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Zusammenfassung

Diese Dissertation behandelt das Problem, torsionsfreie kovariante Ableitungen mit vorge-
schriebener Krümmung zu konstruieren. Die Krümmung einer solchen kovarianten Ableitung
erfüllt notwendigerweise die Bianchi-Identitäten. Das Hauptresultat der Arbeit besagt, dass
diese Bedingungen bereits hinreichend sind: jede analytische Krümmungsabbildung, die
die Bianchi-Identitäten erfüllt, kann lokal als Krümmung einer eindeutigen torsionsfreien
kovarianten Ableitung realisiert werden.

Als Anwendungen dieses Resultats in der Holonomietheorie können wir die lokalen
Existenzresultate für Riemannsche Metriken mit spezieller Holonomie von Calabi, Yau, Bryant
etc. vereinheitlichen und wesentlich vereinfachen.





Abstract

This dissertation deals with the problem of constructing torsion-free covariant derivatives
with prescribed curvature. The curvature of a such covariant derivative necessarily satisfies
the Bianchi identities. The main result of the present work asserts that these identities are
enough to achieve this: any analytic curvature map which satisfies the Bianchi identities, can
locally be realized as the curvature of a unique torsion-free covariant derivative.

As applications of this result in Holonomy Theory, we can unify in a simple way all of the
local existence results of Calabi, Yau, and Bryant, among others, for Riemannian metrics with
special holonomy.
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1
Introduction and historical context

The first account of the notion of holonomy can be traced back to the end of the 19th
century, to the work of Heinrich Hertz, who in his 1894 die Prinzipien der Mechanik in neuem
Zusammenhange dargestellt (“The principles of mechanics presented in a new form") coined the
terms holonomic and non-holonomic, to distinguish between two kinds of velocity constraints
in configuration spaces.

In a mathematical context, albeit related to Hertz’s notion, the concept of holonomy
was introduced by Élie Cartan in his 1925 La géométrie des espaces de Riemann (“Introduction
to Riemannian geometry"). The two reasons why Cartan became interested in holonomy
were first because he claimed that by means of holonomy, his 1913 classification of compact
subgroups of SO(n) could be significantly simplified, and secondly because he realized that
the notion of holonomy could be helpful in his quest of classifying Riemannian symmetric
spaces (see [1], [2], [3]).

For the better part of the next twenty years, further research in the field was relatively
meager. It was not until the 1950s that the revival of the area took place. Starting in 1952, with
A. Borel and A. Lichnerowicz showing that holonomy is always a Lie group (see [4]). Also
in the same year, G. de Rham in [5] proved what is now called the de Rham splitting Theorem.
Namely, if the holonomy of a Riemannian manifold is reducible then the metric must be a
local product metric. The following year, W. Ambrose and I. Singer established a link between
curvature and holonomy, see Proposition 3.7.5.

In actuality, the next big milestone came with M. Berger, who in his doctoral thesis [6],
and based on the Theorem of Ambrose and Singer, established necessary conditions for a
Lie algebra h ⊆ gl(V) to be the Lie algebra of the holonomy group of a torsion-free covariant
derivative, and used it to classify all of the possible irreducible, non-symmetric holonomy
algebras of Riemannian metrics, i.e. the holonomy algebras of affine manifolds, which are
entirely contained in so(V), see Proposition 3.8.4. The imposed condition on the covariant
derivative of it being torsion-free is what makes this classification problem non-trivial, since
in 1956 J. Hano and H. Ozeki proved in just a few pages ([7]) that in dimension n ⩾ 2, any
connected Lie subgroup of GL(n, R) can be realized as the holonomy of some affine covariant
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1. Introduction and historical context

derivative (with non-vanishing torsion, in general). The classification of holonomy groups
of torsion-free covariant derivatives is referred to in the modern literature as the holonomy
problem.

It is worth mentioning that, in his original list, Berger also included the group Spin(9) as
a possibility for it to occur as the holonomy group of a 16-dimensional manifold. However,
sometime later, D. Alekseevsky ([8]), as well as R. Brown and A. Gray ([9]), showed that any
Riemannian manifold having restricted holonomy contained in Spin(9) is necessarily locally
symmetric, rendering it thus irrelevant for Berger’s statement. Because the classification of
the holonomy of Riemannian symmetric spaces was by the time a settled matter, together
with the de Rham splitting Theorem, Berger’s list was the final step in completely classifying
the possible holonomy groups of a Riemannian simply-connected manifold.

The way in which Berger put his list together was by considering all of the connected,
and irreducible subgroups of SO(V), where V denotes a finite-dimensional real vector space,
which pass two concrete algebraic tests, nowadays known as Berger’s criteria. The first of
these tests determines all of the subgroups H ⊆ SO(V) having all of the previously mentioned
algebraic properties which are Berger subgroups, that is, subgroups such that its Lie algebra is
a Berger algebra, i.e. it satisfies

h = ⟨R(x,y)| R ∈ K(h); x,y ∈ V⟩,

where the space K(h) denotes the space of algebraic curvature tensors, which is defined as

K(h) :=

{︃
R ∈

⋀︂2
V∗ ⊗ h

⃓⃓⃓⃓
R(x,y)z+ R(y, z)x+ R(z, x)y = 0, for x,y, z ∈ V

}︃
and the notation ⟨S⟩ denotes the Lie algebra generated by the set S.

This test is necessary for the Lie algebra to occur as the holonomy algebra of a Riemannian
manifold, in light of the Ambrose-Singer Theorem (see Proposition 3.7.5). The second test
consists of analyzing whether a Berger algebra h satisfies K1(h) = {0}, where the space K1(h)

denotes the space of algebraic curvature derivatives, which is defined as

K1(h) := {ϕ ∈ V∗ ⊗K(h)| ϕ(x)(y, z) +ϕ(y)(z, x) +ϕ(z)(x,y) = 0 ∈ h, for x,y, z ∈ V}.

This test is necessary for the manifold having holonomy algebra h not to be locally symmetric
(see definition 3.7.5).

As it turned out, Berger’s list almost entirely coincides with that of the compact, connected
Lie subgroups of SO(n) transitively acting on the sphere Sn−1, which was established a
decade prior to Berger’s work in [10]. The entries on the said list that elude Berger’s are
namely the groups Sp(m) ·U(1) in SO(4m), and Spin(9) in dimension 16. The reason why the
case Spin(9) is omitted from Berger’s list was previously discussed. It can also be shown that
a Riemannian manifold whose holonomy is contained in Sp(m) ·U(1) is in reality already
contained in Sp(m). By making use of the so-called irreducible holonomy systems, in [11] J.
Simons proved an equivalent reformulation of Berger’s Theorem in this context. In the same
vein, albeit more than forty years after Simons’ work was published, in [12] C. Olmos gave a
completely geometric proof of the same result.
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One apparent limitation of Berger’s algebraic methods is that they were thought unable to
show which of these candidates actually occur as holonomy groups. However, after almost
30 years of work, the occurrence of the entries in Berger’s list as holonomy of torsion-free
covariant derivatives was settled, when R. Bryant, by using techniques of Cartan-Kähler
Theory, managed to show the occurrence of the exceptional groups. See [13, Theorem 3]

The first examples were only local ones, however as time went by, it was possible to
construct geodesically complete and even compact examples for each of the entries in Berger’s
list. See for example [14], [15, Sections 2 and 3], and [16]. As it happens, the geometry
of manifolds with special holonomy groups is of significant importance in many areas of
differential geometry and theoretical physics, in particular in string theory, where Calabi-Yau
3-folds are necessary to define the notion of mirror symmetry. Dwelling on these physical
notions is however beyond the scope of this work. For further reading on the topic see for
example [17], and [16, Chapter 9].

In his doctoral thesis, Berger offered in addition to the list of possible holonomy groups of
Riemannian manifolds a list of possible irreducible holonomy groups of simply-connected,
non-symmetric pseudo-Riemannian manifolds (see [15, Tables 2 and 3]). In [18] he tackled
the symmetric case. In contrast to the case of Riemannian holonomies, this list turned out
to be incomplete and in fact, it was not until 1998 with the work of S. Merkulov and L.
Schwachhöfer ([19]) when the complete classification of irreducible connected holonomies of
torsion-free covariant derivatives was settled in a definite manner.

All this intensive work notwithstanding, as of this writing, a complete classification of the
holonomy of pseudo-Riemannian manifolds is yet to be established. Technical difficulties like
the lack of an analogous of the de Rham splitting Theorem in the pseudo-Riemannian setting
make the classification of reducible holonomy groups significantly harder. At this point, it
should be noted that the interest in explicitly tackling the reducible part of the holonomy
problem has been gradually fading, since even if today such a list came to light, chances are
that it would be far too extensive to be of any practical use.

The main purpose of this work is to provide necessary and sufficient conditions for the
local existence of real analytic torsion-free covariant derivatives. Explicitly, our main result is
the following

Theorem 1. Let V a finite-dimensional R-vector space and U an open neighborhood of 0 in V .
Let S : U −→ K(End(V)) be a real analytic map such that dS : U −→ K1(End(V)) ⊆ V∗ ⊗
K(End(V)). Then there exists a unique torsion-free covariant derivative ∇ defined on a sufficiently
small neighborhood of the origin U ⊆ U such that

S(v) = P∇1,0R
∇
γv(1) for all v ∈ U.

A particularly interesting application of this result is that it allows us to provide a criterion
for the local existence of holonomy algebras of torsion-free covariant derivatives, which at the
same time proves the fact that Berger’s criteria truly are the only two obstructions for a Lie
algebra to occur as holonomy algebra of torsion-free covariant derivatives. Indeed, we prove
the following
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1. Introduction and historical context

Theorem 2. Let V be a finite-dimensional real vector space. Let S : U −→ K(g) be a real analytic map
defined in an open neighborhood U of the origin in V which satisfies that dS : U −→ K1(g) and let∇
be the covariant derivative given by Theorem 1. It holds that

hol(∇) = ⟨S(v)(x,y)| v ∈ U; x,y ∈ V⟩.

An immediate consequence of Theorem 2 is the following criterion for the existence of
holonomies of torsion-free covariant derivatives

Corollary. In the situation of Theorem 2, let h ⊆ g be a Lie subalgebra. It holds that hol(∇) ⊆ h if,
and only if, the real analytic map S takes values in the space K(h).

Also, if it happens that the Lie algebra h admits elements of full curvature, that is, there
exists R ∈ K(h) such that

h = ⟨R(x,y)| x,y ∈ V⟩,

we obtain the following existence result:

Corollary. Let h be a Berger algebra that admits elements of full curvature. Then it occurs as the
holonomy algebra of a torsion-free covariant derivative.

The standout feat of the previous result is that it produces conditions for the occurrence
of a Lie algebra as holonomy of torsion-free covariant derivatives, which unify and simplify
the previous work on the subject, since, as of this writing, there are no known examples of
a Berger algebra which does not admit elements of full curvature, and thus, locally, every
known example of a Berger algebra actually occurs as the holonomy algebra of a torsion-free
covariant derivative.

The present work is structured as follows. Chapter 2 essentially provides the foundations
for the proof of Theorem 1. In the first half, we present some standard results in the theory
of ordinary differential equations in the real analytic setting. In the second half, we turn our
attention to the necessary algebraic preliminaries from the theory of symmetric polynomials.

The third chapter is dedicated to collecting some relevant facts about the theory of principal
fiber bundles, which provide us with the appropriate setting for the study of the curvature
tensor, which will be helpful in the proof of the Main Result. It also provides the adequate
setting to offer a simple proof of Theorem 2. It ends by giving a brief introduction to basic
holonomy theory, a discussion about Berger’s classification of Riemannian holonomies, and
the geometry of manifolds with holonomy one of the entries in Berger’s list.

The fourth chapter is the core chapter of the work. It starts by gathering some further
required results from classical differential geometry, for then in the middle section of the
chapter, namely section 4.3, provide a proof of the Main Result.

The final chapter is devoted to the study of some consequences of Theorem 1. In section
5.1 we prove Theorem 2 and its aforementioned corollaries, while in the last part we study
some further ramifications of Theorem 1 in the case of some explicit Lie algebras.
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2
Preliminaries

2.1 Ordinary differential equations

This section is dedicated to the study of real analytic solutions to systems of ordinary
differential equations.

Despite the fact that the results presented are considered standard, we include them to be
as self-contained as we possibly can.

The main goal of the section is to provide the necessary conditions for the initial value
problem (IVP) u(m)(t) = F(t,u(t), . . . ,u(m−1)(t)),

u(i)(t0) = x
i i ∈ {0, . . . ,m− 1}

(2.1)

to have a unique solution given by a convergent power series which, in some suitable sense,
depends on the initial conditions in a real analytic fashion.

To motivate the statement that momentarily will be proved, let us recall the standard
result on the existence and uniqueness of continuously differentiable solutions for first-order
systems of ordinary differential equations (see for example [20, Appendix D, Theorem D.6]):

Proposition 2.1.1. Let J ⊆ R be an open interval, U ⊆ Rm an open subset, and let F :=

(F1, . . . , Fm) : J×U −→ Rm be a smooth vector-valued function. Then for any t0 ∈ J, x0 ∈ U,
there exists an open interval t0 ∈ J0 ⊆ J and an open subset x0 ∈ U0 ⊆ U, such that for each s ∈ J0,
x ∈ U0, there is a C1 map y : J0 −→ U solving the IVPẏ(t) = F(t, y(t)),

y(s) = x.

Furthermore, any two differentiable solutions to this IVP agree on their common domain and it
smoothly depends on its initial conditions in the sense that the mapΦ : J0 × J0 ×U0 −→ U defined by
Φ(t, s, x) := y(t), where y : J0 −→ U is the unique solution to the previous IVP, is smooth.
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2. Preliminaries

We notice the previous proposition can be reformulated in a much more succinct manner.
Indeed, with the same assumptions of the previous proposition, finding a differentiable
solution to the given IVP which smoothly depends on the initial data is equivalent to finding
a smooth solution u : W ⊆ Rm+2 −→ Rm to the IVP∂u

∂t (t, s, x) = F(t, u(t, s, x)),

u(s, s, x) = x,
(2.2)

whereW ⊆ Rm+2 is an open neighborhood of (t0, t0, x0).
The way we are going to tackle our original question is by proving a suitable analogue of

the previous result. That is, by proving the existence and uniqueness of real analytic solutions
of systems of first-order ordinary differential equations, which depend in a real analytic
fashion on the initial conditions.

Even though all of this discussion can be reduced to a corollary of the well-known Cauchy-
Kovalevskaya Theorem (cf. [21, Theorem 7.2.9]), we are nonetheless going to avoid taking this
route and prove the real analytic version of the previous proposition as a standalone result.

In order to achieve this we are going to start by proving a series of simpler results, which
later on can be put together and build the proof of our desired result.

Before we dive into the specifics, let us introduce a couple of necessary notions.

Definition 2.1.1. Let F,G ∈ C∞(U), with 0 ∈ U ⊆ Rm. We say that Gmajorizes F (alternatively,
that G is a majorant of F), denoted G≫ F or F≪ G, if

DνG(0) ⩾ |DνF(0)| for all ν ∈Nm,

where for ν = (ν1, . . . ,νm), DνF denotes the |ν|-order derivative of F

DνF =
∂|ν|F

∂(x1)ν1 · · ·∂(xm)νm
.

In the case of vector-valued functions, for F = (F1, . . . , Fℓ), G = (G1, . . . ,Gℓ) ∈ C∞(U, Rℓ), we
say that G majorizes F, if Gi ≫ Fi, for i ∈ {1, . . . , ℓ}.

Definition 2.1.2. Let U ⊆ Rm be an open subset. A function F : U −→ R is said to be real analytic
on U, written f ∈ Cω(U), if for each x0 ∈ U the function F may be represented by a convergent power
series in some neighborhood of x0.

A vector-valued function F = (F1, . . . , Fℓ) : U −→ Rℓ is called real analytic if Fi : U −→ R is
real analytic, for i ∈ {1, . . . , ℓ}.

The following result is a basic fact concerning real analytic functions.

Proposition 2.1.2 ([22, Theorem 1.1.17]). Let U ⊆ Rm be an open subset and f : U −→ R be
infinitely differentiable. The function f is real analytic if, and only if, for each x0 ∈ U there exists an
open neighborhood x0 ∈ V ⊆ U, and constants C, r > 0 such that⃓⃓⃓⃓

1
ν!
Dνf(x)

⃓⃓⃓⃓
⩽

C

r|ν|

for all x ∈ V and ν ∈Nm.
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2.1 Ordinary differential equations

This boundedness result of the derivatives of real analytic functions can be easily
generalized to vector-valued functions:

Proposition 2.1.3. Let U ⊆ Rm be an open subset and F : U −→ Rℓ be infinitely differentiable.
The function F is real analytic if, and only if, for each x0 ∈ U there exists an open neighborhood
x0 ∈ V ⊆ U, and constants C, r > 0 such that⃦⃦⃦⃦

1
ν!
DνF(x)

⃦⃦⃦⃦
⩽

C

r|ν|
,

for all x ∈ V and ν ∈Nm, and ∥·∥ denotes the Euclidean norm on Rℓ.

Proof. The result is in essence a consequence of the elementary estimate

∥·∥∞ ⩽ ∥·∥ ⩽
√
ℓ∥·∥∞

between the Euclidean and the ∞ norms on Rℓ.
Indeed, assume F = (F1, . . . , Fℓ) to be real analytic. The previous proposition implies that,

for each x0 ∈ U, i ∈ {1, . . . , ℓ}, there exist positive constants Ci, ri and open neighborhoods
Vi ⊆ U such that ⃓⃓⃓⃓

1
ν!
DνFi(x)

⃓⃓⃓⃓
⩽
Ci

r
|ν|
i

for all x ∈ Vi, ν ∈Nm.
Set C ′ := maxi {Ci}, r := mini {ri}, V :=

⋂︁
i Vi.

It then holds for all x ∈ V , ν ∈Nm⃦⃦⃦⃦
1
ν!
DνF(x)

⃦⃦⃦⃦
∞ = max

i

{︃⃓⃓⃓⃓
1
ν!
DνFi(x)

⃓⃓⃓⃓}︃
⩽
C ′

r|ν|

and thus ⃦⃦⃦⃦
1
ν!
DνF(x)

⃦⃦⃦⃦
⩽
√
ℓ

⃦⃦⃦⃦
1
ν!
DνF(x)

⃦⃦⃦⃦
∞ ⩽

C ′√ℓ
r|ν|

=:
C

r|ν|
.

If, on the other hand, the above estimate holds, we have that, for i ∈ {1, . . . , ℓ},⃓⃓⃓⃓
1
ν!
DνFi(x)

⃓⃓⃓⃓
⩽

⃦⃦⃦⃦
1
ν!
DνF(x)

⃦⃦⃦⃦
∞ ⩽

⃦⃦⃦⃦
1
ν!
DνF(x)

⃦⃦⃦⃦
⩽

C

r|ν|
,

which in light of the previous proposition implies the real analyticity on U of each of the
coordinate function Fi, and whence, that of F.

We are now ready to begin with the buildup of the proof for the main result of the section:

Proposition 2.1.4. Let 0 ∈ U ⊆ Rm be an open set, F = (F1, . . . , Fm) : U −→ Rm be a real analytic
vector-valued function. Then the unique solution u = (u1, . . . ,um) to the autonomous IVPdu

dt (t) = F(u(t))

u(0) = 0

is real analytic near 0.
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2. Preliminaries

Proof. The smoothness near the origin of the solution u is a consequence of Proposition 2.1.1.
The fact that, for i ∈ {1, . . . ,m},

dui

dt
= Fi(u(t))

implies that, for k ∈N0,

uik+1(t) :=
dk+1ui

dtk+1 (t) =
dk

dtk
(Fi ◦ u)(t) (2.3)

This recursion formula allows us to write each of the uik in terms of the derivatives of the
coordinate functions Fj in a particular way, which will be useful in showing the real analyticity
of each of the ui.

In order to achieve this we rely on the following generalization of the more or less well-
known Faà di Bruno formula, for the higher-order derivatives of the composition of two
one-variable functions:

Proposition 2.1.5 ([23, Theorem 2.1]). Let f ∈ C∞(Rℓ), g1, . . . ,gℓ ∈ C∞(R). Then the derivatives
of
h(t) := f(g1(t), . . . ,gℓ(t)) are given by

h(k)(t) =∑︂
λ∈Nℓ

0
1⩽|λ|⩽k

Dλf(g1(t), . . . ,gℓ(t))
∑︂
p(k,λ)

k!
k∏︂
j=1

1
µj!

(︃
(g1)(aj)(t)

aj!
, . . . ,

(gℓ)(aj)(t)

aj!

)︃µj
,

where the set p(k, λ) is defined as

p(k, λ) :=
{︂
(µ1, . . . ,µk; (a1, . . . ,ak)) ∈

(︁
Nℓ

0
)︁k ×Nk

0

⃓⃓⃓
for some 1 ⩽ s ⩽ k,

µi = 0 and ai = 0 for 1 ⩽ i ⩽ k− s; |µi| > 0 for k− s+ 1 ⩽ i ⩽ k;

and 0 < ak−s+1 < · · · < ak are such that
k∑︂
i=1

µi = λ,
k∑︂
i=1

ai|µi| = k
}︂

.

From the previous proposition we thus obtain, by setting f = Fi, gj(t) = uj(t) for
j ∈ {1, . . . ,m}, together with (2.3), that for each k ⩾ 1, there exist a unique polynomial
Pik ∈N0[X1, . . . ,Xℓ], with ℓ = m

(︁
m+k−1
m

)︁
= #
(︁
{µ ∈Nm

0 | |µ| ⩽ k− 1}× {1, . . . ,m}
)︁

such that

uik(t) = P
i
k

(︁
DµFj(u(t))

)︁
, with µ ∈Nm

0 , |µ| ⩽ k− 1, j = 1, . . . ,m.

We also notice that these polynomials are, in a manner of speaking, universal, since they
do not depend on the functions Fj in the sense that for any smooth function G = (G1, . . . ,Gm),
i ∈ {1, . . . ,m}, Pik(D

µGj(0)) := vik(0), where v = (v1, . . . , vm) is the solution to the IVPdv
dt (t) = G(v(t))

v(0) = 0.
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2.1 Ordinary differential equations

Now, since the map F ∈ Cω((−a,a)m, Rm), Proposition 2.1.3 guarantees the existence of
an open neighborhood 0 ∈ V ⊆ (−a,a)m and positive constants C, r such that

∥DµF(x)∥ ⩽ Cµ!
r|µ|

,

for all x ∈ V , µ ∈Nm
0 .

Let H :=
{︁

x ∈ V
⃓⃓ ⃓⃓
x1 + · · ·+ xm

⃓⃓
< r

}︁
and set G = (G1, . . . ,Gm) =: (GC,r, . . . ,GC,r) ∈

Cω(H, Rm), with

GC,r(x) =
Cr

r− (x1 + · · ·+ xm)

=C
∑︂
ℓ⩾0

(︃
x1 + · · ·+ xm

r

)︃ℓ
=C

∑︂
ℓ⩾0

1
rℓ

∑︂
µ∈Nm

0 ,
|µ|=ℓ

(︃
ℓ

µ

)︃
xµ

=
∑︂
|µ|⩾0

1
µ!
· C

|µ|!
r|µ|

xµ,

and thus, for j ∈ {1, . . . ,m},

⃓⃓
DµFj(0)

⃓⃓
⩽ ∥DµF(0)∥ ⩽ Cµ!

r|µ|
⩽
C|µ|!
r|µ|

= DµGC,r(0). (⋆)

Next we claim that, with G : H −→ Rm given as before, the IVPdv
dt (t) = G(v(t))

v(0) = 0

has a unique solution that is real analytic near the origin.
Indeed, since for v = (v1, . . . , vm) it holds that

v̇i(t) = v̇j(t),

the fact that v(0) = 0 implies that for all i, j, vi ≡ vj =: v. Thus, finding the solution to the
above IVP boils down to solving the one variable IVPdv

dt = Cr
r−mv

v(0) = 0.

An elementary computation easily shows that the solution to this IVP is given by

v(t) =
1
m

(︂
r−
√︁
r2 − 2Crmt

)︂
,

which is analytic on
(︁
−∞, r

2Cm

)︁
, and hence the desired assertion is proved.

9



2. Preliminaries

By making use of the fact that the previously found polynomials Piℓ have positive
coefficients together with the estimate (⋆) we obtain, for i ∈ {1, . . . ,m}, k ∈N

uik(0) = P
i
k(D

µFj(0)) ⩽
⃓⃓
uik(0)

⃓⃓
⩽ Pik(

⃓⃓
DµFj(0)

⃓⃓
) ⩽ Pik(D

µGC,r(0)) = v(k)(0),

which implies the convergence of the power series

∑︂
k⩾0

1
k!

⃓⃓
uik(0)

⃓⃓
tk,

what guarantees that in a sufficiently small neighborhood of the origin,

ui(t) =
∑︂
k⩾0

1
k!
uik(0)t

k,

thus showing the real analyticity near 0 of the solution u.

We notice that an immediate consequence of the previous result is the existence of real
analytic solutions of inhomogeneous systems of ordinary differential equations:

Corollary 2.1.1. Let 0 ∈ J ⊂ R be an open interval, 0 ∈ U ⊆ Rm be an open set,
F = (F1, . . . , Fm) : J × U −→ Rm be a real analytic vector-valued function. Then the unique
solution u = (u1, . . . ,um) to the IVP du

dt (t) = F(t, u(t))

u(0) = 0

is real analytic near 0.

Indeed, we prove this result by defining the auxiliary autonomous IVPdv
dt = G(v(t)) := (1, F(v(t)))

v(0) = 0.

Clearly, the unique analytic solution to this auxiliary IVP gives us the unique analytic
solution to the nonautonomous system.

Our next result is a slight generalization of the previous proposition, which in fact settles
the matter regarding the particular system that is of interest to us.

Proposition 2.1.6. Let u0 : Rm −→ Rℓ be real analytic near 0, F : Rm+ℓ −→ Rℓ be real analytic
near (0, u0(0)). Then the initial value problem∂u

∂t (x, t) = F(x, u(x, t))

u(x, 0) = u0(x)

admits a unique real analytic solution near 0 ∈ Rm+1.

Proof. We proceed in a similar fashion as in the proof of the previous result. Firstly, by setting
v(x, t) := u(x, t) − u0(x) we may assume, without loss of generality, that u0 ≡ 0. With this

10
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assumption, it easily follows that for a smooth solution u = (u1, . . . ,uℓ) to the initial value
problem ∂u

∂t (x, t) = F(x, u(x, t))

u(x, 0) = 0,

any ν ∈Nm
0 , and a ∈ {1, . . . , ℓ},

Dνua(0, 0) = 0.

In a similar fashion to the proof of the previous proposition, by means of the generalized
Faà di Bruno formula, we obtain for all ν ∈ Nm

0 , k ∈ {1, . . . , ℓ} unique and universal
polynomials with non-negative coefficients Paν,k such that

Dν
∂k

∂tk
ua(0, 0) = Paν,k

(︃
Dµ

∂j

∂tj
Fc(x, u(x, t))

)︃⃓⃓⃓⃓
(x,t,u)=0

,

with |µ|+ j ⩽ |ν|+ k− 1, c ∈ {1, . . . , ℓ}.
Next, let C, r > 0 such that on a suitable open neighborhood 0 ∈ V ⊆ Rm+ℓ, for all

α ∈Nm+ℓ
0 ,

∥DαF(z)∥ ⩽ Cα!
r|α|

,

for all z ∈ V and define the analytic map G = (G1, . . . ,Gℓ) =: (GC,r, . . . ,GC,r) : H −→ Rℓ,
with H :=

{︂
(x1, . . . , xm,y1, . . . ,yℓ) ∈ V

⃓⃓⃓ ⃓⃓
x1 + · · ·+ yℓ

⃓⃓
< r

}︂
, and

GC,r(x, y) :=
Cr

r− (x1 + · · ·+ yℓ)
.

We claim that the initial value problem∂v
∂t (x, t) = G(x, t)

v(x, 0) = 0

has a real analytic solution near 0 ∈ Rm+1.
In order to achieve this, we notice that from the definition of G together with the fact that

v(x, 0) = 0 we obtain, for any a,b ∈ {1, . . . , ℓ},

va(x, t) = vb(x, t) =: v(x, t),

where v = (v1, . . . , vℓ).
Thus, finding a solution to the above initial value problem boils down to finding a solution

to the initial value problem ∂v
∂t (x, t) = Cr

r−(x1+···+xm+ℓv(x,t))

v(x, 0) = 0.
(2.4)

11
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By setting z = x1 + · · ·+ xm, finding a solution to the previous IVP is equivalent to finding
a solution to the initial value problem∂w

∂t (z, t) =
Cr

r−z−ℓw(z,t)

w(z, 0) = 0.

We notice that this IVP is basically an analogue of the auxiliary initial value problem used
in our previous proof. A direct computation shows that a solution for it is given by

w(z, t) =
1
ℓ

(︃
r− z−

√︂
(r− z)2 − 2Crℓt

)︃
.

Thus, a solution to (2.4) is then given by

v(x, t) =
1
ℓ

r− m∑︂
j=1

xj −

⌜⃓⃓⃓
⎷r− m∑︂

j=1

xj

2

− 2Crℓt

,

which is analytic on Bs(0) ⊂ Rm+1, for sufficiently small s > 0.
We finalize by noting that, in view of the straightforward estimate

|DαFa(0)| ⩽ DαGC,r(0),

for α ∈Nm+ℓ
0 , a ∈ {1, . . . , ℓ}, we obtain for every ν ∈Nm

0 , k ∈N0,

⃓⃓⃓⃓
Dν

∂k

∂tk
ua(0, 0)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓Paν,k

(︃
Dµ

∂j

∂tj
Fc(x, u(x, t))

)︃⃓⃓⃓⃓
(x,t,u)=0

⃓⃓⃓⃓
⃓

⩽ Paν,k

(︃⃓⃓⃓⃓
Dµ

∂j

∂tj
Fc(x, u(x, t))

⃓⃓⃓⃓)︃⃓⃓⃓⃓
(x,t,u)=0

⩽ Paν,k

(︃
Dµ

∂j

∂tj
GC,r(x, v(x, t))

)︃⃓⃓⃓⃓
(x,t,v)=0

=Dν
∂k

∂tk
v(0, 0),

which in turn implies the convergence in a sufficiently small neighborhood of 0 ∈ Rm+1 of
the series ∑︂

µ∈Nm+1
0 ,

|µ|⩾0

1
µ!

|Dµua(0, 0)|(x, t)µ

for a ∈ {1, . . . , ℓ}, thus obtaining the real analyticity near the origin of the solution u. The fact
this analytic solution is indeed unique follows directly from the nature of the proof since we
explicitly showed that there is only one possibility for the values of its derivatives at 0, which
thus uniquely determines its Taylor series expansion at the origin.

As it turns out, our question regarding real analytic solutions depending in a real analytic
fashion on initial conditions can now easily be answered:
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2.1 Ordinary differential equations

Corollary 2.1.2. Let J ⊆ R be an open interval, U ⊆ Rm be an open subset, F : J×U −→ Rm a real
analytic vector-valued function. Then for (t0, t0, x0) ∈ J× J×U the initial value problem∂u

∂t (t, s, x) = F(t, u(t, s, x)),

u(t0, t0, x) = x
(2.5)

has a unique solution which is real analytic near (t0, t0, x0) ∈ Rm+2.

Proof. By replacing J× J×U by J× J×U − {(t0, t0, x0)}, we may assume, without loss of
generality, that (t0, t0, x0) = (0, 0, 0) = 0 ∈ Rm+2.

Now, proceeding as in our argument for the previous corollary, we obtain finding the
solution to this IVP is equivalent to finding the solution to the initial value problem∂w

∂t (t, y) = G(w(t, y))

w(0, y) = y,

which, by our previous proposition has a unique real analytic solution near 0 ∈ Rm+2, hence
proving our claim.

As previously asserted at the beginning of the section, the previous result is equivalent to
the real analytic analogue of Proposition 2.1.1. This allows us to provide the adequate setting
for the original differential equation in which we were interested in the first place:

Proposition 2.1.7. Let U ⊆ Rm+1 be an open set, F : U −→ R be real analytic. Thus, for all
(x0, . . . , xm−1, t0) ∈ U, the initial value problemu(m)(t) = F(u(t), . . . ,u(m−1)(t), t)

u(i)(t0) = x
i i ∈ {0, . . . ,m− 1}

has a unique real analytic solution near (x0, . . . , xm−1, t0), which depends in a real analytic fashion on
the initial conditions.

Proof. By setting ui = u(i−1), for i ∈ {1, . . . ,m} we obtain that a solution to this IVP is
equivalent to a solution to the initial value problemdu

dt (t) = G(u(t), t) := (u2, . . . ,um, F(u(t), t))

u(t0) = (x0, . . . , xm−1),

which in light of our previous result has a unique real analytic solution near (x0, . . . , xm−1, t0)

depending in a real analytic fashion on the initial data. Proving thus our assertion.

In order to make some final remarks on the topics previously discussed, we formally
introduce a concept of which we shall make intensive use in later steps in this work (and of
which until this point we have only superficially used), namely, that of a formal power series.
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Definition 2.1.3. Let (A,+, ·) be a commutative algebra over a field F. A formal power series in
the indeterminates x1, . . . , xm with coefficients in A is an expression f =

∑︁
µ∈Nm

0
aµx

µ1
1 · · · x

µm
m ,

in short
∑︁
µ aµxµ or

∑︁
aµxµ, where aµ ∈ A for every µ. The aµ’s are called the coefficients of∑︁

aµxµ. The coefficient a(0,...,0) is denoted by f(0). The set of all these formal power series will be
denoted by A[[x1, . . . , xm]] or A[[x]].

We notice that the algebra structure ofA naturally induces a commutative algebra structure
on A[[x]]. Indeed, by setting∑︂

µ

aµxµ +
∑︂
µ

bµxµ :=
∑︂
µ

(aµ + bµ)xµ,

(︄∑︂
µ

aµxµ
)︄
·

(︄∑︂
µ

bµxµ
)︄

:=
∑︂
µ

 ∑︂
ν+λ=µ

aν · bλ

xµ.

The proof of the following lemma is straightforward.

Lemma 2.1.1. Let (A,+, ·,⩽) be a commutative algebra over the field F which is additionally a
partially ordered set. It holds that the commutative algebra A[[x]] is a partially ordered set as well, with
the order relation given by

f ⩽ g if and only if, for all µ ∈Nm, aµ ⩽ bµ,

where f =
∑︁
µ aµxµ, g =

∑︁
µ bµxµ ∈ A[[x]].

Remark. By using the proof of the previous proposition together with the previous lemma,
we can deduce that, if R[[x]] ∋ F =

∑︁
µ aµxµ ⩾ 0 (in the sense of the previous lemma), and

u is such that u(m) ⩽ F(t,u,u ′, . . . ,u(m−1)), with u(0) = 0, . . . ,u(m−1)(0) = 0, then it holds
that u ⩽ v, where v(m) = F(t, v, . . . , v(m−1)), with v(0) = 0, . . . , v(m−1)(0) = 0. Indeed, the
inequality u(m) ⩽ F(t,u,u ′, . . . ,u(m−1)) with u(0) = · · · = u(m−1)(0) = 0 is equivalent to the
inequality du

dt ⩽ G(t, u)

u(0) = 0,

with G and u defined as in the proof of Proposition 2.1.7.
The fact that F ⩾ 0 implies for i = 1, . . . ,m, k ∈N,

(︁
ui
)︁(k)

(0) ⩽ Pik(D
µFj(0)) =

(︁
zi
)︁(k)

(0),

where z = (z1, . . . , zm) is a solution to the initial value problemdz
dt = G(t, z)

z(0) = 0

This implies

wi =
∑︂
k⩾0

(︁
wi
)︁(k)

(0)
k!

tk ⩽
∑︂
k⩾0

(︁
zi
)︁(k)

(0)
k!

tk = zi, i = 1, . . . ,m.
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Thus w ⩽ z, which implies in particular

u = w1 ⩽ z1 = v,

and from the definition of G,v(m) = F(t, v, . . . , v(m−1))

v(i)(0) = 0 i ∈ {0, . . . ,m− 1}.

An immediate consequence of the previous remark is the following

Proposition 2.1.8. Let U ⊆ Rm+1 be an open set containing 0, F : U −→ R be real analytic, whose
Taylor series at 0 satisfies F ⩾ 0 in the sense of Lemma 2.1.1. If u is a function satisfying the differential
inequality u(m)(t) ⩽ F(u(t), . . . ,u(m−1)(t), t)

u(i)(0) = 0 i ∈ {0, . . . ,m− 1}

then u is in fact a real analytic function near 0.

We finish up this section by making some further comments regarding the particular case
in which H = R. In particular, in the relationship between smooth functions and their formal
Taylor series.

Let f ∈ C∞(Rm). We denote its formal Taylor series at the point x = 0 by

T(f) :=
∑︂
µ

1
µ!
Dµf(0)xµ ∈ R[[x]].

A well-known fact is that the map

C∞(Rm) −→R[[x]]

f ↦−→T(f)

is in fact surjective. Explicitly, we have the following result (see [24, Theorem 1.5.4]):

Proposition 2.1.9 (Theorem of Borel). For each sequence (cµ)µ∈Nm
0
⊆ R there exists a smooth

function f ∈ C∞(Rm) such that
1
µ!
Dµf(0) = cµ.

