Rational design of multi-component functionalized supramolecular assemblies

This dissertation is submitted for the degree of "Doctor rerum naturalium" in chemistry

TU Dortmund

Fakultät für Chemie und Chemische Biologie

Clever Lab

Qianqian Yan

From Hebei, China
Dortmund, September 2022

This work has been prepared from October 2018 to September 2022 at the Faculty of Chemistry and Chemical Biology at TU Dortmund University under supervision of Prof. Dr. Guido H. Clever.

Principal advisor:	Prof. Dr. Guido H. Clever
	Faculty of Chemistry and Chemical Biology,
	TU Dortmund University
Coexaminer:	Prof. Dr. Sebastian Henke
	Faculty of Chemistry and Chemical Biology,
	TU Dortmund University
Submission Date:	19.09 .2022

Eidesstattliche Versicherung (Affidavit)

Name, Vorname
(Sumame, first name)

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prūfungsleistungen betreffende Regelung einer Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit einer Geldbuße von bis zu $50.000,00 €$ geahndet werden. Zuständige Verwaltungsbehörde für die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden Täuschungsversuches kann der Prufling zudem exmatrikuliert werden, § 63 Abs. 5 Hochschulgesetz NRW.

Die Abgabe einer falschen Versicherung an Eides statt ist strafbar.

Wer vorsätzlich eine falsche Versicherung an Eides statt abgibt, kann mit einer Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft werden, § 156 StGB. Die fahrlässige Abgabe einer falschen Versicherung an Eides statt kann mit einer Freiheitsstrafe bis zu einem Jahr oder Geldstrafe bestraft werden, § 161 StGB.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

Matrikel-Nr.
(Enrolment number)

Official notification:
Any person who intentionally breaches any regulation of university examination regulations relating to deception in examination performance is acting improperly. This offence can be punished with a fine of up to EUR $50,000.00$. The competent administrative authority for the pursuit and prosecution of offences of this type is the chancellor of the TU Dortmund University. In the case of multiple or other serious attempts at deception, the candidate can also be unenrolled, Section 63, paragraph 5 of the Universities Act of North Rhine-Westphalia.

The submission of a false affidavit is punishable.

Any person who intentionally submits a false affidavit can be punished with a prison sentence of up to three years or a fine, Section 156 of the Criminal Code. The negligent submission of a false affidavit can be punished with a prison sentence of up to one year or a fine. Section 161 of the Criminal Code.

I have taken note of the above official notification.

Ort, Datum

(Place, date)

Unterschrift

(SIgnature)

Titel der Dissertation:
(Title of the thesls):

Ich versichere hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Titel selbstständig und ohne unzulässige fremde Hilfe angefertigt habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich gemacht.
Die Arbeit hat in gegenwärtiger oder in einer anderen Fassung weder der TU Dortmund noch einer anderen Hochschule im Zusammenhang mit einer staatlichen oder akademischen Prüfung vorgelegen.

I hereby swear that I have completed the present dissertation independently and without inadmis sible external support. I have not used any sources or tools other than those indicated and have identified Iiteral and analogous quotations.

The thesis in its current version or another version has not been presented to the TU Dortmund University or another university in connection with a state or academic examination.*
'Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung") for the PhD thesis is the official and legally binding version.

List of publication and conference contributions

Publications

1. "Self-Assembly of a Tetraphenylethylene-Based Capsule Showing Both Aggregationand Encapsulation-Induced Emission Properties"
T. Zhang, G.-L. Zhang, Q.-Q. Yan, L. -P. Zhou, L. -X. Cai, X. -Q. Guo, Q. -F. Sun, Inorg. Chem. 2018, 57, 3596.
2. "Coordination-Enhanced Luminescence on Tetraphenylethylene-Based Supramolecular Assemblies"
Q. -Q. Yan, S. -J. Hu, G. -L. Zhang, T.-Zhang, L. -P. Zhou, Q. -F. Sun, Molecules 2018, 23, 363.
3. "Metallopolymers cross-linked with self-assembled $\mathrm{Ln}_{4} \mathrm{~L}_{4}$ cages"
Q. -Q. Yan, L. -P. Zhou, H.-Y. Zhou, Z. Wang, L. -X. Cai, X. -Q. Guo, X. -Q. Sun, Q. -F. Sun, Dalton Trans. 2019, 48, 7080.
4. "Dinuclear helicate or mononuclear pincer lanthanide complexes from one ligand: stereocontrolled assembly and catalysis"
R. Chen, Q. -Q. Yan, S. -J. Hu, X. -Q. Guo, L. -X. Cai, D. -N. Yan, L. -P. Zhou, Q. -F. Sun, Org. Chem. Front. 2021, 8, 2576.
5. "Endohedrally Functionalized Heteroleptic Coordination Cages for Phosphate Ester Binding"
A. Platzek, S. Juber, C. Yurtseven, S. Hasegawa, L. Schneider, C. Drechsler, K. E. Ebbert, R. Rudolf. Q.-Q. Yan, J. J. Holstein, L. V. Schäfer, G. H. Clever, Angew. Chem. In. Ed. 2022. 61, e202209305.
6. "AIE-active metallamacrocycles with reversal of circularly polarized luminescence"
Q. -Q. Yan, J. Tessarolo, Y. -Ting Chen, J. J. Holstein, G. H. Clever. In preparation.

Conference Contributions

1. Poster, SupraChem 2022, Mainz, Germany.
2. Poster, The $14^{\text {th }}$ International Symposium on Macrocyclic and Supramolecular Chemistry (ISMSC), 2019, Lecce, Italy.
3. Poster, The $14^{\text {th }}$ International Symposium on Macrocyclic and Supramolecular Chemistry (ISMSC), 2019, Lecce, Italy.
4. Poster, SupraChem 2019, Würzburg, Germany.

Abstract

In the past few decades, a plethora of metalla-supramolecular architectures, obtained by rational design approaches, were successfully explored. In recent years, the focus of the field has progressively expanded from the purely structural studies, towards the implementation of functions such as catalysis and sensing. In this work, a series of salen- (or salphen-) based macrocyclic architectures is obtained through the condensation of functionalized bis-salicylaldehyde derivative ligands, with diamine derivatives, followed by metal complexation with transition metal ions. The self-assembled metallacycles' properties have been tuned by modification of the building blocks, to explore: i) chiroptical properties and assembly into nanomaterials, ii) photoredox catalysis, and iii) formation of mechanically interlocked molecules (MIMs).

Circularly polarized luminescence (CPL) with high luminescence dissymmetry factor (glum) are highly desirable for promising applications in 3D displays, molecular recognition, etc. Here, inspired by benefits of supramolecular chemistry and aggregation-induced emission (AIE) materials, a new class of binuclear CPL-active metallamacrocycles $\mathbf{Z n}_{2} \mathbf{R}$ based on tetraphenylethylene (TPE) was designed. The structural and chiroptical properties of the assemblies were fully characterized with a wide range of techniques. Combination of luminescence and chirality was successfully endowed in $\mathbf{Z n}_{2} \mathbf{R}$, deriving from the single building blocks in a modular fashion, resulting in a new class of materials with AIE, CD, and CPL properties. Furthermore, $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ assemble in helical filaments upon aggregation, resulting in a change of sign and increase of the CPL signals.

Metal salen Schiff base complexes are widely used for catalytic transformations. Here, a phenoxazine-based metal salen macrocycle $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$, designed for photoredox catalysis, is reported. The structural and photophysical properties of ligand \mathbf{L}, macrocycles $\mathbf{R}^{\mathbf{P Z}}$ and $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}^{\mathbf{P Z}}$ were investigated. The obtained macrocycles show strong visible-light absorption, low oxidation potential and reversible redox properties, thus the photoredox-catalyzed pinacol coupling of aldehydes was investigated, obtaining high conversion yields under visible light irradiation.

The reported metallacycles can also be used as macrocyclic units to form (pseudo-)rotaxane structures, where an additional ligand can coordinate to the metal centers, acting as a stopper, while its backbone substituents constitute the thread. Based on this design, two carbazole-based bis-bidentate pyridine ligands with different functional substituents on the backbone were synthesized. Both ligand $\mathbf{L}^{\mathbf{R}}$ having a flexible substituent and ligand $L^{\text {NH2 }}$ with a rigid substituent can selfassemble with a binuclear Co (III) macrocycle $\mathbf{C o (I I I)})_{2} \mathbf{R}^{\text {ACR }}$ to form a bow-shape architectures with the substituent located inside the cycle cavity. The possible connection of two bowls to form [3]rotaxane was explored by reacting functional groups on the substituents of the ligands. Furthermore, the combination of two ligands with geometric shape-complementary, endowed with catalytic active sites, were assembled with $\mathbf{C o}(\mathrm{III})_{2} \mathbf{R}^{\mathbf{A C R}}$, leading to the formation of an heteroleptic cage with potential applications in supramolecular catalysis.

Zusammenfassung

In den letzten Jahrzehnten wurde eine Vielzahl von metalla-supramolekularen Architekturen, welche durch rationale Designansätze erhalten wurden, erfolgreich erforscht. Der Schwerpunkt des Forschungsfelds hat sich in den letzten Jahren zunehmend von der bloßen Untersuchung der Strukturen auf die Einführung von Funktionalitäten, beispielsweise für die Katalyse oder die Sensorik, erweitert. In dieser Arbeit wurde eine Reihe von makrozyklischen Architekturen auf Salen- (oder Salphen-) Basis durch die Kondensation von funktionalisierten Bis-Salicylaldehyd-Derivat-Liganden mit Diaminen und anschließender Komplexierung mit Übergangsmetallionen erhalten. Durch Modifizierung der Bausteine wurden die Eigenschaften der selbstassemblierten Metallamakrozyklen eingestellt, um i) chiroptische Eigenschaften und die Assemblierung zu Nanomaterialien, ii) Photo-Redox-Katalyse und iii) die Bildung mechanisch verzahnter Moleküle (mechanically interlocked molecules, MIMs) zu erforschen.

Zirkular polarisierte Lumineszenz (Circularly polarized luminescence, CPL) mit hohem Lumineszenz-Dissymmetriefaktor (glum) ist für vielversprechende Anwendungen, beispielsweise in der 3D Displays Technologie und der molekularen Erkennung, äußerst wünschenswert. Inspiriert von den Vorteilen der supramolekularen Chemie und von Materialien mit aggregationsinduzierter Emission (AIE) wurde hier eine neue Klasse von dinuklearen CPL-aktiven Metallamakrozyklen $\mathbf{Z n}_{2} \mathbf{R}$ auf der Basis von Tetraphenylethylen (TPE) entwickelt. Die strukturellen und chiroptischen Eigenschaften der Assemblierungen wurden mit einer Vielzahl von Techniken vollständig charakterisiert. In den Metallamakrozyklen $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$, welche in einer modularen Weise aus den einzelnen Bausteinen gebildet werden, wurden Lumineszenz und Chiralität erfolgreich kombiniert. Die Metallamakrozyklen stellen somit eine neue Klasse von Materialien mit AIE-, CDund CPL-Eigenschaften dar. Bei Aggregation assemblieren $\mathbf{Z n}_{2} \mathbf{R}$ Bausteine zu spiralförmigen Filamenten, was zu einer Änderung des Vorzeichens und einer Steigerung der CPL-Eigenschaften führt.

Metall-Salen-Schiff'sche-Base-Komplexe werden häufig für katalytische Umwandlungen verwendet. Hier wird über einen auf Phenoxazin basierenden Metall-Salen-Makrozyklus $\mathbf{Z n}_{2} \mathbf{R P Z}^{\mathbf{P Z}}$ berichtet, welcher für die Photo-Redox-Katalyse
entwickelt wurde. Die strukturellen und photophysikalischen Eigenschaften des Liganden L sowie der Makrozyklen $\mathbf{R}^{\mathbf{P Z}}$ und $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ wurden untersucht. Die erhaltenen Makrozyklen zeigen eine starke Absorption von sichtbarem Licht, ein niedriges Oxidationspotenzial und reversible Redoxeigenschaften. Daher wurde die photo-redox-katalysierte Pinakol-Kupplung von Aldehyden untersucht, bei der unter Bestrahlung mit sichtbarem Licht hohe Umsätze erzielt wurden.

Die Metallazyklen, über welche hier berichtet wird, können als makrozyklische Einheiten zur Bildung von (Pseudo-)Rotaxanen verwendet werden. Dabei koordiniert ein zusätzlicher Ligand an die Metallzentren und fungiert so als Stopper, während die Substituenten am Rückgrat des Liganden die Achse bilden. Auf der Grundlage dieses Konzepts wurden zwei bis-bidentate Pyridin-Liganden auf Carbazol-Basis mit unterschiedlichen funktionellen Substituenten am Rückgrat synthetisiert. Sowohl der Ligand $L^{\mathbf{R}}$ mit einem flexiblen Substituenten als auch der Ligand LNH2 $^{\text {mit }}$ einem starren Substituenten können mit einem zweikernigen Co (III)Makrozyklus $\mathbf{C o}$ (III) $\mathbf{2}^{\text {R }}{ }^{\text {ACR }}$ assemblieren, um eine schalenförmige Architektur zu bilden, bei der sich der Substituent im Inneren der Kavität des Zyklus befindet. Die mögliche Verbindung von zwei Schalen zur Bildung von [3]Rotaxanen wurde durch Reaktion der funktionellen Gruppen am Ligandensubstituenten untersucht. Darüber hinaus wurden zwei Liganden, welche geometrisch komplementäre Formen aufweisen und mit katalytisch aktiven Stellen ausgestattet sind, mit $\mathbf{C o}$ (III) $\mathbf{2}^{\mathbf{R A C R}}$ assembliert, was zur Bildung eines heteroleptischen Käfigs mit potenziellen Anwendungen in der supramolekularen Katalyse führte.

Table of contents

ABSTRACT
ZUSAMMENFASSUNG III
1 General introduction 1
1.1 Supramolecular self-assembly 1
1.2 Supramolecular macrocycles 6
1.3 Metal salen supramolecular complexes 8
1.4 References 13
2 Scope of this Thesis 19
3 TETRAPHENYLETHYLENE-BASED MACROCYCLES WITH ADJUSTABLE CPL 21
3.1 Introduction 23
3.2 Synthesis of TPE-based ligands and macrocycles 34
3.3 Self-assembly of metal salen macrocycles 36
3.4 Chiroptical properties study in solution 42
3.5 The investigation of AIE properties 44
3.6 Conclusion and outlook 49
3.7 Experimental part 51
3.8 References 82
4 PHENOXAZINE-BASED MACROCYCLES FOR PHOTO-REDOX CATALYSIS 85
4.1 Introduction 87
4.2 Design of phenoxazine-based ligand macrocycles 93
4.3 Photophysical properties of $\mathrm{Zn}_{2} \mathrm{R}^{\mathrm{PZ}}$ 98
4.4 Photoredox catalysis 103
4.5 Conclusion 107
4.6 Experimental part 108
4.7 References 161
5 COORDINATION-DRIVEN CONSTRUCTION OF [3]ROTAXANE BASED ON HIERARCHICAL ASSEMBLY 163
5.1 Introduction 165
5.2 Ligand design and synthesis 167
5.3 Formation of the bowl 171
5.4 Formation of an axle 179
5.5 Formation of rotaxanes 181
5.6 Formation of a heteroleptic cage 183
5.7 Conclusion 189
5.8 Experiment Part 189
5.9 References 234
6 CONCLUSION AND PERSPECTIVES 237
ABBREVIATIONS 239
ACKNOWLEDGEMENTS 241

1 General introduction

1.1 Supramolecular self-assembly

Supramolecules are defined in IUPAC as following: "A system of two or more molecular entities held together and organized by means of intermolecular (noncovalent) binding interactions". ${ }^{11]}$ Intermolecular connections which are often seen in supramolecules are electrostatic interactions (i.e. hydrogen bond), hydrophobic interactions, and van der Waals forces. For example, double stranded DNA can be classified as a supramolecule held together chemoselectively via hydrogen bonds between appropriate base-pairs. One of the biggest differences between supramolecules and single molecules is the dynamicity inherited from such weak yet dynamic interactions. As it can be seen in the crucial role of DNA in living organisms to store and inhere genetic information, the dynamicity of the bonds endows supramolecules with functions which single molecules cannot do.

Supramolecular chemistry has attracted attention due to the potential of supramolecules in material development, ${ }^{[2]}$ biological applications, ${ }^{[3]}$ catalysis ${ }^{[4]}$ and so forth. Further, introduction of the concept of coordination-driven self-assembly, allowing dynamicity through largely covalent but labile metal-ligand interactions, by Lehn and other pioneers have broadened the diversity of structural motifs in supramolecular chemistry. ${ }^{[5]}$ In the past few decades, Fujita ${ }^{[6]}$, Stang, ${ }^{[7]}$ Mirkin, ${ }^{[8]}$ Raymond, ${ }^{[9]}$ Nitschke, ${ }^{[10]}$ and others have pioneered the coordination-driven selfassembly, which has been proven to be one of the most powerful methods to provide a wide variety of discrete two- and three- dimensional structures with well-defined shapes and precisely controlled sizes. ${ }^{[11,12]}$ Most reported self-assembly processes of metal-organic complexes proceed under thermodynamic control, with an "error correction" process, affording the thermodynamically most stable product. In coordination-driven self-assembly, the shape, size and topology of the resulting compounds is defined by the coordination fashion of the metal nodes (acceptors) and bent angle of ligand (donors) (Figure 1.1).

1. General introduction

Figure 1.1: Schematic illustration of building blocks to generate 2 D architectures via selfassembly. ${ }^{[13]}$ Copyright © 2012 American Chemical Society.

For instance, Fujita and co-workers have reported the quantitative formation of a macrocyclic coordination compound by coordination-driven self-assembly of linear 4,4'-bipyridine and cis-protected $\mathrm{Pd}(\mathrm{II})$ in the early 1990s (Figure 1.2). ${ }^{[14]}$ The square is defined by the coordination number and manner of $\mathrm{Pd}(\mathrm{II})$ centers forming a square planar coordination environment. Design principle and synthesis of such metalorganic macrocyclic compounds are well summarized in Metallamacrocycles by HaiBo Yang published by The Royal Society of Chemistry, ${ }^{[15]}$ as well as in some reviews by Stang ${ }^{[16-18]}$ and so on.

Figure 1.2: Self-assembly of square complex from 4,4'-bipyridine and cis-protected $\operatorname{Pd}(I I)$.

Taking advantage of the rational design approach based on the ligand geometry and metal coordination geometry, the field of metallasupramolecular self-assembly has emerged as a promising area for the development of intricate architectures with increasing complexity and functionality. ${ }^{[19-29]}$

1.1.1 Functionalized metal-organic assemblies

To date, a wide range of metal-organic assemblies with well-defined geometries and sizes have been reported. ${ }^{[30-33]}$ The rationally designed structures also allow the incorporation of functionalities. Recently, efforts have shifted from syntheses of aesthetic architectures to generating functional systems and exploiting their properties.

In general, the functionalities can be incorporated into the coordination assemblies through the following methods (Figure 1.3), which have been successfully explored. (i) Using the building blocks with functional moieties (edge or corner functionalization); ${ }^{[34,35]}$ (ii) Covalent attachment of functional units to the inside (endo-functionalization) ${ }^{[36-38]}$ or outside (exo-functionalization) ${ }^{[39]}$ of the building block, which can lead to the formation of assemblies with functional moieties positioned within the interior and on the periphery of the structures, respectively.

Edge and Functionalization
= Functional Group

Endo-
Functionalization

ExoFunctionalization

Figure 1.3: The approaches to incorporating functional moieties into metal-organic assemblies through the use of functionalized building blocks or endo-/exo- functionalization. ${ }^{[40]}$ Copyright ©The Royal Society of Chemistry 2008.

1. General introduction

1.1.2 Chiral assemblies

Chiral molecules are ubiquitous and indispensable components existing in biological systems. ${ }^{[41]}$ Recently, chiral self-assembly at supramolecular levels has attracted considerable attention. ${ }^{[42-45]}$ The incorporation of chirality into metalla-assemblies provides them unique potentials in recognition, ${ }^{[46]}$ asymmetric catalysis, ${ }^{[47]}$ and nonlinear optical materials. ${ }^{[48]}$ Various artificial chiral metalla-supramolecular architectures have been constructed via coordination driven self-assembly. ${ }^{[49-51]}$

In general, the chirality can be introduced within metal-organic assemblies in two different ways (Figure 1.4). ${ }^{[52]}$ (i) "Hard" approach. The enantiopure structure is produced from the optically pure chiral building blocks, either chiral organic ligand ${ }^{[53]}$ or metal center with auxiliary groups attached. ${ }^{[54,55]}$ (ii) "soft" approach. Chirality of assemblies is produced by achiral building blocks, arising from the spatial arrangement of coordinating ligands around the metal center ${ }^{[56]}$ or results from twisting of the ligand arrangement. ${ }^{[57]}$
(i) Chirality from "Hard" Approach Employing Chiral Components

(ii) Chirality from "Soft" Approach Employing Achiral Components
(c) Metal Center

(d) Twisting of Ligands

Figure 1.4: Possible approaches for the construction of chiral coordination assemblies ${ }^{[52]}$. Copyright © The Royal Society of Chemistry 2017.

Chirality transfer from a chiral guest to achiral assemblies was also investigated in host-guest systems. ${ }^{[58,59]}$ The rational design of assemblies to achieve chiral retention, enhancement, switch, and transfer of preset chiral units is still a challenge and drawing increasing attention for the potential application in stereoselective recognition, and as asymmetric reaction container.

1.1.3 Photoluminescent assemblies

The optical properties of metal-organic complexes are of considerable interest for their application in sensing and bioimaging. Some emissive assemblies have been prepared by using ligands comprised of well-known fluorophores, such as anthracene, BODIPY, and porphyrin, etc (Figure 1.5) or certain metal ions. ${ }^{[60]}$

Figure 1.5: Chemical structures of luminophores

Most aromatic hydrocarbons are commonly known to shown aggregation-caused quenching (ACQ) effect, a phenomenon where the luminescence of molecules is quenched at high concentrations due to strong $\pi-\pi$ stacking interactions of the aromatic rings (Figure 1.6 a). This has been a great obstacle to the development of luminescent materials.
a)

Emissive
b)

Nonemissive

Figure 1.6: Illustration of the aggregation of a) planar luminophoric molecules such as perylene tending to aggregate as discs piled up and b) non-planar luminogenic molecules such as hexaphenylsilole (HPS) ${ }^{[61]}$. Copyright © The Royal Society of Chemistry 2011.

In 2001, Tang and co-workers reported an aggregation-induced emission (AIE) phenomenon where the molecules show low emission in solution but strong emission in the aggregated state. The proposed mechanism of restriction of intramolecular rotation (RIR) has been widely investigated. The AIE chromophores,

1. General introduction

so-called AIEgens, have a propeller-like structure. As a consequence, AIE molecules cannot pack through $\pi-\pi$ stacking in the aggregated state (Figure 1.6 b). Simultaneously, the restriction of intramolecular rotation blocks the non-radiative pathway and thus turns on the emission. Recently, AIE chromophores have been used as building blocks for the construction of emissive coordination assemblies (See chapter 3.1). ${ }^{[62]}$

1.2 Supramolecular macrocycles

Macrocyclic molecules represented by crown ethers, cryptands, cyclodextrins, cucurbiturils, calixarenes, pillar[n]arenes, and metal-organic coordination macrocycles are well known to show a good host-guest capability owing to the welldefined space inside and the ability to induce multiple weak interactions thanks to the structures. ${ }^{[63]}$

Unlike three dimensional macrocyclic molecules, planar macrocyclic molecules can stack on top of each other forming higher-order supramolecular assemblies. ${ }^{[64]}$ When, for example, a macrocycle assembles into a highly ordered nanostructure such as columnar assembly driven by $\pi-\pi$ interactions or hydrogen bonds, the hollow inner space in the ordered structure stemming from the macrocyclic structure has highly potential applications. ${ }^{[65]}$ For example, the self-assembly of a cyclic peptide forms organic nanotubes with an well-defined diameter via hydrogen bonds upon acidification. ${ }^{[66]}$ A highly directional aggregation of aromatic oligoamide macrocycles was reported by Gong and co-workers. ${ }^{[67]}$ The formed tubular assembly shows a high ion-conductivity. ${ }^{[68]}$ In addition to those fully organic macrocyclic compounds, metal-organic macrocycles have been utilized as building blocks to form supramolecular assemblies. One of the peculiarities of the supramolecular assembly of metal-organic macrocycles is the versatility of them originating from the concept of coordination-driven self-assembly. Chemical modification of ligands may change the whole structural, chemical, and physical properties of the resulting assemblies.

A majority of research on hierarchical assembly of metal-organic macrocycles are based on $\mathrm{Pt}(\mathrm{II})$-containing metallacycles. ${ }^{[69]}$ The thermal stability of ligand- $\mathrm{Pt}(\mathrm{II})$ bonds endows the metallacycles with stability during the assembly process under
various conditions. A common strategy to realize hierarchical self-assembly of metallacycles is to implement chemical groups to stimulate the self-assembly via weak interactions.

Figure 1.7: schematic representation of a hexagonal supramolecular coordination complexes assembled from suitable precursors and its hierarchical self-assembly into nanostructures. ${ }^{[70]}$ Copyright © 2018 American Chemical Society.

Metal-organic macrocycles are a good platform to control assembly and to manipulate physical properties of supramolecular materials. To further explore the potential of metal-organic macrocycles in various applications, it is important to expand the diversity.

1.3 Metal salen supramolecular complexes

Schiff base, formed by the condensation between an aldehyde and an amine derivative, was first reported by Hugo Schiff in 1864. ${ }^{[71]}$ Salen or salphen ligands are one of the most studied Schiff base ligands (Figure 1.8). ${ }^{[72,73]}$ Salen ligands are generally synthesized by condensation reaction between diamine and salicylaldehyde derivative. In numerous cases, diamines and salicylaldehydes are commercially available. Therefore, a wide variety of salen-type ligands have been intensively studied. ${ }^{[74]}$ Salen-type ligands can coordinate various metals with different oxidation states via $\mathrm{N}_{2} \mathrm{O}_{2}$ motif. Salen-type metal complexes are well known to catalyze many kinds of reactions. Furthermore, the facile synthetic procedure and the simple structure are advantageous for diversifying their structures and functions, and thus, applications of salen-complexes are not limited to catalysis. Material development using compounds bearing a salen-complex motif, have been attracted attention in recent years. ${ }^{[75]}$

Salen

Figure 1.8: Structures of the most commonly used salen and salphen compounds.

One of the most peculiar features of such salen-complexes is the vacant coordination sites of the metal centers. ${ }^{[76]}$ The vacant coordination sites play a significant role in most of the catalytic reactions using salen-complexes. Fine engineering of the vacant coordination sites can improve catalytic activity of salencomplexes. ${ }^{[77]}$ The metal salen complexes have emerged as versatile building
blocks for functional supramolecular architectures, such as macrocycles, ${ }^{[78-80]}$ and coordination cages. ${ }^{[81,82]}$

Macrocycles comprised of multiple salen-moieties show a unique binding capability towards metal ions as well. ${ }^{[83]}$ For instance, macrocyclic trimers of salphen show multiple transition metals binding. ${ }^{[84]}$ Depending on the transition metals, the macrocycle even forms a cluster of transition metals on the ring. The inner cavity of the macrocycle can be compared to a crown-ethers like structure. Thanks to the oxygen atoms surrounding the void in an ordered manner, supramolecular assembly by addition of alkali metal cations has been also reported. ${ }^{[85,86]}$ A larger macrocycle, hexamer of salphen, has even been reported. ${ }^{[79]}$ Although not macrocyclic structure, supramolecular assembly of Zn (II) salphen complexes has been showcased as well. The salen-motif has even been applied in DNA-engineering. Clever, Carell and coworkers demonstrated stabilization of a DNA duplex by cross-linking via a salencomplex motif. ${ }^{[87]}$ Depending on the bound metals on the $\mathrm{N}_{2} \mathrm{O}_{2}$ binding site, the stabilization effect on the DNA duplex can differ. As shown and evidenced by these examples, salen/salphen based metal-organic macrocycles are an intriguing and attractive motif to be further investigated.

In 2003, Hupp and co-worker have reported Zn salen based ligands to construct supramolecular box assemblies with similar photophysical behavior than (porphyrin) Zn complexes (Figure 1.9). ${ }^{[88]}$ The box consists of $\mathrm{Zn}(I I)$ salen ligands as edges and Rhenium(I) complexes as corners.

Figure 1.9: The structures of Zn salen ligand and supramolecular box structure.

1. General introduction

Reek and co-workers have demonstrated a synthesis of porous materials by bridging bis-Zn(II) salphen with ditopic ligands as pillars (Figure 1.10). ${ }^{[89,90]}$ While addition of a short pillar results in supramolecular polymerization intermediated via $\mathrm{Zn}-\mathrm{N}$ coordination bonds, addition of longer ligands yields a box-shaped discrete molecule with pores showing ordered alignment in the solid state. ${ }^{[91]}$

Figure 1.10: Schematic representation of the formation of a coordination polymer or supramolecular box by self-assembly of bis-Zn(II) salphen with ditopic ligands with different lengths. ${ }^{[91]}$ Copyright © 2009 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim.

A similar approach to synthesize a coordination cage for specific guest encapsulation has been also reported by Tanaka and co-workers. ${ }^{[92]}$ Further, a macrocyclic salphen derivative has been applied to develop a coordinationresponsive rotaxane by Asakawa and co-workers (Figure 1.11). ${ }^{[93]}$ A salphen-based crown ether forms a pseudo-rotaxane with a secondary alkylammonium salt. Upon coordination to $\mathrm{Pd}(\mathrm{II})$ via the $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination site, shrinkage of the macrocycle occurs, leading to the formation of a stable rotaxane. Such hybrids of salen and crown ether have been studied for recognition of multiple metals.

Figure 1.11: Synthesis of a $\mathrm{Pd}(\mathrm{II})$-salphen based [2]rotaxane ${ }^{[93]}$

Salen ligands have been exploited for a variety of challenging asymmetric reactions as a privileged catalyst. Cui and co-workers reported a series of chiral tetrahedral cages for asymmetric catalysis, constructed from the self-assembly of enantiopure metalla-salen based ligands M (salen) ($M=\mathrm{Mn}$ (II), $\mathrm{Fe}(\mathrm{II}), \mathrm{Cr}(\mathrm{II})$) and $\mathrm{Cp}_{3} Z r_{3}$ clusters (Figure 1.12). ${ }^{[94]}$ The coordination cages feature a nanoscale hydrophobic cavity and multiple catalytically active sites. Comparing with the single-linker cage, the stereoselectivity and reactivity of mixed-linker cages were demonstrated.
a)

\longrightarrow

$\mathrm{C}^{\mathrm{MnFe}}$

O

$\mathrm{C}^{\mathrm{CrFe}}$
b)

Figure 1.12: Schematic representation of structure of a) ligand, trimetallic cluster and cage, b) asymmetric sequential reactions in the cavity of cage. ${ }^{[94]}$ Copyright © 2018 American Chemical Society.

1. General introduction

In our previous work, a series of homo- and heteroleptic cages was constructed. The combination of salphen macrocycles, formed by condensation of salicylaldehyde ligands and diamine, with $\mathrm{Co}(\mathrm{OAc})_{2}$ in the presence of air, afforded a binuclear Co (III) macrocycle. Two shape-complementary ligands were installed on the axial positions of the octahedral coordination center (Figure 1.13). ${ }^{[95]}$ It provides a new approach to produce heteroleptic cages with increasing complexity. The functionality of assemblies can be further investigated by the incorporation of functional moieties on the backbone of ligands.

Figure 1.13: Evolution of coordination cages with increasing complexity based on shape complementary approach. ${ }^{[95]}$

1.4 References

[1] V. I. Minkin, Pure. Appl. Chem. 1999, 71, 1919-1981.
[2] T. Aida, E. W. Meijer, S. I. Stupp, Science. 2012, 335, 813-817.
[3] M. J. Webber, E. A. Appel, E. W. Meijer, R. Langer, Nat. Mater. 2016, 15, 13-26.
[4] U. H. Brinker, J. Mieusset, Molecular Encapsulations: Organic Reactions in Constrained Systems, John Wiley \& Sons, Ltd, West Sussex, UK, 2010.
[5] J. M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D. Moras, Proc. National. Acad. Sci. 1987, 84, 2565-2569.
[6] M. Fujita, Chem. Soc. Rev. 1998, 27, 417-425.
[7] T. R. Cook, P. J. Stang. Chem. Rev. 2015, 115, 7001-45.
[8] C. G. Oliveri, P. A. Ulmann, M. J. Wiester, C. A. Mirkin, Acc. Chem. Res. 2008, 41, 1618-1629.
[9] C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 30123035.
[10] A. J. McConnell, C. S. Wood, P. P. Neelakandan, J. R. Nitschke, Chem. Rev. 2015, 115 , 7729-7793.
[11] H. Li, Z.-J. Yao, D. Liu, G.-X. Jin, Coord. Chem. Rev. 2015, 293, 139-157.
[12] S. Pullen, G. H. Clever, Acc. Chem. Res. 2018, 51, 3052-3064.
[13] T. R. Cook, Y.-R. Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734-777.
[14] M. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res. 2005, 38, 369-378.
[15] B. Jiang, B. Ou, H.-B. Yang, Monogr, Supra. Chem. 2019, 20-46.
[16] Y. Sun, C. Chen, J. Liu, P. J. Stang, Chem. Soc. Rev. 2020, 49, 3889-3919.
[17] S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853-908.
[18] R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810-6918.
[19] S. Zarra, D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev. 2014, 44, 419432.
[20] R. Zhu, I. Regeni, J. J. Holstein, B. Dittrich, M. Simon, S. Prévost, M. Gradzielski, G. H. Clever, Angew. Chem. Int. Ed. 2018, 57, 13652-13656.
[21] B. Chen, J. J. Holstein, A. Platzek, L. Schneider, K. Wu, G. H. Clever, Chem. Sci. 2022, 13, 1829-1834.
[22] R. Zhu, W. M. Bloch, J. J. Holstein, S. Mandal, L. V. Schäfer, G. H. Clever, Chem. Eur. J. 2018, 24, 12976-12982.

1. General introduction

[23] W. M. Bloch, J. J. Holstein, B. Dittrich, W. Hiller, G. H. Clever, Angew. Chem. Int. Ed. 2018, 57, 5534-5538.
[24] J. Tessarolo, H. Lee, E. Sakuda, K. Umakoshi, G. H. Clever, J. Am. Chem. Soc. 2021, 143, 6339-6344.
[25] S. Hasegawa, S. L. Meichsner, J. J. Holstein, A. Baksi, M. Kasanmascheff, G. H. Clever, J. Am. Chem. Soc. 2021, 143, 9718-9723.
[26] R.-J. Li, J. J. Holstein, W. G. Hiller, J. Andréasson, G. H. Clever, J. Am. Chem. Soc. 2019, 141, 2097-2103.
[27] D. Preston, J. E. M. Lewis, J. D. Crowley, J. Am. Chem. Soc. 2017, 139, 2379-2386.
[28] Y.-Y. Zhang, W.-X. Gao, L. Lin, G.-X. Jin, Coord. Chem. Rev. 2017, 344, 323-344.
[29] S. De, K. Mahata, M. Schmittel, Chem. Soc. Rev. 2010, 39, 1555-1575.
[30] D. P. August, G. S. Nichol, P. J. Lusby, Angew. Chem. Int. Ed. 2016, 55, 15022-15026.
[31] L.-X. Cai, S.-C. Li, D.-N. Yan, L.-P. Zhou, F. Guo, Q.-F. Sun, J. Am. Chem. Soc. 2018, 140, 4869-4876.
[32] R. W. Saalfrank, H. Maid, A. Scheurer, Angew. Chem. Int. Ed. 2008, 47, 87948824.
[33] C. Colomban, V. Martin-Diaconescu, T. Parella, S. Goeb, C. García-Simón, J. LloretFillol, M. Costas, X. Ribas, Inorg. Chem. 2018, 57, 3529-3539.
[34] K. Matsumoto, S. Kusaba, Y. Tanaka, Y. Sei, M. Akita, K. Aritani, M. Haga, M. Yoshizawa, Angew. Chem. Int. Ed. 2019, 58, 8463-8467.
[35] S. Pullen, J. Tessarolo, G. H. Clever, Chem. Sci. 2021, 12, 7269-7293.
[36] L. R. Holloway, P. M. Bogie, Y. Lyon, C. Ngai, T. F. Miller, R. R. Julian, R. J. Hooley, J. Am. Chem. Soc. 2018, 140, 8078-8081.
[37] Q.-Q. Wang, S. Gonell, S. H. A. M. Leenders, M. Dürr, I. Ivanović-Burmazović, J. N. H. Reek, Nat. Chem. 2016, 8, 225-230.
[38] M. Krick, J. Holstein, C. Würtele, G. H. Clever, Chem. Commun. 2016, 52, 1041110414.
[39] K. Harris, D. Fujita, M. Fujita, Chem. Commun. 2013, 49, 6703-6712.
[40] B. H. Northrop, H.-B. Yang, P. J. Stang, Chem. Commun. 2008, 0, 5896-5908.
[41] D. Philp, J. F. Stoddart, Angew. Chem. Int. Ed. 1996, 35, 1154-1196.
[42] L.-L. Yan, C.-H. Tan, G.-L. Zhang, L.-P. Zhou, J.-C. Bünzli, Q.-F. Sun, J. Am. Chem. Soc. 2015, 137, 85508555.
[43] T. R. Schulte, J. J. Holstein, G. H. Clever, Angew. Chem. Int. Ed. 2019, 58, 5562-5566.
[44] H.-Y. Wong, W.-S. Lo, K.-H. Yim, G.-L. Law, Chem. 2019, 5, 3058-3095.
[45] N. Ousaka, S. Grunder, A. M. Castilla, A. C. Whalley, J. F. Stoddart, J. R. Nitschke, J. Am. Chem. Soc. 2012, 134, 15528-15537.
[46] M. A. Mateos-Timoneda, M. Crego-Calama, D. N. Reinhoudt, Chem. Soc. Rev. 2004, 33, 363-372.
[47] G. A. Hembury, V. V. Borovkov, Y. Inoue, Chem. Rev. 2008, 10, 1-73.
[48] M. Pan, K. Wu, J.-H. Zhang, C.-Y. Su, Coord. Chem. Rev. 2017, 378, 333-349.
[49] K. Wu, K. Li, Y.-J. Hou, M. Pan, L.-Y. Zhang, L. Chen, C.-Y. Su, Nat. Commun. 2016, 7, 10487.
[50] C. Zhao, Q.-F. Sun, W. M. Hart-Cooper, A. G. DiPasquale, F. D. Toste, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2013, 135, 18802-18805.
[51] C. Tan, J. Jiao, Z. Li, Y. Liu, X. Han, Y. Cui, Angew. Chem. Int. Ed. 2018, 57, 20852090.
[52] L.-J. Chen, H.-B. Yang, M. Shionoya, Chem. Soc. Rev. 2017, 46, 2555-2576.
[53] C. Klein, C. Gütz, M. Bogner, F. Topić, K. Rissanen, A. Lützen, Angew. Chem. Int. Ed. 2014, 53, 3739-3742.
[54] Y. Kubota, K. Biradha, M. Fujita, S. Sakamoto, K. Yamaguchi, B. Chem. Soc. Jpn. 2002, 75, 559-565.
[55] Q.-Y. Zhu, L.-P. Zhou, L.-X. Cai, X.-Z. Li, J. Zhou, Q.-F. Sun, Chem. Commun. 2020, 56, 2861-2864.
[56] A. V. Davis, D. Fiedler, M. Ziegler, A. Terpin, K. N. Raymond, J. Am. Chem. Soc. 2007, 129, 15354-15363.
[57] P. Howlader, P. S. Mukherjee, Chem. Sci. 2016, 7, 5893-5899.
[58] L. Cheng, K. Liu, Y. Duan, H. Duan, Y. Li, M. Gao, L. Cao, Ccs. Chem. 2021, 3, 27492763.
[59] I. Regeni, B. Chen, M. Frank, A. Baksi, J. J. Holstein, G. H. Clever, Angew. Chem. Int. Ed. 2020, 60, 5673-5678.
[60] Y. Sun, P. J. Stang, Aggreg. 2021, 2, e94.
[61] Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361-5388.
[62] H.-T. Feng, Y.-X. Yuan, J.-B. Xiong, Y.-S. Zheng, B. Z. Tang, Chem. Soc. Rev. 2018, 47, 7452-7476.
[63] Z. Liu, S. K. M. Nalluri, J. F. Stoddart, Chem. Soc. Rev. 2017, 46, 2459-2478.
[64] L. F. Lindoy, K.-M. Park, S. S. Lee, Chem. Soc. Rev. 2012, 42, 1713-1727.
[65] Y. Itoh, S. Chen, R. Hirahara, T. Konda, T. Aoki, T. Ueda, I. Shimada, J. J. Cannon, C. Shao, J. Shiomi, K. V. Tabata, H. Noji, K. Sato, T. Aida, Science 2022, 376, 738-743.

1. General introduction

[66] M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, N. Khazanovich, Nature 1993, 366, 324-327.
[67] Y. Yang, W. Feng, J. Hu, S. Zou, R. Gao, K. Yamato, M. Kline, Z. Cai, Y. Gao, Y. Wang, Y. Li, Y. Yang, L. Yuan, X. C. Zeng, B. Gong, J. Am. Chem. Soc. 2011, 133, 1859018593.
[68] A. J. Helsel, A. L. Brown, K. Yamato, W. Feng, L. Yuan, A. J. Clements, S. V. Harding, G. Szabo, Z. Shao, B. Gong, J. Am. Chem. Soc. 2008, 130, 15784-15785.
[69] L.-J. Chen, J.-L. Zhu, H.-B. Yang, Monogr Supramol Chem 2019, 195-225.
[70] S. Datta, M. L. Saha, P. J. Stang, Acc. Chem. Res. 2018, 51, 2047-2063.
[71] H. Schiff, Liebigs. Ann. Chem. 1864, 131, 118-119.
[72] C. J. Whiteoak, G. Salassa, A. W. Kleij, Chem. Soc. Rev. 2011, 41, 622-631.
[73] P. G. Cozzi, Chem. Soc. Rev. 2004, 33, 410-421.
[74] S. Shaw, J. D. White, Chem. Rev. 2019, 119, 9381-9426.
[75] S. J. Wezenberg, A. W. Kleij, Angew. Chem. Int. Ed. 2008, 47, 2354-2364.
[76] J. K. -H. Hui, Z. Yu, M. J. MacLachlan, Angew. Chem. Int. Ed. 2007, 46, 7980-7983.
[77] A. D. Cort, P. D. Bernardin, G. Forte, F. Y. Mihan, Chem. Soc. Rev. 2010, 39, 38633874.
[78] N. E. Borisova, M. D. Reshetova, Y. A. Ustynyuk, Chem. Rev. 2007, 107, 46-79.
[79] J. K.-H. Hui, M. J. MacLachlan, Chem. Commun. 2006, 0, 2480-2482.
[80] P. D. Frischmann, S. H. M. Mehr, B. O. Patrick, F. Lelj, M. J. MacLachlan, Inorg Chem 2012, 51, 3443-3453.
[81] S. Akine, M. Miyashita, T. Nabeshima, J. Am. Chem. Soc. 2017, 139, 4631-4634.
[82] S. Akine, M. Miyashita, T. Nabeshima, Chem. Eur. J. 2019, 25, 1432-1435.
[83] M. T. Chaudhry, S. Akine, M. J. MacLachlan, Chem. Soc. Rev. 2021, 50, 10713-10732.
[84] T. Nabeshima, H. Miyazaki, A. Iwasaki, S. Akine, T. Saiki, C. Ikeda, Tetrahedron. 2007, 63, 3328-3333.
[85] A. J. Gallant, M. J. MacLachlan, Angew. Chem. Int. Ed. 2003, 42, 5307-5310.
[86] S. Akine, F. Utsuno, S. Piao, H. Orita, S. Tsuzuki, T. Nabeshima, Inorg. Chem. 2016, 55, 810-821.
[87] G. H. Clever, K. Polborn, T. Carell, Angew. Chem. Int. Ed. 2005, 44, 7204-7208.
[88] K. E. Splan, A. M. Massari, G. A. Morris, S. Sun, E. Reina, S. T. Nguyen, J. T. Hupp, Eur. J. Inorg. Chem. 2003, 2003, 2348-2351.
[89] T. Gadzikwa, R. Bellini, H. L. Dekker, J. N. H. Reek, J. Am. Chem. Soc. 2012, 134, 2860-2863.
[90] A. W. Kleij, M. Kuil, D. M. Tooke, M. Lutz, A. L. Spek, J. N. H. Reek, Chem. Eur. J. 2005, 11, 4743-4750.
[91] M. Kuil, I. M. Puijk, A. W. Kleij, D. M. Tooke, A. L. Spek, J. N. H. Reek, Chem. Asian. J. 2008, 4, 50-7.
[92] S. Kawano, T. Fukushima, K. Tanaka, Angew. Chem. Int. Ed. 2018, 57, 14827-14831.
[93] I. Yoon, M. Narita, T. Shimizu, M. Asakawa, J. Am. Chem. Soc. 2004, 126, 1674016741.
[94] J. Jiao, C. Tan, Z. Li, Y. Liu, X. Han, Y. Cui, J. Am. Chem. Soc. 2018, 140, 2251-2259.
[95] B. Zhang, Design and Synthesis of Novel Self Assembled Supramolecular Coordination Cages. Doctoral dissertation, TU Dortmund, 2020.

