
Behavior Planning for Automated

Highway Driving

From Situation Analysis and Prediction Towards

Resource-Constrained Interaction-Aware Lane Change Planning

DISSERTATION

submitted in partial fulĄllment
of the requirements for the degree

Doktor-Ingenieur
(Doctor of Engineering)

in the

Faculty of Electrical Engineering and Information Technology
at Technische Universität Dortmund

by

Manuel Schmidt, M.Sc.

Heilbronn, Germany

Date of submission: March 15, 2022

First examiner: Univ.-Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram
Second examiner: Univ.-Prof. Dr.-Ing. Ferdinand Svaricek

Date of approval: November 9, 2022





Preface

This thesis was written during my work as a research assistant at the Institute of Control
Theory and Systems Engineering of the Faculty of Electrical Engineering and Information
Technology at the TU Dortmund University. It is a result of a research project with ZF
Automotive GmbH.
I want to thank Univ.-Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram provided me
guidance along my journey. He took his time to advise me and encouraged me to use my
potential and pursue scientiĄc research in an application-oriented project. He provided
me with opportunities to present my work at national and international conferences. His
feedback was very valuable and crucial for the success of my work. The freedom he gave
me allowed me to develop my own ideas and concepts.
Furthermore, I would like to thank Univ.-Prof. Dr.-Ing. Ferdinand Svaricek for agreeing
to review my thesis as a second examiner, and I appreciate his valuable feedback and
time.
I consider myself very fortunate to work with such a great team at the Institute of Control
Theory and Systems Engineering. There is a unique feedback culture at the chair that
I beneĄted enormously from. Especially apl. Prof. Dr. rer. nat. Frank Hoffmann
helped me to shape my work and prevented me from running in the wrong direction. I
thank Christian Wissing, Niklas Stannartz, Christian Lienke and Andreas Homann for
the great teamwork during our work with ZF Automotive GmbH. Many great discussions
left their mark on this thesis. Special thanks go to Martin Krüger and Christopher
Diehl for the numerous lengthy discussions that greatly impacted my scientiĄc work and
understanding of automated driving software systems as a whole. Jan Braun provided
invaluable feedback that increased the quality of my work, and I am more than grateful
for that. Artemi Makarow always provided me a helping hand, and I am very grateful for
that.
This work wouldnŠt be possible without the support of ZF Automotive GmbH. I thank
Carlo Manna and Christian Wissing, who served as my supervisors, and Dr. rer. nat.
Till Nattermann for providing me this great opportunity.
Finally, I want to thank my family for their unconditional support during all of the past
years. Their encouragement motivated me every single day.

Heilbronn, March 2022 Manuel Schmidt





Abstract

Automated driving becomes reality and promises enhanced comfort and safety for pas-
sengers. One of the Ąrst commercial uses will be highway situations since it is a more
structured environment with reduced complexity. However, due to the high velocities,
safety plays a crucial role.
This work covers certain components of an automated highway driving system with a
strong focus on lane change behavior planning.
It starts with a description of a developed module for the generation of discretionary
lane change proposals. This algorithm aims at increasing comfort for the passengers by
proposing lane changes to the driver when, for example, a slower vehicle is spotted in the
front to reduce breaking and travel time. The moduleŠs parameters are optimized using a
driving simulator study. Finally, the results are evaluated on real data from a ZF Group
test vehicle.
Trajectory predictions are necessary for effective lane change behavior planning. An ap-
proach from literature is adapted to allow the prediction of complete traffic situations. It
is scalable and provides uncertainties that can be used in the subsequent lane change be-
havior planning step. The evaluation is done in simulation and on the publically available
highD dataset.
One major contribution of this thesis is a method for analyzing traffic scenes in a spa-
tiotemporal curvilinear coordinate frame. Polygon Clipping reduces the analysis to a
set of geometric operations. The resulting polygons and their adjacency relations are
represented using a graph.
Finally, three concepts are developed for lane change planning with increasing complexity
and capability. The Ąrst one uses spatiotemporal geometry-informed sampling of cost-op-
timized splines. A second concept uses convex optimization in the form of quadratic
programming. This approach results in very low runtimes and can be easily deployed on
embedded platforms. It incorporates a novel formulation of hard safety constraints on
Time-to-Collisions (TTC) and Time Headways (THW ).
Both former approaches do not consider the multi-modal and uncertain nature of the
predicted traffic situations and trajectories. Finally, the last approach is developed that
uses a cooperative linear-quadratic game formulation. It accounts for those factors and
provides a fallback strategy to ensure safe operation in critical traffic situations.
All behavior planning approaches are evaluated in simulation. Both optimization-based
variants are furthermore evaluated on the highD dataset. A runtime estimation is based
on real data from a ZF Group test vehicle and done within their software framework.
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Nomenclature

General Notation

(·)(k) Value of (·) at discrete time step k

(·)(t) Value of (·) at continous time t

(·)lb Lower boundary of quantity (·)
(·)ub Upper boundary of quantity (·)
Ẍ Second derivative of X(t)

Ẋ First derivative of X(t)

(̂·) Estimate/Prediction of true value of (·)
⌈(·)⌉ Upper Gaussian brackets realizing a ceiling operation

A Matrix

a Vector

A⊺ Transpose of matrix A

A−1 Inverse of matrix A

A Set, polygonal chain, polygon, trigger, utility function or probabil-
ity distribution

A ∩ B Set intersection or polygon intersection of A and B
A ∪ B Set union or polygon union of A and B
A \ B Set difference or polygon difference of A and B
N (µ, σ2) Gaussian probability distribution with mean µ and variance σ2

U(a, b) Uniform probability distribution on the interval [a, b]

1(·) Indicator function

erfc(a) Complementary error function at point a

erf(a) Error function at point a

median((·)) Median of quantity (·)
trunc(p(A), b, c) Truncation of the continous probability density function p(A) onto

the interval [b, c]

Var((·)) Variance of quantity (·)
(·) Mean of quantity (·)
Φµ,σ(a) Cumulative distribution function at point a

(̃·) Intermediate result or helper variable of (·)
¶(·)♢b

a Set of quantity (·) from a up to b

a Scalar

P (a) Probability of event a

p(A) Continuous probability density function of the random variable A

P (A > a) Probability of random variable A being greater than a

X(n) nŠth derivative of X(t)

i⃝ Polygon or node i
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Nomenclature

Latin Letters

(L, N) Curvilinear coordinate frame

(L, N, t) Spatiotemporal curvilinear coordinate frame

(X, Y ) Ego-vehicle coordinate frame

(X, Y, t) Spatiotemporal ego-vehicle coordinate frame

(x, y, z) Global coordinate frame

(x, y, z, t) Spatiotemporal global coordinate frame

f Feature vector

g Gradient vector

H Hessian matrix

M Random vector representing the multinoulli distributions used in
the lane change prediction

nϱ Normal vector used in pseudo distance calculation

p Point or vector

ti Tangent vector i used in pseudo distance calculation

Z Random vector representing a latent variable

P Polygon or polygonal chain

T Trigger used in the discretionary lane change proposal module

U Utility function used in the discretionary lane change proposal
module

O(·) Obstacle vehicle, further speciĄed by the subscript (·)
SA,R Left lane change scenario for the optimization of the accumulator

trigger mechanism

Si,L Left lane change scenario i

Si,R Right lane change scenario i

A Spatiotemporal area

CL L coordinate of centroid of a spatiotemporal area

Ct t coordinate of centroid of a spatiotemporal area

d Euclidean distance

E Kinetic energy

fγ Function parametrized by the parameter vector γ

h Step size for discretizations

I Interval

J Cost function used in optimizations

n Upper boundary of a counting variable

T(·) Lane change intention and proposal times, further speciĄed by the
subscript (·)

t(·) Time, further speciĄed by the subscript (·)
THW (Tq) Time Headway at query time Tq

TTC(Tq) Time-to-Collision at query time Tq

wi Weighting factor i of utility Ui
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Nomenclature

Greek Letters

αi Longitudinal cost function parameter i of the optimization-based
lane change planning approach

βi Lateral cost function parameter i of the optimization-based lane
change planning approach

χ Feature vector used in the discretionary lane change proposal mod-
ule

γ Parameter vector of a regression function

θ Parameter vector used in the Monte Carlo situation prediction

ξ Parameter vector of the discretionary lane change proposal module

ϵ Error of a regression

η Probability that a chance constraint should fulĄl

γi Right lane change utility function parameter i

κ Curvature of the road

λ Politeness or cooperation factor

µA Mean of random variable A

Ψ Heading or orientation angle

σ2
A Variance of random variable A

τ Trajectory

θi Longitudinal cost function parameter i of the game theoretic lane
change planning approach

ϱ Interpolation factor in the pseudo distance calculation and rational
approximation of the error function

ζ Accumulator leakage factor

ClassiĄcation and Regression Metrics

AC(cl, ĉl) Accuracy of class cl given its prediction ĉl over a dataset

BAC Balanced Accuracy

Exp. Var(a, â) Explained Variance of quantity a given its prediction â over a
datasets

MAE(a, â) Mean Absolute Error of quantity a given its prediction â over a
dataset

MedAE(a, â) Median Absolute Error of quantity a given its prediction â over a
dataset

Prec. Precision

Rec. Recall

RMSE(a, â) Root Mean Squared Error of quantity a given its prediction â over
a dataset

R2(a, â) Coefficient of determination of quantity a given its prediction â

over a dataset

Abbreviations and acronyms

ABS Anti-lock Braking System

ACC Adaptive Cruise Control
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IDM Intelligent Driver Model
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IRL Inverse Reinforcement Learning
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LCP Lane Change Prediction
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MIQP Mixed-Integer Quadratic Programming

MITSIM MIcroscopic Traffic SIMulator
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POMDP Partially Observable Markov Decision Process
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1
Introduction

This Chapter starts with a motivation and an outline of the thesis at hand. Afterward, the
related work is discussed. Finally, the last Section gives an overview of the contributions.

1.1. Motivation

Safety is of utmost importance and a key driver of the recent developments in automated
driving. Figure 1.1 shows the normalized value of road traffic fatalities over registered
vehicles in Germany for the years 1960 to 2019. The year 1960 is chosen as the reference.
Several important regulatory events are also included in the Ągure. There is a clear trend
towards fewer road traffic fatalities per registered vehicle. The initial strong downward
trend is potentially due to imposing a 50 km/h speed limit when driving within towns and
cities in Germany. Those imposed rules and laws made driving safer. The mandatory in-
troduction of driver assistance systems such as ABS (Anti-lock Braking System) in 2004
and ESP (Electronic Stability Program) in 2014 aim to reduce the remaining fatalities
further. Similarly, the next evolution of those systems are advanced driver assistance sys-
tems such as lane-keeping and ACC (Adaptive Cruise Control) and even more advanced
automated driving systems. The SAE (Society of Automotive Engineers) classiĄes driver
assistance and automated driving systems in a total of six levels, refer to Figure A.1 in the
appendix A.1. Recently, the term SAE Level 2+ gained some usage, in addition to the
six official SAE levels. The plus usually reĆects the addition of automated lane changes
compared to Level 2 systems that generally provide in-lane driving functionality, refer to
[ZF20].
The thesis at hand provides modules concerning situation analysis and automated lane
change functionality for such Level 2+ systems. For commercial useability, a set of con-
straints are imposed. The following gives an overview of the requirements that should be
met.

Functional and Safety Relevant Requirements:

• Situation- and Interaction-awareness for enhanced comfort and safety

• High interpretability of the algorithms

Industrialization Requirements:

• Low runtime (typically below 40 ms per algorithm cycle)

1
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Figure 1.1.: Road traffic fatalities in Germany normalized by the number of registered vehicles

for the time between 1960 and 2019. Important regulatory events are highlighted. Data taken

from [Fed20a] and [Fed20b].

• Low memory consumption, suitable for operation on current generation embedded
automotive hardware platforms

These requirements motivate the design choices and simpliĄcations employed and dis-
cussed in the remainder of the thesis.

1.2. Outline

The thesis at hand deals with automated lane changes on highways. An overview of the
content is shown in Figure 1.2. An environment model and the ego-vehicle state are the
inputs. The thesis Ąrst provides a situation analysis module that decides if a lane change
is beneĄcial in increasing comfort and decreasing travel time. The developed module
takes uncertainties into account and is a fully interpretable model. Such lane changes are
called discretionary lane changes in contrast to mandatory ones used for route-following
purposes. Trajectory predictions are of high importance to further increase the passen-
gerŠs comfort. Having a good knowledge of the future development of the traffic scene is
especially crucial for comfortable lane change planning of the ego-vehicle. To this end, the
thesis at hand describes adaptions of an interpretable and scalable trajectory prediction
module from literature. It allows to predict traffic situations and a planned ego-vehicle
trajectory can be incorporated into it to allow for counterfactual reasoning. Such func-
tionality is crucial, as is explained in subsequent Chapters of the thesis at hand. After
obtaining situation predictions, the traffic situation can be analyzed, and possible lane
change maneuvers of the ego-vehicle can be identiĄed. A novel approach for maneuver
identiĄcation using Computational Geometry in the form of Polygon Clipping is proposed.
It is shown that using a curvilinear coordinate frame enables such analysis resulting Ą-
nally in a graph structure that encodes all relevant information for the actual lane change
trajectory planning. Finally, a total of three approaches are described for the synthesis of
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Lane Change
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Game Theoretic

(Chap. 8)
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Ego-Vehicle State

Lane Change
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Predictions

Maneuver
Variants

Lane Change
Trajectory

Figure 1.2.: Overview of the modules developed or adapted within the thesis at hand and the

respective Chapters.

optimized lane change trajectories. The Ąrst is based on the geometry-informed sampling
of spline knots. The second approach frames the problem as a Quadratic Program that
is solved efficiently, allowing for easy deployment onto embedded platforms and current
generation vehicle ECUs (Electronic Control Unit). One signiĄcant contribution is the
integration of affine Time-to-Collison and Time Headway safety constraints into the op-
timization. Former approaches are to a certain degree interaction-aware but use a prior
situation prediction to plan the ego-vehicle lane change trajectory. Thus, situation predic-
tion and lane change planning are intertwined. Therefore, the last approach presented in
the thesis at hand frames the problem as a cooperative differential linear-quadratic game.
This formulation again results in a Quadratic Program that can be solved efficiently. In
addition, integration of chance constraints allows handling uncertainties in the situation
predictions and multimodality. Finally, a fallback strategy is integrated to ensure that a
feasible trajectory always exists. The following list provides an overview of all subsequent
Chapters of the thesis at hand and their respective contents.

Chapter 2: The functional architecture of automated vehicles is Ąrst introduced. After
that, the problem of lane change behavior planning is described, and the taxonomy is
introduced as used throughout the thesis at hand. The curvilinear coordinate system
and Polygon Clipping are introduced due to their importance for the remainder of
the thesis. Finally, the development tools and simulation environment are described.

Chapter 3: A novel approach for the generation of discretionary lane change proposals
is described. Its architecture is discussed. The module includes certain parameters
that are optimized using a driving simulator study. The experimental evaluation is
conducted using real data from a test vehicle.

Chapter 4: This Chapter introduces the situation prediction that serves as a basis for the
subsequent lane change planning. Instead of predicting trajectories on an individual
traffic participant basis, the whole situation is predicted. The incorporation of a

3



Chapter 1. Introduction

desired velocity regression is discussed. Finally, the approach is evaluated using
simulation data and the publically available highD (highway Drone) dataset, refer
to [Kra+18].

Chapter 5: After transforming the traffic situation into a curvilinear coordinate frame, it
is possible to analyze it spatiotemporally. This Chapter shows how the ego-vehicleŠs
potential lane change maneuver options can be identiĄed in a principled way.

Chapter 6: The Ąrst of a total of three lane change planning approaches are introduced in
this Chapter. It is shown how the maneuver identiĄcation results of Chapter 5 can be
used for informed sampling of cost-optimized spline knots. The approach is made
interaction-aware by incorporating optimized ego-vehicle lane change trajectories
into the situation prediction. The inĆuence of the lane change on the surrounding
traffic participants can therefore be analyzed.

Chapter 7: While sampling-based approaches have several beneĄts, the major drawbacks
are their suboptimality, runtime, and memory consumption when using current
generation vehicle ECUs. For the application of behavior planning on embedded
hardware, a Quadratic Programming baseline approach is presented. It is also shown
how Time-to-Collison and Time Headway safety constraints can be incorporated into
the optimization problem.

Chapter 8: The subdivision of situation prediction and lane change planning is disad-
vantageous. Traffic participants might show courtesy in various traffic situations.
Therefore, this Chapter proposes formulating the lane change planning problem in
terms of a cooperative linear-quadratic game. The uncertainty of situation pre-
dictions is considered using chance constraints. A simple fallback mechanism is
furthermore integrated. The quantitative evaluation is done in simulation and on
the highD dataset. A runtime estimation is provided based on real data from a ZF
Group test vehicle.

Chapter 9: This Chapter concludes the thesis. The developments are reĆected and an
outlook towards promising future research directions is given.

1.3. Related Work

The following discussion of the related work is divided into the areas of discretionary lane
change proposals, trajectory, situation prediction, and lane change behavior planning.

Discretionary Lane Change Proposal Generation

Chapter 3 aims at discretionary lane changes. Discretionary lane changes are mainly done
to increase passengersŠ comfort or gain speed to travel with a speciĄed desired velocity.
In contrast, mandatory lane changes are done for following a predeĄned route. Much
research in this area is conducted in the context of microscopic traffic simulations.
[Gip86] is the extension of the car-following model presented in [Gip81]. It models the
lane change decision using certain rules and also considers, for example, safety aspects

4
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and the urgency of a lane change. [YK96] presents the lane change model that is used
in MITSIM (MIcroscopic Traffic SIMulator) and extends [Gip86]. [McD+97] models
the lane change decision process using fuzzy logic. [Bra+98] presents a calibration of
the model described in [McD+97] and shows a strong correlation between a collected
dataset and their proposed lane change model. Furthermore, the work [Wu+03] validates
the model in greater detail. [El +01] focuses on conĆict resolution and describes a lane
change model based on deĄned ROIs (Regions Of Interests) around the ego-vehicle.
[Hid02] uses a rule-based lane change model and distinguishes forced and cooperative lane
changes. [Tol+03] aims at integrating mandatory and discretionary lane change decisions
and introduces lane-speciĄc utility functions that are based on the traffic situation around
the ego-vehicle. The extension and calibration of the model are presented in [Tol+09].

[Kes+07] presents the lane change model MOBIL (Minimizing Overall Braking deceler-
ation Induced by Lane Changes) which aims at minimizing the overall braking of traffic
participants induced by the ego-vehicle lane change. The model also accounts for cour-
tesy by introducing a politeness factor to weigh the ego-vehicle utility of a lane change
compared to the utility of all remaining surrounding vehicles in the traffic situation. It
extends the Intelligent Driver Model (IDM) [Tre+00]. [Sch+12] proposes a model that
includes the relaxation and synchronization phenomena during lane changes. Relaxation
refers to a phase after a lane change where the traffic participants accept temporarily
lower safety margins. In contrast, synchronization refers to the longitudinal adaption of
a vehicle towards a target gap. A comprehensive survey of lane change models used in
microscopic traffic simulations is presented in [Mor+10]. The authors also introduce a
taxonomy for an easier distinction of the various models. Another more recent survey
is [Zhe14]. The authors of [Ard+12] present a probabilistic approach for highly auto-
mated driving on highways with a special focus on lane change functionality. Their work
explicitly considers sensor noise and derives a lane change decision using a utility function.

Trajectory and Situation Prediction

[Sch+14] proposes a probabilistic method for vehicle-individual trajectory predictions
based on Gaussian Mixtures. In [KA17], an interactive prediction of road user free space
occupancy is presented. The approach is based on reachability analysis. [Rös+17] de-
scribes an approach for integrated trajectory planning and prediction in the context of
proxemics. The approach uses Learning from Demonstrations to determine weighting
factors of the global cost function and explicitly considers topological information. The
work [Wis+18] takes a step towards interactive trajectory prediction and proposes the use
of Monte Carlo simulations based on driver models from microscopic traffic simulations.
However, the trajectory prediction is made on a vehicle-individual basis.

Using a grid-based discretization and an LSTM (Long Short-Term Memory) encoder-de-
coder Neural Network, a multimodal trajectory prediction approach is proposed in [DT18].
The multimodality is realized by maneuver classiĄcation within the network. For situa-
tion prediction, a grid-based discretization is applied in [Sch+19h]. This allows the use of
semantic information. Finally, a Fully Convolutional Network (FCN) is used to predict
the overall situation.

[Hu+19b] presents a combined learning- and planning-based approach for trajectory pre-

5



Chapter 1. Introduction

diction. The approach can account for irrational human behavior. [Lee+19] models
pairwise interactions between road users to Ąnally execute trajectory predictions with a
horizon of 5 s using a Graph Convolutional Neural Network. [TS19] uses ideas from Prob-
abilistic Graphical Models in Deep Learning for interactive situation prediction. Here, a
latent variable is introduced to account for different driving styles.

In [Sch+19i], a Neural Network is used to predict Dynamic Occupancy Grids. The work
[Sri+19] proposes a Deep Learning based approach for trajectory prediction. By explicitly
using semantic information, the approach shows good generalization ability. Trajectory
predictions are conditioned on high-level goals in [Rhi+19]. [Gao+20] proposes the Vector-
Net architecture. It is a hierarchical graph-based Neural Network for interactive situation
prediction. The network uses a vectorized high-accuracy map and the trajectory history of
road users as input data. [Zha+20] builds upon VectorNet and proposes a neural network
for destination-based trajectory prediction.

[Zen+20] is a continuation of [Zen+19] and describes an approach for multimodal trajec-
tory prediction as well as trajectory planning for the ego-vehicle towards risk minimization.
However, in the context of trajectory prediction, the ego-vehicle is not treated equally here,
and the interaction of ego-planning and situation prediction is thus neglected. The con-
tribution [Krü+19a] deals with probabilistic trajectory prediction and uses a combination
of neural network and a Gaussian Process Regression. Through this combination, it is
possible to predict the uncertainty of the prediction and the driving maneuver.

A concept based on 3D Convolutional Neural Networks is proposed in [Krü+20]. Here,
the environment of the ego-vehicle is represented by a sequence of potential Ąelds in the
form of grayscale images. The resulting three-dimensional tensor represents the input
of a Convolutional Neural Network for vehicle-individual trajectory prediction. There is
currently a rise in the use of Graph Neural Networks for forecasting applications since
this model type represents a way to include inductive bias into predictions. To this end,
[Sal+20] proposes an architecture that uses a graph-structured recurrent model.

Lane Change Planning

In [Ben+14], the Lanelet format for high-accuracy maps and an associated distance trans-
formation is introduced. This allows intuitive and easy generation of maps using publi-
cally available software. The Lanelet distance transformation has been widely adopted
in the areas of trajectory planning and prediction. The trajectory planner used for the
Bertha-Benz drive is described in [Zie+14]. It is a local trajectory planner based on nonŰ-
linear optimization. Particular emphasis is placed on avoiding collisions. In [SP14], a
sampling-based concept for cooperative ego-vehicle planning is proposed. This includes a
mechanism to resolve conĆicts recursively. The paper [Wei+14] proposes a sampling-based
lane change planner. It also incorporates interactions with other road users by modelling
them using ACC (Adaptive Cruise Control). [Che+15] presents an incremental planning
approach in spatiotemporal representation. The focus is on the development of a suit-
able search heuristic. [Ben+15] also uses a spatiotemporal representation in a curvilinear
coordinate system and shows the existence of homotopy classes in the form of different
maneuver options.

