if Pij = Qij = 0 or Pij < 0 and Qij is
finite. By definition, we have Pij = Pji. A simple calculation reveals that

Pij =− g[hi − hj + αbij(bi − bj)]2 −
|vi|2 − |vj|2

2 (hj − hi) + (vi − vj)T((hv)j − (hv)i)

=− g[hi − hj + αbij(bi − bj)]2 −
1
2
[
|vi|2(hj + hi) + |vj|2(hj + hi)

]
+ vT

i vj (hi + hj)

=− g[hi − hj + αbij(bi − bj)]2 −
hi + hj

2 |vi − vj|2 ≤ 0.

It is also easy to verify that Qij = Qji = 0 if Pij = 0, which completes the proof. �

To ensure entropy stability of the low order method (4.9), (4.12) in practice, we verify
whether the coefficients dij defined by (3.27) are large enough to satisfy dij

2 Pij ≤ Qij . If
this is not the case, we set dij = dji = 2 min{0, Qij, Qji}/Pij. In practical applications,
such adjustments seem to be necessary only in the vicinity of dry states. For such
configurations, our approach of increasing the artificial viscosity does not significantly
reduce the time step if an appropriate wetting and drying treatment is adopted.
Remark 4.5
As an alternative to adjusting the diffusion coefficients dij, condition (4.15) can be
satisfied by further reducing the value of αbij. Indeed, (4.15) reduces to Tadmor’s usual
entropy stability condition (3.68) for αbij = 0. A formula to compute such αbij can be
derived similarly to the IDP pressure fix for the Euler equations, see Section 3.3.5. ♦

Let us now generalize the setting of Theorem 3.21 to derive local semi-discrete entropy
inequalities. First, we rewrite the low order method (4.9), (4.12) as follows

mi
dui
dt =

∑
j∈Ni\{i}

[gij − (fj + fi) cij + sij] + 2fi
∑

j∈Ni\{i}
cij,
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where

gij = dij

[
hj − hi + αbij(bj − bi)

(hv)j − (hv)i + vi+vj
2 αbij(bj − bi)

]
, sij =

[
0

−g hi+hj2 αbij(bj − bi) cij

]
.

Thus, gij = −gji for all i ∈ {1, . . . , N}, j ∈ Ni \ {i} and sij = sji if cij = −cji.

Theorem 4.6 (Local semi-discrete entropy inequality)
Consider the low order method (4.9), (4.12) satisfying dij

2 Pij ≤ min{Qij, Qji} for all
i ∈ {1, . . . , N}, j ∈ Ni \ {i}. Define

Gij ··=
(vi + vj)T

2 gij + (vi − vj)T

2 [(fi − fj) cij + sij],

Wij ··=
g

2(1− αbij)(bi − bj)[dij(hj − hi + αbij(bj − bi))− ((hv)i + (hv)j)Tcij].

Then for all i ∈ {1, . . . , N} the semi-discrete entropy inequalities

mi
dηi
dt ≤

∑
j∈Ni\{i}

[Gij +Wij − (qj − qi) · cij] (4.16)

hold w. r. t. the entropy pair (η, q) defined by (4.13). ♦

Proof:
We essentially generalize the proof of Theorem 3.21. To exploit (4.15), we split the nodal
entropy variable vi into 1

2(vi+vj) and 1
2(vi−vj) as in [Tad03, Fjo11, Kuz20c]. The fluxes

gij are antisymmetric, whereas the sources sij are symmetric by definition. Multiplication
by 1

2(vi + vj) preserves these properties, whereas multiplication by 1
2(vi− vj) swaps them

for fluxes and sources in the following identity

miv
T
i

dui
dt =

∑
j∈Ni\{i}

(
(vi + vj)T

2 [gij − (fj + fi) cij] + (vi − vj)T

2 sij

)
+ 2vT

i fi
∑

j∈Ni\{i}
cij

+
∑

j∈Ni\{i}

(
(vi − vj)T

2 [gij − (fj + fi) cij] + (vi + vj)T

2 sij

)
. (4.17)

Before applying (4.15) to the last term on the right hand side of (4.17), we need to
account for the influence of αbij in the continuity equation. To this end, we recall the
definition of entropy variables for the SWE (4.14) and split the symmetric terms in
(4.17) as follows

(vi − vj)T

2 [gij − (fj + fi) cij] + (vi + vj)T

2 sij

= dij
2

[
g[hi − hj + αbij(bi − bj)]− 1

2(|vi|2 − |vj|2)
vi − vj

]T [
hj − hi + αbij(bj − bi)

(hv)j − (hv)i + vi+vj
2 αbij(bj − bi)

]
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+ dij
2
[
g(1− αbij)(bi − bj)

] [
hj − hi + αbij(bj − bi)

]
− (v(ui, 0)− v(uj, 0))T

2 (fj + fi) cij −
(vi + vj)T

2 cij g
hi + hj

2 αbij(bj − bi)

−
gαbij(bi − bj)

2 ((hv)i + (hv)j))Tcij −
g(1− αbij)(bi − bj)

2 ((hv)i + (hv)j)Tcij.

All terms on the right hand side of this identity can be found in Wij or in the entropy
stability condition (4.15), which we invoke in the next step. Recalling the definitions of
Pij and Qij for (4.15), we estimate the sum of symmetric terms using the inequality

(vi − vj)T

2 [gij − (fj + fi) cij] + (vi + vj)T

2 sij ≤ (ψj −ψi) · cij +Wij.

In combination with (4.17), this stability estimate implies

mi
dη(ui)

dt ≤
∑

j∈Ni\{i}

(
(vi + vj)T

2 [gij − (fj + fi) cij] + (vi − vj)T

2 sij

)
+ 2vT

i fi
∑

j∈Ni\{i}
cij

+
∑

j∈Ni\{i}

[
(vT
j fj − qj − vT

i fi + qi) · cij +Wij

]
=

∑
j∈Ni\{i}

[
Gij +Wij − (qj − qi) · cij

]
.

The last identity is obtained exactly as in the proof of Theorem 3.21 (see [Kuz22a,
Sec. 4.1] for details). �

The consistency errorsWij can be attributed to the occurrence of dry or almost dry areas,
which require the use of αbij < 1. For such states, even the validity of the continuous
entropy inequality is questionable because the momentum equation of the SWE model
does not describe the underlying physics correctly. In particular, the absence of friction
terms becomes an issue. This argument justifies the presence of Wij in (4.16).

Corollary 4.7 (Global semi-discrete entropy inequality)
Let the assumptions of Theorem 4.6 be fulfilled and assume that the spatial semi-
discretization (4.9), (4.12) is boundary indifferent (see Definition 3.23) w. r. t. uh(t) for
all t ≥ 0. If, in addition, αbij = 1 for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}, then the following
semi-discrete entropy inequality holds

d
dt

ˆ
Ω

( N∑
i=1

ηi ϕi
)

dx+
ˆ
∂Ω

( N∑
i=1
qi ϕi

)
· n ds ≤ 0. ♦
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Proof:
By assumption, we haveWij = 0 and (vi − vj)Tsij = −(vj − vi)Tsji for all i ∈ {1, . . . , N},
j ∈ Ni \ {i}. Therefore, the claim follows as in the proof of Corollary 3.25. �

We conclude the discussion of the low order method by formulating the bar state form
of the momentum equation (4.12), which reads

mi
d(hv)i

dt =
∑

j∈Ni\{i}
2dij

(
(hv)bij − (hv)i

)
.

Similarly to the bar state (4.10) of the water height, the bar state of the discharge

(hv)bij = (hv)ij + vi + vj
4 αbij(bj − bi)−

g hi+hj2 αbij(bj − bi) cij
2dij

=
(hv)i + (hv)j + vi+vj

2 αbij(bj − bi)
2 −

(
fhvj − fhvi + g hi+hj2 αbij(bj − bi) I

)
cij

2dij
consists of symmetric and skew-symmetric terms.
Remark 4.8
A similar concept based on intermediate states is employed in the work of Audusse
et al. [Aud15]. We already mentioned the fact that their limiter for the water height
[Aud15, Sec. 2.2] is equivalent to (4.11). A minor difference between our low order
method and the well-balanced scheme of Audusse et al. is that their finite volume
method employs intermediate states based on the HLL Riemann solver [Har83b] instead
of local Lax–Friedrichs-type bar states. More importantly, our discretization of the
momentum equation includes an entropy-stabilizing term, which is missing in [Aud15].
The absence of this term might be the reason why no conclusive evidence regarding the
validity of discrete entropy inequalities could be provided in [Aud15, Sec. 2.4]. ♦

4.3.2 Monolithic convex limiting
Having derived the low order method (4.9), (4.12), we now discuss the MCL methodology
for the SWE with topography. As in the case of conservation laws, we first need to
define the raw antidiffusive fluxes fij = −fji ∈ Rd+1, fij ··= (fhij, (fhvij )T)T with which
the target scheme (4.5) can be recovered from the low order method. Most of the
considerations discussed in Section 3.3.3 apply here as well. However, we have to
include additional terms due to modifications that make our low order method property
preserving for nonflat topography. A straightforward computation shows that if αbij = 1
for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}, then (4.5) can be recovered via

mi
dhi
dt =

∑
j∈Ni\{i}

[
2dij(h̄bij − hi) + fhij

]
,
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mi
d(hv)i

dt =
∑

j∈Ni\{i}

[
2dij

(
(hv)bij − (hv)i

)
+ fhvij

]
,

where

fhij = mij

(
ḣi − ḣj

)
+ dij

[
hi − hj + αbij(bi − bj)

]
,

fhvij = mij

( ˙(hv)i − ˙(hv)j
)

+ dij
[
(hv)i − (hv)j + vi + vj

2 αbij(bi − bj)
]
.

In our fully discrete scheme, we once more define the dotted quantities as low order
time derivatives, which are computed from (4.9) and (4.12), respectively. For steady
state problems, these quantities are set to zero as discussed in Section 3.3.3.

We are now in a position to present the generalized sequential limiting technique
with which we obtain flux-corrected counterparts fh,∗ij and fhv,∗ij of fhij and fhvij . In the
first step of the sequential MCL algorithm, we limit the water height using

hmin
i
··= min

j∈Ni\{i}
h̄bij, hmax

i
··= max

j∈Ni\{i}
h̄bij

as local bounds of numerical admissibility conditions, which imply global positivity
preservation for the water height if the bathymetry correction factor αbij defined by
(4.11) is applied. The limiting formula for the raw antidiffusive fluxes fhij becomes

fh,∗ij =
 min

{
fhij, 2dij min

{
hmax
i − h̄bij, h̄bji − hmin

j

}}
if fhij ≥ 0,

max
{
fhij, 2dijmax

{
hmin
i − h̄bij, h̄bji − hmax

j

}}
if fhij ≤ 0.

(4.18)

The corresponding flux-corrected bar states in the continuity equation can be written as

h̄b,∗ij = h̄bij +
fh,∗ij
2dij

= h̄ij +
αbij(bj − bi)

2 +
fh,∗ij
2dij

= h̄∗ij +
αbij(bj − bi)

2 .

Next, we need to limit fhvij in a way that ensures the validity of numerical admissibility
conditions for individual velocity (rather that discharge) components. To construct local
bounds for this step, we first define the velocity bar states as

v̄ij ··=
(hv)bij + (hv)bji

h̄bij + h̄bji
=

2dij
(
(hv)ij + (hv)ji

)
− g hi+hj2 αbij(bj − bi)(cij − cji)

2dij(h̄ij + h̄ji)
= v̄ji,

which represents a generalization of (3.51). Note that the components 1
2α

b
ij(bj − bi) and

1
4(vi + vj)αbij(bj − bi) of the bar states h̄bij, (hv)bij and the corresponding antisymmetric
components of the bar states h̄bji, (hv)bji cancel out upon summation in the numerator
and denominator of the second ratio. The symmetric source terms add up in the
numerator.
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Let vmin
i , vmax

i ∈ Rd be vectors containing local bounds to be imposed on individual
components of the nodal velocity (alternative limiting strategies for vector fields are
discussed in [Haj19]). Inequalities involving vectors should be understood componentwise.
As before, we limit the bar states of the momentum equation as follows

h̄∗ijv
min
i ≤ (hv)b,∗ij ··= (hv)bij +

fhv,∗ij

2dij
= h̄∗ijv̄ij +

ghv,∗ij

2dij
≤ h̄∗ijv

max
i , (4.19)

where ghv,∗ij is a limited counterpart of the flux

ghvij = fhvij + 2dij
(
(hv)bij − h̄

∗
ijv̄ij

)
.

It is easy to verify that ghvij + ghvji = 0 by construction. This property must be preserved
by the flux limiter. From (4.19) we derive the flux constraints for

ghv,∗ij =
 min

{
ghvij , 2dij min

{
h̄∗ij (vmax

i − v̄ij) , h̄∗ji
(
v̄ij − vmin

j

)}}
if ghvij ≥ 0,

max
{
ghvij , 2dijmax

{
h̄∗ij (vmin

i − v̄ij) , h̄∗ji
(
v̄ij − vmax

j

)}}
if ghvij ≤ 0.

Note that this formula applies a scalar limiter of the form (3.55) to each component of
the flux vector ghvij . Finally, we obtain the flux-corrected momentum bar states via

fhv,∗ij = ghv,∗ij − 2dij
(
(hv)bij − h̄

∗
ijv̄ij

)
, (hv)b,∗ij = (hv)bij +

fhv,∗ij

2dij
.

What remains is to choose feasible bounds vmin
i , vmax

i . As before, we should include
the generalized velocity bar states v̄ij in their definition. To prove that a subsequent
entropy fix based on (4.15) cannot cause violations of (4.19), we need to extend the
bounds by including the states (hv)bij/h̄ij (cf. Lemma 3.16). We remark that violations
of local bounds for velocity components are not critical and can be interpreted as
automatic adjustment of numerical admissibility conditions. To strictly enforce local
bounds without extending them in one way or another, the entropy fix should be applied
to the raw antidiffusive fluxes before passing them to the bound-preserving limiter. Our
numerical experiments confirmed that this approach is viable but we did not pursue
it further for two reasons. First, we prefer our approach to be consistent with the
algorithm for conservation laws if the bottom is flat. Second, we found that the entropy
limiter for systems did not significantly modify the approximations obtained with the
sequential MCL scheme. This observation suggests that entropy stabilization may be
unnecessary (at least in the present context regarding approximations to the SWE) if
the scheme yields provably bound-preserving solutions. On the other hand, using a
single correction factor for all components of the given fluxes, as our entropy limiter
does, may produce overly diffusive results if such corrections are performed prior to
enforcing numerical admissibility constraints. Therefore, we extend the velocity bounds
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in such a way that additional limiting does not destroy any of the constraints enforced
previously.

The statement of Lemma 3.16 remains valid if the velocity bounds are defined by

vmin
i
··= min

j∈Ni\{i}
min

v̄ij, (hv)bij
h̄ij

 , vmax
i
··= max

j∈Ni\{i}
max

v̄ij, (hv)bij
h̄ij

 .
Note that, contrary to the sequential approach for the SWE with flat bottom, the states
(hv)bij/h̄ij are neither symmetric nor antisymmetric in general. Therefore, they need to
be computed for all bar states, even the ones corresponding to pairs of interior nodes.

4.3.3 Semi-discrete entropy fix
At the current design stage, the semi-discrete bound-preserving scheme reads

mi
dhi
dt =

∑
j∈Ni\{i}

[
2dij(h̄bij − hi) + fh,∗ij

]
=

∑
j∈Ni\{i}

2dij(h̄b,∗ij − hi),

mi
d(hv)i

dt =
∑

j∈Ni\{i}

[
2dij

(
(hv)bij − (hv)i

)
+ fhv,∗ij

]
=

∑
j∈Ni\{i}

2dij
(
(hv)b,∗ij − (hv)i

)
.

To enforce a semi-discrete entropy inequality, we employ limiting coefficients βij =
βji ∈ [0, 1] and entropy limited fluxes f ∗∗ij = βijf

∗
ij = βij(fh,∗ij , (f

hv,∗
ij )T)T. Our approach

represents a straightforward generalization of the entropy limiter used for conservation
laws. We adjust the Rusanov coefficients dij if necessary to guarantee that the low order
method corresponding to f ∗ij = 0 satisfies the entropy stability condition dij

2 Pij ≤ Qij,
i. e., (4.15). The flux-corrected scheme with f ∗ij replaced by f ∗∗ij is entropy stable if

dij
2 Pij + βij

2 Rij ≤ Qij, (4.20)

where

Rij ··=
[
g[hi − hj + αbij(bi − bj)− 1

2(|vi|2 − |vj|2)
vi − vj

]T

f ∗ij = Rji.

Thus, we enforce (4.20) similarly to (3.74) by setting

βij =


2 min{Qij, Qji} − dijPij

Rij

if Rij > 2 min{Qij, Qji} − dijPij,

1 otherwise.
(4.21)

Since the Rusanov coefficients dij are chosen large enough for 2 min{Qij, Qji} ≥ dijPij
to hold, (4.21) produces βij = βji ∈ [0, 1].
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The generalization of our monolithic limiting strategies for the SWE with topography
is now complete. Written in terms of the flux-corrected bar states

h̄b,∗∗ij = h̄bij +
βijf

h,∗
ij

2dij
, (hv)b,∗∗ij = (hv)bij +

βijf
hv,∗
ij

2dij
,

the resulting semi-discrete method reads

mi
dhi
dt =

∑
j∈Ni\{i}

2dij
(
h̄b,∗∗ij − hi

)
,

mi
d(hv)i

dt =
∑

j∈Ni\{i}
2dij

(
(hv)b,∗∗ij − (hv)i

)
.

By construction, this finite element method is provably well balanced, bound preserving,
and entropy stable. We summarize its properties in the following theorem.

Theorem 4.9 (Properties of flux correction schemes for (4.1))
The low order method and the flux-corrected schemes presented in this section

i) reduce to the corresponding algorithms discussed in Section 3.3 if applied to the
shallow water equations with flat topography,

ii) are well balanced for the lake at rest in the sense of Lemma 4.2,

iii) produce nonnegative water heights under the CFL condition (3.43), and

iv) satisfy the semi-discrete entropy inequalities (4.16) w. r. t. the entropy pair (4.13)
if the correction factors βij are either zero (low order method) or calculated using
(4.21). In the flux-corrected version of the scheme, the numerical fluxes Gij and
consistency errors Wij appearing in (4.16) are replaced with

G∗ij ··= Gij + βij
2
([
g(hi + bi + hj + bj)−

1
2(|vi|2 + |vj|2)

]
fh,∗ij + (vi + vj)Tfhv,∗ij

)
,

W ∗
ij
··= Wij + g

2(1− αbij)(bi − bj)βijf
h,∗
ij ,

respectively. Moreover, the statement of Corollary 4.7 remains valid. ♦

Proof:
i) For b ≡ const the modified bar states of the water height, discharge, and velocity
reduce to those of the SWE without topography term. The antidiffusive fluxes are also
limited in the same way. Since b ≡ 0 is used for flat bathymetry by convention (see
Section 2.2.3), the entropy limiter (4.21) is equivalent to (3.74) (see also Remark 4.5).
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ii) The low order nodal time derivatives that we use in the definition of antidiffusive
fluxes are easily checked to be zero (in fact, the consistent Galerkin time derivatives
vanish too). Owing to Lemma 4.2, the application of αbij does not interfere with the
well-balancedness property. In a similar fashion, we observe that the raw antidiffusive
fluxes fhij and fhvij are exactly zero. Thus, the the scheme reduces to the low order
method (4.9), (4.12), which is well balanced w. r. t. the lake at rest as shown earlier.
iii) The low order bar states h̄bij are nonnegative by definition (4.11) of αbij for the
bathymetry fix. Since the bounds hmin

i are defined by these states, they are also
nonnegative. If the flux fh,∗ij is nonnegative, then so is h̄b,∗ij . Otherwise, the validity of

h̄b,∗ij = h̄bij +
fh,∗ij
2dij
≥ h̄bij +

2dij(hmin
i − h̄bij)
2dij

= hmin
i ≥ 0

for the MCL scheme follows from (4.18). Under the CFL condition (3.43), the nodal
state hi is thus a convex combination of nonnegative states.
iv) To rigorously prove the claim, one has to adapt the arguments used for the low
order fluxes in the proof of Theorem 4.6 by including the antisymmetric term βijf

∗
ij.

The semi-discrete entropy inequality is derived using the same splitting of the entropy
variable vi. The presence of limited antidiffusive fluxes produces three additional terms,
two of which modify the numerical fluxes Gij and consistency errors Wij in the claimed
manner. The third additional term βij

2 Rij is absorbed into the modified entropy stability
condition (4.20) that is enforced by the entropy limiter (4.21). �

4.4 Wetting and drying algorithms
Before moving on to numerical examples, we still need to specify how to handle dry and
almost dry regions numerically. To this end, we first discuss some wetting and drying
algorithms selected from the literature. Then we present our own approach.

Loosely speaking, Ricchiuto and Bollermann [Ric09, Sec. 4.3] set the velocity to zero
if the water height is smaller than a prescribed tolerance for which they use the square
of the normalized mesh size (h/|Ω|)2. Admittedly, their wetting and drying approach
is more involved. In particular, it incorporates information on the topography slope
in wet-dry transition regions. We have not tested this part of their algorithm but ran
experiments with the version that sets the velocity to zero in dry regions. Besides the
fact that this approach interferes with the principle of continuous dependence on the
data, this nodal fix does not perform very well for our schemes.

A velocity fix that does guarantee continuous dependence on data is given by

ṽ = 2h(hv)
h2 + max{h, ε}2 , (4.22)
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where ε� 1. Azerad et al. [Aze17] use ε = 10−16 maxx∈Ω h0(x) in this formula. A prob-
lem with this approach is that if the water height approaches zero but the discharge
does not, the use of (4.22) produces velocities with magnitudes that tend to infinity,
resulting in unrealistic CFL conditions and a blowup of kinetic energy.

Kurganov and Petrova suggest a similar fix [Kur07a, Eqs. (2.17), (2.21)] in which
the velocity is computed via

ṽ =
√

2h(hv)√
h4 + max{h, ε}4

(4.23)

and the parameter ε is set equal to the (normalized) mesh size. In our experience,
this choice introduces significant approximation errors because the mesh size is usually
much larger than the thickness of a water layer that can be considered as dry. On the
other hand, this fix seems to be quite robust in practice. Importantly, Kurganov and
Petrova [Kur07a, Eq. (2.21)] emphasize the need for adjusting the discharge by setting
(hv) = hṽ after calculating the velocity via (4.23).

Many more algorithms for wetting and drying processes exist besides the ones already
mentioned. Most of them work in a fashion similar to the approaches discussed above.
There are also schemes that can not directly be applied in the context of continuous
finite elements. For instance, Vater et al. [Vat15] employ slope limiters to handle wetting
and drying scenarios.

Let us now discuss a new nodal velocity correction based on the entropy of the
shallow water system. Here we restrict ourselves to the case of a flat topography because
it is currently unclear to us whether an extension to the general case is feasible for
our MCL schemes. The underlying idea is based on the observation that unbounded
velocities, which may occur in dry or nearly dry areas, result in blow ups of the kinetic
energy and, therefore, of the entropy. On the other hand, entropy analysis of the bar
state form for the SWE with flat bathymetry provides an upper bound for the nodal
entropy. Violations of this bound (and the resulting lack of discrete entropy stability in
practice) are caused not by the discretization but by the numerically unstable calculation
of nodal velocities for the next step. Thus, for entropy stability reasons, the magnitudes
of nodal velocities should stay bounded in the vicinity of dry states. In physics, this
property is enforced by viscous friction, which is missing in our model.

Recall once more that for b ≡ 0, an entropy for the shallow water equations is the
sum of potential and kinetic energies (cf. (4.13)). By convexity, the entropy of the state
ũi = (h̃i, ˜(hv)i) produced by a forward Euler update satisfies the estimate

η(ũi) = η
((

1− ∆t
mi

∑
j∈Ni\{i}

2dij
)
ui + ∆t

mi

∑
j∈Ni\{i}

2dijū∗∗ij
)

≤
(
1− ∆t

mi

∑
j∈Ni\{i}

2dij
)
η(ui) + ∆t

mi

∑
j∈Ni\{i}

2dijη(ū∗∗ij ) =·· ηmax
i (4.24)
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under the CFL condition (3.43). The value ηmax
i can now be used to prohibit the

occurrence of unbounded velocities that would lead to a violation of (4.24). Invoking
the definition (4.13) of η, we enforce (4.24) by adjusting the nodal velocities as follows

ṽi =


(̃hv)i
h̃i

if | ˜(hv)i| ≤ hiQi,
Qi

|(̃hv)i|
˜(hv)i if | ˜(hv)i| > hiQi,

where Qi ··=
√

2ηmax
i

h̃i
− gh̃i.

We then follow Kurganov and Petrova [Kur07a, Eq. (2.21)] and overwrite the nodal
discharge by h̃iṽi. The approach presented here for a forward Euler update directly
carries over to other SSP RK methods, which are convex combinations of forward Euler
steps. Unfortunately, the entropy-based approach interferes with the well-balancedness
property for the lake at rest unless the topography is flat.

To keep our scheme well balanced, we developed a wetting and drying algorithm
that is based on the theory of laminar boundary layers (see for instance [Sch17]). As
suggested by the above discussion of our entropy-based approach, a particular challenge
for realistic treatment of wetting and drying processes is to obtain a physically correct
model for the velocities in wet-dry transition regions. According to the boundary layer
theory, viscous friction effects should not be neglected in these areas. For the SWE in
particular, a bottom friction term should be incorporated into the system. A derivation
of the viscous SWE including bottom friction can be found in [Ger00]. In essence, a
nonconservative term σv is added on the left hand side of the momentum equation. Here
σ > 0 is the bottom friction coefficient, which may generally depend on the solution
and parameters of the SWE. Particular models for σ are discussed, for instance, in
[Vre94, Sec. 2.7] and [Cus11, Sec. 9.8]. Physical intuition tells us that wet-dry transitions
occur in a boundary layer of thickness 0 < δ � 1. According to [Sch17, Ch. 2], one
may assume that inertial and viscous forces are in equilibrium and contributions of the
material derivative can be neglected in the boundary layer, which in our case implies

gh∇H + σv = 0.

For nodes belonging to wet-dry zones, i. e., for hi ≤ δ, we use this identity to compute a
nodal boundary layer velocity vBL

i via the lumped L2 projection

miv
BL
i = − g

σ
hi

N∑
j∈Ni

Hj cij. (4.25)

Then the nodal velocity ṽi = (hv)i/hi is adjusted as follows

ṽi = (hv)i
max{hi, δ}

+ max
{

0, δ − hi
δ

}
vBL
i . (4.26)

Finally, we overwrite the discharge by hiṽi as in the energy-based version and in the
algorithm proposed by Kurganov and Petrova [Kur07a, Eq. (2.21)].
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Note that formula (4.26) ensures a continuous transition between ṽi for hi ∈ [0, δ]
and vSWE

i
··= (hv)i/hi for hi ≥ δ. Similarly to wall function models for turbulent flows,

it uses the inviscid SWE model for hi > δ but adapts (the solution of) the momentum
equation in the boundary layer, where viscous friction effects are dominant and some
assumptions behind the derivation of the shallow water equations are invalid.

In all of the numerical experiments below, we set the bottom friction parameter
and the boundary layer thickness to σ = 10 and δ = 10−3, respectively. These
values are chosen according to [Ger00] and the boundary layer theory [Sch17, Ch. 2].
Note that our boundary layer has a thickness of 1 millimeter for the SWE without
nondimensionalization. In our opinion this constitutes a reasonable value for which a
nodal state can be considered as almost dry and friction should come into play.

Barros et al. [Bar15, Sec. 3] propose an approach that models the impact of bottom
friction on wetting and drying in a different way. The underlying idea is to treat the sea
bed as a porous medium. Based on precomputed water depths, the authors of [Bar15]
distinguish between wet, dry, and transitional regions. The water height and the bottom
friction coefficient are adjusted in the latter two regimes. Since we consider the SWE
without a bottom friction term (our own fix based on boundary layer theory only adjusts
the velocity and discharge), this approach cannot be directly pursued here.

4.5 Numerical examples
Let us now apply the generalized flux correction schemes for the shallow water equations
with topography to various one-dimensional benchmarks. By default, we employ a
uniform mesh consisting of 128 elements and adaptive SSP2 RK time stepping with
CFL parameter ν = 0.5. In particular, we consider classical steady state examples and
various dam break problems, before testing our algorithms for an idealized parabolic
lake. The same acronyms as in Section 3.4 are used to abbreviate the methods under
investigation.

4.5.1 Steady problems
We investigate the well-balancedness of our schemes by applying them to an exact lake
at rest configuration as well as moving water equilibria. By default, we employ the
raw antidiffusive fluxes fij = dij(uj − ui) for i ∈ {1, . . . , N}, j ∈ Ni \ {i} in this section.
This choice is suitable for steady and weakly time-dependent problems.

4.5.1.1 Lake at rest

In our first test, we set Ω = (0, 1), g = 1, and b(x) = max(0, 0.25− 5(x− 0.5)2). Our
initial conditions read v0 ≡ 0 and h0(x) = max{0.2H(0.5−x)+0.1H(x−0.5), b(x)}, where
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H is the Heaviside function. This test problem represents a lake at rest configuration,
and is essentially the same as in [Lia09, Sec. 4.2] but many similar benchmarks exist
in the literature. In our case, there are two bodies of water with different depths that
are separated from each other by a land mass. Boundary conditions are realized as
reflecting walls. However, this choice does not affect the numerical results.

We solve this problem numerically using the boundary layer-based wetting and
drying approach (4.25)–(4.26) and display the results in Fig. 4.1. All methods clearly
preserve the lake at rest scenario, which is why the free surface elevation profiles in
Fig. 4.1a are perfectly on top of each other. Note that the oscillations observable in
discharge and velocity are of the order of machine precision and do not amplify in the
course of the simulation. The stability of the approach becomes evident by realizing
that a total of 22898 time steps was performed with each scheme to reach the very large
end time T = 100.

(a) Free surface elevation
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Figure 4.1: A lake at rest for the shallow water equations. Approximations at T = 100 obtained with
adaptive SSP2 RK time stepping and ν = 0.5 on a uniform mesh consisting of 128 elements.