2 Scope of this thesis

Macrocycles in supramolecular chemistry have rapidly developed over the past few decades due to their structural features and easy accessibility. A variety of macrocycles, such as crown ethers, pillar[n]arenes, and metal-organic coordination macrocycles, have been synthesized. The possibility to introduce diverse functionality led to intriguing applications in the fields of molecular recognition, catalysis, molecular machines and many more. Among several building blocks, salen/salphen ligands, which can be easily prepared by the condensation of salicylaldehydes and imines, are intriguing for the assembly of supramolecular architecture due to their versatility and access to a modular approach where functional groups can be easily inserted or modified. To this aim, this work reports the design, synthesis and characterization of a series of metal salen/salphen-based metallamacrocycle architectures, based on three building blocks: ligand, diamine and metal-center. The modularity and versatility of the reported approach allows to achieve self-assembled compounds towards luminescent materials, catalysis application and formation of MIMs.

In chapter 3, an AIE active metallamacrocycle with adjustable CPL properties is reported. A TPE based salicylaldehyde ligand L was designed and synthesized. The condensation of \mathbf{L} with an enantiopure diamine derivative affords a chiral macrocycle R. Next, a new class of luminescent binuclear metallamacrocycles $\mathbf{Z n}_{\mathbf{2}} \mathbf{R}$ was obtained by self-assembly of \mathbf{R} with $\mathrm{Zn}(\mathrm{II})$. The formation of $\mathbf{Z n}_{2} \mathbf{R}$ was characterized by NMR, X-ray diffraction and FT-IR techniques. The AIE properties and chiroptical properties of \mathbf{L}, \mathbf{R}, and $\mathbf{Z n}_{2} \mathbf{R}$ were studied with UV-Vis absorption, CD spectroscopy, fluorescence spectroscopy, CPL, SEM, and DLS techniques.

In chapter 4, a phenoxazine-based salicylaldehyde ligand $\mathbf{L}^{\mathbf{P Z}}$, a macrocycle $\mathbf{R}^{\mathbf{P Z}}$ and a metallamacrocycle $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ were designed and synthesized specifically for performing photoredox catalysis. The structural and photophysical properties of compounds were studied by NMR, ESI-MS, FT-IR, UV-Vis, fluorescence, cyclic voltammetry analysis. The photoredox catalysis properties of the macrocycles were investigated studying a pinacol coupling reaction with a scope of aldehyde substrates.

In chapter 5, a new approach for the construction of a [3]rotaxane was introduced. Two carbazole-based ligands were designed and self-assembled with a binuclear Co (III) macrocycle. The coordination geometry of Co (III) and the ligand binding angles allow only the formation of bowl-shaped structures. Two bowls are then connected by reacting proper substituents at the carbazole ligands backbones. The bowl structures were characterized by NMR, ESI-MS and X-ray diffraction. The formation of the [3]rotaxane was confirmed by ESI-MS. Finally, two different ligands endowed with catalytic groups, were combined with the Co (III) macrocycle, thus forming an heteroleptic cage to be explored for further supramolecular catalysis applications.

3 Tetraphenylethylene-based macrocycles with adjustable CPL

3.1 Introduction

3.1.1 TPE

Since Tang's group firstly reported the aggregation-induced emission (AIE) phenomenon in 2001, great advances have been made in this field. ${ }^{[1]}$ Lots of AIEgens were recently developed showing potential application in luminescent materials, such as hexaphenylsilole (HPS) and tetraphenylethylene (TPE). Those molecules bear a propeller-like conformation, which is the key feature for AIE property. Among those AIEgens, TPE is an archetypal and the most studied AIE chromophore. ${ }^{[2,3]}$ On the one hand, it is readily accessible and has four positions, which could be easily modified with functional groups, going from mono- to tetratopic molecules, forming interesting building blocks for construction of luminescent micro/nanostructures (Figure 3.1). ${ }^{[4]}$ On the other hand, the repulsion of four crowded phenyl substituents brings them to a propeller-like arrangement. It then gains a stable AIE property in which the restriction of phenyl-ring rotation and the ethylenic $\mathrm{C}=\mathrm{C}$ bond twist can activate the emission. ${ }^{[5]}$ TPE is also a popular building block to construct supramolecular assemblies. In recent decades, TPE-based macrocycles, triangular prisms, and cages have been explored. ${ }^{[6-9]}$

TPE

$L^{1 P}$

$L^{2 P}$

$L^{4 P}$

Figure 3.1: The structure of TPE and the examples of TPE based ligands.

3.1.2 TPE-based macrocycles and cages

According to the RIR mechanism (See chapter 1.2.2), the AIE effect of the TPE unit is enhanced after the formation of a cycle, which restricts the intramolecular rotations. Recent studies showed that the aggregation is not the only way to turn on the emission of TPE. A similar phenomenon can also be found if the RIR is achieved by other strategies. Restriction of phenyl ring rotation to turn on the emission has

3. Tetraphenylethylene-based macrocycles with adjustable CPL

been achieved through covalent modification, host-guest chemistry, and embedding into MOFs. ${ }^{[10,11]}$ Numerous of TPE macrocycles with AIE effect have appeared in the literature(Figure 3.2). Those TPE-based macrocycles are formed by covalent bond connections. The modifications on different positions of the TPE units to restrict phenyl-ring rotation or the $\mathrm{C}=\mathrm{C}$ bond twist activate the emission of those macrocycles.
a)

b)

e)

Figure 3.2: Chemical structures of selected TPE-based macrocycles. a) TPE-crown macrocycle synthesized by etherification. ${ }^{[12]}$ b) Macrocycle that can self-assemble into hollow spheres with intrinsic and extrinsic porous channels. ${ }^{[13]}$ c) TPE-based expanded oxacalixarene. Different supramolecular grid structures in the solid state can be adjusted by the encapsulated guests. ${ }^{[14]}$ d) cis-TPE dicycle connected by rigid short tethers at cisposition with the free rotation restriction of double bond. e) gem-TPE dicycle connected by rigid short tethers at gem-positions. ${ }^{[15]}$ f) TPE-macrocycle based on Schiff bases. It can
aggregate into nanofibers and shows potential for the visual detection of copper(II) ions in water. ${ }^{[16]} \mathrm{g}$) TPE trimeric macrocycle bearing crown ether rings bridged at the cis-phenyl rings of the TPE unit. It exhibits CD and CPL signals induced by chiral acids. h) TPE cyclic oligomers bearing up to seven TPE segments in the main chain by a stepwise chain growth strategy. ${ }^{[17]}$

Three-dimensional shape-persistent cages also have attracted considerable attention because of their fascinating structures and potential application in gas storage, host-guest chemistry, catalysis, and separation. TPE units as an ideal building blocks for constructing supramolecular cages have been explored.

Figure 3.3: a) Top view and b) side view of the X-ray crystal structure of tricyclooxacalixarene cage. c) Grid-like porous structure from the crystal packing of cage shown in space-filling mode. ${ }^{[18]}$ Copyright © 2015 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim.

A porous prismatic tricyclooxacalixarene cage based on TPE was reported by Zheng and co-workers (Figure 3.3). Two TPE units were connected by four pyridine rings through one-pot condensation reactions, which suppress the motion of phenyl rings and turn on the emission in solution. The cage assembled into a grid-like structure with external pores and displayed high adsorption capacity for CO_{2}.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

3.1.3 Coordination-enhanced emission of AIE-active metallamacrocycles and metallacages

Coordination-driven self-assembly is an efficient strategy for construction of discrete supramolecular architectures with pre-designed sizes and well-defined shapes, from two-dimensional (2D) polygons, three-dimensional (3D) prisms, bowls, cages and polyhedra, due to the directional and predictable metal-ligand coordination interactions. ${ }^{[19]}$ The kinetic reversibility of the self-assembly process between a Lewis-base-containing donor and a Lewis-acidic acceptor allows the system to undergo error correction and self-repairing processes, leading to the formation of a product that is thermodynamically favorable. These advantages enable the construction of a series of discrete coordination complexes. In addition, functional moieties can be introduced to the assemblies by the direct incorporation into the starting units, pendant attachment, or host-guest encapsulation. Several examples show introduction of AIE-active fluorophores into supramolecular coordination complexes. ${ }^{[20]}$

TPE-based metallacycles or metallacages were obtained through the coordination interaction of TPE derivatives with metal ions. Stang and co-workers reported the construction of tetragonal prismatic platinum(II) metallacages by using TPE-based tetrapyridine ligands (Figure 3.4). ${ }^{[21]}$ TPE-based ligands are held in a cofacial arrangement by four dicarboxylate ligands acting as edges of the prism. Both cages have emission in dilute solution and tunable visible-light emission in the aggregation state. With the modification of oxyalkyl chains on the carboxylate ligand backbones, the cages not only exhibit tunable visible-light emission by varying the solvent composition, but also result in white light emission when dissolved in THF.

Figure 3.4: Heteroligation-directed self-assembly of TPE-based pyridyl ligand, carboxylate ligand and $90^{\circ} \mathrm{Pt}(\mathrm{II})$ acceptor in a 2:4:8 ratio to furnish tetragonal metallacages. ${ }^{[21]}$ Copyright © 2015 Macmillan Published Limited.

Using the same TPE-based tetrapyridine ligand, Stang and co-workers also reported a discrete fused double metallarhomboid and a double triangle, both based on the shape complementarity and stoichiometric control of the building blocks through coordination-driven self-assembly (Figure 3.5). ${ }^{[22]}$ TPE tetra-pyridine donors as the bridging components were combined with different pyridyl donors and platinum acceptors with the coordination angles of 120° or 180°. As the intramolecular motions of TPE units can be anchored not only by the molecular packing upon aggregation but also by the dative bonds, the assemblies exhibit fluorescence both in dilute solutions and in the aggregated state. The geometries differences of the assemblies with different strength and rigidity lead to different fluorescence enhancement behavior too, indicating the properties of supramolecular coordination complexes as well as the properties of the chromophore can be tuned by the resulting geometry.

5

Figure 3.5: Syntheses of rhomboid 5, triangle 6, double rhomboid 7, and double triangle 8 via multicomponent coordination-driven self-assembly in a controlled ratio. ${ }^{[22]}$ Copyright © 2016 American Chemical Society.

Owing to the metal centers, coordination assemblies have often a charged nature. The charged structure shows attractive interactions with molecules having the opposite charge. The Yang group reported a 120° bipyridine ligand with TPE as the pendant and self-assembly with 120° diplatinum (II) acceptors to form a discrete macrocycle (Figure 3.6). ${ }^{[23]}$ The hierarchical self-assembly of positively charged trisTPE metallacycles with negatively charged heparin, a polysaccharide with many sulfate and carboxylate groups, driven by multiple electrostatic interactions was investigated. The higher-order aggregates of entangled necklace networks exhibited typical AIE behaviour and could act as heparin sensor.

Figure 3.6: Schematic representation of the hierarchiral self-assembly and aggregation mode between tris-TPE metallacycle and heparin. ${ }^{[23]}$ Copyright © 2015 American Chemical Society.

Although lots of light-emitting TPE-based Pt(II) metallacycles and metallacages have been explored, examples based on $\mathrm{Pd}(\mathrm{II})$ cations have been proven to be quite challenging due to well-known heavy metal effect for fluorescence quenching. ${ }^{[24]}$

In Mukherjee group, a water soluble AIE active TPE-Pd- trigonal prism has been synthesized through coordination-driven self-assembly of a tetraimidazole ligand with cis-protected $\mathrm{Pd}(\mathrm{II})$ acceptor (Figure 3.7). ${ }^{[25]}$ Conjugated aromatic TPE ligands act as the walls of the prism. Photoproperties of the prism were examined. The ligand shows weak emission in dilute solution, while fluorescence enhancements were found in assemblies due to the restriction of the motions of the phenyl rings. The emission maximum underwent a redshift, arising from a metal-to-ligand chargetransfer process upon coordination. Interestingly, the prism has a confined hydrophobic cavity that was successfully used in catalysis.

Figure 3.7: Schematic representation of 3D molecular prism. ${ }^{[25]}$ Copyright © 2017 WileyVCH Verlag GmbH \& Co. KGaA, Weinheim.

3. Tetraphenylethylene-based macrocycles with adjustable CPL

The Sun group reported the self-assembly of fluorescent TPE-based $\operatorname{Pd}(I I)$ capsules. ${ }^{[26,27]}$ A ditopic TPE-based pyridine ligand reacts with 0.5 equiv. of $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}$ to obtain an AIE-active capsule $\mathrm{Pd}_{2} \mathrm{~L}_{4}$, with the encapsulation of two nitrate ions, which is due to the hydrogen-bonding and electrostatic interactions (Figure 3.8 a). The emission of capsule can also be turned on by the encapsulation of anions such as $\mathrm{HCO}_{3}{ }^{-}$, so called encapsulation-induced emission (EIE). Coordinationenhanced emission of supramolecular complexes was also studied by using bidentate and tetradentate TPE-based pyridine ligands, self-assembled with [cis$\mathrm{Pd}(\mathrm{en})]\left(\mathrm{NO}_{3}\right)_{2}$ (Figure 3.8 b). The assembly with four arms coordinated to $\mathrm{Pd}(\mathrm{II})$ ions, yet holds the strong emission properties not only in dilute solution but also in the aggregation state. On the contrary, when using the ditopic ligand, the system shows lower emission intensity in dilute solution due to the intramolecular motion of two unrestricted phenyl rings (Figure 3.8 c).

Figure 3.8: a) Coordination-directed self-assembly of a lantern-type $\mathrm{Pd}_{2} \mathrm{~L}_{4}$ capsule with encapsulation-induced emission. ${ }^{[26]}$ Simulated molecular structures from b) bidentate ligand and c) tetradentate ligand self-assembled with cis-protected Pd(II) ions. ${ }^{[27]}$ Copyright © 2017 American Chemical Society.

3.1.4 Chiral TPE-based supramolecular assemblies

TPE-based supramolecular assemblies have been used for fluorescence probes, catalysis, bioimaging agents. Among those functions and applications, the possibility to introduce chirality in such assemblies has drawn an increasing interest for chiral recognition and as CPL-active materials.

Generally, chiral TPE derivatives are constructed by introducing chiral moieties at the periphery of TPE units. ${ }^{[28]}$ Alternatively, self-assembly of achiral molecules into lager supramolecular structures such as helices or fibers, has been carried out exploring the possibility to induce chirality to the system. Several CPL-active AIE systems are constructed via noncovalent bond interactions of AIEgen units with other chiral molecules. ${ }^{[29]}$ The Zheng group reported the self-assembly of TPE tetracycle (m-TPE-TC) treated with 4-dodecylbenzenesulfonic acid (DSA) through acid-base interaction (Figure 3.9). ${ }^{[30]}$ TPE-based acid-base complexes (M-/P-TPE-TC-DSA) with helical chirality can self-assemble into supramolecular helical nanofibers in the aggregate state. Interestingly, the CD signal of the nanofibers shows a sign inversion from solution to the solid state. Furthermore, the CPL signals of M-IP-TPE-TC-DSA are significantly magnified after the formation of helical nanofibers. A secondary self-assembly was carried out by the addition of one enantiomer of tartaric acid. The different stimuli response for two enantiomers of tartaric acid, one aroused no CPL change, another one furnishes a larger enhancement due to the further self-assembly of the helices, are showing a great potential for chiral recognition.

Figure 3.9: The helices formation mechanism of $\mathrm{P}-/ \mathrm{M}$ - macrocycles ${ }^{[30]}$ Copyright © The Society of Chemistry 2020

Moreover, Tang and co-workers reported a TPE-derivative where four phenyl rings can be twisted against the $\mathrm{C}=\mathrm{C}$ and oriented in the same direction in the crystal structure, showing CD signals in the solid state ${ }^{[31]}$ Propeller-like TPE can exhibit clockwise (M) or anticlockwise (P) rotational configurations due to the steric hindrance between the phenyl rings. Strategies for constructing chiral macrocycles or cages through immobilizing the conformation of TPE were also developed.

Based on this, the Zheng group firstly reported the immobilization of a propeller-like conformation of TPE units exploring AIE, chiral recognition and enhanced chiroptical properties resulting from the formation of helical chirality (Figure 3.10). ${ }^{[32]}$ TPE is completely fixed by four intramolecular cyclization to form a tetracycle. Such a compound does not only show strong emission in the solid state but also in the solution-state, proving the AIE mechanism of RIR. Left-handed helical (M) or righthanded helical (P) TPE cores was observed from crystal structures in one-unit cell and packed into column structures, showing CPL signals with mirror image.

TPE-4BO

M-TPE-4BO
c)

P-TPE-4BO

Figure 3.10: a) Chemical structure of macrocycle TPE-4BO. Crystal structures of b) M-TPE4BO and c) P-TPE-4BO. ${ }^{[32]}$ Copyright © 2016 American Chemical Society.
a)

(D) rotational change C

c)

d)

e)

Figure 3.11: Synthesis of chiral cubes with different facial rotational and orientational configurations. (A) The TPE motif exhibits two rotational modes (P or M) of the phenyl groups and two orientational modes (horizontal or vertical) of the vinyl group in two dimensions. (B) Rotational and orientational modes of the TPE motif generate 224 types of cubes when they are painted on the six faces of a cube. Nevertheless, only four types of cubes were found in the experimental product (D, E). (C) Schematic of synthesis of organic cubes from six TPE faces and eight triamine vertices. (D, E) Cartoons to show the TPE configurations in the homodirectional cubes ($6 P$)-1 and ($6 M$)-1, and the heterodirectional cubes (4P2M)-2 and (2P4M)-2. ${ }^{[33]}$ Copyright © 2017 American Chemical Society.

3. Tetraphenylethylene-based macrocycles with adjustable CPL

The Cao group reported a chiral TPE-based cube-like organic cage (Figure 3.11). ${ }^{[33]}$ Face-rotating cubes (FRCs) were constructed by the reversible covalent condensation reaction of six tetragonal TPE ligands, perched on each face, and eight amine building blocks, composing the eight vertices. The intramolecular flipping of TPE units is restricted by the conjugation between phenyl rings and imine bonds. The cage chirality is originated from the cubic faces constructed from the rectanglar TPE motifs, which is restricted in different configurations. These FRCs also show CPL properties.

3.2 Synthesis of TPE-based ligands and macrocycles

In this chapter, the formation of binuclear tetraphenylethylene-based chiral salen metallamacrocycles developed during this thesis will be described. The macrocycle \mathbf{R} is formed by the condensation reaction of TPE-based salicylaldehyde ligands and chiral diamines. The complexes $\mathbf{M}_{2} \mathbf{R}(\mathrm{M}=\mathrm{Zn}(I I), \mathrm{Co}(\mathrm{III}))$ were obtained in good yields by metalation of \mathbf{R} with the corresponding acetate salts as the metal source. The formation of $\mathbf{M}_{\mathbf{2}} \mathbf{R}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, DOSY, FT-IR, UV-Vis, and single crystal X-ray diffraction. The aggregation-induced emission of the metal salen complexes will be discussed. The chiral properties of macrocycles are also studied. The assemblies possess good CD and CPL properties. Due to the formation of helical chirality in the aggregated state, the CD and CPL signals of the assemblies are enhanced and reversed compared to the monomer.

The chiral TPE salen macrocycles were synthesized according to the synthetic procedure depicted in Figure 3.12. Firstly, 4,4'-(2,2-diphenylethene-1,1diyl)bis(bromobenzene) (2Br-TPE) was synthesized following a literature procedure in two steps. ${ }^{[34]}$ Two bromines were introduced in the para- position of two gemlocated phenyl rings. The TPE based salicylaldehyde ligand L was obtained by Suzuki coupling reaction of $\mathbf{2 B r}$-TPE and a pinacol ester salicylaldehyde compound in a good yield.

The ligand was treated with excess (1S,2S)-1,2-diphenylethane-1,2-diamine to form the chiral macrocycle by a condensation reaction (Figure 3.12). Acetic acid acts as a catalyst in this reaction. In general, condensation reactions of aldehydes and amines are often performed in methanol or ethanol. ${ }^{[35]}$ Due to the poor solubility of
\mathbf{L} in methanol, this reaction was done in a mixture of anhydrous dichloromethane and methanol ($\mathrm{v} / \mathrm{v}, 1: 1$). The solution became turbid after stirring at room temperature for a few minutes. Pure macrocycle \boldsymbol{s} - \mathbf{R} was obtained after precipitation by addition of diethyl ether to the resulting mixture. The isomer $\boldsymbol{r} \boldsymbol{- R}$ is synthesized following the same procedure by using ($1 R, 2 R$)-1,2-diphenylethane-1,2-diamine. The structure of \mathbf{R} was confirmed by ${ }^{1} \mathrm{H}$ NMR (Figure 3.12). Compared with the free ligand, the proton signals of most of the phenyl rings showed an upfield shift. The proton signal at $\delta=8.34 \mathrm{ppm}$ assigned to the protons He on the imine bonds newly appeared after the reaction, indicating the formation of a Schiff base.

Figure 3.12: Synthesis route of TPE-based chiral macrocycle.

Figure 3.13: stacked ${ }^{1} \mathrm{H}$ NMR spectra of \mathbf{L} and $\mathbf{R}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

3.3 Self-assembly of metal salen macrocycles

As the second most abundant transition metal ion and essential for human health, Zn (II) ions have drawn considerable interest. ${ }^{[36]} \mathrm{Zn}$ (II) complexes supported by Schiff base ligands have been investigated for their intriguing catalytic, photophysical and aggregation properties. ${ }^{[37]}$ Here, a $\mathrm{Zn}(I I)$-based macrocycle was obtained by self-assembly of TPE-based salen macrocycle \mathbf{R} with $\mathrm{Zn}(I I)$.

TPE-R is poorly soluble in DMSO, but when the suspension of 1 equiv. of \mathbf{R} in DMSO- d_{6} was treated with 2.0 equiv. of $\mathrm{Zn}(\mathrm{OAc})_{2}$ at room temperature, the yellow suspension turned into a clear solution after 10 minutes. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the obtained solution, a new set of signals was observed (Figure 3.14). The signal of proton $\mathrm{H} n$ disappeared indicating the self-assembly of \mathbf{R} with $\mathrm{Zn}(\mathrm{II})$. DMSO has a high boiling point which hinders isolation of the obtained macrocycle as a solid. Hence, the same metalation reaction was also performed in CHCl_{3} for 2 h . After evaporating the residual chloroform $\mathbf{Z n}_{2} \mathbf{R}$ was obtained as a yellow powder.

The diffusion-ordered spectroscopy (DOSY) spectrum of $\mathbf{Z n}_{2} \mathbf{R}$ confirmed the formation of a single compound which showed a diffusion coefficient of 9.54×10^{-11} $\mathrm{m}^{2} / \mathrm{s}$ with hydrodynamic radius of $11.5 \AA$ (Figure 3.49). While a hydrodynamic radius of \mathbf{L} was calculated to be $6.95 \AA$, which further confirms the expected larger size of $\mathbf{Z n}_{2} \mathbf{R}$. Further, $\mathbf{C o}(\mathrm{III})_{2} \mathbf{R}$ was also synthesized following the same procedure, but using $\mathrm{Co}(\mathrm{OAc})_{2}$ as a metal source, in a chloroform/acetonitrile mixture. Notably, the kinetically labile Co (II) could be easily converted into kinetically stable state, Co (III), by atmospheric oxidation. ${ }^{[38]}$ For this reason, $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added as electrolyte to balance the whole charge. As a result, the turbid grey-green solution became a clear reddish-brown solution because the change in the oxidation-state changed the solubility and the optical properties of the complex. The ${ }^{1} \mathrm{H}$ NMR spectrum of Co(III) $\mathbf{2}_{2}$ showed broadened signals probably due to some residual paramagnetic $\mathrm{Co}(\mathrm{II})_{2} \mathbf{R}$. The structure of binuclear metal salen macrocycle $\mathbf{C o}(\mathrm{III})_{2} \mathbf{R}$ was confirmed by the ESI-MS showing a prominent peak at m / z 805.7257, corresponding to positively charged complex $\left[\mathrm{Co}(\mathrm{III})_{2} R\right]^{2+}$, supporting the oxidation of Co (II) to Co (III) (Figure 3.15)
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.14: Self-assembly of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ and ${ }^{1} \mathrm{H}$ NMR spectra of \mathbf{R} in CDCl_{3} and $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ in DMSO$d_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure 3.15: ESI-MS spectra of $\mathbf{C o}(\mathbf{I I I})_{2} \mathbf{R}$, with insets showing the calculated and measured isotopic patterns of $\left[\mathrm{Co}(\mathrm{III})_{2} R\right]^{2+}$.

3. Tetraphenylethylene-based macrocycles with adjustable CPL

Fourier transform infrared (FT-IR) spectra were recorded to further confirm the structure of the assembly (Figure 3.16), R displays a characteristic band at 1625 cm^{-1}, corresponding to vibration of $\mathrm{C}=\mathrm{N}$ bonds, indicating the formation of Schiff base. ${ }^{[39,40]}$ The band at $3030 \mathrm{~cm}^{-1}$ is assigned to the stretching vibration of $\mathrm{C}-\mathrm{H}$ of aromatic rings. The band at $2856 \mathrm{~cm}^{-1}$ is attributed to the vibration of the OH group. As for $\mathbf{Z n}_{2} \mathbf{R}$ and $\mathbf{C o}(I I I)_{2} \mathbf{R}$, the bands from the OH groups disappeared, proving the coordination of metal ions.

Figure 3.16: FT-IR spectra of $\mathbf{R}, \mathbf{Z n}_{2} \mathbf{R}$ and $\mathbf{C o}(\mathrm{III})_{2} \mathbf{R}$.

Colorless block-shaped single crystals of $r-\mathbf{Z n}_{2} \mathbf{R}$ and red block-shaped single crystals of \boldsymbol{s} - $\mathbf{C o}$ (III) $)_{2}$ R suitable for X-ray diffraction analysis were obtained by slow vapor diffusion of diethyl ether to DMF and dioxane to acetonitrile solutions of the compounds, respectively.

By crystallographic analysis, the structure of each macrocycle was unambiguously revealed. In the crystal structure of $\boldsymbol{r}-\mathbf{Z n}_{2} \mathbf{R}$ (Figure 3.17 a), the $\mathbf{Z n}$ (II) centers were found to be coordinated by the $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination-sites of the salphen units and one DMF molecule in the apical position forming a square pyramid geometry. The $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination-sites and the Zn (II) centers are located on the same plane. The $\mathrm{Zn} \cdots \cdot \mathrm{Zn}$ distance in the solid-state was estimated to be $13.664 \AA$. In addition, the longest C•••C distance between the two salen-units was calculated to be $25.941 \AA$. The outer phenyl rings of the TPE units were found to have a dihedral angle of 45°. The longest $\mathrm{C} \cdots \mathrm{C}$ distance from one TPE backbone to the other backbone was determined to be $23.981 \AA$. The unit-cell of the crystals was found to have a chiral space group C_{2}. The C-C bonds of the salen units showed a distortion, possessing a chirality center (Figure 3.17 b). Two four-blade propeller-shaped TPE units show P and M configuration, respectively. In the solid state, the metallacycle showed a columnar packing. The TPE-backbone are stacked together and the intramolecular rotational motion seems to be restricted. Porous channels exist in the columnar assembly in the solid-state (Figure 3.17 c).

Figure 3.17: a) Preliminary single crystal X-ray structure of r - $\mathbf{Z n}_{2} \mathbf{R}$. Color code for C: gray, N : blue; O: red; Zn : dark purple) b) Partly structure of salen and c) packing structures of \boldsymbol{r} $\mathbf{Z n}_{2} \mathbf{R}$ in top view (Solvent molecules and hydrogens are not shown for clarity).

3. Tetraphenylethylene-based macrocycles with adjustable CPL

The crystal structure of $\mathbf{C o (I I I)})_{2} \mathbf{R}$ (Figure 3.60) shows that two $\mathrm{Co}(\mathrm{III})$ are coordinated octahedrally by the $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination-sites. The other two coordination sites on the axial position of each Co (III) coordinated by one $\mathrm{H}_{2} \mathrm{O}$ molecule and one $\mathrm{CH}_{3} \mathrm{CN}$ molecule. The unit-cell of the crystals was found to have the $P 2_{1}$ space group. The Co (III) $\cdots \cdot \mathrm{Co}$ (III) distance was estimated to be $14.521 \AA$. Co (III) $)_{2}$ R has a different packing structure as $\mathbf{Z n}_{2} \mathbf{R}$ (Figure 3.60), which is tilted, due to the different coordination geometry of metal ions.

Figure 3.18 Synthesis route of $\mathbf{Z n}_{2} \mathbf{R}^{\prime}$.

As a control to investigate the chiroptical properties of the resulting complex, an achiral macrocycle was also synthesized by the condensation reaction of the TPEbased salicylaldehyde ligand with ethylenediamine (Figure 3.18). After coordinating with $\mathbf{Z n}(I I)$, the obtained assembly $\mathbf{Z n}_{2} \mathbf{R}$ ' structure is confirmed by ${ }^{1} \mathrm{H} N M R$. The ${ }^{1} \mathrm{H}$ NMR signals were assigned with the aid of COSY measurements (Figure 3.42). In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$, a clear single set of signals lacking of the protons $\mathrm{H} k$, are indicating the deprotonation and the formation of the desired $\mathrm{Zn}(\mathrm{II})$ macrocycle. The DOSY spectrum of $\mathbf{Z n}_{2} \mathbf{R}^{\prime}$ confirmed the formation of a single product which showed that all signals from the compound have a diffusion coefficient at $1.11 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$ with a hydrodynamic radius of $9.85 \AA$ (Figure 3.55). Co(III) $)_{2}$ ' was synthesized following the same procedure by using $\mathrm{Co}(\mathrm{OAc})_{2}$ as a metal source in a chloroform/acetonitrile mix solvent (Figure 3.18). The formation of Co(III) $)_{2}$ ' was confirmed by ESI-MS showing a strong peak at $m / z 653.1620$ with a perfect isotopic pattern assignable to $\left.[\mathbf{C o (I I I})_{2} \mathbf{R}^{\prime}\right]^{2+}$ (Figure 3.20).
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.19: Stacked ${ }^{1} \mathrm{H}$ NMR spectra of R ' in CDCl_{3} and $\mathrm{Zn}_{2} \mathrm{R}^{\prime}$ in $\mathrm{DMSO}-\mathrm{d}_{6}(500 \mathrm{MHz}, 298$ K).

Figure 3.20: ESI-MS spectrum of $\left[\mathrm{Co}(\mathrm{III})_{2} \mathbf{R}^{\prime}\right]^{2+}$ with measured and simulated isotopic patterns of $\left[\mathrm{Co}(\mathrm{III})_{2} \mathbf{R}^{\prime}\right]^{2+}$.

The structure of the achiral macrocycle was confirmed by single crystal X-ray structure analysis. A colorless square-shaped single crystal of R' was obtained by slow evaporation of chloroform. The system crystalized in the $P-1$ space group. The $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination-sites were found to be slightly twisting, probably owing to the flexibility of the ethylene chain. The longest $C \cdots C$ distance of two salen-units of the macrocycle was calculated to $18.896 \AA$. Besides, the longest $\mathrm{C} \cdots \mathrm{C}$ distance of the TPE units was found to be around $23.487 \AA$ (Figure 3.21).
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.21: Preliminary single crystal X-ray structures of R' (Solvent molecules and hydrogens are not shown for clarity).

3.4 Chiroptical properties study in solution

Figure 3.22: UV-Vis absorption spectra of a) $\mathbf{L}, \mathbf{R}, \mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ b) $\mathbf{L}, \mathbf{R}^{\prime}, \mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\prime}$ in THF. Spectra were normalized to fraction folded values between 1 and 0 .

UV-Vis absorption measurement of the compounds was performed in THF (Figure 3.22). In the UV-Vis spectrum, ligands displayed a broad absorption band for the π π^{*} transitions centered at 347 nm with a molar absorption coefficient (ε) of $7.53 \times 10^{-}$ ${ }^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. After forming the macrocyclic structure, the maximum absorption band of \mathbf{R} and \mathbf{R} ' shifted to 339 nm and 337 nm , respectively, compared with the free ligand.

Metal-organic macrocycles/cages usually show a red shift compared with corresponding ligands. ${ }^{[41]}$ From the absorption spectra, as reported, we can see that the maximum absorption wavelength of $\mathbf{Z} n_{2} \mathbf{R}^{\prime}$ exhibits an absorption band centered at 343 nm with $\varepsilon=5.18 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, showing a red shift compared with metal free salen macrocycle R'. On the other hand, the maximum absorption wavelength of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ showed a hypsochromic shift comparing to free macrocycle \mathbf{R}. The maximum absorption of $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ shifted from 339 nm to 334 nm . The shoulder at around 400 nm of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ and $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ ' is attributed to the coordination of the salen-motifs with $\mathbf{Z n}(I I) .{ }^{[42]}$

The fluorescence spectra of $\mathbf{L}, \mathbf{R}^{\prime}, \mathbf{R}, \mathbf{Z n}_{\mathbf{2}} \mathbf{R}$ ' and $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ in THF are shown in Figure 3.23 a. As expected, the TPE-based ligand and the metal-free salen-macrocycles have weak emission properties in THF because of nonradiative decay from the rotation of peripheral phenyl rings. After metalation of the macrocycles with Zn (II) ions, the emission of $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ emitted blue light under 365 nm UV light. The emission spectrum of $\mathbf{Z n}_{2} \mathbf{R}$ showed a blue shift from 525 nm to 470 nm and a 16-fold enhancement compared to the metal-free \mathbf{R} probably due to the improved rigidity of the structure after metal-insertion. A similar phenomenon was also observed in the emission spectrum of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ '. $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ ' showed the maximum emission band at 480 nm and 9.5 -fold enhancement compared with the emission intensity of free \mathbf{R}^{\prime}. Emission of $\mathbf{C o}(\mathrm{III})_{2} \mathbf{R}^{\prime}$ is not shown due to complete quenching of the emission properties due to the heavy-atom effect. ${ }^{[43]}$

Figure 3.23: a) Emission spectra and b) CD spectra of ligand and macrocycles (in THF, c_{L} $=2 \times 10^{-5} \mathrm{M}, \mathrm{c}_{\mathrm{R}}=1 \times 10^{-5} \mathrm{M}, \mathrm{c}_{R^{\prime}}=1 \times 10^{-5} \mathrm{M}, \mathrm{c}_{Z n 2 R}=1 \times 10^{-5} \mathrm{M}, \mathrm{c}_{Z n 2 R^{\prime}}=1 \times 10^{-5} \mathrm{M}$, cuvette path length: 1 cm).
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Table 3.1 Fluorescence spectra information of compounds.

	\mathbf{L}	\mathbf{R}^{\prime}	\mathbf{R}	$\mathbf{Z n}_{2} \mathbf{R}$	$\mathbf{Z n}_{2} \mathbf{R}$
$\lambda_{\text {ex }}(\mathrm{nm})$	360	360	360	360	360
$\lambda_{\text {em }}(\mathrm{nm})$	500	525	525	480	470

The CD spectra of the macrocycles in THF assured the chiroptical properties (Figure 3.23b). While achiral L is $C D$ silent, the synthesized macrocycles possessing the chiral salen-coordination sites showed mirror CD signals with Cotton effect at around $\lambda=350 \mathrm{~nm}$ for the $\boldsymbol{s} / \mathbf{r}-\mathbf{R}$ and $\boldsymbol{s} / \mathbf{r}-\mathbf{Z n}_{\mathbf{2}} \mathbf{R}$ enantiomeric couples, assigned to the absorbance bands of the TPE units, indicating that the chiral information from the coordination-sites is successfully transferred to the whole structure. In addition, $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ exhibits a Cotton effect also at 410 nm , which is attributed to the absorption of the chiral $\mathrm{Zn}(I I)$-salen parts.

3.5 The investigation of AIE properties

To gain further insight into the light emitting behavior of the ligand and macrocycles, the fluorescence spectra of compounds in the aggregated state were recorded. Aggregation-induced emission experiments are usually performed in a mixed solution of a good solvent and a poor solvent with progressive increase of the latter.

Efforts to select an appropriate solvent system were therefore made for the examination of the AIE properties. Finally, the solvents system of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ was selected for the investigation of the AIE effect. THF is the good solvent for all compounds used in this chapter, while water is the poor solvent. The addition of water as a poor solvent induced aggregation of the substrates owing to lowering their solubility. After water was added, the absorption band of the compounds showed a bathochromic shift, similar to the J aggregation process already reported. ${ }^{[44]}$

L shows rather weak emission in THF, however, the emission intensity increased over the addition of water. When the fraction of water reached to 80%, the solution became turbid due to the formation of a precipitate. However, the intensity of the emission was dramatically increased by 75 -fold when the water fraction up to 90% in comparison with the one in THF, which is a typical AIE behavior (

Figure 3.63). The emission wavelength showed a blue shift over the addition of water. According to the reported TPE-based AIE mechanism, the perpendicular conformation of the peripheral phenyl rings weakens m-electron conjugation and leads to a blue shift. ${ }^{[45]}$

The emission intensity of \mathbf{R} gradually increases with the addition of water and is around 5 -fold enhanced when the water fraction reached 90%, showing an AIE property (Figure 3.64). The emission wavelength showed a red shift at the beginning of the addition, which is probably caused by an intermolecular charge-transfer (CT) process, which involves to emission at the longer wavelength compared with the luminophores especially in polar solution. ${ }^{[46]}$

In the case of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$, the emission decreased upon the addition of 10% of water, probably due to polarity-induced fluorescence quenching. ${ }^{[47]}$ At the 50% water fraction, the metal-organic macrocycle shows a 2-fold enhanced emission, supporting the persistency of the AIE effect. However, the emission negligibly increased after the formation of a precipitate when the water content exceeded 50\%.

Figure 3.24: Emission spectra of $\mathbf{Z n}_{2} \mathbf{R}$ with increasing water fraction in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixtures. $\left(\lambda_{\text {ex }}=370 \mathrm{~nm}, \mathrm{c}=1 \times 10^{-5} \mathrm{M}\right.$).

The fluorescence quantum yields (Φ_{F}) both in THF and the mixed solvent (THF: $\mathrm{H}_{2} \mathrm{O}$ $=10: 90$) were measured (Figure 3.66). In THF, the internal quantum yields of ligand
3. Tetraphenylethylene-based macrocycles with adjustable CPL
\mathbf{L}, macrocycle \mathbf{R} and metallacycle $\mathbf{Z n}_{\mathbf{2}} \mathbf{R}$ are 1.86, 1.11 and 3.51%, respectively. On the other hand, the improvement of the quantum yields was observed in the mixed solvent system (THF: $\mathrm{H}_{2} \mathrm{O}=10: 90$) to $21.23,2.70$ and 6.02%, respectively, further demonstrating the AIE character of the compounds.

In addition, dynamic light scatting (DLS) data for the \mathbf{R} and $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ with the concentration of $1 \times 10^{-5} \mathrm{M}$, with different content of water, was collected (Figure 3.70). It evidenced the formation of larger aggregates of macrocycles upon increasing fraction of water for both macrocycles.

The chiroptical properties of macrocycles in the aggregate-state were also studied. The CD signal of \mathbf{R} showed a slight decrease over the addition of water at the beginning. When the water content exceeded 50%, the CD signal changed sign and was dramatically enhanced. $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ showed a similar behavior. The solution of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ became turbid when the water was added and showed a reverse CD signal. With the increase of the water fraction, the signal intensity increased. The reversal of chirality can be assumed to be formation of supramolecular helices in the aggregated state as further confirmed by SEM measurement. The detail will be discussed later.

Figure 3.25: CD spectra spectra of (a) $\boldsymbol{s}-\mathbf{R}$ (b) $\boldsymbol{r} \boldsymbol{-} \mathbf{R}$ (c) $\boldsymbol{s}-\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ (d) $\boldsymbol{r}-\mathbf{Z n}_{2} \mathbf{R}$ in THF with different fraction of water ($\mathrm{c}=1 \times 10^{-5} \mathrm{M}$, cuvette path length: 1 cm).

Furthermore, the combination of luminescence and chirality endowed $\mathbf{Z n}_{\mathbf{2}} \mathbf{R}$ with a circularly polarized luminescence (CPL) property (Figure 3.26). CPL performance is generally estimated by the emission dissymmetry factor (glum), which is calculated as glum $=2\left(I_{L}-I_{R}\right) /\left(I_{L}+I_{R}\right)=2 \Delta I / I$, where I_{L} and I_{R} represent the emission intensities of left and right circularly polarized luminescence, respectively. ${ }^{[48]}$ However, it is still a challenge to obtain CPL active materials with high glum. To increase the CPL glum value, one successful strategy is to make the chromophores assemble into an ordered aggregate, which can significantly amplify the CPL intensity up to one order of magnitude. ${ }^{[49]}$
$r-\mathbf{Z n}_{2} \mathbf{R}$ showed a negative CPL signal at 460 nm with glum $=1.2 \times 10^{-3}$ in THF (Figure 3.26). The CPL signal decreased when 25% water was added, presumably due to a mixed contribution of both monomeric $\mathbf{Z n}_{2} \mathbf{R}$ and supramolecular helical aggregates. On the other hand, after the addition of 50% of water, the CPL signal

3. Tetraphenylethylene-based macrocycles with adjustable CPL

was inversed and enhanced with a glum value of -2.1×10^{-2}. Meanwhile, the emission wavelength shifted to the shorter wavelength, indicating of a conformation change in the aggregate state (Figure 3.26 b). Unfortunately, CPL analysis of \mathbf{R} was hampered by the low sample stability due to the dynamic imine bonds.

Figure 3.26: CPL spectra of a) $\boldsymbol{r}-\mathbf{s}-\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ in THF b) $\boldsymbol{r} \boldsymbol{-} \mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ in THF and $\mathrm{THF}: \mathrm{H}_{2} \mathrm{O}=50: 50$.

Analogous results, but with mirror image CPL spectra, are obtained with $\boldsymbol{s}-\mathbf{Z n}_{2} \mathbf{R}$ in pure THF or in THF/water, which showed a negative CPL signal at 460 nm with glum $=-1.2 \times 10^{-3}$ in THF and boosted the glum up to 2×10^{-2} after the addition of 50% water (Figure 3.68, Figure 3.69). The inversion and increasement of the CD and the CPL signals upon aggregation suggest the formation of higher ordered supramolecular structures. To prove this and gain further insight into the morphological features of the aggregated species, we performed Scanning Electron Microscopy (SEM) analysis (Figure 3.27). Samples of chiral macrocycles were prepared from $1 \times 10^{-5} \mathrm{M}$ solution in THF or THF: $\mathrm{H}_{2} \mathrm{O}=50: 50$. Sample of achiral ring \mathbf{R}^{\prime} was prepared from $1 \times 10^{-4} \mathrm{M}$ THF solution. At first, both \mathbf{R} and $\mathbf{Z n} \mathbf{R} \mathbf{R}$ in solely THF as solvent, only showed dispersed spheres, without aggregation into ordered aggregates. However, as previously reported, introducing chiral unit into AIEgens can form helical supramolecular self-assemblies. ${ }^{[50]}$ SEM images of \mathbf{R} from a THF/water (50:50, v: v) solvent mixture show the formation of helical fibers with a length of from 200 nm to $2 \mu \mathrm{~m}$, approximately 120 nm wide and 35 nm thicknesses. Helices with left (M) - and right (P) - handedness were observed from \boldsymbol{s} - \mathbf{R} and $\boldsymbol{r}-\mathbf{R}$,
respectively with a twist half period of approximately 160 nm and 120 nm , respectively (Figure 3.27 b). As a control, achiral R' was also prepared for the SEM measurement. As expected, while it forms nanofibers, the achiral species aggregates in non-helical structures (Figure 3.72 e-f). SEM images of $\mathbf{Z n}_{2} \mathbf{R}$ from a THF/water (50:50, v: v) solvent mixture also proved the formation of aggregates (Figure 3.27).