[UM15] proposes a real-time capable method based on policy iteration and thus POMDPs
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(Partially Observable Markov Decision Process). Adequate simpliĄcations can ensure
Real-time capability. Cooperations are considered in the approach of [Len+16] in the
context of a Monte Carlo Tree Search. The cost function is chosen to relate the cost of
the ego-vehicle to the cost of the surrounding road users. [Sch+16] uses the spatiotem-
poral representation from [Ben+15] and develops a sampling-based trajectory planning
approach that exploits the differential Ćatness of the single-track kinematic vehicle model.

In [Nil+16b], lane change processes are studied in detail. The concept explains how the
need for a lane change arises from the initial situation and how it should ultimately be
executed. A model predictive formulation is proposed. The underlying optimal control
problem represents a Quadratic Program. [Qia+16] accounts for the aspect of different ma-
neuver options and proposes a Mixed-Integer Quadratic Programming (MIQP) problem
formulation for it. In [Eve+16], an interactive maneuver planning is performed similar
to [Wei+14]. Other road users are modeled using the Intelligent Driver Model (IDM)
[Tre+00]. Simultaneous consideration of two maneuver options in interSection situations
is described in [Zha+16]. Here, a joint optimization problem for both maneuver options
is formulated. [Imb+17] investigates human decision behavior at a narrowing road. The
key question here is whether humans can resolve this conĆict when an automated vehicle
is opposite them.

The paper [Ad17] deals with situation analysis in a spatiotemporal curvilinear coordinate
system and proposes a graph structure to represent the results. In [MA17], a cooperative
conĆict resolution strategy is proposed using the tool of reachability analysis. ConĆicting
domains are divided among agents to resolve the conĆict. [Bur+17] introduces a taxonomy
for the cooperative behavior of road users. [Mil+18] develops a MIQP for longitudinal and
lateral trajectory planning using the Big-M concept, refer to [GH01]. [Men+18] introduces
the concept of cooperative planning for highway on-ramps.

[MA18] describes a concept for the coordination of a plurality of road users via allocation
of drivable space. A similar concept is presented in [SA18]. There, efficient computation
of the drivable space using reachability analysis for dynamic traffic scenes is proposed.
The paper [Tas+18] has a similar focus as [Zha+16] and also formulates an optimization
problem for simultaneous optimization of different maneuver options. This allows delaying
the decision for a maneuver option. In [Kur+18], similar to [Len+16], a Monte Carlo Tree
Search is used for decentralized cooperative planning. [Sun+18] integrates a politeness
term into the cost function for trajectory planning of automated vehicles. This is to ensure
that the planned trajectories are neither too conservative nor too aggressive.

[PA18] presents a concept for real-time generation of trajectories with safety guarantees.
The approach uses convex optimization and is evaluated using the CommonRoad bench-
mark (Composable benchmarks for motion planning on Roads, refer to [Alt+17]). In
[Sto+19], the importance of the complexity of the traffic situation for the willingness of
road users to cooperate is investigated. A model predictive trajectory planning approach
is presented in [Yi+19]. The approach partitions the spatiotemporal free space and uses
successive linearization of the nonlinear single-track model to ensure real-time capability.
[Fis+19] presents a game-theoretic approach to trajectory planning. SpeciĄcally, a hierar-
chical formulation is made as a dynamic game. Interactions between road users can thus
be efficiently taken into account. In [Klo+19], a decentralized model predictive control
for the coordination of multiple vehicles is proposed. Moreover, the paper discusses a
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concept for determining the priority of road users. A POMDP-based concept that can
also handle occlusions is presented in [Hub+19]. Here, the problem is solved by Monte
Carlo sampling for action strategy optimization.
In [Est+19] an approach for the identiĄcation of maneuver options as well as their veriĄca-
tion is presented. The representation is done using a graph structure, and formalized rules
are used for veriĄcation. The approach described in [Ge+19] presents risk-sensitive tra-
jectory planning for automated vehicles. The effect of the automated vehicleŠs intention
on surrounding road users is modeled probabilistically and uses the value-at-risk concept.
[Hu+19a] considers merge-in maneuvers in different traffic scenarios. It is a learning-based
and interactive approach using the concept of Curriculum Learning and thus Reinforce-
ment Learning. [Sun+19] uses CPT (Cumulative Prospect Theory) to model irrational
human behavior. The paper proposes a hierarchical learning procedure and evaluates it
in merge-in scenes.
[Sch+19j] formulates automated driving as a non-cooperative dynamic game. A Nash
equilibrium is computed simultaneously for all agents using nonlinear optimization. The
cooperative behavior of the surrounding road users is estimated online using a concept
called SVO (Social Value Orientation) for weighting of the joint cost function. [Nau+19]
uses the RSS (Responsibility-Sensitive Safety) framework from [Sha+17] to compute lane
change trajectories with safety guarantees.
The paper [Tan19] uses Deep Reinforcement Learning with Self-Play to learn robust
sequential decision making. The evaluation is performed in the context of a merge-in
scene with a plurality of road users. Here, negotiation among the participants becomes
necessary to resolve the conĆicting situation. [Zen+19] proposes an end-to-end trajectory
planner. Lidar raw data and a highly accurate map serve as input data, and the approach
considers different maneuver options of the ego-vehicle.
[Sto+19] analyzes factors inĆuencing the cooperation of road users during lane change
operations. The results show that, for example, the criticality of the situation is a
decisive factor for cooperation. [Nau+20] investigates the usability of different cost
functions for modeling human driving behavior. ALGAMES (Augmented Lagrangian
GAME-theoretic Solver) is proposed in [Cle+20a] that identiĄes Generalized Nash Equi-
librium strategies and can be applied with a receding horizon. Their evaluation shows
the efficacy in on-ramp merging scenarios in automated driving. [Cle+20b] proposes LU-
CIDGames (onLine UnsCented Inverse Dynamic Games), an inverse optimal control
algorithm that estimates other agentŠs objective functions online. They combine LU-
CIDGames with ALGAMES to solve the resulting optimization problem and evaluate
it.
The work [Sch+21a] develops a trajectory optimization algorithm that utilizes gradients
from Deep Generative human trajectory prediction models. Their approach, therefore,
explicitly accounts for interactions and yields proactive behaviors. Finally, [Sch+21b]
combines set-based reachability analysis with optimal motion planning in arbitrary traffic
situations and allows the use of arbitrary vehicle dynamics models.
Most of the above state-of-the-art approaches do not fulĄll all requirements formulated in
Section 1.1 that motivate the thesis at hand. Therefore, the goal is to propose Pareto-op-
timal concepts fulĄlling all of the requirements to maximize the utility of the algorithms
on current generation vehicle ECUs.
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Besides above mentioned approaches from literature, Tesla, Inc. already offers its cus-
tomers a lane change functionality within their Full Self-Driving package [Tes22]. During
their live-streamed event Tesla AI Day 2021 (refer to [Tes21]), a high-level description of
their lane change planning approach was provided. A two-stage approach is used. First, a
discrete search is used via sampling of trajectory candidates. This stage is similar to the
approach presented in Chapter 6 of the thesis at hand. After this, a convex approximation
of the driving corridor is dervied and a continous optimization conducted to obtain the
optimal trajectory. In comparison, Chapter 5 of the thesis at hand also describes an ap-
proach to obtain convex driving corridors that are subsequently used in Chapter 7 within
a continous trajectory optimization. During their presentation, it is also mentioned that
in certain situations a joint optimization of two agents needs to be conducted in order for
the vehicle to decide for a speciĄc option. This aspect is similar to the described game
theoretic approach presented in Chapter 8 of the thesis at hand. The speciĄc details
of their software architecture and algorithms are however to this date not known to the
public.

1.4. Contribution

The contributions of the thesis at hand are structured according to the related work
Section. Hence, the contributions in the areas of discretionary lane change proposals,
trajectory and situation prediction, and lane change planning are discussed.

Discretionary Lane Change Proposal Generation

The contributions of the module, described in Chapter 3, are the following and build upon
the concept [Ard+12]. First, a politeness factor is introduced in the utility calculation
motivated by [Kes+07]. Second, the desired velocity of the ego-vehicle is modeled using a
Gaussian probability distribution, taking into account the passengerŠs acceptance of cer-
tain deviations from the desired velocity. Third, an accumulation mechanism is developed
such that long-lasting slight dissatisfaction with the current driving lane of the ego-ve-
hicle is accumulated, eventually leading to a lane change decision. Finally, compared to
[Ard+12] an in-depth parameter optimization and analysis of the results using a driving
simulator study is provided. This contribution Ąrst appeared in the authorŠs publication
[Sch+21c] and led to the patent [Nat+20c].

Trajectory and Situation Prediction

The developed situation prediction, described in Chapter 4, builds upon the existing
concept [Wis+18]. It is an approach based on Monte Carlo simulations for highway
scenes based on models from microscopic traffic simulations. It is a vehicle-individual
trajectory prediction that leads to the prediction of collisions in certain traffic situations.

Furthermore, handling multimodality is difficult due to a potential combinatoric explosion.
The thesis at hand modiĄes the approach to become a situation prediction. This is done by
topological clustering of the overall situation. Multimodality is reĆected in topologically
different situation developments and represented using a single latent random variable.
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Lane Change Planning

There are numerous scientiĄc contributions concerning lane change planning. Firstly,
Polygon Clipping is introduced for the identiĄcation of distinct lane change maneuvers
on highways in Chapter 5. The use of Polygon Clipping allows treating the problem in
terms of geometric operations. The traffic scene topology is based on relations between
the obtained polygons and represented using a graph. It is shown how this approach can
handle lane changes of surrounding traffic participants while being runtime efficient. The
works [Sch+16], [Ad17] and [Est+19] are closely related but either handle the problem
differently or donŠt discuss lane changes of surrounding traffic. The contribution described
in Chapter 5 Ąrst appeared in the authorŠs publications [Sch+19e], [Sch+19f], [Lie+19a]
and led to the patents [Wis+20a], [Man+20], [Nat+20b] and [Nat+20a].
Chapter 6 proposes a sampling-based approach for lane change planning and shows how
the reachable set of the ego-vehicle and geometric properties can be exploited for the
generation of sample points that represent knots of cost-optimized splines. Those splines
are described in [Ric+16] for use in quadrotor Ćight. Their formulation is very general,
and the thesis at hand describes the application of the splines for the trajectory opti-
mization of automated vehicles. It is also shown how interaction-awareness is realized by
incorporating the optimized ego-vehicle trajectory into the situation prediction. Finally,
a novel interaction cost based on generalized kinetic energies that is easy to interpret and
parametrize is developed to quantify the effects. The contribution described in Chapter
6 Ąrst appeared in the authorŠs publications [Sch+19e] and [Lie+19a]. It furthermore led
to the patent [Sch+20c] and additionally inspired the patent [Wis+20a].
Chapter 7 frames the lane change planning problem as a Quadratic Program to circumvent
some of the limitations of the sampling-based approach. It serves as a baseline and
uses mainly ideas and terminology from [Nil+17]. The core contribution is integrating
Time-to-Collision and Time Headway requirements into the optimization using affine
constraints based on spatiotemporal geometric relations. It Ąrst appeared in the authorŠs
publication [Sch+19f].
Chapter 8 presents an extension of the optimization-based behavior planning approach
described in Chapter 7. It is strongly inspired by the game theoretic approach presented
in [Sch+19j] but tailored to the requirements formulated in the motivation of the thesis
at hand. The situation prediction and behavior planning problem are intertwined. While
[Sch+19j] formulates the problem in terms of a non-cooperative differential game, the the-
sis at hand uses a cooperative linear-quadratic game formulation resulting in a Quadratic
Program. This results in less conservative behavior of the ego-vehicle compared to the
baseline approach of Chapter 7 as it can anticipate cooperation of surrounding traffic
participants. A special research question arises for the consideration of uncertainties. In
particular, the uncertainty due to multimodality. Chance constraints are integrated into
the optimization problem to tackle this. The timing of a lane change is highly important,
and this Chapter proposes a geometry-inspired outer optimization for its speciĄcation. A
fallback system is constructed to enhance safety and robustness further. Finally, Inverse
Reinforcement Learning is used to specify the cost functionŠs parameters using the highD
dataset, and the results are further analyzed.
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2
Fundamental Background

This Chapter Ąrst introduces a taxonomy to clarify some frequently used terms and pro-
vides the notational convention. It then aims to convey a fundamental understanding
of automated driving software systems and introduces the speciĄc problems the thesis at
hand deals with. Next, some theoretical background on curvilinear coordinate frames and
Polygon Clipping is given. Finally, the chosen simulation environment and development
tools are described.

2.1. Taxonomy and Notation

Within the thesis at hand, the deĄnitions of the term scene, situation, and scenario given
in [Ulb+15] are adopted and restated here for easy reference. [Ulb+15] deĄnes the terms
as follows:

Scene: A scene describes a snapshot of the environment including the scenery and dy-

namic elements, as well as all actorsŠ and observersŠ self-representations, and the

relationships among those entities. Only a scene representation in a simulated world

can be all-encompassing (objective scene, ground truth). In the real world it is in-

complete, incorrect, uncertain, and from one or several observersŠ points of view

(subjective scene).

Situation: A situation is the entirety of circumstances, which are to be considered for

the selection of an appropriate behavior pattern at a particular point of time. It

entails all relevant conditions, options and determinants for behavior. A situation

is derived from the scene by an information selection and augmentation process based

on transient (e.g. mission-speciĄc) as well as permanent goals and values. Hence,

a situation is always subjective by representing an elementŠs point of view.

Scenario: A scenario describes the temporal development between several scenes in a

sequence of scenes. Every scenario starts with an initial scene. Actions & events as

well as goals & values may be speciĄed to characterize this temporal development in

a scenario. Other than a scene, a scenario spans a certain amount of time.

Figure 2.1 shows an overview of an automated driving software system. On a high level, it
is divided into several layers. These are perception and prediction, the strategic, tactical,
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Figure 2.1.: Overview of the modules in a typical automated driving software system. The light-

blue boxes are discussed within the thesis at hand.

and Ąnally operational level. The general algorithmic Ćow is from top to bottom. Cross
connections between the various modules are hidden to reduce complexity. The Figure
only provides a general overview. Within the perception and prediction layer, external
sensors provide raw data used in an environment perception system to create a scene
description, often called the environment model. It typically encompasses at least lane
marking information, static and dynamic objects. A localization provides information
about the location of the ego-vehicle in a global or local coordinate frame.
Chapter 4 describes a situation prediction approach. Its goal is to enhance the scene
description by predicting all dynamic objectsŠ future states. According to the above
deĄnition of the terms, such prediction incorporates behaviors and intentions of traffic
participants and is hence called situation prediction. The strategic level consists of a
route planning module that imposes a route-following behavior on the ego-vehicle by
providing mandatory lane change requests. In contrast to mandatory lane changes for
route-following, the tactical level deals Ąrst with discretionary lane changes. Such lane
changes aim to increase driver comfort and reduce travel time. This is discussed in
Chapter 3 in more detail. The second module on the tactical level is the central focus
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of the thesis at hand, the lane change behavior planning. It is important to distinguish
behavior planning from local trajectory planning clearly. Hence the following deĄnition
is adopted within the thesis at hand:

Behavior Planning: Behavior planning belongs to the tactical level of an automated driv-

ing software system. It provides high-level behaviors in the form of a temporal spec-

iĄcation. Typically such speciĄcation will decide between various options that the

ego-vehicle has. Sometimes those options are called homotopy classes or maneu-

ver options. Its output is a trajectory that can initialize a local trajectory planning

approach deĄned next. Hence behavior planning acts as a globalization strategy in

contrast to local optimal trajectory planning approaches. Sometimes the terms ma-

neuver planning and decision-making are used in science and industry instead of

behavior planning. Maneuvers considered are lane-keeping or lane changes to either

the left or right adjacent lane. There can be various maneuver options for lane

changes, depending on how it is conducted.

Local Trajectory Planning: Local trajectory planning refers to locally optimal approaches

within a given homotopy class or for a given maneuver option. The initial trajectory

provided by a behavior planning module might be altered due to accurate considera-

tion of vehicle dynamics and nonholonomic constraints.

Note that the coupling of scene prediction, lane change behavior, and local trajectory
planning is discussed in more detail in [Lie+19b]. Finally, the locally optimal trajectory is
provided to a trajectory following controller that creates control actions using the vehicleŠs
actuators. The above description reĆects a typical modular and hierarchical automated
driving software system. Other design choices are undoubtedly possible. The thesis at
hand, however, contributes to such a modular system. The light-blue modules in Figure
2.1 are the particular focus here.

Regarding the mathematical notation, the thesis at hand aims for readability and compre-
hensibility by reducing the use of super- and subscripts to a minimum without sacriĄcing
mathematical accuracy. In the following, some notational conventions are described and
used in the remainder of the thesis.
A total of four coordinate frames are used, with tuples referencing them. The global
coordinate frame is denoted using lowercase letters as the tuple (x, y), and its origin is
typically deĄned within a simulation environment or dataset. The ego-vehicle coordinate
frame is denoted using uppercase letters as (X, Y ). Similarly, a curvilinear coordinate
frame is denoted as (L, N). All mentioned coordinate systems are assumed stationary at
t = 0 s. They can be extended by the time dimension, leading to spatiotemporal variants.
Throughout the thesis, the frames (x, y, t), (X, Y, t) and (L, N, t) are used.
A lowercase letter t is used for time as an independent variable and speciĄc timings,
whereas an uppercase T lane change intention and proposal times. Discrete timesteps
are denoted using the variable tk or occasionally simply k. Derivatives are denoted using
dots, for example, Ẋ(t) and Ẍ(t) in case of the Ąrst and second derivative of the time-de-
pendent quantity X(t). Higher-order derivatives are denoted using a number in brackets
as superscripts, for example, X(3)(t) for a third derivative.
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Column vectors are denoted using bold lowercase letters, for example, a, whereas matrices
use bold uppercase letters A.

Points are represented as column vectors and denoted in bold, for example p =
[

p1 p2

]

⊺

.
Tuples are reserved to reĆect coordinate frames as discussed above.

Sets are generally denoted using a calligraphic font, for example, S. Polygonal chains and
polygons are also sets of points and use the same notation, for example:

P = ¶(pj)
nP

j=0♢, (2.1.1)

with a total of nP points pj. Trajectories in discrete time are also polygonal chains. Due
to their importance in the thesis at hand, they are denoted using their own symbol τ .
Furthermore, curly brackets ¶·♢ are also used to reĆect sets. The lowercase letter n is used
for the upper boundaries of counting variables and denote the number of objects or points
with respective subscripts. Optimized variables are indicated using the asterisk symbol,
for example, τ ∗. The mean of a quantity ξ over a dataset consisting of nD examples
is denoted as ♣ξ♣. This notation is frequently used throughout the thesis at hand in
experimental evaluations.

The cost functions used in the three different lane change planning approaches, refer
to Figure 1.2, are distinguished using the superscript S (Sampling-based), O (Optimiza-
tion-based) and G (Game Theoretic). For example, JG

L denotes the longitudinal cost
(subscript L) of the game theoretic planning approach.

Random variables are generally denoted using uppercase letters. Probabilities are denoted
using the letter P . Events are denoted using a lowercase letter. The probability of event
v is hence P (V = v). The probability density function of a random variable V is denoted
as p(V ) or also p(v). Probability density functions and probability mass functions are
not notationally distinguished within the thesis at hand. The cumulative distribution
function of a random variable V is denoted as Φ(V ). Scalar latent random variables are
denoted as Z and multidimensional ones as Z. The context always allows distinguishing
multidimensional latent variables from matrices.

2.2. Curvilinear Coordinate Frame and Polygon

Clipping

This Section introduces the curvilinear coordinate frame and a pseudo distance transfor-
mation that allows the description of a traffic scene in such frame without discontinuities.
Furthermore, Polygon Clipping is brieĆy introduced due to its importance in this thesisŠs
maneuver option identiĄcation.

Curvilinear Coordinate Frame

The spatiotemporal maneuver identiĄcation described in Chapter 5 as well as the lane
change planning approaches (Chapters 6 - 8) use formulations in a curvilinear coordinate
frame. Its construction is introduced due to its importance for the remainder of the thesis
at hand.
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Figure 2.2.: Result of transforming a traffic situation into a curvilinear coordinate frame.

Figure 2.3.: A particular problem arises due to discontinous jumps in the lateral distance to a

polygonal chain.

Generally, the static and dynamic environment of the ego-vehicle is described in an ego-ve-
hicle coordinate frame (X, Y ). Its origin is located at the front bumper on the height of
the road at that point.
In contrast, a curvilinear coordinate frame (L, N) is attached to a choosen reference lane
marking, which is represented as a polygonal chain in ego-vehicle coordinates:

Pref = ¶(pref,j)
nPref
j=0 ♢ = ¶

([

Xref,j Yref,j

]

⊺
)nPref

j=0
♢, (2.2.1)

with a total of nPref
+ 1 points. The choice of the coordinate origin is in general ar-

bitary. All static and dynamic elements of the traffic situation need to be described in the
curvilinear frame by calculation of the respective L and N coordinates using a distance
transformation. After successfull transformation of all elements, even traffic situation
with curvy roads appear straight as illustrated in Figure 2.2. This allows for easier ma-
neuver options identiĄcation and subsequent lane change planning as will be described
later in the thesis at hand.
The choice of a suitable distance transformation is crucial to avoid errors in the necessary
transformation. Refer to Figure 2.3 for the illustration of discontinuous jumps that occur
between two segments of a reference lane marking in the form of a polygonal chain Pref .
The naive approach to calculate the orthogonal projection of a query point pq belong-
ing to a lane-keeping trajectory in ego-vehicle coordinates to the polygonal chain is not
unambiguously deĄned in this particular case.
To circumvent this problem, [Ben+14] introduces a pseudo distance transformation. It
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uses an idea from Phong-Shading [Pho75] and hence the Ąeld of Computer Graphics that
results in a continuous distance metric. The approach is described using the illustration
in Figure 2.4. Assume the polygonal chain consists of four points p1, p2, p3 and p4

initially referenced in an arbitary global coordinate system (x, y). The goal is to calculate
the distance between a query point pq to the polygonal chain. First, a tangent vector
t is deĄned at each point of the polygonal chain. For outer points, the deĄnition for a
polygonal chain consisting of nP points is as follows:

t1 := p2 − p1, (2.2.2)

tnP
:= pnP

− pnP −1. (2.2.3)

On constrast, the following deĄnition holds for inner points:

ti := pi+1 − pi−1. (2.2.4)

Assume for the moment, that the speciĄc segment with a minimum distance to the query
point is known. In the example this is the segment between points p2 and p3 with
respective tangent vectors t2 and t3. The next step consists in a linear interpolation
between the segment deĄning points and tangent vectors:

tϱ = ϱt3 + (1 − ϱ)t2, (2.2.5)

pϱ = ϱp3 + (1 − ϱ)p2. (2.2.6)

Once ϱ is known, so are pϱ and tϱ and the pseudo distance is deĄned as:

∥nϱ∥2 = ∥pq − pϱ∥2, (2.2.7)

with nϱ being orthogonal to tϱ in point pϱ. Hence the constraint:

n⊺

ϱtϱ = 0 (2.2.8)

needs to hold. Refer again to Figure 2.4 for an illustration. At this point however, the
value of ϱ is yet unkown and needs to be derived. To this end, a segment local coordinate
frame (u, v) is introduced such that the origin coincides with p2 and the u axis is aligned

with the segment. In this coordinate system p̃2 =
[

0 0
]

⊺

and p̃3 =
[

l 0
]

⊺

hold. This

choice allows the tangent vectors to be represented only by their slopes t2 =
[

1 m2

]

⊺

and t3 =
[

1 m3

]

⊺

. Solving the orthogonality constraint Equation (2.2.8) for ϱ leads to
the solution:

ϱ =
uq + vqm2

l − vq(m3 − m2)
(2.2.9)

with l the length of the segment and p̃q =
[

uq vq

]

⊺

in the (u, v) frame. Above mechanism
allows the calculation of a pseudo distance to a given segment of a polygonal chain. To
complete the algorithm, a search for the segment with minimum pseudo distance has to
be conducted. This approach is used within the thesis at hand to transform traffic scenes
into a curvilinear coordinate frame.
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Figure 2.4.: Pseudo distance calculation of a query point pq to a segment between points p2 and

p3 of a polygonal chain.