In this test, the employed combination of mesh and initial conditions does not
capture the shorelines exactly. Thus, the well-balancedness condition (4.6) does not
apply here. As a consequence, elements containing a wet-dry transition can only resolve
the free surface in these cells by introducing an artificial slope in the discrete water
heights. One can see this artifact in the zoomed region of Fig. 4.1a. It was our intention
to show that, in practice, our methods remain well balanced for such practical examples,
even if (4.6) does not hold. We also ran a similar experiment where (4.6) is satisfied
and well-balancedness is guaranteed by Lemma 4.2. For such problems our schemes
preserve the lake at rest configuration up to machine precision without introducing any
nonphysical slopes in the water height. The discharge and velocity profiles obtained in
this fashion are similar to those in Fig. 4.1.

4.5.1.2 Moving water equilibria

Next, we study three classical steady benchmarks [Vaz99, Sec. 5.3], [Del13, Sec. 3.1] as
well a supercritical modification thereof. In all cases, the spatial domain is Ω = (0, 25)
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and the bathymetry is set to b(x) = max{0, 0.2− 0.05(x− 10)2}. At first, we assume
that no nondimensionalization has been performed, thus we use g = 9.81.

In the first example, we employ (h0, (hv)0) ≡ (2, 0) as initial condition and prescribe
(hv)in = 4.42 at the subcritical inlet on the left and hin = 2 at the subcritical outlet on
the right. In fact the flow is subcritical everywhere and the treatment of boundaries
is in accordance with Tab. 2.2. The exact solution for this setup can be computed as
discussed in [Del13, Sec. 3.1]. As a result of the bump in the bathymetry, there appears
a corresponding one in the free surface elevation.

Next, we consider a transcritical flow example without a shock, which is obtained with
the initial and left boundary data (h0, (hv)0) ≡ (0.66, 0) and (hv)in = 1.53, respectively.
In this example, the type of the right boundary changes in time and is determined
numerically, by computing the eigenvalues of the flux Jacobian for the internal state
at the boundary. The external boundary state is then set according to Tab. 2.2 based
on the available boundary data hin = 0.66 and (hv)in = 1.53. In this example, the flow
becomes supercritical (this behavior is referred to as torrential flow) at the bathymetry
bump and to the right of it but remains subcritical at the left domain boundary.

Another transcritical example is obtained by setting initial and boundary data as
(h0, (hv)0) ≡ (0.33, 0), (hv)in = 0.18 on the left and hin = 0.33 on the right, respectively.
Again, the region around the bathymetry bump becomes torrential, and this time, a
steady shock forms. In this example however, the flow is subcritical, not only on the
left of the area with elevated topography but also in the post-shock region. Thus, the
treatment of boundary conditions is in accordance with Tab. 2.2. Respective reference
solutions obtained with the SWASHES software [Del13] on uniform meshes of 1 000 cells
are displayed in Fig. 4.2 for both transcritical examples.

The obtained free surface elevations for the three test problems are displayed in
Fig. 4.2. With the employed resolution, one can clearly see that the LOW profiles do
not quite attain the exact values in regions where the exact solutions are constant. As
expected, LOW also smears the shock in Fig. 4.2c significantly. On the other hand, the
agreement of the flux-corrected approximations with the respective exact or reference
solutions is satisfactory.

All three of the above examples are classical steady benchmarks. Thus, we check,
whether the approximations converge to steady states. Unfortunately, this is only the
case for the low order method, not for the flux-limited schemes. A variety of reasons for
this lack of convergence can be imagined. In these examples it can be due to the fact,
that our schemes are not exactly well balanced for moving water equilibria.

In our final steady example, we modify the above configurations by assuming the
system to be in nondimensional form. Thus, we set g = 1. As initial condition we use
(h0, (hv)0) ≡ (1, 2.1), which corresponds to supercritical flow. Thus, supercritical in-
and outlet boundary conditions are prescribed at x = 0 and x = 25, respectively. Again,
the bathymetry bump produces a corresponding feature in the free surface elevation.
Contrary to the subcritical case displayed in Fig. 4.2a, the bump is pointing upwards in
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(a) Subcritical flow
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Figure 4.2: Moving water equilibria for the shallow water equations [Vaz99]. Approximations to the
free surface elevation at T = 400 (a), T = 200 (b), and T = 800 (c) obtained with adaptive
SSP2 RK time stepping and ν = 0.5 on a uniform mesh consisting of 128 elements.

this example. The exact solution to this problem can be derived as in [Del13, Sec. 3.1].
In this example, all three schemes under investigation do converge to the steady

states displayed in Fig. 4.3. These profiles were obtained on a uniform mesh consisting
of 128 elements. To rule out that these are isolated instances, we increased the spatial
and temporal resolutions by factors of two and four. The steady state residual in
each run eventually drops below the threshold of 10−12, although our schemes are not
exactly well balanced for moving water equilibria. It is quite remarkable, that the
displayed oscillatory discharge profiles represent discrete steady states. Nevertheless, a
combination of AFC with strategies that guarantee well-balancedness w. r. t. to moving
water equilibria (for instance, as in [Noe07]) is an important topic for future research.

If we include the term mij(u̇L
i − u̇L

j ) in the antidiffusive fluxes fij, LOW and MCL-
SDE methods still converges to steady state for all three resolutions under consideration,
while the MCL method without entropy fix does not. Therefore, it may be a good idea
to employ an entropy fix in practical computations.
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Figure 4.3: Supercritical moving water equilibrium for the shallow water equations. Approximations
at steady state obtained with adaptive SSP2 RK time stepping and ν = 0.5 on a uniform
mesh consisting of 128 elements.

The fact that the low order discharge in Fig. 4.3 looks quite different from its flux-
corrected counterparts is due to the term 1

2(vi + vj)αbij(bj − bi) present in the low order
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method. Its influence on the numerical approximations is reduced in the process of
flux limiting. A preliminary version of our low order method without this term did not
produce the slight phase errors visible in the low order approximations in Fig. 4.3a and
Fig. 4.2a. It is somewhat interesting that these deviations from the respective exact
solutions are opposite in the subcritical and supercritical cases.

4.5.2 Dam breaks
Having studied some problems with steady state solutions in the previous section, we
now perform experiments for the generalized Riemann problem

∂

∂t

[
h
hv

]
+ ∂

∂x

[
hv

hv2 + g
2h

2

]
+
[

0
gh ∂b

∂x

]
= 0 in Ω× (0, T ),

h0(x) =
hL if x < x0,

hR if x > x0,
v0 ≡ 0,

where Ω ⊂ R. We use values hL > hR in the three below tests. This setup corresponds
to an idealized dam located at x0 ∈ Ω that is removed at time t = 0. As a result a water
wave propagates into the region x > x0, while a rarefaction wave travels in the opposite
direction.

4.5.2.1 Wet dam break over flat topography

First, we set g = 1 and consider an example with flat bottom topography, i. e., b ≡ 0.
Thus, we may apply the standard limiting techniques for conservation laws, instead of
their generalized versions for the SWE with a topography source term. If both hL and
hR are positive, the generalized Riemann problem is referred to a wet dam break. Such
tests represent relatively mild test cases, which are similar to Sod’s shock tube problem
[Sod78] for the Euler equations. A difference is that there is one fewer unknown in the
system, and the exact solution does not feature any contact discontinuities.

We equip the spatial domain Ω = (0, 1) with reflecting wall boundaries (although
other options are feasible). In our first test, the dam is located at x0 = 0.5 and the
two values for the water height are set to hL = 1 and hR = 0.1. As end time we choose
T = 0.3. The exact solution to this problem can be found in [Del16, Sec. 4.1.1].

First, we perform a convergence study of LOW, MCL, and MCL-SDE schemes on a
series of uniform meshes. The rates of convergence observed in Tab. 4.1, are similar to
those of the shock tube problem for the Euler equations (see Tab. 3.4), and are optimal
for such examples.

In Fig. 4.4, we display the approximations obtained on a uniform mesh consisting of
128 elements. Just as for the Euler equations, the low order profiles are significantly
more diffusive than they tend to be in approximations to some scalar problems. Similarly
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1/h LOW EOC MCL EOC MCL-SDE EOC
32 7.93E-02 3.28E-02 3.66E-02
64 4.98E-02 0.67 1.67E-02 0.97 1.89E-02 0.95
128 3.00E-02 0.73 8.47E-03 0.98 9.59E-03 0.98
256 1.77E-02 0.76 4.28E-03 0.99 4.85E-03 0.98
512 1.06E-02 0.75 1.94E-03 1.14 2.24E-03 1.11

Table 4.1: Convergence history of the wet dam break for the shallow water equations. The ‖·‖L1(Ω) errors
at T = 0.3 and the corresponding EOC.

to the shock tube example, there are some non-IDP-violating under- and overshoots in
the flux-corrected solutions on the right of the rarefaction wave.
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Figure 4.4: Wet dam break for the shallow water equations. Approximations at T = 0.3 obtained with
adaptive SSP2 RK time stepping and ν = 0.5 on a uniform mesh consisting of 128 elements.

Let us briefly study a few variations of time stepping schemes and artificial viscosities.
For completeness we run this problem with the SSP3 RK method and leave the rest of
the setup unchanged. The results for the water heights in Fig. 4.5a are indistinguishable
from the ones in Fig. 4.4a. In this example, setting ν = 0.67 was sufficient for the
CFL condition (3.43) to be satisfied at all times while values ν ≥ 0.68 required some
repetitions of individual RK stages.

The theory presented in Section 3.3 suggests that we may also employ forward Euler
(SSP1 RK) time stepping and may even set the CFL parameter ν to one. Indeed, the
resulting approximations do not violate the IDP property, and one may assume the
results to be reliable. We investigate the validity of this assumption, first by using
our nodal approximation (3.34) to the wave speeds, and, alternatively, the guaranteed
maximum wave speed (GMS) proposed in [Aze17, Prop. 3.7], [Gue18b, Sec. 4]. In either
case, oscillations and incorrect approximations in the left part of the rarefaction waves
are visible in Figs. 4.5b and 4.5c. The fact that even the use of the GMS wave speed is
not sufficient to prevent these nonphysical effects, implies that they are not a result of
an incorrect wave speed approximation. A reduction of the CFL parameter ν masks this
issue in the sense that the amplitude of the oscillations becomes smaller. The spurious
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approximations observed in this study originate from the combination of forward Euler
time stepping with continuous finite element methods [Kuz12a, Sec. 4]. As we will
see in Chapter 6, schemes based on discontinuous approximation spaces can be safely
employed in combination with forward Euler time stepping. The fact that the low order
method remains stable can be attributed to its equivalence to the vertex-centered finite
volume scheme of local Lax–Friedrichs type [Sel93]. For the shallow water equations we
tested the GMS wave speed [Aze17, Prop. 3.7], [Gue18b, Sec. 4] for multiple examples.
Although the low order method is derived based on assumptions that encourage the
use of GMS instead of our approximation (3.34), we encountered no example in which
the use of GMS is actually necessary. This observation was recently confirmed by Wu
et al. [Wu21, Thm. 3.1] who show that (3.34) preserves the IDP property for the SWE.

(a) SSP3 RK with ν = 0.67
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(b) SSP1 RK, ν = 1 with (3.34)
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(c) SSP1 RK, ν = 1 with GMS
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Figure 4.5: Wet dam break for the shallow water equations. Approximations at T = 0.3 obtained with
adaptive SSP RK time stepping on a uniform mesh consisting of 128 elements.

Using SSPp RK time stepping with p ∈ {2, 3}, we observe satisfactory agreement
of MCL and MCL-SDE profiles with the exact solutions, not only for the conserved
unknowns but also for the velocity. The situation may be different if the test problem
features dry or nearly dry states, which is why we consider such an example next.

4.5.2.2 Dry dam break over flat topography

Let us now set hR to zero, the end time to T = 0.15, and leave the rest of the setup from
the previous example unchanged. Here the exact solution does not feature a shock wave,
only a rarefaction wave is produced as a result of the dam break [Del16, Sec. 4.1.2].

This example already requires some form of treatment to correctly capture the
wet-dry transition. If no such approach has been implemented, one can simply run this
example by setting hR to a very small value, for instance 10−12. Instead of following this
approach, we compare the results obtained with our new friction- and entropy-based
wetting and drying algorithms in Fig. 4.6. The approximations obtained with the
existing schemes of Azerad et al. [Aze17], Kurganov and Petrova [Kur07a] as well as
the one by Ricchiuto and Bollermann [Ric09] are shown in Fig. 4.7.

All wetting and drying approaches produce acceptable numerical solutions for the
water height, whereas approximations for the discharge close to the dry region are
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(f) Entropy-based, velocity
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Figure 4.6: Dry dam break for the shallow water equations with new wetting and drying strategies.
Approximations at T = 0.15 obtained with adaptive SSP2 RK time stepping and ν = 0.5
on a uniform mesh consisting of 128 elements.

somewhat underresolved. Improvements can only be obtained with refined meshes and
time steps. Among the five approaches for wetting and drying, the [Kur07a]-based
fix (4.23) produces the most pronounced kink in the discharge and a similar artifact
is visible in the corresponding water levels. Moreover, this fix produces the smallest
velocities among all considered approaches. All other wetting and drying algorithms
produce satisfactory results for this test problem. The somewhat significant differences
in the velocities, particularly for the low order solution are unsurprising to us because
the calculation of v = (hv)/h is quite sensitive to small water heights, which occur
in almost dry areas. Again, refinement is needed to obtain more accurately resolved
velocity profiles.

4.5.2.3 Wet dam break over a bump

Next, we study a dam break problem proposed in [Win15, Sec. 5.6]. It involves a nonflat
bottom topography. The spatial domain Ω = (0, 20) is again equipped with reflecting
wall boundaries and the gravitational constant is g = 1. The bottom topography, and
initial conditions read

b(x) =
sin(0.25πx) if |x− x0| < 2,

0 otherwise,
h0(x) =

1.6− b(x) if x < x0,

1.05− b(x) if x > x0,

where x0 = 10 and v0 ≡ 0.
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(d) [Kur07a]-based, water level
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(e) [Kur07a]-based, discharge
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(f) [Kur07a]-based, velocity
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(g) [Ric09]-based, water level
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(h) [Ric09]-based, discharge
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(i) [Ric09]-based, velocity
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Figure 4.7: Dry dam break for the shallow water equations with wetting and drying strategies from the
literature. Approximations at T = 0.15 obtained with adaptive SSP2 RK time stepping
and ν = 0.5 on a uniform mesh consisting of 128 elements.
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Figure 4.8: Dam break over a bump for the shallow water equations [Win15]. Approximations at
T = 4.5 obtained with adaptive SSP2 RK time stepping and ν = 0.5 on a uniform mesh
consisting of 400 elements.

To facilitate a comparison of our results with the ones in [Win15], we solve this
problem up to time T = 4.5 on a mesh consisting of 400 elements. A reference solution
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is obtained with a finite volume method on a fine mesh consisting of E = 104 elements.
Even though the initial water height on the right of the dam is quite small, our friction-
based wetting and drying algorithm is never activated in this problem. The results of this
study are displayed in Fig. 4.8, where we observe excellent agreement with our reference
solutions. The obtained profiles also agree well with the ones in [Win15, Sec. 5.6] with
the exception that the peaks in the velocity profiles are slightly lower in our results.
This issue requires further investigations and comparisons with the methods in [Win15].

4.5.3 Oscillating surface in a parabolic lake
In the final numerical example of this chapter, we apply our schemes to one of Thacker’s
oscillatory lakes with a parabolic basin [Tha81]. Such benchmarks are challenging tests
for wetting and drying algorithms. We use the same setup as in Vater et al. [Vat15,
Sec. 4.4], where Ω = (−5000, 5000), g = 9.81, and b(x) = h0(x/a)2 with h0 = 10
and a = 3000. In the absence of friction, the exact solution is periodic and reads
[Tha81, Lia09, Vat15]

x±(t) = − B

ω
cos(ωt)± a, B = 5, ω =

√
2gh0

a
,

H(x, t) =
h0 − B2

4g (1 + cos(2ωt))− Bx
a

√
2h0
g

cos(ωt) if x−(t) ≤ x ≤ x+(t),
b(x) otherwise,

v(x, t) =


Baω√
2h0g

sin(ωt) if x−(t) ≤ x ≤ x+(t),

0 otherwise.

We employ a CFL parameter of ν = 0.05 in combination with our friction-based
wetting and drying approach to solve this problem numerically up to end time T = 3000.
Larger CFL parameters lead to either repetitions of single Runge–Kutta stages or
increases of Rusanov diffusion coefficients for nodes around the wet-dry transitions. For
ν = 0.05, all schemes remain stable without the need for employing either of these
adjustments, even in the case of adaptive time stepping. Fig. 4.9 displays LOW, MCL
and MCL-SDE water levels at three different times along with the initial condition
for illustrative purposes. From Fig. 4.9b we can make out that the low order profile
is trailing the exact solution and its flux-corrected counterparts. Agreement of the
flux-limited profiles with the exact water levels is again satisfactory.

We also tested whether we can employ other wetting and drying algorithms in this
example. With the fixes from [Aze17] and [Ric09] our simulations crash. The fix from
[Kur07a] produces profiles similar to the ones in Fig. 4.9. It is actually possible to employ
a larger CFL parameter ν with this wetting and drying approach. This observation
motivates further tests and adjustments of our friction-based strategy. Specifically,
nonlinear friction models should be considered and the parameters δ and σ may need to
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Figure 4.9: Oscillating surface in a parabolic lake for the shallow water equations [Tha81]. Approxima-
tions to the free surface elevation at various times obtained with adaptive SSP2 RK time
stepping and ν = 0.05 on a uniform mesh consisting of 128 elements.

be adjusted. Since these studies should include multidimensional test cases, we have
not yet conducted further research in this direction.





Chapter 5

Analysis of monolithic convex
limiting for advection problems

Thus far we focused on computational aspects of monolithic convex limiting schemes.
Provable properties of the bound-preserving MCL strategy were not yet fully explored
and comparisons of MCL to FCT-type methods were also postponed. These topics will
be addressed now in the context of linear time-dependent advection problems.

This chapter is based on our preprint [Haj21b] and is organized as follows. We
first review the rather sparse literature on theoretical investigations of AFC methods
in Section 5.1. Subsequently, in Section 5.2, we summarize important aspects of flux
correction schemes based on MCL and FCT methodologies for linear advection problems.
This discussion is followed by the presentation of our stability and error analysis
in Sections 5.3 and 5.4, respectively. Illustrative numerical examples in Section 5.5
conclude this chapter.

5.1 Literature
Theoretical properties of flux correction schemes are less commonly studied than their
computational aspects. Besides the few results already mentioned in Chapter 3, AFC
schemes for linear scalar problems are analyzed in the following references.

Barrenechea et al. [Bar16] show the solvability of a nonlinear algebraic system
originating from the AFC discretization of a steady scalar convection-diffusion-reaction
equation. Moreover, the authors prove a discrete maximum principle and derive an
a priori error estimate. Under the assumption that the sequence of employed meshes
consists of Delaunay triangulations, the error in the energy norm can be shown to
behave as h 1

2 . This rate is, in fact, optimal in the setting under consideration because
no assumptions on the correction factors of the limiter are made (see for instance the
experiment in [Bar16, Sec. 8.1]). The analysis in [Bar16] suggests that, in general, the
approximation under consideration is inconsistent if diffusive terms are present.

Similarities between an edge-based diffusion approach and AFC schemes are explored
by Barrenechea et al. [Bar17a]. Therein, the authors introduce a nonlinear stabilization
term into the discretization of a steady convection-diffusion-reaction equation. For this
scheme they again show solvability, prove a maximum principle, and derive an a priori
error estimate with rate 1

2 . No consistency errors arise from the viscous term, contrary to
the AFC scheme considered in the earlier work [Bar16]. It is shown that the stabilization
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approach under consideration is equivalent to an AFC strategy if the correction factors
of the latter are defined appropriately. Since a rigorous error estimate can be obtained
for the nonlinear stabilization approach, the authors advertise the use of this scheme
instead of the original AFC method, which is inconsistent for elliptic problems.

Under the assumption that the limiter under consideration is linearity preserving,
Barrenechea et al. [Bar18, Sec. 3.3] derive an error estimate with improved linear
convergence rate. However, this result does not directly carry over to the inviscid case
due to the presence of the diffusivity parameter in a denominator, see [Bar18, p. 667].

The theoretical results obtained for elliptic equations in [Bar16] are adapted to linear
hyperbolic PDEs by Lohmann [Loh19]. In particular, the issues of well-posedness and
discrete maximum principles are addressed for steady and unsteady problems. Moreover,
the L2(Ω) error of the steady problem is proven to be O(h 1

2 ) in the inviscid case as well.
In the context of AFC schemes for time-dependent problems, the first a priori error

estimates are the ones obtained by Jha and Ahmed [Jha21]. Their results generalize the
steady-state analysis performed in [Bar16] to a transient convection-diffusion-reaction
equation. The AFC schemes analyzed in [Jha21] are based on FCT approaches that are
fully discrete and employ implicit time stepping.

Contrary to [Jha21], we perform our stability and error analysis in the semi-discrete
setting, which is made possible by the monolithic limiting strategy. Following [Bar16],
we allow all correction factors to be zero, and thus our a priori error estimate with
convergence rate 1

2 in the L2(Ω) norm is optimal. Before stating and proving our own
theoretical results, we need to discuss further properties of flux correction schemes for
time-dependent linear advection problems. For fully discrete analysis of these methods,
we refer the reader to Lohmann [Loh19, Ch. 4], who studied both FCT and monolithic
approaches in detail. A discrete maximum principle for the MCL methodology applied
to steady nonlinear hyperbolic problems can be found in [Kuz20a, Appendix].

5.2 Algebraic flux correction schemes

In this section, we summarize limiting strategies based on MCL and FCT for linear
transport problems. For details on the former, we refer the reader to Section 3.3.

5.2.1 Model problem and low order method
First, we define the continuous model problem to be discretized using AFC in this chap-
ter. Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a polyhedral domain and v ∈ C(Ω× R+)d a known
velocity field. We define the time-dependent in- and outflow boundaries of Ω as

Γ−(t) ··= {x ∈ ∂Ω : v(x, t) · n(x) < 0}, Γ+(t) ··= {x ∈ ∂Ω : v(x, t) · n(x) ≥ 0}.
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In what follows, we suppress the dependence of Γ±(t) on time t. The initial-boundary
value problem for the linear advection equation reads

∂u

∂t
+ v · ∇u = 0 in Ω× R+, (5.1a)

u = û on Γ− × R+, (5.1b)
u = u0 in Ω, (5.1c)

where û is a given inflow boundary profile and u0 is an initial datum. For analytical
purposes, we assume that the velocity field is solenoidal, i. e., ∇·v = 0 in Ω, which allows
us to interpret (5.1a) as a hyperbolic conservation law with flux function f(u,x, t) =
v(x, t)u. Let us remark that the flux correction tools discussed in this chapter can also
be applied to problem (5.1) in the case of more general velocities.

With regard to the continuous weak formulation of (5.1), we follow Di Pietro and
Ern [DiP12, Chs. 2–3]. In particular, we introduce the graph space [DiP12, Def. 2.1]

V ··= {w ∈ L2(Ω) : v · ∇w ∈ L2(Ω)}

and define a weak solution to (5.1) as follows.

Definition 5.1 (Weak solutions to the linear advection equation)
A function u ∈ C(R+; V) ∩ C1(R+; L2(Ω)) is a weak solution to (5.1) if u(·, 0) = u0
almost everywhere in Ω and

ˆ
Ω
w ∂tu dx+ a(u,w) = b(w) ∀w ∈ V, t ∈ R+, (5.2)

where ∂tu ··=
∂u

∂t
and

a(·, ·) : V× V→ R, a(u,w) ··=
ˆ

Ω
w v · ∇u dx−

ˆ
Γ−
w uv · n ds, (5.3)

b(·) : V→ R, b(w) ··= −
ˆ

Γ−
w ûv · n ds. (5.4)

♦

Formulation (5.2)–(5.4) is derived similarly to the general strong form (3.6). For the
linear advection equation, the local Lax–Friedrichs flux (3.2) reduces to the upwind flux

fn(u, û) = v · n
2 (u+ û) + |v · n|2 (u− û) =

v · nu on Γ+,

v · n û on Γ−.

Thus, only boundary integrals over the inlet Γ− appear in (5.3) and (5.4).
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Remark 5.2
In this work, we assume that a unique solution u in the sense of Definition 5.1 and
[DiP12] exists. For settings similar to ours, the validity of this assumption can be
rigorously proven (see for instance [Daf00]) but for general velocities this is not a trivial
task. In principle, one can invoke the method of characteristics and use an energy
estimate to show well-posedness. However, rigorous existence and uniqueness results
regarding solutions of (5.2) are typically obtained under additional assumptions. For
details on these issues, we refer the reader to [DiP12, Sec. 3.1.1] and the references
therein. ♦

The low order method that is employed in this chapter is the algebraic Lax–Friedrichs
scheme (3.26) adapted to linear advection problems. In the AFC literature, this linear
version is called the discrete upwinding method because of its equivalence to the node-
centered upwind finite volume scheme [Kuz02, Sec. 6]. Let us now review the main steps
of deriving this low order method. First, we discretize (5.2) in space using continuous
linear finite elements as in Section 3.1 and adopt notation similar to that introduced in
Chapter 3. For i ∈ {1, . . . , N}, we obtain the spatial semi-discretizationˆ

Ω
ϕi
∂uh
∂t

dx = −
ˆ

Ω
ϕi v · ∇uh dx−

ˆ
Γ−
ϕi (û− uh)v · n ds. (5.5)

To construct the low order method, we proceed as in Section 3.3.2, i. e., perform row
sum mass lumping, use a lumped approximation of boundary terms, and add diffusive
fluxes of the form dij(uj − ui). However, we refrain from using the group finite element
formulation for the flux f(uh,x, t) = v(x, t)uh because the dependence on x and t
may produce bound-violating bar states, as noticed in [Kuz20a]. Since we use the
consistent Galerkin discretization (5.5) as target scheme, the definition of artificial
viscosity coefficients dij needs to be adapted slightly as well. The low order counterpart
of (5.5) reads

mi
dui
dt =

∑
j∈Ni\{i}

(dij − aij)(uj − ui) +
∑

Γk∈Fi
bki (ûki − ui), i ∈ {1, . . . , N}, (5.6)

where ûki denotes the upwind value û(xi) corresponding to Γk ∈ Fi and

mi ··=
ˆ

Ω
ϕi dx, aij ··=

ˆ
Ω
ϕi v · ∇ϕj dx, bki ··= −

ˆ
Γk
ϕi min{0,v · n} ds.

Note that bki ≥ 0. The modified Rusanov coefficients are defined by

dij = max{|aij|, |aji|}, i ∈ {1, . . . , N}, j ∈ Ni \ {i}. (5.7)

We may also write (5.6) in the bar state form [Gue16b], [Kuz20a, Sec. 4.1]

mi
dui
dt =

∑
j∈Ni\{i}

2dij(ūij − ui) +
∑

Γk∈Fi
bki (ûki − ui), i ∈ {1, . . . , N}, (5.8)
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where

ūij =


ui + uj

2 − aij(uj − ui)
2dij

if aij 6= 0,
ui + uj

2 if aij = 0,
i ∈ {1, . . . , N}, j ∈ Ni \ {i}. (5.9)

Remark 5.3
As shown in Section 3.3.2, the low order method that uses the group finite element
approximation is bound preserving because ūij is a convex combination of ui and uj in
the scalar case. Definition (5.7) of dij ensures the same property for (5.9) because

min{ui, uj} ≤ ūij ≤ max{ui, uj} ⇔ |aij| ≤ dij.

The classical version of the discrete upwinding method uses [Kuz02, Kuz12a]

dij = max{aij, 0, aji}, i ∈ {1, . . . , N}, j ∈ Ni \ {i}. (5.10)

If ∇ · v = 0, this definition is equivalent to (5.7), unless both nodes xi and xj lie on
∂Ω. This fact follows from integration by parts and omission of the resulting boundary
integral. The validity of discrete maximum principles for nodal values can be shown
for (5.10) using alternative proof techniques [Loh19, Sec. 4.3.2]. However, individual
bar states ūij of the discrete upwinding method based on (5.10) may violate the local
maximum principle min{ui, uj} ≤ ūij ≤ max{ui, uj}. ♦

5.2.2 Monolithic convex limiting
For time-dependent advection problems, we employ raw antidiffusive fluxes defined
by fij = mij(u̇i − u̇j) + dij(ui − uj). Here u̇h = ∑N

i=1 u̇iϕi is a suitable approximation
to the time derivative (given by the low order nodal values u̇L

i defined by (3.38) in
practice). Furthermore, the limited bar states are constrained using formula (3.47). As
in Section 3.3.4.2, we use the local bounds (3.44) for flux limiting, see [Kuz20a, Sec. 4].

Let us now rewrite the bar state form (5.8) of the semi-discrete MCL scheme in a
formulation that is more amenable to theoretical investigations. Despite the fact that
using MCL, the fluxes f ∗ij can be calculated directly via (3.47), we introduce correction
factors αij(uh) = αji(uh) ∈ [0, 1] defined by αij(uh) = f ∗ij/fij if fij 6= 0 and αij(uh) = 1
otherwise. The dependence of correction factors on the discrete solution makes AFC
schemes nonlinear. Using the definition of fij, the semi-discrete MCL scheme

mi
dui
dt =

∑
j∈Ni\{i}

[(1− αij(uh)) dij(uj − ui)− aij(uj − ui) + αij(uh)mij(u̇i − u̇j)]

+
∑

Γk∈Fi
bki (ûki − ui), i ∈ {1, . . . , N} (5.11)
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can equivalently be written as

N∑
i=1

wimi
dui
dt + ah(uh, wh) + dh(uh;uh, wh)−mh(uh; u̇h, wh) = bh(wh) (5.12)

for all wh ∈ Vh given by wh = ∑N
j=1wjϕj. The bilinear and linear forms

ah(uh, wh) ··=
ˆ

Ω
wh v · ∇uh dx−

N∑
i=1

wi ui

ˆ
Γ−
ϕi v · n ds,

bh(wh) ··= −
N∑
i=1

wi
∑

Γk∈Fi
ûki

ˆ
Γk
ϕi min{0,v · n} ds

are associated with the (stabilized) Galerkin finite element discretization corresponding to
αij = 1 for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}. The nonlinear forms [Bar16, Loh19, Jha21]

dh(uh; vh, wh) =
N∑
i=1

wi
∑

j∈Ni\{i}
(1− αij(uh)) dij(vi − vj), (5.13)

mh(uh; vh, wh) =
N∑
i=1

wi
∑

j∈Ni\{i}
αij(uh)mij(vi − vj) (5.14)

in (5.12) are due to algebraic flux correction.

