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Abstract

Global water resources are currently under unprecedented stress, which is projected

to increase due to the influence of multiple factors. Therefore, changes in governance

are urgently required to improve water management and water use efficiency while

maintaining the health of river systems and their water quantity and quality. Data

is crucial in this process; however, most rivers in the world remain ungauged, and

in data-scarce regions, the hydrometric and hydrometeorological networks of stations

have been decreasing during the last decades. This hinders the implementation of

proactive water management approaches that strive towards informed-based decision-

making.

This cumulative thesis shows how open access global precipitation products can

be evaluated, corrected, and used to predict streamflow at the daily temporal scale

in data-scarce regions in combination with ground-based measurements by following

a three-step approach: i) performance evaluation of different precipitation products

over regions with different climates and at multiple temporal scales; ii) development

of a novel merging method to improve the representation of precipitation at the

daily scale; and iii) assessment of the ability of the novel merged product altogether

with state-of-the-art precipitation products to predict daily streamflow over ungauged

catchments through the implementation of regionalisation approaches.

This thesis showed that the precipitation products perform differently depend-

ing on the temporal scale, elevation, and climate; and that these products still have

errors in detecting particular precipitation events. These insights served as a basis to

develop a novel merging procedure named RF-MEP, which combines data from pre-

cipitation products, ground-based measurements, and topographical features to im-

prove the characterisation of precipitation. RF-MEP proved to be a powerful method

as the precipitation errors at different temporal scales were substantially reduced,

outperforming state-of-the-art precipitation products and merging procedures. The
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precipitation product derived with RF-MEP has been included in a Chilean precipita-

tion monitor platform from the Center for Climate and Resilience Research (Mawün)

and users can apply this method in a friendly manner using the R package RFmerge.

This merged product altogether with three state-of-the-art precipitation products

was used to implement three regionalisation approaches by calibrating an HBV-like

hydrological model over 100 near-natural catchments in Chile. The results showed

that although these methods yielded relatively good performances, the precipitation

products corrected with daily gauge observations did not necessarily yield the best

hydrological and regionalisation performance.

Additionally, the hydrological regime of the catchments influenced the perfor-

mance of the evaluated regionalisation techniques, with the pluvio-nival and rain-

dominated catchments yielding the best and worst performance, respectively. This

cumulative dissertation shows that precipitation datasets can help to strive towards

informed-based decision-making in data-scarce regions. However, these regions of-

ten lack the infrastructure and human capacity to use this type of information effi-

ciently. Therefore, an informed-based decision-making process requires institutional

transitions and changes that help address water resources management’s present and

future challenges. In this sense, there is a need to move towards data-driven water re-

sources management by implementing strategic approaches that systematically build

the capacities and infrastructure of such regions.

Keywords: data scarcity, hydrological modelling, machine learning, merging

procedures, PUB, precipitation, precipitation products, Random Forest, regionalisa-

tion, remote sensing, RF-MEP
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Chapter 1

Introduction

1.1 Background

Global water resources are expected to come under increased stress due to the in-

fluence of multiple factors, such as i) overexplotation of surface and groundwater

(Rockström et al. 2012; Richey et al. 2015; Van Ginkel et al. 2018); ii) rising de-

mands of agricultural production and energy (Vörösmarty et al. 2000; Brauman et al.

2016; Qin et al. 2019); iii) climate change impacts (Konapala et al. 2020; Woolway

et al. 2020), the projected increase in the frequency and severity of droughts, heat-

waves, and floods in some regions (Vörösmarty et al. 2000; Whitfield 2012; Madsen

et al. 2014; Prudhomme et al. 2014; Blöschl et al. 2015; Mazdiyasni and AghaK-

ouchak 2015; Roudier et al. 2016; Van Vliet et al. 2016); and iv) population growth

(Schlosser et al. 2014; Wada et al. 2014; Kiguchi et al. 2015), among others. Irrigated

agriculture is the largest water consumer at the global scale, accounting for around

85–90% of water consumption (Vörösmarty et al. 2000; Oki and Kanae 2006; Zhang

et al. 2016; Brauman et al. 2016), followed by industrial and domestic water use,

which has quadrupled in the last 60 years (Flörke et al. 2018), and evaporative losses

from lakes and reservoirs (Brauman et al. 2016; Qin et al. 2019).

Recent studies indicate that the levels of water extraction will continue to de-

grade riverine ecosystems, reduce river’s streamflow, hindering the possibility to strive

towards sustainable water management (Wan et al. 2017; Sabater et al. 2018; Bond

et al. 2019). Therefore, changes in governance are urgently required to maintain the

health of river systems, streamflow levels, and water quality (Grafton et al. 2013),

which highlights the increased importance of water resources management and water

use efficiency.
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CHAPTER 1. INTRODUCTION

There is a need to move from sectorial-based management of water resources

and strive for an integrated approach that involves all sectors in an informed-based

decision-making process. Different efforts have been started in this direction, such

as the 2030 Agenda for Sustainable development (UN 2015), which aims to ensure

access to water and sanitation for the world’s population (Goal 6) and take urgent

action to combat climate change and its impacts (Goal 13). Similarly, there are a

plethora of national and multinational water management plans that strive to increase

access to drinking water and sanitation, and protect freshwater resources. Some

examples of these national and international plans are the EU Framework Directive

in Europe (Kallis and Butler 2001); the Clean Water Act in USA (Houck 2002); the

Report of Three Decades of Water Policy in Australia (Doolan et al. 2016); the Urban

Sanitation Policy in India (MoUD 2008); and the Report on the National Water

Reserves Program in Mexico (Barrios-Ordóñez et al. 2015). The implementation

of these plans and the involvement of key stakeholders is crucial as it is projected

that the world’s water demand will increase by 40% in 2030 (Connor et al. 2017).

Therefore, the execution of robust water resources management solutions that tackle

these complex water challenges requires the incorporation of cutting-edge information

and knowledge.

However, there are several challenges related to the availability of accurate sources

of data and information that can be used to strive towards an informed-based decision

making, such as i) the data reliability, which requires quality control, a uncertainty

evaluation, and an assessment of their sources(Zambrano-Bigiarini et al. 2017; Baez-

Villanueva et al. 2018; Kundzewicz et al. 2018); ii) the conversion of data into infor-

mation in a timely manner (Liu et al. 2015; Senay et al. 2015; Atmoko et al. 2017);

iii) the generation of useful information for users and stakeholders (Henriksen et al.

2018; Ahmad and Hossain 2019); iv) the reduction of operational costs (Calera et al.

2017; Andres et al. 2018); and v) the lack of general standards and protocols for data

management (Beal and Flynn 2015; Cominola et al. 2015; Cheong et al. 2016). Addi-

tionally, in many regions (especially in developing countries), relevant data that have

the potential to be used for water resources management (e.g., hydrometeorological

and agricultural monitoring networks) are often sparse or non-existent and have large

latency. Therefore, their use is impractical for real-time decision-making (Sheffield

et al. 2018). Several open-access global gridded products derived through remote

sensing data and reanalysis models have become operational in the past decades to

overcome this challenge. These products are often used as complementary informa-

tion for water resources management over diverse regions, although they are often

the only source of information over data-scarce settings (Sheffield et al. 2018).
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CHAPTER 1. INTRODUCTION

1.2 Information to improve water resources man-

agement in data-scarce environments

In many regions, the hydrometeorological monitoring networks have large latency

and are sparse, which hinders their use for real-time decision-making (Sheffield et al.

2018) and have been declining over the past 30 years due to an ongoing lack of invest-

ment and infrastructure maintenance (Lorenz and Kunstmann 2012; Fay et al. 2017;

Sheffield et al. 2018). The inclusion of additional information and knowledge such

as satellite data, complementary airborne monitoring systems, and the application of

tools that can generate runoff predictions over a range of spatio-temporal scales is

pivotal to improving water resources management (Blöschl et al. 2013; Cosgrove and

Loucks 2015).

Satellite-based and reanalysis products can be used to account for all compo-

nents of the hydrological cycle over data-scarce settings (McCabe et al. 2017), such

as precipitation, streamflow, actual and potential evaporation, soil moisture, snow

cover, and surface and subsurface water levels. Therefore, these products can be used

to provide valuable information for supporting water management, developing early

warning systems, and planning and designing associated infrastructure (Sheffield et al.

2018). Table 1.1 presents a summary of state-of-the-art hydrometeorological datasets

that can be used for water resources management.

Table 1.2 is adapted from Sheffield et al. (2018) and includes more examples for

water management (Hong et al. 2007a; Hellegers et al. 2010; Rossa et al. 2010; Hirpa

et al. 2013; Bello and Aina 2014; Brown et al. 2014; Senay et al. 2015; Eggimann

et al. 2017; Swain and Patra 2017; Herman et al. 2018; Zambrano-Bigiarini and Baez-

Villaneuva 2019; Beck et al. 2020a; Gerlitz et al. 2020; Baez-Villanueva et al. 2021;

Jurečka et al. 2021; Salvia et al. 2021) focusing on the water resources management

decisions that can be taken with the use of these hydrometeorological datasets. How-

ever, despite the potential that these products have for operational applications, they

are still subject to errors and uncertainties that hinder their use (Scanlon et al. 2016;

Baez-Villanueva et al. 2018; McNamara et al. 2021; Beck et al. 2021b); and therefore,

they must be evaluated before any hydrological, ecological, or agricultural application

(Zambrano-Bigiarini et al. 2017).
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CHAPTER 1. INTRODUCTION

Table 1.1: Summary of available open-access gridded products.

Product Spatio-temporal res. Spatial coverage Availability References

Precipitation

CHIRPSv2 0.05◦; daily 50◦N–50◦S 1981–present Funk et al. (2015)
CMORPHv1 0.072◦; 30-minutes 60◦N–60◦S 2002–present Xie et al. (2017)

ERA5 0.25◦; hourly Global 1950–present Hersbach et al. (2020)
ERA5 Land 0.10◦; hourly Global 1950–present Muñoz Sabater et al. (2021)

IMERG-FRv06 0.10◦; 30-minutes Global 2000–present Huffman et al. (2015)
MSWEPv2.8 0.10◦; 3-hourly Global 1979–present Beck et al. (2017a)
MSWXv1 0.10◦; 3-hourly Global 1979–7 months in future Beck et al. (2021a)
PERSIANN 0.25◦; hourly 60◦N–60◦S 2000–present Sorooshian et al. (2000)

PERSIANN-CCS 0.04◦; hourly 60◦N–60◦S 2003–present Hong et al. (2007b)
PERSIANN-CDR 0.25◦; hourly 60◦N–60◦S 1983–present Ashouri et al. (2015)

Actual evaporation

ERA5 0.25◦; hourly Global 1950–present Hersbach et al. (2020)
ERA5 Land 0.10◦; hourly Global 1950–present Muñoz Sabater et al. (2021)
GLEAMv3.5a 0.25◦; daily Global 1980–2020 Martens et al. (2017)
GLEAMv3.5b 0.25◦; daily Global 2003–2020 Martens et al. (2017)
MOD16A2 aqua 0.0043◦; 10-day Global 2008–present Mu et al. (2011)
MOD16A2 terra 0.0043◦; 10-day Global 2001–present Mu et al. (2011)

PMLv2 500 m; 8-day Global 2002–present Zhang et al. (2019)
SSEBop 0.0092◦; 10-day Global 2003–present Senay et al. (2013)

Potential evaporation

ERA5 0.25◦; hourly Global 1950–present Hersbach et al. (2020)
ERA5 Land 0.10◦; hourly Global 1950–present Muñoz Sabater et al. (2021)
GLEAMv3.5a 0.25◦; daily Global 1980–2020 Martens et al. (2017)
GLEAMv3.5b 0.25◦; daily Global 2003–2020 Martens et al. (2017)

hPET 0.10◦; hourly Global 1981–2020 Singer et al. (2021)
Soil moisture

ERA5 0.25◦; hourly Global 1950–present Hersbach et al. (2020)
ERA5 Land 0.10◦; hourly Global 1950–present Muñoz Sabater et al. (2021)
ESA-CCI 0.25◦; daily Global 1978–2020 Dorigo et al. (2017)

SMAP-L3SMPE 9 km; daily Global 2015–present Entekhabi et al. (2010)
SMAP-L4SM 9 km; 3-hourly Global 2015–present Entekhabi et al. (2010)

SMOS 0.25◦; 3-hourly Global 2010–present Kerr et al. (2010)
Snow cover

ERA5 0.25◦; hourly Global 1950–present Hersbach et al. (2020)
ERA5 Land 0.10◦; hourly Global 1950–present Muñoz Sabater et al. (2021)
ESA-SCFV 5 km; daily Global 1982–2019 Chen et al. (2021b)
MOD10A1 500 m; daily Global 2000–present Hall and Riggs (2007)
Storage

GRACE ∼300 km; monthly Global 2002–2017 Tapley et al. (2004)
GRACE-FO ∼300 km; monthly Global 2018–present Kornfeld et al. (2019)
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CHAPTER 1. INTRODUCTION

Table 1.2: Summary of water resources management decisions that can be made with
hydrometeorologial data. This table has been adapted from Sheffield et al. (2018).

Water resources management practice Hydrometeorological data and references

Planning and design

Design of flood controls Long-term precipitation, streamflow, and snow water equivalent in cold
areas (Rossa et al. 2010; Brown et al. 2014; Sheffield et al. 2018).

Design of hydropower systems Long-term precipitation, streamflow, and snow water equivalent in cold
areas (Sheffield et al. 2018).

Design of irrigation systems Long-term precipitation, streamflow, groundwater, and crop water use
(Sheffield et al. 2018).

Design of wastewater treatment systems Streamflow and groundwater (Eggimann et al. 2017; Sheffield et al. 2018).
Design of water supply systems Long-term precipitation, streamflow, and groundwater (Sheffield et al.

2018).
Transboundary water agreements (to analyse wa-
ter uses and needs, and design management strate-
gies)

Long-term precipitation, streamflow, groundwater, and water use records
(Sheffield et al. 2018).

Prediction of streamflow in ungauged catchments Long-term precipitation, temperature, potential evaporation, and
streamflow (Beck et al. 2020a; Baez-Villanueva et al. 2021).

Improvement of hydrological modelling Long-term precipitation, temperature, potential evaporation, and
streamflow (Herman et al. 2018).

Prediction of crop yield to support decision-
making

Precipitation and actual evaporation (Jurečka et al. 2021).

Management and operations

Water resources management (to satisfy water de-
mand given supply), water availability and con-
sumption

Real-time precipitation, evaporation, streamflow, and groundwater (Hel-
legers et al. 2010; Sheffield et al. 2018).

Water supply operations Real-time precipitation, evaporation, streamflow, groundwater, and pre-
cipitation forecasts (Sheffield et al. 2018).

Maximisation of hydropower production Real-time precipitation, evaporation, streamflow, groundwater, and pre-
cipitation forecasts (Sheffield et al. 2018).

Reservoir operations Real-time precipitation, evaporation, streamflow, snow water equivalent,
groundwater, and precipitation forecasts (Sheffield et al. 2018).

Wastewater management Real-time streamflow and groundwater data (Sheffield et al. 2018).
Irrigation system operations Real-time precipitation, evaporation, streamflow, groundwater, and soil

moisture (Sheffield et al. 2018).
Ecosystem management Near real-time precipitation, streamflow, water levels, soil moisture, and

water quality (Sheffield et al. 2018).
Water bodies management Precipitation and streamflow Eggimann et al. (2017).
Propagation of river flow waves Real-time and forecasts of precipitation (Hirpa et al. 2013).
Production of river flow nowcasts and forecasts Real-time and forecasts of precipitation, temperature, potential evapo-

ration, and snow water equivalent (Bello and Aina 2014; Gerlitz et al.
2020).

Disaster management

Crop monitoring and early warning systems Real-time precipitation, soil moisture, crop water needs, vegetation char-
acteristics, and precipitation forecasts (Sheffield et al. 2018).

Drought monitoring and early warning systems Real-time precipitation, temperature, evaporation, streamflow, ground-
water, soil moisture, precipitation forecasts (Senay et al. 2015; Swain
and Patra 2017; Sheffield et al. 2018; Zambrano-Bigiarini and Baez-
Villaneuva 2019; Salvia et al. 2021).

Detection of precipitation-triggered landslides Real-time precipitation (Hong et al. 2007a).
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1.3 The role of streamflow and precipitation

Daily streamflow data are crucial for a diverse range of operational and scientific appli-

cations such as water resources management (Mohammadi et al. 2020; Niu and Feng

2021); climate change assessment (e.g., Kling et al. 2012; Rojas et al. 2013; Mendoza

et al. 2016); and flood forecasting (e.g., Coughlan et al. 2016; Sharma et al. 2018),

among others. An accurate representation of daily streamflow can help to shift to-

wards proactive approaches of water management by relying on an information-based

decision-making process (see Table 1.2). This is of particular importance over arid

and semi-arid regions as water resources are more limited in such regions, which

may exacerbate the competition for water among different sectors. As streamflow

is the variable that draws the most attention from a water management perspective

(McCabe et al. 2017), a deep understanding of the water resources dynamics at the

catchment scale is crucial to achieve water security and sustainable water manage-

ment (Sheffield et al. 2018). However, the vast majority of rivers worldwide remain

ungauged (Young 2006; Beck et al. 2016); and therefore, there is a need to maintain

and improve the global and regional monitoring systems.

Additionally, to streamflow data, there is a need for information related to the

main variables that constitute the hydrological cycle and their inter-annual and intra-

annual variability (Walker 2000; Garćıa et al. 2016; Sheffield et al. 2018). In this sense,

precipitation is the main component of the water cycle; and therefore, its accurate

representation is crucial for water resources management (Eggimann et al. 2017).

Precipitation can be used for a wide range of applications related to water resources

management, such as i) flood monitoring and early warning systems through imple-

menting hydrological models, threshold runoff values, or numerical models (Liu et al.

2018; Corral et al. 2019; Hofmann and Schüttrumpf 2019); ii) drought monitoring

and early warning systems, by automating the computation of meteorological, soil

moisture, and hydrological indices (Zambrano-Bigiarini and Baez-Villaneuva 2019;

Salvia et al. 2021); iii) water demand and availability analysis, through the estima-

tion of water demand and supply (Hellegers et al. 2010; Sheffield et al. 2018); iv) dams

and hydropower plants operations, through the application of hydrological modelling,

forecasts, and climate projections (Wei and Xun 2019; Koppa et al. 2021; Zhao et al.

2021); and v) ecosystems and disaster management, to derive the hazard component

or river corridors (Wright et al. 2017; Tomsett and Leyland 2019).
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1.3.1 Precipitation products and their uncertainties

Rain gauges provide direct measurements of precipitation on a given spot and are

typically considered to be the source of reference data for precipitation observations

(Tapiador et al. 2012). However, in data-scarce settings, an accurate representation of

the spatio-temporal patterns of precipitation when only ground-based measurements

are used is subject to large uncertainties (Woldemeskel et al. 2013; Rana et al. 2015;

Adhikary et al. 2015; Xavier et al. 2016; Kidd et al. 2017). These uncertainties are

related to i) the lack of precipitation information over large areas, which is crucial to

evaluate the extent of a particular precipitation event, and ii) the lack of precipitation

stations at high altitudes, which may result in an underestimation of precipitation.

Therefore, complementary information can improve the characterisation of precipita-

tion at different temporal scales for further hydrological, ecological, and agricultural

applications.

In the last decades, several gridded precipitation products have been developed

using different data sources such as ground-based data, satellite-based information,

and reanalysis models. The products developed using ground-based data rely on

point-based measurements (Chen et al. 2008), which are interpolated through various

techniques and methods to produce continuous precipitation fields (e.g., CPC Unified;

Chen et al. 2008). These products could present larger errors in i) areas where ground-

based measurements were not used in their development (Wei et al. 2021) and ii) areas

far from the UTC ±00 due to the difference in reporting times between gauge stations

and gridded products (Beck et al. 2019a).

Satellite estimates are mainly based on infrared (IR), passive microwave (PMW)

data, or a combination of both. The methods that use IR data are based on the as-

sumption that cold cloud-top temperature is related to rain processes. Despite their

high temporal resolution, the estimates derived solely from IR data may face some

problems such as i) the interference of multi-layer cloud systems in the detection of

the cloud layer that is precipitating (Tapiador et al. 2012) and ii) the dependence of

the statistical relationship between cloud-top temperature and rainfall, seasonality,

and storm type (Vicente et al. 1998). On the other hand, PMW is a more direct ap-

proach to measure precipitation from satellites because PMW sensors use frequencies

at a range in which precipitation-sized particles absorb, emit, and scatter radiation

(Tapiador et al. 2012). Some challenges related to this approach are i) the revisiting

time of low-earth-orbit satellites that reduce the temporal resolution of the measure-

ments and ii) the beam-filling effect related to convective precipitation (Kummerow

1998).
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The reanalysis products provide a large number of atmospheric, land, and oceanic

climate variables and are based on forecast models and data assimilation systems to

generate a numerical description of the climate based on the combination of model

outputs with observations (ECMWF 2021). Some examples of reanalysis-based pre-

cipitation products are the reanalysis JRA-55 (Kobayashi et al. 2015), ERA-Interim

(Dee et al. 2011), and ERA5 (Hersbach et al. 2020). However, reanalysis products

present better performances over high latitudes as they present persistent, large-scale

stratiform precipitation systems (Beck et al. 2017b). Additionally, some products use

more than one of the aforementioned techniques to produce their estimates. For ex-

ample, the Multi-Source Weighted-Ensemble Precipitation (MSWEPv2.8; Beck et al.

2017a) and the Climate Hazards InfraRed Precipitation with Stations data version

2.0 (CHIRPSv2.0 Funk et al. 2015) incorporate satellite imagery, reanalysis data, and

ground-based measurements at the daily and monthly temporal scales, respectively.

Despite that these products provide an unprecedented opportunity to account for

the spatio-temporal distribution of precipitation, many studies that have evaluated

their performance have found that they are still subject to uncertainties and errors

(Espinoza Villar et al. 2009; Dinku et al. 2010; Melo et al. 2015; Beck et al. 2017b;

Zambrano-Bigiarini et al. 2017), which are related to the detection of single pre-

cipitation events, precipitation totals, and the distribution of precipitation intensity

(Beck et al. 2019a). In this sense, there is still not a global best-performing prod-

uct; therefore, these products must be evaluated before any operational application

(Zambrano-Bigiarini et al. 2017).

1.3.2 Streamflow prediction in ungauged catchments

As the vast majority of rivers worldwide remain ungauged (Young 2006; Beck et al.

2016), streamflow is often estimated through the implementation of hydrological mod-

els. These models are calibrated using observed streamflow and require precipitation,

potential evaporation, and temperature data as inputs (among other variables related

to the geomorphological and physical characteristics of the catchment). The scien-

tific initiative Prediction in Ungauged Basins (PUB; see review by Hrachowitz et al.

2013) has fostered the development and application of diverse methods to predict

streamflow in ungauged catchments through the transfer of model parameters from

controlled to ungauged catchments in a process known as regionalisation (Oudin et al.

2008). According to Blöschl et al. (2013) there is a need for streamflow predictions

in ungauged catchments for diverse water management applications, such as:
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1. water allocation, long term planning, and groundwater recharge (related to

long-term streamflow volume);

2. water supply, hydropower production and potential, planning, restoration mea-

sures, ecological purposes, and irrigation (related to the inter-annual and intra-

annual variability of streamflow);

3. environmental flows for ecological health, drought management, river restora-

tion, water quality, design of spillways, culverts and dams, reservoir manage-

ment, and risk management (related to the occurrence of dry and wet periods

and future projections of extremes); and

4. runoff dynamics, sediments and nutrients prediction (related to all of the above

points, as well as sediments and nutrients transportation).

There are three main regionalisation approaches to predict daily streamflow in

ungauged catchments by transferring the calibrated parameters of a hydrological

model: i) spatial proximity, which assumes that neighbouring catchments exhibit

similar hydrological behaviour because physiographic and climatic characteristics are

relatively homogeneous in a region (Vandewiele and Elias 1995; Oudin et al. 2008);

ii) feature similarity, which transfers the model parameters of gauged to ungauged

catchments based on their degree of climatic and geomorphological similarity (McIn-

tyre et al. 2005; Beck et al. 2016; Carrillo et al. 2011); and iii) parameter regression, in

which statistical relationships between model parameters and catchment characteris-

tics are developed and used to estimate the model parameters of ungauged catchments

(Fernandez et al. 2000; Carrillo et al. 2011).

The application of these methods require reliable meteorological information and

catchment-specific data; therefore, most studies have been conducted over regions

with dense networks of meteorological stations (e.g., McIntyre et al. 2005; Parajka

et al. 2005; Oudin et al. 2008; Bao et al. 2012; Singh et al. 2012; Zelelew and Alfredsen

2014; Garambois et al. 2015; Athira et al. 2016; Rakovec et al. 2016; Swain and Patra

2017; Saadi et al. 2019; Neri et al. 2020).
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1.4 Thesis objectives and outline

Precipitation is the major component of the water cycle and its accurate representa-

tion is crucial for hydrological, ecological, and agricultural applications. As observed,

there is not a best performing precipitation product on a general basis, and their

errors and uncertainties hinder their use. Therefore, they must be evaluated before

any operational application to assess whether they are suitable to be used in a specific

region (Zambrano-Bigiarini et al. 2017).

In this sense, there is a need for generating better precipitation estimates. How-

ever, the big challenge lies in integrating different sources of data into coherent and

usable information (Eggimann et al. 2017). Interpolation and measurement uncer-

tainties must be adequately considered (Villarini and Krajewski 2008; Rios Gaona

et al. 2015) and large amounts of data must be processed. Several approaches have

been implemented to derive gridded precipitation and other climatological variables

using point-based information and gridded products (Li and Shao 2010; Xie and Xiong

2011; Jewell and Gaussiat 2015; Fu et al. 2016; Manz et al. 2016; Yang et al. 2017;

Beck et al. 2019b).

Despite the improvements in the spatio-temporal representation of precipitation

achieved by these methods, many studies only merge the ground-based measurements

with a single precipitation product (e.g., Li and Shao 2010; Rozante et al. 2010; Verdin

et al. 2016; Shi et al. 2017; Xie et al. 2017; Yang et al. 2017). As a result, valuable

information that could be better captured by other products is not considered. Ad-

ditionally, these merging methods are generally complex and difficult to implement.

For these reasons, there is a clear need to develop a merging procedure that takes

advantage of combining information of multiple precipitation products and ground-

based measurements in a friendly way. For this purpose, it is essential to analyse the

performance of the products to determine the origin of the sources of mismatches and

errors.

Although hydrological model calibration can partly compensate for errors in-

cluded in these precipitation products (Elsner et al. 2014; Maggioni and Massari

2018), it may lead to unrealistic model behaviour (Nikolopoulos et al. 2013; Xue

et al. 2013; Ciabatta et al. 2016) that affects the quality of hydrological modelling

and parameter regionalisation results. To date, most of the studies have been con-

ducted over regions with a dense network of meteorological stations (e.g., McIntyre

et al. 2005; Parajka et al. 2005; Oudin et al. 2008; Bao et al. 2012; Singh et al. 2012;

Zelelew and Alfredsen 2014; Garambois et al. 2015; Athira et al. 2016; Rakovec et al.

2016; Swain and Patra 2017; Saadi et al. 2019; Neri et al. 2020), while just a few
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have used gridded precipitation products at the daily time scale, by selecting a best

performing product during calibration (Beck et al. 2016; Rakovec et al. 2016; Beck

et al. 2021b). Therefore, there is a need to understand how selecting a particular pre-

cipitation product may affect hydrological modelling and parameter regionalisation

results.

In light of these research demands, this cumulative dissertation aims to pre-

dict daily streamflow data over ungauged catchments following a three-step approach

as shown in Figure 1.1: i) evaluation, where selected state-of-the-art precipitation

products are evaluated over different catchments to understand the sources of their

mismatches; ii) merging, where the knowledge obtained in step i was used to pro-

pose a novel method to merge precipitation products, topography-related variables,

and ground-based measurements to improve the spatio-temporal characterisation of

precipitation; and iii) regionalisation, where the performance of the merged product,

altogether with other state-of-the-art products was evaluated during a regionalisa-

tion exercise to predict daily streamflow over ungauged catchments. To address the

main objective of this cumulative dissertation, six sub-objectives are proposed and

enumerated as follows:

1. to assess the spatio-temporal performance of different precipitation products

over areas with different climatological characteristics;

2. to analyse the influence of the spatial resolution of the precipitation products

when compared to ground-based measurements;

3. to improve the characterisation of the spatio-temporal distribution of precipi-

tation over data-scarce regions;

4. to evaluate methods to predict daily streamflow values in ungauged catchments

over data-scarce settings;

5. to evaluate to what extent the choice of precipitation forcings affects the relative

performance of hydrological modelling and regionalisation procedures; and

6. to analyse the relative performance of different regionalisation techniques across

catchments with different hydrological regimes.
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Merging RegionalisationEvaluation

1. to evaluate the 
performance of multiple 
precipitation products

2. to analyse the 
influence of their spatial 

resolution in the 
evaluation 

3. to improve the 
characterisation of the 

spatio-temporal 
distribution of 

precipitation in data-
scarce regions 

3. to evaluate different 
regionalisation 

techniques

4. to evaluate the 
influence of selecting 
different precipitation 
forcings for modeling 
and regionalisation 

purposes

5. to evaluate the 
results over catchments 

with different 
hydrological regimes 

Figure 1.1: Conceptualisation of the three different components of the methodology
followed in this cumulative dissertation: i) the evaluation step (Baez-Villanueva et al.
2018); ii) the merging step (Baez-Villanueva et al. 2020); and iii) the regionalisation
step (Baez-Villanueva et al. 2021).
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Study Areas

To fulfil the specific objectives proposed in this cumulative dissertation, the methods

were divided into three main components as described in Section 1.4. Three catch-

ments were selected for the evaluation component and are presented in Section 2.1,

while the merging and regionalisation sections were performed over continental Chile,

which is described in Section 2.2.

2.1 Selected catchments for the evaluation of pre-

cipitation products

Three catchments were selected for the performance evaluation of multiple precipita-

tion products and are presented in Figure 2.1: i) the Magdalena in Colombia; ii) the

Paraiba do Sul in Brazil; and iii) the Imperial in Chile. The different study areas

were selected to compare the performance of the chosen precipitation products over

different Latin American environments. The selected catchments present differences

mainly in climate, topography, and location. According to the Köppen-Geiger cli-

mate classification of Beck et al. (2018), and as observed in Figure 2.2, the Imperial

presents a temperate climate with dry and warm summer (Csb) in the northwest-

ern region of the catchment and a temperate climate without a dry season and warm

summer (Cfb) in the south-eastern area. Paraiba do Sul presents a temperate climate

with dry winter and hot summer (Cfa) and without a dry season and warm summer

(Cfb) in the upper part of the catchment that transitions into a tropical monsoon

climate (Aw) near the outlet. Finally, the Magdalena shows the greatest variety of

climates, with tropical rain-forest (Af), tropical monsoon (Am) and tropical savannah

(Aw) climates in the northern and southern regions of the catchment, and temperate
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climate without a dry season and warm summer (Cfb), temperate climate with dry

and warm summer (Csb), and polar tundra (ET) climates in the elevated areas of the

catchment.

Figure 2.1: The three selected study areas; a) the Magdalena, located in Colombia;
b) the Paraiba do Sul, located in Brazil; and c) the Imperial, located in Chile.

The Magdalena is essential in the economic development of Colombia, as it is

the greatest catchment in the country. The Paraiba do Sul is the catchment that

contributes the most to the Brazilian gross domestic product (GDP), as it includes

the states of Rio de Janeiro, Minas Gerais, and Sao Paulo. Finally, the Imperial

is important because most of the agricultural activity in Chile is performed in the

southern regions.

2.1.1 The Magdalena

The Magdalena is located in Colombia, between the longitudes 76◦ 58’W and 72◦ 22’W

and the latitudes 11◦ 06’S and 1◦ 33’S and has an elevation that ranges from zero to

5,000 m a.s.l. The main urban centres of Colombia are located within this catchment

and have around 33.60 million inhabitants. This is reflected in the contribution of

the catchment to the Colombian GDP (around 85%). The Magdalena River is the

longest in Colombia with a longitude of around 1,528 km and drains the Andes

mountains, which are formed in Colombia by the Western, Central, and Eastern

Cordilleras. It covers an area of 257,438 km2, which represents 24% of Colombia
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Figure 2.2: Köppen-Geiger climate classification over the three study areas accord-
ing to Beck et al. (2018); the Imperial (top-left); the Paraiba do Sul (top-right); and
the Magdalena (bottom-left).

(Restrepo et al. 2006). The Magdalena has two wet (March–May and October–

November) and two dry December–February and June–September) seasons (IDEAM

2001) and has a mean annual precipitation of 2,050 mm.

2.1.2 The Paraiba do Sul

The Paraiba do Sul is located in Brazil, between the longitudes 41◦W and 46◦ 30’W

and the latitudes 20◦ 26’S and 23◦ 39’S and covers an area of around 57,000 km2.

It has a heterogeneous topography, hydrology, geomorphology, and soil composition

(Simoes and Barros 2007). It is bordered by two mountain ranges (Serra do Mar and

Serra da Mantiqueira) and its elevation ranges from 450 to 2,000 m a.s.l. (Soares
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et al. 2012). The length of Paraiba do Sul is approximately 1,120 km and the states

of Minas Gerais, Rio de Janeiro, and Sao Paulo are included in the catchment. It

accounts for approximately 11% of the national GDP. About 8.70 million inhabitants

live in the metropolitan area of Rio de Janeiro, which depend on the Paraiba do Sul

for water supply (Silva and Simões 2014). It has a large inter-annual and spatial

variability with precipitation values ranging between 1,300 and 2,400 mm (Simoes

and Barros 2007; Soares et al. 2012) and has a mean annual precipitation of about

1,400 mm.

2.1.3 The Imperial

The Imperial is a rain-dominated catchment, which is located in the Araucańıa region

in Chile between the longitudes 73◦ 30’W and 71◦ 27’W and the latitudes 37◦ 40’S

and 38◦ 50’S. It has an area of around 12,763 km2 and a river length of about 230 km.

This catchment has low snow accumulation as a consequence of the relatively small

altitude in the Andean mountains at this latitude (Rivera et al. 2004). The imperial

has around 540,600 inhabitants and its elevation ranges from zero to 3,095 m a.s.l.

The mean annual precipitation for the Imperial ranges from 1,245 to 1,850 mm.

Figure 2.3 shows the mean monthly precipitation values (in the case of the Impe-

rial and Paraiba do Sul for 2001–2015, and in the case of Magdalena for 2001–2014).

The Magdalena shows a bimodal distribution of precipitation caused by the double

pass of the Intertropical Convergence Zone (ITCZ), having the highest values during

April–May and October–November. The Paraiba do Sul presents its rainy season

during October–March, while for the Imperial, the rainy season starts in April and

ends in September. The Paraiba do Sul and Imperial catchments present a greater

dispersion from the mean precipitation during the humid season. Contrastingly, the

Magdalena presents a high dispersion throughout all seasons.
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Figure 2.3: Mean annual precipitation of the three study regions: a) the Imperial
(during 2001–2015); b) the Paraiba do Sul (during 2001–2015); and c) the Magdalena
(during 2001–2014). The blue line represents the mean values for each catchment and
the red contour represents one standard deviation above and below the mean value.
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2.2 Continental Chile

Chile (Figure 2.4) is bounded to the north by Peru, to the east by Bolivia and Ar-

gentina, and to the west by the Pacific Ocean. It spans on average 180 km of longitudi-

nal extension (76.0◦W–66.0◦W) and 4,300 km of latitudinal extension (17.5◦S–56.0◦S).

The country’s geography is dominated by complex topography, with an elevation pro-

file ranging from zero to 6,891 m a.s.l. (Jarvis et al. 2008). Chile exhibits four major

geographical units: the Andes Mountains, the Coastal Mountains, the Coastal Plains,

and the Intermediate Depression (Valdés-Pineda et al. 2014). The four seasons of the

southern hemisphere are present: autumn (MAM), winter (JJA), spring (SON), and

summer (DJF).

Figure 2.4 shows the elevation (Jarvis et al. 2008), land cover (Zhao et al. 2016),

and the most updated Köppen-Geiger climate classification (Beck et al. 2018) for the

five major macroclimatic zones presented in Zambrano-Bigiarini et al. (2017). Chile

has a large variety of climates, transitioning from (hyper)arid and semi-arid climates

in the Far North (17.50–26.00◦S) and Near North (26.00–32.18◦S), through temperate

climates in Central Chile (32.18–36.40◦S), to more humid and polar climates in the

South (36.40–43.70◦S) and Far South (43.70–56.00◦S). Precipitation increases with

latitude and elevation (in the southern direction; Montecinos and Aceituno 2003)

and ranges from almost zero in the Atacama Desert to about 6,000 mm yr−1 in

the surroundings of Puerto Cardenas (∼43.2◦S). Similar to precipitation, the mean

annual streamflow and the rainfall-runoff ratio tend to increase from north to south

(Alvarez-Garreton et al. 2018; Vásquez et al. 2021).

The El Niño-Southern Oscillation (ENSO) has a large impact on precipitation

during winter, with positive anomalies during El Niño and negative anomalies during

La Niña events (Verbist et al. 2010; Robertson et al. 2014). Although neutral ENSO

conditions have prevailed since 2011, except for an intense El Niño event during

2015, an uninterrupted sequence of dry years with increased temperatures has been

observed from 2010–2018, with annual precipitation deficits of about 25–45% across

Chile. This long-term deficit in precipitation volume, also known as the Chilean

megadrought (Boisier et al. 2016; Garreaud et al. 2017), has reduced river flows,

reservoir storage, snow cover, and groundwater levels across Chile (Garreaud et al.

2017, 2020).
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Figure 2.4: Study area: a) elevation (SRTMv4.1; Jarvis et al. 2008); b) land cover
classification (Zhao et al. 2016); and c) Köppen-Geiger climate classification (Beck
et al. 2018) over the five major macroclimatic zones described in Zambrano-Bigiarini
et al. (2017).
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Chapter 3

Data and Methods

As mentioned in Section 1.4, to fulfil the objectives of this cumulative dissertation, a

three-step approach was followed: i) evaluation, where selected state-of-the-art pre-

cipitation products are evaluated over different catchments to understand the sources

of their mismatches; ii) merging, where the knowledge obtained in step i was used

to propose a novel method to merge precipitation products, topography-related vari-

ables, and ground-based measurements to improve the spatio-temporal characterisa-

tion of precipitation; and iii) regionalisation, where the performance of the merged

product, altogether with other state-of-the-art products was evaluated during a re-

gionalisation exercise to predict daily streamflow over ungauged catchments. A de-

tailed flow chart of the methodology is presented in Figure 3.1. The products used

in this cumulative dissertation were selected because i) they have shown good per-

formance over the study areas and ii) they were state-of-the-art products and still

under production at the time of performing the analyses.