Polygon Clipping

Polygon Clipping realizes certain geometric operations between a subject and clip polygon.
For more information on speciĄc algorithms, refer for example to [SH74], [Vat92], [GH98]
and [Mar+09]. A polygon is deĄned as a geometric object consisting of a number of
points called vertices and a number of line segments between them called edges. It can
be compactly represented as a closed polygonal chain using set notation:

Pi = ¶(pj)
nPi

j=0♢ = ¶
([

Lj tj

]

⊺
)nPi

j=0
♢, (2.2.10)

in an arbitrary coordinate frame (L, t) consisting of a total of nPi
+ 1 points.

Assume that two polygons P1 and P2 are given. The most common operations are the
following:

Union : P1 ∪ P2,

InterSection : P1 ∩ P2,

Difference : P1 \ P2.

Above operations are used extensively in Chapter 5 to derive the ego-vehicles maneuver
options. Refer to Figure 2.5 for an illustration of them.

2.3. Simulation Environment and Development Tools

The thesis at hand is a result of an research cooperation project with the ZF Automotive
GmbH. It aims to provide scientiĄc and technical innovations in the Ąeld of lane change
behavior planning. Due to the nature and goals of the project, the choice of development
tools and simulation environments is limited.
One particular requirement is that the developed algorithms should be embeddable into
the ZF Automotive GmbH software framework. Therefore, also the data interfaces need
to match. Aforementioned requirement resulted in the development of DESIM (Driving
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Figure 2.5.: Illustration of typical Polygon Clipping operations. P1 represents the subject and

P2 the clip polygon. The dark-blue area is the outcome of the respective clipping operation.

Environment SIMulation) further described in [Wis+16]. It was developed using C++
and offers the possibility to simulate a wide range of highway traffic scenarios. The
Intelligent Driver Model is used as the car-following model for all vehicles. A custom
lane-changing model allows surrounding traffic participants to change lanes. Most sim-
ulation and driver model parameters can be varied probabilistically to allow numerous
evaluations. A sensor system can be speciĄed and is used for an object-level sensor system
simulation, yielding measurement uncertainties similar to the data obtained by the real
vehicle sensors. More information can be found in [Wis+16].
Figure 2.6 shows a highway entrance scenario. The ego-vehicle is shown in dark-blue
with its current velocity. The surrounding vehicles are represented in light-blue. A dot
represents simulated sensor detection in the form of radar reĆection points. The white
lines represent the ground-truth lane markings, whereas detected ones are shown in blue.
As for development tools, Python and the scikit-learn library [Ped+11] are used for lane
change predictions and the desired velocity regression task in Chapter 4. Apart from that,
MATLAB is used for prototyping and C for deployment. There is an interface between
the DESIM simulation environment and MATLAB. This combination allows for efficient
prototyping.
The above choice is not the only possible choice, but the most comfortable in the de-
scribed circumstances. However, a critical reĆection as of the time of writing the thesis at
hand clearly shows a rise in the use of the CARLA (CAR Learning to Act) simulation
environment, refer to [Dos+17] and the CommonRoad benchmark environment [Alt+17].
These are more standardized choices that allow scientiĄc comparisons. It is noted that
those tools should be the choice in the future. Time should be invested to adapt the data
interfaces so that prototyped code could be easily deployed into the project partnerŠs
software system.
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2.3. Simulation Environment and Development Tools
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(a) Traffic scene at t = 8 s.
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(b) Traffic scene at t = 13 s.
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(c) Traffic scene at t = 18 s.
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(d) Traffic scene at t = 23 s.

Figure 2.6.: Exemplary traffic scenario realized using the DESIM simulation environment. The

ego-vehicle is represented in dark-blue whereas the surrounding traffic participents are shown in

light-blue. The blue dots represent the simulated sensor system detections. Detected lanes are

also depicted in blue color. The current ego-vehicle velocity is furthermore shown.
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This Chapter focuses on the discretionary lane change proposal generation. It is largely
based on the publication [Sch+21d]. The above Ągure gives an overview of its location
among all developed modules within the thesis at hand.
Discretionary lane changes aim to increase passenger comfort and reduce travel time.
The questions that the developed module answers are the following. How much velocity
deviation is accepted by the driver of the automated vehicle? When will the driver feel
the need to prepare for a lane change? The discretionary lane change proposal module
analyses the traffic scene, answers both questions, and might recommend a lane change to
the driver of the automated vehicle or directly issues the request to further downstream
modules. If the proposal is accepted, the lane change behavior planning Ąnally tries to
provide a safe and comfortable lane change trajectory.
The subsequent Sections place a particular focus on modeling the utility of driving lanes
using a probabilistic framework. This way, noise in the perception system is naturally
accounted for. Furthermore, the driver will often accept low deviations of the desired
velocity for a certain period of time. This factor is modeled using a probability distribution
around the desired velocity. The Chapter is structured as follows. Section 3.1 presents the
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3.1. Architecture of the Discretionary Lane Change Proposal Module

Lane Change

Utility 

Calculation

Lane Change

Proposal 

Generation

Figure 3.1.: High-level overview of the proposed module. First, the lane change utility to the

adjacent lanes are calculated and Ąnally, in case that certain conditions are fulĄlled, a lane

change is proposed to the driver of the automated vehicle.

Figure 3.2.: Nomenclature for the traffic scene features χ. Both adjacent lanes are assessed for

the calulcation of the corresponding lane change utilities. The traffic participant with velocity

vRB is introduced for completeness sake but not used in the calculations.

architecture of the module and all relevant parameters. These parameters are optimized
and the results are discussed in Section 3.2. After that, the optimized module is evaluated
on data from a ZF Group test vehicle in Section 3.3.

3.1. Architecture of the Discretionary Lane Change

Proposal Module

A high-level overview of the proposed module is given in Figure 3.1. It consists of two
stages. First the lane change utilities (UL and UR) are caculated and after that proposals
(TL and TR) are generated if certain conditions are fulĄlled. In the following discussion, all

velocities are measured in the stationary ego-vehicle coordinate frame as v =
√

Ẋ2 + Ẏ 2.
The desired velocity vE,des and the traffic situations features:

χ =
[

vE vLF vCF vRF vRB vCB vLB

]

⊺ ∈ R
7
+, (3.1.1)

refer also to Figure 3.2, are the two inputs of the module. The left and right lane change
utilities UL ∈ [0, 1] and UR ∈ [0, 1 + γ2 + γ3], with γ2 and γ3 being model parameters, are
further analyzed to Ąnally derive binary proposals TL ∈ ¶0, 1♢ and TR ∈ ¶0, 1♢.
The nomenclature for the traffic scene features χ is shown in Figure 3.2. The dark-blue ve-
hicle is the ego-vehicle, and light-blue ones represent surrounding traffic participants. Two
subscripts are used for these vehicles, the Ąrst denoting the lane to distinguish Current
ego-vehicle lane (C), Left lane (L) and Right lane (R). The second subscript distinguishes
Front (F) and Back (B) with respect to the ego-vehicle.
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Memory

Accumulator

Lane Change Utility Calculation Lane Change Proposal Generation 

Figure 3.3.: Detailed overview of the module components for left lane changes. The left part of

the Figure corresponds to the lane change utility calculation whereas the right part depicts the

memory and accumulator trigger modules for the proposal generation. Herein, 1(·) represents

the indicator function, refer to Equation (3.1.16) and (3.1.18).

Module Components

Figure 3.3 gives a detailed overview of all components of the left lane change module.
The left part of the Figure represents the calculation of the resulting utility UL(k) per
discrete algorithm timestep k. The utility is calculated based on probabilities of velocity
comparisons. A politeness factor λ is integrated to include courtesy in the proposal
generation process. There are certainly other important features for the lane change
utility calculation. However, velocities play a dominant role. An overtaking maneuver
is usually triggered to avoid deceleration or reach oneŠs desired velocity. Also note, that
the proposed module has a different aim compared to lane change prediction modules.
Latter, try to predict lane changes of surrounding vehicles. Such approaches have to
consider more features such as distances between vehicles and lateral velocities, refer for
example to [Wis+17], [Krü+19b] and Chapter 4 of the thesis at hand.

The right part of Figure 3.3 refers to the functionality of the module that generates the
binary trigger signal TL. A similar Figure can be drawn for the module that generates
discretionary right lane change proposals. Again, there are slight adaptions since more
parameters are used, and a bias to the right lane is included in that case.

Calculation of Lane Change Utilities

The calculation of lane change utilities is based on probability distributions of certain
velocities. All velocities in Figure 3.2 are assumed to follow Gaussian probability distri-
butions, see Equation (3.1.5) for an example. Therein µ refers to the mean value, and σ2

represents the variance. Measuring these velocities using the vehicleŠs sensor system and
employing a tracking algorithm introduces uncertainties. In the remainder of this Chap-
ter, lowercase letters for velocities always correspond to deterministic quantities, whereas
uppercase letters are used for random variables.
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3.1. Architecture of the Discretionary Lane Change Proposal Module

The utility for a left lane change is calculated as follows:

UL = max(2 (P (VCF ≤ VE,des) − 0.5) + (3.1.2)

−2 (P (VLF ≤ VE,des) − 0.5) +

−2λ (P (VLB ≥ VE,des) − 0.5) , 0).

Herein, the Ąrst term P (VCF ≤ VE,des) gives the probability of the current driving lane
being slower than the desired velocity and hence high values favor a lane change. The
second term P (VLF ≤ VE,des) balances the Ąrst term and gives the probability of the
left lane being slower than the desired velocity. From the ego-vehicles perspective, it only
makes sense to change lanes to the left if speed can be gained through the change. Finally,
the last term P (VLB ≥ VE,des) considers potentially faster vehicles from the back that could
inĆuence the lane change intention. The offset −0.5 and scaling factor 2 ensure that the
inidivual utilities are always in the range [0, 1]. Furthermore, a distance-dependent lower
boundary is imposed on the surrounding vehicleŠs velocity variances, refer to [Sch+21d]
for more details. The utility for a right lane change is calculated differently to account
for european passing rules and faster vehicles behind the ego-vehicle:

UR = max(1−2γ1 (P (VRF ≤ VE,des) − 0.5) + (3.1.3)

+2γ2 (P (VCF ≤ VE,des) − 0.5) +

+2γ3 (P (VCB,max ≥ VE) − 0.5) , 0).

The constant 1 introduces the right lane bias. Hence, if no vehicles are around the ego-ve-
hicle, the utility is UR = 1. The second term P (VRF ≤ VE,des) represents the probability
that the vehicle in front on the right lane is slower than the desired velocity. Such a
situation decreases the lane changeŠs utility to the right since it is often better to pass
the slower vehicle Ąrst. In contrast, the probability P (VCF ≤ VE,des) favors a lane change,
since a high value indicates that the current driving lane is unsatisfactory. However, spe-
cial care is taken to ensure the traffic rule that vehicles should not be overtaken on the
right. An additional constraint therefore ensures that µVRF

≤ µVCF
. Finally, the last term

P (VCB,max ≥ VE) represents the probability that a vehicle with higher velocity than the
current ego-vehicle velocity drives behind it. Note that this one uses the current velocity
and not the desired velocity in contrast to the remaining terms. The ego-vehicle should
show courtesy after overtaking a slower vehicle and quickly give way if there is a faster
vehicle behind it. The subscript max reĆects the fact that the maximum observed velocity
of the trailing vehicle is used since it potentially best describes its intended velocity.
Other factors could be included into the utility functions. Assume that there are nU

distinct utilities. One could be the above stated utility based on probabilities of velocity
comparisons. Others could be based on instantaneous or predicted accelerations and the
traffic density on the respective driving lanes. The resulting utility can be calculated
using a convex combination in form of a sum of all individual utilities:

U =
nU
∑

i=1

wiUi (3.1.4)

with wi ∈ R+ and
∑nU

i=1 wi = 1.
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All uppercase velocity variables are modelled using Gaussian probability distributions, for
example:

p(VE,des) =
1

√

2πσ2
VE,des

exp



−(VE,des − µVE,des
)2

2σ2
VE,des



 . (3.1.5)

In order to calculate the probabilites in both utility functions Equation (3.1.2) and (3.1.3),
differences of random variables need to be formed. For example:

P (VCF ≤ VE,des) = P (VCF − VE,des ≤ 0) . (3.1.6)

The probability distribution p(Ṽ ) = p(VCF − VE,des) is found by convolution:

p(Ṽ ) =
1

√

2πσ2
Ṽ

exp

(

−(Ṽ − µṼ )2

2σ2
Ṽ

)

, (3.1.7)

with the mean and variance:

µṼ = µVCF
− µVE,des

, (3.1.8)

σ2
Ṽ

= σ2
VCF

+ σ2
VE,des

. (3.1.9)

Prior to the calculation of the probabilities, several mathematical expressions are intro-
duced. The integral of a Gaussian distribution from minus inĄnity to a certain value x is
called cumulative distribution function and denoted as:

Φµ,σ(x) =
1√

2πσ2

∫ x

−∞
exp

(

−(t − µ)2

2σ2

)

dt. (3.1.10)

The error function erf(x) and complementary error function erfc(x) are deĄned as:

erf(x) =
2√
π

∫ x

0
exp

(

−t2
)

dt = 1 − erfc(x). (3.1.11)

Equation (3.1.10) can be expressed using the error-function or complementary error func-
tion as follows:

Φµ,σ(x) =
1

2

(

1 + erf

(

x − µ√
2σ2

))

(3.1.12)

= 1 − 1

2
erfc

(

x − µ√
2σ2

)

.

The occuring probabilities in the utility functions Equation (3.1.2) and (3.1.3) can there-
fore be expressed as follows:

P (X ≥ a) =
∫ ∞

a
p(x)dx (3.1.13)

=
∫ a

−∞
p(x)dx −

∫ a

−∞
p(x)dx +

∫ ∞

a
p(x)dx

=1 −
∫ a

−∞
p(x)dx

=1 − Φµ,σ(a)

=
1

2
erfc

(

a − µ√
2σ2

)
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3.1. Architecture of the Discretionary Lane Change Proposal Module

Subtraction Results in

Figure 3.4.: Utility calulcation based on Gaussian probability distributions. Generally, two

random variables are subtracted by convolving their corresponding probability distributions.

The integral (light-blue area in the Ągure) is analytically intractable and hence an approximation

of the erf(x) is used to evaluate it efficiently.

and

P (X ≤ a) = Φµ,σ(a) = 1 − 1

2
erfc

(

a − µ√
2σ2

)

. (3.1.14)

The calculation of all relevant probabilities is illustrated in Figure 3.4. It also illustrates
the rational behind the factors 2 and −0.5 in both utility functions Equation (3.1.2) and
Equation (3.1.3). Take for example P (VCF ≤ VE,des) as shown in Figure 3.4. The quantity
P (VCF ≤ VE,des)−0.5 corresponds to the hatched area under the gaussian density function.
In the case that µVCF

= µVE,des
, this area is zero and hence P (VCF ≤ VE,des) − 0.5 = 0.

This realizes the desired behavior of the proposed module that this part of the utility
function Equation (3.1.2) is zero in that case. A lane change is of no utility if the vehicle
in front of the ego-vehicle is faster than its desired velocity (µVCF

≥ µVE,des
). The hatched

area has a maximum value of 0.5 so that the factor 2 in Equation (3.1.2) and Equation
(3.1.3) ensure that the respective utility is within the range of [0, 1]. Note that µVCF

is
bounded by µVE,des

to ensure that P (VCF ≤ VE,des) − 0.5 is always a positive quantity. All
other velocities are handled similarly.
Unfortunately, the calculation of probabilities is analytically intractable. Instead, a ratio-
nal approximation of the error function erf(x) is used. Refer to the Section A.2 of the
appendix for further details.

Generation of Lane Change Proposals

The utilities for a left and right lane change are calculated using Equation (3.1.2) and
(3.1.3) respectively. Next, triggering criteria are deĄned using these quantities on the
example of the left lane change proposal module. Two different mechanisms are discussed
subsequently. As shown in Figure 3.3, these are a memory and an accumulator mechanism.
The rationale behind this choice is as follows. Typically, lane change decisions occur very
fast if the driver spots a slow truck on his current driving lane. In such situations, the
utility for a lane change is rather high, and the memory mechanism triggers the lane
change quickly after the slow vehicle or truck is detected. On the other hand, drivers
tend to accept slight deviations from their desired velocity for longer times but eventually
change lanes to minimize travel time. The proposed accumulator mechanism is introduced
for this purpose, and its parameters are optimized such that it generally triggers after the
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memory. All aspects of the optimization are described in the next Section 3.2.
Every discrete algorithm timestep k, the corresponding utilities over the last nM,L steps
are averaged and result in ÛL(k) ∈ [0, 1]:

ÛL(k) =
k
∑

i=k−nM,L+1

UL(i)

nM,L

. (3.1.15)

This way, noise in the detections and hence Ćuctuations in the utility have less strong
implications and still lead eventually to a lane change proposal. The trigger itself is
deĄned using the indicator function:

TM,L = 1(ÛL(k) ≥ UT,L) :=







0, ÛL(k) < UT,L

1, ÛL(k) ≥ UT,L

, (3.1.16)

which means that the averaged utility ÛL(k) needs to be over a deĄned treshold UT,L ∈
[0, 1].
The discrete accumulator is governed by the following difference Equation:

UA,L(k) = UA,L(k − 1) + UL(k) − ζL1(UA,L(k) ≥ 0). (3.1.17)

Herein, UL(k) represents the utility for the current discrete algorithm timestep k and
UA,L(k) ∈ R+ is the accumulated utility. The rightmost term ζL1(UA,L(k) ≥ 0) models
a leakage with factor ζL ∈ [0, 1] that is active as long as the accumulator state is not
empty. The rationale behind this modeling choice is the following. There are situations
on highways in which the ego-vehicle has to deviate from its desired velocity temporarily.
A typical situation is a cut-in maneuver of a surrounding traffic participant in front of
the ego-vehicle. In this case, slowing down is crucial to maintain a safe distance to
the new leader vehicle. The utility for a lane change rises in that case; however, if the
deviation is only temporary, the leakage factor correctly models "forgetting" this event
after a certain time. It furthermore introduces another degree of freedom that is exploited
in the parameter optimization.
The trigger is again deĄned using the indicator function:

TA,L = 1(UA(k) ≥ UAT,L) :=







0, UA(k) < UAT,L

1, UA(k) ≥ UAT,L

, (3.1.18)

and hence it is checked that the accumulator state UA(k) is above a deĄned and optimized
threshold UAT,L.
Finally, the resulting trigger for proposal generation is realized using a logic OR operation.
In case of binary variables, this is simply the addition of both distinct trigger signals:

TL = max (TM,L + TA,L, 1) = max(T̃L, 1) ∈ ¶0, 1♢. (3.1.19)

The above exposition also applies analogously for right lane changes. Both the left and
right lane change proposals have equal priority and could be proposed simultaneously to
the automated vehicle driver.

26



3.2. Optimization of the ModuleŠs Parameters

3.2. Optimization of the Module’s Parameters

This Section introduces the optimization of all relevant parameters for the left and right
lane change proposal module described in the contribution at hand. The goal of the
developed module is to propose the driver of an automated vehicle a lane change when
the traffic situation suggests that an advantage results from it. Hence, to optimize its
parameters, a dataset is needed. The dataset should include all sensor measurements and
the trigger signal. It was collected using a driving simulator at the Institute of Control
Theory and Systems Engineering at TU Dortmund University. A total of 11 scenarios were
chosen. The study subjects are placed in varying traffic situations and should indicate
their lane change intention. All scenarios are designed to ensure that a lane change due to
dissatisfaction with the current driving lane will certainly be issued at some point. Refer
to Section A.3 of the appendix for further information about the study and scenarios.
Figure 3.5, Figure 3.6 and Figure 3.7 show the driving simulator study participantŠs timing
distributions represented as histograms. Additionally the Ągures also show probability
distributions that are Ątted to the data using Kernel Density (KDens) estimation (see
[Par62] and [Hol+15] for a more comprehensive treatment). The histograms suggest rather
large variances, depicting that the driving styles of the participants vary to some degree.
Moreover, the Ągures also include the optimized proposals of the developed module. The
results are further discussed subsequently.

Optimization Procedure and Results

The proposed module has several design parameters. Using the scenarios that are de-
scribed in Section A.3 of the appendix and the corresponding data of the driving-simulator
study, the free parameters are optimized in a brute-force fashion.
Note that the driving simulator study is limited in both the number of participants and
scenarios. Hence, it cannot be claimed that the optimized parameters work well for other
drivers that potentially have other driving styles. A larger dataset is needed to obtain
results that generalize well.
In the Ąrst step, a coarse search grid is used. Afterward, a Ąner grid is used around
the optimal parameter values that the Ąrst coarse optimization yielded. The histograms
of the lane change intention timing distributions and corresponding Ątted probability
distributions are shown in Figure 3.5, Figure 3.6 and Figure 3.7 for the left and right lane
change scenarios respectively.
Next, the parameter vectors to be optimized are introduced. The Ąrst step of the opti-
mization aims at the following parameter vector for the left lane change module:

ξM,L =
[

σvE,des,L
nM,L UT,L λ

]

⊺

. (3.2.1)

Therein σvE,des,L
represents the desired velocity standard deviation of the ego-vehicle, nM,L

the discrete timesteps k for averaging according to Equation (3.1.15), UT,L the treshold
of the memory trigger mechanism and Ąnally the politeness factor λ ∈ [0, 1] in Equation
(3.1.2). The second optimization aims only at the accumulator trigger module parts:

ξT,L =
[

ζL UAT,L

]

⊺

, (3.2.2)
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(b) Left lane change scenario S2.
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(c) Left lane change scenario S3.
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(d) Left lane change scenario S4.
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(e) Left lane change scenario S5.
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(f) Left lane change scenario S6.