Lemma 5.4 (Scalar product properties of nonlinear forms, Bar16)
For arbitrary uh, vh, wh ∈ Vh, the nonlinear forms (5.13) and (5.14) satisfy

dh(uh; vh, vh) ≥ 0, dh(uh; vh, wh)2 ≤ dh(uh; vh, vh) dh(uh;wh, wh),
mh(uh; vh, vh) ≥ 0, mh(uh; vh, wh)2 ≤ mh(uh; vh, vh)mh(uh;wh, wh). ♦

Proof:
Proofs of these statements for dh(·; ·, ·) can be found in [Loh19, p. 113], see also [Bar16,
Lem. 3.1 and Sec. 6]. The same arguments apply to mh(·; ·, ·). �

5.2.3 Flux-corrected transport algorithms
The monolithic convex limiting strategy discussed so far is a relatively new technique.
Another family of schemes producing similar bound-preserving approximations are
flux-corrected transport algorithms (see, e. g., [Bor73, Zal79, Löh87, Kuz12b, Loh17b,
Gue18a, Haj20b, Paz21]). Many aspects discussed in the context of the MCL methodol-
ogy have a lot in common with corresponding components of FCT schemes. For instance,
the low order method and the definition of raw antidiffusive fluxes are essentially the



Algebraic �ux correction schemes 123

same in both approaches. The key difference is that FCT is a predictor-corrector limiting
strategy that manipulates the finite element solution rather than the (semi-)discrete
problem of the baseline discretization. The FCT-constrained version has no semi-discrete
counterpart and no well-defined steady state residual. While FCT-like limiters usually
perform very well in applications to strongly time-dependent problems, they tend to
inhibit convergence of time marching schemes for steady state computations, and the
accuracy of a quasi-stationary result is affected by the pseudo time step. Additionally,
the fully discrete nature of FCT rules out the use of semi-discrete entropy fixes devel-
oped for MCL (see Section 3.3.6). An alternative entropy stabilization techniques for
FCT-type schemes [Kiv22] was already mentioned in Section 3.3.6.

To allow a comparison of MCL and FCT schemes for advection problems, we briefly
present two FCT algorithms for continuous finite elements. The first one can be found in
[Kuz12a, Sec. 6.4.2] and uses the classical Zalesak limiter [Zal79]. The second approach
is referred to as localized FCT [Loh19, Sec. 4.4]. We do not discuss the design principles
behind these schemes here and refer the reader to the above references for details.

The first step of an FCT algorithm needs to be property preserving. Thus, we
perform a forward Euler-type update using the low order method

uL
i = ui + ∆t

mi

∑
j∈Ni\{i}

(dij − aij)(uj − ui) + ∆t
mi

∑
Γk∈Fi

bki (ûki − ui), i ∈ {1, . . . , N}

to obtain the predictor uL
h ∈ Vh. This stage is bound preserving for small enough time

steps ∆t. The validity of local maximum principles for uL
i can be shown following the

bar state analysis in Section 3.3, and, in particular, in Section 3.3.2. In FCT schemes
for advection problems we may employ discrete upwinding coefficients defined by (5.10)
instead of (5.7). Contrary to the MCL scheme, the bounds for the FCT constraints
should be based on the values of the predictor [Kuz02, Sec. 2]. Thus, we set

umin
i
··= min

j∈Ni
uL
j , umax

i
··= max

j∈Ni
uL
j . (5.15)

As additional input for the corrector step, we need to compute the raw antidiffusive
fluxes fij = mij(u̇i − u̇j) + dij(ui − uj), which are defined as in the MCL approach. The
purpose of the local extremum diminishing corrector step

ũi = uL
i + ∆t

mi

∑
j∈Ni\{i}

αijfij, i ∈ {1, . . . , N}

is to recover as much accuracy as possible without violating the local bounds (5.15).
At this stage, only the question of how to define the correction factors remains.

Zalesak’s multidimensional limiter [Zal79, Kuz12a] calculates them as follows:
1. Compute the sums of raw antidiffusive fluxes fij for individual nodes

P−i ··=
∑

j∈Ni\{i}
min{0, fij}, P+

i
··=

∑
j∈Ni\{i}

max{0, fij}.
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2. Compute bounds for the corresponding sums of limited antidiffusive fluxes

Q−i ··=
mi

∆t(u
min
i − uL

i ), Q+
i
··=

mi

∆t(u
max
i − uL

i ).

3. Calculate nodal undershoot and overshoot limiters for flux correction

R−i ··= min
{

1, Q
−
i

P−i

}
, R+

i
··= min

{
1, Q

+
i

P+
i

}
.

4. Limit the fluxes fij and fji = −fij using the correction factor

αij =


min{R+

i , R
−
j } if fij > 0,

1 if fij = 0,
min{R−i , R+

j } if fij < 0.

As an alternative to Zalesak’s limiter, one can employ localized FCT algorithms
[Loh17a, Gue18a, Loh19, Paz21]. Instead of limiting sums of positive and negative
antidiffusive fluxes under worst-case assumptions, FCT schemes of this kind distribute
the bounds Q±i between pairs of nodes and limit each flux independently to satisfy

m̃ij

∆t (umin
i − uL

i ) ≤ αijfij ≤
m̃ij

∆t (umax
i − uL

i ), i ∈ {1, . . . , N}, j ∈ Ni \ {i}. (5.16)

The particular choice of the weights m̃ij > 0 might influence the quality of approxima-
tions. The FCT constraints (5.16) imply ũi ∈ [umin

i , umax
i ] provided that∑

j∈Ni\{i}
m̃ij ≤ mi ∀i ∈ {1, . . . , N}. (5.17)

The least restrictive version of a localized FCT scheme is obtained if the inequality in
(5.17) holds as identity. Following Lohmann [Loh19, Sec. 4.4], we set

m̃ij ··=
mijmi

mi −mii

> mij, i ∈ {1, . . . , N}, j ∈ Ni \ {i}.

The bound-preserving correction factors are then given by

αij =


min

{
1, m̃ij∆t

umax
i −uL

i

fij
, m̃ji∆t

uL
j−u

min
j

fij

}
if fij > 0,

1 if fij = 0,
min

{
1, m̃ij∆t

umin
i −uL

i

fij
, m̃ji∆t

uL
j−u

max
j

fij

}
if fij < 0.

Another representative of localized FCT limiters, the scheme proposed in [Gue18a], uses
m̃ij = mi/|Ni \ {i}|, where | · | denotes the cardinality of a set.
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Remark 5.5
Both MCL and localized FCT schemes impose flux constraints of the form fmin

ij ≤ fij ≤
fmax
ij and produce limited antidiffusive fluxes f ∗ij that can be calculated via (cf. (3.48))

f ∗ij = max
{
fmin
ij , min

{
fij, f

max
ij

}}
.

The difference between the two approaches lies in the definition of the bounding fluxes
fmin
ij ≤ 0 and fmax

ij ≥ 0. In the FCT version, the distributed bounds

fmin
ij = −fmax

ji
··= max

{
m̃ij

∆t (umin
i − uL

i ), m̃ji

∆t (uL
j − umax

j )
}
,

fmax
ij = −fmin

ji
··= min

{
m̃ij

∆t (umax
i − uL

i ), m̃ji

∆t (uL
j − umin

j )
}

are inversely proportional to ∆t. Therefore, the limiting constraints become less/more
restrictive for smaller/larger time steps. ♦

5.3 Energy estimate
Let us now derive an energy estimate for approximations obtained via (5.12). In the
proof of this stability result, we rely on the assumption that the following requirement
is satisfied.
Definition 5.6 (Compatibility condition for (uh, u̇h), Haj21b)
Let λ ··= ‖v‖L∞(Ω×R+)d be the maximum velocity and u̇h, uh ∈ Vh be given functions.
Define the nonlinear forms dh(·; ·, ·) and mh(·; ·, ·) as in (5.13) and (5.14), respectively.
Suppose that there exists a constant γ ∈ (0, 1) such that

γh

λ
mh(uh; u̇h, u̇h) ≤ (1− γ)dh(uh;uh, uh)−mh(uh; u̇h, uh). (5.18)

Then we say that u̇h ∈ Vh is compatible with uh ∈ Vh. ♦

The ratio h/λ has physical units [h]/[λ] = m/(ms−1) = s. It is used in inequality (5.18)
to ensure that all terms have the same units for [u̇h] = s−1[uh].

Before presenting our energy estimate, we need to prove the following technical
result.
Lemma 5.7
Any function vh ∈ Vh defined by vh = ∑N

i=1 viϕi satisfies the identity

v2
h −

N∑
i=1

v2
iϕi = −

N∑
i,j=1
i<j

(vi − vj)2ϕi ϕj. ♦
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Proof:
Invoking the partition of unity property of basis functions, we obtain

v2
h −

N∑
i=1

v2
i ϕi =

N∑
i=1

v2
iϕi (ϕi − 1) +

N∑
i,j=1
i6=j

vi vj ϕi ϕj = −
N∑

i,j=1
i6=j

v2
i ϕi ϕj +

N∑
i,j=1
i 6=j

vi vj ϕi ϕj

=
N∑

i,j=1
i<j

vi (vj − vi)ϕi ϕj +
N∑

i,j=1
j<i

vi (vj − vi)ϕi ϕj

=
N∑

i,j=1
i<j

(vi − vj)(vj − vi)ϕi ϕj. �

Theorem 5.8 (Semi-discrete energy estimate)
Assume that there is a finite time T > 0 such that v(·, t) ∈W1,∞(Ω) and ∇ · v(·, t) = 0
in Ω for all t ∈ (0, T ). Let uh(·, t) and u̇h(·, t) satisfy (5.12) and, additionally, the
compatibility condition (5.18) with a constant γ ∈ (0, 1) for all t ∈ (0, T ). Then the
following estimate holds for the solution uh(·, T ) of the semi-discrete problem (5.12)

N∑
i=1

mi ui(T )2 +
ˆ T

0

ˆ
Γ+

u2
h v · n ds dt−

ˆ T

0

N∑
i,j=1
i<j

(ui − uj)2
ˆ

Γ−
ϕi ϕj v · n ds

− 1
2

ˆ T

0

N∑
i=1
u2
i

ˆ
Γ−
ϕi v · n ds+ 2γ

ˆ T

0

[h
λ
mh(uh; u̇h, u̇h) + dh(uh;uh, uh)

]
dt

≤
N∑
i=1

mi ui(0)2 + 2
ˆ T

0

N∑
i=1

∑
Γk∈Fi

ˆ
Γk
ϕi (ûki )2 max{0,−v · n} ds dt. (5.19)

♦

Proof:
Testing (5.12) with wh = uh, we use the compatibility condition (5.18), the identity
uh v · ∇uh = 1

2∇ · (v u
2
h), the divergence theorem and Young’s inequality to show that

1
2

N∑
i=1

mi
d(ui)2

dt + 1
2

ˆ
∂Ω
u2
h v · n ds−

N∑
i=1

u2
i

ˆ
Γ−
ϕi v · n ds

+ γh

λ
mh(uh; u̇h, u̇h) + γdh(uh;uh, uh)

≤
N∑
i=1

uimi
dui
dt +

ˆ
Ω
uh v · ∇uh dx−

N∑
i=1

u2
i

ˆ
Γ−
ϕi v · n ds

+ dh(uh;uh, uh)−mh(uh; u̇h, uh)

= bh(uh) = −
N∑
i=1

∑
Γk∈Fi

ˆ
Γk
ϕi ui û

k
i min{0,v · n} ds
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≤ −
N∑
i=1

u2
i

4

ˆ
Γ−
ϕi v · n ds−

N∑
i=1

∑
Γk∈Fi

ˆ
Γk
ϕi (ûki )2 min{0,v · n} ds.

Multiplying by factor 2 and combining the integrals over Γ−, we write this inequality as
N∑
i=1
mi

d(ui)2

dt +
ˆ

Γ+

u2
h v · n ds+

ˆ
Γ−
v · n

(
u2
h −

N∑
i=1

u2
i ϕi

)
ds− 1

2

N∑
i=1

u2
i

ˆ
Γ−
ϕi v · n ds

+ 2γh
λ
mh(uh; u̇h, u̇h) + 2γdh(uh;uh, uh) ≤ 2

N∑
i=1

∑
Γk∈Fi

ˆ
Γk
ϕi (ûki )2 max{0,−v · n} ds.

Employing Lemma 5.7 and integrating in time produces (5.19). �

Note that as a consequence of Lemma 5.4 and of the nonnegativity of basis functions, all
terms appearing on the left hand side of inequality (5.19) are nonnegative. To guarantee
that the assumptions of Theorem 5.8 are satisfied in practice, we developed a scheme
that enforces (5.18) for user defined values of γ, see [Haj21b, Sec. 3.3]. In our experience,
failure to apply this limiter has no negative practical effects, however.
Remark 5.9
The reader may wonder what significance is attached to Theorem 5.8. Since the fully
discrete MCL scheme produces locally bound-preserving approximations, it is stable by
design. Preservation of global bounds in the semi-discrete setting can be shown as in
[Kuz22b] under the assumption that a solution exists. The semi-discrete MCL scheme
represents a nonlinear system of ordinary differential equations. Well-posedness of such
initial value problems can be shown by invoking the Picard–Lindelöf theorem, which
guarantees the existence of solutions on finite time intervals. Once local existence is
established, we exploit a global existence and uniqueness result for ordinary differential
equations [Ama90, Thm. 7.6]. According to this theorem, solutions that cannot be
extended to arbitrary times must in fact blow up, which, in our case, is prevented by
Theorem 5.8. It follows that the semi-discrete MCL scheme (5.12) possesses a unique
solution that exists for all times t ≥ 0. ♦

5.4 Error analysis
Compared to the energy estimate derived in the previous section, our error analysis is
rather involved. In particular, we need to make additional assumptions on the data of the
continuous problem (5.2) as well as on the mesh sequences. These aspects are discussed
in Section 5.4.1. Subsequently, in Section 5.4.2, we recall some auxiliary results from
the literature on numerical analysis of finite element methods including AFC schemes.
Finally, in Section 5.4.3, we state, prove, and discuss the main result of this chapter,
which is a semi-discrete a priori error estimate for MCL approximations.
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Throughout this section, the letter C (possibly with a subscript) denotes a generic
positive constant that is independent of the mesh size h. Moreover, we assume that
h ≤ 1 and therefore hp ≤ hq for p ≥ q.

5.4.1 Preliminaries

As everywhere in this thesis, we consider only meshes that are affine and geometrically
conforming triangulations of Ω ⊂ Rd, d ∈ {1, 2, 3}. In this section, we additionally
restrict ourselves to simplicial meshes, which allows us to exploit the linearity of finite
element approximations inside mesh cells.

The a priori error estimate that we present in Section 5.4.3 is valid only for quasi-
uniform families of meshes, i. e., there has to exist C > 0 such that [DiP12, Sec. 3.1.2]

h = max
K∈Kh

hK ≤ C min
K∈Kh

hK ,

where hK = diam(K). As is standard in finite element analysis, we also assume shape-
regularity of (Kh)h>0. For this requirement to be satisfied, there has to exist C > 0 such
that ChK ≤ rK , where rK is the radius of the largest open ball that fits into K [DiP12,
Sec. 1.4.1]. Additionally, we assume that the mesh faces, which are simplices in Rd−1,
are also shape regular in this sense. Our final assumption regarding the mesh sequence
is that there exists C > 0 such that h ≤ Ch̃, where h̃ = minΓ∈F∂Ω diam(Γ) and F∂Ω
is the set of boundary faces (cf. Definition 3.2). We do not need to assume contact
regularity of the mesh sequence [DiP12, Def. 1.38] as Di Pietro and Ern do because this
requirement is automatically satisfied for simplicial triangulations.

Following [Bar16, Loh19], we assume H2(Ω) regularity of the exact solution u(·, t)
for all t ≥ 0. We also require the time derivative ∂tu to have this regularity. Specifically,
we restrict our investigations to exact solutions of (5.2) that satisfy

u ∈W1,∞(R+; H2(Ω)), u|Γ− ∈ L∞(R+; H2(Γ−)).

For simplicity, we set uh(·, 0) equal to the continuous interpolant Ihu0 ∈ Vh of u0 ∈ C(Ω).
The interpolation operator Ih : C(Ω)→ Vh is defined by

w 7→ wh ··=
N∑
i=1

w(xi)ϕi.

Also for simplicity, we assume that the boundary data û is linear on every boundary face
Γ ∈ F−, where F− = F−(t) ··= {Γ ∈ F∂Ω : Γ ∩ Γ− 6= ∅}. This assumption corresponds
to a particular choice of the quadrature rule for boundary integrals.



Error analysis 129

5.4.2 Auxiliary statements
To prepare the ground for the derivation of our error estimate, we first summarize a few
important ingredients of its proof, beginning with some standard inequalities. Then we
discuss aspects that are peculiar to algebraic flux correction schemes. Most of the AFC
results were originally proven by Barrenechea et al. [Bar16].
Lemma 5.10 (Interpolation error estimate for volume integrals)
Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ Rd, d ∈ {1, 2, 3}. Then there
exists C > 0 such that

‖w − Ihw‖L2(Ω) + h|w − Ihw|H1(Ω) ≤ Ch2|w|H2(Ω) ∀w ∈ H2(Ω). ♦

Proof:
See [Ern04, Sec. 1.5.1, in particular Ex. 1.111]. �

Lemma 5.11 (Interpolation error estimate for boundary integrals)
Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ Rd, d ∈ {1, 2, 3} and let
Γ ⊂ ∂K be a face of K ∈ Kh. Then there exists C > 0 such that

‖w − Ihw‖L2(Γ) ≤ Ch
3/2
K |w|H2(K) ∀w ∈ H2(K). ♦

Proof:
The claim follows from the continuous trace inequality [DiP12, Lem. 1.49] in combination
with Lemma 5.10. �

Lemma 5.12 (Discrete trace inequality, DiP12 Lem. 1.46)
Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ Rd, d ∈ {1, 2, 3} and let
Γ ⊂ ∂K be a face of K ∈ Kh. Then there exists C > 0 such that

‖vh‖L2(Γ) ≤ Ch
−1/2
K ‖vh‖L2(K) ∀vh ∈ P1(K). ♦

Lemma 5.13 (Inverse inequality, DiP12 Lem. 1.44)
Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ Rd, d ∈ {1, 2, 3} and let
K ∈ Kh. Then there exists C > 0 such that

|vh|H1(K) ≤ Ch−1
K ‖vh‖L2(K) ∀vh ∈ P1(K). ♦

Lemma 5.14 (Bar16)
Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ Rd, d ∈ {1, 2, 3}. Define
Γij ··= {µxi + (1− µ)xj : µ ∈ [0, 1]} for a pair of mesh vertices (xi,xj) i ∈ {1, . . . , N},
j ∈ Ni \ {i}. Let K ∈ Kh with Γij ⊂ ∂K. Then there exists C > 0 such that

|vh(xi)− vh(xj)| ≤ Ch
1−d/2
K |vh|H1(K) ∀vh ∈ P1(K). ♦
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Proof:
The claim follows from Taylor expansion, linearity, and shape regularity, see [Bar16,
Pf. of Lem. 7.3] or [Loh19, Ineq. (4.90)] for details. �

Lemma 5.15 (Bar16, Jha21)
Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ Rd, d ∈ {1, 2, 3}. Then there
exist constants C1 = C1(d) > 0 and C2 = C2(d,v) > 0 such that

mij ≤ C1h
d, dij ≤ C2h

d−1, i ∈ {1, . . . , N}, j ∈ Ni \ {i}. ♦

Proof:
We have supp(ϕiϕj) ⊆ Ωij ··= {x ∈ Ω : ∃µ ∈ [0, 1] : |x− (µxi + (1− µ)xj)| ≤ h}, and
due to shape regularity, there exists C = C(d) > 0 such that |Ωij| ≤ Chd. Therefore

mij =
ˆ

Ωij
ϕi ϕj dx ≤ ‖ϕi‖L2(Ωij)‖ϕj‖L2(Ωij) ≤ ‖1‖2

L2(Ωij) = |Ωij| ≤ Chd.

The estimate for dij is obtained similarly by invoking (5.7), factoring out the maximum
velocity λ and using the inverse inequality, i. e., Lemma 5.13, see [Bar16, Pf. of Lem. 7.3]
or [Loh19, Pf. of Thm. 4.72] for details. �

Lemma 5.16 (Bar16)
Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ Rd, d ∈ {1, 2, 3}. Then there
exist constants C1 = C1(d) > 0 and C2 = C2(d,v) > 0 such that

mh(vh; Ihw, Ihw) ≤ C1h
2‖w‖2

H2(Ω), dh(vh; Ihw, Ihw) ≤ C2h‖w‖2
H2(Ω)

for all vh ∈ Vh, w ∈ H2(Ω). ♦

Proof:
The estimate for dh(·; ·, ·) is obtained by invoking Lemmata 5.10, 5.14 and 5.15, see
[Bar16, Lem. 3.1] or [Loh19, Ineq. (4.122)]. The estimate for mh(·; ·, ·) follows similarly.�

5.4.3 A priori error estimate
To state our main result, we need to define some auxiliary quantities. For t ≥ 0, let
ϑh(·, t) = ∑N

i=1 ϑi(t)ϕi ∈ Vh be the discrete error ϑh(·, t) ··= Ihu(·, t)−uh(·, t) and define

q(T ) ··=
N∑

i,j=1
i<j

mij(ϑi(T )− ϑj(T ))2 +
ˆ T

0

[ ˆ
Γ+

ϑ2
h v · n ds−

N∑
i=1

ϑ2
i

ˆ
Γ−
ϕi v · n ds

−
N∑

i,j=1
i<j

(ϑi − ϑj)2
ˆ

Γ−
ϕi ϕj v · n ds+ γdh(uh;uh, uh) + γh

λ
mh(uh; u̇h, u̇h)

]
dt,

z(T ) ··=
ˆ T

0

[
‖∂tu‖2

H2(Ω) + ‖u‖2
H2(Ω) + ‖u‖2

H2(Γ−) + |û|2H1(Γ−)

]
dt.
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Theorem 5.17 (Semi-discrete a priori error estimate)
Let the assumptions made in Section 5.4.1 be satisfied. Assume that there is a finite
time T > 0 such that v(·, t) ∈W1,∞(Ω) and ∇ · v(·, t) = 0 in Ω for all t ∈ (0, T ). Let
uh(·, t) and u̇h(·, t) satisfy (5.12) and, additionally, the compatibility condition (5.18)
with a constant γ ∈ (0, 1) independent of h for all t ∈ (0, T ). Then there exist positive
constants C1 = C1(d,v), C2 = C2(d,v, γ), and C3 = C3(d) such that the estimate

‖u(·, T )− uh(·, T )‖L2(Ω) ≤ C3h
2|u(·, T )|H2(Ω) +

√√√√y(T ) + C1

ˆ T

0
eC1(T−t) y(t) dt (5.20)

holds for the exact solution u(·, T ) of the continuous problem (5.2), the exact solution
uh(·, T ) of the semi-discrete problem (5.12), and y(T ) ··= C2h z(T )− q(T ). ♦

Corollary 5.18 (Convergence order of the semi-discrete MCL scheme)
Under the assumptions of Theorem 5.17, the a priori error estimate

‖u(·, T )− uh(·, T )‖L2(Ω) ≤ C3h
2|u(·, T )|H2(Ω) +

√
eC1T C2h ‖z‖L∞(0,T ) ≤ C4 h

1
2 (5.21)

holds with a constant C4 = C4(C1, C2, C3, T, u, û) > 0, which behaves as eC1T/2. ♦

Proof of Corollary 5.18:
Since q and z are nonnegative functions, we may use the estimate y(T ) ≤ C2h z(T ) in
(5.20). The claim follows by calculating the integral of the exponential function. �

Proof of Theorem 5.17:
This proof combines recent results on AFC schemes [Bar16, Loh19] with a new way
of proving a priori error estimates for nonconforming discretizations of the advection
equation [Rup21]. A particular similarity of the approach developed in [Rup21] to our
theory is that both apply to semi-discrete formulations.

We introduce the interpolation error Θ(t) = Θ(u, h; t) ··= u(·, t)− Ihu(·, t) and sub-
tract (5.12) from (5.2). Setting w = wh = ϑh, we obtain the error equation

Ξ1︷ ︸︸ ︷ˆ
Ω
ϑh
∂u

∂t
dx−

N∑
i=1

ϑimi
dui
dt +

Ξ2︷ ︸︸ ︷
a(u, ϑh)− ah(uh, ϑh)

= b(ϑh)− bh(ϑh)︸ ︷︷ ︸
Ξ3

+ dh(uh;uh, ϑh)−mh(uh; u̇h, ϑh)︸ ︷︷ ︸
Ξ4

.

Recall that the identity mi = ∑N
j=1mij holds for row sum mass lumping. Using this

decomposition of mi and the identities u = Θ + ϑh + Ihu− ϑh, uh = Ihu− ϑh, we find
that

Ξ1 =
ˆ

Ω
ϑh
∂Θ
∂t

dx+
ˆ

Ω
ϑh

dϑh
dt dx+

N∑
i=1

ϑi
d
dt
( N∑
j=1

mij[(Ihu)j − ϑj]−mi [(Ihu)i − ϑi]
)
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=
ˆ

Ω
ϑh
∂Θ
∂t

dx+ 1
2

d
dt‖ϑh‖

2
L2(Ω) +

N∑
i,j=1

ϑimij
d
dt [(Ihu)j − (Ihu)i − (ϑj − ϑi)]

=
ˆ

Ω
ϑh
∂Θ
∂t

dx+ 1
2

d
dt‖ϑh‖

2
L2(Ω) +

N∑
i,j=1
i<j

(ϑi − ϑj)mij
d
dt [(Ihu)j − (Ihu)i − (ϑj − ϑi)] .

Arguing as in the proof of Theorem 5.8, we invoke the divergence theorem, Lemma 5.7
as well as the identities u = Θ + Ihu and uh = Ihu− ϑh, which yields

Ξ2 =
ˆ

Ω
ϑh v · ∇Θ dx+ 1

2

ˆ
∂Ω
ϑ2
h v · n ds−

ˆ
Γ−
ϑh Θv · n ds

−
ˆ

Γ−
ϑh Ihuv · n ds+

N∑
i=1

ϑi (u(xi)− ϑi)
ˆ

Γ−
ϕi v · n ds

=
ˆ

Ω
ϑh v · ∇Θ dx+ 1

2

ˆ
Γ+

ϑ2
h v · n ds−

ˆ
Γ−
ϑh Θv · n ds

− 1
2

N∑
i,j=1
i<j

(ϑi − ϑj)2
ˆ

Γ−
ϕi ϕj v · n ds− 1

2

N∑
i=1

ϑ2
i

ˆ
Γ−
ϕi v · n ds

+
ˆ

Γ−

( N∑
i=1

ϑi ϕi (u(xi)− Ihu)
)
v · n ds.

As in [Kna03, Thm. 3.43], we exploit transformation to the reference element, shape-
regularity, and the equivalence of norms in finite dimensional spaces to show that

N∑
i=1

ˆ
Γ
(vi ϕi)2 ds ≤

N∑
i=1

ˆ
Γ
v2
i ϕi ds ≤ C‖vh‖2

L2(Γ) ∀vh ∈ Vh, Γ ∈ F∂Ω. (5.22)

To derive an estimate for Ξ3, we rewrite the boundary integrals as a sum of integrals
over faces. On each face Γ ∈ F−, we use the estimate |ûki − û| ≤ ChΓ|∇û|, where
hΓ = diam(Γ). In addition, we invoke Young’s inequality, estimate (5.22), Lemma 5.12,
and incorporate λ = ‖v‖L∞(Ω×R+)d into the constant C, which yields

Ξ3 =
N∑
i=1

∑
Γk∈Fi

ˆ
Γk
ϑiϕi (ûki − û) min{0,v · n} ds

≤ C
∑

Γ∈F−

N∑
i=1

ˆ
Γ

[
hΓ(ϑiϕi)2 + 1

hΓ
|ûki − û|2

]
ds

≤ C
∑

Γ∈F−
hΓ
(
‖ϑh‖2

L2(Γ) + |û|2H1(Γ)

)
≤ C‖ϑh‖2

L2(Ω) + Ch|û|2H1(Γ−). (5.23)

For the nonlinear terms in Ξ4, we use Lemma 5.4, Young’s inequality, the compatibility
condition (5.18) with constant γ ∈ (0, 1), and Lemma 5.16 to deduce

Ξ4 = dh(uh;uh, Ihu)− dh(uh;uh, uh) +mh(uh; u̇h, uh)−mh(uh; u̇h, Ihu)
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≤ γ

2dh(uh;uh, uh) + 1
2γ dh(uh; Ihu, Ihu)− γdh(uh;uh, uh)

− γh

λ
mh(uh, u̇h, u̇h) + γh

2λmh(uh; u̇h, u̇h) + λ

2γhmh(uh; Ihu, Ihu)

≤ − γ

2dh(uh;uh, uh)−
γh

2λmh(uh, u̇h, u̇h) + Ch‖u‖2
H2(Ω),

where the factor 1/γ was incorporated into the constant C. Combining the above
identities for Ξ1 and Ξ2 with the inequalities for Ξ3 and Ξ4 produces the estimate

d
dt‖ϑh‖

2
L2(Ω) +

N∑
i,j=1
i<j

mij
d
dt(ϑi − ϑj)

2 +
ˆ

Γ+

ϑ2
h v · n ds−

N∑
i=1

ϑ2
i

ˆ
Γ−
ϕi v · n ds

−
N∑

i,j=1
i<j

(ϑi − ϑj)2
ˆ

Γ−
ϕi ϕj v · n ds+ γdh(uh;uh, uh) + γh

λ
mh(uh, u̇h, u̇h)

≤ − 2
ˆ

Ω
ϑh
∂Θ
∂t

dx+ 2
N∑

i,j=1
i<j

(ϑi − ϑj)mij [(Ih∂tu)i − (Ih∂tu)j]

− 2
ˆ

Ω
ϑh v · ∇Θ dx+ 2

ˆ
Γ−
ϑh Θv · n ds+ C‖ϑh‖2

L2(Ω) + Ch|û|2H1(Γ−)

− 2
ˆ

Γ−

( N∑
i=1

ϑiϕi (u(xi)− Ihu)
)
v · n ds+ Ch‖u‖2

H2(Ω) =·· (?). (5.24)

The terms on the right hand side of inequality (5.24) are now bounded using standard
arguments. Specifically, we make use of the assumptions on the mesh and of Young’s
inequality, apply Lemma 5.10 to Θ = u− Ihu and ∂tΘ, invoke Lemmata 5.11 through
5.15 and argue as in the derivation of (5.23) to obtain

(?) ≤ ‖ϑh‖2
L2(Ω) + Ch4|∂tu|2H2(Ω) + Ch2 ∑

K∈Kh
|ϑh|H1(K)|Ih∂tu− ∂tu+ ∂tu|H1(K)

+ C‖ϑh‖2
L2(Ω) + Ch2|u|2H2(Ω) + λ

∑
Γ∈F−

(
hΓ‖ϑh‖2

L2(Γ) + 1
hΓ
‖Θ‖2

L2(Γ)

)
+ C‖ϑh‖2

L2(Ω)

+ Ch|û|2H1(Γ−) + C
∑

Γ∈F−
hΓ

ˆ
Γ

[ N∑
i=1

(ϑiϕi)2 + |∇(Ihu− u+ u)|2
]

ds+ Ch‖u‖2
H2(Ω)

≤ ‖ϑh‖2
L2(Ω) + Ch4|∂tu|2H2(Ω) + Ch‖ϑh‖2

L2(Ω) + Ch3|∂tu|2H2(Ω) + Ch|∂tu|2H1(Ω)

+ C‖ϑh‖2
L2(Ω) + Ch2|u|2H2(Ω) + C‖ϑh‖2

L2(Ω) + Ch2|u|2H2(Ω) + C‖ϑh‖2
L2(Ω)

+ Ch|û|2H1(Γ−) + C
∑

Γ∈F−
hΓ
(
‖ϑh‖2

L2(Γ) + ‖u‖2
H2(Γ)

)
+ Ch‖u‖2

H2(Ω)

≤ C1‖ϑh‖2
L2(Ω) + C2h

(
‖∂tu‖2

H2(Ω) + ‖u‖2
H2(Ω) + ‖u‖2

H2(Γ−) + |û|2H1(Γ−)

)
.
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We now integrate in time observing that, by our definition of the discrete initial data,
we have ϑh(0) ≡ 0. At this stage, we recall the previously given definitions of q and z,
which enables us to write the resulting inequality as

‖ϑh(T )‖2
L2(Ω) + q(T ) ≤ C1

ˆ T

0
‖ϑh(t)‖2

L2(Ω) dt+ C2h z(T ).