3.1 Evaluation

In the evaluation component, the performance of six precipitation products (Ta-

ble 3.1) was evaluated over the three catchments presented in Section 2.1 against

ground-based measurements. For this purpose, time series of ground-based precip-

itation were obtained for each study area for the periods 2001–2015 for the case of

Imperial and Paraiba do Sul, and 2001–2014 for the case of Magdalena. The starting

date of the evaluation (2001) is related to the product’s availability, while the end

date to the availability of the ground-based measurements.
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Figure 3.1: Flowchart summarising the three-step procedure followed in the method-
ology presented in this cumulative dissertation: i) evaluation; ii) merging; and iii) re-
gionalisation. For a more detailed explanation please see Baez-Villanueva et al. (2018,
2020, 2021).
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For the case of Imperial, Paraiba do Sul, and Magdalena, 13, 64, and 124 quality-

controlled rain gauges were selected, respectively. For a more detailed description of

the products and their selection, the ground-based measurements, and the quality

control criteria, the readers are referred to Baez-Villanueva et al. (2018).

Table 3.1: Evaluated precipitation products.

Product Spatial res. Spatial coverage Availability References

TRMM 3B42RT 0.25◦ 50◦N–50◦S 2000(Feb)–2020 Huffman et al. (2007)
TRMM 3B42v7 0.25◦ 50◦N–50◦S 1998–2020 Huffman et al. (2007)
CHIRPSv2 0.05◦ 50◦N–50◦S 1981–present Funk et al. (2015)
CMORPHv1 0.25◦ 60◦N–60◦S 1998–present Xie et al. (2017)

PERSIANN-CDR 0.25◦ 60◦N–60◦S 1983–present Ashouri et al. (2015)
MSWEPv2 0.10◦ Global 1979–2018 Beck et al. (2017a,b)

The evaluation of the selected precipitation products was performed through a

point-to-pixel analysis over each study area, which compares the time series of the

selected rain gauge stations against the corresponding grid-cell values of the selected

products at the daily, monthly, and seasonal temporal scales. This method has been

widely used for evaluating the performance of precipitation products (Thiemig et al.

2012; Dos Reis et al. 2017; Zambrano-Bigiarini et al. 2017) and assumes that the rain

gauge stations are representative values of the respective grid-cells of the products.

The comparison between the selected products is not completely impartial be-

cause some products use ground-based data to correct the bias of their precipitation

estimates. This is the case of TRMM 3B42v7, CMORPHv1, and PERSIANN-CDR,

which use the Global Precipitation Climatology Centre dataset (GPCC; Peterson and

Vose 1997); and CHIRPSv2 and MSWEPv2, which use the Global Historical Climate

Network (CHCN) and the Global Surface Summary of the Day (GSOD). MSWEPv2

also uses the Latin-American Climate Assessment Dataset (LACAD) and national

databases from Mexico, Brazil, Peru, and Iran. The bias-corrected datasets are ex-

pected to present a better performance than the products that do not use rain gauge

stations (i.e., TRMM 3B42RT).

For the studied period, on average, the GPCC uses around 1, 6, and 12 ground-

based stations over the Imperial, Paraiba do Sul, and Magdalena catchments, re-

spectively (see Baez-Villanueva et al. (2018); their Figure 4). Also, the CHCN uses

a similar amount of rain gauge stations as the GPCC dataset over the three study

areas (Menne et al. 2012). As the GPCC does not provide the information of the

specific stations that were used, they could not be removed. However, this number

of stations are clearly not enough to capture the spatial variability of precipitation

over these catchments. Consequently, this increases the estimation errors of the final
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products. On the other hand, the precipitation products that use rain gauge stations

from the study areas are prone to perform better than the datasets that do not.

The spatial resolution of all products except CHIRPSv2 and MSWEPv2 is 0.25◦.

Therefore, CHIRPSv2 and MSWEPv2 were upscaled from 0.05◦ and 0.1◦, respec-

tively, to a new spatial resolution of 0.25◦ by bilinear interpolation to enable a con-

sistent point-to-pixel comparison between products. However, to evaluate the effect

of the upscaling procedure in the performance of the products, two CHIRPSv2 and

MSWEPv2 datasets were used: i) one with its original spatial resolution (CHIRPSv2,

MSWEPv2) and ii) the other upscaled to 0.25◦ (hereafter defined as CHIRPSv2 up-

scaled and MSWEPv2 upscaled).

Six different indices of performance (three continuous and three categorical) were

applied over the different regions. The continuous indices are the modified Kling-

Gupta efficiency (KGE’ Gupta et al. 2009; Kling et al. 2012), the Root Mean Square

Error (RMSE), and the percentage bias (PBIAS). The KGE’ (Eq. 3.1) compares

observed data with estimations, decomposing the total performance into r, β, and γ,

which are presented in Equations 3.2, 3.3, and 3.4, respectively:

KGE’ = 1−
√
(r − 1)2 + (β − 1)2 + (γ − 1)2 (3.1)

r =

∑n
i=1 (Oi − Ō)(Si − S̄)√∑n

i=1 (Oi − Ō)2
√∑n

i=1 (Si − S̄)2
(3.2)

β =
µs

µo

(3.3)

γ =
CVs

CVo

=
σs/µs

σo/µo

(3.4)

where n is the number of observations; Oi and Si are the ground-based measurements

and estimates at day i, respectively; µ and σ are the mean and standard deviation,

respectively; and Ō and S̄ are the arithmetic means of the measurements and the es-

timates, respectively. r measures the temporal dynamics of the variable; β measures

the total volume compared to the ground-based measurements indicating the average

tendency of the estimates to underestimate (β < 1) or overestimate (β > 1); and γ

measures the relative dispersion between the estimates and the ground-based mea-

surements (Gupta et al. 2009; Kling et al. 2012). The optimal value for the KGE’ and

all its components is one. The KGE’ is a useful index because it: i) does not assign

disproportional weights to mismatches during high events (contrary to indices based
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on squared-differences; e.g., the RMSE); ii) decomposes the total performance into

three components, thus allowing a better understanding of the origin of mismatches

(Zambrano-Bigiarini et al. 2017); and iii) when used to evaluate precipitation prod-

ucts, it allows a fair comparison of regions with different mean annual precipitation.

The KGE’ has been widely used in hydrological applications and to evaluate the per-

formance of precipitation products (e.g., Dinku et al. 2007; Hirpa et al. 2010; Thiemig

et al. 2012; Gao and Liu 2013; Li et al. 2013; Thiemig et al. 2013; Chen et al. 2014;

Lievens et al. 2015; Beck et al. 2016; Zambrano-Bigiarini et al. 2017; Beck et al.

2017b).

Besides the KGE’ evaluation, the RMSE (Eq. 3.5) and PBIAS (Eq. 3.6) were

computed and compared to the results obtained with the KGE’. The RMSE is widely

used in evaluating precipitation products, and it was included in this study to assess

whether it is a useful measure of performance. The PBIAS measures the average

tendency of the simulated values to be larger or smaller than the ground-based mea-

surements. The optimal value of the PBIAS is zero, and values close to zero indicate

a low bias, positive values indicate an overestimation, and negative values indicate

an underestimation.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.5)

where yi and ŷi are the ground-based measurements and the corresponding precipi-

tation estimates at day i, respectively.

PBIAS = (100)

∑n
i=1(Si −Oi)∑n

i=1 (Oi)
(3.6)

The performance evaluation was implemented on a daily, monthly, and seasonal

basis. In an inter-comparison between ground-based precipitation and precipitation

products, the use of the KGE’ makes sense because it offers a way to evaluate different

components of performance separately. However, the KGE’ does not allow identifying

the performance of a given product at different precipitation intensities. For this

reason, diverse categorical indices were also used at the daily scale to complement the

evaluation of these products.

Therefore, to evaluate the performance of precipitation products in capturing

different precipitation intensities, three categorical indices of performance were used

to assess the different precipitation intensities described in Table 3.2 as recommended

by Zambrano-Bigiarini et al. (2017). The probability of detection (POD, Eq. 3.7)
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calculates how often the product correctly estimates the precipitation intensity ob-

served at the rain gauge. The frequency bias (fbias, Eq. 3.8) compares the number

of events identified by the precipitation product to the number of events registered

by the gauge station. If fbias > 1, the number of occurrences of the respective

precipitation intensity is overestimated by the product, while fbias < 1 indicates un-

derestimation. The false alarm ratio (FAR, Eq. 3.9) measures the fraction of events

that were not correctly identified by the precipitation product. The POD and fbias

present their optimal value at one, while FAR presents it at zero.

POD =
H

H +M
(3.7)

fbias =
H + F

H +M
(3.8)

FAR =
F

H + F
(3.9)

where H indicates a hit (an event recorded by both the rain gauge and the precipi-

tation product); M indicates a miss (an event only identified by the rain gauge); and

F indicates a false alarm (an event recorded only by the precipitation product).

Table 3.2: Classification of precipitation events based on daily intensity (i) according
to Zambrano-Bigiarini et al. (2017).

P event Intensity (i), [mm d−1]

No-rain [0, 1)
Light rain [1, 5)

Moderate rain [5, 20)
Heavy rain [20, 40)
Violent rain ≥40

The aforementioned methodology was applied over the study areas using the R

environment 3.3.1 (Team 2011) and the raster (Hijmans 2018), hydroGOF (Zambrano-

Bigiarini 2017a), and hydroTSM (Zambrano-Bigiarini 2017b) R packages.
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3.2 Merging

Based on the knowledge gained during the evaluation of precipitation products over

different regions of Latin America, a novel method to improve the spatio-temporal

characterisation of precipitation in data-scarce regions at any temporal scale was

proposed. Section 3.2.1 summarises the proposed Random Forest MErging Procedure

(RF-MEP; Baez-Villanueva et al. 2020), while Section 3.2.2 describes its application

to the Chilean case study.

3.2.1 RF-MEP

RF-MEP is based on three key assumptions: i) precipitation measurements from

rain gauge stations are accurate at the point scale; ii) precipitation products are

generally biased but contain helpful information about the spatio-temporal patterns

of precipitation; and iii) the combination of different precipitation products and rain

gauge data can better represent the spatio-temporal variability of precipitation than

any single product.

RF-MEP uses the Random Forest (RF) machine learning technique to predict

the spatial distribution of precipitation by merging information from different gridded

products (known as covariates) and quality-controlled ground-based information at a

selected temporal scale (e.g., daily, monthly, or annual). Individual predictions are

generated from a user-defined number of decision trees based on bootstrap samples

using the covariates as predictors. The final prediction is calculated as the average of

the individual predictions (Breiman 2001; Prasad et al. 2006; Roy and Larocque 2012;

Biau and Scornet 2016; Hengl et al. 2018). For a detailed description of the merging

procedure, the readers are referred to Baez-Villanueva et al. (2020, their Figure 1).

The first step to apply the RF-MEP procedure is to acquire the ground-based

measurements and the selected covariates. These covariates are i) the selected precip-

itation products and ii) topography-related datasets such as a digital surface model

(DSM), aspect, rate of elevation change, or slope, which are used to account for

the precipitation gradient related to elevation (not to be mistaken with altitude, see

McVicar and Körner 2013). Then, the ground-based measurements are quality con-

trolled and checked for homogeneity.

The selected rain gauge stations are divided into two groups: a training set (that

will be used to train the RF model) and a validation set (to assess the performance

of the merged product). The selected precipitation products and the topography-

related datasets are resampled to a desired spatial resolution to ensure identical raster
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geometry (identical spatial resolution, spatial extent, and origin). The traditional RF

algorithm ignores sampling locations, which could lead to sub-optimal predictions

(Hengl et al. 2018); therefore, it is important to include covariates that account

for geographical proximity. As the use of only geographical coordinates as spatial

predictors can cause unnatural surfaces in the merged product (Behrens et al. 2018;

Hengl et al. 2018), RF-MEP uses gridded layers of Euclidean distances from each rain

gauge in the training set to the centroid of all the grid-cells in the selected study area.

Afterwards, a single RF regression model is derived for each time step to compute

a single precipitation prediction at the desired temporal resolution. The RF model

is trained using the ground-based observations in the training set as the dependent

variable, while the grid-cell values of the selected covariates at the corresponding

locations are used as predictors. To improve the accuracy and stability, and to reduce

the variance and overfitting of the RF predictions, they are generated as an ensemble

estimate from the numerous decision trees (Dı́az-Uriarte and Alvarez de Andrés 2006;

Hengl et al. 2018) as observed in Eq. 3.10:

θ̂B(x) =
1

B

B∑
b=1

t∗b(x) (3.10)

where θ̂B is the final prediction; b is the individual bootstrap sample; B is the total

number of trees; and t∗b is the individual decision tree. This process is repeated for

each time step, implying that the RF model will vary temporally (see Figure 2 of

Baez-Villanueva et al. (2020) as an example).

Once the final merged product is generated, the validation set of rain gauge

stations is used to assess the performance of the merged product through a point-

to-pixel analysis (see Section 3.1). However, this method assumes that the ground-

based measurements are representative values at their respective grid-cells, which

may introduce bias in the comparison because i) during winter, some rain gauges

located at high elevations are not able to incorporate snow into their measurements

and ii) during summer, a more dense network of rain gauges is required to capture

the spatial patterns of small-scale convective events. To evaluate the performance of

the merged product the KGE’ (Eq. 3.1) and its components (Eqs. 3.2, 3.3, and 3.4)

were selected over the traditional RMSE because it gives disproportional weights to

different precipitation intensities at the daily scale (Baez-Villanueva et al. 2018). This

is due to the high skewness of the precipitation distribution at the daily scale and

the prevalence of temporal mismatches between estimated and observed precipitation

peaks.
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Additionally, to evaluate the performance of precipitation products in capturing

different precipitation intensities, four categorical indices of performance were used.

The POD (Eq. 3.7), fbias (Eq. 3.8), FAR (Eq. 3.9), and CSI (Eq. 3.11), which

combines the POD and FAR to describe the overall ability of the products to correctly

detect different precipitation intensities and has its optimal value at one.

CSI = [(POD)−1 + (1− FAR)−1 − 1]−1 (3.11)

3.2.2 Application of RF-MEP to continental Chile

RF-MEP was applied to the Chilean territory (see Section 2.2) from 17.5◦ to 46.0◦S

for 2000–2016. The southern boundary was not considered due to the sparse network

of gauge stations in the Far South. Chile was selected as the case study to test the

performance of the proposed RF-MEP due to the notable heterogeneity in topography,

climate, and land cover. To apply RF-MEP to this case study the R environment

3.5.0 (R Core Team 2020) and the raster (Hijmans 2018), hydroGOF (Zambrano-

Bigiarini 2017a), hydroTSM (Zambrano-Bigiarini 2017b), GSIF (Hengl 2019), and

randomForest (Liaw and Wiener 2002) R packages were used.

As mentioned in Section 3.2.1, the first step is to acquire the ground-based mea-

surements and the covariates. Therefore, time series of ground-based daily precip-

itation for 1900–2018 were downloaded from a database of 816 rain gauges from

the Center of Climate and Resilience Research (CR2 2022). Daily precipitation is

recorded at 08:00 local time (11:00–10:59 UTC) in Chile. Five global or quasi-global

state-of-the-art precipitation products with at least 15 years of daily precipitation es-

timates were selected (Table 3.3) as covariates. These products were selected because

i) RF-MEP can be transferred to any selected study area using the same products

(or others) if ground-based data are available, and ii) the selected products perform

well in the study area (Zambrano-Bigiarini et al. 2017; Zambrano-Bigiarini 2018).

Table 3.3: Precipitation products used in the case study, where S stands for satellite,
R for reanalysis, and G for gauge data.

Product Spatio-temporal res. Source(s) References

ERA-Interim 0.75◦; 3-hourly R Dee et al. (2011)
CHIRPSv2⋆ 0.05◦; daily S, G, and R Funk et al. (2015)

TRMM 3B42v7⋆ 0.25◦; 3-hourly S and G Huffman et al. (2007, 2010)
PERSIANN-CDR⋆ 0.25◦; 6-hourly S and G Sorooshian et al. (2000); Ashouri et al. (2015)

CMORPHv1⋆ 0.25◦; 30 min S and G Joyce et al. (2004); Xie et al. (2017)
MSWEPv2.2⋆ 0.10◦; 3-hourly S, G, and R Beck et al. (2017a, 2019b)

⋆ Products that use GPCC data.
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The selected precipitation products to be used in RF-MEP were: ERA-Interim

(Dee et al. 2011); the Climate Hazards InfraRed Precipitation with Stations data ver-

sion 2.0 (CHIRPSv2; Funk et al. 2015); the TRMMMulti-satellite Precipitation Anal-

ysis (TRMM 3B42v7; Huffman et al. 2007, 2010); the Precipitation Estimation from

Remotely Sensed Information Using Artificial Neural Networks - Climate Data Record

(PERSIANN-CDR; Sorooshian et al. 2000; Ashouri et al. 2015); and the Climate Pre-

diction Center (CPC) Morphing technique version 1.0-BLD, gauge-satellite blended

precipitation product (CMORPHv1; Joyce et al. 2004; Xie et al. 2017). The Multi-

Source Weighted-Ensemble Precipitation (MSWEPv2.2; Beck et al. 2017a, 2019b)

was only used in the validation step as a benchmark product because i) it is the

first fully global precipitation dataset derived by optimally merging a range of gauge,

satellite, and reanalysis estimates (Beck et al. 2019b); ii) it has shown more realistic

spatial precipitation patterns in mean, magnitude, and frequency than other state-of-

the-art global precipitation products at the global scale (Beck et al. 2017b, 2019b);

iii) it uses the same rain gauge dataset within Chile; and iv) it recently outper-

formed other state-of-the-art precipitation products over Chile (Zambrano-Bigiarini

2018). Detailed descriptions of the algorithms used by each precipitation product can

be found in their corresponding literature (see Table 3.3).

It is important to note that several precipitation products use ground-based pre-

cipitation data from the Global Precipitation Climatology Centre (GPCC; Schneider

et al. 2008) to reduce their bias (see Table 3.3). The number of operational GPCC

rain gauge stations in Chile has fluctuated between seven and twenty over 1986–

2018. This low density of GPCC stations within Chile is insufficient to represent the

spatio-temporal variability of precipitation over the country adequately.

Additionally, the Shuttle Radar Topography Mission version 4 (SRTM-v4; Jarvis

et al. 2008) digital surface model (DSM) was selected as a covariate. The SRTM-v4

has offsets due to vegetation height (Gallant et al. 2012), and a reported vertical error

of less than 16 m (Jarvis et al. 2008). The gap-filled SRTM-v4 product was used at

a spatial resolution of 250 m. Besides the selected precipitation products and the

DSM, other spatial covariates (slope, aspect, Köppen-Geiger climate classification,

and land cover type) were exhaustively evaluated using the KGE’ and its components

to ascertain whether an improvement could be obtained. Only the DSM was selected

because the inclusion of the other covariates did not improve the final product’s

performance.

All selected precipitation products that are sub-daily (Table 3.3) were aggre-

gated to the daily scale. MSWEPv2.2 was obtained at the daily temporal scale be-

cause the 3-hourly version was not freely available. PERSIANN-CDR, ERA-Interim,

CMORPHv1, and TRMM 3B42v7 were downscaled to the same spatial resolution as
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CHIRPSv2 (0.05◦) using the nearest neighbour method (to avoid any improvements

in the performance of the products before the merging procedure). At the same time,

the DSM was upscaled from its original spatial resolution (250 m) to 0.05◦ using

bilinear interpolation.

The reason for resampling all the covariates to 0.05◦ (the highest spatial reso-

lution of the selected precipitation products) was to obtain a merged product that

can be fairly compared to all selected precipitation products. A set of 369 rain gauge

stations was selected. These stations had < 5% of missing values and showed consis-

tency when evaluated using the double-mass curve method to identify abnormalities

comparing each station with the neighbouring stations, assuming homogeneity (Weiss

and Wilson 1953). The period 2000–2016 was chosen because of ground-based data

availability over the period of record of the selected precipitation products. A random

sample of 70% of the selected rain gauge stations (258) was used as ground truth data

to train the RF model (training set), while the remaining 30% of the stations (111)

were used to assess the performance of the merged products (validation set). Past

studies have typically selected 80% or more stations for training purposes (e.g., Li

and Shao 2010; Rozante et al. 2010; Woldemeskel et al. 2013; Yang et al. 2017; Ma

et al. 2018); however, 70% of the stations was selected to be more thorough in the

evaluation of the method. The 258 layers of Euclidean distances were computed using

the GSIF R package (Hengl 2019).

Two merged precipitation products were computed at the daily scale for 2000–

2016. The first product (hereafter, RF-MEP3P ) used CHIRPSv2, PERSIANN-CDR,

ERA-Interim, the DSM, and the 258 layers of Euclidean distances, while the sec-

ond product (hereafter, RF-MEP5P ) added CMORPHv1 and TRMM 3B42v7 to the

aforementioned covariates. The reason for computing two different merged products

was to evaluate whether the addition of CMORPHv1 and TRMM 3B42v7, both of

which have a shorter period of temporal coverage, would improve the final merged

product. Although RF-MEP3P and RF-MEP5P were produced and compared over

the same period (2000–2016), RF-MEP3P can be generated over a longer period of

record (1983–2016), while RF-MEP5P can only be generated from 1998 onwards.

First, the values of the covariates at the grid-cell locations of the training set

were obtained. Second, for each day, a RF model was trained using the ground-based

precipitation values as the dependent variable and the respective values from the

covariates as predictors. Third, the trained RF model was used with the gridded co-

variates to predict daily precipitation values for each grid-cell of the study area. This

process was repeated for each day for 2000–2016. RF regression models have three

parameters to specify: i) the number of regression trees (set at 2000); ii) the number

of variables randomly sampled at each decision split (set at one-third of the number
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of covariates); and iii) the node size (i.e., the minimum number of observations per

node; set at 5).

Finally, the performance of both merged products, MSWEPv2.2, and the indi-

vidual precipitation products used as covariates was evaluated through a point-to-

pixel analysis with the indices of performance described in the validation process of

Section 3.2.1 using the independent stations included in the validation set. The eval-

uation process was performed at multiple temporal scales: 3-day, monthly, annual,

DJF, MAM, JJA, and SON.

Because no sub-daily measurements are available to transform the ground-based

precipitation dataset to the 0:00–23:59 UTC daily period used by all the precipi-

tation products, a 3-day accumulations were used as a proxy for evaluating daily

performance. This approach reduces likely biases in the performance of the precipita-

tion products at this temporal scale by considering the influence of reporting times.

The categorical indices were evaluated using the precipitation intensities (Table 3.2;

Zambrano-Bigiarini et al. 2017), which are recommended specifically for Chile.

Because RF-MEP aims to improve the characterisation of precipitation in data-

scarce regions, the influence of the amount of rain gauge stations included in the

training set was investigated. The RF-MEP5P product was computed with varying

percentages of rain gauge stations in the training set to evaluate the performance

of RF-MEP under different scenarios of data scarcity. In particular, the RF-MEP5P

product was computed using 50%, 30%, and 10% of the stations, representing 184,

111 and 37 rain gauges, respectively.

Also, to test the influence of the different spatial resolutions of the selected pre-

cipitation products, RF-MEP5P was computed at 0.05◦, 0.10◦, and 0.25◦. For this

purpose, all covariates were resampled to these spatial resolutions before applying the

merging procedure. Finally, two additional merging methods were computed to com-

pare RF-MEP against established and proven precipitation merging procedures. Krig-

ing with external drift (KED) was computed using ERA-Interim (the best-performing

product used to derive RF-MEP5P ) and the one-outlier-removed (OOR) arithmetic

mean described in Shen et al. (2014). For a detailed explanation of KED please refer

to Ly et al. (2011), Oliver and Webster (2014), and Hengl et al. (2018). Also the RF-

MEP5P was compared against MSWEPv2.2 because it is a state-of-the-art merged

precipitation product.
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3.3 Regionalisation

3.3.1 Meteorological forcings

Four precipitation products were used to investigate how the choice of precipitation

forcing affects the performance of regionalisation techniques over 100 Chilean catch-

ments (used to predict streamflow in ungauged catchments): i) the Center for Cli-

mate and Resilience Research Meteorological dataset version 2.0 (CR2MET; Boisier

et al. 2018); ii) the Random Forest MErging Procedure (RF-MEP; Baez-Villanueva

et al. 2020) applied using the ERA5 reanalysis (Hersbach et al. 2020) aggregated

to the Chilean time, and elevation (SRTMv4.1; Jarvis et al. 2008) as covariates;

iii) ERA5 (Hersbach et al. 2020); and iv) The Multi-Source Weighted-Ensemble Pre-

cipitation (MSWEPv2.8; Beck et al. 2017b, 2019b). The precipitation products are

presented in Table 3.4, and were selected because previous studies have reported

good agreement when evaluated against ground-based measurements over continen-

tal Chile (Zambrano-Bigiarini et al. 2017; Boisier et al. 2018; Baez-Villanueva et al.

2018, 2020). All products were aggregated to the Chilean reporting times and a more

detailed description of these products can be found in Baez-Villanueva et al. (2021).

Table 3.4: Gridded precipitation products used in this study.

Product Spatio-temporal res. Availability References

CR2MET 0.05◦; daily 1979–2018 Boisier et al. (2018)
RF-MEP 0.05◦; daily 1983–2018 Baez-Villanueva et al. (2020)
ERA5 ∼0.28◦; hourly 1950–present Hersbach et al. (2020)

MSWEPv2.8 0.10◦; 3-hourly 1979–present Beck et al. (2017b, 2019b)

All precipitation products show relatively similar patterns of spatial variabil-

ity across continental Chile; however, there are substantial differences in their total

precipitation amounts. However, despite their similar precipitation patterns, these

products show marked differences in mean annual precipitation, days without rain,

frequency and intermittency of precipitation, high precipitation intensities, and sea-

sonal distribution over the selected catchments. For a more detailed analysis on the

difference of these products, the readers are referred to Baez-Villanueva et al. (2021),

especially their Section 3.1.1 and their Figures 2, 3, and S2–S7 (see Appendix C).

Finally, the maximum and minimum daily air temperature at a spatial resolution

of 0.05◦ were taken from CR2METv2. Temperature is estimated using multivariate

regression from the Moderate Resolution Imaging Spectroradiometer (MODIS) land

surface temperature (LST) and ERA5 estimates as covariates (Alvarez-Garreton et al.
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2018; Boisier et al. 2018). The Hargreaves-Samani equation (Hargreaves and Samani

1985) was used to obtain daily potential evaporation from CR2METv2 maximum and

minimum daily temperature at the same spatial resolution (0.05◦).

3.3.2 Hydrological model

The TUWmodel (Viglione and Parajka 2020) is a conceptual hydrological model

that follows the structure of the Hydrologiska Byr̊ans Vattenbalansavdelning (HBV)

model (Bergström 1976; Bergström 1995; Lindström 1997). The model simulates the

catchment-scale water balance at daily steps, including snow accumulation and melt-

ing processes, change of moisture in the soil profile, and surface flow in the drainage

network. The TUWmodel was validated over 320 catchments in Austria (Parajka

et al. 2007) and has subsequently been used in numerous studies (e.g., Parajka et al.

2016; Zessner et al. 2017; Melsen et al. 2018; Sleziak et al. 2020). A HBV-like concep-

tual model was selected because it has shown good results in i) many regionalisation

studies (e.g., Parajka et al. 2005; Singh et al. 2012; Beck et al. 2016; Neri et al. 2020);

and ii) catchments with diverse hydroclimatic and geomorphological characteristics

(Vetter et al. 2015; Ding et al. 2016; Unduche et al. 2018; Huang et al. 2019).

The TUWmodel requires daily time series of precipitation, temperature, and

potential evaporation. The parameters used by the TUWmodel to represent the hy-

drological processes are listed in Table 3.5, including the ranges selected for model

calibration, which were adopted from previous studies (Parajka et al. 2007; Ceola

et al. 2015) that calibrated the TUWmodel over a large number of mountainous

catchments with snow influence. TUWmodel was run with a semi-distributed con-

figuration for the period 1990–2018 based on meteorological and streamflow data

availability. Although using a fully distributed model could provide useful insights

related to the spatial distribution of key hydrometeorological variables, the TUW-

model was selected because of its relatively easy implementation and computational

requirements as 100 catchments were used and four precipitation products evaluated.

For each catchment, the number of equal-area elevation bands (EZ) was de-

fined as EZ = (Hmax − Hmin)/200, where H represents elevation. In cases where

EZ > 10, EZ was set to 10 to reduce the computational demand of the simulations.

Furthermore, in catchments with Hmin below 900 m a.s.l., the upper bound of the

first EZ band was set to 900 m under the assumption that there is no snow influence

below this elevation for the particular case of continental Chile. For more details

about the TUWmodel implementation in R and the comparison of different HBV-like

models, the readers are referred to Astagneau et al. (2021), and Jansen et al. (2021),

respectively.
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Table 3.5: Summary of the TUWmodel parameters considered for calibration, follow-
ing the conceptualisation presented in Széles et al. (2020).

N◦ Parameter ID Description Units Process Range

1 SCF Snow correction factor – Snow 0.9 – 1.5
2 DDF Degree-day factor mm ◦C day−1 Snow 0.0 – 5.0
3 Twb Wet bulb temperature ◦C Snow -3.0 – 3.0
4 Tm Threshold temperature above which melt starts ◦C Snow -2.0 – 2.0
5 LPrat Parameter related to the limit for potential evaporation – Evaporation 0.0 – 1.0
6 FC Field capacity mm Infiltration 0.0 – 600
7 Beta Non-linear parameter for runoff production – Infiltration 0.0 – 20
8 cperc Constant percolation rate mm day−1 Infiltration 0.0 – 8.0
9 k0 Storage coefficient for very fast response day Runoff 0.0 – 2.0
10 k1 Storage coefficient for fast response day Runoff 2.0 – 30
11 k2 Storage coefficient for slow response day Runoff 30 – 250
12 lsuz Threshold storage state mm Runoff 1.0 – 100
13 bmax Maximum base at low flows day Runoff 0.0 – 30
14 croute Free scaling parameter day2 mm−1 Runoff 0.0 – 50

3.3.3 Independent catchment calibration and verification

The simulation period used for this study was 1990–2018. For calibration purposes,

the first ten years as a conservative warm-up period to initialise the model stores

was used, as in Beck et al. (2020a). The calibration period (2000–2014) includes

near-normal conditions and the beginning of the Chilean megadrought. The first

evaluation period (hereafter, Verification 1, 1990–1999) represents near-normal/wet

hydroclimatic conditions, while the second evaluation period (hereafter, Verification 2,

2015–2018) spans the second half of the Chilean megadrought and was used to test

the ability of the hydrological simulations to represent dry conditions. To initialise

model stores for the Verification 1 period, A 8-year warm-up period was used due to

precipitation product availability.

The KGE’ (Eq. 3.1) was used to calibrate the TUWmodel, which typically pro-

vides better hydrograph simulations than other squared-error indices (Gupta et al.

2009; Kling et al. 2012; Mizukami et al. 2019) and has been used in numerous studies

(e.g., Garcia et al. 2017; Beck et al. 2019b; Baez-Villanueva et al. 2020; Neri et al.

2020; Széles et al. 2020). To calibrate the model parameters, the hydroPSO global

optimisation algorithm was used (Zambrano-Bigiarini and Rojas 2013), which imple-

ments a state-of-the-art version of the Particle Swarm Optimisation technique (PSO;

Eberhart and Kennedy 1995; Kennedy and Eberhart 1995). For this purpose, the

standard PSO 2011 algorithm (Clerc 2011a,b), defined as spso2011 in the hydroPSO

R package (Zambrano-Bigiarini and Rojas 2013) was used. The number of particles

in the swarm (npart) was set to 80, the maximum number of iterations (maxit) to

100, and the relative convergence tolerance (reltol) to 1E − 10, while the default

values were used for all other parameters. Over the last decade, hydroPSO has been
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successfully used to calibrate numerous hydrological and environmental models (e.g.,

Brauer et al. 2014; Silal et al. 2015; Bisselink et al. 2016; Kundu et al. 2017; Kearney

and Maino 2018; Abdelaziz et al. 2019; Ollivier et al. 2020; Hann et al. 2021). For

more details on the use of the hydroPSO package to calibrate the TUWmodel, readers

are referred to Zambrano-Bigiarini and Baez-Villanueva (2020).

3.3.4 Regionalisation techniques

After obtaining catchment-specific model parameters through independent catchment

calibration (Section 3.3.3), three parameter regionalisation techniques were compared:

i) spatial proximity; ii) feature similarity; and iii) parameter regression. The perfor-

mance was assessed through a leave-one-out cross-validation exercise, which consisted

of leaving out each of the 100 catchments, transferring model parameters, conducting

streamflow simulations, and computing performance evaluation metrics.

Spatial proximity

The spatial proximity method assumes that climatic and physical characteristics are

relatively homogeneous over a region (Oudin et al. 2008). The spatial proximity

between the target pseudo-ungauged and the remaining catchments was quantified

using the Euclidean distance between catchment centroids, computed with geographic

coordinates (i.e., latitude and longitude):

EDij =

√√√√ n∑
k=1

(xk,i − xk,j)2 (3.12)

For each pseudo-ungauged catchment, the donor was chosen according to the

minimum Euclidean distance, and the full parameter set obtained during the inde-

pendent calibration of the donor catchment was transferred to the pseudo-ungauged

catchment.
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Feature similarity

In the feature similarity method, the calibrated parameter sets from 10 donor catch-

ments were transferred to the pseudo-ungauged catchment based on the similarity

between climatic and geomorphological features, quantified using the catchment char-

acteristics presented in Table 3.6. To exclude redundant information, correlation anal-

yses were performed between catchment descriptors using the Pearson and Spearman

rank correlation coefficients (to account for linear and monotonic correlation, respec-

tively). After these analyses, three descriptors with high correlations were discarded

(mean elevation, mean annual potential evaporation, and SDII; see Appendix C).

Also, the snow cover was discarded because it was found to be unreliable, leaving

nine catchment features for this method. To assign equal weight to each catchment

characteristic, they were normalised into the range [0, 1] using Eq. 3.13:

Zf =
xf − xmin

xmax − xmin

(3.13)

where xf is the value of the characteristic for catchment f , while xmax and xmin are

the maximum and minimum values of the characteristic x over all catchments. After

normalising all catchment characteristics, the dissimilarity was calculated as follows:

Si,j =
n∑

m=1

| Zi,m − Zj,m | (3.14)

where Si,j is the dissimilarity index between catchments i and j; Zi,m and Zj,m are

the normalised values of the m catchment characteristic for catchments i and j,

respectively; and n is the total number of characteristics.

For each pseudo-ungauged catchment i, the 10 catchments j with the lowest

dissimilarity indices (Si,j) were selected as donors (Oudin et al. 2008; Zhang and

Chiew 2009; Zhang et al. 2015; Beck et al. 2016). The full parameter sets obtained

during the independent calibration of each donor catchment were used to run the

TUWmodel in the pseudo-ungauged catchment, thus producing an ensemble of 10

streamflow simulations, as in previous studies (McIntyre et al. 2005; Zelelew and

Alfredsen 2014; Beck et al. 2016). The ten streamflow time series were then averaged

to produce a single streamflow time series.
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Table 3.6: Selected climatic and physiographic characteristics to quantify feature
similarity between catchments. All variables related to precipitation were computed
using the corresponding precipitation product used as an input to the TUWmodel
for 1990–2018.

N◦ Variable Data source Importance

1 Mean elevation CAMELS-CL Composite indicator that influences a range of pro-
cesses such as long-term precipitation and temper-
ature, and hence soil moisture availability. In some
environments, it is also related to aridity and snow
processes.

2 Median elevation SRTMv4.1 Same as mean elevation but provides a more ro-
bust representation of elevation over mountainous
catchments.

3 Catchment area CAMELS-CL Related to the degree of aggregation of catchment
processes related to scale effects. Additionally, it
is an indicator of total catchment storage capacity.

4 Slope CAMELS-CL Related to the response of the catchment, routing,
and infiltration processes.

5 Forest cover CAMELS-CL Forested catchments are associated with a trade-
off between high water consumption rates and en-
hanced soil.

6 Snow cover CAMELS-CL Related to the influence of snow processes within
the catchment.

7 Mean annual precipi-
tation

Precipitation product Related to the generation of runoff and precipita-
tion related to orographic gradients (e.g., coastal
areas).

8 Mean annual air tem-
perature

CR2MET Indicator of snow processes in cold environments.
It is also related to aridity and, consequently, to
the evaporative demand.

9 Mean annual potential
evaporation

Computed from
CR2MET

A measure of the atmospheric water demand (es-
pecially at the annual temporal scale).

10 Aridity index
CR2MET and

precipitation product
Represents the competition between energy and
water availability.

11 Daily temperature
range

CR2MET Monthly mean difference between daily maximum
and minimum temperature. Related to variations
in the diurnal cycle and evaporative demands.

12 Simple precipitation
intensity index

Precipitation product Relation of annual precipitation to the number of
wet days (precipitation > 1 mm). Serves as a
proxy for seasonality and intensity of precipitation
events.

13 Maximum consecutive
5-day precipitation

Precipitation product Related to extreme precipitation events.
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Parameter regression

The parameter regression technique aims to detect statistical relationships between

parameter values and catchment characteristics and uses these relationships to esti-

mate model parameters for ungauged catchments (Parajka et al. 2005; Oudin et al.

2008; Swain and Patra 2017). To account for non-linear relationships between model

parameters and catchment characteristics, the random forest machine learning al-

gorithm (RF; Breiman 2001; Prasad et al. 2006; Biau and Scornet 2016), which is

provided in the RandomForest R package (Liaw and Wiener 2002) was implemented.

RF uses an ensemble of decision trees between predictand and predictor values (also

known as covariates) for regression and supervised classification and has the capa-

bility to deal with high-dimensional feature spaces and small sample sizes (Biau and

Scornet 2016).

Previous studies have shown that RF can deal with several covariates as well as

non-informative predictors because it does not lead to overfitting or biased estimates

(Dı́az-Uriarte and Alvarez de Andrés 2006; Biau and Scornet 2016; Hengl et al. 2018),

which is why it has been used for numerous hydrological applications (Saadi et al.