Of course, such an f is highly not uniquely given, not even in the casem = 1. This is due
to the fact of the existence of smooth functions whose formal Taylor series at 0 is the 0-series,
like the well-known case of the smooth function e−

1
x2 .

It is also worth pointing out that thanks to the Theorem of Borel, and by working
component-wise, we obtain a surjection

C∞(Rm, Rℓ) −→ Rℓ[[x]].
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2.2 The vector spaces Sym•W and
⋀︁•
W

Throughout this section, W will denote an inner-product finite-dimensional real vector space,
whose inner product we denote by ⟨·, ·⟩. The inner product onW induces an inner product on
the tensor powers ofW. Namely, by linearly extending the map

⟨·, ·⟩ :
k⨂︂
W ×

k⨂︂
W −→ R

(v1 ⊗ · · · ⊗ vk,w1 ⊗ · · · ⊗wk) ↦−→
k∏︂
i=1

⟨vi,wi⟩ .

Next, we define the natural maps

πSym :

k⨂︂
W −→ SymkW

w1 ⊗ · · · ⊗wk ↦−→
1
k!

∑︂
σ∈Sk

wσ(1) ⊗ · · · ⊗wσ(k)

π⋀︁ :
k⨂︂
W −→

⋀︂k
W

w1 ⊗ · · · ⊗wk ↦−→
1
k!

∑︂
σ∈Sk

sgn(σ)wσ(1) ⊗ · · · ⊗wσ(k),

We note that the maps πSym and π⋀︁ are self-adjoint. Indeed,

⟨︁
πSym (v1 ⊗ · · · ⊗ vk),w1 ⊗ · · · ⊗wk

⟩︁
=

⟨︄
1
k!

∑︂
σ

vσ(1) ⊗ · · · ⊗ vσ(k),w1 ⊗ · · · ⊗wk

⟩︄

=
1
k!

∑︂
σ

∏︂
i

⟨︁
vσ(i),wi

⟩︁
=

1
k!

perm(
⟨︁
vi,wj

⟩︁
)i,j

=
1
k!

∑︂
σ

∏︂
i

⟨︁
vi,wσ(i)

⟩︁
=
⟨︁
v1 ⊗ · · · ⊗ vk,πSym (w1 ⊗ · · · ⊗wk)

⟩︁
,

where perm : Mk×k(R) −→ R denotes the permanent of the matrix, which is defined as

perm(aij)1⩽i,j⩽k :=
∑︂
σ∈Sk

k∏︂
i=1

aiσ(i).

Similarly to the determinant, the permanent is invariant under transposition, that is,
perm(A) = perm(AT ), which translates into the equation∑︂

σ

∏︂
i

aiσ(i) =
∑︂
σ

∏︂
i

aσ(i)i,

which is what justifies the second-to-last equality previously written.
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That the map πSym is in fact self-adjoint follows from the fact that every element of
⨂︁kW

is a finite sum of indecomposable tensors. The proof for π⋀︁ is completely analogous, due to
the invariance of the determinant under transposition.

We also note that both of these maps are idempotent, that is, π2
Sym = πSym , π2⋀︁ = π⋀︁ :

π2
Sym (w1 ⊗ · · · ⊗wk) = πSym

(︄
1
k!

∑︂
σ

wσ(1) ⊗ · · · ⊗wσk

)︄

=
1

(k!)2

∑︂
σ,τ

wτσ(1) ⊗ · · · ⊗wτσ(k)

=
1

(k!)2

∑︂
σ,τ

wσ(1) ⊗ · · · ⊗wσ(k)

=
1
k!

∑︂
σ

wσ(1) ⊗ · · · ⊗wσ(k)

= πSym (w1 ⊗ · · · ⊗wk).

For the idempotence of π⋀︁ we need to perform a similar calculation, noting that
π⋀︁ (wσ(1) ⊗ · · · ⊗wσ(k)) = sgn(σ)π⋀︁ (w1 ⊗ · · · ⊗wk).

The result now follows, as before, from the linearity of πSym and π⋀︁ .
We also define ⟨·, ·⟩Symk : SymkW × SymkW −→ R as ⟨·, ·⟩Symk = ⟨·, ·⟩ |SymkW×SymkW

and the analogous ⟨·, ·⟩⋀︁k . From the previous discussion we can obtain an explicit formula for
these inner products:

⟨v1 · . . . · vk,w1 · . . . ·wk⟩Symk =
⟨︁
πSym (v1 ⊗ · · · ⊗ vk),πSym (w1 ⊗ · · · ⊗wk)

⟩︁
=
⟨︁
v1 ⊗ · · · ⊗ vk,πSym (w1 ⊗ · · · ⊗wk)

⟩︁
=

1
k!

perm(
⟨︁
vi,wj

⟩︁
)i,j;

⟨v1 ∧ . . . ∧ vk,w1 ∧ . . . ∧wk⟩⋀︁k = ⟨π⋀︁ (v1 ⊗ · · · ⊗ vk),π⋀︁ (w1 ⊗ · · · ⊗wk)⟩

= ⟨v1 ⊗ · · · ⊗ vk,π⋀︁ (w1 ⊗ · · · ⊗wk)⟩

=
1
k!

det
(︁⟨︁
vi,wj

⟩︁)︁
i,j

Remark. It is worth mentioning that in most of the literature, the inner product on the
spaces

⋀︁kW, SymkW is defined without the factor 1
k! . The reason why we are diverting

from the usual convention is that by introducing this correction factor, we obtain appropriate
estimates for the norms of specific operators, which are going to be used in later stages of the
work.

From the self-adjointness and idempotence of πSym and π⋀︁ together with the Cauchy-
Schwarz inequality it follows that

⃦⃦
πSym (x)

⃦⃦2
=
⟨︁
πSym (x),πSym (x)

⟩︁
=
⟨︁
x,πSym (x)

⟩︁
⩽ ∥x∥

⃦⃦
πSym (x)

⃦⃦
,

∥π⋀︁ (x)∥2 = ⟨π⋀︁ (x),π⋀︁ (x)⟩ = ⟨x,π⋀︁ (x)⟩ ⩽ ∥x∥∥π⋀︁ (x)∥,

where, as usual, ∥·∥ :=
√︁
⟨·, ·⟩. We also define ∥·∥k =

√︂
⟨·, ·⟩Symk . By an abuse of notation, we

are going to denote the norm induced on
⋀︁kW also by the symbol ∥·∥k.
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This means, ⃦⃦
πSym (x)

⃦⃦
k

, ∥π⋀︁ (x)∥k ⩽ ∥x∥ for all x ∈
k⨂︂
W.

From the definition of the norm on
⨂︁kW, it is clear that, for k, ℓ ∈ N and x ∈

⨂︁kW,
y ∈

⨂︁ℓW,
∥x⊗ y∥ = ∥x∥∥y∥.

The natural way to relate polynomials (resp. forms) of different degrees is, of course,
via the product, for which we use the projections πSym (resp. π⋀︁ ). Indeed, for p ∈ SymkW,
q ∈ SymℓW, the polynomial p ·q ∈ Symk+ℓW is defined by πSym (p⊗q) (resp. forω ∈

⋀︁kW,
η ∈

⋀︁ℓW,ω∧ η ∈
⋀︁k+ℓW is defined by π⋀︁ (ω⊗ η)).

Thus we get

∥p · q∥k+ℓ =
⃦⃦
πSym (p⊗ q)

⃦⃦
⩽ ∥p⊗ q∥ = ∥p∥∥q∥ = ∥p∥k∥q∥ℓ.

(resp. ∥ω∧ η∥k+ℓ ⩽ ∥ω∥k∥η∥ℓ).
Let v ∈W. Next, we define the maps:

v· : SymkW −→ Symk+1W

w1 · . . . ·wk ↦−→v ·w1 · . . . ·wk;

(v·)∗ : Symk+1W −→ SymkW

w1 · . . . ·wk+1 ↦−→
1

k+ 1

k+1∑︂
i=1

⟨wi, v⟩w1 · . . . · ˆ︁wi · . . . ·wk+1;

v∧ :
⋀︂k

W −→
⋀︂k+1

W

w1 ∧ · · ·∧wk ↦−→v∧w1 ∧ · · ·∧wk;

(v∧)∗ :
⋀︂k+1

W −→
⋀︂k

W

w1 ∧ · · ·∧wk+1 ↦−→
1

k+ 1

k+1∑︂
i=1

(−1)i−1 ⟨wi, v⟩w1 ∧ · · ·∧ ˆ︁wi ∧ · · ·∧wk+1.

Next, we claim that the maps (v·)∗, (v∧)∗ are the adjoint of the respective multiplication
maps. That is, for every p ∈ Symk+1W, q ∈ SymkW, α ∈

⋀︁k+1W, β ∈
⋀︁kW the equations

⟨(v·)∗p,q⟩Symk = ⟨p, v · q⟩Symk+1 ,

⟨(v∧)∗α,β⟩⋀︁k = ⟨α, v∧β⟩⋀︁k+1 ,

hold.
As usual by now, we deduce only the first equation, since the second one can be deduced

in a totally similar fashion. Let v1 · · · vk+1 ∈ Symk+1W, w1 · · ·wk ∈ SymkW.
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Then

⟨(v·)∗(v1 · · · vk+1),w1 · · ·wk⟩Symk =
1

k+ 1

k+1∑︂
i=1

⟨⟨v, vi⟩ v1 · · · v̂i · · · vk+1,w1 · · ·wk⟩Symk

=
1

(k+ 1)!

k+1∑︂
i=1

⟨vi, v⟩perm



⟨v1,w1⟩ · · · ⟨v1,wk⟩
...

. . .
...

ˆ︂⟨vi,w1⟩ · · · ˆ︂⟨vi,wk⟩
...

. . .
...

⟨vk+1,w1⟩ · · · ⟨vk+1,wk⟩



=
1

(k+ 1)!
perm


⟨v1, v⟩ ⟨v1,w1⟩ · · · ⟨v1,wk⟩

...
...

. . .
...

⟨vk+1, v⟩ ⟨vk+1,w1⟩ · · · ⟨vk+1,wk⟩


= ⟨v1 · · · vk+1, v ·w1 · · ·wk⟩Symk+1 .

The result follows now from the linearity of these maps.
Now, the operator norm of the map (v·)∗ is defined by the formula

∥(v·)∗∥ = sup
∥p∥k+1=1

∥(v·)∗p∥k = sup
∥p∥k+1=1,∥q∥k=1

⃓⃓⃓
⟨(v·)∗p,q⟩Symk

⃓⃓⃓
.

The above-described properties of this map allow us to obtain an estimate for its norm.
Indeed, let p ∈ Symk+1W, q ∈ SymkW both having length 1. It follows that⃓⃓⃓

⟨(v·)∗p,q⟩Symk

⃓⃓⃓
=
⃓⃓⃓
⟨p, v · q⟩Symk+1

⃓⃓⃓
⩽ ∥p∥k+1∥v · q∥k+1

= ∥v · q∥k+1

=
⃦⃦
πSym (v⊗ q)

⃦⃦
⩽ ∥v⊗ q∥

= ∥v∥∥q∥k
= ∥v∥.

This implies the estimate
∥(v·)∗∥ ⩽ ∥v∥.

In a similar fashion, we obtain
∥v∧∥ ⩽ ∥v∥.

We also note that ∂v = (k + 1)(v·)∗, where ∂v : Symk+1W −→ SymkW denotes the
directional derivative in the direction of v.
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Thus, for v ∈W, p ∈ Symk+1W we get

∥∂vp∥k = (k+ 1)∥(v·)∗p∥k
⩽ (k+ 1)∥(v·)∗∥∥p∥k+1

⩽ (k+ 1)∥v∥∥p∥k+1.

All of what we have done so far could be done without the necessity of referring to a basis
of these vector spaces. However, in order to obtain somewhat more refined estimates, we are
going to choose some natural ones. In fact, let {e1, . . . , em} be an orthonormal basis forW. It is
well-known that

{eI := ei1
1 · . . . · eimm | I = (i1, . . . , im) ∈Nm, |I| = k};

resp.,

{eJ := ej1 ∧ · · ·∧ ejℓ | 1 ⩽ j1 < · · · < jℓ ⩽ m}

are bases for SymkW, resp.
⋀︁ℓW. In fact, with respect to the inner product just defined, it is

easy to see that these bases are in fact orthogonal, with

⟨eI, eI⟩ = I!
k!

;

⟨eJ, eJ⟩ =
1
ℓ!

.

We define now the map ∂a : Symk+1W ⊗
⋀︁ℓW −→ SymkW ⊗

⋀︁ℓ+1W, defined by

∂ac
J
Ie
I ⊗ eJ := cJIiae

I−Ea ⊗ ea ∧ eJ,

where Ea := (0, . . . , 0, 1, 0, . . . , 0).
On Symk+1W ⊗

⋀︁ℓW we define the natural inner product induced from the one we
defined on each of the factors. Under this inner product, we obtain that

⟨cJIe
I ⊗ eJ, cνµeµ ⊗ eν⟩ = c

J
Ic
ν
µ⟨eI, eµ⟩⟨eJ, eν⟩

=
∑︂
I,J

(︂
cJI

)︂2 I!
(k+ 1)!ℓ!

.
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⋀︁•W

With this we get⃦⃦⃦
∂ac

J
Ie
I ⊗ eJ

⃦⃦⃦2
:= ⟨∂acJIe

I ⊗ eJ,∂acνµeµ ⊗ eν⟩ = c
J
Ic
ν
µiaµa⟨eI−Ea , eµ−Ea⟩⟨ea ∧ eJ, ea ∧ eν⟩

=
∑︂
I,J

(︂
cJI

)︂2
i2a

(I− Ea)!
(ℓ+ 1)!k!

=
∑︂
I,J

(︂
cJI

)︂2
ia

I!
(ℓ+ 1)!(k+ 1)!

⩽ (k+ 1)2
∑︂
I,J

(︂
cJI

)︂2 I!
ℓ!(k+ 1)!

= (k+ 1)2⟨cJIe
I ⊗ eJ, cνµeµ ⊗ eν⟩

=: (k+ 1)2
⃦⃦⃦
cJIe

I ⊗ eJ
⃦⃦⃦2

.

Now, for v = vaea ∈W, we define ∂v := va∂a. With the previous estimate, together with
the Cauchy-Schwarz inequality onW, we obtain that, for p ∈ Symk+1W ⊗

⋀︁ℓW,

∥∂vp∥ = ∥va∂ap∥

⩽ |va|∥∂ap∥

⩽ ∥v∥
m∑︂
a=1

(k+ 1)∥p∥

= m(k+ 1)∥v∥∥p∥.

That is, for v ∈ W, the map ∂v : Symk+1W ⊗
⋀︁ℓW −→ SymkW ⊗

⋀︁ℓ+1W satisfies that,
for all p,

∥∂vp∥ ⩽ m(k+ 1)∥v∥∥p∥. (2.6)

We close this section with the introduction of a certain vector space which will be of great
importance in the present work, as it will explicitly be described in later stages.

Define the vector space

K(W) := ker
{︃
A :

⋀︂2
W ⊗W −→

⋀︂3
W

}︃
,

where the map A denotes the natural anti-symmetrization map.
Let us now consider the map

dk+1 : Symk+1W ⊗ Sym2W −→ SymkW ⊗K(W),∑︂
i,j

pij ⊗ eiej ↦−→
1
2

∑︂
i,j,ℓ

(∂ipjℓ − ∂jpiℓ)⊗ ei ∧ ej ⊗ eℓ.

That the codomain of this map is rightly defined easily follows from the fact that∑︂
cyc (i,j,ℓ)

∂ipjℓ − ∂jpiℓ =
∑︂

cyc (i,j,ℓ)

∂i(pjℓ − pℓj)
pjℓ=pℓj
= 0.

Define the subspace K(k)(W) := im dk+1.
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As usual, we will in general denote all of the operators dk by the same symbol d.

Proposition 2.2.1. With the above notation,

K(k)(W) = ker
{︃

1Symk ⊗A : SymkW ⊗
⋀︂2

W ⊗W −→ SymkW ⊗
⋀︂3

W

}︃
∩ ker

{︃
∂ := ∂⊗ 1W : SymkW ⊗

⋀︂2
W ⊗W −→ Symk−1W ⊗

⋀︂3
W ⊗W

}︃
.

Proof. The inclusion ⊆ immediately follows from the definition of K(k)(W) = im d. Indeed,
for

∑︁
i,j pij ⊗ eiej ∈ Symk+1W ⊗ Sym2W, it holds that

1
2

∑︂
i,j,ℓ

(︁
∂ipjℓ − ∂jpiℓ

)︁
⊗ ei ∧ ej ⊗ eℓ ↦−→

1
2

∑︂
i,j,ℓ

(∂ipjℓ − ∂jpiℓ)⊗ ei ∧ ej ∧ eℓ

=
1
6

∑︂
i,j,ℓ

∑︂
cyc (i,j,ℓ)

(︁
∂ipjℓ − ∂jpiℓ

)︁
⊗ ei ∧ ej ∧ eℓ

=0

and

1
2

∑︂
i,j,ℓ

(︁
∂ipjℓ − ∂jpiℓ

)︁
⊗ ei ∧ ej ⊗ eℓ ↦−→

1
2

∑︂
a,i,j,ℓ

∂a(∂ipjℓ − ∂jpiℓ)ea ∧ ei ∧ ej ⊗ eℓ

=
1
6

∑︂
a,i,j,ℓ

∑︂
cyc (a,i,j)

∂a
(︁
∂ipjℓ − ∂jpiℓ

)︁
ea ∧ ei ∧ ej ⊗ eℓ

=0.

In order to prove the reverse inclusion, we make use of the exactness of the Koszul complex1,
which is the vector space complex defined as

0 →→ Symk+2W
∂ →→ Symk+1W ⊗W ∂ →→ SymkW ⊗

⋀︁2W

∂

↓↓

Symk−1W ⊗
⋀︁3W

∂ →→ Symk−2W ⊗
⋀︁4W

∂ →→ · · · .

From it, we obtain the exactness of the sequence

0 →→ Symk+2W ⊗W ∂ →→ Symk+1W ⊗W ⊗W ∂ →→ SymkW ⊗
⋀︁2W ⊗W

∂

↓↓

Symk−1W ⊗
⋀︁3W ⊗W ∂ →→ Symk−2W ⊗

⋀︁4W ⊗W ∂ →→ · · · .

Let R(k) =
∑︁
i,j,ℓ R

(k)
ij,ℓei ∧ ej ⊗ eℓ be an element of the set on the right-hand side. Because

of the exactness of the second sequence, we get that there exists Γ (k+1) =
∑︁
i,j Γ

(k+1)
i,j ei ⊗ ej ∈

1For a proof of the exactness of the Koszul complex, see [25, Section 3]
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Symk+1W ⊗W ⊗W such that

R
(k)
ij,ℓ =

1
2

(︂
∂iΓ

(k+1)
j,ℓ − ∂jΓ

(k+1)
i,ℓ

)︂
.

The fact that R(k) ∈ ker
{︂

SymkW ⊗
⋀︁2W ⊗W −→ SymkW ⊗

⋀︁3W
}︂

implies that

∑︂
cyc (i,j,ℓ)

R
(k)
ij,ℓ = 0.

Thus

0 =
1
2

∑︂
cyc (i,j,ℓ)

∂iΓ
(k+1)
j,ℓ − ∂jΓ

(k+1)
i,ℓ

=
1
2

∑︂
cyc (i,j,ℓ)

∂i

(︂
Γ
(k+1)
j,ℓ − Γ

(k+1)
l,j

)︂
=:

∑︂
cyc (i,j,ℓ)

∂iΓ
(k+1)
− j,ℓ ,

that is, Γ (k+1)
− ∈ ker

{︂
Symk+1W ⊗

⋀︁2W −→ SymkW ⊗
⋀︁3W

}︂
.

The exactness of the first exact sequence implies that there exists ϕ(k+2) ∈ Symk+2W⊗W
such that

Γ
(k+1)
− i,j =

1
2

(︂
∂iϕ

(k+2)
j − ∂jϕ

(k+2)
i

)︂
.

Define next Γ (k+1)
+ ∈ Symk+1W ⊗ Sym2W by

Γ
(k+1)
+ i,j :=

1
2

(︂
Γ
(k+1)
i,j + Γ

(k+1)
j,i

)︂
.

Thus
Γ
(k+1)
i,j = Γ

(k+1)
+ i,j + Γ

(k+1)
− i,j .

Putting all of this together, we get then in sum

R
(k)
ij,ℓ =

1
4

[︂
∂i

(︂
2Γ (k+1)

+ j,ℓ + ∂jϕ
(k+2)
ℓ − ∂ℓϕ

(k+2)
j

)︂
−∂j

(︂
2Γ (k+1)

+ i,ℓ + ∂iϕ
(k+2)
ℓ − ∂ℓϕ

(k+2)
i

)︂]︂
=

1
4

[︂
∂i

(︂
2Γ (k+1)

+ j,ℓ − ∂jϕ
(k+2)
ℓ − ∂ℓϕ

(k+2)
j

)︂
−∂j

(︂
2Γ (k+1)

+ i,ℓ − ∂iϕ
(k+2)
ℓ − ∂ℓϕ

(k+2)
i

)︂]︂
=:

1
2

(︂
∂iΓ

(k+1)
jℓ − ∂jΓ

(k+1)
iℓ

)︂
.

It is clear that Γ (k+1) :=
∑︁
i,j Γ

(k+1)
ij ⊗ eiej ∈ Symk+1W ⊗ Sym2W.

The equation above implies then that

R(k) = dΓ (k+1)
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Thinking a little bit more on the subject, we realize we can explicitly determine the Γ (k+1)

at the end of the proof of the previous proposition. To achieve this, let R(k) ∈ K(k)(W). Define˜︁Γ ∈ Symk+1W ⊗W ⊗W given by

˜︁Γj,ℓ := 1
k+ 2

∑︂
a

eaR
(k)
aj,ℓ.

Thus we have

∂i˜︁Γj,ℓ − ∂j˜︁Γi,ℓ = 1
k+ 2

∑︂
a

(︂
∂ieaR

(k)
aj,ℓ − ∂jeaR

(k)
ai,ℓ

)︂
=

1
k+ 2

∑︂
a

(︂
2R(k)ij,ℓ + ea(∂iR

(k)
aj,ℓ − ∂jR

(k)
ai,ℓ)

)︂
= R

(k)
ij,ℓ.

We notice that ˜︁Γj,ℓ = ˜︁Γ+j,ℓ + ˜︁Γ−j,ℓ, where

˜︁Γ+j,ℓ := 1
2(k+ 2)

∑︂
a

ea

(︂
R
(k)
aj,ℓ + R

(k)
aℓ,j

)︂
,

˜︁Γ−j,ℓ := 1
2(k+ 2)

∑︂
a

ea

(︂
R
(k)
aj,ℓ − R

(k)
aℓ,j

)︂
.

A straightforward calculation shows that

∑︂
cyc (i,j,ℓ)

∂i˜︁Γ−j,ℓ = 1
2(k+ 2)

∑︂
cyc (i,j,ℓ)

∑︂
a

∂ieaR
(k)
lj,a

=
1

2(k+ 2)

∑︂
cyc (i,j,ℓ)

∑︂
a

(︂
R
(k)
lj,i + ea∂iR

(k)
lj,a

)︂
=0.

This means,

˜︁Γ− ∈ ker
{︃

Symk+1W ⊗
⋀︂2

W −→ SymkW ⊗
⋀︂3

W

}︃
,

which implies that there exists ϕ ∈ Symk+2W ⊗W such that

1
2
(︁
∂jϕℓ − ∂ℓϕj

)︁
= ˜︁Γ−j,ℓ.

An easy calculation shows that

ϕj := −
1

(k+ 2)(k+ 3)

∑︂
a,b

eaebR
(k)
aj,b,

satisfies the desired equation.
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Putting all of this together, we get

R
(k)
ij,ℓ = ∂i

˜︁Γj,ℓ − ∂j˜︁Γi,ℓ
= ∂i(˜︁Γ+j,ℓ + ˜︁Γ−j,ℓ) − ∂j(˜︁Γ+i,ℓ + ˜︁Γ−i,ℓ)
=

1
2

(︂
∂i(2˜︁Γ+j,ℓ + ∂jϕℓ − ∂ℓϕj) − ∂j(2˜︁Γ+i,ℓ + ∂iϕℓ − ∂ℓϕi))︂

=
1
2

(︂
∂i(2˜︁Γ+j,ℓ − ∂jϕℓ − ∂ℓϕj) − ∂j(2˜︁Γ+i,ℓ − ∂iϕℓ − ∂ℓϕi))︂

=:
1
2
(︁
∂iΓ

R
jℓ − ∂jΓ

R
iℓ

)︁
Explicitly,

ΓRjℓ =
1

(k+ 2)(k+ 3)

(k+ 4)
∑︂
a

ea

(︂
R
(k)
aj,ℓ + R

(k)
aℓ,j

)︂
+
∑︂
a,b

eaeb

(︂
∂jR

(k)
aℓ,b + ∂ℓR

(k)
aj,b

)︂ (2.7)

The reason why we bothered in explicitly constructing these polynomials is that they are
used in an elementary proof of the following

Proposition 2.2.2. With the above notation, it holds that

K(k)(W) ∼= ker
{︁

Symk+1W ⊗ Sym2W −→ Symk+3W
}︁
=:
(︁
Symk+1W ⊗ Sym2W

)︁
0.

Proof. We define the map

Φk : K
(k)(W) −→

(︁
Symk+1W ⊗ Sym2W

)︁
0

R(k) ↦−→ Φk(R
(k)) :=

∑︂
j,ℓ

ΓRjℓ ⊗ ejeℓ.

The fact that imΦk ⊆
(︁
Symk+1W ⊗ Sym2W

)︁
0 easily follows from the definition.

We claim that, for all k ⩾ 0,

d ◦Φk = 1K(k)(W), Φk ◦ d = 1(Symk+1W⊗Sym2W)0
,

where we denote d|(Symk+1W⊗Sym2W)0
simply by d.

The proof is simply a direct computation.
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Let R(k) ∈ K(k)(W). Then

dΦk(R(k)) =
1
2

∑︂
i,j,ℓ

(︁
∂iΓ

R
jℓ − ∂jΓ

R
iℓ

)︁
⊗ ei ∧ ej ⊗ eℓ

=
1

2(k+ 2)(k+ 3)

∑︂
i,j,ℓ

∂i
(k+ 4)

∑︂
a

ea(R
(k)
aj,ℓ + R

(k)
aℓ,j) +

∑︂
a,b

eaeb

(︂
∂jR

(k)
aℓ,b + ∂ℓR

(k)
aj,b

)︂
−∂j

(k+ 4)
∑︂
a

ea(R
(k)
ai,ℓ + R

(k)
aℓ,i) +

∑︂
a,b

eaeb

(︂
∂iR

(k)
aℓ,b + ∂ℓR

(k)
ai,b

)︂⊗ ei ∧ ej ⊗ ek
∑︁

cyc (i,j,ℓ) R
(k)
ij,ℓ=0;∑︁

cyc (a,i,j) ∂aR
(k)
ij,ℓ=0

=
1

2(k+ 2)

∑︂
i,j,ℓ

[︄
(k+ 4)R(k)ij,ℓ +

∑︂
a

ea

(︂
∂iR

(k)
aℓ,j + ∂jR

(k)
ℓa,i + ∂ℓR

(k)
ij,a

)︂]︄
⊗ ei ∧ ej ⊗ eℓ

=
1

2(k+ 2)

∑︂
i,j,ℓ

[︄
(k+ 4)R(k)ij,ℓ +

∑︂
a

ea∂aR
(k)
ij,ℓ

]︄
⊗ ei ∧ ej ⊗ eℓ

=
∑︂
i,j,ℓ

R
(k)
ij,ℓ ⊗ ei ∧ ej ⊗ eℓ

=R(k)

This shows the injectivity of the mapΦk.
The identity Φk ◦ d = 1(Symk+1W⊗Sym2W)0

easily follows from the fact that the equation∑︁
a,b eaebΓab = 0 implies

∑︂
a,b

eaeb∂ijΓab = −2

(︄
Γij +

∑︂
a

ea(∂iΓaj + ∂jΓai)

)︄
.

Due to the fact that the map Symk+1W ⊗ Sym2W −→ Symk+3W is surjective, the
previous proposition allows us to compute the dimension of the vector space K(k)(W). Indeed,
from the fact that

dim
{︁

Symk+1W ⊗ Sym2W −→ Symk+3W
}︁
=

(︃
m+ k

k+ 1

)︃(︃
m+ 1

2

)︃
−

(︃
m+ k+ 2
k+ 3

)︃
we obtain

dim
(︂
K(k)(W)

)︂
=

1
2

(︃
m+ k

k+ 2

)︃
k+ 1
k+ 3

(k+ (m+ 1)(k+ 4)). (2.8)

Because the map Φk takes values in a finite-dimensional vector space, we infer that the
map is bounded. We are interested in finding a bound for its norm.

We endow the vector spaces SymkW ⊗
⋀︁2W ⊗W, Symk+1W ⊗ Sym2W with the inner

product induced by those on each of the factors, which at the same time induces a norm.
With this, we are able to define the operator norm on the space

Hom(K(k)(W), Symk+1W ⊗ Sym2W) via the usual formula from Functional Analysis.
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2.2 The vector spaces Sym•W and
⋀︁•W

Namely, set
∥ψ∥op := sup

∥R(k)∥=1

⃦⃦⃦
ψ(R(k))

⃦⃦⃦
.

A general fact about the norm on tensor products of finite-dimensional inner product
vector spaces, which can be easily verified, and of which we are going to make use in the
following paragraphs is the following

Lemma 2.2.1. Let X, Y be finite-dimensional inner product vector spaces, with orthogonal bases
{x1, . . . , xn}, {y1, . . . ,ym}. We denote the natural norm on X⊗ Y coming from the inner product on
X⊗ Y, which at the same time comes from the ones on each of the factors, by ∥·∥⊗. Then it holds,

i) ∥
∑︁m
i=1 vi ⊗ yi∥⊗ = ∥

∑︁m
i=1 ∥vi∥Xyi∥Y

ii) ∥
∑︁n
i=1 xi ⊗wi∥⊗ = ∥

∑︁n
i=1 ∥wi∥Yxi∥X.

Using this lemma, we obtain that, for R(k) ∈ K(k)(W),

⃦⃦⃦
R(k)

⃦⃦⃦
=

⌜⃓⃓⎷∑︂
i,j,ℓ

1
2

⃦⃦⃦
R
(k)
ij,ℓ

⃦⃦⃦2
.

In particular, if
⃦⃦
R(k)

⃦⃦
= 1, we conclude that, for all i, j, l,

⃦⃦⃦
R
(k)
ij,ℓ

⃦⃦⃦
⩽
√

2.
Once more, the previous lemma implies that

⃦⃦⃦
Φk(R

(k))
⃦⃦⃦
⩽

⌜⃓⃓⎷∑︂
i,j

⃦⃦⃦
ΓRij

⃦⃦⃦2
.

With all of what we have done so far, we obtain that

⃦⃦
ΓRij
⃦⃦
⩽

1
(k+ 2)(k+ 3)

(k+ 4)
∑︂
a

⃦⃦⃦
ea(R

(k)
ai,j + R

(k)
aj,i)

⃦⃦⃦
+
∑︂
a,b

⃦⃦⃦
eaeb(∂iR

(k)
aj,b + ∂jR

(k)
ai,b)

⃦⃦⃦
∥ea∥=1
⩽

1
(k+ 2)(k+ 3)

(k+ 4)
∑︂
a

(︂⃦⃦⃦
R
(k)
ai,j

⃦⃦⃦
+
⃦⃦⃦
R
(k)
aj,i

⃦⃦⃦)︂
+
∑︂
a,b

(︂⃦⃦⃦
∂iR

(k)
aj,b

⃦⃦⃦
+
⃦⃦⃦
∂jR

(k)
ai,b

⃦⃦⃦)︂
(2.6),⃦⃦⃦

R
(k)
ij,ℓ

⃦⃦⃦
⩽
√

2

⩽
1

(k+ 2)(k+ 3)

2
√

2m(k+ 4) +
∑︂
a,b

2
√

2mk


=

2
√

2
(k+ 2)(k+ 3)

[︁
m(k+ 4) +m3k

]︁
⩽

2
√

2m(m2 + 1)(k+ 4)
(k+ 2)(k+ 3)

⩽
2
√

2m(m2 + 1)
k+ 1

.
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2. Preliminaries

Thus

⃦⃦⃦
Φk(R

(k))
⃦⃦⃦
⩽

⌜⃓⃓⎷∑︂
i,j

⃦⃦⃦
ΓRij

⃦⃦⃦2

⩽

⌜⃓⃓⎷∑︂
i,j

8m2(m2 + 1)2

(k+ 1)2

=
2
√

2m2(m2 + 1)
k+ 1

In sum we get for all k ∈N0,

∥Φk∥op ⩽
2
√

2m2(m2 + 1)
k+ 1

. (2.9)
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3
Theory of connections

This chapter is a compendium of more or less well-known facts about the theory of connections
on fiber bundles and some of their most relevant consequences in the context of the present
work. Its contents are mainly built upon the references [26, Chapters 1-5], [27, Chapters I-IV],
and [28, Chapter 6].

3.1 Lie groups, Lie subgroups, and relevant examples

For a good part of this work, Lie groups are going to play a prominent role. That is a
compelling enough reason to dedicate a few lines to them. The main goal of the section is to
provide some context for a particular list of examples of Lie groups that are going to appear
in the later part of the work. Before this, we quickly go over the basic definitions. In addition
to the main references provided at the beginning of the chapter, the contents of this section
were built upon the references [29, Chapter 1], and [30, Chapter 1].

Definition 3.1.1. A Lie group G is a group and a manifold so that the multiplication and inversion
maps are smooth.

Some of the most common examples of a Lie group are, of course, the group of all invertible
matrices over a field F, GL(n, F), as well as the special linear group SL(n, F).

Definition 3.1.2. An (immersed) submanifold N of a manifold M is the image of a manifold
N ′ under an injective immersion φ : N ′ −→M together with the manifold structure on N making
φ : N ′ −→ N a diffeomorphism.

An imbedded (or regular) submanifold is a submanifold N whose topology agrees with the
relative topology.

Definition 3.1.3. A Lie subgroup H of a Lie group G is the image in G of a Lie group H ′ under an
injective homomorphism φ : H ′ −→ G together with the Lie group structure on H making
φ : H ′ −→ H a diffeomorphism.

We now introduce a couple of examples of Lie groups.
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3. Theory of connections

The (real) orthogonal group O(n, R), or just O(n) is defined as the set

O(n) :=
{︂
M ∈Mn×n(R)

⃓⃓⃓
M⊤M = 1n

}︂
.

The complex orthogonal group O(n, C) is defined in an analogous fashion.
The special (real) orthogonal group SO(n, R) = SO(n) is defined as O(n) ∩ SL(n, R).

Similarly for SO(n, C).
The unitary group U(n) is the group defined as

U(n) := {M ∈Mn×n(C)|M∗M = 1n}.

Notice that we can naturally consider the unitary group U(n) as a subgroup of SO(2n).
We identify Cn and R2n via the map

ιR : Cn −→R2n

v+ iw ↦−→

(︄
v

w

)︄
.

Under this identification, multiplication with i in Cn is thus multiplication with the matrix

J0 =

(︄
0 −1n

1n 0

)︄
∈ GL(2n, R). By means of this identification we obtain the embedding of

GL(n, C) in GL(2n, R)

ιR : GL(n, C) −→GL(2n, C)

A+ iB ↦−→

(︄
A −B

B A

)︄
,

for any given real matrices A,B. We notice that the image of this embedding is thus the set of
all the matrices in GL(2n, R) which commute with J0. In particular we obtain

U(n) =∧ ιR(U(n)) =
{︁
M ∈ SO(2n)|MJ0 = J0M

}︁
, (3.1)

which is the way in which we consider U(n) a subgroup of SO(2n).
Since it easily follows that U(1) = SO(2), one usually assumes that n ⩾ 2. The standard

basis of R2n takes the form

(e1, . . . , e2n) = (e1, . . . , en, J0e1, . . . , J0en).

The special unitary group SU(n) is defined as U(n)∩ SL(n, C).
By means of the previous embedding, we can consider SU(n) as a subgroup of SO(2n) as

well.
The symplectic group Sp(2n, F) is the group defined as

Sp(2n, F) :=

{︄
M ∈M2n×2n(F)

⃓⃓⃓⃓
⃓M⊤JM = J, J =

(︄
0 1n

−1n 0

)︄}︄
.
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3.1 Lie groups, Lie subgroups, and relevant examples

The compact symplectic group Sp(n) is defined as

Sp(n) := Sp(2n, C)∩U(2n).

In fact, there is an isomorphism

Sp(n) =∧ {M ∈ GL(n, H)|M∗M = 1n}

which allows us to consider Sp(n) as a subgroup of SO(4n) (see for example [30]). We identify
Hn with C2n by means of the map

ιC : Hn −→C2n

z+wj ↦−→

(︄
z

w

)︄
,

which induces the embedding of the group GL(n, H) in GL(2n, C)

ιC : GL(n, H) −→GL(2n, C)

Z+Wj ↦−→

(︄
Z −W

W Z

)︄
,

for arbitrary complex matrices Z,W. As before, let J0
C
=

(︄
0 −1n

1n 0

)︄
∈ GL(2n, C) and thus

obtain
GL(n, H) =∧ ιC(GL(n, H)) =

{︁
M ∈ GL(2n, C)|MJ0C = J0CM

}︁
,

which in particular implies

Sp(n) =∧ ιC(Sp(n)) =
{︁
M ∈ SU(2n)|MJ0C = J0CM

}︁
. (3.2)

With this we can therefore consider Sp(n) as a subgroup of SU(2n). Normally one
considers n ⩾ 2, since Sp(1) = SU(2).

