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Abstract

The Laplace type operator arising as a commutator of two symplectic Dirac operators intro-
duced in [9] in the context of Schrödinger picture and rediscovered in [4] as a commutator of
two to each other formal adjoint differential operators in the Fock picture admits a natural
geometric interpretation, which is described in this thesis.
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Introduction

The symplectic Dirac operator is constructed in complete analogy to the Dirac operator on
Riemannian manifolds. That means, one has to think first of all about the structure group an
almost symplectic manifold (M,ω) admits as well as the symplectic spinor space to construct
a symplectic spinor bundle S. While it is always possible to provide a symplectic manifold
with an Mpc−structure, one has only to bother about the symplectic spinor space, which in
contrast to the Riemannian setting can not be chosen as finite dimensional. The Bargmann
transform enables to choose a symplectic spinor space between the so called Schrödinger and
Fock pictures.

In the Schrödinger picture one uses the space of square integrable functions L2(W ) with W a
Lagrangian subspace of a symplectic vector space (V,Ω). With the assumption (M,ω) being
metaplectic this approach was used in [9] to construct two symplectic Dirac operators D and D̃,
which in their definitions only differ by the way of identifying the tangent bundle ofM with the
cotangent bundle. On the one hand, it can be achieved by means of ω and, on the other hand
with the aid of a Riemannian metric g, which is defined by means of an ω−compatible almost
complex structure J on M . The two different Dirac operators arise then as the compositions of
the maps occurring in the diagram below.

Γ (S)

D̃

44

D

**
∇ // Γ (T ∗M ⊗ S) ω≅

g
Γ (TM ⊗ S) Cl // Γ (S)

It was then observed, that the commutator P ∶= i[D̃,D] yields a second-order differential
operator, which was shown to be a Laplacian and to admit a decomposition similar to that of
Weitzenböck decomposition, which however in the Kähler case becomes the initial Weitzenböck
decomposition.

In the Fock picture one uses, after choosing an Ω−compatible complex structure j on V , the
Segal-Bargmann spaces. These are spaces of entire functions on the complex vector space Vj,
which are square integrable with respect to a parameter-scaled Gaussian weight function. The
set of all monomials on Vj constitutes an orthogonal basis for all Segal-Bargmann spaces, which
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justifies the name of this approach. That is, a Segal-Bargmann space is isomorphic to a Hilbert
space completion of the direct sum of the symmetric powers of Vj. By a particular choice of
a Segal-Bargmann space it was shown in [4], that by using a unitary connection on M with
vanishing torsion vector field the operator P arises up to a scalar multiple as a commutator of
two to each other formal adjoint operators D1,0 and D0,1. These operators, referred to as the
symplectic Dirac-Dolbeault operators, describe the additive splitting of D after decomposing the
covariant derivative according to the decomposition of the tangent bundle into the eigenbundles
of the chosen ω−compatible almost complex structure J on M .

T 1,0∗M ⊗ S

S T ∗
CM ⊗ S S

T 0,1∗M ⊗ S

∇1,0

Cl

∇ ∇

pr1

pr2

Cl

∇0,1

D1,0

D0,1

As in [9] the Weitzenböck-type decomposition was described in the Fock picture and, besides,
it was shown, that the operator D1,0 involves only the creation part, while the operator D0,1

only the annihilation part of the symplectic Clifford multiplication Cl.

In this thesis we are staying in the settings used in [4] to give an interpretation of the Laplacian
P . In order for the thesis to be relatively self-contained we divided it into four parts. In the be-
ginning we shortly describe the basic structures, objects and constructions on symplectic vector
spaces in order to provide a symplectic manifold with a structure of an almost Kähler manifold.
After this we describe the canonical Hermitian connection on almost Kähler manifolds. It was
the very first observation, although stated at the very end of the thesis, that the type of torsion
of the canonical Hermitian connection yields primarily the Weitzenböck decomposition of P on
almost Kähler manifolds.

In the second part we briefly recall the Lichnerowicz Laplacian ∆L and its restriction to the
symmetric algebra. We then introduce Laplacians ∆1,0 and ∆0,1 on the complex symmetric
algebra arising from ∆L after the complexification of the tangent bundle and complex bilinear
extension of the canonical Hermitian connection, when considering an almost Kähler manifold.

The third chapter deals with the central extension of the metaplectic group Mp and its
maximal compact subgroup MU c. We discuss the existence and classification of Mp− and
Mpc−structures on almost symplectic manifolds and describe in the end the correspondence
with Spin− resp. Spinc−structures.
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In the last chapter, we first motivate at the beginning, why and how the fibers of the symplectic
spinor bundle can be chosen to consist only of polynomials. This happens basically by passing
in the Fock picture to the maximal compact subgroup of Mpc, since, while the Lie group Mpc

does not leave the polynomials invariant, the restriction to MU c not only leaves the space of
polynomials invariant, but also preserves their degrees. Moreover, the action of MU c turns out
to be quite natural when identifying the polynomials with symmetric tensors, meaning, that
the actions in the diagram below commute.

MU c × Po`(Vj) Po`(Vj)

(U(Vj) × S1) × S∗(V ∗
j ) S∗(V ∗

j )

≃ ≃

Furthermore, since the Lie group MU c is maximal compact in Mpc, the symplectic spinor
bundle S can be associated to the MU c reduction and with the observation made on the action
ofMU c on polynomials, we can omit the Hilbert space completion of the Seagal-Bargman space
and focus on its dense subspace consisting of polynomials. The resulting Hilbert space bundle
happens to be isomorphic to the tensor bundle L ⊗ S∗,0(M) for some Hermitian line bundle
L over M , which only depends on the choice of the Mpc−structure. After this, regarding a
symplectic manifold as almost Kähler equipped with the canonical Hermitian connection we
adjust appropriately the Clifford multiplication and give then an interpretation of the symplectic
Dirac-Dolbeault operators and prove in the end the main theorem of this thesis, which can be
stated as follows.

Theorem. If the line bundle L is trivial, the operator P coincides with −∆1,0.

That is, we show, that by systematically using the maximal compact subgroup MU c rather
than all ofMpc, we recover the operator P as an operator associated to the Hermitian structure
in a very natural way, and whence gain some better insight into its significance.





Chapter 1

Preliminaries

1.1 Symplectic and complex vector spaces

This section deals with the Lie groups occurring on a symplectic vector space and the induced
(Hermitian) inner product on the corresponding (complex) symmetric algebra. What follows
in this section is partially based on Chapter I in [15].

Definition 1.1.1. A bilinear form Ω on an m−dimensional R−vector space V is called sym-
plectic iff:

i) Ω is skew-symmetric, i. e. Ω(u, v) = −Ω(v, u) for all u, v ∈ V , and
ii) Ω is non-degenerate, i. e.

Ω(u, v) = 0 for all u ∈ V ⇒ v = 0.

The pair (V,Ω) is referred to as a symplectic vector space.

Any finite-dimensional symplectic vector space (V,Ω) is of even dimension, that is dimV = 2n

for some n ∈ N, and admits a basis {e1, . . . , en, f1, . . . , fn}, such that

Ω(ei, ej) = 0 = Ω(fi, fj) and Ω(ei, fj) = δij

for all 1 ≤ i, j ≤ n. Such a basis is called a symplectic basis. The corresponding dual basis
{e1, . . . , en, f 1, . . . , fn} is given with respect to Ω by

ej(v) = −Ω(fj, v) and f j(v) = Ω(ej, v). (1.1)

A subspace W of V is referred to as Lagrangian if the restriction of Ω to W vanishes identically
and dimW = 1

2 dimV .
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Remark 1.1.2. i) The standard symplectic vector space is the Euclidean space R2n with the
skew-symmetric form Ω0, which is represented by the matrix

⎛
⎝
0 1

−1 0

⎞
⎠
∈ R2n×2n.

That is

Ω0(v,w) = v⊺
⎛
⎝
0 1

−1 0

⎞
⎠
w v,w ∈ R2n.

ii) For every symplectic vector space (V,Ω) of dimension 2n there exists an isomorphism
Ψ ∶ (R2n,Ω0) Ð→ (V,Ω), such that Ψ∗Ω = Ω0. This isomorphism is explicitly given by

R2n ∋
⎛
⎜⎜⎜
⎝

z1

⋮
z2n

⎞
⎟⎟⎟
⎠
z→

n

∑
j=1

zjej + zn+jfj,

where {e1, . . . , en, f1, . . . , fn} is a symplectic basis for (V,Ω) as above. Such an isomor-
phism Ψ is called a symplectic isomorphism.

iii) An immediate consequence of ii) is, that a choice of a symplectic basis for (V,Ω) yields
a symplectic isomorphism of (R2n,Ω0) to (V,Ω). This allows the symplectic bases to be
considered as the symplectic isomorphisms of (R2n,Ω0) into (V,Ω).

The set of all automorphisms F ∶ (V,Ω) Ð→ (V,Ω) satisfying F ∗Ω = Ω defines a subgroup of
Gl(V ), which will be denoted as Sp(V ) = Sp(V,Ω), and is called the symplectic group. If we
think of a symplectic basis for (V,Ω) as a symplectic isomorphism of (V,Ω) to (R2n,Ω0) as
described in the remark, then the composition of maps defines a free and transitive action of
Sp(V,Ω) on the set of all symplectic bases for (V,Ω).

1.1.1 Almost complex structures. A complex structure j on a real vector space V is a
linear map j ∶ V → V , such that j2 = −IV . The pair (V, j) can also be viewed as a complex
vector space, which will be for the sake of distinction denoted by Vj, where the multiplication
by complex scalars is given by

(x + iy)v ∶= xv + yjv

for v ∈ V and x, y ∈ R. Some basic properties of (V, j) are listed below.

i) A real subspace U of V is a complex subspace of Vj if and only if jU = U .
ii) If F ∈ Gl(V ), then F ∈ Gl(Vj) if and only if [F, j] = 0.
iii) If {v1, . . . , vn} is a complex basis for Vj, then the set {v1, . . . , vn, jv1, . . . , jvn} is a real

basis for V .
iv) The Lie group Gl(Vj) acts freely transitively on the set of all complex bases for Vj.
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1.1.2 The connection between the symplectic forms and almost complex structures.
It is a well-known fact, that any even-dimensional vector space can be equipped with both a
symplectic form and an almost complex structure (cf. [15], Proposition 4.1). Moreover, both of
the structures can be adjusted to each other in the following sense

- any symplectic vector space (V,Ω) admits an Ω−compatible complex structure j. That is

Ω(jv, jw) = Ω(v,w) ∀ v,w ∈ V and

Ω(v, jv) > 0 ∀ v ∈ V ∖ {0}.

The set of all such almost complex structures on (V,Ω) will be denoted by J(V,Ω).
- any vector space V with a complex structure j admits a symplectic bilinear form Ω, such
that j is compatible with Ω. The set of all such symplectic forms is denoted by S(V, j).

The triple (V,Ω, j), where j is an Ω−compatible complex structure on a symplectic vector space
(V,Ω), can be given additional structures and can be treated as

- an Euclidean vector space (V, g) with the inner product

g(v,w) ∶= Ω(v, jw). (1.2)

The subgroup of elements in Gl(V ) preserving g is the orthogonal group O(V ) = O(V, g).
- a Hermitian vector space (Vj, h) with the Hermitian inner product

h(v,w) ∶= Ω(v, jw) − iΩ(v,w). (1.3)

The subgroup of elements in Gl(Vj) preserving h is the unitary group U(Vj) = U(Vj, h).

Proposition 1.1.3 (Cf. Lemma 2.19 and Proposition 2.22 in [15]). If j is an Ω−compatible
complex structure on a symplectic vector space (V,Ω) and g and h are defined as above, then

Sp(V,Ω) ∩Gl(Vj) = Sp(V,Ω) ∩O(V, g) = O(V, g) ∩Gl(Vj) = U(Vj, h).

Moreover, the unitary group U(Vj) is a maximal compact subgroup of both Sp(V ) and Gl(Vj).

Remark 1.1.4. i) The upper relation among the three Lie groups can be interpreted as fol-
lows. Let {e1, . . . , en} be a unitary basis for Vj. Then we have

h(ei, ek) = δik
def.⇐⇒ Ω(ei, jek) = δik and Ω(ei, ek) = 0

⇐⇒ g(ei, ek) = δik and g(jei, ek) = 0

for all 1 ≤ i, k ≤ n and, since {e1, . . . , en, je1, . . . , jen} is a real basis for V , it follows, that
{e1, . . . , en, je1, . . . , jen} is both symplectic and orthonormal.

ii) Since detF = 1 for any F ∈ Sp(V ), it follows, that U(Vj) ⊂ SO(V, g).
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Theorem 1.1.5 (Cartan-Iwasawa-Malcev theorem). Every connected Lie group G contains at
least one maximal compact subgroup K and it holds

i) K is connected.

ii) For any other maximal compact subgroup K̃ ⊂ G there is some g ∈ G, such that gK̃g−1 =K.

iii) The homogeneous space G/K is diffeomorphic to some Euclidean space Rn.

The last point from the Cartan-Iwasawa-Malcev theorem provides the following observation on
the spaces J(V,Ω) and S(V, j).

Proposition 1.1.6. The spaces J(V,Ω) and S(V, j) are contractible.

Proof. The symplectic group acts transitively on J(V,Ω) by conjugation and, since the unitary
group is an intersection of Sp(V ) with Gl(Vj), it follows, that U(Vj) is the isotropy group for
this action. That is

J(V,Ω) ≅ Sp(V )/U(Vj).

On the other hand, the map

Gl(Vj) ×S(V, j) Ð→S(V, j), (A,Ω) z→ A−1∗Ω

defines a transitive action with isotropy group isomorphic to U(Vj). That is,

S(V, j) ≅ Gl(Vj)/U(Vj).

The assertion follows by the Proposition 1.1.3 and Cartan-Iwasawa-Malcev theorem iii).

1.1.3 The basis for V ′ and the corresponding dual basis. We continue dealing with the
triple (V,Ω, j), where j is an Ω−compatible complex structure on the symplectic vector space
(V,Ω), and the corresponding 2-forms g and h as defined in (1.2) resp. (1.3).

Let VC ∶= V ⊗R C be the complexification of V . The complex linear extension of j to VC yields
a splitting of VC into ±i−eigenspaces of j

VC = V ′ ⊕ V ′′,

where jv = iv for v ∈ V ′ and jw = −iw for w ∈ V ′′. The corresponding decomposition of the
complexified dual space we denote accordingly as

V ∗
C = V 1,0 ⊕ V 0,1,

that is V (1,0) = V ′∗ and V (0,1) = V ′′∗. Consider further the complex bilinear extension of the
inner product g to VC, also denoted by g, and the canonical projection

Φ ∶ V → V ′, Φ(v) ∶= 1

2
(v − ijv),
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which is a C−linear isomorphism if regarding it as a map from Vj into V ′. Then it holds

g(v,w) = 0,

whenever v,w ∈ VC are lying in the same eigenspace of j, and

g(Φ(v),Φ(w)) = 1

2
h(v,w) (1.4)

for all v,w ∈ V . This observation provides us on the one hand with a Hermitian inner product
on VC by defining (v,w) ∶= g(v,w). On the other hand, by setting

v♭(w) ∶= g(v,w) and g(τ#,w) ∶= τ(w)

for v,w ∈ VC and τ ∈ V ∗
C , we conclude, that for all 1 ≤m ≤ n

θm = 2ū♭m and θ̄m = 2u♭m ⇔ θ#
m = 2ūm and θ̄#

m = 2um, (1.5)

where

- {u1, . . . , un} is a unitary basis for Vj, {u1, . . . ,un} is the corresponding basis for V ′, that
means uk = Φ(uk) for all 1 ≤ k ≤ n, and

- {θ1, . . . , θn} is the corresponding dual basis for V 1,0.

Denote by Ψ ∶ V ∗
j → V 1,0 the inverse of the dual map

Φ∗, that is

Ψ(φ) = φ ○Φ−1 ∀ φ ∈ V ∗
j . (1.6)

If we additionally denote by {φ1, . . . , φn} the dual basis
for V ∗

j corresponding to {u1, . . . , un}, then

Vj V ′

v v

v♭ v̄♭

V ∗
j V 1,0

Φ

h g

Ψ

(Ψφk)(ui) = φk(Φ−1ui) = φk(ui) = δik ∀ 1 ≤ i, k ≤ n.

So it holds
Ψφk = θk ∀ 1 ≤ k ≤ n. (1.7)

1.1.4 The induced Hermitian inner product on S∗(VC). Denote by T V ∗
j the tensor

algebra of V ∗
j and by S∗(V ∗

j ) ∶= ⊕∞
q=0 S

q(V ∗
j ) its subspace consisting of symmetric tensors. The

canonical projection sym ∶ ⊗q V ∗
j → Sq(V ∗

j ) is given by

sym(ϑ1 ⊗⋯⊗ ϑq) = ∑
σ∈Sq

ϑσ(1) ⊗⋯⊗ ϑσ(q) =∶ ϑ1⋯ϑq.