2019; Baez-Villanueva et al. 2020; Beck et al. 2020b; Zhang et al. 2021). For a more

detailed description of RF, the reader is referred to Prasad et al. (2006), Biau and

Scornet (2016), and Addor et al. (2018).

For this study, one RF model for each TUWmodel parameter was developed, us-

ing all thirteen independent catchment characteristics listed in Table 3.6 as covariates.

The experimental setup used an ensemble of 2,000 regression trees, a minimum of five

terminal nodes for each model, and p/3 variables randomly sampled as candidates at

each split, where p represents the number of predictors. The trained RF models were

then used to predict parameter values in the pseudo-ungauged catchments.

3.3.5 Influence of nested catchments

To evaluate the influence of nested catchments on the performance of the three region-

alisation methods, they were repeated for each target catchment, with catchments

considered to be nested (in relation to the pseudo-ungauged catchment) excluded

from the set of potential donors. Following Neri et al. (2020), a cutoff point of 10%

of drainage area was used, meaning that only catchments that cover more than 10%

of the area of the parent catchment were considered to be nested.
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3.3.6 Influence of donor catchments for feature similarity

To evaluate the influence of the number of donor catchments used in feature similarity,

the process followed in Section 3.3.4 was repeated to assess the performance of this

regionalisation method when 1, 2, 4, 6, 8, and 10 donor catchments are selected. This

analysis evaluates the impact of averaging varying numbers of simulations compared

to the results that are based on only the most similar catchment. All analyses were

performed using the R Project of Statistical Computing (R Core Team 2020). In

addition to the R packages described in the methodology, the hydroGOF (Zambrano-

Bigiarini 2020a), hydroTSM (Zambrano-Bigiarini 2020b), lfstat (Koffler et al. 2016),

raster (Hijmans 2020), rasterVis (Perpiñán and Hijmans 2020), rgdal (Bivand et al.

2020), and rgeos (Bivand and Rundel 2020) packages were used.
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Results

4.1 Evaluation

The aim of the evaluation step was: i) to evaluate for the very first time the spatio-

temporal performance of six state-of-the-art precipitation products (TRMM 3B42RT,

TRMM 3B42v7, CMORPHv1, CHIRPSv2, PERSIANN-CDR, and MSWEPv2) over

different areas in Latin America and at different temporal scales (daily, monthly, and

seasonal) using 201 rain gauge stations in total and ii) to assess whether the upscaling

procedure used to enable a consistent point-to-pixel comparison affects the evaluation

of the upscaled products (in the case of CHIRPSv2 and MSWEPv2).

4.1.1 Performance of the evaluated precipitation products at

different temporal scales

The evaluation of the selected precipitation products was performed at the daily,

monthly, and seasonal temporal scales. The seasonal temporal scales were divided as

follows: DJF (December-January-February), MAM (March-April-May), JJA (June-

July-August), and SON (September-October-November). As expected, the precipita-

tion products performed differently over each study area and results using the KGE’

and RMSE differ. Table 4.1 summarises the results obtained in the evaluation with

the KGE’ and RMSE.
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CHAPTER 4. RESULTS

The total performance of the KGE’ can be decomposed into a linear correlation

(r), a bias (β), and a variability (γ) term. It is a useful index because r can evaluate

the temporal dynamics of precipitation, while β and γ can evaluate the volume and

variability of rainfall, respectively.

Over the Imperial, the r component showed the lowest values in the rainy sea-

son (JJA). MSWEPv2 presented the highest r for all seasons, while CHIRPSv2 and

CHIRPSv2 upscaled were the most unbiased products for all seasons. CMORPHv1

was almost unbiased in DJF and SON and presented the best performance for γ in

DJF and MAM, while CHIRPSv2 and CHIRPSv2 upscaled in JJA and SON. For

Paraiba do Sul, the components of the KGE’ performed similarly for the different

seasons. MSWEPv2 had the best r and γ for all the seasons, while CHIRPSv2,

CHIRPSv2 upscaled, CMORPHv1, MSWEPv2 and MSWEPv2 upscaled presented

good β values. Over the Magdalena, r showed the lowest values in JJA, β performed

worse in DJF and SON, and γ showed the lowest values during MAM and JJA

(Baez-Villanueva et al. 2018, their Figure 8). CHIRPSv2 and CHIRPSv2 upscaled

performed the best in all seasons, followed by TRMM 3B42RT during DJF, MAM,

and SON, and TRMM 3B42v7 during JJA. CHIRPSv2 and CHIRPSv2 upscaled

presented higher values of r and β during all the seasons. In contrast, MSWEPv2,

MSWEPv2 upscaled, and CMORPHv1 presented median values near 1 for their com-

ponent for seasons, meaning that these products are able to capture the distribution

of precipitation over this catchment. However, MSWEPv2 present a low performance

over the Magdalena.

The results of the PBIAS are in total agreement with those of the β component

(Baez-Villanueva et al. 2018, their Figure 9) despite PBIAS being represented as a

percentage and β as the ratio between the correspondent precipitation product mean

and the ground-based mean (Eq. 3.3). For Paraiba do Sul and Magdalena catchments,

almost all products overestimated the precipitation compared to the ground-based

measurements, except for CMORPHv1, which underestimated the total precipitation

amount. On the other hand, for the Imperial, the products tended to underestimate

precipitation, except for CHIRPSv2 and CHIRPSv2 upscaled.

Additionally of the evaluation with continuous indices, it is important to assess

the ability of the precipitation products to detect single rain events (see Table 3.2).

For this reason, three categorical indices were applied as described in Section 3.1.

All products showed a relatively high POD in no rain events ([0, 1) mm d−1) with

values higher than 0.6, except for PERSIANN-CDR, which showed a low POD over

the Magdalena (Baez-Villanueva et al. 2018, their Figure 12). All products performed

better at capturing the moderate precipitation intensities (between 5 and 20 mm d−1)

for all cases. For light precipitation intensities ([1, 5) mm d−1) almost all products
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CHAPTER 4. RESULTS

presented a decrease in the POD, with values lower than 0.4 over all study areas

(except for MSWEPv2 and CMORPHv1 in Paraiba do Sul), showing that light rain

events are still difficult to capture by the current products.

For rain intensities higher or equal to 1, PERSIANN-CDR, CHIRPSv2, and

MSWEPv2 presented a better performance than the other products. The FAR results

were consistent with those of the POD. The no rain events showed low values over

the different catchments, while the events with precipitation presented values between

0.5 and 0.95 in all cases. This shows that for the analysed products, the days with

precipitation were more difficult to identify. The violent precipitation events presented

relatively low fbias in all regions and the fbias showed an excellent agreement with

the POD for the no rain events, with values of fbias ∼ 1. The specific results for

each catchment are included in Table 4.2.

Our results confirm that there is no single best performing product for all regions.

Therefore, a site-specific evaluation is still recommended to identify the product that

best represents precipitation’s spatio-temporal characteristics over a specific study

area. These results show that gauge-adjusted algorithms tend to perform better, in

general, compared to those without ground-based adjustments. In some cases, an

independent validation dataset is difficult to obtain. Therefore, the independence of

the ground-based dataset should be analysed before any comparison among products

due that this may affect the results of the evaluation. Moreover, the performance of

the products increases when the daily values are aggregated into monthly or seasonal

values.

4.1.2 Does the upscaling process affect the performance of

the products?

Upscaled versions of CHIRPSv2 and MSWEPv2 were computed from 0.5◦ and 0.1◦,

respectively, to ensure a consistent point-to-pixel comparison with the other products

that have a spatial resolution of 0.25◦. However, these datasets were also analysed us-

ing their original relatively high spatial resolution to evaluate if the applied upscaling

procedure interfered with the performance evaluation.

This is the first time that CHIRPSv2 and MSWEPv2 are evaluated at differ-

ent spatial resolutions over the same study areas. For the Imperial, the upscaling

procedure improved the performance of CHIRPSv2 and decreased the performance

of MSWEPv2 at the daily scale (Baez-Villanueva et al. 2018, their Figure 13). The

opposite was observed at the monthly temporal scale, where CHIRPSv2 upscaled

presented a lower performance than CHIRPSv2, and MSWEPv2 upscaled performed
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Table 4.2: Results of the evaluation of performance over the study areas using the
categorical indices.

Study Area Main Results
Imperial There was no single product that performed the best for all

precipitation intensities. CHIRPSv2 upscaled, MSWEPv2, and
MSWEPv2 upscaled performed relatively better at capturing high
precipitation intensities, which is in agreement with Zambrano-
Bigiarini et al. (2017). MSWEPv2, MSWEPv2 upscaled, and
TRMM 3B42RT showed low FAR values. All products except
CHIRPSv2 and CHIRPSv2 upscaled overestimated the light rain
events when evaluated with the fbias. CMORPHv1, PERSIANN-
CDR, TRMM 3B42RT, and MSWEPv2 underestimated violent
rain events. Only PERSIANN-CDR showed a slight overestima-
tion of moderate events ([5, 20) mm d−1). Finally, the Imperial
presented the second-lowest fbias values.

Paraiba do Sul MSWEPv2 performed the best for all precipitation intensities
when evaluated with all categorical indices. All products except
CHIRPSv2 and CHIRPSv2 upscaled overestimated the light rain
events. In general, the moderate events ([5, 20) mm d−1) were over-
estimated. TRMM 3B42RT, and TRMM 3B42v7 overestimated the
violent rain events, which is in agreement with Melo et al. (2015).
Finally, the Paraiba do Sul presented the lowest fbias values.

Magdalena All products presented almost no skill at capturing high precipita-
tion intensities. There was not a single product that performed
the best for all intensities. All products except PERSIANN-
CDR presented a high POD for the no rain events. CMORPHv1,
CHIRPSv2, and CHIRPSv2 upscaled performed better for high rain
intensities. The moderate events ([5, 20) mm d−1) were in general
overestimated. All products showed a high overestimation of light
rain events. Almost all products underestimated violent rain events
except for MSWEPv2 and MSWEPv2 upscaled. Finally, the Mag-
dalena presented the highest fbias values for light intensities.

better than the original MSWEPv2. In the case of Paraiba do Sul, CHIRPSv2 per-

formed better after the upscaling procedure, while MSWEPv2 was not affected when

evaluated at the daily scale. At the monthly scale, CHIRPSv2 upscaled performed

slightly better than CHIRPSv2, while MSWEPv2 upscaled had lower performance.

Finally, in the Magdalena, the upscaling procedure did not impact the performance

at the daily scale for the two products; however, at the monthly scale, CHIRPSv2

upscaled performed worse than the original product, while no changes were observed
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for MSWEPv2.

Our results show that there is not a general conclusion about the impact of

the upscaling procedure on the performance of a given dataset, with different results

regarding products, temporal scales, and regions (see Baez-Villanueva et al. 2018,

their Figure 13). However, the topography plays an important role when an upscaling

procedure is applied to a particular product. The stations with higher differences in

performance when compared to ground-based measurements before and after the

upscaling procedure were located closer to pronounced elevation gradients. For this

reason, if an evaluation of the performance of precipitation products is required in

a mountainous area, the use of an upscaling procedure to enable a consistent point-

to-pixel comparison between products may affect the evaluation. On the other hand,

if there is not a pronounced elevation gradient, an upscaling procedure can enable a

fair point-to-pixel comparison.

4.1.3 Lessons learned from the evaluation of precipitation

products

The following points summarise the lessons learned from the results of the eval-

uation of precipitation products over three Latin American catchments (see Sec-

tions 4.1.1 and 4.1.2):

1. the KGE’ has proved to be a useful measure of performance as it decomposes

the performance of the products into r, β, and γ. For this reason, it is easier to

understand the source(s) of the mismatches between the precipitation products

and their corresponding ground-based measurements;

2. the POD, FAR, and fbias are important indices to evaluate the accuracy of the

products at identifying different precipitation intensities;

3. as observed, the RMSE and KGE’ can present different results when used to

evaluate the spatio-temporal performance of different precipitation products.

However, the KGE’ has proven to be an improved performance index due to its

ability to not penalise mismatches of heavy precipitation events and its ability

to decompose the total performance into r, β, and γ.

4. each evaluated product performed differently for each catchment and each tem-

poral scale. On the daily scale, MSWEPv2 performed the best over the Im-

perial and Paraiba do Sul, while CHIRPSv2 performed better over the Mag-

dalena. CHIRPSv2 presented the highest performance on the monthly scale
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over the Imperial and Magdalena, while MSWEPv2 performed the best over

the Paraiba do Sul. When the catchments were evaluated at the seasonal scale,

CMORPHv1 performed the best for DJF and SON, TRMM 3B42v7 for MAM,

and PERSIANN-CDR for JJA over the Imperial. MSWEPv2 performed the

best over Paraiba do Sul during all seasons, while CHIRPSv2 showed the best

performance over the Magdalena. Finally, it is worth mentioning that the gauge-

adjusted products generally tend to perform better than those with no ground-

based adjustments. For this reason, the independence of the validation dataset

must be taken into account before any comparison among products due that it

may affect the results of the evaluation;

5. the highest probability of detection (POD ∼ 1) was obtained for the no rain

intensities for all products over all the study areas. In general, all products pre-

sented a low POD for high precipitation events. The moderate rain events (from

5 to 20 mm d−1) were the best captured in all catchments when precipitation was

larger than 1 mm d−1. In particular, MSWEPv2 performed considerably better

for all precipitation intensities in Paraiba do Sul than the rest of the products.

The fbias presented higher variations for the violent (higher than 40 mm) and

the light rain events ([1, 5) mm d−1), which is in agreement with the results

of the POD. The FAR results showed consistency with those obtained with the

POD, showing low values for no rain events;

6. despite the evolution of the precipitation products, our results confirm that a

catchment-specific validation is still required to select a suitable product for

hydrological purposes. This evaluation results cannot be extrapolated to other

catchments and regions; this comparison shows that the same products present

different behaviour over different areas. The readers are invited to evaluate the

performance of any precipitation product before any application;

7. the RMSE gives more weight to the mismatches in two cases: i) when a low

precipitation intensity is constantly not detected, and ii) in high precipitation

events because it gives more weight to the mismatches. Therefore, the RMSE is

not recommended for evaluating the performance of precipitation products at

the daily scale. Additionally, its results are not comparable between areas with

different precipitation regimes; and

8. the upscaling procedure can affect the performance of the precipitation prod-

ucts, and it may vary between products, temporal scales, and regions. If an

upscaling procedure is performed while evaluating the performance of precipi-

tation products over an area, the selection of the best performing product can

be affected by it. Evaluating the products’ performance is recommended before
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and after an upscaling procedure is computed to select the most representative

product of the spatio-temporal precipitation patterns of an area. Also, topog-

raphy plays an important role when upscaling a product. The stations with

higher performance differences between the original products and the upscaled

ones were close to pronounced elevation gradients. For this reason, if an eval-

uation of different precipitation products is required over a mountainous area,

the upscaling procedure may affect the results. However, if the topography is

not rugged, an upscaling procedure can enable a fair point-to-pixel comparison

among products.

4.2 Merging

RF-MEP was applied to derive two merged products: i) RF-MEP3P , using CHIRPSv2,

PERSIANN-CDR, ERA-Interim, the DSM, and the 258 layers of Euclidean distances;

and ii) RF-MEP5P , which included CMORPHv1 and TRMM 3B42v7 to the afore-

mentioned covariates.

4.2.1 Spatio-temporal performance of the merged products

Together with the products used in their computation, the two merged products and

the benchmark MSWEPv2.2 were evaluated across Chile at seven temporal scales

(3-day, monthly, annual and the four seasons). The summarised results that appear

in Baez-Villanueva et al. (2020) are presented in Table 4.3.

RF-MEP was able to improve the spatio-temporal representation of precipita-

tion (Baez-Villanueva et al. 2020, their Figures 4–8) by combining multiple sources

of information. Both merged products showed increased r, β, and γ values at all

temporal scales, which indicates that this method is able to represent the total vol-

ume and distribution of precipitation by providing a better representation of daily

precipitation patterns. Comparable improvements in β were obtained by Manz et al.

(2016) and Yang et al. (2017), although Ma et al. (2018) reported a higher bias in

their merged product. Also, the reduction in the dispersion of the KGE’ and its com-

ponents demonstrates that the merged products show good performance over most

of the study area. The KGE’ has proven to be a useful performance index because

of its ability to decompose the performance into r, β, and γ, which can be used to

understand the different sources of mismatches.
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The evaluated precipitation products showed higher performances at the monthly,

seasonal and annual scales in comparison to shorter temporal scales (Baez-Villanueva

et al. 2020, their Figure 4), similar to the results reported by Jiang et al. (2012) and

Zambrano-Bigiarini et al. (2017). This indicates that despite systematic, random,

and detection errors present in the precipitation products at the daily scale, they

can still represent precipitation patterns when aggregated at longer temporal scales.

On the other hand, Maggioni and Massari (2018) concluded that spatial sampling

uncertainties tend to decrease for higher temporal resolutions, which means that the

point-to-pixel evaluation tends to be more reliable for increasing accumulation peri-

ods.

All products showed the lowest performance in summer (DJF), which is con-

sistent with the results obtained by Rabiei and Haberlandt (2015) and Zambrano-

Bigiarini et al. (2017). This could be because i) small-scale convective precipitation

events dominate in summer in the Far North region (Prein and Gobiet 2017); ii) in

warm months, the evaporation of hydrometeors before they reach the ground leads

to overestimation and false alarms (Maggioni and Massari 2018); and iii) passive

microwave radiometers overestimate and underestimate precipitation during summer

and winter, respectively (Tang et al. 2014).

Both merged products presented their lowest performance over the arid Far North

region due to the low performance of all products used as covariates. This is in agree-

ment with Manz et al. (2016), where the merged products presented high uncertainty

and low performances predominantly over regions with low and intermittent precip-

itation regimes. The mismatches of the precipitation products are more evident in

arid and semi-arid climates because any overestimation or underestimation will have a

greater impact on the performance evaluation over low precipitation regimes. Despite

this, the RF-MEP5P and RF-MEP3P products were able to adequately represent the

precipitation patterns of the higher elevations of the Far North, showing that RF-

MEP is able to improve the spatio-temporal estimation of precipitation through the

inclusion of complementary information, even in regions where the selected products

exhibit low performance.

The time difference that the products have with respect to the rain gauge stations

(∼11 hour difference; for discussion, see Beck et al. 2019b) must be considered for

the evaluation of the precipitation products at the daily temporal scale. Among

the evaluated products, only MSWEPv2.2 incorporates daily gauge data and applies

corrections to account for the reporting times of the rain gauges.
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CHAPTER 4. RESULTS

Both merged products performed similarly well with a median KGE’ of 0.83

because they use the Chilean rain gauges; however, the five products used in their

computation performed slightly worse in the 1-day evaluation due to the 11 hour

difference in the reporting times. The 3-day temporal scale was considered sufficient

to render the difference in reporting times negligible.

4.2.2 Correction of mismatches from the original precipita-

tion products

The results showed that the blending of multiple precipitation estimates, topography-

related information, and ground-based measurements can improve the spatio-temporal

characterisation of precipitation (Baez-Villanueva et al. 2020, their Figures 8–10),

which is consistent with the results obtained by Verdin et al. (2016) and Manz et al.

(2016). The r, β, and γ components also improved at all temporal scales. The γ of

both merged products showed a systematic underestimation (γ ∼ 0.9; Baez-Villanueva

et al. 2020, their Figure 5) at all temporal scales as a consequence of averaging the

predictions of the different trees from the RF model. Despite this, the γ values of the

merged products are higher than those shown by the products used as covariates.

Recently, Alvarez-Garreton et al. (2018) derived runoff coefficients larger than 1,

mainly over Central Chile and in the Far South, with increasing coefficient values

towards the Andes. These findings are consistent with those of Beck et al. (2017a),

indicating that more water is leaving the catchments than the total amount entering

as precipitation. This suggests that the products systematically underestimate pre-

cipitation at high elevations throughout Chile, which may be due to the inability of

satellite-based products to estimate precipitation and ice-covered surfaces over snow

accurately (Beck et al. 2017a). Also, during winter, most Chilean rain gauges located

at high elevations cannot correctly incorporate snow into the precipitation measure-

ment, leading to an underestimation of precipitation. Therefore, even considering

the good performance of the two merged products at different temporal scales, it is

likely that the real amount of precipitation is underestimated at high elevations due

to the absence of ground-based information. To reduce the possible underestimation

of precipitation over high elevated and snow-driven catchments, the incorporation of

rain gauges able to measure both liquid and solid precipitation at high elevations

is recommended, along with the use of precipitation products that account for both

solid precipitation (such as MSWEPv2.2 and reanalysis-based products).
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CHAPTER 4. RESULTS

The inclusion of different precipitation products improved the detection of differ-

ent intensities at the daily scale, as observed in the improved categorical performance

of the merged products compared to that of the covariates (Baez-Villanueva et al.

2020, their Figure 8 and Table 5). The categorical performance of both merged

products showed improved detection of the selected precipitation intensities and a

reduction in the number of incorrectly classified days. These results, in combination

with the improved values of r and β, show that RF-MEP is capable of improving

the spatial representation of precipitation patterns at the daily scale by assigning

more accurate precipitation amounts to each day, while preserving the total volume

of precipitation at larger scales.

The analysis of the precipitation products at different intensities is affected by

the difference in reporting times between the products and the ground-based measure-

ments. All the products used as covariates, except for CHIRPSv2 and TRMM 3B42v7,

presented statistically significant differences at the 95% confidence interval between

the daily and 3-day values. Unfortunately, this issue is ignored in most precipitation

evaluation studies and constitutes a major limitation of most evaluations carried out

in time zones far from 0:00 UTC.

Precipitation is overestimated in the Far North by CMORPHv1, PERSIANN-

CDR, TRMM 3B42v7, CHIRPSv2, and ERA-Interim (Baez-Villanueva et al. 2020,

their Figure 13). Consequently, both merged products overestimate precipitation

over this region (except for the high elevated areas). These results are in agreement

with Dinku et al. (2011), and Zambrano-Bigiarini et al. (2017), where the products

overestimated precipitation over the arid regions of Africa and Chile, respectively.

MSWEPv2.2 and the merged products were able to capture the precipitation vol-

ume over the mountainous areas in the Far North, despite the challenge presented by

climate variability caused by extreme topography and lack of ground-based measure-

ments (Maggioni and Massari 2018).

The merged products show a lower relative difference, i.e., good performance, for

almost all the stations in the Near North, Central Chile, South, and elevated areas in

the Far North. The improved performance of the merged products can be observed in

the lower panel of Figure 13 of Baez-Villanueva et al. (2020), which highlights that the

majority of the precipitation products presented relative differences between -0.2 and

0.2 compared to rain gauges. This suggests that RF-MEP is capable of representing

the mean annual precipitation patterns when applied at the daily temporal scale. The

overestimation over the Far North is expected because all products used to derive both

merged products tend to overestimate precipitation over this region.
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4.2.3 Impact of density, spatial resolution, and limitations of

RF-MEP

A high number of rain gauge stations in the training set leads to higher performance

and higher detection of precipitation intensities (Baez-Villanueva et al. 2020, their

Figure 9). When the training sample to 10% (37) of the total available stations was

reduced, RF-MEP5P was still able to outperform the products used as covariates,

showing the effectiveness of the proposed RF-MEP method.

The products RF-MEP5P and RF-MEP3P performed similarly (Baez-Villanueva

et al. 2020, their Figures 4–8). The median values and the interquartile ranges of

the KGE’, r, β, and γ are similar for both merged products, except over the Far

North, where RF-MEP5P shows less dispersion in the KGE’ and its components than

RF-MEP3P , despite the slight decrease in the median performance. This indicates

that the inclusion of more precipitation products could reduce the dispersion in areas

where the selected products show low performance. The similar performance of RF-

MEP5P and RF-MEP3P indicates that the method is able to extract useful information

from the precipitation products. Similar results were obtained when RF-MEP3P used

ERA-Interim, CMORPHv1, and TRMM 3B42v7 instead of ERA-Interim, CHIRPSv2,

and PERSIANN-CDR (see Appendix B.1), demonstrating that RF-MEP is a robust

merging method. Although the precipitation products must be resampled to the same

spatial resolution to generate the merged product, the effect of including products

generated at different spatial resolutions is negligible (see Baez-Villanueva et al. 2020,

their Figure 10).

RF-MEP5P includes CMORPHv1 and TRMM 3B42v7, which reduces the poten-

tial temporal coverage by 15 years (RF-MEP3P can be generated from 1983 onwards,

while RF-MEP5P can only be generated from 1998). Therefore, based on the similar

strong performances of both merged products, RF-MEP3P is preferred for the Chilean

case study, as the benefits of including CMORPHv1 and TRMM 3B42v7 to generate

RF-MEP5P are outweighed by the loss of 15 years of record.

Although RF-MEP was only applied over Chile, it could be successfully applied

over other areas due to its outstanding performance in a region with notable hetero-

geneity in topography and climate even when the training set was largely reduced.

However, some limitations apply to this method: i) since ground-based data are nec-

essary, it would be difficult to apply the proposed method globally and in near-real

time; ii) it can be computationally intensive when applied to large areas; and iii) it

has problems predicting values that are completely out from the training range.
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4.2.4 Comparison with other merging methods

RF-MEP5P was evaluated against the other two merging methods (KED, OOR arith-

metic mean) and against MSWEPv2.2 (see Baez-Villanueva et al. 2020, their Fig-

ure 11). The performance of ERA-Interim was also included because it was the

best-performing product used in the merging procedure. RF-MEP5P showed the best

performance at the 3-day temporal scale, followed by KED and MSWEPv2.2. The

OOR arithmetic mean product shows the lowest KGE’, γ, and r; however, it can

accurately represent the total precipitation volume at the 3-day scale. This product

also shows the lowest performance when evaluated at different intensities.

Shen et al. (2014) concluded that the categorical performance of the OOR arith-

metic mean product improved compared to the selected products; however, they eval-

uated the categorical performance only for rain and no rain events. The distribution

of daily precipitation is heavily skewed; therefore, the product’s performance over

different intensities can be masked by the no rain events. As observed in the lower

panel of Figure 11 of Baez-Villanueva et al. (2020), averaging different products re-

duces the performance at all precipitation intensities because all these products have

errors in detection (i.e., the products may estimate different precipitation intensities

for a particular day). This analysis suggests that precipitation products should not

be averaged to attempt to improve daily precipitation patterns.

KED performed similarly to RF-MEP5P ; however, RF-MEP5P showed less dis-

persion in the KGE’ and its components, suggesting that RF-MEP is a robust method

to merge precipitation products and ground-based data. Ly et al. (2011) obtained

poor results when using KED with few sample points, which indicates that the number

of ground stations highly influences the performance of KED. Conversely, RF-MEP

performed relatively well when the training set was dramatically reduced. The per-

formance of RF-MEP5P is also the highest at monthly, annual and seasonal temporal

scales, except in DJF where MSWEPv2.2 performs the best (see Figure S1 from

Appendix B.1).
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4.3 Regionalisation

One independent calibration (2000–2014) and two verification periods i.e., a near-

normal/wet period (Verification 1; 1990–1999) and a dry period (Verification 2; 2015–

2018) were used to calibrate the 100 catchments to obtain the best model parameter

set for each catchment. Then, both verification periods were used to evaluate the

performance of the parameter sets over data that were not used during calibration.

Finally, three regionalisation techniques were used to predict daily streamflow over

ungauged catchments through a leave-one-out exercise (see Section 3.3).

4.3.1 Performance of precipitation products

The summary of the results of the independent calibration and both verification

periods, as well as the results of the regionalisation exercise from Baez-Villanueva

et al. (2021) are presented in Table 4.4.

During the independent catchment calibration and two verification periods, good

performances were obtained with all products (Baez-Villanueva et al. 2020, their Fig-

ure 4). When decomposing the results of the KGE’ into its three components, r

exhibited the lowest performance. At the same time, β and γ values were generally

closer to their optimal values, particularly for calibration and Verification 1. The

results obtained with ERA5, which is a reanalysis product, were as good or even bet-

ter than those obtained with the gauge-corrected products CR2MET, RF-MEP, and

MSWEPv2.8 (e.g., see results for the pluvio-nival catchments in Baez-Villanueva et al.

2020, their Figure 4). This is in agreement with Tarek et al. (2020), who concluded

that ERA5 should be considered a high-potential dataset for hydrological modelling

in data-scarce regions. The good performance of ERA5 suggests that, for the partic-

ular case of Chile, merging precipitation products with ground-based measurements

does not necessarily translate into improved hydrological model performance, which

may be attributed to i) the lack of precipitation rain gauges in the Andes Mountains;

ii) the ability of the rainfall-runoff model to compensate for the precipitation forcing

(visible in the performances of the β and γ components; Appendix C.1); and iii) the

fact that precipitation products still have errors in detecting precipitation events that

could impact the representation of the modelled streamflow dynamics (as suggested

by the relative lower performance of the r component of the KGE’).

Furthermore, the similar performances obtained with uncorrected (ERA5) and

gauge-corrected (CR2MET, RF-MEP, and MSWEPv2.8) products, both in wet and

dry periods, highlight that there was no single precipitation dataset outperforming the
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others in all periods. These results demonstrate that the calibration of hydrological

model parameters smooths out, to some extent, the spatio-temporal differences be-

tween precipitation products (Baez-Villanueva et al. 2020, their Figures 2, 3, 6, and 9).

This is in agreement with previous studies that have demonstrated that model cali-

bration with each product improves the performance of streamflow simulations (e.g.,

Artan et al. 2007; Stisen and Sandholt 2010; Bitew et al. 2012; Thiemig et al. 2013).

The decomposition of the KGE’ into its components also demonstrated the ability of

the TUWmodel to compensate for the total volume of precipitation, as the β compo-

nent was close to the optimum value, particularly for calibration and Verification 1

(see Appendix C.1). This can be attributed to the improved detection of precipitation

events of the merged products (regarding RF-MEP, see Baez-Villanueva et al. 2020),

which can also be observed for MSWEPv2.8, as it produced the best performance

over snow-dominated catchments under dry conditions (Verification 2).

Regarding the suitability of precipitation products for parameter regionalisation,

RF-MEP provided slightly better results in the Far North for the calibration pe-

riod using both spatial proximity and feature similarity, suggesting that precipitation

products merged with ground-based information over arid climates can improve re-

gionalisation performance. The lower performance obtained in regionalisation with

ERA5 in the Far North compared to the other products can be attributed to its

high precipitation values, which are likely due to the lack of ground-based precipi-

tation stations over Chile in the development of the product. The incorporation of

ground-based measurements has the potential to i) compensate for overestimations

caused by the evaporation of hydrometeors before they reach the ground (Maggioni

and Massari 2018); and ii) improve event-based detection skills (Baez-Villanueva

et al. 2020; Zhang et al. 2021). The latter is evident in CR2MET and MSWEPv2.8,

which are both based on ERA5 but include several rain gauges in the Far North,

and have a higher performance than ERA5 (see Baez-Villanueva et al. 2020, their

Figures 2 and 3).

Despite the low performance of all precipitation products in the Far North and

Near North (median KGE’ values <0.58, see Baez-Villanueva et al. 2020, their Fig-

ure 7), the TUWmodel was flexible enough to compensate, to some extent, for differ-

ences between products. A similar conclusion was obtained by Elsner et al. (2014),

who examined differences between four meteorological forcing datasets and their im-

plications in hydrological model calibration in the western USA using the Variable

Infiltration Capacity model (VIC; Liang et al. 1994). These results are also in agree-

ment with Bisselink et al. (2016), who concluded that parameter sets obtained during

calibration partially compensated the bias of seven precipitation products used to

force the fully-distributed LISFLOOD model in four catchments in southern Africa.
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CHAPTER 4. RESULTS

An unexpected result from this study is that the spatial resolution of the precip-

itation products did not play a major role in model performance during calibration,

verification, and regionalisation; although CR2MET and RF-MEP have a higher spa-

tial resolution (0.05◦; ∼25 km2) than MSWEPv2.8 (∼0.10◦; ∼100 km2) and ERA5

(∼0.28◦; ∼625 km2), all four products performed well during the independent calibra-

tion and verification of the hydrological model. The performance of ERA5 over the

25 smallest catchments during regionalisation (area < 353.1 km2) was similar to that

obtained with products with a higher spatial resolution (see Appendix C.1). This

can be attributed to the fact that Chile is dominated by large-scale frontal systems

(Zhang and Wang 2021); and therefore, coarse-resolution products may perform well

over small catchments. Our results also align with the findings of Maggioni et al.

(2013), who concluded that the loss of spatial information associated with coarser

resolution (e.g., ERA5) can be compensated through model calibration.

The calibration of TUWmodel was able to compensate, to some extent, for differ-

ences in annual and intra-annual precipitation amounts, intermittency, and extremes

(see Baez-Villanueva et al. 2020, their Figure 2 and 3) among the four products. The

example of the nivo-pluvial catchments illustrates how TUWmodel parameters com-

pensate for differences between the precipitation forcings used in calibration (Baez-

Villanueva et al. 2020, their Figure 12), and the corresponding variations in the mean

monthly water balance components (Baez-Villanueva et al. 2020, their Figure 13).

Similar figures for snow-dominated, pluvio-nival, and rain-dominated catchments can

be found in Appendix C.1.

In general, the calibrated parameters behave as expected for each hydrological

regime. A notable exception is ERA5, which shows low values for the snow correction

factor (SCF) in nivo-pluvial and snow-dominated catchments (see and Appendix C.1

and Baez-Villanueva et al. 2020, their Figure 13). These catchments are primarily

located in the arid Near North region, where the estimated winter precipitation is

substantially lower for CR2MET, RF-MEP, and MSWEPv2.8, and a high SCF cor-

rects this apparent underestimation. The lower precipitation amounts presented in

these products may reflect the incorporation of information from rain gauges located

in drier, low-lying areas to correct their precipitation estimates.

ERA5 presented relatively low SCF values over nivo-pluvial catchments com-

pared to the other products (Baez-Villanueva et al. 2020, their Figure 13), which is

expected because it exhibits the highest precipitation values. Conversely, because RF-

MEP has the lowest mean monthly precipitation over the nivo-pluvial catchments,

the model adjusts the evaporation, snow water equivalent, and soil moisture compo-

nents, thus increasing the simulated streamflow (to match the observed streamflow).

Substantial differences were obtained for LPrat and field capacity (FC), affecting
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evaporation and soil moisture. For example, over the nivo-pluvial catchments, the

LPrat and FC values for RF-MEP are similar to those of ERA5, despite RF-MEP

having substantially lower precipitation amounts, which in turn is reflected in the

reduced soil moisture and evaporation amounts. The differences between LPrat and

FC according to precipitation product are even more pronounced for snow-dominated

catchments (see Appendix C.1).

Finally, higher values of the nonlinear parameter for runoff production Beta re-

duce the amount of water that leaves the catchment as runoff (Széles et al. 2020, their

Eq. 7). For all hydrological regimes except pluvio-nival, the median Beta parameter

is substantially higher for ERA5 than for the other precipitation products. The larger

Beta values obtained with ERA5 are expected to attenuate the runoff generation from

extreme precipitation events (Baez-Villanueva et al. 2020, their Figure 13c–d). Inter-

estingly, the Beta parameter is zero in some pluvio-nival catchments, which means

that all liquid precipitation and snowmelt was used to generate runoff. This behaviour

was more pronounced with RF-MEP and MSWEPv2.8, which exhibited the lowest

precipitation amounts and longer dry spells over these catchments. In general, the

storage components obtained from each precipitation product (computed as the sum

of the two deepest reservoirs of the model (see Széles et al. 2020, their Figure 3) are

similar for all four precipitation products.

4.3.2 Evaluation of regionalisation techniques

The main results of the evaluation of the regionalisation are presented in Table 4.5.

The compensation due to the flexibility of the TUWmodel observed during the inde-

pendent calibration and verification also influences the regionalisation performance.

Feature similarity provided the best performance when the TUWmodel was forced

with all precipitation products (Baez-Villanueva et al. 2020, their Figure 8), while

spatial proximity provided similar performance to feature similarity over the Central

Chile and South regions, where there is a high density of streamflow stations. These

results are in agreement with Parajka et al. (2005), Oudin et al. (2008), and Neri

et al. (2020), who demonstrated that spatial proximity performs well over densely

gauged regions.

The inclusion of donor catchments with low model performance introduces a

diversity that has the potential to benefit streamflow prediction in ungauged catch-

ments, as discussed by Oudin et al. (2008). These catchments were incorporated in the

regionalisation process because of the diversity of climates and physiographic charac-

teristics across continental Chile, with the potential downside that this may lead to

errors in the transferred model parameters. Additionally, the similarity between the
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performance of spatial proximity and feature similarity can be partially attributed to

the fact that six of the nine selected catchment characteristics are directly or indirectly

related to climate, which in Chile is highly related to the geographical locations of

the catchments. Parameter regression was the regionalisation method that provided

the worst results (Baez-Villanueva et al. 2020, their Figures 6 and 9); however, Fig-

ure 7 of Baez-Villanueva et al. (2021), shows that this method generated good results

over low-elevated areas of the Central Chile and South regions, where there are many

potential donor catchments located nearby.

The compensation for precipitation differences obtained through model calibra-

tion also affected the relative performance of regionalisation techniques, producing

unrealistic parameter sets in some donor catchments. In particular, such compen-

sation may have impacted the spatial transferability of model parameters with the

parameter regression method. The main reason is that, unlike techniques that trans-

fer the entire parameter sets, the regression process denatures the already uncertain

model parameters by applying independent regression procedures using climate and

physiographic characteristics (Arsenault and Brissette 2014). This challenge can be

overcome by simultaneously optimising both the model parameters and the regression

equations (e.g., Samaniego et al. 2010; Rakovec et al. 2016; Beck et al. 2020a), but

such an exercise is outside of the scope of this study.

Spatial proximity and feature similarity performed better over pluvio-nival catch-

ments and worst over rain-dominated catchments. The good performance over pluvio-

nival catchments could be in part attributed to i) the ability of the model to re-

produce streamflow in this regime; and ii) the increased likelihood of transferring

model parameters from a catchment with the same hydrological regime, as they are

grouped close together and form 40% of the total number of catchments. How-

ever, the rain-dominated catchments (19 in total) performed slightly worse than the

snow-dominated catchments (16 in total), which performed the worst during both

verification periods.

60



CHAPTER 4. RESULTS

T
ab

le
4.
5:

S
u
m
m
ar
y
of

th
e
re
su
lt
s
of

th
e
ov
er
al
l
p
er
fo
rm

an
ce

of
th
e
re
gi
on

al
is
at
io
n
te
ch
n
iq
u
es

an
d
th
e
im

p
ac
t
of

h
y
d
ro
lo
gi
ca
l

re
gi
m
es
.

