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This note is concerned with error analysis of FEM approximations for quasi-Newtonian modelling of thixo-viscoplastic, TVP,
flow problems. The developed FEM settings for thixotropic generalized Navier-Stokes equations is based on a constrained
monotonicity and continuity for the coupled system, which is a cornerstone for an efficient monolithic Newton-multigrid
solver. The manifested coarseness in the energy inequality by means of proportional dependency of its constants on reg-
ularization parameter, nonoptimal estimate for microstructure, and extra regularization requirement for velocity, is due to
weak coercivity of microstructure operator on one hand and the modelling approach on the other hand, which we dealt with
higher order stabilized FEM. Furthermore, we showed the importance of taking into consideration the thixotropy inhabited in
material by presenting the numerical simulations of TVP flow problems in a 4:1 contraction configuration.

Copyright line will be provided by the publisher1 Introduction

FEM approximation of thixo-viscoplastic flow problems using quasi-Newtonian modelling approach is a straightforward way
to generalize the FEM standard setting of Navier-Stokes equations, as well standing tool for simulating incompressible flow
problems [9]. In this context, the extended viscosity, µ(·, ·), is dependent on internal material microstructure parameter, λ,
beside the shear rate, ||D||, for the generalized Navier-Stokes equations [10]. The well defined approximation for the term
||D||−1, as for instance Papanastasiuo approximation [11], is used to deal with the singularity of the modelling,
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denotes the second invariant of the strain rate tensor, and k is the regularization parameter. Then, the

viscosity in generalized Navier-Stokes equations is given as follows
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√
2

2

1√
DII,r

(2)

and the full set of equations for thixo-viscoplastic problems reads
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in Ω with external forces fu, and fλ. u, p, and λ denote velocity, pressure, and structure parameter, respectively. The
supplemented evolution equation for the structure parameter to generalized Navier-Stokes equations in (3) induces the time-
dependent process of competition between the breakdown, G, and the buildup, F , inhabited in the material. A collection of
thixotropic models with various choices of η, τ , F and G is given in Table 1. We briefly define the thixotropic model as

M := G − F . (4)

The paper is organized as follows. In section §2, we show the wellposedness of the continuous problem followed by the
best approximation for the discrete one. Next in section §3, we present the numerical simulations of TVP flow problems
in a 4:1 curved contraction configuration showing the importance of not ignoring the thixotropy inhabited in material. In
summary section §4, we outline the effect of weak coercivity of microstructure operator and regularization parameter on
energy inequality, beside the importance of taking into account the thixotropy inhabited in material giving a way to higher
order stabilization FEM and better understanding of flow characteristics.
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Table 1: Thixotropic models

η τ F G
Worrall et al. [13] λ η0 τ0 Ma(1− λ) ||D|| Mbλ ||D||
Coussot et al. [5] λg η0 Ma Mbλ ||D||
Hous̆ka [6] (η0 + η∞λ) ||D||n−1

(τ0 + τ∞λ) Ma(1− λ) Mbλ
m ||D||

Mujumbar et al. [8] (η0 + η∞λ) ||D||n−1
λg+1G0Λc Ma(1− λ) Mbλ ||D||

Here η0 and τ0 are initial plastic viscosity and yield stress, respectively, in the absence of any thixotropic phenomena. η∞ and
τ∞ are thixotropic plastic viscosity and yield stress. Λc is the critical elastic strain, and G0 is the elastic modulus of unyielded
material.Ma andMb are buildup and breakage constants, and g, p,m, n are rate indices.

2 Finite element approximations

For finite element approximations, we start by deriving the variational form for thixo-viscoplastic flow problems, followed by
the wellposedness results of the continuous problem, then we show the best approximation for the discrete problem.

Let’s consider the spaces T := H1
Γ−(Ω),V := (H1

0 (Ω))2,W := T×V, and Q := L2
0(Ω) associated with the corresponding

norms H1-norm ||·||1 and L2-norm ||·||0, respectively, and T′, V′ and W′ := T′ × V′ their corresponding dual spaces [1]. We
set ũ = (λ,u), ṽ = (ξ,v), and define on W×W

aũ(ũ)(ũ, ṽ) = aλ(ũ)(λ, ξ) + au(ũ)(u,v) ∀ (ũ, ṽ) ∈W×W. (5)

The weak formulation for the thixo-viscoplastic flow problems (3) reads: Find (ũ, p) ∈W×Q s. t.

aũ(ũ)(ũ, ṽ) + b(v, p)− b(u, q) = l(ṽ), ∀(ṽ, q) ∈W×Q, (6)

where operators aλ(ũ)(·, ·), au(ũ)(·, ·), b(·, ·), and l(·) are given as follows

aλ(ũ)(λ, ξ) =

∫
Ω

(
−F(DII, λ) + G(DII, λ)

)
ξ dΩ +

∫
Ω

u · ∇λ ξ dΩ. (7)
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∫
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Ω

∇ · v q dΩ. (9)

l(ṽ) =
(
fλ, ξ

)
+
(
fu,v

)
(10)

The wellposedness results are stated in theorem 2.1.

