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BILEVEL OPTIMIZATION OF THE KANTOROVICH PROBLEM
AND ITS QUADRATIC REGULARIZATION
PART I: EXISTENCE RESULTS

SEBASTIAN HILLBRECHT AND CHRISTIAN MEYER

ABSTRACT. This paper is concerned with an optimization problem governed
by the Kantorovich optimal transportation problem. This gives rise to a bilevel
optimization problem, which can be reformulated as a mathematical problem
with complementarity constraints in the space of regular Borel measures. Be-
cause of the non-smoothness induced by the complementarity relations, prob-
lems of this type are frequently regularized. Here we apply a quadratic regular-
ization of the Kantorovich problem. As the title indicates, this is the first part
in a series of three papers. It addresses the existence of optimal solutions to the
bilevel Kantorovich problem and its quadratic regularization, whereas part II
and IIT are dedicated to the convergence analysis for vanishing regularization.

1. INTRODUCTION

This paper is concerned with a bilevel optimization problem with the Kan-
torovich problem of optimal transport as the lower-level problem. The problem
under consideration takes the following form:

inf  J(mw, 1)
TR
(BK) st €M), >0, Jpallomen) = 68 lme@s),

TE argmin{/ cadyp: ¢ € M, py), o > 0}-
Q

Herein, cq is a given cost function measuring the transportation cost and ug a
given marginal on a domain €. The set II(u1, ) denotes the set of feasible
transport plans, i.e., regular Borel measures that have y; and u$ as first and second
marginal, see (1.1) below. The lower level problem thus aims at minimizing the
transportation cost among all feasible transport plans associated with u; and pg. It
is Kantorovich’s well-known generalization of the famous Monge problem, cf. [15].
We refer to [25, 26, 2, 22] for more details on the Kantorovich problem and its
application background. The bilevel optimization problem now consists of varying
the first marginal py such that this marginal, together with an associated optimal
transport plan, minimizes a given objective 7. The additional constraints on pq in
(BK) ensure that there is at least one optimal transport plan associated with p
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2 SEBASTIAN HILLBRECHT AND CHRISTIAN MEYER

so that the feasible set of (BK) is non-empty. One possible application for such a
bilevel problem could be, for instance, the identification of the first marginal based
on measurements 79 of the transport plan on a part D of the domain Q; x Q5. In
this case, the upper level objective would be of the form J(m, u1) = d(7,mq) (plus
potential regularization terms accounting for errors in the measurement), where
d denotes a suitable distance such as |1 — 74|(D) or |7 — 7r(d)||W_1,p(D) for some
p > dim(D).

From a bilevel optimization point of view, the Kantorovich problem is challeng-
ing. First, for a given cost ¢q and marginals 41 and u$, the optimal transport
plan needs not to be unique (unless the cost function is strictly convex and at
least one of the marginals is absolutely continuous w.r.t. the Lebesgue measure, see
[22, Theorem 1.17]). Thus, in general, there is no single-valued solution mapping
w1 — 7 associated with the lower level problem in (BK). This prevents us from
using the so-called implicit programming approach, where the lower level problem
is replaced by its solution operator and the (potentially limited) differentiability
properties of the latter are used to derive optimality conditions and optimization
algorithms for the bilevel problem, cf. e.g. [21, 4]. Alternatively, one could replace
the convex lower-level problem by its necessary and sufficient first-order optimality
conditions. These, however, contain a complementarity system in the space of reg-
ular Borel measures, which turns the bilevel problem into a mathematical program
with complementarity constraints (MPCC) in 9(Qy x Qs).

A common strategy to treat MPCCs is to regularize the complementarity con-
straints and the lower level problem. We only refer to [19, 23, 14, 16] in the finite
dimensional setting and to [3, 13, 10, 24, 27] for problems in function spaces. These
approaches are of theoretical as well as numerical interest. While a limit analysis for
vanishing regularization parameters yields stationarity conditions for the original
problem, the regularized problems can often be treated with standard algorithms
that, together with a path-following procedure for the regularization parameter,
can provide an efficient method for solving an MPCC. Here, we follow a similar ap-
proach and employ a quadratic regularization of the Kantorovich problem, which
was proposed and analyzed in [18]. This regularization has several advantages.
First, the regularized Kantorovich problem is strictly convex and thus uniquely
solvable, which is in particularly attractive from the viewpoint of bilevel optimiza-
tion as it allows the implicit programming approach to be applied. Moreover, the
regularity of the optimal transport plans is improved in a way that we are faced
with an MPCC in L?(Q x ) instead of an MPCC in the space of regular Borel
measures. Finally, as shown in [18], the quadratic regularization preserves essential
features of the original Kantorovich problem such as the sparsity of the optimal
transport plan as well as a dual problem that provides a substantial reduction of
the dimension. As a price for these desirable properties, the regularized problems
still contain a complementarity relation and are therefore not smooth, in contrast
to common MPCC regularization approaches. However, due to their particular
structure involving a complementarity system in L?(€2; x ), we expect that non-
smooth optimization algorithms for MPCCs in function space are applicable, see
e.g. [9, 5].

This work is the first part in a series of three papers. While the other two contri-
butions address the question of convergence of solutions of the regularized bilevel
problems for vanishing regularization parameter, this paper is concerned with the
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existence of solutions. For the bilevel Kantorovich problem (BK) itself, existence
of globally optimal solutions is rather straightforward to show, based on known
(weak) stability results for the Kantorivich problem. The situation changes, if one
turns to its regularized counterpart. As we will see by means of a counterexample,
the solution operator associated with the regularized Kantorovich problem is not
weakly continuous. Nevertheless, one can show its strong continuity, which allows
us to prove the existence of solution for the regularized bilevel problems.