Figure 3.27: bSEM images of \mathbf{R} a) in THF b) in THF: $\mathrm{H}_{2} \mathrm{O}=50: 50$, and $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ in c) THF d) in THF: $\mathrm{H}_{2} \mathrm{O}=50: 50$.

3.6 Conclusion and outlook

In conclusion, two enantiomers of a chiral macrocycles and an achiral macrocycle based on a TPE structure and a salen coordination-unit, were designed and synthesized by the condensation reaction of salicylaldehyde ligand and diamine building blocks. Upon the addition of $\mathbf{Z n}(I I)$, the binuclear metallacycles $\boldsymbol{r} \boldsymbol{-} / \boldsymbol{s} \mathbf{-} \mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ and achiral $\mathbf{Z n}_{2} \mathbf{R}$ ' were formed. The structures are characterized by ${ }^{1} \mathrm{H}$ NMR, DOSY, ESI-MS, single crystal X-ray structure analysis, FT-IR, UV-Vis, Fluorescence, CD, DLS, SEM and CPL analysis.

3. Tetraphenylethylene-based macrocycles with adjustable CPL

The chiroptical properties and AIE effect of ligand and macrocycles were studied in pure THF or in a THF/water mixture. Due to coordination-induced emission enhancement and AIE property, $\mathbf{Z n}_{2} \mathbf{R}$ does not only show strong emission in solution but also in the aggregate state. Helical chirality was generated in the aggregated state, which is supported by CD, CPL and SEM measurements, resulting in the amplification and reversal of the chiroptical properties. In addition, formation of supramolecular helices with $r / s-\mathbf{Z n}_{2} \mathbf{R}$ results in reverse and increasement of the CPL properties of one order of magnitude, with the glum value changing from ± 1.2 $\times 10^{-3}$ to $\pm 2.1 \times 10^{-2}$. This strategy shows how a modular approach can be used to incorporate multiple properties in a simple synthetic way. Here, the AIE behavior of a TPE chromophore is combined with chirality coming from the salen-unit and finally introducing Zn (II) cations allows a boost of the emission properties. The final properties result from a synergistic effect of all the selected building blocks, allowing to self-assemble a compound with strong emission and switchable chiroptical properties with potential application for chiral sensing and optical displays.

3.7 Experimental part

3.7.1 Materials

Unless otherwise stated, all chemicals and solvents were purchased from commercial companies (Abcr, Sigma Aldrich, Acros Organics, VWR and Chempur) and used as received. (1S,2S)-1,2-diphenylethane-1,2-diamine and (1R,2R)-1,2-diphenylethane-1,2-diamine were recrystallized from hexane.

3.7.2 General Methods
 NMR

NMR spectroscopic data was measured on the spectrometers Bruker AV 500 Avance NEO and Bruker AV 600 Avance III HD. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are reported in ppm on the δ scale relative to proton resonance resulting from incomplete deuteration of the solvents $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}, 77.16 \mathrm{ppm}\right.$, DMSO$\left.d_{6}: 2.5 \mathrm{ppm}, 39.52 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}: 1.94 \mathrm{ppm}, 118.26 \mathrm{ppm}\right)$. The chemical shift δ is given in ppm, the coupling constants J in Hz . The following abbreviations are used to describe signal multiplicity for ${ }^{1} \mathrm{H}$ NMR spectra: s : singlet, d : doublet, t : triplet, dd: doublet of doublets, m: multiplet. All spectra were recorded in standard 5 mm NMR tubes at 298 K if not stated otherwise.

DOSY

${ }^{1} \mathrm{H}$ DOSY spectra were recorded with a dstebpgp3s pulse sequence with diffusion delays D20 of 0.09-0.14 s and gradient powers P30 of 900-2500 μ s for each species optimized. The hydrodynamic radius was calculated according to Stokes-Einstein equation:

$$
\mathrm{D}=\frac{\mathrm{k}_{B} \mathrm{~T}}{6 \pi \eta \mathrm{r}_{H}}
$$

Where D is coefficient constant, k_{B} is the Boltzmann constant, T is the absolute temperature, η is the viscosity of solvent, r_{H} is the hydrodynamic radius.

ESI-MS

Electrospray ionization mass spectrometry (ESI-MS) experiments were performed on ESI-timsTOF (ESI-trapped ion mobility-time of flight) mass spectrometer by Bruker, equipped with and ESI source (positive/negative mode). An Agilent ESI low concentration tuning mix has been used for calibration of tims and TOF units. Mass

3. Tetraphenylethylene-based macrocycles with adjustable CPL

spectrometry data is given as mass/charge ratio (m / z) as well as the relative intensity with regard to the base peak $(I=100)$.

X-Ray Analysis

Bruker D8 venture (in-house)

Data collection for single crystal X-ray diffraction was performed on a Bruker D8 venture with a four-axle goniometer in к-geometry, equipped with CuKa and MoKa Incoatec microfocus sources (l $1 \mu \mathrm{~s} 3.0$) and a photon II detector. The crystal was covered with inert NVH oil and placed on the 0.2 mm nylon loop. The sample was cooled down to 100(2) K utilizing an Oxford Cryostream 800.

P11@DESY (Synchrotron)

Data collection for single crystal X-ray diffraction was performed on a one-axle goniometer equipped with a Pilatus 6M fast detector by Dectris at the macromolecular beamline PXI, Petra III, DESY, Hamburg. Therefore, a wavelength of $\lambda=0.6888 \AA$ has been set on a nitrogen cooled double monochromator and the sample has been cooled to 80(2) K utilizing an Oxford Cryostream 800.

UV-Vis

UV-vis spectra were recorded on a DAD HP-8453 UV-Vis spectrometer. Cuvette path length 10 mm .

Fluorescence

Fluorescence spectra were recorded on a JASCO FP-8300 fluorimeter equipped with a (150W) Xe lamp as light source. Cuvette path length 10 mm in emission direction.

Internal fluorescence Quantum Yield (QY) Φ_{F} is the number of photons for the fluorescence emitted from the sample divided by the number of photons for the excitation light absorbed by the sample.

$$
\Phi_{F}=\frac{\text { emission photon number }}{\text { absorbent photon number }}
$$

QY for fluorescence were determined on a Jasco FP-8300 fluorimeter with accessory of JASCO ILF-835 integrating sphere. Cuvette path length 3 mm was used. The absorption of the samples is around 0.05-0.1. All the fluorescence spectra
3. Tetraphenylethylene-based macrocycles with adjustable CPL
of samples and solvents were recorded with same slit widths. The integrated emission area was divided by integrated absorbed area to get internal fluorescence QY.

FT-IR

Fourier Transform Infrared (FT-IR) spectra were measured on Perkin Elmer Spectrum Two spectrometer in the 400-4,000 cm^{-1} spectral region.

CD

Circular dichroism spectra were recorded on an Applied Photophysics Chirascan qCD Spectrameter with a temperature-controlled cuvette holder. The spectra were background-corrected and smoothed with a window size of 5 .

CPL

Circularly polarized luminescence measurements were performed on a JASCO CPL-300 spectrophotometer equipped with a (150W) Xe lamp as light source. CPL spectra were recorded with excitation/emission bandwidth of 15 nm and emission bandwidth of 15 nm and averaged over 20 spectra.

DLS

Dynamic light scattering experiments were performed on a Malvern Zetasizer ZS nano instrument, with a single 173° scattering angle, and at $25^{\circ} \mathrm{C}$ temperature.

STEM

STEM measurements were done using a JEOL JEM-2800 with Schottky field emission cathode operated at 200 kV . SEM detectors are equipped for STEM images. Dual SDD X-ray detectors are used to capture EDS signals for elemental mapping with solid angle of 0.95 srad, and with 133 eV of spectral resolution.

3.7.3 Synthesis of the macrocycles

Figure 3.28: synthesis route of 1

Pinacol ester salicylaldehyde compound 1: the synthesis of 1 was carried out according to the literature procedure. ${ }^{[51]}$ 4-bromosalicylaldehyde ($1.0 \mathrm{~g}, 4.97 \mathrm{mmol}$), $\operatorname{Pin}_{2} \mathrm{~B}_{2}(1.52 \mathrm{~g}, 5.97 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(203 \mathrm{mg}, 0.249 \mathrm{mmol})$, and $\mathrm{KOAc}(1.46 \mathrm{~g}, 14.92 \mathrm{mmol})$ were combined in a 100 mL Schlenk tube, 15 mL anhydrous 1,4-dioxane were added. The mixture was degassed via freeze-thaw cycles and then heated at $85^{\circ} \mathrm{C}$ under N_{2} atmosphere for 5 h . After cooling to room temperature, the solvent was removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. The crude product was purified by column chromatography (dichloromethane: pentane $=1: 1$) to provide a white solid as aim product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.83(\mathrm{~s}, 1 \mathrm{H}), 9.93(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta 197.16,160.94,132.96,125.72,124.20,122.36$, 84.78, 25.21.

Figure 3.29: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $1\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure $3.30:{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}\left(151 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure 3.31: Synthesis route of 1

Synthesis of compound 2Br-TPE:
2Br-TPE was synthesized in two steps by following a reported procedure. ${ }^{[34]}$
Diphenylmethane ($2.0 \mathrm{~g}, 11.9 \mathrm{mmol}$) and anhydrous tetrahydrofuran 15 mL were mixed in a 100 mL Schlenk tube and stirred under argon at 0°. A 2.5 M solution of n-butyllithium ($4.8 \mathrm{~mL}, 762 \mathrm{mg}, 12.88 \mathrm{mmol}$) in hexane was added into the Schlenk tube. After stirring for 1 h at 0°, 4-(4-bromophenyl) benzophenone ($3.24 \mathrm{~g}, 9.5 \mathrm{mmol}$) was added and the reaction mixture was stirred for 10 h and the temperature to rise

3. Tetraphenylethylene-based macrocycles with adjustable CPL

gradually to room temperature. Then the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ aq. The mixture was extracted with DCM. The organic layer was collected and dry over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and crude product was obtained as yellow oil. The crude product ($2.0 \mathrm{~g}, 3.94 \mathrm{mmol}$) was dissolved in toluene, then 2 equiv p-toluene sulfonic acid was added, and the mixture was refluxed overnight at $110^{\circ} \mathrm{C}$ under argon. After cooling to room temperature, the mixture was concentrated and the crude product was purified by column chromatography and pentane as eluent to obtain the product as a white solid (1.43 g, yield 73.9%).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23$ (d, J= $8.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.15 -7.11 (m, 6H), 7.00 (dd, $\mathrm{J}=6.6,3.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta 143.02,142.18,138.36,132.94,131.14,131.00$, 127.92, 126.89, 120.71.

Figure 3.32: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 B r}$-TPE $\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure 3.33: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2}\left(151 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Synthesis of L:
2Br-TPE ($283 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0$ equiv.), pinacol ester $1(360 \mathrm{mg}, 1.44 \mathrm{mmol}, 2.5$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(66.7 \mathrm{mg}, 0.058 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(440 \mathrm{mg}, 2.08 \mathrm{mmol}$, 3.6 equiv.) were mixed in mixture solvents of a 1,4-dioxane: $\mathrm{H}_{2} \mathrm{O}=4: 1(20 \mathrm{~mL})$. The mixture was degassed (via freeze-thaw cycles) and then heated to $95^{\circ} \mathrm{C}$ under N_{2} atmosphere for 48 h . After cooling to room temperature, the solvents were removed under vacuum. Aqueous $\mathrm{HCl}(2 \mathrm{M}, 50 \mathrm{~mL})$ was added and the mixture extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$, organic phases combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right.$: Pentane $\left.=2: 1\right)$ to provide the product as a bright yellow solid (212 mg , yield 64\%).
${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO-d6): $\delta 10.83$ (s, 2H), 10.25 (s, 2H), 7.71 (d, J= $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (d, J= $8.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.24 (dd, J= 8.1, 1.4 Hz, 2H), $7.20-7.12$ (m, 12H), 7.05 (dd, $\mathrm{J}=8.2,1.3 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d6): $\delta 191.26,161.00,146.99,143.58,142.96,141.75$, 139.24, 136.60, 131.55, 130.68, 129.99, 127.99, 126.88, 126.37, 121.23, 117.89, 114.58.

Figure 3.34: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.

Figure $3.35:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L}\left(151 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$.

Synthesis of $\boldsymbol{s}-\mathbf{R}$:

Ligand L ($11.8 \mathrm{mg}, 0.021 \mathrm{mmol}, 1.0$ equiv.) and (1S,2S)-(-)-1,2-diphenyl-1,2ethanediamine ($5.25 \mathrm{mg} .0 .025 \mathrm{mmol}, 1.2$ equiv.) were dissolved in 2 mL DCM: $\mathrm{MeOH}=1: 1$. After addition of $\mathrm{CH}_{3} \mathrm{COOH}(20 \mu \mathrm{~L})$, the solution was stirred at room temperature for 10 h . Then, the solvent was removed under reduced pressure. The residue was washed with anhydrous methanol ($3 \times 1 \mathrm{~mL}$) and dried in vacuum to provide the product as yellow powder in quantitative yield.
$\boldsymbol{r}-\mathbf{R}$ was synthesised following the same procedure by using $(1 R, 2 R)-(-)-1,2-$ diphenyl-1,2-ethanediamine.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.31$ (s, 4H), 8.34 (s, 4H), 7.32 (d, J= $8.4 \mathrm{~Hz}, 8 \mathrm{H}$), 7.21 -7.17 (m, 20H), $7.14-7.09$ (m, 20H), $7.07-7.05(\mathrm{~m}, 16 \mathrm{H}), 6.99$ (dd, J= 8.0, 1.7 Hz, $4 \mathrm{H}), 4.68(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta 166.14,161.41,145.08,143.93,141.92,140.21$, 139.66, 138.14, 132.35, 132.20, 131.67, 128.76, 128.25, 128.13, 127.97, 126.97, 126.69, 117.86, 117.79, 80.73, 30.06.

HR ESI-MS: Calculated for $\mathrm{C}_{108} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{4}, \quad \mathrm{~m} / \mathrm{z} 1498.6285[\mathrm{M}+\mathrm{H}]^{+}$,
found: 1498.6285
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.36: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{R}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure $3.37:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{R}\left(151 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.38: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY spectrum of $\mathbf{R}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure 3.39: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of $\mathbf{R}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

L

R'

Figure 3.40: Synthesis route of R'

Synthesis of R':
Ligand $\mathbf{L}(10 \mathrm{mg}, 0.017 \mathrm{mmol}, 1.0$ equiv.) and ethanediamine ($1.26 \mathrm{mg}, 0.021 \mathrm{mmol}$, 1.2 equiv.) were dissolved in 2 ml DCM: $\mathrm{MeOH}=1: 1$. Then the solution was stirred at room temperature for 10 h . Then, the precipitate was collected by centrifugation and washed with anhydrous methanol ($3 \times 1 \mathrm{~mL}$). The product was dried in vacuum to provide the product as yellow powder in quantitative yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.15(\mathrm{~s}, 4 \mathrm{H}), 8.29(\mathrm{~s}, 4 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 8 \mathrm{H})$, 7.19 (d, J = $8.0 \mathrm{~Hz}, 4 \mathrm{H}$), $7.13-7.09(\mathrm{~m}, 16 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 8 \mathrm{H}), 7.06-7.04$ (d, 8 H), 7.02 (dd, $J=8.0,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.98(\mathrm{~s}, 8 \mathrm{H})$.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.41: ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{R} ' $\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure $3.42:{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{R}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure 3.43: Self-assembly of $\boldsymbol{s}-\mathrm{Zn}_{2} \mathbf{R}$
\mathbf{R} (1 equiv.) was dissolved in CHCl_{3}, stock solution of [$\left.\mathrm{Zn}(\mathrm{OAc})_{2}\right]$ ($20 \mathrm{mg} / \mathrm{mL}$, 2 equiv.) in DMSO was added and stir at room temperature for 2 h . After the reaction, solvents were removed and the crude product was dissolved in a minimal amount of DCM and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to give the product (90% yield) as yellow solid.
${ }^{1} \mathrm{H}$ NMR: (600 MHz , DMSO-d6) $\delta 8.25$ ($\mathrm{s}, 4 \mathrm{H}$), $7.44-7.41$ (m, 8H), $7.40(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 8 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}=8.0,6.4 \mathrm{~Hz}, 8 \mathrm{H})$, $7.19-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 20 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.55(\mathrm{dd}, \mathrm{J}=8.0$, $1.8 \mathrm{~Hz}, 4 \mathrm{H}$), 5.11 (s, 4H).
${ }^{13} \mathrm{C}$ NMR: (176 MHz, DMSO- d_{6}) $\delta 171.24,169.27,144.80,143.51,142.81,141.23$, 140.73 , 139.34, 138.77, 135.56, 131.74, 130.84, 128.53, 128.05, 127.74, 127.51, 126.83, 126.26, 120.83, 118.50, 111.38, 72.40.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.44: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n} \mathbf{2} \mathbf{R}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.

Figure 3.45: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n} \mathbf{2} \mathbf{R}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure 3.46: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Z n} \mathbf{2} \mathbf{R}\left(500 \mathrm{MHz}\right.$, 298 K , DMSO- d_{6}).

Figure 3.47: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{Z n}_{2} \mathbf{R}\left(500 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.48: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ NOESY spectrum of $\mathbf{Z n}_{2} \mathbf{R}\left(500 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$.

Figure 3.49: DOSY spectrum of $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$. Diffusion coefficient: D $=9.54 \times 10^{-11} \mathrm{~m}^{2} \mathrm{~s}^{-1}, r=11.47 \AA$.

Figure 3.50: Self-assembly of $\mathbf{Z n}_{2} \mathbf{R}$ '.
\mathbf{R} (1 equiv.) was dissolved in CHCl_{3}, a stock solution of $\left[\mathrm{Zn}(\mathrm{OAc})_{2}\right](20 \mathrm{mg} / \mathrm{mL}, 2$ equiv.) in DMSO was added and stir at room temperature for 2 h . After the reaction, solvents were removed and the crude product was dissolved in a minimal amount of DCM and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to give the product as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 8.47$ (s, 4H), 7.41 (d, J = $8.2 \mathrm{~Hz}, 4 \mathrm{H}$), 7.21 (dd, J = $7.6,4.1 \mathrm{~Hz}, 12 \mathrm{H}), 7.09(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 16 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, 4 H), 6.61 (dd, $J=8.0,1.8 \mathrm{~Hz}, 4 \mathrm{H}$), $3.76(\mathrm{~s}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): $\delta 170.94,167.58,144.04,143.58,142.71,140.64$, $139.42,138.78,135.22,131.75,130.88,128.05,126.19,120.71,118.56,111.10$, 55.59.

Figure 3.51: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Zn}_{2} \mathbf{R}^{\prime}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.52: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{Zn}_{2} \mathbf{R}^{\prime}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure 3.53: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{Z n R}{ }^{\prime}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.54: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ NOESY spectrum of $\mathbf{Z n R}{ }^{\prime}\left(600 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- d_{6}).

Figure 3.55: DOSY spectrum of ZnR' ($600 \mathrm{MHz}, 298 \mathrm{~K}$, DMSO- d_{6}). Diffusion coefficient: D $=1.11 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, r=9.84 \AA$.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.56: Self-assembly of $\mathbf{C o (I I I)})_{2} \mathbf{R}$ and $\left.\mathbf{C o (I I I)}\right)_{2} \mathbf{R}$,
\mathbf{R} (1 equiv.) was dissolved in CHCl_{3}, a stock solution of [Co(OAc) ${ }_{2}$] (20 mg/mL, 2 equiv.) in DMSO was added and stirred at room temperature for 2 h . After stirring for 15 min under aerobic condition, the $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added and stirred for 6 h at room temperature (Figure 3.56). After the reaction, solvents were removed and the crude product was dissolved in a minimal amount of DCM and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to give the product as dark red solid.

Figure 3.57 : ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{C o}(\mathrm{III})_{2} \mathbf{R}$ and $\mathbf{C o}(\mathrm{III})_{2} \mathbf{R}^{\prime}$ in $\mathrm{CD}_{3} \mathrm{CN}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure 3.58: ESI-MS of $\mathbf{C o}(\mathrm{III})_{2} \mathbf{R}$ and $\mathrm{Co}(\mathrm{III})_{2} \mathbf{R}^{\prime}$.

3.7.4 Crystallography information

The X-ray structures were measured by Dr. Jacopo Tessorolo and Dr. Julian Holstein, solved and preliminarily refined by Dr. Julian Holstein and Shota Hasegawa.

Crystal structure of R'

Colorless square shape single crystal of \mathbf{R}^{\prime} was obtained by slow evaporation of chloroform from NMR tubes. A single crystal in mother liquor was mounted onto a 0.2 mm nylon loop using NVH oil. Data were collected in-house on a Bruker D8

3. Tetraphenylethylene-based macrocycles with adjustable CPL

Venture diffractometer equipped with an INCOATEC micro focus sealed tube (lus 3.0) using Cu_{α} for radiation at 100 K . The resolution was cut off at $1.60 \AA$ after which the signal to noise ratio has dropped below $\mathrm{I} / \sigma(\mathrm{I})<2.0$. The data was integrated with APEX3. The structures were solved by intrinsic phasing/direct methods using SHELXT ${ }^{[52]}$ and refined with SHELXL $(2018 / 2){ }^{[53]}$ for full-matrix leastsquares routines on F^{2} and ShelXIe ${ }^{[54]}$ as a graphical user interface. The SQUEEZE ${ }^{[55]}$ method provided by the program PLATON ${ }^{[56]}$ was used to improve the contrast of the electron density map the structure.

Figure 3.59: The packing structures of \mathbf{R} ' in top view (Solvent molecules and hydrogens are not shown for clarity).

Crystal structure of $r-\mathrm{Zn}_{2} \mathrm{R}$ and $s-\mathrm{Co}(\mathrm{III})_{2} \mathbf{R}$
Colorless square-shaped single crystal of $\boldsymbol{r}-\mathbf{Z} n_{2} \mathbf{R}$ and red block single crystal \boldsymbol{s} $\mathbf{C o}$ (III) $\mathbf{2}_{2}$ were obtained by slow diffusion of diethyl ether into DMF solution. A single crystal in mother liquor was mounted onto a 0.2 mm nylon loop using NVH oil. Data were collected on macromolecular beamline PXI, Petra III, DESY, Hamburg. Therefore, a wavenumber of $\lambda=0.6888 \AA$ has been set on a nitrogen cooled double monochromator and the sample has been cooled to $80(2) \mathrm{K}$ utilizing an Oxford Cryostream 800. The data were integrated and reduction with XDS. ${ }^{[57]}$ The structures were solved by intrinsic phasing/direct methods using SHELXT ${ }^{[52]}$ and refined with SHELXL (2018/2) ${ }^{[53]}$ for full-matrix least-squares routines on F^{2} and ShelXIe ${ }^{[54]}$ as a graphical user interface. The SQUEEZE ${ }^{[55]}$ method provided by the
program PLATON ${ }^{[56]}$ was used to improve the contrast of the electron density map of the structure.

Figure 3.60: a) The preliminary single crystal X-ray structure and b) the packing structures of \boldsymbol{s} - $\mathbf{C o (I I I})_{2} \mathbf{R}$ in top and c) in side view (Solvent molecules and hydrogens are not shown for clarity).

3.7.5 UV-vis spectra

Figure 3.61: UV-Vis spectra of compounds performed in THF ($\mathrm{C}_{\mathrm{L}}=2 \times 10^{-5} \mathrm{M}, \mathrm{C}_{R}=1 \times 10^{-5}$ $\mathrm{M}, \mathrm{C}_{R^{\prime}}=1 \times 10^{-5} \mathrm{M}, \mathrm{C}_{Z n 2 R}=1 \times 10^{-5} \mathrm{M}, \mathrm{C}_{Z n 2 R^{\prime}}=1 \times 10^{-5} \mathrm{M}$, cuvette path length: 1 cm).

AIE experiments were performed in the mixture solution of THF and water with different fraction of water.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.62: Normalized absorption spectra of compounds in THF: $\mathrm{H}_{2} \mathrm{O}=50: 50$.
Table 3.1. Absorption of compounds in THF

	L	R	R^{\prime}	$\mathrm{Zn}_{2} \mathrm{R}$	$\mathrm{Co}(\mathrm{II})_{2} \mathrm{R}$	$\mathrm{Zn}_{2} \mathrm{R}^{\prime}$
$\lambda_{\max } / \mathrm{nm}$	347	339	337	334	343	343
Abs	0.75297	1.09278	1.1296	0.9869	0.91231	0.51853
$\varepsilon /\left(\mathrm{M}^{1} \mathrm{~cm}^{1}\right)$	75297	109278	112960	98690	91231	51853

3.7.6 Fluorescence spectra

Figure 3.63: Emission spectra of \mathbf{L} in mixture solution of THF and $\mathrm{H}_{2} \mathrm{O}$ with different content of water.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.64: Emission spectra of \mathbf{R} in mixture solution of THF and $\mathrm{H}_{2} \mathrm{O}$ with different content of water.

Figure 3.65: Emission spectra of $\mathbf{Z n}_{2} \mathbf{R}$ in mixture solution of THF and $\mathrm{H}_{2} \mathrm{O}$ with different content of water.

3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.66: Quantum yield spectra of $\mathbf{L}, \mathbf{R}, \mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ and $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ ' in THF and THF: $\mathrm{H}_{2} \mathrm{O}=10: 90$, respectively.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Table 3.2 Luminescent quantum yield of compounds

	Φ_{F} (in THF)	$\Phi_{\text {F }}$ (in THF: $\mathrm{H}_{2} \mathrm{O}=10: 90$)
\mathbf{L}	1.86	21.23
\mathbf{R}	1.11	2.70
$\mathbf{Z n}_{\mathbf{2}} \mathbf{R}$	3.51	6.02
$\mathbf{Z n}_{\mathbf{2}} \mathbf{R}^{\prime}$	3.38	3.51

3.7.7 CD spectra

 THF ($\mathrm{c}=1 \times 10^{-5} \mathrm{M}$).
3. Tetraphenylethylene-based macrocycles with adjustable CPL

3.7.8 CPL spectra

Figure 3.68: CPL spectra of $\boldsymbol{s}-/ \mathbf{r}-\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$ in THF and in $\mathrm{THF}: \mathrm{H}_{2} \mathrm{O}=50: 50$.

Figure 3.69: glum spectra of $\boldsymbol{s}-/ \mathbf{r}-\mathbf{Z n}_{2} \mathbf{R}$ a) in THF and b) in THF: $\mathrm{H}_{2} \mathrm{O}=50: 50\left(\mathrm{c}=1 \times 10^{-5}\right.$ M).
3. Tetraphenylethylene-based macrocycles with adjustable CPL

3.7.9 DLS and SEM

Size Distribution by Intensity

Figure 3.70: DLS of \mathbf{R} and $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ in THF and water with different diffraction of water.

Figure 3.71: SEM image of $\boldsymbol{s}-\mathbf{R}$ and $\boldsymbol{s}-\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}$ in THF.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.72: SEM images of compounds in THF: $\mathrm{H}_{2} \mathrm{O}=50: 50$.
3. Tetraphenylethylene-based macrocycles with adjustable CPL

Figure 3.73: EDS mapping of \boldsymbol{s} - \mathbf{R} with the element mapping of $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Zn}$

Figure 3.74: EDS mapping of $\boldsymbol{s}-\mathrm{Zn}_{2} \mathbf{R}$ with the element mapping of $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Zn}$.

3. Tetraphenylethylene-based macrocycles with adjustable CPL

3.8 References

[1] R. Hu, N. L. C. Leung, B. Z. Tang, Chem. Soc. Rev. 2014, 43, 4494-4562.
[2] Z. Zhao, J. W. Y. Lam, B. Z. Tang, J. Mater. Chem. 2012, 22, 23726-23740.
[3] J. Liu, H. Zhang, L. Hu, J. Wang, J. W. Y. Lam, L. Blancafort, B. Z. Tang, J. Am. Chem. Soc. 2022, 144, 7901-7910.
[4] Y. Xu, L. Chen, Z. Guo, A. Nagai, D. Jiang, J. Am. Chem. Soc. 2011, 133, 17622-17625.
[5] N. B. Shustova, T.-C. Ong, A. F. Cozzolino, V. K. Michaelis, R. G. Griffin, M. Dincă, J. Am. Chem. Soc. 2012, 134, 15061-15070.
[6] H.-T. Feng, Y.-X. Yuan, J.-B. Xiong, Y.-S. Zheng, B. Z. Tang, Chem. Soc. Rev. 2018, 47, 74527476.
[7] C. Mu, Z. Zhang, Y. Hou, H. Liu, L. Ma, X. Li, S. Ling, G. He, M. Zhang, Angew. Chem. Int. Ed. 2021, 60, 12293-12297.
[8] B. Kilbas, S. Mirtschin, R. Scopelliti, K. Severin, Chem. Sci. 2011, 3, 701-704.
[9] Y.-X. Yuan, J.-H. Jia, Y.-P. Song, F.-Y. Ye, Y.-S. Zheng, S.-Q. Zang, J. Am. Chem. Soc. 2021, 144, 5389-5399.
[10] A. Fürstner, G. Seidel, C. Kopiske, C. Krüger, R. Mynott, Liebigs. Ann. 1996, 1996, 655-662.
[11] S. Song, Y.-S. Zheng, Org. Lett. 2013, 15, 820-823.
[12] C. Zhang, Z. Wang, S. Song, X. Meng, Y.-S. Zheng, X.-L. Yang, H.-B. Xu, J. Org. Chem. 2014, 79, 2729-2732.
[13] J.-B. Xiong, Y.-X. Yuan, L. Wang, J.-P. Sun, W.-G. Qiao, H.-C. Zhang, M. Duan, H. Han, S. Zhang, Y.-S. Zheng, Org. Lett. 2018, 20, 373-376.
[14] H.-T. Feng, S. Song, Y.-C. Chen, C.-H. Shen, Y.-S. Zheng, J. Mater. Chem. C. 2013, 2, 23532359.
[15] K. Li, G. Jiang, F. Zhou, L. Li, Z. Zhang, Z. Hu, N. Zhou, X. Zhu, Polym. Chem. 2017, 8, 26862692.
[16] C. Zhang, Z. Wang, L. Tan, T. Zhai, S. Wang, B. Tan, Y. Zheng, X. Yang, H. Xu, Angew. Chem. Int. Ed. 2015, 54, 9244-9248.
[17] J. Jiao, Z. Li, Z. Qiao, X. Li, Y. Liu, J. Dong, J. Jiang, Y. Cui, Nat. Commun. 2018, 9, 4423.
[18] N. B. Shustova, B. D. McCarthy, M. Dincă, J. Am. Chem. Soc. 2011, 133, 20126-20129.
[19] M. Zhang, G. Feng, Z. Song, Y.-P. Zhou, H.-Y. Chao, D. Yuan, T. T. Y. Tan, Z. Guo, Z. Hu, B.
Z. Tang, B. Liu, D. Zhao, J. Am. Chem. Soc. 2014, 136, 7241-7244.
[20] S. Saha, I. Regeni, G. H. Clever, Coord. Chem. Rev .2018, 374, 1-14.
[21] Y. Li, J. Zhang, H. Li, Y. Fan, T. He, H. Qiu, S. Yin, Adv. Opt. Mater. 2020, 8, 1902190.
[22] X. Yan, T. R. Cook, P. Wang, F. Huang, P. J. Stang, Nat. Chem. 2015, 7, 342-348.
[23] Z. Zhou, X. Yan, M. L. Saha, M. Zhang, M. Wang, X. Li, P. J. Stang, J. Am. Chem. Soc. 2016, 138, 13131-13134.
[24] L.-J. Chen, Y.-Y. Ren, N.-W. Wu, B. Sun, J.-Q. Ma, L. Zhang, H. Tan, M. Liu, X. Li, H.-B. Yang, J. Am. Chem. Soc. 2015, 137, 11725-11735.
[25] P. Das, A. Kumar, P. Howlader, P. S. Mukherjee, Chem. Eur. J. 2017, 23, 12565-12574.
[26] T. Zhang, G.-L. Zhang, Q.-Q. Yan, L.-P. Zhou, L.-X. Cai, X.-Q. Guo, Q.-F. Sun, Inorg Chem 2017, 57, 3596-3601.
[27] Q.-Q. Yan, S.-J. Hu, G.-L. Zhang, T. Zhang, L.-P. Zhou, Q.-F. Sun, Molecules 2018, 23, 363.
[28] H. Li, X. Zheng, H. Su, J. W. Y. Lam, K. S. Wong, S. Xue, X. Huang, X. Huang, B. S. Li, B. Z. Tang, Sci. Rep. 2016, 6, 19277.
[29] Q. Ye, D. Zhu, L. Xu, X. Lu, Q. Lu, J. Mater. Chem. C. 2016, 4, 1497-1503.
[30] Y.-X. Yuan, M. Hu, K.-R. Zhang, T.-T. Zhou, S. Wang, M. Liu, Y.-S. Zheng, Mater Horizons 2020, 7, 3209-3216.
[31] Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361-5388.
[32] J.-B. Xiong, H.-T. Feng, J.-P. Sun, W.-Z. Xie, D. Yang, M. Liu, Y.-S. Zheng, J. Am. Chem. Soc. 2016, 138, 11469-11472.
[33] H. Qu, Y. Wang, Z. Li, X. Wang, H. Fang, Z. Tian, X. Cao, J. Am. Chem. Soc. 2017, 139, 18142-18145.
[34] X. Zhou, H. Li, Z. Chi, X. Zhang, J. Zhang, B. Xu, Y. Zhang, S. Liu, J. Xu, New. J. Chem. 2011, 36, 685-693.
[35] P. G. Cozzi, Chem. Soc. Rev. 2004, 33, 410-421.
[36] J. Guan, P. Zhang, T. Wei, Q. Lin, H. Yao, Y. Zhang, Rsc. Adv. 2014, 4, 35797-35802.
[37] S. Ullmann, R. Schnorr, C. Laube, B. Abel, B. Kersting, Dalton. Trans. 2018, 47, 5801-5811.
[38] F. Tosi, M. C. A. Stuart, S. J. Wezenberg, B. L. Feringa, Angew. Chem. Int. Ed. 2019, 131, 15077-15081.
[39] V. Bressi, Z. Akbari, M. Montazerozohori, A. Ferlazzo, D. Iannazzo, C. Espro, G. Neri, Sensors 2022, 22, 900.
[40] J. S. Danilova, S. M. Avdoshenko, M. P. Karushev, A. M. Timonov, E. Dmitrieva, J. Mol. Struct. 2021, 1241, 130668
[41] Y. Sun, P. J. Stang, Aggreg. 2021, 2, e94.
[42] P. G. Cozzi, L. S. Dolci, A. Garelli, M. Montalti, L. Prodi, N. Zaccheroni, New. J. Chem. 2003, 27, 692-697.
[43] L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti, A. Taglietti, D. Sacchi, Chem. Eur. J. 1996, 2, 75-82.
[44] F. Würthner, T. E. Kaiser, C. R. Saha-Möller, Angew. Chem. Int. Ed. 2011, 50, 3376-3410.
[45] E. P. J. Parrott, N. Y. Tan, R. Hu, J.A. Zeitler, B. Z. Tang, E.Pickwell-MacPherson, Mater. Horizons. 2013, 1, 251-258.
[46] R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera, B. Z. Tang, J. Phys. Chem. C. 2009, 113, 15845-15853.

3. Tetraphenylethylene-based macrocycles with adjustable CPL

[47] H. Wu, L. Du, J. Luo, Z. Wang, D. L. Phillips, A. Qin, B. Z. Tang, J. Mater. Chem. C. 2022, 10, 8174-8180.
[48] G. Longhi, E. Castiglioni, J. Koshoubu, G. Mazzeo, S. Abbate, Chirality. 2016, 28, 696-707.
[49] X.-Y. Luo, M. Pan, Coord. Chem. Rev. 2022, 468, 214640.
[50] L. Yang, X. Dou, C. Ding, C. Feng, J. Phys. Chem. Lett. 2021, 1155-1161.
[51] F. Mamiya, N. Ousaka, E. Yashima, Angew. Chem. Int. Ed. 2015, 54, 14442-14446.
[52] G. M. Sheldrick, Acta Crystallogr Sect. Found. Adv. 2015, 71, 3-8.
[53] G. M. Sheldrick, Acta Crystallogr Sect. C. 2015, 71, 3-8.
[54] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281-1284.
[55] A. L. Spek, Acta Crystallogr Sect C. 2015, 71, 9-18.
[56] A. L. Spek, Acta Crystallogr Sect D. 2009, 65, 148-155.
[57] W. Kabsch, Acta Crystallogr. Sect. D. 2010, 66, 125-132.
4. Phenoxazine-based macrocycles for Photoredox catalysis

4 Phenoxazine-based macrocycles for photoredox catalysis

4.1 Introduction

4.1.1 Photocatalysis

As an environmentally friendly method to synthesize a compound, photoredox catalysis has been intensively studied and widely used for synthetic chemistry. One of the most important concepts of photoredox catalysis is to convert light energy into chemical energy. Generally, a reaction using a photoredox catalyst absorbing visible light does not require high energy UV radiation and the reaction occurs under mild conditions to avoid unexpected by-products. Photoredox catalysis provides a new methodology which traditional organic reactions often can not achieve. In recent years, photoredox catalysis has become the forefront in organic chemistry. ${ }^{[1]}$

Photoredox catalysis has emerged as a powerful methodology enabling to form covalent bonds under milder reaction conditions to many thermal reactions. Photoredox catalysis is initiated by excitation of the photoredox catalyst followed by single electron transfer (SET) to or from the substrate to convert the absorbed light to chemical energy. The general mechanism of photoredox catalysts are depicted in Figure 4.1. The photoinduced electron transfer (PET) cycles of photoredox catalysis are usually categorized as oxidative quenching cycle and reductive quenching cycle. In an oxidative quenching cycle, the photoredox catalyst (PC) is excited upon irradiation and generates a relatively long-lived triplet excited state through a rapid intersystem crossing (ISC). The excited PC* is quenched by donating an electron to a substrate or an oxidant (electron acceptor) in the reaction system and consequently generates a reactive intermediate as a radical from the substrate. For closing the catalytic cycle, a subsequent electron transfer from a reductant to PC^{+}is required to restore the catalyst. On the other hand, in the reductive quenching cycle, PC^{*} is reduced by an electron donor and forms PC**. In photoredox reactions, relatively high energy states are achieved catalytically, and thus, a strong oxidant or reductant is often not needed unlikely to conventional organic reactions. In addition, as shown in Figure 4.1, photoredox reactions have a "redox-neutral" reaction mechanism overall.
4. Phenoxazine-based macrocycles for Photoredox catalysis

b)

Figure 4.1: General mechanistic paradigm: (a) simplified orbital energy level diagram for the activation; (b) typical catalytic cycles of a photoredox catalyst. ${ }^{[2]}$ Copyright © 2021, American Chemical Society.

4.1.2 Supramolecular Photocatalysis

Supramolecular catalysis has attracted considerable attention owing to the unique reactivities. Although many catalytic reactions in host-guest systems have been reported, supramolecular photoredox catalysis has not been explored extensively. In particular, photo-active supramolecular entities have been paid attention due to the potential to be utilized in a photoredox reaction.

Figure 4.2: Proposed mechanism of the [4+2] cycloaddition in the presence of the host under visible light irradiation. ${ }^{[3]}$ Copyright © 2020 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim

Iwasawa and co-workers reported visible-light-induced [4+2] cycloaddition reaction via charge-transfer excitation of a supramolecular host-guest complex. ${ }^{[3]}$ The macrocyclic boronic ester [2+2] $]_{\text {BTh-F }}$ was constructed via multiple condensation reactions of racemic indacene tetrol and highly electron-deficient diflurobenzothiadiazole diboronic acid. ${ }^{[4]}$ Anthracene can be encapsulated in the macrocycle through $\pi-\pi$ interactions. The host-guest complex undergoes a charge transfer excitation and yields a chargeseparated singlet state upon visible-light irradiation. Then, anthracene in a triplet excited state is obtained in the cavity through intersystem crossing (ISC) and is
released into the solution. A subsequent photocycloaddition reaction of the released anthracene in the triplet excited state with dienes/alkenes proceeds efficiently.

Ruthenium and Iridium complexes have been demonstrated to show good properties as photoredox catalysts in the last decades. Ligands incorporating phosphorescent $\mathrm{Ru}(\mathrm{II})$ or Ir (III) complexes in their backbone as photoactive units have been shown to form metallacycles and metallacages. ${ }^{[5]}$ Such metallacycles or cages have a welldefined cavity which can be used to bind a molecule Würthner and co-workers reported a self-assembled trigonal metalla-supramolecular macrocycle based on [Ru(bda)] building blocks (bda = 2,2'-bipyridine-6,6'-dicarboxylic acid), which has been used for water oxidation catalysis. ${ }^{[6]}$ Two bpb linkers (bpb = 1,4-bis(pyrid-3-yl) benzene) are coordinated axially on both sides of the $\mathrm{Ru}(\mathrm{II})$ centers to form the [3+3] macrocycle [Ru(bda)bpb]3. In the water oxidation reaction system, the metallamacrocycle acts as a catalytic oxidant, $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ as photosensitizer (P) and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ as a supporting oxidant to make the reaction catalytic (Figure 4.3). The reaction proceeds via a water nucleophilic attack mechanism. The coordination environment accelerates the rate of water oxidation with more than one order of magnitude enhancement, attributed to the preorganization of water molecules in the macrocyclic cavity.

Figure 4.3: The structure of the $[\mathrm{Ru}(\mathrm{bda}) \mathrm{bpb}]_{3}$ macrocycle and the proposed photocatalytic water oxidation process. ${ }^{[6]}$ Copyright © 2016 Macmillan Publishers Limited.

In most cases, stereoselectivity is not expected in photoredox catalysis, ${ }^{[7]}$ however, tremendous efforts to achieve stereoselectivity in photoredox reactions have been made in the last decades. ${ }^{[8-11]}$ The combination of the inherent cavity and the
implemented chirality on supramolecular cages provide asymmetric catalysis. Su and co-workers have reported a photoredox-active and chiral Ru(II) metallaligand based on homochiral heterometallic octahedral cage $\left[\mathrm{Pd}_{6}\left(\mathrm{RuL}_{3}\right)_{6}\right]^{28+}$. The molecular design endows the resulting assembly with a photoactivity and a chiral space. A regio- and enantioselective biaryl coupling photoreaction in the cage was demonstrated and an unusual 1,4-coupling reaction was achieved. The homochiral cage with the confined nano-space enables to preorganize the substrates giving enantio-selectivity in the coupling reaction.

Figure 4.4: Schematic representation of homochiral Δ-Ru-MOC structure with photoredoxactive site and chiral-confined space based on RuL_{3} metallaligand. Photoinduced biaryl coupling reaction was proceed with unique selectivity. ${ }^{[12]}$ Copyright © 2017 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim.

Crowley and co-workers have developed a series of heterometallic architectures. ${ }^{[13,14]}$ They obtained a heterometallic $\mathbf{P d}_{3} \mathbf{P t}_{6}$ "donut"-shaped cage, which can be used for a photo-induced [4+2] cycloaddition reaction of anthracene with singlet $\mathrm{O}_{2} .{ }^{[15]}$ The lowsymmetry and flexible pyridine ligand has different orthogonal binding sites. The bidentate binding sites of two of the ligands bind a square planar $\mathrm{Pt}(\mathrm{II})$ in a head-totail arrangement. The remaining monodentate coordination site is available to coordinate to $\mathrm{Pd}(I I)$ to form the heterometallic cage. The analogue of $\mathbf{P d}_{3} \mathbf{P t}_{6}$, homonuclear cage Pdg, can be also synthesized together with impurities. The cage consists of three planar cationic panels allowing the encapsulation of a planar aromatic

4. Phenoxazine-based macrocycles for Photoredox catalysis

guest. The photocatalytic properties of $\mathbf{P d}_{3} \mathbf{P t}_{6}$ were studied. $\mathbf{P d}_{3} \mathbf{P t}_{6}$ acts as a molecular container and photosensitizer, which promotes the light-induced excitation of ${ }^{3} \mathrm{O}_{2}$ to ${ }^{1} \mathrm{O}_{2}$ and results in the formation of the endoperoxide with an enhanced reaction rate.