Theorem 2.1 (Begum et. al 2022 [1]: Wellposedness) Let fu ∈ (L2(Ω))2 and fλ ∈ L2(Ω), the thixo-viscoplastic problem
(6) has a unique solution (ũ, p) = (λ,u, p) ∈W×Q with the following bound of the solution on the data

||u||1 ≤
1

η0CK
||fu||0 (11)

||p||0 ≤
1

β

(
1 +

2 (η∞ + kτ∞) + ||u||∞
η0CK

)
||fu||0 (12)

Ma ||λ||20 +
1

2
〈λ〉2 ≤ 1

Ma
||fλ||20 (13)

where CK denotes the Korn’s inequality constant, β is the LBB constant.

If the body force in the pressure bound (12) tends towards zero, the limit for pressure is not necessarily zero due to
regularization parameter, means that the pressure is underdetermined in the rigid zone. Moreover, the high order regularity of
microstructure parameter is not controlled, i.e. it is only bounded with L2-norm and boundary norm (13).

The approximation of TVP problem, in its general abstract form using conforming framework, is to seek an approximated
solution (ũh, ph) ∈Wh ×Qh s. t.

aũ(ûh)(ũh, ṽh) + b(vh, ph)− b(uh, qh) = l(ṽh), ∀(ṽh, qh) ∈Wh ×Qh, (14)

where, Th ⊂ T,Vh ⊂ V,Wh ⊂ W, and Qh ⊂ Q are finite dimensional subspaces with the superscript h being a parameter
dependent on the mesh spacing. The problems that we have to solve here are the existence and uniqueness of the solution
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(ũh, ph) and the estimation ||λ− λh||0, ||u− uh||0, and ||p− ph||0. We assume that the inf − sup condition for the pair
(Vh,Qh) is satisfied i.e.

∃β > 0 s.t. sup
vh∈Vh

b(vh, qh)

||vh||
≥ β ||qh||Q/ kerBT

h
∀qh ∈ Qh, (15)

where β is independent of h. Clearly, the inclusion kerBh ⊂ kerB is not true in general. Nevertheless, results of theorem
2.1 concerning existence, uniqueness, and boundedness of the solution with the data are directly applied here. Indeed, the
necessary properties of aũ(ũ)(·, ·) are satisfied in whole space W. In addition, we assume the following conditions

Ma − C2Mb |uh|1,∞ > 0 (16)

η0CK − C1 |uh|1 > 0 (17)

C1 is the continuity constant of the convective terms in ((H1(Ω))d)3 due the embedding of ((H1(Ω))d)3 in ((L4(Ω))d)3 for
d ≤ 4 [7]. C2 is the continuity constant of thixotropy build-up tri-linear form due to Hölder inequality (L∞, L2, L2).
Now, we move to essential part of finite element approximation of comparing the discrete solution (λh,uh, ph) of the approx-
imated TVP problem (14) to the exact solution (λ,u, p) of the continuous TVP problem (6). The straightforward way is to
use monotonicity combined with the continuity for the coupled operator aũ(·)(·, ·) which is not true in this case. So, we use a
constrained monotonicity Proposition (2.3) together with the continuity Proposition (2.2) to establish our results.

Proposition 2.2 (Continuity) For all ũ = (λ,u), ṽ = (ξ,v), η̃ = (ζ,η) ∈W0, we have

au(ũ)(u,η)− au(ṽ)(v,η) ≤(2η∞ + 2τ∞k + C1 |u|1 + C1 |v|1) ||u− v||1 ||η||1 + 2(η∞ |v|1 + τ∞) ||λ− ξ||1 ||η||1 (18)

aλ(ũ)(λ, ζ)− aλ(ṽ)(ξ, ζ) ≤(Ma + (2C1 + C2Mb) |u|1) ||λ− ξ||0 ||ζ||1 + (2C1 + C2Mb) ||ξ||1 ||u− v||1 ||ζ||1 (19)