Using Grönwall’s Lemma as in [Dol15, Lem. 1.9], we obtain

‖ϑh(T )‖2
L2(Ω) + q(T ) + C1

ˆ T

0
eC1(T−t) q(t) dt ≤ C1

ˆ T

0
eC1(T−t) C2h z(t) dt+ C2h z(T ).

The triangle inequality applied to u− uh = Θ + ϑh then yields the error estimate (5.20)
by Lemma 5.10. �

We conclude the theoretical discussion with a few remarks regarding the derived error
estimate. Let us first point out that in the general setting with unspecified correction
factors αij our result is indeed optimal (cf. Section 5.5.1). If we set all correction factors
equal to zero, we obtain the low order method, which cannot be expected to be more
than 1

2 order accurate in general.
A drawback of our current approach is that the constant on the right hand side of

the a priori error estimate (5.21) depends exponentially on the time T . Kučera and
Shu [Kuč18] demonstrate that exponentially increasing constants can be avoided in
some situations. They discretize the advection equation using discontinuous Galerkin
methods and derive an error estimate without invoking Grönwall’s inequality. It would
be interesting to investigate the merit of their approach for the purposes of our analysis.

Let us briefly remark that we assumed all integrals appearing in the bilinear and
linear forms ah(·, ·) and bh(·) to be evaluated exactly. In fact, even the energy estimate
stated in Theorem 5.8 was derived under this assumption. For polynomial velocities one
can indeed employ a quadrature rule of sufficiently high order to accurately compute
all integrals. For general velocities, the theory presented in this chapter needs to be
adapted to include quadrature errors. As is common for linear finite elements [Ern04,
Thm. 8.5], we recommend to employ quadrature rules that are exact for polynomials in
P2 and P3 for volume and boundary integrals, respectively.

Admittedly, a major limitation of Theorem 5.17 is the fact that the estimate is
valid only for problems with exact solutions of very high regularity. In particular, the
assumption that ∂tu is H2 in space is restrictive. In our opinion, the adaptation of the
proofs in [Bar16, Loh19] to the time-dependent setting necessitates this regularity. One
can argue that if the exact solution is smooth enough for Theorem 5.17 to be applicable, a
limiter may not even be needed and we could instead employ a stabilized Galerkin method.
Since this strategy does not guarantee the validity of discrete maximum principles, AFC
schemes provide an appealing alternative. Therefore, theoretical investigations of these
methods should be undertaken. It is hoped that our results may serve as a stepping
stone for further efforts in this direction.
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5.5 Numerical examples

Let us now corroborate the theoretical results of this chapter with numerical experiments.
Recall that our stability and convergence proofs rely on the compatibility condition
(5.18). In general, this condition is not fulfilled by the standard MCL approach. However,
if u̇h is set to zero, i. e., if the mass lumping error is not compensated, (5.18) holds due
to Lemma 5.4. To distinguish between the standard MCL scheme and the lumped-mass
version, we employ the acronyms MCL-L and MCL-0, respectively. Here the letter L
stands for low order time derivatives, while 0 stands for zero time derivatives. Other
methods used for comparative purposes are specified below.

In the following sections, we verify that approximations converge at least as fast as
the provable rate of 1

2 . Moreover, we stress the need for stabilization by the use of low
order time derivatives and present a comparison of results obtained with MCL and FCT.
Finally, we perform an a posteriori check to see for which values of the parameter γ the
compatibility condition (5.18) is satisfied by the MCL-L scheme.

5.5.1 Experimental orders of convergence

In this section, we solve the one-dimensional advection equation with constant velocity
v = 1. The spatial domain Ω = (0, 1) has periodic boundaries. Thus, at each time
instant T ∈ N0, the exact solution coincides with the initial condition. In this example,
we use u0(x) = exp(−100(x− 0.5)2).

We study the experimental orders of convergence for discrete upwinding (LOW),
MCL-L, and MCL-0 schemes using SSP2 RK time stepping and CFL parameter ν = 0.5.
While values as large as ν = 1 can safely be employed without causing violations
of maximum principles, smaller values may be necessary to observe certain rates of
convergence. Alternatively, SSP3 RK time stepping can be used to improve temporal
accuracy. As discussed in Section 4.5.2.1, SSP1 RK time stepping should not be employed
in combination with flux correction schemes based on continuous finite elements (see also
[Kuz12a, Sec. 4]). In this study, we employ sequences of nested meshes with generally
nonuniform mesh size h obtained by randomly perturbing the positions of the interior
mesh vertices of the coarsest grid. The relative mesh sizes minK∈Kh hK/h of the three
sequences are 1 (uniform), ≈ 0.69 (mildly perturbed), and ≈ 0.087 (severely perturbed),
respectively. We present the L2(Ω) errors at the final time T = 1 and the corresponding
EOC in Tabs. 5.1 to 5.3. The observed rates of convergence are in accordance with our
expectations. As suggested by Corollary 5.18, discrete upwinding converges at least with
the rate of 1

2 . Actually, the low order method becomes first order accurate on very fine
uniform meshes. Our preferred MCL-L scheme produces second order accurate results in
this test. If no correction of the mass lumping error is performed, the order of accuracy
deteriorates, while still exceeding the provable rate of 1

2 . In this example, the influence
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of mesh perturbations on the results is insignificant. A decay in the convergence rate of
MCL for a steady problem was observed on perturbed 2D meshes in [Kuz20a, Sec. 6.1].

1/h LOW EOC MCL-L EOC MCL-0 EOC
32 2.21E-01 6.92E-02 9.93E-02
64 1.75E-01 0.34 2.07E-02 1.74 4.46E-02 1.16
128 1.26E-01 0.47 4.65E-03 2.16 1.65E-02 1.44
256 8.18E-02 0.62 1.12E-03 2.06 5.29E-03 1.64
512 4.84E-02 0.76 2.76E-04 2.02 1.65E-03 1.68

Table 5.1: Convergence history for the one-dimensional advection equation on a sequence of uni-
form periodic meshes. The ‖ · ‖L2(Ω) errors at T = 1 and the corresponding EOC for
u0(x) = e−100(x−0.5)2 .

1/h LOW EOC MCL-L EOC MCL-0 EOC
32 2.21E-01 7.06E-02 9.97E-02
64 1.75E-01 0.34 2.22E-02 1.67 4.51E-02 1.15
128 1.26E-01 0.47 4.95E-03 2.17 1.70E-02 1.40
256 8.23E-02 0.62 1.16E-03 2.09 5.48E-03 1.64
512 4.88E-02 0.75 2.87E-04 2.01 1.71E-03 1.68

Table 5.2: Convergence history for the one-dimensional advection equation on a sequence of mildly
perturbed periodic meshes. The ‖ · ‖L2(Ω) errors at T = 1 and the corresponding EOC for
u0(x) = e−100(x−0.5)2 .

1/h LOW EOC MCL-L EOC MCL-0 EOC
32 2.24E-01 1.01E-01 1.16E-01
64 1.82E-01 0.30 4.85E-02 1.05 5.65E-02 1.03
128 1.36E-01 0.43 1.25E-02 1.96 2.33E-02 1.28
256 9.08E-02 0.58 2.98E-03 2.07 7.72E-03 1.59
512 5.51E-02 0.72 7.26E-04 2.04 2.46E-03 1.65

Table 5.3: Convergence history for the one-dimensional advection equation on a sequence of severely
perturbed periodic meshes. The ‖ · ‖L2(Ω) errors at T = 1 and the corresponding EOC for
u0(x) = e−100(x−0.5)2 .

5.5.2 On the stabilizing effect of low order time derivatives
In Section 3.4.3.2, we presented an example where the consistent Galerkin time derivative
u̇G
h is employed to correct the mass lumping error through the antidiffusive fluxes. This

approach produces spurious ripples in the solution profiles and should therefore be
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avoided. The consequences of lacking stabilization can best be observed in the context
of the advection equation, which is why we compare the results of computations with
consistent Galerkin and stabilized approximations in this section.

We consider the same setup as in the previous section with the exception that the
initial condition u0 is replaced by [Haj21a]

u0(x) =


1 if 0.2 ≤ x ≤ 0.4,
exp(10) exp( 1

0.5−x) exp( 1
x−0.9) if 0.5 < x < 0.9,

0 otherwise.
(5.25)

This profile features discontinuities as well as a C∞ region. In Fig. 5.1 we display
standard continuous Galerkin approximations obtained with four different combinations
of time stepping schemes and CFL parameters on a uniform, a mildly perturbed and
a severely perturbed mesh with 128 elements in each case. Spurious ripples that are
not local to the vicinity of the discontinuities can be observed in all profiles. Although
limiters can remove these oscillations, the quality of approximations obtained in this
fashion is usually poor compared to solutions obtained with flux limiters applied to a
stabilized target discretization.

(a) Uniform mesh
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(b) Mildly perturbed mesh
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(c) Severely perturbed mesh
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Figure 5.1: One-dimensional advection equation with initial condition (5.25). Consistent Galerkin
approximations at T = 1 obtained with SSP RK time stepping on periodic meshes consisting
of 128 elements.

Next, we compute approximations of the stabilized target scheme, i. e., (5.11) with
αij = 1 for all i ∈ {1, . . . , N}, j ∈ Ni \ {i}. These are compared to the profiles obtained
with the LOW, MCL-L, MCL-0, and MCL-L-SDE schemes. The latter incorporates
the semi-discrete entropy fix from Section 3.3.6 for the entropy pair (η(u), q(u)) =
(u2/2, vu2/2) with corresponding entropy potential ψ(u) = q(u). Although the issue of
nonuniqueness of weak solutions does not arise for the linear advection equation, we
found it instructive to illustrate the effect that this limiter has on the approximations. In
practice, we advise against applying entropy fixes in discretizations of linear conservation
laws. SSP2 RK time stepping with CFL parameter ν = 1 is employed in combination
with all spatial semi-discretizations. The results of this study are displayed in Fig. 5.2.
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(a) Uniform mesh
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(b) Mildly perturbed mesh
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(c) Severely perturbed mesh
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Figure 5.2: One-dimensional advection equation with initial condition (5.25). Stabilized Galerkin
approximations at T = 1 obtained with SSP2 RK time stepping and ν = 1 on periodic
meshes consisting of 128 elements.

We observe significant improvements in the solution quality for the unlimited target
scheme compared to the consistent Galerkin approximations displayed in Fig. 5.1.
Numerical results obtained with LOW, MCL-L and MCL-0 exhibit behavior similar to
that observed in Section 5.5.1 In particular, the MCL-0 scheme produces a nonsymmetric
profile in the left part of the domain, which can be attributed to dispersive errors [Tho16].
The same is true for the MCL-L-SDE scheme, which suggests that the entropy fix has
an adverse effect on the solution quality of approximations to linear advection problems.

5.5.3 Comparison of MCL with FCT
Let us now compare the MCL-L scheme with the two FCT strategies discussed in
Section 5.2.3. As test problem, we select the 2D solid body rotation benchmark [Zal79,
LeV96, Kuz12a] in which Ω = (0, 1)2, v(x, y) = 2π (0.5− y, x− 0.5)T, û = 0 and

u0(x, y) =


ucone

0 (x, y) if r(x, y; 0.5, 0.25) ≤ r0,

ubump
0 (x, y) if r(x, y; 0.25, 0.5) ≤ r0,

1 if r(x, y; 0.5, 0.75) ≤ r0 ∧ (|x− 0.5| ≥ 0.025 ∨ y ≥ 1− r0) ,
0 otherwise,

where r(x, y;x0, y0) ··=
√

(x− x0)2 + (y − y0)2, r0 = 0.15, and

ucone
0 (x, y) = 1− r(x, y; 0.5, 0.25)

r0
,

ubump
0 (x, y) = 1

4

(
1 + cos

(
π r(x, y; 0.25, 0.5)

r0

))
.

In this example, a cone, a smooth bump and a slotted cylinder rotate around the domain
center. At each time instant T ∈ N0, the exact solution is equal to the initial condition,
which is shown in Fig. 5.3. The numerical results displayed in this section are visualized
with the open source C++ software GLVis.
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(a) Side view of uh(·, 0) and the mesh (b) Top view of uh(·, 0), contour lines

Figure 5.3: Exact initial condition of the solid body rotation [LeV96] interpolated in Vh for a uniform
triangular mesh consisting of 2 · 1282 elements.

We solve this problem numerically using triangular meshes and h = c/128, where
c =
√

2 for uniform grids and c = 1 for unstructured ones. For time stepping we employ
the SSP2 RK method with constant time steps ∆t = 5 · 10−4 and ∆t = 3.125 · 10−4,
respectively. Numerical results are displayed in Fig. 5.4 and the approximate L2(Ω)
errors e2

T at the final time T = 1 are presented in the captions along with the maximum
solution value umax

h for each approximation. The minimum value of each approximation
is zero up to machine precision.

All three schemes under investigation yield results of similar quality. In this example
Zalesak’s algorithm produces the most accurate results, followed by localized FCT and
then the MCL scheme. We remark that the situation may be different if the employed
spatial and temporal discretization parameters are modified. Compared to MCL, the
value of ∆t has more influence on the accuracy of FCT schemes (see Remark 5.5). Since
the differences in the results of this section are marginal, all three schemes can be
recommended for applications of time-dependent advection problems.

5.5.4 A posteriori compatibility check
The compatibility condition (5.18) turned out to be an invaluable tool for our theo-
retical investigations. Unfortunately, we are unable to prove that the MCL-L scheme
automatically produces compatible pairs (uh, u̇h) under suitable assumptions. However,
it is easy to check for which values of γ ∈ (0, 1) condition (5.18) is fulfilled a posteriori.
Indeed, (5.18) is equivalent to

γ ≤ dh(uh;uh, uh)−mh(uh; u̇h, uh)
dh(uh;uh, uh) + h

λ
mh(uh; u̇h, u̇h)

(5.26)
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(a) e2
T = 8.91E-2, umax

h = 0.995 (b) e2
T = 8.60E-2, umax
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Figure 5.4: Solid body rotation for the 2D advection equation [LeV96]. MCL-L [Kuz20a] (left), Zalesak’s
FCT [Zal79] (center), and localized FCT [Loh19] (right) approximations at T = 1. Solutions
obtained on uniform (top row) and unstructured (bottom row) triangular meshes with
SSP2 RK time stepping using ∆t = 5 · 10−4 and ∆t = 3.125 · 10−4, respectively.

if the denominator in the right hand side of (5.26) is nonzero (it is nonnegative due
to Lemma 5.4). If the numerator in (5.26) is also nonnegative, this criterion yields an
upper bound on γ. Having calculated these a posteriori bounds via (5.26), one can
check how they behave upon mesh refinement. Two issues that lead to a violation of
compatibility can occur in practice. First, (5.26) can produce a negative upper bound
on γ, a case that is not covered by our theory. Secondly, γ may approach zero upon
mesh refinement, which would cause the constant in the leading order term of our error
estimate to approach infinity. We found the former concern to be valid on perturbed
one-dimensional meshes. Using smaller time steps does not resolve incompatibility
issues, which seem to be caused by triangulations of bad quality. In such instances, our
stability and error estimates are not applicable to MCL-L but remain valid for the LOW
and MCL-0 schemes, as well as for the method proposed in [Haj21b, Sec. 3.3].

Having performed the described a posteriori check for various test problems, we
conjecture that compatibility of (uh, u̇h) holds for the MCL-L scheme on uniform meshes.
Below we report the results of our experiments in which we compute the values of the
right hand side of (5.26). First, we consider four one-dimensional test problems. In
each case, the spatial domain Ω = (0, 1) is equipped with periodic boundaries and the
velocity is v = 1. The first and second tests are the same as in Sections 5.5.1 and 5.5.2.
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In the third and fourth tests, the final time is T = 0.5 and the initial conditions read

u0(x) =
0.5

(
1 + cos

(
π

0.15(x− 0.25)
))

if |x− 0.25| < 0.15,
0 otherwise,

and u0(x) = max{0, 1− 10|x− 0.2|}, respectively.
We solve each of these problems on a hierarchy of uniform meshes using SSP2 RK

time stepping with CFL parameters ν ∈ {1, 0.1}. The largest value of γ for which (5.18)
is satisfied during the whole simulation is presented in Tab. 5.4.

1/h Test 1 Test 2 Test 3 Test 4
32 0.58 0.65 0.62 0.67
64 0.54 0.54 0.56 0.56
128 0.52 0.53 0.52 0.55
256 0.51 0.52 0.51 0.53
512 0.50 0.52 0.51 0.52

1/h Test 1 Test 2 Test 3 Test 4
32 0.62 0.66 0.64 0.66
64 0.56 0.58 0.58 0.60
128 0.53 0.55 0.54 0.57
256 0.52 0.53 0.52 0.57
512 0.51 0.52 0.51 0.55

Table 5.4: Maximum values of γ over all time steps for four 1D examples. Results obtained on uniform
meshes with SSP2 RK time stepping and CFL parameters ν = 1 (left) and ν = 0.1 (right).

Additionally, we repeat the solid body rotation test [LeV96] from Section 5.5.3 on
sequences of uniform (c =

√
2) and unstructured (c = 1) triangular meshes and compute

a posteriori values for γ via (5.26). The results of this study are summarized in Tab. 5.5,
where #TS refers to the total number of employed time steps.

c/h Uniform meshes #TS Unstructured meshes minK∈Kh hK/h #TS
32 γ = 0.59 500 γ = 0.48 0.32 625
64 γ = 0.54 1000 γ = 0.45 0.31 1250
128 γ = 0.49 2000 γ = 0.46 0.29 3200
256 γ = 0.49 4000 γ = 0.47 0.28 6400
512 γ = 0.48 8000 γ = 0.47 0.26 12500

Table 5.5: Maximum values of γ over all time steps for the solid body rotation [LeV96]. Results obtained
on uniform and unstructured meshes with SSP2 RK time stepping and constant time steps.

We observe slightly larger maximum values of γ on coarse girds than on fine meshes.
The use of smaller time steps seems to have marginal influence on the results. In all
cases, we have γ > 0.4, which is consistent to the value that we used in [Haj21b] to
enforce (5.18). Contrary to the 1D case, (5.26) does not produce negative values for γ
even on unstructured meshes in 2D. This observation leads us to believe that the low
order time derivative u̇h is compatible to uh even on nonuniform meshes that are regular
in some sense. In fact, the only violations of (5.18) that we observed were obtained on
nonuniform one-dimensional grids, which are of limited interest for practical purposes.





Chapter 6

Algebraic flux correction tools for
discontinuous Galerkin methods

Thus far we performed algebraic flux correction only in the context of continuous
Galerkin methods and (multi-)linear finite elements. However, the use of higher order
spaces and/or nonconforming elements is feasible as well. To illustrate the applicability
of AFC strategies to baseline discretizations of this kind, we present an extension of MCL
to high order discontinuous Galerkin (DG) methods. Our scheme employs Bernstein
polynomial basis functions as, e. g., in [Abg10, And17, Loh17b, Kuz20e]. Alternative
choices of nodal bases lead to similar flux correction schemes [Paz21, Rue22].

This chapter is based on the author’s paper [Haj21a]. In Section 6.1 we briefly
motivate the use of DG methods and review scarce literature on algebraic limiters for
these discretizations. Our generalization of MCL to high order nonconforming elements
is introduced in Section 6.2 and numerical results are presented in Section 6.3.

6.1 Motivation and state of the art
Discontinuous Galerkin schemes can be interpreted as a bridge between classical finite
element and finite volume methods. The DG approach pieces together weak formulations
of conservation laws on individual mesh cells. Coupling is achieved by using numerical
fluxes in integrals over element boundaries. Inside each cell, polynomials of degree
p ∈ N0 are employed as test and trial functions. Contrary to standard finite elements,
no continuity requirements across element interfaces are imposed in the DG setting. For
p > 0, higher order test functions are included in the DG spaces. In contrast to FV
schemes, no reconstructions are required to obtain well-resolved approximations. For
many hyperbolic problems with smooth exact solutions, unconstrained DG methods
deliver results of optimal accuracy, as shown, e. g., in [Paz19, Sec. 4.4]. These advantages
of the DG approach are somewhat diminished by the presence of additional terms in
weak formulations and additional degrees of freedom on internal boundaries of mesh
cells. Indeed, the total number of unknowns is significantly larger for DG methods
than for standard finite elements (of the same order) and FV methods on the same
grid. We remark, however, that a fair comparison of alternative discretization strategies
should be based on accuracy achieved with the same total number of unknowns. In such
experiments, the quality of DG approximations may be comparable to that of numerical
results obtained with continuous Galerkin schemes on finer grids [Haj20b, Sec. 8.1].
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Using the characteristic functions of mesh cells as test functions in the DG weak
formulation, one can derive evolution equations for cell averages of the numerical solution.
These equations represent discrete conservation laws and exhibit the same structure as
cell-centered FV schemes, but traces of the DG solution (rather than reconstructions
from cell averages) are used to define numerical fluxes for p > 0. For applications in which
the local conservation property is desired but the overhead cost of using a DG-P1/-Q1
discretization is unacceptable, the so-called enriched Galerkin (EG) method, originally
proposed by Becker et al. [Bec03], may be a good alternative baseline discretization (see,
e. g., [Rup21]). In the standard EG approach, the piecewise (multi-)linear continuous
Galerkin space is enriched by piecewise constant basis functions. Flux correction schemes
for such EG methods were developed in [Kuz20b]. For finite elements of degree p > 1,
polynomial enrichments of degree up to p− 1 are needed to obtain stable EG algorithms
for hyperbolic problems [Rup21]. A simple calculation shows that the total number of
unknowns in the EG version is still smaller than that of a full DG method but much
larger than in the case of a continuous approximation. Therefore, savings offered by the
EG approach (as compared to full DG) become less significant as p increases.

In conclusion, standard DG schemes represent suitable high order target discretiza-
tions for hyperbolic problems. Therefore, we extend some of the flux correction tools
discussed so far to the DG setting. Before doing so, we briefly review the literature on
AFC schemes and some other limiters for DG discretizations.

A very popular class of limiting techniques for FV and DG methods are so-called slope
limiters (see, e. g., [Bar89, Kuz10a, Zha11, Vat15, Haj19]). Such schemes adjust the gra-
dients (and high order derivatives, if any) of polynomial approximations/reconstructions
on mesh cells to preserve local bounds based on cell averages of the numerical solution in
a neighborhood of the element. Approximations obtained with slope limiters are bound
preserving as long as the cell averages stay in the admissible range. If necessary, discrete
maximum principles for cell averages can be enforced using a flux limiter [Moe17]. In
contrast to algebraic flux limiting techniques, which we favor in this thesis, slope limiters
represent geometric postprocessing tools. Similarly to FCT algorithms, they can be
interpreted as predictor-corrector methods and may inhibit convergence to steady state
solutions. A comparison of slope and flux limiters for one-dimensional problems can
be found in [LeV92, Ch. 16]. Any flux limiter for the 1D linear advection equation can
be easily converted into an equivalent slope limiter and vice versa. However, this is
generally not true for multidimensional and nonlinear problems.

Other promising strategies for nonlinear stabilization of DG methods include weighted
essentially non-oscillatory (WENO) schemes, a posteriori subcell limiters, as well as
shock capturing techniques based on artificial viscosity. A brief description of these
approaches and corresponding references can be found in Section 1.1.

To the best of our knowledge, Anderson et al. [And17] were the first to apply algebraic
flux correction tools in the context of DG methods. Their element-based FCT limiters
are designed for high order Bernstein finite element discretizations of the linear advection
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equation. To avoid the costly calculation of element matrices, matrix-free AFC schemes
were developed by the author and his collaborators in [Haj20b, Haj20c] using residual
distribution (RD) ideas to design the underlying low order method and a monolithic
alternative to FCT. The applicability of our matrix-free RD-DG approaches is currently
restricted to scalar linear problems. The sparse DG version that we present in this
chapter is designed for systems and offers similar computational efficiency. Therefore,
the methods developed in [Haj20b, Haj20c] are not included in this thesis.

As mentioned by Guermond et al. [Gue19], the convex limiting procedures presented
in [Gue18a] are technically applicable to DG discretizations. The corresponding gen-
eralization as outlined in [Gue19] without presenting any numerical results is of FCT
type. The monolithic alternative developed by the author in [Haj21a] supports the use
of arbitrary-order Bernstein finite elements and constrains DG boundary terms in a
different manner, as explained in Remark 3.10.

Pazner [Paz21] developed an algebraic FCT scheme for high order DG discretizations
of nonlinear systems. In his method, collocated Gauss–Lobatto quadrature is employed
to obtain nodal connectivity corresponding to cross-stencil patterns. To reduce the
computational cost and the levels of numerical dissipation, Pazner replaces the discrete
gradient operator of the standard collocated DG method with a sparsified one. This
idea was first used by Lohmann et al. [Loh17b] in the context of continuous, high order
Bernstein finite elements for the linear advection equation. It was later adapted to
discretizations of general conservation laws by Kuzmin and Quezada de Luna [Kuz20e],
whose sparsification approach is also employed in this chapter. The development of
FCT-type convex limiting tools for collocated DG discretizations of hyperbolic systems
was initiated in [Paz21] and continued in [Rue22]. These recent developments indicate
that collocated nodal bases represent a promising alternative to Bernstein polynomials
when it comes to designing sparse DG-AFC schemes for high order finite elements.

6.2 Algebraic flux correction schemes
In this section, we extend the MCL methodology [Kuz20a, Kuz20e] to DG discretizations
of the hyperbolic PDE (system)

∂u

∂t
+∇ · f(u) = 0 in Ω× R+, (6.1)

where u = u(x, t) ∈ Rm, f(u) ∈ Rm×d, m ∈ N, d ∈ {1, 2, 3}. For well-posedness, we re-
quire initial conditions u0 = u0(x) ∈ Rm and external Riemann data û = û(x, t) ∈ Rm.

In the following sections, we first present the baseline DG scheme for discretizing
(6.1) in space. Then we introduce our DG extensions of the low order method and of the
monolithic convex limiting strategy. The design principles behind these generalizations
are the same as in the case of continuous finite elements. To avoid repetition, we refer
the reader to Section 3.3 for an introduction to basic ingredients of AFC schemes.
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6.2.1 Target discretization
Let Kh = {K1, . . . , KE} be an affine and geometrically conforming mesh consisting of
E = E(h) elements such that ⋃Ee=1K

e = Ω. For p ∈ N0 and K ∈ Kh, let Vp(K) denote
the local polynomial space for the DG finite element approximation (Vp = Pp if K is a
simplex, Vp = Qp for quadrilaterals and hexahedra, cf. Section 3.1). The corresponding
scalar- and vector-valued DG spaces of degree p over the mesh Kh are defined by

Wh,p =
{
wh ∈ L2(Ω) : wh|K ∈ Vp(K) ∀K ∈ Kh

}
, Wm

h,p = (Wh,p)m, m ∈ N.