T
y
p
e

o
f

a
s-

se
ss
m
e
n
t

M
a
in

R
e
su

lt
s

O
ve
ra
ll

p
er
fo
r-

m
an

ce
T
h
e
in
d
ep

en
d
en
t
ca
li
b
ra
ti
on

of
ea
ch

ca
tc
h
m
en
t
re
p
re
se
n
ts

th
e
h
ig
h
es
t
m
o
d
el
p
er
fo
rm

an
ce

th
at

ca
n
b
e
ob

ta
in
ed

fo
r
a
sp
ec
ifi
c
co
m
b
in
at
io
n
of

h
y
d
ro
lo
gi
ca
l

m
o
d
el
,
ob

je
ct
iv
e
fu
n
ct
io
n
,
an

d
ca
tc
h
m
en
t
(i
.e
.,
an

ab
so
lu
te

b
en
ch
m
ar
k
),

w
h
er
ea
s
th
e
tw

o
ve
ri
fi
ca
ti
on

p
er
io
d
s
w
er
e
u
se
d
to

ev
al
u
at
e
th
e
p
er
fo
rm

an
ce

of
th
e
re
gi
on

al
is
at
io
n
te
ch
n
iq
u
es

ov
er

in
d
ep

en
d
en
t
p
er
io
d
s
(i
.e
.,
as

ve
ri
fi
ca
ti
on

b
en
ch
m
ar
k
s,

B
ae
z-
V
il
la
n
u
ev
a
et

al
.
20
20
,
th
ei
r
F
ig
u
re

8)
.
T
h
er
e
ar
e

m
ar
ke
d
d
iff
er
en
ce
s
in

p
er
fo
rm

an
ce

ac
co
rd
in
g
to

th
e
p
re
ci
p
it
at
io
n
p
ro
d
u
ct

u
se
d
to

fo
rc
e
th
e
T
U
W

m
o
d
el
,
re
ga
rd
le
ss

of
th
e
re
gi
on

al
is
at
io
n
m
et
h
o
d
an

d
th
e
ev
al
u
at
ed

p
er
io
d
.
F
or

ex
am

p
le
,
E
R
A
5
h
as

m
or
e
d
is
p
er
si
on

in
th
e
K
G
E
’
va
lu
es

th
an

ot
h
er

p
ro
d
u
ct
s
fo
r
fe
at
u
re

si
m
il
ar
it
y
an

d
sp
at
ia
l
p
ro
x
im

it
y,

w
h
il
e
it

te
n
d
s
to

p
er
fo
rm

th
e
b
es
t
fo
r
p
ar
am

et
er

re
gr
es
si
on

.
F
or

al
l
p
ro
d
u
ct
s
an

d
ev
al
u
at
io
n
p
er
io
d
s,

fe
at
u
re

si
m
il
ar
it
y
p
er
fo
rm

ed
th
e
b
es
t,

fo
ll
ow

ed
b
y
sp
at
ia
l
p
ro
x
im

it
y
an

d
p
ar
am

et
er

re
gr
es
si
on

,
w
h
ic
h
is
co
n
si
st
en
t
w
it
h
re
su
lt
s
fr
om

m
u
lt
ip
le

st
u
d
ie
s
(e
.g
.,
P
ar
a
jk
a
et

al
.
20
05
;
O
u
d
in

et
al
.
20
08
;
B
ao

et
al
.
20
12
;
G
ar
am

b
oi
s
et

al
.
20
15
;
N
er
i
et

al
.
20
20
).

P
ar
am

et
er

re
gr
es
si
on

h
ad

b
ot
h
th
e
lo
w
es
t
m
ed
ia
n
K
G
E
’s

an
d
th
e
la
rg
es
t
sp
re
ad

.
C
om

p
ar
in
g

th
e
tw

o
ve
ri
fi
ca
ti
on

p
er
io
d
s,
re
su
lt
s
ob

ta
in
ed

d
u
ri
n
g
th
e
(n
ea
r-
n
or
m
al
/w

et
)
V
er
ifi
ca
ti
on

1
p
er
io
d
w
er
e
cl
os
e
to

th
os
e
ob

ta
in
ed

d
u
ri
n
g
ca
li
b
ra
ti
on

,
w
h
il
e

th
os
e
ob

ta
in
ed

d
u
ri
n
g
th
e
(d
ry
)
V
er
ifi
ca
ti
on

2
w
er
e
su
b
st
an

ti
al
ly

lo
w
er
,
es
p
ec
ia
ll
y
fo
r
sp
at
ia
l
p
ro
x
im

it
y
an

d
p
ar
am

et
er

re
gr
es
si
on

.
T
h
es
e
re
su
lt
s
ar
e
in

ag
re
em

en
t
w
it
h
th
e
lo
w
er

p
an

el
s
lo
ca
te
d
b
el
ow

ea
ch

m
ap

in
B
ae
z-
V
il
la
n
u
ev
a
et

al
.
(2
02
1)
;
th
ei
r
F
ig
u
re

7,
w
h
ic
h
sh
ow

s
th
e
em

p
ir
ic
al

cu
m
u
la
ti
ve

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
s
(E

C
D
F
s)

of
th
e
p
er
fo
rm

an
ce

of
ea
ch

re
gi
on

al
is
at
io
n
te
ch
n
iq
u
e
d
u
ri
n
g
th
e
en
ti
re

p
er
io
d
of

an
al
y
si
s
(1
99
0–
20
18
).

T
h
es
e

E
C
D
F
s
co
m
p
ar
e
th
e
re
la
ti
ve

p
er
fo
rm

an
ce

of
ea
ch

re
gi
on

al
is
at
io
n
m
et
h
o
d
ag
ai
n
st

th
os
e
ob

ta
in
ed

fr
om

th
e
in
d
ep

en
d
en
t
ca
li
b
ra
ti
on

an
d
ve
ri
fi
ca
ti
on

of
ea
ch

ca
tc
h
m
en
t
(u
se
d
as

b
en
ch
m
ar
k
s)
.
A
s
ex
p
ec
te
d
,
al
l
re
gi
on

al
is
at
io
n
m
et
h
o
d
s
p
re
se
n
te
d
a
lo
w
er

p
er
fo
rm

an
ce

th
an

th
e
in
d
ep

en
d
en
t
ca
li
b
ra
ti
on

an
d

ve
ri
fi
ca
ti
on

,
w
it
h
th
is
re
d
u
ct
io
n
m
or
e
p
ro
n
ou

n
ce
d
fo
r
p
ar
am

et
er

re
gr
es
si
on

.

Im
p
ac
t
of

h
y
d
ro
-

lo
gi
ca
l
re
gi
m
es

F
ea
tu
re

si
m
il
ar
it
y
p
ro
v
id
ed

th
e
b
es
t
m
ed
ia
n
p
er
fo
rm

an
ce

fo
r
al
l
h
y
d
ro
lo
gi
ca
l
re
gi
m
es

an
d
p
re
ci
p
it
at
io
n
p
ro
d
u
ct
s
ex
ce
p
t
fo
r
sn
ow

-d
om

in
at
ed

ca
tc
h
m
en
ts
,

w
h
er
e
sp
at
ia
l
p
ro
x
im

it
y
p
er
fo
rm

ed
th
e
b
es
t
fo
r
M
S
W

E
P
v
2.
8
fo
r
ca
li
b
ra
ti
on

an
d
V
er
ifi
ca
ti
on

2
(s
ee

A
p
p
en
d
ix

C
.1

an
d
B
ae
z-
V
il
la
n
u
ev
a
et

al
.
20
20
,
th
ei
r

F
ig
u
re

9)
.
T
h
es
e
re
su
lt
s
d
em

on
st
ra
te

th
at

n
o
si
n
gl
e
p
re
ci
p
it
at
io
n
p
ro
d
u
ct

ou
tp
er
fo
rm

ed
th
e
ot
h
er
s
fo
r
al
l
re
gi
on

al
is
at
io
n
te
ch
n
iq
u
es

an
d
h
y
d
ro
lo
gi
ca
l

re
gi
m
es
.
In

ot
h
er

w
or
d
s,
fo
r
th
is
ca
se

st
u
d
y,

th
e
b
es
t
p
er
fo
rm

in
g
p
re
ci
p
it
at
io
n
p
ro
d
u
ct

d
ep

en
d
s
on

th
e
h
y
d
ro
lo
gi
ca
l
re
gi
m
e
an

d
ch
os
en

re
gi
on

al
is
at
io
n

m
et
h
o
d
.

F
or

fe
at
u
re

si
m
il
ar
it
y
in

sn
ow

-d
om

in
at
ed

ca
tc
h
m
en
ts
,
R
F
-M

E
P

p
er
fo
rm

ed
th
e
b
es
t
fo
r
ca
li
b
ra
ti
on

an
d

V
er
ifi
ca
ti
on

1,
w
h
il
e
C
R
2M

E
T

p
er
fo
rm

ed
th
e
b
es
t
d
u
ri
n
g
V
er
ifi
ca
ti
on

2.
F
or

n
iv
o-
p
lu
v
ia
l
ca
tc
h
m
en
ts
,
C
R
2M

E
T

p
ro
v
id
ed

th
e
b
es
t
p
er
fo
rm

an
ce

d
u
ri
n
g
ca
li
b
ra
ti
on

an
d
V
er
ifi
ca
ti
on

1,
w
h
il
e
M
S
W

E
P
v
2.
8
p
er
fo
rm

ed
th
e
b
es
t
d
u
ri
n
g
V
er
ifi
ca
ti
on

2.
C
R
2M

E
T
an

d
E
R
A
5
p
er
fo
rm

ed
th
e
b
es
t
in

p
lu
v
io
-n
iv
al

ca
tc
h
m
en
ts

fo
r
th
e
ca
se

of
fe
at
u
re

si
m
il
ar
it
y,

w
h
il
e
al
l
p
ro
d
u
ct
s
p
er
fo
rm

ed
si
m
il
ar
ly

fo
r
sp
at
ia
l
p
ro
x
im

it
y.

F
in
al
ly
,
E
R
A
5
p
er
fo
rm

ed
th
e
b
es
t
fo
r
fe
at
u
re

si
m
il
ar
it
y
in

al
l
p
er
io
d
s
ac
ro
ss

th
e
ra
in
-d
om

in
at
ed

ca
tc
h
m
en
ts
.

F
or

b
ot
h
sp
at
ia
l
p
ro
x
im

it
y
an

d
fe
at
u
re

si
m
il
ar
it
y,
th
e
b
es
t
an

d
w
or
st

re
su
lt
s
w
er
e
ob

ta
in
ed

fo
r
p
lu
v
io
-n
iv
al

ca
tc
h
m
en
ts

an
d
ra
in
-d
om

in
at
ed

ca
tc
h
m
en
ts
,

re
sp
ec
ti
ve
ly
.
C
om

p
ar
in
g
F
ig
u
re
s
5
an

d
9
fr
om

B
ae
z-
V
il
la
n
u
ev
a
et

al
.
(2
02
1)
,
it
is
ev
id
en
t
th
at

th
e
sn
ow

-d
om

in
at
ed

ca
tc
h
m
en
ts

p
er
fo
rm

ed
su
b
st
an

ti
al
ly

w
or
se

th
an

in
th
e
in
d
ep

en
d
en
t
p
er
fo
rm

an
ce

d
u
ri
n
g
th
e
sa
m
e
p
er
io
d
.
O
n
th
e
ot
h
er

h
an

d
,
th
e
p
lu
v
io
-n
iv
al

ca
tc
h
m
en
ts

p
er
fo
rm

ed
sy
st
em

at
ic
al
ly

b
et
te
r

in
th
e
in
d
ep

en
d
en
t
ca
li
b
ra
ti
on

,
ve
ri
fi
ca
ti
on

,
an

d
re
gi
on

al
is
at
io
n
.
T
h
is
co
u
ld

b
e
at
tr
ib
u
te
d
to

i)
th
e
ab

il
it
y
of

th
e
m
o
d
el

to
re
p
ro
d
u
ce

st
re
am

fl
ow

in
th
is

re
gi
m
e
an

d
ii
)
th
e
in
cr
ea
se
d
li
ke
li
h
o
o
d
of

tr
an

sf
er
ri
n
g
m
o
d
el

p
ar
am

et
er
s
fr
om

a
ca
tc
h
m
en
t
w
it
h
th
e
sa
m
e
h
y
d
ro
lo
gi
ca
l
re
gi
m
e,

as
th
ey

ar
e
gr
ou

p
ed

cl
os
e
to
ge
th
er

an
d
co
n
fo
rm

40
%

of
th
e
to
ta
l
n
u
m
b
er

of
ca
tc
h
m
en
ts
.

61



CHAPTER 4. RESULTS

4.3.3 Impact of nested catchments

The influence of the nested catchments on the regionalisation results was evaluated.

The order of performance of the regionalisation methods and precipitation prod-

ucts did not vary when the nested catchments were excluded, as feature similar-

ity and CR2MET remained the best performing method and product, respectively

(Baez-Villanueva et al. 2020, their Figure 10). As expected, the regionalisation tech-

nique with the largest reduction in performance when excluding nested catchments

was spatial proximity, followed closely by feature similarity. All products showed a

slight performance reduction and increased dispersion for spatial proximity, except

for MSWEPv2.8, which showed a slight increase in the KGE’ median value. Feature

similarity slightly reduced performance when the nested catchments were excluded;

however, the median values remained almost the same. The change in parameter

regression performance was negligible after excluding nested catchments because, in

the particular case of Chile, excluding only a few catchments had a negligible effect

on the non-linear relationships between model parameters and the selected climatic

and physiographic characteristics.

Nested catchments play an important role in the performance of regionalisation

methods as they are more likely to have a strong climatological and physiological

similarity to each other. The regionalisation method that was most impacted by the

exclusion of nested catchments was spatial proximity, followed by feature similarity.

These results are in agreement with previous studies where the exclusion of nested

catchments reduced the performance of regionalisation techniques (Merz and Blöschl

2004; Oudin et al. 2008; Neri et al. 2020). Feature similarity only presented a slight

decrease when the nested catchments were neglected, which can be attributed to the

low degree of nestedness (i.e., the number of catchments that are nested in a larger

one). As expected, the exclusion of nested catchments had a negligible effect on pa-

rameter regression, as the removal of relatively few catchments had a negligible impact

on the non-linear relationships between the climatic and physiographic characteristics

and the model parameters that were determined using all potential donor catchments.

The reduction of regionalisation performance when the nested catchments were re-

moved was lower than the reduction reported in a case study over Austria (Neri et al.

2020, their Figure 9a), which could be attributed to i) the degree of nestedness, as the

unique geography of Chile limits, to some extent, the number of nested catchments

within any larger catchment (only 10 of the 100 selected catchments contained more

than three nested catchments); and ii) the percentage of catchments that are nested

(42% in this study, compared to 65% in the Austrian case study).
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4.3.4 Impact of donors in feature similarity

In general, the highest median performance was obtained when using four or more

donor catchments (Baez-Villanueva et al. 2020, their Figure 11). However, a t-test

demonstrated that the improvement in the KGE’ values obtained when increasing to

more than one donor was not statistically significant. The results show that the per-

formance varies according to the precipitation product and selected analysis period.

For the calibration period, feature similarity produced similar median values to those

obtained with spatial proximity when one donor was used, while the performance im-

proved as more donors were included. For both verification periods, feature similarity

(median KGE’ values ranging from 0.44 to 0.64) outperformed spatial proximity (me-

dian KGE’ values ranging from 0.39 to 0.54). For all three periods, feature similarity

provided better performance considering the distribution of the KGE’ values.

Increasing the number of donor catchments in feature similarity improved the

regionalisation performance. This is in agreement with several studies that have

demonstrated that using an ensemble of multiple donor catchments improves region-

alisation results (McIntyre et al. 2005; Zelelew and Alfredsen 2014; Garambois et al.

2015; Beck et al. 2016; Neri et al. 2020). These results are similar to those of Neri

et al. (2020), who determined that three donors were optimal for the TUWmodel

over Austrian catchments. Feature similarity still outperformed spatial proximity

when only one catchment was used to transfer the model parameters to the ungauged

catchments, which is in agreement with multiple studies that have shown the ability

of this method to produce good regionalisation results (Parajka et al. 2005; Oudin

et al. 2008; Bao et al. 2012; Garambois et al. 2015; Neri et al. 2020).
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Chapter 5

Discussion

5.1 Evaluation of precipitation products and its in-

fluence on water resources management

Precipitation is the water cycle’s major component; therefore, its accurate estimation

is crucial for diverse hydrological, agricultural, and ecological applications; and, in

general, for water resources management. However, in many regions, the rain gauge

networks are often too sparse to account for the spatio-temporal variability of precip-

itation. In this sense, in developing countries, where the need for information is the

greatest, data collection and monitoring infrastructure is generally low. This prob-

lem is exacerbated with the ongoing lack of investment in infrastructure and human

capital (Fay et al. 2017; Sheffield et al. 2018) and the ongoing decline in agricultural

and hydrometeorological networks (Lorenz and Kunstmann 2012).

Precipitation products can be used to account for the spatio-temporal distribu-

tion of precipitation over data-scarce settings (McCabe et al. 2017). Therefore, these

products can be used to provide valuable information for supporting water manage-

ment, plan and design infrastructure, support management and operational decisions,

developing early warning systems, and for disaster management purposes (e.g., Rossa

et al. 2010; Brown et al. 2014; Beck et al. 2017b; Eggimann et al. 2017; Herman

et al. 2018; Sheffield et al. 2018; Baez-Villanueva et al. 2021). These products have

different i) data sources ( they can be derived with satellite data, reanalysis models,

ground-based data, or a combination of them); ii) spatial resolution (generally from

0.05◦ to 0.50◦); iii) temporal resolution (from 30-minutes to the annual scale); and

iv) latency (from hours to several years).
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Despite the opportunities that these products provide, a plethora of studies have

shown that they are still subject to uncertainties and mismatches (Dinku et al. 2010;

Melo et al. 2015; Beck et al. 2017b; Zambrano-Bigiarini et al. 2017). Additionally,

during the performance evaluation of six precipitation products over three differ-

ent catchments of Latin America at different temporal scales (Section 4.1), different

performances were achieved by the selected products depending on region, climate,

temporal scale, and the selected performance index. It is worth mentioning that

these products were selected based on their performance reported in previous studies

(Dinku et al. 2010; Melo et al. 2015; Salio et al. 2015; Zambrano-Bigiarini et al. 2017).

All products had a higher probability of detecting no rain events than rainy days. The

evaluated products represented better the moderate precipitation events [5, 20 mm)

in all regions in comparison to light [1, 5 mm), heavy [20, 40 mm), and violent rain

events (≥ 40 mm) despite that the probability of detecting rainy days was relatively

low for all precipitation products, which is in agreement with (Zambrano-Bigiarini

et al. 2017). Paraiba do Sul presented the best daily performance followed closely

by the Imperial, while the Magdalena had systematically the lowest performance.

This could be attributed to the fact that Colombia has more convective precipitation

compared to the other study areas (Taszarek et al. 2021).

These results are of paramount importance for water resources management.

They indicate that the evaluation of the performance of precipitation products must

be tailored to the specific application that will follow the evaluation. Taking the Impe-

rial as an example, MSWEPv2 performed the best at the daily scale, while CHIRPSv2

performed the best at the monthly scale. These products could be used for diverse

water management applications, such as the design of flood controls, irrigation sys-

tems, prediction of streamflow in ungauged catchments, maximisation of hydropower

production, propagation of river flow waves, and flood early warning systems, as

the evaluation of the products should be centred on their performance at daily and

monthly temporal scales. On the other hand, MSWEPv2 besides CHIRPSv2 could be

used for transboundary water agreements, design of long-term management strategies,

and water availability and consumption, as these products had the best β and r com-

ponents, which are related to the total volume of precipitation and the precipitation

dynamics, respectively.

It is essential to mention that despite that the evaluation of precipitation prod-

ucts result in the identification of a best performing product, it may still have detec-

tion errors that may hinder their application for operational purposes as shown by

Zambrano-Bigiarini et al. (2017); Beck et al. (2017b); and Figures 5–12 and 14 from

Baez-Villanueva et al. (2018). This is in agreement with the conclusions of Mag-

gioni and Massari (2018) who stated that the intrinsic quality of the precipitation
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products have shown to impact the error propagation during hydrological modelling

exercises. However, there have been considerable advances in measurement techniques

in the past few years. This is clearly observed in the clear improvements of the rela-

tively newly released Global Precipitation Measurement (GPM; Huffman et al. 2015)

IMERG products when compared to TRMM 3B42v7 and TRMM 3B42RT (Huffman

et al. 2015; Zhang et al. 2019; Arshad et al. 2021) as well as ERA5 in comparison to

ERA-Interim (Hoffmann et al. 2019; Wang et al. 2019; Hersbach et al. 2020). The

improvements of these products show that the upcoming products will surely have

great accuracy improvements, which will be related to i) the development of novel

sensors and measurement devices; ii) the fact that measurement devices are available

at increasingly lower costs; and iii) the fact that sensors can be mounted easier on

mobile platforms due to their increasingly reduced size (Eggimann et al. 2017).

In developing countries, the use of these products can help strive towards informed-

based decision-making. However, these regions often lack the infrastructure and hu-

man capacity due to a systematic lack of infrastructure and training (Fay et al. 2017;

Sheffield et al. 2018). Therefore, informed-based urban water management requires

a change in practices ranging from network operation and data collection to the pro-

cessing of data to produce information in a timely manner (Eggimann et al. 2017). In

many places, water managers and professionals are not used to acquiring, processing,

and producing information using large amounts of data. In this sense, there is a need

to move towards data-driven water resources management by implementing strategic

approaches that systematically build the capacities and infrastructure of such regions.

The introduction of these kinds of practices will require institutional transitions as

their implementation is complex and time-consuming (Eggimann et al. 2017).

These institutional changes are pivotal as there is a projected increase in i) the

frequency and severity of droughts and heatwaves due to climate change (Vörösmarty

et al. 2000; Brauman et al. 2016; Konapala et al. 2020; Woolway et al. 2020); ii) wa-

ter resources stress placed by the overexploitation of surface water and groundwater;

and iii) the demand of agricultural and energy production, and population growth

(Kiguchi et al. 2015; Van Ginkel et al. 2018; Qin et al. 2019). For instance, urban

floods are expected to be more critical in line with climate change and urbanisa-

tion (Whitfield 2012), which introduce the challenge of producing precipitation esti-

mates in an accurate and timely manner. Additionally, Viviroli et al. (2020) states

that around 1.5 billion people, which represents 24% of the world’s lowland popula-

tion, are projected to depend substantially on runoff contributions from mountainous

catchments by the mid-twenty-first century. They concluded that these areas should

be specially considered in water resources management by highlighting their impor-

tance towards sustainable development. However, some products have problems in
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representing the gradient of precipitation related to elevation (Beck et al. 2020b)

and precipitation is often under-represented at higher elevations because most rain

gauges are located in lowlands due to accessibility reasons (Derin and Yilmaz 2014).

Therefore, the accuracy of these products must be enhanced for local applications

by combining information from precipitation products, in-situ measurements, and

topography-related data. This is evident in the evaluation results of Section 4.1.1,

which show that generally gauge-adjusted products showed better performance com-

pared to those that did not include ground-based measurements. However, it is crucial

to consider the independence of the selected rain gauge stations when evaluating the

performance of precipitation products to avoid introducing bias in the assesment.

Finally, the evaluation of precipitation products can be affected by the upscaling

procedure that enables a fair point-to-pixel comparison. These differences in per-

formance are related to the specific precipitation product, the temporal scale in the

evaluation (see Section 3 of Maggioni and Massari 2018), and the physiographic and

climatic characteristics of the region in analysis. In this sense, the topography plays

an important role when evaluating the performance of precipitation products as the

performance of the re-scaled products was more impacted over areas with more pro-

nounced elevation gradients. For this reason, it is essential to consider the effects

that the spatial resolution may have over mountainous regions when evaluating the

performance of precipitation products over regions with complex topography. On the

other hand, it is essential mentioning that despite that rain gauges provide precipita-

tion measurements with a high degree of accuracy at specific locations (Villarini and

Krajewski 2008), the evaluation of precipitation products might have errors related

to i) the underestimation of the performance of precipitation products related to the

use of a scarce network of rain gauges (Tang et al. 2018) and ii) the fact that the

gauges are still subject to errors related to wind-induced under-catch, wetting and

evaporation loss, and trace amount (Adam and Lettenmaier 2003; Ma et al. 2015),

which may impact the evaluation of precipitation products.

68



CHAPTER 5. DISCUSSION

5.2 Implications of merging precipitation datasets

As noted before, the inherent errors in the detection of precipitation events, hit biases,

and random errors hinder their use for operational applications (Zambrano-Bigiarini

et al. 2017; Baez-Villanueva et al. 2018, 2020). Additionally, the performance of

these products is affected by seasonal patterns, storm type, and the topographical

features of the study area (Oliveira et al. 2016; Maggioni and Massari 2018; Sheffield

et al. 2018). Therefore, there is a need to improve the spatio-temporal distribution

of precipitation, which can be achieved by merging information from precipitation

products, ground-based measurements, and topographical features (Xie and Xiong

2011). The development of these techniques are based on two main factors: i) the

increased data availability from new and conventional data sources, and ii) the fact

that computational power and data storage are becoming cheaper and more accessible,

which enables a faster data processing and distribution (Eggimann et al. 2017).

Despite the improvement of precipitation patterns that past merging techniques

have achieved (e.g., Li and Shao 2010; Xie and Xiong 2011; Woldemeskel et al. 2013;

Shen et al. 2014; Nie et al. 2015; Fu et al. 2016; Manz et al. 2016; Verdin et al. 2016;

Shi et al. 2017; Ma et al. 2018), only a single precipitation product is often selected;

therefore, valuable information that has the potential to improve the characterisa-

tion of precipitation is not considered. In line with this, the two merged products

(RF-MEP3P and RF-MEP5P ) obtained with the novel RF-MEP merging method (see

Section 3.2) showed improved r, β, and γ values at all temporal scales compared to all

the individual precipitation products used as covariates. Additionally, both merged

datasets exhibited improved POD, FAR, fbias, and CSI for different precipitation

intensities. RF-MEP showed better performance than the results obtained using

Kriging with external drift and one-outlier-removed arithmetic mean. The good per-

formance in the detection of single precipitation events of the one-outlier-removed

arithmetic mean shown in Shen et al. (2014) compared to the results of Section 4.2

are related to the fact that Shen et al. (2014) evaluated the probability of detection

of rain/no-rain events, while in this thesis the detection was evaluated over different

precipitation intensities (see Table 3.2).

The performance of the merged products increased when more rain gauge stations

were used to train the model; however, they were still able to improve precipitation

characteristics even with few stations in the training set. Additionally, the difference

in reporting times between the precipitation products and the ground-based measure-

ments must be taken into account when assessing the performance of precipitation

products at the daily temporal scale so that their performance is not underestimated.

This issue constitutes a major limitation of most precipitation evaluation studies
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carried out far from 0:00 UTC, which is also the case of Baez-Villanueva et al. (2018).

As observed, merging multiple precipitation estimates with ground-based obser-

vations is a promising way to derive useful information for informed-based water re-

sources management. More reliable precipitation products can improve the results of

multiple studies related to droughts characterisation (Zambrano-Bigiarini and Baez-

Villaneuva 2019; Quesada-Montano et al. 2019), reservoir operations (Zhao et al.

2011; Yang et al. 2017), early warning systems (Hossain 2006; Maggioni and Massari

2018), risk assessment (Brunetti et al. 2018; Rajulapati et al. 2020), and water avail-

ability (Serrat-Capdevila et al. 2014; McNamara et al. 2021). Following this line,

the integration of merged products and hydrological models is a promising way to

leverage remote sensing data for water resources management (Sheffield et al. 2018).

The results shown in Section 4.3.1 show the performance of the TUWmodel

when forced with diverse precipitation products during calibration (2000–2014) and

a near-normal and a dry verification periods (Verification 1 from 1990–1999 and Ver-

ification 2 from 2015–2018). The precipitation products showed marked differences

in mean annual precipitation and different extreme indices (Baez-Villanueva et al.

2021, their Figures 2 and 3). Despite these differences, good performances were ob-

tained with all products, which demonstrates that the calibration of the hydrological

model parameters smooths out, to some extent, the evident differences in annual and

intra-annual precipitation amounts, intermittency, and extremes between precipita-

tion products. This is evident when analysing the β component of the KGE’, which

presented values close to 1 mainly in calibration and Verification 1. This result is in

agreement with previous studies that have demonstrated that model calibration with

each precipitation product improves the performance of streamflow simulations (e.g.,

Artan et al. 2007; Stisen and Sandholt 2010; Bitew et al. 2012; Thiemig et al. 2013).

In general, the calibrated parameters behave as expected for each hydrological

regime. A notable exception is the snow correction factor (SCF) in nivo-pluvial and

snow-dominated catchments, which are related to the fact that the winter precip-

itation estimates of ERA5 are substantially larger than those shown in CR2MET,

RF-MEP, and MSWEPv2.8. Therefore, a high SCF corrects the apparent underesti-

mation of these products compared to ERA5. Keeping the example of the nivo-pluvial

catchments, and taking RF-MEP as an example, which showed the lowest monthly

precipitation over these catchments, it is visible how the TUWmodel adjusts the evap-

oration, snow water equivalent, and soil moisture components (Baez-Villanueva et al.

2021, their Figure 13) to increase the simulated streamflow to match the streamflow

measurements.

The good performance of ERA5 was surprising and somehow counter-intuitive
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as this product i) does not use rain gauge stations over Chile and ii) it has the lowest

spatial resolution among the evaluated products (0.25◦). The good performance of

ERA5 suggests that, for the particular case of Chile, merging precipitation products

with ground-based measurements does not necessarily translate into improved hydro-

logical model performance, which may be attributed to i) the lack of precipitation

rain gauges in the Andes Mountains; ii) the ability of the rainfall-runoff model to

compensate for the precipitation forcing; and iii) the fact that precipitation products

still have errors in the detection of particular events that could impact the repre-

sentation of the modelled streamflow dynamics (as suggested by the relative lower

performance of the r component of the KGE’). These results are in agreement with

Tarek et al. (2020), who concluded that ERA5 should be considered a high-potential

dataset for hydrological modelling in data-scarce regions.

As discussed in Maggioni and Massari (2018), an alternative strategy for im-

proving the performance of precipitation products in hydrological simulations is to

combine them with soil moisture estimates (e.g., Ciabatta et al. 2015; Román-Cascón

et al. 2017) despite that the number of dry days due to the relatively noisy soil mois-

ture retrievals (Crow et al. 2011; Brocca et al. 2014; Beck et al. 2017b). Additionally,

different strategies can be used to improve the results of hydrological modelling when

using precipitation products: i) the use of other components of the water balance in

the calibration process (Mostafaie et al. 2018; Dembélé et al. 2020a); ii) the appli-

cation of a sensitivity analysis to calibrate the model parameters that are related to

dominant physical processes (Zambrano-Bigiarini et al. 2022); iii) and the calibration

of the hydrological model through multi-objective functions (Kollat et al. 2012; Smith

et al. 2019).

5.3 On the selection of precipitation products to

predict streamflow in ungauged catchments

To date, few regionalisation studies have used gridded precipitation products at the

daily time scale (Samaniego et al. 2010; Beck et al. 2016; Rakovec et al. 2016; Beck

et al. 2020a). However, they only selected one precipitation dataset to predict stream-

flow in ungauged catchments. Therefore, the effects of a precipitation dataset’s choice

on regionalisation results and, therefore, on water resources management remains un-

known.
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The influence of the selection of different precipitation products on the relative

performance of three regionalisation methods (spatial proximity, feature similarity,

and parameter regression) is presented in Section 4.3. Feature similarity provided

the best performance when the TUWmodel was forced with all precipitation prod-

ucts, followed by spatial proximity and parameter regression. These results are in

agreement with Parajka et al. (2005), Oudin et al. (2008) and Neri et al. (2020),

who demonstrated that spatial proximity performs well over densely gauged regions.

The inclusion of donor catchments with low model performance during calibration

and verification introduces a diversity that has the potential to benefit streamflow

prediction in ungauged catchments, as discussed by Oudin et al. (2008). Therefore,

to account for Chile’s physiographic and climatic diversity, they were included them

in the evaluation with the potential downside that this may lead to errors in the

transferred model parameters. The similarity in performance between spatial prox-

imity and feature similarity can be related to the fact that six of the nine selected

catchment characteristics are directly or indirectly related to climate, which is highly

related to the geographical locations of the catchments for the case of Chile.

The compensation for precipitation differences obtained through model calibra-

tion also affected the relative performance of regionalisation techniques, producing

unrealistic parameter sets in some donor catchments. Parameter regression was the

method that was influenced the most by this compensation because the regression

process denatures the already uncertain model parameters by applying independent

regression procedures using climate and physiographic characteristics (Arsenault and

Brissette 2014). This can be overcome by simultaneously optimising both the model

parameters and the regression equations (e.g., Samaniego et al. 2010; Rakovec et al.

2016; Beck et al. 2020a). The regionalisation results were also affected by the hy-

drological regime of the catchments, with best results generally obtained for rain-

dominated catchments with a minor snowmelt component. Although the results ob-

tained during regionalisation yielded high performances, they indicate that the pre-

cipitation products that were corrected with daily ground-based measurements (i.e.,

RF-MEP, CR2METv2, and MSWEPv2.8) did not necessarily yield the best region-

alisation performance, which is in line with the results of the independent calibration

and verification.

Accurate daily streamflow predictions in ungauged catchments are pivotal for

water resources management. However, these predictions are challenged by uncer-

tainties arising from precipitation products. In this sense, the results of this study

are very promising as they provide guidance for ongoing and future studies involving

the application of gridded precipitation products for regionalising hydrological model

parameters in ungauged basins.
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The contributions from mountainous catchments will be more important by the

mid-twenty-first century (Viviroli et al. 2020). However, the majority of these catch-

ments remain ungauged, and there is a lack of ground-based measurements due to

their complex topography and difficult access, which hinders the opportunity to shift

towards proactive water management approaches. We live in an era where data is

exponentially increasing; therefore, machine learning and artificial intelligence tech-

niques will have an essential role in water management. The implementation of

these techniques will enable low-latency data transmission, real-time processing, and

real-time visualisation (Sun et al. 2018); and will help in i) the proliferation of new

governance actors; ii) the creation of agencies related to environmental sensing; and

iii) the implementation of transparent data collection strategies, which in turn will

create conditions for significant transformations in environmental governance (Bakker

and Ritts 2018).

5.4 Future research and recommendations

The methods followed in this cumulative dissertation use open-access global or quasi-

global products. Therefore, they can be applied in different data-scarce regions to

strive towards an information-based decision-making process. In Section 4.1 it was

found that in general, CHIRPSv2 and MSWEPv2 showed the best performance at

the different temporal scales over the evaluated catchments. Better results may be

achieved if current state-of-the-art precipitation products are used, such as IMERG

(Huffman et al. 2015), ERA5 (Hersbach et al. 2020) and MSWEPv2.8 (Beck et al.

2017a, 2019b). Additionally, as mentioned in Section 4.2, it is important to take into

consideration the reporting times between the precipitation products and the ground-

based measurements when assessing the performance of precipitation products at a

daily scale. Furthermore, it is not recommended to use the RMSE to evaluate the

performance of precipitation products at the daily scale due to the high skewness

of the precipitation distribution and because it gives more weight to the mismatches

between precipitation products and ground-based measurements in two cases: i) when

there is a systematic underestimation of small precipitation events and ii) during high

precipitation events because of its squared-error-based nature.

The proposed RF-MEP method to merge precipitation products and ground-

based measurements gave outstanding results and provided the best spatio-temporal

characterisation of precipitation compared to other precipitation products and merg-

ing techniques. This novel method can be applied to improve the spatio-temporal

characterisation of precipitation over data-scarce regions. So far, RF-MEP has been
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applied successfully over Colombia (Rodriguez-Castiblanco et al. 2021), the precipi-

tation product derived over Chile in Baez-Villanueva et al. (2020) was included in the

precipitation monitor platform from the Center for Climate and Resilience Research

(Mawün), and the method have had a large impact in the hydrological community

(e.g., Chen et al. 2021a; Fan et al. 2021; Mekonnen et al. 2021; Rahman et al. 2021;

Tang et al. 2021; Wong et al. 2021; Zhang et al. 2021; Sreeparvathy and Srinivas

2022). The RFmerge R package, includes the implementation of RF-MEP and can

be found in the following link: https://CRAN.R-project.org/package=RFmerge.

Future research could compare the performance of RF-MEP with multiple merging

techniques (e.g., Li and Shao 2010; Rozante et al. 2010; Woldemeskel et al. 2013;

Manz et al. 2016; Ma et al. 2018; Zhang et al. 2021) and analyse the influence of

the geographical covariates in the precipitation patterns. Regarding the regionalisa-

tion results presented in Section 4.3, the feature similarity procedure could be used

to refine the parameter regionalisation results obtained in national scale hydrological

characterisations in Chile (e.g., Bambach et al. 2018; Lagos et al. 2019). Additionally,

further research could address: i) the influence of parameter equifinality in parameter

regression, which can be accounted by simultaneously optimising the model parame-

ters and the regression equations as in Beck et al. (2020a); ii) the effect of the selection

of a particular objective function in the simulation of streamflow-based hydrological

signatures (e.g., Pool et al. 2017); iii) the use of additional model structures (e.g.,

Clark et al. 2008; Knoben et al. 2019; Neri et al. 2020);iv) the evaluation of other

states and fluxes derived from remote sensing data (e.g., Dembélé et al. 2020b); and

v) the sensitivity of different regionalisation methods with respect to modified climate

scenarios.