Figure 3.5.: Timing distribution plots with corresponding Ątted probability distributions and

proposal timings of the optimized module for left lane change scenarios S1-S6, refer to Table

A.1 in the appendix. Herein, T ∗
M represents the proposal timing of the memory trigger and T ∗

A

of the accumulator trigger module.
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Figure 3.6.: Timing distribution plots with corresponding Ątted probability distributions and

proposal timings of the optimized module for the left lane change accumulator scenario SA, refer

to Table A.1 in the appendix. Herein, T ∗
A represents the proposal timing of the accumulator

trigger module.

28



3.2. Optimization of the ModuleŠs Parameters

10 15 20 25
0

0.1

0.2

0.3

Time T [s]

p
S

1
,R

(T
)

[
]

Human Timings
KDens Fit
T ∗

M

T ∗
A

(a) Right lane change scenario S1.
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(c) Right lane change scenario S3.
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(d) Right lane change scenario S4.

Figure 3.7.: Timing distribution plots with corresponding Ątted probability distributions and

proposal timings of the optimized module for right lane change scenario S1-S4, refer to Table

A.2 in the appendix. Herein, T ∗
M represents the proposal timing of the memory trigger and T ∗

A

of the accumulator trigger module.

with the leakage factor ζL ∈ R+ and the trigger treshold UAT,L, refer also to Figure 3.3.
The complete parameter vector is hence:

ξL =
[

ξ
⊺

M,L ξ
⊺

T,L

]

⊺

. (3.2.3)

Similar deĄnitions for the right lane change model hold:

ξM,R =
[

σ2
vE,des,R

nM,R UT,R γ1 γ2 γ3

]

⊺

, (3.2.4)

ξT,R =
[

ζR UAT,R

]

⊺

, (3.2.5)

ξR =
[

ξ
⊺

M,R ξ
⊺

T,R

]

⊺

. (3.2.6)

The optimization for the left and right lane change model is mathematically stated as
maximizing the log-Likelihood (JTM,L and JTM,R) of all respective scenarios:

JTM,L(ξM,L) =
6
∑

i=1

ln(pSi,L(TSi,L(ξM,L))), (3.2.7)

ξ∗
M,L = argmax

ξM,L

JTM,L(ξM,L), (3.2.8)

JTM,R(ξM,R) =
4
∑

i=1

ln(pSi,R(TSi,R(ξM,R))), (3.2.9)

ξ∗
M,R = argmax

ξM,R

JTM,R(ξM,R). (3.2.10)

Therein, pSi,L and pSi,R represent the respective timing probabilities in scenarios Si, L and
Si, R.
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Table 3.1.: Parameter optimization results regarding the memory trigger module.

Scenario-Likelihoods
σvE,des

N∗
M U∗

T λ∗ γ∗
1 γ∗

2 γ∗
3 ♣∆T ∗♣ p∗

S1 p∗
S2 p∗

S3 p∗
S4 p∗

S5 p∗
S6 J∗

TM
[

m
s

]

[ ] [ ] [ ] [ ] [ ] [ ] [s] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

Left 10.0 36 0.30 0.11 - - - 16.47 0.20 0.13 0.03 0.05 0.09 0.10 -15.04

Right 5.5 46 0.975 - 0.95 0.825 0.25 1.18 0.22 0.16 0.17 0.18 - - -6.85

The above formulation aims at maximizing the joint probability of the timings in all sce-
narios. First, ξM,L and ξM,R are optimized using the respective scenarios and therefore
datasets from the driving simulator study. SpeciĄcally, the optimization is carried out
using the kernel density Ątted probability distributions. Quantities with a star ()∗ sub-
sequently denote optimized values. After that, the remaining parts for the accumulator
trigger are optimized, again using a log-Likelihood formulation:

JSA,L(ξA,L) = ln(pSA,L(TSA,L(ξA,L))), (3.2.11)

JTA,L(ξA,L) = JSA,L(ξA,L) +
6
∑

i=1

ln(pSi,L(TSi,L(ξA,L))), (3.2.12)

ξ∗
A,L = argmax

ξA,L

JTA,L(ξA,L) (3.2.13)

subject to T ∗
Si,L,A ≥ T ∗

Si,L,M, i = 1, 2, . . . , 6.

Note here that a constraint is imposed such that the optimized proposal timings using
the accumulator trigger T ∗

Si,L,A are greater or equal than the ones of the memory trigger
mechanism T ∗

Si,L,M. The specially designed accumulator scenario is used in the case of the
left lane change model. Similarly, for right lane changes:

JTA,R(ξA,R) =
4
∑

i=1

ln(pSi,R(TSi,R(ξA,R))) (3.2.14)

ξ∗
A,R = argmax

ξA,R

JTA,R(ξA,R) (3.2.15)

subject to T ∗
Si,R,A ≥ T ∗

Si,R,M, i = 1, 2, 3, 4.

Table 3.1 shows the resulting optimized parameter values. The politeness factor λ indi-
cates that the lane change intention is mainly driven by dissatisfaction with the current
driving lane compared to the potential of the left adjacent lane. This was expected and
reasonable since the driving simulator study participants were informed that a subsequent
lane change behavior planning module ensures safety. This potentially led to the fact that
oncoming vehicles behind the ego-vehicle on the target lane were not that important com-
pared to the other factors in the Equation (3.1.2). However, since λ did not vanish, it still
helps model the lane change intention more accurately. Further, the Table indicates that
left lane change intentions are typically harder to model than those to the right lane. This
was already observed during the driving simulator study since all participants eventually
passed slow vehicles on the right before signaling their lane change intention. Thinking
about overtaking maneuvers, this behavior is reasonable and also observed in real traffic.
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Table 3.2.: Parameter optimization results regarding the accumulator trigger module.

σvE,des
ζ∗ U∗

AT λ∗ γ∗
1 γ∗

2 γ∗
3 ♣∆T ∗♣ J∗

SA J∗
TA

[

m
s

]

[ ] [ ] [ ] [ ] [ ] [ ] [s] [ ] [ ]

Left 10.0 0.03 17.37 0.11 - - - 16.48 0.23 -16.58

Right 5.5 0.2395 75.26 - 0.95 0.825 0.25 7.34 - -14.02

Using this strategy increases the probability of a successful and comfortable overtake.
Signaling the lane change intention too early might confuse and/or inĆuence the vehicleŠs
driver to be overtaken and result in accelerations that prevent being overtaken. Another
indication that left lane change intentions are harder to model than the ones to the right
is reĆected in the higher desired velocity standard deviation σvE,des

in Table 3.1. A higher
value means that the model is more uncertain about the lane change decision among all
scenarios. The results of the time difference concerning the mean timings of all study
participants and all respective scenarios:

♣∆T ∗
L♣ = ♣T ∗

SA − T SA♣ +
6
∑

i=1

♣T ∗
Si,L − T Si,L♣ = 16.47 s (3.2.16)

and

♣∆T ∗
R♣ =

4
∑

i=1

♣T ∗
Si,R − T Si,R♣ = 1.18 s (3.2.17)

underscore the good performance of the proposed module and reĆect the fact that lane
change intention to the right is easier to model. The mean deviation per scenario for the

left lane changes is
|∆T ∗

L
|

6
= 2.75 s.

Table 3.2 reports the results of the accumulator parameters. The optimization is done
using the specially designed accumulator scenario SA, refer to Table A.1 in the appendix.
Note that the memory module does not generate a trigger in this scenario because of
comparably low utilities, which is also reĆected in Figure 3.6 through the absence of the
circle denoting the memory trigger timing T ∗

M.
Figures 3.5 and 3.7 show the resulting timings when the proposed model is run on the
scenarios that are used in the driving simulator study. The results are convincing and
reĆect the study participantŠs timing distributions well. Figure 3.6 shows the result of the
special test scenario for the optimization of the accumulator. The result is satisfactory
since the trigger timing T ∗

A is only roughly 0.2 s later than the mean timing of all study
participants.
The driving style mainly determines the frequency of lane changes, especially for overtak-
ing slower vehicles. It could be beneĄcial to group drivers into at least the three classes
defensive, neutral and aggressive and obtain optimized model parameters for each class.
Even then, the application of the module in the vehicle should allow for easy adjustment
of the module to the driverŠs needs. The memory trigger and accumulator thresholds
could be used for this adaption since they directly inĆuence the frequency of lane change
proposals.
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3.3. Evaluation of the Discretionary Lane Change

Proposal Module

This Section discusses the application of the optimized model on real data from a ZF
Group test vehicle. The vehicle is equipped with four short-range radar sensors at the
corners, one long-range radar sensor at the front, and one front-facing camera system.
The tracking and fusion system estimates the state vectors of the surrounding traffic
participants and their corresponding uncertainties. This Section serves as an additional
application illustration of the proposed module but does not imply validity in all traffic
situations and for all drivers with various driving styles. All data were post-processed
for outlier removal and smoothing to enhance illustration. The data stream consists of
recorded data of an overtaking maneuver. First, the vehicle merges onto the highway,
and the driver switches on ACC with the current ego-vehicle velocity as set speed. The
set speed is increased over time. A slower truck (vCF ≈ 24 m/s) is in front of the ego-ve-
hicle and the driver eventually decides to overtake it. After the successful overtake, the
ego-vehicle drives on the left lane a certain time and eventually changes back to the right
lane.

The results for a lane change to the left are shown in the left column of Figure 3.8,
speciĄcally Figures (a), (c) and (e). The ego velocity vE and its desired velocity vE,des is
shown in Figure 3.8 (a). Finally, the utility of a lane change to the left UL and accumulator
state UA,L are shown over the global algorithm time. In the beginning, the ACC is switched
off. It is switched on at t = 2062 s global algorithm-time and vE,des = 26.48 m/s is set.
Note that it is assumed that the desired velocity corresponds exactly to the ACC set speed
that the driver chooses using the controls on the steering wheel. Afterward, the desired
velocity is increased in certain steps. Finally, at t = 2077 s, it is set to vE,des = 33.20 m/s.
The utility UL is shown in Figure 3.8 (c). Comparing it to Figure 3.8 (a), the rise starting
at t = 2065 s clearly corresponds to the jumps in the desired velocity. Figure 3.8 (e) shows
the accumulated utility UA,L. Inspection of Figure 3.8 (c) and (e) reveals that both the
triggers based on the memory and accumulator are set roughly 7 s earlier than the turn
indicator. Still, the earlier proposal seems appropriate. That is because the truck in front
of the ego-vehicle drives with a velocity of roughly vCF = 24 m/s. Comparing this to the
ACC set speed, refer to Figure 3.8 (a), that is set at t = 2065 s to roughly vE,des = 30 m/s

and at t = 2072 s then to vE,des = 32 m/s, there is obviously an utility to change to the
left lane in order to drive with the desired velocity, also clearly reĆected in Figure 3.8 (c).
It can also be argued that the intention to change lanes was probably determined earlier,
and the turn indicator was only set after inspection of the traffic situation. Finally, the
lane change intention is a hidden variable that cannot be measured. There is always a
certain mismatch between the observed variable, the turn indicator state, and the actual
intention. Especially in a modular automated driving system, the safety inspection is part
of the subsequent lane change behavior planning module such that an earlier proposal can
be appropriate. There is a mismatch even when the vehicle is manually driven because
the turn indicator state will be switched on after the driver conducts the manual safety
inspection.

The left lane change discussed in Figure 3.8 is part of an overtaking maneuver. The
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corresponding right lane change and relevant signals are shown in the right column of
Figure 3.8, speciĄcally Figures (b), (d), and (f). The desired velocity is still set to vE,des =

33.20 m/s as can be seen in Figure 3.8 (b). There are slower vehicles on the right lane in
front of the ego-vehicle. In light of this fact, it is reasonable that the utility UR does not
reach a condition to trigger the memory module. Part of the reason is that during the
driving-simulator study, no lane changes to the right were observed when slower vehicles
were driving on the right lane resulting in a rather high threshold for the memory trigger.
It can be seen in Figure 3.8 (d) and (f) that the turn indicator is switched to the right at
roughly t = 2147 s global algorithm-time. At this point, there is still a substantially slower
vehicle concerning the desired ego-velocity on the right lane. This vehicle is overtaken
Ąrst, and the lane change starts later at t = 2164 s. The accumulator reaches the trigger
condition at t = 2160 s again, resulting in a satisfactory result for the lane change to
the right. In this case, it is questionable if switching on the turn indicator state this
early when the intention to overtake a vehicle Ąrst is a sensible decision of the driver.
In contrast, the postponed proposal seems sensible to not confuse surrounding traffic
participants. Algorithm runtimes are of great importance for commercial applications in
automated vehicles. The proposed module achieves a runtime of

trun = µrun ± σrun = 3.48 µs ± 1.77 µs (3.3.1)

measured on a standard desktop PC (i5-6500, 16GB RAM). This indicates the low com-
putational complexity and allows for easy integration into automated vehicle software
systems.
It is emphasized that the above illustration does not substitute a complete acceptance
test of the proposed module. A much larger dataset is needed for the optimization and
validation. Finally, comparing timings of the turn indicator to the proposals of the module
is also not the ideal metric to assess the performance of the proposed module, as was
argued in the work at hand. This is because the turn indicator is switched on after a
safety evaluation by the driver. Comparing this to the task description that was given to
the driving simulator participants, refer to Section A.3, the mismatch becomes obvious.
Instead, the acceptance of the module by the driver of the automated vehicle is of much
higher importance. This needs to be analyzed in the future.
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Figure 3.8.: Results of the optimized lane change module applied on real data from a ZF Group

test vehicle. The left and right column represent a lane change to left and right respectively.

They are part of an overtaking maneuver.
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Accurate trajectory predictions are crucial for automated driving software systems. Using
this information can increase passengerŠs comfort due to timely reaction to possible scene
evolutions. Most approaches in the literature predict on an individual traffic participant
basis. There are two problems with that. The Ąrst is the loss of causality leading to the
prediction of collisions, as will be explained in this Chapter. Furthermore, an unnecessary
combinatoric explosion happens that makes behavior planning more difficult. This is
because it is not obvious how to handle the individual predictions and multimodality.
Framing the problem instead as a situation prediction means that trajectory ensembles
are predicted instead. For such interactive situation prediction, the existing concept
[Wis+18] is further developed to remove some of its disadvantages. It is an approach based
on Monte Carlo simulations for highway situations. All surrounding vehicles are modeled
using longitudinal car-following and lane change models from the Ąeld of microscopic
traffic simulation. The model parameters are represented using probability distributions.
Finally, the parameters for the simulations are probabilistically assigned values according
to the distributions. [Wis+18] is a vehicle-speciĄc trajectory prediction. ScientiĄcally,
the next step thus aims at transforming it into a situation prediction.
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This can be done by topological clustering of the overall situation. Multimodality is
reĆected in topologically different situation developments. The location of the module is
shown in the above Ągure.

4.1. Prediction Architecture Adaptions

This Section Ąrst starts with a general high-level discussion of the situation prediction
algorithm. More details can be found in [Wis+18]. Afterward, the most relevant adaptions
of the original concept are discussed. Those include a reworked clustering mechanism and
a different output representation.

Monte Carlo Simulations

In the following, a trajectory is deĄned as the following set τ :

τ = ¶
[

L(t0) N(t0))
]

⊺

,
[

L(t1) N(t1))
]

⊺

, . . . ,
[

L(tnτ
), N(tnτ

)
]

⊺♢. (4.1.1)

Here tk corresponds to a discrete-time variable on a uniform grid, L represents the longi-
tudinal and N the lateral coordinate in a curvilinear coordinate system. A total of nτ + 1

points are used. Let the number of surrounding road users be nO and thus the total
number of road users including the ego-vehicle nV = 1 + nO. Next, behavioral models for
the vehicles are speciĄed. They typically are taken from the Ąeld of microscopic traffic
simulation. For example, a well-tested combination is the IDM (Intelligent Driver Model)
[Tre+00] vehicle following model together with the MOBIL (Minimizing Overall Braking
decelerations Induced by Lane changes) lane change model [TK09]. These are used in
[Wis+18]. Now let θi be the set of all model parameters of the selected behavioral models
of vehicle i. These parameters usually have interpretable meanings and are thus readily
parameterizable for a large class of models. In particular, it is possible to use them to
represent defensive and offensive behaviors. In [Wis+18], vehicle-individual trajectory
prediction was achieved by randomizing the parameters θi of all agents in terms of Monte
Carlo simulations using a total of nM simulations. In the following, the main steps as
used in the thesis at hand are formulated mathematically.
First, a Lane Change Prediction (LCP) is performed for all surrounding road users. The
result is a multinoulli distribution represented by the random vector:

M =
[

P (LK) P (LCL) P (LCR)
]

⊺

(4.1.2)

with the probabilities P (LK) of lane-keeping, P (LCL) of lane change left, and P (LCR) of
lane change right. The resulting probabilities are considered in the Monte Carlo simulation
so that a very likely lane change is actually executed in the simulation. Subsequently,
a randomization of the model parameters of all agents is performed. For this purpose,
probability density functions are deĄned

p(θi) = p(
[

vdes,i λi

]

⊺

) ∀ i = 1, 2, . . . , nV, (4.1.3)
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with the IDM desired velocity parameter vdes,i and MOBIL politeness λi for each vehicle
i. Both parameters are sampled using truncated gaussian distributions with empirically
set boundaries:

p(θi) = p(vdes,i) · p(λi) (4.1.4)

= trunc(N (µvdes
, 0.1µvdes

), 0.85µvdes
, 1.15µvdes

) · trunc(N (0.35, 0.15), 0.0, 0.7).

The truncation operator:

p̃(θ) = trunc(p(θ), min(θ), max(θ)) (4.1.5)

allows to impose boundaries on a randomized parameter, here θ. p̃(θ) is zero below min(θ)

and above max(θ) and it is rescaled within the interval [min(θ), max(θ)] to ensure that
the integral of p̃(θ) is 1. Accordingly, nM times model parameters are drawn for each
agent. Thus, the result of the Monte Carlo simulations is a total of nM trajectories τi for
each vehicle i. Furthermore, each Monte Carlo run is collision-free since the IDM model
ensures this.
Lastly, it is possible to force the ego-vehicle to do a lane change that fulĄlls certain
constraints on Time Headway and Time-to-Collisions. It starts the lane change at the
earliest possible moment when the constraints are fulĄlled. That realizes counterfactual
reasoning and answers the question: what if? from the perspective of the ego-vehicle.
Moreover, as will be shown in Chapter 8, it enhances robustness since breaking maneuvers
of following vehicles on the target lane are anticipated.

Situation Clustering and Uncertainty-Awareness

First, the orginal clustering mechanism of [Wis+18] based on the DBSCAN algorithm,
refer to [Est+96], is discussed. There, a feature matrix Fτ,i is created for each vehicle
i. The matrix has nM rows, one for each Monte Carlo simulation. It has two columns.
The Ąrst column holds the Ąnal longitudinal coordinate Li,j(tnk

) of vehicle i and Monte
Carlo simulation j. The second column similarly holds the respective lateral coordinate
Ni,j(tnk

). DBSCAN is then applied to the feature matrices Fτ,i for all vehicles i. Each
Monte Carlo simulation j is assigned to one cluster. The clusters l are represented using a
latent variable Zi =

[

Zi,1 Zi,2 . . . Zi,nc,i

]

⊺

for each vehicle i. The empirical probability
of a cluster l is then given by:

P (Zi,l) =
ni,l

nM

, (4.1.6)

with ni,l the total number of Monte Carlo simulations belonging to cluster l. Hence
a multinoulli probability distribution results for the latent variable Zi. The mean and
variance of the longitudinal and lateral positions as well as velocities are estimated based
on all trajectories belonging to the cluster per timestep k. Above clustering mechanism
results in vehicle-individual trajectory predictions τ̂i,l.
The following example illustrates the problems of such vehicle individual trajectory pre-
dictions. Consider the traffic scene in Figure 4.1. The semi-transparent conĄguration
corresponds to the initial scene. Vehicle O1 on the rightmost lane is assumed to drive
with a lower velocity compared to all other vehicles in the scene. This might motivate
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Trajectory Prediction 1 Trajectory Prediction 2

Figure 4.1.: Initial traffic scene (semitransparent) and its evolution with a total of four vehicles.

The ego-vehicle is depicted in dark-blue and surrounding vehicles in light-blue. Two possible

trajectory predictons are shown for vehicles O2 and O3.

vehicle O2 to do a lane change to the middle lane. Vehicle O3 wants to prevent a collision,
and causality ensures that if O2 changes lane, O3 will remain on its lane. On the other
hand, if O2 decided to rather slow down instead of changing lane, O3 might adhere to the
german right driving rule and change to the middle lane.
The above description was based on causality and trajectory ensembles, and both variants
seem likely. Prediction on a vehicle-individual basis removes the above causal reasoning.
In this case, one is left with two trajectory predictions for both vehicles O2 and O3

represented with different line styles in Figure 4.1. It is obvious that in this case, trajectory
prediction 1 of vehicle O2 collides with the prediction 2 of vehicle O3. This effect was
observed and analyzed in [Wis20].
Above problems with predicted collisions do not arise with the situation clustering ap-
proach proposed in the thesis at hand. For example, Figure 4.2 illustrates an on-ramp
merging traffic scene consisting of four vehicles. In both situation prediction 1 and 2,
vehicle O1 changes lanes to enter the highway. However, the reaction of vehicle O2 differs
among both situation predictions. In one case, O2 brakes to adapt its velocity to the
merging vehicle O1. However, in situation prediction 2, O2 decides to change lane to the
left to avoid breaking.
The developed situation clustering mechanism can distinguish such situation evolutions
correctly. It uses a very simple mechanism as follows. Assume that the trajectories for all
vehicles i and all Monte Carlo simulations j are available. The Ąrst step consists of the
construction of a feature matrix FS. Its rows correspond to the Monte Carlo simulations
j. For each simulation j, it consists of a total of two columns per vehicle, hence 2 · nV in
total. These are the vehicles Ąnal lane ID IDLane,i,j(tnk

) and the ID of its leader vehicle
(0 if none) IDLeader,i,j(tnk

) with the Ąnal time tnk
, refer to Figure 4.2. Instead of applying

a clustering algorithm on the feature matrix FS, its unique rows and their frequency are
determined. A user-deĄned number nC of situation clusters with the highest frequency of
occurrence are chosen from all unique ones.
Hence there is exactly one latent variable ZS =

[

ZS,1 ZS,2 . . . ZS,nc

]

⊺

for the whole
situation that follows a multinoulli probability distribution P (ZS). The probability mass
of cluster l is calculated as:

P (ZS,l) =
nl

nM

. (4.1.7)
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Lane 1
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Figure 4.2.: Illustration of an initial highway on-ramp traffic situation. Vehicle O1 wants to

merge onto the highway. There are two typical evolutions of this traffic scene, one where O2

assists merging by changing lane and the other where it breaks to adapt its velocity and create a

gap. This results in two distinct situation predictions that are distinguished by the Ąnal vehicle

conĄguration on all lanes.