The symmetric product of two symmetric tensors ζ ∈ Sp(V ∗
j ) and ψ ∈ Sq(V ∗

j ), defined as

ζ ⊙ ψ ∶= sym(ζ ⊗ ψ) ∈ Sp+q(V ∗
j ), (1.8)
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provides the vector space S∗(V ∗
j ) with a structure of a commutative algebra. That is, the sym-

metric product is commutative, associative and satisfies the distributional law. The Hermitian
inner product on S∗(V ∗

j ) is then induced by the Hermitian inner product on V ∗
j and is given

by

(ϑ1⋯ϑp, ψ1⋯ψq) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if p ≠ q

∑σ∈Sp∏
p
i=1(ϑσ(i), ψi), if p = q.

(1.9)

Consider now the rth symmetric power of the complexified dual vector space V ∗
C . The decom-

position V ∗
C = V 1,0 ⊕ V 0,1 results in the decomposition

Sr(V ∗
C ) = ⊕

p+q=r
Sp(V 1,0) ⊗ Sq(V 0,1) =∶ Sp,q(V ).

The complex bilinear extension of the inner product g on V yields a symmetric form on V ∗
C ,

also denoted by g, by setting
g(ϑ,ψ) = g(ϑ#, ψ#)

for ϑ,ψ ∈ V ∗
C , which similarly vanishes identically on V 1,0 ⊗ V 1,0 and V 0,1 ⊗ V 0,1, such that the

induced Hermitian inner product on V ∗
C is given by

(ϑ,ψ) = g(ϑ, ψ̄). (1.10)

This in turn provides the complex symmetric algebra S∗(VC) with a Hermitian inner product
defined in the same manner as in (1.9).

Remark 1.1.7. Note, that for all v ∈ VC and ζ,ψ ∈ S∗(VC) we have

(v ⌟ ζ,ψ) = (ζ, v̄♭ ⊙ ψ).

1.1.5 The induced action of the unitary group on S∗,0(V ). The standard action of
U(Vj) on Vj induces the dual action of U(Vj) on V ∗

j given by

(k ⋅ φ)(v) = φ(k−1v),

for k ∈ U(Vj) and φ ∈ V ∗
j . The corresponding action of U(Vj) on the space of symmetric tensors

on Vj, induced in turn by the action of U(Vj) on the tensor algebra of V ∗
j , is given by

(ρ(k)(ζ))(v1, . . . , vq) = ζ(k−1v1, . . . , k
−1vq) (1.11)

for ζ ∈ Sq(V ∗
j ).

Remark 1.1.8. If we use the identification of the symmetric tensors with homogeneous polyno-
mials of degree q given by

f(z) = ζ(z, . . . , z)

for ζ ∈ Sq(V ∗
j ), f ∈ Hq(Vj) and z ∈ Vj, then
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i) the symmetric product (1.8) corresponds to the pointwise product of two functions and
ii) the action in (1.11) coincides with the action of Gl(Vj) on the functions on Vj given by

(%′(A)f)(z) ∶= f(A−1z) A ∈ Gl(Vj).

By using the isomorphism Φ ∶ Vj Ð→ V ′ the unitary group U(Vj) can be let act on the space of
symmetric tensors on V ′. For this purpose we simply continue the above calculation

ζ(k−1v1, . . . , k
−1vq) = ζ(k−1Φ−1(Φ(v1)), . . . , k−1Φ−1(Φ(vq)))

= Ψ−1(Ψζ)(k−1Φ−1(v1), . . . , k−1Φ−1(vq))

= (Ψ−1ξ)(k−1Φ−1(v1), . . . , k−1Φ−1(vq))
(1.6)= ξ((ΦkΦ−1)−1(v1) . . . , (ΦkΦ−1)−1(vq)),

where vi ∶= Φ(vi) ∈ V ′ for all 1 ≤ i ≤ n and ξ ∶= Ψζ ∈ V 1,0. This is exactly the behaviour one
would expect by changing the spaces.

Lemma 1.1.9. The induced group action of U(Vj) on Sq,0(V ) is given by

(ρ̂(k)(ξ))(v1, . . . ,vq) ∶= ξ(K−1v1, . . . ,K
−1vq), (1.12)

where K ∶= ΦkΦ−1.

1.2 The canonical Hermitian connection

If a manifold M admits a non-degenerate 2-form ω, then the pair (M,ω) is called almost
symplectic, and if the 2-form ω is additionally closed, then the pair (M,ω) is referred to as a
symplectic manifold.

Definition 1.2.1. An almost complex structure J on an almost symplectic manifold (M,ω) is
called ω−compatible, if it satisfies

ω (JX,JY ) = ω (X,Y ) ∀ X,Y ∈ TM

ω (X,JX) > 0 ∀ X ∈ TM ∖ {0}.

In the Corollary 3.2.7 we will show, that any almost symplectic manifold (M,ω) admits an ω−
compatible almost complex structure J . Thus, (M,ω) can be equipped by means of such J

with a Riemannian metric g, obtained by setting

g (X,Y ) ∶= ω (X,JY )
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for X,Y ∈ TM . In particular, J is orthogonal with respect to g and the fundamental form of g
is exactly the 2-form ω. Besides, the 2-form

h (X,Y ) ∶= g (X,Y ) − iω (X,Y )

for X,Y ∈ TM defines a Hermitian metric h on M . The corresponding unitary frame bundle
U(M), which is by the same argumentation as in the Remark 1.1.2 i) a subbundle of both the
symplectic frame bundle Sp (M,ω) and the special orthogonal frame bundle SO (M,g), yields
a principal U(Vj)−bundle over M .

An almost complex structure J is called integrable if its Nijenhuis tensor N vanishes identically,
where

N(X,Y ) = [JX,JY ] − [X,Y ] − J [X,JY ] − J [JX,Y ]

for vector fields X and Y on M .

Lemma 1.2.2. i) The Nijenhuis tensor is of type (2,0), that is

N(JX,Y ) = N(X,JY ) = −JN(X,Y )

for all X,Y ∈ TM .
ii) For a torsion-free connection ∇ on M the Nijenhuis tensor can be rewritten as

N(X,Y ) = (∇JXJ)(Y ) − J(∇XJ)(Y ) + J(∇Y J)(X) − (∇JY J)(X).

iii) For a unitary connection ∇ on M the Nijenhuis tensor takes the form

N(X,Y ) = T (X,Y ) + JT (JX,Y ) + JT (X,JY ) − T (JX,JY ).

Theorem 1.2.3 (Newlander-Nirenberg). An almost complex structure J on a manifold M is
integrable if and only if M admits local holomorphic coordinates for J around each point of M .

1.2.1 The canonical Hermitian connection. A symplectic manifold, whose compatible
almost complex structure is integrable, is a Kähler manifold. In this case the Levi-Civita
connection ∇ of the Kähler metric g satisfies

∇g = ∇ω = 0, T = 0 and ∇J = 0.

On the other hand, if the almost complex structure is not integrable, it yields ∇J ≠ 0. However,
the reduction of the group structure ofM to U(Vj) yields a connection, which by the Proposition
1.1.3 satisfies ∇̃J = 0, ∇̃g = ∇̃ω = 0. Among all such unitary connections there is an exceptional
connection, which distinguishes itself from the others by the type of its torsion.

Definition 1.2.4. i) The connection ∇̃ defined by

∇̃XY ∶= ∇XY − 1

2
J(∇XJ)(Y ),

for X,Y ∈ Γ(TM), is called the canonical Hermitian connection.
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ii) If we denote by u(Vj)⊥ the orthogonal complement of u(Vj) as a subalgebra of so(V ),
then the corrective term τX ∶= −1

2J(∇XJ) defines a section τ ∈ Γ(T ∗M ⊗ u(Vj)⊥), which
is referred to as the intrinsic torsion of the U(Vj)-structure on M (induced by J).

To determine the type of the torsion T̃ (X,Y ) = τXY − τYX of ∇̃ we recall the correspondence
between τ and the Nijenhuis tensor of J and dω. The torsion turns out to be of type (2,0),
and thus, the torsion vector field of ∇̃ vanishes identically. In what follows, we base ourselves
on the Section 2.2 of Chapter 10 in [5] by Paul-Andi Nagy.

We consider the image of ∇ω under the skew-symmetrization map alt ∶ T ∗M ⊗Λ2 → Λ3, which
can be expressed in two different ways. On the one hand, a direct calculation yields immediately
alt(∇ω) = 1

3 dω and, on the other hand

∇Xω = −τXω, (1.13)

which is to be understood in the following sense

(∇Xω)(Y,Z) = (∇̃Xω)(Y,Z) + ω(τXY,Z) + ω(Y, τXZ)

= g(JτXY,Z) + g(JY, τXZ)

= 2g(JτXY,Z) = 2ω(τXY,Z).

To obtain another expression for alt(∇ω), we introduce the tensor field N defined by

NX(Y,Z) ∶= g(N(Y,Z),X).

Then it holds by Lemma 1.2.2

NJX(Y,Z) = NX(JY,Z) = NX(Y, JZ) (1.14)

and the covariant derivative of ω can be now expressed in terms of the tensor N and the exterior
differential of ω as follows

2(∇Xω)(Y,Z) = −NJX(Y,Z) + dω(X,Y,Z) − dω(X,JY, JZ). (1.15)

Applying the skew-symmetrization to the upper equation yields

2alt(∇ω)(X,Y,Z) = 2

3
((∇Xω)(Y,Z) − (∇Y ω)(X,Z) + (∇Zω)(X,Y ))

= 1

3
(−NJX(Y,Z) + dω(X,Y,Z) − dω(X,JY, JZ)

+NJY (X,Z) − dω(Y,X,Z) + dω(Y, JX,JZ)

−NJZ(Y,Z) + dω(Z,X,Y ) − dω(Z,JX,JY )).
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In order to interpret the occurring terms we introduce an operator acting on 3-forms

(Jα)(X,Y,Z) ∶= α(JX,Y,Z) + α(X,JY,Z) + α(X,Y, JZ)

and observe, that

J(J∗ dω)(X,Y,Z) = J∗dω(JX,Y,Z) + J∗dω(X,JY,Z) + J∗dω(X,Y, JZ)

= −dω(X,JY, JZ) − dω(JX,Y, JZ) − dω(JX,JY,Z)

alt(N)(X,Y,Z) = 1

6
(NX(Y,Z) +NY (Z,X) +NZ(X,Y )

−NX(Z,Y ) −NY (X,Z) −NZ(Y,X))

= 1

3
(NX(Y,Z) −NY (X,Z) +NZ(X,Y ))

(1.16)

J(alt(N))(X,Y,Z) = alt(N)(JX,Y,Z) + alt(N)(X,JY,Z) + alt(N)(X,Y, JZ)

(1.14)= NJX(Y,Z) −NJY (X,Z) +NJZ(X,Y ),

such that together with the equation (1.13) we obtain

2

3
dω = −1

3
J(alt(N)) + dω + 1

3
J(J∗dω)

⇔ −dω = −J(alt(N)) + J(J∗dω).

To proceed further, we recall the decomposition of Λ3 = Λ3(T ∗M) into the real invariant
U(Vj)−modules (for the details of the decomposition cf. [19])

Λ3 = λ3,0 ⊕ λ2,1,

where

λ3,0 = {α ∈ Λ3 ∣ α(JX,Y,Z) = α(X,JY,Z) = α(X,Y, JZ) ∀X,Y,Z ∈ TM}

λ2,1 = {α ∈ Λ3 ∣ α(JX,JY,Z) = α(X,Y,Z) = −α(X,JY, JZ) ∀X,Y,Z ∈ TM}.

Decomposing dω ∈ Λ3 along the decomposition Λ3 = λ3,0 ⊕ λ2,1 yields

−(dω)3,0 − (dω)2,1 = J(J∗(dω)3,0) + J(J∗(dω)2,1) − J(alt(N))

⇔ −(dω)3,0 = J(J∗(dω)3,0) − J(alt(N)),

since J acts on λ2,1 as J∗.
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Since

J(J∗(dω)3,0)(X,Y,Z) = J∗(dω)3,0(JX,Y,Z) + J∗(dω)3,0(X,JY,Z) + J∗(dω)3,0(X,Y, JZ)

= −(dω)3,0(X,JY, JZ) − (dω)3,0(JX,Y, JZ) − (dω)3,0(JX,JY,Z)

= 3(dω)3,0(X,Y,Z)

and alt(N) ∈ λ3,0, it follows

4J∗(dω)3,0 = 3alt(N) ⇔ alt(N) = 4

3
J∗(dω)3,0.

Decomposing the spaces Λ2 = λ2,0+λ1,1 and Λ3 into the (real) invariant U(Vj)−components and
restricting the skew-symmetrization map to T ∗M ⊗ λ2,0 we obtain by the Theorem 2.1 in [8]
the following diagram.

T ∗M ⊗ λ2,0 Λ3

λ3,0 ⊕W2 ⊕ λ2,1 λ3,0 ⊕ λ2,1

alt

≃U(Vj) ≃U(Vj)

The space W2 denotes whereby the kernel of the skew-symmetrization map (cf. [6], Lemma
2.1). So the tensor N splits by Schur’s lemma as

N = N̂ + 4

3
J∗(dω)3,0 ∈ W2 ⊕ λ3,0 (1.17)

with N̂ ∈ W2. With the aid of (1.13), (1.15) and (1.17) we state the following theorem.

Theorem 1.2.5. The intrinsic torsion τ ∈ T ∗M ⊕ u(Vj)⊥ of an almost Hermitian manifold M
is entirely determined by (dω, N̂ ) ∈ Λ3 ⊕W2 and vice versa. In particular,

• M is Hermitian iff τ ∈ λ2,1 and
• M is almost-Kähler iff τ ∈ W2.

If we assume M to be almost Kähler, i. e. τ ≃ N̂ , then by the equation (1.16) it holds

g(τY (X), Z) = g(τX(Y ), Z) + g(τZ(X), Y )

⇔ g(T̃ (X,Y ), Z) = −g(τZ(X), Y ) (1.18)

and

g(τJX(Y ), Z) = g(−JτX(Y ), Z) = g(τX(JY ), Z) (1.19)

so we obtain the following result.

Corollary 1.2.6. If M is an almost-Kähler manifold, then the torsion T̃ of ∇̃ is of type (2,0)
and

N̂X(Y,Z) = 4g(T̃ (Y,Z),X) or equivalently N(X,Y ) = 4T̃ (X,Y ).
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1.2.2 The curvature of the canonical connection. The following section is based on the
Section 2 in [16]. We keep considering an almost Kähler manifold (M,ω,J). Denote by R

the curvature tensor of the Levi-Civita connection ∇ and by R̃ the curvature of ∇̃. A direct
calculation then yields

R̃(X,Y ) = R(X,Y ) + alt(∇̃τ)X,Y − [τX , τY ] + τ(τXY −τYX)

=∶ R(X,Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈so(2n)

+alt(∇̃τ)X,Y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈u(n)⊥

− τ 2(X,Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈u(n)

+ τT (X,Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈u(n)⊥

. (1.20)

Since R̃ ∈ Λ2 ⊗ u(Vj), its corresponding 4−tensor lies in

Λ2 ⊗ λ1,1 = (λ2,0 ⊕ λ1,1) ⊗ λ1,1 = S2(λ1,1) ⊕Λ2(λ1,1) ⊕ (λ2,0 ⊗ λ1,1)

and it therefore splits accordingly as R̃ = R̃1 + R̃2 + R̃3 with

R̃1 ∈ S2(λ1,1), R̃2 ∈ Λ2(λ1,1) and R̃3 ∈ λ2,0 ⊗ λ1,1.

Consider next the terms occurring in the equation (1.20) depending on τ .

i) Since ∇̃ is unitary and τX ∈ λ2,0, it follows (∇̃Xτ)Y ∈ λ2,0. That means alt(∇̃τ) ∈ Λ2 ⊗λ2,0

and it splits along the decomposition Λ2 ⊗ λ2,0 = (λ1,1 ⊗ λ2,0) ⊕ (λ2,0 ⊗ λ2,0) as

alt(∇̃τ) = alt(∇̃τ)1 + alt(∇̃τ)2.

ii) Since τ ∈ W2, we have by the relation (1.19)

τ 2 ∈ λ1,1 ⊗ λ1,1 = S2(λ1,1) ⊕Λ2(λ1,1),

so τ 2 splits as

τ 2 = S +A

with S ∈ S2(λ1,1) and A ∈ Λ2(λ1,1).
iii) Similarly, since τ ∈ W2, we have by the relations (1.18) and (1.19) τT ∈ S2(λ2,0).

S2(λ1,1) ⊕ S2(λ2,0) ⊕ Λ2(λ1,1) ⊕ λ2,0 ⊗ λ1,1 λ1,1 ⊗ λ2,0

R̃ R̃1 + R̃2 + R̃3

alt(∇̃τ) alt(∇̃τ)2 + alt(∇̃τ)1

τ 2 S + A

τT τT
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Next we observe, that

R̃(X,Y,Z,W ) − R̃(Z,W,X,Y ) = alt(∇̃τ)X,Y (Z,W ) − τ 2(X,Y )(Z,W )

− alt(∇̃τ)Z,W (X,Y ) + τ 2(Z,W )(X,Y )

= alt(∇̃τ)X,Y (Z,W ) − alt(∇̃τ)Z,W (X,Y ) − 2A(X,Y,Z,W ).