Proposition 2.3 (Constrained monotonicity) Let u be the solution of TVP problem, for all ũ = (λ,u), ṽ = (ξ,v) ∈ W0,
we have

au(ũ)(u,η)− au(v)(v,η) ≥ (η0CK − C1 |u|1) ||η||21 − (τ∞ + 2η∞ |u|1) ||ζ||0 ||η||1 (20)

aλ(ũ)(λ, ζ)− aλ(ṽ)(ξ, ζ) ≥ (Ma − C2Mb |u|1,∞) ||ζ||20 +
1

2
〈|u · n| ζ, ζ〉 − (C3 |η|0,∞ + C2Mb |η|1,∞) ||ξ||0 ||ζ||1

− 〈|u · n| ξ〉+〈|u · n| ζ〉+ − 〈|v · n| ξ〉+〈|v · n| ζ〉+
(21)

where, (ζ,η) = (λ− ξ,u− v).
Theorem 2.4 Let fu ∈ (L2(Ω))2 and fλ ∈ L2(Ω), the approximate thixo-viscoplastic problem (14) has a unique solution

(ũh, ph) = (λh,uh, ph) ∈ Wh × Qh. Assume in addition that the solution satisfies the conditions (16) and (17). Then, the
approximation solution satisfies the following best approximation

||λ− λh||20 ≤ (2 + 2C̃λ,λ) inf
ξh∈Th

||λ− ξh||21 + C̃λ,u inf
vh∈Vh

|u− vh|21,∞ (22)

|u− uh|21,∞ ≤ C̃u,λ inf
ξh∈Th

||λ− ξh||21 + (2 + 2C̃u,u) inf
vh∈Vh

|u− vh|21,∞ + Cu,p inf
qh∈Qh

||p− ph||20 (23)

where C̃λ,λ, C̃λ,u, C̃u,u, and C̃u,λ are a constants depending only onMa,Mb, η0, η∞, τ∞, k, β, CK , d, ||ξh||0, |u|1, |u|1,∞,
|u|0,∞, |uh|1,∞, and |vh|1,∞.

Remark 2.5 The energy inequality for the microstructure (22) states that the error for the approximation of microstructure
in L2-norm is bounded by the error of best approximation of the solution in H1-norm, which is not optimal. In contrast, the
energy inequality (23) state that the error estimate for velocity approximation in H1-norm is bounded by the best approxima-
tion of the solution in H1-norm as well which is optimal modulo the regularity requirement. These coarseness, i.e. the extra
regularity requirement for velocity on one hand and the non-optimality of the estimate for microstructure on the other hand, is
due to the weak coercivity of aλ(·)(·, ·) i.e. coercivity only in L2-norm and boundary norm.

P r o o f. To derive the error we subtract the approximated TVP (14) problem from the exact (6) TVP problem

aλ(ũ)(λ, ξh)− aλ(ũh)(λh, ξh) = 0, ∀ξh ∈ Th (24)

au(ũ)(u,vh)− au(ũh)(uh,vh) = b(vh, p− ph), ∀vh ∈ Vh (25)

Let ζh and ηh, ζh := ξh − λh (ζh ∈ Th), ηh := vh − uh (ηh ∈ Vh), be test functions and add respectively on both side of
(24) and (25) terms aλ(ṽh)(ξh, ζh)− au(ũ)(λ, ζh) and au(ṽh)(vh,ηh)− au(ũ)(u,ηh), we get

aλ(ṽh)(ξh, ζh)− aλ(ũh)(λh, ζh) = aλ(ṽh)(ξh, ζh)− aλ(ũ)(λ, ζh) (26)

au(ṽh)(vh,ηh)− au(ũh)(uh,ηh) = b(ηh, p− ph) + au(ṽh)(vh,ηh)− au(ũ)(u,ηh) (27)
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We apply monotonicity and continuity of aλ(·)(·, ·) and au(·)(·, ·) on LHS and RHS of (26) and (27), respectively, to have,

(Ma − C2Mb |uh|1,∞) ||ζh||20 ≤ aλ(ṽh)(ξh, ζh)− aλ(ũh)(λh, ζh) + (2C1 + C2Mb) |uh − vh|1,∞ ||λh||0 ||ζh||1 (28)

(η0CK − C1 |uh|1) ||ηh||
2
1 ≤ b(ηh, p− ph) + au(ṽh)(vh,ηh)−au(ũ)(u,ηh) + (τ∞+2η∞ |uh|1) ||λh−ξh||0 ||ηh||1 (29)

and

aλ(ṽh)(ξh, ζh)−aλ(ũ)(λ, ζh) ≤ (Ma+ (2C1+ C2Mb) |u|1) ||λ− ξh||0 ||ζh||1+(2C1+ C2Mb) |u− vh|1 ||ξh||0 ||ζh||1 (30)

au(ṽh)(vh,ηh)− au(ũ)(u,ηh) ≤ 2η∞ (|vh − u|1 + |u|1 ||λ− ξh||0) |ηh|1 + τ∞ (2k |vh − u|1 + ||λ− ξh||0) |ηh|1
+ (C1 |vh|1 + C1 |u|1) |vh − u|1 |ηh|1