Despite these recommendations, there is a lack of data governance and infrastruc-

ture for engaging a wide range of agencies and stakeholders to improve data quality

and usage (Sun et al. 2018). Similarly, there is a need to build the capacities needed

to download, process, and translate these datasets into information that can be used

in the decision-making process. These capacities should be acquired by local and

regional experts that understand the complex challenges of water resources manage-

ment at the local level and not only by those who are proficient in the implementation

of novel techniques and algorithms (Blumenstock 2018). One way to achieve this is to

create knowledge networks to link government agencies, data scientists and domain

experts, universities and research centres, diverse stakeholders, the private sector, and

international development organisations (Sheffield et al. 2018; Sun et al. 2018). Inline

to this, and as Sheffield et al. (2018) emphasises, there is the requirement of continuing

and building existing training programmes and initiatives such as the UNESCO Hy-

drology Initiatives; the NASA Applied Remote Sensing Training Program (ARSET);

and the Advanced Training Course on Land Remote Sensing from the ESA. The new
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CHAPTER 5. DISCUSSION

generation of water resources managers and stakeholders must be more proficient in

using gridded products and data merging techniques, especially over data-scarce set-

tings. This will help build sustainable solutions to address the complex challenges of

water resources management and strive towards informed-based decision-making.
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Chapter 6

Conclusion

As the majority of the countries are placing unprecedented pressure on water re-

sources, there is a need to understand the water resources dynamics at the catchment

scale to achieve water security and sustainable water management. The results pre-

sented in this thesis show how precipitation products can be evaluated, corrected,

and selected for operational applications over data-scarce settings to strive towards

an information-based decision-making process. The main findings of this thesis are

summarised in the following points. The items listed below correspond to the specific

objectives described in Chapter 1.4.

1. Each precipitation product performed differently over each region and temporal

scale used in the evaluation (i.e., daily, monthly, seasonal, and annual). All

products presented a higher probability of detecting no rain events than days

with precipitation. Despite that the probability of detection was relatively low

for days with precipitation, the moderate rain events [5, 20 mm) were better

represented in all regions in comparison to light [1, 5mm), heavy [20, 40 mm),

and violent rain events (≥ 40 mm). Paraiba do Sul presented the best perfor-

mance at the daily temporal scale, followed by the Imperial. Both catchments

have tropical climates with hot and cold summers, respectively. The Magdalena

was the worst-performing catchment at the daily scale. This could be attributed

to the fact that Colombia presents more convective precipitation compared to

the other study areas (please see Taszarek et al. 2021). The gauge-adjusted

products generally showed better performance than those that did not include

ground-based measurements. When evaluating the performance of precipita-

tion products that use ground-based measurements to correct their estimates,

it is crucial to consider the independence of the selected rain gauge stations

to avoid introducing bias in the evaluation. The products performed similarly
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over different elevations. Additionally, it is worth mentioning that not be-

cause a precipitation product has been identified as the best performing, it can

be used for operational purposes. This is the case of the Magdalena, where

CHIRPSv2 performed the best at the daily temporal scale with relatively low

overall performance. These results confirm that a catchment-specific evaluation

is still required to select a suitable precipitation product for operational pur-

poses. However, this evaluation should always be performed keeping in mind

the final hydrological, ecological, or agricultural application, which is essential

as these products perform differently regarding the detection of single precipita-

tion events, precipitation totals, and the distribution of different precipitation

intensities. Additionally, in Chapter 3, it was concluded that the difference in

reporting times between the precipitation products and the rain gauges must

be considered when evaluating the performance of precipitation products at the

daily temporal scale. This issue still constitutes a major limitation of most pre-

cipitation evaluation studies performed in regions far from 0:00 UTC. Finally,

it is worth keeping in mind that despite rain gauges provide accurate precipi-

tation measurements at specific locations, they are still subject to errors such

as wind-induced under-catch, wetting and evaporation loss, and trace amounts,

which may impact the evaluation of precipitation products.

2. The evaluation of precipitation products can be affected by the upscaling pro-

cedures that aim to enable a fair point-to-pixel comparison. These performance

differences related to the precipitation products’ re-scaling are specifically as-

sociated with each precipitation product, the temporal scale, and the phys-

iographic and climatic characteristics of the analysed region. The topography

plays an important role in this process as the performance of the re-scaled prod-

ucts was more impacted over areas with a more pronounced elevation gradient.

Therefore, it is crucial to consider the effects that the spatial resolution of the

products may have over mountainous regions when evaluating their performance

over regions with complex topography. Similarly, the application of re-scaling

procedures may impact the performance of precipitation products over such set-

tings. On the other hand, if the topography is not rugged, a re-scaling procedure

can enable a fair comparison among products.

3. Despite the continuous improvements of the precipitation products, they are

still subject to different types of mismatches and errors. In Chapter 3, a novel

machine learning procedure was proposed to produce improved precipitation es-

timates at the daily temporal scale. The datasets generated through the appli-

cation of the Random Forest MErging Procedure (RF-MEP) showed improved

i) temporal precipitation dynamics; ii) total precipitation volumes; iii) relative
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dispersion; and iv) detection skills of single precipitation events at all tem-

poral scales compared to the individual products used in their development.

The performance of this method increases when more rain gauge stations are

used; however, it is still able to improve the spatio-temporal characterisation

of precipitation even with few stations. RF-MEP outperformed other merging

methods such as Kriging with external drift and one-outlier-removed arithmetic

mean, and was validated over Chile, which exhibits notable heterogeneity in cli-

mate and topography. In this sense, RF-MEP could be successfully applied in

other regions and catchments to improve precipitation and other variables.

4. The use of precipitation products to generate accurate streamflow predictions in

data-scarce ungauged catchments is crucial for water resources management. In

this sense, the relative performance of three common regionalisation techniques

(spatial proximity, feature similarity, and parameter regression) was assessed

over 100 near-natural catchments located in the topographically and climato-

logically diverse Chilean territory (see Chapter 4). Feature similarity yielded

the best results, regardless of the choice of precipitation product or hydrologi-

cal regime. The performance of feature similarity increased when four or more

catchments were used as donors; however, the differences in performance were

not statistically significant compared to the results obtained when only one

donor catchment was used. Spatial proximity was the second-best regionalisa-

tion technique, which could be related to the fact that spatial proximity is a

good proxy of climatic similarity for most neighbouring catchments in Chile.

Finally, parameter regression provided the lowest performance, reinforcing the

idea of transferring the complete set of model parameters to ungauged catch-

ments. The exclusion of relatively few nested catchments impacted the results

of feature similarity and spatial proximity. However, for the particular case

of Chile, their exclusion had minimal impact on the non-linear relationships

between the climatic and physiographic characteristics and model parameters;

therefore, a negligible effect on the parameter regression results.

5. The results of Chapter 4 indicate that the precipitation product that provided

the best (worst) performance during the independent calibration and verifica-

tion did not necessarily yield the best (worst) results during regionalisation.

Similarly, the products corrected using daily ground-based measurements did

not necessarily yield the best hydrological model performances compared to

other good-performing products. The hydrological model was able to compen-

sate, to some extent, for differences between precipitation products by adjusting

the model parameters during the calibration process and, therefore, the water

balance components.
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6. The hydrological regime of the catchments influenced the performance of the

evaluated regionalisation techniques. The best results were obtained in pluvio-

nival catchments for the case of feature similarity, spatial proximity, and during

the independent calibration and verification. These results could be attributed

to the ability of the hydrological model to reproduce streamflow in this regime

and to the increased likelihood of transferring model parameters from catch-

ments with the same hydrological regime as the pluvio-nival catchments con-

sisted of 40% of the total number of catchments and they were grouped close

together. Feature similarity and spatial proximity provided the worst results

over rain-dominated catchments, which was not the case for the independent

calibration and verification. The results demonstrate that no single precipi-

tation product outperformed the others for all regionalisation techniques and

hydrological regimes.

The use of gridded datasets can help to strive towards informed-based decision-

making. However, data-scarce settings often lack the infrastructure and human capac-

ity to use this type of information efficiently. Therefore, an informed-based decision-

making process requires institutional transitions and changes that help address the

present and future challenges of water resources management, such as i) the pro-

jected increase in the frequency and severity of droughts and heatwaves due to climate

change; ii) the increased water resources stress placed by the overexploitation of sur-

face and groundwater; iii) the increased demand for agricultural and energy produc-

tion; and iv) population growth. As observed, merging multiple sources of informa-

tion is a promising way to derive useful information to strive towards informed-based

decision-making. In this sense, there is a need to move towards demand-driven water

resources management through the implementation and use of novel data-driven tech-

niques and datasets, which can support the implementation of strategical approaches

that systematically build such regions’ capacities and infrastructure.
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A B S T R A C T

The accurate representation of spatio-temporal patterns of precipitation is an essential input for numerous en-
vironmental applications. However, the estimation of precipitation patterns derived solely from rain gauges is
subject to large uncertainties. We present the Random Forest based MErging Procedure (RF-MEP), which
combines information from ground-based measurements, state-of-the-art precipitation products, and topo-
graphy-related features to improve the representation of the spatio-temporal distribution of precipitation,
especially in data-scarce regions. RF-MEP is applied over Chile for 2000—2016, using daily measurements from
258 rain gauges for model training and 111 stations for validation. Two merged datasets were computed: RF-
MEP3P (based on PERSIANN-CDR, ERA-Interim, and CHIRPSv2) and RF-MEP5P (which additionally includes
CMORPHv1 and TRMM 3B42v7). The performances of the two merged products and those used in their com-
putation were compared against MSWEPv2.2, which is a state-of-the-art global merged product. A validation
using ground-based measurements was applied at different temporal scales using both continuous and catego-
rical indices of performance. RF-MEP3P and RF-MEP5P outperformed all the precipitation datasets used in their
computation, the products derived using other merging techniques, and generally outperformed MSWEPv2.2.
The merged P products showed improvements in the linear correlation, bias, and variability of precipitation at
different temporal scales, as well as in the probability of detection, the false alarm ratio, the frequency bias, and
the critical success index for different precipitation intensities. RF-MEP performed well even when the training
dataset was reduced to 10% of the available rain gauges. Our results suggest that RF-MEP could be successfully
applied to any other region and to correct other climatological variables, assuming that ground-based data are
available. An R package to implement RF-MEP is freely available online at https://github.com/hzambran/
RFmerge.

1. Introduction

Precipitation (P) is a key parameter in the hydrological cycle and an
accurate estimation of its spatio-temporal variability is therefore crucial

for numerous hydrological, agricultural, and ecological purposes. P is
commonly measured with rain gauge stations, with a high accuracy at
specific locations (Villarini et al., 2008). If only ground-based mea-
surements are used, the accuracy of the representation of spatial P
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patterns relies on the density and configuration of the gauge network
(Adhikary et al., 2015; Borga and Vizzaccaro, 1997; Chen et al., 2008;
Garcia et al., 2008; Goudenhoofdt and Delobbe, 2009; Villarini and
Krajewski, 2008). In particular, a high network density is of most im-
portance to capture the spatial distribution of convective events (Garcia
et al., 2008).

In many developing countries the network of rain gauges is sparsely
distributed; therefore, the use of only ground-based measurements to
estimate the spatial distribution of P is subject to large uncertainties
(Woldemeskel et al., 2013). Elevation must be considered because of
the important role it plays in the P process. In general, higher elevation
causes more P (Jaagus et al., 2010), an effect that can be extremely
pronounced even over small elevation changes. For example, Bergeron
(1960) reported that precipitation rates over small hills were twice the
value of the lower areas in a flat region of 30 km2, with approximately
50 m elevation difference. In regions with complex topography, P is
typically under-represented at higher elevations because most rain
gauges are located in lowlands due to accessibility and economical
considerations (Derin and Yilmaz, 2014).

Satellite and reanalysis-based P estimates (hereafter P products)
provide an unprecedented opportunity to estimate the spatio-temporal
distribution of P in regions with a sparse network of rain gauge stations.
However, the evaluation of these products has shown that multiple
sources of errors are still present (e.g., false detection, systematic, and
random errors) and that these products tend to perform worse at shorter
time scales (e.g., daily and sub-daily) than at longer time scales (e.g.,
monthly, seasonal, and annual), making their application difficult for
hydrological modelling (Maggioni and Massari, 2018). Therefore, a
need remains to improve the spatio-temporal distribution of P by
combining different data sources such as P products and ground-based
information (Xie and Xiong, 2011).

Several approaches have been implemented to derive gridded P and
other climatological variables using point-based information and
gridded products. These include optimal interpolation (OI) (Xie and
Xiong, 2011), the linearised weighting procedure (Woldemeskel et al.,
2013), non-parametric kernel smoothing (Li and Shao, 2010), Kriging-
based methods (Seo et al., 1990; Grimes et al., 1999; 1990; Verdin
et al., 2016), conditional merging (Sinclair and Pegram, 2005), partial
thin plate splines (Hutchinson, 1995; McKenney et al., 2006; McVicar
et al., 2007), among others. Table 1 lists merging studies used to im-
prove the characterisation of P, with a more detailed description of the
steps employed in each method included in the Table A1 from
Appendix A.

Despite the improvements in the spatio-temporal representation of P
achieved by these methods, many studies only merge the ground ob-
servations with a single P product (e.g., Li and Shao, 2010, Rozante
et al., 2010, Shi et al., 2017, Verdin et al., 2016, Xie et al., 2017, Yang
et al., 2017). Therefore, valuable information that is better captured by
other products is not considered. Averaging P products (e.g., Shen et al.,
2014) has negative effects in the detection of P intensities at daily
temporal scale. The assumption of a Gaussian distribution is invalid for
daily scales; therefore, the daily P data must be first transformed when
using Bayesian model averaging Ma et al. (2018) or Kriging-based ap-
proaches. Furthermore, these merging methods are generally complex
and difficult to implement.

Random Forest (RF; Biau and Scornet, 2016, Breiman, 2001, Prasad
et al., 2006) is an ensemble learning method that can be used for su-
pervised classification and regression tasks by constructing numerous
decision trees using the relationship between independent and depen-
dent variables. This technique is recognised for being accurate and able
to deal with small sample sizes and high-dimensional feature spaces
(Biau and Scornet, 2016). RF also performs well even when some ex-
planatory variables do not add information to the prediction and when
several covariates are used, mainly because it does not produce biased
estimates or lead to overfitting (Biau and Scornet, 2016; Díaz-Uriarte
and Alvarez de Andrés, 2006; Hengl et al., 2018). Although RF is a non-

spatial technique, it can indirectly consider geographical covariates
(e.g., coordinates, Euclidean distances to sampling locations, or down-
slope distances) and process-based covariates (e.g., elevation, rate of
elevation change, or aspect).

Recently, Hengl et al. (2018) compared RF and several Kriging-
based methods to evaluate whether RF was suitable for deriving spatial
predictions of daily P. Although the performances of both methods were
similar, they described several advantages in applying RF: i) there is no
need to define an initial variogram; ii) the trend model is built auto-
matically; iii) there is no need to define a search radius; iv) there are
built-in protections against overfitting; and v) the method shows which
individual observations and parameters are most influential. Therefore,
RF is identified as an appropriate technique for merging P products
with ground-based information, especially because different P products
exhibit distinct performances and errors (e.g., under/overestimation,
correlation with ground-based measurements, or detection of P events)
depending on the region (Baez-Villanueva et al., 2018; Maggioni and
Massari, 2018; Zambrano-Bigiarini et al., 2017).

In this study, the RF-based MErging Procedure (RF-MEP) is pre-
sented with the aim of improving the characterisation of the spatio-
temporal distribution of P in data-scarce regions at any temporal scale.
RF-MEP takes advantage of combining information from different P
products, topography-related datasets, and P time series from rain
gauges.

2. RF-MEP

RF-MEP is based on three key assumptions: i) P measurements from
rain gauge stations are accurate at the point scale; ii) P products are
generally biased but contain useful information about the spatio-tem-
poral patterns of P; and iii) the combination of different P products and
rain gauge data can provide a better representation of the spatio-tem-
poral variability of P than any single product.

RF-MEP uses RF to predict the spatial distribution of P by merging
information from different gridded products (known as covariates) and
quality-controlled ground-based information at a selected temporal
scale (e.g., daily, monthly, or annual). Individual predictions are gen-
erated from a user-defined number of decision trees based on bootstrap
samples using the covariates as predictors. The final prediction is cal-
culated as the average of the individual predictions (Biau and Scornet,
2016; Breiman, 2001; Hengl et al., 2018; Prasad et al., 2006; Roy and
Larocque, 2012). Fig. 1 summarises the four steps involved in this
method.

2.1. Data acquisition

First, the selected covariates and ground-based measurements are
acquired. The spatial covariates are: i) the selected P products, and ii)
topography-related datasets such as digital elevation model (DEM),
aspect, rate of elevation change, or slope, which are used to account for
the P gradient related to elevation (not to be mistaken with altitude, see
McVicar and Körner, 2013). The ground-based measurements are
quality controlled and checked for homogeneity.

2.2. Data processing

The selected rain gauge stations are divided into two groups: a
training set (to train the RF model) and a validation set (to assess the
performance of the merged product). The selected P products and to-
pography-related datasets are resampled to a selected spatial resolution
to ensure identical raster geometry (spatial resolution, spatial extent,
and origin).

The traditional RF algorithm ignores sampling locations which
could lead to sub-optimal predictions (Hengl et al., 2018); therefore,
covariates that account for geographical proximity are incorporated.
The use of only geographical coordinates as spatial predictors can cause
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unnatural surfaces in the merged product (Behrens et al., 2018; Hengl
et al., 2018). Instead, RF-MEP uses gridded layers of Euclidean dis-
tances from each rain gauge in the training set to the centroid of all the
grid-cells in the selected study area.

2.3. Merging procedure

For each time step a single RF regression model is derived to com-
pute a single P prediction at the desired temporal resolution. The RF
model is trained using the ground-based observations in the training set
as the dependent variable, while the grid-cell values of the selected
covariates at the corresponding locations are used as predictors. To
improve the accuracy and stability, and to reduce the variance and

overfitting of the RF predictions, they are generated as an ensemble
estimate from the numerous decision trees (Díaz-Uriarte and Alvarez de
Andrés, 2006; Hengl et al., 2018) as observed in Eq. (1):

=
=

x
B

t x^ ( ) 1 * ( )
B

b

B

b
1 (1)

where ^B
is the final prediction; b is the individual bootstrap sample; B

is the total number of trees; and t*b is the individual decision tree. This
process is repeated for each time step, implying that the RF model will
vary temporally. Fig. 2 illustrates an example of the merging procedure
process using two P products, a digital surface model (DSM), three rain
gauge stations, and the three correspondent Euclidean distance layers

Data 
acquisi�on 

Gridded 
precipita�on

products

Ground-based 
measurements

Spa�al 
characteris�cs

Precipita�on 
datasets

Euclidean 
distances (to all 
sampling points)

Subset sta�ons based on 
quality control and 

missing values

Training 
set

Valida�on 
set

Resampling process to a selected
spa�al resolu�on

Topography-
related 

datasets

Data 
processing 

Merging 
computa�on

Extrac�on of the covariate 
values at training set loca�on

Random Forest algorithm at 
the selected temporal scale

Spa�al predic�on of precipita�on

Performance
evalua�on

Merged precipita�on product

Valida�on of the merged 
precipita�on product

R

Collec�on of the precipita�on raster
files for the selected period

Fig. 1. Flow chart summarising RF-MEP, which is used to derive a better representation of the spatio-temporal distribution of P from the combination of P products,
topography-related datasets, and ground-based data.
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(ED(a), ED(b), and ED(c)). An R package to implement RF-MEP is freely
available online at https://github.com/hzambran/RFmerge.

2.4. Validation process

The validation set of rain gauge stations is used to assess the per-
formance of the merged product using a point-to-pixel analysis, where
the rain gauge station measurements are compared against the corre-
sponding grid-cell values of the P products under the assumption that
the rain gauge measurements are representative values at their re-
spective grid-cells. However, this assumption may introduce bias in the
comparison because: i) during winter, some rain gauges located at high
elevation are not able to incorporate snow into the P measurement; and
ii) during summer, a more dense network of rain gauges is required to
capture the spatial patterns of small-scale convective events. Despite
this, the point-to-pixel analysis is widely used to assess the performance
of P products (e.g., Baez-Villanueva et al., 2018, Dinku et al., 2007, Gao
and Liu, 2013, Hirpa et al., 2010, Li et al., 2013, Thiemig et al., 2012,
Zambrano-Bigiarini et al., 2017). Among the plethora of indices avail-
able to assess the performance of P products, we selected the modified
Kling-Gupta efficiency (KGE’; Gupta et al., 2009, Kling et al., 2012) over
the traditional root mean squared error (RMSE) because the latter as-
signs disproportional weights to different P intensities at the daily scale
(Baez-Villanueva et al., 2018). This is due to the high skewness of the
precipitation distribution at the daily scale and the prevalence of

temporal mismatches between estimated and observed precipitation
peaks. The KGE’ (Eq. 2) compares observed data with estimations, de-
composing the total performance into three components: the linear
correlation (r), the bias ratio (β), and the variability ratio (γ), presented
in Eqs. (3), (4), and (5), respectively:

= + +rKGE’ 1 ( 1) ( 1) ( 1)2 2 2 (2)

= =

= =

r
O S S

O S S

( )( ¯)
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2
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2 (3)

=
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/

s

o

s s
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where n is the number of observations; Oi and Si are the observed and
simulated values of the corresponding P product at day i; and and S̄
are the arithmetic means of the observations and the P product, re-
spectively. r measures the temporal P dynamics; β measures the total P
volume compared to ground-based observations indicating the average
tendency of the P products to underestimate (β< 1) or overestimate
(β> 1); and γ measures the relative dispersion between the gridded
product and the ground-based measurements (Gupta et al., 2009; Kling
et al., 2012). The optimal value for the KGE’ and all its components is

Fig. 2. Illustration of the merging procedure using two P products (P1 and P2), a DSM (to account for the topography-related datasets), three rain gauge stations (Sa,
Sb, and Sc), and the three Euclidean distance layers (ED(a), ED(b), and ED(c)).
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one. The KGE’ is a useful evaluation index because: i) it does not assign
disproportional weights to mismatches in high precipitation values
(contrary to squared-difference indices; e.g., the RMSE); ii) it decom-
poses the total performance into three components, thus allowing a
better understanding of the origin of mismatches (Baez-Villanueva
et al., 2018; Zambrano-Bigiarini et al., 2017); and iii) it allows a fair
comparison of regions with different mean annual P. The KGE’ has been
widely used in hydrological applications and to evaluate the perfor-
mance of P products (e.g., Baez-Villanueva et al., 2018, Beck et al.,
2016, 2017b, Chen et al., 2014, Lievens et al., 2015, Thiemig et al.,
2013, Wang et al., 2018, Zambrano-Bigiarini et al., 2017).

To evaluate the performance of P products in capturing different P
intensities we used several categorical indices of performance: the
probability of detection (POD; Eq. (6)), frequency bias (fbias; Eq. (7)),
false alarm ratio (FAR; Eq. (8)), and critical success index (CSI; Eq. (9)).

=
+
H

H M
POD (6)

= +
+

f H F
H M

bias (7)

=
+
F

H F
FAR (8)

= +POD FARCSI [( ) (1 ) 1]1 1 1 (9)

where H indicates a hit (an event recorded by both the rain gauge and
the P product); M indicates a miss (an event only identified by the rain
gauge); and F indicates a false alarm (an event recorded only by the P
product). The POD calculates how often the product correctly estimates
the precipitation intensity observed at the rain gauge. The fbias com-
pares the number of events identified by the P product to the number of
events registered by the gauge station. If fbias > 1, the number of oc-
currences of the respective P intensity is overestimated by the product,
while fbias < 1 indicates underestimation. The FAR measures the
fraction of events that were not correctly identified by the P product.
Finally, the CSI combines the POD and FAR to describe the overall
ability of the products to correctly detect different P intensities. The
POD, fbias, and CSI present their optimal value at one, while FAR
presents it at zero.

3. Case study

The Chilean territory was selected as the case study to test the
performance of the proposed RF-MEP due to the notable heterogeneity
in topography, climate and land cover.

3.1. Study

Chile is a South American country with nearly 4300 km of latitu-
dinal extension (from 17.5°S to 56.0°S) and an average longitudinal
extension of around 180 km (from 76.0°W to 66.0°W). Chile is bounded
to the north by Peru, to the east by Bolivia and Argentina, and to the
west by the Pacific Ocean. The geography of the country is dominated
by mountainous terrains, with an elevation profile ranging from 0 to
6891 m a.s.l. Morphologically, Chile exhibits four major geographical
units distributed from east to west: the Andes Mountains, the
Intermediate Depression, the Coastal Mountains, and the Coastal Plains
(Valdés-Pineda et al., 2014). The four seasons of the southern hemi-
sphere are present: autumn (MAM), winter (JJA), spring (SON), and
summer (DJF). P tends to increase with latitude (in the southern di-
rection) and elevation (Montecinos and Aceituno, 2003). The inter-
annual variability of P is mostly related to the El Niño-Southern Os-
cillation (ENSO), which strongly impacts winter P patterns, generating
positive anomalies during El Niño events and negative anomalies
during La Niña events (Robertson et al., 2014; Verbist et al., 2010).

Fig. 3 shows the elevation (Jarvis et al., 2008), the Köppen-Geiger

climate zones (Beck et al., 2018), and the most updated Chilean land
cover classification (Zhao et al., 2016), dividing the country according
to the five major macroclimatic zones defined in Zambrano-Bigiarini
et al. (2017). A variety of climates are observed throughout Chile: arid
and semi-arid climates in the north with extremely low P (≤ 50 mm
yr−1) and high temperatures; temperate climates in Central Chile; and
humid climates in the southern regions, with P values reaching up to
5000 mm yr−1. Furthermore, polar and tundra climates are observed in
the highest elevations of the Andes Mountains. Land cover is char-
acterised by barren land in the Far North, which transitions to forest in
the Near North. Forest, grasslands, and croplands are present in Central
Chile and the two southern regions, while grassland, forest, and snow/
ice areas are predominantly observed in the Far South.

3.2. Datasets

3.2.1. Ground-based precipitation
Time series of ground-based daily P for 1900–2018 were down-

loaded from a database of 816 rain gauges from the Center of Climate
and Resilience Research (CR2; http://www.cr2.cl/recursos_y_
publicaciones/bases-de-datos/). These data are provided by Dirección
General de Aguas (DGA) and Dirección Meteorológica de Chile (DMC),
the Chilean water and meteorological agencies, respectively. In Chile,
daily P is recorded at 08:00 local time (11:00–10:59 UTC).

3.2.2. SRTM-v4
We used the Shuttle Radar Topography Mission version 4 (SRTM-

v4) DSM, which incorporates offsets due to vegetation height (Gallant
et al., 2012), and has a reported vertical error of less than 16 m (Jarvis
et al., 2008). We used the gap-filled SRTM-v4 product at a spatial re-
solution of 250 m.

3.2.3. Precipitation products
We selected six global or quasi-global state-of-the-art P products

with at least 15 years of daily estimates (Table 2). These products were
selected because: i) RF-MEP can be transferred to any selected study
area using the same P products (or others) if ground-based data are
available; and ii) the selected P products perform well in the study area
(Baez-Villanueva et al., 2018; Zambrano-Bigiarini, 2018; Zambrano-
Bigiarini et al., 2017).

The selected P products used in RF-MEP were: ERA-Interim (Dee
et al., 2011); the Climate Hazards InfraRed Precipitation with Stations
data version 2.0 (CHIRPSv2; Funk et al., 2015); the TRMM Multi-
satellite Precipitation Analysis (TRMM 3B42v7; Huffman et al., 2010,
2007); the Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks - Climate Data Record (PERSI-
ANN-CDR; Ashouri et al., 2015, Sorooshian et al., 2000); and the Cli-
mate Prediction Center (CPC) Morphing technique version 1.0-BLD,
gauge-satellite blended precipitation product (CMORPHv1; Joyce et al.,
2004, Xie et al., 2017). The Multi-Source Weighted-Ensemble Pre-
cipitation (MSWEPv2.2; Beck et al., 2017a, 2019) was only used in the
validation step as a benchmark product because: i) it is the first fully
global P dataset derived by optimally merging a range of gauge, sa-
tellite, and reanalysis estimates (Beck et al., 2019); ii) it has shown
more realistic spatial P patterns in mean, magnitude, and frequency
than other state-of-the-art global precipitation products at the global
scale (Beck et al., 2017b, 2019); iii) it uses the same rain gauge dataset
within Chile; and iv) it recently outperformed other state-of-the art P
products over Chile (Zambrano-Bigiarini, 2018). Detailed descriptions
of the algorithms used by each P product can be found in their corre-
sponding literature (see Table 2).

It is important to note that several P products use ground-based P
data from the Global Precipitation Climatology Centre (GPCC;
Schneider et al., 2008) to reduce bias (see Table 2). The number of
operational GPCC rain gauge stations in Chile has fluctuated between
seven and twenty over 1986–2018. This low density of GPCC stations
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within Chile is clearly insufficient to adequately represent the spatio-
temporal variability of P over the country.

3.2.4. Covariates
In addition to the selected P products and the DSM, other spatial

covariates (slope, aspect, Köppen-Geiger climate classification, land
cover type) were exhaustively evaluated using the KGE’ and its com-
ponents to ascertain whether an improvement could be obtained. Only
the DSM was selected because the inclusion of the other covariates did
not improve the performance of the final product.

3.3. Application of RF-MEP to the study area

RF-MEP was applied to the Chilean territory from 17.5° to 46.0°S for
2000–2016. The southern boundary was set due to the sparse network
of gauge stations in the Far South. We used the R environment 3.5.0 (R
Core Team, 2018) and the raster (Hijmans, 2018), hydroGOF
(Zambrano-Bigiarini, 2017a), hydroTSM (Zambrano-Bigiarini, 2017b),

GSIF (Hengl, 2019), and randomForest (Liaw and Wiener, 2002) R
packages.

3.3.1. Data processing
All selected P products that are sub-daily (Table 2) were aggregated

to the daily scale. MSWEPv2.2 was obtained at daily temporal scale
because the 3-hourly version is not freely available. We downscaled
PERSIANN-CDR, ERA-Interim, CMORPHv1 and TRMM 3B42v7 to the
same spatial resolution as CHIRPSv2 (0.05°) using the nearest neigh-
bour method (to avoid any improvements in the products performance
prior to the merging procedure), while the DSM was upscaled from its
original spatial resolution (250 m) to 0.05° using bilinear interpolation.
The reason for resampling all the covariates to 0.05° (the highest spatial
resolution of the selected P products) was to obtain a merged product
that can be fairly compared to all selected P products.

We selected the 369 rain gauge stations that had < 5% of missing
values and showed consistency when evaluated using the double-mass
curve method to identify abnormalities comparing each station with the

Table 2
P products used in the case study.

Product Spatial res. Temporal res. Period Spatial coverage Source(s) Reference(s)

ERA-Interim 0.75° 3 hourly 1979–present Global Reanalysis Dee et al. (2011)
CHIRPSv2★ 0.05° Daily 1981–present 50°N – 50°S Satellite, gauge, and reanalysis Funk et al. (2015)
TRMM 3B42v7★ 0.25° 3 hourly 1998–present 50°N – 50°S Satellite and gauge Huffman et al. (2010, 2007)
PERSIANN-CDR★ 0.25° 6 hourly 1983–2017 (April) 60°N – 60°S Satellite and gauge Ashouri et al. (2015), Sorooshian et al. (2000)
CMORPHv1★ 0.25° 30 min 1998–present 60°N – 60°S Satellite and gauge Joyce et al. (2004), Xie et al. (2017)
MSWEPv2.2★ 0.10° 3 hourly 1979–present Global Satellite, gauge, and reanalysis Beck et al. (2017a, 2019)

★ Products that use GPCC data.

a) b) c)

Far North

Near North

Central Chile

South

Far South

Fig. 3. Study area. (a) Elevation (Jarvis et al., 2008), including the rain gauge stations used in this case study; (b) land cover classification (Zhao et al., 2016); and (c)
climate zones based on the Köppen-Geiger classification (Beck et al., 2018).
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neighbouring stations, assuming homogeneity (Weiss and Wilson,
1953). The period 2000–2016 was chosen because of ground-based
data availability over the period of record of the selected P products. A
random sample of 70% of the selected rain gauge stations (258) were
used as ground truth data to train the RF model (training set), while the
remaining 30% of the stations (111) were used to assess the perfor-
mance of the merged products (validation set). Past studies have typi-
cally selected 80% or more stations for training purposes (e.g., Li and
Shao, 2010, Ma et al., 2018, Rozante et al., 2010, Woldemeskel et al.,
2013, Yang et al., 2017); however, we selected 70% to be more thor-
ough in the evaluation of the method. We computed the 258 layers of
Euclidean distances using the GSIF R package (Hengl, 2019).

3.3.2. Merging procedure
Two merged P products were computed at the daily scale for

2000–2016. The first product (hereafter, RF-MEP3P) used CHIRPSv2,
PERSIANN-CDR, ERA-Interim, the DSM, and the 258 layers of
Euclidean distances, while the second product (hereafter, RF-MEP5P)
added CMORPHv1 and TRMM 3B42v7 to the aforementioned covari-
ates. The reason for computing two different merged products was to
evaluate whether the addition of CMORPHv1 and TRMM 3B42v7, both
of which have a shorter period of temporal coverage, would improve
the final merged product. Although RF-MEP3P and RF-MEP5P were
produced and compared over the same period (2000–2016), RF-MEP3P

can be generated over a longer period of record (1983–2016), while RF-
MEP5P can only be generated from 1998 onwards.

First, we obtained the values of the covariates at the grid-cell lo-
cations of the training set. Second, for each day, an RF model was
trained using the ground-based P values as the dependent variable, and
the respective values from the covariates as predictors. Third, the
trained RF model was used with the gridded covariates to predict daily
P values for each grid-cell of the study area. This process was repeated
for each day for 2000–2016. RF regression models have three para-
meters to specify: i) the number of regression trees (set at 2000); ii) the
number of variables randomly sampled at each decision split (set at one
third of the number of covariates); and iii) the node size (i.e., the
minimum number of observations per node; set at 5).

3.3.3. Performance evaluation
We evaluated the performance of both merged products,

MSWEPv2.2, and the individual P products used as covariates, through
a point-to-pixel analysis with the indices of performance described in
Section 2.4, applied for the stations included in the validation set. The
evaluation process was performed at multiple temporal scales: 3-day,
monthly, annual, DJF, MAM, JJA, and SON.

Because no sub-daily measurements are available to transform the
ground-based P dataset (see Section 3.2.1) to the 0:00–23:59 UTC daily
period used by all the P products, we used 3-day accumulations as a
proxy for evaluating daily performance. This approach reduces likely
biases in the performance of the P products at this temporal scale by
considering the influence of reporting times.

The categorical indices were evaluated using P intensities (Table 3;
Zambrano-Bigiarini et al., 2017) recommended specifically for Chile.

Because the aim of RF-MEP is to improve the characterisation of P in
data-scarce regions, we investigated the influence of the amount of rain

gauge stations included in the training set. We computed the RF-MEP5P

product with varying percentages of rain gauge stations in the training
set to evaluate the performance of RF-MEP under different data-scarcity
scenarios. We computed the RF-MEP5P product using 50%, 30%, and
10% of the stations, representing 184, 111, and 37 rain gauges, re-
spectively.

To test the influence of the different spatial resolutions of the se-
lected P products, we computed RF-MEP5P at 0.05°, 0.10°, and 0.25°.
For this purpose, all covariates were resampled to these spatial re-
solutions before the application of the merging procedure. Finally, we
applied two additional merging methods to compare RF-MEP against
established and proven precipitation merging procedures. We com-
puted Kriging with external drift (KED) using ERA-Interim (the best-
performing product used to derive RF-MEP5P) and the one-outlier-re-
moved (OOR) arithmetic mean described in Shen et al. (2014). For a
detailed explanation of KED please refer to Ly et al. (2011), Oliver and
Webster (2014), and Hengl et al. (2018). We also compared the RF-
MEP5P against MSWEPv2.2 because it is a state-of-the-art merged P
product.

4. Results

4.1. Temporal assessment of the merged products

Fig. 4 plots the KGE’ values at the seven assessed temporal scales for
the existing and merged P products using the ground-based validation
set. Both merged products (RF-MEP3P and RF-MEP5P) performed simi-
larly well, with median KGE’ values of 0.83, 084 and 0.78 at the 3-day,
monthly, and annual scale, respectively. The P products used in the
merging method presented median KGE’ values between 0.20 and 0.60
at the 3-day scale, which increased to between 0.35 and 0.70 at the
monthly and annual scales. Both merged products outperformed the P
products used in the merging procedure at all temporal scales, de-
monstrating that the combination of P products and ground-based
measurements generates a better representation of the spatio-temporal
variability of P.

The merged products performed better than MSWEPv2.2 at all
temporal scales except DJF (summer), where all P products showed a
reduced performance and a greater dispersion in the KGE’ values. This
low performance in summer is the reason why the P products exhibit
lower KGE’ values at the annual scale compared to the monthly scale.

Fig. 5 shows boxplots with the individual KGE’ components (r, β,
and γ) at all temporal scales. Both merged products present a median r
value of 0.94 at the 3-day temporal scale, which is consistent with the
improvements in r obtained by Xie and Xiong (2011) and Yang et al.
(2017). Of the existing P products, MSWEPv2.2 performed best with a
median value of 0.89, highlighting the advantage of merging gauge,
satellite, and reanalysis products. At all time scales, RF-MEP3P and RF-
MEP5P performed considerably better than the products used in their
computation. This demonstrates that the method is able to substantially
improve the correlation of the P products for the Chilean case study.

Fig. 5b plots the performance of the β component of the KGE’,
showing that RF-MEP5P, RF-MEP3P, MSWEPv2.2, and CHIRPSv2 were
close to exhibiting no bias. Both merged datasets present lower dis-
persion than MSWEPv2.2 and CHIRPSv2 for all temporal scales except
DJF. This result shows that the evaluated products are generally biased
but contain useful information that can be combined with ground-based
measurements to derive improved P estimates. In DJF, both merged
products presented a β> 1 and were outperformed by MSWEPv2.2.

Fig. 5c shows the γ component of the KGE’, highlighting that all
datasets underestimated the variability of P at all temporal scales.
MSWEPv2.2 best represented the variability of the ground-based mea-
surements, followed closely by both merged datasets. The high values
of γ obtained for MSWEPv2.2 were expected because this product uses
the same daily ground-based Chilean dataset in its computation and
accounts for the difference in reporting times. Both merged products

Table 3
Classification of P events in Chile based on daily intensity (i) ac-
cording to Zambrano-Bigiarini et al. (2017).

Precipitation event Intensity (i) in mm d−1

No rain [0, 1)
Light rain [1, 5)
Moderate rain [5, 20)
Heavy rain [20, 40)
Violent rain ≥ 40
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showed a reduced dispersion of the KGE’ components at the 3-day,
monthly, MAM, JJA, and SON scales; however, the dispersion at the
annual scale increases due to the reduced performance in DJF.