Since R̃ and A are elements of Λ2⊗λ1,1, we obtain after projecting the equation onto λ2,0⊗λ2,0

that alt(∇̃τ)2 ∈ S2(λ2,0). Moreover, if we project the upper equation onto Λ2(λ1,1) and λ2,0⊗λ1,1

we obtain
R̃2 = −A and R̃3 = alt(∇̃τ)⋆1

respectively. The corresponding 4-tensor of the Riemannian curvature tensor R of ∇ is an
element of S2(Λ2), which splits as

S2(Λ2) = S2(λ1,1 ⊕ λ2,0) = S2(λ1,1) ⊕ S2(λ2,0) ⊕ (λ2,0 ⊗ λ1,1),

and thus, R can be written as

R =
⎛
⎝
R1 R12

R⋆
12 R2

⎞
⎠
,

where
R1 ∈ S2(λ1,1), R2 ∈ S2(λ2,0), R12 ∈ λ1,1 ⊗ λ2,0.

We conclude by comparison the algebraic types of the occurring tensors in (1.20), that

R̃1 = R1 − S ∈ S2(λ1,1), R̃2 = −A ∈ Λ2(λ1,1),

R̃3 = alt(∇̃τ)⋆1 ∈ λ2,0 ⊗ λ1,1, R2 − alt(∇̃τ)2 + τT = 0 ∈ S2(λ2,0).

Lemma 1.2.7. With the upper notations it holds

R̃ = (R1 − S) −A + alt(∇̃τ)⋆1.

Remark 1.2.8. If the tensor S additionally decomposed as S = Sb+S−, where Sb satisfies the first
Bianchi identity, then the component R̃K ∶= R1−Sb = R̃1+S− of R̃ satisfies all the requirements
of a Kähler curvature, that is an element of S2(λ1,1) satisfying the algebraic Bianchi identity.





Chapter 2

A short digression of Lichnerowicz
Laplacian

The main purpose of this chapter is to introduce a Laplacian defined on the complexified
symmetric algebra of an almost Kähler manifold using the canonical Hermitian connection.
which was firstly defined by André Lichnerowicz in his paper [14] in the Riemannian setting.

2.1 Symmetric algebra of M

We begin by describing a natural Laplacian acting on the sections of the symmetric algebra of
M as it was introduced in the original paper [14] by André Lichnerowicz. For this purpose we
consider a Riemannian manifold (M,g). The Riemannian metric g on M induces analogously
to (1.9) a Riemannian metric on S∗(M) = ⊕q≥0 Sq(M), i. e., if ϕi1...iq and ψi1...iq denote the
components of the tensor fields ϕ,ψ ∈ S∗(M), then

⟨ϕ,ψ⟩ = ϕj1...jqψj1...jq , (2.1)

where ϕj1...jq = gi1j1⋯giqjqϕi1...iq and gij denotes the components of the inverse matrix (gij).
Similarly, a connection ∇ on TM induces a connection

∇̂ ∶ Γ(S∗(M)) → Γ(T ∗M ⊗ S∗(M)).

To describe ∇̂ locally, we observe first, that the induced connection ∇∗ on T ∗M is given by

(∇∗
Xϑ)(Y ) =X(ϑ(Y )) − ϑ(∇XY )

for X,Y ∈ Γ(TM) und ϑ ∈ Γ(T ∗M). Thus the induced connection ∇⊗ on the tensor bundle
T ∗M⊗q is given by

(∇⊗
Xζ)(Y1, . . . , Yq) =X(ζ(Y1, . . . , Yq)) −

q

∑
ν=1

ζ(Y1, . . . ,∇XYν , . . . , Yq).
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The restriction of ∇X to Sq(M) can be rewritten, if an element ζ of Sq(M) is written in terms
of some local frame as ζ = ci1...iq ϕi1 ⊙ . . .⊙ ϕiq for ϕik ∈ T ∗M . The covariant derivative of ζ in
the direction X then reads

∇̂Xζ = dci1...iq(X)ϕi1 ⊙⋯⊙ ϕiq + ci1...iq
q

∑
ν=1

(∇∗
Xϕiν) ⊙ ϕi1 ⊙⋯⊙ ϕ̂iν ⊙⋯⊙ ϕiq .

Since ζ depends only on the number of times each ϕk appears in the product, we may rewrite
ζ as ζ = cαϕα1

1 ⊙⋯⊙ϕαnn , where ϕανν ∶= ϕν ⊙⋯⊙ϕν , and obtain the following compact notation.

Lemma 2.1.1. Let {e1, . . . , en} be a local frame for TM and {ϕ1, . . . , ϕn} be its dual frame.
Writing ζ = cαϕα as above yields

∇̂ζ = dcα ⊗ ϕα −
n

∑
ν,k,m=1

Γνm,k ϕm ⊗ ϕk ⊙ (eν ⌟ ζ),

where Γνm,k denote the Christoffel symbols of ∇. The curvature tensor R̂ of ∇̂ is given by

R̂(ej, ek)ζ = −
n

∑
i,m=1

Ri
j,k,m ϕm ⊙ (ei ⌟ ζ).

Remark 2.1.2. i) If ∇ is metric, then ∇̂ is also metric with respect to the induced metric.
ii) The linear part of ∇̂ is induced by the standard group action of Gl(V ) on S∗(V ∗)

(k ⋅ ζ)(vi1 , . . . , viq) = ζ(k−1vi1 , . . . , k
−1viq)

for k ∈ Gl(V ) and ζ ∈ S∗(V ∗). (Cf. the action in (1.11).)

The L2−inner product defined on the compactly supported sections of Sq(M) is given by

⟨ϕ,ψ⟩L2 = ∫
M
⟨ϕ,ψ⟩ dM. (2.2)

Let ∇̂ be induced by a metric connection ∇ on M and ϕ ∈ Sq(M) and ψ ∈ T ∗M ⊗Sq(M). Then
we observe for an orthonormal frame parallel at a point

⟨∇̂ϕ,ψ⟩ =
n

∑
j=1

(∇̂ϕ)
j i1...ip

ψj i1...ip

=
n

∑
j=1

(∇̂ejϕ)i1...ip (ej ⌟ ψ)
i1...ip

=
n

∑
j=1

⟨∇̂ejϕ, ej ⌟ ψ⟩

=
n

∑
j=1

ej ⋅ ⟨ϕ, ei ⌟ ψ⟩ −
n

∑
j=1

⟨ϕ, ∇̂ej ej ⌟ ψ⟩.

By integrating the last equation the first sum vanishes, since ∑nj=1 ej ⋅ ⟨ϕ, ej ⌟ ψ⟩ = div(Y ) for
Y = ∑nj=1⟨ϕ, ej ⌟ ψ⟩ej. We thus have shown the following lemma.
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Lemma 2.1.3. The formal adjoint of ∇̂∗ ∶ Γ(T ∗M ⊗S∗(M)) → Γ(S∗(M)) is given with respect
to a local orthonormal frame parallel at a point by

∇̂∗ξ = −
n

∑
j=1

ej ⌟ ∇̂ejξ.

Corollary 2.1.4. With respect to an orthonormal frame {e1, . . . , en} parallel at a point the
Bochner Laplacian ∇̂∗∇̂ of a metric connection is given by

∇̂∗∇̂ξ = −
n

∑
j=1

∇̂ej(ej ⌟ ∇̂ξ) = −
n

∑
j=1

∇̂ej ∇̂ejξ.

2.1.1 The Lichnerowicz Laplacian. The Laplacian introduced by André Lichnerowicz on
the tensor algebra ⊕T ∗M⊗n should have generalized the Hodge-de Rham Laplacian when re-
stricting to the exterior algebra. It turned out, that the restriction of the Lichnerowicz Lapla-
cian to the symmetric algebra coincides with the commutator of the symmetrized connection
with its formal adjoint (cf. [20], p 147). In what follows, we shortly describe the mentioned
commutator.

The symmetrized connection is given as the composition δ ∶= sym ○ ∇̂

Sq(T ∗M) ∇̂Ð→ T ∗M ⊗ Sq(M) symÐ→ Sq+1(M),

which by the Lemma 2.1.1 can be expressed as follows.

Lemma 2.1.5 (Symmetrized connection). Let {e1, . . . , en} be a local frame for TM and denote
by {ϕ1, . . . , ϕn} its dual frame. Writing ζ = cαϕα as above yields

δζ =
n

∑
k=1

ϕk ⊙ ∇̂ekζ. (2.3)

Remark 2.1.6. If ∇̂ is induced by a metric connection, then the formal adjoint δ∗ of δ coincides
with ∇∗. To observe that in terms of a local orthonormal frame {e1, . . . , en} parallel at a point
we have

⟨δϕ, ζ⟩ =
n

∑
k=1

⟨ϕk ⊙ ∇̂ekϕ, ζ⟩ =
n

∑
k=1

⟨∇̂ekϕ, ek ⌟ ζ⟩ =
n

∑
k=1

ek ⋅ ⟨ϕ, ek ⌟ ζ⟩ − ⟨ϕ, ek ⌟ ∇̂ekζ⟩

and, since ∑nk=1 ek ⋅ ⟨ϕ, ek ⌟ ζ⟩ = div(Y ) for Y = ∑nk=1⟨ϕ, ek ⌟ ζ⟩ek as above, it follows

δ∗ζ = ∇∗ζ = −
n

∑
k=1

ek ⌟ ∇̂ekζ.

Lemma 2.1.7. The principal symbol of δ at some x ∈M and θ ∈ T ∗
xM ∖ {0} is given by

ps(δ)(x, θ)ζx = θ ⊙ ζx.
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Proof. It is a short verification of the definition (cf. [23], p. 115). Since we deal with a real
first-order differential operator, we choose a smooth function f ∈ C∞(M), such that dfx = θ and
observe with the Lemma 2.1.5, that

ps(δ)(x, θ)ζx =
n

∑
k=1

ϕk ⊙ ∇̂ek((f − f(x))ζ)x

=
n

∑
k=1

ϕk ⊙ dfx(ek)ζx

=
n

∑
k=1

θ(ek)ϕk ⊙ ζx = θ ⊙ ζx.

The same calculation made for the formal ajoint of δ yields

ps(δ∗)(x, θ)ζx = −θ# ⌟ ζx

and, in particular, we have by the equation (2.4) in [23]

ps([δ∗, δ])(x, θ)ζx = −θ# ⌟ θ ⊙ ζx + θ ⊙ θ# ⌟ ζx = −g(θ, θ) ζx,

which motivates the following definition.

Definition 2.1.8. The commutator ∆L ∶= [δ∗, δ] is called the Lichnerowicz Laplacian.

The Lichnerowicz Laplacian is a self-adjoint, elliptic and type preserving second order differen-
tial operator and has discrete eigenvalues with finite multiplicities on compact manifolds (cf. [3]
or [2], p. 465).

Theorem 2.1.9. It holds
∆L = ∇̂∗∇̂ − R,

where the linear part R depends only on the curvature of ∇ and is explicitly given by

R(ζ)i1...ip = ∑
k

gjs ricik j ζi1...ik−1 s ik+1...ip −∑
k≠l

gjsgmtRm
jikil

ζi1...ik−1 s ik+1...il−1 t il+1...ip .

Proof. As before we choose an orthonormal frame parallel at a point and observe, that

δ∗δζ − δδ∗ζ =
n

∑
j=1

−ej ⌟ ∇̂ejδζ − ϕj ⊙ ∇̂ejδ
∗ζ

=
n

∑
j,k=1

−ej ⌟ ∇̂ej(ϕk ⊙ ∇̂ekζ) + ϕj ⊙ ∇̂ej(ek ⌟ ∇̂ekζ)

= −
n

∑
k=1

∇̂ek∇̂ekζ −
n

∑
j,k=1

ϕk ⊙ ej ⌟ ∇̂ej ∇̂ekζ + ϕj ⊙ ek ⌟ ∇̂ej ∇̂ekζ
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= ∇̂∗∇̂ζ −
n

∑
j,k=1

ϕk ⊙ ej ⌟ (∇̂ej ∇̂ekζ − ∇̂ek∇̂ejζ)

= ∇̂∗∇̂ζ −
n

∑
j,k=1

ϕk ⊙ ej ⌟ R̂(ej, ek)ζ,

where the last equation holds by the choice of the frame. Write the linear part using the Lemma
2.1.1 out, then

R(ζ) = −
n

∑
i,j,k,m=1

Ri
jkm ϕk ⊙ (ej ⌟ ϕm ⊙ (ei ⌟ ζ))

= −
n

∑
i,j,k,m=1

Ri
jkm ϕk ⊙ (ϕm ⊙ (ej ⌟ ei ⌟ ζ)) −

n

∑
i,j,k=1

Ri
jkj ϕk ⊙ (ei ⌟ ζ)

= −
n

∑
i,j,k,m=1

Ri
jkm ϕk ⊙ (ϕm ⊙ (ej ⌟ ei ⌟ ζ)) +

n

∑
i,k=1

ricki ϕk ⊙ (ei ⌟ ζ)

and by writing ζ = ∑ ζi1...iq ϕi1 ⊙⋯⊙ ϕiq we obtain the desired expression for R(ζ)

R(ζ)j1⋯jq =
n

∑
i=1

q

∑
s=1

ricjsi ζj1⋯js−1ijs+1⋯jq −
n

∑
i,k=1

q

∑
r,s=1
r≠s

Rk
ijsjr ζj1⋯js−1ijs+1⋯jr−1kjr+1⋯jq .

Remark 2.1.10. The linear term of the Lichnerowicz Laplacian can also be written as

R(ζ)(Yj1 , . . . , Yjq) =
q

∑
s=1

ζ(Ric(Yis), Yj1 , . . . , Ŷjs , . . . , Yjq)

−
n

∑
j=1

q

∑
r,s=1
r≠s

ζ(R(ej, Yjs)Yjr , ej, Yj1 , . . . , Ŷjs , . . . , Ŷjr , . . . , Yjq).

2.2 Complex symmetric algebra of M

Consider an almost symplectic manifold (M,ω) together with an ω−compatible almost complex
structure J . The complex linear extension of J to the complexified tangent bundle TCM yields a
decomposition of TCM into the direct sum of ±i−eigenbundles of J as TCM = T ′M⊕T ′′M . This
in turn induces a decomposition of the complex cotangent bundle as T ∗

CM = T 1,0M ⊕ T 0,1M ,
which results in the type decomposition of the complex symmetric algebra. That is, for some
r ∈ N it holds

Sr(M,C) = ⊕
p+q=r

Sp(T 1,0M) ⊗ Sq(T 0,1M) =∶ ⊕
p+q=r

Sp,q(M). (2.4)
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Lemma 2.2.1. i) The complex bilinear extension of the induced Riemannian metric on
S∗(M) to S∗(M,C) yields by setting

(ϕ,ψ) ∶= ⟨ϕ, ψ̄⟩ (2.5)

a Hermitian metric on S∗(M,C) and a corresponding Hermitian L2−product on the com-
pactly supported sections of S∗(M,C) as in (2.2). Moreover, the type decomposition (2.4)
is orthogonal with respect to this Hermitian L2−product1.

ii) If ∇ is a unitary connection on (M,ω,J), that is ∇J = 0, then
1. the complex bilinear extension of ∇̂ remains metric with respect to the induced Her-

mitian metric in (2.5)
2. ∇X respects the decomposition of TCM = T ′M ⊕ T ′′M for all vector fields X on M .

2.2.1 Symmetrized connection. Consider the complex bilinear extension of an arbitrary
connection, also denoted as ∇ ∶ TCM → T ∗

CM ⊗TCM and the corresponding induced connection
∇̂ on S∗(M,C). It is a well-known fact, that the exterior derivative d ∶ Λ∗(M,C) Ð→ Λ∗+1(M,C)
splits because of the type decomposition

Λr(M,C) = ⊕
p+q=r

Λp,q(M)

for r ∈ N0 as d = d1,0 + d2,−1 + d−1,2 + d0,1. In particular,

df = d1,0f + d0,1f (2.6)

for all f ∈ C∞(M). As already seen in the Section 1.2.1 the exterior derivative can be thought
of as a multiple of the skew-symmetrization of a torsion-free connection. We describe next
an analogous type decomposition of a symmetrized connection. To observe that consider the
symmetrization of ∇̂ξ for some ξ ∈ Sp,q(M) with p + q = r

δξ(X0, . . . ,Xr) =
r

∑
i=0

∇Xiξ(X0, . . . , X̂i, . . . ,Xr),

for Xi ∈ TCM for all 0 ≤ i ≤ r. Since on the symmetric tensors of rank one we have by (2.6)

δξ ∈ S2,0(M) ⊕ S1,1(M) ⊕ S0,2(M),

we obtain by induction and the Leibniz’s rule the following observation.