Figure 4.5: a) Scheme of the stepwise self-assembly of low-symmetry pyridine ligand with $\mathrm{Pd}(\mathrm{II})$ or $\mathrm{Pt}(\mathrm{II}) / \mathrm{Pd}(\mathrm{II})$ to form homometallic cage Pd_{9} and heterometallic cage $\mathrm{Pd}_{3} \mathrm{Pt}_{6}$. Blue box: X-ray crystal structure of $\mathbf{P t}_{1}$. Green box: photocatalytic conversion of anthracene to its endoperoxide. ${ }^{[15]}$ Copyright © 2018 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim.

An increasement of the complexity of supramolecular architectures can lead to an emergence of a new feature. Clever group has reported a series of interpenetrated double cages comprising of Pd (II) ions and banana-shaped pyridine ligands. ${ }^{[16-22]}$ The catenated structure features three consecutive pockets, initially containing $\mathrm{BF}_{4}{ }^{-}$. Recently, an acridone-based interpenetrated double cage with photocatalytic activity has been reported. ${ }^{[23]}$ Double Cage [3BF4@Pd4 ${ }_{8}$] was formed via self-assembly of the acridone-based bis-monodentate ligand and $\mathrm{Pd}(\mathrm{II})$. After the addition of halides, the small chloride anions replace $\mathrm{BF}_{4}{ }^{-}$in the outer pockets, resulting in a larger middle pocket. This enables encapsulation of neutral guest molecules within the middle pocket. The ligand is light sensitive and not suitable for photocatalysis, while, the cage is more robust against light. The double cage acts as a photosensitizer to generate singlet oxygen, which subsequently reacts with 1,3-cyclohexadiene in a [2+4] manner.

Figure 4.6: Scheme of guest inclusion behaviour and catalytic function of the acridone-based interpenetrated double cages. The cage has three pockets and are filled with one BF_{4} counter anions, each. The addition of Cl^{-}anions triggered the conformation change, the outer two $\mathrm{BF}_{4}{ }^{-}$ can be exchanged by two Cl^{-}anions and obtained an enlarged inner pocket, followed by uptake of neutral guest molecules and photocatalysis. ${ }^{[23]}$ Copyright © The Royal Society of Chemistry 2020.

4.2 Design of phenoxazine-based ligand macrocycles

Based on the research and the established concepts shown in the last chapters, synthesis and investigation of metallamacrocycles designed for photoredox catalysis has been conducted. In this chapter, the formation and a photoredox catalytic property of binuclear phenoxazine-based chiral metallamacrocycles will be described. N -aryl phenoxazine, the backbone of the ligand, is known as a photoredox catalyst. ${ }^{[24-26]}$ The macrocycle $\mathbf{R}^{\mathbf{P Z}}$ was synthesized by a condensation reaction of phenoxazine-based salicylaldehyde ligand and a chiral diamine. The complexes of $\mathbf{M}_{\mathbf{2}} \mathbf{R}^{\mathbf{P Z}}(\mathrm{M}=\mathrm{Zn}(I I), \mathrm{Co}(\mathrm{III})$) were obtained in a quantitative yield by metalation of $\mathbf{R}^{\mathbf{P Z}}$ with the corresponding

4. Phenoxazine-based macrocycles for Photoredox catalysis

acetate salts as a metal source. The formation of $\mathbf{M}_{\mathbf{2}} \mathbf{R}^{\mathbf{P Z}}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, DOSY, ESI-MS, FT-IR, and UV-Vis. Then, the photophysical properties of the synthesized ligand and macrocycles were investigated. The phenoxazine-based salen macrocycle as a photoredox catalyst exhibits absorption in the visible region, high molar absorptivity, oxidation reversibility, and a charge transfer excited state, which are required for being a good catalyst in photoredox reactions. Further, an ability as a photoredox catalyst in catalytic pinacol coupling reactions has been investigated.

Phenoxazine derivatives have been utilized in photoredox catalysis as an organic catalyst. The phenoxazine core is electron-rich, i.e. E^{0} (phenoxazine $\% /$ phenoxazine $)=$ $\sim 0.6 \mathrm{~V}$ vs SCE (calomel reference electrode). ${ }^{[26]}$ Miyake and co-workers have studied the absorption, charge transfer and redox potential properties of phenoxazine derivatives modified by different substituents for photoredox catalysts through experimental and computational analyses. ${ }^{[27]}$ Phenoxazine could be modified by N aryl substituents or phenoxazine core substituents (Figure 4.7). To reduce catalyst loadings, PCs that strongly absorb visible light and efficiently generate long-lived triplet excitons are ideal. The maximum wavelength of absorption of phenoxazine with two core-substituents shows a red shift, attributed to the stabilizing of energies of the π^{*} orbitals. The strong charge-transfer character of the lowest singlet excited (S1) is a key factor to effectively populate the lowest triplet excited state $\left(\mathrm{T}_{1}\right) .{ }^{[28]} \mathrm{N}$-naphthyl phenoxazine can access a charge transfer (CT) excited state, which is supposed to give superior performance in photoredox reactions, while, N-phenyl phenoxazine can only achieve this by a suitable core substituent. A photoredox catalyst should exhibit high reducing power in its excited state along with an appropriate ground-state oxidation potential for the effective reduction of its radical cation. The reduction potentials can be tunable by installation of electro-donating or electro-withdrawing core substituents.
N-aryl substituent

Core substituent

Figure 4.7: Structures of phenoxazine derivatives with different N -aryl substituent and one / two core substituent.

Here, a N-aryl phenoxazine-based ligand was designed and investigated in the formation of macrocycles. Firstly, 2Br-PZ with naphthalene N-substituent on the phenoxazine core was synthesized following the literature in two steps from 10phenoxazine. ${ }^{[27]}$ Phenoxazine-based ligand LPZ was designed and syntheses by Suzuki-coupling of $\mathbf{2 B r}-\mathbf{P Z}$ and pinacol ester salicylaldehyde compound (Figure 4.8). The ligand was fully characterized by ${ }^{1} \mathrm{H}$ NMR, COSY, NOESY, DOSY and ESI-MS.

2Br-PZ

$L^{P Z}$

Figure 4.8: Synthesis route of ligand $\mathbf{L}^{\text {PZ }}$.

The ligand was treated with excess (1S,2S)-1,2-diphenylethane-1,2-diamine to form a chiral macrocycle by condensation reaction in a mixture of methanol and dichloromethane (Figure 4.9). The solution became turbid after stirring at room temperature for few minutes. Pure macrocycle $\boldsymbol{s}-\mathbf{R}^{\mathbf{P Z}}$ was obtained after purification. The isomer \boldsymbol{r} - $\mathbf{R}^{\mathbf{P Z}}$ was synthesized following the same procedure by using ($1 R, 2 R$)-1,2-diphenylethane-1,2-diamine. The structure of $\mathbf{R}^{\mathbf{P Z}}$ was firstly confirmed by ${ }^{1} \mathrm{H}$ NMR. Compared with the free ligand, the proton signals of phenyl ring showed upfield shift $\left(\Delta \delta\left[\mathrm{H}_{3 / f}\right]=0.29 \mathrm{ppm}, \Delta \delta\left[\mathrm{H}_{4 / g}\right]=0.15 \mathrm{ppm}, \Delta \delta\left[\mathrm{H}_{5 / h}\right]=0.08 \mathrm{ppm}\right)$. The proton signal at δ $=8.57 \mathrm{ppm}$, assignable to proton He of the imine moiety was observed, indicating the formation of the Schiff-base moiety.

Figure 4.9: synthesis route of macrocycles $\mathbf{R Z}^{\mathbf{P Z}}$ and $\mathbf{Z n} \mathbf{n}^{\mathbf{P Z}}$.

Zn (II) complexes based on Schiff base ligands are well investigated due to their intriguing catalytic, photophysical and aggregation properties. Here, the Zn macrocycle was obtained by coordination of phenoxazine-based salen macrocycle with $\mathrm{Zn}(\mathrm{II})$ ions. after purification, the obtained compound was characterized by ${ }^{1} \mathrm{H}$ NMR and the observed signals were assigned by COSY and NOESY. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$, a single set of signals with chemical shifts compared with the metal-free salen ring was observed (Figure 4.10), suggesting the formation of metal complexes. The signal of proton Hs disappeared after metalation, indicating of the deprotonation of the OH groups on \mathbf{R}. The protons from salen moieties showed upfield shift $\left(\Delta \delta\left[H_{e}\right]=0.39\right.$ $\left.\mathrm{ppm}, \Delta \delta\left[\mathrm{H}_{f}\right]=0.36 \mathrm{ppm}, \Delta \delta\left[\mathrm{H}_{h}\right]=1.33 \mathrm{ppm}\right)$ compared with \mathbf{R}, consistent with coordination of $\mathrm{N}_{2} \mathrm{O}_{2}$ to $\mathrm{Zn}(\mathrm{II})$.
a) $L^{p z}$ \qquad
b)

Figure 4.10: ${ }^{1} \mathrm{H}$ NMR spectra of a) L^{PZ}, b) \mathbf{R}^{PZ} and c) $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.

The diffusion-ordered spectroscopy (DOSY) spectrum of $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ confirmed the formation of a single species (Figure 4.36). The diffusion coefficient was estimated to be $1.0 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$ with a hydrodynamic radius of $10.9 \AA$. while the hydrodynamic radius of L was calculated to be $6.62 \AA$ with the diffusion coefficient of 1.65×10^{-10} $\mathrm{m}^{2} / \mathrm{s}$ (Figure 4.28). To further confirm the structure of the metal salen ring, $\mathrm{Co}(\mathrm{III})_{2} \mathbf{R}^{\mathrm{PZ}}$ was also synthesized following the same procedure to $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ using $\mathrm{Co}(\mathrm{OAc})_{2}$ as a metal source in a mixed solvents of chloroform and acetonitrile. $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added into the self-assembly system to provide a counter anion and the turbid greenish solution became red-brown. The composition of binuclear metal salen macrocycle Co(III) $\mathbf{2 R}^{\text {PZ }}$ was confirmed by ESI-MS (Figure 4.11). The ESI-MS analysis revealed only one peak at $\mathrm{m} / \mathrm{z} 782.6910$, corresponding to positively charged complex $\left[\mathrm{Co}(\mathrm{III})_{2} \mathrm{R}^{\mathrm{PZ}}\right]^{2+}$, suggesting oxidation of the $\mathrm{Co}(\mathrm{II})$ to $\mathrm{Co}(\mathrm{III})$ occurred during the reaction.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.11: ESI-MS of $\mathbf{C o (I I I)})_{2} \mathbf{R Z}^{\mathrm{PZ}}$, with insets showing the calculated and measured isotopic patterns of $\left[\mathrm{Co}(\mathrm{III})_{2} \mathrm{R}^{\mathrm{PZ}}\right]^{2+}$.

FT-IR spectra were measured to further confirm the structure of the assembly (Figure $4.37) . \mathbf{R}^{\text {PZ }}$ displays characteristic bands at $3059 \mathrm{~cm}^{-1}, 1620 \mathrm{~cm}^{-1}$ and $1490 \mathrm{~cm}^{-1}$, corresponding to molecular vibrations of the aromatic rings, $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}-\mathrm{N}$ bonds, respectively. ${ }^{[29]}$ The band at $2852 \mathrm{~cm}^{-1}$ is attributed to the vibration of -OH group. The band from the vibration of the OH group disappeared after coordination with $\mathrm{Zn}(\mathrm{II})$, indicating of the formation of desired $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$.

4.3 Photophysical properties of $\mathbf{Z n}_{2} \mathbf{R}^{\text {PZ }}$

To investigate the absorption properties of the prepared metallamacrocycles, UV-vis absorption spectra of the macrocycles in DMSO were measured (Figure 4.12 a). Comparing to ligand $\mathbf{L}^{\mathbf{P Z}}$, the maximum absorption wavelength of metal free macrocycle $\mathbf{R}^{\text {PZ }}$ and Zn salen macrocycle displayed a blue shift from 428 nm to 409 nm and 413 nm , respectively. All of the compounds showed absorption in the visible region, allowing the desired photoredox catalysis by visible light irradiation. Especially, $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}$ has a higher molar absorptivity (ε) (table 4.1), which should increase the population of the catalyst in the excited state.

Figure 4.12: a) Absorption spectra and b) emission spectra of the ligand and the macrocycles (in DMSO, $c_{L}=2 \times 10^{-5} \mathrm{M}, \mathrm{c}_{\mathrm{R}}=1 \times 10^{-5} \mathrm{M}, \mathrm{c}_{\mathrm{Zn} 2 \mathrm{R}}=1 \times 10^{-5} \mathrm{M}$, cuvette path length: 1 cm).

Table 4.1: Absorption and fluorescence information

		L^{PZ}	R^{PZ}	$\mathrm{Zn}_{2} \mathrm{R}^{\mathrm{PZ}}$
Absorption	$\lambda_{\max }(\mathrm{nm})$	428	409	413
	$\varepsilon\left(\mathrm{M}^{-1} \mathrm{~cm}-^{-1}\right)$	46529	56139	73566
Fluorescence	$\lambda_{\text {ex }}(\mathrm{nm})$	410	410	410
	$\lambda_{\text {em }}(\mathrm{nm})$	600	635	550
	$\mathrm{E}_{\mathrm{S} 1}(\mathrm{eV})$	2.07	1.95	2.25

The fluorescence spectra of the compounds were measured (Figure 4.12 b). $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ showed a strong emission with a blue shift compared with the metal-free macrocycle. The emission should come from the radiative decay from the S_{1} state since the spectrum was measured in the presence of oxygen. A singlet excited state energy $\mathrm{E}_{\mathrm{s} 1}$ is commonly determined by a maximum wavelength of emission which is supposed to correspond to the radiative decay from the S_{1} state.

As shown in Figure 4.13, all of the PCs have a large Stoke shift $\left(\Delta \lambda_{L}=172 \mathrm{~nm}, \Delta \lambda_{R}=\right.$ $226 \mathrm{~nm}, \Delta \lambda_{\mathrm{Zn2R}}=137 \mathrm{~nm}$. Among the PCs, $\mathbf{R}^{\text {PZ }}$ showed the largest Stokes shift. In order to investigate the electronic state of the PCs, DFT calculations were carried out for the PCs in both the ground state and the triplet state at the ω B97X/def2svp level of theory (Figure 4.13). The highest occupied molecular orbital (HOMO) of $L^{P Z}$ was suggested to distribute on the benzyl aldehyde moiety, while the lowest occupied molecular orbital (LUMO) is mainly localized on the phenoxazine core. For $\mathbf{R}^{\mathbf{P Z}}$, the

4. Phenoxazine-based macrocycles for Photoredox catalysis

HOMO is implied to localize on the phenoxazine core (donor). Meanwhile, the LUMO of $\mathbf{R}^{\mathbf{P Z}}$ should be localized on the naphthalene moieties. In stark contrast, the distribution of the LUMO of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}$ to the whole macrocycle structure was suggested. Among the PCs, $\mathbf{R}^{\mathbf{P Z}}$ seems to have a possibility to form an excited CT state.

LUMO

b)

Figure 4.13: The calculated HOMO, LUMO and overlays of absorption and emission spectra of a) $\mathbf{L}^{\mathbf{P Z}}$, b) $\mathbf{R}^{\mathbf{P Z}}$, and c) $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}$ (in DMSO)

CD spectra were measured to investigate the chiroptical properties of the macrocycles (Figure 4.14). All the enantiomers were synthesized by using commercially available enantiopure 1,2-diphenylethane-1,2-diamine. L^{PZ} is CD silent because it is achiral. While, chiral $\mathbf{R}^{\mathbf{P Z}}\left(s-\mathbf{R}^{\mathbf{P Z}}\right.$ and $r-\mathbf{R}^{\mathbf{P Z}}$) showed a strong Cotton effect at around 380 nm in a mirror image fashion formation, suggesting the successful implementation of chirality. Similarly, chiral $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}\left(s-\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}\right.$ and $r-\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}$) showed mirrored CD signals with a strong Cotton effect at around 440 nm . The introduced chirality on the PCs should be useful in asymmetric catalysis. Applications in asymmetric catalysis will be tried in due course.

Figure 4.14: $C D$ spectra of ligand and macrocycles (in DMSO, $C_{L}=2 \times 10^{-5} \mathrm{M}, C_{R}=1 \times 10^{-5} \mathrm{M}$, $C_{Z n 2 R}=1 \times 10^{-5} \mathrm{M}$, cuvette path length: 1 cm).

Phenoxazine derivatives are known to undergo the oxidative quenching cycle. ${ }^{[30]}$ In the oxidative quenching catalytic cycle, excited PC^{*} is oxidized to a radical cation $\mathrm{PC}^{+}+$ after giving one electron to a substrate. To complete the catalytic cycle, PC needs to be regenerate by the reduction of PC++. Cyclic voltammetry (CV) measurements were performed to investigate redox properties of the synthesized PC. The difference between the anodic (E_{pa}) and cathodic (E_{pc}) peak potentials ΔE_{p} and the ratio of peak anodic current i_{pa} to peak current i_{pc} were shown in table 4.3. Compared to the theoretical value of $\Delta E_{\mathrm{p}}=59 \mathrm{mV}$ and $i_{\mathrm{pa}} / i_{\mathrm{pc}}=1$ for a reversible system, CV applied to $\mathbf{R}^{\mathbf{P Z}}$ and $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}$ to analyze their oxidation potentials showed a quasi-reversible wave in DMSO (Figure 4.15), implying a reversible PC+/PC state. ${ }^{[25]} \mathrm{CV}$ of L^{PZ} was also performed at different scan rates ranging from $20 \mathrm{mV} / \mathrm{s}$ to $100 \mathrm{mV} / \mathrm{s}$ (Figure 4.43). A linear relationship between the anodic peak current (l_{a}) and square root of the scan rate ($V^{1 / 2}$) was observed, indicating that the electron transfer process is diffusioncontrolled. The ground state oxidation potentials of the PCs ($E^{0}{ }_{o x}$) were approximated from the half wave potential $E_{1 / 2}^{0}$. They were obtained from the voltammograms as the half sum of anodic (E_{pa}) and cathodic (E_{pc}) peak potentials, where $E^{0}{ }_{\mathrm{ox}, \mathrm{PC} \cdot+/ \mathrm{Pc}} \approx$ $E_{1 / 2, \mathrm{PC} \cdot+/ \mathrm{PC}}=\left(E_{\mathrm{pa}}+E_{\mathrm{pc}}\right) / 2{ }^{[27]}$ As shown in Table 4.2, $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ is more easily oxidized $\left(E_{1 / 2}=\sim 0.47 \mathrm{~V}\right.$ vs $\left.\mathrm{Ag}^{+} / \mathrm{Ag}\right)$ than $\mathrm{L}^{\mathrm{PZ}}\left(E_{1 / 2}=\sim 0.52 \mathrm{~V} \mathrm{vs} \mathrm{Ag}^{+} / \mathrm{Ag}\right)$.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.15: Cyclic voltammograms of a) $\mathbf{R Z}^{\mathbf{P Z}}$ and b) $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ measured with scan rate: 100 mV / s in DMSO solution (0.5 mM) with $0.1 \mathrm{M} \mathrm{TBAPF}{ }_{6}$ as an electrolyte.

Table 4.2: Cyclic voltammetry results

	$E_{\mathrm{pa}}(\mathrm{V})$	$E_{\mathrm{pc}}(\mathrm{V})$	$\Delta E_{\mathrm{p}}(\mathrm{mV})$	$E_{1 / 2} \mathrm{vs} \mathrm{Ag} / A g$	
L					
LPZ	0.57	0.47	100	0.52	$i_{\mathrm{pa}} / i_{\mathrm{pc}}$
R^{PZ}	0.56	0.42	140	0.49	1.68
$\mathrm{Zn}_{2} \mathrm{R}^{\mathrm{PZ}}$	0.54	0.40	140	0.47	1.28

In the reaction, PC acts as excited state reductant. The triplet excited state reduction potentials of the PCs are estimated by: $E^{*}{ }_{\mathrm{ox}, \mathrm{T} 1}\left(\mathrm{PC}^{*+} / \mathrm{PC}^{*}\right)=E_{o \mathrm{ox}}^{0}-E^{*}{ }_{\mathrm{T} 1}$, where $E^{*}{ }_{\mathrm{T} 1}$ is the triplet energy, which is often read from the maximum wavelength of phosphorescence and is approximated by the singlet energies $E^{*}{ }^{\mathrm{S} 1}$ ($E^{*}{ }_{\mathrm{S} 1}$ was calculated using the maximum wavelength of emission). ${ }^{[28]} E^{*}{ }_{\text {ox,T1 }}$ is more negative means the catalyst is more strongly reducing in the excited state. As shown in Table $4.3, \mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ is the strongest excited state reductant ($E_{\mathrm{ox}, \mathrm{T} 1}^{*}=-1.78 \mathrm{~V}$ vs $\left.\mathrm{Ag}^{+} / \mathrm{Ag}\right)$.

Table 4.3: Oxidation potentials of cyclic voltammetry, singlet energy and calculated triplet state reduction potentials of PCs.

	$E_{1 / 2} \mathrm{Vs} \mathrm{Ag}^{+} / \mathrm{Ag}$		
$\mathbf{L}^{\mathbf{P Z}}$	0.52	$E_{\mathrm{s} 1}(\mathrm{eV})$	$E^{*}{ }_{\text {red }, \mathrm{T1}}(\mathrm{~V})$
$\mathbf{R}^{\mathbf{P Z}}$	0.49	2.07	-1.55
$\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$	0.47	1.95	-1.46

4.4 Photoredox catalysis

PCs can convert visible light into chemical energy through oxidation/reduction from the catalysts in excited states. As a result of the oxidation/reduction, the substrate forms a reactive radical species. For instance, pinacol coupling reactions occur catalyzed by PCs via formation of a ketyl radical as an intermediate. The generation of a ketyl radical by visible light was first reported by Kellogg and co-workers in 1979. ${ }^{[31]}$ After then, a variety of photoredox reactions have been used for $\mathrm{C}-\mathrm{C}$ bond formation with aldehydes and ketones as substrates. ${ }^{[32]}$

A photocatalytic pinacol coupling has been reported by Rueping and co-workers. [33] Pinacol coupling is a reductive coupling reaction of carbonyl compounds proceeding through formation and dimerization of two ketyl radicals to obtain 1,2-diols in one step. Pinacol coupling is a useful method to synthesize a diol-motif. In particular, [Ir(III)] and [Ru(II)] complexes, organic dyes, and semi-conductors have been used in photoredoxmediated pinacol coupling. Normally, homo-coupling reactions of such ketyl radicals is neither diastereo- nor enantio-selective due to loss of the stereo information by in the intermediate the radical state. On the other hand, asymmetric pinacol coupling reactions can be achieved with high enantiocontrol by choosing an appropriate chiral catalyst. ${ }^{[32]}$

Pinacol coupling reactions of simple aldehydes have been chosen as a test reaction to examine the photocatalytic ability of the synthesized ligand and macrocycles (Figure 4.16).

Figure 4.16: Scheme of pinacol coupling reaction of benzaldehyde via photocatalysis

Firstly, 4-(Trifluoromethyl)benzaldehyde $\left(\mathrm{S}_{-} \mathrm{CF}_{3}\right)$ was chosen as a substrate to find an optimal condition for the photoredox pinacol coupling reaction (Table 4.4). The
reaction was performed in two solvents, DMSO- d_{6} and $C D_{3} C N$. DIPEA was used as a sacrificial oxidant. Since all the PCs ($\mathbf{L}^{\mathbf{P Z}}, \mathbf{R}^{\mathbf{P Z}}, \mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}$) have a maximum absorption at around 420 nm , a LED light source (420 nm) was used for the irradiation.

In DMSO, $2.5 \mathrm{~mol} \%$ PCs was loaded ($5 \mathrm{~mol} \%$ for ligand to balance the number of phenoxazine core) in a reaction system in the presence of DIPEA. The results are summarized in Table 4.3. As a result, all the reactions yielded a complete conversion after irradiating for 16 h . The PCs have shown a good performance for the photoredox reaction. However, no diastereo-selectivity was observed confirmed by ${ }^{1} \mathrm{H}$ NMR integration ratio of the signal of the d / l and meso 1,2-diol products. Formation of the products was not observed in the ${ }^{1} \mathrm{H}$ NMR spectrum without the LED irradiation. The reactions without any PC only gave traces of the 1,2-diol product suggesting a crucial role of the PCs for the reaction. In addition, DIPEA was proven to play an important role for the reaction. The yields reached only $31 \%-52 \%$ in the absence of DIPEA.

The reaction completed with a shorter reaction time (10 h) using $\mathbf{R}^{\mathbf{P Z}}$ or $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}^{\mathbf{P Z}}$ as a photoredox catalyst. On the other hand, with $L^{\text {PZ }}$, only 65% yield was obtained after 10 h , indicating the less efficient catalytic ability of L^{PZ} than the macrocycles. When the reaction time was even shortened to 5 h , the reaction loading $\mathbf{R}^{\mathbf{P Z}}$ or $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}$ yielded only 14% of the desired products.

Since PCs have a limited solubility in $\mathrm{CD}_{3} \mathrm{CN}$, all the reaction in $\mathrm{CD}_{3} \mathrm{CN}$ have a lower yield than in DMSO. Therefore, the further substrate scope study has been conducted in DMSO.

Table 4.4: Optimization of photoredox-catalyzed pinacol coupling of S-CF3.

Entry	PC $^{\mathrm{a}}$	DIPEA (eq)	Solvent	Light (nm)	Time (h)	Yield $^{\mathrm{b}}$ $(\%)$	meso: d / c
1	-	6	$\mathrm{DMSO}_{6} \mathrm{~d}_{6}$	420	16	2.4	$53.9: 46.1$
2	$\mathrm{~L}^{\mathrm{Pz}}$	-	DMSO_{6}	420	16	35	$53.6: 46.4$

3	$L^{\text {PZ }}$	6	DMSO-d6	420	16	100	52.7:47.3
4	$L^{\text {PZ }}$	6	DMSO-d ${ }_{6}$	daylight	16	-	-
5	$L^{\text {PZ }}$	6	DMSO-d ${ }_{6}$	dark	16	-	-
6	-	6	$\mathrm{CD}_{3} \mathrm{CN}$	420	16	-	-
7	$L^{\text {PZ }}$	-	$\mathrm{CD}_{3} \mathrm{CN}$	420	16	-	-
8	LPZ	6	$\mathrm{CD}_{3} \mathrm{CN}$	420	16	26	53.6:46.4
9	$L^{\text {PZ }}$	6	$\mathrm{CD}_{3} \mathrm{CN}$	daylight	16	-	-
10	$L^{\text {PZ }}$	6	$\mathrm{CD}_{3} \mathrm{CN}$	dark	16	-	-
11	$L^{\text {PZ }}$	6	DMSO-d ${ }_{6}$	420	10	65	50.8:49.2
12	$\mathbf{R}^{\text {PZ }}$	-	DMSO-d6	420	16	31	51.6:48.4
13	$\mathbf{R P Z}^{\text {PZ }}$	6	DMSO-d6	420	16	100	51.2:48.8
14	$\mathbf{R}^{\text {PZ }}$	6	DMSO-d ${ }_{6}$	420	10	100	51.8:48.2
15	$\mathbf{R}^{\text {PZ }}$	6	DMSO-d ${ }_{6}$	daylight	16	-	-
16	$\mathbf{R}^{\text {PZ }}$	6	DMSO-d6	dark	16	-	-
17	$\mathrm{R}^{\text {PZ }}$	-	$\mathrm{CD}_{3} \mathrm{CN}$	420	16	-	-
18	$\mathbf{R}^{\text {PZ }}$	6	$\mathrm{CD}_{3} \mathrm{CN}$	420	16	45	54.5:45.5
19	$\mathrm{R}^{\text {PZ }}$	6	$\mathrm{CD}_{3} \mathrm{CN}$	daylight		-	-
20	$\mathrm{Zn}_{2} \mathbf{R}^{\text {PZ }}$	-	DMSO-d ${ }_{6}$	420	16	52	53.8:46.2
21	$\mathrm{Zn}_{2} \mathrm{R}^{\text {PZ }}$	6	DMSO-d ${ }_{6}$	420	16	100	51.4:48.2
22	$\mathrm{Zn}_{2} \mathrm{R}^{\text {PZ }}$	6	DMSO-d6	daylight	16	-	-
23	$\mathrm{Zn}_{2} \mathrm{R}^{\text {PZ }}$	6	DMSO-d ${ }_{6}$	420	10	100	51.0:49.0
24	$\mathrm{Zn}_{2} \mathrm{R}^{\text {PZ }}$	6	$\mathrm{CD}_{3} \mathrm{CN}$	420	16	-	-
25	$\mathrm{Zn}_{2} \mathbf{R}^{\text {PZ }}$	6	$\mathrm{CD}_{3} \mathrm{CN}$	daylight	16	-	-

 $2.5 \mathrm{~mol} \%$.
${ }^{b}$ Yields were estimated by ${ }^{1} \mathrm{H}$ NMR analyse using 1,3,5-trimethoxybenzene as an internal standard.
${ }^{c}$ The absolute configuration of product was determined according to the literature and the ratio was determined by the ${ }^{1} \mathrm{H}$ NMR integration ratio.

The pinacol coupling reaction with different substrates was also performed under the optimized reaction condition (Figure 4.17). As a result, consistent results were obtained for all the substrates (Table 4.5). All the PCs were found to work well as in the photoredox pinacol coupling reaction with the variety of substrates. In addition, $\mathbf{R}^{\mathbf{P Z}}$ and $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ showed a higher reaction rate compared with the ligand.
4. Phenoxazine-based macrocycles for Photoredox catalysis

a)

b)

c)

Figure 4.17: Scope of pinacol coupling reaction of other aldehydes derivative as substrates.

Table 4.5: Photoredox-catalyzed pinacol coupling of aldehydes.

Substrate	PC	DIPEA(eq)	Light (nm)	yield	meso:dl
	-	6	420, 16h	trace	52.6:47.4
	$L^{\text {PZ }}$	6	420, 16h	100	50.8:49.2
	$\mathbf{R}^{\text {PZ }}$	6	420, 16h	100	51.8:48.2
	$\mathbf{Z n} \mathbf{2}^{\mathbf{P Z}}$	6	420, 16h	92	46.8:53.2
	-	6	420, 10h	trace	50.8:49.2
	$L^{\text {PZ }}$	6	420, 10h	65	51.6:48.4
	$\mathbf{R}^{\text {PZ }}$	6	420, 10h	94	51.9:48.1
	$\mathbf{Z n}_{2} \mathbf{R}^{\text {PZ }}$	6	420, 10h	100	52.4:47.6
	$L^{\text {PZ }}$	6	420, 10h	82	48.8:51.2
	$\mathbf{R}^{\text {PZ }}$	6	420, 10h	100	49.7:50.3
	$\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\text {PZ }}$	6	420, 10h	100	49.5:50.5

Based on these results and corresponding literature, ${ }^{[7]}$ we propose the reaction mechanism as depicted in Figure 4.18. In the reaction system, upon the irradiation with visible light, the PC was excited to PC*. Aldehydes should be reduced to a corresponding reactive ketal radical by a single electron transfer from the PC*, and consequently, a C-C bond is formed. After dimerization and protonation, the 1,2-diols should be obtained. The generated PC^{++}should be restored to the ground state by reduction with DIPEA.

Figure 4.18: Proposed catalytic cycle for the photoredox-catalyzed pinacol coupling of aldehydes.

4.5 Conclusion

A phenoxazine-based ligand, as metal free macrocycle and a Zn (II) salen macrocycle were designed and synthesized. Taking advantage of redox reversibility and strong visible-light absorption of the synthesized molecules, the photoredox-catalyzed pinacol coupling of aldehydes was achieved with high conversion with relatively low catalyst loading under mild reaction condition. Further investigations will be performed aiming for an asymmetric reaction using $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ by taking advantage of the chirality implemented on the structure.
4. Phenoxazine-based macrocycles for Photoredox catalysis

4.6 Experimental part

4.6.1 Materials

Unless otherwise stated, all chemicals and solvents were purchased from commercial companies (Abcr, Sigma Aldrich, Acros Organics, VWR and Chempur) and used as received.

4.6.2 General Methods
 NMR

NMR spectroscopic data was measured on the spectrometers Bruker AV 500 Avance NEO and Bruker AV 600 Avance III HD. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are reported in ppm on the δ scale relative to proton resonance resulting from incomplete deuteration of the solvents ($\left.\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}, \mathrm{DMSO}-\mathrm{d}_{6}: 2.5 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}: 1.94 \mathrm{ppm}\right)$. The chemical shift δ is given in ppm, the coupling constants J in Hz . The following abbreviations are used to describe signal multiplicity for 1 H NMR spectra: s: singlet, d: doublet, t : triplet, dd: doublet of doublets, m: multiplet. All spectra were recorded in standard 5 mm NMR tubes at 298 K if not stated otherwise.

DOSY

${ }^{1} \mathrm{H}$ DOSY spectra were recorded with a dstebpgp3s pulse sequence with diffusion delays D20 of 0.09-0.14 s and gradient powers P30 of 900-2500 μ s for each species optimized. ${ }^{[34]}$ The hydrodynamic radius was calculated according to Stokes-Einstein equation ${ }^{[35]}$:

$$
\mathrm{D}=\frac{\mathrm{k}_{B} \mathrm{~T}}{6 \pi \eta \mathrm{r}_{H}}
$$

Where D is diffusional coefficient, calculated by using STEJSKAL-TANNER-Equation, k_{B} is the Boltzmann constant, T is the absolute temperature, η is the viscosity of solvent, r_{H} is the hydrodynamic radius.

ESI-MS

Electrospray ionization mass spectrometry (ESI-MS) experiments were performed on ESI-timsTOF (ESI-trapped ion mobility-time of flight) mass spectrometer by Bruker, equipped with and ESI source (positive/negative mode). An Agilent ESI low concentration tuning mix has been used for calibration of tims and TOF units. Mass
spectrometry data is given as mass/charge ratio $(\mathrm{m} / \mathrm{z})$ as well as the relative intensity with regard to the base peak $(I=100)$.

UV-Vis

UV-vis spectra were recorded on a DAD HP-8453 UV-Vis spectrometer. Cuvette path length 10 mm .

Fluorescence

Fluorescence spectra were recorded on a JASCO FP-8300 fluorimeter equipped with a (150W) Xe lamp as light source. Cuvette path length 10 mm in emission direction.

FT-IR

Fourier Transform Infrared (FT-IR) spectra were measured on Perkin Elmer Spectrum Two spectrometer in the $400-4,000 \mathrm{~cm}^{-1}$ spectral region.

CD

Circular dichroism spectra were recorded on an Applied Photophysics Chirascan qCD Spectrameter with a temperature-controlled cuvette holder. The spectra were background-corrected and smoothed with a window size of 5 .

CV

Cyclic voltammetry experiments were recorded on Metrohm Autolab PGSTAT101 potentiostat and analysed by using NOVA software ver. 2.1. All experiments were carried out by using a one compartment electrolysis cell consisting of a glassy carbon working electrode, a platinum wire counter electrode, and $\mathrm{Ag}^{+} / \mathrm{Ag}$ reference electrode under N_{2} atmosphere. To a DMSO solution of each sample, 0.1 M tetrabutylammonium hexafluorophosphate ($n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$) as supporting electrolyte.
4. Phenoxazine-based macrocycles for Photoredox catalysis

4.6.3 Synthesis of the macrocycles

Synthesis of 3,7-dibromo-1-naphthly-10-phenoxazine (2Br-PZ)

Figure 4.19: Synthesis route of 2Br-PZ

The synthesis procedures of $\mathbf{2 B r}-\mathbf{P Z}$ were following the literature procedure. ${ }^{[27]}$ Phenoxazine ($0.8 \mathrm{~g}, 4.37 \mathrm{mmol}$, 1 equiv.), 2-bromonaphthalene ($1.22 \mathrm{~mL}, 8.74 \mathrm{mmol}$, 2.0 equiv.), sodium tert-butaoxide ($590 \mathrm{mg}, 6.13 \mathrm{mmol}, 1.4$ equiv.) and XPhos (312 $\mathrm{mg}, 0.66 \mathrm{mmol}, 0.15$ equiv.) were combined in a 250 mL Schlenk tube and cycled under nitrogen and vacuum three times. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ was added under Ar. Then 20 mL degassed anhydrous toluene was added. The mixture was stirred at $90^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the toluene was removed under reduced pressure. The reaction mixture was mixed with water (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}$ $\times 3$). The organic layer was collected and dried over MgSO_{4}. The solvent was removed. The resulting solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ at $-40{ }^{\circ} \mathrm{C}$ to afford the product.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d_{6}\right): ~ \delta 8.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{ddd}, J=$ $8.1,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.65 (td, $J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.54 (td, $J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.60 (dd, $J=8.0,1.5 \mathrm{~Hz}$, 2 H).
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): δ 143.07, 135.35, 133.91, 133.74, 130.25, 129.40, 129.21, 129.08, 127.53, 127.23, 126.90, 123.79, 122.44, 121.47, 115.35, 113.00.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.20: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 H}-\mathbf{P Z}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

Figure 4.21: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 H}-\mathrm{PZ}\left(126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

2H-PZ ($500 \mathrm{mg}, 1.60 \mathrm{mmol}, 1$ equiv.) was dissolved in 20 mL of acetic acid and 20 mL of chloroform in a 250 mL flask. NBS ($635 \mathrm{mg}, 3.56 \mathrm{mmol}, 2.2$ equiv.) was added portion-wise over 20 mins. The mixture was stirred at room temperature for 2 h . The reaction mixture was mixed with water. The organic layer was collected and dried over MgSO_{4}. Solvent was removed under reduced pressure and $\mathbf{2 B r}-\mathrm{PZ}$ was yield as brown sloid
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.17$ (dd, $J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (dd, $J=8.1,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=7.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (ddd, $J=8.1,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.75$ (dd, $J=8.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}, 5.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d): δ 143.60, 135.36, 133.00, 132.91, 129.87, 129.77, 129.19, 129.04, 127.87, 127.33, 127.12, 126.80, 122.27, 118.11, 114.59, 112.10.

HR ESI-MS: Calculated for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{NOBr}_{2}, \mathrm{~m} / \mathrm{z} 467.9417[\mathrm{M}+\mathrm{H}]^{+}$, found: 467.9243

Figure 4.22: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 B r}-\mathrm{PZ}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

Figure 4.23: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 B r}-\mathrm{PZ}$ ($126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}$).

Figure 4.24: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{2 B r - P Z}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

4. Phenoxazine-based macrocycles for Photoredox catalysis

Synthesis of L ${ }^{\text {PZ }}$

2Br-PZ ($150 \mathrm{mg}, 0.32 \mathrm{mmol}, 1$ equiv.), pinacol ester ($200 \mathrm{mg}, 0.8 \mathrm{mmol}, 2.5$ equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($245 \mathrm{mg}, 1.16 \mathrm{mmol}, 3.6$ equiv.) were combined in a 100 mL Schlenk tube and cycled three times under vacuum and nitrogen. Then Tetrakis(triphenylphosphine)palladium(0) ($37 \mathrm{mg}, 0.032 \mathrm{mmol}, 0.1$ equiv.) was added inside under Ar atmosphere. 20 mL degassed mixture solvents of 1,4-dioxane and water were added. The reaction was stirred at $95^{\circ} \mathrm{C}$ for 48 h . After cooling down to room temperature, the solvents were evaporated. Then 30 mL 2 M HCl was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. The organic phase was collected and dried over MgSO_{4}. Solvent was removed under reduced pressure. The crude product was purified by column chromatography (Chloroform:pentane $=2: 1$). The product was isolated as reddish brown solid (98 mg , Yield 55.5\%).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d_{6}\right): ~ \delta 10.82(\mathrm{~s}, 2 \mathrm{H}), 10.20(\mathrm{~s}, 2 \mathrm{H}), 8.21$ (d, J=8.1 Hz, 1H), $8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=7.2,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=8.2,6.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19$ (dd, $J=8.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.98 (dd, $J=8.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): δ 191.37, 161.03, 146.44, 143.42, 135.32, 133.80, 133.20, 132.18, 130.20, 129.97, 129.83, 129.18, 129.01, 127.89, 127.31, 127.13, $122.75,122.33,120.87,117.30,113.66,113.64,113.61$.

HR ESI-MS: Calculated for $\mathrm{C}_{36} \mathrm{H}_{23} \mathrm{NO}_{5}, \mathrm{~m} / \mathrm{z} 550.1649[\mathrm{M}+\mathrm{H}]^{+}$, found: 550.1517

Figure 4.25: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L}^{\mathrm{Pz}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.

Figure 4.26: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L}^{\mathrm{Pz}}\left(151 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.27: ${ }^{1} \mathrm{H}^{-1} \mathrm{H} \operatorname{COSY}$ spectrum of $\mathrm{L}^{\mathrm{PZ}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

Figure 4.28: DOSY spectra of $\mathrm{L}^{\text {PZ }}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$. Diffusion coefficient: $\mathrm{D}=1.65$ $\times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, \mathrm{r}=6.62 \AA$.

Synthesis of $\mathbf{R Z}^{\mathbf{P Z}}$

$L^{P Z}$
$\mathbf{R}^{\text {PZ }}$
Ligand LPZ (10 mg, $18.2 \mu \mathrm{~mol}, 1.0$ equiv.) and (1S,2S)-(-)-1,2-diphenyl-1,2ethanediamine (4.7 mg . $21.9 \mu \mathrm{~mol}$, 1.2 equiv.) were dissolved in 2 mL mixture solvent of $\mathrm{DCM} / \mathrm{MeOH}(1: 1)$. After addition of $\mathrm{CH}_{3} \mathrm{COOH}(20 \mu \mathrm{~L})$, the solution was stirred at room temperature for 10 h . Then, the solvent was removed under reduced pressure. The residue was washed with anhydrous methanol ($3 \times 1 \mathrm{~mL}$) and dried under vacuum to provide the product as yellow powder in quantitative yield.
${ }^{1} \mathrm{H}$ NMR (700 MHz , DMSO- d_{6}): $\delta 13.40(\mathrm{~s}, 4 \mathrm{H}), 8.62-8.52(\mathrm{~m}, 4 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.01-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.76 (dt, $J=7.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (ddt, $J=8.3,6.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (dddd, $J=8.2$, $6.8,3.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dt}, J=8.2,5.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{t}, J=2.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.04(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.69(\mathrm{dt}, J=8.4,2.7 \mathrm{~Hz}, 4 \mathrm{H})$, $5.11(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): $\delta 165.78,160.71,143.36,143.17,140.18,135.28$, 133.51, 133.41, 132.92, 132.21, 130.11, 129.70, 129.13, 129.04, 128.37, 127.94, 127.84, 127.45, 127.26, 127.07, 122.38, 122.25, 117.37, 116.66, 114.17, 113.50, 113. 40, 77.54 .
4. Phenoxazine-based macrocycles for Photoredox catalysis

HR ESI-MS: Calculated for $\mathrm{C}_{100} \mathrm{H}_{70} \mathrm{~N}_{6} \mathrm{O}_{6}, \mathrm{~m} / \mathrm{z} 726.7767 \quad[\mathrm{M}+2 \mathrm{H}]^{2+}$, found: 726.7740

Figure 4.29: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{R}^{\mathbf{P Z}}\left(700 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.

Figure 4.30: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{R}^{\mathbf{P Z}}\left(151 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.31: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{R}^{\mathrm{PZ}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.

Figure 4.32: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of $\mathbf{R}^{\mathrm{PZ}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

4. Phenoxazine-based macrocycles for Photoredox catalysis

Self-assembly of $\mathbf{Z n}_{2} \mathbf{R}^{\mathrm{PZ}}$.

$$
\mathrm{R}^{\mathrm{PZ}} \quad \mathrm{Zn}_{2} \mathrm{R}^{\mathrm{PZ}}
$$

$\mathbf{R}^{\mathbf{P Z}}\left(5 \mathrm{mg}, 3.44 \mu \mathrm{~mol}, 1\right.$ equiv.) was dissolved in $\mathrm{CHCl}_{3},\left[\mathrm{Zn}(\mathrm{OAc})_{2}\right](86 \mu \mathrm{~L}, 20 \mathrm{mg} / \mathrm{mL}$, 2 equiv. in DMSO) was added. The mixture was stirred at room temperature for 2 h . After reaction, solvents were removed and crude product was dissolved in a minimal amount of DCM and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to give the product ($4.3 \mathrm{mg}, 79.1 \%$ yield) as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.20$ (dd, $J=5.4,2.2 \mathrm{~Hz}, 6 \mathrm{H}$), 8.16 (d, $J=8.2 \mathrm{~Hz}$, 2 H), 8.01 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=8.6,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.34(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 8 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 12 \mathrm{H}), 6.61(\mathrm{dd}, \mathrm{J}=8.2,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 5.71$ (dd, $J=8.3,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.10(\mathrm{~s}, 4 \mathrm{H})$.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.33: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n}_{2} \mathrm{R}^{\mathrm{PZ}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

Figure 4.34: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- d_{6}).
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.35: ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ NOESY spectrum of $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ ($500 \mathrm{MHz}, 298 \mathrm{~K}$, DMSO- d_{6}).