Now identify C2n with R4n via

ι ′R : C2n −→R4n(︄
z

w

)︄
↦−→

(︄
ιR(z)

ιR(w)

)︄
.

Thus, for real matrices A,B,C,D andM = A+Bi+ (C+Dj)j ∈ GL(n, H) we obtain

ι ′RιC(M) =


A −B

B A

−C D

−D −C

C D

−D C

A B

−B A

 .
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3. Theory of connections

We also obtain that

ι ′RιC(a+ bi+ cj+ dk) =


a

b

c

−d

 ∈ R4n.

With respect to the identification ι ′RιC, the right multiplication by an arbitrary unitary
quaternion q = x0 + x1i+ x2j+ x3k ∈ Sp(1) on Hn corresponds to the orthogonal matrix
Rq ∈ SO(4n)

Rq =


x0 −x1

x1 x0

−x2 x3

x3 x2

x2 −x3

−x3 −x2

x0 −x1

x1 x0

 ,

where each entry ±xℓ is in fact the matrix ±xℓ1n.
With this notation, we introduce the matrices J01 := Ri, J02 := Rj and J03 := R−k. It easily

follows that J01J
0
2 = J03, (J0ℓ)

2 = −14n and

Sp(n) =∧ ι ′RιC(Sp(n)) =
{︁
M ∈ SO(4n)|MJ0ℓ = J

0
ℓM, ℓ = 1, 2, 3

}︁
. (3.3)

The standard basis of R4n takes thus the form

(e1, . . . , e4n) = (e1, . . . , en, J01e1, . . . , J03en).

The multiplication Hn × Sp(1) −→ Hn previously discussed actually defines a right
action, which can be used to define a further subgroup of SO(4n). Firstly, we notice that the
Lie algebra of the group

Sp(1) =∧ {Rq| q ∈ Sp(1)} ⊆ SO(4n)

is given by

sp(1) ={Ra| a ∈ sp(1) = Im H}

=E0 := spanR

{︁
J01, J02, J03

}︁
⊆ so(4n).

Thus, define the subgroup Sp(n) · Sp(1) ⊆ SO(4n) as

Sp(n) · Sp(1) ={M · Rq|M ∈ Sp(n) ⊆ SO(4n), q ∈ Sp(1)}

=
{︁
L ∈ SO(4n)| Ad(L)E0 = LE0L−1 = E0}︁.

Once again, due to the fact that Sp(1) · Sp(1) = SO(4), one normally considers the case
n ⩾ 2.

Another important example is the so-called exceptional group G2, which is the 14-
dimensional, simply-connected, compact Lie subgroup of SO(7) defined as

G2 := {A ∈ SO(7)| A∗ω0 = ω0},

32



3.2 Principal and associated fiber bundles

whereω0 ∈
⋀︁3(R7)∗ is the 3-form defined as

ω0 := e123 + e145 + e167 + e246 − e257 − e347 − e356. (3.4)

The last family of examples we introduce are the so-called spin groups. The group Spin(n)
is defined as the double cover of the group SO(n) such that, for n ⩾ 3, there exists a short
exact sequence of Lie groups

{1} →→ Z2 →→ Spin(n) →→ SO(n) →→ {1}.

For n ⩾ 3, Spin(n) is simply-connected. The first of the members of this family that is not
already included as a member of some another family of classical Lie groups is the group
Spin(7), since one has the isomorphisms (see [31, Chapter 1, Theorem 8.1])

Spin(2) ∼=S1

Spin(3) ∼=SU(2)

Spin(4) ∼=SU(2)× SU(2)

Spin(5) ∼=Sp(2)

Spin(6) ∼=SU(4)

The group Spin(7) can be realized as a compact subgroup of SO(8). To do so, we define
the 4-form σ0 ∈

⋀︁4(R8)∗

σ0 :=e1234 + e1256 + e1278 + e1357 − e1368 − e1458 − e1467

− e2358 − e2367 − e2457 + e2468 + e3456 + e3478 + e5678.
(3.5)

Thus, one can show that

Spin(7) = {A ∈ SO(8)| A∗σ0 = σ0}.

3.2 Principal and associated fiber bundles

A central part of this work is devoted to the study in a systematic way of the curvature
tensor on an affine manifold. Before beginning this, we are going to establish some standard
background on the theory of (smooth) fiber bundles. For the purposes of this work, it suffices
to focus on a special class of fiber bundles, namely, on principal fiber bundles. Most of the
results that are about to be discussed on the following paragraphs are well-known, and can
be in principle found within the principal references given at the beginning of the chapter, the
only reason to include them is that of self-containment.

First we recall the general definition of a general fiber bundle together with some of their
elementary properties.

Definition 3.2.1. Let E,M, and F be smooth manifolds and let π : E −→M be a smooth map. The
quadruple (E,π,M; F) is called a (locally trivial) smooth fiber bundle if for each point x ∈M there
is an open neighborhood U of x and a smooth diffeomorphism
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3. Theory of connections

ϕU : π−1(U) −→ U× F

such that pr1 ◦ϕU = π.

From the definition, we obtain that the map π is in fact a submersion and Ex a submanifold
of E, which is diffeomorphic to F. Indeed, given a pair (U,ϕU) as before, the map

ϕUx := pr2 ◦ϕU|Ex : Ex −→ F

is a diffeomorphism.
The manifold E is called the total space, M is called the base space, π is called the bundle

projection and F is called the typical fiber. For each x ∈M, the set Ex := π−1(x) is called the fiber
over x.

The pair (U,ϕU) in the definition above is called a local trivialization over U or a bundle
chart. A family {(Ui,ϕi)}i∈I of bundle charts such that {Ui}i∈I is a cover ofM is said to be a
bundle atlas. Given two bundle charts (Ui,ϕi), (Uk,ϕk), whose domains overlap, we define
the transition maps

ϕi ◦ϕ−1
k : (Ui ∩Uk)× F −→ (Ui ∩Uk)× F.

These transition maps define the maps

ϕik : Ui ∩Uk −→Diff(F)

x ↦−→ϕix ◦ϕ−1
kx,

which clearly satisfy the "cocycle conditions":

ϕii(x) = 1F for x ∈ Ui,

ϕik(x) ◦ϕkj(x) = ϕij(x) for x ∈ Ui ∩Uj ∩Uk.

The maps {ϕik}i,k∈I are called the cocycles of the the bundle.
The transition maps are, in a way, the building blocks of a fiber bundle as the next

proposition asserts.

Proposition 3.2.1. Let M, F be smooth manifolds, E a set, and π : E −→ M a surjective map. Let
{(Ui,ϕi)}i∈I be a system of local trivializations (that is, {Ui}i∈I is an open cover ofM and, for every
i, ϕi : π−1(Ui) −→ Ui × F is a bijective map with pr1 ◦ϕi = π|EUi ) such that all of the transition
maps ϕi ◦ϕ−1

k are smooth. Then there is a unique smooth structure on E such that (E,π,M; F) is a
smooth locally trivial fiber bundle with bundle atlas {(Ui,ϕi)}i∈I.

Given a smooth fiber bundle π : E −→M, we define the space of smooth sections of the fiber
bundle as the set

Γ(E) := {s ∈ C∞(M,E)| π ◦ s = 1M}.
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3.2 Principal and associated fiber bundles

We now introduce a very important class of fiber bundles. Namely, the principal fiber
bundles.

Definition 3.2.2. Let π : P −→ M be a smooth fiber bundle with typical fiber a Lie group G. The
bundle (P,π,M;G) is called a principal G-bundle if there is smooth free right action of G on P such
that

1. The action is fiber-preserving: π(ug) = π(u) for all u ∈ P and g ∈ G.

2. For each x ∈ M, there exists a local trivialization ϕU : π−1(U) −→ U×G with x ∈ U such
that

ϕU(ug) = ϕU(u)g

for all u ∈ π−1(U) and g ∈ G, where the Lie group G acts on U×G as (x,a)g := (x,ag).

From the definition, it is straightforward to see that the action of the group G is transitive
on fibers: that is, given u1,u2 in the same fiber, there exists a g ∈ G such that u1 = u2g. Which
is equivalent to saying that the fibers of P −→M are exactly the orbits of the group action.

As in the case of general fiber bundles, we can reconstruct the structure of a principal
bundle from local information.

Proposition 3.2.2. Let G be a Lie group and π : P −→M a smooth map. The quadruple (P,π,M;G)
is a principal bundle if, and only if

i) There is a right action of G on P, which is fiber-preserving and transitive on fibers.

ii) There is an open cover {Ui}i ofM and local sections si : Ui −→ P for every i.

One of the most important examples of a principal bundle is the so called frame bundle.
For this, let E −→M be a rank k vector bundle with fiber V = Fk. For every x ∈M, let

GL(V ,Ex) denote the set of linear isomorphisms from V to Ex. If we choose a fixed basis
(e1, . . . , ek) for V , then each frame (u1, . . . ,uk) over x gives rise to an element u ∈ GL(V ,Ex)
defined by

u(v) = viui,

where v = viei. We identify u with (u1, . . . ,uk) and refer to it as a frame. With this identifica-
tion, define σα, the local frame field coming from the local trivialization ϕα : π−1(Uα) −→ Uα × V
as

σα(x) = ϕ
−1
αx for x ∈ Uα.

Define now

F(E) :=
⨆︂
x∈M

GL(V ,Ex)

Let π : F(E) −→M be the projection map defined by π(u) = x, for u ∈ GL(V ,Ex). Notice
that the group GL(V) acts on the set F(E): F(E)×GL(V) −→ F(E) is given by (u,g) ↦−→ ug :=
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3. Theory of connections

u ◦ g. It easily follows that the orbit of a frame at x is exactly the set π−1(x) = GL(V ,Ex) and
that the action is free. For each local trivialization (U,ϕ) for the vector bundle E, let σϕ be the
associated frame field. Define fϕ : U×GL(V) −→ π−1(U) by fϕ(x,g) = σϕ(x)g. The map fϕ
is a bijection. Let now be ϕ̃ := f−1

ϕ . We have ϕ̃ = (π, Φ̃), where Φ̃ is uniquely determined by
ϕ̃. Thus, a system of local trivializations {(Uα,ϕα)} for the vector bundle E induces a system
of local trivializations

{︁
(Uα, ϕ̃a)

}︁
for F(E) −→ M. Which, by Proposition 3.2.1, induces a

smooth structure on F(E), making it into a smooth manifold.

Definition 3.2.3. The GL(V)-principal bundle constructed above is called the linear frame bundle
of E. The frame bundle for the tangent bundle of a manifoldM is usually denoted by F(M) rather than
by F(TM).

A special mention to the case E = TM is due, since it provides us with several concrete
examples of geometric importance.

By the above discussion, we notice that

F(M)x = {vx := (v1, . . . , vn)| vx is a basis of TxM} = GL(Rn, TxM)

In this case we can explicitly describe the action of GL(n, R) on F(M). Namely,

(v1, . . . , vn) ·A =

(︄∑︂
i

Ai1vi, . . . ,
∑︂
i

Ainvn

)︄
= vx ◦A ∈ GL(Rn, TxM),

where A = (Aij)i,j ∈ GL(n, R).
In the same vein we can show that, depending on the structure of our base manifold, we

can define certain useful subbundles:

a) Let (M,OM) is an oriented manifold, it makes sense to consider the set of all positive
oriented bases of its tangent spaces:

F(M)+x := {vx ∈ F(M)x| vx is a positive oriented basis of TxM}.

With this we obtain the GL(n, R)+-principal bundle of positive oriented frames, which
we denote by (F(M)+,π,M; GL(n, R)+).

b) Let (Mp,q,g) be a pseudo-Riemannian manifold of signature (p,q). In this case we
consider the orthonormal bases of the tangent spaces ofM:

O(M,g)x :=

{︄
vx = (v1, . . . , vn) ∈ F(M)x

⃓⃓⃓⃓
⃓ (︁gx(vi, vj))︁i,j =

(︄
−1p 0

0 1q

)︄}︄
and so we obtain the O(p,q)-principal bundle (O(M,g),π,M;O(p,q)) of all
orthonormal frames.

c) Let (M,ω) be a symplectic manifold of dimension 2n. We consider the sets

Sp(M,ω)x :=

{︄
vx = (v1, . . . , v2n)

⃓⃓⃓⃓
⃓ (︁ωx(vi, vj))︁i,j =

(︄
0 1n

−1n 0

)︄}︄
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and so we obtain the Sp(2n, R)-principal bundle (Sp(M,ω),π,M;Sp(2n, R)) of sym-
plectic frames.

Definition 3.2.4. Two G- principal bundles (P,π,M;G), (˜︁P, ˜︁π,M;G) over the same base are called
isomorphic if there exists a G-equivariant diffeomorphism Ψ : P −→ ˜︁P such that ˜︁π ◦Ψ = π.

A G-principal bundle P −→M is called trivial if it is isomorphic to the trivial G-principal
bundle (M×G, pr1,M;G).

The existence of the action of the Lie group G has the following strong consequence.

Proposition 3.2.3. A G-principal bundle P −→M is trivial if, and only if Γ(P) ̸= ∅.

A nice application of principal bundles is that we can "replace" its fibers in order to
construct new fiber bundles.

Let (P,π,M;G) be a principal bundle, and let F be a smooth manifold on which there
exists a left action of the Lie group G. Thus, on the cartesian product P× F we have a free
right action of G, namely:

(p, v) · g := (pg,g−1v).

We define

E := (P× F)/G =: P×G F,

and the projection

ˆ︁π : E −→M

[p, v] ↦−→ π(p).

This gives rise to a new fiber bundle.

Proposition 3.2.4 ([26, Satz 2.7]). The tuple (E, ˆ︁π,M; F) is a smooth fiber bundle.

Definition 3.2.5. The bundle E −→ M in the previous proposition is called the associated fiber
bundle to the G-principal bundle P −→M.

Notice that, on the associated fiber bundle E we have a particular kind of fiber
diffeomorphisms:

Definition 3.2.6. Let p ∈ Px, for x ∈M. The map

[p] : F −→ Px ×G F = Ex
v ↦−→ [p, v]

is called the fiber diffeomorphism defined by p.

From the definition, it clearly follows that

[pg] = [p] ◦ lg, for p ∈ P, g ∈ G.
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3. Theory of connections

The inverse of the previous map is given by

[p]−1 : Px ×G F −→ F

[q, v] ↦−→ gqv,

where gq ∈ G is the unique element of the group such that q = pgq.
Now we see that there is a useful interpretation of the sections of the associated fiber

bundle of a principal bundle.
Let C∞(P, F)G denote the set of the smooth G-equivariant maps from P to F:

C∞(P, F)G :=
{︁
s ∈ C∞(P, F)| s(pg) = g−1s(p) for all p ∈ P, g ∈ G

}︁
.

The following proposition establishes the one-to-one correspondence between G-
equivariant maps and sections of the associated bundle.

Proposition 3.2.5 ([26, Satz 2.9]). Let E = P×G F be the associated fiber bundle to the G-principal
bundle P −→M. Then there is a one-to-one correspondence between the sets

Γ(E)
1:1←→ C∞(P, F)G.

As a useful example of associated fiber bundles, let us consider the frame bundle of a
smooth manifoldM. It is not difficult to show the vector bundle isomorphism

F(M)×GL(n,R) Rn −→TM

[(v1, . . . , vn), ciei] ↦−→civi,

which in turn implies the vector bundle isomorphism

F(M)×GL(n,R) T
(r,s)Rn −→ T (r,s)M,

by tensorially extending the standard action of GL(n, R) on Rn to an action on
T (r,s)Rn :=

⨂︁r
Rn ⊗

⨂︁s(Rn)∗.
Some additional remarks on vector bundles as associated bundles can be made by making

use of so-called bundle metrics:

Definition 3.2.7. A bundle metric on the real (resp. complex) vector bundle E −→M is a section
⟨·, ·⟩ ∈ Γ(E∗ ⊗ E∗), which assigns each x ∈M to a non-degenerate symmetric bilinear form (resp. to a
non-degenerate Hermitian form)

⟨·, ·⟩Ex := ⟨·, ·⟩(x) : Ex × Ex −→ F.

A partition of the unity argument readily shows that on every vector bundle there exists a
positive-definite bundle metric.

The existence of bundle metrics on vector bundles implies the following

Proposition 3.2.6. i) Every real rank k vector bundle is associated to an O(k)-principal bundle.
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3.3 Reduction of principal fiber bundles

ii) Every complex rank k vector bundle is associated to a U(k)-principal bundle.

Proof. Let E −→ M be a rank k vector bundle. Let ⟨·, ·⟩ be a fixed positive-definite bundle
metric on E and define the set

Px :=
{︁
sx = (s1, . . . , sk)

⃓⃓
sx is a basis of Ex with ⟨si, sj⟩ = δij

}︁
.

We thus get that

π : P :=
⨆︂
x∈M

Px −→M

sx ↦−→ x

is an O(k)-principal bundle over M (resp. a U(k)-principal bundle over M) and we obtain
that

P×O(k) Rk ∼= E resp. P×U(k) Ck ∼= E,

where the vector bundle isomorphism is given by

[(s1, . . . , sk), xiei] ↦−→ xisi.

The next result shows us how to obtain an explicit bundle metric on associated vector
bundles.

Proposition 3.2.7. Let (P,π,M;G) be a principal bundle, ρ : G −→ GL(V) a representation of G
and ⟨·, ·⟩V a G-invariant symmetric (F = R), resp. Hermitian (F = C) scalar product on V . Then, on
E = P×(G,ρ) V , the maps

⟨e,ˆ︁e⟩Ex := ⟨v,ˆ︁v⟩V for e,ˆ︁e ∈ Ex,

where e = [p, v],ˆ︁e = [p,ˆ︁v], for a p ∈ Px define a bundle metric on E. The scalar products ⟨·, ·⟩V and
⟨·, ·⟩Ex have the same signature.

3.3 Reduction of principal fiber bundles

The main idea behind the concept of associated fiber bundles is to use the particular features
that are in general only enjoyed by principal bundles and by exploiting them, we found ways
to "change the fiber" of our original bundle.

A more or less natural question would be whether it would be possible to do the same
with the structure group of our bundle rather than with the fiber. It turns out that in a way,
such a manoeuvre can be achieved. This is precisely what we briefly introduce in the next
couple of paragraphs.
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3. Theory of connections

Definition 3.3.1. Let (P,πP,M;G) be a G-principal bundle and λ : H −→ G a Lie group
homomorphism. A λ-reduction of P is a pair (Q, f) consisting of anH-principal bundle (Q,πQ,M;H)
and a smooth map f : Q −→ P which satisfies:

i) πP ◦ f = πQ, and

ii) f(q · h) = f(q) · λ(h) for every q ∈ Q, h ∈ H.

In other words, the pair (Q, f) is a λ-reduction of the principal G-bundle P if the diagram

Q×H · →→

f×λ
↓↓

Q

f
↓↓

πQ

↘↘
P×G · →→ P

πP →→M

commutes.
In the particular case in which H ⊆ G is a Lie subgroup and λ the inclusion map, a

λ-reduction (Q, f) is simply called an H-reduction of P. For a Lie subgroup H ⊆ GL(n, R), an
H-reduction of the frame bundle F(M) is called an H-structure onM.

Definition 3.3.2. Two λ-reductions (Q, f), (˜︁Q, ˜︁f) of the principal bundle P are called isomorphic if
there is a principal bundle isomorphism ϕ : Q −→ ˜︁Q such that ˜︁f ◦ϕ = f. We denote the set of all the
isomorphism classes of λ-reductions of P by Redλ(P).

The following result provides a criterion for identifying subsets of a principal bundle,
which can be given the structure of reductions (see [26, Satz 2.14]).

Proposition 3.3.1. Let H ⊆ G be a Lie subgroup, (P,π,M;G) a G-principal bundle and Q ⊆ P a
subset with the following properties:

i) Rh(Q) = Q for all h ∈ H.

ii) For q, ˜︁q ∈ Qx := Q∩ Px such that q = Rg(˜︁q) = ˜︁qg, then we have that g ∈ H.

iii) For each x ∈M there exists an open neighborhood Ux ⊆M and a smooth section s : Ux −→ P

with s(Ux) ⊆ Q.

Then it follows thatQ is indeed a smooth submanifold of P, (Q,π|Q,M;H) an H-principal bundle and
(Q, ι) an H-reduction of P.

Another useful criterion for reducibility relies on the existence of sections of certain
associated fiber bundles. First we provide the necessary set-up.

Let (P,πP,M;G) be a G-principal bundle, and H ⊆ G a closed subgroup. We consider the
induced left action of the Lie group G on the homogeneous space G/H.

That is,

G×G/H −→G/H

(g, [a]) ↦−→[ga]
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3.3 Reduction of principal fiber bundles

Let E denote the associated fiber bundle with respect to this action, i.e.

E := P×G G/H ≃P/H

[p,gH] ↦−→(pg)H

Proposition 3.3.2. For the closed subgroup H ⊆ G, there exists an H-reduction of the G-principal
bundle (P,πP,M;G) if, and only if the associated fiber bundle (E,πE,M;G/H) has a global section.

Proof. Let s ∈ Γ(E). According to Proposition 3.2.5, there exists exactly one G-equivariant
smooth map s ∈ C∞(P,G/H)G to which s corresponds. Let Q ⊆ P be the subset defined by

Q := {p ∈ P| s(p) = eH}.

We claim that the tuple (Q,πQ := πP |Q,M;H) is an H-principal bundle and that (Q, ι) is
an H-reduction of P.

Because of the G-equivariance of the map s, it follows that for all p ∈ P, h ∈ H,

s(ph) = h−1s(p) = h−1eH = eH,

which implies that the subgroup H acts on the right on the set Q. Let q, ˜︁q ∈ Q ∩ Px. Then
because the action of G on Px is simply transitive, we have that there exists exactly one g ∈ G
such that q = ˜︁qg. Since by definition

s(q) = eH = s(˜︁qg) = g−1s(˜︁q) = g−1eH = g−1H

we conclude that g ∈ H. From which we conclude that the action ofH onQ is fiber-preserving
and simply transitive on the fibers. Let {(Ui, si)}i∈I be a cover of P by local sections that
correspond to bundle charts of the G-principal bundle, and σi : Wi ⊆ G/H −→ G local
sections of the homogeneous bundle p : G −→ G/H such that s ◦ si(Ui) ⊆Wi. It then follows
that gi := σi ◦ s ◦ si : Ui −→ G is a smooth map. Define next the smooth local section˜︁si : Ui −→ P by ˜︁si(x) := si(x)gi(x).

The invariance of the map s implies

s(˜︁si(x)) = gi(x)−1s(si(x)) = gi(x)
−1(gi(x)H) = eH.

Thus the smooth maps ˜︁si : Ui −→ Q are in fact local sections. The claim follows now from
the previous proposition.

Suppose on the other hand, that (Q,πQ,M;H) is an H-principal bundle and that (Q, f) is
an H-reduction of P. It follows that the map f : Q −→ P is an embedding. Since the subgroup
H acts on the left on the group G, the tuple (Q×H G, ˆ︁π,M;G) is a G-principal bundle, and in
fact it is easy to verify that the map

Q×H G −→P

[q,g] ↦−→f(q)g
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3. Theory of connections

is a well-defined isomorphism of G-principal bundles. We define the smooth map

s : P ≃ Q×H G −→G/H

[q,g] ↦−→g−1H.

We notice that for every g,a ∈ G, q ∈ Q,

s([q,g]a) = s([q,ga]) = a−1g−1H = a−1s([q,g]),

i.e. s ∈ C∞(P,G/H)G, which uniquely determines a smooth section of the fiber bundle
(E,πE,M;G/H).

As an application of the previous result, we prove that every G-principal bundle with a
non-compact structure group G can indeed be reduced to a compact group.

In order to achieve this, we recall the following profound result concerning the existence
of maximal compact subgroups of connected Lie groups (cf. [32, Satz III.7.3, Satz III.7.21])

Proposition 3.3.3 (Fundamental Theorem about the existence of maximal compact subgroups).

i) Every connected Lie-Group G contains a maximal compact subgroup K. Any other compact
subgroup ˆ︁K ⊆ G is conjugated in K, i.e. there exists g ∈ G such that gˆ︁Kg−1 ⊆ K.

ii) Let K ⊆ G be a maximal compact subgroup of a connected Lie group G. Then there exists a
submanifold N ⊆ G, which is diffeomorphic to some Rr, such that the map

N×K −→G

(n,k) ↦−→nk

is a diffeomorphism.

This result allows us to prove the claimed result from the previous paragraph:

Proposition 3.3.4. Let G be a connected, non-compact Lie group and (P,π,M;G) be a G-principal
bundle. This principal bundle is reducible to any maximal compact subgroup K ⊆ G.

Proof. Let K ⊆ G be a maximal compact subgroup. As a consequence of ii) in the previous
proposition, we have that the homogeneous space G/K is diffeomorphic to some Rr. Thus
the associated bundle E = P×G G/K is a fiber bundle, whose typical fiber is diffeomorphic to
some Rr. We claim that Γ(E) ̸= ∅, which implies the stated assertion, according to Proposition
3.3.2.

That Γ(E) ̸= ∅ is in fact a consequence of a more general fact on locally trivial fiber bundles.
Namely, we have the following result (cf. [27, Chapter I, Theorem 5.7]):

Lemma 3.3.1. Let (B,π,M; F) be a smooth locally trivial fiber bundle, whose typical fiber is
diffeomorphic to some Rℓ, and let A ⊆ M be a closed subset. Then it is possible to extend any
smooth section s : A −→ B to a smooth global section.
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3.4 Connections on principal and associated fiber bundles

A trivial consequence of this lemma is that any smooth fiber bundle with typical fiber
diffeomorphic to some Rℓ has a global section (this is the special case in which the closed set
in the above lemma is just the empty set). Therefore, we conclude that, in the setting of our
proposition, Γ(E) ̸= ∅ and whence the claim made follows.

3.4 Connections on principal and associated fiber bundles

We now introduce the necessary tools that will lead us to the study of notions of differential
calculus in the language of principal bundles.

For that we first recall that a smooth rank k distribution on a smooth manifold N is a
smooth rank k vector subbundle E −→ N of the tangent bundle.

Let us now consider a principal bundle (P,π,M;G). We notice that on P there is a canonical
smooth distribution coming from the fibers of the bundle. Indeed, since π : P −→ M is a
submersion, each fiber Px is a topological submanifold of P. For u ∈ Px we define

TvuP := Tu(Px) ⊆ TuP.

The space TvuP is called the vertical space of P at the point u.
By means of the Lie algebra of the group G and the exponential map, we obtain the

following useful characterisations of the vertical subspaces:

Proposition 3.4.1. With the above notation, it holds that:

i) TvuP = ker duπ.

ii) The map

X ∈ g ↦−→ ˜︁X(u) := d
dt

⃓⃓⃓⃓
0
u · exp(tX) ∈ TvuP

is a linear isomorphism. That is,

TvuP =
{︂˜︁X(u)⃓⃓⃓ X ∈ g

}︂
.

For X ∈ g, the vector field ˜︁X ∈ Γ(TP) defined here is called the fundamental vector field
generated by X.

Notice that the second assertion shows that TvP :=
⨆︁
u∈P TvuP is a smooth distribution

on P, while the first one shows that the distribution is right invariant, that is, it holds that
duRg(TvuP) = TvugP, where Rg : P −→ P is simply defined by Rg(u) = ug.

Indeed, since the action on P is fiber preserving (π ◦ Rg = π), we get on one hand that

(dugπ)(duRg)˜︁X(u) = duπ(˜︁X(u)) = 0,

while, on the other hand we get that

˜︁X(ug) = (duRg)(dugRg−1)˜︁X(ug) ∈ duRg(TvuP).

43



3. Theory of connections

The distribution TvP ⊆ TP is called the vertical tangent bundle of P. A complementary
vector space to TvuP ⊆ TuP is called a horizontal tangent space in P at the point u ∈ P.

Definition 3.4.1. A connection on the principal bundle (P,π,M;G) is a smooth distribution ThP :=⨆︁
u∈P ThuP ⊆ TP of right invariant horizontal tangent spaces. That is, for every g ∈ G and u ∈ P

TuP = TvuP⊕ ThuP,

duRg(ThuP) = ThugP.

The distribution ThP ⊆ TP is called the horizontal tangent bundle. From the definition, it
follows that the projections prv : TP −→ TvP and prh : TP −→ ThP are smooth, and because
of the fact that TvuP = ker duπ, it follows that

duπ|ThuP : ThuP −→ Tπ(u)M

is a linear isomorphism.
It is well-known that connections on principal bundles are determined by their associated

connection forms.

Definition 3.4.2. Let (P,π,M;G) be a principal bundle. A connection form on the bundle P −→M

is a 1-formω ∈ Ω1(P, g) which satisfies:

1. R∗gω = Ad(g−1) ◦ω for every g ∈ G,

2. ω(˜︁X) = X for every X ∈ g.

We denote by C(P) the set of all the connection forms on P.

Proposition 3.4.2 ([27, Chapter II, Proposition 1.1]). The connections and connection forms on the
principal bundle (P,π,M;G) are in one-to-one correspondence:

i) Let ThP be a connection on P. Thenω ∈ Ω1(P, g) given by

ωu(˜︁X(u)⊕ Yh) := X for all u ∈ P, X ∈ g, Yh ∈ ThuP,

is a connection form on P.

ii) Ifω ∈ Ω1(P, g) is a connection form on P, then

ThP =
⨆︂
u∈P

ThuP :=
⨆︂
u∈P

kerωu

defines a connection on P.

In order to state a further characterization of connections on principal bundles we
introduce some additional notation.

Let ω ∈ Ω1(P, g) be a connection form on the principal bundle P and s : U ⊆M −→ P a
local section. We define the local connection form defined by s as the 1-form ωs ∈ Ω1(U, g)
given by

ωs := s∗ω = ω ◦ ds.
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Let now si : Ui −→ P and sj : Uj −→ P be two local sections with Ui ∩Uj ̸= ∅. Then,
because the action of the groupG on P is smooth and transitive on fibers, there exists a smooth
transition function gij : Ui ∩Uj −→ G such that

si(x) = sj(x)gij(x) for x ∈ Ui ∩Uj.

Let also µG ∈ Ω1(G, g) denote the Maurer-Cartan form of the Lie group G, that is,

(µG)(Yg) := (dLg−1)(Yg),

for all Yg ∈ TgG, where Lg : G −→ G denotes the left multiplication map by g. Let µij ∈
Ω1(Ui ∩Uj, g) be the 1-form

µij = g
∗
ijµG,

that is, for X ∈ Tx(Ui ∩Uj),

µij(X) = dLgij(x)−1(dgij(X)).

With all of this we can now state a characterization of connections on principal bundles
via local connection forms:

Proposition 3.4.3 ([27, Chapter II, Proposition 1.4]). Let (P,π,M;G) be a principal fiber bundle.
With the above notation, it holds that:

i) for a connection formω ∈ Ω1(P, g) and local sections si ∈ ΓUi(P), sj ∈ ΓUj(P) with
Ui ∩Uj ̸= ∅,

ωsi = Ad(g−1
ij ) ◦ω

sj + µij,

ii) if {Ui}i is an open cover of M with local sections si ∈ ΓUi(P), and
{︁
ωi ∈ Ω1(Ui, g)

}︁
i

is a
given family of g-valued 1-forms such that, for Ui ∩Uj ̸= ∅,

ωi = Ad(g−1
ij ) ◦ωj + µij,

then there exists a connection formω on P such thatωsi = ωi for all i.

As a useful application of the previous result, we establish in an explicit manner the
well-known fact that there exists a one-to-one correspondence between the set of connections
on the frame bundle of a smooth manifold and the set of covariant derivatives on its tangent
bundle:

Let M be an n-dimensional smooth manifold and F(M) −→ M its frame bundle. Let
ω ∈ Ω1(F(M), gl(n, R)) be a connection form. We denote by Bjk the n×n-matrix whose (j,k)
entry is 1 and the rest are 0. Then we can express the connection formω in the form

ω = ωkj B
j
k,

for unique 1-forms ωkj ∈ Ω1(F(M)). Let s := (s1, . . . , sn) : U −→ F(M) be a local section of
the frame bundle. We define the covariant derivative ∇ω corresponding to ω by linearly
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extending the expressions

∇ωX sj :=
n∑︂
i=1

s∗ωkj (X)sk, j = 1, . . . ,n

and defining the product rule

∇ωX fsj := X(f)sj + f∇ωX sj f ∈ C∞(U).

The transformation formulas described in Proposition 3.4.3 show that ∇ω is well-defined,
that is, it does not depend on the choice of local section we initially choose.

On the other hand, let ∇ be a covariant derivative on TM and s : U −→ F(M) a local
section of the frame bundle. Then we have that there existωkj ∈ Ω1(U) such that

∇sj = ωkj ⊗ sk.

We define now the local 1-formω∇
s ∈ Ω1(U, gl(n, R)) by

ω∇
s := (ωkj B

j
k)
T =

∑︂
k,j

ωkj B
k
j .

The family
{︁
(ω∇
s , s)| s is a local section on F(M)

}︁
satisfies the transformation rules given

in Proposition 3.4.3, which implies that it uniquely defines a connection formω∇ on the frame
bundle F(M). It should also be noted that, essentially the same argument shows in fact the
existence of a one-to-one correspondence between the set covariant derivatives on a vector
bundle E and its frame bundle F(E). See for example [33, Section 9.19].

Due to the fact that on the trivial principal bundle (M × G, pr1,M;G) there exists a
canonical connection, namely the one associated to the Maurer-Cartan form in the sense of
the previous proposition, a partition of unity argument shows the following

Proposition 3.4.4. On every principal bundle there exists a connection.

As we saw before, one can identify sections of the associated bundle to a G-principal
bundle with the G-invariant maps on the total space. An analogue for k-forms with values in
the associated vector bundle is possible.

First we define:

Definition 3.4.3. Let (P,π,M;G) be a principal bundle, V a vector space, and ρ : G −→ GL(V) a
representation. A V-valued k-formω ∈ Ωk(P,V) is called

1. horizontal ifωp(X1, . . . ,Xk) = 0 in case one of the Xi ∈ TpP is a vertical vector.

2. of type ρ, if R∗aω = ρ(a−1) ◦ω for all a ∈ G.

We denote the set of the horizontal k-forms of type ρ by

Ωkhor(P,V)(G,ρ).

From the definition of a connection form, we notice that C(P) is an affine space modelled
over the vector spaceΩ1

hor(P, g)(G,Ad).
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Proposition 3.4.5. With the same notation as before, let E := P ×(G,ρ) V be the associated vector
bundle to the G-principal bundle P −→M. Then

Ωk(M,E) ∼= Ωkhor(P,V)(G,ρ)

as vector spaces.

The proof of this result is somewhat standard. One defines the linear map
Ψk : Ω

k
hor(P,V)(G,ρ) −→ Ωk(M,E) by Ψk(ω) = ω, where

ωx(t1, . . . , tk) := [p,ωp(X1, . . . ,Xk)],

for π(p) = x, and ti ∈ TxM, Xi ∈ TpP with dπp(Xi) = ti and shows that this is the desired
linear isomorphism.

As a corollary of the previous proposition we get that C(P) is an affine space modelled
over the vector spaceΩ1(M, Ad(P)), where

Ad(P) := P×G g

is the so-called adjoint bundle.

3.5 Parallel transport and covariant derivatives

Connections on principal bundles enable us to introduce the notion of parallel transport,
which will allow us to relate the fibers of a principal bundle with each other.

As usual, we fix (P,π,M;G) a principal bundle with connection ThP associated to the
connection formω ∈ Ω1(P, g).

Definition 3.5.1. Let X be a vector field onM. A vector field X on P is called a horizontal lift of X if

i) Xu ∈ ThuP and

ii) duπ(Xu) = Xπ(u)

for every u ∈ P.

The next proposition encloses the most important properties of horizontal lifts.

Proposition 3.5.1. i) For every vector field X onM, there exists a unique horizontal lift X on P.
This horizontal lift is right-invariant.

ii) Given a right-invariant horizontal vector field Z on P. Then there exists exactly one vector field
X onM such that X = Z.

iii) Let X, Y ∈ Γ(TM), f ∈ C∞(M). Then,

X+ Y = X+ Y,

fX = (f ◦ π)X,

[X, Y] = prh[X, Y].

47



3. Theory of connections

iv) If Z is a horizontal and ˜︁B a fundamental vector field on P, then [˜︁B,Z] is a horizontal vector field
on P as well. If X a vector field onM, then [˜︁B,X] = 0.

Proof. i) Let prh : TP −→ ThP denote the projection to the horizontal bundle. As previously
discussed, the map duπ : ThuP −→ Tπ(u)M is a linear isomorphism, which implies that the
unique choice of a horizontal lift is given by the formula

Xu := (dπ|ThP)
−1(︁Xπ(u))︁.