Likewise, a joint probability density function for the trajectories of all agents results for
each mode l of the multinoulli distribution:

p(τ̂0,l, τ̂1,l, . . . , τ̂nV,l♣ZS,l). (4.1.8)

In it, τ̂i,l represents the predicted trajectory of vehicle i. The index 0 represents the ego-ve-
hicle. The latent variable ZS,l reĆects the situation mode l. The outcome of the Monte
Carlo simulation is used to calculate the mean and variance of the predicted positions
independently for the longitudinal and lateral coordinate per situation mode l.
Furthermore, a multinoulli distribution results for the future lane ID (IDF S,i) of the road
users:

p(IDF S,i♣ZS,l). (4.1.9)

This information is valuable for uncertainty-aware behavior planning to derive safety
constraints. It could also be used in a lane change timing heuristic to aid the behavior
planning of the ego-vehicle.

4.2. Desired Velocity Regression

This Section aims to enhance the original work [Wis+18] by incorporation of a desired
velocity regression. It is developed and evaluated using the highD dataset. Originally, the
situation prediction concept makes a rather strong assumption that all traffic participants
want to keep their currently observed velocity. One situation where the adaption of the
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desired velocity might be beneĄcial is when predicting overtaking maneuvers. This is
because the desired velocity is also indirectly used in the MOBIL lane change model to
trigger a lane change, refer to [TK09] for more details. MOBIL will likely issue a lane
change to overtake if a vehicle follows a slower vehicle that drives with a substantially
lower velocity than the desired velocity.
The above ideas motivate the development of a mechanism to adapt the probability dis-
tribution p(vdes,i) of each vehicle i used in the Monte Carlo simulations to increase the
situation prediction accuracy. The approach is developed using the highD dataset, refer
to [Kra+18]. Its inĆuence on the prediction accuracy will be described in Section 4.3
whereas, in this Section, the regression problem and results are the focus.
The regression task is deĄned as follows:

vdes,j = fγ(fv,j) + ϵj = v̂des,j + ϵj. (4.2.1)

Herein j refers to the index of the data, fv,j corresponds to the input features and fγ(fv,j)

is the regression function depending on a parameter vector γ. Finally ϵj accounts for
modelling errors due to the particular choice of fγ and statistical noise in the data. The
function f is determined by the choice of method. In the thesis at hand, a Support
Vector Machine (SVM) [CV95], its Bayesian counterpart Relevance Vector Machine
(RVM) [Tip01] and three ensemble methods are used. The chosen ensemble methods are
Gradient Boosted Trees (GBT) [Fri00], a Random Forest (RF) [Bre01] and Extra Trees

(ET) [Geu+06]. Their implementation from the scikit-learn [Ped+11] library are used.
Each of above methods have different parameter vectors γ. Those are optimized using
Ąve-fold crossvalidation and a grid search. The optimization problem is the following:

γ∗ = argmin
γ

fL(¶vdes,j♢nD
j=1, ¶fγ(fv,j)♢nD

j=1) (4.2.2)

= argmin
γ

fL(¶vdes,j♢nD
j=1, ¶v̂des,j♢nD

j=1) (4.2.3)

with a chosen loss function fL. Most commonly, a least squares loss is chosen:

fL(¶vdes,j♢nD
j=1, ¶v̂des,j♢nD

j=1) =
nD
∑

j=1

(vdes,j − v̂des,j)
2. (4.2.4)

Another very common one is the Huber loss [Hub64].
Refer next to Figure 4.3 for an illustration of the desired velocity regression task and
dataset creation based on the highD data. It contains traffic scenes of a 400 m two or
three-lane straight highway stretch. A dataset consisting of 6557 training and 1640 test
samples is created. The vehicle that should be predicted is referred to as the subject
vehicle. The vehicle needs to be observed for at least 2 s to build up the features. There
are the same amount of lane changes and lane-keeping maneuvers in the dataset for dataset
balancing reasons. The target desired velocity vdes is taken to be the last observed velocity
of a vehicle. Figure 4.3 shows one typical example where the subject vehicle overtakes the
slower vehicle O2 and speeds up to match the speed of vehicle O1. On the other hand,
O1 breaks slightly to show courtesy.
The goal of the regression is to not only predict a point estimate v̂des = µ̂vdes

of the desired
velocity but instead also the standard deviation σ̂vdes

. Together, both estimates comprise
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Subject

O1

O2

Figure 4.3.: Illustration of the desired velocity regression task using a typical highway driving

situation. The subject vehicle overtakes a slower vehicle O2 and adapts its speed accordingly.

It is the goal to predict a gaussian probability distribution that can be used in the Monte Carlo

situation prediction framework.

the sufficient statistics of a Gaussian probability distribution p(v̂des) that in turn can be
used for sampling within the Monte Carlo situation prediction framework described above.
Not only the choice of method for the regression is important, but also the chosen features
fv,j play a crucial role. Three different types of features are used. First, the dynamic
features at time tk are represented by the vector:

fdyn,tk
=
[

ytk
− yCLC,tk

ẋtk
ẏtk

ẍtk
ÿtk

]

⊺

. (4.2.5)

All quantities are referenced in the global highD coordinate frame, and yCLC,tk
represents

the y coordinate of the center of the current lane at time tk. A compact representation of
the relations to other surrounding vehicles are obtained using Time-to-Collisons (TTC):

fTTC,tk
=

[

TTCF,tk
TTCB,tk

TTCLF,tk
TTCLA,tk

TTCLB,tk
TTCRF,tk

TTCRA,tk
TTCRB,tk

]

⊺

(4.2.6)

where F, B and A refer to front, back and alongside whereas L and R refer to left and
right. It uses the following deĄnition in global coordinates at a query time tq:

TTC(tq) =
xL(tq) − xF(tq)

ẋF(tq) − ẋx(tq)
, (4.2.7)

with F and L denoting the follower and leader vehicle respectively. A default value of
1000 is used in case of missing ROI vehicles or inĄnite Time-to-Collision values.
Finally, the third feature is the vehicle type V T which is set to 0 for cars and to −1 for
trucks. Above features are evaluated at certain timesteps with a 0.2 s stepsize as follows:

tk = −k · 0.2 s, k = 0, 1, . . . , nh = 10. (4.2.8)
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Table 4.1.: Results of the desired velocity prediction. Abbrevitations: SVM: Support Vector

Machine, RVM: Relevance Vector Machine, RF: Random Forest, ET: Extra Trees, GBT: Gra-

dient Boosted Trees.

Exp. Var MAE RMSE MedAE R2 Jvdes

Regressor Estimators [m2

s2 ] [m
s

] [m
s

] [m
s

] [ ] [ ]

v̂des,j = v0,j - 0.86 1.91 2.77 1.37 0.84 -
SVM - 0.89 1.39 2.26 0.82 0.89 -
RVM - 0.88 1.51 2.38 0.95 0.88 -2.43

RF 250 0.91 1.30 2.03 0.79 0.91 -1.98
ET 300 0.91 1.31 2.07 0.83 0.91 -1.97

GBT 250 0.92 1.23 2.01 0.75 0.91 -2.60

The complete feature vector for example j is hence:

fv,j =
[

V T f
⊺

dyn,t1
f
⊺

TTC,t1
f
⊺

dyn,t2
f
⊺

TTC,t2
. . . f

⊺

dyn,t10
f
⊺

TTC,t10

]

⊺

, (4.2.9)

and uses a total history of 2 s. The implementation of the feature calculation is built upon
[Kra20] and [Chi19].
The results of the desired velocity regression task are shown in Table 4.1. All methods
are compared to the baseline when always predicting the initial velocity v̂des,j = v0,j.
The Table shows that all learning-based methods outperform the baseline in all metrics.
For mathematical deĄnitions of these standard regression metrics, refer to appendix A.5.
Gradient Boosted Trees perform best on all metrics. The Relevance Vector Machine per-
forms only slightly worse on the probabilistic Jvdes

metric deĄned as follows for Gaussian
probability distributions:

Jvdes
=

nD
∑

i=1

−1

2
ln(2π) − 1

2
ln(σ2

v̂des
) − 1

2σv̂des

(vdes,i − v̂des,i)
2 (4.2.10)

compared to Gradient Boosted Trees. Both Random Forest and Extra Trees perform
worse in Jvdes

sense. Closer inspection revealed that this is because both approaches are
more uncertain in their predictions and provide a comparably high predicted variance.
Due to the results, the inĆuence of using Gradient Boosted Trees for generating the desired
velocity probability distribution for use in Monte Carlo simulations will be evaluated in
the next Section 4.3 on the highD dataset.

4.3. Evaluation of the Situation Prediction

This Section starts with an evaluation using simulation data to compare the modiĄed
Monte Carlo prediction model with the original one described in [Wis+18]. It will be
shown that both approaches have similar prediction accuracies on simulation data. At
the same time, the adapted variant removes the disadvantage of predicting collisions and
avoiding combinatoric explosions due to using only one latent variable ZS.
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Figure 4.4.: Snapshot of one examplary three lane highway traffic scenario with a total of seven

vehicles. The dark-blue vehicle with ID 0 represents the ego-vehicle that observes the traffic

scene. Only detected vehicles marked with a blue dot are predicted. Their driven trajectories

are shown and colored dots are placed with 5 s spacing.

Table 4.2.: ConĄgurations of the Monte Carlo prediction approach used for the evaluation on

the simulation dataset.

Situation Prediction Trajectory Prediction

ConĄguration C1-S C2-S C3-S C4-S C1-S C2-S C3-S C4-S

Monte Carlo simulations 50 50 25 25 50 50 25 25
LCP Treshold None 0.65 None 0.65 None 0.65 None 0.65

Evaluation using Simulation Data

The evaluation is based on data that is created using the DESIM simulation environment,
refer to [Wis+16]. Variability is introduced by using probability distributions to alter the
initial placement of all vehicles in the scene and their driver model parameters. A total of
3529 trajectories are created this way. One example traffic scene is shown in Figure 4.4.
Therein also the driven trajectories of the predicted vehicles are shown.

The original work is called trajectory prediction due to its vehicle-individual predictions,
whereas the adapted model is called situation prediction. A total of four different conĄg-
urations, C1-S to C4-S, are evaluated as shown in Table 4.2. The letter S reĆects that
evaluation is conducted using simulation data compared to the results presented later
using the highD dataset. Two parameters are varied. One is the number of Monte Carlo
simulations, using 25 and 50. The other is an imposed threshold on the lane change
prediction results. If no threshold is imposed, then the original mechanism described in
[Wis+18] is used that samples initial lane change trajectories for the vehicles based on the
probabilities of the classes Lane-Keeping P (LK), Lane Change Left P (LCL) and Lane
Change Right P (LCR). If a threshold is imposed, that means that if the probability for
a speciĄc class exceeds it, that speciĄc maneuver is always imposed initially.

Two baseline methods are also included in the evaluation. One is a Constant Velocity
(CV) prediction that takes into account the heading of the vehicles. Due to the sen-
sor simulation, there is noise in the estimated heading angle, increasing lateral errors
over the prediction horizon. To circumvent this error and allow for a fair comparison,
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Chapter 4. Uncertainty-Aware Situation Prediction

the second baseline approach neglects the heading and predicts Constant Velocity with
Lane-Keeping (CV-LK). Predictions are evaluated up to 10 s. The evaluation results of
conĄgurations C3-S and C4-S with reduced number of Monte Carlo simulations are pro-
vided in the appendix A.3, Table A.3. A probabilistic metric abbreviated P (τi♣¶τ̂i♢) is
deĄned as follows for the trajectory prediction of vehicle i:

P (τi♣¶τ̂i♢) = P (τi♣¶τ̂i♢nc,i

l=1) =
nc,i
∑

l=1

P (Zi,l)P (τi♣τ̂i,l) (4.3.1)

and for the situation prediction:

P (τi♣¶τ̂i♢) = P (τi♣¶τ̂i♢nc

l=1) =
nc
∑

l=1

P (ZS,l)P (τi♣τ̂i,l) (4.3.2)

Its interpretation is the probability of the driven trajectory τi given the predictions τ̂i. On
the other hand, the notation P (τ ♣¶τ̂♢) is used when the set of trajectories of all vehicles
is considered and is used in subsequent results tables 4.3 and 4.7. Note also that the
RMSE and MAE metrics provided in the tables use the probabilities of the situation
modes P (ZS,l) for weighting and hence correctly consider the multimodality.
Table 4.3 shows that both the situation prediction and trajectory prediction provide
comparable results for their respective conĄgurations. Imposing a lane change prediction
threshold leads to better results on simulation data. Notably, the lateral errors of the
constant velocity baseline exceed the errors of all other approaches. While the situation
and trajectory prediction approaches using Monte Carlo simulations perform better in
the probability metric, they lack behind the constant velocity lane-keeping baseline in
almost all other metrics. It is concluded that this is a particularly strong baseline and
the reason why this approach is often applied in practice. However, it is interaction-free
and cannot be used for counterfactual reasoning, as it is used later in Chapter 6 to derive
an interaction cost. For interaction-aware lane change planning, the situation prediction
approach is hence the most suitable.

Evaluation using highD Data

The highD dataset, refer to [Kra+18], is a dataset of naturalisitic vehicle trajectories
recorded on german highways using a dronge. A straight stretch of a german highway
is recorded spanning a total of 420 m distance. Vehicles are tracked and using image
processing and the vehicle states including positions and velocities are provided for each
frame in the dataset. The usage of this data allows the comparison of the situation
prediction performance of the approach described in this Section to other variants from
literature.
For the evaluation of the prediction methods on the highD dataset, a lane change clas-
siĄer needs to be developed Ąrst, refer to the original work [Wis+18]. Former situation
prediction results use the classiĄer from [Wis+18] that is trained on simulation data.
The dataset used for this task is shown in Table 4.4. It is approximately balanced using
undersampling of the majority lane-keeping class.
The metrics are described in the appendix A.5 and consist of the standard ones used for
the evaluation of classiĄers. As in the case of the desired velocity prediction described
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Chapter 4. Uncertainty-Aware Situation Prediction

Table 4.4.: Dataset based on highD data used to train lane change prediction classiĄers.

LK LCL LCR

Train 21552 16905 2401
Test 5434 4061 720

Table 4.5.: Results of various classiĄers based on the test data.

LK LCL LCR

ClassiĄer Estimators Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 ACC BAC

SVM - 0.94 0.89 0.91 0.92 0.93 0.93 0.70 0.94 0.81 0.91 0.92
RF 300 0.94 0.97 0.95 0.96 0.94 0.95 0.95 0.88 0.92 0.95 0.93
ET 350 0.93 0.96 0.94 0.96 0.92 0.94 0.94 0.89 0.91 0.94 0.92

GBT 350 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.89 0.92 0.96 0.94

above, a Support Vector Machine (SVM), Random Forest (RF), Extra Trees (ET), and
Gradient Boosted Trees (GBT) are trained using Ąve-fold cross-validation and a grid
search for hyperparameter tuning. The same features are used as in the regression task,
refer to Equation (4.2.9). The classiĄcation results are shown in Table 4.5. Besides the
notable worse performance of the SVM in the precision and F1 metric in the lane change
right class, all results are comparable. There are slight advantages for Gradient Boosted
Trees that were also the case in the desired velocity regression task. Hence, it was used
for further analysis within the Monte Carlo situation prediction approach on the highD
data. The confusion matrix in Figure 4.5 shows a strong main diagonal. Lane changes
left and right are never confused by the algorithm. However, a certain amount of lane
changes are assigned to the lane-keeping class and vice versa.

Table 4.6 shows the used conĄgurations of the Monte Carlo situation prediction approach.
The letters hD distinguish the conĄgurations from the ones used in the simulation. Note
that the desired velocity regression using Gradient Boosted Trees (GBT Reg.) as de-
scribed in Section 4.2 is also evaluated against the baseline of simply using a probability

LK
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Figure 4.5.: Confusion matrix of the Gradient Boosted Trees classiĄer on the test data.
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Table 4.6.: ConĄgurations of the Monte Carlo prediction approach used for the evaluation on the

highD dataset. Abbreviations: LCP: Lane Change Prediction, GBT: Gradient Boosted Trees

Situation Prediction

ConĄguration C1-hD C2-hD C3-hD C4-hD

Monte Carlo simulations 50 50 50 50
LCP Treshold None 0.65 None 0.65

v̂des,i v0,i v0,i GBT Reg. GBT Reg.

distribution with the mean set to the initial velocity v0.
Some results for state-of-the-art Deep Learning-based trajectory prediction approaches
are taken from [Krü+20]. However, those approaches likely use a different set of data
compared to the one used here. Still, the results will most likely generalize, and a compar-
ison is therefore possible. All results are shown in Table 4.7. Note further that [Krü+20]
does not provide results for the probability metric, and the prediction horizon ends at 5 s.
First of all, the results clearly indicate that, while the desired velocity regression provides
improved results on the regression task itself compared to the baseline v̂des,i = v0,i, it
leads to worse results when used in the Monte Carlo situation prediction. An evaluation
of the RMSE and MAE for the regression on this particular dataset also showed a clear
advantage of the regression approach compared to using the initial velocity:

RMSEv0
= 4.44 m/s,

RMSEv̂des
= 3.20 m/s,

MAEv0
= 2.95 m/s,

MAEv̂des
= 2.56 m/s.

(4.3.3)

The hypothetical reason for worse situation prediction results is that the vehiclesŠ pre-
dicted movements are more strongly inĆuenced by the scene conĄguration than the de-
sired velocity. Even a comparably high desired velocity will not result in speeding up
if a vehicle follows a slower vehicle. The conclusion is that such simple desired velocity
regression does not lead to better results. Future work should analyze a different way
of setting the desired velocity regression targets by optimizing them using the Intelligent
Driver Model. Using an optimization mechanism to choose the desired velocity minimizes
the error of a trajectory generated using the intelligent driver model compared to the
driven trajectory. This is left for future work. The results here indicate that the desired
velocity is an important parameter and must be chosen very carefully. It inĆuences the
prediction performance strongly.
Another important observation from Table 4.7 is that state-of-the-art Deep Learning-based
approaches outperform the Monte Carlo situation prediction by a comparably big margin.
The most likely reason for this is that the learning objectives better reĆect the prediction
task. Those approaches directly optimize the negative log-likelihood NLL and hence learn
to predict the right uncertainty that reĆects the data best, refer for example to [DT18].
On the other hand, the Monte Carlo approach relies on user-deĄned sampling distribu-
tions that are not optimized and reĆect a prior belief. In turn, this leads to inferior
performance.
Yet, the approach has other advantages that make it a valid choice for the application
in current generation automated driving software systems. Those are its interpretability
and scalability. In addition, it can be easily tailored to the target hardware platform by
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reducing the number of Monte Carlo simulations. But most importantly, it allows coun-
terfactual reasoning as used in Section 6 to enable interaction-awareness by conditioning
the situation prediction on the ego-vehicle trajectory. The Monte Carlo approach allows
this easily, whereas such functionality is currently the focus of many research works for
Deep Learning-based approaches.
Some results on the highD dataset using the situation prediction are shown in Figure 4.6
focusing only on the prediction of the dark-blue vehicle. The uncertainties are shown as
ellipses. The black ellipses correspond to the most likely cluster, the purple to the second
most likely, and turquoise to the least likely one. Driven trajectories are shown as solid
black lines. A black circle indicates the positions in 2 s time spacing. Diamonds are used
in the case of predictions. Both examples 4.6a and 4.6b represent good examples where
the most likely cluster corresponds to the driven trajectory. In contrast 4.6c and 4.6d
show examples where this is not the case. However, the driven trajectories are correctly
predicted as the second and third most likely, respectively. This is a strength of predicting
several situation evolutions jointly. Notice that in some cases, the clusters nearly overlap.
That is typical when working with situation predictions and reĆects that any predicted
vehicles can lead to a different Ąnal traffic conĄguration and, hence, create another cluster.
Refer to Figure A.5 in appendix A.4 for a threedimensional illustration of all clusters of
example 4.6a.
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Chapter 4. Uncertainty-Aware Situation Prediction
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(b) Exemplary prediction result 2.
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(c) Exemplary prediction result 3.
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(d) Exemplary prediction result 4.

Figure 4.6.: Four examplary traffic scenes of the highD dataset for the illustration of the Monte

Carlo situation prediction results. Driven trajectories are shown as solid black lines. A black

circle indicates the positions in 2 s time spacing. Diamonds are used in the case of predictions

with the same temporal spacing.
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This Chapter describes the spatiotemporal maneuver identiĄcation, refer to the above
Ągure for its location within the architecture of the thesis at hand. It uses Polygon
Clipping to derive spatiotemporal free space for adjacent lanes. A total of three variants
are described in this Chapter. The Chapter is largely based on the publications [Sch+19a]
and [Sch+19b].

5.1. Fundamental Maneuver Identification Concept

This Section introduces the spatiotemporal maneuver identiĄcation. It consists of the
transformation of the traffic scene to a curvilinear coordinate frame, refer to Section 2.2
of Chapter 2, and a scene analysis based on Polygon Clipping

The motivation to use curvilinear coordinates for automated driving is to exploit road
structure. In this new frame, tube-like traffic scenes always appear as straight scenes to
achieve uniĄed handling of many different scenarios. The coordinate frame origin, subse-
quently denoted as (L, N), is attached at X = 0 m on the chosen reference lane marking.
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Chapter 5. Spatiotemporal Lane Change Maneuver IdentiĄcation

The Lanelet pseudo distance from [Ben+14] is used for the transformation of lane mark-
ings and predicted trajectories of surrounding traffic participants since transformed paths
remain continuous, and it fulĄlls runtime requirements.

Lane-discrete Spatiotemporal Free Space Description

One central contribution of the approaches presented here is the Polygon Clipping in the
spatiotemporal domain to obtain lane change variants efficiently. An illustration of the
interSection of two polygons is shown in Figure 5.1a. The operations interSection (∩),
union (∪) and difference (\) are applied using an adaption of Vattis Polygon Clipping
algorithm, refer to [Vat92], [Mur04] and [Höl06].
Consider the right part of Figure 5.1. The light-blue area is the ego lane space ahead and
a rectangle in (L, t) domain, up to some limits Lmax and tmax. This is represented by the
polygon:

PSL = ¶
([

LSL,j tSL,j

]

⊺
)nSL

j=0
♢, (5.1.1)

where the subscript SL is short for start lane. A polygon is a closed polygonal chain of a set
of points

[

Lj tj

]

⊺

that are traversed in mathematical positive direction. On the current
ego-vehicle lane drives one traffic participant in front of it. If, for example, this vehicle
drives with constant velocity L̇, it occupies the dashed area in the (L, t) spatiotemporal
domain on the ego lane in the lower right part of Figure 5.1. This is mathematically
represented by the polygon:

POTP = ¶
([

LOTP,j tOTP,j

]

⊺
)nOTP

j=0
♢. (5.1.2)

The subscript OTP is short for all Other Traffic Participants of a scene, except the
ego-vehicle. Note that the slope in Figure 5.1 (right) corresponds to the vehicleŠs velocity.
Safety margins can be directly accounted for by extending the vehicleŠs occupied area.
To get the free space on the ego lane, the difference operator (\) is applied between the
ego lane free space polygon and the traffic participant occupancy polygon:

¶Pi♢ = PSL \ POTP. (5.1.3)

In the example, this results in two (i ∈ ¶1, 2♢) distinct polygons P1 and P2 shown in the
lower right part of the Figure 5.1. The meaning of the upper area is everything that is in
front of the traffic participant in L and t. Similarly, the lower part is the spatiotemporal
free space behind the traffic participant, and the ego-vehicle resides at

[

L = 0 m t = 0 s
]

⊺

within this second area at the start of a planning cycle.