Figure 4.36: DOSY spectra of $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$. Diffusion coefficient: $\mathrm{D}=$ $1.0 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, r=10.9 \AA$.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.37: FT-IR spectra of $\mathbf{R}^{\mathbf{P Z}}$ and $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$.

Figure 4.38: Excitation and emission spectra of $\mathrm{L}^{\mathrm{PZ}}\left(\mathrm{c}=2 \times 10^{-5} \mathrm{M}, \lambda_{\mathrm{ex}}=410 \mathrm{~nm}, \lambda_{\mathrm{em}}=600\right.$ nm).
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.39: Excitation and emission spectra of $\mathbf{R Z}^{\mathrm{PZ}}\left(\mathrm{c}=1 \times 10^{-5} \mathrm{M}, \lambda_{\mathrm{ex}}=410 \mathrm{~nm}, \lambda_{\mathrm{em}}=635\right.$ nm).

Figure 4.40: Excitation and emission spectra of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathrm{PZ}}\left(\mathrm{c}=1 \times 10^{-5} \mathrm{M}, \lambda_{\mathrm{ex}}=410 \mathrm{~nm}, \lambda_{\mathrm{em}}=550\right.$ nm).
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.41: CD spectrum of ligand L^{Pz} in $\mathrm{DMSO}\left(\mathrm{c}=2 \times 10^{-5} \mathrm{M}\right.$, cuvette path: 1 cm).

Figure 4.42: CD spectra and normalized UV spectra of a) $\mathbf{R}^{\mathbf{P Z}}$ and b) $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}^{\mathbf{P Z}}$ in DMSO (c $=$ $1 \times 10^{-5} \mathrm{M}$, cuvette path length: 1 cm).
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.43: Cyclic voltammograms of $\mathrm{L}^{\mathrm{Pz}} \mathrm{vs} \mathrm{Ag}^{+} / \mathrm{Ag}$ at different scan rate ($1.0 \mathrm{mM} \mathrm{L}^{\mathrm{Pz}}$ in DMSO containing $0.1 \mathrm{M} \mathrm{TBAPF}{ }_{6}$ on a glassy carbon working electrode at variable scan rates from 20 to $100 \mathrm{mV} / \mathrm{s}$. Inset, corresponding linear relationship between the anodic peak current $\left(I_{a}\right)$ and square root of the scan rate $\left(V^{1 / 2}\right)$.

4.6.4 Photoredox catalytic pinacol coupling reaction

General procedure for photoredox catalytic pinacol coupling experiments:

All the stock solutions of the compounds were prepared in DMSO- d_{6}.
Aldehyde derivatives ($50 \mathrm{mM}, 200 \mu \mathrm{~L}, 1$ equiv.), DIPEA ($500 \mathrm{mM}, 120 \mu \mathrm{~L}, 6 \mathrm{eq}$), LPZ ($10 \mathrm{mM}, 50 \mu \mathrm{~L}, 5 \mathrm{~mol} \%$) were combined in HPLC vials. $150 \mu \mathrm{~L}$ DMSO-d6 was added. The mixture was degassed and irradiated with 420 nm blue LED light at room temperature. After the irradiation, 1,3,5-trimethoxybenzene was added as an internal standard to determine the NMR yield of the products.

Aldehyde ($50 \mathrm{mM}, 200 \mu \mathrm{~L}, 1$ equiv.), DIPEA ($500 \mathrm{mM}, 120 \mu \mathrm{~L}, 6 \mathrm{eq}$), $\mathbf{R}^{\mathbf{P Z}}$ or $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ (5 $\mathrm{mM}, 50 \mu \mathrm{~L}, 2.5 \mathrm{~mol} \%$) were mixed in a HPLC vial. $150 \mu \mathrm{~L}$ DMSO- d_{6} was added. The mixture was degassed and irradiated with 420 nm blue LED light at room temperature. After the irradiation, 1,3,5-trimethoxybenzene was added as an internal standard to determine the yield of the products by ${ }^{1} \mathrm{H}$ NMR.

Aldehyde ($50 \mathrm{mM}, 200 \mu \mathrm{~L}, 1$ equiv.), $\mathbf{R}^{\mathbf{P Z}}$ or $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ ($5 \mathrm{mM}, 50 \mu \mathrm{~L}, 2.5 \mathrm{~mol} \%$) were mixed in HPLC vials. $270 \mu \mathrm{~L}$ DMSO- d_{6} was added. The mixture was degassed and irradiated with 420 nm blue LED light at room temperature. After the irradiation, 1,3,5trimethoxybenzene was added as an internal standard to determine the yield of the products by ${ }^{1} \mathrm{H}$ NMR.
4. Phenoxazine-based macrocycles for Photoredox catalysis

S-CF 3

Figure 4.44: ${ }^{1} \mathrm{H}$ NMR spectra of a) substrate $\mathrm{S}^{-} \mathrm{CF}_{3}$ and photocatalysis products under the condition b) 6 eq DIPEA, 420 nm blue LED light, 16 h ; c) $5 \mathrm{~mol} \% \mathrm{~L}^{\text {PZ }}, 420 \mathrm{~nm}$ blue LED light, 16h; d) 5 mol\% L ${ }^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, 16 h ; e) $5 \mathrm{~mol} \% \mathrm{~L}^{\text {PZ }}, 6$ eq DIPEA, daylight, 16 h ; f) $5 \mathrm{~mol} \% \mathrm{~L}^{\text {PZ }}, 6$ eq DIPEA, dark, $16 \mathrm{~h}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$. IS $=1,3,5-$ trimethoxybenzene.
4. Phenoxazine-based macrocycles for Photoredox catalysis

16 h
$\mathrm{S}-\mathrm{CF}_{3}$

Figure 4.45: : ${ }^{1} \mathrm{H}$ NMR spectra of a) substrate $\mathrm{S}_{\mathrm{S}} \mathrm{CF}_{3}$ and photocatalysis products under the condition b) 6 eq DIPEA, 420 nm blue LED light, 16 h ; c) $2.5 \mathrm{~mol} \% \mathbf{R}^{\text {PZ }}, 420 \mathrm{~nm}$ blue LED light, 16 h ; d) $2.5 \mathrm{~mol} \% \mathbf{R}^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, $16 \mathrm{~h}\left(500 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- d_{6}). IS = 1,3,5-trimethoxybenzene.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.46: ${ }^{1} \mathrm{H}$ NMR spectra of a) substrate $\mathrm{S}^{-} \mathrm{CF}_{3}$ and photocatalysis products under the condition b) $2.5 \mathrm{~mol} \% \mathbf{R}^{\text {PZ }}, 420 \mathrm{~nm}$ blue LED light, 16 h ; c) $2.5 \mathrm{~mol} \% \mathbf{R}^{\text {PZ }}, 6$ eq DIPEA, daylight, $16 \mathrm{~h} ; \mathrm{d})$) $2.5 \mathrm{~mol} \% \mathbf{R}^{\mathbf{P Z}}, 6$ eq DIPEA, dark, $16 \mathrm{~h}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$; e) $2.5 \mathrm{~mol} \%$ $\mathbf{R}^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, $16 \mathrm{~h}\left(600 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- d_{6}). IS $=1,3,5-$ trimethoxybenzene.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.47: ${ }^{1} \mathrm{H}$ NMR spectra of a) substrate $\mathrm{S}_{\mathbf{-}} \mathrm{CF}_{3}$ and photocatalysis products under the condition b) $2.5 \mathrm{~mol} \% \mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}, 420 \mathrm{~nm}$ blue LED light, 16 h ; c) $2.5 \mathrm{~mol} \% \mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}, 6$ eq DIPEA, daylight, 16 h ; d) $2.5 \mathrm{~mol} \% \mathbf{Z n}_{2} \mathbf{R}^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, 16 h ($500 \mathrm{MHz}, 298$ K, DMSO- d_{6}). IS = 1,3,5-trimethoxybenzene.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.48: ${ }^{1} \mathrm{H}$ NMR spectra of a) substrate $\mathrm{S}^{-\mathrm{CF}_{3}}$ ($500 \mathrm{MHz}, 298 \mathrm{~K}$, DMSO- d_{6}) and photocatalysis products under the condition b) $2.5 \mathrm{~mol} \% \mathrm{~L}^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, $\left.10 \mathrm{~h}\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right) ; ~ c\right) ~ 2.5 \mathrm{~mol} \% \mathbf{R}^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, $10 \mathrm{~h}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- d_{6}); d) $2.5 \mathrm{~mol} \% \mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}, 6$ eq DIPEA, 420 nm blue LED light, $10 \mathrm{~h}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- d_{6}); e) $2.5 \mathrm{~mol} \% \mathbf{R}^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, 5 h ($500 \mathrm{MHz}, 298 \mathrm{~K}$, DMSO- d_{6}); f) $2.5 \mathrm{~mol} \% \mathbf{Z n}_{2} \mathbf{R}^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, 5 h ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}$). IS = 1,3,5-trimethoxybenzene.

Figure 4.49: ${ }^{1} \mathrm{H}$ NMR spectra of a) substrate $\mathrm{S}-\mathrm{H}$ and photocatalysis products under the condition b) 6 eq DIPEA, 420 nm blue LED light, 16 h ; c) $5 \mathrm{~mol} \%$ LPZ $^{\text {PZ }} 6$ eq DIPEA, 420 nm blue LED light, 16 h ; d) $2.5 \mathrm{~mol} \% \mathbf{R Z}^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, 16 h ; e) $2.5 \mathrm{~mol} \%$ $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$, 6 eq DIPEA, 420 nm blue LED light, 16 h ; f) $2.5 \mathrm{~mol} \% \mathrm{~L}^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, 5 h ; g) $2.5 \mathrm{~mol} \% \mathbf{Z n}_{2} \mathbf{R}^{\mathrm{PZ}}$, 6 eq DIPEA, 420 nm blue LED light, $5 \mathrm{~h}(500 \mathrm{MHz}, 298 \mathrm{~K}$, DMSO- d_{6}). IS = 1,3,5-trimethoxybenzene.

Figure 4.50: : ${ }^{1} \mathrm{H}$ NMR spectra of a) substrate S-3PA and photocatalysis products under the condition b) 6 eq DIPEA, 420 nm blue LED light, 10 h ; c) $5 \mathrm{~mol} \%$ LPZ $^{\text {PZ }} 6$ eq DIPEA, 420 nm blue LED light, 10 h ; d) $2.5 \mathrm{~mol} \% \mathbf{R}^{\text {PZ }}$, 6 eq DIPEA, 420 nm blue LED light, 10 h ; e) $2.5 \mathrm{~mol} \%$ $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$, 6 eq DIPEA, 420 nm blue LED light, $10 \mathrm{~h}\left(500 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- d_{6}). IS = 1,3,5trimethoxybenzene.
4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.51: ${ }^{1} \mathrm{H}$ NMR spectra of a) substrate $\mathbf{S}-\mathbf{C H}_{3}$ and photocatalysis products under the condition b) $5 \mathrm{~mol} \%$ LPZ $^{\text {PZ }}, 6$ eq DIPEA, 420 nm blue LED light, $\left.10 \mathrm{~h} ; \mathrm{c}\right) 5 \mathrm{~mol} \% \mathrm{~L}^{\mathrm{Pz}}, 6$ eq DIPEA, 420 nm blue LED light, 10 h ; d) $2.5 \mathrm{~mol} \% \mathbf{Z n}_{2} \mathrm{~L}^{\text {PZ }}, 420 \mathrm{~nm}$ blue LED light, 6 eq DIPEA, 10 h (500 MHz , 298 K , DMSO-d d_{6}).

4. Phenoxazine-based macrocycles for Photoredox catalysis

4.6.5 Theoretical studies

All the calculations were performed using Gaussian ver B01 at the ω B97X/def2svp level of theory in the gas phase. Geometry optimization and frequency calculations were performed for $\mathbf{L}^{\mathbf{P Z}}, \mathbf{R}^{\mathbf{P Z}}$, and $\mathbf{Z n}_{\mathbf{2}} \mathbf{R}^{\mathbf{P Z}}$ in ground sate (multiplicity:0, charge: 0), doublet state (multiplicity:2, charge: +1), and triplet state (multiplicity:3, charge: 0).

Figure 4.52: The optimized geometry of \mathbf{L}^{Pz} in the ground state

18	6	0	-6.027521	-3.438978	0.307042
19	6	0	-7.147469	-2.888663	-0.344110
20	6	0	-7.070068	-1.567403	-0.816565
21	6	0	-5.927659	-0.808954	-0.654370
22	6	0	-8.400179	-3.638253	-0.557002
23	8	0	-5.986175	-4.690468	0.807602
24	8	0	-9.378061	-3.198190	-1.108110
25	6	0	5.965418	-0.560093	-0.808240
26	6	0	7.137029	-1.280032	-0.988619
27	6	0	7.299043	-2.578833	-0.492910
28	6	0	6.226676	-3.163582	0.212451
29	6	0	5.045445	-2.435961	0.393903
30	6	0	8.591459	-3.263021	-0.740287
31	8	0	8.904202	-4.369741	-0.388694
32	8	0	6.363939	-4.403623	0.703134
33	6	0	-0.041279	3.096848	0.928217
34	6	0	-0.073785	3.982095	-0.196785
35	6	0	-0.102743	5.383665	0.042438
36	6	0	-0.098667	5.861876	1.383794
37	6	0	-0.067369	4.989879	2.441126
38	6	0	-0.038376	3.592015	2.208922
39	6	0	-0.078325	3.508085	-1.538736
40	6	0	-0.110177	4.390574	-2.588793

4. Phenoxazine-based macrocycles for Photoredox catalysis

41	6	0	-0.139005	5.788751	-2.353330
42	6	0	-0.135334	6.271801	-1.069839
43	1	0	-2.535385	2.644723	0.790423
44	1	0	-2.188638	-2.224278	-0.073963
45	1	0	-4.593962	1.323426	0.491090
46	1	0	2.466977	2.757397	0.733655
47	1	0	4.577095	1.528414	0.390033
48	1	0	2.319816	-2.122092	-0.126613
49	1	0	-4.033605	-3.121327	1.004607
50	1	0	-7.950584	-1.168283	-1.327533
51	1	0	-5.882673	0.206262	-1.055095
52	1	0	-8.424545	-4.693582	-0.171628
53	1	0	-6.820286	-5.147735	0.665793

54	1	0	5.863410	0.441266	-1.232445
55	1	0	7.968638	-0.832465	-1.543794
56	1	0	4.231003	-2.892149	0.967129
57	1	0	9.309315	-2.625147	-1.322947
58	1	0	5.553727	-4.658589	1.156996
59	1	0	-0.121188	6.942055	1.556327
60	1	0	-0.064637	5.365123	3.467614
61	1	0	-0.013442	2.890566	3.046979
62	1	0	-0.056288	2.430734	-1.721704
63	1	0	-0.113621	4.015442	-3.615635
64	1	0	-0.164321	6.479750	-3.200137
65	1	0	-0.157573	7.349268	-0.880918

Figure 4.53: The optimized geometry of $\mathbf{R}^{\mathbf{P Z}}$ in the ground state

4. Phenoxazine-based macrocycles for Photoredox catalysis

21	6	0	-6.011758	4.802266	0.370594
22	6	0	-8.482345	2.293711	1.707391
23	8	0	-6.197839	0.702230	0.927203
24	7	0	-8.623250	1.036253	1.855014
25	6	0	-9.785531	0.405072	2.450479
26	6	0	-10.087953	-0.910335	1.669993
27	7	0	-8.848682	-1.629473	1.513107
28	6	0	-8.444580	-1.886446	0.341341
29	6	0	-7.168516	-2.544959	0.010683
30	6	0	-6.071970	-2.612645	0.894895
31	6	0	-4.883121	-3.218350	0.477000
32	6	0	-4.742909	-3.767367	-0.800574
33	6	0	-5.831094	-3.692918	-1.681323
34	6	0	-7.008768	-3.083029	-1.271645
35	8	0	-6.183031	-2.084446	2.126444
36	6	0	-3.466024	-4.408874	-1.213000
37	6	0	-2.231893	-3.908281	-0.769435
38	6	0	-1.040105	-4.500126	-1.149470
39	6	0	-1.026368	-5.623994	-1.995451
40	6	0	-2.252528	-6.127323	-2.431267
41	6	0	-3.452230	-5.527370	-2.047431
42	8	0	0.117120	-3.934613	-0.684494
43	6	0	1.310836	-4.546270	-0.965855
44	6	0	1.383554	-5.673197	-1.804073
45	7	0	0.203791	-6.188981	-2.361809
46	6	0	2.449278	-4.008127	-0.392377
47	6	0	3.715504	-4.565937	-0.628895
48	6	0	3.787003	-5.683712	-1.461789
49	6	0	2.640739	-6.229870	-2.039870
50	6	0	4.936768	-3.976651	-0.015387
51	6	0	5.033552	-2.601329	0.186101
52	6	0	6.175790	-2.020084	0.758208
53	6	0	7.259533	-2.854410	1.130665
54	6	0	7.145521	-4.238400	0.928863
55	6	0	6.012097	-4.802156	0.370173
56	6	0	5.831163	3.693007	-1.681362
57	6	0	7.008835	3.083184	-1.271590
58	6	0	7.168471	2.545092	0.010737
59	6	0	6.071831	2.612637	0.894833
60	6	0	4.882963	3.218244	0.476832
61	6	0	8.444511	1.886588	0.341494
62	7	0	8.848694	1.629780	51

$\left.\begin{array}{llllll}63 & 8 & 0 & 6.182865 & 2.084420 & 2.126371 \\ 64 & 8 & 0 & 6.197522 & -0.702194 & 0.927633 \\ 65 & 7 & 0 & 8.623263 & -1.036010 & 1.854836 \\ 66 & 6 & 0 & 10.087943 & 0.910580 & 1.670069 \\ 67 & 6 & 0 & 9.785494 & -0.404855 & 2.450436 \\ 68 & 6 & 0 & -0.248183 & 7.328517 & -3.217926 \\ 69 & 6 & 0 & 0.248174 & -7.328630 & -3.217634 \\ 70 & 6 & 0 & -0.175188 & 8.640602 & -2.649185 \\ 71 & 6 & 0 & -0.220102 & 9.763568 & -3.520565 \\ 72 & 6 & 0 & -0.336073 & 9.552059 & -4.923939 \\ 73 & 6 & 0 & -0.404377 & 8.283829 & -5.440126 \\ 74 & 6 & 0 & -0.359735 & 7.161093 & -4.576389 \\ 75 & 6 & 0 & 0.359763 & -7.161013 & -4.576071 \\ 76 & 6 & 0 & 0.404429 & -8.283613 & -5.439985 \\ 77 & 6 & 0 & 0.336109 & -9.551917 & -4.923987 \\ 78 & 6 & 0 & 0.220099 & -9.763630 & -3.520643 \\ 79 & 6 & 0 & 0.175165 & -8.640798 & -2.649087 \\ 80 & 6 & 0 & 0.147356 & -11.071626 & -2.962958 \\ 81 & 6 & 0 & 0.035767 & -11.251274 & -1.607975 \\ 82 & 6 & 0 & -0.008531 & -10.129518 & -0.741290 \\ 83 & 6 & 0 & 0.059334 & -8.855950 & -1.247017 \\ 84 & 6 & 0 & -0.059385 & 8.855543 & -1.247078 \\ 85 & 6 & 0 & 0.008469 & 10.129030 & -0.741152 \\ 86 & 6 & 0 & -0.035816 & 11.250920 & -1.607666 \\ 87 & 6 & 0 & -0.147375 & 11.071480 & -2.962678 \\ 98 & 6 & 0 & 8.482449 & -2.293470 & 1.707169 \\ 98 & 6 & 0 & 11.634930 & -1.838823 & 1.464470 \\ 99 & 6 & 0 & 12.791637 & -2.604041 & 1.591223 \\ 100 & 6 & 0 & 13.357636 & -2.813242 & 2.849557 \\ 101 & 6 & 0 & 12.756570 & -2.256528 & 3.975716 \\ 95 & 6 & 0 & 11.595752 & -1.493937 & 3.844009 \\ 94 & 6 & 0 & -10.682994 & -2.620992 & 3.437870 \\ 90 & 6 & 0 & -11.613608 & -3.362911 & 4.162689 \\ 91 & 6 & 0 & -11.103546 & -1.752359 & 2.424901 \\ 92 & 6 & 0 & 0 & 12.975400 & 3.248134\end{array}\right) 3.8838270$

4. Phenoxazine-based macrocycles for Photoredox catalysis

$\left.\begin{array}{llllll}105 & 6 & 0 & -12.975279 & -3.248203 & 3.883591 \\ 106 & 6 & 0 & -13.400688 & -2.389221 & 2.871901 \\ 107 & 6 & 0 & -12.469014 & -1.647631 & 2.146738 \\ 108 & 6 & 0 & -11.595685 & 1.494206 & 3.844124 \\ 109 & 6 & 0 & -12.756480 & 2.256824 & 3.975912 \\ 110 & 6 & 0 & -13.357623 & 2.813528 & 2.849793 \\ 111 & 6 & 0 & -12.791726 & 2.604284 & 1.591415 \\ 112 & 6 & 0 & -11.635049 & 1.839039 & 1.464584 \\ 113 & 1 & 0 & -2.725003 & 7.099781 & -2.694550 \\ 114 & 1 & 0 & -2.323132 & 3.143360 & 0.262951 \\ 115 & 1 & 0 & -4.757041 & 6.132577 & -1.689160 \\ 116 & 1 & 0 & 2.268659 & 7.006550 & -3.078685 \\ 117 & 1 & 0 & 4.394364 & 5.961575 & -2.391533 \\ 118 & 1 & 0 & 2.172358 & 3.020233 & -0.135787 \\ 119 & 1 & 0 & -4.231288 & 1.925949 & -0.120624 \\ 120 & 1 & 0 & -7.979213 & 4.880609 & 1.232703 \\ 121 & 1 & 0 & -5.940374 & 5.885671 & 0.251131 \\ 122 & 1 & 0 & -9.267892 & 3.016385 & 1.998673 \\ 123 & 1 & 0 & -7.066579 & 0.456605 & 1.343136 \\ 124 & 1 & 0 & -9.469079 & 0.080037 & 3.457324 \\ 125 & 1 & 0 & -10.521803 & -0.626350 & 0.686829 \\ 126 & 1 & 0 & -9.055030 & -1.607854 & -0.545357 \\ 127 & 1 & 0 & -4.052510 & -3.281140 & 1.188258 \\ 128 & 1 & 0 & -5.740750 & -4.082111 & -2.698100 \\ 129 & 1 & 0 & -7.845928 & -3.006129 & -1.973249 \\ 130 & 1 & 0 & -5.310385 & -2.049136 & 2.531715 \\ 131 & 1 & 0 & -2.172389 & -3.020737 & -0.134985 \\ 143 & 1 & 0 & 9.054898 & 1.607808 & -0.545185 \\ 144 & 1 & 0 & 5.310174 & 2.048775 & 2.531513 \\ 132 & 1 & 0 & -2.268651 & -7.006337 & -3.078848 \\ 139 & 1 & 0 & 0 & 5.740904 & 4.082270\end{array}-2.698120\right\}$

145	1	0	7.066363	-0.456412	1.343264
146	1	0	10.521819	0.626704	0.686888
147	1	0	9.468967	-0.079898	3.457283
148	1	0	-0.369783	10.422959	-5.585424
149	1	0	-0.493437	8.129956	-6.518569
150	1	0	-0.413654	6.146971	-4.980948
151	1	0	0.413694	-6.146829	-4.980479
152	1	0	0.493518	-8.129571	-6.518402
153	1	0	0.369834	-10.422727	-5.585591
154	1	0	0.182044	-11.932633	-3.637277
155	1	0	-0.019637	-12.260230	-1.190504
156	1	0	-0.097636	-10.283306	0.337415
157	1	0	0.025398	-7.991033	-0.579660
158	1	0	-0.025457	7.990529	-0.579847
159	1	0	0.097553	10.282652	0.337577
160	1	0	0.019575	12.259812	-1.190041
161	1	0	-0.182048	11.932591	-3.636863
162	1	0	9.268059	-3.016087	1.998425
163	1	0	12.809402	0.971215	1.356289
164	1	0	14.465945	2.295763	2.642502
165	1	0	13.704847	3.832656	4.451642
166	1	0	11.271708	4.041859	4.949436
167	1	0	9.611905	2.719849	3.634483
168	1	0	11.199091	-1.681501	0.472092
169	1	0	13.256288	-3.039213	0.701930
170	1	0	14.267679	-3.411153	2.950102
171	1	0	13.194066	-2.413216	4.965538
172	1	0	11.132710	-1.050245	4.730971
179	1	0	-14.267650	3.411456	2.950389
177	1	0	-13.256436	3.039453	0.702152
172	1	0	-11.199310	1.681682	0.472167
174	1	1	0	-12.809442	-0.971331

4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.54: The optimized geometry of $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ in the ground state

Standard orientation:						
Center Number		Atomic Number	Atomic (Angstroms)	Coordinates		
		r Type	X	Y		
1	6		0	2.544455	7.749055	0.861408
2	6	0	1.297855	7.127955	0.950740	
3	6	0	1.255524	5.726921	0.839879	
4	6	0	2.405888	4.990944	0.626204	
5	6	0	3.660518	5.612510	0.527863	
6	6	0	3.706171	7.002091	0.654568	
7	7	0	0.096531	7.831906	1.135839	
8	6	0	-1.119340	7.138025	1.022425	
9	6	0 -1	-1.095722	5.735982	0.917458	
10	8	0	0.079378	5.034768	0.945076	
11	6	0	-2.364062	7.769172	1.009362	
12	6	0	-3.544270	7.029107	0.908734	
13	6	0	-3.519156	5.636913	0.808235	
14	6	0	-2.264981	5.006616	0.813063	
15	6	0	4.878371	4.796400	0.267714	
16	6	0	-4.761620	4.822680	0.708414	
17	6	0	4.964941	3.498956	0.737529	
18	6	0	6.052495	2.630595	0.430932	
19	6	0	7.108770	3.177373	-0.374453	
20	6	0	7.026432	4.528524	-0.796419	
21	6	0	5.947255	5.326353	-0.504206	

22	6	0	8.277503	2.430777	-0.759971
23	8	0	6.025122	1.426759	0.890329
24	7	0	8.442944	1.161424	-0.597078
25	6	0	9.675776	0.464272	-0.946114
26	6	0	9.839227	-0.738469	0.039703
27	7	0	8.543661	-1.402994	0.146550
28	6	0	8.390628	-2.684900	0.123888
29	6	0	7.135543	-3.388483	0.097487
30	6	0	5.862039	-2.741655	-0.037901
31	6	0	4.712364	-3.582792	-0.083029
32	6	0	4.775226	-4.962682	-0.031617
33	6	0	6.051246	-5.583850	0.068698
34	6	0	7.180734	-4.806166	0.132600
35	8	0	5.686705	-1.469143	-0.124435
36	6	0	3.528569	-5.780135	-0.077186
37	6	0	2.334071	-5.239424	-0.581669
38	6	0	1.164658	-5.974709	-0.604616
39	6	0	1.125466	-7.298753	-0.133288
40	6	0	2.307735	-7.842265	0.369061
41	6	0	3.486167	-7.093938	0.395857
42	8	0	0.049238	-5.377119	-1.129910
43	6	0	-1.168115	-5.937542	-0.845787
44	6	0	-1.271140	-7.271052	-0.411672
45	7	0	-0.090312	-7.999724	-0.186844
46	6	0	-2.293973	-5.155331	-1.027102
47	6	0	-3.578785	-5.678512	-0.815606
48	6	0	-3.685225	-7.014934	-0.427874

49	6	0	-2.548354	-7.798270	-0.217495
50	6	0	-4.776351	-4.808122	-0.965342
51	6	0	-4.733593	-3.501023	-0.520695
52	6	0	-5.835983	-2.604662	-0.634304
53	6	0	-7.030545	-3.120930	-1.242260
54	6	0	-7.055629	-4.472750	-1.673541
55	6	0	-5.970602	-5.306524	-1.551295
56	6	0	-5.956410	5.242279	1.352889
57	6	0	-7.071423	4.442187	1.290481
58	6	0	-7.073372	3.190484	0.623893
59	6	0	-5.881585	2.757323	-0.051013
60	6	0	-4.757043	3.629793	0.009679
61	6	0	-8.300962	2.437345	0.625127
62	7	0	-8.435845	1.225922	0.201855
63	8	0	-5.763871	1.652856	-0.705213
64	8	0	-5.698783	-1.410287	-0.173409
65	7	0	-8.394441	-1.110442	-1.098452
66	6	0	-9.715928	0.529563	0.138166
67	6	0	-9.680884	-0.420251	-1.105124
68	6	0	0.106575	9.250938	1.271965
69	6	0	-0.153778	-9.361408	0.232593
70	6	0	0.077968	10.076706	0.101976
71	6	0	0.088979	11.489454	0.265302
72	6	0	0.127775	12.038895	1.578497
73	6	0	0.154383	11.223713	2.680261
74	6	0	0.143658	9.815211	2.523292
75	6	0	-0.044931	-10.363489	-0.699709
76	6	0	-0.104169	-11.724333	-0.308055
77	6	0	-0.271751	-12.053248	1.011989
78	6	0	-0.388082	-11.041056	2.006977
79	6	0	-0.329045	-9.673880	1.619754
80	6	0	-0.561771	-11.360500	3.383548
81	6	0	-0.670637	-10.369679	4.325386
82	6	0	-0.611065	-9.007162	3.936553
83	6	0	-0.444697	-8.665829	2.618063
84	6	0	0.038871	9.531431	-1.212164
85	6	0	0.012177	10.356662	-2.307948
86	6	0	0.023250	11.765814	-2.148158
87	6	0	0.060693	12.316981	-0.892980
88	6	0	-8.249740	-2.364384	-1.368235
89	30	0	6.970588	-0.074645	0.153716
90	30	0	-6.851878	0.091244	-0.463243

91	6	0	11.011521	-1.614745	-0.354336
92	6	0	10.926009	1.321668	-0.966428
93	6	0	-10.944144	1.417474	0.109456
94	6	0	-10.910477	-1.305262	-1.151025
95	6	0	-11.116789	2.368216	-0.905296
96	6	0	-12.258917	3.162935	-0.947248
97	6	0	-13.249031	3.017965	0.025633
98	6	0	-13.086653	2.077640	1.039474
99	6	0	-11.939280	1.284631	1.079758
100	6	0	-11.806068	-1.216616	-2.218617
101	6	0	-12.955202	-2.007206	-2.255713
102	6	0	-13.219762	-2.901821	-1.222248
103	6	0	-12.329855	-3.003251	-0.151988
104	6	0	-11.186070	-2.210541	-0.117310
105	6	0	11.050363	-2.254718	-1.600519
106	6	0	12.142104	-3.038250	-1.964341
107	6	0	13.216248	-3.193088	-1.086934
108	6	0	13.187824	-2.563505	0.154522
109	6	0	12.090328	-1.781743	0.516426
110	6	0	11.721745	1.392792	-2.111482
111	6	0	12.891035	2.154160	-2.122335
112	6	0	13.275730	2.857504	-0.984025
130	1	0	8.161981	-5.289025	0.203194
131	1	0	2.288985	-4.226959	-0.986311
132	1	0	2.307493	-8.865354	0.751055
113	6	0	12.485727	2.797589	0.165006
114	6	0	11.321193	2.035102	0.172938
115	1	0	2.608378	8.834976	0.958540
116	1	0	2.297537	3.909836	0.517155
128	1	0	3.759338	-3.053902	-0.140809
127	1	1	0	4.665332	7.523760

4. Phenoxazine-based macrocycles for Photoredox catalysis

133	1	0	4.380317	-7.552969	0.822906	158	1	0	0.001634	12.410766	-3.030775
134	1	0	-2.150605	-4.125101	-1.360986	159	1	0	0.069320	13.403358	-0.762366
135	1	0	-4.671104	-7.451020	-0.245754	160	1	0	-9.128442	-2.942708	-1.702924
136	1	0	-2.655777	-8.833685	0.112820	161	1	0	-10.341518	2.499359	-1.667584
137	1	0	-3.840033	-3.098251	-0.037563	162	1	0	-12.377235	3.902347	-1.744062
138	1	0	-7.978234	-4.851588	-2.127732	163	1	0	-14.146582	3.641529	-0.007491
139	1	0	-6.012860	-6.334056	-1.920024	164	1	0	-13.856810	1.957858	1.806259
140	1	0	-5.977742	6.175442	1.919844	165	1	0	-11.818425	0.543871	1.876531
141	1	0	-7.992135	4.761138	1.791977	166	1	0	-11.605178	-0.511797	-3.031644
142	1	0	-3.867212	3.288622	-0.524151	167	1	0	-13.646682	-1.920993	-3.098243
143	1	0	-9.185594	2.971373	1.014871	168	1	0	-14.119122	-3.523061	-1.249161
144	1	0	-9.780785	-0.123015	1.028016	169	1	0	-12.528401	-3.706416	0.661518
145	1	0	-9.694500	0.233457	-1.996261	170	1	0	-10.491544	-2.307825	0.723826
146	1	0	0.135984	13.127093	1.692574	171	1	0	10.210689	-2.149705	-2.295700
147	1	0	0.184195	11.653008	3.685024	172	1	0	12.155030	-3.532638	-2.939574
148	1	0	0.164929	9.158559	3.396852	173	1	0	14.074716	-3.806823	-1.373068
149	1	0	0.088373	-10.092337	-1.750063	174	1	0	14.024882	-2.678870	0.848396
150	1	0	-0.015353	-12.506908	-1.065954	175	1	0	12.075191	-1.285375	1.491885
151	1	0	-0.318475	-13.101712	1.321499	176	1	0	11.426087	0.838189	-3.007696
152	1	0	-0.606610	-12.413879	3.676343	177	1	0	13.503231	2.196283	-3.027274
153	1	0	-0.803615	-10.626279	5.379849	178	1	0	14.190817	3.455927	-0.990398
154	1	0	-0.698549	-8.224134	4.694396	179	1	0	12.778805	3.350992	1.061387
155	1	0	-0.399042	-7.615133	2.320379	180	1	0	10.702689	2.005576	1.076193
156	1	0	0.030298	8.445463	-1.335589						

Figure 4.55: The optimized geometry of $\mathrm{L}^{\mathrm{Pz} \cdot+}$

Standard orientation:
\qquad

Center Atomic Atomic (Angstroms)

		Numb	Type	X	Y Z
1	6	0	-2.463888	1.558775	0.562954
2	6	0	-1.195835	0.949649	0.444323
3	6	0	-1.141218	-0.435495	0.168067
4	6	0	-2.300835	-1.190443	0.019987
5	6	0	-3.549744	-0.586036	0.138344
6	6	0	-3.605164	0.804993	0.409796
7	7	0	-0.014391	1.651392	0.584215
8	6	0	1.195821	1.005323	0.421714
9	6	0	1.200451	-0.380974	0.147273
10	8	0	0.044135	-1.069800	0.032936
11	6	0	2.436168	1.673187	0.515199
12	6	0	3.608379	0.973299	0.341526
13	6	0	3.613055	-0.419424	0.072769
14	6	0	2.391550	-1.081275	-0.021485
15	6	0	-4.797660	-1.375725	-0.013483
16	6	0	4.893980	-1.147940	-0.104225
17	6	0	-4.849596	-2.690970	0.443124
18	6	0	-6.018112	-3.452736	0.309993
19	6	0	-7.149023	-2.881111	-0.300862
20	6	0	-7.081987	-1.557950	-0.759621
21	6	0	-5.931387	-0.803038	-0.619926
22	6	0	-8.425396	-3.618643	-0.486282
23	8	0	-5.966662	-4.704105	0.794192
24	8	0	-9.399627	-3.143304	-1.006210
25	6	0	5.971676	-0.535782	-0.756370
26	6	0	7.155064	-1.245601	-0.921649
27	6	0	7.310446	-2.548818	-0.447243
28	6	0	6.227576	-3.164894	0.218496
29	6	0	5.030885	-2.455335	0.374669
30	6	0	8.623910	-3.222060	-0.669838
31	8	0	8.915748	-4.334007	-0.328148
32	8	0	6.376115	-4.406007	0.686633
33	6	0	-0.044712	3.065021	0.886936
34	6	0	-0.080012	3.995849	-0.193791
35	6	0	-0.110156	5.379237	0.139941
36	6	0	-0.103694	5.770947	1.508587
37	6	0	-0.068991	4.839994	2.515829
38	6	0	-0.039015	3.460546	2.200541
39	6	0	-0.086601	3.608857	-1.563310
40	6	0	-0.121933	4.561207	-2.550715

4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.56: The optimized geometry of $\mathbf{R}^{\mathrm{PZ} \cdot+}$

	Center	Atomic	ic Atomic (Angstroms)	Coor	rdinates
	umber	Number	Type	X	Y Z
1	6	0 -2	-2.652108	6.156126	-2.082706
2	6	0 -1	-1.393569	5.602016	-1.846420
3	6	0 -1	-1.317766	4.485874	-0.994026
4	6	0	-2.453324	3.955736	-0.408084
5	6	0 -	-3.720633	4.510173	-0.646517
6	6	0	-3.795743	5.617699	-1.492687
7	7	0 -0.	-0.217479	6.109754	-2.416994
8	6	0	1.014083	5.558700	-2.038357
9	6	0	1.033066	4.447800	-1.175220
10	8	0	-0.122455	3.875407	-0.712220
11	6	0	2.238786	6.063165	-2.478114
12	6	0	3.441302	5.477747	-2.081255
13	6	0	3.459693	4.375374	-1.225834
14	6	0	2.227650	3.873975	-0.777554
15	6	0	-4.938222	3.927602	-0.020648
16	6		4.737787	3.748292	-0.797104
17	6		-5.035337	2.552694	0.190913
18	6	0	-6.173168	1.978181	0.773986

19	6	0	-7.253372	2.814626	1.150160
20	6	0	-7.139987	4.196988	0.938433
21	6	0	-6.009771	4.755519	0.367102
22	6	0	-8.473605	2.256805	1.736141
23	8	0	-6.201032	0.657856	0.953640
24	7	0	-8.611011	0.999256	1.892235
25	6	0	-9.774928	0.367647	2.487068
26	6	0	-10.093319	-0.930309	1.684377
27	7	0	-8.857721	-1.656137	1.508788
28	6	0	-8.434251	-1.850694	0.334629
29	6	0	-7.146329	-2.501821	0.011927
30	6	0	-6.060428	-2.561240	0.914617
31	6	0	-4.858885	-3.146160	0.504751
32	6	0	-4.708383	-3.691120	-0.775662
33	6	0	-5.784496	-3.632860	-1.668990
34	6	0	-6.971160	-3.029485	-1.269162
35	8	0	-6.202285	-2.050385	2.144121
36	6	0	-3.425972	-4.313841	-1.179606
37	6	0	-2.207411	-3.839422	-0.696834
38	6	0	-1.015272	-4.444907	-1.080321
39	6	0	-1.001853	-5.542777	-1.969811
40	6	0	-2.236343	-6.022444	-2.457590
41	6	0	-3.410686	-5.419830	-2.068308
42	8	0	0.135758	-3.941747	-0.581679

43	6	0	1.321480	-4.503432	-0.907039
44	6	0	1.383168	-5.608837	-1.786600
45	7	0	0.210626	-6.105063	-2.321344
46	6	0	2.471208	-3.965146	-0.340000
47	6	0	3.721029	-4.512128	-0.626818
48	6	0	3.780916	-5.622957	-1.508150
49	6	0	2.649532	-6.160620	-2.077503
50	6	0	4.957125	-3.950678	-0.031448
51	6	0	5.044806	-2.585093	0.236531
52	6	0	6.201655	-2.023739	0.801254
53	6	0	7.295896	-2.876536	1.103463
54	6	0	7.186853	-4.246170	0.835753
55	6	0	6.043538	-4.791570	0.272337
56	6	0	5.822251	3.642093	-1.679138
57	6	0	6.998963	3.041180	-1.254318
58	6	0	7.160787	2.537935	0.042520
59	6	0	6.069444	2.644506	0.930418
60	6	0	4.881997	3.242430	0.497989
61	6	0	8.440702	1.894583	0.383989
62	7	0	8.807275	1.567507	1.551138
63	8	0	6.184252	2.162681	2.180363
64	8	0	6.220625	-0.721619	1.027083
65	7	0	8.645486	-1.084175	1.889132
66	6	0	10.070522	0.890511	1.711544
67	6	0	9.806828	-0.440050	2.477368
68	6	0	-0.264753	7.251837	-3.272153
69	6	0	0.249446	-7.224994	-3.233422
70	6	0	-0.193114	8.562966	-2.701493
71	6	0	-0.240978	9.685857	-3.573045
72	6	0	-0.358402	9.474691	-4.976371
73	6	0	-0.425435	8.206889	-5.493824
74	6	0	-0.377812	7.084157	-4.630393
75	6	0	0.362646	-6.982453	-4.578670
76	6	0	0.401735	-8.068989	-5.485276
77	6	0	0.325988	-9.355550	-5.015194
78	6	0	0.207947	-9.627216	-3.622675
79	6	0	0.167840	-8.545471	-2.698811
80	6	0	0.128181	-10.958504	-3.124904
81	6	0	0.014467	-11.198373	-1.779806
82	6	0	-0.024972	-10.117211	-0.863237
83	6	0	0.049724	-8.821171	-1.307611
84	6	0	0760		

85	6	0	-0.009907	10.052742	-0.794533
86	6	0	-0.057053	11.174305	-1.661172
87	6	0	-0.169842	10.994129	-3.015926
88	6	0	8.534515	-2.332504	1.679620
89	6	0	-11.111467	-1.781437	2.423376
90	6	0	-11.006199	1.238186	2.649285
91	6	0	11.051705	1.755726	2.486025
92	6	0	11.053914	-1.292967	2.597990
93	6	0	12.422014	1.694756	2.219572
94	6	0	13.323006	2.458098	2.960767
95	6	0	12.861017	3.293874	3.975731
96	6	0	11.493991	3.364245	4.242936
97	6	0	10.593661	2.600672	3.502692
98	6	0	11.687023	-1.810147	1.459604
99	6	0	12.849971	-2.568127	1.573453
100	6	0	13.400798	-2.818761	2.830866
101	6	0	12.779624	-2.310720	3.969118
102	6	0	11.612612	-1.555616	3.850771
103	6	0	-10.701329	-2.643233	3.446157
104	6	0	-11.638737	-3.390707	4.156270
105	6	0	-12.995869	-3.287051	3.852142
106	6	0	-13.410360	-2.433867	2.831155
107	6	0	-12.472064	-1.687012	2.120264
108	6	0	-11.557681	1.454487	3.913879
109	6	0	-12.711444	2.223258	4.068915
125	1	0	-10.523781	-0.624695	0.707287
126	1	0	-9.016655	-1.523508	-0.552907
110	6	0	-13.326389	2.791342	2.956040
111	6	0	-12.782186	2.587654	1.687297
112	1	1	0	0	-11.632447