Corollary 2.2.2. The map δ ∶ S∗(M,C) → S∗+1(M,C) splits as

δ = δ1,0 + δ2,−1 + δ−1,2 + δ0,1,

1Note, that each space Sp,q(M) is an irreducible representation of U(Vj).
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where

Sp,q Sp+1,q Sp,q Sp,q+1

Sp,q Sp−1,q+2 Sp,q Sp+2,q−1

δ1,0

δ1,0∗

δ−1,2

δ−1,2∗

δ2,−1

δ2,−1∗

δ0,1

δ0,1∗

2.2.2 Observation on the (−1,2) and (2,−1) parts of δ. For the first we observe, that for
any symmetric tensor ξ and a function f ∈ C∞(M) we have

δ(fξ) = df ⊙ ξ + fδξ

The left hand side of the upper equation decomposes by types as in the Corollary (2.2.2), while
the decomposition of the right hand side yields by (2.6)

d1,0f ⊙ ξ + d0,1f ⊙ ξ + fδ1,0ξ + fδ2,−1ξ + fδ−1,2ξ + fδ0,1ξ.

By comparing the types we obtain the following lemma.

Lemma 2.2.3. The parts δ−1,2 and δ2,−1 are tensorial, that is

δ2,−1(fξ) = f δ2,−1ξ and δ−1,2(fξ) = f δ−1,2ξ

for all f ∈ C∞(M).

Next we give explicit expressions of δ−1,2 and δ2,−1 first for a unitary and then for a torsion-free
connection. We denote the decomposition of an X ∈ TCM as X =X ′ +X ′′, with X ′ ∈ T ′M and
X ′′ ∈ T ′′M , and consider a symmetric tensor ξ ∈ S0,1(M). Then δ2,−1ξ ∈ S2,0(M) and since δ1,0ξ

and δ0,1ξ vanish on T ′M ⊗ T ′M we obtain

(δ2,−1ξ)(X,Y ) = (δ2,−1ξ)(X ′, Y ′)

= (δξ)(X ′, Y ′)

= (∇̂X′ξ)(Y ′) + (∇̂Y ′ξ)(X ′)

=X ′ ⋅ ξ(Y ′) − ξ(∇X′Y ′) + Y ′ ⋅ ξ(X ′) − ξ(∇Y ′X ′)

= −ξ(∇X′Y ′ +∇Y ′X ′)

= −ξ((∇X′Y ′ +∇Y ′X ′)′′).
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Analogous calculation for δ−1,2ξ and ξ ∈ S1,0(M) yields

(δ−1,2ξ)(X,Y ) = −ξ(∇X′′Y ′′ +∇Y ′′X ′′)

= −ξ((∇X′′Y ′′ +∇Y ′′X ′′)′),

which provides together with the Lemma 2.2.1 ii) 2. and the Leibniz’s rule the following ob-
servation.

Lemma 2.2.4. If the connection on M is chosen to be unitary, then δ−1,2 = δ2,−1 = 0.

Remark 2.2.5. In particular, the (−1,2) and (2,−1) parts of the symmetrized connection does
not provide any information about the integrability of J , if the connection is chosen to be
unitary. Note also, that the statement of the lemma holds also true for the skew-symmetrization
of a unitary connection.

For a not unitary connection we continue the above calculation and obtain

4(∇X′Y ′ +∇Y ′X ′) = ∇XY −∇JXJY +∇YX −∇JY JX

− i(∇XJY +∇JXY +∇Y JX +∇JYX).

In particular, for a torsion-free connection a the straightforward calculation yields, because of
∇XY = ∇YX + [X,Y ],

4(∇X′Y ′ +∇Y ′X ′)′′ = −((∇JXJ)(Y ) − J(∇XJ)(Y ) + (∇JY J)(X) − J(∇Y J)(Y ))′′

4(∇X′′Y ′′ +∇Y ′′X ′′)′ = −((∇JXJ)(Y ) − J(∇XJ)(Y ) + (∇JY J)(X) − J(∇Y J)(X))′.

If we define

N1(X,Y ) ∶= (∇JXJ)(Y ) − J(∇XJ)(Y ) and N2(X,Y ) ∶= (∇JY J)(X) − J(∇Y J)(X),

such that N = N1 −N2. Then by setting

Ñ ∶= N1 +N2

it holds

(∇X′Y ′ +∇Y ′X ′)′′ = −1

4
Ñ(X,Y )′′

and

(∇X′′Y ′′ +∇Y ′′X ′′)′ = −1

4
Ñ(X,Y )′

so that we proved the following result.
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Lemma 2.2.6. If ∇ is a torsion-free connection on M , then

1

4
Ñ∗ξ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ−1,2ξ, if ξ ∈ Γ(T 1,0M)
δ2,−1ξ, if ξ ∈ Γ(T 0,1M).

Remark 2.2.7. The table lists the information one gets from the (skew-) symmetrization of the
complex bilinear extension of a connection depending on its type.

connection ∇ skew-symmetrization symmetrization

torsion-free d−1,2, d2,−1 ∼ N∗ δ−1,2, δ2,−1 ∼ Ñ∗

unitary (alt ○ ∇)−1,2, (alt ○ ∇)2,−1 ≡ 0 δ−1,2, δ2,−1 ≡ 0

Proposition 2.2.8. It holds

i) Ñ ∈ S2(M) ⊗ TM , that is, Ñ is symmetric, and
ii) N = 0 if and only if Ñ = 0.

Proof. The assertion i) follows by definition. For ii) the direction „⇒“ holds trivially, while
the opposite direction follows by considering the tensor

B(X,Y,Z) ∶= ω((∇JXJ)(Y ) − J(∇XJ)(Y ), Z) = ω(N1(X,Y ), Z).

SinceN1 = −N2 by assumption, B is skew-symmetric in the first two variables, i. e. B(X,Y,Z) =
−B(Y,X,Z). On the other hand, J and ∇XJ are anti-commuting skew-symmetric opera-
tors, so by skew-symmetry of ω the tensor B is symmetric in the last two variables, i. e.
B(X,Y,Z) = B(X,Z,Y ). By taking the circular permutations we obtain

B(X,Y,Z) = −B(Y,Z,X) = B(Z,X,Y ) = −B(X,Y,Z),

which implies B = 0 and hence N1 = 0, since ω is non-degenerate, and the assertion follows by
i).

Remark 2.2.9. A manifold M is Kähler if and only if the Levi-Civita connection satisfies

δ−1,2 = δ2,−1 = 0.

2.2.3 Frames and coframes for T ′M resp. T 1,0M . We keep considering the complexified
tangent and cotangent bundles and their decompositions into ±i−eigenbundles of J .

The complex bilinear extension of g to TCM , also denoted by g, satisfies g(X,Y ) = 0, whenever
X,Y ∈ T ′M or X,Y ∈ T ′′M . Identifying the complex vector bundle TJM with T ′M by means
of the canonical C−linear isomorphism

Φ ∶ TJM Ð→ T ′M, Φ(X) ∶= ZX = 1

2
(X − iJX) (2.7)
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we then have for all X,Y ∈ TJM

g(ZX , Z̄Y ) =
1

2
h(X,Y ). (2.8)

So we deduce, if {e1, . . . , en} is a unitary frame for TJM and

Zm ∶= Φ(em), Z̄m ∶= Φ(em), 1 ≤m ≤ n,

are the corresponding frames for T ′M resp. T ′′M , then the dual frames Z∗
j and Z̄∗

j for T 1,0M

resp. T 0,1M are given by

Z∗
m = 2Z̄♭

m and Z̄∗
m = 2Z♭

m ⇔ (Z∗
m)# = 2Z̄m and (Z̄∗

m)# = 2Zm. (2.9)

2.2.4 Curvature on Sq,0(M) induced by a unitary connection on M . By linearity of
curvature tensors we consider a pure symmetric tensor ξ ∶= Z∗α1

1 ⊙ ⋯ ⊙ Z∗αn
n ∈ Γ(Sq,0(M)) to

determine its local expression. So

R̂(X,Y )ξ =
n

∑
i=1

αi(R∗(X,Y )Z∗
i ) ⊙Z∗α1

1 ⊙⋯⊙Z∗αi−1

i ⊙⋯⊙Z∗αn

n

=
n

∑
i=1

(R∗(X,Y )Z∗
i ) ⊙ (Zi ⌟ (Z∗α1

1 ⊙⋯⊙Z∗αi
i ⊙⋯⊙Z∗αn

n ))

=
n

∑
i=1

(R∗(X,Y )Z∗
i ) ⊙ (Zi ⌟ ξ).

If the connection on the manifold is chosen to be unitary, then R(X,Y )(T ′M) ⊆ T ′M for all
X,Y ∈ TCM , thus we have for some Z ∈ T ′M

(R∗(X,Y )Z∗
i )(Z) = −Z∗

i (R(X,Y )Z).

and using a unitary frame {e1, . . . , en} we can further write

R(ej, ek)(Zm) =
n

∑
l=1

Rl′
j,k,m′ Zl.

Then

Z∗
i (R(ej, ek)Z) =

n

∑
m=1

zmZ
∗
i (

n

∑
l=1

Rl′
j,k,m′ Zl) =

n

∑
m=1

zmR
i′
j,k,m′ =

n

∑
m=1

Ri′
j,k,m′ Z∗

m(Z),

which proves the following lemma.

Lemma 2.2.10. Let R̂ be the curvature tensor on Sq,0(M) induced by a unitary covariant
derivative on M and {e1, . . . , en} be a unitary frame for TJM . Then

R̂(ej, ek)ξ = −
n

∑
i,m=1

Ri′
j,k,m′ Z∗

m ⊙Zi ⌟ ξ.
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2.2.5 Lichnerowicz Laplacians associated to δ1,0 and δ0,1. We assume the manifold to be
almost Kähler equipped with a unitary connection. According to the equation (2.3) we observe
with regard to the Lemma 2.2.4, that because of

ek = Zk + Z̄k, Jek = i(Zk − Z̄k) and e∗k =
1

2
(Z∗

k + Z̄∗
k ), (Jek)∗ = −

i

2
(Z∗

k − Z̄∗
k )

for all 1 ≤ k ≤ n, we have for all symmetric tensors ζ of type (p, q)

δζ =
2n

∑
k=1

ϕk ⊙ ∇̂ekζ

= 1

2

n

∑
k=1

(Z∗
k + Z̄∗

k ) ⊙ ∇̂Zk+Z̄kζ + (Z∗
k − Z̄∗

k ) ⊙ ∇̂Zk−Z̄kζ

=
n

∑
k=1

Z∗
k ⊙ ∇̂Zkζ + Z̄∗

k ⊙ ∇̂Z̄kζ. (2.10)

By comparing the types ∑nk=1Z
∗
k ⊙ ∇̂Zkζ ∈ Sp+1,q(M) and ∑nk=1 Z̄

∗
k ⊙ ∇̂Z̄kζ ∈ Sp,q+1(M) we have

the following result.

Lemma 2.2.11. For a unitary connection it holds

δ1,0ζ =
n

∑
k=1

Z∗
k ⊙ ∇̂Zkζ and δ0,1ζ =

n

∑
k=1

Z̄∗
k ⊙ ∇̂Z̄kζ.

Analogously, we determine the local expressions of the formal adjoint operators of δ1,0 resp.
δ0,1

(δ1,0)∗ ∶ Sp,q(M) → Sp−1,q(M) and (δ0,1)∗ ∶ Sp,q(M) → Sp,q−1(M).

Using the equality Z∗
k = 2Z̄♭

k and Z̄∗
k = 2Z♭

k we obtain

(δζ,ψ) =
n

∑
k=1

(Z∗
k ⊙ ∇̂Zkζ,ψ) + (Z̄∗

k ⊙ ∇̂Z̄kζ,ψ)

= 2
n

∑
k=1

(∇̂Zkζ, Z̄k ⌟ ψ) + (∇̂Z̄kζ,Zk ⌟ ψ)

= −2
n

∑
k=1

(ζ, Z̄k ⌟ ∇̂Zkψ) + (ζ,Zk ⌟ ∇̂Z̄kψ) −Zk ⋅ (ζ, Z̄k ⌟ ψ) − Z̄k ⋅ (ζ,Zk ⌟ ψ).

Since the last two terms equal to div(Y1) and div(Y2) for

Y1 ∶= 2
n

∑
k=1

(ζ, Z̄k ⌟ ψ)Zk and Y2 ∶= 2
n

∑
k=1

(ζ,Zk ⌟ ψ)Z̄k

it follows again by comparing the types the local expressions of the formal adjoint operators.

Lemma 2.2.12. For a unitary connection it holds for a local unitary frame parallel at a point

δ1,0∗ζ = −2
n

∑
k=1

Zk ⌟ ∇̂Z̄kζ and δ0,1∗ζ = −2
n

∑
k=1

Z̄k ⌟ ∇̂Zkζ.
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Lemma 2.2.13. Let θ ∈ T ∗
xM ∖ {0} for some x ∈ M and ζ ∈ Γ(Sp,q(M)). Then the principal

symbols of δ1,0 and δ0,1 are given by

ps(δ1,0)(x, θ)ζx = i θ1,0 ⊙ ζx and ps(δ0,1)(x, θ)ζx = i θ0,1 ⊙ ζx,

where θ1,0 ∶= ∑nk=1 θ(Zk)Z∗
k and θ0,1 ∶= ∑nk=1 θ(Z̄k)Z̄∗

k are the corresponding projections of θ onto
T 1,0M resp. T 0,1M .

Proof. Choose a function f ∈ C∞(M), such that dfx = θ. Then by definition we obtain

ps(δ1,0)(x, θ)ζx = iδ1,0(f − f(x)ζ)x = i
n

∑
k=1

(Z∗
k ⊙ ∇̂Zk(f − f(x)ζ))x

= i
n

∑
k=1

(Z∗
k ⊙Zk(f)ζ)x = i

n

∑
k=1

θ(Zk)Z∗
k ⊙ ζx.

The formula for ps(δ0,1) follows analogously.

With the Remark 1.1.7 and above lemma we have

ps(δ1,0∗)(x, θ)ζx = −i(θ0,1)# ⌟ ζx and ps(δ0,1∗)(x, θ)ζx = −i(θ1,0)# ⌟ ζx.

In particular, we have

ps([δ1,0, δ1,0∗])(x, θ)ζx = θ1,0 ⊙ (θ0,1)# ⌟ ζx − (θ0,1)# ⌟ θ1,0 ⊙ ζx

= −g(θ1,0, θ0,1) ζx

= −1

2
g(θ, θ)ζx

ps([δ0,1, δ0,1∗])(x, θ)ζx = θ0,1 ⊙ (θ1,0)# ⌟ ζx − (θ1,0)# ⌟ θ0,1 ⊙ ζx

= −g(θ0,1, θ̄1,0) ζx

= −1

2
g(θ, θ)ζx.

Lemma 2.2.14. The operators ∆1,0 ∶= 2[δ1,0, δ1,0∗] and ∆0,1 ∶= 2[δ0,1, δ0,1∗] define Laplacians
on each Sp,q(M).

Corollary 2.2.15. The Lichnerowicz Laplacians ∆1,0 and ∆0,1 can be locally written as

∆1,0 = 4
n

∑
j=1

∇̂Z̄j ∇̂Zjζ + 4
n

∑
j,k=1

Z∗
j ⊙Zk ⌟ R̂(Z̄k, Zj)ζ

∆0,1 = 4
n

∑
j=1

∇̂Zj ∇̂Z̄jζ + 4
n

∑
j,k=1

Z̄∗
j ⊙ Z̄k ⌟ R̂(Zk, Z̄j)ζ.



2.2. Complex symmetric algebra of M 31

Proof. The proof is a straightforward calculation using a unitary connection and a frame parallel
at some point of M .

[δ1,0, δ1,0∗]ζ = δ1,0δ1,0∗ζ − δ1,0∗δ1,0ζ

= 2
n

∑
j,k=1

−Z∗
k ⊙ ∇̂Zk(Zj ⌟ ∇̂Z̄jζ) +Zk ⌟ ∇̂Z̄k(Z∗

j ⊙ ∇̂Zjζ)

= 2
n

∑
j=1

∇̂Z̄j ∇̂Zjζ + 2
n

∑
j,k=1

Z∗
j ⊙Zk ⌟ ∇̂Z̄k∇̂Zjζ −Z∗

k ⊙Zj ⌟ ∇̂Zk∇̂Z̄jζ

= 2
n

∑
j=1

∇̂Z̄j ∇̂Zjζ + 2
n

∑
j,k=1

Z∗
j ⊙Zk ⌟ R̂(Z̄k, Zj)ζ.

The formula for ∆0,1 follows analogously.

Remark 2.2.16. The Lichnerowicz Laplacians ∆1,0 and ∆0,1 can be locally also written as

∆1,0 = −∇̂∗∇̂ζ + 4
n

∑
j,k=1

Z∗
j ⊙Zk ⌟ R̂(Z̄k, Zj)ζ − i

n

∑
j=1

R̂(ej, Jej)ζ

∆0,1 = −∇̂∗∇̂ζ + 4
n

∑
j,k=1

Z̄∗
j ⊙ Z̄k ⌟ R̂(Zk, Z̄j)ζ + i

n

∑
j=1

R̂(ej, Jej)ζ.