(31)

beside the continuity of b(·, ·) on RHS of (27)
b(ηh, p− ph) ≤

√
2d ||p− ph||0 |ηh|1 , (32)

to conclude
||ζh||20 ≤ Cλ,λ ||λ− ξh||

2
0 + Cλ,u |u− vh|21,∞ + Cλ,u |uh − vh|21,∞ (33)

|ηh|
2
1 ≤ Cu,u |u− vh|

2
1 + Cu,λ |λ− ξh|21 + Cu,λ ||λh − ξh||20 + Cu,p ||p− ph||20 (34)

where Cλ,λ, Cλ,u, Cu,λ, and Cu,u are given as follows

Cλ,λ(Ma,Mb, |u|0,∞ , |u|1,∞ , |uh|0,∞) =
6(M2

a + (4C2
1 + C2

2M2
b) |u|

2
1,∞)

(Ma − C2Mb |uh|1,∞)2
(35)

Cλ,u(Ma,Mb, ||ξh||0 , |uh|0,∞) =
6C2

2M2
b ||ξh||

2
0

(Ma − C2Mb |uh|1,∞)2
(36)

Cu,u(η0, η∞, τ∞k, CK , |u|1) =
4(2η∞ + 2τ∞k + C1 |vh|1 + C1 |u|1)2

(η0CK − C1 |uh|1)2
(37)

Cu,λ(η0, η∞, τ∞, CK , |u|1) =
4(2η∞ |u|1 + τ∞)2

(η0CK − C1 |uh|1)2
(38)

Cu,p(d, η0, CK) =
4(
√

2d)2

(η0CK − C1 |uh|1)2
(39)

Then,
||ξh − λh||20 ≤ C̃λ,λ ||λ− ξh||

2
1 + C̃λ,u |u− vh|21,∞ (40)

|vh − uh|21,∞ ≤ C̃u,λ ||λ− ξh||
2
1 + C̃u,u |u− vh|21,∞ + Cu,p ||p− ph||20 (41)

where C̃λ,λ, C̃λ,u, C̃u,λ, and C̃u,u are dependent on Cλ,λ, Cλ,u, Cu,λ, and Cu,u. Thus, using triangular inequalities

||λ− λh||0 ≤ ||λ− ξh||0 + ||ξh − λh||0 , (42)

|u− uh|1,∞ ≤ |u− vh|1,∞ + |vh − uh|1,∞ , (43)

we conclude the proof.

The finite element approximations of the problem (6) have to take care of its saddle point character, due to the bilinear
form (9), the weak coercivity of aλ(·)(·, ·), and the dependency of solution on regularization parameter k. We opt for higher
order stable FEM pair biquadratic for velocity and piecewise linear discontinuous for the pressure, Q2/P

disc
1 , and higher order

quadratic for structure parameterQ2 with the appropriate stabilization terms [10,12]. On the one hand, the higher order choice
for velocity counterbalances the regularization impact and stabilization on the other hand enhances the coercivity to match the
complete norm of the microstructure space T equivalently as H1-norm i.e.

|||ξh|||2 = ||ξh||20 + jλ(ξh, ξh) (44)

where jλ(ξ, ξ) is bilinear form supplementing the microstructure equation. Indeed, let the domain Ω be partitioned by a grid
with K ∈ Th which are assumed to be quadrilaterals such that Ω =

(⋃
k∈Th K

)
. For an element K ∈ Th, we denote by E(K)

the set of all 1-dimensional edges of K. Let Ei :=
⋃
k∈Th E(K) be the set of all interior element edges of the grid Th. We

define the conforming finite element spaces Th ⊂ T, Vh ⊂ V, Wh := Th × Vh, and Qh ⊂ Q such that:

Wh×Qh=
{
ṽh=(ξh,vh)∈W, qh∈Qh | ṽh|K ∈(Qr(K))3 , qh|K ∈P disc

r−1(K); r ≥ 2,∀K ∈ Th, vh = 0 on ∂Ωh

}
. (45)
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The stabilized approximate problem reads: Find (ũh, ph) ∈Wh ×Qh s. t.