4. Phenoxazine-based macrocycles for Photoredox catalysis

127	1	0	-4.038173	-3.204240	1.227214
128	1	0	-5.688187	-4.017349	-2.687018
129	1	0	-7.800582	-2.955294	-1.979094
130	1	0	-5.340359	-1.961798	2.564048
131	1	0	-2.150926	-2.974924	-0.032489
132	1	0	-2.250095	-6.879011	-3.133404
133	1	0	-4.358156	-5.820219	-2.435000
134	1	0	2.359245	-3.124878	0.347779
135	1	0	4.753878	-6.049531	-1.760529
136	1	0	2.721326	-7.008801	-2.760140
137	1	0	4.233984	-1.896518	-0.013368
138	1	0	8.031767	-4.896199	1.084580
139	1	0	5.983030	-5.868587	0.100500
140	1	0	5.731166	4.004078	-2.705821
141	1	0	7.835621	2.945893	-1.954228
142	1	0	4.055645	3.337616	1.210985
143	1	0	9.093620	1.695057	-0.493745
144	1	0	5.336068	2.249028	2.627844
145	1	0	7.103489	-0.484289	1.430263
146	1	0	10.523005	0.634650	0.729380
147	1	0	9.486529	-0.135382	3.488948
148	1	0	-0.394363	10.345846	-5.637236
149	1	0	-0.515707	8.054001	-6.572213
150	1	0	-0.430699	6.070191	-5.035593
151	1	0	0.422290	-5.953479	-4.943958
152	1	0	0.492154	-7.872378	-6.555836
153	1	0	0.355536	-10.198288	-5.711673
154	1	0	0.159088	-11.787988	-3.836935
155	1	0	-0.046453	-12.224090	-1.407962
156	1	0	-0.115917	-10.320565	0.206783
157	1	0	0.018146	-7.997318	-0.589096
158	1	0	-0.039830	7.915422	-0.630258
159	1	0	0.080009	10.207389	0.283953
160	1	0	-0.002966	12.183291	-1.243958
161	1	0	-0.206778	11.854936	-3.690172
162	1	0	9.341377	-3.052900	1.908498
163	1	0	12.791219	1.038054	1.425200
164	1	0	14.392575	2.401145	2.740590
165	1	0	13.566352	3.895727	4.555407
166	1	0	11.124214	4.025354	5.031834
167	1	0	9.518354	2.665842	3.690947
168	1	0	11.267181	-1.616039	0.466641

169	1	0	13.333507	-2.961950	0.675126
170	1	0	14.316868	-3.408747	2.921219
171	1	0	13.207353	-2.498171	4.957667
172	1	0	11.135131	-1.148833	4.747699
173	1	0	-9.633968	-2.732362	3.666684
174	1	0	-11.306510	-4.063260	4.952231
175	1	0	-13.730788	-3.874613	4.409279
176	1	0	-14.472067	-2.348563	2.583942
177	1	0	-12.804026	-1.013881	1.323321
178	1	0	-11.083733	1.002705	4.790951
179	1	0	-13.132440	2.376094	5.066291
180	1	0	-14.230822	3.394040	3.075154
181	1	0	-13.258540	3.032044	0.808985
182	1	0	-11.214439	1.664489	0.535795

Figure 4.57: The optimized geometry of $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z} \cdot+}$

Standard orientation:						
Center Number		Atomic Number	Atomic (Angstroms) Type	Coordinates		
		x		Y Z		
1	6		0	2.555503	7.737333	0.818973
2	6	0	1.294096	7.102487	0.817274	
3	6	0	1.256447	5.698672	0.658527	
4	6	0	2.419267	4.955598	0.496584	
5	6	0	3.662376	5.583953	0.486657	
6	6	0	3.702551	6.992333	0.655103	
7	7	0	0.102640	7.791355	0.951751	
8	6	-1	-1.100007	7.111621	0.894316	
9	6	0 -1	-1.083178	5.707343	0.736652	
10	8	0	0.082293	5.032661	0.642024	
11	6	0	-2.354076	7.754995	0.980798	
12	6	0	-3.514610	7.015548	0.916371	
13	6	0	-3.496192	5.604690	0.765021	
14	6	0	-2.258960	4.969547	0.682753	
15	6	0	4.897720	4.789691	0.274456	
16	6	0	-4.749353	4.812343	0.698947	
17	6		4.960835	3.484951	0.731736	
18	6	0	6.069001	2.625818	0.468167	

19	6	0	7.148630	3.193013	-0.289442
20	6	0	7.082582	4.542292	-0.697082
21	6	0	5.989474	5.341955	-0.437704
22	6	0	8.341918	2.445338	-0.643577
23	8	0	6.029411	1.423602	0.914852
24	7	0	8.477132	1.175719	-0.515742
25	6	0	9.715126	0.465466	-0.839479
26	6	0	9.846727	-0.743523	0.140957
27	7	0	8.542937	-1.399707	0.209043
28	6	0	8.380229	-2.681867	0.164698
29	6	0	7.123224	-3.377051	0.102752
30	6	0	5.852023	-2.729142	-0.046252
31	6	0	4.703288	-3.565513	-0.116503
32	6	0	4.761835	-4.947081	-0.075069
33	6	0	6.035766	-5.570057	0.035538
34	6	0	7.165361	-4.796078	0.123331
35	8	0	5.677653	-1.451256	-0.121860
36	6	0	3.515286	-5.762289	-0.137696
37	6	0	2.320276	-5.212334	-0.631559
38	6	0	1.150580	-5.946314	-0.665087
39	6	0	1.111041	-7.278175	-0.215359
40	6	0	2.294262	-7.831191	0.274610
41	6	0	3.472800	-7.084318	0.312170
42	8	0	0.034275	-5.339341	-1.178657

4. Phenoxazine-based macrocycles for Photoredox catalysis

43	6	0	-1.182594	-5.904619	-0.900223
44	6	0	-1.284106	-7.244502	-0.484966
45	7	0	-0.104257	-7.976463	-0.274977
46	6	0	-2.308886	-5.120570	-1.067736
47	6	0	-3.593215	-5.646330	-0.857959
48	6	0	-3.698116	-6.987780	-0.487197
49	6	0	-2.560827	-7.774020	-0.292887
50	6	0	-4.791339	-4.774958	-0.989788
51	6	0	-4.738430	-3.463160	-0.557094
52	6	0	-5.840430	-2.568469	-0.653091
53	6	0	-7.052368	-3.087055	-1.222966
54	6	0	-7.087669	-4.443034	-1.643918
55	6	0	-5.999725	-5.274954	-1.543892
56	6	0	-5.907169	5.230476	1.398093
57	6	0	-7.031054	4.432096	1.356068
58	6	0	-7.065520	3.205484	0.658914
59	6	0	-5.908706	2.774209	-0.073972
60	6	0	-4.773828	3.636616	-0.030804
61	6	0	-8.309175	2.454401	0.681360
62	7	0	-8.441837	1.248049	0.264970
63	8	0	-5.823299	1.691004	-0.757514
64	8	0	-5.685699	-1.365379	-0.208027
65	7	0	-8.424490	-1.081588	-1.056188
66	6	0	-9.722297	0.540719	0.226202
67	6	0	-9.715756	-0.398724	-1.024238
68	6	0	0.113573	9.225075	1.124496
69	6	0	-0.166590	-9.348001	0.116319
83	6	0	-0.605395	-9.071415	3.829473
74	6	0	0.036150	9.542073	-1.362981
70	6	0	0.080538	10.054755	-0.036097
75	6	6	0	-0.335140	-9.688091

85	6	0	0.005658	10.398325	-2.434685
86	6	0	0.018027	11.802461	-2.237568
87	6	0	0.060539	12.320671	-0.968890
88	6	0	-8.277990	-2.338507	-1.320256
89	30	0	6.980838	-0.095721	0.189663
90	30	0	-6.876240	0.097002	-0.473271
91	6	0	11.020613	-1.626144	-0.233132
92	6	0	10.968666	1.316175	-0.847549
93	6	0	-10.952956	1.423513	0.253660
94	6	0	-10.940113	-1.291667	-1.041182
95	6	0	-11.188760	2.355117	-0.766273
96	6	0	-12.331828	3.149381	-0.751586
97	6	0	-13.258822	3.022547	0.284030
98	6	0	-13.033279	2.101127	1.303170
99	6	0	-11.885204	1.308234	1.286810
100	6	0	-11.851056	-1.218888	-2.096888
101	6	0	-12.992404	-2.021321	-2.111891
102	6	0	-13.232790	-2.910878	-1.068224
103	6	0	-12.327130	-2.996130	-0.009823
104	6	0	-11.191000	-2.191884	0.003147
105	6	0	11.092748	-2.241241	-1.490258
106	6	0	12.183885	-3.035873	-1.830897
107	6	0	13.222828	-3.226438	-0.918789
108	6	0	13.160541	-2.621890	0.333784
109	6	0	12.063970	-1.828582	0.672550
110	6	0	11.737362	1.434384	-2.007265
111	6	0	12.906931	2.195315	-2.013263
112	6	0	13.318378	2.850261	-0.855579
113	6	0	12.555742	2.742655	0.308374
114	6	0	11.390756	1.980736	0.311668
115	1	0	2.611217	8.819165	0.950789
116	1	0	2.322530	3.878794	0.346643
117	1	0	4.670121	7.498810	0.669577
118	1	0	-2.393560	8.840228	1.088417
119	1	0	-4.475025	7.533399	0.962736
120	1	0	-2.177684	3.885046	0.591912
121	1	0	4.150440	3.040194	1.314449
122	1	0	7.925782	4.954629	-1.261569
123	1	0	5.954786	6.365177	-0.817895
124	1	0	9.178770	3.042734	-1.046149
125	1	0	9.577255	0.036710	-1.848246
126	1	0	10.046920	-0.317580	1.140941

4. Phenoxazine-based macrocycles for Photoredox catalysis

127	1	0	9.274066	-3.328201	0.151285
128	1	0	3.751924	-3.035069	-0.183779
129	1	0	6.124184	-6.657512	0.029683
130	1	0	8.143924	-5.282132	0.204143
131	1	0	2.274502	-4.193820	-1.020507
132	1	0	2.293971	-8.860706	0.638540
133	1	0	4.366376	-7.552795	0.729696
134	1	0	-2.165652	-4.087071	-1.391170
135	1	0	-4.682328	-7.427529	-0.305514
136	1	0	-2.666907	-8.813918	0.023060
137	1	0	-3.834378	-3.058094	-0.096309
138	1	0	-8.021031	-4.826164	-2.071065
139	1	0	-6.052642	-6.304575	-1.904712
140	1	0	-5.907064	6.146389	1.992824
141	1	0	-7.929539	4.744251	1.899135
142	1	0	-3.911598	3.301634	-0.612111
143	1	0	-9.187438	2.992332	1.079480
144	1	0	-9.744570	-0.118689	1.112227
145	1	0	-9.758608	0.258045	-1.912045
146	1	0	0.145851	13.064390	1.631609
147	1	0	0.200875	11.551660	3.593684
148	1	0	0.179697	9.067283	3.255405
149	1	0	0.065249	-10.037362	-1.883325
150	1	0	-0.036422	-12.464927	-1.249068
151	1	0	-0.327346	-13.108968	1.126686
152	1	0	-0.602920	-12.471370	3.496539
153	1	0	-0.790838	-10.721111	5.238842
154	1	0	-0.688961	-8.305171	4.604760
155	1	0	-0.401301	-7.644702	2.243026
156	1	0	0.025999	8.461334	-1.529694
157	1	0	-0.028733	9.996414	-3.450477
158	1	0	-0.006726	12.469484	-3.102786
159	1	0	0.070108	13.402688	-0.810174
160	1	0	-9.163093	-2.922417	-1.625025
161	1	0	-10.466240	2.469264	-1.581462
162	1	0	-12.502811	3.871347	-1.554694
163	1	0	-14.158468	3.643642	0.294106
164	1	0	-13.755484	1.994371	2.116888
165	1	0	-11.716566	0.580548	2.086967
166	1	0	-11.668991	-0.519077	-2.918680
167	1	0	-13.696553	-1.948807	-2.944977
168	1	0	-14.125943	-3.541247	-1.077998

169	1	0	-12.507447	-3.695617	0.810889
170	1	0	-10.484212	-2.278191	0.835422
171	1	0	10.280732	-2.109877	-2.213470
172	1	0	12.224249	-3.511053	-2.814742
173	1	0	14.080632	-3.848981	-1.186733
174	1	0	13.969870	-2.766392	1.054351
175	1	0	12.022106	-1.353265	1.657714
176	1	0	11.422422	0.915974	-2.918469
177	1	0	13.499639	2.273089	-2.928564
178	1	0	14.235226	3.445759	-0.857531
179	1	0	12.873106	3.254866	1.220713
180	1	0	10.797902	1.910042	1.229868

4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.58: The optimized geometry of L^{Pz} in the triplet state

Standard orientation:						
Center Number		Atomic Number	Atomic (Angstroms) Type	Coordinates		
		X		Y Z		
1	6		0 -2	-2.493577	1.609203	0.553603
2	6	0	-1.205131	1.004937	0.449476	
3	6	0 -1	-1.164150	-0.431059	0.187796	
4	6	0 -2	-2.291468	-1.173569	0.060597	
5	6	0 -3	-3.607084	-0.585421	0.175504	
6	6	0	-3.629695	0.876719	0.425985	
7	7	0	-0.017499	1.699310	0.574019	
8	6	0	1.198922	1.036101	0.426912	
9	6	0	1.192932	-0.347130	0.176141	
10	8	0	0.034826	-1.051669	0.066764	
11	6	0	2.440235	1.686532	0.513755	
12	6	0	3.620984	0.979032	0.355505	
13	6	0	3.615193	-0.404913	0.109560	
14	6	0	2.381943	-1.052366	0.023294	
15	6	0	-4.791924	-1.349793	0.055320	
16	6	0	4.886892	-1.158472	-0.053149	
17	6	0	-4.755506	-2.757377	-0.189051	
18	6	0	-5.907380	-3.514442	-0.308760	
19	6	0	-7.183826	-2.905557	-0.190007	
20	6	0	-7.230839	-1.510464	0.052862	
21	6	0	-6.095520	-0.753665	0.172412	

22	6	0	-8.438952	-3.641485	-0.304763
23	8	0	-5.743809	-4.838529	-0.540139
24	8	0	-9.544862	-3.154415	-0.208895
25	6	0	5.982140	-0.582256	-0.713899
26	6	0	7.156147	-1.308377	-0.852832
27	6	0	7.293008	-2.607565	-0.352455
28	6	0	6.193445	-3.189142	0.313061
29	6	0	5.009323	-2.456334	0.451547
30	6	0	8.591991	-3.297910	-0.551992
31	8	0	8.884635	-4.405512	-0.187865
32	8	0	6.308934	-4.429098	0.806738
33	6	0	-0.035561	3.110113	0.832122
34	6	0	-0.046654	4.018224	-0.271208
35	6	0	-0.059875	5.412451	0.009887
36	6	0	-0.065093	5.851633	1.364253
37	6	0	-0.058276	4.951086	2.398161
38	6	0	-0.043323	3.560480	2.127818
39	6	0	-0.047082	3.581837	-1.625927
40	6	0	-0.058150	4.495475	-2.649158
41	6	0	-0.069087	5.886572	-2.373091
42	6	0	-0.070346	6.332579	-1.076514
43	1	0	-2.558626	2.683904	0.737568
44	1	0	-2.160231	-2.237543	-0.132972
45	1	0	-4.586599	1.389861	0.509708
46	1	0	2.468911	2.759004	0.715008
47	1	0	4.572401	1.508316	0.448313
48	1	0	2.310299	-2.121193	-0.191430

49	1	0	-3.813076	-3.295636	-0.292007
50	1	0	-8.222496	-1.058734	0.141876
51	1	0	-6.199246	0.315219	0.359708
52	1	0	-8.354293	-4.746475	-0.497287
53	1	0	-6.597006	-5.276236	-0.608816
54	1	0	5.901584	0.420401	-1.139770
55	1	0	8.009685	-0.864447	-1.376573
56	1	0	4.172315	-2.908664	0.994444
57	1	0	9.333907	-2.663957	-1.107655
58	1	0	5.482838	-4.685186	1.230487
59	1	0	-0.076453	6.926609	1.566865
60	1	0	-0.064832	5.297182	3.434565
61	1	0	-0.038742	2.835238	2.945789
62	1	0	-0.043271	2.510429	-1.842442
63	1	0	-0.060810	4.150557	-3.686421
64	1	0	-0.078520	6.601708	-3.199782
65	1	0	-0.080957	7.404197	-0.856711

4. Phenoxazine-based macrocycles for Photoredox catalysis

Figure 4.59: The optimized geometry of $\mathbf{R}^{\mathbf{P Z} \cdot+}$ in the triplet state

19	6	0	-7.311551	2.832996	0.919815
20	6	0	-7.232504	4.202433	0.624739
21	6	0	-6.098741	4.764783	0.063638
22	6	0	-8.521830	2.280188	1.532590
23	8	0	-6.171243	0.710471	0.899664
24	7	0	-8.632640	1.034467	1.773287
25	6	0	-9.764655	0.447430	2.468226
26	6	0	-10.025862	-0.983339	1.909327
27	7	0	-8.758710	-1.660320	1.801441
28	6	0	-8.477157	-2.235143	0.702752
29	6	0	-7.205932	-2.878573	0.377862
30	6	0	-5.989218	-2.621165	1.066443
31	6	0	-4.799909	-3.164261	0.611267
32	6	0	-4.727541	-4.024459	-0.528995
33	6	0	-5.969072	-4.298003	-1.188585
34	6	0	-7.140451	-3.721895	-0.751775
35	8	0	-6.020669	-1.821731	2.152314
36	6	0	-3.499436	-4.557165	-0.988762
37	6	0	-2.223591	-4.154093	-0.438145
38	6	0	-1.052960	-4.639379	-0.916470
39	6	0	-1.005058	-5.624997	-1.997784
40	6	0	-2.253406	-6.054813	-2.541190
41	6	0	-3.432098	-5.560312	-2.083517
42	8	0	0.105255	-4.183434	-0.379484

43	6	0	1.305056	-4.642079	-0.828017
44	6	0	1.396658	-5.615446	-1.838086
45	7	0	0.223858	-6.098788	-2.417510
46	6	0	2.447565	-4.111132	-0.238778
47	6	0	3.718615	-4.539639	-0.623405
48	6	0	3.809456	-5.528089	-1.618487
49	6	0	2.675366	-6.053881	-2.217360
50	6	0	4.939825	-3.957428	-0.004548
51	6	0	4.990194	-2.600120	0.304723
52	6	0	6.131810	-2.020404	0.880384
53	6	0	7.254768	-2.841501	1.154054
54	6	0	7.185939	-4.207834	0.843407
55	6	0	6.057130	-4.769262	0.271590
56	6	0	5.818510	3.672745	-1.617103
57	6	0	6.987503	3.070396	-1.173906
58	6	0	7.120394	2.549009	0.118628
59	6	0	6.004986	2.627861	0.978154
60	6	0	4.825184	3.227926	0.526953
61	6	0	8.392491	1.901873	0.482651
62	7	0	8.764464	1.629035	1.661638
63	8	0	6.091343	2.118104	2.219153
64	8	0	6.114069	-0.719169	1.144673
65	7	0	8.573948	-1.035592	1.981183
66	6	0	10.014568	0.933709	1.840077
67	6	0	9.726019	-0.400763	2.592730
68	6	0	-0.223055	7.269084	-3.363752
69	6	0	0.293509	-7.097543	-3.442630
70	6	0	-0.173709	8.591120	-2.815857
71	6	0	-0.198406	9.698814	-3.707341
72	6	0	-0.271660	9.462670	-5.109656
73	6	0	-0.318255	8.185421	-5.605679
74	6	0	-0.293507	7.077806	-4.721826
75	6	0	0.378678	-6.716177	-4.757618
76	6	0	0.451274	-7.694227	-5.780213
77	6	0	0.436502	-9.027108	-5.458977
78	6	0	0.346630	-9.452356	-4.103139
79	6	0	0.271841	-8.477328	-3.070486
80	6	0	0.327455	-10.831300	-3.749196
81	6	0	0.237481	-11.217039	-2.436467
82	6	0	0.161284	-10.241561	-1.409681
83	6	0	0.177896	-8.904589	-1.716128
84	6		0.101039		

85	6	0	-0.054941	10.112755	-0.929043
86	6	0	-0.079057	11.219472	-1.815617
87	6	0	-0.149127	11.016430	-3.170072
88	6	0	8.473665	-2.282458	1.743567
89	6	0	-10.967658	-1.739972	2.833578
90	6	0	-11.033532	1.278688	2.494270
91	6	0	10.992329	1.785760	2.633236
92	6	0	10.973834	-1.252977	2.725876
93	6	0	12.366745	1.712102	2.391519
94	6	0	13.262616	2.463834	3.150659
95	6	0	12.791967	3.301640	4.160021
96	6	0	11.421100	3.385133	4.402887
97	6	0	10.526240	2.633173	3.644273
98	6	0	11.622183	-1.766169	1.594332
99	6	0	12.784953	-2.522581	1.719673
100	6	0	13.321360	-2.776727	2.982574
101	6	0	12.684840	-2.273698	4.114555
102	6	0	11.518080	-1.520183	3.984004
103	6	0	-10.462050	-2.432286	3.939520
104	6	0	-11.323382	-3.092876	4.813305
105	6	0	-12.700529	-3.072004	4.593051
106	6	0	-13.210855	-2.388645	3.490820
107	6	0	-12.348259	-1.728251	2.616743
108	6	0	-11.621023	1.645935	3.706752
109	6	0	-12.811630	2.372842	3.734492
110	6	0	-13.428848	2.747399	2.543596
111	6	0	-12.848827	2.392195	1.324876
112	6	0	-11.662233	1.663551	1.302435
113	1	0	-2.717850	7.011633	-2.940021
114	1	0	-2.375847	3.164095	0.162476
115	1	0	-4.773169	6.052625	-1.977274
116	1	0	2.289668	6.943536	-3.169286
117	1	0	4.398476	5.916390	-2.410324
118	1	0	2.125363	3.039418	-0.121852
119	1	0	-4.220040	1.920512	-0.173607
120	1	0	-8.093725	4.836834	0.860667
121	1	0	-6.057504	5.840007	-0.124300
122	1	0	-9.320978	3.004534	1.780833
123	1	0	-7.040899	0.449341	1.303796
124	1	0	-9.425172	0.293030	3.507829
125	1	0	-10.518528	-0.878089	0.918617
126	1	0	-9.218694	-2.257868	-0.126417

4. Phenoxazine-based macrocycles for Photoredox catalysis

127	1	0	-3.895582	-2.931200	1.178904	155	1	0	0.222482	-12.278638	-2.175945
128	1	0	-5.996779	-4.934461	-2.073388	156	1	0	0.086900	-10.559706	-0.366521
129	1	0	-8.066904	-3.914973	-1.303091	157	1	0	0.115051	-8.154585	-0.923571
130	1	0	-5.137175	-1.471792	2.307241	158	1	0	-0.083088	7.977163	-0.732173
131	1	0	-2.157180	-3.410906	0.356126	159	1	0	0.000637	10.285205	0.149085
132	1	0	-2.251436	-6.801778	-3.338350	160	1	0	-0.041633	12.235616	-1.413882
133	1	0	-4.356807	-5.935054	-2.521170	161	1	0	-0.168302	11.865767	-3.859640
134	1	0	2.312633	-3.363537	0.546254	162	1	0	9.289255	-2.996660	1.963852
135	1	0	4.792389	-5.871663	-1.950184	163	1	0	12.742697	1.052954	1.602403
136	1	0	2.771439	-6.808549	-3.000301	164	1	0	14.335374	2.395448	2.949217
137	1	0	4.151213	-1.937082	0.079746	165	1	0	13.493288	3.894204	4.754292
138	1	0	8.052802	-4.838283	1.068620	166	1	0	11.043678	4.047318	5.187448
139	1	0	6.022293	-5.840583	0.060037	167	1	0	9.448290	2.707556	3.812271
140	1	0	5.750092	4.047590	-2.640877	168	1	0	11.211294	-1.572470	0.597737
141	1	0	7.840027	2.986374	-1.855943	169	1	0	13.277804	-2.914978	0.825675
142	1	0	3.980256	3.300838	1.220122	170	1	0	14.236297	-3.367242	3.082182
143	1	0	9.035853	1.648927	-0.388485	171	1	0	13.099264	-2.465347	5.108122
144	1	0	5.212349	2.097401	2.611642	172	1	0	11.026948	-1.119202	4.876169
145	1	0	6.989807	-0.468999	1.543699	173	1	0	-9.379480	-2.459669	4.092048
146	1	0	10.479083	0.676476	0.863653	174	1	0	-10.914511	-3.634159	5.671475
147	1	0	9.397597	-0.101058	3.603407	175	1	0	-13.375564	-3.593095	5.277949
148	1	0	-0.290401	10.321918	-5.786790	176	1	0	-14.288827	-2.370159	3.306796
149	1	0	-0.374880	8.012707	-6.683466	177	1	0	-12.755022	-1.188829	1.755178
150	1	0	-0.330680	6.056644	-5.110292	178	1	0	-11.145221	1.344545	4.645270
151	1	0	0.389419	-5.651301	-5.004489	179	1	0	-13.259612	2.644927	4.694232
152	1	0	0.518552	-7.376764	-6.823687	180	1	0	-14.362200	3.316940	2.562658
153	1	0	0.492641	-9.786650	-6.244366	181	1	0	-13.325961	2.684087	0.385003
154	1	0	0.384853	-11.578642	-4.546156	182	1	0	-11.213755	1.391162	0.341110

Figure 4.60: The optimized geometry of $\mathbf{Z} \mathbf{n}_{\mathbf{2}} \mathbf{R}^{\mathbf{P z}}$ in the triplet state

Standard orientation:						
Center Number		Atomic Number	Atomic (Angstroms Type	Coordinates		
		X		Y Z		
1	6		0	2.583434	7.581638	0.887024
2	6	0	1.307756	7.086468	0.615050	
3	6	0	1.209595	5.840714	-0.030394	
4	6	0	2.338795	5.102630	-0.336143	
5	6	0	3.622081	5.589977	-0.044516	
6	6	0	3.722879	6.847180	0.552813	
7	7	0	0.126448	7.769368	0.952715	
8	6	0 -1	-1.097379	7.089728	0.843175	
9	6	0 -1	-1.132047	5.857363	0.166668	
10	8	0	-0.004224	5.325100	-0.400715	
11	6	0	-2.295344	7.572938	1.369102	
12	6	0	-3.482283	6.850465	1.232904	
13	6	0	-3.518138	5.623888	0.566097	
14	6	0	-2.309655	5.147850	0.030209	
15	6	0	4.827761	4.767293	-0.334237	
16	6	0	-4.771512	4.823833	0.452380	
17	6	0	4.800794	3.401038	-0.122460	
18	6	0	5.918449	2.553434	-0.367733	
19	6	0	7.113404	3.182701	-0.855794	
20	6	0	7.119378	4.586180	-1.054773	
21	6	0	6.018669	5.372682	-0.811434	
22	6	0	8.355865	2.483540	-1.087857	
23	8	0	5.786582	1.292085	-0.117648	
24	7	0	8.519983	1.208326	-1.023228	
25	6	0	9.804629	0.526039	-1.132440	
26	6	0	9.841342	-0.619894	-0.060858	
27	7	0	8.548265	-1.274437	-0.041623	
28	6	0	8.405564	-2.551809	0.335716	
29	6	0	7.196162	-3.284477	0.241909	
30	6	0	5.949490	-2.799356	-0.429918	
31	6	0	4.800151	-3.635483	-0.451401	
32	6	0	4.752145	-4.904062	0.115431	
33	6	0	5.959723	-5.354878	0.719093	
34	6	0	7.121924	-4.591449	0.770213	
35	8	0	5.884273	-1.663492	-1.011489	
36	6	0	3.521246	-5.723703	0.120823	

37	6	0	2.260574	-5.110325	0.009426
38	6	0	1.093690	-5.850612	0.005209
39	6	0	1.117510	-7.251953	0.123085
40	6	0	2.364056	-7.866749	0.240226
41	6	0	3.542629	-7.117813	0.235087
42	8	0	-0.080045	-5.157401	-0.107019
43	6	0	-1.261744	-5.848497	-0.092643
44	6	0	-1.301549	-7.250000	0.019277
45	7	0	-0.096119	-7.960790	0.122123
46	6	0	-2.422954	-5.107802	-0.208900
47	6	0	-3.683008	-5.725248	-0.219159
48	6	0	-3.726096	-7.115231	-0.102779
49	6	0	-2.554643	-7.865762	0.020059
50	6	0	-4.909951	-4.897401	-0.372879
51	6	0	-4.972469	-3.638177	0.193390
52	6	0	-6.068237	-2.749786	-0.006175
53	6	0	-7.149612	-3.229567	-0.820922
54	6	0	-7.090282	-4.547775	-1.340831
55	6	0	-6.008424	-5.370416	-1.139580
56	6	0	-6.046119	5.436705	0.608180
57	6	0	-7.181077	4.667011	0.542768
58	6	0	-7.142730	3.266661	0.317430
59	6	0	-5.870531	2.635377	0.113188
60	6	0	-4.715538	3.464954	0.206631
61	6	0	-8.400380	2.570613	0.247427
62	7	0	-8.556597	1.295776	0.113507
63	8	0	-5.700518	1.385887	-0.145350
64	8	0	-6.023859	-1.587880	0.548549
65	7	0	-8.467550	-1.189846	-0.869553
66	6	0	-9.854889	0.651548	-0.061489
67	6	0	-9.694255	-0.453866	-1.155593
68	6	0	0.190351	9.025269	1.624866
69	6	0	-0.103185	-9.376715	0.281078
70	6	0	0.099040	10.230338	0.858842
71	6	0	0.162608	11.477389	1.540084
72	6	0	0.315172	11.490640	2.955261
73	6	0	0.400692	10.319460	3.663589
74	6	0	0.337028	9.074690	2.990088
75	6	0	-0.054533	-10.194073	-0.821603
76	6	0	-0.060059	-11.603833	-0.675470
77	6	0	-0.114005	-12.166302	0.573675
78	6	0	-0.165318	-11.350385	1.739531

79	6	0	-0.160200	-9.935276	1.598493
80	6	0	-0.222128	-11.911903	3.046725
81	6	0	-0.271353	-11.105491	4.154885
82	6	0	-0.266248	-9.694512	4.010981
83	6	0	-0.212039	-9.122122	2.765378
84	6	0	-0.052664	10.219528	-0.556267
85	6	0	-0.136950	11.396337	-1.256001
86	6	0	-0.074250	12.641804	-0.579660
87	6	0	0.071842	12.680171	0.783253
88	6	0	-8.316442	-2.444872	-1.129888
89	30	0	7.021061	-0.094354	-0.531959
90	30	0	-6.986766	-0.028741	-0.022263
91	6	0	11.025984	-1.529537	-0.336082
92	6	0	11.034566	1.406516	-1.046011
93	6	0	-11.019540	1.568813	-0.377053
94	6	0	-10.951082	-1.294200	-1.267025
95	6	0	-11.038278	2.337106	-1.548920
96	6	0	-12.123628	3.157487	-1.844262
97	6	0	-13.211161	3.221086	-0.971990
98	6	0	-13.202672	2.463384	0.196003
99	6	0	-12.111546	1.645044	0.489851
100	6	0	-11.729697	-1.257213	-2.425385
101	6	0	-12.905335	-2.002776	-2.519999
102	6	0	-13.313738	-2.798930	-1.453331
103	6	0	-12.540997	-2.847691	-0.292123
104	6	0	-11.369978	-2.100604	-0.200456
105	6	0	11.021227	-2.385832	-1.444616
118	1	0	-2.300137	8.525587	1.902557
119	1	0	-4.388932	7.255182	1.687591
120	1	0	-2.258565	4.207578	-0.521336
117	6	0	12.123401	-3.187920	-1.727091
114	1	6	0	11.308944	2.155166

121	1	0	3.908329	2.909948	0.273221
122	1	0	8.041370	5.049484	-1.423662
123	1	0	6.049954	6.447988	-1.001534
124	1	0	9.225245	3.126531	-1.311529
125	1	0	9.813274	0.021439	-2.115440
126	1	0	10.011235	-0.131393	0.920251
127	1	0	9.274799	-3.098721	0.726300
128	1	0	3.940426	-3.207884	-0.973087
129	1	0	5.977723	-6.342269	1.191057
130	1	0	8.006477	-5.006881	1.261173
131	1	0	2.156771	-4.025283	-0.055837
132	1	0	2.416189	-8.954224	0.326754
133	1	0	4.494005	-7.651870	0.300835
134	1	0	-2.322161	-4.025870	-0.319004
135	1	0	-4.689406	-7.631879	-0.087426
136	1	0	-2.614535	-8.951803	0.117911
137	1	0	-4.158836	-3.256100	0.814473
138	1	0	-7.931468	-4.901605	-1.947616
139	1	0	-5.971707	-6.361147	-1.598169
140	1	0	-6.129087	6.514319	0.759482
141	1	0	-8.160780	5.143482	0.661700
142	1	0	-3.764489	2.940685	0.097290
143	1	0	-9.295362	3.214703	0.298417
144	1	0	-10.082826	0.123011	0.882176
145	1	0	-9.545365	0.074844	-2.114985
146	1	0	0.363279	12.455088	3.469824
147	1	0	0.517775	10.337988	4.750206
148	1	0	0.404252	8.138073	3.550550
149	1	0	-0.011435	-9.738979	-1.814661
150	1	0	-0.021090	-12.237239	-1.565461
151	1	0	-0.118610	-13.253983	0.692862
152	1	0	-0.226080	-13.001190	3.150634
153	1	0	-0.315153	-11.547394	5.154016
154	1	0	-0.306300	-9.060274	4.900557
155	1	0	-0.208338	-8.035041	2.652931
156	1	0	-0.100243	9.256941	-1.071473
157	1	0	-0.253294	11.377056	-2.342922
158	1	0	-0.142854	13.571669	-1.150742
159	1	0	0.121062	13.637533	1.310866
160	1	0	-9.136755	-2.990826	-1.628645
161	1	0	-10.187633	2.304229	-2.237906
162	1	0	-12.120983	3.752564	-2.761615

163	1	0	-14.064497	3.863897	-1.204622
164	1	0	-14.050340	2.506696	0.885214
165	1	0	-12.112018	1.048031	1.407295
166	1	0	-11.415405	-0.629458	-3.265228
167	1	0	-13.503878	-1.959426	-3.433959
168	1	0	-14.233956	-3.385063	-1.525251
169	1	0	-12.852799	-3.474210	0.548062
170	1	0	-10.765686	-2.156105	0.711179
171	1	0	10.134474	-2.434424	-2.084966
172	1	0	12.102883	-3.853964	-2.594256
173	1	0	14.115913	-3.775718	-1.125605
174	1	0	14.141593	-2.260504	0.852568
175	1	0	12.173111	-0.831615	1.350641
176	1	0	11.738245	0.879224	-3.014347
177	1	0	13.787339	2.271887	-2.871679
178	1	0	14.256289	3.596159	-0.813371
179	1	0	12.655048	3.517992	1.095652
180	1	0	10.611428	2.133060	0.950472

4. Phenoxazine-based macrocycles for Photoredox catalysis

Energy comparison (energy in Hartree)

Ground state	$\mathbf{L}^{\mathbf{P Z}}$	$\mathbf{R}^{\mathbf{P Z}}$	$\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$
E	-1814.792727	-4628.213435	-8184.390656
H	-1814.254194	-4626.661939	-8182.882094
G	-1814.356076	-4626.887431	-8183.106352
			$\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$
$\bullet+$	$\mathbf{L}^{\mathbf{P Z}}$	$\mathbf{R}^{\mathbf{P Z}}$	-8184.172456
E	-1814.550559	-4627.986509	-8182.663160
H	-1814.011839	-4626.434851	-8182.886818
G	-1814.113229	-4626.659955	$\mathbf{Z n} 2 \mathbf{R}^{\mathbf{P Z}}$
Triplet	\mathbf{L}	$\mathbf{R}^{\mathbf{P Z}}$	-8184.296959
E	-1814.697043	-4628.115027	-8182.791273
H	-1814.161088	-4626.566804	-8183.019258
G	-1814.265110	-4626.794455	

Energy difference between doublet state and triplet state (energy in Hartree)

${ }^{\text {++}}$-Triplet	$\mathbf{L}^{\mathbf{P Z}}$	$\mathbf{R}^{\mathbf{P Z}}$	$\mathbf{Z n}_{\mathbf{2}} \mathbf{R}^{\mathbf{P Z}}$
ΔE	0.146484	0.128518	0.124503
ΔH	0.149249	0.131953	0.128113
ΔG	0.151881	0.134500	0.132440

Energy difference between doublet state and triplet state (energy in eV)

${ }^{\bullet+}$-Triplet	$\mathbf{L}^{\mathbf{P Z}}$	$\mathbf{R}^{\mathbf{P Z}}$	$\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$
ΔE	3.986035	3.497155	3.387901
ΔH	4.061274	3.590626	3.486134
ΔG	4.132895	3.659933	3.603878

4. Phenoxazine-based macrocycles for Photoredox catalysis

Visualization of molecular orbitals

Figure 4.61: The HOMO and the LUMO of $L^{P Z}$

Figure 4.62: The HOMO and the LUMO of $\mathbf{R}^{\text {PZ }}$

HOMO

Figure 4.63: The HOMO and the LUMO of $\mathbf{Z n}_{2} \mathbf{R}^{\text {PZ }}$

4.7 References

[1] M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898-6926.
[2] A. Bhattacharyya, S. D. Sarkar, A. Das, Acs. Catal. 2021, 11, 710-733.
[3] T. Uchikura, M. Oshima, M. Kawasaki, K. Takahashi, N. Iwasawa, Angew. Chem. Int. Ed. 2020, 59, 7403-7408.
[4] T. Uchikura, K. Ono, K. Takahashi, N. Iwasawa, Angew. Chem. Int. Ed. 2018, 57, 2130-2133.
[5] D. R. Martir, E. Zysman-Colman, Chem. Commun. 2018, 55, 139-158.
[6] M. Schulze, V. Kunz, P. D. Frischmann, F. Würthner, Nat. Chem. 2016, 8, 576-583.
[7] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363.
[8] T. Hamada, H. Ishida, S. Usui, Y. Watanabe, K. Tsumura, K. Ohkubo, J. Chem. Soc. Chem. Commun. 1993, 0, 909-911.
[9] D. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77-80.
[10] J. Du, K. L. Skubi, D. M. Schultz, T. P. Yoon, Science 2014, 344, 392-396.
[11] H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, E. Meggers, Nature 2014, 515, 100-103.
[12] J. Guo, Y. Xu, K. Li, L. Xiao, S. Chen, K. Wu, X. Chen, Y. Fan, J. Liu, C. Su, Angew. Chem. Int. Ed. 2017, 56, 3852-3856.
[13] D. Preston, R. A. J. Tucker, A. L. Garden, J. D. Crowley, Inorg. Chem. 2016, 55, 8928-8934.
[14] L. S. Lisboa, J. A. Findlay, L. J. Wright, C. G. Hartinger, J. D. Crowley, Angew. Chem. Int. Ed. 2020, 59, 11101-11107.

4. Phenoxazine-based macrocycles for Photoredox catalysis

[15] D. Preston, J. J. Sutton, K. C. Gordon, J. D. Crowley, Angew. Chem. Int. Ed. 2018, 57, 86598663.
[16] M. Frank, M. D. Johnstone, G. H. Clever, Chem. Eur. J. 2016, 22, 14104-14125.
[17] R. Zhu, J. Ding, L. Jin, H. Pang, Coord. Chem. Rev. 2019, 389, 119-140.
[18] R. Zhu, I. Regeni, J. J. Holstein, B. Dittrich, M. Simon, S. Prévost, M. Gradzielski, G. H. Clever, Angew. Chem. Int. Ed. 2018, 57, 13652-13656.
[19] M. Frank, L. Krause, R. Herbst-Irmer, D. Stalke, G. H. Clever, Dalton. Trans. 2014, 43, 45874592.
[20] R. Zhu, J. Lübben, B. Dittrich, G. H. Clever, Angew. Chem. Int. Ed. 2015, 54, 2796-2800.
[21] M. Frank, J. Ahrens, I. Bejenke, M. Krick, D. Schwarzer, G. H. Clever, J. Am. Chem. Soc. 2016, 138, 8279-8287.
[22] S. Löffler, J. Lübben, L. Krause, D. Stalke, B. Dittrich, G. H. Clever, J. Am. Chem. Soc. 2015, 137, 1060-1063.
[23] S. Pullen, S. Löffler, A. Platzek, J. J. Holstein, G. H. Clever, Dalton. Trans. 2020, 49, 94049410.
[24] B. L. Ramsey, R. M. Pearson, L. R. Beck, G. M. Miyake, Macromolecules 2017, 50, 2668-2674.
[25] Y. Du, R. M. Pearson, C. Lim, S. M. Sartor, M. D. Ryan, H. Yang, N. H. Damrauer, G. M. Miyake, Chem. Eur. J. 2017, 23, 10962-10968.
[26] S. M. Sartor, Y. M. Lattke, B. G. McCarthy, G. M. Miyake, N. H. Damrauer, J. Phys. Chem. 2019, 123, 4727-4736.
[27] B. G. McCarthy, R. M. Pearson, C.-H. Lim, S. M. Sartor, N. H. Damrauer, G. M. Miyake, J. Am. Chem. Soc. 2018, 140, 5088-5101.
[28] V. K. Singh, C. Yu, S. Badgujar, Y. Kim, Y. Kwon, D. Kim, J. Lee, T. Akhter, G. Thangavel, L. S. Park, J. Lee, P. C. Nandajan, R. Wannemacher, B. Milián-Medina, L. Lüer, K. S. Kim, J. Gierschner, M. S. Kwon, Nat. Catal. 2018, 1, 794-804.
[29] J. S. Danilova, S. M. Avdoshenko, M. P. Karushev, A. M. Timonov, E. Dmitrieva, J. Mol. Struct. 2021, 1241, 130668
[30] A. L. Berger, K. Donabauer, B. König, Chem. Sci. 2018, 9, 7230-7235.
[31] T. J. V. Bergen, D. M. Hedstrand, W. H. Kruizinga, R. M. Kellogg, J. Org. Chem. 1979, 44, 4953-4962.
[32] F. Calogero, G. Magagnano, S. Potenti, F. Pasca, A. Fermi, A. Gualandi, P. Ceroni, G. Bergamini, P. G. Cozzi, Chem. Sci. 2022, 13, 5973-5981.
[33] M. Nakajima, E. Fava, S. Loescher, Z. Jiang, M. Rueping, Angew. Chem. Int. Ed. 2015, 54, 8828-8832.
[34] J. E. Tanner, E. O. Stejskal, J. Chem. Phys. 1968, 49, 1768-1777.
[35] R. Manjunath, Hist Math 1975, 2, 73.

5 Coordination-driven construction of [3]rotaxane based on hierarchical assembly

5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

5.1 Introduction

Mechanically interlocked molecules (MIMs) are composed of multiple molecular fragments held together by mechanical bonds. ${ }^{[1,2]}$ Those components cannot be separated without breaking the covalent structure of at least one of the constituents. MIMs have been attracting great interest for their application in artificial molecular machines, catalysis, and so on. ${ }^{[3]}$ One of the archetypal examples is rotaxanes. A rotaxane consists of a macrocycle as the wheel and a linear component, namely the axle. The axle threads through the wheel and is often terminated by a bulky group as stopper to prevent dethreading (Figure 5.1).

Figure 5.1: Graphical representation of a simple [2]rotaxane. ${ }^{[4]}$ Copyright © 2017 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim.

Figure 5.2: Schematic representation of various rotaxane architectures with multiple macrocycle or multiple axles. ${ }^{[5]}$ Copyright © The Royal Society of Chemistry 2020.

Since Sauvage, Stoddart et al. pioneered the formation of rotaxane, in the past few decades, various types of rotaxanes with increasing number of components have been synthesized (Figure 5.2). ${ }^{[5]}$ Those rotaxanes consist of (i) one dumbbell and multiple macrocycles, (ii) one macrocycle and multiple dumbbells, (iii) multiple
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
dumbbells and multiple macrocycles. The approaches for generating rotaxanes have raised considerable interest for the development of MIMs. Recently, templatedirected synthesis, such as by hydrogen bond ${ }^{[6]}$ or metal cation templates, ${ }^{[7]}$ was widely explored. The active metal template strategy has been developed by Leigh and co-workers (Figure 5.3). ${ }^{[2,8]}$ The metal ion is endotopically binding within the cavity of the macrocycle. Two "half-thread" units generate the rotaxane thread under the metal-based catalysis and directed through the macrocycle. Goldup and coworkers further investigated the copper(I)-catalysed azide-alkyne cycloaddition (AT-CuAAC) based active-metal-template approach. ${ }^{[9-11]}$

Figure 5.3: Schematic illustration of the catalytic active metal template synthesis of [2]rotaxane. ${ }^{[2]}$ Copyright © The Royal Society of Chemistry.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

5.2 Ligand design and synthesis

To increase complexity and functionality of architectures and develop coordination cages mimicking enzymes, rational approaches for the construction of compounds composed of multiple building blocks have emerged. ${ }^{[12]}$ In our previous work, a series of salphen macrocycle bridged homo- and heteroleptic cages have been developed based on hierarchical assembly and shape complementarity (Figure 5.4). ${ }^{[13]}$ A salphen macrocycle was designed and synthesized to form a binuclear metalla-macrocycle. Two shape complementary ligands were further combined with the metal salphen macrocycle to assemble heteroleptic cages. The fluorene-based bis-pyridine ligand self-assemblies with macrocycle $\mathbf{R}^{\mathbf{A C R}}$ with methyl groups on the backbone pointing into the cavity (Figure 5.4). Furthermore, it consists of one macrocycle in this system. It is a promising approach to develop new rotaxanes by connecting the two ligands and followed by detaching the ligands from the macrocycle.