Just observe for this purpose, that

4
n

∑
j=1

∇2ζ(Z̄j, Zj) = 4
n

∑
j=1

(∇Z̄j∇Zj +∇∇Z̄j
Zj)ζ

=
2n

∑
j=1

(∇ej∇ej −∇∇ej ej
)ϕ − i

n

∑
j=1

(∇ej∇Jej −∇Jej∇ej −∇∇ejJej−∇Jej ej
)ζ

=
2n

∑
j=1

∇2ζ(ej, ej) − i
n

∑
j=1

(∇ej∇Jej −∇Jej∇ej −∇T (ej ,Jej)+[ej ,Jej])ζ

= −∇̂∗∇̂ϕ − i
n

∑
j=1

R̂(ej, Jej)ζ

and analogously

4
n

∑
j=1

∇2ζ(Zj, Z̄j) = −∇̂∗∇̂ϕ + i
n

∑
j=1

R̂(ej, Jej)ζ.
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Metaplectic structures on manifolds

3.1 The group Mpc(V,Ω)

In the following we keep considering a triple (V,Ω, j), where (V,Ω) is a symplectic vector space
and j an Ω−compatible complex structure on V , and the induced 2-forms g and h (cf. the
definitions in (1.2) and (1.3)). We will hence omit the reference of the triple in the notations,
i. e. we shall write throughout this section e. g. Sp, Mp instead of Sp(V,Ω), Mp(V,Ω) etc.

As already mentioned in the first chapter, the unitary group U(Vj) is a maximal compact
subgroup of Sp. Thus, the symplectic group is connected and non-compact and the inclusion
ι ∶ U(Vj) ↪ Sp induces an isomorphism between the corresponding fundamental groups

π1(Sp) ≅ π1(U(Vj)) ≅ Z. (3.1)

Hence, there is up to isomorphism a unique connected space Mp, such that π ∶ Mp
2∶1Ð→ Sp.

Besides, Sp is a Lie group, that means Mp may be equipped with a unique structure of a Lie
group, such that π becomes a Lie group homomorphism.

Definition 3.1.1. The Lie group Mp is called the metaplectic group.

Note, that since the Lie group Mp is a double cover of the symplectic group, the kernel of the
covering map π is a subgroup of Mp consisting of two elements and can be hence identified
with Z2, that is kerπ ∶= {±I}. The quotient of the direct product Mp × S1 by the two-element
subgroup generated by (−I,−1) is a well-defined Lie group and will be denoted by Mpc. That
is

Mpc ∶=Mp ×Z2 S1.



34 Chapter 3. Metaplectic structures on manifolds

The following Lie group homomorphisms arise in a natural way

σ ∶Mpc Ð→ Sp, σ([A, z]) ∶= π(A)

` ∶Mpc Ð→ S1, `([A, z]) ∶= z2

ι ∶ S1 Ð→Mpc, ι(z) ∶= [I, z]

and yield the non-split short exact sequences

1 1

Mp Sp

Mpc

S1 S1

1 1

`

σ

π

z z→ z2

(3.2)

On the other hand, the sequence of the double coverings

Mp × S1 Mpc Sp × S1,
p ∶= σ × `

yields a sequence of injective group homomorphisms between the corresponding fundamental
groups

Z⊕Z π1(Mpc) Z⊕Z.

Lemma 3.1.2. The fundamental group of Mpc is isomorphic to Z⊕Z.

3.1.1 A Lie group homomorphism from U(Vj) to Mpc. We observe, that there is a
Lie group homomorphism from U(Vj) to Mpc. The existence will essentially follow from the
following proposition.

Proposition 3.1.3 (Lifting criterion (cf. [11], Proposition 1.33.)). Let p ∶ X̃ Ð→X be a covering
and f ∶ Y Ð→ X be a continuous map with Y path-connected and locally path-connected. Then
there is a lift f̃ ∶ Y Ð→ X̃ of f if and only if im(f∗) ⊆ im(p∗).

We apply the lifting criterion to the injective Lie group homomorphism

f ∶ U(Vj) Ð→ Sp × S1, f(k) ∶= (k,detk)

and the double covering

p ∶Mpc Ð→ Sp × S1, p([A, z]) ∶= (π(A), z2),
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such that we obtain the following diagram

Mpc

U(Vj) Sp × S1.
f

p

Now we observe, that the inclusion U(Vj) ↪ Sp and det ∶ U(Vj) Ð→ S1 induce isomorphisms
between the corresponding fundamental groups, thus

im(f∗) = {(m,m) ∈ Z2 ∣ m ∈ Z} ⊂ π1(Sp × S1).

On the other hand, the fundamental group π1(Sp × S1) ≅ π1(Sp) ⊕ π1(S1) ≅ Z⊕ Z has exactly
three non-conjugate subgroups of index 2

Z⊕ 2Z, 2Z⊕Z, {(m,n) ∈ Z2 ∣ m + n ≡ 0 mod 2} ,

so there are up to isomorphism three non-equivalent double coverings of Sp× S1, which can be
listed directly, namely

Sp × S1 Mp × S1 Mpc

(g, z) z→ (g, z2) (A, z) z→ (π(A), z) [A, z] z→ (π(A), z2)

The first two coverings correspond to Z⊕ 2Z and 2Z⊕Z respectively, such that

im(p∗) = {(m,n) ∈ Z2 ∣ m + n ≡ 0 mod 2} .

It follows, that im(f∗) ⊆ im(p∗), thus the lifting criterion yields the existence of a desired lift f̃
of f to Mpc.

Corollary 3.1.4. There is a Lie group homomorphism f̃ ∶ U(Vj) Ð→Mpc, such that

σ ○ f̃ = idU(Vj).

3.1.2 The double covering of the unitary group. To give an explicit description of f̃ , we
have to look by its construction at the preimage of U(Vj) ⊂ Sp under the covering projection
π, since it is involved in σ. We define

MU ∶= π−1(U(Vj)) ⊂Mp

and state the next proposition.

Proposition 3.1.5. MU ≅ {(k, ζ) ∈ U(n) × S1 ∣ ζ2 = detk} .
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It is clear, that both of the spaces in the upper proposition are double covering spaces of the
unitary group. That is, the assertion follows, once it is shown, that the both of the spaces are
connected, where the connectedness of MU follows immediately from the next lemma.

Lemma 3.1.6. Let ρ ∶ X̃ Ð→ X be a regular n−covering and Y a path-connected and locally
path-connected subset of X. If there is a lift ι̃ of the inclusion ι ∶ Y ↪ X, then the preimage of
Y by ρ is homeomorphic to the disjoint union of n copies of Y .

Proof. For all y ∈ Y there is exactly one ỹ ∈ ρ−1(y) satisfying ỹ ∈ im(ι̃). Thus the statement
follows immediately by continuity and injectivity of ι̃.

Proof of the Proposition 3.1.5. Since the image of π∗ is a proper subgroup of π1(Sp), while the
map ι∗ is by the equation (3.1) an isomorphism, there is by the lifting criterion no lift of the
inclusion ι ∶ U(Vj) ↪Mp. Thus, MU is path-connected.

To see, that {(k, ζ) ∈ U(n) × S1 ∣ ζ2 = detk} is connected as well, we construct a path connecting
all the possible elements with the identity (In,1). So let k be an element of U(n) and c ∶
[0,1] Ð→ U(n) be a path with c(0) = In and c(1) = k. The composition γ ∶= det ○c being a
continuous path in S1 lifts under the double covering S1 Ð→ S1 to a unique path γ̃ in S1 starting
at 1 and ending at some ζ1 ∈ S1 with {ζ1, ζ−1} =

√
detk. That is,

γ̃(0) = 1, γ̃(1) = ζ1 and γ̃(t)2 = γ(t), ∀t ∈ [0,1].

The point now is to find a path connecting (k, ζ1) with (k, ζ−1). Consider for this purpose a
loop in U(n) at k defined by

l ∶ [0,1] Ð→ Cn×n, l(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

e2πit

1

⋱
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⋅ k.

Then it yields
l(0) = l(1) = k and δ(t) ∶= det l(t) = e2πit detk.

That means, δ is a loop in S1 at detk, which is a representative of the generator of π1(S1).
That means further, that any of the two lifts of δ under the double covering S1 Ð→ S1 is not a
loop, but a path connecting ζ1 with ζ−1. If δ̃ is the lift starting at ζ1, then the path product of
γ̃ with δ̃ yields a desired path.

Having the description of MU the lift f̃ ∶ U(Vj) Ð→ Mpc of f being a well-defined Lie group
homomorphism can be now by the definition of f explicitly described as

f̃(k) = [(k, ξ), ξ],

where k ∈ U(Vj) and ξ2 = detk.
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3.1.3 A maximal compact subgroup of Mpc. The Cartan-Iwasawa-Malcev theorem yields
the existence of a maximal compact subgroup in Mpc and with the next lemma we obtain a
candidate for such a subgroup.

Lemma 3.1.7. Let λ ∶ G Ð→ H be a surjective Lie group homomorphism between two Lie
groups G and H, where H is non-compact. If K ⊂ H is a maximal compact subgroup of H,
then λ−1(K) is a maximal compact subgroup of G.

Proof. Let G′ be a compact subgroup of G such that

λ−1(K) ⊆ G′ ⊆ G. (3.3)

Applying λ to (3.3), we obtain by surjectivity of λ

K = λ(λ−1(K)) ⊆ λ(G′) ⊆ λ(G) =H. (3.4)

Since λ is a Lie group homomorphism, λ(G′) is a compact Lie subgroup of H and because K
is maximal compact, it yields by (3.4)

λ(G′) =K or λ(G′) =H,

where λ(G′) ≠ H, since H is non-compact. So the only possible case remains λ(G′) = K.
Application of λ−1 yields

G′ ⊆ λ−1(λ(G′)) = λ−1(K),

so we get the inclusion G′ ⊆ λ−1(K) and together with the inclusion in the equation (3.3) we
obtain the equality G′ = λ−1(K).

Since U(Vj) is maximal compact in Sp and σ ∶Mpc Ð→ Sp is a surjective Lie group homomor-
phism, the preimage of U(Vj) under σ, denoted by

MU c ∶= σ−1(U(Vj)) = {[(k, ξ), z] ∣ (k, ξ) ∈MU, z ∈ S1} ,

is by the previous lemma a maximal compact subgroup in Mpc. The next corollary describes
the structure of the Lie group MU c.

Corollary 3.1.8. There is an isomorphism MU c ≅ U(Vj) × S1.

Proof. Consider the map

χ ∶MU c Ð→ S1, [(k, ξ), z] z→ ξ−1z.

Then χ is a well-defined Lie group homomorphism, which induces by definition of f̃ a short
exact sequence

1 U(Vj) MU c S1 1,
f̃ χ
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which is left split by the Corollary 3.1.4. The splitting lemma provides an isomorphism between
the Lie groups MU c and U(Vj) × S1 given by σ × χ.

Remark 3.1.9. The inverse of σ × χ is given by f̃ ⋅ ι.

3.1.4 A subgroup of Spinc isomorphic to MU c. By the Remark 1.1.4 the unitary group
U(Vj) can be also thought of as a subgroup of the special orthogonal group SO(V ). The
inclusion U(Vj) ↪ SO(V ) induces a surjective group homomorphism between the fundamental
groups (cf. [18], pp. 263), therefore there is no lift of the inclusion to the double covering
ρ ∶ Spin Ð→ SO(V ). For this reason, the preimage of U(Vj) ⊂ SO(V ) under ρ, denoted by
SpU , is path-connected and thus a double covering of U(Vj) as well.

Spin SpU MU Mp

SO(V ) U(Vj) Sp

π 2:1π2:1 ρ ρ

As the fundamental group π1(U(Vj)) is isomorphic to Z and there is only one subgroup in Z
of index 2, the groups MU nad SpU are isomorphic as (connected) covering spaces of U(Vj).
Hence, each of them can be regarded as a Lie subgroup of both Spin and Mp.

The Lie group Spinc, defined in complete analogy to Mpc as

Spinc ∶= Spin ×Z2 S1,

where Z2 is identified with ⟨(−I,−1)⟩ and {±I} = kerρ, possesses a subgroup isomorphic toMU c.
To determine this subgroup, consider the Lie group homomorphism λ ∶ Spinc Ð→ SO(V ), which
is defined analogous to σ. That is,

λ([A, z]) ∶= ρ(A).

Then SpU c ∶= λ−1(U(Vj)) is the desired subgroup, i.e. SpU c ≅MU c. Furthermore, the quotient
Spinc/SpU c describes the space of all complex structures on V with fixed orientation, since

Spinc/SpU c ≅ SO(V )/U(Vj).

Remark 3.1.10. The restriction of λ to SpU c coincides with the restriction of σ to MU c.

3.2 Reductions and extensions of structure groups

This section, which is largely based on the Section 2.5. in [1] and Chapter 2 in [12], intends to
recall some basics on constructions of principal bundles over a given manifold. Let G and H be
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some Lie groups and λ ∶ G Ð→ H a Lie group homomorphism. A bundle map ϕ of a principal
G-bundle P Ð→M into a principal H-bundle Q Ð→M is called λ−equivariant if for all p ∈ P
and g ∈ G it holds

ϕ(p.g) = ϕ(p).λ(g).

3.2.1 Reduction of the structure group. Let πP ∶ P Ð→M be a principal G-bundle and
λ ∶ H Ð→ G be a Lie group homomorphism. A λ−reduction of P is a pair (Q,f) consisting of
a principal H-bundle πQ ∶ QÐ→M and a smooth map f ∶ QÐ→ P such that

i) πP ○ f = πQ and

ii) f is λ−equivariant.
These requirements for Q and f can be illustrated
by the commutativity of each part of the diagram on

P ×G // P πP //M

Q ×H //

f×λ

OO

Q

f

OO

πQ

::

the right. If H ⊆ G is a Lie subgroup of G and λ is the inclusion map then a λ−reduction (Q,f)
of P is simply referred to as a reduction of P to H.

By an appropriate choice of an open subset U ofM , we can achieve
the following identification

π−1
P (U) ≃ U ×G and QU ∶= π−1

Q (U) ≃ U ×H.

That is, the map f can be locally thought of as f ∣
QU

≃ idU ×λ. As

π−1
P (U) ≃ U ×G

π−1
Q (U)

f

OO

≃ U ×H

idU×λ

OO

a consequence, the local properties of λ can be carried over to f , e. g.

• if λ is a covering map, then the same holds for f .

• if H ⊆ G is a Lie subgroup of G and λ = ι is the inclusion map, the map f ∶ Q Ð→ P is
then an injective immersion, i. e. f(Q) is a submanifold of P .

Theorem 3.2.1 (Cf. Satz 2.16 in [1]). Let G be a connected, non-compact Lie group and P
be a principal G-bundle over a manifold M . Then P is reducible to every maximal compact
subgroup K ⊂ G.

Definition 3.2.2 (Isomorphic principal bundles). Two principal G-bundles π ∶ P → M and
π′ ∶ P ′ → M over the same manifold M are said to be isomorphic, if there is a G−equivariant
and fiber-preserving diffeomorphism Φ ∶ P Ð→ P ′.
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Theorem 3.2.3. Let M be a manifold, G,H be some Lie groups, λ ∶ G Ð→ H be a Lie group
homomorphism, K ⊂H a Lie subgroup of H and L ∶= λ−1(K) ⊂ G . Let further

• πP ′ ∶ P ′ Ð→M be a principal G-bundle,

• πP ∶ P Ð→M be a principal H-bundle,

• πQ ∶ QÐ→M be a reduction of P to K and

• ϕ ∶ P ′ Ð→ P be a λ−equivariant bundle map.

P ′
ϕ

//

G

((
P H //M

Q′

OO

Q

OO

K

::

Then the restriction of πP ′ to Q′ ∶= ϕ−1(Q) is a principal L-bundle over M .

Proof. Let U be an open subset of M such that we obtain the diagram on the right. Since we
can locally identify the map ϕ with idU ×λ,
we obtain

ϕ−1(π−1
Q (U)) ≃ U ×L.

Therefore, Q′ is locally trivial and because
ϕ is fiber-preserving the fibers of Q′ are
especially given by

U ×G
idU×λ

((

≃ π−1
P ′(U) ϕ

// π−1
P (U) ≃ U ×H

π−1
Q (U)
?�

OO

≃ U ×K.?�

idU×ιK

OO

Q′
x = ϕ−1(π−1

Q ({x})) = ϕ−1(Qx).

Let p ∈ Q′. Then there is some x ∈M such that p ∈ P ′
x. Since L is a subgroup of G, the action

of L on P ′
x is fiber-preserving, i. e. p.l ∈ P ′

x for all l ∈ L. Further it yields for all l ∈ L

ϕ(p.l) = ϕ(p).λ(l) ∈ Qx ⇒ p.l ∈ ϕ−1(Qx) = Q′
x, ∀l ∈ L.

So L acts fiber-preserving on the fibers of Q′.

Let next p1, p2 ∈ Q′
x = ϕ−1(Qx). Then ϕ(p1), ϕ(p2) are some elements of Qx, so there exists an

unique k ∈K such that ϕ(p2) = ϕ(p1).k. Regarding p1 and p2 as elements of Px there exists an
unique g ∈ G such that p2 = p1.g. Applying ϕ yields

Qx ∋ ϕ(p2) = ϕ(p1).λ(g)

and we have g ∈ λ−1(k) ⊂ L. So the action of L on Q′
x is transitive. Suppose next, there is some

l ∈ L such that p1 = p1.l. Again, if we think of p1 as an element of Px and l as an element of G
it then yields l = 1G. As a result we deduce that L acts fiber-preserving, freely and transitively
on the fibers of Q′.