We claim that X actually satisfies the defining properties of a smooth horizontal lift. First of
all we verify the smoothness of X. Let ϕ : PU ≃ U×G be a local trivialization about the point
π(u). Let Y be the smooth vector field Y := dϕ−1(X⊕ 0) ∈ ΓU(P) = Γ(PU). It follows that
dπ(Y) = X, which in turn means X = prhY. The smoothness of X follows now from that of
prh and Y. The right invariance of the connection Th implies that dRg(Xu) ∈ ThugP, from
which it follows that dπ(dRg(Xu)) = dπ(Xu) = Xπ(u). The uniqueness of the horizontal lift
implies dRg(Xu) = Xug. That is, X is right-invariant.

ii) For a horizontal right-invariant vector field Z on P we define a vector field onM by the
formula

Xx := duπ(Zu) for a u ∈ Px.

The right-invariance of the vector field Z implies that the definition of the vector field X does
not depend on the choice of u ∈ Px, and it satisfies X = Z.

iii) The first two equations are a direct and simple computation. The third one is a
consequence of the naturality of the Lie bracket, that is, the fact that X, Y are π-related to X, Y
respectively implies that [X, Y] is π-related to [X, Y] as well, and the uniqueness of horizontal
lifts:

dπ ◦ prh[X, Y] TvP=ker dπ
= dπ ◦ [X, Y] = [X, Y] ◦ π = dπ ◦ [X, Y].

iv) Let Z a horizontal vector field on P, B ∈ g and ˜︁B the fundamental vector field on P
generated by B. The nature of the action of the Lie group G on the smooth manifold P implies
that, in this case, the flow of ˜︁B is given by the family of diffeomorphisms (cf. [20, Cahpter 20,
Proposition 20.8])

Φ
˜︁B
t : P −→P

u ↦−→u exp(tB) = Rexp(tB)(u).
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3.5 Parallel transport and covariant derivatives

Thus,

[˜︁B,Z]u =(L˜︁BZ)u
=

d
dt

⃓⃓⃓⃓
0

(︂
Φ
˜︁B
t

)︂∗
Zu

=
d
dt

⃓⃓⃓⃓
0

dΦ˜︁B
−t

(︂
Z
Φ
˜︁B
t (u)

)︂
=

d
dt

⃓⃓⃓⃓
0

dRexp(−tB)(Zu exp(tB)).

Since the vector field Z is horizontal and the connection Th is right-invariant, we obtain
that the curve defined in the last equation is a curve in ThuP. This implies in sum that [˜︁B,Z]
is a horizontal vector field. In the particular case in which Z = X, for a vector field X onM, is
the vector field Z also right-invariant, and thus the curve t ↦−→ dRexp(−tB)(Zu exp(tB)) is the
constant curve Zu. Which implies [˜︁B,X] = 0.

We can also consider horizontal lifts of piecewise smooth curves in the base M of the
bundle P.

Definition 3.5.2. A curve γ : I −→ P is called a horizontal lift of the curve γ : I −→M if

i) π(γ(t)) = γ(t) for every t ∈ I and

ii) The tangent vectors γ̇(t) are horizontal for all t ∈ I, that is, γ̇(t) ∈ Thγ(t)P.

As the next result shows, for a fixed initial point on the the fiber over a point on the curve
γ, there exists exactly one horizontal lift.

Proposition 3.5.2 ([27, Chapter II, Proposition 3.1]). Let γ : I −→M be a piecewise smooth curve
inM, t0 ∈ I and u ∈ Pγ(t0). Then there exists exactly one horizontal lift γu of γ with γu(t0) = u.

It is precisely this uniqueness result the one that allows us to compare the fibers of a
principal bundle:

Definition 3.5.3. Let γ : [a,b] −→M be a piecewise smooth curve inM. The map

Pωγ : Pγ(a) −→ Pγ(b)

u ↦−→ γu(b)

is called the parallel transport along γ with respect to the connectionω.

From the properties of the horizontal lift γu of γ, it follows that the parallel transport is
independent of the parametrization of the curve γ.

Let now γ : [a,b] −→ M, µ : [c,d] −→ M be two piecewise smooth curves in M with
γ(b) = µ(c). We define the concatenation of the curves γ,µ as the piecewise smooth curve
µ ∗ γ : [0, 1] −→M, with

µ ∗ γ(t) :=

γ(a+ 2t(b− a)), for t ∈ [0, 1
2 ]

µ(c+ (2t− 1)(d− c)), for t ∈ [ 1
2 , 1].
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3. Theory of connections

We also define the inverse of the curve γ as the curve γ− : [0, 1] −→M, which runs through
the same path as the curve γ but in reversed order. We define γ− by the formula

γ−(t) := γ(b− t(b− a)).

We now summarize some of the basic properties of the parallel transport, which are
consequences of the uniqueness of horizontal lifts and the right invariance of the horizontal
space.

Proposition 3.5.3. i) Let γ,µ be two piecewise smooth curves as before. Then

Pωµ∗γ = Pωµ ◦ Pωγ .

ii) The parallel transport is a diffeomorphism. For γ as before,

(Pωγ )−1 = Pωγ− .

iii) The parallel transport is G-equivariant, that is,

Pωγ ◦ Rg = Rg ◦ Pωγ for every g ∈ G.

We notice that the G-equivariance of the parallel transport allows us to define a parallel
transport on the associated fiber bundle E = P×G F. Indeed, let γ : [a,b] −→M be a piecewise
smooth curve inM. The map

PE,ω
γ : Eγ(a) −→ Eγ(b)

[p, v] ↦−→ [Pωγ (p), v]

is well-defined because of the fact that the parallel transport isG-equivariant. The map PE,ω
γ is

called the parallel transport on E induced by the connectionω. We have the following description
of the parallel transport in terms of the special fiber diffeomorphisms of the associated bundle:

Lemma 3.5.1. Let γ : [a,b] −→ P be a horizontal lift of the piecewise smooth curve γ. Then

PE,ω
γ = [γ(b)] ◦ [γ(a)]−1.

Proof. Let [q, v] ∈ Eγ(a) = Pγ(a) ×G F. Let gq ∈ G be the unique group element such that
q = γ(a)gq.

Thus
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3.5 Parallel transport and covariant derivatives

PE,ω
γ ([q, v]) =[Pωγ (q), v]

=[Pωγ (γ(a)gq), v]
Prop.3.5.3

= [Pωγ (γ(a))gq, v]

=[Pωγ (γ(a)),gqv]

=[γγ(a)(b),gqv]
Prop.3.5.2

= [γ(b),gqv]

=[γ(b)][γ(a)]−1[q, v].

In the particular case in which E is a vector bundle, we obtain that the parallel transport
PE,ω
γ is a linear isomorphism.

Now we establish how from connections on principal bundles we can obtain covariant
derivatives on associated vector bundles.

For that, recall that a covariant derivative on the vector bundle E −→M is a linear map

∇ : Γ(E) −→ Γ(T∗M⊗ E)

that satisfies the Leibniz rule, that is,

∇(fe) = df⊗ e+ f∇e for f ∈ C∞(M), e ∈ Γ(E).

Definition 3.5.4. Let (P,π,M;G) be a principal bundle with connection form ω, and V a vector
space. The linear map Dω : Ωk(P,V) −→ Ωk+1(P,V) defined by

(Dωη)p(t0, . . . , tk) := dηp(prht0, . . . , prhtk), for ti ∈ TpP, (3.6)

where d : Ωk(P,V) −→ Ωk+1(P,V) denotes the usual differential on k-forms is called the absolute
differential on P defined byω.

The importance of this modified differential is that it enjoys a feature not shared by the
usual one, namely, that it maps horizontal forms of type ρ into differential forms of the same
kind, which because of the isomorphism Ωk(M,E = P ×(G,ρ) V) ∼= Ωkhor(P,V)(G,ρ), is a
minimum requirement for obtaining covariant derivatives on the associated vector bundle:

Proposition 3.5.4. With the above notation, it holds that

Dω : Ωkhor(P,V)(G,ρ) −→ Ωk+1
hor(P,V)(G,ρ).

For η ∈ Ωkhor(P,V)(G,ρ) it holds that

Dωη = dη+ ρ∗(ω)∧ η, (3.7)

where the second summand is defined as
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3. Theory of connections

(ρ∗(ω)∧ η)(t0, . . . , tk) :=
k∑︂
i=0

(−1)iρ∗(ω(ti))
(︁
η(t0, . . . ,ˆ︁ti, . . . , tk)

)︁
.

With help of the previous proposition, together with the linear isomorphism

Ψ• : Ω
•
hor(P,V)(G,ρ) −→ Ω•(M,E),

we define the linear operator

dω : Ωk(M,E) −→ Ωk+1(M,E)

as the unique map such that the diagram

Ωkhor(P,V)(G,ρ)

Ψk
↓↓

Dω →→ Ωk+1
hor (P,V)(G,ρ)

Ψk+1
↓↓

Ωk(M,E)
dω

→→ Ωk+1(M,E)

commutes.
The differential induced by the connection formω satisfies the usual product rule for the

wedge product:

Proposition 3.5.5. Let dω : Ω•(M,E) −→ Ω•+1(M,E) be the differential induced by the connection
formω. Then, for σ ∈ Ωk(M),η ∈ Ωl(M,E) with k, l ⩾ 0, it holds that

dω(σ∧ η) = dσ∧ η+ (−1)kσ∧ dωη. (3.8)

We notice that in the special case k = 0 we obtain a linear operator

dω : Γ(E) −→ Γ(T∗M⊗ E),

which, by Proposition 3.5.5, satisfies the product rule

dω(fe) = df⊗ e+ fdωe, for f ∈ C∞(M), e ∈ Γ(E),

which implies that this linear map is in fact a covariant derivative on the associated vector
bundle E.

Definition 3.5.5. We call the map

∇ω := dω|Ω0(M,E) : Γ(E) −→ Γ(T∗M⊗ E)

the covariant derivative on E induced by the connection formω.

Next, we provide an explicit formula for the covariant derivative∇ω.

52



3.5 Parallel transport and covariant derivatives

Proposition 3.5.6. Let P −→M be a G-principal bundle, ρ : G −→ GL(V) a G-representation, and
E = P×(G,ρ) V the associated vector bundle. Letω be a connection form on P and∇ω the induced
covariant derivative on E. Then, for e ∈ Γ(E),X ∈ Γ(TM) the following local formula holds:

(∇ωX e)(x) = [s(x), dvx(Xx) + ρ∗(ωs(Xx))v(x)] ∈ Ex, (3.9)

where s ∈ ΓU(P), x ∈ U ⊆M, v ∈ C∞(U,V) is a smooth map with e|U = [s, v], and ωs = s∗ω is
the local connection form.

Proof. Let s : U −→ PU be a local section. For any section e ∈ Γ(E), define the smooth map
v : U −→ V as the map v := e ◦ s, where e ∈ C∞(P,V)G is the unique G-equivariant map to
which the section e corresponds. That the map v satisfies the identity e|U = [s, v] trivially
follows.

We thus obtain

(∇ωX e)(x) =(dωe)(Xx)

=[s(x), (Dωe)(dxs(Xx))]

=[s(x), de(dxs(Xx)) + ρ∗(ω(dxs(Xx)))e(s(x))]

=[s(x), dxv(Xx) + ρ∗(ωs(Xx))v(x)].

Corollary 3.5.1. Let X be the horizontal lift of the vector field X. For e ∈ Γ(E) we get that

(∇ωX e)(x) = [s(x), de(Xs(x))],

for any local section s ∈ ΓU(P), with x ∈ U ⊆M, and e ∈ C∞(P,V)(G,ρ) the unique G-equivariant
V-valued map corresponding to the section e.

Proof. First we note that X and X are s-related:

X ◦ s = (dπ|−1
ThP ◦X ◦ π) ◦ s

= dπ|−1
ThP ◦ d(π|ThP ◦ s) ◦X

= ds ◦X.

The result follows now from Proposition 3.5.6, and by noting that the second summand in
equation (3.9) vanishes by the observation that X is s-related to X.

Back in Proposition 3.2.7 we obtained an explicit bundle metric on the associated vector
bundle E coming from a G-invariant scalar product on the vector space V . A nice property
of the induced covariant derivative ∇ω is that it is metric with respect to this special bundle
metric:

Proposition 3.5.7. Let gE := ⟨·, ·⟩E be a bundle metric on the associated vector bundle E = P×G V
as in Proposition 3.2.7. It holds that gE is a constant tensor with respect to the induced covariant
derivative∇ω. That is,

∇ωgE ≡ 0.
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3. Theory of connections

As a final remark on the covariant derivative∇ω, we also have a way to recover it from
the parallel transport, in an analogous fashion as in the case of any covariant derivative on a
vector bundle.

In order to achieve this, let γ be a piecewise smooth curve inMwith initial value γ(0) = x.
We define now the map

PE,ω
t,0 : Eγ(t) −→ Eγ(0)

to be the parallel transport along the inverse curve γ− : [0, 1] −→M.

Proposition 3.5.8. Let e ∈ Γ(E). Then for any piecewise smooth curve γ we have that

d
dt
PE,ω
t,0 e(γ(t)) = P

E,ω
t,0 ∇

ω
γ̇(t)e(γ(t)).

Proof. Let γ be any horizontal lift of γ. Lemma 3.5.1 implies that

PE,ω
t,0 = [γ(0)] ◦ [γ(t)]−1.

Let also e ∈ C∞(P,V)(G,ρ) be the invariant V-valued function corresponding to the section
e.

By making use of the previous corollary, we thus obtain

d
dt

⃓⃓⃓⃓
0
PE,ω
t,0 (e(γ(t))) =

d
dt

⃓⃓⃓⃓
0
[γ(0)]

(︁
[γ(t)]−1e(γ(t))

)︁
=

[︃
γ(0),

d
dt

⃓⃓⃓⃓
0
e(γ(t))

]︃
= [γ(0), de(γ̇(0))]

= (∇ωγ̇(0)e)(γ(0)).

We notice that this special case is the key step in proving our claim. Define the piecewise
smooth curve γt(u) := γ(t+ u). From our previous discussion, we thus obtain

∇ωγ̇(t)e(γ(t)) = ∇
ω
γ̇t(0)e(γt(0)) =

d
du

⃓⃓⃓⃓
0
PE,ω
u,0 e(γt(u))

=
d

du

⃓⃓⃓⃓
0
PE,ω
t+u,te(γ(t+ u))

=
d

du

⃓⃓⃓⃓
0
PE,ω

0,t ◦ P
E,ω
t+u,0e(γ(t+ u))

= PE,ω
0,t

d
dt
PE,ω
t,0 e(γ(t)).

3.6 Introduction to curvature

In this section, we make some remarks about the curvature on principal fiber bundles.
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3.6 Introduction to curvature

As usual, (P,π,M;G) is a principal bundle with a fixed connection ThP with respect to
the associated connection formω. ρ : G −→ GL(V) is a representation of the Lie group G, and
E = P×(G,ρ) V is the associated vector bundle overM.

Definition 3.6.1. The curvature form of the connection formω is the g-valued 2-form

Fω := Dωω ∈ Ω2(P, g) (3.10)

By definition of the absolute differential Dω, we obtain that Fω is a horizontal form, and
because of the fact that the connection formω is of type Ad, Fω is of type Ad as well. That is,
it holds that

Fω ∈ Ω2
hor(P, g)(G,Ad).

Let s ∈ ΓU(P). The g-valued 2-form on U ⊆M

Fs := s∗Fω ∈ Ω2(U, g)

is called the local curvature form with respect to s.
If τ ∈ ΓU(P) is another local section on P, and τ = s · g, for a smooth map g : U −→ G, then

we obtain the following transformation rule:

Fτ = Ad(g−1) ◦ Fs.

Before we state further properties of the curvature form, we recall how the commutator
of differential forms taking values on a Lie algebra is defined. Let N be a smooth manifold
and g a Lie algebra. We fix a basis (a1, . . . ,ar) of g. Then, every η ∈ Ωk(N, g), τ ∈ Ωl(N, g)
are represented in terms of this basis as

η = ηiai and τ = τiai,

where ηi ∈ Ωk(N), τi ∈ Ωl(N).
We then define the commutator of η and τ by the formula

[η, τ] := (ηi ∧ τj)[ai,aj]g ∈ Ωk+l(N, g). (3.11)

Notice that this definition is independent of the choice of basis of the Lie algebra. Indeed,
let (b1, . . . ,br) be another basis of g with change of basis matrix A = (αij)i,j. Then the
bilinearity of the Lie bracket implies

(ηi ∧ τj)[ai,aj]g = (ηiαki ∧ τ
jαℓj)[bk,bℓ]g.

In a local coordinate system (U, (xi)) of N, a g-valued differential form η ∈ Ω•(N, g) has
the representation

η = ηI dxI

for unique smooth functions ηI : U −→ g.
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3. Theory of connections

In this case, the formula (3.11) is equivalent to

[η, τ] = [ηI, τJ]g dxI ∧ dxJ .

Some basic properties of the commutator [·, ·] : Ωk(N, g)×Ωl(N, g) −→ Ωk+l(N, g) are:

i) [η, τ] = (−1)kl+1[τ,η].

ii) d[η, τ] = [dη, τ] + (−1)k[η, dτ].

iii) If η is a 1-form, it holds that [η,η](X, Y) = 2[η(X),η(Y)]g.

Next, we prove some of the basic properties of the curvature form.

Proposition 3.6.1. Let Fω ∈ Ω2(P, g) be the curvature form of the connection form ω. Then the
following identities hold:

i) The structure equation: Fω = dω+ 1
2 [ω,ω].

ii) The (differential) Bianchi identity: DωFω = 0.

iii) For a horizontal k-form of type ρ, η ∈ Ωkhor(P,V)(G,ρ),

DωDωη = ρ∗(F
ω)∧ η.

Proof. To prove the structure equation, it suffices to check it on horizontal and vertical vectors
X, Y ∈ TpP = TvpP ⊕ ThpP. If both X, Y are horizontal, we have that ω(X) = ω(Y) = 0
and, by definition, Fω(X, Y) = Dωω(X, Y) = dω(X, Y), as desired. If X is horizontal and Y
vertical, then we have that Fω(X, Y) = 0, since Fω is a horizontal form. Now, Propositions
3.4.1 and 3.5.1 allow us to write X = Vp, Y = ˜︁T(p), for a V ∈ Γ(TM) and a T ∈ g. Once more,
Proposition 3.5.1 implies that [V , ˜︁T ] = 0. Because ω(V) = 0 and ω(˜︁T) = T are constant, we
get that dω(X, Y) = 0, which verifies the structure equation in this particular case. Lastly,
suppose both X, Y are vertical vectors and write X = ˜︁T(p), Y = ˜︁S(p), for T ,S ∈ g. Then, on one
hand we get Fω(X, Y) = 0, and on the other hand

dω = X(ω(˜︁S)) − Y(ω(˜︁T)) −ω([˜︁T , ˜︁S])
= −ω(˜︁[T ,S])

= −[T ,S]g

= −[ω(˜︁T(p)),ω(˜︁S(p))]g
= −[ω(X),ω(Y)]g

= −
1
2
[ω,ω](X, Y).

Now, to prove the Bianchi identity we differentiate the structure equation

dFω = ddω+
1
2

d[ω,ω] = [dω,ω],
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3.6 Introduction to curvature

from which we obtain that

DωF
ω = dFω ◦ prh = [dω ◦ prh,ω ◦ prh] = 0,

since ThP = kerω.
Finally, we show item iii). Since both η,Dωη are horizontal of type ρ we make use of

Proposition 3.5.4 and thus obtain

Dω(Dωη) = d(dη+ ρ∗(ω)∧ η) + ρ∗(ω)∧ (dη+ ρ∗(ω)∧ η)

= d(ρ∗(ω))∧ η+ ρ∗(ω)∧ ρ∗(ω)∧ η

= ρ∗(dω)∧ η+ ρ∗(ω)∧ ρ∗(ω)∧ η,

and since

(ρ∗(ω)∧ ρ∗(ω))(X, Y) = ρ∗(ω(X)) ◦ ρ∗(ω(Y)) − ρ∗(ω(Y)) ◦ ρ∗(ω(X))

= [ρ∗(ω(X)), ρ∗(ω(Y))]End(V)

= ρ∗([ω(X),ω(Y)]g)

=
1
2
ρ∗([ω,ω](X, Y)),

it follows that

DωDωη = ρ∗

(︃
dω+

1
2
[ω,ω]

)︃
∧ η = ρ∗(F

ω)∧ η.

Previously we verified that the curvature form is a horizontal g-valued 2-form of type Ad,
thus it can be identified with a 2-form onMwith values in the adjoint bundle Ad(P), which
we will denote by the same symbol Fω. Now we translate the properties of the curvature form
just proved to this 2-form. First of all, we consider the following bundle morphism induced
by the representation ρ : G −→ GL(V):

ρ∗ : Ad(P) −→ End(E).

Let φ ∈ Ad(P)x and e ∈ Ex. For fixed p ∈ Px it holds that φ = [p,X] and e = [p, v] for a
X ∈ g and v ∈ V . Then we define

ρ∗(φ)e := [p, ρ∗(X)v].

Because the action on P is free and transitive on fibers, we see that the definition of the
bundle morphism ρ∗ does not depend on the choice of the fiber element p ∈ Px.

Whit this morphism, we define the wedge product of differential forms with values in
Ad(P) with differential forms with values in E:
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3. Theory of connections

∧ : Ωk(M, Ad(P))×Ωl(M,E) −→Ωk+l(M,E)

(η, τ) ↦−→ η∧ τ,

with

(η∧ τ)x(X1, . . . ,Xk+l)

:=
1
k!l!

∑︂
σ∈Sk+l

sgn(σ)ρ∗
(︁
ηx(Xσ(1), . . . ,Xσ(k))

)︁
τx
(︁
Xσ(k+1), . . . ,Xσ(k+l)

)︁
.

This together with the identities in Proposition 3.6.1 allow us to prove analogous ones for
the curvature form Fω ∈ Ω2(M, Ad(P)):

Proposition 3.6.2. Let Fω ∈ Ω2(M, Ad(P)) be the curvature form of the connection formω. Then
Fω satisfies the (second) Bianchi identity

dωFω = 0.

For the differential dω : Ωk(M,E) −→ Ωk+1(M,E) it holds that

dωdωη = Fω ∧ η.

From the previous proposition, we conclude that the curvature form of a connection form
measures how much dω ◦ dω fails to vanish.

Some additional properties of the curvature form, which immediately follow from the
definition of a curvature form and the fact that ThP = kerω, are given in the next

Proposition 3.6.3. Let X, Y be horizontal vector fields on P and Fω ∈ Ω2(P, g) be the curvature form
associated to the connection formω. Then

i) Fω(X, Y) = −ω([X, Y]).

ii) prv([X, Y]) = − ˜︂Fω(X, Y).

The last property described in the previous proposition let us establish some deeper results
on connections on principal bundles. But before we get into further specifics, we recall some
definitions on geometric distributions and Frobenius Theorem. A distribution D ⊆ TN on
the smooth manifold N is called involutive if, for every vector fields X, Y on N that take their
values in D, the Lie bracket [X, Y] also takes all of its values in D. An integral manifold of D is a
submanifold Q ⊆ N such that TqQ = Dq for all q ∈ Q. A distribution D is called integrable if
for every x ∈ N there is a maximal connected integral manifold of D containing x. Frobenius
Theorem claims that a distribution D is integrable if, and only if, it is involutive.

Proposition 3.6.4.
i) The vertical tangent bundle TvP ⊆ TP is involutive.
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3.6 Introduction to curvature

ii) The horizontal tangent bundle ThP ⊆ TP is involutive if, and only if, Fω ≡ 0.

Proof. The first claim follows from the fact that [˜︁T , ˜︁S] = ˜︁[T ,S] for any two fundamental vector
fields ˜︁T , ˜︁S. This implies then that the Lie bracket of vertical vector fields is again a vertical
vector field. To prove the second assertion, for X, Y horizontal vector fields it holds, from the
previous proposition, that prv([X, Y]) = − ˜︂Fω(X, Y), which implies that [X, Y] is horizontal if,
and only if, Fω(X, Y) = 0. The involutivity of the horizontal tangent bundle is then equivalent
to the vanishing of the curvature form Fω.

What we just proved shows that the vanishing of the curvature form is equivalent to
saying that through every point of P there is a maximal submanifoldQ ⊆ P that is transversal
to the fibers of the bundle whose tangent bundle is TQ = ThP|Q. As an example, let us
consider the trivial principal bundle P0 = M×G over M together with the canonical flat
connection ThP0 corresponding to the connection form

(ω0)(x,g) : T(x,g)(M×G) ∼= TxM× TgG −→g

(X, Y) ↦−→µG(Y) = dLg−1Y.

The maximal integral manifold of ThP0 through the point (x,g) is the submanifold
M× {g} ⊆M×G, which implies that ThP0 is involutive and thus, by Proposition 3.6.4, that
Fω0 ≡ 0.

Definition 3.6.2. A connection, resp. the corresponding connection formω on theG-principal bundle
P −→M is called flat if Fω ≡ 0.

For Principal bundles over simply-connected base spaces, we have the following global
result.

Proposition 3.6.5 ([26, Satz 3.20]). Let (P,π,M;G) be a principal bundle withM simply connected
and connection formω. The connection formω is flat if, and only if,

(P,ω) ∼= (P0,ω0)

as principal fiber bundles.

We now collect some relevant results about the behavior of connection and curvature
forms under reductions.

Proposition 3.6.6. Let (P,πP,M;G) be a principal G-bundle, λ : H −→ G be a Lie group
homomorphism, and

(︁
(Q,πQ,M;H), f

)︁
be a λ-reduction of P. Let also ω be a connection form

on Q. There exists exactly one connection form ˜︁ω on P such that

dqf(ThωqQ) = Th˜︂ωf(q)P.

For the connection and curvature forms we have

f∗ ˜︁ω =λ∗ ◦ω,

f∗F˜︂ω =λ∗ ◦ Fω.
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3. Theory of connections

Proof. Let x ∈ M and p ∈ Px. For q ∈ Qx we have that f(q) ∈ Px, since πQ = πP ◦ f. Let
g ∈ G be the unique element such that p = f(q)g. Define

ThpP := dq(Rg ◦ f)(ThωqQ) ⊆ TpP.

We claim that the distribution

Th : p ∈ P ↦−→ ThpP ⊆ TpP

defines a connection on P. To achieve this we need to verify that the subspaces ThpP are
well-defined in the sense that they do not depend on the choice of the point q ∈ Q. Let
(q ′,g ′) ∈ Q×G such that p = f(q ′)g ′. The fact that q,q ′ ∈ Qx implies that there exists a
unique h ∈ H such that q ′ = qh. Then we obtain p = f(qh)g ′ = f(q)λ(h)g ′ = f(q)g. Since
the action of G on the fiber Px is simply transitive we deduce that λ(h)g ′ = g, which implies

dq ′(Rg ′ ◦ f)
(︁
Thωq ′Q

)︁
=dq ′(Rg ′ ◦ f)

(︁
ThωqhQ

)︁
=dq ′(Rg ′ ◦ f)

(︁
dqRh

(︁
ThωqQ

)︁)︁
f◦Rh=Rλ(h)◦f

= dq(Rg ′ ◦ Rλ(h) ◦ f)
(︁
ThωqQ

)︁
=dq(Rg ◦ f)

(︁
ThωqQ

)︁
=ThpP.

We also have that the assignment p ↦−→ ThpP is right-invariant, since for all a ∈ G,

dpRa(ThpP) = dpRadq(Rg ◦ f)
(︁
ThωqQ

)︁
= dq(Rga ◦ f)

(︁
ThωqQ

)︁
= ThpaP.

That the subspace ThpP ⊆ TpP is complementary to the vertical space TvpP follows from
the fact that (dπP ◦ df)|ThωqQ = dπQ|ThωqQ is an isomorphism between ThωqQ and TxM and
dqf : ThωqQ −→ Thf(q)P is a surjective map. The smoothness of the distribution ThP follows
from the smoothness of both, the distribution ThωQ and the map f. This proves our claim.
The uniqueness of the connection ThP necessarily follows from the invariance conditions it
needs to satisfy, and which our previously defined one already fulfills.

Let ˜︁ω ∈ C(P) be the associated connection form to the connection ThP we have just
defined. For a horizontal vector X ∈ ThωqQwe have that

λ∗(ω(X)) = 0 and (f∗ ˜︁ω)(X) = ˜︁ω(df(X)) = 0.

For a vertical vector ˜︁Yq ∈ TvqQ, with Y ∈ h it holds that

λ∗

(︂
ω(˜︁Yq))︂ =λ∗Y;

(f∗ ˜︁ω)(˜︁Yq) = ˜︁ω(︂df(˜︁Yq))︂ = ˜︁ω(︂˜︃λ∗Yf(q))︂ = λ∗Y.

Thus, the identity λ∗ ◦ω = f∗ ˜︁ω holds on all of TqQ.
For the last identity we make use of the structure equation which is satisfied by the

curvature forms.
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3.6 Introduction to curvature

We obtain

f∗F˜︂ω =f∗d ˜︁ω+
1
2
f∗[ ˜︁ω, ˜︁ω]

=d(f∗ ˜︁ω) +
1
2
[f∗ ˜︁ω, ˜︁ω]

=d(λ∗ ◦ω) +
1
2
[λ∗ ◦ω, λ∗ ◦ω]

=λ∗ ◦ dω+
1
2
λ∗[ω,ω]

=λ∗ ◦ Fω.

Definition 3.6.3. The connection form ˜︁ω ∈ C(P) from the previous proposition is called the λ-
extension ofω ∈ C(Q). If ˜︁ω ∈ C(P) is given and there exists a connection formω ∈ C(Q), which
satisfies the relations above, the connection formω is called the λ-reduction of ˜︁ω. If H ⊆ G is a Lie
subgroup and Q ⊆ P an H-reduction of P, we call the connection form ω the reduction of ˜︁ω on Q,
and we say that ˜︁ω is reducible to Q, whenever such a connection formω ∈ C(Q) exists.

Next we provide some equivalent formulations of reducibility of connection forms for the
special case in which the Lie group H is a Lie subgroup of the group G.

Proposition 3.6.7. Let H ⊆ G be a Lie subgroup, Q ⊆ P an H-reduction of the G-principal bundle P
and ˜︁ω a connection form on P. The following statements are equivalent:

i) ˜︁ω is reducible to Q.

ii) ˜︁ω|TQ takes values in the Lie subalgebra h.

iii) Th˜︂ωq P ⊆ TqQ for all q ∈ Q.

Proof. For the submanifolds Q ⊆ P, H ⊆ G we make the usual identifications of dqιTqQ
with TqQ and ι∗h with h, where ι denote the respective inclusion maps. Setting f and λ in
the previous proposition to these inclusion maps, the condition dqf(ThωqQ) = Thf(q)

˜︂ωP is
equivalent in this case to ThωqQ ⊆ Th˜︂ωq P for all q ∈ Q, whereas the condition f∗ ˜︁ω = λ∗ ◦ω is
equivalent in this setting to ˜︁ω|TQ = ω.

If ˜︁ω is reducible to Q, Proposition 3.6.6 implies the existence of a connection form
ω on Q such that ˜︁ω|TQ = ω, which clearly implies ii). If on the other hand, we have
that the connection form ˜︁ω on P satisfies that ˜︁ω|TQ ⊆ h, the h-valued 1-form ω := ˜︁ω|TQ

defines a connection form on Q, which by our previous discussion implies that ω satisfies
the compatibility condition f∗ ˜︁ω = λ∗ ◦ω in Proposition 3.6.6, which precisely defines the
reducibility of the connection form ˜︁ω to Q. With this we obtain the equivalence between i)
and ii).

Now, if ˜︁ω is reducible toQ, then there exists a connection formω onQ such that ThωqQ ⊆
Th˜︂ωq P for all q ∈ Q, according to our discussion at the beginning of the proof. It even holds
that ThωqQ = Th˜︂ωq P for all q ∈ Q, since for all X ∈ Th˜︂ωq P there exists exactly one horizontal lift
Y ∈ ThωqQwith respect to the connection formω of dqπ(X), which because of the condition
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3. Theory of connections

ThωqQ ⊆ Th˜︂ωq P is horizontal with respect to the connection form ˜︁ω as well. The uniqueness
of horizontal lifts implies therefore that Y = X, which in turn implies Th˜︂ωq P ⊆ ThωqQ ⊆ TqQ.

Suppose on the other hand that Th˜︂ωq P ⊆ ThωqQ. Thus the assignmentQ ∋ q ↦−→ ThqQ :=

Th˜︂ωq P defines a connection on Q which, by the discussion at the beginning of our proof,
implies the reducibility of ˜︁ω to Q, having thus shown the equivalence between items i) and
iii).

In analogy to the case of covariant derivatives, on every vector bundle we can define a
curvature endomorphism.

Definition 3.6.4. Let ∇ : Γ(E) −→ Γ(T∗M ⊗ E) be a covariant derivative on the vector bundle
E −→M. The End(E)-valued 2-form

R∇ ∈ Γ
(︃⋀︂2

T∗M⊗ End(E)
)︃

defined by

R∇(X, Y) := ∇X∇Y −∇Y∇X −∇[X,Y]

for vector fields X, Y onM is called the curvature (endomorphism) of the covariant derivative∇.

Before we established how a connection form ω on the principal bundle (P,π,M;G)
induces a covariant derivative ∇ω on the associated vector bundle E = P ×(G,ρ) V −→ M.
The next result shows the analogous link between the curvature form Fω and the curvature
R∇

ω.

Proposition 3.6.8 ([27, Chapter III, Theorem 5.1]). Let p ∈ Px be a point in the fiber of P over x
and [p] : V −→ Ex the corresponding fiber isomorphism. Then

R∇x
ω
(X, Y) = [p] ◦ ρ∗(Fωp (X, Y)) ◦ [p]−1,

where X, Y ∈ TxM and X, Y ∈ TpP are their respective horizontal lifts.

For an End(E)-valued k-form H ∈ Ωk(M, End(E)) and an E-valued l-form η ∈ Ωl(M,E)
we define the wedge product as

(H∧ η)(X1, . . . ,Xk+l)

:=
1
k!l!

∑︂
σ∈Sk+l

sgn(σ)H(Xσ(1), . . . ,Xσ(k))
(︁
η(Xσ(k+1), . . . ,Xσ(k+l))

)︁
.

With this wedge product, together with Proposition 3.6.2, we obtain that

dωdωη = R∇
ω
∧ η, for η ∈ Ωk(M,E).

At last, we observe how connections, curvatures, and parallel transports behave under
automorphisms of principal bundles.

Definition 3.6.5. A gauge transformation on the principal bundle (P,π,M;G) is a fiber-preserving,
G-equivariant diffeomorphism f : P −→ P, i.e.,
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3.7 Introduction to holonomy theory

i) π ◦ f = π,

ii) f(pg) = f(p)g for every p ∈ P and g ∈ G.

The group of gauge transformation on the bundle P −→M is denoted by G(P) ⊆ Diff(P).

We notice that there is a one-to-one correspondence between G(P) and C∞(P,G)G, the set
of the G-equivariant smooth maps on P with values in G, that is

C∞(P,G)G :=
{︁
σ ∈ C∞(P,G)| σ(pg) = g−1σ(p)g, for p ∈ P, g ∈ G

}︁
.

The correspondence is given by f ∈ G(P) ↦−→ σf ∈ C∞(P,G)G, with

f(p) = pσf(p), for p ∈ P.

Proposition 3.6.9 ([26, Satz 3.22]). Let ω be a connection form on the principal bundle P −→M,
and f ∈ G(P) a gauge transformation. Then f∗ω is also a connection form on P and the following
holds:

1. f∗ω = Ad(σ−1
f ) ◦ω+ σ∗fµG.

2. f ◦ Pf∗ωγ = Pωγ ◦ f.

3. Df∗ω = f∗ ◦Dω ◦ f∗−1.

4. Ff
∗ω = f∗Fω = Ad(σ−1

f ) ◦ Fω.

3.7 Introduction to holonomy theory

In this section, we provide a quick review of holonomy theory and state some standard results.
Throughout this section (P,π,M;G) denotes a G-principal bundle over a connected

manifoldM, andω denotes a fixed connection form on P. Let γ : [0, 1] −→M be a piecewise-
smooth path inM. As usual Pωγ : Pγ(0) −→ Pγ(1) the parallel transport along the path γ with
respect to the connection kerω. For fixed x ∈Mwe defined the loop space at x

Ω(x) :={γ| γ is a path inMwith γ(0) = γ(1) = x},

Ω0(x) :={γ ∈ Ω(x)| γ is null-homotopic}.

Let γ ∈ Ω(x) and u ∈ Px. The fact that the action of the Lie group G is simply transitive
on Px implies the existence of a unique holu(γ) ∈ G such that

Pωγ (u) = uholu(γ).

The element holu(γ) ∈ G is called the holonomy of γ based at u.
It is not difficult to show the following properties of the holonomy of paths (cf. [26, Lemma

4.1]):
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3. Theory of connections

Proposition 3.7.1. Let γ, δ ∈ Ω(x), u ∈ Px, a ∈ G and µ : [0, 1] −→M a path inM starting at the
point x. The holonomy of paths satisfies:

i) holu(γ ∗ δ) = holu(γ)holu(δ).

ii) holua(γ) = a−1 holu(γ)a.

iii) holPωµ (u)(µ ∗ γ ∗ µ−) = holu(γ).

Definition 3.7.1. Let u ∈ Px. The group

Holu(ω) := {holu(γ)| γ ∈ Ω(x)} ⊆ G

is called the holonomy group ofω based at u. The group

Hol0
u(ω) := {holu(γ)| γ ∈ Ω0(x)} ⊆ G

is called the reduced holonomy group ofω based at u.