Spatiotemporal Scene Analysis using Polygon Clipping

Consider a straight traffic situation similar to the one of Figure 5.1b and that the ego-ve-
hicle wants to change to the left lane. Applying the previously described method based
on Polygon Clipping on the start lane and the target lane gives the enumerated lane
free space areas shown in the left and right L-t diagrams in Figure 5.2. Every number
corresponds to a polygon in Figure 5.2, for example:

1⃝ =̂P1 = ¶
([

L1,j t1,j

]

⊺
)n1

j=0
♢. (5.1.4)
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5.1. Fundamental Maneuver IdentiĄcation Concept

Polygon 1

Polygon 2

Polygon 1 Polygon 2

(a) Lane free space derivation using Polygon

Clipping.

(b) Lane free space derivation using Polygon

Clipping.

Figure 5.1.: Lane free space derivation using Polygon Clipping.

To reĆect the fact, that there are three different types of areas, three index sets are
introduced. In the example case:

S̃L = ¶1, 2♢, L̃C = ¶3, 4, 5♢, ˜T L = ¶6, 7♢. (5.1.5)

The set S̃L indexes spatiotemporal free space areas on the start lane of the ego-vehicle,
L̃C represents the lane change areas and ˜T L is the index set of the areas on the target
lane.

In order to identify maneuver variants, Polygon Clipping is utilized, this time applying the
interSection (∩) operator. The interSection of all areas of the start lane free space ( 1⃝ and
2⃝ in Figure 5.2) with the free space areas in the target lane ( 6⃝ and 7⃝) are calculated.

So for example P2 ∩ P6 = P3. This results in three distinct areas that are subsequently
called lane change areas, shown in in the middle of Figure 5.2, and indexed using the
set LC. Finally, the directed acyclic graph in Figure 5.3 is created that represents the
connectivities of all obtained free space areas and therefore reĆects the sceneŠs topology.
Since the ego-vehicle starts in area 2⃝, only two paths are actually traversable to get to
the areas 3⃝ and 5⃝ on the target lane. Therefore the index sets can be further pruned:

SL = ¶2♢, LC = ¶3, 5♢, T L = ˜T L. (5.1.6)

The lane change areas denote spatiotemporal regions in (L, t) domain in which both
current and target lane are free, so a lane change is possible. To summarize, the ego-vehicle
starts in area 2⃝. From there, it has the option to do an immediate lane change in area 5⃝
and to end up in front of the other traffic participant on the target lane in area 7⃝. The
other option is to Ąrst stay in area 2⃝ on its lane, wait until the other traffic participant
on the target lane passes the ego-vehicle, conduct the lane change in area 3⃝ and Ąnally
end up in area 6⃝. That means that the ego-vehicle is behind the traffic participant on
the target lane at the end of the maneuver.
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Figure 5.2.: Spatiotemporal laneŠs free space areas for the described example. Each area i⃝ is

represented using a polygon Pi. Left: Free space on current ego-vehicle lane. Middle: Lane

change areas, that correspond to free space simultaneously on current and target lane. Right:

Free space on left target lane.
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Figure 5.3.: Resulting graph encoding the ego-vehicles maneuver options.

5.2. Consideration of Lane Changes of Surrounding

Traffic

This Section describes the functionality to handle lane changes of surrounding vehicles
using Polygon Clipping in spatiotemporal (L, t) domain and construct a maneuver options
graph that can encode the topology of such complex traffic scenes.

Lane-Discrete Spatiotemporal Free Space Description with Consideration of

surrounding Vehicle Lane Changes

Consider the synthetic traffic scene in Figure 5.4 with the dark-blue ego-vehicle E and
the two light-blue surrounding vehicles O1 and O2. The dashed, black lines depict the
lane change maneuvers of both surrounding vehicles. The trajectory prediction module
described in Chapter 4 is used. The obtained information also includes a lane association
of each vehicle to driving lanes perceived by the ego-vehicleŠs sensor system. A driving
lane occupancy of an surrounding vehicle Oi is represented using a spatiotemporal polygon
consisting of nOi

points:

POi
=
{([

Oi, k, tOi,k

]

⊺
)nOi

k=0

}

. (5.2.1)

Let tO,LC be the time instant when an vehicle is assigned for the Ąrst time to the target
lane of its lane change. A Ąxed transition period tO,LCT = 1.3 s is deĄned empirically in
order to mark the start lane (subscript (·)SL) of the lane change as occupied for the time
interval [0 s, tO,LC + tO,LCT] and the target lane (subscript (·)TL) for [tO,LC − tO,LCT, tmax]

with the maximum planning time horizon tmax = 10 s. The algorithm uses axis-parallel
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5.2. Consideration of Lane Changes of Surrounding Traffic

: Ego-vehicle

: Obstacle vehicle 2

: Obstacle vehicle 1

Figure 5.4.: Exemplary traffic scene with two lane changing surrounding vehicles.

rectangles ranging over the whole longitudinal planning horizon and starting at the times
ta and ending at tb abbreviated as :

Prect(ta, tb) := ¶
[

Lmin ta

]

⊺

,
[

Lmin tb

]

⊺

,
[

Lmax tb

]

⊺

,
[

Lmax ta

]

⊺♢. (5.2.2)

Using the difference operation (\) on the start lane of the ego-vehicle and considering
all obstacle occupancies, one obtains the spatiotemporal free space as a set of distinct
polygons Pi:

¶Pi♢ = PSL \ ¶POi
♢, (5.2.3)

with the rectangular polygon PSL = Prect(0 s, tmax) that represents the spatiotemporal free
space on the start lane for the case of complete absence of surrounding vehicles on that
lane. Herein Lmin and Lmax denote the minimum and maximum longitudinal planning
horizon. The same procedure is applied to obtain the set of spatiotemporal free space areas
on the target lane. Let tC,k denote time instants when a lane occupancy begins or ends.
There are two such time instants in our example on the starting lane of the ego-vehicle,
refer to the top-left graph in Figure 5.5, tC,1 = 2.1 s and tC,2 = 4 s. The following three
polygons are formed in the example case: PSL,1 = Prect(0 s, tC,1), PSL,2 = Prect(tC,1, tC,2)

and PSL,3 = Prect(tC,2, tmax).
Using Polygon Clipping with the interSection operation (∩) of both sets of polygons ¶Pi♢
and ¶PSL,j♢ one obtains in the exemplary traffic scene a total of seven spatiotemporal free
space areas, refer to the top-left graph in Figure 5.5.
The notation · represents the respective polygon P(·). In the example case the areas 4̃

and 6̃ as well as 5̃ and 7̃ can be combined using a union operation (∪) on the respective
polygons. This reduction of the number of distinct areas reduces complexity. The criterion
for joining two polygons is a joint edge at a temporal division line since no information,
but only complexity is added in such cases. Next, the adjacency of all nodes of the start
lane is checked for connectivity with the start node 1 of the ego-vehicle. Unreachable
nodes, as for example the resulting fused node of 4̃ and 6̃ , are removed. Finally, only
four distinct spatiotemporal areas remain on the start lane of the ego-vehicle, as shown
in the top-right graph in Figure 5.5. Using the same procedure on the target lane, Ąve
areas arise, as shown in the bottom-right graph of Figure 5.5.
The interSection operation of all areas of the start lane with the areas of the target
lane and application of the aforementioned fusion mechanism results in three distinct
lane change areas 5 , 6 and 7 in the bottom-left graph in Figure 5.5. They describe
spatiotemporal free space simultaneously on both the start and target lane and represent
areas in which lateral movement of the ego-vehicle is permitted.
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Figure 5.5.: Spatiotemporal free space areas for the traffic scene shown in Figure 5.4 with surrounding

vehicle lane changes. From top-left to bottom-right, the plots depict: The detailed polygons of the start

lane of the ego-vehicle; uniĄed polygons of the start lane of the ego-vehicle; lane change area polygons;

uniĄed target lane area polygons.
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Figure 5.6.: Graph encoding the traffic scene topology corresponding to the spatiotemporal free

space areas and adjacencies shown in Figure 5.5.

Complete Traffic Scene Topology Graph

Figure 5.6 shows the resulting graph that encodes the traffic scene topology. SpeciĄc paths
in this graph represent lane change execution variants of the ego-vehicle. The ego-vehicle
starts at

[

LE,0 tE,0

]

⊺

=
[

0 m 0 s
]

⊺

so that area 1 represents the start node in the graph
and is marked with the symbol S. The nodes that correspond to lane change areas are
marked with the symbol LC. All target areas are marked with the symbol T (11 and
12). Both areas are characterized by the fact, that their right boundary includes the
maximum planning time horizon tmax = 10 s. Maneuver execution variants correspond to
paths starting in node 1 , passing through exactly one lane change node ( 5 , 6 or 7 )
and ending in one of the Ąnal nodes, either 11 or 12 . Three exemplary paths in the graph
are depicted in Figure 5.7. Figure 5.7a corresponds to the maneuver 1 → 6 →11 where
the ego-vehicle conducts its lane change between both surrounding vehicles.
Figure 5.7b represents the maneuver 1 → 2 → 3 → 5 →12 . Here the ego-vehicle waits for
the leading obstacle vehicle O2 to change to the left lane then overtakes it on the right
side and Ąnally changes lane in front of it. Analysis of the reachable set shows that this
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0 2 4 6 8 10
0

100

200

300

400

1 6 11

Time t [s]

L
[m

]
LE,0 + L̇E,0 · t

(a) Immediate lane change manuever.

0 2 4 6 8 10
0

100

200

300

400

1 2 3 5 12

Time t [s]

(b) Delayed lane change maneuver option 1.

0 2 4 6 8 10
0

100

200

300

400

1 7 11

Time t [s]

L
[m

]

(c) Delayed lane change maneuver option 2.

Figure 5.7.: Three exemplary lane change maneuver paths that the graph in Figure 5.6 encodes.

maneuver can be achieved within the maximum planning horizon when driving almost at
the acceleration limits.
Finally, Figure 5.7c corresponds to the maneuver 1 → 7 →11 . Here, the ego-vehicle would
break to fall behind the trailing vehicle O1 and then execute the lane change to the
left lane. Another important maneuver is represented by the path 1 → 6 → 8 →12 that
corresponds to overtaking the vehicle O2 on the start lane of the ego-vehicle before the
obstacle vehicle O2 conducts its own lane change.

5.3. Complexity Reduction

The complete traffic scene topology graph described in the previous Section 5.2 represents
a traffic scene, its evolution, and all maneuver options in a compact way. However, its main
disadvantage is that ego-vehicle lane change maneuvers are ambiguous, and the number
of nodes in a path varies. Therefore, the description in Section 5.1 when disregarding
lane changes of surrounding vehicles, is easier to work with in the subsequent lane change
planning step. Therefore, this Section aims to reduce the complexity of the complete
traffic scene topology graph such that a lane change path consists of exactly three nodes.
The initial traffic scene and its evolution are shown in Figure 5.8. Two of the vehicles
change lanes during the scene evolution. Applying the algorithm of the previous Section
leads to the spatiotemporal areas shown in Figure 5.9. Unreachable areas are already
removed.
The complete traffic scene topology graph is shown in Figure 5.10. Paths in this graph
again correspond to lane change maneuvers of the ego-vehicle. A full speciĄcation of a
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(c) Traffic situation at t = 5 s.
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(e) Traffic situation at t = 10 s.

Figure 5.8.: Initital traffic scene and its evolution used as an example for the illustration of the

graph complexity reduction mechanism.
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Figure 5.9.: Resulting free space areas for the example traffic scene prior to the complexity

reduction. Each area i⃝ is represented using a polygon Pi.

lane change requires setting the start and end times of the lane change to derive the
longitudinal and lateral constraints for trajectory optimization.

The complexity reduction is explained using the example graph in Figure 5.10. In a Ąrst
step, all start lane free space polygons are analyzed and grouped into two distinct sets S0

and SF . A polygon Pi ∈ S0 if the initial time t0 = 0 s is part of the respective polygon.
On the other hand, Pi ∈ SF if the Ąnal time tmax = 10 s is part of the polygon. A third
set deĄned as SK = S0 ∩ SF is introduced. Polygons in this set extend from t0 = 0 s up to
tmax = 10 s and remain unmodiĄed in the complexity reduction. Similar sets are created
holding the respective target lane free space polygons. Those are represented as T0, TF

and TK .

Next, two further sets are formed S̃0 = S0 \ SK and T̃F = TF \ TK . All paths between
nodes of the set S̃0 and SF are derived. For each path, a new polygon is created by the
union of all corresponding polygons. In the example in Figure 5.10, the nodes 1⃝ and
2⃝ are combined. Similarly, for the target lane areas, all paths between nodes of the set

T0 and T̃F are derived and combined accordingly. This results in three union operations
shown in Figure 5.10.

This concludes the complexity reduction of the complete traffic scene graph. After it,
the resulting graph is shown in Figure 5.11. Notably, all paths in this graph consist of
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Figure 5.10.: Resulting graph encoding the ego-vehicles maneuver options.
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Figure 5.11.: Complexity reduced graph encoding the traffic scene spatiotemporally.

exactly three traversed nodes. All resulting polygons are shown in Figure A.7 in appendix
A.6. The complexity reduction introduces redundancy, but it is easier to work with in
the lane change behavior planning since no more graph search is necessary. Furthermore,
it is straightforward to obtain the boundaries of each maneuver used in the trajectory
optimization once the lane change start and end times are speciĄed.
Four different maneuver options encoded in the graph are shown in Figure 5.12. Figure
5.12a represents the immediate lane change. The analysis shows that it might be possible
that the ego-vehicle increases its velocity during the maneuver. Similarly, Figure 5.12b
shows the delayed lane change maneuver that might be possible by deceleration. On the
other hand, delayed lane changes in Figures 5.12c and 5.12d are not possible under the
assumed constraints since the respective lane change areas are not reachable.
To summarize, this Chapter introduces algorithms to obtain lane change maneuver options
of the ego-vehicle by reducing the problem to certain geometric operations realized with
Polygon Clipping. Furthermore, it leads to efficient representations used for the generation
of lane change trajectories in the remaining Chapters of the thesis at hand. Finally, apart
from the uses within the thesis at hand, there is still an unused potential for the shape of
the resulting lane change areas, which could be exploited to increase downstream modulesŠ
performance further.
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(b) Delayed lane change maneuver option 1.
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(d) Delayed lane change maneuver option 3.

Figure 5.12.: Examplary paths in the complexity reduced graph.
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This Chapter discusses the Ąrst of a total of three approaches for lane change planning. It
is largely based on the publication [Sch+19a]. After identiĄcation of maneuver options, the
polygons are used to sample points for efficient calculation of trajectories. Next, several
constraint checks are conducted for each trajectory to ensure safety and driveability.
Finally, an interaction-aware trajectory ranking is done by estimating the inĆuence of
each maneuver option on the surrounding traffic.
The approach assumes that other surrounding traffic participants stick to their respective
lanes and donŠt change lanes. This assumption will be relaxed by the remaining lane
change planning approaches discussed in Chapters 7 and 8.

6.1. Geometry-Informed Sampling of Lane Change

Trajectories

To make sampling of trajectories efficient, the geometric features of the identiĄed lane
change areas resulting from the maneuver identiĄcation (Chapter 5) are analyzed.
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Figure 6.1.: Exemplary traffic scene in simulation used as the running example in this Chapter.

The traffic situation shown in Figure 6.1 is used to illustrate the algorithm. The ego-ve-
hicle has the intention to do a lane change in order to drive with a higher velocity of
Ẋdes = 33.33 m

s
. Refer also to Ągures 5.2 and 5.3 of the previous Chapter for the cor-

responding polygons of the free space areas and maneuver options graph for this exact
example.
The lane change areas are represented by the polygons P3 and P5 illustrated in Figure
5.2. The starting point is the calculation of the reachable set L in (L, t) domain consid-
ering maximum deceleration L̈min and acceleration L̈max starting from the current initial
longitudinal velocity L̇0 of the ego-vehicle:

LL,ub(t) =
∫ tmax

t=0
min

(

L̇o + L̈max t, L̇max

)

dt, (6.1.1)

LL,lb(t) =
∫ tmax

t=0
max

(

L̇o + L̈min t, L̇min

)

dt, (6.1.2)

with some situation dependent lower L̇min and upper bounds L̇max typically reĆecting
speed limits or other restrictions. The upper and lower bound LL,ub and LL,lb are repre-
sented with polygonal chains. Closing them results in the dashed polygon PL in the Ąrst
row in Figure 6.2. Applying the interSection operator (∩) using Polygon Clipping results
in modiĄed, often smaller lane change areas P̂3 = P3 ∩ PL and P̂5 = P5 ∩ PL. This way,
sample-complexity is reduced. The reachable set can make use of prior knowledge. If it is
known that the driver does not accept loosing a certain amount of velocity for a successful
lane change, then this can be directly imposed as a lower boundary condition and guide
the sampling accordingly.
Next is the calculation of the spatiotemporal area of the modiĄed lane change areas P̂k:

AP̂k
=

1

2

(

ni−1
∑

i=0

(LP̂k,i+1 tP̂k,i − LP̂k,i tP̂k,i+1)

)

, k ∈ LC (6.1.3)

and it is checked for exceeding some user-deĄned threshold Amin. Figuratively speaking,
this means that the space and time that the ego-vehicle has to conduct its lane change is
probably sufficient. This feature is used as a pruning heuristic to reduce the computational
cost by ruling out maneuver options beforehand. Next is the calculation of the equivalent
height LR,k of a spatiotemporal rectangle with width tLC,k for the lane change areas of all
maneuver options:

LR,k =
AP̂k

tLC,k

, k ∈ LC. (6.1.4)
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Chapter 6. Sampling-based Lane Change Planning

Herein, tLC,k is the temporal extent of area P̂k. This feature is important when comparing
two maneuver options because the geometric shape of the lane change areas is a key aspect.
Assuming two lane change areas with the same area A, it is often better to choose the
one with a longer duration allowing more time for maneuver completion.
The Ąnal step consists of the generation of sample point sets within the lane change areas:

Sk = ¶Sj♢nS

j=1, k ∈ LC (6.1.5)

with samples Sj = ¶
[

Lj,SL tj,SL

]

⊺

,
[

Lj,T L tj,T L

]

⊺♢ that the trajectories have to pass
through. Herein nS denotes the maximum number of samples. The times tj,SL and tj,T L

correspond to the start and end of the ego-vehicleŠs lateral movement with the lane change
duration tLC = tj,T L − tj,SL. Both Lj,SL and Lj,T L characterize the associated longitudinal
coordinates of the start and end of the lateral movement. Then the centroids of the
polygons P̂k, k ∈ LC are calculated. The calculation of the centroids

[

CL,P̂k
Ct,P̂k

]

⊺

, k ∈
LC is as follows:

AP̂k
=

1

2







n
P̂k

−1
∑

i=0

(

LP̂k,i+1tP̂k,i − LP̂k,i tP̂k,i+1

)





 , (6.1.6)

CL,P̂k
=

1

6AP̂k

n
P̂k

−1
∑

i=0

(

LP̂k,i + LP̂k,i+1

) (

LP̂k,i+1 tP̂k,i − LP̂k,i tP̂k,i+1

)

, (6.1.7)

Ct,P̂k
=

1

6AP̂k

n
P̂k

−1
∑

i=0

(

tP̂k,i + tP̂k,i+1

) (

LP̂k,i+1 tP̂k,i − LP̂k,i tP̂k,i+1

)

. (6.1.8)

The centroids are represented in the Ąrst row of Figure 6.2 using white dots. The time
Ct,P̂k

of the centroid divides a lane change area naturally into two intervals:

IP̂k,1 =
[

tP̂k,min, Ct,P̂k

)

, IP̂k,2 =
[

Ct,P̂k
, tP̂k,max

]

, (6.1.9)

where tP̂k,min denotes the temporal beginning of the reachable lane change area and tP̂k,max

the ending. In case of immediate lane change areas tP̂k,min = 0 s. For example, for area
3⃝ the values are roughly tP̂k,min = 4 s and tP̂k,max = 10 s which is also the upper bound of

the planning horizon. Then the intervals IP̂k,1 and IP̂k,2 are subdivided by a user-deĄned
number of equidistant steps along the time axis, while omitting both boundaries. Finally,
for every discrete time in both sets, a user-deĄned number of points between the upper
and lower boundary of the interSection of the lane change area and the reachable set are
sampled. The Ąrst row of Figure 6.2 also represents both sample sets S3 and S5.
The above mechanism generates a certain number of geometry-informed samples. The
absolute amount is upper-bounded and the boundary depends on user-deĄned choices of
interval subdivisions and number of points per time slice tj,SL and tj,T L. Then several
sanity checks for reducing the number of samples are conducted. For this, the mean
longitudinal velocity L̇P̂k,j for every sample j is estimated by using a linear connection of

the two associated points
[

Lj,SL tj,SL

]

⊺

and
[

Lj,T L tj,T L

]

⊺

, that are shown in red and
beige in the Ąrst row of Figure 6.2. It is checked if this velocity is below the speed limit
and also if the corresponding lane change has a duration of at least tLC,min = 2.5 s. A lane
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6.1. Geometry-Informed Sampling of Lane Change Trajectories

change with a shorter duration is likely to be perceived uncomfortable by passengers and
hence rarely seen in datasets such as in the highD data.
Samples with a negative or zero mean velocity L̇P̂k,j ≤ 0 are removed, too. To ensure a
deterministic upper boundary of the runtime for the trajectory calculation, it is necessary
to have a Ąxed number of samples. It is intuitively clear, that an even distribution
of samples within each maneuver optionŠs lane change area with regards to the mean
velocities L̇P̂k,j, end time of the lane change tj,T L and Ąnal longitudinal coordinate Lj,T L

for sets Sk, k ∈ LC is desirable. K-Means [Mac67] clustering is used with a Ąxed number
of iterations to cluster samples based on the above mentioned three attributes into a
user-deĄned number of clusters. Then a user-deĄned number of samples is collected from
each cluster. Consider one lane change area, represented by the polygon P̂k. Let L̇mi

, Lmi

and tmi
denote and the mean longitudinal velocity, coordinate and end time of cluster i

for this area. Let furthermore Lmi,0 = Lmi
− L̇mi

tmi
denote the L-axis intercept of cluster

i. All clusters are sorted based on the euclidean distance:

di =
∥

∥

∥

[

Lmi,0 L̇mi

]

⊺ −
[

L0 L̇0

]

⊺
∥

∥

∥

2
, (6.1.10)

with the initial L coordinate L0 and velocity L̇0. Most samples are chosen from clusters
with the minimal distance di. This has the effect to guide the sampling such that the
ego-vehicle has the least need to change itŠs kinetic energy by decelerating or accelerating.