The paper is organized as follows: After introducing some basic notation and
assumptions in the rest of this introduction, we collect some known results on the
Kantorovich problem and its quadratic regularization in Section 2. We then turn
to the existence of globally optimal solutions for (BK) in Section 3. The main part
of the paper is contained in Section 4, where we first verify that the regularized
solution operator is locally Hélder continuous and, based on that, show the existence
of optimal solutions for the regularized bilevel problems.

1.1. Notation and Standing Assumptions.

Domains. For dq,ds € N, let ©; ¢ R4 and Qs € R% be compact and connected
sets with non-empty interior. We moreover suppose that their Cartesian product
Q ==y x ) coincides with the closure of its interior and has a Lipschitz boundary
in the sense of [8, Def. 1.2.2.1]. By B(f2), we denote the respective Borel o-algebra
on  and by A the Lebesgue measure on B(2). For Q; and Qq, B(Q;) and A,
i = 1,2, are defined analogously so that A = A\; ® Ay. Furthermore, we abbreviate
1] = A1(Q1), |Q2] == A2(Q2), and |Q] == A(Q).

Marginals. Let (X,B(X)) be a measurable space. Then, we denote by (X)) the
space of (signed) regular Borel measures on X equipped with the total variation
norm, i.e., [|ullonx) = |p/(X). If p1 € M(Q1) and py € M(Q2), then the set of
transport plans between the marginals p; and ps is given by

(1.1) (pr, p2) == A{m € M(Q): Prym = pg and Poym = o},

where, for ¢ = 1,2,
Piym:=mo P[l: B(Q;) = R,

is the pushforward measure of 7 via the projection P;: Q > (z1,22) — z; € ;.
Note that TI(pq, u2) = 0, if p1(Q1) # p2(Q2). Throughout the paper, ug € M(y)
is a fixed marginal satisfying 11§ > 0 and, in order to ease notation, ||u§ |lan(,) = 1.
The normalization condition is no restriction and can be ensured by re-scaling.
Given a measure space (X, A, u), the Lebesgue space of p-th power absolutely
integrable functions is denoted by LP(X,u), p € [1,00). If X CR", n € N, is a
Lebesgue measurable set and p is the Lebesgue measure, we simply write LP(X).

Cost Function. The cost function is assumed to satisfy c¢q € WHP(Q), p > dy + da,
where, with a slight abuse of notation, W17 (£2) denotes the Sobolev space on int(12).
Note that, due to the regularity of 9Q, WP(Q) is compactly embedded in C(f),
cf. e.g. [1, Theorem 6.3]. Thus, there exists a continuous representative of c¢gq, which
we denote by the same symbol.
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Bilevel Objective. The functional J: M(Q) x M(Q;) — R is supposed to be lower
semicontinuous w.r.t. weak-* convergence. Let us give an application-driven exam-
ple for such a functional. Suppose that subsets D € B(2) and D; € B(€;) and
measurements 74 € M(D) and uf € M(D;) are given. Then we set

J(m, 1) = |m = wal (D) + v i — ui|(Dy),

where v > 0 is a weighting parameter. The goal of the bilevel optimization is then
to adjust p; and 7 such that the deviation between an optimal transport process
and (possibly inaccurate) measurements thereof on subdomains becomes minimal.

2. PRELIMINARIES

Given marginals 1 € MM(Qy), pe € M(Q2) and a measurable cost function
c: Q = [—00, 00|, the Kantorovich problem of optimal transport reads

inf K(r) ::/Qc(x) dm(x)

st. we(uy,pe), m>0.

(KP)

Lemma 2.1 ([26, Theorem 4.1]). If pu1, 2 > 0 and ||p1llono,) = #2llm,) and
if ¢ is lower semicontinuous and bounded from below, then there exists an optimal
solution of (KP).

Despite this existence result and its simple structure, the Kantorovich problem
provides some challenging aspects, especially from a numerical perspective. First of
all, its solution may be non-unique (although there are conditions which guarantee
uniqueness, see e.g. [22, Theorem 1.17]). More importantly, since 7 “lives” on the
Cartesian product of ©; and Qs, the dimension of a discretized counterpart of (KP)
easily becomes so large that a numerical solution by means of standard LP-solvers
is no longer possible. Therefore, several penalization and relaxation methods have
been proposed, that in combination with dualization, allow a significant reduction
in the size of the problem. The most popular method is probably the entropic
regularization in combination with the well-known Sinkhorn algorithm, see e.g.
[7, 6].

In this paper, we rely on a different strategy, namely the quadratic regularization
that has been introduced in [18] and is as follows: Given a regularization parameter
v > 0, two marginals p; € L?(Q), u2 € L?(Q2), and a cost function ¢ € L?(Q), we
consider

inf Ky(my) = /Qc(x) oy (x) dA(z) + %||7rA,||2Lz(Q)
st. m, € L*(Q), m, >0 Xae. inQ,

/ 71'7(1‘171‘2) d)\g(fﬂg) = Ml(xl) )\1—&.6 in Ql,
Qo

/ Ty (1, 22) AN (1) = pa(z2)  Ag-a.e in Q.
Q

Lemma 2.2 ([18, Lemma 2.1, Theorem 2.11]).
(i) Problem (KP,) admits a unique solution if and only if p; > 0 A;-a.e. in €,
i=1,2, and ||pallLr(a,) = llp2lli@,)-
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(ii) If, in addition, there exist constants ¢ > —oo and § > 0 such that ¢ > ¢
A-a.e. in Q and p; > 6 Ni-a.e. in Q;, i = 1,2, then m, € L*(Q) is a solution of
(KP.,) if and only if there exist functions a; € L*(Q1) and az € L?(S2s) satisfying