Remark 3.2.4. If we let in the previous theorem the Lie groupK be maximal compact in H then
L = λ−1(K) is by the Lemma 3.1.7 maximal compact in G. That is, the principal G−bundle P ′

is reducible to L, where the reduction is given by ϕ−1(Q) with the obvious inclusion.



3.2. Reductions and extensions of structure groups 41

3.2.2 Extensions of principal fiber bundles. Next, we briefly sketch the inverse procedure
to the reduction of the structure group. For any Lie group homomorphism λ ∶H Ð→ G consider
the action of H on G given by

H ×GÐ→ G, (h, g) z→ h.g ∶= λ(h)g

and form then for a principal H-bundle Q over M the associated fiber bundle

P ∶= Q ×H,λ G

over M with fiber G. Such fiber bundle P is then referred to as the λ−extension of Q.

Theorem 3.2.5 (Cf. [1], Satz 2.18). Let λ ∶ H Ð→ G be a Lie group homomorphism and Q be
a principal H-bundle over M . Then it holds

i) The λ−extension P ∶= Q ×H,λ G of Q is a principal G-bundle over M .

ii) Let f ∶ QÐ→ P be the map f(q) = [q,1G]. Then (Q,f) is a λ−reduction of P .

iii) Let P be a principal G-bundle over M and (Q,f) be a λ−reduction of P . Then P is
isomorphic to the λ−extension of Q.

At the end we also observe, that if we let in the Theorem 3.2.5 the group H be a closed subgroup
of G and consider the action of G on the homogeneous space G/H

G ×G/H Ð→ G/H, (g, [a]) z→ [ga],

then there is a bundle isomorphism

P ×G G/H ≅ P /H, [p, g.H] ≃ (p.g).H. (3.5)

Theorem 3.2.6 ( [1], Satz 2.14). A principal G−bundle is reducible to a closed subgroup H ⊂ G
if and only if the associated fiber bundle P ×G G/H admits a global section.

Corollary 3.2.7. Let M be a manifold. Then it yields

i) If M admits a non-degenerate 2-form ω, then it admits an ω-compatible almost complex
structure J .

ii) If M admits an almost complex structure J , then it admits a non-degenerate 2-form ω

compatible with J .

Proof. If M carries a non-degenerate 2-form ω, then the symplectic frame bundle Sp(M,ω)
yields an Sp−structure on (M,ω). A choice of an Ω-compatible complex structure j for (V,Ω)
yields by the Theorem 3.2.1 a U(Vj)− structure onM . Applying the Theorem 3.2.6 to Sp(M,ω)
and U(Vj) and the fact

Sp(V,Ω)/U(Vj) ≅ J (V,Ω)
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we obtain an ω−compatible almost complex structure J as a global section of the fiber bundle

Sp(M,ω) ×Sp (Sp/U(Vj)).

On the other hand, any almost complex manifold (M,J) admits a non-degenerate 2-form.
Indeed, if g is an arbitrary Riemannian metric on M , define a 2-form g′ on M as

g′(X,Y ) ∶= g(X,Y ) + g(JX,JY ), X,Y ∈ TM.

Then g′ is a Riemannian metric on M as well, which additionally satisfies J∗g′ = g′, and the
corresponding fundamental form ω′ on M defined as

ω′(X,Y ) ∶= g′(JX,Y ), X,Y ∈ TM,

is a non-degenerate 2-form, which satisfies the both conditions in the Definition 1.2.1.

3.2.3 Pullback bundle. If π ∶ E Ð→M is a principal G−bundle over M and f ∶ N Ð→M is
a smooth map between two manifolds, then the pullback of E by f , defined as

f∗E ∶= {(x, e) ∈ N ×E ∣ f(x) = π(e)} ⊂ N ×E,

with the projection

pr1 ∶ f∗E Ð→M, (x, e) z→ x

is a principal G−bundle over M . The projection on the second factor yields a bundle map from
f∗E to E. In particular, there is an important special case given by the smooth map

f = ∆ ∶M Ð→M ×M, x↦ (x,x)

and a principal (G×H)−bundle E = P ×Q over M ×M , where P and Q are principal G− resp.
H−bundle over M . The pullback of P ×Q by ∆, denoted simply by

P ×M Q ∶= ∆∗(P ×Q),

is then a principal (G ×H)−bundle over M .

P ×M Q P ×Q

M M ×M

pr2

pr1

∆
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3.3 Existence and classification of the Mp(V,Ω)-structures

For an almost symplectic manifold (M,ω) we de-
fine an Mp-structure as a pair (P,φ), where

• P Ð→ (M,ω) is a principal Mp-bundle over
M and

• φ ∶ P Ð→ Sp(M,ω) a π−equivariant bundle
map.

P ×Mp

��

φ×π // Sp(M,ω) × Sp

��

P

Mp

��

φ // Sp(M,ω)

Sp

{{

(M,ω)

That means, that each part of the diagram on the right commutes. There is a topological
obstruction for a manifold to admit an Mp−structure, which is related to the Spin-geometry.

Theorem 3.3.1. An almost symplectic manifold admits a metaplectic structure if and only if
it admits a spin structure, i. e. if and only if the second Stiefel-Whitney class w2(M) of M is
trivial.

Proof. Suppose, (M,ω) admits a metaplectic structure (P,φ). Then Ũ(M) defined as the
preimage of U(M) under φ is by the Theorem 3.2.3 a principal MU−bundle over M . Since
the Lie group MU can be by the Section 3.1.4 thought of as a subgroup of Spin the associated
fiber bundle

PSpin ∶= Ũ(M) ×MU Spin

is a principal Spin−bundle over M . Together with the Spin−equivariant bundle map

ϑ ∶ PSpin Ð→ SO(M), ϑ([ũ,B]) = φ(ũ).ρ(B),

for ũ ∈ Ũ(M) and B ∈ Spin, the pair (PSpin, ϑ) is a Spin−structure on M .

PSpin Ũ(M) P

SO(M) U(M) Sp(M,ω)

φϑ 2:1

The very same argumentation and construction applied to the preimage of U(M) under ϑ yield
an Mp−structure on M .

It is not hard to see, that isomorphic Mp−structures induce isomorphic Spin−structures over
M and vice versa. Indeed, if there are two isomorphicMp−structures (P,φ) and (P ′, φ′) onM ,
i. e. there is an Mp−equivariant and fiber-preserving diffeomorphism Φ ∶ P Ð→ P ′. Then the
restriction of Φ to Ũ(M) yelds a well-defined isomorphism between Ũ(M) and φ′−1(U(M)). So
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the induced Spin−structures are isomorphic as well. By the same argumentation we conclude,
that isomorphic Spin−structures induce isomorphic Mp−structures on (M,ω). We state this
result in the following corollary.

Corollary 3.3.2. There is an one-to-one correspondence

⎧⎪⎪⎨⎪⎪⎩

Isomorphism classes of
metaplectic structures on M

⎫⎪⎪⎬⎪⎪⎭

1∶1←→
⎧⎪⎪⎨⎪⎪⎩

Isomorphism classes of
spin structures on M

⎫⎪⎪⎬⎪⎪⎭
.

3.4 Existence and classification of the Mpc(V,Ω)−structures

We define the Mpc−structure on (M,ω) in complete analogy to the Mp−structure as a pair
(P,ϕ), where

• P Ð→ (M,ω) is a principal Mpc-bundle over M and

• ϕ ∶ P Ð→ Sp(M,ω) a σ−equivariant bundle map.

Theorem 3.4.1. A manifold admits an Mpc−structure if and only if it admits an almost
complex structure.

Proof. The structure group of any almost complex manifold can be reduced to the unitary
group, since any complex vector bundle admits a Hermitian metric. By using the map f̃ from
the Corollary 3.1.4 the Mpc−structure is obtained by the associated principal Mpc−bundle

U(M) ×U(Vj),f̃
Mpc

and the map φ ∶ [q,A] z→ q.σ(A).

For the converse, if M admits an Mpc−structure, it admits by definition an almost symplectic
form and the assertion follows by the Corollary 3.2.7.

3.4.1 Reductions of the Mpc−structure to MU c. Let (M,ω) be an almost symplectic
manifold, J an ω−compatible almost complex structure on M and U(M) the corresponding
unitary frame bundle over M . Assume further, there is a principal S1-bundle L Ð→M . Then
the pullback bundle

U(M) ×M L = ∆∗(U(M) × L)

of U(M) ×L under the diagonal map ∆ ∶M Ð→M ×M, x↦ (x,x) is a principal (U(Vj) × S1)
-bundle over M . By identifying U(Vj) × S1 with MU c via the Corollary 3.1.8 as a subgroup of
Mpc, the extension

(U(M) ×M L) ×MUc Mpc



3.4. Existence and classification of the Mpc(V,Ω)−structures 45

is a principal Mpc-bundle over M and U(M)×M L is by the Theorem 3.2.5 its reduction to the
maximal compact subgroup.

(U(M) ×M L) ×MUc Mpc ϕ
//

Mpc

**

Sp(M,ω) Sp
// (M,ω)

(U(M) ×M L)
?�

OO

MUc

@@

// U(M)

U(Vj)

88

?�

OO

L

S1

OO

The map ϕ ∶ ( U(M) ×M L) ×MUc Mpc Ð→ Sp(M,ω), given by

ϕ ∶ [(u, r),A] z→ u.σ(A),

yields anMpc−structure onM . On the other hand, sinceMU c is maximal compact inMpc, any
principalMpc−bundle P Ð→M is reducible toMU c. That is, there is a principalMU c−bundle
QÐ→M such that

P ≅ Q ×MUc Mpc. (3.6)

In the following, we will see, that any such reduction Q is isomorphic to the pullback bundle
U(M) ×M L for some principal S1−bundle L over M .

Denote by Mpc the set of all isomorphism classes of Mpc−structures on (M,ω). Since the ex-
tension of two isomorphic principal MU c−bundles to Mpc by injection result in two isomorphic
principal Mpc−bundles, we consider the two maps

⎧⎪⎪⎨⎪⎪⎩

Isomorphism classes of
principal S1-bundles over (M,ω)

⎫⎪⎪⎬⎪⎪⎭

Λ
.. Mpc

Υ
pp

by defining
Λ ∶ [L] z→ [((U(M) ×M L) ×MUc Mpc, ϕ)]

Υ ∶ [(P,φ)] z→ [Q ×MUc,χ S1],
where P is realized as the extension of some principal MU c−bundle QÐ→M as in (3.6).

Let L ∈ [L] be a representative and consider the image of L under Υ ○Λ. Define then the map
between these two principal S1−bundles by

f ∶ ( U(M) ×M L) ×MUc,χ S1 Ð→ L, [(u, r), ζ] Ð→ ζr. (3.7)

Then f is obviously smooth and fiber-preserving. Moreover, f is well-defined, that is, if (k, λ) ∈
MU c, then for any other representative of the class [(u, r), ζ] it holds

f([(u, r) ⋅ (k, λ), χ((k, λ)−1)ζ]) = f([(u ⋅ k, λr), λ−1ζ]) = ζr.
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Besides, f is S1−equivariant

f([(u, r), ζ] ⋅ λ) = f([(u, r), λζ])

= λζr = f([(u, r), ζ]) ⋅ λ

for λ ∈ S1. As an S1−equivariant bundle map between two principal S1−bundles f is an isomor-
phism, therefore Υ ○Λ = id.

On the other hand, the image of a representative (P,ϕ) under Υ is the principal S1-bundle
Q ×MUc,χ S1, where Q is a reduction of P to U(Vj), such that P ≅ Q ×MUc Mpc. Recall next,
since we can think of Q as a submanifold of P and of U(M) as a submanifold of Sp(M,ω), the
restriction of ϕ to Q is by definition σ−equivariant, i. e.

φ(p ⋅ (k, λ)) = φ(p) ⋅ σ(k, λ) = φ(p) ⋅ k

for all (k, λ) ∈ MU c. Using additionally the embedding of Q into Q ×MUc,χ S1 via q z→ [q,1]
we define the map

f ′ ∶ QÐ→ (U(M) ×M (Q ×MUc,χ S1)), q z→ (φ(q), [q,1]),

which is clearly well-defined, fiber-preserving and smooth. Furthermore, f ′ isMU c−equivariant,
since

f ′(q.(k, λ)) = (φ(q.(k, λ)), [q.(k, λ),1])

= (φ(q).k, [q, χ(k, λ)])

= (φ(q).k, [q, λ])

= (φ(q).k, [q,1].λ)

= (φ(q), [q,1]).(k, λ) = f ′(q).(k, λ).

So as an MU c−equivariant bundle map between two principal MU c−bundles f ′ is an isomo-
prhism, which implies, that the map Υ is the right inverse for Λ.

Remark 3.4.2 (Cf. [23], pp. 103-105). Any differentiable complex line bundle overM is uniquely
determined by its first Chern class in the second cohomology group H2(M,Z) and vice versa.

Thinking of line bundles as elements of H2(M,Z) yields the following theorem.

Theorem 3.4.3. Any almost symplectic manifold (M,ω) admits an Mpc−structure and there
is an one-to-one correspondence

H2(M,Z) 1∶1←→ Mpc.
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Remark 3.4.4. In view of the Remark 3.2.4 we note, that any reduction ofMpc−structure (P,ϕ)
to MU c is of the form:

ϕ−1(U(M)) ≅ U(M) ×M L

for some principal S1−bundle L over (M,ω). In particular, there are two distinguishedMpc−structures:

i) if the principal S1−bundle L is chosen to be trivial, then

U(M) ×M L ≅ U(M)

and it follows

P ≅ (U(M) ×M L) ×MUc Mpc

≅ U(M) ×U(Vj),f̃
Mpc.

So under the above correspondence the trivial principal S1−bundle corresponds to the
unitary frame bundle. This Mpc−structure is also referred to as the canonical one.

ii) if M admits a symplectic form ω with integral cohomology class, then there is a (holo-
morphic) line bundle L with c1(L) = [ω].

3.4.2 The action of H2(M,Z) on Mpc. Let (P,ϕ) be an Mpc−structure on M and L be
the corresponding line bundle over M . By identifying kerσ ⊂ Z(Mpc) with S1 it yields

Mpc ×kerσ S1 ≅ Mpc, [[A, z]Z2 , ξ]kerσ ≃ [A, zξ]Z2 . (3.8)

Lemma 3.4.5. Let L be a Hermitian line bundle over M and L(1) the corresponding principal
S1−bundle, then

(P ×M L(1))/kerσ

is a principal Mpc−bundle over M , which corresponds to the line bundle L⊗L.

Proof. We identify by the equation (3.5)

(P ×M L(1))/kerσ

(3.8)
≅ (P ×M L(1)) ×Mpc×S1 Mpc

and define

F ∶ (P ×M L(1)) ×Mpc×S1 Mpc Ð→ (U(M) ×M (L ⊗L)(1)) ×MUc Mpc

with the mapping rule

F ∶ [([(u, l),A], ζ),B] z→ [(u, l ⊗ ζ),AB].

F is obviously smooth and fiber-preserving. Moreover, it is well-defined, since for all (k, ξ) ∈
MU c and C ∈Mpc one has

[([(u, l),A], ζ),B] = [([(u, l).(k, ξ), (k, ξ)−1.A], ζ),B]
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= [([(u.k, ξl), (k, ξ)−1.A], ζ),B]

[([(u, l),A], ζ),B] = [([(u, l),A], ζ).(C, ξ), (C, ξ)−1.B]

= [([(u, l),AC], ζξ), ξ−1C−1B]

and

F ([([(u.k, ξl), (k, ξ)−1.A], ζ),B]) = [(u.k, ξl ⊗ ζ), (k, ξ)−1AB]

= [(u, l ⊗ ζ).(k, ξ), (k, ξ)−1AB]

= [(u, l ⊗ ζ),AB]

F ([([(u, l),AC], ζξ), ξ−1C−1B]) = [(u, l ⊗ ζξ),ACξ−1C−1B]

= [(u, l ⊗ ζ).ξ, ξ−1AB]

= [(u, l ⊗ ζ),AB].

Further, F is Mpc−equivariant, since for all C ∈Mpc it yields

F ([([(u, l),A], ζ),B].C) = F ([([(u, l),A], ζ),BC])

= [(u, l ⊗ ζ),ABC]

= [(u, l ⊗ ζ),AB].C

= F ([([(u, l),A], ζ),B]).C.

Having this correspondence we describe the induced action of H2(M,Z) on Mpc.

Corollary 3.4.6. Let P Ð→ M be a principal Mpc−bundle and L Ð→ M a Hermitian line
bundle over M . If we think of L as an element of H2(M,Z), then the action

H2(M,Z) ×Mpc Ð→ Mpc

(L, P ) z→ (P ×M L(1))/kerσ

is simply transitive.