Synthesis of Longitudinal and Lateral Trajectories

The Ąrst step consists of calculating a set of candidate trajectories for all identiĄed ma-
neuver options, using the set of sample points. Next, methods from optimal control for
trajectory generation are chosen to ensure comfort for the passengers. The lateral trajec-
tory synthesis uses Ąfth-order polynomials. It is shown in [Wer+10] that they result in
jerk-optimal trajectories.
As already mentioned in Chapter 5, lane change maneuver options can be classiĄed into
immediate and delayed lane changes. Intuitively, an immediate lane change is the case if
the ego-vehicle can directly start to move laterally towards the target lane because the
point

[

L = 0 m t = 0 s
]

⊺

is in the lane change area. Consider again Figure 6.2. Here,
area 5⃝ is an immediates lane change area and area 3⃝ is a delayed lane change area.
Delayed describes the fact, that the ego-vehicle has to stick on its current lane for some
time t before starting to move laterally towards the target lane.
The distinction is important for the trajectory calculation. In the case of immediate lane
changes, only one segment N1(t) is used that takes the ego-vehicle directly to the target
lane with correct orientation with the laneŠs centerline:

Ψ(tj,T L) = ΨT L(Lj,T L), (6.1.11)

with the orientation of the ego-vehicle Ψ and the orientation of the target lane centerline
(TL) ΨT L, both in the cuvilinear coordinate frame. Additionally, zero lateral acceleration
and velocity is imposed to allow for a complete speciĄcation of the lateral polynomial
trajectory. On the other hand, two segments are used for a delayed lane change. First,
a trajectory segment N1(t) that orients the ego-vehicle correctly with the current laneŠs
centerline at the Ąrst sample point (red in Ąrst row of Figure 6.2) is calculated.
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Figure 6.2.: Procedure for immediate (left column, 2⃝→ 5⃝→ 7⃝) and delayed (right column,

2⃝→ 3⃝→ 6⃝) lane change maneuver. Top row: Sample points and reachable set. Middle row:

Calculated longitudinal trajectories. Bottom row: Trajectory with minimum total cost JS
T using

λ = 0.6.
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6.1. Geometry-Informed Sampling of Lane Change Trajectories

Afterwards a segment N2(t) that takes the ego-vehicle to the target lane with correct
orientation at the end of the maneuver is generated. Therefore, two constraints arise:

Ψ(tj,CL) = ΨCL(Lj,CL),

Ψ(tj,T L) = ΨT L(Lj,T L),
(6.1.12)

now also taking into account the orientation of the current lane centerline (CL) ΨCL(Lj,CL)

in the curviliear frame. This happens between the red and beige sample points in the Ąrst
row of Figure 6.2. Again, additionally zero lateral acceleration and velocity is imposed to
completely specify the polynomials.
The calculation of each polynomial segment:

Nj(t) = aj,o + aj,1t + aj,2t
2 + aj,3t

3 + aj,4t
4 + aj,5t

5

= p
⊺

Nj
t =

[

aj,0 aj,1 aj,2 aj,3 aj,4 aj,5

]

⊺
[

1 t t2 t3 t4 t5
]

(6.1.13)

is straightforward given the boundary conditions that the polynomial should fulĄl.
The proposed novel approach for the calculation of longitudinal trajectories is motivated
by quadrotor Ćight. For this, also two Ąfth-order polynomial segments are used for the
calculation of the longitudinal trajectory L(t) and builds upon the work of [Bry12]. The
main idea is to transform a constrained optimization problem into an unconstrained one
to reduce computational cost and enhance numerical robustness. It is shown in [Bry12]
that a cost JS

L(td), penalizing the squares of the derivatives of the polynomial L(t), for one
single segment with duration td can be expressed in terms of the coefficients pL ∈ R

n+1

of a nŠth order polynomial of the segment and a Ąnal time dependent weight matrix:

JS
L(td) = p

⊺

LQL(td)pL, (6.1.14)

QL ∈ R
(n+1)×(n+1). The order n = 5 is used. Refer to [Bry12] for the construction of

QL. For the application at hand, a matrix QL = 0.7QL,acc + 0.3QL,jerk that punishes
acceleration (QL,acc) and jerk (QL,jerk) is used. When using two segments, the calculation
of a total cost can be conducted:

JS
L,total =

[

pL,1

pL,2

]⊺ [

QL,1(t1) 0

0 QL,2(t2)

] [

pL,1

pL,2

]

. (6.1.15)

Next is the formulation of the constraint Equation:

AL,total

[

pL,1

pL,2

]

=

[

dL,1

dL,2

]

, (6.1.16)

with AL,total ∈ R
2(n+1)×2(n+1), dL,i ∈ R

n+1, i ∈ ¶1, 2♢. The constraints are placed on
position, velocity and acceleration at the segment boundaries. If some are not known in
advance, only continuity constraints are imposed. Then the total cost is reformulated:

JS
L,total =

[

dL,1

dL,2

]⊺

A
−⊺

L,totalQL,totalA
−1
L,total

[

dL,1

dL,2

]

(6.1.17)

and reordered for grouping Ąxed and free derivatives:

JS
L,total =

[

dF

dO

]⊺ [

RFF RFO

ROF ROO

] [

dF

dO

]

. (6.1.18)
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Herein dF are the imposed, Ąxed derivatives on segment boundaries and dO are free and
can Ćoat. The dimensions of matrices RFF, RFO, ROF, ROO depend on the number of
Ąxed constraints. All free derivatives for achieving optimal cost d∗

O according to JS
L,total

can be analytically obtained:

∂JS
L,total

∂dO

!
= 0, d∗

O = −R−1
OOR

⊺

FOdF. (6.1.19)

The coefficients of the polynomials are obtained by substitution into the constraint Equa-
tion (6.1.16). Only the positions according to the sampling points and initial kinematic
quantities are Ąxed, whereas all remaining derivatives are free and result from the above
optimization. Notice that both the original formulation in [Ric+16] and also above treat-
ment describes the approach in a general setting. It is up to the user which derivatives
are chosen to be Ąxed and free. Other choices as the one used here are possible, and the
generalization is straightforward. [Ric+16] also shows that instead of using the transfor-
mation to a unconstrainted problem, it is possible to simply solve the resulting Quadratic
Program at the cost of increased runtimes.
Using this method, the longitudinal trajectories Lj(t) consisting of two polynomial seg-
ments for each sample Sj are obtained. Note that an unĄxed planning horizon is used
that corresponds to the time tj,T L of a sample. This gives the approach Ćexibility. Sev-
eral generated longitudinal trajectories are shown in the second row of Figure 6.2 for both
maneuver options.

6.2. Interaction-Aware Trajectory Assessment

This Section introduces the assessment of the calculated trajectories. Each trajectory is
checked for feasibility and assigned an interaction-aware cost. It is a three-step process
involving three different cost functions that will be described in this Section.

Safety Check and Interaction-Aware Assessment of Sample Trajectories

The goal is to Ąnd a Ąxed number of best trajectories for each maneuver options among
the sampled ones. A multi-stage optimization is used for this. Using the aforementioned
scheme for the construction of the sample set Si, i ∈ LC, calculation of trajectories
[

Lj(t) Nj(t)
]

⊺

and transformation to the ego frame, the following set of trajectories is
obtained:

Tk = ¶τj♢nT

j=1, k ∈ LC, (6.2.1)

with a total of nT trajectories τj =
[

Xj(t) Yj(t)
]

⊺

. The inner optimization problem is as
follows:

min JS
V(τ j), subject to:

τ j ∈ (TCF ∩ TVC ∩ TOTPC ∩ TTR), (6.2.2)

with the set TCF of collision free trajectories, the set TVC of trajectories that fulĄll imposed
vehicle dynamics and nonholonomic constraints. The differential Ćatness property of a
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6.2. Interaction-Aware Trajectory Assessment

kinematic nonlinear double-track model is used to check if steering angles and rates fulĄll
box constraints. Refer to the Appendix A.7 for a mathematical deĄnition of differential
Ćatness and Appendix A.8 for more details on the used vehicle model. The set TOTPC

consists of the trajectories that fulĄll constraints on Time Headways and Time-to-Colli-
sions to surrounding traffic and with TTR, the set satisfying traffic rules like for example
speed limits. Box constraints for TOTPC and for TVC are used and can be scaled with the
urgency of the lane change. The cost function is:

JS
V =ω1♣Ẍmax♣ + ω2♣Ÿmax♣ + ω3♣X(3)

max♣ + ω4♣Y (3)
max♣+

+ ω5♣Ẍ♣ + ω6♣Ÿ ♣ + ω7♣X(3)♣ + ω8♣Y (3)♣+
+ ω9

(

♣min
(

ẊTL, Ẋdes

)

− ẊT♣
)

, (6.2.3)

with weighting factors ωi ∈ R, maximum and mean absolute values ♣ · ♣ of acceleration and
jerk in X and Y direction, the estimated speed on the target lane ẊTL, the desired velocity
given by the mission planning Ẋdes and Ąnal ego-vehicle velocity ẊT. All weighting factors
ωi ∈ R were empirically determined using simulations. Section 8.2 in Chapter 8 presents
an alernative based on IRL (Inverse Reinforcement Learning) and it shown how weighting
factors can be optimized given a set of demonstration trajectories. The optimization
results in an ordered set of nT̃ feasible trajectories T̃k, k ∈ LC.
To account for interaction-awareness, the feasible trajectories are incorporated into the
scene prediction engine [Wis+18] that uses the Intelligent Driver Model [Tre+00] and
evaluate the reactions of all surrounding traffic participants. A new method to measure
the interaction quantitatively is proposed. The idea is to use generalized kinetic energies.
The ego-vehicle and all other traffic participants have certain kinetic energies calculated
based on initial predictions and that they ideally would maintain. It is, therefore, very
intuitive to compare kinetic energies. However, one challenge that arises is the correct
handling of big and heavy trucks. These would unbalance the calculation of the energies
strongly. This is handled by using a normalized mass m̂ that also accounts for the fact
that big trucks have stronger braking systems and therefore can decrease kinetic energy
stronger than passenger vehicles. The calculated trajectories in curvilinear coordinates
are used to obtain the expression:

Ê(t) =
1

2
m̂
(

L̇2(t) + Ṅ2(t)
)

(6.2.4)

It is propose to use m̂P = 1 kg for passenger vehicles, m̂M = 0.8 kg for motorbikes and
m̂T = 3 kg for trucks. In the outer optimization loop, the aim is to minimize an interac-
tion-aware cost function JS

I :

JS
I = λẼEgo + (1 − λ)ẼOTP. (6.2.5)

The tilde (Ẽ) in Equation (6.2.5) reĆects the fact, that the values of the energies are
normalized to always make them comparable to each other. The approach beneĄts from
good interpretability, and there is only one parameter λ ∈ R that realizes the transition
between cooperative and non-cooperative behavior. Subsequently, all steps needed to
evaluate Equation (6.2.5) are described. First is the formulation of several generalized
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kinetic energies for all i ∈ ¶0 ∪ O♢ vehicles. The index i = 0 reĆects the ego-vehicle and
the index set O all nOTP surrounding traffic participants:

Ei,prior(t) =
1

2
m̂(·)

(

L̇2
i,prior(t) + Ṅ2

i,prior(t)
)

, (6.2.6)

Ei,post(t) =
1

2
m̂(·)

(

L̇2
i,post(t) + Ṅ2

i,post(t)
)

, (6.2.7)

♣Ei♣ =
1

ni

ni
∑

j=1

max (0, Ei,prior (tj) − Ei,post (tj)) (6.2.8)

♣E0♣ =
1

n0

n0
∑

j=1

♣E0,prior (tj) − E0,post (tj) ♣ (6.2.9)

EOTP :=
1

nOTP

nOTP
∑

i=1

♣Ei♣, EEgo := ♣E0♣, (6.2.10)

with the number of timesteps ni. The subscript prior reĆects the situation if the ego-vehi-
cle would continue with itŠs initial velocity on the start lane. Special attention needs to be
paid at the differences of the mean generalized energy calculation for other traffic partici-
pants and the ego-vehicle in Equations (6.2.8) and (6.2.9). Consider the case in which the
ego-vehicle conducts a lane change with the result that the vehicle on the start lane behind
it can now drive faster and gain velocity. This results in Ei,prior(tj) − Ei,post(tj) < 0 such
that the generalized energy is raised. The approach should not punish such behavior and
the max operator in Equation (6.2.8) realizes that. The ego-vehicle is handled differently
and it is assumed, that it wants to keep itŠs initial generalized energy. This is accounted
for by using the absolute value in Equation (6.2.9). Notice, that this does not prohibit
speeding up, since the cost functional in Equation (6.2.3) of the previous optimization
step puts weight on achieving the desired velocity.
A higher value of λ in Equation (6.2.5) punishes changes of the normalized generalized
kinetic energy of the ego-vehicle more compared to the inĆuence onto the surrounding
traffic. This, in turn, leads to a more comfortable but non-cooperative ride. As a result,
it is expected to see lower values of jerk and accelerations but probably at the cost of lower
Time-to-Collisions within the range of feasible TTCs. At the end, both cost functions are
normalized such that J̃S

V, J̃S
I ∈ [0, 1] and the total cost formulated:

JS
T = ν1J̃

S
V + ν2J̃

S
I , (6.2.11)

with weight factors ν1 and ν2.

6.3. Evaluation of the Sampling-based Lane Change

Planning

The scenario under consideration is the running example of this Chapter, refer to Figure 6.1.
The simulation environment described in [Wis+16] is used that takes into account uncer-
tain measurements of the vehicleŠs sensors and provides the correct data structures that
allow the quick deployment of developed algorithms. Let XLB(t) and ẊLB(t) denote the
longitudinal coordinate and velocity of the traffic participant on the target lane behind
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Table 6.1.: Vehicle dynamics of the ego-vehicle corresponding to both minimum JS
T results in

Figure 6.2.

max(♣ · ♣) ♣ · ♣ ∆Ẋ = Ẋ(·) − Ẋ(·)

Ẍ Ÿ X(3) Y (3) Ẍ Ÿ X(3) Y (3) T-0 T-des

Maneuver [ m
s2 ] [ m

s2 ] [ m
s3 ] [ m

s3 ] [ m
s2 ] [ m

s2 ] [ m
s3 ] [ m

s3 ] [m
s ] [m

s ]

2⃝→ 5⃝→ 7⃝ 1.49 0.68 2.47 1.13 0.87 0.42 0.44 0.43 5.24 1.91

2⃝→ 3⃝→ 6⃝ 2.64 1.59 4.6 4.20 1.38 0.44 0.93 0.72 0.42 -2.93

Abbreviations: T-0: Longitudinal velocity difference between ego velocity at beginning and

end of lane change, T-des: Longitudinal velocity difference between ego velocity at end of

lane change and desired velocity (here: speed limit on target lane)

Table 6.2.: Situation features corresponding to both minimum JS
T results in Figure 6.2. CB

(Current lane Back), CF (Current lane Front), LB (Left lane Back), and LF (Left

lane Front) correspond to regions of interest around the ego-vehicle. Notice that a

vehicle on the left lane behind the ego-vehicle acts as the target lane follower in case of

an immediate lane change but as the target lane preceding vehicle in case of a delayed

one.

min(TTC(·)) Energies E

CB CF LB LF OTP Ego

Maneuver [s] [s] [s] [s] [J] [J]

2⃝→ 5⃝→ 7⃝ - 14.46 19.57 - 22.39 100.28

2⃝→ 3⃝→ 6⃝ - ∞ - ∞ 0 80.36

and XCF(t) and ẊCF(t) on the start lane in front of the ego-vehicle. Now the initial
values of the longitudinal coordinate and velocity of the vehicle on the target lane are
randomized by sampling from uniform probability distributions, XLB ∼ U(−85 m, −25 m)

and ẊLB ∼ U(27.5 m/s, 46.5 m/s). The longitudinal velocities of the ego-vehicle and the
traffic participant in front of it are always Ąxed to ẊEgo = ẊCF = 30 m/s. For the ego-ve-
hicleŠs desired velocity, the value Ẋdes = 33.3 m/s is used. The evaluation of the approach
is done focusing on the introduced interaction-aware quality measure introduced in the
last Section. A total of 500 simulation runs are used for the evaluation. The histograms
in Figure 6.3 show two critical features, the minimum Time-to-Collision min (TTC) and

the mean longitudinal acceleration ẌEgo of the ego-vehicle. They show that a high λ

tends to result in lower mean longitudinal acceleration since changes of kinetic energy
that correspond to ego-velocity changes are stronger punished. A side effect of this is that
the TTCs are also lowered, resulting in a more egoistic behavior.

The bottom row of Figure 6.2 shows the best trajectories in (x, y, t) domain for both
maneuver options for one simulation run corresponding to the conĄguration shown in
Figure 6.1. Table 6.1 shows a subset of the calculated features. The factor λ = 0.6 was
used for generating these results. The rows in Table 6.1 correspond to both identiĄed
maneuver variants. It might be somewhat surprising that the maximum and mean values
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Figure 6.3.: Histogram and median values of min (TTC) (a) and Ẍ (b) for λ = 0.1 and λ = 0.9.

of acceleration and jerk in both directions X and Y are higher in the second maneuver.
The ego-vehicle waits to merge behind the faster vehicle from the back on the target lane.
The explanation for this lies in the fact that the results correspond to the Ąrst planning
cycle at t = 0 s with a Ąxed maximum time horizon of tmax = 10 s in which the lane change
has to be conducted. Looking at the traffic scene, refer to Figure 6.1, it is obvious that the
ego-vehicle has several options that are traded-off by the weighting factors in Equations
(6.2.3), (6.2.5) and (6.2.11). Since the weight ω9 in Equation (6.2.3) is comparably high
to the other weights, the ego-vehicle prefers a lane change where it Ąrst breaks slightly
to reduce its velocity to change lane afterward and during the lane change speed up to
achieve the target velocity. The lane change duration for this is short, and therefore the
lateral dynamics are also higher compared to the immediate lane change in row 1 of Table
6.1. Considering the generalized, unnormalized energies EOTP and EEgo, it can be seen
in Table 6.2 that the inĆuence of maneuver 2⃝→ 5⃝→ 7⃝ onto the surrounding traffic is
stronger than it is for maneuver 2⃝→ 3⃝→ 6⃝. Note, that the accompanying video to the
original publication [Sch+19a] illustrates the results of the proposed framework in more
complex highway traffic scenarios with more surrounding traffic participants and curves.
This Chapter also illustrates the profound inĆuence of the choice of cost function weights
on the optimization results. The weights here are chosen manually in an empirical fashion.
As the process is cumbersome, Inverse Reinforcement Learning is used in Section 8.2 in
Chapter 8 to circumvent this problem.
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The sampling-based approach discussed in the previous Chapter has several limitations.
First, the memory consumption is high, as is the case for most sampling strategies. Sec-
ond and more importantly, the distribution of sampling points does not generalize to
arbitrary traffic situations when there are lane changes of surrounding vehicles. This
Chapter, therefore, discusses an optimization-based lane change planning approach that
does not suffer from these shortcomings. The main contribution here is the formulation
of affine time-variant safety constraints for Time Headways and Time-to-Collisions. The
subsequent discussion is largely based on the publication [Sch+19b] which in turn is based
on [Nil+17]. The approach can work with the complete traffic scene topology graph or
its complexity reduced variant discussed in Section 5.2 and can deal with lane changes of
surrounding traffic participants. This Chapter mainly aims to provide a baseline for the
discussion in Chapter 8 where the optimization is formulated, including additionally the
target lane follower of the ego-vehicle.
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Chapter 7. Optimization-Based Lane Change Planning

7.1. Derivation of Safety Constraints Based on

Spatiotemporal Boundaries

The optimization-based lane change planning algorithm also distinguishes immediate and
delayed lane changes. Both variants are handled differently. First, some relevant notions
are deĄned that will be used throughout the remainder of the thesis at hand. The pre-re-
gion is deĄned as the time interval [0, tpre] on the start lane. A peri-region represents the
time interval (tpre, tperi] in which a lateral movement to the target lane is realized. Finally,
the post-region is the interval (tperi, tmax] on the target lane of the respective lane change
maneuver. Refer to [Nil+16a] for a detailed description of these regions. A lane change
maneuver is unambiguously deĄned by a path in the graph and the determination of the
start time tpre and end time tperi of the lateral movement. A method for obtaining these
times is described next.
The polygons of lane change maneuver paths in an options graph include obstacle vehicle
positions and velocities. This allows the formulation of linear time-variant TTC and
THW safety constraints. The deĄnition of a THW and TTC in the curvilinear coordinate
frame at a query time tq is as follows:

THW (tq) =
LL(tq) − LF(tq)

L̇F(tq)
, (7.1.1)

TTC(tq) =
LL(tq) − LF(tq)

L̇F(tq) − L̇L(tq)
. (7.1.2)

Herein the subscripts (·)F and (·)L denote the follower and leader vehicle. Both safety
constraints play a central role in the Section on the trajectory optimization. It is neces-
sary to derive the time durations of the pre-, peri- and post-regions of the lane change
maneuver. The times tpre and tperi are the two degrees of freedom. They are chosen using
a prior safety evaluation of the spatiotemporal lane change area. The time interval [t1, t2]

is identiĄed by analyzing the Time Headway Equation (7.1.1) using the initial ego-vehicle
velocity L̇E,0 and predicted follower velocity L̇F(t). A minimum spatial gap is deĄned as:
LminGap(t) = (L̇E,0 + L̇F(t))THWmin, with the minimum prior Time Headway THWmin.
Next the lower and upper bounds of the lane change area LLC,ub(t) and LLC,lb(t) are used
to Ąnd all intervals that fulĄll the constraint: LLC,ub(t) − LLC,lb(t) ≥ LminGap(t).
The next step is marking intervals as infeasible in case they are shorter than a user-deĄned
minimum lane change time tLC,min. The distinction between immediate and delayed lane
changes is taken into account. In case of an immediate lane change, the longest interval
is found and checked if it is longer than the maximum lane change time tLC,max. If that
is the case, then the peri-region is then chosen to be (tpre, tperi] = (t1, t1 + tLC,max], else
(tpre, tperi] = (t1, t2]. Therefore taking into account that immediate lane changes should
start as early as possible. In the case of delayed lane changes, the same check against
the maximum lane change time is done. If the interval is longer, then the peri-region is
chosen to be (tpre, tperi] = (t2 − tLC,max, t2], else (tpre, tperi] = (t1, t2]. The idea is to conduct
a delayed lane change as late as possible to reduce the need for decelerations. The duration
of the pre- and post-regions are then obtained as the remaining times before and after
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the peri-region in the planning horizon. In the case of a receding horizon application, the
durations are adapted according to the lateral progress towards the target lane.

At this point, there is still ambiguity left since a path consists of possibly multiple tra-
versed areas in the start lane, exactly one lane change area, and possibly multiple traversed
target lane areas. Two Dijkstra shortest path searches with unit cost on the edges in the
graph are used to obtain the complete maneuver path. For each lane change area, the
start lane free space corresponding to tpre is found, and a search from that area in the
backward direction to the start areas of the ego-vehicle is conducted. Another search
in the forward direction from the target area node corresponding to tperi to all areas in
the set T completes the path. Only the shortest path is picked for the forward direction
search in case that several paths are found. This procedure integrates the preference to
traverse as few areas as possible.