Methyl groups pointing through the ring

b)

Figure 5.4: a) X-ray structure and b) partial X-ray structure of heteroleptic cage selfassembly from salen macrocycle with shape-complementary fluorene ligands

In this chapter, a new approach for the construction of a [3]rotaxane based on coordination-driven self-assembly is described. Firstly, a salphen macrocycle was synthesised and further coordinated with Co (II) ions. Co (II) could be easily oxidized

5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

to octahedral coordinated $\mathrm{Co}(\mathrm{III})$ thus having two remaining coordination sites on the axial position of the octahedral coordination center Then, the binuclear Co (III) salphen macrocycle was combined with a 2,7-carbazole-based ligand, modified with a functional group on the nitrogen atom of the backbone. The combination of the two building blocks lead to the formation of a bowl-like structure. Connecting two bowls together can be achieved by a reaction on the chain of the two outer ligands creating an axle, while the ligands act as stoppers. By using a ligand with a bulky group, the macrocycles should stay threaded on the axle after removing the coordinating metal ions or addition of a competing ligand to displace the pyridyl ligand from the ring.

First, a hydro acridine-based salicylaldehyde ligand LACR was synthesized by Suzuki-coupling reaction of 2,7-dibromo-10-hexyl-9,9-dimethyl-9,10-dihydroacridine and 4-formyl-3-hydroxyphenylboronic acid pinacol ester. The alkyl chain on the backbone of ligand increased the solubility of the ligand. Following a similar procedure previously described in Chapter 3 and 4, the macrocycle was obtained by condensation reaction of $L^{A C R}$ and o-phenylenediamine (Figure 5.5). The formation of the macrocycle was firstly confirmed by ${ }^{1} \mathrm{H}$ NMR analysis (Figure 5.6). One set of signals was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the compound. Compared with the free ligand, the proton signal of the - OH group undergoes a downfield shift $\left(\Delta \delta\left[\mathrm{H}_{1 / q}\right]=2.28 \mathrm{ppm}\right)$. The proton signals of the phenyl ring have a slight shift $\left(\Delta \delta\left[\mathrm{H}_{8 /}\right]=0.11 \mathrm{ppm},\left(\Delta \delta\left[\mathrm{H}_{5 / f}\right]=0.16 \mathrm{ppm}\right)\right.$. The formation of the Schiff base was further confirmed by the proton signal at $\delta=8.76 \mathrm{ppm}$, which was assigned to the proton Hc of the imine group.

Figure 5.5: Synthetic route to salphen macrocycle $\mathbf{R}^{\text {ACR }}$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.6: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L}^{\mathrm{ACR}}$ and $\mathbf{R}^{\mathbf{A C R}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Yellow rod shape single crystals of $\mathbf{R}^{\text {ACR }}$ suitable for x-ray diffraction analysis were obtained by slow evaporation of a DCM solution of the ring. The compound crystallized in the $P-1$ space group. From the crystal structure, we can observe that $L^{A C R} t$ is slightly twisted. As a consequence, $\mathrm{N}_{2} \mathrm{O}_{2}$ moieties are not in the same plane. The four methyl substituents of the backbones point toward different directions. The longest distance between two phenyl rings of the salphen units is $24.817 \AA$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.7: Single crystal X-ray structure of $\mathbf{R}^{\text {ACR }}$ (Solvent molecules and hydrogens are omitted for clarity. Color code for C : gray, N : blue; O : red).

To introduce functional groups on the backbone which can be used for further reaction between two bowls, we designed carbazole-based bis-monodentate pyridine ligands ($\mathbf{L}^{\mathbf{R}}$ and \mathbf{L}^{NH}) (Figure 5.8 a). It has been observed that fluorenebased ligands can adopt two different binding modes. One is concave with the substituents pointing in the same direction than the nitrogen donors, the other is convex with the substituents pointing in the opposite direction than the coordination vectors (Figure 5.8 b). ${ }^{[14]}$ In our case, the concave binding is a crucial precondition for the construction of the rotaxane. To explore the influence of the flexibility of substituents, two types of ligands were prepared. $L^{\mathbf{R}}$ bears a flexible chain with a terminal alkyne. $\mathrm{L}^{\mathrm{NH} 2}$ bears a rigid phenyl ring on the backbone with an amine group in the para position.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
a)

L^{R}
b)

Concave binding

$L^{\mathrm{NH} 2}$

Figure 5.8: a) Designed carbazole-based pyridine ligands with flexible or rigid chains on the backbone. b) Schematic representation of the two binding modes of fluorene-based pyridine ligands.

5.3 Formation of the bowl

The macrocycle contains two Co (III) ions with free coordination sites in the axial position, allowing to combine with one or two bis-monodentate ligands on the side to form a bowl or cage like structure. As regard of the length and binding angle of ligand L^{R}, as well as the distance of $\mathrm{Co}(\mathrm{III}) \cdots \cdot \mathrm{Co}(I I I)$, the macrocycle is supposed to be bent and combined with only one $\mathbf{L}^{\mathbf{R}}$ to form a bowl rather than a cage. For the self-assembly of the bowl (Figure 5.9), firstly, a 1:2 mixture of macrocycle $\mathbf{R}^{\mathbf{A C R}}$ and $\mathrm{Co}(\mathrm{OAc})_{2}$, in a mixed solvent of CHCl_{3} and $\mathrm{CH}_{3} \mathrm{CN}$ (v:v, 1:1) was prepared, accompanying with oxidation of Co (II) to Co (III), leads to the formation of $\left[\mathrm{Co}(\mathrm{III})_{2} \mathbf{R}^{\mathbf{A C R}}\right]^{2+}$. The formation of the metallamacrocycle was confirmed by ${ }^{1} \mathrm{H}$ NMR (Figure 5.10 c) and ESI-MS (Figure 5.49). Then 1 equiv. of L $^{\mathrm{R}}$ was added and the reaction mixture was heated at $60^{\circ} \mathrm{C}$ overnight. Afterwards, the crude product was
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
purified by precipitation. As expected, a pure $\left[\mathrm{Co}(\mathrm{III})_{2} \mathrm{R}^{\mathrm{ACR}} \mathrm{L}^{\mathrm{R}}\right]^{2+}$ (Bowl-1) assembly was obtained.

The structure of Bowl-1 was confirmed using NMR spectroscopy, mass spectrometry and X-ray crystallography. The diamagnetic Co (III) ions allow the assembly to give a series of clear and sharp signals in ${ }^{1} \mathrm{H}$ NMR (Figure 5.10 d). All the proton signals were assigned with the aid of 2D NMR (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY). The integration shows a 1:1 ratio of proton signals assigned to macrocycle and L^{R}. After coordination with $\mathrm{Co}(\mathrm{III})$ ions, a significantly downfield shift of the proton signals from ligand $L^{\mathbf{R}}$ was observed in ${ }^{1} \mathrm{H}$ NMR. Meanwhile, by comparison with the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{CoR}^{\text {ACR }}$, the proton signals of the macrocycle were split into two sets of signals with a $1: 1$ ratio, suggesting that an asymmetrical environment in macrocycle was caused by combination with L^{R}. As mentioned above, the ligand can adopt two different binding modes. The substituents of the ligand could point through the macrocycle or stay outside and toward one side of the acridine units on the macrocycle. Therefore, the NOESY spectrum was checked carefully. However, no ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ interaction between the substituent of L^{R} and $\mathbf{C o R}{ }^{\text {ACR }}$ could be observed.

$\mathrm{R}^{\mathrm{ACR}}$

1) $2 \mathrm{Co}(\mathrm{OAc})_{2}, \mathrm{NH}_{4} \mathrm{PF}_{6}$

$\left[\mathrm{Co}_{2} \mathrm{RACR}^{\mathrm{A}}{ }^{\mathrm{R}} \mathrm{PPF}_{6}\right)_{2}$

Figure 5.9: Hierarchical self-assembly of $\mathbf{R}^{\mathbf{A C R}}, \mathrm{Co}(\mathrm{II})$, and $\mathbf{L}^{\mathbf{R}}$ to form Bowl-1
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.10: ${ }^{1} \mathrm{H}$ NMR spectra of a) ligand $\mathrm{L}^{\mathrm{R}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$, b) macrocycle $\mathbf{R}^{\mathrm{ACR}}$ ($700 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$), c) metallamacrocycle $\mathrm{Co}_{2} \mathbf{R}^{\text {ACR }}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right.$) and d) bowl $\mathbf{C o}_{2} \mathbf{R}^{\text {ACR }} \mathbf{L}^{\mathbf{R}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

As shown in the DOSY spectrum (Figure 5.11 a), all signals from the assembly have the same diffusion coefficient at $4.75 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$ indicating the formation of one single species with hydrodynamic radius of $13.4 \AA$. The structure of assembly is further confirmed by ESI-MS (Figure 5.11 b). ESI-MS analysis gave a prominent peak at $m / z=885.3081$, which is consistent with the calculated isotopic pattern for of $\left[\mathbf{C o}_{2} \mathbf{R}^{\text {ACR }} \mathbf{L}^{\mathbf{R}}\right]^{2+}$. Small peaks were observed at $\mathrm{m} / \mathrm{z}=893.8024$ and $\mathrm{m} / \mathrm{z}=$ 902.3319, corresponding to $\left[\mathbf{C o}_{2} \mathbf{R}^{\mathbf{A C R}} \mathbf{L}^{\mathbf{R}}(\mathrm{OH})\right]^{2+}$ and $\left[\mathbf{C o}_{\mathbf{2}} \mathbf{R}^{\mathbf{A C R}} \mathbf{L}^{\mathbf{R}}(\mathrm{OH})_{2}\right]^{2+}$, respectively.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.11: a) DOSY spectrum of $\mathrm{Co}_{2} \mathbf{R}^{\mathrm{ACR}^{\mathrm{R}}} \mathrm{R}^{\left(500 \mathrm{MHZ}, 289 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN} \text {), diffusion }\right.}$ coefficient $D=4.75 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, r_{H}=13.4 \AA$. b) ESI-MS of $\mathrm{Co}_{2} \mathbf{R}^{A C R} \mathrm{~L}^{\mathrm{R}}$, with insets showing the calculated and measured isotopic patterns of $\left[\mathrm{Co}_{2} \mathbf{R}^{\mathrm{ACR}} \mathrm{L}^{\mathrm{R}}\right]^{2+}$.

However, it was still unclear if the substituent on the backbone of L^{A} was pointing through the macrocycle or in the opposite direction. Fortunately, the efforts to grow single crystals suitable for X-ray diffraction were successful and red plate shape single crystals of Bowl-1 were obtained by slow vapor diffusion of ethyl acetate into an acetonitrile solution. The structure of Bowl-1 was unambiguously confirmed by single-crystal X-ray analysis (Figure 5.12). Two of the methyl groups are directed toward the cavity of the macrocycle, while the other two methyl groups of the salen ring backbone point to the outside of macrocycle, leading to a bent conformation of the macrocycle. The crystal structure shows that L^{R} coordinates with two Co (III) ions on one side of the macrocycle. Because of the bent conformation of the macrocycle, a second ligand L^{R} could not coordinate to the remaining two coordination sites of the Co (III) center. Two water molecules thus saturated the free coordination sites. The largest distance between two phenyl rings of salphen units was found to be
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
$24.486 \AA$, which is a little shorter than the length in the metal free macrocycle. The Co $\cdot \cdot$ Co distance is $14.375 \AA$.

Figure 5.12: X-ray crystal structure of $\mathbf{C o}_{2} \mathbf{R}^{\mathbf{A C R}} \mathbf{L}^{\mathbf{R}}$ from a) front and b) side view. (Solvent molecules and hydrogen are not shown for clarity. Color code for N : blue; O : red; Co: pink).

To investigate the self-assembly of the macrocycle and ligand with a more rigid substituent, a bis-monodentate pyridine ligand with phenyl ring substituent, ligand $\mathbf{L}^{\text {NO2, }}$, was prepared. Following the same procedure used for Bowl-1, the selfassembly of macrocycle, $\mathrm{Co}(\mathrm{II})$, and $\mathrm{L}^{\mathrm{NO2}}$ resulted in a bowl structure $\left[\mathrm{Co}_{2} \mathbf{R}^{\text {ACR }} \mathrm{L}^{\mathrm{NO} 2}\right]^{2+}$ (Bowl-2) (Figure 5.13). The signals of the ${ }^{1} \mathrm{H}$ spectrum are similar to those of Bowl-1, all the proton signals of $\mathrm{L}^{\mathrm{NO} 2}$ having a dramatic downfield shift and the signals of macrocycle splitting into two sets of signals, indicating that $\mathbf{L}^{\text {NO2 }}$ has the same coordination mode than L^{R}. The substituent on the backbone of $L^{\text {NO2 }}$ was inferred to similarly point through the macrocycle. ESI-MS analysis gave prominent signals at $m / z=883.7928$, corresponding to $\left[\mathrm{Co}_{2} \mathbf{R}^{\mathbf{A C R}} \mathbf{L}^{\mathrm{NO}}\right]^{2+}$ species.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

$\mathrm{R}^{\mathrm{ACR}}$

1) $2 \mathrm{Co}(\mathrm{OAc})_{2}, \mathrm{NH}_{4} \mathrm{PF}_{6}$
2)

$2 \mathrm{PF}_{6}{ }^{-}$

Figure 5.13: Self-assembly of $\mathbf{R}^{\mathrm{ACR}}, \mathrm{Co}^{2+}$, and $\mathrm{L}^{\mathrm{NO} 2}$ to form $\mathrm{Co}_{2} \mathbf{R}^{\mathrm{ACR}} \mathrm{L}^{\mathrm{NO2}}$ (Bowl-2).

Figure 5.14: ${ }^{1} \mathrm{H}$ NMR spectra of a) ligand $\mathrm{L}^{\mathrm{NO} 2}$ ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$), b) metallamacrocycle $\mathrm{Co}_{2} \mathrm{R}^{\mathrm{NO2}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right.$), and c) bowl $\mathrm{Co}_{2} \mathbf{R}^{\text {ACR }} \mathrm{LNO}^{\mathrm{NO2}}(600 \mathrm{MHz}$, $298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$). d) ESI-MS of $\mathrm{Co}_{2} \mathbf{R}^{\text {ACR }} \mathrm{L}^{\text {NO2 }}$, with insets showing the calculated and measured isotopic patterns of $\left[\mathrm{Co}_{2} \mathbf{R}^{\mathbf{A C R}} \mathrm{L}^{\mathrm{NO} 2}\right]^{2+}$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Red block crystals of $\mathrm{Co}_{2} \mathbf{R}^{\text {ACR }} \mathrm{L}^{\mathrm{NO} 2}$ were obtained from the slowl diffusion of ethyl acetate into acetonitrile (Figure 5.15). $\mathbf{L}^{\mathbf{R}}$ coordinates with two Co (III) ions on the same side of the macrocycle. Two water molecules saturate the free coordination sites. The largest distance between two phenyl rings of salphen units is $24.485 \AA$ and Co \cdots Co distance is $14.390 \AA$.

Figure 5.15: Preliminary single crystal X -ray structure of $\mathbf{C o}_{\mathbf{2}} \mathbf{R}^{\mathbf{A C R}} \mathrm{L}^{\mathrm{NO2}}$ from a) front and b) side view. (Solvent molecules and hydrogen are not shown for clarity. Color code for N : blue; O: red; Co: pink).

To achieve the reaction of two bowls and the formation of rotaxane, the ligand $L^{N H 2}$ with a functional imine group was then synthesized. It could be used for the condensation reaction with an aldehyde group. As depicted in Figure 5.16, the selfassembly of macrocycle, $\mathrm{Co}(\mathrm{II})$, and $\mathrm{L}^{\mathrm{NH} 2}$ in a 1:2:1 ratio was performed following the same procedure described previously, affording $\left[\mathrm{Co}_{2} \mathbf{R}^{\text {ACR }} \mathrm{L}^{\mathrm{NH} 2}\right]^{2+}$ (Bowl-3). The assembly was characterized by NMR spectroscopy and ESI-MS (Figure 5.17). The proton signals of ${ }^{1} \mathrm{H}$ spectrum are similar to those of Bowl-1, all the proton signals of $\mathrm{L}^{\mathrm{NH} 2}$ having a consequent downfield shift. Moreover, the signals of the macrocycle also split into two sets, indicating that the substituent on the backbone of $\mathrm{L}^{\mathrm{NH}}{ }^{2}$ probably points through the macrocycle. DOSY spectrum (Figure 5.80) shows that all signals from the assembly have the same diffusion coefficient at $4.17 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$, indicating the formation of one single species with hydrodynamic radius of $15.2 \AA$. ESI-MS analysis further confirmed the formation of Bowl-3, showing a prominent signal at $m / z=868.8060$, corresponding to the $\left[\mathrm{Co}_{2} \mathbf{R}^{\mathrm{ACR}} \mathrm{L}^{\mathrm{NH} 2}\right]^{2+}$ species.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.16: Self-assembly of $\mathbf{R}^{\text {ACR }}, \mathrm{Co}(\mathrm{II})$, and \mathbf{L}^{NH} to form $\mathbf{C o}_{2} \mathbf{R}^{\mathbf{A C R}} \mathrm{LH}^{\mathrm{NH}}$ (Bowl-3).

Figure 5.17: ${ }^{1} \mathrm{H}$ NMR spectra of a) ligand $\mathrm{L}^{\mathrm{NH} 2}$, b) metalla-macrocycle $\mathrm{Co}_{2} \mathbf{R}^{\mathrm{NH} 2}$, bowl $\mathbf{C o}_{2} \mathbf{R}^{\text {ACR }} \mathbf{L}^{\mathrm{NH2}}$ ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$). d) ESI-MS of $\mathrm{Co}_{2} \mathbf{R}^{\text {ACR }} \mathrm{L}^{\mathrm{NH} 2}$, with insets showing the calculated and measured isotopic patterns of $\left[\mathbf{C o}_{2} \mathbf{R}^{\mathbf{A C R}} \mathbf{L}^{\mathrm{NH}}\right]^{2+}$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

5.4 Formation of an axle

With the aim of forming a rotaxane derived from two bowls, two types of linkers were designed and synthesized. One is a bis-sulfonate compound with two azide functionalities $\left(\mathbf{2} \mathbf{N}_{3}\right)$ which enable the derivatization by click chemistry. Furthermore, the sulfonate anions can stabilize the macrocycle after the ligand was detached via electrostatic interactions. We designed another dialdehyde compound (2CHO) to connect two Bowl-3 via a condensation reaction. To investigate the conditions of formation of the rotaxane, the reactions between free ligands and linkers to form the axle of the rotaxane were studied first.

Figure 5.18: Synthetic route to Axle-1.

Figure 5.19: ${ }^{1} \mathrm{H}$ NMR spectra of a) $\mathbf{2 N}_{3}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$, b) $\mathrm{L}^{\mathrm{R}}(500 \mathrm{MHz}, 298 \mathrm{~K}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$), and c) Axle-1 ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$).

The $\mathrm{Cu}(\mathrm{I})$-catalyzed reaction of $\mathrm{L}^{\mathbf{R}}$ and $\mathbf{2} \mathbf{N}_{3}$ in a 2:1 ratio was performed under argon atmosphere in anhydrous DCM (Figure 5.18). The formation of the axle was confirmed by ${ }^{1} \mathrm{H}$ NMR and ESI-MS analysis. A new set of signals was observed in ${ }^{1} \mathrm{H}$ NMR spectrum and proton signals of $\mathbf{2} \mathbf{N}_{3}$ present a clear shift. Due to the presence of residual copper cations and the possible coordination to the pyridine units of the ligand, the proton signals of H_{1} and H_{2} are broadened. A new proton signal at $\delta=8.40$, assigned to the proton on the triazole, was observed, thus indicating that the click reaction was successfully achieved. The ESI-MS measured in negative mode showed a prominent signal at 702.2026, corresponding to the [Axle-1] ${ }^{2-}$ (Figure 5.20).

Figure 5.20: ESI-MS of Axle-1, with insets showing the calculated and measured isotopic patterns of $\left[\right.$ Axle-1] ${ }^{2-}$.

In addition, the \mathbf{L}^{NH}-based axle (Axle-2) was also successfully synthesized. First, the dialdehyde linker (2CHO) was prepared by Suzuki-coupling reaction of 1,4dibromobenzene with (4-formylphenyl)boronic acid. Mixing LNH2 and 2CHO in a 2:1 ratio in methanol/dichloromethane ($1: 1, \mathrm{v} / \mathrm{v}$) in presence of acetic acid resulted in the formation of a precipitate. The precipitate was washed by methanol and characterized by ${ }^{1} \mathrm{H}$ NMR. The spectrum showed a new set of proton signals. The proton signals of $2 \mathbf{C H O}$ have a clear downfield shift $\left(\Delta \delta\left[\mathrm{H}_{7}\right]=0.32 \mathrm{ppm}, \Delta \delta\left[\mathrm{H}_{8}\right]=\right.$ $0.18 \mathrm{ppm}, \Delta \delta\left[\mathrm{H}_{7}\right]=0.50 \mathrm{ppm}$,). The proton signals at $\delta=3.93 \mathrm{ppm}$ and $\delta=10.08 \mathrm{ppm}$ respectively assigned to the proton on $-\mathrm{NH}_{2}$ and -CHO group disappeared, and a
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
new signal at $\delta=8.68 \mathrm{ppm}$ appeared, suggesting the formation of $\mathrm{C}=\mathrm{N}$ bond between $L^{\mathrm{NH} 2}$ and 2 CHO .

Figure 5.21: ${ }^{1} \mathrm{H}$ NMR spectra of a) $\mathbf{2 C H O}$, b) $\mathbf{L}^{\mathrm{NH} 2}$ and c) $\mathbf{A x l e} \mathbf{- 2}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

5.5 Formation of rotaxanes

Inspired by those results, the construction of the rotaxanes by combination of both bowl and linkers was investigated. As shown in Figure 5.22, the bowl was firstly obtained by the self-assembly of the macrocycle with $\mathrm{Co}(\mathrm{II})$ and ligand ($\mathbf{L}^{\mathbf{R}}$ or \mathbf{L}^{NH}). Then it was reacted with the linker in a 2:1 ratio. Bow-1 was reacted with $\mathbf{2 N}_{3}$ via CuAAC click reaction (Figure 5.22 a) and Bowl-2 was reacted with 2CHO via
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
condensation reaction (Figure 5.22 b). After purification by precipitate, the ${ }^{1} \mathrm{H}$ NMR spectra of the product showed a clear set of signals still attributed to the bowls without new signals and no shift. However, the potential formation of the [3]rotaxane resulting from Bowl-2 was observed in ESI-MS spectrum (Figure 5.22 c). It demonstrates the self-assembly of metallamacrocycle and Axle-2 and exhibits promising prospect to generate [3]rotaxane.

Figure 5.22: Synthesis route to a) $\left[(\text { Bow-1 })_{2}(\right.$ Axle-1 $\left.)\right]$, b) $\left[(B o w-2)_{2}(\right.$ Axle-2) $]$ and ESI-MS spectrum of $\left[(\text { Bow-2 })_{2}(\mathbf{A x l e}-2)\right]$ with showing the calculated and measured isotopic patterns $[\text { Bow-2 })_{2}(\text { Axle-2) }]^{4+}$.

Eventually, the optimization of the reaction conditions for the click reaction is still on the way and the challenge remains in the purification of the products. Then the motion of macrocycle by the addition of a competing ligand L' to displace the pyridyl ligand from the macrocycle could be investigated (Figure 5.23).

Figure 5.23: Scheme of [3]rotaxane with the detachment of ligand from the macrocycle.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

5.6 Formation of a heteroleptic cage

The molecular recognition and encapsulation properties of supramolecular cages have been widely exploited. ${ }^{[15-19]}$ For the purpose of increasing the complexity and functionality of these discrete self-assembled architectures, it is possible to use the shape complementarity approach, combining geometrically distinct ligands through integrative self-sorting, to form heteroleptic cages. ${ }^{[12,20]}$ Multi-components integrative self-sorting based on shape complementarity is a powerful tool to form heteroleptic cages with multiple functions. Here, we plan to combine a metallic active site on the backbone of ligand \mathbf{A} with a shape complementary functional ligand \mathbf{C} by coordinating them both to a binuclear cobalt macrocycle $\mathbf{C o}$ (III) $\mathbf{2}_{2} \mathbf{B}$ (Figure 5.24). Finally, the catalytic properties of the assembled cage will be investigated.

Figure 5.24: Schematic illustration of the structure of functional heteroleptic cage (Color code for \mathbf{A} : orange, \mathbf{B} : blue, \mathbf{C} : green, Col't: gray).

Here, two bis-monodentate ligands with shape-complementarity were prepared. Phenanthroline-based pyridine ligand \mathbf{A} was synthesized by Sonogashira coupling reaction of 2,9-dibromo-1,10-phenanthroline and 4-ethynylpyridine. Acridone-based isoquinoline ligand \mathbf{C} was prepared following the reported literature procedure. ${ }^{[20]}$

Macrocycle $\mathbf{R}^{\mathbf{A C R}}$ (which is named \mathbf{B} here) was combined with $\mathrm{Co}(\mathrm{OAc})_{2}$ in DMSO to afford metallamacrocycle $\mathbf{C o (I I I})_{2} \mathbf{B}$. Afterwards, one equivalent of ligand \mathbf{A} and one equivalent of ligand \mathbf{B} were added. With the addition of $\mathrm{NH}_{4} \mathrm{PF}_{6}$, the mixture was stirred at $60^{\circ} \mathrm{C}$ overnight. The product was purified by precipitation and characterized by NMR and ESI-MS. The ${ }^{1} \mathrm{H}$ NMR at room temperature showed very broad signals, probably due to dynamics of the structure. To overcome this problem, the ${ }^{1} \mathrm{H}$ NMR spectrum was measured at higher temperature (353 K) and then clearer and sharp signals were observed (Figure 5.26). Because of the presence of small impurities and the overlapping on some signals in the spectrum, the assignment of the signals presents difficulties. The proton signals of ligand \mathbf{C} and macrocycle \mathbf{B} have clear shift in comparison with their free analogues. However, the signals of \mathbf{A} can still be observed in the spectrum and don't present any shift, indicating the presence of free ligand. Then DOSY spectrum was recorded (Figure 5.83) and two sets of signals were observed. The signals of the ligand have a different diffusion coefficient than the signals from the assembly.

A

$\mathrm{Co}^{1 \mathrm{II}}{ }_{2} \mathrm{~B}$

C

$\mathrm{Co}^{1 \mathrm{II}}{ }_{2} \mathrm{ABC}$

A
$\mathrm{Colli}_{2} \mathrm{~B}$
C

$\mathrm{Coll}_{2} \mathrm{ABC}$
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.25: Schematic representation of the self-assembly of ligands to form heteroleptic cage $\mathrm{Co}(\mathrm{III})_{2} \mathrm{ABC}$.
a)

d)

e)

Figure 5.26: ${ }^{1} \mathrm{H}$ NMR spectra of a) ligand $\mathbf{A}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$, b) ligand $\mathbf{C}(500$ $\mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}$), c) macrocycle B ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$), d) cage Co(III)2ABC ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}$), and e) Co(III) $)_{2}$ ABC ($500 \mathrm{MHz}, 353 \mathrm{~K}$, DMSO- d_{6}).

Interestingly, ESI-MS showed a prominent peak at $m / z=1144.4027$ corresponding to the $\left[\mathrm{Co}(\mathrm{III})_{2} \mathbf{A B C}\right]^{2+}$ species, thus indicating the formation of the heteroleptic cage (Figure 5.27). Therefore, we considered the NMR results again, complicated probably due to interaction between the ligand \mathbf{A} and Co (III) being weak in DMSO solution. Unfortunately, despite many efforts, we did not manage to grow crystals suitable for measurement.

5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.27: ESI-MS and structure model of $\left(P M_{6}\right)$ of $\mathrm{Co}(\mathrm{III})_{2} \mathbf{A B C}$, with insets showing the calculated and measured isotopic patterns of $\left[\mathrm{Co}(\mathrm{III})_{2} \mathbf{A B C}\right]^{2+}$.

The backbone of ligand \mathbf{A} was designed with a phenanthroline moiety bearing two chelating nitrogens which can coordinate with catalytically active metal complexes, such as rhenium complexes. Rhenium complexes linking to a bipyridine have been reported for photocatalytic CO_{2} reduction, which is a promising approach for alleviating climate change and energy shortage. ${ }^{[21]}$ In a previous work, we have demonstrated that acridone-based ligand C can also act as a photosensitizer. ${ }^{[22]}$ Therefore, the metalla-ligand with an active site was prepared from ligand \mathbf{A} and $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ to give a functional heteroleptic cage for photocatalytic CO_{2} reduction (Figure 5.28).

A

$\operatorname{Re}^{\prime} \mathrm{A}$

Figure 5.28: Methods to introduce catalyst complex in the cage.

Then, we investigate the formation of the multi-functional heteroleptic cage. Two methods were explored: i) post-synthesic modification. The $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ was added into the solution of $\mathbf{C o (I I I)})_{2} A B C$. ii) pre-modification. The $\operatorname{Re}(I) A$ was successfully prepared. Then self-assembly was performed with $\mathbf{C o (I I I)})_{2} \mathbf{B}$ and ligand \mathbf{C}.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.29: Methods to introduce catalyst complex in the cage and the formation of functional heteroleptic cage.

Figure 5.30: ${ }^{1} \mathrm{H}$ NMR spectra of ligand $\mathbf{A}, \operatorname{Re}(\mathrm{I}) \mathbf{A}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$ and cage $\mathbf{C o}(\mathrm{III})_{2} \mathbf{A B C}, \operatorname{Re}(\mathrm{I}) \mathbf{C o}(\mathrm{III})_{2} \mathbf{A B C}\left(500 \mathrm{MHz}, 353 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

The formation of $\mathbf{R e}(I) A$ was confirmed by ${ }^{1} \mathrm{H}$ NMR and ESI-MS. One equivalent of $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ was added in a degassed $\mathrm{Co}(\mathrm{III})_{2} \mathrm{ABC}$ DMSO solution. The mixture was heated at $90^{\circ} \mathrm{C}$ overnight. The structure was characterized by NMR and ESI-MS.

Comparing with ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C o}(\mathrm{III})_{2} \mathbf{A B C}$, the proton signals assigned to \mathbf{A} were shifted and the signals of $\operatorname{Re}(I) A$ were observed, suggesting the successful self-assembly of \mathbf{A} and $\operatorname{Re}(\mathbf{I})$ complex in this system. However, the signals of the $\mathbf{R e}(I) A$ motif in the assembly have the same chemical shifts than free $\operatorname{Re}(I) A$ complex, thus likely indicating the presence of the free complex in solution. ESI-MS showed a prominent peak at $m / z=1297.3507$ corresponding to $\left[\operatorname{Re}(I) C o(I I I)_{2} \mathbf{A B C}\right]^{2+}$ species, indicating the formation of the functional heteroleptic cage (Figure 5.31). The peak at $m / z=953.3390$ corresponding to the $\left[\mathbf{C o}(\mathrm{III})_{2} \mathbf{B C}\right]^{2+}$ species was also observed. It suggests that ligand \mathbf{C} has a stronger binding with Co (III). Similar results were obtained by utilizing method II to form the functional heteroleptic cage. Those results showed that the functional heteroleptic cage was formed, but further purification still needs to be done.

Figure 5.31: ESI-MS of $\operatorname{Re}(\mathrm{I}) \mathbf{C o}(\mathrm{III})_{2} \mathbf{A B C}$, with insets showing the calculated and measured isotopic patterns of $\left[\operatorname{Re}(\mathrm{I}) \mathrm{Co}(\mathrm{III})_{2} \mathrm{ABC}\right]^{2+}$.

The combination of photocatalyst and photosensitizer, with a defined cavity in the functional heteroleptic cage, is promising to perform a CO_{2} photocatalytic reduction reaction (Figure 5.32). The cavity of the cage is expected to stabilizing the transition state or CO_{2} adduct to improve reactivity and selectivity. ${ }^{[23]}$ The study of catalytic activity of cage should be studied next.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.32: Proposed photocatalytic reduction of CO_{2} to CO .

5.7 Conclusion

Herein, two kinds of carbazole-based ligands ($\mathbf{L}^{\mathbf{R}}$ and $\mathbf{L}^{\mathrm{NH} 2}$) with different flexibility of were synthesized and self-assembled with the binuclear cobalt macrocycle. The bowl-shape structures were obtained and fully characterized by NMR spectroscopy, mass spectroscopy and X-ray crystallography. The substituent on the backbone can react with a linker in order to connect two bowls. And it was observed that the substituents of the carbazole ligand point towards the inside of the macrocycle. It provides the possibility that the macrocycle thread on the axle after the connection of two bowls. The formation of the rotaxane was confirmed by ESI-MS. The reaction condition needs to be improved to increase the yield and the purity. Finally, studies of the detachment of ligand from the macrocycle to achieve its motion should be studied next.

5.8 Experiment Part

5.8.1 Materials

Unless otherwise stated, all chemicals and solvents were purchased from commercial companies (Abcr, Sigma Aldrich, Acros Organics, VWR and Chempur) and used as received. 4,4'-Diazido-stilbene-2,2'-bis-sulfonic acid bistetrabutylammonium salt $\left(\mathbf{2} \mathbf{N}_{3}\right)$ was prepared following the reported literature. ${ }^{[24]}$
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

5.8.2 General Methods

NMR

NMR spectroscopic data was measured on the spectrometers Bruker AV 500 Avance NEO, Bruker AV 600 Avance III HD and Bruker AV 700 Avance III HD. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are reported in ppm on the δ scale relative to proton resonance resulting from incomplete deuteration of the solvents (CDCl_{3} : 7.26 ppm, 77.16 ppm , DMSO- $d_{6}: 2.5 \mathrm{ppm}, 39.52 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}: 1.94 \mathrm{ppm}, 118.26 \mathrm{ppm}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}: 5.32 \mathrm{ppm}\right)$. The chemical shift δ is given in ppm, the coupling constants J in Hz . The following abbreviations are used to describe signal multiplicity for ${ }^{1} \mathrm{H}$ NMR spectra: s: singlet, d: doublet, t: triplet, dd: doublet of doublets, m: multiplet. All spectra were recorded in standard 5 mm NMR tubes at 298 K if not stated otherwise.

DOSY

${ }^{1} \mathrm{H}$ DOSY spectra were recorded with a dstebpgp3s pulse sequence with diffusion delays D20 of 0.09-0.14 s and gradient powers P30 of 900-2500 μ s for each species optimized. The hydrodynamic radius was calculated according to Stokes-Einstein equation:

$$
\mathrm{D}=\frac{\mathrm{k}_{B} \mathrm{~T}}{6 \pi \eta \mathrm{r}_{H}}
$$

Where D is coefficient constant, k_{B} is the Boltzmann constant, T is the absolute temperature, η is the viscosity of solvent, r_{H} is the hydrodynamic radius.

ESI-MS

Electrospray ionization mass spectrometry (ESI-MS) experiments were performed on ESI-timsTOF (ESI-trapped ion mobility-time of flight) mass spectrometer by Bruker, equipped with and ESI source (positive/negative mode). An Agilent ESI low concentration tuning mix has been used for calibration of tims and TOF units. Mass spectrometry data is given as mass/charge ratio (m / z) as well as the relative intensity with regard to the base peak ($1=100$).

X-Ray Analysis

5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Bruker D8 venture (in-house)

Data collection for single crystal X-ray diffraction was performed on a Bruker D8 venture with a four-axle goniometer in k-geometry, equipped with CuKa and MoKa Incoatec microfocus sources (l/ 13.0) and a photon II detector. The crystal was covered with inert NVH oil and placed on the 0.2 mm nylon loop. The sample was cooled down to 100(2) K utilizing an Oxford Cryostream 800.

P11@DESY (Synchrotron)

Data collection for single crystal X-ray diffraction was performed on a one-axle goniometer equipped with a Pilatus 6M fast detector by Dectris at the macromolecular beamline PXI, Petra III, DESY, Hamburg. Therefore, a wavelength of $\lambda=0.6888 \AA$ has been set on a nitrogen cooled double monochromator and the sample has been cooled to 80(2) K utilizing an Oxford Cryostream 800.

5.8.3 Synthesis of the ligands

Synthesis of methyl 2-phenylamino)benzoate (ACR-pre)
2-(phenylamino) benzoic acid ($1 \mathrm{~g}, 4.7 \mathrm{mmol}, 1$ equiv.) was dissolved in 35 mL $\mathrm{MeOH}, \mathrm{SOCl}_{2}(3 \mathrm{~mL})$ was added dropwise with stirring. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the excessive SOCl_{2} was removed under reduced pressure. The residue was extracted with DCM and saturated NaCl (aq.). The organic phase was combined and dried over MgSO_{4}. The
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
crude product was purified by column chromatography (pentane: $\mathrm{CHCl}_{3}=2: 1$) to give light yellow oil as product ($0.95 \mathrm{~g}, 89.1 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.32$ (s, 1H), 7.89 (dd, $J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45-$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H})$, $6.87-6.75(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$.

10	9	8	7	6	5	4	3	2

Figure $5.33:{ }^{1} \mathrm{H}$ NMR spectrum of ACR-pre $\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

Synthesis of 9,9-dimethyl-9,10-dihydroacridine (ACR-NH)
ACR-Pre ($1 \mathrm{~g}, 4.4 \mathrm{mmol}, 1$ equiv.) was dissolved in anhydrous THF and cooled in an ice bath. MeMgBr ($1.84 \mathrm{~g}, 15.4 \mathrm{mmol}, 3.5$ equiv.) was added dropwise over a period of 15 min . Then the reaction mixture was stirred at room temperature for 18 h and then quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with DCM. The organic phase was combined and dried over MgSO_{4}. The solvent was removed. Under Ar atmosphere, $3 \mathrm{~mL} \mathrm{H} \mathrm{H}_{3} \mathrm{PO}_{4}$ was added to the crude product and stirred at $35^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}$ aq solution was added and then poured into water at $0^{\circ} \mathrm{C}$. The white solid was collected by filtration ($510 \mathrm{mg}, 55.4 \%$ yield).
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 2 \mathrm{H})$, 6.92 (t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.70 (d, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.13 (s, 2H), 1.59 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta 138.62,129.28,126.86,125.63,120.75,113.56$, 36.35, 30.68.

Figure 5.34: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{A C R}-\mathrm{NH}\left(700 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure $5.35:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{A C R}-\mathrm{NH}\left(176 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Synthesis of 10-hexyl-9,9-dimethyl-9,10-dihydroacridine (ACR-Hex)
ACR-NH ($800 \mathrm{mg}, 3.82 \mathrm{mmol}$, 1 equiv.) was dissolved in 20 mL anhydrous THF. NaH ($275 \mathrm{mg}, 11.47 \mathrm{mmol}, 3$ equiv. 60% dispersion in mineral oil) was added portion-wise over 10 min at $0^{\circ} \mathrm{C}$. After stirring at room temperature for $1 \mathrm{~h}, 1$ bromohexane ($757 \mathrm{mg}, 4.59 \mathrm{mmol}, 1.2$ equiv.) was added. The reaction mixture was stirred at $65{ }^{\circ} \mathrm{C}$ for 2 days. The $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) was added slowly to quench the excess of NaH and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was combined and dried over MgSO_{4}. Solvents were removed under reduced pressure and the crude product was purified by column chromatography (DCM: pentane $=$ 1:20). The product was isolated as yellow oil ($704 \mathrm{mg}, 62.8 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H})$, $6.98-6.93(\mathrm{~m}, 4 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{p}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}), 1.52$ $-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{tt}, J=7.9,3.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 140.76,132.34,126.70,124.53,120.37,112.59$, 46.17, 36.35, 31.75, 29.04, 27.10, 26.07, 22.86, 14.19.

5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.36: ${ }^{1} \mathrm{H}$ NMR spectrum of ACR-Hex ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$).

Figure 5.37: ${ }^{13} \mathrm{C}$ NMR spectrum of ACR-Hex ($126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$).

Synthesis of 2,7-dibromo-10-hexyl-9,9-dimethyl-9,10-dihydroacridine (2Br-Hex) Hex-ACR ($450 \mathrm{mg}, 1.53 \mathrm{mmol}, 1$ equiv.) and NBS ($546 \mathrm{mg}, 3.07 \mathrm{mmol}, 2$ equiv.) were dissolved in $15 \mathrm{~mL} \mathrm{CHCl}_{3}$ and stirred at room temperature for 2 h . the reaction was monitored by TLC. After the reaction, the solvent was removed under reduced pressure and the residue was purified by column chromatography (pentane) (508 $\mathrm{mg}, 73.4 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, \mathrm{J}=8.7,2.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.80(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.76(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}), 1.44$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{qq}, J=4.4,2.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.94-0.89(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 139.53,134.05,129.58,127.53,114.37,113.20$, 46.28, 36.64, 31.65, 28.69, 26.97, 25.80, 22.81, 14.17.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.38: ${ }^{1} \mathrm{H}$ NMR spectrum of $2 \mathrm{Br}-\mathrm{Hex}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure 5.39: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 B r}-\mathrm{Hex}\left(126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Synthesis of LACR

2Br-Hex ($350 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ equiv.), pinacol ester ($467 \mathrm{mg}, 1.88 \mathrm{mmol}, 2.5$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(87 \mathrm{mg}, 0.075 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(575 \mathrm{mg}, 2.71 \mathrm{mmol}$, 3.6 equiv.) were combined in a 100 mL Schlenk tube. The mixture was degassed and refilled with argon for three times. 20 mL degassed solvents (1,4-dioxane: $\mathrm{H}_{2} \mathrm{O}$ $=4: 1$) were added. The reaction mixture was stirred at $95^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the solvent was removed under reduced pressure. HCl solution (aq. $2 \mathrm{M}, 50 \mathrm{ml}$) was added and extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{ml}$), combine the organic phase and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right.$: pentane $=2: 1$) to provide a bright yellow solid as aim product ($228 \mathrm{mg}, 54 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 11.15(\mathrm{~s}, 2 \mathrm{H}), 9.90(\mathrm{~s}, 2 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.63 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (dd, $J=8.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32 (dd, $J=8.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, J = $1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $4.06-3.79$ (m, 2H), 1.89 (p, J = $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ 196.32, 162.41, 149.93, 141.20, 134.56, 132.86, 131.49, 126.27, 124.20, 119.51, 118.43, 114.64, 113.70, 46.71, 36.88, 31.98, 29.80, 27.20, 26.36, 23.12, 14.21.