Proof. Let L be the corresponding line bundle of P . Then the statement follows immediately
by the Theorem 3.4.3 and Lemma 3.4.5, since

(P ×M L(1))/kerσ ≃ L ⊗L ≃ c1(L) + c1(L).
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3.4.3 Mpc− and Spinc−structures. Let (P,ϕ) be an Mpc−structure over (M,ω). Denote
as usual by Q the reduction of P to MU c. Then by identifying MU c with SpU c ⊂ Spinc we
obtain a Spinc−structure given by the principal Spinc−bundle

E ∶= Q ×SpUc Spinc

and the Spinc−equivariant bundle map

ψ ∶ E Ð→ SO(V ), ψ([q,A]) ∶= ϕ(q).λ(A).

On the other hand, any Spinc−structure (E,ψ) on an almost complex manifold is by the
Theorem 3.2.6 reducible to SpU c. That is

E ≅ Q ×SpUc Spinc

for a principal SpU c−bundle Q Ð→ M . Realizing SpU c as a subgroup MU c of Mpc yields an
Mpc−structure (P,ϕ) given by the principal Mpc−bundle

P ∶= Q ×MUc Mpc

and the Mpc−equivariant bundle map

ϕ ∶ P Ð→ Sp(V ), ϕ([q,A]) ∶= ψ(q).σ(A).

This observation leads to the following lemma.

Lemma 3.4.7. On an almost complex manifold (M,J) there is an one-to-one correspondence
between the Spinc− and Mpc−structures.

Remark 3.4.8. The previous lemma does not hold without the assumption on the manifold to
be almost complex, since the class of manifolds admitting a Spinc−structure is bigger, than
the class of manifolds admitting an almost complex structure and thus an almost symplectic
structure. For example, S4 admits as a four dimensional manifold a Spinc−structure (cf. [22]),
while the only spheres admitting an almost complex structure are S2 and S6.





Chapter 4

The symplectic Dirac operator and the
corresponding Laplacian

In this last chapter we describe the symplectic Dirac-Dolbeault operators when acting on the
dense subbundle consisting of polynomial-valued spinor fields. In order to do so, we describe
first the identification of this subbundle with the tensor bundle L⊗S∗,0(M) and adjust then the
symplectic Clifford multiplication. After this, we describe the geometric interpretation of the
symplectic Dirac-Dolbeault operators and their commutator. We keep considering a complex
structure j on (V,Ω) and an almost complex structure J on (M,ω) as compatible with Ω resp.
ω and the naturally arising (Hermitian) inner product resp. metric on V resp. M .

4.1 Symplectic spinor bundle

We begin with the description of, how a symplectic spinor space, that is a vector space carrying
a representation of the metaplectic group, can be obtained. The most common way to do so is
to consider the Heisenberg group H(V,Ω), that is a Lie group V ×R with the multiplication

(v, t)(w, s) ∶= (v +w, t + s − 1

2
Ω(v,w)),

and its unitary irreducible representation, which is known to be either one-dimensional or
infinite-dimensional depending thereby on some parameter λ ∈ R.

If r denotes an irreducible representation of H(V,Ω), then λ appears by Schur’s lemma when
restricting r to the center {0}×R of H(V,Ω) and is therefore referred to as the central parameter
of r. The Stone-von Neumann theorem (cf. [7], (1.59) Theorem) gives a complete classification
of all unitary irreducible representations of a Heisenberg group with λ ≠ 0. It states, that any
unitary irreducible representations of the Heisenberg group on a complex separable Hilbert space
with the same non-zero central parameter are unitarily equivalent.



52 Chapter 4. The symplectic Dirac operator and the corresponding Laplacian

For the explicit description of this classification one usually uses the Schrödinger representations
on L2(W ) for a Lagrangian subspace W of (V,Ω). That is, if V is written as V =W ⊕U , then

(rλ(v, t)f)(x) ∶= eiλt e
⟨2x+λw,u⟩

2 f(x + λw),

where v = w + u with w ∈W and u ∈ U(cf. [7], Section 3 in Chapter 1). For our purposes it is
more convenient to realize the symplectic spinor space as a Segal-Bargmann space, denoted by
Fc, instead of L2(W ). These are defined as follows

f ∈ Fc ∶⇔ 1) f ∶ Vj → C entire and

2) ∥f∥c ∶= (πc)−n∫
Vj

∣f(z)∣2 e−
∥z∥2
c dz < ∞,

where c > 0 and dimC(Vj) = n. The change of the Hilbert spaces is justified by the isometries
Bc ∶ L2(W ) → Fc called the Bargmann transforms (cf. [7], Section 6 in Chapter 1). On this
space the unitary irreducible representations of the Heisenberg group corresponding to λ = −2

c

translates to the unitary multiple of the unitarized translations on Fc (cf. [10], Section 4.1).
That is

(rc(v, t)f)(z) ∶= e−
2it
c e

(2z−v,v)
2c f(z − v).

One of the advantages of using a Segal-Bargmann space is that the set of all monomials on
Vj is a complete orthogonal basis for any Fc with c > 0. In particular, the Segal-Bargmann
spaces are Hilbert space completions of the polynomial ring Po`(Vj) and, if we identify the
polynomials with the symmetric tensors S∗(V ∗

j ), it follows, that each Fc is a Fock space with
respect to its Hermitian inner product.

We fix in what follows a unitary irreducible representation r ofH(V,Ω) on some Segal-Bargmann
space Fc with the central parameter λ. Then the group Mpc appears in this context by observ-
ing, that the action of the symplectic group on H(V,Ω), given by

τg ∶H(V,Ω) →H(V,Ω), τg(v, t) ∶= (gv, t)

for g ∈ Sp, preserves its center. Hence the composition rg ∶= r ○ τg defines another unitary
representation of H(V,Ω) on Fc, which remains irreducible and has the same central parameter
λ. That means, there is by the Stone-von Neumann theorem a unitary operator Ug ∈ U(Fc),
such that

Ug ○ rg = r ○Ug. (4.1)

By Schur’s lemma the operator Ug is determined up to a scalar multiple by an element of the
circle group. The collection of all possible (g,Ug) ∈ Sp ×U(Fc) satisfying (4.1) defines a Lie
group isomorphic to Mpc (cf. [12], Section 2.2). The natural representation of Mpc on Fc,
obtained by the projection on the second factor

% ∶Mpc Ð→U(Fc), (g,Ug) z→ Ug
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is surely unitary and faithful, however not irreducible (cf. [21], 4.15 Corollary). Its restriction
to Mp was explicitly calculated for the generators of Sp (cf. [7], Chapter 4, Sections 2 and
3), which reveals, that the subspace Po`(Vj) ⊂ Fc is not preserved under the action of Mp.
Besides, the action of MU involves a square root of a complex number

Ukf(z) = det−
1
2 (k)f(k−1z),

which needs some additional clarification. This ambiguity caused by the square root can be
bypassed by passing to the group Mpc and the fact, that any representation of Mp extends to
a representation of Mpc by setting

%([A,λ])f = λ%(A)f

for all [A,λ] ∈ Mpc. Then by the identification of MU c with U(Vj) × S1 as in the Corollary
3.1.8, the action of MU c is given by

(%(k,Uk)f)(z) = λf(k−1z), (4.2)

where (k, λ) is the corresponding element of (k,Uk) in U(Vj) × S1.

Remark 4.1.1. This formula reveals two crucial properties of the MU c−action on polynomials.
First it not only leaves Po`(Vj) invariant, but also respects its decomposition by degrees, and
secondly, it coincides according to the Remark 1.1.8 with the induced action of the unitary
group U(Vj) together with the the obvious action of S1 when identifying Po`(Vj) with S∗(V ∗

j ).
This observation leads to the following lemma.

Lemma 4.1.2. The diagram below commutes.

MU c × Po`(Vj) Po`(Vj)

(U(Vj) × S1) × S∗(V ∗
j ) S∗(V ∗

j )

%

χ ⋅ (ρ ○ σ)
≃ ≃ (4.3)

The space of smooth vectors F∞
c of %, this is a subspace of Fc, on which the Lie algebra

representation %∗ of mpc is well-defined, is dense in Fc and contains Po`(Vj) (cf. [13], Theorem
3.15). To obtain the description of the action of the Lie algebramuc ofMU c we identifymuc with
u(Vj)⊕u(1) via the isomorphism σ∗×χ∗ from the Corollary 3.1.8. That means, for each Ξ ∈ muc,
which we identify with (σ∗(Ξ), χ∗(Ξ)) ∶= (κ,µ), we consider the curve (exp(tκ), exp(tµ)) and
differentiate the equation (4.2) at t = 0. Then we obtain

(%∗(Ξ)f)(z) = d

dt ∣t=0
(%(exp(t(κ,µ)))f)(z)

= d

dt ∣t=0
exp(tµ)f(exp(tκ)−1z)

= µf(z) − (∂zf)(κz)

(4.4)

for all f ∈ F∞
c .
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4.1.1 Symplectic spinor bundle. Let (P,ϕ) be anMpc−structure on (M,ω) determined by
a line bundle L. For a fixed c > 0 the symplectic spinor bundle can be defined as the associated
Hilbert space bundle

S̃ ∶= P ×Mpc,% F∞

and with the aid of an ω−compatible almost complex structure J on M the symplectic spinor
bundle can also be written as

S̃ = Q ×MUc,% F∞,

where Q is a reduction of P to MU c. As mentioned above, the space of polynomials Po`(Vj)
is invariant under the restriction of % to MU c and is a dense subspace of F∞, which allows to
consider the well-defined subbundle

S ∶= Q ×MUc,% Po`(Vj)

lying dense in S̃. If we additionally decompose Po`(Vj) by degrees as

Po`(Vj) =
∞

⊕
q=0

Hq(Vj),

where Hq(Vj) is the space of homogeneous polynomials of degree q on Vj, then by the Remark
4.1.1 we obtain a well-defined vector bundle

Sq ∶= Q ×MUc,%Hq(Vj). (4.5)

Being a complex vector bundle, it follows further by writing the restriction of % to MU c as
% = χ ⋅ (%′ ○ σ) (cf. the notation in the Remark 1.1.8 ii) and Corollary 3.1.8)

Sq = Q ×MUc,χ⋅(%′○σ) (C⊗CHq(Vj))

≅ (Q ×MUc,χ C) ⊗C (Q ×MUc,%′○σ Hq(Vj))

≅ (L ×S1 C) ⊗ (U(M) ×U(Vj),%′ Hq(Vj)).

Recall, that the line bundle L ×S1 C occurring above is isomorphic to the line bundle L, which
we chose for constructing the principal Mpc−bundle over M (cf. the Section 3.4.1 and, in
particular, the bundle isomorphism in (3.7)).

Finally, if we identify

Hq(Vj) ≅ Sq(V ∗
j ) ≅ Sq(V 1,0) = Sq,0(V )

by the isomorphism Φ and let the unitary group U(Vj) act on S∗,0(V ) as described in the
Section 1.1.5, then it yields

U(M) ×U(Vj),%′ Hq(Vj) ≅ U(M) ×U(Vj),ρ̂ S
q(V 1,0) ≅ Sq,0(M).
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Lemma 4.1.3. There is a bundle isomorphism

S ≅ L⊗ S∗,0(M).

Proof. To obtain the assertion we continue the above calculation

S = Q ×MUc,% Po`(Vj) =
∞

⊕
q=0

Q ×MUc,%Hq(Vj)

≅
∞

⊕
q=0

L⊗ Sq,0(M) = L⊗
∞

⊕
q=0

Sq,0(M)

= L⊗ S∗,0(M).

Remark 4.1.4. Thinking of S as in the above lemma provides the following basic observations.

1) If the line bundle L is chosen as
i) holomorphic, then S is holomorphic, provided J is a complex structure on M .
ii) trivial, then S is isomorphic to the symmetric algebra of T 1,0M .

2) A natural covariant derivative on S is obtained by choosing a covariant derivative ∇ on
TM , which induces a covariant derivative ∇̂ on S∗,0(M), and a covariant derivative ∇′

on the line bundle L. By defining

∇ ∶= ∇′ ⊗ 1 + 1⊗ ∇̂

we obtain a covariant derivative on S.

4.2 Symplectic Clifford multiplication

By taking the complexification of V and the complex bilinear extension of the inner product
we transfer the symmetric product and the contraction to the symmetric tensors on V 1,0 by
defining the linear maps

c,a ∶ V Ð→ End(S∗,0(V )), c(v)ζ ∶= v̄♭ ⊙ ζ and a(v)ζ ∶= v ⌟ ζ,

where v = 1
2(v − ijv) ∈ V ′ as defined in the Section 1.1.3. These operators satisfy the following

properties:

i) Since for any v ∈ V we have Φ(jv) = iΦ(v) = iv, the operator c is j−antilinear and a is
j−linear. That is

c(jv) = −ic(v) and a(jv) = ia(v).
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ii) For all k ∈ U(Vj) it yields

c(kv)(k ⋅ ζ) = k ⋅ (c(v)ζ)

a(kv)(k ⋅ ζ) = k ⋅ (a(v)ζ).
(4.6)

iii) The commutation relations

[c(v),c(w)] = [a(v),a(w)] = 0 and [a(v),c(w)] = 1

2
h(v,w)id.

iv) With respect to the induced Hermitian inner product on S∗,0(V ) it holds

(a(v)ζ, ζ ′) = (ζ,c(v)ζ ′) (4.7)

for all v ∈ V (cf. Remark 1.1.7).

Define for a symplectic vector space (V,Ω) the symplectic Clifford algebra, denoted by Cl(V ),
to be a unital associative algebra over C generated by V with the relations

v ⋅w −w ⋅ v = i Ω(v,w)1

for all v,w ∈ V . If Cl(V ) is additionally equipped with the Lie bracket

[a, b] ∶= a ⋅ b − b ⋅ a

for a, b ∈ Cl(V ), then (Cl(V ), [⋅, ⋅]) becomes a Lie algebra. The linear map

cl ∶ V Ð→ End(S∗,0(V )), cl(v) ∶= c(v) − a(v) (4.8)

satisfies then for all v,w ∈ V

[cl(v), cl(w)] = cl(v)cl(w) − cl(w)cl(v)

= [a(w),c(v)] + [c(w),a(v)]

= 1

2
h(w, v) − 1

2
h(v,w)

= i Ω(v,w).

That is, cl defines a (symplectic) Clifford multiplication (cf. [17], Definition 10.1.4).

To define the (symplectic) Clifford multiplication on S, we write by Lemma 1.1.9

TM = Q ×MUc,σ V and S = Q ×MUc,χ⋅ρ̂○σ S
∗,0(V ),

that is, any ξ ∈ Γ(S) is of the form ξ = [q, ζ]. Write additionally X = [q, v] ∈ Γ(TM) and define
the operators C and A by

C ∶ TM ⊗ S Ð→ S, X ⊗ ξ z→ [q,c(v)ζ] = Z̄♭
X ⊙ ξ

A ∶ TM ⊗ S Ð→ S, X ⊗ ξ z→ [q,a(v)ζ] = ZX ⌟ ξ.
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Then C and A are globally well-defined operators, since for all (λ, k) ∈ MU c we have by the
equation (4.6)

C([q ⋅ (λ, k), k−1v])([q ⋅ (λ, k), λ−1(k−1 ⋅ ζ)]) = [q ⋅ (λ, k), λ−1c(k−1 ⋅ v)(k−1 ⋅ ζ)]

= [q ⋅ (λ, k), λ−1k−1 ⋅ (c(v)ζ)]

= [q,c(v)ζ]

= C([q, v])([q, ζ])

and analogously

A([q ⋅ (λ, k), k−1 ⋅ v])([q ⋅ (λ, k), λ−1 (k−1 ⋅ ζ)]) = A([q, v])([q, ζ]).

Lemma 4.2.1. The bundle map Cl ∶= C −A defines a (symplectic) Clifford multiplication.

Remark 4.2.2. The operators A and C acting on holomorphic symmetric tensors inherit the
properties i) − iv) from the operators a and c listed above. That is

i) C(JX) = −iC(X) and A(JX) = iA(X).
ii) the commutation relations

[C(X),C(Y )] = [A(X),A(Y )] = 0 and [A(X),C(Y )] = 1

2
(X,Y )id. (4.9)

iii) the operators A and C are adjoint to each other with respect to the induced Hermitian
inner product on S. That is

(C(X)ξ, ξ′) = (ξ,A(X)ξ′) (4.10)

for any X ∈ TM .

4.2.1 Parallelity of the Clifford multiplication. We observe next, that the operators C
and A are parallel. Since by the definition of S the covariant derivative on M has to be chosen
as unitary, we obtain for all X ∈ Γ(TM) and ξ ∈ Γ(S). Then it yields

∇X(C(ej)ξ) = ∇X(Z̄♭
j) ⊙ ξ + Z̄♭

j ⊙∇Xξ

and on the other hand we have

C(∇Xej)ξ = Z∇Xej
♭ ⊙ ξ = (∇XZ̄j)♭ ⊙ ξ

and

C(ej)∇Xξ = Z̄♭
j ⊙∇Xξ.
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By observing, that for all Y ∈ T 1,0M we have

(∇XZ̄
♭
j)(Y ) =X(Z̄♭

j(Y )) − Z̄♭
j(∇XY ) =X(Z̄♭

j(Y )) − ⟨∇XY, Z̄j⟩

=X(Z̄♭
j(Y )) −X ⋅ ⟨Y, Z̄j⟩ + ⟨Y,∇XZ̄j⟩) = (∇XZ̄j)♭(Y ).

we conclude, that

∇X(C(ek)ξ) = C(∇Xek)ξ +C(ek)∇Xξ

for all X ∈ Γ(TM). Similarly, the operator A satisfies

∇X(A(ej)ξ) = ∇X(Zj ⌟ ξ) = (∇XZj) ⌟ ξ +Zj ⌟∇Xξ

= A(∇Xej)ξ +A(ej)∇Xξ

since ∇ is unitary and C−linear

Z∇Xej =
1

2
(∇Xej − iJ∇Xej) = ∇XZj.