1
(2.1a) Ty — ;(al Bag—c)+ =0 A-a.e. in Q,
(2.1b) / Ty (1, 22) dAa(z2) = pa(z1)  Ai-a.e. in Qq,
Qo
(2.1c) / Ty (1, 2) AN (1) = pa(z2)  Ag-a.e. in Q.
Q

Herein, (a1 @ ag)(z1,22) = a1(z1) + az(x2) A-a.e. in Q refers to the direct sum of
ay € L2() and ap € L%(Qs), while, for givenu € L*(Q), (u)4 (x) == max{u(x);0}
A-a.e. in S denotes the pointwise mazimum. It is clear that both the direct sum and
the pointwise mazimum map L?(Q1) x L?(Q2) and L?(Q), respectively, to L*() so
that (2.1a) is well defined.

(iii) Under the above assumptions, the functions o; € L*(SY), i = 1,2, from (ii)
solve the dual problem given by

2
max  ®,(a1,a2) = —3([(a1 © az — )+ [72(q) +WZ/ aipi dA;
(2.2) =178

st a; € LA(Q), i=1,2,
and there is no duality gap, i.e., (o1, ) = Ky(my).

The above results directly address the aforementioned challenges. Besides the
uniqueness of the solution, the approach allows us to escape the curse of dimen-
sionality. If one inserts (2.1a) into (2.1b) and (2.1c), then a non-smooth system of
equations for the dual variables a; and s arises. We are then dealing with a prob-
lem in L%(Q) x L?(Qs) instead of L%(Q; x €), which, after discretization, leads
to a substantial reduction of the number of unknowns. Moreover, due to the max-
operator in (2.1a), the sparsity pattern of the transport plans is better preserved
compared to the entropic regularization. Finally, the structure of (2.1) allows for
the application of a semi-smooth Newton method, see [18] for more details.

The convergence of (sub-)sequences of solutions of (KP,) to solutions of (KP)
for v N\, 0 is addressed in [17]. To be more precise, it is shown that the objective of
(KP,) I'-converges to the objective of (KP) w.r.t. weak-* convergence in 9(Q2) as
v \¢ 0, provided that the original marginals in 9(€2;), i = 1,2, are smoothed and
the smoothing parameter is properly coupled with v, see [17, Theorem 4.2].

As outlined in the introduction, the goal of this and the companion papers is
to employ the quadratic regularization for a bilevel optimization problem with the
Kantorovich problem (KP) as the constraint. The motivation for this approach is as
follows: First, the uniqueness of solutions for (KP,) allows us to define a solution
operator S, (c, p1, pt2) — 7y, which, in turn, enables us to employ the so-called
implicit programming approach. Secondly, we expect that S, (or a discretization
thereof) provides sufficient smoothness to use non-smooth optimization algorithms
for the solution of the regularized bilevel problem. Before we address the regularized
bilevel problem, we turn to the optimization of the original problem (KP) and show
existence of at least one optimal solution to the latter in the upcoming section.
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3. EXISTENCE OF OPTIMAL SOLUTIONS OF THE BILEVEL KANTOROVICH
PROBLEM

Let us first recall the bilevel optimization of the Kantorovich problem from the
introduction:

inf  J(m, p1)
™K1
(BK) s.t. 1251 S m(ﬂl)7 1251 Z 07 ||M1||DJT(Q1) = 17

T e argmin{/ cadp: @ € T(py, 1g), ¢ > 0},
Q

where cq € WHP(Q), for p > dy +da, and g € 9M(Q2) denote a fixed cost functional
and a fixed marginal, respectively, and J is a given objective, see Section 1.1. To
shorten notation, given ¢ € C(Q) and u; € M(LY;), i = 1,2, we abbreviate the set
of associated optimal transport plans by

(3.1) S(e, p, o) = argmin{/ cdo: p € M(p1, u2), @ > 0} .
Q

The essential tool to establish the existence of solutions to (BK) is the following
stability result for the Kantorovich problem. Its proof is based on the concept of
c-cyclic monotonicity. For details, we refer to [26, Section 5].

Lemma 3.1 (Stability of the transport plan, [26, Theorem 5.20]). Let c € C(2) be
given and assume that {u§}ren C M(Q1) and {ph}ren C IM(Q2) are sequences that
satisfy pk, p5 > 0 and [|pf lon(,) = |15 lon(as) for all k € N and converge weakly-x
to py € M(Q) and pe € M(Q2). Let moreover {my}ren be a sequence of optimal
transport plans associated with (u¥,u%), i.e., T € S(c, ¥, uk). Then there is a
subsequence that converges weakly-+ to an optimal transport plan m € S(c, 1, p2).

The above lemma is just a special case of [26, Theorem 5.20], where the cost func-
tion need not to be fixed. We underline that the notion of “weak convergence” in
[26] (sometimes also called narrow convergence) coincides with weak-* convergence
in our case, since {21, s, and ) are compact.

Theorem 3.2. There exists at least one globally optimal solution to (BK).

Proof. Based on Lemma 3.1, the result easily follows from the direct method of the
calculus of variations.