Notice that the holonomy groups Holu(ω), Hol0
u(ω) are indeed subgroups of G thanks

to i) in the previous proposition. The fact that for γ ∈ Ω(x), η ∈ Ω0(x), the path γ− ∗ η ∗ γ is
nullhomotopic implies that holu(γ− ∗ η ∗ γ) = holu(γ)−1 holu(η)holu(γ) ∈ Hol0

u(ω). This
implies that Hol0

u(ω) is normal in Holu(ω). ii) in the previous proposition implies that any
two holonomy groups based at two points in the same fiber are conjugated. That is, for any
u ∈ Px, a ∈ G,

Holua(ω) = a−1 Holu(ω)a.

For x,y ∈ M, u ∈ Px and µ a path between x and y, it holds according to iii) in the
previous proposition that

Holu(ω) = HolPωµ (u)(ω).

It can be shown in fact, that the holonomy groups are in fact Lie subgroups of G. In order
to show this we make use of the following result (see [26, Satz 1.23]):

Proposition 3.7.2. Let G be a Lie group and H ⊆ G a subgroup such that for all h ∈ H there is a
piecewise smooth curve γ : I −→ G with γ(I) ⊆ H, which connects h with the identity element in G.
It follows that H is in fact a Lie subgroup.

Proposition 3.7.3. The holonomy group Holu(ω) is a Lie subgroup of G. The reduced holonomy
group Hol0

u(ω) is the connected component of the identity element of Holu(ω). In particular, if M is
simply connected, the holonomy group Holu(ω) is a connected Lie subgroup.

Proof. First, we show that the reduced holonomy group is a connected Lie subgroup of G. Let
g ∈ Hol0

u(ω), x = π(u) and γ ∈ Ω0(x) such that g = holu(γ). Let H : [0, 1]× [0, 1] −→M be a
homotopy between the constant loop at x and the loop γ, with Hs = H(·, s) ∈ Ω0(x). The fact
that γ is piecewise smooth implies that we can choose the homotopyH to be piecewise smooth
as well. Let Hs denote the horizontal lift of Hs starting at u ∈ Px. The fact that the curves
Hs are given as the solution of an ordinary differential equation, which depends piecewise
smoothly on the parameter s, implies that the curve s ↦−→ Hs(1) ∈ P is also piecewise smooth.
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3.7 Introduction to holonomy theory

Let gs denote the unique group element such that PωHs(u) = Hs(1) = ugs. Thus the map
s ∈ [0, 1] ↦−→ gs ∈ G is a piecewise smooth curve in G, whose image lies in Hol0

u(ω) and
which connects the identity element e with g (g0 = e, g1 = g). Since the element g ∈ Hol0

u(ω)

was arbitrarily chosen, the claim follows from the previous proposition.
Let us consider the map

ρ : π1(M, x) −→Holu(ω)/Hol0
u(ω)

[γ] ↦−→holu(γ)Hol0
u(ω).

Because of i) in Proposition 3.7.1, it is easy to deduce that ρ is well defined.
The map ρ is a group homomorphism. Indeed, for γ, δ ∈ Ω(x),

ρ([γ] · [δ]) = ρ([γ ∗ δ]) = [holu(γ ∗ δ)] = [holu(γ)holu(δ)] = ρ([γ])ρ([δ]).

Since the map ρ is clearly surjective and π1(M, x) is at most countable, we conclude that the
factor space Holu(ω)/Hol0

u(ω) is at most countable. In particular, the group Holu(ω) is the
union of at most countably many orbits gnHol0

u(ω), with gn ∈ Holu(ω). Since the smooth
structure on Hol0

u(ω) can be transferred to each of the orbits, and there are at most countably
many of them, this provides the desired smooth structure on Holu(ω). The multiplication
and inversion are smooth with respect to this differential structure, which makes Holu(ω)

a Lie subgroup of G. That the reduced holonomy group is the connected component of the
identity follows now from the definition. In the case in which M is simply connected, the
fact that π1(M, x) = {e} implies that Holu(ω) = Hol0

u(ω), whence Holu(ω) is a connected
Lie subgroup.

A classical result in holonomy theory is the following one, which proves that every
connection on a G-principal bundle is reducible to its holonomy group (cf. [27, Chapter 2,
Theorem 7.1]):

Proposition 3.7.4 (Reduction Theorem). Let (P,π,M;G) be a principal G-bundle over a connected
manifoldM with connection formω. For u ∈ P we define the set

Pω(u) := {p ∈ P| there exists anω-horizontal path from u to p}.

The following holds:

i) (Pω(u),π|Pω(u),M; Holu(ω)) is a principal bundle.

ii) The G-principal bundle P together with its connection form ω are reducible to the Holu(ω)-
principal bundle Pω(u).

Definition 3.7.2. The principal bundle (Pω(u),π,M; Holu(ω)) is called the holonomy bundle of
ω based at u.

Definition 3.7.3. Let (P,π,M;G) be a principal bundle on a connected manifoldM. We say that a
connection formω ∈ C(P) is irreducible if (P,ω) can not be reduced to a proper Lie subgroup.

A consequence of the Reduction Theorem is the following
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3. Theory of connections

Corollary 3.7.1. Let (P,ω) be a G-principal bundle and (Q, ˆ︁ω) be a reduction of P to a Lie subgroup
of G. The following holds:

i) Pω(u) ⊆ Q for all u ∈ Q.

ii) ˆ︁ω|TPω(u) = ω|TPω(u), this means that the connection ˆ︁ω reduces to the holonomy bundle of
the connectionω.

In this sense, one could think of the holonomy bundle as the smallest possible reduction
of a principal bundle.

This observation, together with the Reduction Theorem implies that a connection form
ω ∈ C(P) is irreducible if, and only if, P = Pω(u) and G = Holu(ω) for all u ∈ P.

One fundamental result in holonomy theory is the so-called Holonomy Theorem of Ambrose-
Singer, which provides evidence of how big the holonomy group can be.

Proposition 3.7.5 (Ambrose-Singer Holonomy Theorem). Let (P,π,M;G) be a principal bundle
on a connected manifold M andω a connection form with associated curvature form Fω = Dωω and
let holu(ω) denote the Lie algebra of the Lie subgroup Holu(ω) (which of course coincides with the
Lie algebra of the connected Lie subgroup Hol0

u(ω)). It holds that

holu(ω) =
⟨︁
Fωp (X, Y)

⃓⃓
p ∈ Pω(u), X, Y ∈ Thωp P

⟩︁
⊆ g.

If G is a connected Lie group andM simply connected, the connection formω is irreducible if, and
only if

g =
⟨︁
Fωp (X, Y)

⃓⃓
p ∈ Pω(u), X, Y ∈ Thωp P

⟩︁
.

Proof. Without loss of generality we can assume thatG = Holu(ω) and P = Pω(u), otherwise,
we can reduce the principal bundle (P,ω) to the holonomy bundle Pω(u), according to the
Reduction Theorem 3.7.4.

Set
b :=

⟨︁
Fωp (X, Y)

⃓⃓
p ∈ P, X, Y ∈ Thωp P

⟩︁
.

Our first claim is that b ⊴ g. Let Fωp (X, Y) ∈ b andW ∈ g. We define the curve

R −→b

t ↦−→(R∗exp(tW)F
ω)p(X, Y).

From the invariance property of the curvature form we obtain

b ∋ d
dt

⃓⃓⃓⃓
0

(︂
Fωp exp(tW)(dpRexp(tW)X, dpRexp(tW)Y)

)︂
=

d
dt

⃓⃓⃓⃓
0

(︁
Ad(exp(−tW))(Fωp (X, Y))

)︁
=− ad(W)(Fωp (X, Y))

=[Fωp (X, Y),W],

which implies that b ⊴ g.
Next, we consider the smooth distribution

E : p ∈ P ↦−→ Ep := Thωp P⊕
{︂˜︂W(p)|W ∈ b

}︂
⊆ TpP.

66



3.7 Introduction to holonomy theory

Our second claim is that this distribution is involutive. Let X be a horizontal vector field
on P and ˜︂W the fundamental vector field generated byW ∈ b. Because of iv) in Proposition
3.5.1 we conclude that [X,˜︂W] is also a horizontal vector field, which implies that for all p ∈ P,
[X,˜︂W]p ∈ Ep. Now, for any two fundamental vector fields ˜︁V ,˜︂W with V ,W ∈ b, it holds that
[˜︁V ,˜︂W] = ˜︂[V ,W] which implies, because of the fact that b is an ideal of g, that [V ,W] ∈ b, and
thus ˜︂[V ,W]p ∈ Ep, for every p ∈ P. Finally, if X, Y are any two horizontal vector fields, we
have previously shown that

prv[X, Y] = − ˜︂Fω(X, Y),

where by definition Fω(X, Y) ∈ b. This implies then that [X, Y]p ∈ Ep, for every p ∈ P. This
concludes the proof of our second claim. Frobenius’ Theorem implies thus the existence of a
maximal integral manifold Q ⊆ P of E through u ∈ P. A point in P lies in Q if, and only if,
there exists a path γ : [0, 1] −→ P between u and q such that γ̇(t) ∈ Eγ(t) for every t ∈ [0, 1].
Since ThP ⊆ TQ, it follows from the definition of Pω(u), that P = Pω(u) ⊆ Q, which implies
that P = Q, and thus E = TP. This clearly implies that b = g.

In the case of a vector bundle E −→Mwith a given covariant derivative ∇, it is possible
to define the (reduced) holonomy group in a similar fashion as we previously did in the case
of principal fiber bundles.

Definition 3.7.4. Let E −→M be a smooth vector bundle with a given covariant derivative ∇. For
x ∈M we define the holonomy group of∇ based at x as the subgroup

Holx(∇) :=
{︁
P∇γ | γ ∈ Ω(x)

}︁
⊆ GL(Ex).

The group
Hol0

x(∇) :=
{︁
P∇γ | γ ∈ Ω0(x)

}︁
⊆ GL(Ex)

is called the reduced holonomy group of∇ based at x.

We notice that, in the case in which the manifold M is connected, any two holonomy
groups are conjugate. Indeed let x,y ∈M and µ : [0, 1] −→M any path between them. For
γ ∈ Ω(y) we obtain the loop µ− ∗ γ ∗ µ ∈ Ω(x). Thus

Holx(∇) ∋ Pµ−∗γ∗µ = P−1
µ ◦ Pγ ◦ Pµ,

which implies
Holx(∇) = P−1

µ ◦Holy(∇) ◦ Pµ.

As it is well known, there exists a tight relation between the holonomy groups of
connections on principal fiber bundles and the holonomy groups of the associated covariant
derivatives on associated vector bundles:

Proposition 3.7.6. Let P be a G-principal bundle on the manifold M, ρ : G −→ GL(V) a
representation of the Lie group G and E = P ×G V the associated vector bundle. Further, let ω
be a connection form on P and let ∇ω denote the associated covariant derivative on E. For u ∈ Px,
[u] : V −→ Ex denotes the fiber diffeomorphism defined by u. It holds that

Holx(∇ω) = [u] ◦ ρ(Holu(ω)) ◦ [u]−1.
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In the particular case in which the map ρ is injective, we obtain that the holonomy groups Holu(ω)

and Holx(∇ω) are isomorphic.
Let R∇

ω
denote the curvature endomorphism of the covariant derivative∇ω, and Pγ := P∇

ω

γ the
parallel transport map in E with respect to ∇ω. It holds for the Lie algebra of the holonomy group
Holx(∇ω) that

holx(∇ω) =
⟨︂
P−1
γ ◦ R∇

ω

y (v,w) ◦ Pγ
⃓⃓⃓

v,w∈TyM,
γ path between x and y

⟩︂
.

Proof. Let δ ∈ Ω(x) and e = [u, z] ∈ Ex. It holds that

P∇
ω

δ (e) =[Pωδ (u), z] = [uholu(δ), z] = [u, ρ(holu(δ))z]

=
(︁
[u] ◦ ρ(holu(δ)) ◦ [u]−1)︁(e),

from which we immediately obtain the first claim.
Let γ be an ω-horizontal curve from u to p ∈ Pω(u)y and γ = π ◦ γ. It then holds that

P∇
ω

γ ◦ [u] = [p]. Let v,w ∈ TyM and v,w ∈ TpP their ω-horizontal lifts. From Proposition
3.6.8 we obtain that

ρ∗(F
ω
p (v,w)) =[p]−1 ◦ R∇ωy (v,w) ◦ [p]

=[u]−1 ◦
(︂
P−1
γ ◦ R∇

ω

y (v,w) ◦ Pγ
)︂
◦ [u]

This identity together with the first claim in the proposition and the Theorem of Ambrose-
Singer implies that

holx(∇ω) =[u] ◦ ρ∗(holu(ω)) ◦ [u]−1

=[u] ◦
⟨︁
ρ∗(F

ω
p (X, Y))

⃓⃓
p ∈ Pω(u), X, Y ∈ TpP

⟩︁
◦ [u]−1

=
⟨︂
P−1
γ ◦ R∇

ω

y (v,w) ◦ Pγ
⃓⃓⃓

v,w∈TyM,
γ path between x and y

⟩︂
.

We finish up this section by discussing how holonomy groups can be used to find parallel
sections of vector bundles.

As a reminder, given a real or complex vector bundle (E,π,M) over a connected manifold
with a covariant derivative∇. The set of parallel sections is defined as

Par(E,∇) := {σ ∈ Γ(E)| ∇σ = 0}.

As usual, let P denote a G-principal bundle over the connected manifold M with a
connection form ω. Let ρ : G −→ GL(V) be a Lie group representation and E := P×G V the
associated vector bundle with induced covariant derivative∇E.

Proposition 3.7.7 (The holonomy principle). There exists a one-to-one correspondence between the
set of parallel sections in E and the set of holonomy invariant vectors in V :

Par(E,∇E) 1:1←→ VHolu(ω) := {v ∈ V | ρ(Holu(ω))v = v}.
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3.7 Introduction to holonomy theory

Furthermore, ifM is simply connected, it holds that

VHolu(ω) = {v ∈ V | ρ∗(holu(ω))v = 0}.

Proof. Let x = π(u), v ∈ VHolu(ω). Define the section σv in E by

σv : y ∈M ↦−→ σv(y) = P
E,ω
γ ([u, v]) = [Pωγ (u), v] ∈ Ey,

where γ denotes a path between x and y. For this definition to make sense we need it to be
independent of the chosen path, which is in turn the case. Let µ be another path between x
and y. Then µ− ∗ γ is a loop based at x and

Pωµ−∗γ(u) = P
ω
µ−(Pωγ (u)) = uh,

for some h ∈ Holu(ω). The right invariance of the parallel transport thus implies Pωγ (u) =

Pωµ (uh) = Pωµ (u)h and thus

[Pωγ (u), v] = [Pωµ (u)h, v] = [Pωµ (u), ρ(h)v] = [Pωµ (u), v].

That σv ∈ Γ(E) follows from the smooth dependence on the initial conditions of the system
of ordinary differential equations that define the parallel transport (cf. Proposition 4.2.4). The
fact that σv is a parallel section automatically follows from its mere definition:

(︁
∇EXσv

)︁
(y) =

d
dt

⃓⃓⃓⃓
0
PE,ω
t,0 (σv(γ(t))

=
d
dt

⃓⃓⃓⃓
0
PE,ω
t,0 P

Eω
0,t [u, v]

=0,

for any path γwith γ(0) = y.
Conversely, let σ be a parallel section in E. The Reduction Theorem implies that (P,ω)

reduces to the holonomy bundle Pω(u). Thus, we obtain the vector bundle isomorphism

E = P×G V ∼= Pω(u)×Holu(ω) V .

This implies the existence of unique invariant maps σ ∈ C∞(P,V)G,
τ ∈ C∞(Pω(u),V)Holu(ω), with σ|Pω(u) = τ such that for every p ∈ P,

σ(π(p)) = [p,σ(p)] = [p, τ(p)].

Now, by the corollary of Proposition 3.5.6 we have the formula

(∇EXσ)(π(p)) = [p,X(σ)(p)]

which implies that∇σ = 0 if, and only if, the map σ is constant along horizontal curves in P.
That is to say, there exists some v ∈ V such that τ = σ|Pω(u) ≡ v.
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3. Theory of connections

Thus, for every q ∈ Pω(u), h ∈ Holu(ω),

v = τ(qh) = ρ(h−1)τ(q) = ρ(h−1)v,

that is, v ∈ VHolu(ω). From the way the v is defined, it is evident that σv = σ.
Finally, for v ∈ VHolu(ω), we obtain for all X ∈ holu(ω) that ρ(exp(tX))v = v, which

immediately implies deρ(X)(v) = ρ∗(X)v = 0. If, on the other hand ρ∗(X)v = 0 for every
X ∈ holu(ω), we obtain

ρ(exp(X))v = exp(ρ∗(X))v = eρ∗(X)v = v.

In the case in which the manifold is simply connected, we already showed that the
holonomy group Holu(ω) is connected, which implies

Holu(ω) = ⟨exp(X)| X ∈ holu(ω)⟩ .

Thus, from the considerations in the preceding paragraph, we obtain

VHolu(ω) = {v ∈ V | ρ∗(holu(ω))v = 0}.

In the particular case, ∇ is the Levi-Civita covariant derivative of a (pseudo-)Riemannian
manifold, the holonomy principle can be reformulated as follows:

Proposition 3.7.8. Let (M,g) be a (pseudo-)Riemannian manifold with Levi-Civita covariant
derivative ∇, T any tensor bundle over M, whose tensorial extension of the Levi-Civita covariant
derivative onM we denote by∇ as well, and let x ∈M.

i) Let T ∈ Γ(T) be a parallel tensor field. It holds that Holx(g) · T(x) = T(x), where
Holx(g) := Holx(∇).

ii) Let Tx ∈ Tx be a tensor that is invariant under the action of Holx(g). Then there exists a unique
tensor field T ∈ Γ(T) such that T(x) = Tx. In fact, T(y) := P∇γ (Tx), where y ∈M and γ is a
curve connecting x and y.

We finalize this section by making some further remarks on the holonomy of torsion-free
covariant derivatives.

Let M be a smooth connected n-manifold. As a consequence of Proposition 3.7.6, all of
the important results which were obtained for the holonomy groups of connection forms
on principal bundles have an analogous version in the setting of smooth vector bundles. In
particular, in the case in which E = TM.

Up next we collect some of the properties of holonomy groups of affine covariant
derivatives, some of which we already encountered in the context of holonomy groups
of principal fiber bundles:

i) The restricted holonomy group Hol0
x(∇) is a connected Lie subgroup of GL(TxM),

which is the connected component at the identity and a normal subgroup of Holx(∇).
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3.7 Introduction to holonomy theory

This result holds in fact for any covariant derivative on any finite-rank vector bundle
overM (cf. Proposition 3.7.3).

ii) If π : ˜︂M −→M is the universal cover and ˜︁∇ is the lift of the covariant derivative ∇ to˜︂M, then Hol˜︁x(˜︁∇) = Hol0˜︁x(˜︁∇) ∼= Hol0
π(˜︁x)(∇). This implies we can assume, without loss

of generality, that the holonomy group is connected.

iii) Since the manifoldM is connected, we previously showed that the holonomy groups
based at any two points in the manifold are conjugated. If we fix a frame ι : TxM −→ V ,
the conjugacy class of ι(Holx(∇)) ⊆ GL(V) depends neither on the point x ∈ M nor
on the linear isomorphism ι. Taking advantage of this fact, we refer to the conjugacy
class of Hol(∇) := ι(Holx(∇)) ⊆ GL(V) (resp. Hol0(∇) := ι(Hol0

x(∇)) ⊆ GL(V)) as
the holonomy group (resp. restricted holonomy group) of ∇. Similarly, we refer to
the Lie algebra hol(∇) ⊆ End(V) of Hol(∇) ⊆ GL(V) as the holonomy algebra of ∇.
The standard action of Hol(∇) on V is referred to as the holonomy representation. The
holonomy group is called reducible, resp. irreducible if its holonomy representation is
reducible, resp. irreducible.

We notice as well that for any torsion-free affine covariant derivative on M, using the
fact that the tangent bundle is naturally associated to the frame bundle ofM, as previously
discussed, and that the parallel transport maps are linear isomorphisms, we can reformulate
Proposition 3.7.6 and obtain

holx(∇) = ⟨(Pγ · R)(v,w)| v,w ∈ TxM, γ is a path with γ(1) = x⟩ ,

where (Pγ · R)(v,w) := Pγ ◦ Rγ(0)(P
−1
γ v,P−1

γ w) ◦ P−1
γ .

From the definition, it is easy to verify that for any such path, Pγ · R ∈ K(holx(∇)), where
K(holx(∇)) ⊆ K(T∗xM)⊗ TxM denotes the set of the so-called algebraic curvature tensors, which
we formally introduce in the next chapter. Now, thanks to this reformulated version of the
Ambrose-Singer Theorem we obtain that

holx(∇) = holx(∇),

where for any Lie subalgebra h ⊆ g = End(V),

h := ⟨R(v,w)| R ∈ K(h), v,w ∈ V⟩ ⊴ h.

Definition 3.7.5. A Lie subalgebra h ⊆ g is called a Berger algebra if h = h. A Berger algebra
is called symmetric if its space of formal curvature derivatives is trivial, that is, K1(h) = {0} and
non-symmetric otherwise.

A Lie subgroup H ⊆ G = GL(V) is called a (symmetric, resp. non-symmetric) Berger group if
its Lie algebra h ⊆ g is a (symmetric, resp. non-symmetric) Berger algebra.

The motivation for the name symmetric comes from the fact that, as one can readily
show, if ∇ is a torsion-free covariant derivative on M, the map X ↦−→ ∇XR is an element of
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3. Theory of connections

K1(holx(∇)). Thus, if K1(holx(∇)) = {0} we obtain in particular that ∇R ≡ 0, which implies
that the covariant derivative is locally symmetric (see [34, Theorem 3.5]).

As a consequence of the previous discussion, we obtain the following classical result in
holonomy theory. These are the criteria used by Berger in his classification work [6].

Proposition 3.7.9 (Berger’s criteria). Let H ⊆ G be a Lie subgroup that occurs as the holonomy
group of a torsion-free affine covariant derivative on some manifoldM. ThenHmust be a Berger group.
If the covariant derivative is not locally symmetric, then H must be a non-symmetric Berger group.

3.8 Riemannian holonomy groups

In this section, we go into some detail about the classification of Riemannian holonomy
groups.

Let (M,g) be a Riemannian n-manifold with Levi-Civita covariant derivative ∇. An
immediate consequence of Proposition 3.2.6 and corollary 3.7.1 is that the holonomy group
Hol(g) := Hol(∇) is a subgroup of O(n), and consequently, Hol0(∇) ⊆ SO(n).

In fact, one can show the following

Proposition 3.8.1 ([16, Proposition 3.1.5]). Let (M,∇) be an n-dimensional affine manifold, ∇
torsion-free. Then ∇ is the Levi-Civita covariant derivative of a Riemannian metric onM if, and only
if, Hol(∇) is conjugate in GL(n, R) to a subgroup of O(n).

Definition 3.8.1. A Riemannian manifold (M,g) is said to be (locally) reducible if every point has
an open neighborhood isometric to a Riemannian product (M1×M2,g1× g2), and irreducible if it is
not locally reducible.

It is not difficult to show that the following result for the holonomy of a Riemannian
product holds:

Proposition 3.8.2 ([16, Proposition 3.2.1]). Let (M1,g1), (M2,g2) be Riemannian manifolds. Then
the product metric g1 × g2 has holonomy Hol(g1 × g2) = Hol(g1)×Hol(g2).

In fact, under the right assumptions we obtain the following converse of the previous
proposition, which is referred to as the de Rham splitting Theorem:

Proposition 3.8.3 ([16, Proposition 3.2.7]). Let (M,g) be a complete, simply-connected Riemannian
manifold. Then there exist complete, simply-connected Riemannian manifolds (Mj,gj), for j =

1, . . . ,k, such that the holonomy representation of Hol(gj) is irreducible, (M,g) is isometric to
(M1 × · · · ×Mk,g1 × · · · × gk), and Hol(g) = Hol(g1)× · · · ×Hol(gk).

Up next we precisely introduce the so-called Berger’s List, which was the first serious
attempt at classifying Riemannian holonomies, and in fact, the list was, up to a single entry,
complete (see, for example, [34, Theorem 3.6]).

Proposition 3.8.4 (Berger). Let M be an n-dimensional simply-connected Riemannian manifold,
which is irreducible and nonsymmetric. Then exactly one of the following seven cases holds.

i) Hol(g) = SO(n),
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3.8 Riemannian holonomy groups

ii) n = 2m withm ⩾ 2, and Hol(g) = U(m) in SO(n),

iii) n = 2m withm ⩾ 2, and Hol(g) = SU(m) in SO(n),

iv) n = 4m withm ⩾ 2, and Hol(g) = Sp(m) in SO(n),

v) n = 4m withm ⩾ 2, and Hol(g) = Sp(m) · Sp(1) in SO(n),

vi) n = 7 and Hol(g) = G2 in SO(7), or

vii) n = 8 and Hol(g) = Spin(7) in SO(8).

The path Berger followed to prove his classification result was by applying the two
criteria enclosed in Proposition 3.7.9 to the closed, connected Lie subgroups of SO(n), whose
classification follows from the classification of Lie groups. Being the groups in the list the only
ones that pass such tests.

The geometric features a manifold needs to have for its holonomy group to be one of
the groups appearing in Berger’s list are very well understood and we briefly summarize
them in the following paragraphs. It is worth noting that all of these results are essentially
consequences of the Reduction Theorem and the holonomy principle 3.7.8.

i): SO(n) is the holonomy group of a generic Riemannian manifold.
ii): The case U(m) (The Kähler case).

Definition 3.8.2. A vector bundle homomorphism J : TM −→ TM such that J2 = −1TM is called
an almost complex structure onM.

An almost Hermitian manifold is a triple (M,g, J) consisting of a Riemannian manifold (M,g)
together with an orthogonal almost complex structure, that is, an almost complex structure on M such
that

g(JX, JY) = g(X, Y)

for all vector fields X, Y.
An Hermitian manifold is an almost Hermitian manifold, whose associated almost complex

structure is integrable.

Definition 3.8.3. A Kähler manifold is an almost Hermitian manifold (M,g, J), whose almost
complex structure is parallel with respect to the Levi-Civita covariant derivative of (M,g), i.e. ∇J ≡ 0.

An immediate consequence of the Newlander-Nirenberg Theorem implies that every
Kähler manifold is a Hermitian manifold, since for any two vector fields X, Y,

−NJ(X, Y) =[JX, JY] − J([X, JY] + [JX, Y]) − [X, Y]
T∇≡0
= (∇XJ)(JY) − (∇YJ)(JX) + (∇JXJ)(Y) − (∇JYJ)(X)

=0.

On an Hermitian manifold (M,g, J) we define its Kähler form as the 2-formω, with

ω(X, Y) := g(JX, Y).
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3. Theory of connections

We have the following characterization of Kähler manifolds:

Proposition 3.8.5. An almost Hermitian manifold (M,g,J) is Kähler if, and only if, J is integrable and
its Kähler form is closed.

Proof. Let ∇ denote the Levi-Civita covariant derivative of g. The fact that J is integrable
implies that the identities

dω(X, Y,Z) =g((∇XJ)Y,Z) + g((∇YJ)Z,X) + g((∇ZJ)X, Y),

2g((∇XJ)Y,Z) =dω(X, Y,Z) − dω(X, JY, JZ)

hold for any vector fields X, Y,Z (see [35, Proposition 4.16]). The claim follows now
immediately.

Proposition 3.8.6 ([26, Satz 5.22]). A Riemannian manifold (M2m,g) is Kähler if, and only if, its
holonomy group is contained in U(m).

The proof of this proposition is indeed an easy consequence of the holonomy principle,
as well as of the observation that U(m) ⊆ SO(2m) made in (3.1). For a Kähler manifold
(M,g, J), the fact that J is parallel implies, for every x,y ∈M and any curve between them,
Pγ ◦ Jx = Jy ◦ Pγ. This readily implies Holx(∇) ⊆ U(TxM,gx, Jx), while on the other hand,
if we assume Holx(∇) ⊆ U(TxM,gx, Jx), item ii) in the holonomy principle 3.7.8 allows to
construct a parallel orthogonal complex on (M,g).

iii): The case SU(m) (The special Kähler case).
The fact that SU(m) ⊆ U(m) immediately implies that a manifold having holonomy

contained in SU(m) is automatically Kähler. The characterization of manifolds with holonomy
contained in SU(m) is given by the following

Proposition 3.8.7 ([26, Satz 5.23]). A Kähler manifold (M2m,g, J) is Ricci-flat if, and only if, its
holonomy group is contained in SU(m).

Definition 3.8.4. A Calabi-Yau manifold is a compact Kähler manifold of dimension 2m ⩾ 4 whose
holonomy group is exactly the group SU(m).

iv): The case Sp(m) (The hyper-Kähler case).
We begin with the following definition.

Definition 3.8.5. An almost quaternionic structure on a manifoldM is a triple J := (J1, J2, J3) of
anti-commuting almost complex structures on M with J1J2 = J3. If, in addition, each of the almost
complex structures is orthogonal with respect to a Riemannian metric g, we call J an orthogonal
almost quaternionic structure on (M,g).

An almost hyper-Kähler manifold is a Riemannian manifold (M,g) together with an orthogonal
almost quaternionic structure J.

Definition 3.8.6. An almost quaternionic structure (J1, J2, J3) on a Riemannian manifold (M,g) is
called parallel if∇Jℓ ≡ 0, for ℓ = 1, 2, 3. An hyper-Kähler manifold is a Riemannian manifold of
dimension 4m ⩾ 8 with a parallel orthogonal almost-quaternionic structure.

74
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Proposition 3.8.8 ([26, Satz 5.24]). A 4m-dimensional Riemannian manifold is hyper-Kähler if, and
only if, its holonomy group is contained in Sp(m).

From the fact that Sp(m) ⊆ SU(2m), as described in (3.2), we obtain that a hyper-Kähler
manifold is necessarily Ricci-flat and Kähler.

v): The case Sp(m) · Sp(1) (The quaternionic-Kähler case).
We recall the definition of a quaternionic-Kähler manifold.

Definition 3.8.7. A Riemannian manifold (M,g) of dimension 4m ⩾ 8 is called an almost
quaternionic-Kähler manifold, if there exists a 3-dimensional subbundle E ⊆ so(TM,g), which
locally is generated by almost quaternionic structures in the following sense: For every x ∈M there is
a neighborhood x ∈ U and an orthogonal almost quaternionic structure J

U
= (J1, J2, J3) on (U,g|U)

with EU = spanR {J1, J2, J3}. If in addition, the bundle E is parallel in the sense that∇Γ(E) ⊆ Γ(E),
the triple (M,g,E) is called a quaternionic Kähler manifold.

The holonomy principle thus implies

Proposition 3.8.9 ([26, Satz 3.25]). A Riemannian manifold of dimension 4m ⩾ 8 is a quaternionic-
Kähler manifold if, and only if, its holonomy group is contained in Sp(m) · Sp(1).

Quaternionic-Kähler manifolds are Einstein spaces, but not Ricci-flat. See for example
[36].

vi): The case G2.
Let (M7,g) denote an orientable 7-dimensional Riemannian manifold. For x ∈ M, we

define the set

F3
xM :=

{︄
φ ∈

⋀︂3
T∗xM

⃓⃓⃓⃓
⃓ there exists an orientation-preserving isometry

L : (R7, ⟨·, ·⟩R7) −→ (TxM,gx) such that L∗φ = ω0

}︄
,

whereω0 ∈
⋀︁3(R7)∗ is the 3-form given in equation (3.4).

Definition 3.8.8. A 3-form ω ∈ Ω3(M) on (M7,g) is called admissible if ωx ∈ F3
xM for all

x ∈M.

Definition 3.8.9. A 7-dimensional oriented Riemannian manifold (M7,g) is called a G2-manifold if
there exists an admissible parallel 3-formω ∈ Ω3(M).

Proposition 3.8.10 ([26, Satz 5.26]). A 7-dimensional oriented Riemannian manifold is a G2-
manifold if, and only if, its holonomy group is contained in G2.

It can also be proved that Riemannian metrics with holonomy G2 are Ricci-flat. See for
example [34, Section 3.5].

vii): The case Spin(7).
Let (M8,g) be an 8-dimensional orientable Riemannian manifold. In a similar fashion as

in the previous case, we define for x ∈M the set

F4
xM :=

{︄
φ ∈

⋀︂4
T∗xM

⃓⃓⃓⃓
⃓ there exists an orientation-preserving isometry

L : (R8, ⟨·, ·⟩R8) −→ (TxM,gx) such that L∗φ = σ0

}︄
,

where σ0 ∈
⋀︁4(R8)∗ is the 4-form defined in equation (3.5).
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Definition 3.8.10. A 4-form σ ∈ Ω4(M) on (M8,g) is called admissible if σx ∈ F4
xM for all

x ∈M.

Definition 3.8.11. An 8-dimensional oriented Riemannian manifold (M8,g) is called a Spin(7)-
manifold if there exists an admissible parallel 4-form σ ∈ Ω4(M).

Proposition 3.8.11 ([26, Satz 5.27]). An 8-dimensional oriented Riemannian manifold is a Spin(7)-
manifold if, and only if, its holonomy group is contained in Spin(7).

Similarly as in the G2 case, metrics with holonomy Spin(7) are necessarily Ricci-flat. See
for example [34, Section 3.5].
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4
The curvature tensor of a torsion-free

affine manifold

The main goal of the chapter is to state and prove the core results of the present work, as well
as their applications to the problem of the classification of holonomy groups.

Said main results are indeed local ones, so in order to simplify the matter by a reasonable
amount we are going to resort to a fundamental tool in Differential Geometry, namely, that of
normal coordinates.

The first part of the chapter is devoted to the introduction of the necessary notions to
properly establish the adequate framework.

4.1 The exponential map on affine manifolds

Let (M,∇) be an affine manifold. We define the torsion of the covariant derivative as the
tensor T∇ ∈ Γ(

⋀︁2 T∗M⊗ TM) ⊆ T(1,2)(M) defined by

T∇(X, Y) := ∇XY −∇YX− [X, Y].

The covariant derivative∇ is said to be symmetric or torsion-free if its torsion T∇ identically
vanishes.

Let γ : I −→M be a smooth curve. The set of vector fields along the curve γ is defined as

Γγ(TM) := {X ∈ C∞(I, TM)| πTM ◦X = γ}.

The covariant derivative ∇ can help us make sense of the notion of directional derivatives
of vector fields along curves. The following standard result provides the adequate setting for
it (see [37, Lemma 4.9]):

Lemma 4.1.1. Let γ : I −→M be a curve. The covariant derivative∇ determines a unique operator

D

dt
: Γγ(TM) −→ Γγ(TM)
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4. The curvature tensor of a torsion-free affine manifold

which satisfies the following properties:

i) D
dt is R-linear.

ii) For all X ∈ Γγ(TM), f ∈ C∞(I) it holds that

D

dt
(f X) = ḟ X+ f

D

dt
X.

iii) If X is extendible, that is, if there exists a vector field ˜︁X on a neighborhood of the image of γ,
such that for all t ∈ I, X(t) = ˜︁Xγ(t). Then for any extension ˜︁X of X it holds that

D

dt
X(t) = ∇γ̇(t)˜︁X.

Let (U,φ = (x1, . . . , xn)) be a chart of the manifold and X = Xi∂i be the local
representation of X ∈ Γγ(TM) with respect to this chart. Since the coordinate vectors ∂i
are extendible, item iii) in the previous proposition implies that the local representation of the
vector field D

dtX in these coordinates is given by the formula

D

dt
X(t) = Ẋ

i
(t)∂i|γ(t) +X

i(t)∇γ̇(t)∂i|γ(t) (4.1)

for all t such that γ(t) ∈ U.
A vector field X ∈ Γγ(TM) along γ is called parallel along γ if DdtX ≡ 0. The curve γ is

called a geodesic if
D

dt
γ̇ ≡ 0.

Standard results from the theory of ordinary differential equations show that for every
x ∈M and every v ∈ TxM there exists exactly one maximal geodesic γv : Iv −→M such that
γv(0) = x, γ̇v(0) = v. The uniqueness of such geodesics implies that, for any c, t ∈ R,

γcv(t) = γv(ct),

whenever either side is defined.
This rescaling property immediately proves that the set

Dx := {v ∈ TxM| 1 ∈ Iv} ⊆ TxM

is star-shaped with respect to 0. It can also be shown that Dx is open ([37, Prop. 5.7]).

Definition 4.1.1. With the above notation we define the exponential map of (M,∇) at the point
x ∈M as the map

expx : Dx −→M

v ↦−→ γv(1).
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The rescaling property of the geodesic γv implies that

γv(t) = expx(tv)

whenever either side is defined.
From the results obtained in the previous paragraphs, we easily conclude that for all

s, t ∈ Iv such that s+ t ∈ Iv,
γv(t+ s) = γγ̇v(t)(s),

or equivalently, in terms of the exponential map,

expx((t+ s)v) = expγv(t)(sγ̇x(t)) = expγv(s)(tγ̇x(s))

as long as any of the expressions on the right is defined.
Now, we also have that, as a consequence of the inverse function theorem, the map

expx : Dx −→M is a local diffeomorphism at the point 0 ∈ TxM. Indeed, this follows from
the fact that d0 expx is an invertible map. To see this, we note that we have the natural
identification T0TxM ∼= TxM. Under this identification we have that d0 expx is simply the
identity map on TxM:

d0 expx v = d0 expx
d
dt

⃓⃓⃓⃓
0
tv =

d
dt

⃓⃓⃓⃓
0

expx(tv) =
d
dt

⃓⃓⃓⃓
0
γv(t) = v.