Lemma 4.2.3. The Clifford multiplication as well as the operators A and C are parallel with
respect to a covariant derivative induced by a unitary connection on M .

4.3 The Laplacian induced by a symplectic Dirac operator

We begin this section with the definition of the symplectic Dirac operators on an almost sym-
plectic manifold (M,ω), describe then its splitting into the symplectic Dirac-Dolbeault operators
when decomposing the complexified tangent bundle by means of an almost complex structure
and give at the end the mentioned relation to the Lichnerowicz Laplacian.

Definition 4.3.1 (Symplectic Dirac operator). The symplectic Dirac operator D is defined as
the composition of the maps

D ∶ Γ(S) ∇
// Γ(T ∗M ⊗ S) ≅ω Γ(TM ⊗ S) Cl // Γ(S).

If the tangent bundle TM is identified with T ∗M by means of g instead of ω, the arising
operator is called the J-twisted symplectic Dirac operator

D̃ ∶ Γ(S) ∇
// Γ(T ∗M ⊗ S) ≅g Γ(TM ⊗ S) Cl // Γ(S).

The two different ways of the identification of the tangent bundle with the cotangent bundle,
give rise to the two different symplectic Dirac operators. To describe them locally we use a
special local frame {e1, . . . , e2n} for TM , where {e1, . . . , en} is a local unitary frame for TJM
and en+k = Jek for all 1 ≤ k ≤ n, and refer to it also as unitary (see also the Remark 1.1.4 i)).

To keep the notation short the Clifford multiplication will be simply denoted by a dot ⋅.
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Proposition 4.3.2. Let {e1, . . . , e2n} be a local unitary frame for TM . Then it yields

Dξ =
2n

∑
j=1

ej ⋅ ∇Jejξ = −
2n

∑
j=1

Jej ⋅ ∇ejξ and D̃ξ =
2n

∑
j=1

ej ⋅ ∇ejξ.

As already described in the Section 2.2 the decomposition of TCM into the eigenbundles of J
and the complex linear extension of ∇ yields the decomposition

∇1,0
X ∶= ∇ZX and ∇0,1

X ∶= ∇Z̄X ,

where 2ZX = X − iJX as in the Definition 2.7. This results in the decomposition of the
symplectic Dirac operator as

D1,0ξ ∶= −
2n

∑
j=1

Jej.∇1,0
ej
ξ and D0,1ξ ∶= −

2n

∑
j=1

Jej.∇0,1
ej
ξ.

Definition 4.3.3. These operators are called the symplectic Dirac-Dolbeault operators.

Proposition 4.3.4. The symplectic Dirac-Dolbeault operators satisfy

D =D1,0 +D0,1 and D̃ = i(D0,1 −D1,0). (4.11)

Proof. The first equation is obvious. The second equation follows essentially by the indepen-
dence of ∇ of the chosen local frame. That is, if {e1, . . . , e2n} is a local unitary frame for TM ,
then {Je1, . . . , Je2n} is a local unitary frame for TM as well and thus

D̃ξ =
2n

∑
j=1

Jej ⋅ ∇Jejξ =
2n

∑
j=1

Jej ⋅ (∇1,0
Jej
ξ +∇0,1

Jej
ξ)

=
2n

∑
j=1

Jej ⋅ (∇ZJej
ξ +∇Z̄Jej

ξ) =
2n

∑
j=1

Jek ⋅ (∇iZjξ +∇−iZ̄jξ)

=
2n

∑
j=1

Jej ⋅ (i∇1,0
ej
ξ − i∇0,1

ej
ξ) = i

2n

∑
j=1

Jej ⋅ (∇1,0
ej
ξ) − i

2n

∑
j=1

Jej ⋅ (∇0,1
ej
ξ)

= −iD1,0ξ + iD0,1ξ.

Next we observe, that the operator D1,0 can be expressed only in terms of C and the operator
D0,1 only in terms of A and the corresponding projections. That is, for all ξ ∈ Γ(S) we have

D1,0ξ = −1

2

2n

∑
j=1

Jej ⋅ ∇(ej−iJej)ξ = −
1

2
(

2n

∑
j=1

Jej ⋅ ∇ejξ − iJej ⋅ ∇Jejξ)

= 1

2
(

2n

∑
j=1

ej ⋅ ∇Jejξ + iJej ⋅ ∇Jejξ)
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= 1

2
(

2n

∑
j=1

(C(ej) −A(ej) +C(ej) +A(ej))∇Jejξ)

=
2n

∑
j=1

C(ej)∇Jejξ.

In addition it holds
2n

∑
j=1

C(ej)∇Jejξ = −
2n

∑
j=1

C(Jej)∇ejξ = i
2n

∑
j=1

C(ej)∇ejξ =
2n

∑
j=1

C(ej)∇iejξ

so we finally obtain

D1,0ξ = 1

2
(

2n

∑
j=1

C(ej)∇Jejξ +
2n

∑
j=1

C(ej)∇iejξ)

= 1

2
(

2n

∑
j=1

C(ej)∇i(ej−iJej)ξ) =
2n

∑
j=1

C(ej)∇1,0
Jej
ξ = 2i

n

∑
j=1

C(ej)∇1,0
ej
ξ.

With the same argumentation and calculation we obtain for all ξ ∈ Γ(S)

D0,1ξ = −
2n

∑
j=1

A(Jej)∇0,1
ej
ξ = −2i

n

∑
j=1

A(ej)∇0,1
ej
ξ.

The obtained expressions of the symplectic Dirac-Dolbeault operators in the above lemma
allows to formulate the following theorem.

Theorem 4.3.5. i) The operator D1,0 coincides with the symmetrization of ∇1,0, that is

D1,0 = i sym ○ ∇1,0.

ii) If dω = 0 and ∇ is the canonical Hermitian connection on M , the symplectic Dirac-
Dolbeault operators are formal adjoint to each other with respect to the induced Hermitian
L2−product on the compactly supported sections of S.

Proof. The first statement follows from the previous calculation and the definition of C, namely

D1,0ξ = 2i
n

∑
j=1

C(ej)∇1,0
ej
ξ = i

n

∑
j=1

2Z̄♭
j ⊙∇Zjξ = i

n

∑
j=1

Z∗
j ⊙∇Zjξ.

for ξ ∈ Γ(S). For the second statement we observe, that by definition of A we have

D0,1ξ = −2i
n

∑
j=1

A(ej)∇0,1
ej
ξ = −2i

n

∑
j=1

Zj ⌟∇Z̄jξ,

and a straight forward calculation yields

(D1,0ξ,ψ)L2 = (ξ,D0,1ψ)L2 + ∫
M

div(Y ) dM

with Y = ∑nj=1(ξ,Zj ⌟ ψ)Zj. Thus the assertion follows by the Corollary 2.2.7 in [9].
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A short straightforward verification of the definition analogous to that made in the Lemma
2.2.13 yields the following lemma.

Lemma 4.3.6. Let (x, θ) ∈ T ∗
xM ∖ {0} and ξx ∈ Sx. Then the principal symbol of D1,0 is given

by
ps(D1,0)(x, θ)ξx = i θ1,0 ⊙ ξx, (4.12)

where θ1,0 = ∑nj=1 θ(Zj)Z∗
j is the projection of θ onto T 1,0M .

Having the principal symbol of D1,0 the principal symbols of D, D̃ and D0,1 are then obtained
by the equation (4.11) and the Theorem 4.3.5 i). In particular, we have

ps(D0,1)(x, θ)ξx = ps(D1,0)∗(x, θ)ξx = −i(θ0,1)# ⌟ ξx,

such that the commutation relation (4.9), ensures the operator P ∶= 2 [D1,0,D0,1] to define a
Laplacian. It was shown in [9], that on Kähler manifolds the operator P satisfies the Weitzen-
böck formula. The following theorem shows, that for the canonical Hermitian connection the
Weitzenböck formula also holds on almost Kähler manifolds.

Theorem 4.3.7. With respect to the canonical Hermitian connection on an almost Kähler
manifold the Laplacian P satisfies the Weitzenböck formula and, if L is trivial, then P coincides
with the Lichnerowicz Laplacian −∆1,0.

Proof. Denote by ∇ = ∇′ ⊗ 1+ 1⊗ ∇̂ a covariant derivative on L⊗S∗,0(M) as mentioned in the
Remark 4.1.4 2), where ∇̂ is induced by the canonical Hermitian connection on M . Then for a
local unitary frame parallel at a point we obtain on the one hand

D1,0D0,1(λ⊗ ϕ) = −2iD1,0(
n

∑
j=1

Zj ⌟∇Z̄j(λ⊗ ϕ)) = −2iD1,0(
n

∑
j=1

Zj ⌟ (∇′

Z̄j
λ⊗ ϕ + λ⊗ ∇̂Z̄jϕ))

= −2i
n

∑
j=1

D1,0(∇′

Z̄j
λ⊗Zj ⌟ ϕ) + iD1,0(λ⊗ δ1,0∗ϕ)

= 2
n

∑
j,k=1

Z∗
k ⊙∇Zk(∇′

Z̄j
λ⊗Zj ⌟ ϕ) −

n

∑
k=1

Z∗
k ⊙∇Zk(λ⊗ δ1,0∗ϕ)

= 2
n

∑
j,k=1

∇′
Zk
∇′

Z̄j
λ⊗Z∗

k ⊙Zj ⌟ ϕ + 2
n

∑
j=1

∇′

Z̄j
λ⊗ δ1,0(Zj ⌟ ϕ)

−
n

∑
k=1

∇′
Zk
λ⊗Z∗

k ⊙ δ1,0∗ϕ − λ⊗ δ1,0δ1,0∗ϕ

= 2
n

∑
j,k=1

∇′
Zk
∇′

Z̄j
λ⊗Z∗

k ⊙Zj ⌟ ϕ + 2
n

∑
j=1

∇′

Z̄j
λ⊗ (−∇̂Zjϕ +Zj ⌟ δ1,0ϕ)

−
n

∑
k=1

∇′
Zk
λ⊗Z∗

k ⊙ δ1,0∗ϕ − λ⊗ δ1,0δ1,0∗ϕ



62 Chapter 4. The symplectic Dirac operator and the corresponding Laplacian

and on the other hand

D0,1D1,0(λ⊗ ϕ) = iD0,1(
n

∑
k=1

∇′
Zk
λ⊗Z∗

k ⊙ ϕ + λ⊗Z∗
k ⊙ ∇̂Zkϕ))

= i
n

∑
k=1

D0,1(∇′
Zk
λ⊗Z∗

k ⊙ ϕ) + iD0,1(λ⊗ δ1,0ϕ)

= 2
n

∑
j,k=1

Zj ⌟∇Z̄j(∇′
Zk
λ⊗Z∗

k ⊙ ϕ) + 2
n

∑
j=1

Zj ⌟∇Z̄j(λ⊗ δ1,0ϕ)

= 2
n

∑
j,k=1

∇′

Z̄j
∇′
Zk
λ⊗Zj ⌟Z∗

k ⊙ ϕ −
n

∑
k=1

∇′
Zk
λ⊗ δ1,0∗(Z∗

k ⊙ ϕ)

+ 2
n

∑
j=1

∇′

Z̄j
λ⊗Zj ⌟ δ1,0ϕ − λ⊗ δ1,0∗δ1,0ϕ

= 2
n

∑
j=1

∇′

Z̄j
∇′
Zj
λ⊗ ϕ + 2

n

∑
j,k=1

∇′

Z̄j
∇′
Zk
λ⊗Z∗

k ⊙Zj ⌟ ϕ

−
n

∑
k=1

∇′
Zk
λ⊗ (−2∇̂Z̄kϕ +Z∗

k ⊙ δ1,0∗ϕ)

+ 2
n

∑
j=1

∇′

Z̄j
λ⊗Zj ⌟ δ1,0ϕ − λ⊗ δ1,0∗δ1,0ϕ.

Denote the curvature of ∇ by R then we obtain further

P(λ⊗ ϕ) = 2[D1,0,D0,1](λ⊗ ϕ)

= −4
n

∑
j=1

∇′

Z̄j
∇′
Zj
λ⊗ ϕ − 4

n

∑
j,k=1

R′(Z̄j, Zk)λ⊗Z∗
k ⊙Zj ⌟ ϕ

− 4
n

∑
j=1

∇′

Z̄j
λ⊗ ∇̂Zjϕ +∇′

Zj
λ⊗ ∇̂Z̄jϕ − λ⊗∆1,0ϕ

= −4
n

∑
j=1

∇′

Z̄j
∇′
Zj
λ⊗ ϕ − 4

n

∑
j,k=1

R′(Z̄j, Zk)λ⊗Z∗
k ⊙Zj ⌟ ϕ

− 4
n

∑
j=1

∇′

Z̄j
λ⊗ ∇̂Zjϕ +∇′

Zj
λ⊗ ∇̂Z̄jϕ

− 4
n

∑
j=1

λ⊗ ∇̂Z̄j ∇̂Zjϕ − 4
n

∑
j,k=1

λ⊗Z∗
k ⊙Zj ⌟ R̂(Z̄j, Zk)ϕ

= −4
n

∑
j=1

∇Z̄j∇Zj(λ⊗ ϕ) − 4
n

∑
j,k=1

Z∗
k ⊙Zj ⌟R(Z̄j, Zk)(λ⊗ ϕ)

= ∇∗∇(λ⊗ ϕ) − 4
n

∑
j,k=1

Z∗
k ⊙Zj ⌟R(Z̄j, Zk)(λ⊗ ϕ) + i

n

∑
j=1

R(ej, Jej)(λ⊗ ϕ).

The comparison with the Theorem 2.2.15 completes the proof.
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Remark 4.3.8. i) If the curvature tensor R̃ of ∇̃ is decomposed by types as described in the
Lemma 1.2.7

R̃ = (R1 − S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈S2(λ1,1)

− A®
∈Λ2(λ1,1)

+ a(∇̃τ)⋆1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∈λ2,0⊗λ1,1

,

then the linear part of P involving ∇̃τ vanishes identically, simply because of its type,
and moreover it holds

n

∑
i,j,k,m=1

Ai
′
k̄′j′m′Z

∗
j ⊙Z∗

m ⊙Zk ⌟Zi ⌟ ϕ = −
n

∑
i,j,k,m=1

Aj̄
′

m′ ī′k̄′Z
∗
j ⊙Z∗

m ⊙Zk ⌟Zi ⌟ ϕ

= −
n

∑
i,j,k,m=1

Ak
′
ī′m′j′Z

∗
j ⊙Z∗

m ⊙Zk ⌟Zi ⌟ ϕ

= −
n

∑
i,j,k,m=1

Ai
′
k̄′j′m′Z

∗
j ⊙Z∗

m ⊙Zi ⌟Zk ⌟ ϕ.

Since additionally the Ricci tensor is symmetric, we conclude, that the terms of R̃ occur-
ring in the linear part of P involve only R1 and S.

ii) For the proof of the the Weitzenböck formula of P we could have used the expression of
P calculated in the Proposition 10 in [4], which reads

Pϕ = −∆ϕ +∇Jτϕ + i
2n

∑
j,k=1

Jej ⋅ ek ⋅ (R(ej, ek) − ∇T̃(ej ,ek)
)ϕ.

Then with respect to the canonical Hermitian connection on an almost Kähler mani-
fold the term involving τ vanishes by definition. Further on, by using additionally the
definition of the Clifford multiplication the operator P can be written as

Pϕ = −∆ϕ +
2n

∑
j,k=1

(C(ej)A(ek) −A(ej)C(ek))(R(ej, ek) − ∇T̃(ej ,ek)
)ϕ. (4.13)

To see, that the term involving the torsion vanishes for the canonical Hermitian connection
as well, we observe, that

2n

∑
j,k=1

C(ej)A(ek)∇T̃(ej ,ek)
ϕ =

n

∑
j,k=1

C(ej)A(ek)∇T̃(ej ,ek)
ϕ +C(Jej)A(ek)∇T̃(Jej ,ek)

ϕ

+C(ej)A(Jek)∇T̃(ej ,Jek)
ϕ +C(Jej)A(Jek)∇T̃(Jej ,Jek)

ϕ

=
n

∑
j,k=1

C(ej)A(ek)∇T̃(ej ,ek)
ϕ + iC(ej)A(ek)∇JT̃(ej ,ek)

ϕ

− iC(ej)A(ek)∇JT̃(ej ,ek)
ϕ −C(ej)A(ek)∇T̃(ej ,ek)

ϕ

= 0

and with the same calculation the sum ∑2n
j,k=1(C(ej)A(ek)−A(ej)C(ek))∇T̃ (ej ,ek)

vanishes
as well.
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