First, thanks to Lemma 2.1, the feasible set of (BK), denoted by JF, is nonempty.
Thus, there exists a minimizing sequence {(mx, %)} xen so that

inf  J(m, e RU{—o0}.
(o nf (7, p1) {—oc}

The feasibility of the minimizing sequence implies

[mklloncoy = (1 % Q2) = (Pryme) () = pf () = [pflm@y =1 VkeEN

so that there is a subsequence, denoted by the same symbol to ease notation, that
converges weakly-+ to a limit (7, fi1) € D(Q) xM(2y). Thus (p¥, ug) —* (1, pd) in
IM(Qy) x M(Q2) and consequently, Lemma 3.1 implies 7 € S(cq, fi1, 13). In view of
the constraints of the Kantorovich problem, this also gives fi1 > 0 and ||fi1 [|on(o,) =
1 and hence, (7, fi1) € F, i.e., the weak limit is feasible. The optimality of the weak
limit follows from the presupposed weak-* lower semicontinuity of 7. (]

lim j(ﬂk,ulf) =
k—o0
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Remark 3.3. Lemma 3.1 only requires the continuity of the cost function. For the
mere existence result, one could therefore relax the regularity assumption on the
cost function to ¢q € C(€2). The improved regularity of cq is however required for
the analysis of the regularized bilevel problem, and for this reason, we impose it as
standing assumption. Moreover, Lemma 3.1 also holds in Polish spaces and not only
in compact sets. One can therefore generalize the existence result of Theorem 3.2
to a much broader class of domains 2; and Q5.

If one replaces (KP) by its necessary and sufficient optimality conditions, then
(BK) can equivalently be rewritten as

inf  J(m,p1)
st opr €M), p1 >0, [ullom) =1,
e W(Ql X QQ)a @ S 0(91)7 ¢ S C(QQ)a

(BK) <+ Prym =, Poym= 13,
>0, @(x1)+¢Y(re) < calxr,z2) V(z1,z2) € Q1 X Qo,

/ (P —cq)dm =0.
QlXQQ

We observe that the last two lines in the above reformulation of (BK) form a
complementarity system in 9(Q; x Q3) and C(Q; x Qs), so that (BK) becomes
an MPCC in the space of regular Borel measures, as already mentioned in the
introduction. Even though several results for MPCCs are known, in particular
when the cone defining the complementarity constraints is polyhedric, which is the
case here, see [28, Example 4.12], problems of this type are typically smoothed or
regularized, and we will do just that in the next section.

4. EXISTENCE OF OPTIMAL SOLUTIONS OF THE REGULARIZED BILEVEL
PROBLEM

The regularized Kantorovich problem (KP,) clearly admits a solution only if the
marginals are functions in L?(€Q) and L?(£23). Therefore, one needs to regularize
the marginals, if the Kantorovich problem in (BK) is replaced by (KP. ). But even
if the marginals were functions in L2(2;) and L?(£;), one needs to smooth them
considering the lack of (weak) continuity of the solution mapping associated with
(KP,), see Example 4.2 below. What is more, in order to guarantee the existence
of the dual variables a; and s from Lemma 2.2, the marginals need to be strictly
positive, see [18, Assumption 1]. We therefore introduce the convolution & constant
shifting operators

(4.1) T2 M) 3 s = @F % i + K;sé' € L*(Q9), i=1,2,

which turn the marginals into smooth and strictly positive functions on Q9 and
Q3. Herein, § > 0 is a smoothing parameter, ¢} € C°(R%) denotes a standard
mollifier with ||<pf||L1(Rdi) = 1 and support in B(0,0) C R% and Q? := Q; + B(0, ),
i = 1,2. Moreover, we set 5 := Qf x Q3. When mollifying j;, we of course extend
it by zero, i.e.,

(s@f*ui)(m)Z/Vso?(x—y)dui(y% z €.

i
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As a consequence, ¢¢ * p; —* p1; in M(;) as § \, 0, provided that the support of
1; has positive distance to 02;, which will be useful for the convergence analysis in
the companion paper [11], where the smoothing parameter ¢ will be polynomially
coupled with the regularization parameter ~.

Owing to Lemma 2.2 there exists a unique solution 7, € L*(Qs) to (KP,) for
costs in L?(£5) and marginals in L2(€), i = 1,2, that satisfy the conditions in
Lemma 2.2(i). We denote the associated solution operator by

S’y: Lz(QtS) X MO > (67M17M2) = Ty € L2(Qt$)7

Mo(Q2s) = {(p1, 1) € L2(Q) x L () [l 12 gy = szl L)
i >0 Ni-ae. in Qi = 1,2}.

To ease notation, we suppress the dependency of 7, and S, on 6. Furthermore,
we introduce the extension-by-zero operator E: C(Q) — L?*(Qs), whose adjoint
Er: L*(Q5) — M(Q) is the associated restriction operator. Now, we have every-
thing at hand to formulate the regularized bilevel problem:

inf j“/(”v’/‘hc) = j<7T77M1) + % llc— Cd”%/lm(g)

Ty, H1,C

(BKE?/) st. ce W17P(Q)7 € m(Ql)a H1 > Oa ||:U‘1||937(Ql) = 17
Ty = 5; S’Y (55 ¢, 716(#1)’ 7;5(11“(21))

As we will see in the proof of Theorem 4.7, there holds (77 (p1), 75 (19)) € Mo(Qs)
such that 7, is well defined, cf. Lemma 2.2(1). Compared to (BK), we not only
replace the Kantorovich problem as the lower-level problem with its regularized
counterpart, but also add the cost function ¢ to the set of optimization variables.
This is motivated by the so-called reverse approximation property, which is essential
to show the convergence of minimizers of (BK‘E{) towards solutions of the original
unregularized bilevel problem, see the companion paper [12], where this property
is elaborated for the finite dimensional counterparts of (BK) and (BKf/) This
property requires a set of optimization variables that is sufficiently rich, as is also
required, e.g., in the optimization of perfect plasticity, see [20]. For this reason,
c is treated as an additional optimization variable. After all, the penalty term in
the upper-level objective J, will ensure that, in the limit, ¢ equals the given cost
function cq, see [12].