HR ESI-MS: calculated for $\left[\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{NO}_{4}\right]^{2+} \quad \mathrm{m} / \mathrm{z} 534.2639 \quad[\mathrm{M}+2 \mathrm{H}]^{2+}$ found: 534.2631
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure $5.40:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L}^{\mathrm{ACR}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure $5.41:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{L}^{\text {ACR }}\left(126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.42: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathrm{L}^{\text {ACR }}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure 5.43: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectrum of $\mathrm{L}^{\mathrm{ACR}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

5.8.4 Synthesis of macrocycle $\mathrm{R}^{\mathrm{ACR}}$

LACR ($15 \mathrm{mg}, 0.028 \mathrm{mmol}$, 1 equiv.) was dissolved in 2 mL DCM and MeOH mixture solvents ($\mathrm{v}: \mathrm{v}=1: 1$). 1,2-benzenediamine ($3.65 \mathrm{mg}, 0.033 \mathrm{mmol}, 1.2$ equiv.) was added. After addition of acetic acid ($35 \mu \mathrm{~L}$), the reaction was stirred at room temperature for 10 h . The solvent was removed under reduced procedure. The crude product was washed with anhydrous $\mathrm{MeOH}(3 \times 1 \mathrm{~mL})$ and dried in vacuum to provide the product as yellow powder in quantitative yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.49(\mathrm{~s}, 4 \mathrm{H}), 8.73(\mathrm{~s}, 4 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 4 \mathrm{H})$, 7.56 (dd, $J=8.4,2.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.38$ - 7.35 (m, 4H), 7.34 (dt, $J=5.4,3.7 \mathrm{~Hz}, 4 \mathrm{H}$), 7.21 (dd, $J=8.0,1.7 \mathrm{~Hz}, 4 \mathrm{H}$), 7.05 (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.03-3.99(\mathrm{~m}, 4 \mathrm{H}), 1.91(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.71(\mathrm{~s}, 12 \mathrm{H}), 1.47-$ 1.36 (m, 8H), 1.26 (s, 4H), 0.95 (t, J = 7.2 Hz, 6H).
${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta 162.54,162.06,146.17,142.92,140.50,132.78$, 132.70, 132.21, 127.84, 125.37, 124.33, 119.16, 117.90, 117.26, 115.33, 112.94, 46.34, 36.79, 31.75, 29.69, 27.09, 26.08, 22.88, 14.21.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.44: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{R}^{\mathrm{ACR}}\left(700 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure $5.45:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{R}^{\mathbf{A C R}}\left(176 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.46: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ NMR spectrum of $\mathbf{R}^{\mathbf{A C R}}\left(700 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

5.8.5 Self-assembly of $\mathrm{Co}_{2} \mathrm{R}^{\mathrm{ACR}}$

$\mathbf{R}^{\text {ACR }}$ ($5 \mathrm{mg}, 3.44 \mu \mathrm{~mol}, 1$ equiv.) was dissolved in CHCl_{3} and $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL}, 1: 1$) mixture solvents, $\left[\mathrm{Co}(\mathrm{OAc})_{2}\right](122 \mu \mathrm{~L}, 20 \mathrm{mg} / \mathrm{mL}$ in DMSO, 2 equiv.) was added. After stirring $15 \mathrm{~min}, \mathrm{NH}_{4} \mathrm{PF}_{6}$ (1.35 mg , 2 equiv.) was added. The mixture was stirred at room temperature for 2 h . After reaction, solvents were removed and crude product was dissolved in a minimal amount of DCM and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to give red powder as product ($4.2 \mathrm{mg}, 77.3 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.69(\mathrm{~s}, 4 \mathrm{H}), 8.27(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=2.2$ $\mathrm{Hz}, 4 \mathrm{H}), 7.74-7.66(\mathrm{~m}, 12 \mathrm{H}), 7.56(\mathrm{dd}, J=6.2,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.90(\mathrm{~s}, 4 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 4 \mathrm{H})$, 1.56 (s, 4H), 1.41 (d, J = $14.6 \mathrm{~Hz}, 4 \mathrm{H}), 0.99-0.92(\mathrm{~m}, 6 \mathrm{H})$.

HR ESI-MS: calculated for $\left[\mathrm{Co}_{2} \mathrm{C}_{82} \mathrm{H}_{74} \mathrm{~N}_{6} \mathrm{O}_{4}\right]^{2+}, \mathrm{m} / \mathrm{z} \quad 662.2212[\mathrm{M}]^{2+}$ found: 662.2183
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.47: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C o}_{2} \mathbf{R}^{\mathbf{A C R}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

Figure 5.48: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{C o}_{2} \mathbf{R}^{\mathbf{A C R}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.49: ESI-MS of $\mathrm{Co}_{2} \mathbf{R}^{\text {ACR }}$, with insets showing the calculated and measured isotopic patterns of $\left[\mathrm{Co}_{2} \mathbf{R}^{\mathbf{A C R}}\right]^{2+}$.

5.8.6 Synthesis of L^{R}

Figure 5.50: Synthesis route of L^{R}.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Synthesis of 2Br-OMe

2,7-dibromo-9H-carbazole ($1.1 \mathrm{~g}, 3.38 \mathrm{mmol}, 1$ equiv.) was dissolved in 10 mL dry THF, then NaH ($162 \mathrm{mg}, 6.77 \mathrm{mmol}$, 2 equiv. 60% dispersion in mineral oil) was added to the solution slowly in ice bath and stirred at 0° for 1 h . Then methyl 2bromoacetate ($1.04 \mathrm{~g}, 6.77 \mathrm{mmol}, 2$ equiv.) was added. The mixture was stirred at 55° overnight. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aqueous), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over MgSO_{4}, filtered and the solvent removed in vacuo. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: pentane=1:4) to afford white solid ($1.25 \mathrm{~g}, 93.0 \%$ yield.)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (dd, J = 8.3, 1.6 Hz, 2H), 4.93 (s, 2H), 3.78 (s, 3H).

Figure 5.51: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 B r}-\mathbf{O M e}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Synthesis of L-OMe

2Br-OMe ($600 \mathrm{mg}, 1.51 \mathrm{mmol}, 1$ equiv.), 4-pyridineboronic acid ($557 \mathrm{mg}, 4.53 \mathrm{mmol}$, 3 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($105 \mathrm{mg}, 0.091 \mathrm{mmol}, 6 \mathrm{~mol} \%$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.15 \mathrm{~g}, 5.44 \mathrm{mmol}$, 3.6 equiv.) was combined in a 100 mL Schenk flask and cycled three times under vacuum and refilled with argon. 20 mL degassed of 1,4-dioxane and water ($\mathrm{v}: \mathrm{v}=4: 1$) were added. The reaction mixture was stirred at $95^{\circ} \mathrm{C}$ for 48 h . After cooling down to room temperature, the solvents were evaporated and a little mount of DCM was added then filtered. The solid was washed by water and dried under vacuum (385 $\mathrm{mg}, 67.5 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, ~, ~ C D=2 \mathrm{CN}$): $\delta 9.00$ (dd, $J=2.5,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 8.28 (dd, $J=8.1,0.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 8.13 (ddd, $J=7.9,2.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.83-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=8.0$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (ddd, $J=7.9,4.8,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CD ${ }_{3} \mathrm{CN}$) $\delta 170.12,149.45,142.93,137.82,137.08,135.55$, 124.70, 123.35, 122.19, 120.20, 108.78, 53.06, 45.06.

Figure 5.52 : ${ }^{1} \mathrm{H}$ NMR of L-OMe ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$).
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure $5.53:{ }^{13} \mathrm{C}$ NMR of $\mathrm{L}-\mathrm{OMe}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

Synthesis of L-COOH

L-OMe ($200 \mathrm{mg}, 0.53 \mathrm{mmol}, 1$ equiv.) was dissolved in a mixture solvents of MeOH and DCM, NaOH ($43 \mathrm{mg}, 1.1 \mathrm{mmol}, 2$ equiv.) was added. The mixture was stirred at room temperature overnight. Then 2 M HCl aq was added dropwise and a yellow precipitate formed. The precipitate was collected by filtration and washed by water to give as product.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 13.06$ (s, 1H), 9.07 (d, J = $2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.60 (dd, J $=4.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $8.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.24(\mathrm{dt}, J=7.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=8.0,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}$, $2 H)$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): δ 169.48, 148.39, 148.14, 141.84, 136.36, 135.19, 134.59, 124.04, 122.01, 121.34, 118.76, 108.03, 52.31.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.54: ${ }^{1} \mathrm{H}$ NMR of L-COOH ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}$).

Figure $5.55:{ }^{13} \mathrm{C}$ NMR of L-COOH ($151 \mathrm{MHz}, 298 \mathrm{~K}$, DMSO- d_{6}).

Synthesis of L^{R}

L-COOH ($50 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv.), 4-pentyn-1-ol ($13.3 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.2$ equiv.), EDCI (75 mg), DMAP (16 mg) were combined in a 10 mL round flask. 2 mL anhydrous DCM was added. The reaction mixture was stirred at room temperature for 2 days. The product was purified by column chromatography (DCM: $\mathrm{EtOAc}=1: 5$) to afford the product ($16 \mathrm{mg}, 27 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 9.06$ (dd, $J=2.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 8.59 (dd, $J=4.7,1.6$ $\mathrm{Hz}, 2 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.25-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
(dd, $J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (ddd, $J=7.9,4.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{td}, \mathrm{J}=7.1,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=6.7$ Hz, 2H).
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d ${ }_{6}$) δ 169.08, 148.45, 148.16, 141.95, 136.47, 135.30, 134.73, 124.16, 122.11, 121.45, 118.89, 108.08, 83.62, 71.73, 63.76, 62.32, 27.32, 25.60 .

HR ESI-MS: calculated for $\left[\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+} \quad{ }_{m / z} 446.1863[\mathrm{M}+\mathrm{H}]^{+}$ found: $\quad 446.1830$

Figure 5.56: ${ }^{1} \mathrm{H}$ NMR of L^{R} in a) $\mathrm{CD}_{3} \mathrm{CN}$, and b) DMSO- $\mathrm{d}_{6}(500 \mathrm{MHz}, 298 \mathrm{~K})$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.57 : ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{L}^{\mathrm{R}}\left(151 \mathrm{MHz}, 298 \mathrm{~K}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$.

Figure $5.58:{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathrm{L}^{\mathrm{R}}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.59: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectrum of $\mathrm{L}^{\mathrm{R}}\left(600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

5.8.7 Synthesis of $L^{\mathrm{NO} 2}$ and $\mathrm{L}^{\mathrm{NH} 2}$

5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Synthesis of 2,7-dibromo-9-(4-nitrophenyl)-9H-carbazol (2Br-NO2) ${ }^{[25]}$
2-,7-dibromocabazole ($1 \mathrm{~g}, 3.08 \mathrm{mmol}$, 1 equiv.), 4-fluoronitrobenzene ($1.3 \mathrm{~g}, 9.23$ mmol, 3 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.13 \mathrm{~g}, 15.38 \mathrm{mmol}, 5$ equiv.) were combined in a 100 mL Schlenk tube. 10 mL DMF was added. The reaction mixture was stirred at 150 ${ }^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the solution was poured into 50 mL $\mathrm{H}_{2} \mathrm{O}$. The yellow solid was washed by water and collected by filtration ($1.31 \mathrm{~g}, 95.4 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.52$ (d, J = $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.28 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $8.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta 146.30,141.56,140.61,127.70,126.35,125.86$, 122.73, 121.90, 119.76, 112.80.

Figure $5.60:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 B r}-\mathrm{NO}_{2}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

140	120	100	80	60	40

Figure $5.61:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 B r}-\mathrm{NO}_{2}\left(126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

Synthesis of 4-(2,7-dibromo-9H-carbazol-9-yl)phenylamine (2Br-NH2) $)^{[25]}$
$\mathbf{2 B r}-\mathrm{NO}_{2}$ ($410 \mathrm{mg}, 0.92 \mathrm{mmol}, 1$ equiv.), $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1.04g, $4.6 \mathrm{mmol}, 5$ equiv.) were combined in a 250 mL flask. 10 mL ethanol was added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ overnight and then cooled to room temperature. Most of ethanol was removed in vacuum. Saturated NaOH (aq.) was poured into the solution slowly at $0^{\circ} \mathrm{C}$. The product was washed by water and collected by filtration $(350 \mathrm{mg}, 91.5 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.21$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 ($\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}$, 2 H), 7.31 (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.54$ (s, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): δ 148.14, 142.17, 128.71, 127.84, 122.81, 122.51, 120.83, 119.22, 114.68, 112.36.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure $5.62:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 B r}-\mathrm{NH}_{2}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

Figure $5.63:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 B r}-\mathrm{NH}_{2}\left(126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Synthesis of L-NO2

$\mathbf{2 B r}-\mathrm{NO}_{2}$ ($150 \mathrm{mg}, 0.34 \mathrm{mmol}, 1$ equiv.), 3-(1,3,2-dioxaborinan-2-yl)pyridine (164 mg , $1.01 \mathrm{mmol}, 3$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(23 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.06 \mathrm{~mol} \%)$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(257$ $\mathrm{mg}, 1.21 \mathrm{mmol}, 3.6$ equiv.) were combined in a 100 mL Schlenk tube and cycled three times under vacuum and argon. 20 mL degassed mixture solvents of 1,4dioxane and water ($\mathrm{v}: \mathrm{v}=4: 1$) were added. The reaction was stirred at $95^{\circ} \mathrm{C}$ for 48 h . After cooling down to room temperature, the solvents were evaporated. $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the yellow solid was collected by filtration and washed by water. The product was dried under vacuum to give a red powder in 59.2% yield (88 mg).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.00$ (d, J = $2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.59 (dd, $J=4.8,1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.47(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.22-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51$ (ddd, $J=$ $8.0,4.8,0.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): $\delta 148.44,148.07,145.71,142.51,140.55,136.05$, 134.67, 127.48, 125.81, 123.88, 122.90, 121.73, 120.58, 108.42.

HR ESI-MS: calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+} \quad \mathrm{m} / \mathrm{z} 443.1503 \quad[\mathrm{M}+\mathrm{H}]^{+}$ found: $\quad 443.1493$
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.64: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L}^{\mathrm{NO} 2}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

Figure $5.65:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{L}^{\mathrm{NO} 2}\left(151 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.66: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}$ NMR spectrum of of $\mathrm{L}^{\mathrm{NO} 2}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$.

Figure 5.67: ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ NOESY NMR spectrum of of $\mathrm{L}^{\mathrm{NO2}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Synthesis of ligand $\mathrm{L}^{\mathrm{NH} 2}$

2Br- NH_{2} ($500 \mathrm{mg}, 1.2 \mathrm{mmol}, 1$ equiv.), 3-(1,3,2-dioxaborinan-2-yl)pyridine (490 mg , $3.0 \mathrm{mmol}, 2.5$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(83 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.06 \mathrm{~mol} \%)$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (918 $\mathrm{mg}, 4.33 \mathrm{mmol}, 3.6$ equiv.) were combined in a 100 mL Schlenk tube and cycled three times under vacuum and argon. 20 mL degassed mixture solvents of 1,4dioxane and water ($\mathrm{v}: \mathrm{v}=4: 1$) were added. The reaction was stirred at $95^{\circ} \mathrm{C}$ for 48 h . After cooling down to room temperature, the solvents were evaporated and 30 mL water was added and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was combined and dried over MgSO_{4}. The solvent was removed in vacuum. The residue was purified by column chromatography (DCM:pentane=50:1) to afford the product (300 $\mathrm{mg}, 60.5 \%$ yield.)
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.90$ (dd, $J=2.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 8.55 (dd, $J=4.7,1.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 8.30 (dd, $J=8.1,0.6 \mathrm{~Hz}, 2 \mathrm{H}$), 8.02 (ddd, $J=7.9,2.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{dd}, J=1.6,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{ddd}, J=7.9,4.8,0.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (176 MHz, $\mathrm{CD}_{3} \mathrm{CN}$): δ 149.28, 149.07, 143.70, 137.88, 136.99, 135.42, 129.27, 126.87, 124.62, 123.21, 122.07, 120.13, 116.29, 109.27.

HR ESI-MS: calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{4}\right]^{+} \quad \mathrm{m} / \mathrm{z} 413.1761 \quad[\mathrm{M}+\mathrm{H}]^{+}$ found: 431.1759
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.68: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L}^{\mathrm{NH2}}\left(700 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

Figure 5.69: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{L}^{\mathrm{NH2}}\left(176 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure $5.70:{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathrm{L}^{\mathrm{NH} 2}\left(700 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

5.8.8 2 Synthesis of Axle-1

$\mathbf{2 N}_{3}$ ($10.8 \mathrm{mg}, 11.9 \mu \mathrm{~mol}, 1$ equiv.), $\mathbf{L}^{\mathbf{R}}(2.65 \mathrm{mg}, 5.95 \mu \mathrm{~mol}, 0.5$ equiv.), $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}(0.27 \mathrm{mg}, 6 \mathrm{~mol} \%)$, lutidine $(7.7 \mathrm{mg}, 71.4 \mu \mathrm{~mol})$ were combined in a 10 mL Schlenk flask and cycled three times under vacuum and refilled with argon. 3 mL degassed $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($\mathrm{v}: \mathrm{v}=1: 2$) mixture solvents were added. The reaction was stirred at $50^{\circ} \mathrm{C}$ overnight. After cooling down to room temperature, the solvents were evaporated. The residue was resolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 10%
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
ammonia aq. Organic phase was collected and the solvent was removed by evaporation to give the product.

HR ESI-MS: Calculated for $\left[\mathrm{C}_{100} \mathrm{H}_{70} \mathrm{~N}_{6} \mathrm{O}_{6}\right]^{2-}, m / z 702.1929 \quad[\mathrm{M}]^{2-}$,
found: 702.2026

5.8.9 Synthesis of Axle-2

Synthesis of 2CHO

1,4-dobromobenzene ($0.50 \mathrm{~g}, 2.12 \mathrm{mmol}, 1$ equiv.), (4-formylphenyl)boronic acid ($0.95 \mathrm{~g}, 6.36 \mathrm{mmol}, 3$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(122 \mathrm{mg}, 0.1 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and K2CO3 ($1.05 \mathrm{~g}, 7.63 \mathrm{mmol}, 3.6$ equiv.) were combined in a 100 mL Schlenk flask and cycled three times under vacuum and refilled with argon. 20 mL degassed 1,4-dioxane and water ($\mathrm{v}: \mathrm{v}=4: 1$) mixture solvents were added. The reaction was stirred at $80{ }^{\circ} \mathrm{C}$ overnight. After cooling down to room temperature, the solvents were evaporated and 30 mL water was added and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was combined and dried over MgSO_{4}. The solvent was removed in vacuum. The residue was purified by column chromatography (DCM:pentane=2:1) to afford the product ($485 \mathrm{mg}, 79.9 \%$ yield.)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.08(\mathrm{~s}, 2 \mathrm{H}), 8.00-7.98(\mathrm{~m}, 4 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 4 \mathrm{H})$, 7.77 (d, J = $0.7 \mathrm{~Hz}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta 191.99,146.41,139.93,135.61,130.53,128.15$, 127.78.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure $5.71:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 C H O}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Figure 5.72 : ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 C H O}\left(151 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.

Synthesis of Axle-2

Axle-2
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

2CHO ($2.86 \mathrm{mg}, 10 \mu \mathrm{~mol}, 1$ equiv), $\mathbf{L}^{\mathrm{NH} 2}(10.3 \mathrm{mg}, 25 \mu \mathrm{~mol}, 2.5$ equiv.) were dissolved in 2 mL mixture solvents of DCM / MeOH (v:v=1:1). $20 \mu \mathrm{l}$ acetic acid was added. The mixture was stirred at room temperature overnight. After reaction the precipitate was collected and washed by anhydrous MeOH to give a yellow product ($4.3 \mathrm{mg}, 40 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.68(\mathrm{~s}, 2 \mathrm{H}), 8.60(\mathrm{dd}, J=4.9$, $1.5 \mathrm{~Hz}, 4 \mathrm{H}$), $8.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.12-8.06(\mathrm{~m}, 4 \mathrm{H}), 7.96(\mathrm{ddd}, J=7.9,2.4,1.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.85-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}$, 4 H), 7.57 (dd, $J=8.1,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.38$ (dd, $J=8.0,4.8 \mathrm{~Hz}, 5 \mathrm{H})$.

Figure 5.73: ${ }^{1} \mathrm{H}$ NMR spectrum of Axle-2 $\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

5.8.10 Self-assembly of bowl

$\mathbf{R}^{\text {ACR }}$ ($2 \mathrm{mg}, 1.65 \mu \mathrm{~mol}, 1$ equiv.), and $\mathrm{Co}_{2}(\mathrm{OAc})_{2}(48.8 \mu \mathrm{~L}, 20 \mathrm{mg} / \mathrm{mL}$ in DMSO solution, 2 equiv.) were dissolved in $2 \mathrm{~mL} \mathrm{CH} 3 \mathrm{CN}_{3} \mathrm{CHCl}_{3}$ ($\mathrm{v}: \mathrm{v}=1: 1$) and stirred at room temperature for 15 min . L^{R} ($0.74 \mathrm{mg}, 1.65 \mu \mathrm{~mol}$, 1 equiv.) and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ (0.54 $\mathrm{mg}, 3.3 \mu \mathrm{~mol}, 2$ equiv.) was added. The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ overnight. Afterwards, the solvent was removed under reduced pressure. The residue was dissolved in a minimal amount of DCM and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to provide 1.2 mg product (41.1% yield).

Figure 5.74: ${ }^{1} \mathrm{H}$ NMR spectrum of Bowl-1 $\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.75: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of Bowl-1 ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$).

Figure 5.76: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ NOESY NMR spectrum of Bowl-1 ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$).
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

$\mathbf{R}^{\text {ACR }}\left(2 \mathrm{mg}, 1.65 \mu \mathrm{~mol}, 1\right.$ equiv.), and $\mathrm{Co}_{2}(\mathrm{OAc})_{2}(48.8 \mu \mathrm{~L}, 20 \mathrm{mg} / \mathrm{mL}$ in DMSO solution, 2 equiv.) were dissolved in $2 \mathrm{mLCH} \mathrm{CN}_{3} \mathrm{CHCl}_{3}$ ($\mathrm{v}: \mathrm{v}=1: 1$) and stirred at room temperature for 15 min . $\mathrm{L}^{\mathrm{NO2}}\left(0.73 \mathrm{mg}, 1.65 \mu \mathrm{~mol}, 1\right.$ equiv.) and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.54$ $\mathrm{mg}, 3.3 \mu \mathrm{~mol}, 2$ equiv.) was added. The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ overnight. Afterwards, the solvent was removed under reduced pressure. The residue was dissolved in a minimal amount of DCM and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to provide product.

$\mathbf{R}^{\text {ACR }}$ ($2 \mathrm{mg}, 1.65 \mu \mathrm{~mol}, 1$ equiv.), and $\mathrm{Co}_{2}(\mathrm{OAc})_{2}(48.8 \mu \mathrm{~L}, 20 \mathrm{mg} / \mathrm{mL}$ in DMSO solution, 2 equiv.) were dissolved in $2 \mathrm{mLCH} \mathrm{CN}_{3} \mathrm{CHCl}_{3}$ ($\mathrm{v}: \mathrm{v}=1: 1$) and stirred at room temperature for 15 min . $\mathrm{L}^{\mathrm{NH} 2}\left(0.68 \mathrm{mg}, 1.65 \mu \mathrm{~mol}, 1\right.$ equiv.) and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.54$ $\mathrm{mg}, 3.3 \mu \mathrm{~mol}, 2$ equiv.) was added. The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ overnight. Afterwards, the solvent was removed under reduced pressure. The residue was dissolved in a minimal amount of DCM and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to provide product.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.77: ${ }^{1} \mathrm{H}$ NMR spectrum of Bowl-3 ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$).

Figure 5.78: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of Bowl-3 ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$).
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.79: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ NOESY spectrum of Bowl-3 ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$).

Figure 5.80: DOSY spectrum ($500 \mathrm{MHZ}, 289 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) of $\mathrm{Co}_{2} \mathbf{R}^{\mathbf{A C R}} \mathrm{L}^{\mathrm{NH} 2}$, diffusion coefficient $D=4.17 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, r_{H}=1.52 \AA$.

5.8.11 Crystal information

	$\mathbf{R}^{\text {ACR }}$	Bowl 1
Empirical formula	$\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{127} \mathrm{H}_{133} \mathrm{Co}_{2} \mathrm{~F}_{12} \mathrm{~N}_{9} \mathrm{O}_{16} \mathrm{P}_{2}$
Formula weight	688.66	2449.22
Temperature (K)	100(2)	100(2)
Crystal system	Triclinic	Triclinic
Space group	$P-1$	$P \overline{1}$ (2)
Unit cell dimensions, a (\AA)	10.2128(3)	17.319(3)
b (\AA)	10.3513(3)	18.156(3)
c (Å)	17.1384(5)	20.062(3)
$\alpha\left({ }^{\circ}\right)$	98.4660(10)	81.008(4)
$\beta\left({ }^{\circ}\right)$	100.1650(10)	74.778(7)
$\gamma\left({ }^{\circ}\right)$	103.2360(10)	70.752(3)
Volume (\AA^{3})	1702.37(9)	5729.9(16)
Z	2	2
Density (calculated) ($\mathrm{Mg} / \mathrm{m}^{3}$)	1.343	1.420
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	2.045	0.373
F(000)	724.0	2556
Crystal size (mm^{3})	$0.200 \times 0.150 \times 0.100$	$0.200 \times 0.080 \times 0.040$
Theta range for data collection (${ }^{\circ}$)	5.342 to 120.024	2.04 to 60.91 (0.68Å)
Radiation	$\operatorname{Mo} K_{\alpha}(\lambda=0.71073 \AA)$	Synchrotron ($\lambda=0.6888 \AA$)
Index ranges	$\begin{aligned} & -11<=\mathrm{h}<=11, \\ & -11<=\mathrm{k}<=11, \\ & -19<=\mathrm{l}<=19 \end{aligned}$	$\begin{aligned} & -25<=\mathrm{h}<=25, \\ & -25<=\mathrm{k}<=24, \\ & -29<=1<=29 \end{aligned}$
Reflections collected	26248	374828
Independent reflections	$\begin{gathered} 5054 \\ {[\mathrm{R}(\mathrm{int})=0.0213]} \end{gathered}$	$\begin{gathered} 34286 \\ {[\mathrm{R}(\text { int })=0.1110]} \\ {[\mathrm{R}(\text { sigma })=0.0337]} \end{gathered}$
Completeness to theta	97.80\%	99.6\%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5054/0/445	34286 / 3787 / 1732
Goodness-of-fit on F_{2}	1.033	1.510
Final R indices	$\mathrm{R} 1=0.0759$,	$\mathrm{R} 1=0.0875$
[I > 2sigma(I)]	$w \mathrm{R} 2=0.2259$	$w \mathrm{R} 2=0.2646$
R indices (all data)	$\begin{gathered} \mathrm{R} 1=0.0773, \\ w \mathrm{R} 2=0.2259 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0974 \\ w \mathrm{R} 2=0.2775 \end{gathered}$
Largest diff. peak and hole (e. \AA^{-3})	1.13 / -0.35	2.31/-1.22

5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

5.8.12 Synthesis of L^{P}

2,9-dibromo-1,10-phenanthroline ($400 \mathrm{mg}, 1.18 \mathrm{mmol}, 1$ equiv.) and 4ethynylpyridine ($269 \mathrm{mg}, 2.60 \mathrm{mmol}, 2.2$ equiv.) were combined in a 100 mL Schlenk flask and dissolved in a mixture of triethylamine and dioxane (1:3, 20 mL). The solution was degassed via freeze-thaw cycles, followed by addition of $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(30.7 \mathrm{mg}, 0.12 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathrm{Cul}(22.5 \mathrm{mg}, 0.12 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\left[{ }^{(}{ }^{2} \mathrm{Bu}\right) \mathrm{PH}^{2} \mathrm{BF}_{4}$. ($71 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.2$ equiv.). The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 16 h until the starting material had been fully consumed. After cooling to room temperature, the mixture was diluted with 20 mL chloroform, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (on Isolera, chloroform:methanol 9:1) and GPC (chloroform) ($183 \mathrm{mg}, 40.4 \%$ yield.)
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.78-8.67(\mathrm{~m}, 4 \mathrm{H}), 8.62(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.14$ - $8.07(\mathrm{~m}, 4 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 4 \mathrm{H})$.

HR ESI-MS: calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{~N}_{4}\right]^{+} \quad \mathrm{m} / \mathrm{z} 383.1291 \quad[\mathrm{M}+\mathrm{H}]^{+}$ found: $\quad 383.1286$
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.81: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L}^{\mathrm{P}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.

5.8.13 Synthesis of $\operatorname{Re}(I) L^{P}$

A

$\operatorname{Re}^{\prime} \mathrm{A}$
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.99$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.83-8.74(\mathrm{~m}, 4 \mathrm{H}), 8.47$ (d, J = 8.4 Hz, 2H), 8.33 (s, 2H), $7.76-7.70(\mathrm{~m}, 4 \mathrm{H})$.

HR ESI-MS: calculated for $\left[\mathrm{ReC}_{26} \mathrm{H}_{14} \mathrm{~N}_{4}(\mathrm{CO})_{3} \mathrm{Cl}\right]^{+} \quad m / z 689.0377 \quad[\mathrm{M}]^{+}$ found: 689.0322
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.82: ${ }^{1} \mathrm{H}$ NMR spectrum of $\operatorname{Re}^{\prime} \mathrm{L}^{\mathrm{P}}\left(500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.

5.8.14 Self-assembly of heteroleptic cages

$\mathbf{B}(2 \mathrm{mg}, 1.65 \mu \mathrm{~mol}), \mathrm{Co}(\mathrm{OAc})_{2}(0.58 \mathrm{mg}, 3.30 \mu \mathrm{~mol})$ were dissolved DMSO. $\mathrm{NH}_{4} \mathrm{PF}_{6}$ ($0.54 \mathrm{mg}, 3.30 \mu \mathrm{~mol}$) was added and stirred at room temperature for 15 min under air condition. $\mathbf{A}(0.63 \mathrm{mg}, 1.65 \mu \mathrm{~mol})$ and $\mathbf{B}(0.98 \mathrm{mg}, 1.65 \mu \mathrm{~mol})$ were added into the solution. The reaction mixture stirred at $90^{\circ} \mathrm{C}$ overnight to get the product.

HR ESI-MS: calculated for $\left[\mathrm{C}_{149} \mathrm{H}_{119} \mathrm{~N}_{13} \mathrm{O}_{5}\right]^{2+} \quad \mathrm{m} / \mathrm{z} 1144.4071 \quad[\mathrm{M}]^{2+}$ found: $\quad 1144.4027$
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

Figure 5.83: DOSY spectrum of $\mathbf{C o}(\mathrm{III})_{2} \mathbf{A B C}\left(500 \mathrm{MHz}, 353 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right) . \mathrm{r}_{\mathrm{H}}=1.86 \mathrm{~nm}$.

$\mathbf{B}(2 \mathrm{mg}, 1.65 \mu \mathrm{~mol}), \mathrm{Co}(\mathrm{OAc})_{2}(0.58 \mathrm{mg}, 3.30 \mu \mathrm{~mol})$ were dissolved DMSO. $\mathrm{NH}_{4} \mathrm{PF}_{6}$ ($0.54 \mathrm{mg}, 3.30 \mu \mathrm{~mol}$) was added and stirred at room temperature for 15 min under air condition. A ($0.63 \mathrm{mg}, 1.65 \mu \mathrm{~mol}$) and $\mathbf{B}(0.98 \mathrm{mg}, 1.65 \mu \mathrm{~mol})$ were added into the solution. The reaction mixture stirred at $90{ }^{\circ} \mathrm{C}$ overnight. $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}(0.60 \mathrm{mg}$, $1.65 \mu \mathrm{~mol}$) was added and stirred for 3 h to afford the product.

5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly

B (2 mg, $1.65 \mu \mathrm{~mol}), \mathrm{Co}(\mathrm{OAc})_{2}(0.58 \mathrm{mg}, 3.30 \mu \mathrm{~mol})$ were dissolved DMSO. $\mathrm{NH}_{4} \mathrm{PF}_{6}$ ($0.54 \mathrm{mg}, 3.30 \mu \mathrm{~mol}$) was added and stirred at room temperature for 15 min under air condition. $\operatorname{Re}(\mathbf{I}) \mathbf{A}(1.14 \mathrm{mg}, 1.65 \mu \mathrm{~mol})$ and $\mathbf{B}(0.98 \mathrm{mg}, 1.65 \mu \mathrm{~mol})$ were added into the solution. The reaction mixture stirred at $90^{\circ} \mathrm{C}$ overnight to get the product.

HR ESI-MS: calculated for $\left[\mathrm{ReCo}_{2} \mathrm{C}_{152} \mathrm{H}_{119} \mathrm{~N}_{13} \mathrm{O}_{8} \mathrm{Cl}\right]^{+} \quad \mathrm{m} / \mathrm{z} 1297.3618 \quad[\mathrm{M}]^{+}$ found: 1297.3509

Figure 5.84: DOSY spectrum of $\operatorname{Re}(\mathrm{I}) \mathbf{C o}(\mathrm{III})_{2} \mathbf{A B C}\left(500 \mathrm{MHz}, 353 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}\right) . \mathrm{r}_{\mathrm{H}}=1.80 \mathrm{~nm}$.

5.9 References

[1] S. Mena-Hernando, E. M. Pérez, Chem. Soc. Rev. 2019, 48, 5016-5032.
[2] J. D. Crowley, S. M. Goldup, A.-L. Lee, D. A. Leigh, R. T. McBurney, Chem. Soc. Rev. 2009, 38, 1530-1541.
[3] S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081-10206.
[4] J. F. Stoddart, Angew. Chem. Int. Ed. 2018, 56, 11094-11125.
[5] H.-Y. Zhou, Q.-S. Zong, Y. Han, C.-F. Chen, Chem. Commun. 2020, 56, 9916-9936.
[6] T. A. Barendt, A. Docker, I. Marques, V. Félix, P. D. Beer, Angew. Chem. Int. Ed. 2016, 55, 11069-11076.
[7] J. Berná, J. D. Crowley, S. M. Goldup, K. D. Hänni, A. Lee, D. A. Leigh, Angew. Chem. Int. Ed. 2007, 46, 5709-5713.
5. Coordination-driven construction of [3]rotaxane based on hierarchical assembly
[8] S. Kassem, T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa, D. A. Leigh, Chem. Soc. Rev. 2017, 46, 2592-2621.
[9] E. A. Neal, S. M. Goldup, Angew. Chem. Int. Ed. 2016, 55, 12488-12493.
[10] J. E. M. Lewis, R. J. Bordoli, M. Denis, C. J. Fletcher, M. Galli, E. A. Neal, E. M. Rochette, S. M. Goldup,. Chem. Sci. 2016, 7, 3154-3161.
[11] E. A. Neal, S. M. Goldup, Chem. Sci. 2015, 6, 2398-2404.
[12] G. H. Clever, P. Punt, Acc. Chem. Res. 2017, 50, 2233-2243.
[13] B. Zhang, Design and Synthesis of Novel Self Assembled Supramolecular Coordination Cages. Doctoral dissertation, TU Dortmund, 2020.
[14] J. Tessarolo, H. Lee, E. Sakuda, K. Umakoshi, G. H. Clever, J. Am. Chem. Soc. 2021, 143, 6339-6344.
[15] M. D. Ward, P. R. Raithby, Chem. Soc. Rev. 2012, 42, 1619-1636.
[16] J. L. Bolliger, T. K. Ronson, M. Ogawa, J. R. Nitschke, J. Am. Chem. Soc. 2014, 136, 1454514553.
[17] C. García-Simón, M. Garcia-Borràs, L. Gómez, T. Parella, S. Osuna, J. Juanhuix, I. Imaz, D. Maspoch, M. Costas, X. Ribas, Nat. Commun. 2014, 5, 5557.
[18] L.-X. Cai, S.-C. Li, D.-N. Yan, L.-P. Zhou, F. Guo, Q.-F. Sun, J. Am. Chem. Soc. 2018, 140, 4869-4876.
[19] G. H. Clever, S. Tashiro, M. Shionoya, J. Am. Chem. Soc. 2010, 132, 9973-9975.
[20] W. M. Bloch, Y. Abe, J. J. Holstein, C. M. Wandtke, B. Dittrich, G. H. Clever, J. Am. Chem. Soc. 2016, 138, 13750-13755.
[21] N. P. Liyanage, W. Yang, S. Guertin, S. S. Roy, C. A. Carpenter, R. E. Adams, R. H. Schmehl, J. H. Delcamp, J. W. Jurss, Chem. Commun. 2018, 55, 993-996.
[22] S. Pullen, S. Löffler, A. Platzek, J. J. Holstein, G. H. Clever, Dalton. Trans. 2020, 49, 94049410.
[23] X. Qi, R. Zhong, M. Chen, C. Sun, S. You, J. Gu, G. Shan, D. Cui, X. Wang, Z. Su, Acs. Catal. 2021, 11, 7241-7248.
[24] G. H. Clever, M. Shionoya, Chem. Eur. J. 2010, 16, 11792-11796.
[25] H. Jian, J. M. Tour, J. Org. Chem. 2003, 68, 5091-5103.

6 Conclusion and perspectives

A series of salicylaldehyde ligands possessing functions owing to the introduced AIE-active TPE and photosensitizer phenoxazine units were successfully synthesized. The construction of the bis-salen or salphen macrocycles in a quantitative yield was achieved via a facile condensation reaction of the corresponding salicylaldehyde ligands and diamine derivatives. $\mathrm{N}_{2} \mathrm{O}_{2}$ coordinationsites of the obtained salen/salphen complexes allowed the introduction of metals. Structure and photophysical properties of the synthesized (metal-organic) macrocycles were fully characterized by NMR spectroscopy, ESI-MS, X-ray diffraction, UV-Vis absorption, and other variety of spectroscopic techniques.

Emissive binuclear metallamacrocycle $\mathbf{Z n}_{2} \mathbf{R}$ with AIE property was obtained by the self-assembly of TPE based salen-macrocycle with Zn (II) ions. Successful introduction of chirality was shown by changing ethylene diamine to enantiomerically pure 1,2-diphenylethane-1,2-diamine for the condensation reaction. Over increasing the portion of water in a THF solution of $\mathbf{Z} \mathbf{n}_{2} \mathbf{R}$, emission properties were enhanced, probably owing to the AIE active TPE unit. Compared with $\mathbf{Z n}_{2} \mathbf{R}, \mathbf{R}$ shows weaker emission, which proves the molecular design of macrocycles having salen/salphen coordination-sites to manipulate optical properties by introduction of a metal center. In addition, specifically for $\mathbf{Z n}_{\mathbf{2}} \mathbf{R}$, the chiral input from the salphen-moiety was translated into helical chirality in the aggregated state induced by addition of water. The aggregated metal-containing macrocycle showed a reversion of the CPL properties with a high Iglum value of 1×10^{-2}. On the other hand, \mathbf{R} did not show such aggregation-induced CPL properties.

A new kind of salen macrocycle (metal free macrocycle $\mathbf{R}^{\mathbf{P Z}}$, metal-containing macrocycle $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$), comprised of phenoxazine cores and salen-moieties was designed and synthesized aiming for a use in photoredox catalysis. Comprehensive characterization and investigations of photophysical properties of the ligand, $\mathbf{R}^{\mathbf{P Z}}$, and $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ were performed. Pinacol coupling reaction of several aldehydes using the synthesized photoredox catalysts were performed. All of the newly obtained photoredox catalysts showed a good catalytic ability in the homo-coupling reaction even with low catalyst loading. Investigation of electronic properties of the
photoredox catalysts implied that the catalytic activity can be tuned through macrocyclization and coordination of the metal. Considering that a wide range of catalytic applications of metal salen complexes mostly originate from the metal center, $\mathbf{Z n}_{2} \mathbf{R}^{\mathbf{P Z}}$ should have a potential as a catalyst promotes tandem catalytic reactions.

Self-assembly of a salphen macrocycle possessing Co(III) having an octahedral coordination geometry provides an opportunity to introduce one or two extra bis monodentate ligands to the metal-organic macrocycle to yield a bowl or cage topology. By taking an advantage of such a coordination geometry, the synthesis of rotaxanes has been investigated. A carbazole-based ligand with an introduced chain for a further click/condensation reaction was prepared. Consequently, the synthesis of a bowl-shaped coordination cage by combining the synthesized carbazole-based ligand and binuclear Co (III)-macrocycle has been demonstrated. The solid-state structure of the synthesized bowls was revealed by single crystal X-ray diffraction. In the X-ray structures, the chemical pendant on the carbazole-based ligands were found to be penetrating through the macrocycle. The following condensation reaction of two such coordination bowls seemed to work to facilitate a [3]rotaxane consisting of the two Co (III)-macrocycles and the axle supposedly threading the macrocycles. Further structural characterization shall be performed in due course to valid such a [3]rotaxane structure. Furthermore, based on the shape complementary approach, a heteroleptic cage designed for applications in catalysis was obtained by self-assembly of Co (III)-macrocycle and two bis-monodentate ligands having catalytically active sites. The purification of products needs to be improved and catalytic activity should be further investigated.

To conclude, in this thesis, several new salen-/salphen macrocycles have been synthesized and investigated for their ability as a versatile platform for the development of CPL-active materials, photoredox catalysis, establishment of coordination-assisted rotaxane synthesis, and heteroleptic cage synthesis. The efficient and facile synthetic method of such salen/salphen macrocycles is of great advantage for diversification.

Abbreviations

Å	Ångström
${ }^{\circ} \mathrm{C}$	Celcius
BODIPY	Boron-dipyrromethene
$\mathrm{CH}_{3} \mathrm{CN}$	Acetonitrile
CHCl_{3}	Chloroform
COSY	Correlated spectroscopy
Cp	Cyclopentadienyl
DFT	Density Functional theory
DIPEA	N,N-Diisopropylethylamine
DMSO	Dimethylsulfoxide
DOSY	Diffusion ordered spectroscopy
dppf	1,1'-Bis(diphenylphosphino)ferrocene
equiv.	equivalent
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
GPC	Gel permeation chromatography
h	Hour
HR ESI-MS	High resolution electrospray ionization mass spectroscopy
LED	Light-emitting diode
MeOH	Methanol
MHz	Megahertz
m / z	Mass-to-charge ratio
mM	$\mathrm{mmol} \cdot \mathrm{L}^{-1}$
nm	nanometer
NMR	Nuclear magnetic resonance
NOESY	Nuclear overhauser effect spectroscopy
Oac ${ }^{-}$	Acetate anion
PC	Photoredox catalyst
$\mathrm{Pin}_{2} \mathrm{~B}_{2}$	Bis(pinacolato)diboron
PPh	tripheylphosphine
ppm	Parts per million
r.t.	Room temperature

SET	Single electron transfer
SOCl_{2}	Thionyl chloride
THF	Tetrahydrofuran
TLC	Thin layer chromatography

Acknowledgements

First of all, biggest thanks go to my supervisor Prof. Dr. Guido H. Clever for giving me the opportunity to pursue my PhD in his group. I am grateful to him for supervising this Ph.D. work, especially for the valuable suggestions, the continuous encouragement, and his strong support for many things. His enthusiasm and passion towards research largely motivated me. I was often helped by this personality with full of kindness and humor. Thank you very much for these fruitful four years

Second of all, I would like to thank Prof. Dr. Sebastian Henke for being part of the examination committee. Thanks for his warm encouragement and supports for my thesis.

I am also thankful to my country and China Scholarship Council, which have provided me with this precious opportunity to study abroad and experience different cultures. All the experience in Germany, especially in the Clever Lab, where the people from many different countries are working, have greatly broadened my horizon, deepened understandings into other cultures and enriched my knowledge.

I would like to thank Dr. Jacopo Tessarolo for CPL measurement. I would like to thank Dr. Julian J. Holstein for single crystal X-ray structure analysis. I would like to thank Shota Hasegawa for the helps with DFT calculation, X-ray structure refinement and the CV measurements. I would like to thank Laura Schneider and Dr. Anaya Baksi for ESI-MS measurements. I would like to thank Dr. Sudhakar Ganta for DLS measurements. I would like to thank Dr. Yen-Ting Chen for SEM measurements. I appreciate André Platzek and Kristina Ebbert for teaching me how to use Topspin and Adobe Illustrator softwares. I would like to thanks Dr. Jacopo Tessarolo, Shota Hasegawa, Elie Benchimol and Laura Neukirch for proofreading this thesis. I thanks to my student Ziyi for her works done under my supervision. Special hanks to Birgit Thormann and Dr. Gabriele Trötscher-Kaus for their helps and supports.

Many thanks to the whole Clever Lab for group trips (Juist, hiking, boat trip), international movie nights, girls' night, Chrismas party, BBQ in Guido's place every year, and the spontaneous trips in Göttingen, Granada, Münster, Düsseldorf, Leiden,
and many other places. I would like to thank Bin, Jacopo, Haeri for helping me adapt to a new environment as soon as possible when I first joined the Clever Lab. I would like to thank Sonja, Jacopo, Shota, Bo, Kai, Elie for scientific discussion. I would like to thank our G-force lab members (Sonja, Bo, Rujin, Pedro, Elie, Alexandre) for a relaxed working environment. I would like to thank André and Kristina for their sincere concern and help. I would like to thank Irene and Lukas for inviting me to their Schützenfest and wedding in Illingen. I would like to thank Ana for inviting me to her defense in Spain. I would like to thanks to Kristian, Maike, Laura for their efforts on organizing the lab. I would also like to thank Eri, Thorben, Philip, Robin, Christoph, Armin, Simon, Hannah, Shing, Ertugrul, David Ocklenburg, Malavika, Björn and Lars for their friendships. Thanks to all the members. I'm really thankful to the members for their help and supports. I'm really enjoyed the time with them in the Clever Lab. I would like to thank my lifetime friends Tingting Ruan and Jing Zhang who also studied in Germany. Thanks for their accompany and help in the last years.

Last but not least, I am really grateful for my family, especially my parents, for their unconditional support.