aũ(ũh, ṽh) + jũ(ũh, ṽh) + b(vh, ph)− b(uh, qh) = 0, ∀ (ṽh, qh) ∈Wh ×Qh. (46)

The stabilization term jũ(·, ·) is given as follows [12]

jũ(ũh, ṽh) := jλ(λh, ξh) + ju(uh,vh),

ju(uh,vh) =
∑
E∈Ei

γu|E|2
∫
E

[∇uh] [∇vh] dσ, jλ(λh, ξh) =
∑
E∈Ei

γλ|E|2
∫
E

[∇λh] [∇ξh] dσ.
(47)

The stabilization (47) is consistent and it is expected to recover the optimal order of convergence. The detailed corresponding
analysis goes beyond the goal of this note and will be reported in a separate work.

3 Numerical simulations

We investigate numerical solutions of Hous̆ka’s [6] thixo-viscoplastic material in a 4:1 curved contraction configuration. The
fully-developed flow conditions according to Hous̆ka thixotropic model are imposed at entry, Γ− , together with no-slip on
walls of reservoir, Γ.

The numerical solutions are obtained using a monolithic Newton-multigrid FEM solver. On the one hand, we are using a
global adaptive discrete Newton method to linearize the discrete non-linear TVP problem, where the adaptive discrete Newton
method is based on step-length in divided difference. The adaptive strategy is exclusively due to the current convergence rate
of residual. On the other hand, the linearized systems inside the outer Newton loops are solved using a coupled geometrical
multigrid solver based on local pressure Schur complement (LPSC) schemes. They are simple iterative relaxation methods
solving directly on element level and performing an outer block Gauss-Seidel iteration. The local character of this procedure
together with a global defect-correction mechanism on one hand, and the choice of discontinuous FE approximations for
pressure (P disc

1 ) on the other hand, results in an efficient solver for TVP problems. For details, we refer to [2–4].
Our emphasis is to revisit the flow characteristics by not ignoring the thixotropy inhabited in a material in pipelines, which

is a typical industrial application in transportation of waxy crude oils. Figure 1 illustrates the impact of breakdown parameter
Mb on the flow in the vicinity of walls. By a simple increase in the breakdown parameter, we induce more breakdown layers
close to walls of downstream section.

Fig. 1: Thixo-viscoplastic flows in contractions: The structuring level of material λ for thixotropic flows in 4:1 contractions w.r.t. break-
down parameters, b, for two different values Mb = 1.0 (Top) and Mb = 2.0 (Bottom), while the other parameters are set to constants
η0 = η1 = 1.0, τ0 = 0.0, Ma = 1.0,τ1 = 2.0, and k = 104.

Clearly, more breakdown layers prevent the material from resting along pipelines circumventing the need for extra lubrica-
tion and regularizing the restart pressure to optimal settings.
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4 Summary

We investigated the essential part of error analysis of FEM approximations for the quasi-Newtonian modelling approach of
thixo-viscoplastic flow problems. In this regard, the standard FEM settings of Navier-Stokes equations are adapted to deal
with the new thixo-viscoplastic generalized Navier-Stokes equations. The wellposedness results beside the boundedness of the
solutions with the data are used to set a constrained monotonicity of the coupled problem, which serves beside the continuity
to elegantly elaborate the energy inequality of the best approximation.
On the one hand, the energy inequality for the microstructure shows that the estimation of the error for the approximation
of microstructure in zero norm is bounded by the error of best approximation of the solution in one norm, causing the loss
of one order of convergence. On the other hand, the energy inequality for velocity shows that the error estimate for velocity
approximation in one norm is bounded by the error estimate of the best approximation of the solution in one norm modulo an
extra regularity requirement which is a clear manifestation of the weak coercivity of microstructure parameter operator in zero
norm and boundary norm only. Moreover, constants in energy inequalities are proportionally dependent on the regularization
parameter. We dealt with these coarseness, the proportional dependency of constants on the regularization parameter and
the weak coercivity of microstructure operator, by opting for stabilized higher order FEM. The higher order FEM choice
counterbalances the regularization effect, while the stabilization enhances the coercivity to an equivalent one norm.

We analysed numerically solutions of Hous̆ka’s [6] thixo-viscoplastic material in a 4:1 curved contraction configuration
using monolithic Newton-multigrid FEM solver. We investigated the impact of thixotropy breakdown parameter Mb on
material microstructuring level λ. In fact, increasing the breakdown parameter induces more breakdown layers in vicinity
of walls of downstream channel preventing the material from rest along pipelines, which circumvents the need for extra
lubrication and optimizes the restart pressure settings.
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