4.2. Spatial assessment of the merged products

Fig. 6 summarises the KGE’ of the 3-day P products over the four
analysed macroclimatic zones, while Fig. 7 presents its spatial dis-
tribution. All products show median KGE’ values lower than 0.5 and
high dispersion in the Far North. These regions are classified as arid
according to the Köppen-Geiger classification (see Fig. 3), demon-
strating that the performance of the evaluated products over the arid
regions of Chile remains low. MSWEPv2.2 and both merged products
perform considerably better than the products used as covariates,
highlighting the benefit of combining data from P products and ground-
based measurements. The performance of all the products increased
over Central Chile and South, where annual P volumes are much higher
than in the Far North and Near North.

Fig. 7 shows that for both merged products, more than 80% of the
stations in the validation set yielded KGE’ values higher than 0.60. Both
merged products performed best in the Near North, Central, and
Southern Chile, with median KGE’ values of 0.84, 0.86, and 0.81, re-
spectively. However, in the Far North, MSWEPv2.2 performed the best
(0.61), followed by RF-MEP3P (0.35) and RF-MEP5P (0.28). These re-
sults in the Far North show that the inclusion of more P products does
not necessarily improve the median performance of the merged pro-
duct; however, the inclusion of the additional two products reduced the
dispersion in the KGE’ values of RF-MEP5P. Despite the poor perfor-
mance of the P products used as covariates in the Far North, RF-MEP3P

and RF-MEP5P were able to extract useful information from these pro-
ducts to obtain a better performance. RF-MEP5P and RF-MEP3P per-
formed better in the high elevations of the Far North region compared
to the low elevations (see Figs. 3 and 7). These high elevations

correspond to the alpine tundra climate (ET), while the cold and arid
desert climate (BWk) dominates the lower areas of the Far North, where
the P datasets presented their worst performance. This suggests that
arid climates present a great challenge for existing P products.

4.3. Assessment of precipitation intensities

Fig. 8 plots the median values of the four categorical indices for the
five classes of daily P intensity described in Table 3. All datasets, with
the exception of RF-MEP3P and RF-MEP5P, obtained POD values lower
than 0.45 for P events higher than 1 mm, while the no-rain events were
well captured by all products. Similar results were observed for the FAR
and CSI, where RF-MEP3P and RF-MEP5P presented the best perfor-
mance of the evaluated products. FAR values were consistently the
worst for the light rain intensities ([1, 5) mm d−1), highlighting that the
products remain unable to adequately capture low P values. The CSI
presents the best performance for no-rain events followed by extreme
events (≥ 40 mm d−1), as a result of the decreased FAR compared to
the other P intensities.

Finally, the median values of the fbias showed that all P products
overestimated the number of light rain ([1, 5) mm d−1) and moderate
rain events ([5, 20) mm d−1). RF-MEP3P and RF-MEP5P performed the
best in terms of fbias for the heavy rain events ([20, 40) mm d−1), while
MSWEPv2.2 performed the best for the other P intensities, followed by
the merged products. All products underestimated the occurrence of
violent rain events (≥ 40 mm d−1).

4.4. Impact of gauge density and spatial resolution of covariates

Fig. 9 shows the performance of RF-MEP5P with a varying number of
stations used in the training set. The red line in the bottom left panel of
Fig. 9 represents the median KGE’ of the best-performing product used
in the computation of RF-MEP5P (see Fig. 4), illustrating the
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Monthly
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Annual
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RF−MEP5P
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MSWEPv2.2
ERA−Interim
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TRMM 3B42v7
PERSIANN−CDR
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Fig. 4. KGE’ values for all P products using the ground-based validation set. From left to right and top to bottom: 3-day, monthly, annual, DJF, MAM, JJA, and SON.
The solid line represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which
is no more than 1.5 times the interquartile range from the box. The blue line indicates the optimal value for the KGE’.
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improvement obtained even when only 10% (37) of stations are used in
the training set. Also, Fig. 9 indicates that the inclusion of more stations
improves the product performance in comparison to the best product
available, which is consistent with other studies (Borga and Vizzaccaro,
1997; Chen et al., 2008; Goudenhoofdt and Delobbe, 2009). This sug-
gests that the application of this method in other data-scarce regions is
expected to improve the representation of P. The results of the CSI and
fbias show that the RF-MEP5P increases the detection of different P
intensities in comparison to the single P products (see Fig. 8). Similar to
the KGE’, there is a visible improvement in the detection of these events
when more stations are used.

Fig. 10 plots the KGE’ values of RF-MEP5P at all evaluated timescales
for varying spatial resolutions of the covariates. It shows that resam-
pling all the P products into a unified grid has a negligible impact on the
performance of the final merged product.

The SRTM-v4 contains offsets in vegetated areas because the SRTM
radar signal scatters from the woody structure within the canopy
(Gallant et al., 2012). Although we did not remove the impacts of ve-
getation height to calculate a bare-earth DEM (~40 m over the South
and Far South forests of Chile), we do not expect substantial changes
because these elevation offsets become negligible at such a spatial re-
solution (0.05°).

4.5. Comparison between RF-MEP and different merging methods

Fig. 11 shows the performance of RF-MEP5P compared to KED, OOR
arithmetic mean, and MSWEPv2.2. The performance of ERA-Interim is
also plotted because it is the best-performing P product used in the
merging procedure. RF-MEP5P showed the best performance at the 3-
day temporal scale, followed by KED and MSWEPv2.2. The OOR ar-
ithmetic mean product shows the lowest KGE’, γ, and r; however, it is
able to accurately represent the total P volume at the 3-day scale. This
product also shows the lowest performance when evaluated at different
P intensities. Shen et al. (2014) concluded that the categorical perfor-
mance of the OOR arithmetic mean product improved compared to the
selected P products; however, they evaluated the categorical perfor-
mance only for rain and no-rain events. The distribution of daily P is
heavily skewed; and therefore, the performance of the product over
different intensities can be masked by the no-rain events. As observed in
the lower panel of Fig. 11, averaging different P products reduces the
performance at all P intensities because all these products have errors in
detection (i.e., the products may estimate different P intensities for a
particular day). This analysis suggests that P products should not be
averaged to attempt to improve daily P patterns.

KED performed similarly to RF-MEP5P; however, RF-MEP5P showed
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Fig. 5. The r (a), β (b), and γ (c) components of the KGE’ for all P products using the ground-based validation dataset. The solid line represents the median value, the
edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile
range from the box. The blue line indicates the optimal value for each component.
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less dispersion in the KGE’ and its components, suggesting that RF-MEP
is a robust method to merge P products and ground-based data. Ly et al.
(2011) obtained poor results when using KED with few sample points,
which indicates that the performance of KED is highly influenced by the
number of ground stations. Conversely, RF-MEP performed relatively
well when the training set was dramatically reduced. The performance
of RF-MEP5P is also the highest at monthly, annual and seasonal tem-
poral scales, except in DJF where MSWEPv2.2 performs the best (see

Fig. S1 in the supplementary material).

5. Discussion

5.1. Performance of the merged products

RF-MEP was applied at the daily temporal scale to derive two
merged products (RF-MEP5P and RF-MEP3P), which outperformed those
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Fig. 6. 3-day KGE’ values for the P products at the
corresponding grid-cells of the validation set for the
four analysed macroclimate zones: Far North, Near
North, Central Chile, and South (see Fig. 3). The solid
line represents the median value, the edges of the
boxes represent the first and third quartiles, and the
whiskers extend to the most extreme data point which
is no more than 1.5 times the interquartile range from
the box. The vertical blue line indicates the optimal
value for KGE’.

Fig. 7. Spatial distribution of the 3-day KGE’ for all P products using ground-based measurements. The dotplots in the bottom of the figure show the number of
stations from the validation set (111 stations in total) within each KGE’ range.
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used in their computation at all evaluated temporal scales (see Figs. 4,
5, and Table 4). RF-MEP was able to improve the spatio-temporal re-
presentation of P (see Figs. 4–8) by combining multiple sources of in-
formation. Both merged products showed increased r, β, and γ values at
all temporal scales, which indicates that this method is able to represent
the total volume and distribution of P by providing a better re-
presentation of daily P patterns. Comparable improvements in β were
obtained by Manz et al. (2016) and Yang et al. (2017), although Ma
et al. (2018) reported a higher bias in their merged product. Also, the
reduction in the dispersion of the KGE’ and its components

demonstrates that the merged products show good performance over
most of the study area. The KGE’ has proven to be a useful performance
index because of its ability to decompose the performance into r, β, and
γ, which can be used to understand the different sources of mismatches.

The evaluated P products showed higher performances at the
monthly, seasonal and annual scales in comparison to shorter temporal
scales (Fig. 4), similar to the results reported by Jiang et al. (2012) and
Zambrano-Bigiarini et al. (2017). This indicates that despite systematic,
random, and detection errors present in P products at the daily scale,
they are still able to represent P patterns when aggregated at longer
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temporal scales. On the other hand, Maggioni and Massari (2018)
concluded that spatial sampling uncertainties tend to decrease for
higher temporal resolutions, which means that the point-to-pixel eva-
luation tends to be more reliable for increasing accumulation periods.

All products showed the lowest performance in summer (DJF),
which is consistent with the results obtained by Rabiei and Haberlandt
(2015) and Zambrano-Bigiarini et al. (2017). This could be because: i)
small-scale convective precipitation events dominate in summer in the

Far North region (Prein and Gobiet, 2017); ii) in warm months, the
evaporation of hydrometeors before they reach the ground leads to
overestimation and false alarms (Maggioni and Massari, 2018); and iii)
passive microwave radiometers overestimate and underestimate P
during summer and winter, respectively (Tang et al., 2014).

Both merged products presented their lowest performance over the
arid Far North region as a consequence of the low performance of all P
products used as covariates (see Fig. 7). This is in agreement with Manz

RF-MEP5P [0.25°]
RF-MEP5P [0.10°]
RF-MEP5P [0.05°]

Fig. 10. KGE’ values of the RF-MEP5P computed at three spatial resolutions (0.25°, 0.10°, and 0.05°). The solid line represents the median value, the edges of the
boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the
box. The blue line shows the optimal value for the KGE’.
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et al. (2016), where the merged products presented high uncertainty
and low performances predominantly over regions with low and in-
termittent P regimes. The mismatches of the P products are more evi-
dent in arid and semi-arid climates because over low P regimes, any
overestimation or underestimation will have a greater impact on the
performance evaluation. Despite this, the RF-MEP5P and RF-MEP3P

products were able to adequately represent the P patterns of the higher
elevations of the Far North, showing that RF-MEP is able to improve the
spatio-temporal estimation of P through the inclusion of com-
plementary information, even in regions where the selected products
exhibit low performance.

Because both merged products were computed using daily gauge
data from the national water agencies they represent daily accumula-
tions from 11:00–10:59 UTC, whereas all other selected P products
represent daily P accumulations from 0:00 to 23:59 UTC (~11 h dif-
ference; for discussion, see Beck et al., 2019). This time difference must
be considered for the evaluation of the P products at the daily temporal
scale. Among the evaluated P products, only MSWEPv2.2 incorporates
daily gauge data and applies corrections to account for the reporting
times of the rain gauges. Fig. 12 shows the evaluation of the P products
for 1-day and 3-day periods. Both merged products performed similarly
well with a median KGE’ of 0.83 because they use the Chilean rain
gauges; however, the five P products used in their computation per-
formed slightly worse in the 1-day evaluation due to the 11 h difference
in the reporting times. The 3-day temporal scale was considered suffi-
cient to render the difference in reporting times negligible.

5.2. Correction of mismatches of the original P products

Our results showed that the blending of multiple P estimates, to-
pography-related information, and ground-based measurements, can
improve the spatio-temporal characterisation of P, which is consistent
with the results obtained by Verdin et al. (2016) and Manz et al. (2016).
The r, β, and γ components improved at all temporal scales. The γ of
both merged products showed a systematic underestimation (γ ~ 0.9,
see Fig. 5) at all temporal scales as a consequence of averaging the
predictions of the different trees from the RF model. Despite this, Fig. 5c
demonstrates that the γ values of the merged products are higher than
those shown by the products used as covariates.

Recently, Alvarez-Garreton et al. (2018) derived runoff coefficients
larger than 1, mainly over Central Chile and in the Far-South, with
increasing coefficient values towards the Andes. This finding is con-
sistent with those of Beck et al. (2017a), indicating that more water is
leaving the catchments than the total amount entering as P. This sug-
gests that the P products systematically underestimate P at high ele-
vations throughout Chile, which may be due to the inability of satellite-
based products to accurately estimate P over snow and ice-covered
surfaces (Beck et al., 2017a). Also, during winter, most Chilean rain
gauges located at high elevations are not able to correctly incorporate
snow into the P measurement, leading to an underestimation of P.
Therefore, even considering the good performance of the two merged
products at different temporal scales, it is likely that the real amount of
P is underestimated at high elevations due to the absence of ground-
based information. To reduce the possible underestimation of P over
high elevation and snow-driven catchments, the incorporation of rain
gauges able to measure both liquid and solid precipitation at high
elevations is recommended, along with the use of P products that ac-
count for solid P (such as MSWEPv2.2 and reanalysis products).

The inclusion of different P products improved the detection of
different P intensities at the daily scale, as observed in the improved
categorical performance of the merged products compared to that of the
covariates (see Fig. 8 and Table 5). The categorical performance of both
merged products showed an improved detection of the selected P in-
tensities and a reduction in the amount of days that are incorrectly
classified. These results, in combination with the improved values of r
and β, show that RF-MEP is capable of correcting P events at the daily

Table 4
Median values of the continuous indices used in the evaluation of P products.

P product KGE’ r β γ

CMORPHv1 0.43 0.67 1.03 0.82
PERSIANN-CDR 0.23 0.62 1.34 0.50
TRMM 3B42v7 0.47 0.69 1.05 0.88
CHIRPSv2 0.48 0.62 1.04 0.71
ERA-Interim 0.58 0.82 1.31 0.84
MSWEPv2.2 0.74 0.89 1.00 0.97
RF-MEP3P 0.83 0.94 1.03 0.93
RF-MEP5P 0.83 0.94 1.04 0.94

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

Daily

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

3−Day

P Datasets
RF−MEP5P
RF−MEP3P

MSWEPv2.2
ERA−Interim
CHIRPSv2
TRMM 3B42v7
PERSIANN−CDR
CMORPHv1

Fig. 12. KGE’ values calculated using the ground-based validation dataset at the 1-day time scale (left) and the 3-day time scale (right). The solid line represents the
median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times
the interquartile range from the box. The vertical blue line indicates the optimal value for KGE’.
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scale, assigning more accurate P amounts to each day, and preserving
the total volume of P at larger scales; consequently improving the
spatial representation of P patterns.

The analysis of the P products at different intensities is affected by
the difference in reporting times between the products and the ground-
based measurements (see Fig. 12). All the products used as covariates,
with the exception of CHIRPSv2 and TRMM 3B42v7, presented statis-
tically significant differences at the 95% confidence interval between
the daily and 3-day values. This issue is unfortunately ignored in the
majority of P evaluation studies and constitutes a major limitation of
most evaluations carried out in time zones far from 0:00 UTC.

Fig. 13 shows the relative difference of mean annual P (2000–2016)
between each product and the values observed at the rain gauges of the
validation set. These values are in agreement with the spatial perfor-
mance assessment (Fig. 7), where the P products presented the lowest
performance in the Far North. The blue colours indicate overestimation
of the products, while the red colours indicate underestimation. P is
overestimated in the Far North by CMORPHv1, PERSIANN-CDR, TRMM
3B42v7, CHIRPSv2, and ERA-Interim; and as a consequence, both
merged products overestimate P over this region (except for the high
elevated areas). These results are in agreement with Dinku et al. (2011)
and Zambrano-Bigiarini et al. (2017), where the products

overestimated P over the arid regions of Africa and Chile, respectively.
MSWEPv2.2 and the merged products were able to capture the P vo-
lume over the mountainous area in the Far North, despite the chal-
lenges presented by climate variability caused by extreme topography
and by a lack of ground-based measurements (Maggioni and Massari,
2018).

The merged products show lower relative difference, i.e. good
performance, for almost all stations in the Near South, Central Chile,
South, and elevated areas in the Far North. The improved performance
of the merged products can be observed in the lower panel of Fig. 13,
which highlights that the majority of the P products presented relative
differences between −0.2 and 0.2 compared to rain gauges. This sug-
gests that RF-MEP is capable of representing the mean annual P patterns
when applied at daily temporal scale. The overestimation over the Far
North is expected because all products used to derive both merged
products tend to overestimate P over this region.

5.3. Impact of network density, spatial resolution, and limitations

A high number of rain gauge stations in the training set leads to
higher performance and higher detection of P intensities, as observed in
Fig. 9. When we reduced the training sample to 10% (37) of the total

Table 5
Median values of POD, FAR, fbias, and CSI for the different P intensities (see Table 3) for ERA-Interim, MSWEPv2.2, and RF-MEP5P.

Intensity ERA-Interim MSWEPv2.2 RF-MEP5P

(mm) POD FAR fbias CSI POD FAR fbias CSI POD FAR fbias CSI

[0, 1) 0.92 0.02 0.95 0.91 0.97 0.02 1.00 0.95 0.96 0.02 0.98 0.95
[1, 5) 0.26 0.88 2.40 0.08 0.30 0.76 1.22 0.15 0.48 0.64 1.31 0.26
[5, 20) 0.37 0.75 1.38 0.17 0.40 0.60 1.00 0.25 0.69 0.38 1.10 0.48
[20, 40) 0.24 0.77 1.00 0.14 0.29 0.68 0.91 0.18 0.58 0.42 1.00 0.40
≥ 40 0.23 0.70 0.83 0.16 0.35 0.61 1.00 0.22 0.59 0.20 0.77 0.53

Fig. 13. Mean annual relative difference for the P products for 2000–2016. The points with negative values (red colours) are underestimated by the respective
product, while the points with positive values (blue colours) are overestimated.
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available stations, RF-MEP5P was still able to outperform the products
used as covariates, showing the effectiveness of the proposed RF-MEP
method.

The products RF-MEP5P and RF-MEP3P performed similarly, as ob-
served in Figs. 4–8. The median values and the interquantile ranges of
the KGE’, r, β, and γ are similar for both merged products, except over
the Far North, where RF-MEP5P shows less dispersion in the KGE’ and
its components than RF-MEP3P, despite the slight decrease in the
median performance. This indicates that the inclusion of more P pro-
ducts could reduce the dispersion in areas where the selected products
show low performance. The similar performance of RF-MEP5P and RF-
MEP3P indicates that the method is able to extract useful information
from the P products. Similar results were obtained when RF-MEP3P used
ERA-Interim, CMORPHv1, and TRMM 3B42v7 instead of ERA-Interim,
CHIRPSv2, and PERSIANN-CDR (please see Figs. S2 and S3 from the
supplementary material), demonstrating that RF-MEP is a robust mer-
ging method. Although the P products must be resampled to the same
spatial resolution to generate the merged product, the effect of in-
cluding P products generated at different spatial resolutions is negli-
gible (see Fig. 10).

RF-MEP5P includes CMORPHv1 and TRMM 3B42v7, which reduces
the potential temporal coverage by 15 years (RF-MEP3P can be gener-
ated from 1983 onwards, while RF-MEP5P can only be generated from
1998). Therefore, based on the similar strong performances of both
merged products (see Section 5.1), we prefer RF-MEP3P for the Chilean
case study, as the benefits of including CMORPHv1 and TRMM 3B42v7
to generate RF-MEP5P are outweighed by the loss of 15 years of record.

Although RF-MEP was only applied over Chile, we are confident
that this method could be successfully applied over other areas, due to
its outstanding performance in a region with notable heterogeneity in
topography and climate, and because it was able to improve the spatio-
temporal characterisation of P even when the training set was largely
reduced. However, some limitations apply to this method: i) since
ground-based data are necessary, it would be difficult to apply the
proposed method globally and in near-real time; ii) it can be compu-
tationally intensive when applied to large areas; and iii) it has problems
predicting values that are completely out from the training range.

6. Conclusion

Satellite and reanalysis-based P estimates provide an unprecedented
opportunity for numerous hydrological, meteorological, and other en-
vironmental applications. Despite the continuous improvements of P
products, different types of mismatches still exist in most of them. Here
we present RF-MEP, a novel method capable of deriving improved P
estimates by merging information from (near-)global and publicly
available P products, rain gauge stations, and topography-related data.
Two merged products (RF-MEP3P and RF-MEP5P) obtained with the
proposed method showed improved r, β, and γ values at all temporal
scales compared to all the individual P products used as covariates.
Furthermore, both merged datasets exhibited improved POD, FAR,
fbias, and CSI for different P intensities. Finally, both merged products
performed better than the benchmark dataset MSWEPv2.2, except
during summer (DJF). The key findings of the application of this
method to the Chilean case study are as follows:

(a) RF-MEP can be applied at different temporal scales (e.g., daily,
monthly, or annually) to obtain an improved spatio-temporal re-
presentation of P patterns.

(b) The different P products used in this study performed better at
longer timescales than at short timescales, while both merged
products performed well at all timescales.

(c) RF-MEP3P and RF-MEP5P outperformed all the evaluated P products

at the 3-day, monthly, annual, MAM, JJA, and SON temporal scales.
However, the benchmark MSWEPv2.2 outperformed the merged
products during summer (DJF).

(d) RF-MEP3P (which uses CHIRPSv2, PERSIANN-CDR, and ERA-
Interim) showed a similar performance to RF-MEP5P (which also
included CMORPHv1 and TRMM 3B42v7). Therefore, including
CMORPHv1 and TRMM 3B42v7 as covariates in the merging pro-
cedure only led to a minor increase in the overall performance of
the final merged product. Consequently, for the Chilean case study,
it is preferable to use RF-MEP3P and gain 15 years of data (1983 as
the starting date instead of 1998).

(e) The performance of RF-MEP increases when more rain gauge sta-
tions are used to train the model; however, it is still able to improve
P characteristics even with relatively few stations in the training
set.

(f) RF-MEP showed better performance than the results obtained using
Kriging with external drift and one-outlier-removed arithmetic
mean.

(g) The difference in reporting times between the P products and the
ground-based measurements must be taken into account when as-
sessing the performance of P products at the daily temporal scale so
that their performance is not underestimated. This issue constitutes
a major limitation of most P evaluation studies carried out far from
0:00 UTC.

(h) The KGE’ proved to be a versatile performance index because of its
ability to decompose the performance of the P products into r, β,
and γ. Therefore, the KGE’ helps us understand the sources of
mismatches between the P products and ground-based observa-
tions. In addition, the use of categorical indices provides crucial
information about the performance of these P datasets for capturing
different P intensities.

RF-MEP was developed to improve the characterisation of the
spatio-temporal variability of P by merging multiple P products, topo-
graphy-related datasets, and ground-based information. The P products
used in this study are publicly available and have a (quasi-)global
spatial coverage. This method was validated over Chile, a country
which exhibits notable heterogeneity in topography, climate, and land
cover. For this reason, we are confident that RF-MEP can be successfully
applied in different regions and catchments worldwide, and could also
be used to improve other climatological variables when ground-based
data are available.
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Appendix A. Literature review table

Table A1
Main steps in the methodology of different studies that have applied merging algorithms to improve the spatio-temporal characterisation of P at different temporal
scales.

Study Merging method(s) Spatio-temporal resolu-
tion of the merged pro-
duct(s)

Description of the approach

Li and Shao (2010) Nonparametric kernel smoothing Daily (0.25°) 1. Calculation of residual values; 2. Background error estimation using a kernel
smoothing method (double smoothing); 3. Removal of the estimated error from the
background field

Rozante et al. (2010) Barnes objective analysis method Daily (0.25°) 1. Only the rain gauge observations are considered over the 5 by 5 square of cells
centred around every grid-cell with a rain gauge station; 2. Interpolation using the
Barnes objective analysis method for the remaining grid-cells

Xie and Xiong (2011) Optimal Interpolation Daily (0.25°) 1. Bias correction through a probability density function matching of satellite and rain
gauge data; 2. Optimal interpolation

Gebregiorgis and Hossain
(2011)

Linear weights based on hydro-
logic model predictability

Daily (0.125°) 1. Calculation of the mean squared error (MSE) of soil moisture and runoff using each
P product to force a distributed hydrological model; 2. Inversion of MSEs to be used as
weights; 3. Merging of the P products using linear weighting

Woldemeskel et al. (2013) Linearised weighting procedure Monthly (0.05) 1. P interpolation using thin plate smoothing splines (TPSS) with standardised rain
gauge data followed by a back-transformation; 2. Merging using a linearised
weighting procedure

Shen et al. (2014) Arithmetic mean and inverse-
error-square weighting methods

Daily (0.25°) Three methods: M1. Arithmetic mean; M2. Inverse-error-square weighting; M3. One-
outlier removed arithmetic mean (i.e., one product removed)

Nie et al. (2015) Optimal interpolation Daily (0.25°) 1. Bias correction through a cumulative distribution function matching procedure; 2.
Quantification of background and observation errors; 3. Application of the optimal
interpolation technique

Fu et al. (2016) Bayesian model averaging Annual mean (0.1°) 1. Non-linear spatial interpolation of P products; 2. Merging using the Bayesian model
averaging technique

Manz et al. (2016) Linear modelling, residual IDW,
and Kriging-based methods

Monthly mean (5 km ~
0.05°)

Five methods: M1. Linear Modeling; M2. Residual IDW; M3. Ordinary Kriging (only
gauge-based); M4. Residual ordinary Kriging; M5. Kriging with external drift

Verdin et al. (2016) Ordinary Kriging and k-nearest
neighbour local polynomials

Monthly (0.05°) Two methods: M1. Ordinary Kriging; M2. A local regression is fitted considering data
from within a small neighbourhood, and the weighted least squares are used to fit the
local polynomials

Shi et al. (2017) Merging weights based on the ef-
fective influence radius of rain
gauges

Hourly (1 km) 1. Selection of the P product; 2. Downscaling of the P product using a DEM; 3.
Determination of weighted differences between the downscaled product and rain
gauge data; 4. Merging the downscaled product and the weighted differences
considering the number of gauges in the effective influence radius

Yang et al. (2017) Inverse-root-mean-square-error
weighting

Daily (0.04°) 1. Bias correction of the P product using a quantile mapping technique and a Gaussian
weighting interpolation scheme; 2. Interpolation of rain gauge data using a Gaussian
weighting function; 3. Data merging using inverse-mean-square-error weighting

Ma et al. (2018) Bayesian Model Averaging Daily (0.25°) 1. A BMA scheme is used to adjust the PDF of the satellite estimates with the
expectation-maximisation method used for each member for each day at the gauge
locations; 2. Interpolation using OK

Beck et al. (2019) Weighted averaging with CDF
matching

3-hourly (0.10°) 1. Gauge data quality control; 2. Inferring gauge reporting times; 3. Rainfall
estimation using thermal infrared imagery; 4. Gauge-based assessment of satellite and
reanalysis P datasets; 5. Global maps of weights and wet-day biases; 6. Determination
of long-term mean P; 7. P frequency correction and dataset harmonisation; 8.
Reference P distributions; 9. Merging of satellite and reanalysis P datasets; 10. Gauge
correction scheme

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2019.111606. These data include the Google maps of the
most important areas described in this article.
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B.1 Supplement material



Figure S1: The KGE’ (a), r (b), β (c), and γ (d) for RF-MEP5P, Kriging with external drift (KED), MSWEPv2.2, ERA-Interim,
and one-outlier-removed (OOR) arithmetic mean products using the ground-based validation dataset.
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Figure S2: Performance of two RF-MEP3P products according to the KGE’ and its components. RF-MEP3Pa was generated
using ERA-Interim, PERSIANN-CDR, and CHIRPSv2, while RF-MEP3Pb used ERA-Interim, CMORPHv1, and TRMM
3B42v7.

2

APPENDIX B.

123



Figure S3: Performance for two RF-MEP3P products according to four categorical indices. RF-MEP3Pa was generated using
ERA-Interim, PERSIANN-CDR, and CHIRPSv2, while RF-MEP3Pb used ERA-Interim, CMORPHv1, and TRMM 3B42v7.
From top to the bottom and left to right: POD, f BIAS, FAR, and CSI.

3

APPENDIX B.

124



Appendix C

Regionalisation step

125



APPENDIX C.

126



On the selection of precipitation products for the

regionalisation of hydrological model parameters

Oscar Manuel Baez-Villanueva; Mauricio Zambrano-Bigiarini;

Lars Ribbe; Alexandra Nauditt; Juan Diego Giraldo-Osorio; Nguyen

Xuan Thinh

Hydrology and Earth System Sciences, Volume 25, 2021,

Pages 5805-5837.

https://doi.org/10.5194/hess-25-5805-2021

https://doi.org/10.5194/hess-25-5805-2021


Hydrol. Earth Syst. Sci., 25, 5805–5837, 2021
https://doi.org/10.5194/hess-25-5805-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

On the selection of precipitation products for the regionalisation of
hydrological model parameters
Oscar M. Baez-Villanueva1,2, Mauricio Zambrano-Bigiarini3,4, Pablo A. Mendoza5,6, Ian McNamara1,
Hylke E. Beck7, Joschka Thurner1, Alexandra Nauditt1, Lars Ribbe1, and Nguyen Xuan Thinh2

1Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln, Cologne, Germany
2Faculty of Spatial Planning, TU Dortmund University, Dortmund, Germany
3Department of Civil Engineering, Universidad de la Frontera, Temuco, Chile
4Center for Climate and Resilience Research, Universidad de Chile, Santiago, Chile
5Department of Civil Engineering, Universidad de Chile, Santiago, Chile
6Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago, Chile
7GloH2O, Almere, the Netherlands

Correspondence: Mauricio Zambrano-Bigiarini (mauricio.zambrano@ufrontera.cl)

Received: 16 March 2021 – Discussion started: 23 April 2021
Revised: 11 August 2021 – Accepted: 12 October 2021 – Published: 11 November 2021

Abstract. Over the past decades, novel parameter regionali-
sation techniques have been developed to predict streamflow
in data-scarce regions. In this paper, we examined how the
choice of gridded daily precipitation (P ) products affects the
relative performance of three well-known parameter region-
alisation techniques (spatial proximity, feature similarity, and
parameter regression) over 100 near-natural catchments with
diverse hydrological regimes across Chile. We set up and cal-
ibrated a conceptual semi-distributed HBV-like hydrological
model (TUWmodel) for each catchment, using four P prod-
ucts (CR2MET, RF-MEP, ERA5, and MSWEPv2.8). We as-
sessed the ability of these regionalisation techniques to trans-
fer the parameters of a rainfall-runoff model, implementing
a leave-one-out cross-validation procedure for each P prod-
uct. Despite differences in the spatio-temporal distribution
of P , all products provided good performance during cali-
bration (median Kling–Gupta efficiencies (KGE′s) > 0.77),
two independent verification periods (median KGE′s > 0.70
and 0.61, for near-normal and dry conditions, respectively),
and regionalisation (median KGE′s for the best method rang-
ing from 0.56 to 0.63). We show how model calibration is
able to compensate, to some extent, differences between P
forcings by adjusting model parameters and thus the water
balance components. Overall, feature similarity provided the
best results, followed by spatial proximity, while parameter
regression resulted in the worst performance, reinforcing the

importance of transferring complete model parameter sets to
ungauged catchments. Our results suggest that (i) merging
P products and ground-based measurements does not nec-
essarily translate into an improved hydrologic model per-
formance; (ii) the spatial resolution of P products does not
substantially affect the regionalisation performance; (iii) a P
product that provides the best individual model performance
during calibration and verification does not necessarily yield
the best performance in terms of parameter regionalisation;
and (iv) the model parameters and the performance of region-
alisation methods are affected by the hydrological regime,
with the best results for spatial proximity and feature simi-
larity obtained for rain-dominated catchments with a minor
snowmelt component.

1 Introduction

Daily streamflow (Q) data are crucial for a wide range of
scientific and operational water resources applications, such
as climate change impact assessment (e.g. Kling et al., 2012;
Rojas et al., 2013; Mendoza et al., 2016; Galleguillos et al.,
2021), Q and flood forecasting (e.g. Clark and Hay, 2004;
Addor et al., 2011; Coughlan de Perez et al., 2016; Sharma
et al., 2018), and catchment classification (e.g. Wagener
et al., 2007; Sawicz et al., 2011; Kuentz et al., 2017; Jehn
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et al., 2020), among others. Q is typically estimated through
the implementation of hydrological models, which rely on
parameters to represent hypotheses about the dominant pro-
cesses in a catchment (Beven, 2006). In most cases, these
parameters cannot be measured at the scales relevant for
model applications (Beven, 1989; Uhlenbrook et al., 1999;
Beven, 2000; Wagener et al., 2001) and are therefore esti-
mated through model calibration. To this end, optimisation
techniques are used to provide reliable estimates of model
parameters, requiring the comparison of observed Q against
simulatedQ data (Yapo et al., 1998; Vrugt et al., 2003, 2009;
Pokhrel et al., 2012; Shafii and Tolson, 2015; Pool et al.,
2017). Because the vast majority of streams worldwide re-
main ungauged (Young, 2006; Beck et al., 2016), the sci-
entific initiative Prediction in Ungauged Basins (PUB; see
review by Hrachowitz et al., 2013) has fostered the devel-
opment of novel regionalisation techniques to predict Q in
ungauged basins, a task that is far from complete (Yang
et al., 2019; Dallery et al., 2020). The spatial transfer of
hydrological model parameters from monitored to ungauged
catchments, a process known as regionalisation (Oudin et al.,
2008), remains an active research topic (see review by Guo
et al., 2021).

In the hydrological modelling literature, there are three
main regionalisation approaches (Oudin et al., 2008; Parajka
et al., 2013): (i) spatial proximity, (ii) feature similarity, and
(iii) parameter regression. Spatial proximity assumes that cli-
matic and physiographic characteristics are relatively homo-
geneous within a region, and, therefore, neighbouring catch-
ments exhibit similar hydrological behaviour (Vandewiele
and Elias, 1995; Oudin et al., 2008). Although this method
requires a dense network of gauging stations to perform
well, it may lead to inadequate representations of rainfall-
runoff behaviour over areas with heterogeneous climate and
geomorphological characteristics (Beck et al., 2016). Fea-
ture similarity techniques transfer calibrated model param-
eter sets from donor to ungauged catchments based on ge-
omorphological and climatic similarities (McIntyre et al.,
2005; Carrillo et al., 2011; Beck et al., 2016). Finally, pa-
rameter regression methods develop statistical relationships
between calibrated model parameters and catchment charac-
teristics, which are subsequently used to estimate parame-
ter values for ungauged catchments (Fernandez et al., 2000;
Carrillo et al., 2011). Recently, Samaniego et al. (2010) and
Beck et al. (2020a) applied multiscale parameter regional-
isation techniques that link model parameters to predictors
related to geomorphological and climatological characteris-
tics by optimising coefficients in transfer equations, which
helps to account for problems related to equifinality. The
performances of these three regionalisation techniques vary
due to many factors, including the selected sample of catch-
ments, the presence of nested catchments, hydroclimatic con-
ditions, physiographic catchment properties, model configu-
ration (including meteorological forcings, model structure,

and simulation setup), and evaluation criteria (Parajka et al.,
2013; Neri et al., 2020; Guo et al., 2021).

Most regionalisation studies have been conducted over
regions with a dense network of meteorological stations
(see Table 1), including Europe (e.g. McIntyre et al., 2005;
Parajka et al., 2005; Oudin et al., 2008; Singh et al.,
2012; Zelelew and Alfredsen, 2014; Garambois et al., 2015;
Rakovec et al., 2016; Neri et al., 2020), the conterminous
United States (Athira et al., 2016; Saadi et al., 2019), In-
dia (Swain and Patra, 2017), and China (Bao et al., 2012).
However, in developing countries, P has traditionally been
estimated through interpolation within sparse rain gauge
networks, which is subject to large uncertainties (Hofstra
et al., 2010; Woldemeskel et al., 2013; Adhikary et al., 2015;
Xavier et al., 2016), hindering an accurate spatio-temporal
representation of P patterns. Over the last decades, the emer-
gence of near-global and high-resolution gridded P products
has introduced new possibilities for hydrological modelling
in data-scarce regions (Maggioni and Massari, 2018; Sun
et al., 2018), despite these products still being affected by
systematic, random, and detection errors (Ren and Li, 2007;
Sevruk et al., 2009; Zambrano-Bigiarini et al., 2017; Baez-
Villanueva et al., 2018), which are more pronounced over
mountainous regions (Maggioni and Massari, 2018; Beck
et al., 2019). Although hydrological model calibration can
partly compensate for errors in the representation of P (El-
sner et al., 2014; Maggioni and Massari, 2018), this may lead
to unrealistic model behaviour (Nikolopoulos et al., 2013;
Xue et al., 2013; Ciabatta et al., 2016), thus affecting the
quality of parameter regionalisation results.

To date, few regionalisation studies have used gridded P
products at the daily temporal scale. Beck et al. (2016) used
the Climate Prediction Center unified gauge-based P prod-
uct (CPC) to provide spatially distributed HBV parameters at
the global scale. They selected CPC because it yielded better
performance than ERA-Interim during calibration. Rakovec
et al. (2016) used the European daily high-resolution grid-
ded dataset (E-OBSv8.0) to force a mesoscale hydrologi-
cal model over 400 catchments in Europe, providing region-
alised model parameters through a multivariate parameter es-
timation technique. More recently, Beck et al. (2020a) com-
bined MSWEPv2.2 with a novel multiscale parameter re-
gionalisation approach to provide global gridded parame-
ter estimates using daily Q observations from 4229 catch-
ments. Although these studies have successfully used grid-
ded P products for parameter regionalisation, they only se-
lected one product, and thus the effects that the choice of a P
dataset can have on regionalisation results remain unknown.
This study aims to answer the following questions:

(i) To what extent does the choice of gridded P forcing
used in calibration affect the relative performance of re-
gionalisation techniques?

(ii) How does this relative performance vary across catch-
ments with different hydrological regimes?

Hydrol. Earth Syst. Sci., 25, 5805–5837, 2021 https://doi.org/10.5194/hess-25-5805-2021

APPENDIX C.