For V ⊆ Dx a star-shaped neighborhood with respect to 0 such that expx : V −→ expx(V)
is a diffeomorphism, we call U := expx(V) a normal neighborhood of x ∈M and the coordinate
system defined by exp−1

x and a frame of TxM are called normal coordinates on U. The geodesics
γv : [0, 1] −→M starting at x ∈ U, with v ∈ V are called radial geodesics. The motivation for the
term radial geodesic is provided in Proposition 4.1.1.

Some of the most elementary properties of normal coordinate systems are enclosed in the
following

Proposition 4.1.1. Let (U,φ = (xi)) be any normal coordinate chart in the n-dimensional affine
manifold (M,∇) determined by the local section s = (∂1, . . . ,∂n) ∈ ΓU(F(M)) at x ∈ M. Let also{︂
Γkij

⃓⃓⃓
1 ⩽ i, j,k ⩽ n

}︂
⊆ C∞(U) denote the set of Christoffel symbols of∇ with respect to the local

frame s, that is, for all i, j ∈ {1, . . . ,n}, Γkij are the smooth functions on U such that

∇∂i∂j = Γ
k
ij∂k.

i) For any X = Xi∂i|x ∈ TxM, the geodesic γX starting at x with initial velocity vector X is
represented in normal coordinates by the radial line segment

γX(t) =∧ (tX1, . . . , tXn)

as long as γX stays within U.

ii) The coordinates of x are (0, . . . , 0).
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4. The curvature tensor of a torsion-free affine manifold

iii) For all i, j,k it holds that
Γkij(x) + Γ

k
ji(x) = 0.

Proof. The proof of items i) and ii) follows from the definition of a normal coordinate system:
by definition

φ = s−1
x ◦ (expx)

−1 : U −→ Rn.

Thus for all t such that γX(t) ∈ U,

φ(γX(t)) = s
−1
x ((expx)

−1(expx(tX))) = s
−1
x (tX) = (tX1, . . . , tXn),

which proves i).
ii) follows immediately from i), since x = γX(0).
For the last assertion, let (a1, . . . ,an) ∈ Rn be arbitrary. The curve γ such that φ(γ(t)) =

(ta1, . . . , tan) =: (γ1(t), . . . ,γn(t)) is then a geodesic starting at x.
The geodesic equations

d2γk

dt2 + Γkij(γ(t))γ̇
i(t)γ̇j(t) = 0

transform themselves in this case into

Γkij(γ(t))γ̇
i(t)γ̇j(t) = Γkij(γ(t))a

iaj = 0,

and in particular for t = 0,

Γkij(x)a
iaj =

1
2
(Γkij(x) + Γ

k
ji(x))a

iaj = 0.

Because the above equation holds for any (a1, . . . ,an), we conclude in sum that

Γkij(x) + Γ
k
ji(x) = 0.

A direct computation shows that the components of the torsion tensor with respect to a
coordinate system (U, (x1, . . . , xn)) are given by

Tkij = Γ
k
ij − Γ

k
ji.

The previous proposition implies then, that in the case in which the covariant derivative
is torsion-free and the given coordinate system is normal and centered at x, it holds that

Γkij(x) = 0.

Before we proceed, we make some further comments concerning the Christoffel symbols
of the covariant derivative ∇. Given the coordinate system (U, (xi)) on the manifold M
determined by a local section s ∈ ΓU(F(M)), an elementary computation shows that the
components of the curvature tensor are given in terms of the Christoffel symbols of its
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4.1 The exponential map on affine manifolds

covariant derivative. Explicitly, we have the formula

Rℓijk(x) = ∂iΓ
ℓ
jk(x) − ∂jΓ

ℓ
ik(x) + Γ

ℓ
iα(x)Γ

α
jk(x) − Γ

ℓ
jα(x)Γ

ℓ
ik(x), (4.2)

for all x ∈ U, or equivalently,

Rij(x) = ∂iΓj(x) − ∂jΓi(x) +
[︁
Γi(x), Γj(x)

]︁
∈ gl(n, R), (4.3)

where for all i, jwe have defined the smooth maps Γi,Rij : U −→ gl(n, R) by the formulas

Γi(x) :=(Γkij(x))k,j,

Rij(x) :=(Rℓijk(x))ℓ,k,

and [·, ·] denotes the usual matrix commutator.
In order to further simplify the expressions given above, we introduce the differential

forms

Γ ∈Ω1(U, gl(n, R)),

F ∈Ω2(U, gl(n, R))

defined as

Γ :=Γi dxi , (4.4)

F :=
1
2
Rij dxi ∧ dxj . (4.5)

From here it is trivial to obtain the relation

F = dΓ +
1
2
[Γ , Γ ], (4.6)

where [·, ·] denotes the commutator of gl(n, R)-valued differential forms defined in equation
(3.11).

From the discussion in the previous chapter, in which we obtained the one-to-one
correspondence between connections on the frame bundle and covariant derivatives on
the tangent bundle of the smooth manifoldM, we notice that

Γ = s∗ω∇,

whereω∇ ∈ Ω1(F(M), gl(n, R)) denotes the connection form associated to∇.
This observation allows us to establish the relation between the 2-form F and the curvature

form associated to the covariant derivative∇:

F = dΓ +
1
2
[Γ , Γ ] = ds∗ω∇ +

1
2
[s∗ω∇, s∗ω∇] = s∗

(︃
dω∇ +

1
2
[ω∇,ω∇]

)︃
= s∗Fω

∇
,

where we have made use of the structure equation that the curvature form
Fω

∇ ∈ Ω2(F(M), gl(n, R)) satisfies, according to Proposition 3.6.1.
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4. The curvature tensor of a torsion-free affine manifold

Among the many special features a normal coordinate system enjoys, one particularly nice
is the fact that in the case the covariant derivative ∇ is torsion-free, it allows us to consider
covariant differentiation as partial differentiation at the point about the normal coordinate
system is centered. To be explicit, we recall first the standard fact that a covariant derivative
on TM can naturally be extended to the space of tensor fields T(r,s)(M) (see [37, Lemma 4.6]).
Indeed, let Ki1···ir

j1···js denote the components of the tensor field K ∈ T(r,s)(M) with respect to the
coordinates (x1, . . . , xn). That is,

K = Ki1···ir
j1···js dxj1 ⊗ · · · ⊗ dxjs ⊗ ∂i1 ⊗ · · · ⊗ ∂ir .

The covariant derivative of the tensor field K is then defined as the tensor field
∇K ∈ T(r,s+1)(M) with components Ki1···ir

j1···js;k := ∇kKi1···ir
j1···js , where

∇kKi1···ir
j1···js = ∂kK

i1···ir
j1···js +

r∑︂
µ=1

Γ
iµ
kαK

i1···iµ−1αiµ+1···ir
j1···js −

s∑︂
ν=1

ΓαkjνK
i1···ir
j1···jν−1αjν+1···js . (4.7)

Thus, Proposition 4.1.1 implies that if x ∈M is the center of a normal coordinate chart and
∇ is torsion-free, then

∇kKi1···ir
j1···js (x) = ∂kK

i1···ir
j1···js (x).

We finalize this section by stating some basic facts about a special class of vector fields
along smooth curves. The so-called Jacobi fields.

Definition 4.1.2. Let γ be a geodesic of (M,∇). A vector field X ∈ Γγ(TM) is called a Jacobi field
along γ, if it satisfies the differential equation

D

dt
D

dt
X+ R(X, γ̇)γ̇ = 0,

where R ∈ Γ(
⋀︁2 T∗M⊗ End(TM)) is the curvature tensor of the covariant derivative∇.

For a smooth curve γ : I −→ M a smooth map H : I× (−ε, ε) −→ M with H(·, 0) = γ is
called a variation of γ. For fixed t ∈ Iwe can consider the smooth curve Ht(s) := H(t, s) and
derive with respect to s. We denote such a derivative as

∂

∂s
H(t, s) := H ′

t(s) ∈ TH(t,s)M.

The vector field Y ∈ Γγ(TM) given by

Y(t) :=
∂

∂s

⃓⃓⃓⃓
0
H(t, s)

is called the variation vector field ofH. In the case in which all of the curvesH(·, s) for s ∈ (−ε, ε)
are geodesics, we call H a geodesic variation.

In the particular case in which the covariant derivative ∇ is torsion-free, a simple
computation in local coordinates shows that, for any variation H : I× (−ε, ε) −→ M of a
smooth curve, it holds that

D

dt
∂

∂s
H =

D

ds
∂

∂t
H. (4.8)
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4.1 The exponential map on affine manifolds

In this case we get the following

Proposition 4.1.2. Let M be a smooth manifold endowed with a torsion-free covariant derivative,
H : I× (−ε, ε) −→M be a geodesic variation of the geodesic γ. Then it holds that the variation vector
field Y = ∂

∂sH(·, 0) is a Jacobi field along γ.

An interesting property of Jacobi fields is that they characterize the differential of the
exponential map, as the next result shows, whose proof can be found in [38, Chapter 8, Lemma
5 and Proposition 6]

Proposition 4.1.3. Let γ : [0, 1] −→M be a geodesic inM with γ(0) = x and γ̇(0) = v. Then

i) For any given vectors u,w ∈ TxM there exists exactly one Jacobi field Jw along γ with
Jw(0) = u and D

dtJw(0) = w.

ii) For the Jacobi field with initial conditions Jw(0) = 0 and D
dtJw(0) = w it holds that

Jw(t) = tdtv expx(w) ∈ Tγ(t)M.

An immediate consequence of the previous proposition is that for the geodesic γ starting
at xwith initial velocity v holds

γ̇(t) = dtv expx(v).

This follows from the fact that the vector field along γ defined by

J(t) := tγ̇(t)

is a Jacobi field with J(0) = 0, DdtJ(0) = v.
For v,w ∈ TxM, we notice that for a sufficiently small ε > 0, the map H : I× (−ε, ε) −→M

given by H(t, s) := γv+sw(t) defines a geodesic variation of the geodesic γv, and thus, as a
consequence of Proposition 4.1.2, we conclude that Jw(t) := ∂

∂s

⃓⃓
0 γv+sw(t) is a Jacobi field

along γv.
Furthermore, in light of (4.8) it follows that

Jw(0) = 0,
D

dt
Jw(0) = w,

and thus, item ii) in the previous proposition implies

∂

∂s

⃓⃓⃓⃓
0

expx(t(v+ sw)) = Jw(t) = tdtv expx(w), (4.9)

from which we easily obtain the identity

∂

∂s
expx(t(v+ sw)) = tdt(v+sw) expx(w),

whenever either side is defined.
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4. The curvature tensor of a torsion-free affine manifold

4.2 The curvature tensor revisited

Despite the convenient and systematic way in which the topic of covariant derivatives and the
notion of parallel translation of associated vector bundles was already treated, in the case of
the tangent bundle of a n-dimensional manifold such an approach is not the most customary
way to proceed. Indeed, we have the following

Definition 4.2.1. Let (M,∇) be an affine manifold, and γ : [a,b] −→ M a smooth curve. The
parallel transport along the curve γ is defined as the map

Pγ : Tγ(a)M −→ Tγ(b)M

v ↦−→ Xv(b),

where Xv ∈ Γγ(TM) is the unique vector field along the curve γ such that

Xv(a) = v and
D

dt
Xv ≡ 0.

The uniqueness of the vector field in the previous definition is assured thanks to standard
theory of systems of ordinary differential equations (see [37, Theorem 4.11]).

The way to conciliate this seemingly unrelated definition to the one when we look at
the tangent bundle as the associated vector bundle F(M)×GL(n,R) Rn is by noticing that the
diagram

F(M)γ(a) ×GL(n,R) Rn

∼=

↓↓

PE,ω∇
γ →→ F(M)γ(b) ×GL(n,R) Rn

∼=

↓↓
Tγ(a)M Pγ

→→ Tγ(b)M

commutes.
By an abuse of notation we write from now on PE,ω∇

γ = P∇γ = Pγ, and similarly∇ω∇
= ∇.

The one-to-one correspondence between covariant derivatives and connection forms on
the frame bundle allows us to establish the following analogue of Proposition 3.5.8:

Proposition 4.2.1. Let e ∈ Γ(TM). Then for any piecewise smooth curve γ we have that

d
dt
Pt,0e(γ(t)) = Pt,0∇γ̇(t)e(γ(t)). (4.10)

Proof. Set γ(0) = x and choose a basis {e1, . . . , en} of TxM. Define ei(t) := Pγ|[0,t]
ei. Since

Pγ|[0,t]
is a linear isomorphism between TxM and Tγ(t)M, we guarantee the existence of

smooth coefficients ai such that e(γ(t)) = ai(t)ei(t) = Pγ|[0,t]
(ai(t)ei), which implies that

Pt,0e(γ(t)) = a
i(t)ei,

and thus
d
dt
Pt,0e(γ(t)) = ȧ

i(t)ei = Pt,0(ȧ
i(t)ei(t)).
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On the other hand, it holds that

∇γ̇(t)e(γ(t)) =
D

dt
(︁
ai(t)ei(t)

)︁
=ȧi(t)ei(t) + a

i(t)
D

dt
ei(t)

ei(t)=Pγ|[0,t]
ei

= ȧi(t)ei(t).

By collecting both calculations we immediately obtain the claim.

In the special case in which the smooth curve in the previous proposition is a geodesic, we
can easily generalize this result.

Proposition 4.2.2. Let e ∈ Γ(TM) and γ : I −→M a geodesic. Then, for every k ∈N it holds that

dk

dtk
Pt,0e(γ(t)) = Pt,0∇kγ̇(t),...,γ̇(t)e(γ(t)), (4.11)

where ∇k : Γ(TM) −→ Γ(
⨂︁k T∗M⊗ TM) denotes the k-fold iterated covariant derivative of the

vector field e.1

Proof. We prove our result by induction over the order of the derivative. The base case is
already taken care of, being it precisely equation (4.10).

Suppose now that, for a k ∈N, it holds that

dk

dtk
Pt,0e(γ(t)) = Pt,0∇kγ̇(t),...,γ̇(t)e(γ(t)).

Then

dk+1

dtk+1Pt,0e(γ(t)) =
d
dt

dk

dtk
Pt,0e(γ(t))

=
d
dt
Pt,0∇kγ̇(t),...,γ̇(t)e(γ(t))

(4.10)
= Pt,0∇γ̇(t)∇kγ̇(t),...,γ̇(t)e(γ(t))

=Pt,0∇k+1
γ̇(t),...,γ̇(t)e(γ(t)),

where the last equation follows from the fact that γ is a geodesic, which means in particular
that∇γ̇γ̇ = 0, thus getting rid of said summands in the definition of∇k+1.

It is worth mentioning that, in the case of sections along curves of smooth vector bundles,
it is no longer required for the curve γ to be a geodesic to get an analogue of the previous
proposition, whose proof is an almost verbatim reproduction of the one previously given:

1For a covariant derivative∇ on the vector bundle E −→Mwe inductively define the k-fold iterated covariant
derivative∇k : Γ(E) −→ Γ(

⨂︁k T∗M⊗ E) by∇0s := s, and

∇k+1
X1,...,Xk+1

s := ∇X1∇
k
X2,...,Xk+1

s−

k+1∑︂
i=2

∇kX2,...,∇X1Xi,...,Xk+1
s.
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4. The curvature tensor of a torsion-free affine manifold

Proposition 4.2.3 ([39, Lemma A.1.1]). Let E −→M be a smooth vector bundle with a covariant
derivative ∇E. Let also γ : I −→ M be a smooth curve on M and s ∈ Γγ(E) a smooth section of E
along the curve γ. For t ∈ I and k ∈N0 it holds that

dk

dtk
PEt,0s(t) = P

E
t,0

(︃
D

dt
· · · D

dt
s(t)

)︃
=: PEt,0

(︃
Dk

dtk
s(t)

)︃
, (4.12)

where, as usual, PEγ|[0,t]
: Eγ(0) −→ Eγ(t) denotes the parallel transport map with respect to the

covariant derivative∇E, and PEt,0 = (PEγ|[0,t]
)−1.

As an application of the previous result, and by considering E = TM, we obtain the formal
Taylor series at 0 ∈ TxM of the map v ↦−→ P1,0dv expx(w) ∈ TxM. Firstly, we notice that, for a
fixed v ∈ TxM, the map

s : t ↦−→ dtv expx(w)

defines a smooth section along the curve γv, since by Proposition 4.1.3, we have that
Jw(t) = ts(t). From this relation, we obtain that

D

dt
Jw(t) = s(t) + t

D

dt
s(t),

and thus, an induction proof readily implies that, for all ℓ ∈N0,

Dℓ

dtℓ
s(0) =

1
ℓ+ 1

Dℓ+1

dtℓ+1 Jw(0).

We thus get from equation (4.12) that the formal Taylor series expansion at t = 0 of the
map t ↦−→ Pt,0s(t) is given by

Pt,0s(t) ≈
∑︂
ℓ⩾0

tℓ

ℓ!
Dℓ

dtℓ
s(0)

=
∑︂
ℓ⩾0

tℓ

ℓ!
1

ℓ+ 1
Dℓ+1

dtℓ+1 Jw(0).

On the other hand, since Jw satisfies the differential equation

D

dt
D

dt
Jw(t) = Rγv(t)(γ̇v(t), Jw(t))γ̇v(t),

yet another induction yields, for all ℓ ∈N0,

Dℓ

dtℓ
D

dt
D

dt
Jw(t) =

ℓ∑︂
k=0

(︃
ℓ

k

)︃(︂
∇ℓ−k
γ̇v(t),...,γ̇v(t)

R
)︂
γv(t)

(︃
γ̇v(t),

Dk

dtk
Jw(t)

)︃
γ̇v(t).

This recursion formula together with fact that Jw(0) = 0, and D
dtJw(0) = w implies the

existence of unique symmetric polynomials Q(ℓ)
w ∈ Symℓ T∗xM⊗ TxM, which depend on the

curvature tensor of∇ and its iterated covariant derivatives at the point x such that

Pt,0dtv expx(w) ≈
∑︂
ℓ⩾0

tℓ

ℓ!
1

ℓ+ 1
Dℓ+1

dtℓ+1 Jw(0) =:
∑︂
ℓ⩾0

tℓ

ℓ!
Q

(ℓ)
w (v, . . . , v). (4.13)
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From the first terms of the above expansion we notice that the way the polynomials Q(•)
w

depend on the various covariant derivatives of the curvature tensor is far from obvious:

Pt,0dtv expx(w) ≈w+
t2

2

(︃
1
3
Rx(v,w)v

)︃
+
t3

3!

(︃
1
2
(∇vR)x(v,w)v

)︃
+
t4

4!

(︃
1
5
(︁
3(∇2

v,vR)x(v,w)v+ Rx(v,Rx(v,w)v)v
)︁)︃

+
t5

5!

(︃
1
6
(︁
4(∇3

v,v,vR)x(v,w)v+ 4(∇vR)x(v,Rx(v,w)v)v+ 2Rx(v, (∇vR)x(v,w)v)v
)︁)︃

+ · · ·

From this, we obtain that, near 0 ∈ TxM,

P1,0dv expx(w) ≈ w+
1
6
Rx(v,w)v+

1
12

(∇vR)x(v,w)v+
1
40

(∇2
v,vR)x(v,w)v+ · · ·

It should however be noted, despite the relative simplicity of the computations leading
to the determination of the iterated covariant derivatives of the Jacobi field Jw at t = 0, the
right-hand side formal expansion will in general not converge in any reasonable sense (cf. [40,
Lemma 3.1], [39, Theorem A.2.9] and the discussion thereafter).

As a further application of the preceding results, Proposition 4.2.2 implies that the formal
Taylor series around t = 0 of the map

[0, 1] −→TxM

t ↦−→Pt,0e(γ(t))

is the formal power series

Pt,0e(γ(t)) ≈
∑︂
k⩾0

tk

k!
∇kv,...,vex ∈ TxM[[t]]

where γ(0) = x, γ̇(0) = v.
This result can easily be generalized to any tensor bundle T overM. For simplicity, let us

assume T = T (r,s)M, for some r, s ∈ N0. The covariant derivative we consider in this case
is the unique extension of the covariant derivative ∇ on TM to T (r,s)M. This implies that
the parallel transport along any smooth curve γ on this vector bundle is thus given by the
natural tensorial extension of the parallel transport on TMwe just discussed, which we will
also denote by Pγ. The compatibility earlier discussed in the case (1, 0), which can naturally
be established for arbitrary (r, s), together with the vector bundle isomorphism

T (r,s)M ∼= F(M)×GL(n,R) T
(r,s)Rn,

implies that, for any geodesic γ and for any tensor field α ∈ T(r,s)M := Γ(T (r,s)M),

dk

dtk
Pt,0αγ(t) = Pt,0∇kγ̇(t),...,γ̇(t)αγ(t).
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Thus, the formal Taylor series of the map

[0, 1] −→T (r,s)
γ(0)M

t ↦−→Pt,0αγ(t)

around t = 0 is given by

Pt,0αγ(t) ≈
∑︂
k⩾0

tk

k!
∇kγ̇(0),...,γ̇(0)αγ(0) ∈ T

(r,s)
γ(0)M[[t]]. (4.14)

In the closing remarks of the preceding section, we pointed out, that for the geodesic γ
starting at xwith γ̇(0) = v it holds

γ̇(t) = dtv expx(v).

The uniqueness of the parallel transport thus implies

P∇γ|[0,t]
(v) = dtv expx(v).

Even though such a convenient expression for the parallel transport is not possible in
general, we can at least explicitly compute the formal Taylor series around t = 0 of the map
t ↦−→ P∇γ|[0,t](w), for any w ∈ Tγ(0)M.

For x ∈M, let U = expx(V) be a normal coordinate system centered at x and {e1, . . . , en}
an orthonormal basis of TxM. Let γv : [0, 1] −→ M be the radial geodesic γv(t) = expx(tv),
for v ∈ V.

We define the map σ : U −→ F(M) by

σ(expx(v)) :=
(︁
σ1(expx(v)), . . . ,σn(expx(v))

)︁
:=
(︁
P∇γve1, . . . ,P∇γven

)︁
∈ F(M)expx(v).

For v ∈ V, t ∈ [0, 1] we define

Ei(t) := dtv expx(ei) ∈ Tγv(t)M.

Proposition 4.2.4. With the above notation, σ is a smooth local section of the frame bundle F(M) on
the normal neighborhood U centered at x, which will be called an exponential framing at x.

Proof. This result boils down to proving the fact that, in this setting, the map

σw : U −→TM

expx(v) ↦−→Pγvw

is smooth, for all w = wiei ∈ TxM.
In order to achieve this we notice that, by definition of the parallel transport map, τw ∈

Γγv(TM) defined as τw(t) = Pγtvw is the parallel section along the geodesic γv starting at w.
That is,

D

dt
τw(t) = 0, τw(0) = w.
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With respect to the frame (E1(t), . . . ,En(t)) ∈ F(M)γv(t) the above initial value problem
can be written as 

dτkw
dt = −Γkij(γv(t))

dγi
dt τ

j
w(t), k = 1, . . . ,n

τkw(0) = wk,

where τw(t) = τiw(t)Ei(t) =∧ τiw(t)ei.
Since U is a normal neighborhood, we know that as long as im (γv) ⊆ U, γv(t) =∧ tv.

Therefore, solving the previous initial value problem is equivalent to solving
dτkw
dt = −Γkij(tv)v

iτ
j
w(t), k = 1, . . . ,n

τkw(0) = wk,

where v = viei.
By setting v : I −→ TxM as v(t) ≡ v, we obtain that this initial value problem is equivalent

to 

dvℓ
dt = 0 ℓ = 1, . . . ,n,

dτkw
dt = −Γkij(tv(t))v

i(t)τjw(t), k = 1, . . . ,n

vℓ(0) = vℓ,

τkw(0) = wk.

By making the identification TxM =∧ Rn and defining the smooth map

F : I×V×V −→Rn ×Rn

(t, v, τ) ↦−→(0, . . . , 0,−Γ 1
ij(tv)v

iτj, . . . ,−Γnij(tv)v
iτj)

we can succinctly write the above system asdz
dt = F(t, z(t)) = F(t, v(t), τw(t))

z(0) = (v,w).

Because of Proposition 2.1.1, we obtain that there exists an interval 0 ∈ I0 ⊆ I, and an open
subset 0 ∈ V0 ⊆ V such that the map

u : I0 × I0 ×V0 ×V0 −→Rn ×Rn

(t, s, v,w) ↦−→z(t) = (v(t), τ(t))

with dz
dt = F(t, z(t)),

z(s) = (v,w)

is smooth. The smoothness of the map σw follows directly, since

σw =∧ pr2 ◦ u ◦ fw,

89



4. The curvature tensor of a torsion-free affine manifold

where pr2 : Rn ×Rn −→ Rn is the projection onto the second factor, and
fw : U −→ I0 × I0 ×V0 ×V0 is the smooth map defined by fw(q) = (1, 0, exp−1

x (q),w).
Therefore, each of the coordinate maps σi = σei : U −→ TM is smooth, whence

σ ∈ ΓU(F(M)).

Let us introduce now the formal power series

Pv :=
∑︂
k⩾0

(−1)ktk

k!
∇kv,...,v =:

∑︂
k⩾0

tk

k!
P(k)(v, . . . , v) ∈ End(TxM)[[t]]

We notice that this series is in fact invertible in the sense that

Pv · P−v = 1TxM ∈ End(TxM)[[t]],

where the product in End(TxM)[[t]] is given by the composition of coefficients.
Any given exponential framing σ : U −→ F(M) at the point x ∈M allows us to construct

the following smooth map.
Let T be any tensor bundle overM. Thus, there is a vector bundle isomorphism T ∼= E :=

F(M)×GW, for some finite-dimensional vector spaceW on which the group G = GL(n, R)

acts on the left. For any smooth section R ∈ Γ(E) ≃ C∞(F(M),W)G we define the smooth
map Rσ := R ◦ σ : U −→ W, where R ∈ C∞(F(M),W)G is the G-equivariant smooth map
corresponding to the section R.

Now, the exponential framing, being a local section of a principal bundle, induces a local
trivialization

ψσ : U×G −→π−1(U)

(y,g) ↦−→σ(y) · g.

Define

F(M) ⊃ π−1(U) = ψσ(U×G) =: FG =
⨆︂
y∈U

(FG)y :=
⨆︂
y∈U

{σ(y) · g| g ∈ G}.

Since by definition the principal bundle is locally trivial, (FG,π|π−1(U),U;G) is a G-
principal bundle isomorphic to the trivial G-bundle (U×G, pr1,U;G). In general, for any Lie
subgroup H ⊆ G, Proposition 3.3.1 implies that (FH,π|im (ψσ),U;H) is an H-principal bundle
and the pair (FH, ι) an H-reduction of FG.

Before we let the bundle FG for some time, we make a further observation about it. Let
ω∇ ∈ Ω1(F(M), g) be the connection form induced by the covariant derivative∇. This implies
that σ∗ω∇ = Γ , where Γ ∈ Ω1(U, g) is the local connection form associated to the local section
σ, the exponential framing at x, which, as we quickly can corroborate, satisfies the identity

∇Xσj = Γ(X)σj = Γkj (X)σk for all X ∈ Γ(TM).
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4.2 The curvature tensor revisited

The fact that dσ(y)π : Thσ(y)F(M) −→ TyM is an isomorphism, implies that, for all y ∈ U,

Thσ(y)F(M) ⊆ Tσ(y)FG,

which at the same time implies that, due to the nature of the action of G on F(M), for every
g ∈ G,

Thσ(y)gF(M) ⊆ Tσ(y)gFG,

Thus, Proposition 3.6.7 implies thatω∇ reduces to FG.
In the case in which ∇ is a torsion-free covariant derivative on the tangent bundle, the

curvature tensor R ∈ T(1,3)M and its covariant derivative ∇R ∈ T(1,4)M satisfy the Bianchi
identities: for all X, Y,Z ∈ Γ(TM),

i) First (or algebraic) Bianchi identity:

R(X, Y)Z+ R(Y,Z)X+ R(Z,X)Y = 0 ∈ Γ(TM),

ii) Second (or differential) Bianchi identity

∇XR(Y,Z) +∇YR(Z,X) +∇ZR(X, Y) = 0 ∈ Γ(End(TM)).

In the setting of a (pseudo-)Riemannian manifold (Mn,g) with Levi-Civita covariant
derivative∇g we define the Riemann curvature as the tensor field
Rm ∈ Γ

(︂
Sym2

(︂⋀︁2 T∗M
)︂)︂
⊆ T(0,4)M defined by

Rm(X, Y,U,V) := g(R∇
g

(X, Y)U,V).

That Rm is indeed a section of said subbundle is a consequence of the first Bianchi identity
that the tensor R∇

g
satisfies.

Another important related tensor is the so called Ricci curvature, which is defined as
Ric ∈ Γ

(︁
Sym2 T∗M

)︁
⊆ T(0,2)M given by the formula

Ric(Y,Z) := tr
(︂
X ↦−→ R∇

g

(X, Y)Z
)︂

.

That the components of the Ricci tensor are in fact symmetric in their indices follows from
the fact that

Rℓijk = gℓaRijka

and thus
Ricba =: Rba = Riiba = gijRibaj = g

ijRajib = gijRjabi = Rab.

The metric g is said to be Ricci-flat if Ric ≡ 0.
The scalar curvature g is defined as

s := trg Ric = gabRab,
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4. The curvature tensor of a torsion-free affine manifold

Finally, the metric g is said to be Einstein if there exists a constant λ ∈ R such that

Ric = λg,

or equivalently,
s = λn.

The core part of this work is connected to the study of the following vector spaces:

Definition 4.2.2. Let h ⊆ g = End(V) be a Lie subalgebra. The space of formal curvature maps
is defined as

K(h) := ker
{︃⋀︂2

V∗ ⊗ h −→
⋀︂3

V∗ ⊗ V
}︃

,

where The map
⋀︁2 V∗ ⊗ h −→

⋀︁3 V∗ ⊗ V is the composition of the natural maps

⋀︁2 V∗ ⊗ h →→
⋀︁2 V∗ ⊗ V∗ ⊗ V →→

⋀︁3 V∗ ⊗ V .

The space of formal curvature derivatives is defined as

K1(h) := ker
{︃
V∗ ⊗K(h) −→

⋀︂3
V∗ ⊗ h

}︃
,

where the map V∗ ⊗K(h) −→
⋀︁3 V∗ ⊗ h denotes the composition of the natural maps

V∗ ⊗K(h) →→ V∗ ⊗
⋀︁2 V∗ ⊗ h →→

⋀︁3 V∗ ⊗ h.

In analogy to the spaces K(m) introduced in the second chapter, we define in general form ∈N0

the space of formalm-th order curvature derivatives as

K(m)(h) :=ker
{︃

Symm V∗ ⊗
⋀︂2

V∗ ⊗ h −→ Symm V∗ ⊗
⋀︂3

V∗ ⊗ V
}︃

∩ ker
{︃

Symm V∗ ⊗
⋀︂2

V∗ ⊗ h −→ Symm−1 V∗ ⊗
⋀︂3

V∗ ⊗ h

}︃
.

Form ∈N, it is not difficult to see that

K(m)(h) =(Symm V∗ ⊗K(h))∩
(︁
Symm−1 V∗ ⊗K1(h)

)︁
⊆ Symm−1 V∗ ⊗ V∗ ⊗K(h).

We notice that K(0)(h) = K(h), K(1)(h) = K1(h), and so, for m ⩾ 1, by setting K(−1)(h) := h,
we obtain the exact sequence

0 →→ K(m)(h) →→ V∗ ⊗K(m−1)(h) →→
⋀︁2 V∗ ⊗K(m−2)(h). (4.15)
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With this definition, we introduce the tensor bundles

K(M) :=
⨆︂
x∈M

K(End(TxM)) ⊆
⋀︂2

T∗M⊗ End(TM),

K(m)(M) :=
⨆︂
x∈M

K(m)(End(TxM)) ⊆ Symm−1 T∗M⊗ T∗M⊗K(M),

all of which are associated to the frame bundle F(M).
In this setting, the Bianchi identities translate thus to

i) R ∈ Γ(K(M)),

ii) ∇R ∈ Γ(K1(M)).

Proposition 4.2.5. With the above notation, it holds that

∇(m)R ∈ Γ(K(m)(M)).

Proof. Because of the definition of the spaces K(m), to prove the claim it suffices to show

i) ∇mA1,...,AmRx ∈ K(End(TxM)),

ii) ∇m−1
A1,...,Am−1

∇Rx ∈ K1(End(TxM))

for any tangent vectors Ai ∈ TxM.
We argue by induction on m. The claims for m = 0, 1 are already taken care of, since they

are simply the Bianchi identities.
Suppose the claim holds for anm ∈N0. Then for any tangent vectors X, Y,Z ∈ TxM

(∇m+1
A1,...,Am+1

Rx)(X, Y)Z = ∇A1

(︂
(∇mA2,...,Am+1

Rx)(X, Y)Z
)︂
−

m+1∑︂
i=2

(∇mA2,...,∇A1Ai,...,Am+1
Rx)(X, Y)Z.

The induction hypothesis implies then∑︂
cyc (X,Y,Z)

(∇m+1
A1,...,Ak+1

Rx)(X, Y)Z = 0

which concludes the proof for item i).
The proof of item ii) follows in a completely analogous fashion.
The proposition follows immediately from the definition of the symmetrized covariant

derivative.

For a fixed p ∈ M with normal neighborhood U = expp(V), we set V := TpM with
orthonormal basis {e1, . . . , en} and dual basis

{︁
e1, . . . , en

}︁
. Considering the curvature tensor

R ∈ Γ(K(M)) and the exponential framing at p, we get the smooth map

S : V −→K(End(V))

v ↦−→Rσ(expp(v)).
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4. The curvature tensor of a torsion-free affine manifold

Now, since it is clear from the definition of the vector bundle isomorphism

Ψ : F(M)×G K(End(V)) −→ K(M)

that
Rexpp(v) = Ψexpp(v)

(︂[︂
(σ1(expp(v)), . . . ,σn(expp(v))),P1,0Rexpp(v)

]︂)︂
,

we obtain, by recalling that V ⊆ TpM is star-shaped with respect to 0,

S(tv) = Pt,0Rexpp(tv) ≈
∑︂
m⩾0

tm

m!
∇mv,...,vRp =:

∑︂
m⩾0

tm

m!
S(m)(v, . . . , v) ∈ K(End(V))[[t]],

where, form ∈N0 we defined the polynomials S(m) ∈ K(m)(End(V)) by the formula

S(m) := ∇(m)Rp.

This implies in particular that the differential dS : V −→ V∗ ⊗K(End(V)) takes values in
the subspace K1(End(V)).

Notice as well that the natural tensorial extension of the parallel transport map on TM
implies that the parallel transport map on the vector bundle K(M) along any piecewise
smooth curve γ : [0, 1] −→M starting at p is given by the formula

Pγ|[0,t]
(Rp) =: P0,t(Rp) = P0,t · Rp ∈ K(M)γ(t) = K(End(Tγ(t)M)),

where we define for all X, Y ∈ Γ(TM)

P0,t · Rp(Xγ(t), Yγ(t)) := P0,t ◦ Rp(Pt,0Xγ(t),Pt,0Yγ(t)) ◦ Pt,0.

Now, since we are considering a system of normal coordinates centered at p, Proposition
4.1.1 implies that we can soundly restrict ourselves to the special case M = V , p = 0 ∈ V ,
whose radial geodesics are given by γv(t) = tv. In this case we obtain exp0 : T0V ∼= V −→ V is
in fact the identity map, which implies that

P
γv
0,t ≈Pv(t) =

∑︂
ℓ⩾0

(−1)ℓtℓ

ℓ!
∇ℓv...,v ∈ End(V)[[t]],

Pt,0 ≈P−v(t) ∈ End(V)[[t]].

In this setting we define the map R : V −→ K(End(V)) ⊆
⋀︁2 V∗ ⊗ End(V) as

R(v) := Rγv(1) = Rij(v)e
i ∧ ej := Rℓijk(v)e

i ∧ ej ⊗ ek ⊗ eℓ, which gives rise to the map

t ↦−→ Rγv(t) =: R(tv),

for all v ∈ V .
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We also introduce the left action of GL(V) on the vector space K(End(V)) defined as

· : GL(V)×K(End(V)) −→K(End(V))

(T ,R) ↦−→T · R : (x,y) ↦−→ T ◦ R(T−1(x), T−1(y)) ◦ T−1 ∈ End(V),

which naturally induces the Lie group representation of the group GL(V) on the vector space
K(End(V))

ρ : GL(V) −→GL(K(End(V)))

T ↦−→ρ(T) := T · .