Let N e = N(p,Ke) = dimVp(Ke). If all elements are topologically equivalent, then
the number of local degrees of freedom N e ≡ N is independent of e and, therefore,
dim Wh,p = NE. A basis of Wh,p can be chosen such that the support of each basis
function is restricted to a single mesh cell. Thus, for every element Ke we select a local
basis {ϕe1, . . . , ϕeN} of Vp(Ke) and express the discrete solution as follows

uh(x, t) =
E∑
e=1

ueh(x, t)χKe(x), ueh(x, t) =
N∑
i=1

uei (t)ϕei (x), uei (t) ∈ Rm,

where χKe denotes the characteristic function of Ke. Multiplying (6.1) by a test function
weh ∈ Vp(Ke)m, integrating the weighted residual over Ke, and imposing flux boundary
conditions on ∂Ke as for ∂Ω in Section 3.1, we obtain the strong form

ˆ
Ke

weh ·
[
∂ueh
∂t

+∇ · f(ueh)
]

dx+
ˆ
∂Ke

weh · [fne(ueh, ûeh)− f(ueh)ne] ds = 0 (6.2)

of the DG discretization. Therein, ne is the unit outward normal to ∂Ke, fne(·, ·) is a
numerical approximation to the corresponding normal flux, and

ûeh(x, t) ··=
û(x, t) if x ∈ ∂Ke ∩ ∂Ω,

limε↘0 uh(x+ εne, t) otherwise
(6.3)

is the external state of the weakly imposed boundary/interface condition. Strictly
speaking, ûeh(x, t) is not well-defined in the vertices of Ke but this issue is unimportant
for formulation (6.2) and the discussions that follow. The DG solution ueh must satisfy
(6.2) for all weh ∈ Vp(Ke)m.

The global weak formulation corresponding to (6.2) can be obtained by summation
over all elements. Contrary to continuous Galerkin methods, the integrals over interfaces
of adjacent mesh cells do not cancel out in the DG version of the variational formulation.
Therefore, numerical fluxes need to be evaluated for each interface. In our target scheme
(6.2), volume and boundary integrals are approximated with standard quadrature rules
employed in DG discretizations (see [Ern04, Sec. 8.1]). To avoid cumbersome notation
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involving quadrature, we stick to formulation (6.2) for presentation purposes. For
additional information on the mathematical and computational aspects of standard DG
discretizations, particularly ones for hyperbolic problems, we refer the reader to the
books by Di Pietro and Ern [DiP12] and Dolejší and Feistauer [Dol15].

6.2.2 Low order method
The DG discretization discussed so far is valid for any particular basis of Wh,p. For
algebraic flux correction purposes, however, we require a nodal basis {ϕe1, . . . , ϕeN} in
each element Ke. In this chapter, we employ Bernstein (also called Bézier) polynomials
as basis functions, following [Abg10, And17, Loh17b, Kuz20e]. On the 1D reference
element [0, 1], the Bernstein basis functions are defined by

Bp
k(x) =

(
p
k

)
(1− x)p−kxk, k ∈ {0, . . . , p}.

Bases for quadrilaterals and hexahedra are obtained from products of 1D Bernstein
polynomials in each spatial variable. To define the Bernstein basis on the reference
simplex conv{0, e1, . . . , ed} in Rd, where e1, . . . , ed are the Cartesian unit vectors, we
employ barycentric coordinates Λ0, . . . ,Λd such that

Λ0(x1, . . . , xd) = 1−
d∑
j=1

xj, Λk(x1, . . . , xd) = xk, k ∈ {1, . . . , d}.

The corresponding Bernstein polynomials read [Lai07]

Bp
k0,...,kd

(x) = p!∏d
j=0 kj!

d∏
j=0

(Λj(x))kj , k0, . . . , kd ∈ N0,
d∑
j=0

kj = p.

Note that for p = 1, Bernstein and Lagrange polynomials are identical. The local basis
functions {ϕe1, . . . , ϕeN} are obtained by transforming the Bernstein polynomials {Bp

i }Ni=1
defined on a reference element K̂ to the physical cell Ke. Alternatively, the local bases
can be obtained directly, for instance, by using barycentric coordinates for Ke instead
of those for K̂ in the case of simplices. A number of useful mathematical properties
can be shown for Bernstein polynomial approximations [Lai07, Ch. 2]. We exploit some
of them when it comes to algebraic flux correction for the baseline DG method. For
instance, the Bernstein basis functions ϕei satisfy

ϕei (x) ∈ [0, 1] ∀i ∈ {1, . . . , N}, x ∈ Ke, and
N∑
j=1

ϕej(x) ≡ 1 ∀x ∈ Ke
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for any p ∈ N0. These properties imply [Loh17b]

min
j∈{1,...,N}

uej ≤
N∑
j=1

uej ϕ
e
j(x) ≤ max

j∈{1,...,N}
uej . (6.4)

That is, any value that a polynomial ueh ∈ Vp(Ke) may attain in Ke is bounded by
the largest and smallest Bernstein coefficient of ueh. In the context of algebraic flux
correction, (6.4) suggests that ueh can be constrained by imposing appropriate bounds
on the local degrees of freedom. Another useful property of the Bernstein basis is the
fact that each basis function is associated with a unique point xei ∈ Ke. In these nodes,
which are distributed uniformly within the element Ke, the corresponding basis functions
attain their respective maxima [Lai07, Thm. 2.5], see Fig. 6.1 for an illustration.

(a) Bernstein basis for P3([0, 1])
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Figure 6.1: Cubic Bernstein basis functions in 1D and lexicographically numbered nodes of (bi-)cubic
Bernstein finite elements in 2D.

Having discussed the most important aspects of the employed basis, let us now
come back to the discretization of (6.1). The semi-discrete formulation (6.2) is property
preserving only if piecewise constant basis functions are employed in combination
with suitable numerical fluxes. This case corresponds to a first order finite volume
discretization, which is not addressed here. To obtain a property-preserving low order
method for second and higher order spaces, we modify the target scheme similarly to our
approach in Section 3.3.2. Let F(Ke) be the set of faces of elementKe (cf. Definition 3.2).
For i, j ∈ {1, . . . , N} and e ∈ {1, . . . , E}, we define

me
ij =

ˆ
Ke

ϕei ϕ
e
j dx, me

i =
ˆ
Ke

ϕei dx, ceij =
ˆ
Ke

ϕei ∇ϕej dx,

bei,k =
ˆ

Γe
k

ϕei ds, Γek ∈ F(Ke), f ei = f(uei ).

Note that, as a consequence of employing the Bernstein basis, the coefficient bei,k is
nonnegative and equals zero unless the node xei lies on the boundary face Γek.
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Employing the group finite element formulation, row sum mass lumping, and a
lumped approximation to the DG flux terms in (6.2), we obtain

me
i

duei
dt = −

N∑
j=1
j 6=i

(f ej − f ei ) ceij +
∑

Γe
k
∈F(Ke)

bei,k
[
f ei nek − fne

k
(uei , ûei,k)

]
(6.5)

for e ∈ {1, . . . , E}, i ∈ {1, . . . , N}. Here nek is the outward unit normal to Γek ⊂ ∂Ke

and ûei,k is the unique nodal value of ûh determined by (6.3) corresponding to node xei
and Γek. We remark that (6.5) approximates (6.2) using nodal (collocated) quadrature.

At this stage, we could proceed as in Section 3.3.2 by incorporating Rusanov (local
Lax–Friedrichs) dissipation into (6.5). Instead, we first introduce the sparsified discrete
gradient operator C̃e = (c̃eij)Ni,j=1 = (C̃1, . . . , C̃d)T, defined by [Loh17b, Kuz20e]

C̃e
k = M e

L (M e)−1Ce
k, M e

L = diag(me
1, . . . ,m

e
N), M e = (me

ij)Ni,j=1.

By construction, the element matrices C̃e
k have zero row sums. Moreover, the columns

of C̃e
k − Ce

k, where Ce = (ceij)Ni,j=1 = (Ce
1, . . . ,Ce

d)T, sum to zero [Kuz20e, Sec. 4]. Thus,
replacing (f ej − f ei ) ceij in (6.5) with (f ej − f ei ) c̃eij does not lead to violations of local
conservation properties. The benefit of introducing C̃e lies in its sparsity pattern. One
can show that the entries of C̃e are nonzero if and only if the corresponding nodes are
nearest neighbors within the element. This remarkable property of Bernstein elements
was first observed by Lohmann et al. [Loh17b, Appendix B] in 1D and later generalized
to the multidimensional case by Kuzmin and Quezada de Luna [Kuz20e, Appendix]. In
fact, the sparse element matrices C̃e may have even more zero entries than this analysis
suggests. Indeed, for non-simplicial affine meshes, the entries of C̃e can be shown to
be zero for nodes, which are closest neighbors in diagonal directions [Haj21a]. This
observation leads to more efficient implementations because of the reduced number of
nodes in the stencils. Moreover, the scheme now bears a remarkable resemblance to the
collocated cross-stencil DG-FCT scheme proposed by Pazner [Paz21].
Remark 6.1
The condition number of the Bernstein element mass matrices M e grows exponentially
with p [Lyc00]. Thus, their inversion should be avoided when it comes to computing
the sparsified operators C̃e for high order spaces. An explicit formula for the entries of
C̃e = C̃e

1 in 1D can be found in [Loh17b, Eq. B.4]. For multidimensional non-simplicial
elements, we use a tensor product version of this formula. In the case of simplices, the
degree elevation rule for Bernstein polynomials [Lai07, Sec. 2.15] enables us to compute
the entries of C̃e directly as in [Kuz20e] and [Haj21a]. In any case, we generate sparse
matrices on the reference element and perform standard transformations to obtain C̃e.
A Matlab code for computing sparsified gradient operators of arbitrary order on the
reference triangle can be found in the author’s GitHub repository [Haj20a]. Let us
further remark that for P1 elements in 1D, an application of the sparsifier M e

L(M e)−1 to
Ce = Ce

1 produces C̃e
1 = Ce

1, as one can easily verify. ♦
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Following [Kuz20e], we now introduce sparsified Rusanov dissipation coefficients

d̃eij ··=
max{|c̃eij|λeij, |c̃eji|λeji} if j ∈ Ñi \ {i},

0 otherwise,
λeij ··= λc̃eij/|c̃

e
ij |(u

e
i , u

e
j), (6.6)

where λn(·, ·) is the maximum speed defined by (3.2b) and Ñi ⊆ {1, . . . , N} is the set
of indices j ∈ {1, . . . , N} such that j = i or min{|c̃eij|, |c̃eji|} > 0. Since we restrict
ourselves to cases in which all elements have the same topology and polynomial bases of
the same degree p ∈ N are used in every cell, the index sets Ñi are independent of the
element number e. Adding algebraic Rusanov fluxes to (6.5) and employing the local
Lax–Friedrichs flux in boundary terms, we obtain the low order method

me
i

duei
dt =

∑
j∈Ñi\{i}

[
d̃eij(uej − uei )− (f ej − f ei ) c̃eij

]
(6.7a)

+
∑

Γe
k
∈F(Ke)

bei,k
[
λei,k

ûei,k − uei
2 −

f̂ ei,k − f ei
2 nek

]
, (6.7b)

where λei,k ··= λne
k
(uei , ûei,k) and f̂ ei,k ··= f(ûei,k). Note that the sum on the right hand side

of (6.7a) is over the compact stencil Ñi \ {i}. Here we observe the main advantage of
applying the sparsifier M e

L (M e)−1 to the elementwise discrete gradient operator Ce.
Indeed, by (6.6), the Rusanov flux d̃eij(uej − uei ) vanishes if nodes i and j are not nearest
neighbors. Without sparsification, fluxes deij(uej − uei ) associated with j /∈ Ñi tend to
have a devastating effect on the approximation quality [Haj20b]. Interestingly enough,
the quadrature error introduced via lumping for boundary terms does not seem to
increase significantly in higher order methods. This observation is consistent to the
results we obtained with our scalar prototype DG-AFC schemes [Haj20b, Haj20c].

To conclude this section, let us present the equivalent bar state form

me
i

duei
dt =

∑
j∈Ñi\{i}

2d̃eij(ūeij − uei ) +
∑

Γe
k
∈F(Ke)

2dei,k(ūei,k − uei ) (6.8)

of (6.7), where dei,k = bei,k
2 λ

e
i,k, and [Har83b, Gue16b, Kuz20a, Haj21a]

ūeij =
uei + uej

2 −
(f ej − f ei ) c̃eij

2d̃eij
, ūei,k =

uei + ûei,k
2 −

(f̂ ei,k − f ei )nek
2λei,k

. (6.9)

As in [Har83b, Gue16b] and elsewhere in this thesis, the diffusion coefficients d̃eij and
dei,k are defined in a way that allows an interpretation of the bar states (6.9) as averages
of exact solutions to Riemann problems (cf. Lemma 3.12). Thus, the states ūeij and ūei,k
stay in every convex invariant set of (6.1) that contains uei , uej , and ûei,k. A fully discrete
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counterpart of the low order method (6.8) employing an SSP time stepping scheme
is therefore invariant domain preserving (IDP) under a CFL-like time step restriction
[Gue19].

A few further remarks regarding the low order DG discretization (6.8) are in order.

Remark 6.2
Contrary to the bar states arising in continuous Galerkin discretizations, we have
ūeij 6= ūeji in general. This is a consequence of employing the DG baseline discretization
in which the elementwise discrete gradient operator Ce is skew symmetric only for pairs
of nodes that do not both lie on the element boundary. Furthermore, sparsification
produces operators C̃e that may not be skew symmetric even for such pairs of nodes.
On the other hand, an interfacial bar state ūei,k always equals the bar state of the node
with the same physical location in an adjacent element. This property follows from the
use of identical wave speeds λei,k in both bar states and the fact that the unit outward
normal to the boundary of the neighbor element is −nek. ♦

Remark 6.3
One can write (6.8) in a unified notation for volumetric and interfacial bar states
by disguising the different nature of the underlying approximations, as we did in
Section 3.3.6 and [Haj21a, Rem. 5] (see also [Gue19, Sec. 4]). Since the volume and
flux terms are treated differently in practice, we avoid using compressed single-sum
representations. ♦

6.2.3 Monolithic convex limiting
In this section, we introduce an MCL strategy that recovers the accuracy of the standard
DG discretization without sacrificing the bound-preserving properties of the low order
method. As usual, we first define the raw antidiffusive fluxes. Then we present the
limiter for the bar states and choose the local bounds. Many features to be discussed
were originally proposed by Kuzmin and Quezada de Luna [Kuz20e] in the context of
high order continuous Galerkin schemes for scalar problems. The novelty of what we
present in this section is the extension to DG discretizations and hyperbolic systems.

6.2.3.1 Definition of raw antidiffusive fluxes

In AFC schemes for continuous Galerkin discretizations, raw antidiffusive fluxes associ-
ated with volume integrals should compensate the effects of Rusanov dissipation and
mass lumping errors (for time-dependent problems). In high order DG extensions that
we propose in this chapter, it is also essential to compensate errors due to the use of
the group finite element approximation, quadrature-based lumping for boundary terms,
and sparsification of the discrete gradient operator. Moreover, the decomposition of
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correction terms into fluxes should preserve the compact sparsity pattern of the low
order method.

To derive an array of fluxes that comply with the above design principles and are
well suited for AFC, we first define the nodal contributions [Kuz20e]

f ei =
N∑
j=1

me
ij(u̇ei − u̇ej)−

∑
j∈Ñi\{i}

d̃eij(uej − uei ) (6.10a)

+
∑

j∈Ñi\{i}

(f ej − f ei ) c̃eij +
ˆ
Ke

f(ueh)∇ϕei dx−
ˆ
∂Ke

ϕei f ei ne ds, (6.10b)

f ei,k =
ˆ

Γe
k

ϕei
[
λei,k

uei − ûei,k
2 +

f ei + f̂ ei,k
2 nek − fne

k
(ueh, ûeh)

]
ds, (6.10c)

where fne
k
(·, ·) is a user-defined numerical flux that possesses the properties required by

Definition 3.3. The external state ûeh is defined by (6.3). For time-dependent problems,
the vector of time derivatives u̇e = (u̇e1, . . . , u̇eN)T in element Ke is given by the solution
of the linear system corresponding to the semi-discrete local problemˆ

Ke

weh · [u̇eh +∇ · f(ueh)] dx+
ˆ
∂Ke

weh · [fne(ueh, ûeh)− f(ueh)ne] ds = 0

for all weh ∈ Vp(Ke)m, e ∈ {1, . . . , E}. Contrary to our approach in Section 3.3.3, this
definition of u̇eh corresponds to the high order DG target scheme because no additional
stabilization needs to be introduced in this context.
Remark 6.4
Entries of the vector u̇e can be calculated either by directly inverting the ill-conditioned
Bernstein mass matrix or by first computing a representation of u̇eh w. r. t. another basis
and then obtaining the Bernstein coefficients of u̇eh. In either case, the linear systems that
need to be solved are quite ill-conditioned for high order spaces [Lyc00], even though
these are just element matrices. Algorithms specifically designed to invert Bernstein
mass matrices of simplicial DG methods can be found in [Kir17, Ain19]. The condition
number also grows with the spatial dimension. Thus, in the case of nonsimplicial
elements, we calculate solutions of linear systems, by inverting 1D mass matrices and
exploiting the tensor-product structure of elements. ♦

Let us now prove a few auxiliary results regarding the nodal contributions (6.10).
The following lemma ensures that the DG target scheme (6.2) can indeed be recovered
from the sparse low order approximation (6.7) using f ei and f ei,k.
Lemma 6.5 (Haj21a Lem. 1)
Let f ei and f ei,k be defined by (6.10). Then the semi-discrete problem

me
i

duei
dt =

∑
j∈Ñi\{i}

[
d̃eij(uej − uei )− (f ej − f ei ) c̃eij

]
+ f ei



Algebraic �ux correction schemes 153

+
∑

Γe
k
∈F(Ke)

[
bei,k
(
λei,k

ûei,k − uei
2 −

f̂ ei,k − f ei
2 nek

)
+ f ei,k

]
(6.11)

for i ∈ {1, . . . , N}, e ∈ {1, . . . , E} is equivalent to the DG target scheme (6.2). ♦

Proof:
The sums in (6.10a) compensate the mass lumping error and the sparsified Rusanov
dissipation of the low order method (6.7). The boundary integrals (6.10c) are designed
to recover the non-lumped version of the interfacial numerical flux in (6.2). Using
integration by parts, we find that (6.11) reduces to

N∑
j=1

me
ij

duej
dt = −

ˆ
Ke

ϕei ∇ · f(ueh) dx+
ˆ
∂Ke

ϕei f(ueh)ne ds

−
ˆ
∂Ke

ϕei f ei ne ds+
∑

Γe
k
∈F(Ke)

ˆ
Γe
k

ϕei [f ei nek − fne
k
(ueh, ûeh)] ds,

which is equivalent to the semi-discrete DG formulation (6.2). �

Lemma 6.6 (Kuz20e Sec. 4, Haj21a Lem. 2)
The nodal contributions f ei defined by (6.10a)–(6.10b) satisfy

N∑
i=0

f ei = 0 ∀e ∈ {1, . . . , E}. ♦

Proof:
The terms in (6.10a) add up to zero due to the symmetry of mass matrices and Rusanov
dissipation operators. For the remainder (6.10b), we use the zero row sum properties of
C̃e and Ce, the zero column sum property of C̃e −Ce, integration by parts, and the
fact that the local basis functions form a partition of unity on Ke. In this fashion, we
obtain [Kuz20e]

N∑
i=1

f ei =
N∑
i=1

∑
j∈Ñi

f ej c̃eij +
N∑
i=1

ˆ
Ke

f(ueh)∇ϕei dx−
N∑
j=1

ˆ
∂Ke

ϕej f ej ne ds

=
N∑

i,j=1
f ej (c̃eij − ceij + ceij)−

N∑
j=1

ˆ
∂Ke

ϕej f ej ne ds

=
N∑
j=1

f ej
[ N∑
i=1

(c̃eij − ceij)−
N∑
i=1

ceji +
ˆ
∂Ke

ϕej n
e ds

]
−

N∑
j=1

ˆ
∂Ke

ϕej f ej ne ds = 0. �
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Lemma 6.7 (Haj21a Lem. 3)
Let Ke′ be the cell that shares the boundary face Γek = Γe′k′ with Ke and let xe′i′ be the
node in Ke′ with the same physical location as node xei ∈ Ke. Then the corresponding
antidiffusive DG fluxes (6.10c) satisfy f ei,k = −f e′i′,k′ . ♦

Proof:
The basis functions ϕei and ϕe

′
i′ coincide on Γek. Moreover, the bracketed term in (6.10c)

consists of numerical fluxes, which must have opposite signs by Definition 3.3. �

For algebraic flux correction purposes, we require raw antidiffusive fluxes f eij instead
of nodal contributions (6.10a)–(6.10b). Thus, we distribute f ei between pairs of nodes
within the element. Importantly, we employ the nodal stencil of the low order method.
In other words, we seek f eij ∈ Rm satisfying∑

j∈Ñi\{i}

f eij = f ei , i ∈ {1, . . . , N}, f eij = −f eji, i, j ∈ {1, . . . , N}, (6.12)

and f eij = 0 if j /∈ Ñi \ {i}. The existence of such decompositions is a consequence of
Lemma 6.6. In general, however, many alternative splittings of f ei may provide the above
properties, and the specific choice can influence the numerical results. In this work, we
pursue the same approach as in [Kuz20e] to obtain the f eij . First, the sparsified Rusanov
dissipation is split from f ei because it already exhibits the desired compact-stencil
structure. Thus, we define the nodal contributions

gei ··= f ei +
∑

j∈Ñi\{i}

d̃eij(uej − uei ).

Note that the statement of Lemma 6.6 remains valid if f ei is replaced by gei therein.
We obtain the raw antidiffusive fluxes by solving linear systems Ave = ge for each

element, where ge = (gei )Ni=1 and A = (aij)Ni,j=1 is a sparse graph Laplacian to be defined
below. Given the solution vector ve = (vei )Ni=1 of this linear system, we set

f eij ··= aij(vej − vei )− d̃eij(uej − uei ), i ∈ {1, . . . , N}, j ∈ Ñi \ {i}.

In view of our design principles for f eij, we must have aij = 0 for j /∈ Ñi. Moreover, the
matrix A must be symmetric and have zero row sums. In our code, we construct A using
the sparse consistent mass matrix M̃ = (m̃ij)Ni,j=1 of a piecewise (multi)-linear continuous
approximation on the reference element. The nodes of this subcell discretization are
the same as the Bernstein nodes of the high order space (see Fig. 6.1). For non-
simplicial elements, we set m̃ii := m̃ii + m̃ij, m̃ij := 0 if node j is one of the closest
diagonal neighbors of node i. The so-defined partially lumped matrix M̃ has the same
cross-stencil sparsity pattern as D̃e = (d̃eij)Ni,j=1. The entries of A are defined by

aij = −m̃ij, i, j ∈ {1, . . . , N}, i 6= j, aii =
N∑

j∈Ñi\{i}

m̃ij, i ∈ {1, . . . , N}.
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Note that A is a discrete Laplacian operator in the sense that it is symmetric positive
semi-definite with negative off-diagonal entries and zero row sums. Therefore, the
solution of the linear system Ave = ge is unique up to a constant, which does not
influence the values of f eij. To fix the constant and avoid singularity, we overwrite the
first equation of the linear system by the zero sum condition ∑N

j=1 v
e
j = 0. It is easy to

verify that the presented approach produces raw antidiffusive fluxes f eij satisfying the
above design criteria [Kuz20e].

6.2.3.2 Outline of the bound-preserving limiting strategy

Let us now adapt the monolithic convex limiting strategy designed for continuous finite
elements [Kuz20a, Kuz20e] to the context of high order DG methods. In fact, our
limiting techniques for scalar problems and systems are relatively easy to extend to the
DG setting conceptually because the AFC decomposition of the target scheme exhibits
similar structure. For instance, (6.7) resembles the low order method (3.26) (cf. also
(3.29)) for a continuous Galerkin approximation using (multi-)linear Lagrange elements.
The representation of the high order scheme in sparse form (6.11), where the nodal
contributions f ei admit decomposition (6.12) into subcell fluxes f eij is again similar to
algebraic splittings that we used in previous chapters. Therefore, flux limiting for f eij
can be performed using limiters developed for second order continuous finite elements.
A peculiarity of the DG version is the presence of interfacial fluxes f ei,k = −f e′i′,k′ . Recall
that these additional terms recover the non-lumped version of boundary integrals in
which the normal flux is defined by an arbitrary Riemann solver. Thus, a limiting
strategy for f ei,k needs to be devised.

Our extension of MCL to high order DG methods using the above decomposition of
the target scheme into a sparse low order method and antidiffusive fluxes between nearest
neighbors works as follows. First, we invoke (6.12). Next, similarly to our approach for
continuous Lagrange finite elements in Section 3.3.4, we write the compact-stencil DG
scheme (6.11) in the bar state form

me
i

duei
dt =

∑
j∈Ñi\{i}

2d̃eij(ū
e,∗
ij − uei ) +

∑
Γe
k
∈F(Ke)

2dei,k(ū
e,∗
i,k − uei ) (6.13)

with flux-corrected bar states

ūe,∗ij = ūeij +
αeijf

e,∗
ij

2d̃eij
, ūe,∗i,k = ūei,k +

αei,kf
e,∗
i,k

2dei,k
.

The limited counterparts f e,∗ij and f e,∗i,k of f eij and f ei,k, respectively, are constrained to
preserve certain local bounds ue,min

i , ue,max
i for numerical admissibility. We discuss how

to choose these bounds in Section 6.2.3.3 below. Importantly, the limited fluxes must
satisfy f e,∗ij = −f e,∗ji and f e,∗i,k = −f e

′,∗
i′,k′ to ensure conservation. The indices of f e

′,∗
i′,k′ are
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defined as in Lemma 6.7. If necessary, IDP correction factors αeij = αeji ∈ [0, 1] and
αei,k = αe

′
i′,k′ ∈ [0, 1] can be applied to f e,∗ij and f e,∗i,k , respectively, to enforce physical

admissibility conditions in flux-limited DG methods for systems.
For brevity, we summarize our limiting approach by referring to the corresponding

formulas in Sections 3.3.4 and 3.3.5. A self-contained presentation in which only the
DG case is addressed, can be found in [Haj21a]. The original references on sequential
FCT-type limiting for (multi)-linear elements [Dob18] and MCL schemes for continuous
Galerkin approximations [Kuz20a, Kuz20e] may also be consulted.

For scalar problems, we limit f eij and f ei,k using formulas similar to (3.46)–(3.47). In
the limiter for f ei,k, we can make use of the fact that ūei,k = ūe

′
i′,k′ , see Remark 6.2. For

the shallow water equations and the Euler system, we employ the sequential limiting
strategy discussed in Section 3.3.4.3. Specifically, we limit antidiffusive fluxes of derived
unknowns using formulas similar to (3.55) for f eij and f ei,k. In the limiter for the Euler
equations, we additionally enforce positivity of the internal energy via the fix (3.64),
which yields the aforementioned IDP correction factors αeij and αei,k.

6.2.3.3 Definition of local admissible bounds

Compared to our earlier considerations in Section 3.3.4, the question of how to choose
local bounds for limiting is much more intricate if high order spaces and discontinuous
Galerkin methods are employed. For the linear advection equation, we used elementwise
bounds in a similar context [Haj20b, Haj20c]. For high order discretizations of nonlinear
conservation laws, however, we found that element-stencil bounds are too wide because
they allow spurious oscillations within the admissible range of element-global constraints.
Therefore, we use localized subcell-stencil bounds, which are based on values of the
solution in the nearest neighbors of each node [Loh17b]. In accordance with our earlier
work [Haj20b, Haj20c], we define numerical admissibility conditions using identical local
bounds for all DG nodes that have the same physical location.

For scalar equations, our approach works as follows. We first compute the minima
and maxima of the Bernstein coefficients over the compact stencils Ñi within the element
Ke. For interior nodes xei ∈ int(Ke) of the element, these values represent the local
bounds used for limiting the Bernstein coefficients uei . For xei ∈ ∂Ke, we extend the nodal
bounds using the corresponding minima and maxima of nodes with the physical location
xei in all adjacent elements. Let us briefly clarify our strategy with an illustration.

Example 6.8 (Local bounds for limiting in the scalar 1D case)
Consider the patch of one-dimensional P1 elements displayed in Fig. 6.2a. The local
bounds for the nodes with global indices I and J are given by

umin
I = min{ue−1

1 , ue−1
2 , ue1, u

e
2}, umax

I = max{ue−1
1 , ue−1

2 , ue1, u
e
2},

umin
J = min{ue1, ue2, ue+1

1 , ue+1
2 }, umax

J = max{ue1, ue2, ue+1
1 , ue+1

2 }.
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The same bounds umin
I , umax

I are used to limit the Bernstein coefficients ue−1
2 and ue1 in

our approach. Similarly, we use umin
J , umax

J for ue2 and ue+1
1 alike.

(a) patch of P1 elements

| | | |bc bc bc bc bc bc
u
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1

u
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umax
J

(b) patch of P2 elements
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Figure 6.2: A possible definition of local bounds for limiting in the scalar 1D case.

For P2 elements displayed in Fig. 6.2b, our definition of local bounds yields

umin
I = min{ue−1

2 , ue−1
3 , ue1, u

e
2}, umax

I = max{ue−1
2 , ue−1

3 , ue1, u
e
2},

umin
J = min{ue1, ue2, ue3}, umax

J = max{ue1, ue2, ue3},
umin
L = min{ue2, ue3, ue+1

1 , ue+1
2 }, umax

L = max{ue2, ue3, ue+1
1 , ue+1

2 }. ♦

Since we adopt the sequential limiting approach for hyperbolic systems, local bounds
on the main unknown % and derived quantities φ are required. In accordance with our
experience regarding continuous Galerkin discretizations, the admissible bounds for
systems are based on the low order bar states. For the main unknown %, we employ

%e,min
i

··= min
{

min
j∈Ñi\{i}

%̄eij, min
Γe
k
∈Fei

%̄ei,k

}
, %e,max

i
··= max

{
max

j∈Ñi\{i}
%̄eij, max

Γe
k
∈Fei

%̄ei,k

}
,

where F ei is the set of all element faces Γek such that xei ∈ Γek, and %̄eij, %̄ei,k are the com-
ponents of ūeij and ūei,k corresponding to %. Similarly, for derived unknowns, we set the
local bounds to

φe,min
i

··= min
{

min
j∈Ñi\{i}

φ̄eij, min
Γe
k
∈Fei

φ̄ei,k,
(%φ)i
%i

}
,

φe,max
i

··= max
{

max
j∈Ñi\{i}

φ̄eij, max
Γe
k
∈Fei

φ̄ei,k,
(%φ)i
%i

}
,

where we choose to additionally incorporate the nodal state (%φ)i/%i into the numerically
admissible sets. Again, φ̄eij, φ̄ei,k are the low order bar states for φ corresponding to
ūeij and ūei,k, respectively. As in the scalar case, we construct bounds for nodes on cell
boundaries using the local minima and maxima from all elements that meet at the nodal
point. In our implementation, we accomplish this task by employing the data structures
of a continuous Galerkin method that uses the same nodal basis on individual cells.