Remark 4.1. Instead of regularizing w.r.t. the Lebesgue measure, one could also
apply a regularization w.r.t. the product measure of the marginals p1 ® uo, i.e.,

inf /Cdﬂ'—l— %/ 72 d(p1 ® pz)
Q Q

st. mE L2(Q1 x o, p1 @ po) NI, pa2),

(KP.)

where, with a slight abuse of notation, we use the same symbol for the Borel
measure 7 and its density w.r.t. the product measure. Note that the constraint
7w € I(p1, pe) does not imply that 7 is automatically absolutely continuous w.r.t.
the product measure, as the counterexample Q; = [0,1], g; = A, i = 1,2, and
m = (id,id)xA shows. Hence, an additional regularization is also necessary in
this case. Nevertheless, a regularization w.r.t. to the product measure has several
advantages. For instance, the marginals need not to be smoothed and the positivity
assumption on pg and g in [18, Assumption 1] becomes superfluous. However, in
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the bilevel context, this approach does not seem to be promising: p; is an upper-
level variable and therefore the space for 7 is no longer fixed but depends on the
optimization variable.

The rest of this paper is dedicated to the existence of solutions to (BK‘SV). In this
context, the continuity properties of S, are of course essential and will be discussed
in the following.

4.1. Holder Continuity of the Regularized Solution Operator. The key
tool in the existence proof for the unregularized bilevel problem in Theorem 3.2 has
been the stability of the Kantorovich problem w.r.t. (weak-*) perturbations of the
marginals from Lemma 3.1. Unfortunately, such a weak continuity result does not
hold in case of the regularized Kantorovich problem, as we will demonstrate below
by means of a counterexample.

Example 4.2. Let O = Qs = [0,1], v = 1, and c(z1, 22) == +|z1 —22[%. Moreover,
define f: R — R, f(z) := sgn(sin(27z)) and, for n € N; set

9 1 1
1> 0< < 92 07 0 S S 92
of(e) = ST B OSTE 0y 00 SRS
f(nxl)‘f‘za 5 <z <1, -5, 5 <wxz <L
In view of (2.1a), we further set
1
(21, 22) = ;(a’f(xl) + ab(z2) — c(xl,xg))+
fnay) + 9 — 1]z — 22/?, 0< a2 <3,
_ flnay) + 2 — loy — 2%, 3<z1<1,0<@ <3,
flnay) + T — Lz — 2%, 0<z <3, 3<m<1,

(f(nz1)+%7%|xlix2|2)+7 %<$17I2§17
whose weak limit (w.r.t. weak convergence in L?(12)) is

1 2 1
— gl —z2f?, 0< @y, 20 < 5,

—flrr— 2ol <z <1, 0< 2 < g

1 2 11

— gl —x2l?, 0<2 <35, 5 <2<,
1 2 1

—glrr — w2, 5 <wpa <1

m(z1,22) =

o] BN EUNEN N [G FUN Ne}

Because the system in (2.1) is necessary and sufficient for optimality, 7, is the
solution of (KP,) with the cost function defined above and marginals given by

1 1
py (1) ?:/ Tn(T1,22) dos, g (w2) 1:/ T (21, 22) doy.
0 0

Note that, for all n € N, u?* > 6 Ai-a.e., i = 1,2, such that Lemma 2.2(ii) is
indeed applicable. Clearly, the weak convergence of m,, implies that p}' converges
weakly to u; € L?(;), i = 1,2, and the pointwise bound carries over to the weak
limit such that Lemma 2.2(ii) also holds for the limits py and ps. Accordingly,
if the weak limit m were a solution to the regularized Kantorovich problem, then
there would be dual solutions a; € L*(Q) and az € L?(£23) so that

m(x1,22) = (oq(acl) + as(z2) — c(avl,avg))+ M-a.e. in [0, 1]2.
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Because of w > 0, this is equivalent to

nglaxZ S %7
3<z1<1,0<z <4,
0<a <3, 3<z<1,

7 1 2 1
§+§|$1_l‘2| ) §<x1,$2§17

(4.2) a1 (21) + ao(z2) =

FNICFNISIFNT

A-a.e. in [0, 1]2. This, however, leads to a contradiction: picking arbitrary Lebesgue

points &y € (07 %) and To € (%, 1) of ag, (4.2) implies

%70[2(572)’ Oéxlgé —a(m )_ E_OCQ('%?% nglgé
. = 1) = - -
5 —ay(ds), <21 <1 %+%|$1—$2|2—O[2(332), F<z <1

A1-a.e. in [0,1]. While the conditions in [0, 3] imply that ao(22) — as(Z2) = 1, it
must hold that as(22) — a2(Z2) < £ < § on (§,1], which yields the desired con-
tradiction. Therefore, the weak limit 7 cannot be the solution of (KP.) associated

with the limits y; and p9, giving in turn that S, is not weakly continuous.

We compensate the lack of weak continuity by means of the convolution operators
7;5, t = 1,2, which turn weakly convergent into strongly convergent sequences. Still,
we need to prove that S, is continuous w.r.t. the strong topology of L?*(s). This
is what we will show next. To this end, let v > 0 and § > 0 be arbitrary, but fixed
throughout this section. To simplify the notation, we slightly chance the notation in
comparison to the beginning of this section and the consecutive subsection. First,
we suppress the sub- and superscripts v and ¢ in the rest of this section, except for
S, and 7, in order to underline the difference to the solution of the unregularized
problem (KP) and its solution set in (3.1). Moreover, given (g1, p2) € Mo(£2), and
c € L*(9), we set 7, =S, (c, p1, p2) € L*(Q) (i.e., without the restriction operator
EX).