By means of all of these maps, we define the application S : V −→ K(End(V)) defined by

S(v) := P(−v) · R(v),

which gives rise to the map
t ↦−→ S(tv)

for all v ∈ V .
Assuming the covariant derivative is torsion-free, we also define the map

Γ : V −→ Sym2 V∗ ⊗ V ⊆ V∗ ⊗ End(V) as Γ(v) := Γi(v)ei := Γkij(v)e
iej ⊗ ek, which in a similar

fashion gives rise to the map
t ↦−→ Γ(tv),

for all v ∈ V .
Now, since the maps R, P, and Γ come from smooth sections of vector bundles, we deduce

that both of these applications are in fact smooth maps, which in turn implies the smoothness
of the map S, whose formal Taylor series around 0 we write as

P(v) ≈
∑︂
m⩾0

1
m!
P(m)(v, . . . , v),

R(v) ≈
∑︂
m⩾0

1
m!
R(m)(v, . . . , v),

S(v) ≈
∑︂
m⩾0

1
m!
S(m)(v, . . . , v),

Γ(v) ≈
∑︂
m⩾0

1
m!
Γ (m)(v, . . . , v),

where for eachm ∈N, Γ (m) ∈ Symm V∗⊗Sym2 V∗⊗V , R(m),S(m) ∈ Symm V∗⊗K(End(V)),
P(m) ∈ Symm V∗ ⊗ End(V) are the unique symmetric polynomials given by them-th order
partial derivatives of the maps P, R, S and Γ .
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4. The curvature tensor of a torsion-free affine manifold

Explicitly, it is easy to obtain the formulas

P(m) =
∑︂

|µ|=m

(︃
m

µ

)︃
DµP(0)(e1)µ1 · · · (en)µn ,

R(m) =
∑︂

|µ|=m

(︃
m

µ

)︃
DµR(0)(e1)µ1 · · · (en)µn ,

S(m) =
∑︂

|µ|=m

(︃
m

µ

)︃
DµS(0)(e1)µ1 · · · (en)µn ,

Γ (m) =
∑︂

|µ|=m

(︃
m

µ

)︃
DµΓ(0)(e1)µ1 · · · (en)µn ,

where the right-hand side on each of these equations is to be understood as component-wise
differentiation. Explicitly,

DµP(0) :=DµPij(0)e
j ⊗ ei,

DµR(0) :=DµRαijβ(0)e
i ∧ ej ⊗ eβ ⊗ eα,

DµS(0) :=DµSαijβ(0)e
i ∧ ej ⊗ eβ ⊗ eα,

DµΓ(0) :=DµΓkij(0)e
iej ⊗ ek.

In a similar fashion, the map Γ : V −→ Sym2 V∗ ⊗ V gives rise to the smooth maps
dΓ , [Γ , Γ ] : V −→ K(End(V)) ⊆

⋀︁2 V∗ ⊗ End(V) defined by the formulas

dΓ(v) :=
1
2
(∂iΓ

α
jβ(v) − ∂jΓ

α
iβ(v))e

i ∧ ej ⊗ eβ ⊗ eα,

[Γ , Γ ](v) :=
(︁
Γαiλ(v)Γ

λ
jβ(v) − Γ

α
jλ(v)Γ

λ
iβ(v)

)︁
ei ∧ ej ⊗ eβ ⊗ eα = [Γi(v), Γj(v)]ei ∧ ej,

whose formal Taylor series around 0 are given by the formulas

dΓ(v) ≈
∑︂
m⩾0

1
m!

dm+1Γ
(m+1)(v, . . . , v),

[Γ , Γ ](v) ≈
∑︂
m⩾0

1
m!

∑︂
a+b=m

(︃
m

a

)︃[︂
Γ
(a)
i (v, . . . , v), Γ (b)j (v, . . . , v)

]︂
ei ∧ ej

=:
∑︂
m⩾0

1
m!

∑︂
a+b=m

(︃
m

a

)︃[︂
Γ (a), Γ (b)

]︂
(v, . . . , v),

where d• : Sym• V∗ ⊗ Sym2 V∗ ⊗ V −→ Sym•−1 V∗ ⊗ K(End(V)) is the natural map previ-
ously defined, whereas the map

[·, ·] :
(︁
Syma V∗ ⊗ Sym2 V∗ ⊗ V

)︁
×
(︁
Symb V∗ ⊗ Sym2 V∗ ⊗ V

)︁
−→ Syma+b V∗ ⊗K(End(V))

is defined by the formula given in the following polarization result for symmetric polynomials:
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Proposition 4.2.6 ([22, Lemma F.2.15]). Let F be a field and let U,W be F-vector spaces. Then for
f ∈ Polk(U,W), with

Polk(U,W) :=

{︄
f : U −→W | there exists ϕ ∈

k⨂︂
U∗ ⊗W such that f(u) = ϕ(u, . . . ,u)

}︄
,

there exists a unique ϕ ∈ SymkU∗ ⊗W such that

f(u) = ϕ(u, . . . ,u).

Moreover, for u1, . . . ,uk ∈ U we have

ϕ(u1, . . . ,uk) =
1
k!

k∑︂
ℓ=1

∑︂
{j1,...,jℓ}⊆{1,...,k}

(−1)k−ℓϕ
(︁
uj1 + · · ·+ ujℓ , . . . ,uj1 + · · ·+ ujℓ

)︁
. (4.16)

By a slight abuse of notation we define

P :=
∑︂
m⩾0

1
m!
P(m) ∈

∏︂
m⩾0

(Symm V∗ ⊗ End(V)),

R :=
∑︂
m⩾0

1
m!
R(m) ∈

∏︂
m⩾0

(Symm V∗ ⊗K(End(V))),

S :=
∑︂
m⩾0

1
m!
S(m) ∈

∏︂
m⩾0

(Symm V∗ ⊗K(End(V))),

Γ :=
∑︂
m⩾0

1
m!
Γ (m) ∈

∏︂
m⩾0

(︁
Symm V∗ ⊗ Sym2 V∗ ⊗ V

)︁
,

dΓ :=
∑︂
m⩾0

1
m!

dm+1Γ
(m+1) =

∑︂
m⩾0

1
m!

dΓ (m+1) ∈
∏︂
m⩾0

(Symm V∗ ⊗K(End(V))),

[Γ , Γ ] :=
∑︂
m⩾0

1
m!

∑︂
a+b=m

(︃
m

a

)︃
[Γ (a), Γ (b)] ∈

∏︂
m⩾0

(Symm V∗ ⊗K(End(V))),

By Construction, it actually holds that Γ (m) ∈ (Symm V∗ ⊗ Sym2 V∗)0 ⊗ V , as well as
R(m),S(m), dΓ (m+1),

∑︁
a+b=m

(︁
m
a

)︁
[Γ (a), Γ (b)] ∈

∏︁
m⩾0 K

(m)(End(V)).
Making use of the structure equation2

R = 2dΓ + [Γ , Γ ]

and equating coefficients on the formal power series, we get the relations

R(m) = 2dΓ (m+1) +
∑︂

a+b=m

(︃
m

a

)︃[︂
Γ (a), Γ (b)

]︂
∈ K(m)(End(V)) (4.17)

for everym ⩾ 0.

2Here it should be noted that the usual convention is to consider 1
2R as the curvature form, exactly as is

equation (4.5). The deviation made here is just to make computations slightly less cumbersome.

97



4. The curvature tensor of a torsion-free affine manifold

On the other hand, the equation

S(tv) = P(−tv) · R(tv) = ρ(P(−tv))(R(tv))

becomes now

∑︂
m⩾0

tm

m!
S(m)(v, . . . , v) =ρ

∑︂
m⩾0

(−1)mtm

m!
P(m)(v, . . . , v)

∑︂
m⩾0

tm

m!
R(m)(v, . . . , v)


=

∑︂
m⩾0

(−1)mtm

m!
ρ∗(P

(m)(v, . . . , v))

∑︂
m⩾0

tm

m!
R(m)(v, . . . , v)


=

∑︂
m⩾0

tm

m!

∑︂
a+b=m

(︃
m

a

)︃
(−1)aρ∗

(︂
P(a)(v, . . . , v)

)︂(︂
R(b)(v, . . . , v)

)︂
,

where as usual, ρ∗ := d1Vρ.
With this we obtain that, for everym ∈N0, and every v ∈ V ,

S(m)(v, . . . , v) =
∑︂

a+b=m

(︃
m

a

)︃
(−1)aρ∗

(︂
P(a)(v, . . . , v)

)︂(︂
R(b)(v, . . . , v)

)︂
,

which is enough to fully determine the polynomials S(m), according to Proposition 4.2.6.
And so we get:

S(m) =
∑︂

a+b=m

(︃
m

a

)︃
(−1)aP(a) · R(b) = R(m) +

∑︂
a+b=m
b<m

(︃
m

a

)︃
(−1)aP(a) · R(b)

=2dΓ (m+1) +
∑︂

a+b=m

(︃
m

a

)︃[︂
Γ (a), Γ (b)

]︂
+

∑︂
a+b=m
b<m

(︃
m

a

)︃
(−1)aP(a) · R(b),

which then implies

dΓ (m+1) =
1
2

S(m) −
∑︂

a+b=m

(︃
m

a

)︃[︂
Γ (a), Γ (b)

]︂
−

∑︂
a+b=m
b<m

(︃
m

a

)︃
(−1)aP(a) · R(b)

.

Now, in Proposition 2.2.2 we established the linear isomorphism

Φm : K(m)(W) −→ ker
{︁

Symm+1W ⊗ Sym2W −→ Symm+3W
}︁
=: (Symm+1W⊗Sym2W)0

for any finite-dimensional vector space W. We even got an explicit bound for the norm of this
linear isomorphism in terms of the dimension ofW. Indeed, from equation (2.9) we obtain
the estimate

∥Φm∥op ⩽
2
√

2(dimW)2
(︁
(dimW)2 + 1

)︁
m+ 1

.
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Replacing W for V∗ and denoting the map Φm ⊗ 1V again by Φm we thus obtain the
following linear isomorphisms, which are inverse of each other,

Φm : K(m)(End(V)) −→
(︁
Symm+1 V∗ ⊗ Sym2 V∗)︁

0 ⊗ V

d :
(︁
Symm+1 V∗ ⊗ Sym2 V∗)︁

0 ⊗ V −→K
(m)(End(V)).

Notice as well that the map Φm is again bounded by the same bound as before since it is
easy to see that

∥Φm ⊗ 1V∥op = ∥Φm∥op∥1V∥op = ∥Φm∥op ⩽
2
√

2n2(n2 + 1)
m+ 1

.

With this we thus get

Γ (m+1) =
1
2
Φm

S(m) −
∑︂

a+b=m

(︃
m

a

)︃[︂
Γ (a), Γ (b)

]︂
−

∑︂
a+b=m
b<m

(︃
m

a

)︃
(−1)aP(a) · R(b)

 (4.18)

In this setting, we can also adapt the covariant derivative along the smooth curve γv.
Specifically, let τ ∈ Γγv(TM) and write Tγv(t)M ∋ τ(t) = τi(t)∂i|γv(t) =∧ τi(t)ei ∈ V . Equation
(4.1) becomes then

Tγv(t)M ∋
D

dt
τ(t) =

dτi

dt
∂i|γv(t) + τ

i(t)∇γ̇v(t)∂i|γv(t)

=
dτℓ

dt
∂ℓ|γv(t) + Γ

ℓ
ij(γv(t))γ̇

i
v(t)τ

j(t)∂ℓ|γv(t)

=∧
dτℓ

dt
eℓ + Γ

ℓ
ij(tv)v

iτj(t)eℓ

=
dτ
dt

+ Γ(tv)(v)τ(t) ∈ V .

What we do now is to make a similar analysis to the formal power series of the smooth
section along the curve τ and establish its relation to the formal power series of the map
Γ . In order to achieve this, we begin with an elementary result from the theory of ordinary
differential equations:

Proposition 4.2.7. Let g : J −→ R be a smooth map with J ⊆ R an interval containing 0 and
g(0) = 0. Then the unique smooth solution to the initial value problemẋ(t) = g(t)x(t),x(0) = x0

is the smooth function x : J −→ R which satisfies for allm ∈N0

x(m)(0) = x0

⌊m2 ⌋∑︂
k=0

1
k!

∑︂
I∈Nk

0 ,
|I|=m

(︃
m

I

)︃
g(i1−1)(0) · · ·g(ik−1)(0). (4.19)
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4. The curvature tensor of a torsion-free affine manifold

Proof. The result follows from the fact that the unique solution to the given initial value
problem is given by

x(t) = x0e
´ t

0 g(s)ds.

To see this, we write the formal power series of the smooth map g, x around t = 0 as

g(t) ≈
∑︂
m⩾0

tm

m!
g(m)(0) =:

∑︂
m⩾0

tm

m!
gm

x(t) ≈
∑︂
m⩾0

tm

m!
x(m)(0) =:

∑︂
m⩾0

tm

m!
xm.

The formal power series of the smooth function h(t) :=
´ t

0 g(s)ds at t = 0 is then given by

h(t) ≈
∑︂
m⩾0

tm

m!
gm+1 =:

∑︂
m⩾0

tm

m!
hm,

with h0 = 0, hm = gm−1 for allm ⩾ 1.
With this we get

eh(t) =
∑︂
k⩾0

1
k!
(h(t))k

≈
∑︂
k⩾0

1
k!

∑︂
m⩾0

tm

m!
hm

k

=
∑︂
k⩾0

1
k!

∑︂
m⩾0

tm

m!

∑︂
I∈Nk

0 ,
|I|=m

(︃
m

I

)︃
hi1 · · ·hik

=
∑︂
m⩾0

tm

m!

∑︂
k⩾0

1
k!

∑︂
I∈Nk

0 ,
|I|=m

(︃
m

I

)︃
hi1 · · ·hik .

The formula x(t) = x0e
h(t) implies then

xm = x0
∑︂
k⩾0

1
k!

∑︂
I∈Nk

0 ,
|I|=m

(︃
m

I

)︃
hi1 · · ·hik .

Now, since g(0) = g0 = h1 = 0 = h0, we obtain that the summands on the right-hand side
of the above equation do not vanish only when ik ⩾ 2 for all k. Equivalently, m = |I| ⩾ 2k.
This immediately implies (4.19).

This result can in fact be generalized to the setting of matrix differential equations:

Proposition 4.2.8. Let A : J −→ gl(n, R) be a smooth map, with J ⊆ R an interval containing 0
such that A(0) = 0. Then the unique solution to the initial value problemẋ(t) = A(t)x(t)x(0) = x0
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is given by the smooth map x : J −→ Rn which satisfies for allm ∈N0

x(m)(0) =
⌊m2 ⌋∑︂
k=0

1
k!

∑︂
I∈Nk

0 ,
|I|=m

(︃
m

I

)︃
A(i1−1)(0) · · ·A(ik−1)(0)x0. (4.20)

Proof. Even though in this case we can not really argue that the solution of the initial value
problem is given by the analogous formula x(t) = e

´ t
0 A(s)dsx0, since for the generic smooth

map A : J −→ gl(n, R), the matrices A(t),
´ t

0 A(s)ds do not commute, we can still prove this
claim via mathematical induction. The base casem = 0 is trivially satisfied.

By setting A(i)(0) =: Ai, x(i)(0) =: xi we obtain the formal Taylor series around 0

A(t) ≈
∑︂
m⩾0

tm

m!
Am,

x(t) ≈
∑︂
m⩾0

tm

m!
xm.

Since x : J −→ Rn is the unique solution to the given initial value problem, we obtain, at
the level of formal power series,

∑︂
m⩾0

tm

m!
xm+1 =

∑︂
m⩾0

tm

m!

m∑︂
ℓ=0

(︃
m

ℓ

)︃
Am−ℓxℓ,

from which we obtain the recursion formula

xm+1 =

m∑︂
ℓ=0

(︃
m

ℓ

)︃
Am−ℓxℓ, for allm ∈N0

Suppose now, that (4.20) holds for all ℓ ⩽ m.
From the established recursion formula we thus obtain

xm+1 =

m∑︂
ℓ=0

(︃
m

ℓ

)︃
Am−ℓxℓ

=

m∑︂
ℓ=0

(︃
m

ℓ

)︃
Am−ℓ

⌊ ℓ2⌋∑︂
k=0

1
k!

∑︂
I∈Nk

0 ,
|I|=ℓ

(︃
ℓ

I

)︃
Ai1−1 · · ·Aik−1x0

=

m∑︂
ℓ=0

⌊ ℓ2⌋∑︂
k=0

1
k!

∑︂
I∈Nk

0 ,
|I|=ℓ

(︃
m

ℓ

)︃(︃
ℓ

I

)︃
Am−ℓAi1−1 · · ·Aik−1x0

=

m∑︂
ℓ=0

⌊ ℓ2⌋∑︂
k=0

m− ℓ+ 1
(m+ 1)k!

∑︂
I∈Nk

0 ,
|I|=ℓ

(︃
m+ 1

m− ℓ+ 1, i1, . . . , ik

)︃
Am−ℓAi1−1 · · ·Aik−1x0
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The fact that A(0) = A0 = 0 readily implies

xm+1 =

m∑︂
ℓ=0

⌊ ℓ2⌋∑︂
k=0

m− ℓ+ 1
(m+ 1)k!

∑︂
I∈Nk

0 ,
|I|=ℓ

(︃
m+ 1

m− ℓ+ 1, i1, . . . , ik

)︃
Am−ℓAi1−1 · · ·Aik−1x0

=

⌊m+1
2 ⌋∑︂
k=0

1
k!

∑︂
I∈Nk

0 ,
|I|=m+1

(︃
m+ 1
i1, . . . , ik

)︃
Ai1−1 · · ·Aik−1x0.

Notice that even though the solution of the IVP in the previous proposition cannot in
general be given by a closed formula analogous to the one in the case of Proposition 4.2.7, the
type of algebraic manipulations used in both of the proofs are almost identical. Yet, in the
appropriate setting, it is possible to find a partial conciliation of both of these results.

LetW be a finite-dimensional real vector space with a given inner product. We define the
map

N : W[[t]] −→R[[t]]∑︂
m⩾0

tm

m!
fm ↦−→

∑︂
m⩾0

tm

m!
∥fm∥,

where the norm on the right-hand side is the one induced by the inner product on W. It
is clear that the map N depends on the vector space W. However, most of the time the
correspondingW will be clear from the context, which motivates us to omit this dependence
from the notation. We also note, that apart from the fact that N does not take values on R, it
has all of the properties which define a norm.

In the classical theory of bounded operators on Hilbert spaces, we have that the operator
norm is in fact a sub-multiplicative norm. In the case of the mapN does not make much sense
to talk about sub-multiplicativity, since the composition of formal power series of one variable
with coefficients on a real vector space is not well-defined. However, something that from a
distance resembles the sub-multiplicative property of the map N is given by the following
result.

Proposition 4.2.9. Let W be a finite-dimensional real vector space with a given inner product and let
f ∈W[[t]], g ∈ R[[t]] with g(0) = 0. Then it holds that

NW(f(g(t))) ⩽ NW(f)(NR(g(t))) ∈ R[[t]].

Proof. Let us write

f =
∑︂
m⩾0

tm

m!
fm ∈W[[t]],

g =
∑︂
m⩾0

tm

m!
gm ∈ R[[t]].
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The fact that g(0) = g0 = 0 implies that the substitution

f(g(t)) =
∑︂
m⩾0

fm

m!
(g(t))m ∈W[[t]]

is well-defined.
Indeed,

f(g(t)) =
∑︂
m⩾0

fm

m!
(g(t))m

=
∑︂
m⩾0

fm

m!

∑︂
ℓ⩾0

tℓ

ℓ!
gℓ

m

=
∑︂
m⩾0

fm

m!

∑︂
ℓ⩾0

tℓ

ℓ!

∑︂
I∈Nm

0 ,
|I|=ℓ

(︃
ℓ

I

)︃
gi1 · · ·gim

g0=0
=

∑︂
ℓ⩾0

tℓ

ℓ!

ℓ∑︂
m=0

fm

m!

∑︂
I∈Nm

0 ,
|I|=ℓ

(︃
ℓ

I

)︃
gi1 · · ·gim .

Thus we get

NW(f(g(t))) =
∑︂
ℓ⩾0

tℓ

ℓ!

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
ℓ∑︂

m=0

fm

m!

∑︂
I∈Nm

0 ,
|I|=ℓ

(︃
ℓ

I

)︃
gi1 · · ·gim

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⩽
∑︂
ℓ⩾0

tℓ

ℓ!

ℓ∑︂
m=0

∥fm∥
m!

∑︂
I∈Nm

0
|I|=ℓ

(︃
ℓ

I

)︃
|gi1 | · · · |gim |

=
∑︂
m⩾0

∥fm∥
m!

∑︂
ℓ⩾0

tℓ

ℓ!
|gℓ|

m

=NW(f)(NR(g(t))).

We notice as well that, by identifying a smooth function f ∈ C∞(J,W), where 0 ∈ J ⊆ R,
with its formal power series expansion around t = 0 we can think of C∞(J,W) as a subset of
the domain of the map N.

In this context, we have the following result, which establishes the desired relation between
both of the previous propositions.

Proposition 4.2.10. Suppose we are in the situation described in Proposition 4.2.8. Let Rn be
endowed with the standard inner product, which induces a natural norm ∥·∥op on gl(n, R). Then it
holds that

N(x) ⩽ ∥x0∥e
´ t

0 N(A) ∈ R[[t]], (4.21)
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where the integral of a formal power series
∑︁
m⩾0

am
m! t

m ∈ R[[t]] is defined as

ˆ t
0

∑︂
m⩾0

am

m!
zm dz :=

∑︂
m⩾0

am

(m+ 1)!
tm+1.

Proof. This result is essentially a consequence of the previous result. Namely, in the proof of
Proposition 4.2.8 we obtained the recursion formula for allm ∈N0

x(m+1)(0) =
∑︂

a+b=m

(︃
m

a

)︃
A(a)(0)x(b)(0),

from which we obtain⃦⃦⃦
x(m+1)(0)

⃦⃦⃦
⩽

∑︂
a+b=m

(︃
m

a

)︃⃦⃦⃦
A(a)(0)

⃦⃦⃦
op

⃦⃦⃦
x(b)(0)

⃦⃦⃦
.

The partial ordering on R[[t]] defined in Lemma 2.1.1 implies then

∑︂
m⩾0

tm

m!

⃦⃦⃦
x(m+1)(0)

⃦⃦⃦
⩽

∑︂
m⩾0

tm

m!

∑︂
a+b=m

(︃
m

a

)︃⃦⃦⃦
A(a)(0)

⃦⃦⃦
op

⃦⃦⃦
x(b)(0)

⃦⃦⃦
.

That is,
N(x) ′ ⩽ N(A)N(x) ∈ R[t]],

which, due to the fact that all of these formal power series have non-negative coefficients,
implies the desired estimate, according to Proposition 2.1.8.

In the current context, the importance of the previous proposition is that it allows us to
establish the concrete relationship between the parallel translation map and the Christoffel
symbols of the underlying covariant derivative.

Specifically, let v,w ∈ V and set τw : I −→ V by the formula τw(t) := P
γv
0,t(w) = P(tv)w.

As previously discussed, the expansion as formal power series of the map τw is given by
the formula

τw(t) =
∑︂
m⩾0

tm

m!
P(m)(v, . . . , v)(w).

The fact the τw is parallel along the radial geodesic γv, together with the fact that τw(0) =
w, gives rise to the initial value problem

dτw
dt = −Γ(tv)(v)τw(t)

τw(0) = w

The previous proposition implies then

P(m)(v, . . . , v)(w) =
⌊m2 ⌋∑︂
k=0

(−1)k

k!

∑︂
I∈Nk

0 ,
|I|=m

(︃
m

I

)︃
Γ (i1−1)(v, . . . , v)(v) · · · Γ (ik−1)(v, . . . , v)(v)(w).
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Since this formula holds for any w ∈ V we thus obtain the identity

P(m)(v, . . . , v) =
⌊m2 ⌋∑︂
k=0

(−1)k

k!

∑︂
I∈Nk

0 ,
|I|=m

(︃
m

I

)︃
Γ (i1−1)(v, . . . , v)(v) · · · Γ (ik−1)(v, . . . , v)(v)

as elements of the vector space End(V).
Now, we define the map

∗ : Syma1 V∗ ⊗ Sym2 V∗ ⊗ V × · · · × Symak V∗ ⊗ Sym2 V∗ ⊗ V −→ Syma1+···+ak+k V∗ ⊗ End(V)

(Q1, . . . ,Qk) ↦−→Q1 ∗ · · · ∗Qk

for all a1, . . . ,ak,k ∈N0 given by the formula

Q1 ∗ · · · ∗Qk(v, . . . , v) := Q1(v, . . . , v)(v) ◦ · · · ◦Qk(v, . . . , v)(v) ∈ End(V)

for all v ∈ V . The polarization formula (4.16) guarantees this is enough to completely define
the map ∗.

Thus, since the vector v ∈ V was arbitrarily chosen, we get the identity

P(m) =

⌊m2 ⌋∑︂
k=0

(−1)k

k!

∑︂
I∈Nk

0 ,
|I|=m

(︃
m

I

)︃
Γ (i1−1) ∗ · · · ∗ Γ (ik−1) ∈ Symm⊗End(V) (4.22)

One of the consequences of the considerations made during the last couple of paragraphs
is thus that given an analytic covariant derivative on V with curvature tensor R, then the map
S : V −→ K(End(V)) defined as S(v) := P∇1,0 · Rγv(1), where P∇1,0 = (P−1

γv
), is real analytic and

satisfies that dS : V −→ K1(End(V)). That these constructions can so to speak be reversed are
the contents of the Main Result of this work.

4.3 Sufficient conditions for the existence of torsion-free covariant
derivatives

The last part of the previous section dealt with some algebraic generalities that led to the
special map S, intimately related to the first and second Bianchi identities, which turned out
to be real analytic, provided the covariant derivative was real analytic as well.

The core result of the present work guarantees that the existence of such a particular
analytic map is the only obstruction to the existence of real analytic torsion-free covariant
derivatives. This section is devoted to proving this result.

Theorem 1. Let V a finite-dimensional R-vector space and U an open neighborhood of 0 in V .
Let S : U −→ K(End(V)) be a real analytic map such that dS : U −→ K1(End(V)) ⊆ V∗ ⊗
K(End(V)). Then there exists a unique torsion-free covariant derivative ∇ defined on a sufficiently
small neighborhood of the origin U ⊆ U such that

S(v) = P∇1,0R
∇
γv(1) for all v ∈ U.
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Before we discuss the proof of the theorem we first need the following auxiliary result,
which at the same time serves as a justification for our particular interest in formal power
series of one variable.

Lemma 4.3.1. Let V ,W be finite-dimensional inner-product vector spaces. The map F : V −→W is
real-analytic near 0 ∈ V if and only if the map f : R −→ R such that

f(t) ≈
∑︂
m⩾0

1
m!

⃦⃦⃦
F(m)

⃦⃦⃦
op
tm ∈ R[[t]]

is real-analytic in an open neighborhood of 0, where the polynomial F(m) ∈ Symm V∗ ⊗W is the
unique symmetric polynomial such that

F(x) ≈
∑︂
m⩾0

1
m!
F(m)(x, . . . , x),

while ∥·∥op denotes the norm on Hom(Symm V ,W) ∼= Symm V∗ ⊗W given by the formula

∥Q∥op := max
V∋v ̸=0

∥Q(vm)∥W
∥vm∥Sym

= max
V∋v ̸=0

∥Q(vm)∥W
∥v∥m

= inf {c ⩾ 0| ∥Q(vm)∥W ⩽ c∥v∥m for all v ∈ V}

for allm ∈N0.

Proof. First of all, we need to verify that ∥·∥op : Symm V∗ ⊗W −→ R does indeed define
a norm. In reality, the only property that somewhat may not be evident is the positive
definiteness, since both the absolute homogeneity and the triangle inequality readily follow
from the analogous properties the norm onW satisfies.

Suppose then that ∥Q∥op = 0. This implies that for all v ∈ V , Q(vm) = 0. Now, thanks to
Proposition 4.2.6 we know that every monomial v1 · · · vm ∈ Symm V can be expressed as a
finite sum of monomials of the form vm. Indeed, thanks to said result, we have the explicit
formula

v1 · · · vm =
1
m!

m∑︂
ℓ=1

∑︂
{j1,...,jℓ}⊆{1,...,m}

(−1)m−ℓ
(︁
vj1 + · · ·+ vjℓ

)︁m.

The fact that every polynomial ξ ∈ Symm V can be written as a finite sum of monomials
of this form implies that Q(ξ) = 0, which in turn implies Q ≡ 0 ∈ Symm V∗ ⊗W.

Now to the actual proof of the lemma.
One of the implications is relatively light to see. Namely, let f : (−ε, ε) −→ R be real-

analytic for some ε > 0. Since it holds that⃦⃦⃦
F(m)(x, . . . , x)

⃦⃦⃦
=
⃦⃦⃦
F(m)(xm)

⃦⃦⃦
⩽
⃦⃦⃦
F(m)

⃦⃦⃦
op
∥xm∥Sym =

⃦⃦⃦
F(m)

⃦⃦⃦
op
∥x∥m,
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we then obtain, for ∥x∥ < ε, that

∑︂
m⩾0

⃦⃦⃦⃦
1
m!
F(m)(x, . . . , x)

⃦⃦⃦⃦
⩽

∑︂
m⩾0

1
m!

⃦⃦⃦
F(m)

⃦⃦⃦
op
∥x∥m

<∞,

which implies the absolute convergence of the Taylor series

∑︂
m⩾0

1
m!
F(m)(x, . . . , x)

for all x ∈ Bε(0) ⊆ V , that is, F|Bε(0) is real-analytic, i.e.

F(x) =
∑︂
m⩾0

1
m!
F(m)(x, . . . , x) for all x ∈ Bε(0).

Suppose, on the other hand, that the map F : V −→W is real-analytic near the origin.
The Taylor Theorem implies that

F(x) =
∑︂
m⩾0

1
m!
F(m)(x, . . . , x) =

∑︂
m⩾0

1
m!

∑︂
|µ|=m

(︃
m

µ

)︃
DµF(0)xµ.

Thus we obtain the explicit formula for them-th Taylor polynomial of the map F

F(m) =
∑︂

|µ|=m

(︃
m

µ

)︃
DµF(0)(e1)µ1 · · · (en)µn ∈ Symm V∗ ⊗W, (4.23)

where in a similar fashion to the way we argued before, DµF(0) denotes component-wise
differentiation, that is

DµF(0) = DµFi(0)fi

with F(x) = Fi(x)fi for some orthonormal basis {f1, . . . , fdimW} ofW and analytic component
functions Fi : V −→ R.

Now, since F is real analytic near the origin, Proposition 2.1.3 guarantees the existence of a
neighborhood 0 ∈ U ⊆ V , and positive constants C, r such that⃦⃦⃦⃦

1
µ!
DµF(x)

⃦⃦⃦⃦
⩽

C

r|µ|

for all x ∈ U, and µ ∈Nn, where n is the dimension of V .
Let us recall that, with respect to the inner product ⟨·, ·⟩Sym previously defined, the elements

of the set {︄√︄
m!
µ!
eµ =

√︄
m!
µ!

(e1)
µ1 · · · (en)µn

⃓⃓⃓⃓
⃓ µ ∈Nn

0 , |µ| = m

}︄
form an orthonormal basis of the vector space Symm V .
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Thus, for every ξ ∈ Symm V

F(m)(ξ) =
∑︂

|µ|=m

(︃
m

µ

)︃
⟨ξ, eµ⟩F(m)(eµ)

(4.23)
=

∑︂
|µ|=m

⟨ξ, eµ⟩DµF(0).

Therefore, by denoting the norms on Symm V and W with the same symbol to avoid
cumbersome notation, we obtain that

1
m!

⃦⃦⃦
F(m)(ξ)

⃦⃦⃦
=

⃦⃦⃦⃦
⃦⃦ ∑︂
|µ|=m

1
m!
⟨ξ, eµ⟩DµF(0)

⃦⃦⃦⃦
⃦⃦

⩽
∑︂

|µ|=m

|⟨ξ, eµ⟩|
⃦⃦⃦⃦

1
µ!
DµF(0)

⃦⃦⃦⃦

⩽
∑︂

|µ|=m

∥ξ∥∥eµ∥ C
rm

⩽
∑︂

|µ|=m

C

rm
∥ξ∥

=
C

rm
∥ξ∥
(︃
m+n− 1

m

)︃
=
C

rm
∥ξ∥(m+ 1) · · · (m+n− 1)

(n− 1)!

=
C

rm
∥ξ∥
(︃
m+ 1

1

)︃(︃
m+ 2

2

)︃
· · ·
(︃
m+n− 1
n− 1

)︃
⩽
C

rm
(m+ 1)n−1∥ξ∥.

Therefore, since the above estimate holds in particular for the monomials xm ∈ Symm V ,
we obtain that, for allm ∈N0,

1
m!

⃦⃦⃦
F(m)

⃦⃦⃦
op

⩽
C

rm
(m+ 1)n−1.

Hence

∑︂
m⩾0

1
m!

⃦⃦⃦
F(m)

⃦⃦⃦
op
tm ⩽C

∑︂
m⩾0

(m+ 1)n−1
(︃
t

r

)︃m

=C

(︃
t

d
dt

+ 1

)︃n−1
r

r− t
,

for all t ∈ (−r, r), which by the elementary comparison criterion of power series in one
variable implies the real analyticity of the map f : (−r, r) −→ R.

Proof of Theorem 1. The way we prove the theorem is by formally defining the symmetric
polynomials that uniquely determine the power series expansion of the Christoffel symbols
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of the desired covariant derivative and showing that this power series actually converges in a
sufficiently small neighborhood of the origin.

Firstly, we write the formal power series of the map S as

S =
∑︂
m⩾0

1
m!
S(m) ∈

∏︂
m⩾0

(Symm V∗ ⊗K(End(V))).

The fact that dS : U −→ K1(End(V)) implies that in reality S(m) ∈ K(m)(End(V)), for all
m ⩾ 0.

We set Γ (0) = 0 and define Γ (m+1) by the formula (4.18), for all m ⩾ 0, where the
polynomials R(m) ∈ K(m)(End(V)), P(m) ∈ Symm V∗ ⊗ End(V) are determined by the the
polynomials Γ (•) in the sense we previously established. That is, we define

R(m) :=2dΓ (m+1) +
∑︂

a+b=m

(︃
m

a

)︃[︂
Γ (a), Γ (b)

]︂
,

P(m) :=

⌊m2 ⌋∑︂
k=0

(−1)k

k!

∑︂
I∈Nk

0 ,
|I|=m

(︃
m

I

)︃
Γ (i1−1) ∗ · · · ∗ Γ (ik−1).

By means of these definitions, we set the formal power series Γ , dΓ , R, P by the previously
established formulas.

Notice as well that from the definition of P and R, it is straightforward to obtain the
identity

R(tv) = P(tv) · S(tv) = ρ(P(tv))(S(tv)), (4.24)

for all t, v, and ρ : GL(V) −→ GL(K(End(V))) the Lie group representation of the group
GL(V) on the space of formal curvature maps previously defined.

Additionally, we define the formal power series s, g, p, r ∈ R[[t]] by the formulas

s = s(t) =
∑︂
m⩾0

tm

m!

⃦⃦⃦
S(m)

⃦⃦⃦
op

,

g = g(t) =
∑︂
m⩾0

tm

m!

⃦⃦⃦
Γ (m)

⃦⃦⃦
op

,

p = p(t) =
∑︂
m⩾0

tm

m!

⃦⃦⃦
P(m)

⃦⃦⃦
op

,

r = r(t) =
∑︂
m⩾0

tm

m!

⃦⃦⃦
R(m)

⃦⃦⃦
op

,

where ∥·∥op denotes the operator norm on the spaces Sym• V∗ ⊗W, with
W ∈

{︁
K(End(V)), Sym2 V∗ ⊗ V , End(V)

}︁
. The previous lemma implies that s is in fact a

real analytic function, whose expansion as a power series converges in a sufficiently small
neighborhood of the origin.

The core of the proof is to prove that g is in fact a convergent power series near the origin.
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Firstly, since, by definition Γ (m+1) ∈
(︁
Symm+1 V∗ ⊗ Sym2 V∗)︁

0 ⊗ V , for all m ∈ N0, we
have the identity

Γ (m+1) = Φm dΓ (m+1) .

Thus, making use of the estimate for the norm of the linear isomorphismΦm, we obtain⃦⃦⃦
Γ (m+1)

⃦⃦⃦
op

⩽∥Φm∥op

⃦⃦⃦
dΓ (m+1)

⃦⃦⃦
op

⩽
2
√

2n2(n2 + 1)
m+ 1

⃦⃦⃦
dΓ (m+1)

⃦⃦⃦
op

⩽2
√

2n2(n2 + 1)
⃦⃦⃦

dΓ (m+1)
⃦⃦⃦

op
.

From the definition of the polynomials P(•), it is straightforward to see that

⃦⃦⃦
P(m)

⃦⃦⃦
op

⩽

⌊m2 ⌋∑︂
k=0

1
k!

∑︂
r1+···+rk=m

ri∈N0

(︃
m

r1, . . . , rk

)︃⃦⃦⃦
Γ (r1−1)

⃦⃦⃦
op
· · ·
⃦⃦⃦
Γ (rk−1)

⃦⃦⃦
op

.

Now, by using the partial ordering defined in Lemma 2.1.1, Proposition 4.2.7 implies

p(t) ⩽
⃦⃦⃦
P(0)

⃦⃦⃦
op
e
´ t

0 g(z)dz = e
´ t

0 g(z)dz ∈ R[[t]], (4.25)

since p(0) =
⃦⃦
P(0)

⃦⃦
op and P(0) = 1V .