In some applications, preservation of global bounds may suffice. Nonnegativity of a
scalar conserved unknown u can be preserved using the one-sided MCL limiter

f e,∗ij = max
{
−2d̃eij ūeij,min

{
f eij, 2d̃eij ūeji

}}
, (6.14)
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which guarantees the validity of the limiting constraints

0 ≤ ūeij +
f e,∗ij

2d̃eij
, 0 ≤ ūeji +

f e,∗ji

2d̃eij
, f e,∗ji = −f e,∗ij

for volumetric bar states. A formula similar to (6.14) is used to limit the states ūe,∗i,k .

6.3 Numerical results
Having completed our discussion of bound-preserving limiting strategies, we now present
numerical results obtained with DG discretizations. The hyperbolic problems under
investigation include multidimensional versions of Burgers equation, in addition to the
shallow water system and the Euler equations of gas dynamics. For scalar problems, we
employ solely the local Lax–Friedrichs flux. For systems, we use the Harten–Lax–van
Leer (HLL) Riemann solver [Har83b, Eq. (3.15)]

fn(uL, uR) =


f(uL) if 0 ≤ sL,
sRf(uL)− sLf(uR) + sLsR(uR − uL)

sR − sL
if sL < 0 < sR,

f(uR) if sR ≤ 0

(6.15)

by default. The wave speeds sL and sR in (6.15) are estimated as follows

sL = min{vL · n− aL,vR · n− aR}, sR = max{vL · n+ aL,vR · n+ aR}.

Here vL,R denotes the velocity of the fluid. For the SWE, aL,R =
√
ghL,R is the celerity,

whereas for the Euler equations aL,R =
√
γpL,R/ρL,R is the speed of sound. We refer to

[Tor09, Ch. 10] for an in-depth discussion of the HLL flux, modifications thereof, and
improved wave speed estimates. In our experience, the influence of numerical fluxes
on the approximation quality is marginal for second and higher order DG schemes
compared to the case of piecewise constant approximations. Since (6.15) is an entropy
stable numerical flux [Che17, Cor. 3.2], we expect that no entropy correction is required
for MCL approximations. Other numerical fluxes such as Roe’s approximate Riemann
solver [Tor09, Ch. 11], might produce stationary entropy shocks at sonic points or
other entropy-violating solutions. To resolve such issues, one can use the fully discrete
entropy fixes developed in [Kuz22a]. For some scalar problems, even the use of entropy
stable numerical fluxes can produce approximations that do not converge to the unique
vanishing viscosity solution [Kur07b]. In our experience [Kuz22a], such issues do not
seem to arise for discretizations of the SWE and of the Euler equations, which is why
we choose not to discuss entropy fixes any further in the DG context.
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For steady problems, we use pseudo-time stepping with mass lumping in the un-
constrained DG schemes. Therefore, the time derivative term from the definition of
antidiffusive volumetric contributions (6.10a)–(6.10b) is omitted in such examples.

Temporal discretization is performed using explicit SSP RK time stepping schemes
with p ∈ {1, 2, 3} stages. By default, we use the third-order Shu–Osher method [Shu88],
labeled SSP3 RK. At the beginning of each p-stage update, the time step is chosen
adaptively to satisfy the CFL-like condition

∆t = min
e∈{1,...,E}

min
i∈{1,...,N}

ν me
i∑

j∈Ñi\{i} 2d̃eij +∑
Γe
k
∈F(Ke) 2dei,k

, (6.16)

where ν ∈ (0, 1] is a user-prescribed CFL-parameter. For scalar problems we use ν = 1,
whereas for systems we choose ν = 0.5 to avoid the need for repetition of individual
Runge–Kutta stages.

In all examples below, discrete initial conditions are obtained via consistent L2(Ω)
projections. Depending on the application, this strategy may produce oscillatory profiles.
Alternatively, we may evaluate the continuous function u0 in every node and use these
values as Bernstein coefficients of the discrete initial data. This strategy produces
second-order accurate approximations to u0 [Lai07, Thm. 2.45] but does not qualify to
be interpreted as a projection P in the sense that P 2 = P . As a consequence of (6.4),
approximations obtained in this manner preserve bounds of the exact initial conditions.

In the following sections, we present results obtained with unconstrained discontinu-
ous Galerkin schemes (DG), the low order method (LOW), as well as its bound-preserving
counterpart (MCL). These algorithms correspond to spatial semi-discretizations (6.2),
(6.8), and (6.13), respectively. We append −Pp and −Qp with p ∈ N0 to the acronyms
to specify which DG baseline discretization is employed. The implementation of all
methods discussed in this chapter is based on the open source C++ library MFEM
(see also [And21]). Among other features, MFEM supports the use of arbitrary order
Bernstein elements. The numerical results displayed in this section are visualized using
the open source C++ software GLVis that comes with MFEM.

6.3.1 Burgers equation
In this section, we study two variants of the multidimensional Burgers equation. First,
we consider the isotropic extension of the 1D conservation law (2.24) to multiple space
dimensions. Subsequently, we solve (2.24) using a space-time discretization approach.

6.3.1.1 Isotropic extension of Burgers equation to 2D

Let us consider the scalar conservation law
∂u

∂t
+ 1

2∇ · (vu
2) = 0 in Ω× (0, T ),
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(a) DG-Q0, e1
T=1.53E-2 (b) DG-Q1, e1

T=1.06E-2 (c) MCL-Q1, e1
T=1.10E-2

(d) MCL-Q3, e1
T=1.23E-2 (e) MCL-Q7, e1

T=1.83E-2 (f) MCL-Q15, e1
T=2.91E-2

Figure 6.3: Burgers equation in 2D with initial condition (6.17). DG-Q0, DG-Q1, and MCL-Qp

approximations using p ∈ {1, 3, 7, 15} at T = 0.5. Numerical solutions obtained with SSP3
RK time stepping and ∆t = 10−3 on uniform quadrilateral meshes with 1282 DOFs.

where v = (1, 1)T, Ω = (0, 1)2, T = 0.5, and

Γ− = Γ−(t) ··= {x ∈ ∂Ω : f ′(u(x, t)) · n < 0} = {x ∈ ∂Ω : u(x, t)v · n < 0}.

As initial data, we use the piecewise constant function

u0(x) =


−1 if x > 0.5 and y > 0.5,
−0.2 if x < 0.5 and y > 0.5,
0.5 if x < 0.5 and y < 0.5,
0.8 if x > 0.5 and y < 0.5.

(6.17)

The inflow boundary data û is defined using the exact solution, which can be found
in [Gue14, Sec. 5.1]. In this example, the location of the points separating the in- and
outlets along the vertical domain boundaries is changing in time.
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We solve this problem with DG schemes of varying polynomial degree whilst keeping
the total number of degrees of freedom (DOFs) constant at 1282. Uniform meshes with
1282 and 642 square elements are employed to compute DG-Q0 and DG-Q1 approxi-
mations, respectively. In addition, we compute MCL-Qp solutions for p ∈ {1, 3, 7, 15}.
We use the values of the exact solution to determine whether or not a boundary point
belongs to the inlet Γ−. The results displayed in Fig. 6.3 are obtained with SSP3 RK
time stepping using a constant time step of ∆t = 10−3. The unconstrained DG-Q1
scheme produces spurious oscillations at the shocks and the corresponding approximation
violates global maximum principles. Based on the approximate L1(Ω) errors e1

T at the
final time, the MCL-Q1 scheme produces the most accurate approximation among the
flux limited schemes. Since the exact solution to this problem at any time instant is
composed of states that are at most piecewise linear [Gue14, Sec. 5.1], this result is
unsurprising. For such problems, there is no benefit in using high order finite elements
because they do not converge faster than piecewise Q1 approximations as the mesh
is refined. We note that the MCL-Q3 result is still more accurate than the DG-Q0
approximation on a mesh with 16 times more elements, while DG-Q0 outperforms
MCL-Q7 and MCL-Q15. The latter produces the least accurate approximation, which is
due to the fact that the shocks at the final time are not as well aligned with the mesh
edges as in the case of the lower order approximations on finer grids. Still, the overall
shape of the exact solution remains recognizable in this very high order approximation
on a rather coarse mesh.

(a) Boundary type based on uh,
λij = max{|ui|, |uj |}|v · n|

(b) Boundary type based on uh,
λij = max{|ui|, |uj |}|n|1

(c) Boundary type based on û,
λij = max{|ui|, |uj |}|v · n|

Figure 6.4: Burgers equation in 2D with initial condition (6.17). Variants of MCL-P1 approximations
at T = 0.5 obtained with SSP3 RK time stepping and ∆t = 10−3 on uniform triangular
meshes using 2 · 1282 DOFs.

In this example, the flux function f(u) = u2

2 v is isotropic. Thus, we may safely use our
usual wave speed estimate λij = max{|ui|, |uj|}|v · n|. Note that for quadrilateral meshes
aligned with the coordinate axis, this expression can only become zero if ui = uj = 0
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because none of the element normals is orthogonal to v = (1, 1)T. For general meshes
this statement is not valid. In principle, this issue should not lead to problems even if
some wave speeds are zero. However, such sonic points can produce wrong numerical
solutions if the boundary type is determined based solely on the sign of interior solution
values. We illustrate this issue in Fig. 6.4. The MCL-P1 solutions displayed therein are
obtained on structured triangular meshes such that v · n = 0 is zero for exactly one face
per element. Figs. 6.4a and 6.4b display approximations in which the boundary type
is determined based on the interior state. In the simulation that produced Fig. 6.4b,
we overestimated the wave speed by setting λij = max{|ui|, |uj|}|n|1, where | · |1 is the
l1 norm. Neither approximation captures the exact solution at the vertical boundaries
correctly. For the approximation in Fig. 6.4b, this issue can best be observed if a larger
end time is employed. As we can see in Fig. 6.4c, implementations in which boundary
types are determined based on the inflow profile do not produce these spurious features
and should therefore be preferred in practice.

6.3.1.2 Space-time Burgers equation

The one-dimensional Burgers equation (2.24) equipped with suitable initial and boundary
conditions is equivalent to the 2D boundary value problem

∇ ·
[

1
2u

2, u
]

= 0 in Ω,
u = û on Γ−.

In this section, we use a space-time discretization approach (see Section 3.2.2) to obtain
a solution to the steady problem from which one can recover a solution to the transient
one-dimensional Burgers equation. In our numerical experiment, Ω = (0, 1)2 and
Γ− = (0, 1)× {0} ∪ {0} × (0, 1), provided that u ≥ 0 on Γ−. Our boundary data

û =


2 if |x− 0.125| ≤ 0.075,
1 if |x− 0.275| ≤ 0.075,
0 otherwise

is inspired by [Möl08, Sec. 3.5.2]. Applying the theory presented in Section 2.3.1 to this
problem, we deduce that the solution for small y contains one rarefaction wave and two
shocks. The faster waves catch up and merge with the slower moving ones. Once the
rarefaction wave reaches the only remaining shock front, the pre-shock value begins to
decay, which in turn reduces the shock speed. A closed form expression of the exact
solution reads

u(x, y) =



1 if 2(x− 0.35) ≤ y ≤ 2
3(x− 0.2),

2 if max
{

2
3(x− 0.2), x− 0.275}

}
≤ y ≤ 0.5(x− 0.05),

x−0.05
t

if 0.05 ≤ x and max
{

0.5(x− 0.05), 10
9 (x− 0.05)2

}
≤ y,

0 otherwise.



Numerical results 163

(a) Approximation and mesh (b) Contour lines, e1
T=1.23E-2 (c) Steady state residuals

0 2 4 6 8
10 -12

10 -8

10 -4

10 0

DG-P1
LOW-P1
MCL-P1
DG-P2
LOW-P2
MCL-P2

Figure 6.5: Space-time Burgers equation [Möl08]. MCL-P2 approximation at steady state (a)–(b)
obtained with adaptive SSP1 RK pseudo-time stepping and ν = 1 on an unstructured
triangular mesh. Convergence history of steady state residuals for various targets (c).

We solve this problem numerically on an unstructured triangular mesh with 33 984
elements and 17 197 vertices. A comparative study of DG, LOW and MCL schemes is
performed for P1 and P2 spaces. Simulations are cold-started from uh ≡ 0 and marched
to steady state using forward Euler pseudo-time stepping with mass lumping. We use
the l2 norm of the steady state residuals as convergence criterion and the value 10−12 as
threshold. In contrast to standard FEM, combinations of DG with the forward Euler
method do not lead to instabilities such as the ones observed in Section 4.5.2.1.

The MCL-P2 result displayed in Fig. 6.5 clearly reproduces the parabolic shape of
the shock front for large enough values of y. Note that the contour lines of the solution
in the space-time domain correspond to the characteristics of the time-dependent 1D
Burgers equation (2.24). For all schemes under investigation, pseudo-time integrators
converge to steady state solutions. This process takes a long time for the lumped
DG-P2 scheme, which produces spurious oscillations of significant magnitude at the
shocks. The non-lumped DG scheme converges faster but also produces oscillatory
approximations. No ripples are observed in the LOW and MCL results. The fact that
the pseudo-time stepping scheme for MCL does converge even on unstructured meshes
is a clear advantage over FCT methods. It is unsurprising that the flux-limited schemes
require more pseudo-time iterations than the respective low order methods because
limiters introduce severe nonlinearities into the algorithm. Improved iterative solvers for
MCL discretizations of steady state problems can be designed building on approaches
developed in [Bad17] and [Loh21].

6.3.2 Shallow water equations
We consider the two-dimensional shallow water equations with a flat bottom topography,
i. e., (4.1) with d = 2 and b ≡ 0. Experiments are performed for a transient smooth test
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problem as well as for a steady example involving shocks.

6.3.2.1 Vorticity advection

Let us first study a benchmark from [Fjo09, Sec. 4.3.1], which is referred to as vorticity
advection in the original publication. In this example, the gravitational constant is set
to g = 1. The initial water height and velocity are given by

h0(x, y) = 1− c2
1

4c2g
e−2c2(x2+y2), v0(x, y) = M

[
cos(α)
sin(α)

]
+ c1e−c2(x2+y2)

[
y
−x

]
.

Compared to [Fjo09, Sec. 4.3.1], we modify the parameters

M =
√

2, c1 = −0.1, c2 = 0.005, α = π

4
of this test problem to represent an example that more closely resembles a similar
benchmark for the Euler equations [Shu98, Sec. 5.1], which we study in Section 6.3.3.1.
Furthermore, in our approach, the spatial domain Ω = (−50, 50)2 is equipped with
periodic boundaries. Our reason for this modification is that at any time t = 100n with
n ∈ N0, the exact solution to this problem coincides with the initial condition.

We solve the vorticity advection problem with the MCL-P1 scheme using the HLL
flux (6.15) and adaptive SSP2 RK time stepping. Additionally, we test the MCL-P2
scheme equipped with HLL and local Lax–Friedrichs (LxF) fluxes. For P2 discretizations,
we use adaptive SSP3 RK time stepping. In this study, we enforce only the positivity
of the water height and no local bounds because the exact solution is smooth. The
meshes used in this study are periodic and consist of uniform simplicial elements. In
Tab. 6.1 we present the L1(Ω) errors for the water height at the final time T = 100 and
the corresponding experimental orders of convergence (EOC).

100
√

2/h P1 with HLL EOC P2 with HLL EOC P2 with LxF EOC
16 5.37E-03 5.04E-04 6.20E-04
32 1.05E-03 2.35 4.42E-05 3.51 1.09E-04 2.51
64 1.95E-04 2.43 4.37E-06 3.34 1.58E-05 2.78
128 3.77E-05 2.37 5.03E-07 3.12 2.07E-06 2.94
256 7.92E-06 2.25 5.82E-08 3.11 2.84E-07 2.86

Table 6.1: Convergence history for the vorticity advection problem [Fjo09, Sec. 4.3.1]. The ‖ · ‖L1(Ω) er-
rors in the water height of the two-dimensional shallow water model at T = 100 and the
corresponding EOC for MCL schemes enforcing only positivity of the water height.

In this example, optimal convergence rates can be observed if the HLL flux is used
and slightly less than third order of accuracy is obtained with the local Lax–Friedrichs
flux for P2 elements. Let us point out that for higher than second order spaces, the
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errors in the momentum components do not converge with optimal rates. More accurate
wave speed estimates in the HLL flux (see [Tor09, Ch. 10]) or better Riemann solvers
might cure this unsatisfactory behavior. We also remark that our standard version of
the DG-MCL schemes degrades the order of convergence because the local bounds for
limiting are too tight. In fact, the example presented in this section does not require
enforcement of local bounds because the solution is smooth. Therefore, a smoothness
indicator should be designed to automatically detect this situation and disable the limiter.
Examples of such sensors can be found in [Dio13, Loh17b, Dob18, Haj20c, Paz21].

6.3.2.2 Supercritical flow in a constricted channel

In this benchmark proposed in [Zie95], we set ω = tan
(
π
36

)
and consider the domain

Ω = {(x, y) ∈ (−10, 80)× (0, 40) : ωmax{0, x} < y < 40− ωmax{0, x}} ,

which represents a 40m wide and 90m long channel. Ten meters to the right of
the supersonic inlet {(−10, y) ∈ R2 : y ∈ (0, 40)}, the lateral channel boundaries are
symmetrically constricted with an angle of 5° = π/36. The right boundary is a supersonic
outlet. Reflecting boundary conditions are imposed on the horizontal lateral walls and
along the channel constrictions. Setting the gravitational constant to g = 0.16, we obtain
a supercritical flow regime with an inlet Froude number of 2.5. We use u = (1, 1, 0) as
spatially uniform initial condition and inlet boundary data. The profiles of the exact
solution exhibit oblique shock waves that form at the channel constrictions, meet in
the center of the domain, and are reflected at the opposite channel walls. A symmetric
steady state flow pattern consisting of piecewise constant states separated by steady
shock fronts is assumed soon after [Zie95].

We employ an unstructured, nonsymmetric triangular mesh consisting of E = 12 620
elements and march numerical solutions to steady state with forward Euler pseudo time
stepping. For the unconstrained DG schemes we use the fixed time step ∆t = 10−2.
Computations are terminated when the l2 norm of the residual for all variables becomes
less than 10−12. In Fig. 6.6, we display approximations for the water height at the steady
states of DG-P0, DG-P1, LOW-P1 and MCL-P1 schemes. Additionally, we present the
result of the MCL-P1 simulation with limiting for the interfacial DG fluxes disabled.
In other words, the lumped version of boundary integrals and the local Lax–Friedrichs
Riemann solver are used in this approach, which we refer to as MCLV-P1. The appended
letter V indicates that flux correction is restricted to volumetric terms.

The unconstrained DG schemes suffer from their usual deficiencies, i. e., low resolution
at shocks for the DG-P0 version and Gibbs phenomena for the DG-P1 version. The
low order P1 approximation is unacceptably diffusive. The MCL results exhibit crisp
resolution of shocks and good symmetry preservation properties even on the employed
nonsymmetric, unstructured mesh that is also not aligned with the shocks. Interestingly
enough, the deactivation of the interfacial flux limiter does not seem to degrade the
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overall accuracy. Thus, for some problems it may be worthwhile to employ lumped
Lax–Friedrichs fluxes instead of our interfacial bar state limiter.

(a) DG-P0 and mesh, uh ∈ [1.000, 1.835] (b) DG-P1 and contour lines, uh ∈ [0.867, 1.984]

(c) LOW-P1 and contour lines, uh ∈ [1.000, 1.831] (d) MCLV-P1 and contour lines, uh ∈ [1.000, 1.868]

(e) MCL-P1 and contour lines, uh ∈ [1.000, 1.847] (f) Convergence to steady state

0 200 400 600
10 -12

10 -8

10 -4

10 0

DG-P0
DG-P1
LOW-P1
MCL-V-P1
MCL-P1
FCT-P1

Figure 6.6: Constricted channel flow for the shallow water equations [Zie95]. DG-P0 and P1 approx-
imations to the water height at steady state (a)–(d) and at T = 600 (e) obtained with
SSP1 RK pseudo time stepping on an unstructured triangular mesh with 12 620 elements.
Convergence history of steady state residuals for monolithic schemes and convergence
indicator (6.18) for the SL method (f).

For comparison purposes, we also studied the steady-state convergence behavior of
the DG-P1 scheme equipped with a geometric slope limiter. Specifically, we used the
open source Matlab code FESTUNG (see [Fra20, Reu21]) and applied the vertex-based
slope limiter from Kuz10a to each component of the vector of conserved unknowns. More
sophisticated versions of this scheme exist [Dob18, Haj19] but for the problem under
consideration, these strategies yield similar results. Since slope-limited (SL) algorithms
constrain fully discrete schemes, they do not have a well-defined steady state residual.
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As a convergence indicator for the SL method, we therefore use
E∑
e=1

‖ũeh − ueh‖2
L2(Ke)

|Ke|
, (6.18)

where ũh and uh denote solutions at two consecutive pseudo-time steps.
In this example, the MCLV-P1 scheme does converge to a steady state solution, while

the residual of the standard MCL-P1 method stagnates after reaching the order of 10−4.
Fig. 6.6f shows the convergence history for each DG and MCL scheme in addition to the
value of (6.18) for the SL algorithm. Let us remark that for monolithic schemes, steady
state residuals are better indicators of convergence than quantities like (6.18) because
the latter approach encourages cancellation effects. For the SL scheme studied here, this
is not an issue because fluctuations around a steady state can be observed even visually.
The rather disappointing lack of convergence of the standard MCL-P1 scheme requires
further investigations. It can possibly be cured by using a more advanced iterative solver
for the nonlinear steady-state problem. We performed experiments with alternative
definitions of local bounds and also considered the non-lumped local Lax–Friedrichs flux
instead of the HLL Riemann solver but to no avail. If only nonnegativity of the water
height is enforced instead of local bounds as in the sequential limiter, a steady state
is reached. In this example, however, enforcing only the IDP property corresponds to
essentially just using the standard DG-P1 method.

6.3.3 Euler equations of gas dynamics
In the final experiments of this thesis we apply our DG schemes to the compressible
Euler equations. First, we study a benchmark with a smooth solution. Then we consider
a modification of the classical Sod shock tube problem. Finally, we solve an example
with a forward facing step. The adiabatic constant is set to γ = 1.4 in all problems.

6.3.3.1 Isentropic vortex

One of the test problems proposed in [Shu98, Sec. 5.1] evolves a smooth vortex in the
domain Ω = (−5, 5)2 with periodic boundaries. The initial conditions are set as follows

ρ0(x, y) = θ0(x, y)
1

γ−1 , v0(x, y) =
[
1
1

]
+ ε

2π e0.5(1−(x2+y2))
[
−y
x

]
,

p0(x, y) = θ0(x, y)
γ
γ−1 , θ0(x, y) = 1− (γ − 1) ε2

8γπ2 e1−(x2+y2),

where ε = 5. At any time t = 10n with n ∈ N0, the exact solution to this problem
coincides with the initial condition. The density profiles in this example look similar to
those of the water height for the vorticity advection example studied in Section 6.3.2.1.
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We solve this problem numerically with the MCL-Q1 scheme using the HLL flux and
SSP2 RK time stepping. Additionally, we test the MCL-Q2 scheme with either HLL or
local Lax–Friedrichs (LxF) fluxes in combination with SSP3 RK time stepping. Similarly
to our approach in Section 6.3.2.1, we only enforce nonnegativity of the density, and,
additionally, nonnegativity of the internal energy for individual bar states. Since the
solution is smooth, we do not rely on limiters to enforce local bounds. The meshes used
in this study are periodic and, this time, consist of uniform quadrilateral elements. In
Tab. 6.2 we present the L1(Ω) errors for the density at the final time T = 10 and the
corresponding experimental orders of convergence.

10/h Q1 with HLL EOC Q2 with HLL EOC Q2 with LxF EOC
16 5.37E-03 6.06E-04 5.29E-04
32 9.32E-04 2.53 2.60E-05 4.54 5.07E-05 3.38
64 1.58E-04 2.56 2.35E-06 3.47 7.84E-06 2.69
128 2.90E-05 2.44 2.70E-07 3.12 1.22E-06 2.68
256 6.28E-06 2.21 3.31E-08 3.03 1.79E-07 2.78

Table 6.2: Convergence history for the isentropic vortex problem [Shu98, Sec. 5.1]. The ‖ · ‖L1(Ω) errors
in the density of the two-dimensional Euler equations at T = 10 and the corresponding EOC
for MCL schemes enforcing only positivity of density and internal energy.

Virtually the same conclusions as in Section 6.3.2.1 can be drawn from this exper-
iment. Thus, the behavior of DG schemes observed for the shallow water equations
carries over to problems in gas dynamics. Moreover, the orders of accuracy do not
seem to depend on the geometry of elements since here we use quadrilaterals instead of
simplices that were employed in Section 6.3.2.1. Once more, the use of the HLL flux is
worthwhile for higher order spaces, although, again, the convergence rates deteriorate
for components of the solution vector other than the density. Again, enforcement of
local bounds by the MCL limiter leads to larger error values and decreased EOCs. This
issue can be resolved using a well-designed smoothness indicator to relax the bounds.

6.3.3.2 Modified Sod shock tube problem

Let us now apply the high order property-preserving DG methods to a one-dimensional
Riemann problem studied in [Tor09, Sec. 6.4]. The domain Ω = (0, 1) has a supersonic
inlet and a reflecting wall boundary on the left and right, respectively. The initial
condition expressed in conserved variables is given by

u0(x) =
(1, 0.75, 89/32) if x < 0.25,

(0.125, 0, 0.25) if x > 0.25.

The corresponding initial states of the primitive variables are similar to those of Sod’s
shock tube problem [Sod78] with the exception that the velocity is nonzero for the left
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initial state. This modification to the problem we solved in Section 3.4.3.1 produces a
sonic point within the rarefaction wave region. Depending on the employed algorithm,
numerical solutions may contain nonphysical entropy shocks at that location (see
[Tor09, Kuz22a]).

We solve the modified shock tube problem up to end time T = 0.25 using MCL-Pp
with p ∈ {1, 3, 7, 15, 31} whilst keeping the number of DOFs for each unknown constant
at 128. Uniform meshes and adaptive SSP3 RK time stepping are employed in this
study, the results of which can be found in Fig. 6.7. Here the HLL flux is used but the
results obtained with the local Lax–Friedrichs flux are similar. A reference solution is
obtained with the DG-P0 method on a fine mesh consisting of E = 104 elements.

(a) Density
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(b) Velocity
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Figure 6.7: Modified Sod shock tube problem for the Euler equations [Tor09, Sec. 6.4]. MCL-Pp

approximations at T = 0.25 using 128 DOFs per conserved unknown and p ∈ {1, 3, 7, 15, 31}.
Solutions obtained with adaptive SSP3 RK time stepping and ν = 0.5 on uniform meshes.

We observe an entropy shock at the sonic point for the very high order space P31.
The employed mesh consists of only four elements in this case, which does not seem to be
sufficient to produce accurate results for the modified shock tube problem. We remark
however, that the entropy shock disappears on finer meshes. The other approximations
are to a large degree satisfactory apart from some minor oscillations visible in the profiles
of the MCL-P7 scheme. Increased amounts of dissipation in the higher order spaces
lead to more significant smearing of the contact discontinuity. This issue can to some
degree be resolved by employing the HLLC flux [Tor09, Ch. 10] instead of HLL or local
Lax–Friedrichs Riemann solvers. We conclude that the use of very high order spaces
such as P31 on rather coarse meshes does seem to be a good idea. It would be interesting
to investigate whether the occurrence of entropy shocks could be prevented by using an
entropy limiter such as the one presented in Section 3.3.6.

6.3.3.3 Forward facing step

Finally, we apply our property-preserving DG schemes to a two-dimensional problem
that was studied in depth by Woodward and Colella [Woo84]. The spatial domain
Ω = (0, 3) × (0, 1) \ [0.6, 3] × [0, 0.2] represents a wind tunnel with a forward facing
step that acts as an obstacle for the fluid flow. The initial values of the conserved
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variables for the diatomic gas are set to u0 ≡ (1.4, 4.2, 0, 8.8)T in the whole domain. This
initial condition corresponds to a Mach 3 flow. The boundary condition imposed at the
supersonic inlet {0} × (0, 1) is given by u(0, y, t) ≡ u0 for all y ∈ (0, 1) and t ≥ 0. Since
the flow remains supersonic, no boundary condition is needed at the outlet {3}× (0.2, 1).
All other domain boundaries are reflecting walls.

(a) MCL-P1 with SSP2 RK on a mesh consisting of 163 586 elements and 82 436 vertices, ρh ∈ [0.090, 6.6]

(b) MCL-P2 with SSP3 RK on a mesh consisting of 81 585 elements and 41 245 vertices, ρh ∈ [0.097, 6.9]

Figure 6.8: Forward facing step for the Euler equations [Woo84]. Density distribution at T = 4 obtained
using local Lax–Friedrichs fluxes and adaptive time stepping with ν = 0.5 on unstructured,
locally refined, triangular meshes created with gmsh [Geu09]. Plots show 100 contour lines.

The reflection of the gas at the step produces a bow shock, which propagates towards
the upper wall, where it is reflected. More reflections occur further to the right in the
wind tunnel. By the final time T = 4, a triple point above the step develops from the
reflected bow shock. A Kelvin–Helmholtz instability emanates from this triple point
and produces vortical features in the downstream region. The re-entrant corner of
the domain is the center of a rarefaction wave. Owing to the imposed reflecting wall
boundary conditions at the step, the exact velocity at the inward-pointing corner is zero.
To capture this behavior reasonably well in numerical simulations, one should employ
local mesh refinement in this region [Woo84, Hen21].