We start with several auxiliary boundedness results. For this purpose, let us
consider arbitrary but fixed data ¢ € L%(Q), u; € L*(Q), i = 1,2, with

(4.3) 1l ) = il q) = m.

Moreover, we suppose that the assumptions of the second part of Lemma 2.2 are
satisfied, i.e., there are constants ¢ > —oco and § > 0 such that

(4.4) c>c Mae.in and p; > N-ae. in y, i=1,2.

Note that the latter condition is automatically fulfilled in context of the bilevel
problem (BK?Y) owing to the definitions of the operators T,?. Moreover, the penalty
term in the upper level objective ensures that the cost ¢ is bounded in WP () <
C(€2), which ensures the other condition thanks to the compactness of .

Lemma 4.3. There exists a constant C' = C(y,m) > 0 such that
7y 22 ) < Ol llz2 o) li2llz@y) + llell2@)-

Proof. According to Lemma 2.2, there exist oy € L%(€;) and ay € L?(Qs) such
that the system in (2.1) is fulfilled. Multiplying (2.1b) and (2.1c) with a; and «s,
respectively, integrating and adding the resulting equations leads to

(4.5) fy||7r||%2(9) :/Q 1o d)\1+/9 /Lgagd)\g—/gﬂ'cd)\7
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where we also used (2.1a). Exploiting the normalization condition in (4.3), we
obtain

1 1
/ H10Gq d)\l = — ulal/ 125 d>\2 d)\l = 7/ (,ul (24 ‘LLQ) Oéld/\
oh m Jjo, Q2 mJjo

and an analogous equation for poas. Herein, (p1 ® po) = p1(z1)pe(ze) for A-a.a.
(z1,22) € Q refers to the direct product of pu; and ps. One easily verifies that

i ® pp € L*(Q) with [lu1 ® pellre(e) = lleallrz@0) lk2lliz(o,). Therefore, (4.5)
allows us to estimate

1 1
Al < o [ per @ az = ydrt - [ o pedr - [ medr
m Jo m Jo Q

< ym7H |l 2o il 2 o) 2 2 00)
+m |l 2o Izl L2 @)l 22 @) + el 2@l L2 @) -
and Young’s inequality then gives the result. (I
The next two lemmas address the boundedness of the dual variables a7 and as
from Lemma 2.2. We first observe that the dual variables cannot be bounded by
the data in any norm, since they are not unique: if (a1, az) satisfies (2.1) for .,
then, for any r € R, (a1 + r,ae — r) does so, too. In the rest of the paper, we

therefore pick a particular dual solution, namely the one, where r is chosen such
that

(46) / (65 d)\g =0.
Q2

We call a dual solution (a1, ap) satisfying (4.6) zero-mean dual solution. The above
considerations show that, under the assumptions of Lemma 2.2, there always exists
a zero-mean dual solution. We further underline that even the zero-mean dual so-
lution is in general not unique as the counterexample in [18, Section 2.3] illustrates.
Still, we can show that every zero-mean dual solution is bounded by the data ¢, 1,
and py. We start with an L' bound in the following

Lemma 4.4. Every zero-mean dual solution satisfies
leallzr () + ozl zron) < €l llzzan izl L2y + el 2y + 1)
with a constant C' = C(y,m,d) > 0.
Proof. Lemma 2.2(iii) yields
lellz2 (o) Iy llL2) = —Kq ()

= -0, (a1, a2)

1 1
>—— / (11 ® p2)(on ® oz —c)dA — — / (11 ® p2)cdA,
m Jo m Jo
which, in combination with (2.1a), leads to
lellzz@) (17 22 @) + 1 @ pallz2 (o))

1 1
> [ p)er @ az - Ot o [ (1@ ) Bz - - A
m Jqo m Jqo

Y

52
—l/(u1®,u2)7r7d)\+—/(cn@ag—c),d/\,
mJjo mJja
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where § > 0 is the constant from (4.4). Thus, thanks to Lemma 4.3, we arrive at
a1 @ azl[r1(a) < [[(a1 @ a2 — c)+|[Li(a) + [[(a1 & a2 — ) |[L1(a) + [lcllL1(@)
<Allmy i) + el
+ & (lell 2@ lmy 2o
+ o lellzz@llm @ pallrz@) + Ellm © pallz@) 7y 22@)
< C(Imllz@n Izl 2 + el 2@ +1)°

with a constant C' > 0 depending on -y, m, and §. To deduce a bound for «; and
ap individually from this, we employ (4.6) to obtain

a1 ® asllLi@) = sup / ¢(a1 ® az)dA
HEL™(Q),
H¢Hx<1

> s (@D e a)dh = %l oo,
$1ELT (1), /Q
llf1lloe <1
Finally, the L'-norm of as is estimated by
ezl @y) < 1] (lew @ azll@) + 192lar ] Li@)),

which, together with the previous estimates, yields the claim. ([

Lemma 4.5. There is a constant C = C(y,m,d,¢) > 0 such that

6
lall2) + lezllzz,) < Cllpallez@n luellL2.) + lellz) + 1)

holds for every zero-mean dual solution.

Proof. We proceed in two steps: in a first step, we show the boundedness of the
positive parts of @ and a5 (i); in a second step, we derive bounds for their negative
parts (ii).