128



O. M. Baez-Villanueva et al.: Selection of P products for the regionalisation of hydrological model parameters 5807

2 Study area and selection of catchments

Our study domain is continental Chile (Fig. 1), which is
bounded to the west by the Pacific Ocean, to the north by
Peru, and to the east by Bolivia and Argentina. The terri-
tory spans 4300 km of latitudinal extension (17.5–56.0◦ S)
and on average 180 km of longitudinal extension (76.0–
66.0◦W), with elevation (Jarvis et al., 2008) ranging from
0 to 6892 m a.s.l. in the Andes Mountains. Figure 1 shows
the elevation, land cover (Zhao et al., 2016), Köppen–Geiger
climate classification (Beck et al., 2018), and hydrological
regimes for the five major macroclimatic zones presented
in Zambrano-Bigiarini et al. (2017). A large variety of cli-
mates are present across the country, with the macrocli-
matic zones transitioning from the (hyper)arid and semi-
arid climates in the Far North (17.50–26.00◦ S) and Near
North (26.00–32.18◦ S), through temperate climates in Cen-
tral Chile (32.18–36.40◦ S), to more humid and polar cli-
mates in the South (36.40–43.70◦ S) and Far South (43.70–
56.00◦ S). P increases with elevation and latitude (in the
southern direction), ranging from almost zero in the Atacama
Desert to ∼ 6000 mm yr−1 in the surroundings of Puerto
Cárdenas (∼ 43.2◦ S). Similar to the P patterns, both the
mean annualQ and rainfall-runoff ratio tend to increase from
north to south (Alvarez-Garreton et al., 2018; Vásquez et al.,
2021).

The El Niño–Southern Oscillation (ENSO) has a large im-
pact on winter P , with negative anomalies during La Niña
and positive anomalies during El Niño events (Verbist et al.,
2010; Robertson et al., 2014). Although neutral ENSO con-
ditions have prevailed since 2011 (except for a strong El Niño
event during 2015), an uninterrupted sequence of dry years
with increased temperatures has been observed from 2010–
2018, with annual P deficits of about 25 %–45 % across
Chile. This long-term deficit in P volume, also known as the
Chilean megadrought (Boisier et al., 2016; Garreaud et al.,
2017), has reduced snow cover, river flows, reservoir stor-
age, and groundwater levels across Chile (Garreaud et al.,
2017, 2020).

Hydroclimatic indices and characteristics for 516 catch-
ments in continental Chile were acquired from the Catch-
ment Attributes and MEteorology for Large-sample Stud-
ies dataset in Chile (CAMELS-CL; Alvarez-Garreton et al.,
2018). The dataset includes location, topography, geology,
soil types, land cover, hydrological signatures, and human in-
tervention degree, among others. Q data were obtained from
the Center for Climate and Resilience Research (CR2; http:
//www.cr2.cl/datos-de-caudales/, last access: October 2020)
for 1930–2018 because Q data from CAMELS-CL ended
in 2016 at the time of conducting this study. We selected
the near-natural catchments from the CAMELS-CL database
that fulfilled the following criteria:

1. less than 25 % of missing values in the daily Q time
series for 1990–2018 (may be non-consecutive)

2. absence of large dams (big_dam= 0)

3. less than 10 % of Q allocated to consumptive uses (in-
terv_degree< 0.1)

4. not dominated by glaciers (lc_glacier< 5 %)

5. less than 5 % of the area defined as urban
(imp_frac< 5 %)

6. absence of substantial irrigation abstractions
(crop_frac< 20 %)

7. less than 20 % of the area covered by forest plantations
(fp_frac< 20 %)

8. no signs of artificial regulation in the hydrograph (10
excluded in total).

The drainage areas of the selected catchments (100) range
from 35 to 11 137 km2, with a median value of 645 km2.
The selected catchments contain 42 nested catchments (i.e.
catchments that are contained in a larger catchment). We ad-
justed the classification of these catchments according to hy-
drological regime, building on the classifications presented
in several national and regional technical reports (e.g. DGA,
1998, 1999, 2004a, b, c, 2006, 2016a, b, 2018), by visu-
ally analysing the contribution of solid and liquid P to the
mean monthly Q values. These regimes were classified as
(i) snow-dominated; (ii) nivo-pluvial, i.e. snow-dominated
with a rain component; (iii) pluvio-nival, i.e. rain-dominated
with a snow component; and (iv) rain-dominated, as shown
in Fig. 1d. Figure A1 shows conceptual hydrographs for each
of these regimes and is presented in Appendix A.

3 Methods

3.1 Meteorological forcings

3.1.1 Precipitation products

Four P products were used to investigate how the choice of
P forcing affects the performance of regionalisation tech-
niques. The P products are presented in Table 2 and were
selected because previous studies have reported good agree-
ment when evaluated against in situ measurements over con-
tinental Chile (Zambrano-Bigiarini et al., 2017; Boisier et al.,
2018; Baez-Villanueva et al., 2018, 2020).

The Center for Climate and Resilience Research Meteoro-
logical dataset version 2.0 (CR2MET; Boisier et al., 2018)
provides daily gridded P estimates over continental Chile
at a 5 km spatial resolution for 1979–2018. These estimates
are produced by combining rain gauge observations with re-
analysis data from ERA5, while CR2MET version 1.0 of this
product was produced using ERA-Interim data (Boisier et al.,
2018). As CR2MET was developed specifically for Chile and
uses all the Chilean rain gauges (874 across Chile; see Fig. S1
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Table 1. Summary of selected regionalisation studies that used spatial proximity (SP), feature similarity (FS), parameter regression (PR), or
multiscale parameter regionalisation (MPR). This study has been added for completeness.

Study Region Catchments
(donor/evaluation)

Approach Relevant conclusion

McIntyre et al. (2005) United
Kingdom

127/leave-one-out
cross-validation

SP and FS The transfer of complete model parameter sets increased the
performance of regionalisation. The use of the 10 best model
parameter sets provided a more robust representation of flood
peaks and generated a better ensemble of the overall flow
regime, although flow peaks were underestimated. A compar-
ison against the PR approach showed that FS produced better
results.

Parajka et al. (2005) Austria 320/leave-one-out
cross-validation

SP, FS, and
PR

All methods performed better than the average of the model pa-
rameters of all catchments. Two methods performed the best:
FS and an SP kriging approach, where the model parameters
were regionalised independently based on their spatial corre-
lation. Local regression methods outperformed the global re-
gression method, highlighting the importance of accounting for
regional differences during PR.

Oudin et al. (2008) France 913/leave-one-out
cross-validation

SP, FS, and
PR

SP performed the best, followed closely by FS. The reduced
performance of FS was attributed to the lack of soil-related
properties used as inputs. To construct the ensemble output us-
ing multiple catchments, averaging theQ time series performed
better than averaging the model parameters. They concluded
that the dense network of catchments favoured the SP method.

Samaniego et al. (2010) Germany 1/10 stations within the
study area

MPR The MPR method showed improved results compared to the
standard PR when the global parameters were calibrated at a
coarser modelling scale and then transferred to a finer scale.

Bao et al. (2012) China 55/leave-one-out
cross-validation

FS and PR FS outperformed PR over both humid and arid regions. Moving
from humid to arid regions, the degree to which the FS approach
outperformed PR increased.

Zelelew and Alfredsen (2014) Southern
Norway

11/Leave-one-out
cross-validation

SP and FS The ensemble of the 10 most similar catchments outperformed
the other approaches (the performance increased when two to
six catchments were used). They recommended identifying the
parameters that influence the model response in order to min-
imise the model parametric dimensionality.

Garambois et al. (2015) Southern
France

16/leave-one-out
cross-validation

SP and FS FS outperformed SP. They reported only a small decrease
in performance from calibration/verification to regionalisation
(∼ 10 %) when evaluated during flash flood events. Using an
ensemble of two to four donor catchments yielded the best
regionalisation performance. Using well-modelled catchments
does not always produce good performances during regionali-
sation, and parameter sets from low-performing catchments can
produce higher performances when transferred to ungauged set-
tings.

Athira et al. (2016) Conterminous
United
States

8/leave-one-out
cross-validation

PR The parameter values using multi-linear regression models were
different to those obtained through model calibration, indicat-
ing the deficiency of regionalising the parameters directly as a
function of catchment attributes. For the one catchment where
SP was also tested, PR performed better.

Beck et al. (2016) Global 674/1113; independent
evaluation

FS The derived global maps of HBV parameter sets conform well
with large-scale climate patterns, demonstrating the effect of
climate on rainfall-runoff patterns. For 79 % of catchments, the
averaging of model outputs (from 10 donor catchments) out-
performed the use of spatially uniform parameters. P underes-
timation appeared to be the dominant cause of low calibration
scores, particularly for tropical and arid catchments.

Rakovec et al. (2016) Europe 36/400,
cross-validation

MPR The model performed well in simulating daily Q over a wide
range of physiographic and climatic conditions, with median
KGE′s greater than 0.55. This performance was reduced in
heavily regulated catchments. Further evaluation against com-
plementary datasets showed the best agreement for evaporation,
followed by total water storage, and the lowest for soil moisture.
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Table 1. Continued.

Study Region Catchments
(donor/evaluation)

Approach Relevant conclusion

Swain and Patra (2017) India 32/leave-one-out
cross-validation

SP, FS, and
PR

SP (both kriging and inverse distance weighting, IDW) outper-
formed PR and FS. The methods were evaluated against a global
mean approach, which produced worse results than all tested re-
gionalisation methods.

Beck et al. (2020a) Global 4229/10-fold
cross-validation

MPR They incorporated within-catchment variability in climate and
landscape and yielded an improvement in 88 % of the catch-
ments (median KGE′ improved from 0.19 to 0.46). They found
a weak positive correlation between regionalisation perfor-
mance and catchment humidity. Considerable improvements
were obtained for catchments located both near and far from
those used for optimisation.Q simulation performance was best
in humid regions and worst in arid regions.

Neri et al. (2020) Austria 209/leave-one-out
cross-validation

SP and FS Compared to the results of the independent calibra-
tion/verification, the regionalisation performance using
the TUWmodel deteriorated less than using the GR6J model.
With a high density of gauged stations, both the SP and FS
performed similarly well, but the results deteriorated with
reduced gauge density (especially for SP). Transferring the
parameter sets of more than one single catchment improves the
regionalisation performance.

This study Chile 100/leave-one-out
cross-validation

SP, FS, and
PR

FS was the best-performing method, followed by SP. The use
of merged P products does not necessarily translate into an
improved hydrological modelling performance. Strong perfor-
mance of a P product for calibration and validation does not
necessarily translate into strong performance for regionalisa-
tion. The performance of regionalisation methods depends on
the hydrological regime.

Table 2. Gridded P products used in this study.

P product Period Spatial and temporal resolution References

CR2MET 1979–2018 0.05◦; daily Boisier et al. (2018)
RF-MEP 1983–2018 0.05◦; daily Baez-Villanueva et al. (2020)
ERA5 1950–present ∼0.28◦; hourly Hersbach et al. (2020)
MSWEPv2.8 1979–present 0.10◦; 3-hourly Beck et al. (2017b, 2019)

in the Supplement), it is considered as the “reference” P
product of Chile.

The random forest merging procedure (RF-MEP; Baez-
Villanueva et al., 2020) combines gridded P products,
ground-based measurements, and other spatial covariates to
generate P estimates. We applied this methodology to gen-
erate a spatially distributed, daily P product for continen-
tal Chile, using daily records from 334 rain gauges (ob-
tained from CR2; http://www.cr2.cl/datos-de-precipitacion/,
last access: 10 January 2021), gridded P data from the ERA5
reanalysis (Hersbach et al., 2020) aggregated to the Chilean
time, and elevation (SRTMv4.1; Jarvis et al., 2008) as covari-
ates. This RF-MEP version 2 product (hereafter, RF-MEP)
was generated for 1990–2018 with a spatial resolution of
0.05◦ using the RFmerge R package (Zambrano-Bigiarini
et al., 2020).

ERA5 (Hersbach et al., 2020) is a reanalysis product that
provides hourly P estimates (as well as other variables)
from 1950 to present at a spatial resolution of around 30 km
(∼ 0.28◦). There are important improvements in its P esti-
mates compared to its predecessor ERA-Interim, such as im-
proved (i) representation of mixed-phase clouds, (ii) prog-
nostics variables for rain and snow, (iii) parameterisation
of microphysics, and (iv) representation of tropical variabil-
ity (Hersbach et al., 2020). Although ERA5 also assimi-
lates NCEP Stage IV P estimates over the conterminous
United States, which combine NEXRAD data with in situ
measurements, it does not incorporate information from any
ground-based P stations over Chile. Hourly ERA5 estimates
were aggregated into daily P values, taking into account
the reporting times of the Chilean rain gauges (08:00–07:59
local time, which represents 11:00–10:59 UTC). Although
this product has a relatively low spatial resolution com-
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Figure 1. Study area: (a) elevation (SRTMv4.1; Jarvis et al., 2008); (b) land cover classification (Zhao et al., 2016); (c) Köppen–Geiger
climate classification (Beck et al., 2018); and (d) hydrological regimes of the selected catchments over the five major macroclimatic zones
according to Zambrano-Bigiarini et al. (2017).

pared to the other selected products, we included it because
(i) Chile is dominated by large-scale, frontal systems (Zhang
and Wang, 2021), and therefore, coarse-resolution products
may perform well even over small catchments; (ii) reanalysis
products tend to perform well at high latitudes (Beck et al.,
2017a); and (iii) we consider that its inclusion represents a re-
alistic situation that may exist in many practical applications
(i.e. where a catchment size is small relative to P product
resolution).

The Multi-Source Weighted-Ensemble Precipitation
(MSWEPv2.8; Beck et al., 2017b, 2019) is a 3-hourly P
product with a spatial resolution of 0.10◦, which takes
advantage of the complementary strengths of satellite,
reanalysis, and ground-based data. MSWEPv2.8 applies
daily and monthly corrections to its estimates using data
from around 77 000 rain gauge stations globally (628 of
these are over Chile; see Fig. S1), accounting for their local
reporting times. The 3-hourly MSWEPv2.8 estimates were
also aggregated into daily P to account for the difference in
the reporting times.

Figure 2a shows the spatial distribution of mean annual P
for all products over 1990–2018, while Fig. 2b shows box
plots of the mean monthly P averaged over catchments lo-
cated within each macroclimatic zone. All P products show
relatively similar patterns of spatial variability across con-

tinental Chile; however, there are substantial differences in
their total P amounts. In general, P increases from the
(hyper-arid) Far North to the South and decreases again in
the Far South. P also increases from the west coast towards
the Andes Mountains. ERA5 provides higher P amounts
over all five macroclimatic zones, while RF-MEP generally
yields the lowest annual P values. Over the Far North, all
products show a marked rainy season during December–
March due to summer convective P , which differs from
the marked seasonality evident over the Near North, Cen-
tral Chile, and South regions. Over the Far North, ERA5
presents the highest mean annual P (157 mm), which is al-
most twice the amount provided by the second-highest prod-
uct MSWEPv2.8 (83 mm), followed by CR2MET (63 mm),
while RF-MEP has the lowest mean annual P (40 mm). Al-
though ERA5 presents the highest mean annual P values
over the Near North, Central Chile, and South regions (208,
902, and 2172 mm, respectively), when considering only our
case study catchments (Fig. 2b), CR2MET has the highest
mean monthly values over the Central Chile and South re-
gions during April–June. RF-MEP and MSWEPv2.8 have
similar mean annual P values over Central Chile (670 mm
for both products) and the South (1670 and 1735 mm, re-
spectively) regions, although RF-MEP consistently shows
the largest monthly P amounts of the two products over the
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corresponding catchments. ERA5 provides the highest mean
annual P values over the Far South (3018 mm), followed
by CR2MET (1888 mm), MSWEPv2.8 (1714 mm), and RF-
MEP (815 mm). Finally, each product shows low seasonality
over the Far South. Here, ERA5 presents higher monthly P
values throughout the year, with the largest difference from
the other products between January–March and September–
December.

To gain a deeper understanding of the differences between
the four P products, we examined the spatial distribution of
median annual values of four Climdex indices (Karl et al.,
1999) for 1990–2018 (Fig. 3). First, to account for days
without rain (P < 1 mm), we used the consecutive dry days
index (CDD; Fig. 3a), which retrieves the maximum dry
spell length. It is evident that CR2MET yields longer dry
spells, mainly across the Far North and Near North regions,
while ERA5 has shorter dry spells over these regions, espe-
cially over the Andes Mountains. CR2MET, RF-MEP, and
MSWEPv2.8 have similar spatial patterns over the Central
Chile and South regions, while ERA5 has fewer consecutive
dry days over the Andes Mountains. Similarly, ERA5 pro-
vides shorter dry spells over the Far South, while CR2MET
and RF-MEP present similar patterns. These results are con-
sistent with the consecutive wet days index (CWD; Fig. 3b),
which assesses the frequency and intermittency of P . ERA5
provides the highest CWD values over the driest regions
(Far North and Near North), with medians ranging from 0
to 25 d, followed by MSWEPv2.8 (0 to 15 d). ERA5 also
shows higher CWD values over high-elevation areas in Cen-
tral Chile, while the remaining products show similar spatial
patterns to each other. The four products show agreement in
the CWD over the South region, with values ranging from
5 to 25 d. Finally, RF-MEP shows the lowest consecutive
days with P in the Far South, followed by CR2MET and
MSWEPv2.8, while ERA5 shows substantially higher CWD
values at latitudes greater than 47◦ S.

To characterise high P intensities, we used the Rx5day
(Fig. 3c) and R95pTOT (Fig. 3d) indices, which represent
the maximum P accumulated over 5 consecutive days and
the total P above the 95th percentile of the daily P for
wet days, respectively. Figure 3c shows that ERA5 and
CR2MET generally yield the highest Rx5day values, fol-
lowed by MSWEPv2.8 and RF-MEP. A similar spatial vari-
ability is obtained with R95pTOT (Fig. 3d), indicating that
there is a greater contribution of P from extreme events
in ERA5 over high-elevation areas. These spatial patterns
are replicated to some extent by CR2MET, which provides
R95pTOT values up to 1200 mm over the Andes Mountains
in Central Chile.

3.1.2 Air temperature and potential evaporation

Maximum and minimum daily air temperature (T ) at a spa-
tial resolution of 0.05◦ were taken from CR2MET. T is
estimated using multivariate regression from the Moder-

ate Resolution Imaging Spectroradiometer (MODIS) land
surface temperature (LST) and ERA5 estimates as covari-
ates (Alvarez-Garreton et al., 2018; Boisier et al., 2018).
The Hargreaves–Samani equation (Hargreaves and Samani,
1985) was used to obtain daily potential evaporation (PE)
from CR2MET maximum and minimum daily T at the same
spatial resolution (0.05◦).

3.2 Hydrological model

The TUWmodel (Viglione and Parajka, 2020) is a concep-
tual hydrological model that follows the structure of the
Hydrologiska Byråns Vattenbalansavdelning (HBV) model
(Bergström, 1976; Bergström, 1995; Lindström, 1997). The
model simulates the catchment-scale water balance at daily
time steps, including processes related to snow accumulation
and melting, change of moisture in the soil profile, and sur-
face flow in the drainage network. The TUWmodel was val-
idated over 320 catchments in Austria (Parajka et al., 2007)
and has subsequently been used in numerous studies (e.g.
Parajka et al., 2016; Zessner et al., 2017; Melsen et al., 2018;
Sleziak et al., 2020). We selected a HBV-like conceptual
model because it has shown good results in (i) many region-
alisation studies (e.g. Parajka et al., 2005; Singh et al., 2012;
Beck et al., 2016; Neri et al., 2020) and (ii) catchments with
diverse hydroclimatic and geomorphological characteristics
(Vetter et al., 2015; Ding et al., 2016; Unduche et al., 2018;
Huang et al., 2019).

The TUWmodel requires as inputs daily time series of P ,
T , and PE. The parameters used by the TUWmodel to repre-
sent the hydrological processes are listed in Table 3, includ-
ing the ranges selected for model calibration, which were
adopted from previous studies (Parajka et al., 2007; Ceola
et al., 2015) that calibrated the TUWmodel over a large num-
ber of mountainous catchments with snow influence. We ran
the TUWmodel with a semi-distributed configuration for the
period 1990–2018 based on meteorological andQ data avail-
ability. For each catchment, the number of equal-area ele-
vation bands (EZ) was defined as EZ= (Hmax−Hmin)/200,
where H represents elevation. In cases where EZ> 10, EZ
was set to 10 to reduce the computational demand of the
simulations. Furthermore, in catchments with Hmin below
900 m a.s.l., the upper bound of the first EZ band was set
to 900 m under the assumption that there is no snow influ-
ence below this elevation for the particular case of continen-
tal Chile. For more details about the TUWmodel implemen-
tation in R and the comparison of different HBV-like models,
readers are referred to Astagneau et al. (2021) and Jansen
et al. (2021), respectively.

3.3 Independent catchment calibration and verification

The simulation period used for this study was 1990–2018.
For calibration purposes, we used the first 10 years as a con-
servative warm-up period to initialise the model stores, as
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Figure 2. Comparison of P products over 1990–2018 (full time period): (a) mean annual P for each product resampled to a 0.05◦ spatial
resolution using the nearest neighbour method. The dark red horizontal lines represent the limits of each major macroclimatic zone and
(b) mean monthly P averaged over each catchment located within each macroclimatic zone (see Fig. 1d).

Table 3. Summary of the TUWmodel parameters considered for calibration, following the conceptualisation presented in Széles et al. (2020).

No. Parameter ID Description Units Process Range

1 SCF Snow correction factor – Snow 0.9–1.5
2 DDF Degree-day factor mm ◦C d−1 Snow 0.0–5.0
3 Twb Wet bulb temperature ◦C Snow −3.0–3.0
4 Tm Threshold temperature above which melting starts ◦C Snow −2.0–2.0
5 LPrat Parameter related to the limit for potential evaporation – Evaporation 0.0–1.0
6 FC Field capacity mm Infiltration 0.0–600
7 Beta Non-linear parameter for runoff production – Infiltration 0.0–20
8 cperc Constant percolation rate mm d−1 Infiltration 0.0–8.0
9 k0 Storage coefficient for very fast response d Runoff 0.0–2.0
10 k1 Storage coefficient for fast response d Runoff 2.0–30
11 k2 Storage coefficient for slow response d Runoff 30–250
12 lsuz Threshold storage state mm Runoff 1.0–100
13 bmax Maximum base at low flows d Runoff 0.0–30
14 croute Free scaling parameter d2 mm−1 Runoff 0.0–50

in Beck et al. (2020a). The calibration period (2000–2014)
includes near-normal conditions and the beginning of the
Chilean megadrought. The first evaluation period (hereafter
Verification 1, 1990–1999) represents near-normal/wet hy-
droclimatic conditions, while the second evaluation period
(hereafter Verification 2, 2015–2018) spans the second half
of the Chilean megadrought and was used to test the ability
of the hydrological simulations to represent dry conditions.

To initialise model stores for the Verification 1 period, we
used an 8-year warm-up period due to P product availability.
We replicated Figs. 2 and 3 for these three periods to anal-
yse the differences between the selected P products (see the
Supplement, Figs. S2–S7).

We used the modified Kling–Gupta efficiency (KGE′,
Eq. 1; Kling et al., 2012) to calibrate the TUWmodel, which
typically provides better hydrograph simulations than other
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Figure 3. Median annual values of four Climdex indices over 1990–2018 (full period): (a) number of consecutive dry days (CDD), (b) number
of consecutive wet days (CWD), (c) maximum P over five consecutive days (Rx5day), and (d) annual P that is above the 95th percentile of
P for wet days (R95pTOT). The dark red horizontal lines represent the limits of each macroclimatic zone.

squared-error indices (Gupta et al., 2009; Kling et al., 2012;
Mizukami et al., 2019) and has been used in numerous
studies (e.g. Garcia et al., 2017; Beck et al., 2019; Baez-
Villanueva et al., 2020; Neri et al., 2020; Széles et al., 2020).
The KGE′ has three components: the Pearson correlation co-
efficient (r; Eq. 2), the bias ratio (β; Eq. 3), and the variabil-
ity ratio (γ ; Eq. 4). µ is the mean Q, CV is the coefficient of
variation, σ represents the standard deviation of Q, and the
subscripts “s” and “o” represent simulated and observed Q,
respectively. The KGE′ and its components have their opti-
mum value at 1, and its optimisation seeks to reproduce the
temporal dynamics (measured by r) while preserving the vol-
ume and variability of Q, measured by β and γ , respectively

(Kling et al., 2012).

KGE′ = 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2 (1)

r =

∑n
i=1(Oi − Ō)(Si − S̄)√∑n

i=1(Oi − Ō)
2
√∑n

i=1(Si − S̄)
2

(2)

β =
µs

µo
(3)

γ =
CVs

CVo
=
σs/µs

σo/µo
(4)

To calibrate the model parameters, we used the hydroPSO
global optimisation algorithm (Zambrano-Bigiarini and Ro-
jas, 2013), which implements a state-of-the-art version of
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the particle swarm optimisation technique (PSO; Eberhart
and Kennedy, 1995; Kennedy and Eberhart, 1995). We used
the standard PSO 2011 algorithm (Clerc, 2011a, b), de-
fined as spso2011 in the hydroPSO R package (Zambrano-
Bigiarini and Rojas, 2013). We set the number of particles in
the swarm (npart= 80), the maximum number of iterations
(maxit= 100), and the relative convergence tolerance (rel-
tol= 1× 10−10), while the default values were used for all
other parameters. Over the last decade, hydroPSO has been
successfully used to calibrate numerous hydrological and en-
vironmental models (e.g. Brauer et al., 2014; Silal et al.,
2015; Bisselink et al., 2016; Kundu et al., 2017; Kearney and
Maino, 2018; Abdelaziz et al., 2019; Ollivier et al., 2020;
Hann et al., 2021). For more details on the use of the hy-
droPSO package to calibrate the TUWmodel, readers are re-
ferred to Zambrano-Bigiarini and Baez-Villanueva (2020).

3.4 Regionalisation techniques

After obtaining catchment-specific model parameters
through independent catchment calibration (Sect. 3.3),
we compared three parameter regionalisation techniques:
(i) spatial proximity, (ii) feature similarity, and (iii) pa-
rameter regression. We assessed performance through a
leave-one-out cross-validation exercise, which consists
of leaving out each one of the 100 catchments, transfer-
ring model parameters, conducting Q simulations, and
computing performance evaluation metrics.

3.4.1 Spatial proximity

The spatial proximity method assumes that climatic and
physical characteristics are relatively homogeneous over a
region (Oudin et al., 2008). We quantified the spatial prox-
imity between the target pseudo-ungauged and the remaining
catchments using the Euclidean distance between catchment
centroids, computed with geographic coordinates (i.e. lati-
tude and longitude):

EDij =

√√√√ n∑
k=1
(xk,i − xk,j )2. (5)

For each pseudo-ungauged catchment, the donor was chosen
according to the minimum Euclidean distance, and the full
parameter set obtained during the independent calibration of
the donor catchment was transferred to the pseudo-ungauged
catchment.

3.4.2 Feature similarity

In the feature similarity method, we transferred the calibrated
parameter sets from 10 donor catchments to the pseudo-
ungauged catchment based on similarity between climatic
and geomorphological features, quantified using the catch-
ment characteristics presented in Table 4. To exclude re-

dundant information, we first performed correlation analy-
ses between catchment descriptors using the Pearson and
Spearman rank correlation coefficients (to account for linear
and monotonic correlation, respectively) and discarded three
descriptors with high correlations (mean elevation, mean
annual PE, and the Simple Precipitation Intensity Index
(SDII); see Appendix B). Also, we discarded snow cover
because it was found to be unreliable, leaving nine catch-
ment features for this method. To assign equal weight to each
catchment characteristic, they were normalised into the range
[0, 1] using Eq. (6):

Zf =
xf − xmin

xmax− xmin
, (6)

where xf is the value of the characteristic for catchment f ,
while xmax and xmin are the maximum and minimum values
of the characteristic x over all catchments. After normalising
all catchment characteristics, we calculated the dissimilarity
as follows:

Si,j =

n∑
m=1
| Zi,m−Zj,m |, (7)

where Si,j is the dissimilarity index between catchments i
and j ; Zi,m and Zj,m are the normalised values of the m
catchment characteristic for catchments i and j , respectively;
and n is the total number of characteristics.

For each pseudo-ungauged catchment i, the 10 catchments
j with the lowest dissimilarity indices (Si,j ) were selected
as donors (Oudin et al., 2008; Zhang and Chiew, 2009;
Zhang et al., 2015; Beck et al., 2016). The full parameter
sets obtained during the independent calibrations of each
donor catchment were used to run TUWmodel in the pseudo-
ungauged catchment, thus producing an ensemble of 10 Q
simulations, as in previous studies (McIntyre et al., 2005;
Zelelew and Alfredsen, 2014; Beck et al., 2016). The 10 Q
time series were then averaged to produce a single Q time
series.

3.4.3 Parameter regression

The parameter regression technique aims to detect statisti-
cal relationships between parameter values and catchment
characteristics and uses these relationships to estimate model
parameters for ungauged catchments (Parajka et al., 2005;
Oudin et al., 2008; Swain and Patra, 2017). To account
for non-linear relationships between model parameters and
catchment characteristics, we implemented the random for-
est machine learning algorithm (RF; Breiman, 2001; Prasad
et al., 2006; Biau and Scornet, 2016) provided in the Ran-
domForest R package (Liaw and Wiener, 2002). RF uses an
ensemble of decision trees between predictand and predictor
values (also known as covariates) for regression and super-
vised classification and has the capability to deal with high-
dimensional feature spaces and small sample sizes (Biau and
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Table 4. Selected climatic and physiographic characteristics to quantify feature similarity between catchments. All variables related to P
were computed using the corresponding P product used as an input to the TUWmodel for 1990–2018.

No. Variable Data source Importance

1 Mean elevation CAMELS-CL Composite indicator that influences a range of processes such as long-term
P and T and hence soil moisture availability. In some environments, it is
also related to aridity and snow processes.

2 Median elevation SRTMv4.1 Same as mean elevation but provides a more robust representation of eleva-
tion over mountainous catchments.

3 Catchment area CAMELS-CL Related to the degree of aggregation of catchment processes related to scale
effects. Additionally, it is an indicator of total catchment storage capacity.

4 Slope CAMELS-CL Related to the response of the catchment, routing, and infiltration processes.
5 Forest cover CAMELS-CL Forested catchments are associated with a trade-off between high water con-

sumption rates and enhanced soil.
6 Snow cover CAMELS-CL Related to the influence of snow processes within the catchment.
7 Mean annual precipitation P product Related to the generation of runoff and P related to orographic gradients

(e.g. coastal areas).
8 Mean annual air temperature CR2MET Indicator of snow processes in cold environments. It is also related to aridity

and consequently to the evaporative demand.
9 Mean annual potential evap-

oration
Computed from
CR2MET

A measure of the atmospheric water demand (especially at the annual tem-
poral scale).

10 Aridity index CR2MET and
P product

Represents the competition between energy and water availability.

11 Daily temperature range CR2MET Monthly mean difference between daily maximum and minimum T . Re-
lated to variations in the diurnal cycle and evaporative demands.

12 Simple precipitation inten-
sity index

P product Relation of annual P to the number of wet days (P > 1 mm). Serves as a
proxy for seasonality and intensity of P events.

13 Maximum consecutive 5 d
precipitation

P product Related to extreme P events.

Scornet, 2016). Previous studies have shown that RF can deal
with several covariates as well as non-informative predictors
because it does not lead to overfitting or biased estimates
(Díaz-Uriarte and Alvarez de Andrés, 2006; Biau and Scor-
net, 2016; Hengl et al., 2018), which is why it has been used
for numerous hydrological applications (Saadi et al., 2019;
Baez-Villanueva et al., 2020; Beck et al., 2020b; Zhang et al.,
2021). For a more detailed description of RF, we refer the
reader to Prasad et al. (2006), Biau and Scornet (2016), and
Addor et al. (2018).

For this study, we developed one RF model for each TUW-
model parameter, using all 13 independent catchment char-
acteristics listed in Table 4 as covariates. Our experimental
setup used an ensemble of 2000 regression trees, a mini-
mum of five terminal nodes for each model, and p/3 vari-
ables randomly sampled as candidates at each split, where p
represents the number of predictors. The trained RF models
were then used to predict parameter values in the pseudo-
ungauged catchments.

3.5 Influence of nested catchments

To evaluate the influence of nested catchments on the per-
formance of the three regionalisation methods, we repeated
the three regionalisation methods for each target catchment,

with catchments considered to be nested (in relation to the
pseudo-ungauged catchment) excluded from the set of po-
tential donor catchments. Following Neri et al. (2020), we
used a cut-off point of 10 % of drainage area, meaning that
only catchments that cover more than 10 % of the area of the
parent catchment were considered to be nested.

3.6 Influence of donor catchments for feature
similarity

To evaluate the influence of the number of donors used
in feature similarity, we repeated the process followed in
Sect. 3.4.2 to assess the performance of this regionalisation
method when 1, 2, 4, 6, 8, and 10 donor catchments are se-
lected. This analysis evaluates the impact of averaging vary-
ing numbers of simulations compared to the results that are
based on only the most similar catchment.

We performed all analyses using the R Project of Statis-
tical Computing (R Core Team, 2020). In addition to the R
packages described in the methodology, we used the hydro-
GOF (Zambrano-Bigiarini, 2020a), hydroTSM (Zambrano-
Bigiarini, 2020b), lfstat (Koffler et al., 2016), raster (Hij-
mans, 2020), rasterVis (Perpiñán and Hijmans, 2020), rgdal
(Bivand et al., 2020), and rgeos (Bivand and Rundel, 2020)
packages.
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4 Results

4.1 Performance of P products

4.1.1 Calibration and verification

Figure 4 shows the performance of the TUWmodel dur-
ing calibration (2000–2014) and the two verification pe-
riods (1990–1999 and 2015–2018), prior to any region-
alisation procedure. CR2MET provided the best perfor-
mance for all evaluated periods, with median KGE′s of
0.84, 0.76, and 0.66, for calibration, Verification 1 (1990–
1999, near-normal/wet), and Verification 2 (2015–2018, dry),
respectively, followed closely by RF-MEP. Surprisingly,
MSWEPv2.8 provided the poorest performance for calibra-
tion and Verification 1. For all P products, the lowest per-
formances were obtained during the (dry) Verification 2 pe-
riod, emphasising the challenges of estimatingQ in dry con-
ditions, as discussed by Maggioni et al. (2013) and Beck
et al. (2016). Despite the substantial variations between P
products (see Sect. 3.1.1), the TUWmodel performed well
for all P products in the calibration, Verification 1, and Ver-
ification 2 periods, with median KGE′ values greater than
0.77, 0.71, and 0.62, respectively. The calibrated model pa-
rameters lay well within the selected parameter ranges in the
large majority of the cases (see Fig. S8 of the Supplement). In
other words, the selected parameter ranges were wide enough
so that calibrated parameter values were not concentrated at
their lower or upper limits.

Figure 5 shows the performance of the TUWmodel dur-
ing calibration, Verification 1, and Verification 2 per hy-
drological regime (see Fig. 1d). The TUWmodel performed
better over the pluvio-nival catchments, with median KGE′

values above 0.77, 0.76, and 0.69 for calibration, Verifica-
tion 1, and Verification 2, respectively. During the calibra-
tion period, there was no clear second best regime. For in-
stance, the snow-dominated catchments presented slightly
higher median KGE′ values but a more pronounced disper-
sion, while the pluvio-nival and rain-dominated catchments
presented lower dispersion but reduced median values. The
snow-dominated catchments presented a more pronounced
decrease from calibration (median KGE′ > 0.85) to both ver-
ification periods (> 0.55 and 0.23 for Verification 1 and Veri-
fication 2, respectively). During both verification periods, the
rain-dominated catchments presented the highest dispersion
increases in both verification periods compared to calibra-
tion.

Over the snow-dominated catchments, ERA5 performed
the worst as it presented the highest dispersion and the low-
est median KGE′ values during Verification 1 (0.55) and Ver-
ification 2 (0.25), despite having the highest median KGE′

during calibration (0.87). RF-MEP performed the best dur-
ing Verification 1 (0.68), while MSWEPv2.8 performed the
best during the dry Verification 2 period (median KGE′ of
0.60). CR2MET performed the best over the nivo-pluvial

catchments, with median KGE′ values above 0.64, while RF-
MEP performed relatively worse for both verification peri-
ods, with median KGE′ values above 0.48 and a larger dis-
persion than the other products, despite having a similar me-
dian KGE′ (0.62) in Verification 1 to ERA5 and MSWEPv2.8
(0.61, and 0.60, respectively). Over the pluvio-nival catch-
ments, all products showed a relatively good performance,
with CR2MET being the best P product in calibration and
Verification 1 (median KGE′s of 0.87 and 0.84, respectively),
while ERA5 performed the best during Verification 2 (me-
dian KGE′ of 0.78). RF-MEP performed the best over the
rain-dominated catchments in calibration and Verification 1,
with median KGE′ values of 0.84 and 0.77, respectively,
while ERA5 performed the worst (median KGE′ values of
0.69 and 0.70). Finally, CR2MET performed the best in Ver-
ification 2 (median KGE′ of 0.72), followed by MSWEPv2.8
(median KGE′ of 0.69).

4.1.2 Performance during regionalisation

Figure 6 summarises the leave-one-out cross-validation re-
sults obtained from the application of three regionalisation
methods, for each P product. The results are displayed for
the calibration (2000–2014; panel a), Verification 1 (1990–
1999; panel b), and Verification 2 (2015–2018; panel c) peri-
ods. Overall, the median performance of all P products was
the best for feature similarity, with median KGE′ values be-
tween 0.44–0.62 for all periods, followed by spatial prox-
imity (0.39–0.55) and parameter regression (−0.12–0.51).
In addition to exhibiting a considerably lower overall per-
formance, parameter regression returned a larger spread in
KGE′s for all periods.

The overall performances obtained for feature similarity
and spatial proximity are relatively close for different P
products over each period (Fig. 6). For feature similarity,
all P products generate acceptable KGE′ results (median
KGE′ > 0.54) during the calibration and Verification 1 pe-
riods, while the median KGE′ values during the dry Verifi-
cation 2 period lowered to a median KGE′ of > 0.44. The
best model performance for feature similarity was obtained
by CR2MET, with median KGE′ values of 0.62 for calibra-
tion and Verification 1 and 0.53 for Verification 2, followed
closely by RF-MEP for calibration (0.59), ERA5 for Verifi-
cation 1 (0.59), and MSWEPv2.8 for Verification 2 (0.52).
In the case of spatial proximity, MSWEPv2.8 yielded the
best performance in the calibration period (0.55), followed
closely by RF-MEP (0.56 but with a higher dispersion), and
CR2MET (0.53). For Verification 1, RF-MEP provided the
best performance (0.54), while MSWEPv2.8 produced the
best results over Verification 2 (0.48). For spatial proximity,
ERA5 performed the worst over the three evaluated periods.
Finally, parameter regression yielded the lowest results, with
CR2MET and ERA5 showing the highest median KGE′ val-
ues (> 0.42 for calibration and Verification 1 and > 0.22 for
Verification 2).
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Figure 4. Performance of the TUWmodel during the calibration (2000–2014), Verification 1 (1990–1999), and Verification 2 (2015–2018),
prior to any regionalisation, using the modified Kling–Gupta efficiency (KGE′). The solid line represents the median value, the edges of the
boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the
interquartile range from the box. The blue line indicates the optimal value for the KGE′.