Numerical results 171

(a) MCL-P1 with SSP2 RK on a mesh consisting of 163 586 elements and 82 436 vertices, ρh ∈ [0.069, 7.1]

(b) MCL-P2 with SSP3 RK on a mesh consisting of 81 585 elements and 41 245 vertices, ρh ∈ [0.061, 7.0]

Figure 6.9: Forward facing step for the Euler equations [Woo84]. Density distribution at T = 4 obtained
using HLL fluxes and adaptive time stepping with ν = 0.5 on unstructured, locally refined,
triangular meshes created with gmsh [Geu09]. Plots show 100 contour lines.

We solve the forward facing step problem numerically using MCL-P1 with SSP2 RK
as well as MCL-P2 with SSP3 RK. For this test problem, we perform a comparative
study of local Lax–Friedrichs and HLL Riemann solvers for interfacial boundary terms.
The unstructured triangular meshes employed in our experiments were created with
gmsh [Geu09] and exhibit an increased resolution of about h/4 around the re-entrant
corner of the step. Special care was taken to ensure that the total number of DG
unknowns is almost the same in the P1 and P2 discretizations. Snapshots of density
distributions are displayed in Figs. 6.8 and 6.9 for approximations obtained with local
Lax–Friedrichs and and HLL fluxes, respectively.

These profiles capture all flow features described in [Woo84] correctly. In particular,
the Kelvin–Helmholtz instability emanating from the triple point can be observed.
Moreover, the resolution with which discontinuities are captured is satisfactory for the
employed meshes. For this test problem, the differences in results obtained with local
Lax–Friedrichs and HLL fluxes seem to be insignificant. Among the four approaches, the
MCL-P1 scheme with HLL fluxes produces the sharpest resolution of the bow shock layer.
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This behavior is unsurprising because the best strategy to resolve discontinuities is to use
low order approximations on fine meshes (and the least diffusive Riemann solver among
the available ones). On the other hand, slightly more pronounced vortical features can
be seen in the MCL-P2 profiles. Thus, different choices of baseline discretizations may
be appropriate for different applications. The computational performance of a given
method should also be taken into account when it comes to making decisions regarding
the type of numerical approximations. Let us again stress the need for relaxation of
local bounds for flux limiting constraints in smooth regions to obtain better than second
order convergence rates with high order schemes [Zha11, Sec. 1]. We expect to see more
pronounced vortical features in numerical solutions to the forward facing step problem
if such an approach is incorporated into our method.



Chapter 7

Conclusions

This thesis presents some of the author’s contributions to the development of algebraic
flux correction schemes. Two main fields of applications are considered, geophysical
fluid flows and gas dynamics. The corresponding mathematical models are the shallow
water equations and the Euler equations of gas dynamics, respectively. After a brief
introduction and a review of some of the mathematical theory on hyperbolic PDEs, we
focused on numerical methods for solving these problems. In particular, we discussed
property-preserving schemes based on the monolithic convex limiting methodology
for (systems of) conservation laws [Kuz20a, Kuz20c]. We generalized this strategy
to an important nonlinear system of balance laws, the shallow water equations with
a topography source term. In addition, we presented our own contributions to the
numerical analysis of AFC schemes. Moreover, we extended limiting techniques designed
for continuous finite elements to arbitrary order discontinuous Galerkin discretizations.

7.1 Summary

In Chapter 3 we presented an in-depth review of recently developed property-preserving
numerical methods for hyperbolic conservation laws. After a brief introduction to
continuous finite elements and temporal discretization techniques, we focused on algebraic
flux correction schemes. In particular, we addressed important properties of the low
order method using the theory developed in [Har83b, Gue16b]. Next, the monolithic
convex limiting technology, developed in [Kuz20a] was discussed and a new way to handle
the weakly imposed boundary conditions was proposed. Additionally, we presented
the sequential limiting approach for hyperbolic systems that was originally developed
in [Dob18, Kuz20a]. These techniques were enhanced by the option of performing
an additional semi-discrete entropy fix based on Tadmor’s entropy stability condition
[Tad87, Tad03, Kuz20c]. Sequential limiting for the shallow water equations and
enforcement of entropy stability for hyperbolic systems was first pursued by this author
[Haj19, Haj21a, Kuz22a]. The numerical results presented in Chapter 3 illustrate the
need for each component of the algorithm. For a scalar problem with nonconvex flux,
both bound-preserving and entropy-stabilizing limiting were found to be beneficial.
For the compressible Euler equations, we observed that the entropy fix has only little
influence on the approximate solution. We also demonstrated numerically that we obtain
optimal convergence rates for smooth solutions of scalar problems. Stabilization of
continuous Galerkin discretizations is achieved solely by using low order nodal time
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derivatives in the definition of raw antidiffusive fluxes.
Subsequently, in Chapter 4, we extended the algebraic flux correction schemes for

conservation laws discussed in Chapter 3 to the system of shallow water equations with
a nonconservative topography term. For configurations with a flat bottom, this term
vanishes and the generalized schemes coincide with the original ones. We also developed
two new approaches for modeling wetting and drying processes. The first one is an
entropy-based velocity fix restricted to flat topographies. The second fix uses a boundary
layer approximation and works in the general case.

Furthermore, we presented stability and a priori error analysis for a property-
preserving discretization of the advection equation in Chapter 5. Our theoretical
findings were corroborated by the conducted numerical experiments. Besides deriving
energy and error estimates, we compared the results obtained with monolithic AFC
schemes and two representatives of FCT algorithms.

Finally, in Chapter 6 we extended the MCL methodology to discontinuous Galerkin
discretizations of arbitrary order. While other high-resolution schemes may produce
results of similar quality, our AFC methodology for DG methods belongs to the first
general-purpose limiting approaches that provably guarantee preservation of invariant
domains and local bounds even for high order finite element discretizations of nonlinear
systems. It turns out that the DG baseline discretization can be adapted to make it
bound preserving by means very similar to the ones used for standard finite elements.
In fact, most ideas employed in Chapter 6 were actually proposed in the context of high
order continuous Galerkin schemes [Kuz20e]. A novelty of our approach is the limiting
of interfacial DG fluxes. Introducing low order interfacial bar states that are similar
to those arising from boundary terms in continuous Galerkin schemes, we designed a
monolithic flux limiter for higher order DG methods. Our approach makes it possible to
employ numerical fluxes other than a lumped local Lax–Friedrichs Riemann solver. In
particular, we used the HLL flux in our numerical experiments. This flexibility in the
choice of Riemann solvers turned out to be quite valuable because we were not able to
achieve third order of accuracy with DG-P2/Q2 schemes and local Lax–Friedrichs fluxes.
Unfortunately, the more complicated nonlinear nature of the scheme with interfacial
flux limiting resulted in a lack of convergence to steady state in one example.

7.2 Outlook
Several interesting avenues for future research currently present themselves. First, it is
certainly desirable to apply the presented methods to more complicated problems. One
could, for instance, include diffusive terms to model viscous effects. Monolithic convex
limiting strategies were successfully applied to scalar convection-diffusion equations by
Quezada de Luna and Ketcheson [Que21], who modified the usual bar states to include
diffusive fluxes. In the context of inviscid flow problems, flux correction of MCL type
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can be extended to more sophisticated hyperbolic systems such as the equations of
magnetohydrodynamics (MHD). The ideal MHD system represents a generalization of
the Euler equations, which includes a conservation law for a divergence-free magnetic
field. The need to keep this vector field (approximately) solenoidal poses a significant
additional difficulty and is, therefore, an important topic of its own.

With respect to the MCL scheme for the shallow water equations, we believe that the
next step is to incorporate friction terms and, possibly, Coriolis forces into the discrete
formulations. Moreover, well-balancing for steady states more complicated than the
lake at rest remains to be achieved. Although we were able to demonstrate convergence
to one such steady state solution without being exactly well balanced, it is nonetheless
a desirable property to capture moving water equilibria exactly.

Our experience with MCL for the shallow water system with bathymetry indicates
that similar limiting approaches can be developed, e. g., for the Euler equations with
gravity. For this system, well-balancedness is less of an issue than for SWE. Since the
gravitational source term is a potential force, its discrete counterpart can be simply
decomposed into numerical fluxes and incorporated into the low order bar states.
Bound-preserving flux limiting can then be performed in much the same way as for the
topography source term of the shallow water equations. Enforcing entropy stability for
the Euler equations with gravity is an open problem. The modifications we needed to
make in the low order method to enforce entropy stability for the SWE suggest that
this task may not be easy. Indeed, the usual entropy pair for the Euler equations is
more complicated than the sum of the potential and kinetic energies, which we used as
an entropy for SWE.

Moreover, a variety of open problems regarding the theory of AFC schemes remains
besides the aspects that were already mentioned in Section 5.4.3. It is certainly desirable
to avoid the compatibility condition that we used in our proofs. This task could be
accomplished either by proving its validity under certain assumptions or by finding
another approach to bound the terms involving low order time derivatives. Another issue
worth investigating is whether the results on solvability and discrete maximum principles
proven for steady problems [Bar16, Loh19] directly carry over to MCL discretizations.
We believe that they do but have not investigated this issue, and focused on the analysis
of time-dependent problems instead. Furthermore, it would be interesting to analyze
the theoretical properties of AFC schemes based on target discretizations other than
piecewise linear continuous finite elements. In particular, higher order finite elements
and/or nonconforming spaces could be studied. Our analysis of semi-discrete AFC
problems may also serve as a stepping stone for theoretical investigations of fully discrete
schemes. We do not expect any major difficulties to arise in such studies but additional
technicalities may need to be dealt with. To the best of our knowledge, the theory of
AFC schemes is currently restricted to linear PDEs. An extension to nonlinear scalar
conservation laws or even systems could be performed by adapting existing analysis for
finite volume schemes to the finite element context. However, theoretical investigations
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of AFC methods for nonlinear problems are certain to be significantly more involved
than the analysis presented in Chapter 5.

The property-preserving DG schemes discussed in Chapter 6, can be generalized to
systems of balance laws in the same way as continuous finite element discretizations of
the SWE in Chapter 4. One issue that was not addressed in the DG context is entropy
limiting. The results from earlier chapters indicate that enforcing entropy stability
might not to be necessary for DG (at least in practice) if entropy stable numerical fluxes
are employed. Nevertheless, combining our high order property-preserving DG schemes
with the entropy limiters designed in [Kuz20d] for continuous finite elements and scalar
nonlinear problems would constitute an interesting further development. For the KPP
problem [Kur07b] that we solved in Section 3.4.2, the bound-preserving DG schemes
discussed in Chapter 6 produce entropy-violating results. A preliminary study that was
not included in this thesis has been conducted by the author and showed the feasibility
of entropy limiting for this particular benchmark.

With the advent of programming techniques for graphics processing units (GPUs),
the use of high order spaces has become increasingly popular [And21]. The field of
property-preserving methods is no exception to this development [Noe07, Zha11, Dum14,
Loh17b, Hen21]. The high order spatial accuracy of finite element discretizations that
we use as target schemes may be lost if a low order time integrator is employed. In this
thesis, we used SSP time stepping schemes, which are at most fourth-order accurate
(in the explicit case) [Ruu02, Thm. 4.1]. As shown in [Que21, Kuz22a, Kuz22b], convex
limiting techniques can be used to constrain arbitrary Runge–Kutta time discretizations
in a way that makes them property preserving. However, extension of such schemes to
high order AFC discretizations of hyperbolic systems has not yet been undertaken.

Finally, the incorporation of smoothness indicators [Dio13, Dum14, Hen21] into
the algorithms discussed in this work is yet to be accomplished. In the context of
algebraic flux correction schemes, such methods can be found, for instance, in [Loh17b,
Dob18, Gue18a, Haj20c, Paz21]. They are supposed to deactivate flux limiters or relax
local bounds in smooth regions. Note that the underlying smoothness criteria are
often somewhat heuristic, and the resulting algorithms may fail to prevent nonphysical
behavior. It is therefore essential to enforce global bounds even if violations of tight
local bounds are allowed by the smoothness indicator. Examples of fail-safe limiters
based on this design philosophy can be found in [Haj20c, Paz21].



References

[Abg06] R. Abgrall (2006) Essentially non-oscillatory residual distribution schemes
for hyperbolic problems J. Comput. Phys. 214: 773–808 doi: 10.1016/
j.jcp.2005.10.034

[Abg10] R. Abgrall, J. Trefilík (2010) An example of high order residual distri-
bution scheme using non-Lagrange elements J. Sci. Comput. 45: 3–25 doi:
10.1007/s10915-010-9405-y

[Abg17] R. Abgrall, S. Tokareva (2017) Staggered grid residual distribution scheme
for Lagrangian hydrodynamics SIAM J. Sci. Comput. 39: A2317–A2344 doi:
10.1137/16M1078781

[Ain19] M. Ainsworth, S. Jiang, M. A. Sanchéz (2019) An O(p3) hp-version
FEM in two dimensions: Preconditioning and post-processing Comput. Method.
Appl. M. 350: 766–802 doi: 10.1016/j.cma.2019.03.020

[Ama90] H. Amann (1990) Ordinary Differential Equations De Gruyter doi: 10.1515/
9783110853698

[And17] R. Anderson, V. Dobrev, T. Kolev, D. Kuzmin, M. Quezada de Luna,
R. Rieben, V. Tomov (2017) High-order local maximum principle preserving
(MPP) discontinuous Galerkin finite element method for the transport equation
J. Comput. Phys. 334: 102–124 doi: 10.1016/j.jcp.2016.12.031

[And21] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier,
J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner,
M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, S. Zampini
(2021) MFEM: A modular finite element methods library Comput. Math. Appl.
81: 42–74 doi: 10.1016/j.camwa.2020.06.009

[Aud04] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, B. Perthame
(2004) A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruc-
tion for Shallow Water Flows SIAM J. Sci. Comput. 25: 2050–2065 doi:
10.1137/s1064827503431090

[Aud15] E. Audusse, C. Chalons, P. Ung (2015) A simple well-balanced and
positive numerical scheme for the shallow-water system Commun. Math. Sci.
13: 1317–1332 doi: 10.4310/CMS.2015.v13.n5.a11

[Aze17] P. Azerad, J.-L. Guermond, B. Popov (2017) Well-Balanced second-order
approximation of the shallow water equation with continuous finite elements
SIAM J. Numer. Anal. 55: 3203–3224 doi: 10.1137/17M1122463

http://dx.doi.org/10.1016/j.jcp.2005.10.034
http://dx.doi.org/10.1016/j.jcp.2005.10.034
http://dx.doi.org/10.1007/s10915-010-9405-y
http://dx.doi.org/10.1137/16M1078781
http://dx.doi.org/10.1016/j.cma.2019.03.020
http://dx.doi.org/10.1515/9783110853698
http://dx.doi.org/10.1515/9783110853698
http://dx.doi.org/10.1016/j.jcp.2016.12.031
http://dx.doi.org/10.1016/j.camwa.2020.06.009
http://dx.doi.org/10.1137/s1064827503431090
http://dx.doi.org/10.4310/CMS.2015.v13.n5.a11
http://dx.doi.org/10.1137/17M1122463


178 References

[Bad17] S. Badia, J. Bonilla (2017) Monotonicity-preserving finite element schemes
based on differentiable nonlinear stabilization Comput. Method. Appl. M. 313:
133–158 doi: 10.1016/j.cma.2016.09.035

[Bar89] T. J. Barth, D. C. Jespersen (1989) The design and application of upwind
schemes on unstructured meshes in Proc. of the 27th Aerospace Sciences
Meeting doi: 10.2514/6.1989-366

[Bar15] M. Barros, P. Rosman, J. Telles (2015) An effective wetting and drying
algorithm for numerical shallow water flow models J. Braz. Soc. Mech. Sci. 7:
803–819 doi: 10.1007/s40430-014-0211-6

[Bar16] G. R. Barrenechea, V. John, P. Knobloch (2016) Analysis of algebraic
flux correction schemes SIAM J. Numer. Anal. 54: 2427–2451 doi: 10.1137/
15M1018216

[Bar17a] G. R. Barrenechea, E. Burman, F. Karakatsani (2017) Edge-based
nonlinear diffusion for finite element approximations of convection–diffusion
equations and its relation to algebraic flux-correction schemes Numer. Math.
135: 521–545 doi: 10.1007/s00211-016-0808-z

[Bar17b] G. R. Barrenechea, P. Knobloch (2017) Analysis of a group finite
element formulation Appl. Numer. Math. 118: 238–248 doi: 10.1016/
j.apnum.2017.03.008

[Bar18] G. R. Barrenechea, V. John, P. Knobloch, R. Rankin (2018) A
unified analysis of algebraic flux correction schemes for convection–diffusion
equations SeMA J. 75: 655–685 doi: 10.1007/s40324-018-0160-6

[Bec03] R. Becker, E. Burman, P. Hansbo, M. G. Larson (2003) A reduced
P 1-discontinuous Galerkin method Chalmers Finite Element Center Preprint
2003-13, Chalmers University of Technology https://www.researchgate.net/
publication/37445460_A_reduced_P1-discontinuous_Galerkin_method

[Ber19] C. Berthon, A. Duran, F. Foucher, K. Saleh, J. D. D. Zabsonré
(2019) Improvement of the hydrostatic reconstruction scheme to get fully
discrete entropy inequalities J. Sci. Comput. 80: 924–956 doi: 10.1007/
s10915-019-00961-y

[Ber20] C. Berthon, A. Duran, K. Saleh (2020) An easy control of the artificial
numerical viscosity to get discrete entropy inequalities when approximating
hyperbolic systems of conservation laws in Continuum Mechanics, Applied
Mathematics and Scientific Computing: Godunov’s Legacy 29–36 Springer doi:
10.1007/978-3-030-38870-6_5

http://dx.doi.org/10.1016/j.cma.2016.09.035
http://dx.doi.org/10.2514/6.1989-366
http://dx.doi.org/10.1007/s40430-014-0211-6
http://dx.doi.org/10.1137/15M1018216
http://dx.doi.org/10.1137/15M1018216
http://dx.doi.org/10.1007/s00211-016-0808-z
http://dx.doi.org/10.1016/j.apnum.2017.03.008
http://dx.doi.org/10.1016/j.apnum.2017.03.008
http://dx.doi.org/10.1007/s40324-018-0160-6
https://www.researchgate.net/publication/37445460_A_reduced_P1-discontinuous_Galerkin_method
https://www.researchgate.net/publication/37445460_A_reduced_P1-discontinuous_Galerkin_method
http://dx.doi.org/10.1007/s10915-019-00961-y
http://dx.doi.org/10.1007/s10915-019-00961-y
http://dx.doi.org/10.1007/978-3-030-38870-6_5


References 179

[Bit13] M. Bittl, D. Kuzmin (2013) An hp-adaptive flux-corrected transport al-
gorithm for continuous finite elements Computing 95: 27–48 doi: 10.1007/
s00607-012-0223-y

[Boo75] D. L. Book, J. P. Boris, K. Hain (1975) Flux-corrected transport II:
Generalizations of the method J. Comput. Phys. 18: 248–283 doi: 10.1016/
0021-9991(75)90002-9

[Bor73] J. P. Boris, D. L. Book (1973) Flux-corrected transport. I. SHASTA,
a fluid transport algorithm that works J. Comput. Phys. 11: 38–69 doi:
10.1016/0021-9991(73)90147-2

[Bou04] F. Bouchut (2004) Nonlinear stability of finite volume methods for hyperbolic
conservation laws and well-balanced schemes for sources Birkhäuser

[Bro82] A. N. Brooks, T. J. R. Hughes (1982) Streamline upwind/Petrov–Galerkin
formulations for convection dominated flows with particular emphasis on the
incompressible Navier–Stokes equations Comput. Method. Appl. M. 32: 199–
259 doi: 10.1016/0045-7825(82)90071-8

[Bur07] E. Burman (2007) On nonlinear artificial viscosity, discrete maximum prin-
ciple and hyperbolic conservation laws BIT Numer. Math. 47: 715–733 doi:
10.1007/s10543-007-0147-7

[Che17] T. Chen, C.-W. Shu (2017) Entropy stable high order discontinuous Galerkin
methods with suitable quadrature rules for hyperbolic conservation laws J.
Comput. Phys. 345: 427–461 doi: 10.1016/j.jcp.2017.05.025

[Cod93] R. Codina (1993) A discontinuity-capturing crosswind-dissipation for the
finite element solution of the convection-diffusion equation Comput. Method.
Appl. M. 110: 325–342 doi: 10.1016/0045-7825(93)90213-H

[Cus11] B. Cushman-Roisin, J.-M. Beckers (2011) Introduction to Geophysical
Fluid Dynamics Elsevier Science & Technology 2nd ed.

[Daf00] C. M. Dafermos (2000) Hyperbolic Conservation Laws in Continuum Physics
Springer 1st ed. doi: 10.1007/978-3-662-22019-1

[Del13] O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre,
T.-N.-T. Vo, T. François, S. Cordier (2013) SWASHES: a compilation
of shallow water analytic solutions for hydraulic and environmental studies
Int. J. Numer. Meth. Fl. 72: 269–300 doi: 10.1002/fld.3741

http://dx.doi.org/10.1007/s00607-012-0223-y
http://dx.doi.org/10.1007/s00607-012-0223-y
http://dx.doi.org/10.1016/0021-9991(75)90002-9
http://dx.doi.org/10.1016/0021-9991(75)90002-9
http://dx.doi.org/10.1016/0021-9991(73)90147-2
http://dx.doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/10.1007/s10543-007-0147-7
http://dx.doi.org/10.1016/j.jcp.2017.05.025
http://dx.doi.org/10.1016/0045-7825(93)90213-H
http://dx.doi.org/10.1007/978-3-662-22019-1
http://dx.doi.org/10.1002/fld.3741


180 References

[Del16] O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre,
T.-N.-T. Vo, F. James, S. Cordier (2016) SWASHES: a compilation
of shallow water analytic solutions for hydraulic and environmental studies
Preprint, arXiv: 1110.0288v7 [math.NA]

[Dio13] S. Diot, R. Loubère, S. Clain (2013) The Multidimensional Optimal
Order Detection method in the three-dimensional case: very high-order finite
volume method for hyperbolic systems Int. J. Numer. Meth. Fl. 73: 362–392
doi: 10.1002/fld.3804

[DiP12] D. A. Di Pietro, A. Ern (2012) Mathematical Aspects of Discontinuous
Galerkin Methods Springer doi: 10.1007/978-3-642-22980-0

[Dob18] V. Dobrev, T. Kolev, D. Kuzmin, R. Rieben, V. Tomov (2018) Sequen-
tial limiting in continuous and discontinuous Galerkin methods for the Euler
equations J. Comput. Phys. 356: 372–390 doi: 10.1016/j.jcp.2017.12.012

[Dol15] V. Dolejší, M. Feistauer (2015) Discontinuous Galerkin Method Springer
doi: 10.1007/978-3-319-19267-3

[Dum14] M. Dumbser, O. Zanotti, R. Loubère, S. Diot (2014) A posteriori subcell
limiting of the discontinuous Galerkin finite element method for hyperbolic con-
servation laws J. Comput. Phys. 278: 47–75 doi: 10.1016/j.jcp.2014.08.009

[Eck17] C. Eck, H. Garcke, P. Knabner (2017) Mathematical modeling Springer
1st ed. doi: 10.1007/978-3-319-55161-6

[Ern04] A. Ern, J.-L. Guermond (2004) Theory and Practice of Finite Elements
Springer doi: 10.1007/978-1-4757-4355-5

[Fei03] M. Feistauer, J. Felcman, I. Straškraba (2003) Mathematical and
Computational Methods for Compressible Flow Oxford University Press

[Fjo09] U. S. Fjordholm (2009) Structure preserving finite volume methods for
the shallow water equations Master’s thesis University of Oslo https://
www.duo.uio.no/bitstream/handle/10852/10904/1/thesis.pdf

[Fjo11] U. S. Fjordholm, S. Mishra, E. Tadmor (2011) Well-balanced and energy
stable schemes for the shallow water equations with discontinuous topography
J. Comput. Phys. 230: 5587–5609 doi: 10.1016/j.jcp.2011.03.042

[Fle83] C. Fletcher (1983) The group finite element formulation Comput. Method.
Appl. M. 37: 225–244 doi: 10.1016/0045-7825(83)90122-6

https://arxiv.org/abs/1110.0288v7
http://dx.doi.org/10.1002/fld.3804
http://dx.doi.org/10.1007/978-3-642-22980-0
http://dx.doi.org/10.1016/j.jcp.2017.12.012
http://dx.doi.org/10.1007/978-3-319-19267-3
http://dx.doi.org/10.1016/j.jcp.2014.08.009
http://dx.doi.org/10.1007/978-3-319-55161-6
http://dx.doi.org/10.1007/978-1-4757-4355-5
https://www.duo.uio.no/bitstream/handle/10852/10904/1/thesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10904/1/thesis.pdf
http://dx.doi.org/10.1016/j.jcp.2011.03.042
http://dx.doi.org/10.1016/0045-7825(83)90122-6


References 181

[Fra20] F. Frank, B. Reuter, V. Aizinger, H. Hajduk, A. Rupp (2020) FES-
TUNG: The Finite Element Simulation Toolbox for UNstructured Grids, Ver-
sion 1.0 https://github.com/FESTUNG

[Gas13] G. J. Gassner (2013) A skew-symmetric discontinuous Galerkin spectral
element discretization and its relation to SBP-SAT finite difference methods
SIAM J. Sci. Comput. 35: A1233–A1253 doi: 10.1137/120890144

[Ger00] J.-F. Gerbeau, B. Perthame (2000) Derivation of viscous Saint-Venant
system for laminar shallow water; numerical validation Research Report INRIA
RR-4084 inria–00072549 https://hal.inria.fr/inria-00072549/

[Geu09] C. Geuzaine, J.-F. Remacle (2009) Gmsh: A 3-D finite element mesh
generator with built-in pre-and post-processing facilities Int. J. Numer. Methods
Eng. 79: 1309–1331 doi: 10.1002/nme.2579

[Ghi03] J.-M. Ghidaglia, F. Pascal (2003) On boundary conditions for multidimen-
sional hyperbolic systems of conservation laws in the finite volume framework
Report CMLA, Ens de Cachan http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.209.135&rep=rep1&type=pdf

[GLVis] GLVis: OpenGL Finite Element Visualization Tool https://glvis.org

[God59] S. K. Godunov (1959) A difference method for numerical calculation of
discontinuous solutions of the equations of hydrodynamics Mat. Sb. 47(89):
271–306 http://mi.mathnet.ru/eng/msb4873

[Got98] S. Gottlieb, C.-W. Shu (1998) Total variation diminishing Runge-Kutta
schemes Math. Comput. 67: 73–85 doi: 10.1090/S0025-5718-98-00913-2

[Got01] S. Gottlieb, C.-W. Shu, E. Tadmor (2001) Strong Stability-Preserving
High-Order Time Discretization Methods SIAM Rev. 43: 89–112 doi: 10.1137/
S003614450036757X

[Got11] S. Gottlieb, D. Ketcheson, C.-W. Shu (2011) Strong stability preserving
Runge–Kutta and multistep time discretizations World Scientific doi: 10.1142/
7498

[Gue14] J.-L. Guermond, M. Nazarov (2014) A maximum-principle preserving
C0 finite element method for scalar conservation equations Comput. Method.
Appl. M. 272: 198–213 doi: 10.1016/j.cma.2013.12.015

[Gue16a] J.-L. Guermond, B. Popov (2016) Fast estimation from above of the
maximum wave speed in the Riemann problem for the Euler equations J.
Comput. Phys. 321: 908–926 doi: 10.1016/j.jcp.2016.05.054

https://github.com/FESTUNG
http://dx.doi.org/10.1137/120890144
https://hal.inria.fr/inria-00072549/
http://dx.doi.org/10.1002/nme.2579
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.209.135&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.209.135&rep=rep1&type=pdf
https://glvis.org
http://mi.mathnet.ru/eng/msb4873
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1137/S003614450036757X
http://dx.doi.org/10.1137/S003614450036757X
http://dx.doi.org/10.1142/7498
http://dx.doi.org/10.1142/7498
http://dx.doi.org/10.1016/j.cma.2013.12.015
http://dx.doi.org/10.1016/j.jcp.2016.05.054


182 References

[Gue16b] J.-L. Guermond, B. Popov (2016) Invariant domains and first-order
continuous finite element approximation for hyperbolic systems SIAM J. Numer.
Anal. 54: 2466–2489 doi: 10.1137/16M1074291

[Gue17] J.-L. Guermond, B. Popov (2017) Invariant domains and second-order
continuous finite element approximation for scalar conservation equations
SIAM J. Numer. Anal. 55: 3120–3146 doi: 10.1137/16M1106560

[Gue18a] J.-L. Guermond, M. Nazarov, B. Popov, I. Tomas (2018) Second-order
invariant domain preserving approximation of the Euler equations using convex
limiting SIAM J. Sci. Comput. 40: A3211–A3239 doi: 10.1137/17M1149961

[Gue18b] J.-L. Guermond, M. Quezada de Luna, B. Popov, C. E. Kees, M. W.
Farthing (2018) Well-balanced second-order finite element approximation of
the shallow water equations with friction SIAM J. Sci. Comput. 40: A3873–
A3901 doi: 10.1137/17M1156162

[Gue19] J.-L. Guermond, B. Popov, I. Tomas (2019) Invariant domain preserving
discretization-independent schemes and convex limiting for hyperbolic systems
Comput. Method. Appl. M. 347: 143–175 doi: 10.1016/j.cma.2018.11.036

[Gur09] M. Gurris (2009) Implicit finite element schemes for compressible gas and
particle-laden gas flows Ph.D. thesis TU Dortmund University

[Haj19] H. Hajduk, D. Kuzmin, V. Aizinger (2019) New directional vector limiters
for discontinuous Galerkin methods J. Comput. Phys. 384: 308–325 doi:
10.1016/j.jcp.2019.01.032

[Haj20a] H. Hajduk (2020) Preconditioned gradient matrix on the reference simplex
https://github.com/HennesHajduk/PrecMatSimplex

[Haj20b] H. Hajduk, D. Kuzmin, T. Kolev, R. Abgrall (2020) Matrix-free
subcell residual distribution for Bernstein finite element discretizations of
linear advection equations Comput. Method. Appl. M. 359: 112658 doi:
10.1016/j.cma.2019.112658

[Haj20c] H. Hajduk, D. Kuzmin, T. Kolev, V. Tomov, I. Tomas, J. N. Sha-
did (2020) Matrix-free subcell residual distribution for Bernstein finite el-
ements: Monolithic limiting Comput. Fluids 200: 104451 doi: 10.1016/
j.compfluid.2020.104451