It is not difficult to see that there exists a constant C(n) > 0, which only depends on
n = dimV such that, for all a,b ∈N0,⃦⃦⃦[︂

Γ (a), Γ (b)
]︂⃦⃦⃦

op
⩽ C(n)

⃦⃦⃦
Γ (a)

⃦⃦⃦
op

⃦⃦⃦
Γ (b)

⃦⃦⃦
op

. (4.26)

In the same vein, we also require to find a meaningful estimate for the operator norm of
the polynomials R(•) ∈ K(•)(End(V)) ⊆ Sym• V∗⊗K(End(V)). This is not a difficult task, but
the details are convoluted enough, that it is best to enclose them in a stand-alone lemma:

Lemma 4.3.2. Let v ∈ V and define the formal power series

Sv :=
∑︂
m⩾0

tm

m!
S(m)(v, . . . , v) =

∑︂
m⩾0

tm

m!
S(m)(vm) ∈ K(End(V))[[t]],

Pv :=
∑︂
m⩾0

tm

m!
P(m)(v, . . . , v) =

∑︂
m⩾0

tm

m!
P(m)(vm) ∈ End(V)[[t]],

Rv :=
∑︂
m⩾0

tm

m!
R(m)(v, . . . , v) =

∑︂
m⩾0

tm

m!
R(m)(vm) ∈ K(End(V))[[t]],

where the polynomials S(m) are the ones given at the beginning of the proof of Theorem 1, whereas the
polynomials P(m), R(m) are the ones defined shortly thereafter. It holds that

NK(End(V))(Rv) ⩽
√

2n
(︃
n

2

)︃(︁
NEnd(V)(Pv)

)︁4
NK(End(V)(Sv) ∈ R[[t]].
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Proof of the lemma. Since by definition K(End(V)) ⊆
⋀︁2 V∗⊗ End(V), we can assume, without

loss of generality that dimV ⩾ 2. Let x,y, z ∈ V unitary vectors such that ⟨x,y⟩ = 0.
From the definition of the action ρ : GL(V) −→ GL(K(End(V)) previously defined, we

obtain

(P(tv) · S(tv))(x,y)z =P(tv)
(︁
S(tv)

(︁
P(tv)−1x,P(tv)−1y

)︁
P(tv)−1z

)︁
=P(tv)(S(tv)(P(−tv)x,P(−tv)y)P(−tv)z).

Clearly, the formal power series Sv, Pv, Rv correspond to formal power series expansion
of the maps t ↦−→ S(tv), t ↦−→ P(tv), t ↦−→ R(tv).

In terms of such correspondence, the functional equation

R(tv)(x,y)z = (P(tv) · S(tv))(x,y)z

transforms itself into the equation

R(tv)(x,y)z =
∑︂
m⩾0

tm

m!
R(m)(vm)(x,y)z

=P(tv)S(tv)

∑︂
m⩾0

(−1)mtm

m!
P(m)(vm)x,

∑︂
m⩾0

(−1)mtm

m!
P(m)(vm)y

 ∑︂
m⩾0

(−1)mtm

m!
P(m)(vm)z

=P(tv)
∑︂
m⩾0

(−1)mtm

m!

∑︂
µ∈N3

0,
|µ|=m

(︃
m

µ

)︃
S(tv)

(︂
P(µ1)(vµ1)x,P(µ2)(vµ2)y

)︂
P(µ3)(vµ3)z

=P(tv)
∑︂
m⩾0

tm

m!

∑︂
µ∈N4

0,
|µ|=m

(︃
m

µ

)︃
(−1)µ2+µ3+µ4S(µ1)(vµ1)

(︂
P(µ2)(vµ2)x,P(µ3)(vµ3)y

)︂
P(µ4)(vµ4)z

=
∑︂
m⩾0

tm

m!

∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃
(−1)µ3+µ4+µ5P(µ1)(vµ1)

(︂
S(µ2)(vµ2)

(︂
P(µ3)(vµ3)x,P(µ4)(vµ4)y

)︂
P(µ5)(vµ5)z

)︂

in the set V[[t]], which therefore implies the identity

R(m)(vm)(x,y)z = R(m)(vm)((x∧ y)⊗ z) =∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃
(−1)µ3+µ4+µ5P(µ1)(vµ1)

(︂
S(µ2)(vµ2)

(︂
P(µ3)(vµ3)x,P(µ4)(vµ4)y

)︂
P(µ5)(vµ5)z

)︂
∈ V .
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Thus we get

⃦⃦⃦
R(m)(vm)(x,y)z

⃦⃦⃦
⩽

∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
P(µ1)(vµ1)

(︂
S(µ2)(vµ2)

(︂
P(µ3)(vµ3)x,P(µ4)(vµ4)y

)︂
P(µ5)(vµ5)z

)︂⃦⃦⃦
op. Norm on End(V)

⩽
∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
P(µ1)(vµ1)

⃦⃦⃦
op

⃦⃦⃦
S(µ2)(vµ2)

(︂
P(µ3)(vµ3)x,P(µ4)(vµ4)y

)︂
P(µ5)(vµ5)z

⃦⃦⃦
op. Norm on K(End(V))

⩽
∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
P(µ1)(vµ1)

⃦⃦⃦
op

⃦⃦⃦
S(µ2)(vµ2)

⃦⃦⃦
op

⃦⃦⃦
P(µ3)(vµ3)x∧ P(µ4)(vµ4)y⊗ P(µ5)(vµ5)z

⃦⃦⃦

⩽
∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
P(µ1)(vµ1)

⃦⃦⃦
op

⃦⃦⃦
S(µ2)(vµ2)

⃦⃦⃦
op

⃦⃦⃦
P(µ3)(vµ3)x

⃦⃦⃦⃦⃦⃦
P(µ4)(vµ4)y

⃦⃦⃦⃦⃦⃦
P(µ5)(vµ5)z

⃦⃦⃦

⩽
∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
S(µ1)(vµ1)

⃦⃦⃦
op

5∏︂
i=2

⃦⃦⃦
P(µi)(vµi)

⃦⃦⃦
op
∥x∥∥y∥∥z∥

∥x∥=∥y∥=∥z∥=1
=

∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
S(µ1)(vµ1)

⃦⃦⃦
op

5∏︂
i=2

⃦⃦⃦
P(µi)(vµi)

⃦⃦⃦
op

.

Now, we recall that with respect to the inner product ⟨·, ·⟩⋀︁2 earlier defined, the elements
of the set {︂√

2ei ∧ ej| 1 ⩽ i < j ⩽ n
}︂

form an orthonormal basis of the vector space
⋀︁2 V .

Thus for a given ξ ∈
⋀︁2 V ⊗ V we have the decomposition

ξ = 2
∑︂

1⩽i<j⩽n,
1⩽k⩽n

⟨ξ, ei ∧ ej ⊗ ek⟩ei ∧ ej ⊗ ek,

which in turn implies

R(m)(vm)ξ = 2
∑︂

1⩽i<j⩽n,
1⩽k⩽n

⟨ξ, ei ∧ ej ⊗ ek⟩R(m)(vm)(ei, ej)ek.
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By making use of the previous estimate, with the triple (ei, ej, ek) taking the place of the
triple (x,y, z) above, we obtain⃦⃦⃦

R(m)(vm)ξ
⃦⃦⃦
⩽2

∑︂
1⩽i<j⩽n,

1⩽k⩽n

∥ξ∥
⃦⃦
ei ∧ ej ⊗ ek

⃦⃦⃦⃦⃦
R(m)(vm)(ei, ej)ek

⃦⃦⃦

=
√

2
∑︂

1⩽i<j⩽n,
1⩽k⩽n

∥ξ∥
⃦⃦⃦
R(m)(vm)(ei, ej)ek

⃦⃦⃦

⩽
√

2
∑︂

1⩽i<j⩽n,
1⩽k⩽n

 ∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
S(µ1)(vµ1)

⃦⃦⃦
op

5∏︂
ℓ=2

⃦⃦⃦
P(µℓ)(vµℓ)

⃦⃦⃦
op

∥ξ∥

=
√

2n
(︃
n

2

)︃ ∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
S(µ1)(vµ1)

⃦⃦⃦
op

5∏︂
ℓ=2

⃦⃦⃦
P(µℓ)(vµℓ)

⃦⃦⃦
op

∥ξ∥
We thus conclude that, for allm ∈N0,

⃦⃦⃦
R(m)(vm)

⃦⃦⃦
op

⩽
√

2n
(︃
n

2

)︃ ∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
S(µ1)(vµ1)

⃦⃦⃦
op

5∏︂
i=2

⃦⃦⃦
P(µi)(vµi)

⃦⃦⃦
op

. (4.27)

Therefore, at the level of formal power series, we obtain that

∑︂
m⩾0

tm

m!

⃦⃦⃦
R(m)(vm)

⃦⃦⃦
op

⩽
√

2n
(︃
n

2

)︃ ∑︂
m⩾0

tm

m!

∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
S(µ1)(vµ1)

⃦⃦⃦
op

5∏︂
i=2

⃦⃦⃦
P(µi)(vµi)

⃦⃦⃦
op

,

which by definition is exactly the desired inequality of formal power series in R[[t]], that is,

NK(End(V))(Rv) ⩽
√

2n
(︃
n

2

)︃(︁
NEnd(V)(Pv)

)︁4
NK(End(V))(Sv).

▽

Notice that the previous lemma is precisely what we need to find the desired estimate
for the norms of the polynomials R(m). Indeed, equation (4.27) together with the fact that
∥vm∥Sym = ∥v∥m imply

⃦⃦⃦
R(m)

⃦⃦⃦
op

⩽
√

2n
(︃
n

2

)︃ ∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
S(µ1)

⃦⃦⃦
op

5∏︂
i=2

⃦⃦⃦
P(µi)

⃦⃦⃦
op

. (4.28)

This series of estimates was in fact the missing part in our proof.
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Putting all of this together we obtain in sum⃦⃦⃦
Γ (m+1)

⃦⃦⃦
op

⩽2
√

2n2(n2 + 1)
⃦⃦

dΓm+1⃦⃦
op

Def. of R(m)

⩽
√

2n2(n2 + 1)

(︄⃦⃦⃦
R(m)

⃦⃦⃦
op

+
∑︂

a+b=m

(︃
m

a

)︃⃦⃦⃦[︂
Γ (a), Γ (b)

]︂⃦⃦⃦
op

)︄

⩽
√

2n2(n2 + 1)

(︄⃦⃦⃦
R(m)

⃦⃦⃦
op

+C(n)
∑︂

a+b=m

(︃
m

a

)︃⃦⃦⃦
Γ (a)

⃦⃦⃦
op

⃦⃦⃦
Γ (b)

⃦⃦⃦
op

)︄

⩽
√

2n2(n2 + 1)

(︄
√

2n
(︃
n

2

)︃ ∑︂
µ∈N5

0,
|µ|=m

(︃
m

µ

)︃⃦⃦⃦
S(µ1)

⃦⃦⃦
op

5∏︂
i=2

⃦⃦⃦
P(µi)

⃦⃦⃦
op

+ C(n)
∑︂

a+b=m

(︃
m

a

)︃⃦⃦⃦
Γ (a)

⃦⃦⃦
op

⃦⃦⃦
Γ (b)

⃦⃦⃦
op

)︄
Partial ordering on R[[t]]

=
√

2n2(n2 + 1)
[︃
tm

m!

]︃(︃√
2n
(︃
n

2

)︃
p(t)4s(t) +C(n)g(t)2

)︃
(4.25)

⩽
√

2n2(n2 + 1)
[︃
tm

m!

]︃(︃√
2n
(︃
n

2

)︃
e4
´ t

0 g(z)dzs(t) +C(n)g(t)2
)︃

,

where
[︁
tm

m!

]︁∑︁
ℓ⩾0

aℓ
ℓ! t
ℓ := am, for

∑︁
ℓ⩾0

aℓ
ℓ! t
ℓ ∈ R[[t]].

Thus, by definition of the partial ordering on R[[t]], we obtain

g ′(t) ⩽
√

2n2(n2 + 1)
(︃√

2n
(︃
n

2

)︃
e4
´ t

0 g(z)dzs(t) +C(n)g(t)2
)︃

.

We define h(t) :=
´ t

0 g(z)dz and thus the above inequality becomes

h ′′(t) ⩽
√

2n2(n2 + 1)
(︃√

2n
(︃
n

2

)︃
e4h(t)s(t) +C(n)h ′(t)2

)︃
.

Now, since the function Fs : R3 −→ R defined by

(x,y, z) ↦−→
√

2n2(n2 + 1)
(︃√

2n
(︃
n

2

)︃
e4ys(x) +C(n)z2

)︃
is a real analytic map for (x,y, z) ∈ U×R2 ⊆ R3, with U an open neighborhood of the origin
in which the Taylor series at x = 0 of the map s converges to it, Proposition 2.1.7 implies that
the initial value problem 

u ′′(t) = Fs(t,u(t),u ′(t))

u(0) = 0

u ′(0) = 0

has a unique real analytic solution defined in an open neighborhood of the origin, and thus,
since the coefficients of the Taylor series at (x,y, z) = (0, 0, 0) of the map Fs are non-negative,
we conclude, by Proposition 2.1.8, that the map h, and consequently h ′ = g, is a real analytic
map defined in a sufficiently small neighborhood of the origin.
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Therefore, Lemma 4.3.1 implies that the map Γ : V −→ Sym2 V∗ ⊗ V , whose formal Taylor
series expansion at 0 ∈ V is given by

Γ(v) ≈
∑︂
m⩾0

1
m!
Γ (m)(v, . . . , v)

is in fact a real analytic map in a sufficiently small neighborhood of 0 ∈ V . That is, there exists
an open neighborhood 0 ∈ U ⊆ V such that

Γ(v) =
∑︂
m⩾0

1
m!
Γ (m)(v, . . . , v)

for all v ∈ U.
The desired covariant derivative is thus the one defined by the real analytic Christoffel

symbols we just found. That the desired relations between the parallel transport map and
its associated curvature tensor follow is just a consequence of the fact that the polynomials
R(•) ∈ K(•)(End(V)), and P(•) ∈ Sym• V∗ ⊗ End(V), by the way they are defined, in actuality
denote the Taylor polynomials of the power series expansion of the curvature tensor R and
the parallel transport map Pγv . The torsion-freeness of the covariant derivative follows from
the fact that the Christoffel symbols generated by the function Γ are symmetric.
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5
Applications

This chapter is devoted to the study of some consequences of Theorem 1.

5.1 The holonomy of torsion-free covariant derivatives

The goal of this section is to establish necessary and sufficient conditions for the existence of
holonomy algebras of torsion-free covariant derivatives. The main result of the section is the
following

Theorem 2. Let V be a finite-dimensional real vector space. Let S : U −→ K(g) be a real analytic map
defined in an open neighborhood U of the origin in V which satisfies that dS : U −→ K1(g) and let∇
be the covariant derivative given by Theorem 1. It holds that

hol(∇) = ⟨S(v)(x,y)| v ∈ U; x,y ∈ V⟩.

Proof. Let us denote the right-hand side as h. The Theorem of Ambrose-Singer and Proposition
3.7.6 together with Theorem 1 immediately imply that h ⊆ hol(∇).

For the reverse implication, we make use of the theory of Lie derivatives. Indeed, by the
natural definition of Lie derivatives of vector-valued differential forms, we obtain that for σ,
the exponential framing at 0 induced by the covariant derivative∇ and v ∈W := dom(σ) ⊆ U
(see [20, Chapter 12, proposition 12.36]),

d
dt

(ΦE−t)∗Γ(Φ
E
t (v)) = (ΦE−t)∗

(︂
(LEΓ)ΦEt (v)

)︂
,

where E denotes the Euler vector field on V , that is, the vector field whose flow is given
by ΦE : R× V −→ V , with ΦE(t, v) = etv, and Γ = σ∗ω∇, with ω∇ the connection form
associated to the covariant derivative∇.
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Now, ΦE0 = 1V , and according to the proof of Theorem 1, Γ(0) = 0. Thus we obtain by
integrating the previous equation,

Γ(v) =

ˆ 0

−∞(ΦE−t)∗(LEΓ)etvdt. (5.1)

Now, the fact that, by definition, im (S) ⊆ K(h) implies that the associated curvature form
F∇ actually takes values in the Lie subalgebra h, that is,
F∇ ∈ Ω2(σ(W), h). From (5.1) we thus obtain ω∇ ∈ Ω1(σ(W), h). We extend this form to a
1-form on the previously defined H-subbundle

FH =
⨆︂

u∈σ(W)

{σ(u)h| h ∈ H},

with H the connected Lie subgroup such that Lie(H) = h. Namely by setting

ω∇
uh = Ad(h−1) ◦ω∇

u .

This implies that the connection form ω∇, on TFH, takes values in h, from which ii) in
Proposition 3.6.7 implies that the connection ω∇ is reducible to a connection form on the
subbundle FH, which we denote byωH. In this context, the corollary 3.7.1 reads:

i) Pω
∇
(u) ⊆ FH for all u ∈ FH.

ii) ωH|TPω∇
(u)

= ω∇|
TPω

∇
(u)

which in turn implies thatωH is reducible to the holonomy bundle of the connection formω∇,
and therefore it follows that the holonomy algebra of the connection formω∇, and whence
hol(∇), is contained in h.

An immediate consequence of the previous result is thus the following

Corollary 5.1.1. In the situation of Theorem 2, let h ⊆ g be a Lie subalgebra. It holds that hol(∇) ⊆ h

if, and only if, the real analytic map S takes values in the space K(h).

Definition 5.1.1. Let h ⊆ g = End(V) be a Lie subalgebra. The algebraic curvature tensor R ∈ K(h)
is said to have h-full curvature if

h = ⟨R(x,y)| x,y ∈ V⟩.

In case a Berger algebra admits elements of full curvature, Theorem 2 guarantees:

Corollary 5.1.2. Let h ⊆ End(V) be a Berger algebra that admits elements of full curvature. Then it
occurs as the holonomy algebra of a torsion-free covariant derivative.

Proof. Let R ∈ K(h) be an element of full curvature. Define the real analytic map
S : V −→ K(End(V)) as the constant map S ≡ R. Since dS ≡ 0 ∈ K1(End(V)), Theorem 2
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implies

hol(∇) =⟨S(v)(x,y)| v, x,y ∈ V⟩

=⟨R(x,y)| x,y ∈ V⟩

=h.

The existence of elements of full curvature is a rather mild condition. All of the known
Berger algebras admit elements of full curvature, in particular, the Lie algebras appearing in
Berger’s list in Proposition 3.8.4 (see [15]). Thus, the previous corollary shows, in a unified way,
that all of the elements of Berger’s list actually occur as holonomy of torsion-free covariant
derivatives. Not only that, it does so, without the need of using sophisticated and previously
used methods, like those from Cartan-Kähler theory Bryant used to show the same local
existence results we just obtained.

Another relevant consequence of these previous results is a proof of the fact that Berger’s
criteria really are the only obstructions for a Lie algebra to occur as the holonomy algebra of a
torsion-free covariant derivative.

A further remarkable feat of the results in this section is the fact that even though they
are completely simple to grasp and relatively simple to prove, they also offer a pleasant
enough sense of generality inasmuch as they hold irrespective of the (non-)reducibility of the
holonomy representation.

5.2 Explicit examples

For the final part of the work we explore some further consequences of Theorem 1, but now
in the context of Berger’s classification of Riemannian holonomies. In particular, we will
establish some further facts about the geometry of manifolds with specific holonomy. In the
spirit of Berger’s list we will go through the classical groups in the list, namely, items i)-iv).

Due to the fact that the map

⋀︂2
V −→so(V)

x∧ y ↦−→x∧ y : z ↦−→ ⟨x, z⟩y− ⟨y, z⟩x

is a linear isomorphism and, by means of the scalar product, we have an isomorphism between
V and V∗, we thus obtain, by writing so(V) =

⋀︁2 V∗,

K(so(V)) = ker
{︃⋀︂2

V∗ ⊗
⋀︂2

V∗ −→
⋀︂3

V∗ ⊗ V∗
}︃

,

where the map
⋀︁2 V∗ ⊗

⋀︁2 V∗ −→
⋀︁3 V∗ ⊗ V∗ denotes the natural anti-symmetrization map

A :
⋀︂2

V∗ ⊗
⋀︂2

V∗ −→
⋀︂3

V∗ ⊗ V∗

η ↦−→A(η) : x∧ y∧ z⊗ u ↦−→
∑︂

cyc (x,y,z)

η(x∧ y⊗ z∧ u).
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In a similar fashion, we have

K1(so(V)) = ker
{︃
B : V∗ ⊗K(so(V)) −→

⋀︂3
V∗ ⊗

⋀︂2
V∗

}︃
,

where

B : V∗ ⊗K(so(V)) −→
⋀︂3

V∗ ⊗
⋀︂2

V∗

ζ ↦−→B(ζ) : x∧ y∧ z⊗ u∧w ↦−→
∑︂

cyc (x,y,z)

ζ(x⊗ y∧ z⊗ u∧w).

For the spaces K(m)(so(V)) we obtain the following characterization:

Proposition 5.2.1. Form ∈N0 define the maps

ψm : Symm+2 V∗ ⊗ Sym2 V∗ −→ Symm V∗ ⊗ Sym2
(︃⋀︂2

V∗
)︃

η ↦−→ψm(η) : p⊗ x∧ y⊗ z∧w ↦−→ η(pxz⊗ yw) − η(pxw⊗ yz)

+ η(pyw⊗ xz) − η(pyz⊗ xw)

µm : Symm+2 V∗ ⊗ Sym2 V∗ −→ Symm+3 V∗ ⊗ V∗

η ↦−→µm(η) : v1 · · · vm+3 ⊗ x ↦−→
m+3∑︂
i=1

η(v1 · · ·ˆ︁vi · · · vm+3 ⊗ vix).

It then holds that

K(m)(so(V)) =imψm

∼=kerµm.

Furthermore, the dimension of this vector subspace is given by the formula

dim
(︂
K(m)(so(V))

)︂
=
m+ 1
m+ 3

(︃
n+m+ 1
m+ 2

)︃(︃
n

2

)︃
.

Proof. Before we begin with our proof we show that, for allm ∈N0,

K(m)(so(V)) ⊆ Symm V∗ ⊗ Sym2
(︃⋀︂2

V∗
)︃

.

Indeed, let us recall that the subspace K(m)(so(V)) is defined as

K(m)(so(V)) =ker
{︃
Am : Symm V∗ ⊗

⋀︂2
V∗ ⊗

⋀︂2
V∗ −→ Symm V∗ ⊗

⋀︂3
V∗ ⊗ V∗

}︃
∩ ker

{︃
Bm : Symm V∗ ⊗

⋀︂2
V∗ ⊗

⋀︂2
V∗ −→ Symm−1 V∗ ⊗

⋀︂3
V∗ ⊗

⋀︂2
V∗

}︃
,

where the maps Am,Bm denote the obvious generalizations of the maps A,B in the definition
of the spaces K(so(V)),K1(so(V)). We say that R ∈ ker(Am) satisfies the first Bianchi identity
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(or 1BI), whereas for R ∈ ker(Bm) we say that it satisfies the second Bianchi identity (or 2BI).
For R ∈ K(m)(so(V)), it holds in particular that R satisfies the first Bianchi identity, that is,
Am ◦ R ≡ 0. Explicitly, for any p⊗ x∧ y∧ z⊗ u ∈ Symm V ⊗

⋀︁3 V ⊗ V ,∑︂
cyc (x,y,z)

R(p⊗ x∧ y⊗ z∧ u) = 0.

Thus

0 =
∑︂

cyc (x,y,z)

R(p⊗ x∧ y⊗ z∧ u) +
∑︂

cyc (z,x,u)

R(p⊗ z∧ x⊗ u∧ y)

+
∑︂

cyc (u,y,x)

R(p⊗ u∧ y⊗ x∧ z) +
∑︂

cyc (z,u,y)

R(p⊗ z∧ u⊗ y∧ x)

=2R(p⊗ x∧ y⊗ z∧ u) − 2R(p⊗ z∧ u⊗ x∧ y),

which immediately implies the additional symmetry

R(p⊗ x∧ y⊗ z∧ u) = R(p⊗ z∧ u⊗ x∧ y),

and in turn the inclusion K(m)(so(V)) ⊆ Symm V∗ ⊗ Sym2(
⋀︁2 V∗).

Now to the actual proof. We begin by showing the first of the characterizations. This proof
is essentially a “coordinate-free” analogue of the proof of Proposition 2.2.1. We directly show
both of the inclusions im (ψm) ⊆ K(m)(so(V)), K(m)(so(V)) ⊆ im (ψm).

Let η ∈ Symm+2 V∗ ⊗ Sym2 V∗. Thus, for given p ∈ Symm V , x,y, z,u ∈ V ,

Amψm(η)(p⊗ x∧ y∧ z⊗ u) =
∑︂

cyc (x,y,z)

ψm(η)(p⊗ x∧ y⊗ z∧ u)

=
∑︂

cyc (x,y,z)

(︁
η(pxz⊗ yu) − η(pxu⊗ yz)

+ η(pyu⊗ xz) − η(pyz⊗ xu)
)︁

=
∑︂

cyc (x,y,z)

(︁
− η(pxy⊗ zu) + η(pyx⊗ zu)

− η(pxu⊗ yz) + η(pxu⊗ zy)
)︁

=0,
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Similarly, for q⊗ x∧ y∧ z⊗ u∧w ∈ Symm−1 V ⊗
⋀︁3 V ⊗

⋀︁2 V ,

Bmψm(η)(q⊗ x∧ y∧ z⊗ u∧w) =
∑︂

cyc (x,y,z)

ψm(η)(qx⊗ y∧ z⊗ u∧w)

=
∑︂

cyc (x,y,z)

(︁
η(qxyu⊗ zw) − η(qxyw⊗ zu)

+ η(qxzw⊗ yu) − η(qxzu⊗ yw)
)︁

=
∑︂

cyc (x,y,z)

(︁
η(qxyu⊗ zw) − η(qyxu⊗ zw)

− η(qxyw⊗ zu) + η(qyxw⊗ zu)
)︁

=0,

which hence implies
im (ψm) ⊆ K(m)(so(V)).

For the second inclusion, we make use of the Koszul sequences we introduced in the proof
of Proposition 2.2.1.

Let R ∈ K(m)(so(V)). For u,w ∈ V , define the 2-form αu,w ∈ Symm V∗⊗
⋀︁2 V∗ defined as

αu,w(p⊗ x∧ y) := R(p⊗ x∧ y⊗ u∧w).

For q⊗ x∧ y∧ z ∈ Symm−1 V ⊗
⋀︁3 V holds

∂αu,w(q⊗ x∧ y∧ z) =
∑︂

cyc (x,y,z)

αu,w(qx⊗ y∧ z)

=
∑︂

cyc (x,y,z)

R(qx⊗ y∧ z⊗ u∧w)

=Bm(R)(q⊗ x∧ y∧ z⊗ u∧w)

=0.

That is, αu,w ∈ ker
{︂
∂ : Symm V∗ ⊗

⋀︁2 V∗ −→ Symm−1 V∗ ⊗
⋀︁3 V∗

}︂
, which implies the

existence of some βu,w ∈ Symm+1 V∗ ⊗ V∗ such that

∂βu,w = αu,w.

Equivalently,
R(p⊗ x∧ y⊗ u∧w) = βu,w(px⊗ y) −βu,w(py⊗ x).

Define now the 2-form γw ∈ Symm+1 V∗ ⊗
⋀︁2 V∗ by the formula

γw(r⊗ x∧ y) := βx,w(r⊗ y) −βy,w(r⊗ x).
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It holds that

∂γw(p⊗ x∧ y∧ z) =
∑︂

cyc (x,y,z)

γw(px⊗ y∧ z)

=
∑︂

cyc (x,y,z)

(︁
βy,w(px⊗ z) −βz,w(px⊗ y)

)︁
=

∑︂
cyc (x,y,z)

(︁
βx,w(pz⊗ y) −βx,w(py⊗ z)

)︁
=

∑︂
cyc (x,y,z)

R(p⊗ z∧ y⊗ x∧w)

=−
∑︂

cyc (x,y,z)

R(p⊗ x∧ y⊗ z∧w)

=0.

That is, γw ∈ ker
{︂
∂ : Symm+1 V∗ ⊗

⋀︁2 V∗ −→ Symm V∗ ⊗
⋀︁3 V∗

}︂
, which implies the

existence of some ηw ∈ Symm+2 V∗ ⊗ V∗ such that

∂ηw = γw.

Equivalently,
γw(r⊗ x∧ y) = ηw(rx⊗ y) − ηw(ry⊗ x).

Define further the forms η ∈ Symm+2 V∗ ⊗ V∗ ⊗ V∗, η+ ∈ Symm+2 V∗ ⊗ Sym2 V∗,
η− ∈ Symm+2 V∗ ⊗

⋀︁2 V∗ by the formulas

η(s⊗ x⊗w) :=ηw(s⊗ x),

η+(s⊗ xw) :=η(s⊗ x⊗w) + η(s⊗w⊗ x),

η−(s⊗ x∧w) :=η(s⊗ x⊗w) − η(s⊗w⊗ x),

from which we immediately obtain

η =
1
2
(η+ + η−).
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Combining all of the above relations we obtain

ψm(η+)(p⊗ x∧ y⊗ u∧w) =η+(pxu⊗ yw) − η+(pxw⊗ yu)

+ η+(pyw⊗ xu) − η+(pyu⊗ xw)
η−|

Symm+2 V∗⊗Sym2 V∗≡0
= 2(η(pxu⊗ yw) − η(pxw⊗ yu)

+ η(pyw⊗ xu) − η(pyu⊗ xw))
∂ηw=γw

= 2
(︁
βx,w(pu⊗ y) −βy,w(pu⊗ x)

+βu,y(px⊗w) −βw,y(px⊗ u)

+βy,u(pw⊗ x) −βx,u(pw⊗ y)

+βw,x(py⊗ u) −βu,x(py⊗w)
)︁

βu,w=−βw,u
= 2

(︁
βx,w(pu⊗ y) −βx,w(py⊗ u)

+βy,w(px⊗ u) −βy,w(pu⊗ x)

+βy,u(pw⊗ x) −βy,u(px⊗w)

+βx,u(py⊗w) −βx,u(pw⊗ y)
)︁

∂βu,w=αu,w
= 4(R(p⊗ u∧ y⊗ x∧w) + R(p⊗ y∧w⊗ x∧ u))

1BI
=4R(p⊗ x∧ y⊗ u⊗w),

which yields K(m)(so(V)) ⊆ im (ψm), and therefore

K(m)(so(V)) = im (ψm).

In order to show the second characterization, define the map

ϕm : K(m)(so(V)) −→ker(µm)

R ↦−→ϕm(R) : v1 · · · vm+2 ⊗ xy ↦−→
∑︂
i,j

R(v1 · · ·ˆ︁vi · · ·ˆ︁vj · · · vm+2 ⊗ vi ∧ x⊗ vj ∧ y)

= 2
∑︂
i<j

R(v1 · · ·ˆ︁vi · · ·ˆ︁vj · · · vm+2 ⊗ vi ∧ x⊗ vj ∧ y).

We claim that ϕm is an isomorphism by explicitly finding its inverse. Indeed, a direct
computation involving the Bianchi identities shows that there exists a constant C(m),
depending only on the degreem such that

ψm ◦ϕm = C(m)1K(m)(so(V)).
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The fact that the map µm is clearly surjective immediately implies the claim regarding the
dimension of K(m)(so(V)):

dim
(︂
K(m)(so(V))

)︂
=dim(ker(µm))

=dim
(︁
Symm+2 V∗ ⊗ Sym2 V∗)︁− dim

(︁
Symm+3 V∗ ⊗ V∗)︁

=

(︃
n+m+ 1
m+ 2

)︃(︃
n+ 1

2

)︃
−n

(︃
n+m+ 2
m+ 3

)︃
=
m+ 1
m+ 3

(︃
n

2

)︃(︃
n+m+ 1
m+ 2

)︃
.

Notice that in light of this result, combined with Theorems 1 and 2, we have proved the
following

Proposition 5.2.2. In the situation of Theorem 1, assume the real analytic map S takes values in
K(so(V)), and let ∇ be the torsion-free covariant derivative given by it. Then there exists a unique
ηS : U −→ Sym2 V∗ ⊗ Sym2 V∗ such that

ψ0 ◦ ηS = Rm∇,

where Rm∇ : U −→ Sym2(
⋀︁2 V∗) denotes the Riemann curvature of∇.

As a final example, let us now turn our attention to the Lie algebra u(n).
Let V = C2n = span {e1, . . . , e2n} and define the non-degenerate, skew-symmetric bilinear

form

Q : V × V −→C

(x,y) ↦−→x⊤Jy,

where

J =

(︄
0 1n

−1n 0

)︄
.

We immediately notice that this bilinear form preserves the decomposition

V = spanC {e1, . . . , en}⊕ spanC {en+1, . . . , e2n}

=: spanC {e1, . . . , en}⊕ spanC {e1, . . . , en}

=:V ′ ⊕ V ′′

The non-degeneracy of the bilinear form Q allows us to naturally identify V with V∗.
For p,q ∈N0, we define the set of polynomials

Sym(p,q) V := Symp V ′ ⊗ Symq V ′′.

125



5. Applications

Let us consider the group

GL(n, C) =∧ G :=

{︄(︄
X 0
0 (X−1)⊤

)︄⃓⃓⃓⃓
⃓ X ∈ GL(n, C)

}︄
⊆ Sp(2n, C).

Thus, by complexifying the exact sequence defining the space K(u(n)) together with the
fact that u(n)C

∼= gl(n, C), we obtain

K(u(n))C
∼= K(g),

where g denotes the Lie algebra of G, which is given by

g =

{︄(︄
X 0
0 −X⊤

)︄⃓⃓⃓⃓
⃓ X ∈ gl(n, C)

}︄
.

Proposition 5.2.3. With this notation, we have the isomorphisms

i) K(g) ∼= Sym(2,2) V∗,

ii) K(m)(g) ∼= Sym(m+2,2) V∗ ⊕ Sym(2,m+2) V∗, form ∈N.

Proof. Before proving the claims, we make a couple of relevant remarks about the nature of
the elements of K(g). By definition of the Lie algebra g, we obtain that, for x,y ∈ V , v ∈ V ′,
w ∈ V ′′,

R(x,y)v ∈V ′

R(x,y)w ∈V ′′

for every R ∈ K(g). In addition, because of the first Bianchi identity, we obtain maps

R : V ′ −→ Sym2(V ′′)∗

v ↦−→R(v, ·)·,

R : V ′′ −→ Sym2(V ′)∗

w ↦−→R(w, ·) · .

Indeed, for v ∈ V ′, w1,w2 ∈ V ′′ we have,

V ′ ∋ R(w1,w2)v = R(v,w2)w1 + R(w1, v)w2 ∈ V ′′,

which implies
R(w1,w2)v = 0

and in turn
R(v,w1)w2 = R(v,w2)w1.
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In fact, since g ⊆ sp(2n, C) we obtain for all v ∈ V ′, wi ∈ V ′′,

0 =Q(R(w1,w2)w3, v) +Q(w3,R(w1,w2)v)

=Q(R(w1,w2)w3, v),

and thus, due to the non-degeneracy of Qwe obtain

R(w1,w2)w3 = 0,

therefore
R(V ′′,V ′′) ≡ 0.

A similar computation shows that for vi ∈ V ′,w ∈ V ′′,

R(w, v1)v2 = R(w, v2)v1,

whence
R(V ′,V ′) ≡ 0.

i) Define the map

ξ : K(g) −→ Sym(2,2) V∗

R ↦−→ξ(R),

where for vi ∈ V ′, wi ∈ V ′′,

ξ(R)(v1, v2,w1,w2) := Q(R(v1,w1)v2,w2).

That ξ(R) ∈ Sym(2,2) V∗ follows from the symmetry properties we showed earlier:

ξ(R)(v2, v1,w1,w2) =Q(R(v2,w1)v1,w2)

=Q(R(v1,w1)v2 + R(v2, v1)w1,w2)

=Q(R(v1,w1)v2,w2)

=ξ(R)(v1, v2,w1,w2),

with a similar computation for the symmetry in the last two components.
That ξ is an injective map immediately follows from our previous considerations. Indeed,

for R ∈ ker(ξ), vi ∈ V ′, wi ∈ V ′′ we have

Q(R(v1,w1)v2,w2) = 0 = −Q(v2,R(v1,w1)w2),

from which we obtain

R(v1,w1)v2 =0

R(v1,w1)w2 =0,
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and so
R(V ′,V ′′) ≡ 0,

which, combined with the fact that R(V ′,V ′) ≡ 0 ≡ R(V ′′,V ′′) implies R ≡ 0.
The fact thatQ is non-degenerate together with all of the invariance properties an element

of K(g) must fulfill (this essentially means reversing all of the computations previously made)
implies that for any τ ∈ Sym(2,2) V∗, there exists a unique Rτ ∈ K(g) such that

τ(v1v2 ⊗w1w2) = Q(Rτ(v1,w1)v2,w2),

which readily implies the surjectivity of the map ξ. For item ii), a direct computation shows
that the following generalization of the map ξ from item i),

ξm : K(m)(g) ⊆ Symm V∗ ⊗K(g) −→ Sym(m+2,2) V∗ ⊕ Sym(2,m+2) V∗

R −→ξm(R) : v1 · · · vm+2 ⊗w1w2 + x1x2 ⊗ y1 · · ·ym+2

↦−→ 1
2

∑︂
i,j

Q(R(v1 · · ·ˆ︁vi · · ·ˆ︁vj · · · vm+2 ⊗ vi ∧w1)vj,w2)

+
1
2

∑︂
i,j

Q(R(y1 · · · ˆ︁yi · · · ˆ︁yj · · ·ym+2 ⊗ x1 ∧ yi)x2,yj)

is the desired isomorphism.
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