Ad (i): Let us denote the bound from Lemma 4.4 by M > 0, i.e., in particular
loell L1 (0,) < M, and define, up to sets of zero Lebesgue measure, the subset

- 2M
Qy = {xQEQQ: | (z2)] < 0 |}CQQ

Then it follows by construction that

2M ~
M2 [ Jasla)ldez [ faaan)ldhe 2 o (0 \ S,
Qo 22\ |2y
which in turn implies
Q ~ ~ 1922]

Furthermore, we define, up to sets of zero Lebesgue measure, the sets
Qf = {z1 € Q1: as(z1) > 0}

as well as }
+ = {(331,.732) € Q-li_ X o 041(%‘1) + 012(.%2) > 0}
Then, by construction, it holds

0<ai(zr) < —ag(xe) < ‘QQ—]V[' Aa.e-in (QF x Q) \ QF.
2
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Together with (4.7), this yields
1
[C N / / o P dAdg
+ L2(Ql) ‘Qzl 3:22 QT

2
(4.8) < = / |a1|2dA+/ C JaaPar
1921 O+ (2 xQ2)\O+

2 2 8|Ql| 2
< — oy | dX + M-,
Qs /Q+ o4 Q222

In order to estimate the first term on the right hand side, we first observe that

(a1 @ a2)]|72() = /{2+ (a1 @ az)*dA

z/ |a1|2d)\—2/ oy | || A
(4.9) a+ aQ+

> [ a2l laal oo
Q
> ”alHiz(fﬁ) - 2M2'

The left hand side in the above equation is estimated by means of (2.1a) and
Lemma 4.3 as follows:

o @ 2)i e <2 ( [ (@1 @z —ctars [ 2ar)

2(72”7%“%2(9) + HCH2L2(Q))
C(”ﬂlH%Q(Ql) ||H2H%2(QQ) + ”6”%2(9))'

<
Inserting (4.9) and (4.10) into (4.8) and employing the definition of M as the bound
from Lemma 4.4 then yields

(4.10)

(411)  le)+llzzn < Clullezan ez + el @) +1)°
with a positive constant C' depending on 7, m, and J. Interchaninging the roles of
aq and a implies the same bound for (ag)4.

Ad (ii): To show the bound for the negative part, we argue similarly to the
second part of the proof of [18, Theorem 2.11]. Given r € R, we consider the set
(defined up to sets of zero Lebesgue measure)

Qb = {x2 € Qo2 (2) 1 (x2) > 7+ ¢} C Do
Recall that ¢ > —oo is defined to be a lower bound of the cost function ¢, see (4.4).
For any r > —c, the Lebesgue measure of this subset can be estimated by

M

Orl <
|2|— 7"+g’

1
Ao < —— -
T+C/QE(OK2)+ 2 > T.+9Ha2HL1(Q2) <

where M again denotes the bound from Lemma 4.4. For all r > —c, we thus obtain

/ (=7 +az — )y g < / (—(r +¢) + ()1 )4 dAs
Qo Q2

:/T (= (r+0) + (a2)4) da

2
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M >%K,
r+c
where K is short for the bound for ||(az2) || z2(q,) from step (i), i.e., the right-hand
side in (4.11). Therefore, if we set

_ MK?

- ’YQ 52

< 19513 ll(a2) + 2o < (

(4.12) —c+1>—c,

then
/ (—R+ag —c)y dla <74
Qo

Now assume that a; < —R Aj-a.e. on a set B C €y of positive Lebesgue measure.
Then

/ (a1 B ag — )y drg < / (—R+az—¢c)+dra <vyd <7yp A-ae. in E,
QQ Q2

which contradicts (2.1b). Hence the definition of R in (4.12) along with the defini-
tion of M and K being the bounds from Lemma 4.4 and (4.11) yields the existence
of a constant C' > 0 such that
6 .
(1) < R < C(lmllrznllpzllzes + llellzz@) +1)7 Ar-ae. in Q,

i.e., we actually even obtain an L°°-bound for the negative part. Note that, since R
depends on 7, d, and ¢, the same holds for the above constant. Again, the estimate
for (a2)— follows by means of reversed roles. Combining the results for the positive
and negative part finally proves the lemma. O

With the above boundedness results we are now in a position to prove the
strong) continuity of S,. For this purpose, let us define the following sets:

4.13)  H(Q) = L*(Q) x L*() x L*(),
4.14)  Ce(Q) = {c€ L*(Q): ¢ >c Mae. in Q},

4.15)  MF(Q) = {(u1, p2) € L2 () x L2 (Q2): [l zr(e,) = llp2llz @) = m,
i >0 Ni-ace. in Q;, i =1,2}.

(
(
(
(

Proposition 4.6. Lety,d§,m > 0 and c > —oo be given. Then the solution operator
of the regularized Kantorovich problem (KP.) is Hélder continuous with exponent
Y on bounded sets in the following sense: For all M > 0, there exists a constant
L >0, depending on M, 7, d, m, and ¢, such that

1
1S, (€ 111, 12) = S (s v1, v2) [ L2() < Ll (s aas i2) = (ensv1,v2) |
for all (¢, p1, p2), (¢, v1,v2) € Cc(Q) x MG (Q) with

1(eps 111, p2)ll3ecs (s 1, v2) [y < M.

Proof. The result is more or less a straight forward consequence of the previous
boundedness results. Let (c,,, pi1, 12), (v, v1,v2) € (Ce(2) x MG (2)) N Byy(a) (0, M)
be given. We set m, = S,(cu,p1,p2) and m, = S,(c,,v1,v2) and denote the
associated zero-mean dual solutions by (o, o), (a4, a) € L?(€) x L*(Q2). The
equality constraints in (KP,) imply

(4.16) / (mp —my)dAe = 1 — v, / (mp — m) dA = po — va.
Qo 1951
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Testing the first and second equation in (4.16) with o' —a and af —a¥, respectively,
integrating and then adding the resulting equations, we arrive at

1 1
m,— 7)) = ®al —c,) — —(a¥ Dal —c,))dA\
[ =) (S @ o =60 = et sz —c.)