[Haj21a] H. Hajduk (2021) Monolithic convex limiting in discontinuous Galerkin
discretizations of hyperbolic conservation laws Comput. Math. Appl. 87: 120–
138 doi: 10.1016/j.camwa.2021.02.012

http://dx.doi.org/10.1137/16M1074291
http://dx.doi.org/10.1137/16M1106560
http://dx.doi.org/10.1137/17M1149961
http://dx.doi.org/10.1137/17M1156162
http://dx.doi.org/10.1016/j.cma.2018.11.036
http://dx.doi.org/10.1016/j.jcp.2019.01.032
https://github.com/HennesHajduk/PrecMatSimplex
http://dx.doi.org/10.1016/j.cma.2019.112658
http://dx.doi.org/10.1016/j.compfluid.2020.104451
http://dx.doi.org/10.1016/j.compfluid.2020.104451
http://dx.doi.org/10.1016/j.camwa.2021.02.012


References 183

[Haj21b] H. Hajduk, A. Rupp, D. Kuzmin (2021) Analysis of algebraic flux correction
for semi-discrete advection problems Preprint, arXiv: 2104.05639 [math.NA]

[Har72] A. Harten, G. Zwas (1972) Self-adjusting hybrid schemes for shock compu-
tations J. Comput. Phys. 9: 568–583 doi: 10.1016/0021-9991(72)90012-5

[Har83a] A. Harten (1983) On the symmetric form of systems of conservation laws with
entropy J. Comput. Phys. 49: 151–164 doi: 10.1016/0021-9991(83)90118-3

[Har83b] A. Harten, P. D. Lax, B. van Leer (1983) On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws SIAM Rev. 25: 35–61
doi: 10.1137/1025002

[Har84] A. Harten (1984) On a class of high resolution total-variation-stable finite-
difference-schemes SIAM J. Numer. Anal. 21: 1–23 doi: 10.1137/0721001

[Har87] A. Harten, S. Osher (1987) Uniformly high-order accurate nonoscillatory
schemes. I SIAM J. Numer. Anal. 24: 279–309 doi: 10.1007/978-3-642-
60543-7_11

[Hen21] S. Hennemann, A. M. Rueda-Ramírez, F. J. Hindenlang, G. J.
Gassner (2021) A provably entropy stable subcell shock capturing approach
for high order split form DG for the compressible Euler equations J. Comput.
Phys. 426: 109935 doi: 10.1016/j.jcp.2020.109935

[Hug86] T. J. R. Hughes, M. Mallet (1986) A new finite element formulation
for computational fluid dynamics: IV. A discontinuity-capturing operator for
multidimensional advective-diffusive systems Comput. Method. Appl. M. 58:
329–336 doi: 10.1016/0045-7825(86)90153-2

[Jam93] A. Jameson (1993) Computational algorithms for aerodynamic analysis and
design Appl. Numer. Math. 13: 383–422 doi: 10.1016/0168-9274(93)90096-
A

[Jam17] A. Jameson (2017) Origins and further development of the Jameson–Schmidt–
Turkel scheme AIAA J. 55: 1487–1510 doi: 10.2514/1.J055493

[Jha21] A. Jha, N. Ahmed (2021) Analysis of flux corrected transport schemes
for evolutionary convection-diffusion-reaction equations Preprint, arXiv:
2103.04776 [math.NA]

[Jia94] G.-S. Jiang, C.-W. Shu (1994) On a cell entropy inequality for discontinuous
Galerkin methods Math. Comput. 62: 531–531 doi: 10.1090/S0025-5718-
1994-1223232-7

https://arxiv.org/abs/2104.05639
http://dx.doi.org/10.1016/0021-9991(72)90012-5
http://dx.doi.org/10.1016/0021-9991(83)90118-3
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1137/0721001
http://dx.doi.org/10.1007/978-3-642-60543-7_11
http://dx.doi.org/10.1007/978-3-642-60543-7_11
http://dx.doi.org/10.1016/j.jcp.2020.109935
http://dx.doi.org/10.1016/0045-7825(86)90153-2
http://dx.doi.org/10.1016/0168-9274(93)90096-A
http://dx.doi.org/10.1016/0168-9274(93)90096-A
http://dx.doi.org/10.2514/1.J055493
https://arxiv.org/abs/2103.04776
http://dx.doi.org/10.1090/S0025-5718-1994-1223232-7
http://dx.doi.org/10.1090/S0025-5718-1994-1223232-7


184 References

[Jia96] G.-S. Jiang, C.-W. Shu (1996) Efficient implementation of weighted ENO
schemes J. Comput. Phys. 126: 202–228 doi: 10.1006/jcph.1996.0130

[Kho94] B. Khobalatte, B. Perthame (1994) Maximum principle on the entropy
and second-order kinetic schemes Math. Comput. 62: 119–131 doi: 10.1090/
S0025-5718-1994-1208223-4

[Kir17] R. C. Kirby (2017) Fast inversion of the simplicial Bernstein mass matrix
Numer. Math. 135: 73–95 doi: 10.1007/s00211-016-0795-0

[Kiv22] S. Kivva (2022) Entropy stable flux correction for scalar hyperbolic conserva-
tion laws J. Sci. Comput. 91: 10 doi: 10.1007/s10915-022-01792-0

[Kna03] P. Knabner, L. Angermann (2003) Numerical Methods for Elliptic and
Parabolic Partial Differential Equations Springer doi: 10.1007/b97419

[Krö94] D. Kröner, M. Rokyta (1994) Convergence of upwind finite volume schemes
for scalar conservation laws in two dimensions SIAM J. Numer. Anal. 31:
324–343 doi: 10.1137/0731017

[Kuč18] V. Kučera, C.-W. Shu (2018) On the time growth of the error of the
DG method for advective problems IMA J. Numer. Anal. 39: 687–712 doi:
10.1093/imanum/dry013

[Kur00] A. Kurganov, E. Tadmor (2000) New high-resolution central schemes for
nonlinear conservation laws and convection–diffusion equations J. Comput.
Phys. 160: 241–282 doi: 10.1006/jcph.2000.6459

[Kur07a] A. Kurganov, G. Petrova (2007) A second-order well-balanced positivity
preserving central-upwind scheme for the Saint-Venant system Commun. Math.
Sci. 5: 133–160 doi: 10.4310/CMS.2007.v5.n1.a6

[Kur07b] A. Kurganov, G. Petrova, B. Popov (2007) Adaptive semidiscrete
central-upwind schemes for nonconvex hyperbolic conservation laws SIAM J.
Sci. Comput. 29: 2381–2401 doi: 10.1137/040614189

[Kuz02] D. Kuzmin, S. Turek (2002) Flux correction tools for finite elements J.
Comput. Phys. 175: 525–558 doi: 10.1006/jcph.2001.6955

[Kuz05] D. Kuzmin, M. Möller (2005) Algebraic Flux Correction II. Compressible
Euler Equations in Flux-Corrected Transport: Principles, Algorithms, and
Applications 145–192 Springer doi: 10.1007/3-540-27206-2_7

http://dx.doi.org/10.1006/jcph.1996.0130
http://dx.doi.org/10.1090/S0025-5718-1994-1208223-4
http://dx.doi.org/10.1090/S0025-5718-1994-1208223-4
http://dx.doi.org/10.1007/s00211-016-0795-0
http://dx.doi.org/10.1007/s10915-022-01792-0
http://dx.doi.org/10.1007/b97419
http://dx.doi.org/10.1137/0731017
http://dx.doi.org/10.1093/imanum/dry013
http://dx.doi.org/10.1006/jcph.2000.6459
http://dx.doi.org/10.4310/CMS.2007.v5.n1.a6
http://dx.doi.org/10.1137/040614189
http://dx.doi.org/10.1006/jcph.2001.6955
http://dx.doi.org/10.1007/3-540-27206-2_7


References 185

[Kuz08] D. Kuzmin (2008) On the design of algebraic flux correction schemes for
quadratic finite elements J. Comput. Appl. Math. 218: 79–87 doi: 10.1016/
j.cam.2007.04.045

[Kuz10a] D. Kuzmin (2010) A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods J. Comput. Appl. Math. 233: 3077–3085 doi:
10.1016/j.cam.2009.05.028

[Kuz10b] D. Kuzmin, M. Möller, J. N. Shadid, M. Shashkov (2010) Failsafe
flux limiting and constrained data projections for equations of gas dynamics J.
Comput. Phys. 229: 8766–8779 doi: 10.1016/j.jcp.2010.08.009

[Kuz12a] D. Kuzmin (2012) Algebraic flux correction I. Scalar conservation laws in
Flux-Corrected Transport: Principles, Algorithms, and Applications 145–192
Springer 2nd ed. doi: 10.1007/978-94-007-4038-9_6

[Kuz12b] D. Kuzmin, R. Löhner, S. Turek (2012) Flux-Corrected Transport: Prin-
ciples, Algorithms, and Applications Springer 2nd ed. doi: 10.1007/978-94-
007-4038-9

[Kuz20a] D. Kuzmin (2020) Monolithic convex limiting for continuous finite element
discretizations of hyperbolic conservation laws Comput. Method. Appl. M. 361:
112804 doi: 10.1016/j.cma.2019.112804

[Kuz20b] D. Kuzmin, H. Hajduk, A. Rupp (2020) Locally bound-preserving enriched
Galerkin methods for the linear advection equation Comput. Fluids 205: 104525
doi: 10.1016/j.compfluid.2020.104525

[Kuz20c] D. Kuzmin, M. Quezada de Luna (2020) Algebraic entropy fixes and
convex limiting for continuous finite element discretizations of scalar hyperbolic
conservation laws Comput. Method. Appl. M. 372: 113370 doi: 10.1016/
j.cma.2020.113370

[Kuz20d] D. Kuzmin, M. Quezada de Luna (2020) Entropy conservation prop-
erty and entropy stabilization of high-order continuous Galerkin approx-
imations to scalar conservation laws Comput. Fluids 213: 104742 doi:
10.1016/j.compfluid.2020.104742

[Kuz20e] D. Kuzmin, M. Quezada de Luna (2020) Subcell flux limiting for high-
order Bernstein finite element discretizations of scalar hyperbolic conservation
laws J. Comput. Phys. 411: 109411 doi: 10.1016/j.jcp.2020.109411

[Kuz22a] D. Kuzmin, H. Hajduk, A. Rupp (2022) Limiter-based entropy stabilization
of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems
Comput. Method. Appl. M. 389: 114428 doi: 10.1016/j.cma.2021.114428

http://dx.doi.org/10.1016/j.cam.2007.04.045
http://dx.doi.org/10.1016/j.cam.2007.04.045
http://dx.doi.org/10.1016/j.cam.2009.05.028
http://dx.doi.org/10.1016/j.jcp.2010.08.009
http://dx.doi.org/10.1007/978-94-007-4038-9_6
http://dx.doi.org/10.1007/978-94-007-4038-9
http://dx.doi.org/10.1007/978-94-007-4038-9
http://dx.doi.org/10.1016/j.cma.2019.112804
http://dx.doi.org/10.1016/j.compfluid.2020.104525
http://dx.doi.org/10.1016/j.cma.2020.113370
http://dx.doi.org/10.1016/j.cma.2020.113370
http://dx.doi.org/10.1016/j.compfluid.2020.104742
http://dx.doi.org/10.1016/j.jcp.2020.109411
http://dx.doi.org/10.1016/j.cma.2021.114428


186 References

[Kuz22b] D. Kuzmin, M. Quezada de Luna, D. I. Ketcheson, J. Grüll (2022)
Bound-preserving flux limiting for high-order explicit Runge–Kutta time dis-
cretizations of hyperbolic conservation laws J. Sci. Comput. 91: 21 doi:
10.1007/s10915-022-01784-0

[Lai07] M. Lai, L. Schumaker (2007) Spline Functions on Triangulations Cambridge
University Press doi: 10.1017/CBO9780511721588.003

[LeV92] R. J. LeVeque (1992) Numerical methods for conservation laws Birkhäuser
doi: 10.1007/978-3-0348-8629-1

[LeV96] R. J. LeVeque (1996) High-resolution conservative algorithms for advection
in incompressible flow SIAM J. Numer. Anal. 33: 627–665 doi: 10.1137/
0733033

[LeV02] R. J. LeVeque (2002) Finite Volume Methods for Hyperbolic Problems
Cambridge University Press doi: 10.1017/CBO9780511791253

[Lia09] Q. Liang, F. Marche (2009) Numerical resolution of well-balanced shallow
water equations with complex source terms Adv. Water Resour. 32: 873–884
doi: 10.1016/j.advwatres.2009.02.010

[Lin22] Y. Lin, J. Chan, I. Tomas (2022) A positivity preserving strategy for entropy
stable discontinuous Galerkin discretizations of the compressible Euler and
Navier-Stokes equations Preprint, arXiv: 2201.11816 [math.NA]

[Liu94] X.-D. Liu, S. Osher, T. Chan (1994) Weighted Essentially Non-Oscillatory
Schemes J. Comput. Phys. 115: 200–212 doi: 10.1006/jcph.1994.1187

[Loh16] C. Lohmann, D. Kuzmin (2016) Synchronized flux limiting for gas dynamics
variables J. Comput. Phys. 326: 973–990 doi: 10.1016/j.jcp.2016.09.025

[Loh17a] C. Lohmann (2017) Eigenvalue range limiters for tensors in flux-corrected
transport algorithms MultiMat, September 18–22, 2017, Santa Fe, USA

https://custom.cvent.com/F6288ADDEF3C4A6CBA5358DAE922C966/files/
e4c3aedf74394eb1a33e141f57f33b2e.pdf

[Loh17b] C. Lohmann, D. Kuzmin, J. N. Shadid, S. Mabuza (2017) Flux-corrected
transport algorithms for continuous Galerkin methods based on high order
Bernstein finite elements J. Comput. Phys. 344: 151–186 doi: 10.1016/
j.jcp.2017.04.059

[Loh19] C. Lohmann (2019) Physics-Compatible Finite Element Methods for Scalar
and Tensorial Advection Problems Springer Spektrum doi: 10.1007/978-3-
658-27737-6

http://dx.doi.org/10.1007/s10915-022-01784-0
http://dx.doi.org/10.1017/CBO9780511721588.003
http://dx.doi.org/10.1007/978-3-0348-8629-1
http://dx.doi.org/10.1137/0733033
http://dx.doi.org/10.1137/0733033
http://dx.doi.org/10.1017/CBO9780511791253
http://dx.doi.org/10.1016/j.advwatres.2009.02.010
https://arxiv.org/abs/2201.11816
http://dx.doi.org/10.1006/jcph.1994.1187
http://dx.doi.org/10.1016/j.jcp.2016.09.025
https://custom.cvent.com/F6288ADDEF3C4A6CBA5358DAE922C966/files/e4c3aedf74394eb1a33e141f57f33b2e.pdf
https://custom.cvent.com/F6288ADDEF3C4A6CBA5358DAE922C966/files/e4c3aedf74394eb1a33e141f57f33b2e.pdf
http://dx.doi.org/10.1016/j.jcp.2017.04.059
http://dx.doi.org/10.1016/j.jcp.2017.04.059
http://dx.doi.org/10.1007/978-3-658-27737-6
http://dx.doi.org/10.1007/978-3-658-27737-6


References 187

[Loh21] C. Lohmann (2021) An algebraic flux correction scheme facilitating the
use of Newton-like solution strategies Comput. Math. Appl. 84: 56–76 doi:
10.1016/j.camwa.2020.12.010

[Löh87] R. Löhner, K. Morgan, J. Peraire, M. Vahdati (1987) Finite element
flux-corrected transport (FEM-FCT) for the Euler and Navier–Stokes equations
Int. J. Numer. Meth. Fl. 7: 1093–1109 doi: 10.1002/fld.1650071007

[Löh08] R. Löhner (2008) Applied Computational Fluid Dynamics Techniques: An
Introduction Based on Finite Element Methods John Wiley & Sons doi:
10.1002/9780470989746

[Lyc00] T. Lyche, K. Scherer (2000) On the p-norm condition number of the
multivariate triangular Bernstein basis J. Comput. Appl. Math. 119: 259–273
doi: 10.1016/S0377-0427(00)00383-6

[Mar07] S. Martin (2007) First order quasilinear equations with boundary condi-
tions in the L∞ framework J. Differ. Equ. 236: 375–406 doi: 10.1016/
j.jde.2007.02.007

[Matlab] MATLAB The MathWorks Inc. https://mathworks.com/products/matlab

[MFEM] MFEM: Modular Finite Element Methods [Software] https://mfem.org

[Moe17] S. A. Moe, J. A. Rossmanith, D. C. Seal (2017) Positivity-preserving
discontinuous Galerkin methods with Lax–Wendroff time discretizations J. Sci.
Comput. 71: 44–70 doi: 10.1007/s10915-016-0291-9

[Möl08] M. Möller (2008) Adaptive high-resolution finite element schemes Ph.D.
thesis TU Dortmund University http://hdl.handle.net/2003/25933

[Noe07] S. Noelle, Y. Xing, C.-W. Shu (2007) High-order well-balanced finite
volume WENO schemes for shallow water equation with moving water J.
Comput. Phys. 226: 29–58 doi: 10.1016/j.jcp.2007.03.031

[Pan94] E. Y. Panov (1994) Uniqueness of the solution of the Cauchy problem for
a first order quasilinear equation with one admissible strictly convex entropy
Math. Notes 55: 517–525 doi: 10.1007/BF02110380

[Paz19] W. Pazner, P.-O. Persson (2019) Analysis and Entropy Stability of the
Line-Based Discontinuous Galerkin Method J. Sci. Comput. 80: 376–402 doi:
10.1007/s10915-019-00942-1

http://dx.doi.org/10.1016/j.camwa.2020.12.010
http://dx.doi.org/10.1002/fld.1650071007
http://dx.doi.org/10.1002/9780470989746
http://dx.doi.org/10.1016/S0377-0427(00)00383-6
http://dx.doi.org/10.1016/j.jde.2007.02.007
http://dx.doi.org/10.1016/j.jde.2007.02.007
https://mathworks.com/products/matlab
https://mfem.org
http://dx.doi.org/10.1007/s10915-016-0291-9
http://hdl.handle.net/2003/25933
http://dx.doi.org/10.1016/j.jcp.2007.03.031
http://dx.doi.org/10.1007/BF02110380
http://dx.doi.org/10.1007/s10915-019-00942-1


188 References

[Paz21] W. Pazner (2021) Sparse invariant domain preserving discontinuous Galerkin
methods with subcell convex limiting Comput. Method. Appl. M. 382: 113876
doi: 10.1016/j.cma.2021.113876

[Qua94] A. Quarteroni, A. Valli (1994) Numerical Approximation of Partial
Differential Equations Springer doi: 10.1007/978-3-540-85268-1

[Que21] M. Quezada de Luna, D. I. Ketcheson (2021)Maximum principle preserv-
ing space and time flux limiting for Diagonally Implicit Runge–Kutta discretiza-
tions of scalar convection-diffusion equations Preprint, arXiv: 2109.08272
[math.NA]

[Reu21] B. Reuter, H. Hajduk, A. Rupp, F. Frank, V. Aizinger, P. Knabner
(2021) FESTUNG 1.0: Overview, usage, and example applications of the
MATLAB / GNU Octave toolbox for discontinuous Galerkin methods Comput.
Math. Appl. 81: 3–41 doi: 10.1016/j.camwa.2020.08.018

[Ric09] M. Ricchiuto, A. Bollermann (2009) Stabilized residual distribution for
shallow water simulations J. Comput. Phys. 228: 1071–1115 doi: 10.1016/
j.jcp.2008.10.020

[Rue22] A. M. Rueda-Ramírez, W. Pazner, G. J. Gassner (2022) Subcell limiting
strategies for discontinuous Galerkin spectral element methods Preprint, arXiv:
2202.00576 [math.NA]

[Rup21] A. Rupp, M. Hauck, V. Aizinger (2021) A subcell-enriched Galerkin
method for advection problems Comput. Math. Appl. 93: 120–129 doi:
10.1016/j.camwa.2021.04.010

[Ruu02] S. J. Ruuth, R. J. Spiteri (2002) Two barriers on strong-stability-preserving
time discretization methods J. Sci. Comput. 17: 211–220 doi: 10.1023/A:
1015156832269

[Sch85] M. E. Schonbek (1985) Second-order conservative schemes and the en-
tropy condition Math. Comput. 44: 31–38 doi: 10.1090/S0025-5718-1985-
0771028-7

[Sch17] H. Schlichting, K. Gersten (2017) Boundary-Layer Theory Springer 9th
ed. doi: 10.1007/978-3-662-52919-5

[Sel93] V. Selmin (1993) The node-centred finite volume approach: Bridge between
finite differences and finite elements Comput. Methods Appl. Mech. Engrg.
102: 107–138 doi: 10.1016/0045-7825(93)90143-L

http://dx.doi.org/10.1016/j.cma.2021.113876
http://dx.doi.org/10.1007/978-3-540-85268-1
https://arxiv.org/abs/2109.08272
http://dx.doi.org/10.1016/j.camwa.2020.08.018
http://dx.doi.org/10.1016/j.jcp.2008.10.020
http://dx.doi.org/10.1016/j.jcp.2008.10.020
https://arxiv.org/abs/2202.00576
http://dx.doi.org/10.1016/j.camwa.2021.04.010
http://dx.doi.org/10.1023/A:1015156832269
http://dx.doi.org/10.1023/A:1015156832269
http://dx.doi.org/10.1090/S0025-5718-1985-0771028-7
http://dx.doi.org/10.1090/S0025-5718-1985-0771028-7
http://dx.doi.org/10.1007/978-3-662-52919-5
http://dx.doi.org/10.1016/0045-7825(93)90143-L


References 189

[Sel96] V. Selmin, L. Formaggia (1996) Unified construction of finite element
and finite volume discretizations for compressible flows Int. J. Numer. Meth-
ods Eng. 39: 1–32 doi: 10.1002/(SICI)1097-0207(19960115)39:1<1::
AID-NME837>3.0.CO;2-G

[Shu88] C.-W. Shu, S. Osher (1988) Efficient implementation of essentially non-
oscillatory shock-capturing schemes J. Comput. Phys. 77: 439–471 doi:
10.1016/0021-9991(88)90177-5

[Shu98] C.-W. Shu (1998) Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws in Advanced Numerical
Approximation of Nonlinear Hyperbolic Equations Lecture Notes in Mathemat-
ics 325–432 Springer doi: 10.1007/BFb0096355

[Sod78] G. A. Sod (1978) A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws J. Comput. Phys. 27: 1–31 doi:
10.1016/0021-9991(78)90023-2

[Swe84] P. K. Sweby (1984) High resolution schemes using flux limiters for hyperbolic
conservation laws SIAM J. Numer. Anal. 21: 995–1011 doi: 10.1137/0721062

[Tad86] E. Tadmor (1986) A minimum entropy principle in the gas dynamics equa-
tions Appl. Numer. Math. 2: 211–219 doi: 10.1016/0168-9274(86)90029-2

[Tad87] E. Tadmor (1987) The numerical viscosity of entropy stable schemes for
systems of conservation laws. I Math. Comput. 49: 91–103 doi: 10.1090/
S0025-5718-1987-0890255-3

[Tad03] E. Tadmor (2003) Entropy stability theory for difference approximations of
nonlinear conservation laws and related time-dependent problems Acta Numer.
12: 451–512 doi: 10.1017/S0962492902000156

[Tha81] W. Thacker (1981) Some exact solutions to the nonlinear shallow-water wave
equations J. Fluid Mech. 107: 499–508 doi: 10.1017/S0022112081001882

[Tho16] T. Thompson (2016) A discrete commutator theory for the consistency and
phase error analysis of semi-discrete C0 finite element approximations to
the linear transport equation J. Comput. Appl. Math. 303: 229–248 doi:
10.1016/j.cam.2016.02.042

[Tor09] E. F. Toro (2009) Riemann Solvers and Numerical Methods for Fluid Dy-
namics Springer 3rd ed. doi: 10.1007/b79761

http://dx.doi.org/10.1002/(SICI)1097-0207(19960115)39:1<1::AID-NME837>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1097-0207(19960115)39:1<1::AID-NME837>3.0.CO;2-G
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1007/BFb0096355
http://dx.doi.org/10.1016/0021-9991(78)90023-2
http://dx.doi.org/10.1137/0721062
http://dx.doi.org/10.1016/0168-9274(86)90029-2
http://dx.doi.org/10.1090/S0025-5718-1987-0890255-3
http://dx.doi.org/10.1090/S0025-5718-1987-0890255-3
http://dx.doi.org/10.1017/S0962492902000156
http://dx.doi.org/10.1017/S0022112081001882
http://dx.doi.org/10.1016/j.cam.2016.02.042
http://dx.doi.org/10.1007/b79761


190 References

[Vat15] S. Vater, N. Beisiegel, J. Behrens (2015) A limiter-based well-balanced
discontinuous Galerkin method for shallow-water flows with wetting and dry-
ing: One-dimensional case Adv. Water Resour. 85: 1–13 doi: 10.1016/
j.advwatres.2015.08.008

[Vaz99] M. E. Vázquez-Cendón (1999) Improved treatment of source terms in
upwind schemes for the shallow water equations in channels with irregular
geometry J. Comput. Phys. 148: 497–526 doi: 10.1006/jcph.1998.6127

[Vre94] C. B. Vreugdenhil (1994) Numerical Methods for Shallow-Water Flow
Springer Science+Business Media doi: 10.1007/978-94-015-8354-1

[Win15] A. R. Winters, G. J. Gassner (2015) A comparison of two entropy stable
discontinuous Galerkin spectral element approximations for the shallow water
equations with non-constant topography J. Comput. Phys. 301: 357–376 doi:
10.1016/j.jcp.2015.08.034

[Win17] N. Wintermeyer, A. R. Winters, G. J. Gassner, D. A. Kopriva (2017)
An entropy stable nodal discontinuous Galerkin method for the two dimensional
shallow water equations on unstructured curvilinear meshes with discontinuous
bathymetry J. Comput. Phys. 340: 200–242 doi: 10.1016/j.jcp.2017.03.036

[Woo84] P. Woodward, P. Colella (1984) The numerical simulation of two-
dimensional fluid flow with strong shocks J. Comput. Phys. 54: 115–173
doi: 10.1016/0021-9991(84)90142-6

[Wu21] X. Wu, N. Trask, J. Chan (2021) Entropy stable discontinuous Galerkin
methods for the shallow water equations with subcell positivity preservation
Preprint, arXiv: 2112.07749 [math.NA]

[Zal79] S. T. Zalesak (1979) Fully multidimensional flux-corrected transport al-
gorithms for fluids J. Comput. Phys. 31: 335–362 doi: 10.1016/0021-
9991(79)90051-2

[Zha11] X. Zhang, C.-W. Shu (2011) Maximum-principle-satisfying and positivity-
preserving high-order schemes for conservation laws: survey and new develop-
ments Proc. R. Soc. A 467: 2752–2776 doi: 10.1098/rspa.2011.0153

[Zha17] X. Zhang (2017) On positivity-preserving high order discontinuous Galerkin
schemes for compressible Navier–Stokes equations J. Comput. Phys. 328:
301–343 doi: 10.1016/j.jcp.2016.10.002

[Zie95] O. C. Zienkiewicz, P. Ortiz (1995) A split-characteristic based finite
element model for the shallow water equations Int. J. Numer. Meth. Fl. 20:
1061–1080 doi: 10.1002/fld.1650200823

http://dx.doi.org/10.1016/j.advwatres.2015.08.008
http://dx.doi.org/10.1016/j.advwatres.2015.08.008
http://dx.doi.org/10.1006/jcph.1998.6127
http://dx.doi.org/10.1007/978-94-015-8354-1
http://dx.doi.org/10.1016/j.jcp.2015.08.034
http://dx.doi.org/10.1016/j.jcp.2017.03.036
http://dx.doi.org/10.1016/0021-9991(84)90142-6
https://arxiv.org/abs/2112.07749
http://dx.doi.org/10.1016/0021-9991(79)90051-2
http://dx.doi.org/10.1016/0021-9991(79)90051-2
http://dx.doi.org/10.1098/rspa.2011.0153
http://dx.doi.org/10.1016/j.jcp.2016.10.002
http://dx.doi.org/10.1002/fld.1650200823

	Abstract
	Introduction
	State of the art
	Outline and originality of this thesis
	Notation and list of symbols

	Theory of hyperbolic problems
	Modeling aspects
	Compressible Euler equations
	Shallow water equations

	Structure of the problems under consideration
	Scalar conservation laws
	Euler equations of gas dynamics
	Shallow water equations

	Theory of hyperbolic conservation laws
	Scalar equations
	Systems of equations
	Further approaches and limitations of the theory


	Property-preserving methods for conservation laws
	Finite element discretization
	Temporal discretization
	Strong stability preserving Runge–Kutta methods
	Space-time finite element formulation

	Algebraic flux correction schemes
	Literature
	Low order method
	Definition of raw antidiffusive fluxes
	Monolithic convex limiting
	Invariant domain preservation
	Semi-discrete entropy fix

	Numerical examples
	Burgers equation
	KPP problem
	Euler equations of gas dynamics


	Limiting for the shallow water equations with nonflat topography
	Objectives
	Literature
	Algebraic flux correction schemes
	Low order method
	Monolithic convex limiting
	Semi-discrete entropy fix

	Wetting and drying algorithms
	Numerical examples
	Steady problems
	Dam breaks
	Oscillating surface in a parabolic lake


	Analysis of monolithic convex limiting for advection problems
	Literature
	Algebraic flux correction schemes
	Model problem and low order method
	Monolithic convex limiting
	Flux-corrected transport algorithms

	Energy estimate
	Error analysis
	Preliminaries
	Auxiliary statements
	A priori error estimate

	Numerical examples
	Experimental orders of convergence
	On the stabilizing effect of low order time derivatives
	Comparison of MCL with FCT
	A posteriori compatibility check


	Algebraic flux correction tools for discontinuous Galerkin methods
	Motivation and state of the art
	Algebraic flux correction schemes
	Target discretization
	Low order method
	Monolithic convex limiting

	Numerical results
	Burgers equation
	Shallow water equations
	Euler equations of gas dynamics


	Conclusions
	Summary
	Outlook

	References