Figure 5. Performance of TUWmodel during calibration (2000–2014), Verification 1 (1990–1999), and Verification 2 (2015–2018), prior
to any regionalisation, over catchments with different hydrological regimes: (a) snow-dominated, (b) nivo-pluvial, (c) pluvio-nival, and
(d) rain-dominated.

For each regionalisation technique, Fig. 7 summarises the
spatial distribution of the performance of each P product
for the calibration, Verification 1, and Verification 2 periods.
The spatial patterns obtained for all regionalisation meth-
ods were similar, independent of the P product or the eval-

uated period, except for parameter regression, which yielded
poor results over high-elevation catchments and under dry
conditions (Verification 2). These results indicate that spatial
proximity and feature similarity present very similar spatial
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Figure 6. Leave-one-out cross-validation results for the three regionalisation methods applied with different P products during the (a) cali-
bration (2000–2014), (b) Verification 1 (1990–1999), and (c) Verification 2 (2015–2018) periods.

performance patterns, with feature similarity yielding higher
KGE′ values over the three evaluated periods.

All P products performed better in the Central Chile and
South regions than in the Far North, Near North, and Far
South regions. The low performance of regionalisation in
the arid north is very likely due to the convective nature of
storms occurring in the highlands of the Chilean Altiplano
(elevations above 4000 m a.s.l.) and the low density ofQ sta-
tions over this area. Despite this general low performance,
RF-MEP was the best-performing P product over the Far
North region for both spatial proximity (median KGE′ of
0.28) and feature similarity (median KGE′ of 0.46) in the
calibration period, suggesting that merging P products and
ground-based observations helps to improve, to some extent,
the performance of hydrological modelling across arid re-
gions. Conversely, all products outperformed RF-MEP over
the Far South. Figure 7 also highlights that spatial proximity
provides the best performance over the Far South, with me-
dian KGE′ values higher than 0.46, 0.27, 0.30, and 0.35 for
CR2MET, RF-MEP, ERA5, and MSWEPv2.8, respectively.
The systematic lower performance of feature similarity com-
pared to spatial proximity over the Far South (except for the
case of ERA5) could be attributed to (i) the lack of catchment
characteristics that represent the hydrological behaviour of
this complex area dominated by polar and temperate climates
and (ii) the low number of potential donor catchments (11
for latitudes > 49◦ S), combined with their varied hydrolog-
ical regimes. For the most southern catchments, the high-
est P intensities occur during March–May, while the lowest

P occurs between June–August, which differs from catch-
ments throughout the rest of the country (Alvarez-Garreton
et al., 2018, their Fig. 9). This may affect the hydrological
simulations when model parameters from catchments located
< 49◦ S are transferred to these far southern catchments.

4.2 Evaluation of regionalisation techniques

4.2.1 Overall performance

For each P product, Fig. 8 compares the performances of the
three regionalisation techniques with those obtained in the
independent calibration and verification periods. The inde-
pendent calibration of each catchment represents the highest
model performance that can be obtained for a specific combi-
nation of hydrological model, objective function, and catch-
ment (i.e. an absolute benchmark), whereas the two verifica-
tion periods were used to evaluate the performance of the re-
gionalisation techniques over independent time periods (i.e.
as verification benchmarks). There are marked differences in
performance according to the P product used to force the
TUWmodel, regardless of the regionalisation method and
the evaluated period. For example, ERA5 has more disper-
sion in the KGE′ values compared to other products for the
cases of feature similarity and spatial proximity, while for
parameter regression, it tends to perform the best. For all
P products and evaluation periods, feature similarity per-
formed the best, followed by spatial proximity and param-
eter regression, which is consistent with results from multi-
ple studies (e.g. Parajka et al., 2005; Oudin et al., 2008; Bao
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Figure 7. Spatial performance of the leave-one-out cross-validation results for the three regionalisation methods according to P products
used to force TUWmodel. Results are presented for the (a) calibration (2000–2014), (b) Verification 1 (1990–1999), and (c) Verification 2
(2015–2018) periods. The panels beneath the map plots refer to the ECDFs of the corresponding regionalisation technique for the entire
period of analysis (1990–2018) and P products (black) against the performances during the independent calibration (green), Verification 1
(blue), and Verification 2 (red) periods.

et al., 2012; Garambois et al., 2015; Neri et al., 2020). Param-
eter regression had both the lowest median KGE′s as well as
the largest spread. Comparing the two verification periods,
results obtained during the (near-normal/wet) Verification 1
period were close to those obtained during calibration, while
those obtained during the (dry) Verification 2 period were

substantially lower, especially for spatial proximity and pa-
rameter regression.

These results are in agreement with the lower panels lo-
cated below each map in Fig. 7, which show the empiri-
cal cumulative distribution functions (ECDFs) of the perfor-
mance of each regionalisation technique during the complete
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period of analysis (1990–2018). These ECDFs compare the
relative performance of each regionalisation method against
those obtained from the independent calibration and verifica-
tion of each catchment (used as benchmarks). As expected,
all regionalisation methods presented a lower performance
than the independent calibration and verification, with this
reduction more pronounced for parameter regression.

4.2.2 Impact of hydrological regimes

Figure 9 shows the performance of the regionalisation tech-
niques according to hydrological regime for all P products
during the calibration period (and Figs. S9 and S10 of the
Supplement show the same for the two verification periods).
Feature similarity provided the best median performance for
all hydrological regimes and P products except for snow-
dominated catchments, where spatial proximity performed
the best for MSWEPv2.8 for calibration and Verification 2.
These results demonstrate that there was no single P prod-
uct that outperformed the others for all regionalisation tech-
niques and hydrological regimes. In other words, the best-
performing P product depends on the hydrological regime
and chosen regionalisation method for our case study. For
feature similarity in snow-dominated catchments, RF-MEP
performed the best for calibration and Verification 1, while
CR2MET performed the best during Verification 2. For nivo-
pluvial catchments, CR2MET provided the best performance
during calibration and Verification 1, while MSWEPv2.8
performed the best during Verification 2. CR2MET and
ERA5 performed the best in pluvio-nival catchments for the
case of feature similarity, while all products performed simi-
larly for spatial proximity. Finally, ERA5 performed the best
for feature similarity in all periods across the rain-dominated
catchments.

4.3 Impact of nested catchments

We evaluated the influence of the nested catchments on the
regionalisation results. Figure 10 shows the performance of
the three regionalisation methods for the subset of 56 nested
catchments that share a common area with at least one other
catchment (i.e. the 42 nested catchments as well as all cor-
responding parent catchments). Here, we compare the re-
gionalisation performance using all potential donors (dark
colours) with the performance when excluding nested catch-
ments as potential donors (light colours). The order of per-
formance of the regionalisation methods and P products did
not vary when the nested catchments were excluded, as fea-
ture similarity and CR2MET remained the best-performing
method and product, respectively. As expected, the region-
alisation technique with the largest reduction in perfor-
mance when excluding nested catchments was spatial prox-
imity, followed closely by feature similarity. All P products
showed a slight performance reduction and increased disper-
sion for spatial proximity, except for MSWEPv2.8, which

showed a slight increase in the KGE′ median value. Feature
similarity showed a slight reduction in performance when the
nested catchments were excluded; however, the median val-
ues remained almost the same. The change in performance
of parameter regression was negligible after the exclusion of
nested catchments because, in the particular case of Chile,
excluding only a few catchments had a negligible effect on
the non-linear relationships between model parameters and
the selected climatic and physiographic characteristics (see
Table 4).

4.4 Impact of the number of donors in feature
similarity

Figure 11 shows the performance of feature similarity dur-
ing the calibration and both verification periods when vary-
ing the number of donors used to transfer model parame-
ters to ungauged catchments (see Sect. 3.6). In general, the
highest median performance is obtained when using four or
more donor catchments. However, the application of a t test
demonstrated that the improvement in the KGE′ values ob-
tained when increasing to more than one donor was not sta-
tistically significant. The results show that the performance
varies according to the P product and selected period of anal-
ysis. For the calibration period, feature similarity produced
similar median values to those obtained with spatial prox-
imity when one donor was used, while the performance im-
proved as more donors were included. For both verification
periods, feature similarity (median KGE′ values from 0.44
to 0.64) outperformed spatial proximity (median KGE′ val-
ues ranging from 0.39 to 0.54). For all three periods, feature
similarity provided better performance considering the dis-
tribution of the KGE′ values.

5 Discussion

5.1 Performance of P products

During the independent catchment calibration (2000–2014)
and two verification periods (1990–1999 and 2015–2018),
good performances were obtained with all P products (see
Fig. 4). When decomposing the results of the KGE′ objec-
tive function into its three components (see Appendix C),
r exhibited the lowest performance, while β and γ values
were generally closer to their optimal values, particularly
for calibration and Verification 1. The results obtained with
ERA5, which is a reanalysis product, were as good or even
better than those obtained with the gauge-corrected prod-
ucts CR2MET, RF-MEP, and MSWEPv2.8 (e.g. see results
for the pluvio-nival catchments in Fig. 5). This is in agree-
ment with Tarek et al. (2020), who concluded that ERA5
should be considered a high-potential dataset for hydrolog-
ical modelling in data-scarce regions. The good performance
of ERA5 suggests that, for the particular case of Chile, merg-
ing P products with ground-based measurements does not
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Figure 8. Performance of the regionalisation methods during the (a) calibration (2000–2014), (b) Verification 1 (1990–1999), and (c) Veri-
fication 2 (2015–2018) periods.

necessarily translate into improved hydrological model per-
formance, which may be attributed to (i) the lack of P rain
gauges in the Andes Mountains; (ii) the ability of the rainfall-
runoff model to compensate for the P forcing (visible in the
performances of the β and γ components, Appendix C), and
(iii) the fact that P products still have errors in the detection
of P events that could impact the representation of the mod-
elled Q dynamics (as suggested by the relative lower perfor-
mance of the r component of the KGE′).

Furthermore, the similar performances obtained with un-
corrected (ERA5) and gauge-corrected (CR2MET, RF-MEP,
and MSWEPv2.8) P products, both in wet and dry periods,
highlight that there was no single P dataset outperforming
the others in all periods. These results demonstrate that the
calibration of hydrological model parameters smooths out,
to some extent, the spatio-temporal differences between P
products (see Figs. 2, 3, 6 and 9), which is in agreement
with previous studies that have demonstrated that model cal-
ibration with each P product improves the performance of
Q simulations (e.g. Artan et al., 2007; Stisen and Sandholt,
2010; Bitew et al., 2012; Thiemig et al., 2013). The decom-
position of the KGE′ into its components also demonstrated
the ability of the TUWmodel to compensate for the total vol-
ume of P , as the β component was close to the optimum
value, particularly for calibration and Verification 1 (see Ap-
pendix C), which can be attributed to the improved detec-
tion of P events of the merged products (regarding RF-MEP,

see Baez-Villanueva et al., 2020). This can also be observed
for MSWEPv2.8, as it produced the best performance over
snow-dominated catchments under dry conditions (Verifica-
tion 2).

Regarding the suitability of P products for parameter re-
gionalisation, RF-MEP provided slightly better results in the
Far North for the calibration period using both spatial prox-
imity and feature similarity, suggesting that P products that
are merged with ground-based information over arid cli-
mates can improve regionalisation performance. The lower
performance obtained in regionalisation with ERA5 in the
Far North compared to the other P products (median val-
ues < 0.18 for feature similarity in all periods) can be at-
tributed to its high P values, which are likely due to the
lack of ground-based P stations over Chile in the develop-
ment of the product. The incorporation of ground-based sta-
tions has the potential to (i) compensate for overestimations
caused by the evaporation of hydrometeors before they reach
the ground (Maggioni and Massari, 2018) and (ii) improve
event-based detection skills (Baez-Villanueva et al., 2020;
Zhang et al., 2021). The latter is evident in CR2MET and
MSWEPv2.8, which are both based on ERA5 but included
several rain gauges in the Far North and have a higher per-
formance than ERA5 (see Figs. 2, 3, and S1).

Despite the low performance of all P products in the Far
North and Near North (median KGE′ values < 0.58; see
Fig. 7), the TUWmodel appears to be flexible enough to com-
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Figure 9. Performance of regionalisation methods for calibration (2000–2014) according to the hydrological regime: (a) snow-dominated,
(b) nivo-pluvial, (c) pluvio-nival, and (d) rain-dominated. N denotes the number of catchments per hydrological regime.

Figure 10. Comparison of regionalisation performance using all catchments as potential donors (dark colours) against the performance when
nested catchments are excluded as potential donors (light colours).

pensate, to some extent, for differences between P products.
A similar conclusion was obtained by Elsner et al. (2014),
who examined differences between four meteorological forc-
ing datasets and their implications in hydrological model cal-
ibration in the western United States using the variable infil-
tration capacity model (VIC; Liang et al., 1994). Our results

are also in agreement with Bisselink et al. (2016), who con-
cluded that parameter sets obtained during calibration par-
tially compensated for the bias of seven P products used to
force the fully distributed LISFLOOD model in four catch-
ments in southern Africa.
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Figure 11. Influence of the number of donors used for feature simi-
larity for calibration (2000–2014), Verification 1 (1990–1999), and
Verification 2 (2015–2018). The results from spatial proximity are
included on the right of each panel for comparison purposes. The
dark yellow box denotes the upper and lower bounds of the median
performance (of the four P products) obtained with spatial proxim-
ity, the lighter yellow box represents the upper and lower bounds
of the interquartile range for spatial proximity, and the blue lines
represent the optimum KGE′ value.

An unexpected result from this study is that the spatial res-
olution of the P products did not play a major role in model
performance during calibration, verification and regionalisa-
tion; although CR2MET and RF-MEP have a higher spa-
tial resolution (0.05◦;∼ 25 km2) than MSWEPv2.8 (∼ 0.10◦;
∼ 100 km2) and ERA5 (∼ 0.28◦; ∼ 625 km2), all four prod-
ucts performed well during the independent calibration of
the hydrological model and the two verification periods.
The performance of ERA5 over the 25 smallest catchments
during regionalisation (area < 353.1 km2) was similar to
that obtained with products with a higher spatial resolution
(Fig. S11 of the Supplement). This can be attributed to the
fact that Chile is dominated by large-scale frontal systems
(Zhang and Wang, 2021); and therefore, coarse-resolution
products may perform well over small catchments. Our re-
sults also align with the findings of Maggioni et al. (2013),

who concluded that the loss of spatial information associated
with coarser resolution (e.g. ERA5) can be compensated for
through model calibration.

5.2 How does the calibration of the TUWmodel
compensate for differences in P ?

The calibration of TUWmodel was able to compensate, to
some extent, for differences in annual and intra-annual P
amounts, intermittency, and extremes (see Figs. 2 and 3)
among the four products. Using the example of the nivo-
pluvial catchments, Fig. 12 illustrates how TUWmodel pa-
rameters compensate for differences between the P forc-
ings used in calibration, while Fig. 13 shows the correspond-
ing variations in the mean monthly water balance compo-
nents. Similar figures for snow-dominated, pluvio-nival, and
rain-dominated catchments can be found in the Supplement
(Figs. S12–S17).

In general, the calibrated parameters behave as expected
for each hydrological regime. A notable exception is ERA5,
which shows low values for the snow correction factor (SCF)
in nivo-pluvial and snow-dominated catchments (Figs. 12
and S12). These catchments are primarily located in the arid
Near North region (see Fig. 2 and Figure S15), where the
estimated winter P is substantially lower for CR2MET, RF-
MEP, and MSWEPv2.8, and a high SCF corrects this appar-
ent underestimation. The lower P amounts presented in these
products may reflect the incorporation of information from
rain gauges located in drier, low-lying areas to correct their
P estimates (see Fig. S1).

ERA5 presented relatively low SCF values over nivo-
pluvial catchments compared to the other P products
(Fig. 13), which is expected because it exhibits the highest
P values. Conversely, because RF-MEP has the lowest mean
monthly P over the nivo-pluvial catchments, the model ad-
justs the evaporation, snow water equivalent, and soil mois-
ture components (Fig. 13), thus increasing the simulated Q
(to match the observed Q). Substantial differences were ob-
tained for LPrat and field capacity (FC), which directly af-
fect evaporation and soil moisture. For example, over the
nivo-pluvial catchments, the LPrat and FC values for RF-
MEP are similar to those of ERA5, despite RF-MEP hav-
ing substantially lower P amounts, which in turn is reflected
in the reduced soil moisture and evaporation amounts. The
differences between LPrat and FC according to P product
are even more pronounced for snow-dominated catchments
(Fig. S12).

Finally, higher values of the nonlinear parameter for runoff
production Beta reduce the amount of water that leaves the
catchment as runoff (Széles et al., 2020, their Eq. 7). For all
hydrological regimes except pluvio-nival, the median Beta
parameter is substantially higher for ERA5 than for the other
P products. The larger Beta values obtained with ERA5
are expected to attenuate the runoff generation from ex-
treme P events (see Fig. 3c and d). Interestingly, the Beta
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parameter is zero in some pluvio-nival catchments, which
means that all liquid P and snowmelt was used to gener-
ate runoff (Fig. S16). This behaviour was more pronounced
with RF-MEP and MSWEPv2.8, which exhibited the lowest
P amounts and longer dry spells (Fig. 3a) over these catch-
ments. In general, the storage components obtained from
each P product (computed as the sum of the two deepest
reservoirs of the model; see Széles et al., 2020, their Fig. 3)
are similar for all four P products.

5.3 Evaluation of regionalisation techniques

The compensation due to the flexibility of the TUWmodel
observed during the independent calibration and verifica-
tion (see Sect. 5.2) also influences the regionalisation per-
formance. Feature similarity provided the best performance
when the TUWmodel was forced with all P products (Fig. 8),
while spatial proximity provided similar performance to fea-
ture similarity over the Central Chile and South regions,
where there is a high density of Q stations. These results are
in agreement with Parajka et al. (2005), Oudin et al. (2008),
and Neri et al. (2020), who demonstrated that spatial prox-
imity performs well over densely gauged regions.

The inclusion of donor catchments with low model per-
formance introduces a diversity that has the potential to ben-
efit Q prediction in ungauged catchments, as discussed by
Oudin et al. (2008). We decided to incorporate these catch-
ments in the regionalisation process because of the diversity
of climates and physiographic characteristics across conti-
nental Chile (see Fig. 1), with the potential downside that this
may lead to errors in the transferred model parameters. Ad-
ditionally, the similarity between the performance of spatial
proximity and feature similarity can be partially attributed
to the fact that six of the nine selected catchment charac-
teristics are directly or indirectly related to climate, which
in Chile is highly related to the geographical locations of
the catchments. Parameter regression was the regionalisation
method that provided the worst results (Figs. 6 and 8); how-
ever, Fig. 7 shows that this method generated good results
over low-elevated areas of the Central Chile and South re-
gions, where there are many potential donor catchments lo-
cated nearby.

The compensation for P differences obtained through
model calibration also affected the relative performance of
regionalisation techniques, producing unrealistic parameter
sets in some donor catchments. In particular, such com-
pensation may have impacted the spatial transferability of
model parameters with the parameter regression method. The
main reason for this is that, unlike techniques that trans-
fer the entire parameter sets, the regression process dena-
tures the already uncertain model parameters by applying in-
dependent regression procedures using climate and physio-
graphic characteristics (Arsenault and Brissette, 2014). This
challenge can be overcome by simultaneously optimising
both the model parameters and the regression equations (e.g.

Samaniego et al., 2010; Rakovec et al., 2016; Beck et al.,
2020a), but such an exercise is outside of the scope of this
study.

For both spatial proximity and feature similarity, the best
and worst results were obtained for pluvio-nival catchments
and rain-dominated catchments, respectively. Figure 9 shows
the performances of the three regionalisation techniques ac-
cording to hydrological regimes (see Fig. 1d) for the calibra-
tion period. Comparing Figs. 5 and 9, it is evident that the
snow-dominated catchments performed substantially worse
than in the independent performance during the same period
(Fig. 5). On the other hand, the pluvio-nival catchments per-
formed systematically better in the independent calibration
and verification as well as in regionalisation. This could be
attributed to (i) the ability of the model to reproduce Q in
this regime and (ii) the increased likelihood of transferring
model parameters from a catchment with the same hydro-
logical regime, as they are grouped closed together and form
40 % of the total number of catchments.

5.4 Impact of nested catchments

Nested catchments play an important role in the performance
of regionalisation methods as they are more likely to have
a strong climatological and physiological similarity to each
other. As observed in Fig. 10, the regionalisation method that
was most impacted by the exclusion of nested catchments
was spatial proximity, followed by feature similarity. These
results are in agreement with previous studies, where the
exclusion of nested catchments reduced the performance of
regionalisation techniques (Merz and Blöschl, 2004; Oudin
et al., 2008; Neri et al., 2020). Feature similarity only pre-
sented a slight decrease when the nested catchments were ne-
glected, which can be attributed to the low degree of nested-
ness (i.e. the number of catchments that are nested in a larger
one). As expected, the exclusion of nested catchments had a
negligible effect on parameter regression, as the removal of
relatively few catchments had a negligible impact on the non-
linear relationships between the climatic and physiographic
characteristics and the model parameters that were deter-
mined using all potential donor catchments. The reduction
of regionalisation performance when the nested catchments
were removed was lower than the reduction reported in a case
study over Austria (Neri et al., 2020, their Figure 9a), which
could be attributed to (i) the degree of nestedness, as the
unique geography of Chile limits, to some extent, the number
of nested catchments within any larger catchment (only 10 of
the 100 selected catchments contained more than three nested
catchments); and (ii) the percentage of catchments that are
nested (42 % in this study, compared to 65 % in the Austrian
case study).
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Figure 12. Model parameters obtained through calibration in nivo-pluvial catchments. The vertical blue lines indicate the upper and lower
limits of the parameter ranges.

5.5 Impact of number of donor catchments

Increasing the number of donor catchments in feature sim-
ilarity improved the regionalisation performance. This is in
agreement with several studies that have demonstrated that
using an ensemble of multiple donor catchments improves
regionalisation results (McIntyre et al., 2005; Zelelew and
Alfredsen, 2014; Garambois et al., 2015; Beck et al., 2016;
Neri et al., 2020). Figure 11 shows that there is a slight in-
crease in performance when four donors or more are used,
independent of the P product and evaluated period. These
results are similar to those of Neri et al. (2020), who deter-
mined that three donors were optimal for the TUWmodel
over Austrian catchments. Feature similarity still outper-
formed spatial proximity when only one catchment was used
to transfer the model parameters to the ungauged catchments,
which is in agreement with multiple studies that have shown
the ability of this method to produce good regionalisation
results (Parajka et al., 2005; Oudin et al., 2008; Bao et al.,
2012; Garambois et al., 2015; Neri et al., 2020).

6 Conclusion

Accurate streamflow predictions in ungauged catchments are
critical for water resources management, and their gener-
ation is challenged by uncertainties arising from P prod-
ucts. In this paper, we assessed the relative performance of

three common regionalisation techniques (spatial proxim-
ity, feature similarity, and parameter regression) over 100
near-natural catchments located in the topographically and
climatologically diverse Chilean territory. Four P products
(CR2MET, RF-MEP, ERA5, and MSWEPv2.8) were used to
force the semi-distributed TUWmodel at the daily timescale,
using the KGE′ as the calibration objective function and met-
ric to assess (i) the impact of selecting different P forcings
on the relative performance of regionalisation techniques
and (ii) possible connections between regionalisation perfor-
mance and hydrological regimes. Our key findings are as fol-
lows:

1. For the selected P products, the one that provided the
best (worst) performance during independent calibra-
tion and verification did not necessarily yield the best
(worst) results during regionalisation.

2. The P products corrected with daily ground-based mea-
surements did not necessarily yield the best hydrolog-
ical model performance. However, we expect that P
products with lower performances than the ones used
in this study might benefit from such a correction.

3. The spatial resolution of the P products did not notice-
ably affect model performance during the calibration
and verification periods.
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Figure 13. Mean monthly water balance components over nivo-pluvial catchments, obtained by forcing the TUW model with different P
products for the (a) calibration (2000–2014), (b) Verification 1 (1990–1999), and (c) Verification 2 (2015–2018) periods. Mean monthly P
was added for comparison purposes.
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4. The TUWmodel was able to compensate, to some ex-
tent, the differences between P products through model
calibration by adjusting the model parameters and,
therefore, adjusting the water balance components (e.g.
snow water equivalent, evaporation, and soil moisture).

5. Feature similarity was the best-performing regionalisa-
tion technique, regardless of the choice of gridded P
product or hydrological regime.

6. Spatial proximity was the second best-performing re-
gionalisation method because, in our study area, spa-
tial proximity is a good proxy for climatic similarity for
most neighbouring catchments.

7. Parameter regression provided the worst regionalisation
performance, reinforcing the importance of transferring
complete parameter sets to ungauged catchments.

8. The performance of regionalisation techniques can de-
pend on the hydrological regime. We obtained the best
results in pluvio-nival catchments with spatial proxim-
ity and feature similarity, while the same techniques
provided the worst performance in rain-dominated
catchments.

9. The exclusion of (relatively few) nested catchments
had a minimal impact on the non-linear relationships
between the climatic and physiographic characteristics
(i.e. predictors) and model parameters (i.e. predictands),
having a negligible effect on parameter regression re-
sults.

10. The performance of feature similarity increased when
four or more catchments were used as donors; however,
the differences in performance were not statistically sig-
nificant when compared to the results of using only one
donor.

The results presented here are valid only for near-natural
catchments across continental Chile. Nevertheless, they pro-
vide guidance for ongoing and future studies involving the
application of gridded P products for regionalising hydro-
logical model parameters in ungauged basins. The feature
similarity procedure described here could be used to refine
the parameter regionalisation approach adopted for national-
scale hydrological characterisations in Chile (e.g. Bambach
et al., 2018; Lagos et al., 2019). Additionally, further analy-
ses could address (i) the effects that objective functions may
have on the simulation of streamflow-derived hydrological
signatures (e.g. Pool et al., 2017); (ii) other states and fluxes
derived from remote sensing data (e.g. Dembélé et al., 2020);
(iii) the influence of parameter equifinality (mainly for pa-
rameter regression), which can be accounted for by simulta-
neously optimising the model parameters and the regression
equations, as described in Beck et al. (2020a); (iv) the use
of additional model structures, implemented through flexible

modelling platforms (e.g. Clark et al., 2008; Knoben et al.,
2019); and (v) the sensitivity of regionalisation results with
respect to modified climate scenarios.
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Appendix A: Conceptual figure of hydrological regimes

Figure A1. Conceptual illustration of the hydrological regimes used to classify the 100 near-natural catchments used in this study.

Appendix B: Selection of catchment characteristics for
feature similarity

To avoid including redundant information when quantify-
ing catchment similarity, we examined the correlations be-
tween the catchment characteristics described in Table 4. Fig-
ure B1 shows correlation matrices between catchment char-
acteristics using the Pearson correlation (a) and the Spear-
man rank (b) correlation coefficients. We only present cor-
relations obtained with CR2MET, since very similar results
were obtained with the remaining P products. Because the
mean and median elevation are highly correlated (values of
1.0 and 0.99 for the Pearson and Spearman correlation co-
efficients, respectively), we decided to keep the median ele-
vation under the assumption that it is more representative of
topographic conditions, given the pronounced elevation gra-
dients in continental Chile. Similarly, mean annual PE was
excluded because of its high correlation with mean annual T
(0.87 and 0.86 for the Pearson and Spearman correlation co-
efficients, respectively), notwithstanding that T was used to
calculate PE. SDII was also excluded due to its high corre-
lation to the Rx5day (0.97 for both coefficients). Finally, we
excluded the snow cover from CAMELS-CL, as we found
it to be unreliable over the snow-dominated catchments se-
lected in our analysis.
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Figure B1. Correlation matrices of the catchment characteristics described in Table 4 using CR2MET as the P product for (a) the Pearson
correlation, to evaluate linear correlation, and (b) the Spearman correlation, to evaluate the monotonic correlation.

Appendix C: Performance of the components of the
KGE′

Table C1. Quantiles 0.25 and 0.75 of the correlation coefficient (r) of the KGE′ over the selected catchments.

Pearson correlation (r) CR2MET RF-MEP ERA5 MSWEPv2.8

Calibration (cal.) 0.78–0.90 0.77–0.88 0.71–0.86 0.77–0.88
Verification 1 (Ver. 1) 0.74–0.88 0.72–0.87 0.67–0.87 0.69–0.86
Verification 2 (Ver. 2) 0.68–0.86 0.59–0.85 0.59–0.86 0.67–0.85

Spatial proximity (cal.) 0.70–0.87 0.68–0.84 0.57–0.82 0.66–0.84
Spatial proximity (Ver. 1) 0.66–0.86 0.63–0.84 0.61–0.84 0.62–0.84
Spatial proximity (Ver. 2) 0.61–0.83 0.51–0.82 0.56–0.83 0.59–0.82

Feature similarity (cal.) 0.74–0.89 0.71–0.88 0.69–0.85 0.72–0.88
Feature similarity (Ver. 1) 0.69–0.88 0.70–0.88 0.67–0.88 0.69–0.86
Feature similarity (Ver. 2) 0.64–0.87 0.59–0.85 0.64–0.87 0.65–0.84

Parameter regression (cal.) 0.54–0.80 0.54–0.69 0.60–0.82 0.42–0.63
Parameter regression (Ver. 1) 0.58–0.80 0.50–0.68 0.64–0.86 0.43–0.62
Parameter regression (Ver. 2) 0.50–0.79 0.43–0.65 0.59–0.84 0.37–0.57
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Table C2. Quantiles 0.25 and 0.75 of the bias ratio (β) of the KGE′ over the selected catchments.

Bias ratio (β) CR2MET RF-MEP ERA5 MSWEPv2.8

Calibration (cal.) 0.95–0.99 0.93–1.01 0.97–1.02 0.90–1.02
Verification 1 (Ver. 1) 0.89–1.03 0.84–1.02 0.90–1.12 0.77–1.04
Verification 2 (Ver. 2) 0.96–1.19 0.86–1.11 1.00–1.25 0.74–1.06

Spatial proximity (cal.) 0.73–1.09 0.70–1.15 0.74–1.22 0.70–1.13
Spatial proximity (Ver. 1) 0.72–1.12 0.70–1.12 0.72–1.22 0.69–1.08
Spatial proximity (Ver. 2) 0.73–1.30 0.73–1.23 0.77–1.46 0.68–1.14

Feature similarity (cal.) 0.81–1.19 0.78–1.29 0.81–1.35 0.68–1.3
Feature similarity (Ver. 1) 0.80–1.17 0.74–1.24 0.80–1.36 0.69–1.29
Feature similarity (Ver. 2) 0.86–1.40 0.77–1.40 0.86–1.57 0.69–1.27

Parameter regression (cal.) 0.99–2.04 0.89–1.72 0.76–1.78 0.82–3.07
Parameter regression (Ver. 1) 0.99–1.73 0.87–1.65 0.76–1.62 0.83–2.64
Parameter regression (Ver. 2) 1.10–2.05 0.90–1.83 0.88–1.94 0.83–2.54

Table C3. Quantiles 0.25 and 0.75 of the variability ratio (γ ) of the KGE′ over the selected catchments.

Variability ratio (γ ) CR2MET RF-MEP ERA5 MSWEPv2.8

Calibration (cal.) 0.97–1.00 0.95–1.00 0.95–1.01 0.96–1.01
Verification 1 (Ver. 1) 0.93–1.07 0.92–1.06 0.93–1.07 0.93–1.11
Verification 2 (Ver. 2) 0.92–1.13 0.91–1.17 0.91–1.12 0.79–1.05

Spatial proximity (cal.) 0.84–1.20 0.84–1.23 0.88–1.24 0.88–1.22
Spatial proximity (Ver. 1) 0.89–1.24 0.84–1.30 0.85–1.32 0.86–1.27
Spatial proximity (Ver. 2) 0.88–1.34 0.85–1.37 0.85–1.38 0.75–1.19

Feature similarity (cal.) 0.74–1.06 0.75–1.06 0.75–1.10 0.78–1.07
Feature similarity (Ver. 1) 0.79–1.04 0.76–1.06 0.77–1.07 0.81–1.03
Feature similarity (Ver. 2) 0.79–1.13 0.75–1.12 0.79–1.15 0.66–0.97

Parameter regression (cal.) 0.80–1.18 1.02–1.50 0.84–1.23 1.26–1.89
Parameter regression (Ver. 1) 0.82–1.20 1.02–1.35 0.87–1.25 1.27–1.69
Parameter regression (Ver. 2) 0.86–1.38 1.15–1.83 0.86–1.46 1.22–1.82
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Figure S1: Rain gauges that each merged product used to construct their P estimates over Chile.
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Figure S2: Comparison of P products over 2000–2014 (near-normal): a) mean annual P for each product resampled to a
0.05◦ spatial resolution using the nearest neighbour method. The dark red horizontal lines represent the limits of each major
macroclimatic zone; and b) mean monthly P averaged over each catchment located within each macroclimatic zone (see
Figure 1).

Figure S3: Comparison of P products over 1990–1999 (near-normal): a) mean annual P for each product resampled to a
0.05◦ spatial resolution using the nearest neighbour method. The dark red horizontal lines represent the limits of each major
macroclimatic zone; and b) mean monthly P averaged over each catchment located within each macroclimatic zone (see
Figure 1).
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Figure S4: Comparison of P products over 2015–2018 (dry): a) mean annual P for each product resampled to a 0.05◦ spatial
resolution using the nearest neighbour method. The dark red horizontal lines represent the limits of each major macroclimatic
zone; and b) mean monthly P averaged over each catchment located within each macroclimatic zone (see Figure 1).
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Figure S5: Median annual values of four Climdex indices over 2000–2014 (near-normal): a) number of consecutive dry days
(CDD); b) number of consecutive wet days (CWD); c) maximum P over five consecutive days (RX5day); and d) annual P
that is above the 95th percentile of P accumulated for events that are above the 95th percentile of the daily P for wet days
(R95pTOT). The dark red horizontal lines represent the limits of each macroclimatic zone.
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Figure S6: Median annual values of four Climdex indices over 1990–1999 (near-normal): a) number of consecutive dry days
(CDD); b) number of consecutive wet days (CWD); c) maximum P over five consecutive days (RX5day); and d) annual P
that is above the 95th percentile of P accumulated for events that are above the 95th percentile of the daily P for wet days
(R95pTOT). The dark red horizontal lines represent the limits of each macroclimatic zone.
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Figure S7: Median annual values of four Climdex indices over 2015–2018 (dry): a) number of consecutive dry days (CDD);
b) number of consecutive wet days (CWD); c) maximum P over five consecutive days (RX5day); and d) annual P that is above
the 95th percentile of P accumulated for events that are above the 95th percentile of the daily P for wet days (R95pTOT). The
dark red horizontal lines represent the limits of each macroclimatic zone.
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logical regime.
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Figure S10: Performance of regionalisation methods for Verification 2 (2015–2018) according to the hydrological regime:
a) snow-dominated; b) nivo-pluvial; c) pluvio-nival; and d) rain-dominated. N denotes the number of catchments per hydro-
logical regime.
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Figure S11: Regionalisation performance of the P products over the 25 smallest catchments (area < 353.1 km2).
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Figure S12: Model parameters obtained through calibration in snow-dominated catchments. The vertical blue lines indicate
the upper and lower limits of the parameter ranges.
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Figure S13: Model parameters obtained through calibration in pluvio-nival catchments. The vertical blue lines indicate the
upper and lower limits of the parameter ranges.
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Figure S14: Model parameters obtained through calibration in rain-dominated catchments. The vertical blue lines indicate the
upper and lower limits of the parameter ranges.

11

APPENDIX C.

171



a) b) c)

Figure S15: Mean monthly water balance components over snow-dominated catchments, obtained by forcing the TUW model
with different P products for the: a) calibration (2000–2014); b) Verification 1 (1990–1999); and c) Verification 2 (2015–2018)
periods. The mean monthly P was added for comparison purposes.
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a) b) c)

Figure S16: Mean monthly water balance components over pluvio-nival catchments, obtained by forcing the TUW model with
different P products for the: a) calibration (2000–2014); b) Verification 1 (1990–1999); and c) Verification 2 (2015–2018)
periods. The mean monthly P was added for comparison purposes.
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a) b) c)

Figure S17: Mean monthly water balance components over rain-dominated catchments, obtained by forcing the TUW model
with different P products for the: a) calibration (2000–2014); b) Verification 1 (1990–1999); and c) Verification 2 (2015–2018)
periods. The mean monthly P was added for comparison purposes.
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maps at 1-km resolution. Scientific data 5, 180214.

Behrens, T., Schmidt, K., Viscarra Rossel, R.A., Gries, P., Scholten, T.,

MacMillan, R.A., 2018. Spatial modelling with Euclidean distance fields and

machine learning. European Journal of Soil Science 69.

Bello, O.M., Aina, Y.A., 2014. Satellite remote sensing as a tool in disas-

ter management and sustainable development: towards a synergistic approach.

Procedia-Social and Behavioral Sciences 120, 365–373.

Bergström, S., 1976. Development and application of a conceptual runoff model

for Scandinavian catchments.

Bergström, S., 1995. The HBV model. Computer models of watershed hydrol-

ogy Highlands Ranch, 443–476.

178



REFERENCES

Biau, G., Scornet, E., 2016. A random forest guided tour. TEST 25, 197.

Bisselink, B., Zambrano-Bigiarini, M., Burek, P., de Roo, A., 2016. Assessing

the role of uncertain precipitation estimates on the robustness of hydrological

model parameters under highly variable climate conditions. Journal of Hydrol-

ogy: Regional Studies 8, 112–129.

Bitew, M.M., Gebremichael, M., Ghebremichael, L.T., Bayissa, Y.A., 2012.

Evaluation of high-resolution satellite rainfall products through streamflow

simulation in a hydrological modeling of a small mountainous watershed in

Ethiopia. Journal of Hydrometeorology 13, 338–350.

Bivand, R., Keitt, T., Rowlingson, B., 2020. rgdal: Bindings for the ’Geospatial’

Data Abstraction Library. R package version 1.5-12.

Bivand, R., Rundel, C., 2020. rgeos: Interface to Geometry Engine - Open

Source (’GEOS’). R package version 0.5-3.
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