= (] =)@k —at)an + [ (= )e - ap)drs

Y Q2
— /Q(T(‘M — ) (cy — cl,)d)\).

Using (2.1a), the inequality (ay+ — b4)? < (ay — by )(a — b) for all a,b € R, and
Young’s inequality, we arrive at

2
I = mullfey < (D ok = a¥llzenlli = vill 2o + llew = el )-
i=1

By Lemma 4.5, there holds
o = af 20,y < llaf (2, + 1o} 220, < C(M +1)°

with a constant C' depending on v, §, m, and c. Inserting this in the above inequality
then gives the result. [

Some words concerning the above results are in order. First, due to their non-
uniqueness, it is clear that one cannot expect an analogous result for the dual
variables, even if we restrict to the zero-mean dual solutions. Moreover, an inspec-
tion of the foregoing analysis reveals that the constant L from Proposition 4.6 tends
to infinity, if v and/or ¢ converge to zero or if ¢ approaches —oco. This is somewhat
to be expected, since one looses regularity as v tends to zero and there is in general
no existence of an optimal transport plan, if there is no lower bound for the cost.

4.2. Existence of Optimal Solutions. Based on the Holder continuity result,
we are now in the position to establish the existence of solutions to (BK‘EY) For
this purpose, we return to the notation from the beginning of this section, i.e. in
particular, given ¢ € C(Q) and p1 € M(Qy) with gy > 0 and |p1llono,) = 1, we
set T, = & 8, (€ ¢, TP () T3 (1) € M(Q).

Theorem 4.7. Let v > 0 and § > 0 be fized. There exists at least one globally
optimal solution to the reqularized bilevel Kantorovich problem (BK‘E{).

Proof. Based on Proposition 4.6, we can apply the direct method of the calculus of
variations. First, we note that, for all uy € 9MM(Qy), po € M(Q2) with [|p1l|lono,) =
||H2H9n(92) and p; >0, 9 = 1,2, there holds cp? * ;> 0 Aj-a.e. in Qf and thus

(4.17) \\715(#1>HL1(Q§) = 1193 | 2 (metny e o) + 6

= ||<pg||L1(Rd2)H,u2”9ﬁ(Qg) +0= HEJ(HZ)HLI(QQ) =Im.

Hence, (T3 (11), T2 (19)) € M (Q2s) so that S, (Es ¢, T (1), T (13)) is well defined
for every ¢ € C(2). Consequently, the feasible set of (BK?Y) is nonempty and thus
there is an infimal sequence {(72, u, ¢n) bnen C M(Q) x M(Q1) x WHP(Q), ie.,

(4.18) Ty (7, 1Y, en) — inf (BKfSY) eRU{—o0} asn— oo,
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where inf (BK‘E{) denotes the minimal value of (BK‘f/). By the constraint in (BK?Y),
the sequence {u]}nen is bounded in 9M(€2;). Moreover, due to the constraints in
(KP’Y)a

172 lomce) < 1S5(Es cns T (11), T3 (1)) | 22 05) = /m o xS drg +6=1+0.
2

Therefore, {1} and {77} are both bounded in M(€2;) and 9M(S2), respectively, and
thus, the presupposed weak-* lower semicontinuity of J implies that
inf T (2, i) =5 j > —o0.

Consequently, for n € N large enough,

llen = callfpim) < py(max{inf (BK}) + 1,0} — j)
such that {c,} is bounded in WP(Q). Therefore, there is a subsequence, denoted
for simplicity by the same symbol, such that
(4.19) (m3, ) =" (7, ) in M(Q) X M(Q1), ¢, —¢ in whr(Q).

The set {1 € M(Q1): p1 > 0} is easily seen to be weakly-* closed. Hence fi; > 0
and thus

L= [|p7 llamcan) = / dpf — / din = || [l ,)-
Q1 Q1

Therefore, the weak limit fi; satisfies the constraints in (BK?Y) Moreover, since
p > d, the embedding WP(Q) < C(f) is compact, and thus ¢, — ¢ uniformly in
Q. Since ) is compact, there is a constant ¢ > —oo such that inf,cq ¢, (c) > ¢ for
all n € N as well as inf,cq é(z) > ¢. Hence, there holds &;¢, Esc,, € Ce(€s) for all
n € N and the uniform convergence implies

Escy, — Es¢ in LQ(Qg).
Furthermore, the complete continuity of the convolution yields
TP (ut) = T () in L2(€}).
Since uP, i1 > 0 and pd > 0, we have ¢ * u}, ¢S * iy > 0 Aj-a.e. in Qf and
@5 % 3 >0 Ag-a.e. in 3 and therefore thanks to the constant shift in (4.1)

(TP (1), T2 (1g)) € ME(Qs) YneN, (T (@), T3 (u2)) € M (),
where ¢ := max{|Q][,|Q3|} "' d. Therefore, we are allowed to apply the Hélder
continuity result from Proposition 4.6, which gives

Sy (Es e, T (1), T (12)) — Sy(E5 €, T (n), T3 (1)) in L*(Qs).
The continuity of the restriction operator £F and the first convergence in (4.19)
then imply
T =658, (Ee T (), T3 (15))
such that the weak limit (7, i1, ¢) is feasible for (BKJ). The mapping W'?(£2) 3
¢ le— cd||€V1,p(Q) is continuous and convex and therefore weakly lower semi-

continuous. Additionally, J was assumed to be weakly-* lower semicontinuous.
Altogether, the convergence in (4.19) yields

Jy(7, i, €) < liggioléf Ty (Tn, i, €n) = inf (BKf{)’

ensuring the optimality of the weak limit. [
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