7.2. Lane Change Planning using Quadratic

Programming

The system model used for the motion planning within the contribution at hand is a
triple integrator for both the lateral and longitudinal movement of the vehicle. The
time-discrete description of the system dynamics is obtained using the theory of sampled
data systems. It is assumed that the control input, here the longitudinal and lateral jerk,
is piecewise constant during each sampling interval. Assume further that for each lane
change maneuver i, there are lower and upper bounds for the longitudinal and lateral
movement, determined by the maneuverŠs pre-, peri- and post-region. These are Li,ub(k),
Li,lb(k), Ni,ub(k) and Ni,lb(k). Choosing how to impose safety constraints is up to the user
and will determine how conservative the vehicle behaves. The trajectory optimization
problem is formulated similarly to [Nil+16a]. It is however conducted in the curvilinear
coordinate frame to deal with curvy highway scenarios using the following small-angle
approximations L̈ ≈ Ẍ and N̈ ≈ Ÿ − κ(L)L̇2, with the curvature of the reference lane at
the coordinate L of the curvilinear frame κ(L), refer to [Rat16]. Furthermore, compared
to [Nil+16a], a triple integrator system dynamics is used and the jerk introduced into
both the longitudinal and lateral cost functions. Finally, time-variant Time Headway
and Time-to-Collision safety constraints are introduced into the longitudinal optimization
making direct use of the maneuver representation using polygons as described in Chapter
5.

The longitudinal cost function is deĄned as:

JO
L =

Np
∑

k=1

(

α0

(

L̇E(k) − L̇des(k)
)2

+ α1L̈E(k)2 + α2L
(3)
E (k)2

)

, (7.2.1)

with the desired longitudinal velocity L̇des(k), weighting factors αj, j ∈ ¶0, 1, 2♢ and the
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last sample np. The longitudinal optimization is subject to the constraints:

Llb(k) ≤ LE(k) ≤ Lub(k),

L̇min ≤ L̇E(k) ≤ L̇max,

L̈min ≤ L̈E(k) ≤ L̈max,

L
(3)
min ≤ L

(3)
E ≤ L(3)

max, (7.2.2)

LE(k + 1) = LE(k) + L̇E(k)h + L̈E(k)
h2

2
+ L

(3)
E (k)

h3

6
,

L̇E(k + 1) = L̇E(k) + L̈E(k)h + L
(3)
E (k)

h2

2
,

L̈E(k + 1) = L̈E(k) + L
(3)
E (k)h,

LE(0) = LE,0, L̇E(0) = L̇E,0, L̈E(0) = L̈E,0, (7.2.3)

with the stepsize h. The jerk L
(3)
E (k) acts as the control input. Further constraints are

added to account for minimum TTC and THW . Using the upper and lower boundaries
Li,ub(k) and Li,lb(k), the constraints are:

Llb(k + nTTC) ≤ LE(k) + L̇E(k)TTCmin

LE(k) + L̇E(k)TTCmin ≤ Lub(k + nT T Cmin
),

THWminL̇E(k) + LE(k) ≤ Lub(k),

Llb(k + nT HWmin
) ≤ LE(k), (7.2.4)

with the number of samples nT HWmin
= ⌈T HWmin

h
⌉ and nT T Cmin

= ⌈T T Cmin

h
⌉ corresponding

to the minimum TTC and THW times. The TTC and THW constraints are derived from
their geometric meaning in spatiotemporal (L, t) domain. This formulation results in a
convex Quadratic Program that is solved using the OSQP (Operator Splitting Solver for
Quadratic Programs) solver [Ste+20]. The lateral trajectory optimization is conducted
after obtaining the optimal longitudinal trajectory L∗

E(k). The following cost function is
optimized:

JO
N =

Np
∑

k=1

(

β0 (NE(k) − Ndes(k))2 + β1ṄE(k)2 + β2N̈E(k)2 + β3N
(3)
E (k)2

)

, (7.2.5)

with weighting factors βj, j ∈ ¶0, 1, 2, 3♢. Ndes(k) represents a lateral tracking reference.
It helps to push the trajectory further away from the upper and lower boundaries Nlb(k)

and Nub(k) and is further examined in Section 7.3. The lateral optimization is subject
to the analogous system dynamics and initial value constraints as in Equation (7.2.3).
Furthermore, the following set of constraints is applied:

Nlb(k) ≤ NE(k) ≤ Nub(k),

L̇∗
E(k)tan(−θmax) ≤ ṄE(k) ≤ L̇∗

E(k)tan(θmax),

Ÿmin − κ(L∗
E(k))(L̇∗

E(k))2 ≤ N̈E(k),

Ÿmax − κ(L∗
E(k))(L̇∗

E(k))2 ≥ N̈E(k), (7.2.6)
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Table 7.1.: Parameters used for the experimental evaluation of the optimization-based approach.

Longitudinal Lateral Remaining Parameters

α0 = 1 β0 = 2 h = 0.5 s

α1 = 2 β1 = 2 TTCmin = 5 s

α2 = 2.5 β2 = 2.5 THWmin = 1 s

β3 = 5

The trajectory optimization problem is solved sequentially, starting with the longitudinal
optimization and Ąnally solving the lateral problem. This allows to consider the cou-
pling between LE and NE and to account for a maximum heading angle θmax. Imposing
box constraints on accelerations implies an underapproximation of KammŠs circle. The
approach plans comfortable lane change maneuvers with tight and conservative bounds
using simpliĄed motion models in the form of two triple integrator systems. This choice is
justiĄed since it is used prior to a local trajectory planner in an automated driving system
with less conservative bounds and uses high Ądelity vehicle models to cater to potentially
nonlinear effects. Furthermore, using this simpliĄed motion model, it is ensured that tight
runtime constraints can be fulĄlled so that the algorithms can be implemented on current
generation ECUs.

7.3. Evaluation of the Optimization-Based Lane

Change Planning

This Section presents the results of applying the approach in simulation with a focus
on trajectory optimization. The terminology used is shown in Figure 7.1. A highway
entrance scenario is chosen with a total of four obstacle vehicles. The simulation envi-
ronment described in [Wis+16] is used. The trigger is a lane change request to the left
and maneuver variants are identiĄed for every time step of the simulation. All results are
obtained using the set of parameters shown in Table 7.1. The initial traffic scene conĄgu-
rations are represented in Table 7.2. Each row in Figure 7.2 corresponds to a certain time
step of the simulation and shows the results.
The optimized trajectories are then injected into the forward simulation of the traffic
scene, refer to Chapter 4, for an assessment of the traffic interaction based on generalized
kinetic energies as introduced in [Sch+19a]. Finally, ego-vehicle dynamics and situation
features for all three time steps are shown in Table 7.3. The desired longitudinal velocity
is set to L̇des(k) = 38.9 m/s. The graphs corresponding to each situation encodes at least
two lane change variants and each row in Figure 7.2 always shows the feasible, least total
cost J = JO

L + JO
N solution.

The Ąrst row shows an immediate lane change maneuver. The ego-vehicle has to accelerate
since the trailing vehicle TB on the target lane is signiĄcantly faster than the ego-vehicle.
Here, the ego-vehicle comes close to its desired velocity (refer to Table 7.3). The second
row in Figure 7.2 shows a delayed lane change in which the ego-vehicle has to break
signiĄcantly to let vehicle LB pass and then execute the lane change within the planning
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CF

LB

CB

LF

Figure 7.1.: Illustation of the traffic scene used for the evaluation of the optimization-based lane

change planning approach.

Table 7.2.: Initial traffic scene coĄgurations corresponding to Figure 7.2. CB (Current Lane

Back), CF (Current Lane Front), LB (Left Lane Back) and LF (Left Lane Front) refrence the

vehicles at t = 0 s.

L0,(·) L̇0,(·)

Maneuver Ego CB CF LB LF Ego CB CF LB LF

in Figure 7.2 m m m [m] [m] [m
s ] [m

s ] [m
s ] [m

s ] [m
s ]

First row 0 -38.41 53.99 -81.88 101.72 17.24 14.18 17.09 26.73 23.93

Second row 0 -50.64 53.97 -37.53 / 19.21 16.94 19.33 27.33 /

Third row 0 -60.95 53.98 -2.36 / 19.79 17.84 20.15 24.99 /

horizon. Note that the simulation environment models Ćuctuations of traffic participants
within their respective lanes, and here the ego-vehicle is initially not centered within the
start lane. The framework copes with this deviation. Finally, the third row of Figure 7.2
shows a time step 5 s and hence later than the one in the second row. This time, the
ego-vehicle does not have to break severely for this delayed lane change and can conduct
it more comfortably compared to both other results.

The introduction of linear time-variant constraints on the TTC and THW results in cor-
responding high values in Table 7.3. Therefore, the planned lane changes have desired
safety margins. Inspection of the generalized OTP (Obstacle Traffic Participants) ener-
gies, refer to 6.2 for the mathematical deĄnition, also shows that these constraints keep
the inĆuence on the obstacle vehicles low. Loosening these constraints results in stronger
inĆuences.

The values of the generalized kinetic energies of the ego-vehicle are proportional to the
area between the constant velocity prediction LE,0 + L̇E,0t and L∗

E(t), refer to the second
column in Figure 7.2. This clariĄes that the immediate lane change is the least comfortable
while keeping with safety margins.

Finally, the sampling-based approach is compared to the optimization-based approach of
this Chapter. As the presented approach is a modiĄed variant of [Nil+17], the constraints
for longitudinal and lateral acceleration are hence taken from [Nil+17]. Furthermore, the
aim is to minimize the interaction cost JO

I in Equation (6.2.5) via using the parameter
λ = 0 in Equation (6.2.5) to show performance in this interesting corner case. The example
scene in Figure 6.1 of the previous Chapter 6 with parametrization ¶XE = 0 m, ẊE =

33.3 m/s, XCF = 150 m, ẊCF = 33.3 m/s, XLB = −70 m, ẊLB = 37 m/s♢ is used. Since
the Ąrst optimization stage aims to maximize ride comfort, the above parameters are a
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Figure 7.2.: Results of the optimization-based lane change planning approach. The rows cor-

respond to ones in Table 7.2. A three-dimensional representation is shown in the left column

whereas the polygons resulting from the maneuver identiĄcation are shown on the right.

Table 7.3.: Ego-vehicle dynamics and situation features corresponding to the optimized ego-

vehicle trajectories in Figure 7.2. Again, CB (Current lane Back), CF (Current lane Front),

LB (Left lane Back), and LF (Left lane Front) correspond to regions of interest around the

ego-vehicle at t = 0 s.

∆L̇ min(TTC, (·)) min(THW, (·)) Energies E

Maneuver T-0 T-des CB CF LB LF CB CF LB LF OTP Ego

in Figure 7.2 [m
s ] [m

s ] [s] [s] [s] [s] [s] [s] [s] [s] [J] [J]

First row 20.8 -0.8 ∞ 12.7 9.5 5.9 2.7 2.3 1.8 2.2 3.8 213.4

Second row 9.0 -10.7 7.6 ∞ - 74.0 2.1 2.8 - 2.3 1.9 77.3

Third row 5.4 -13.7 ∞ 9.9 - 44.2 3.4 2.0 - 2.0 1.1 59.3

Abbreviations: T-0: Longitudinal velocity difference between ego velocity at beginning and end

of lane change, T-des: Longitudinal velocity difference between ego velocity at end of lane change

and desired velocity (here: speed limit on target lane), OTP: Other Traffic Participants.
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Figure 7.3.: Illustation of the optimized longitudinal and lateral trajectories for all three examples

scenes corresponding to Table 7.2 and Figure 7.2.

sensible choice. Figure 7.4 shows the obtained positions and velocity of both approaches.
We used a trajectory to represent our approach that corresponds well to the mean values
in Table 7.4. It can be seen that the results are comparable concerning ride comfort,
especially for the lateral movement.
Since k-Means clustering is used, the mean µ and standard deviation σ of the quantities
are reported. The key difference is that the sampling-based approach prefers to speed up
to minimize interaction cost such that the traffic participant on the target lane has to
break less compared to the result of the optimization-based approach. This can be seen
by inspection of EOTP and min(TTCLB) in Table 7.4. However, the optimization-based
approach incorporates hard constraints on Time Headways to surrounding traffic. Trajec-
tories, therefore, maintain safe distances concerning the Ąxed initial trajectory predictions
of the surrounding traffic.
Yet, there is no feedback to measure the inĆuence of a planned trajectory on traffic. In
comparison, the sampling-based approach has an advantage since it closes the feedback
loop by injecting planned trajectories into the scene prediction to account directly for
interactions before choosing the minimum total cost trajectory.
Furthermore, using a sampling approach is advantageous in safety-critical situations when
the optimizer cannot provide a solution because of violated hard constraints. In such
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Table 7.4.: Comparision of the optimization-based and sampling-based lane change planning ap-

proaches to evaluate the non-deterministic k-Means clustering of the sampling ap-

proach.

♣Ẍ♣ ♣Ÿ ♣ ♣X(3)♣ ♣Y (3)♣ min(TTCTB) EOTP

Approach [ m
s2 ] [ m

s2 ] [ m
s3 ] [ m

s3 ] [s] [J]

Sampling-Based

(µ) 0.44 0.14 0.18 0.09 26.76 2.06

(σ) 0.10 0.03 0.05 0.03 4.27 1.71

Optimization-Based 0.26 0.12 0.18 0.10 18.02 13.80
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Figure 7.4.: Comparison of the optimization-based lane change planing approach to the sampling-

based variant described in Chapter 6 using λ = 0. The crosses correspond to the optimization

result and the sampling result is shown using solid lines. Black color is used to represent positions

and grey for velocities.

situations, using the sampling-based algorithm, one can still choose the trajectory that
corresponds to the minimum global cost. This is also why sampling approaches are often
used as a redundancy layer in complex motion planning systems.
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This Chapter discusses the Ąnal lane change planning concept proposed in the thesis
at hand. It is an uncertainty-aware approach using a cooperative linear-quadratic (LQ)
game formulation. [Sch+19j] inspired the formulation of the lane change planning prob-
lem using game theory. There, a non-cooperative game is formulated for interactive traffic
scenes with several vehicles involved. A nonlinear kinematic double-track vehicle model
is used leading to a nonlinear optimization problem. In the thesis at hand in constrast, a
cooperative linear-quadratic game is formulated. This is achieved by using a triple inte-
grator system for the longitudinal and lateral dynamics and focusing on just two agents,
the ego-vehicle and the target lane follower vehicle of the lane change. These simpliĄca-
tions lead to a quadratic program that can be solved efficiently and within given runtime
constraints. As described in Chapter 4, the situation prediction approach provides the
uncertainties of the future positions of all surrounding vehicles. These uncertainties are
accounted for using chance-constraints resulting in affine inequalities. An outer opti-
mization is introduced for deriving the Ąrst feasible time to start the lane change. The
optimization is described in Section 8.1. It also provides an analysis of the inĆuence of
the parameters involved in the optimization.
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8.1. Lane Change Planning using Chance-Constrained Cooperative LQ Games

Optimization-based planning algorithms are always at risk of not Ąnding a feasible solu-
tion due to the hard safety constraints. Careless drivers surrounding the ego-vehicle or
emergency situations can lead to such situations. Assume, for example, a traffic scene
where an accident happens directly in front of the ego-vehicle, and its best option is to
brake strongly.

Behavior planning algorithms impose hard constraints on the accelerations and will not
provide a feasible solution since the constraints aim for comfortable driving. The Section
also discusses a fallback solution based on the Intelligent Driver Model (IDM) that always
provides a trajectory since it is a collision-free car-following model. An extensive discus-
sion of the architectural implications of integrating a fallback strategy into an automated
driving software system is beyond this thesisŠs scope.

Finally, this Chapter provides an experimental evaluation of the algorithm using the
highD dataset and the DESIM simulation environment in Section 8.3. To this end, Ąrst,
a dataset is extracted from the highD data used to obtain the cost function weights using
a Maximum Entropy Inverse Reinforcement Learning (IRL) formulation. Furthermore,
it is analyzed in terms of observed Time Headways and Time-to-Collisions to set those
constraints suitably in the optimization. Next, the approach described in this Chapter
is compared to the one described in the previous Chapter 7 in terms of several metrics.
Finally, a runtime comparison is provided, showing that the approach can be applied
receding horizon in a closed-loop. It should be emphasized that the closed-loop application
is not how the lane change behavior planning approach should ideally be used in an
automated driving software system. Refer to [Lie+19b] for a more in-depth architectural
discussion.

8.1. Lane Change Planning using Chance-Constrained

Cooperative LQ Games

The theory of cooperative differential Linear-Quadratic (LQ) games is described in [Eng05]
for the case of continuous-time. The thesis at hand formulates all optimization problems
in discrete time. The modiĄcations of the problem formulation described in Chapter 7
are as follows. Again, the traffic situation shown in Figure 5.4 is used for the following
discussion. Compared to optimizing the ego-vehicle trajectory, now the cost function
also includes a part for the interacting vehicle. There can be more than one interacting
vehicle, but the thesis at hand only focuses on the following vehicle on the target lane of
a lane change which is abbreviated with LB (Left lane Back). The target lane following
vehicles regularly show courtesy during merging maneuvers, and it is the most suitable
choice. Incorporating more interacting vehicles is possible but leads to increased runtime
due to the larger resulting quadratic programs. For the following formulation of the
optimization problem, it is assumed that for each lane change maneuver i, there are
lower and upper bounds derived from the spatiotemporal polygons for the longitudinal
and lateral movement, determined by the maneuverŠs pre-, peri- and post-region. For a
deĄnition of these terms, please refer to Chapters 5 and 7.
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The scalar interaction-aware cost function for the longitudinal trajectory optimization is:

JG
I =λ[θ1

np
∑

i=1

(L̇E,i − L̇E,des)
2 + θ2

np
∑

i=1

L̈2
E,i + θ3

np
∑

i=1

(L
(3)
E,i)

2]+ (8.1.1)

+ (1 − λ)[θ4

np
∑

i=1

(L̇LB,i − L̇LB,des)
2 + θ5

np
∑

i=1

L̈2
LB,i + θ6

np
∑

i=1

(L
(3)
LB,i)

2].

Herein, the ego-vehicle states are subject to the triple integrator system dynamics con-
straints formulated as forward differences in discrete time with step size h:

LE(k + 1) = LE(k) + L̇E(k)h + L̈E(k)
h2

2
+ L

(3)
E (k)

h3

6
,

L̇E(k + 1) = L̇E(k) + L̈E(k)h + L
(3)
E (k)

h2

2
,

L̈E(k + 1) = L̈E(k) + L
(3)
E (k)h,

LE(0) = LE,0, L̇E(0) = L̇E,0, L̈E(0) = L̈E,0. (8.1.2)

Similarly, the same set of constraints are formulated for the target lane follower vehicle:

LLB(k + 1) = LLB(k) + L̇LB(k)h + L̈LB(k)
h2

2
+ L

(3)
LB(k)

h3

6
,

L̇LB(k + 1) = L̇LB(k) + L̈LB(k)h + L
(3)
LB(k)

h2

2
,

L̈LB(k + 1) = L̈LB(k) + L
(3)
LB(k)h,

LLB(0) = LLB,0, L̇LB(0) = L̇LB,0, L̈LB(0) = L̈LB,0. (8.1.3)

Exactly as it is done in Chapter 7 for the baseline optimization, further constraints are
added to account for minimum TTC and THW . Using the upper and lower boundaries
Li,ub(k) and Li,lb(k), the constraints are:

LLB(k) + L̇LB(k)TTCmin ≤ LE(k) + L̇E(k)TTCmin

LE(k) + L̇E(k)TTCmin ≤ Lub(k + nT T Cmin
),

THWminL̇E(k) + LE(k) ≤ Lub(k),

THWminL̇LB(k) + LLB(k) ≤ LE(k), (8.1.4)

with the number of samples nT HWmin
= ⌈T HWmin

h
⌉ and nT T Cmin

= ⌈T T Cmin

h
⌉ corresponding

to the minimum TTC and THW times. The TTC and THW constraints are derived
from their geometric meaning in spatiotemporal (L, t) domain. Notice, that compared to
the constraints in Equation 7.2.4 used for the baseline optimization in Chapter 7, here
LLB(k) and L̇LB(k) are now part of the decision vector in the optimization and hence
the safety constraints are not directly taken from the spatiotemporal polygons but rather
formulated explicitly using the quantities of the target lane follower vehicle LB.

Uncertainty-Awareness using Chance-Constraints

In the following, it is shown that safety constraints can be formulated as chance-constraints
considering uncertainties. [BV04] provides the mathematical foundations for below deriva-
tion.Therein, the deĄnition of a chance-constraint starts with an affine constraint

a⊺x ≤ b, (8.1.5)
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8.1. Lane Change Planning using Chance-Constrained Cooperative LQ Games

with vector a, decision vector x and scalar b. Such formulation assumes that all variables
are deterministic quantities. In case of chance-constraints, it is assumed that the vector
a is a random variable. This assumptions allows to formulate the constraint satisfaction
in terms of a probability (or conĄdence) η:

P (a⊺x ≤ b) ≥ η. (8.1.6)

Next, it will be shown how such constraints can be formulated for the Time-to-Collision
safety constraint as an example.
Consider the two possible formulations of the Time-to-Collision constraint of the ego-ve-
hicle (subscript E) to a leading vehicle (subscript L) using positions and velocities:

LE(tc) + L̇E(tc)TTC ≤ LL(tc + TTC) (8.1.7)

which was proposed in Chapter 7 or the slighly more conservative formulation based on
the TTC Equation:

LE(tc) + L̇E(tc)TTC ≤ LL(tc) + L̇L(tc)TTC. (8.1.8)

The situation prediction provides gaussian probability distributions specifying the position
and velocity of the leading vehicles for all discrete times tk from t0 up to the planning
horizon. Assume that the second variant of the constraint is formulated at timestep tc

and the positions and velocities follow Gaussian distributions:

LL(tc) ∼ N (µLL
(tc), σ2

LL
(tc)) (8.1.9)

L̇L(tc) ∼ N (µL̇L
(tc), σ2

L̇L
(tc)) (8.1.10)

Instead of the constraint Equation (8.1.8), the corresponding chance-constraints reads:

P(LE(tc) + L̇E(tc)TTC − LL(tc) − L̇L(tc)TTC ≤ 0) ≥ η. (8.1.11)

Hence the probability of constraint satisfaction is required to be greater or equal to η.
In order to formulate it, several substitutions are introduced in the following:

a := LE(tc) + L̇E(tc)TTC (8.1.12)

B := LL(tc), B ∼ N (µB, σ2
B) (8.1.13)

C := L̇L(tc), C ∼ N (µC , σ2
C) (8.1.14)

D := L̇L(tc)TTC, D ∼ N (TTCµC , TTC2σ2
C) (8.1.15)

Using these substitutions, the chance-constraint is:

P(a − B − D ≤ 0) ≥ η (8.1.16)

The goal is to arrive at an affine constraint that can be used in Quadratic Programming
and includes only Ąxed parameters besides the ego-vehicle decision variables (LE(tc) and
L̇E(tc)). To this end, some more substitutions are necessary:

E := B + D, E ∼ N (µB + TTCµC , σ2
B + TTC2σ2

B) (8.1.17)
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P(a − E ≤ 0) ≥ η (8.1.18)

F := a − E, F ∼ N (a − µB − TTCµC , σ2
B + TTC2σ2

C) (8.1.19)

P(F ≤ 0) = ϕµF ,σF
(0) ≥ η (8.1.20)

The last substitution introduces the random variable G that has zero mean and unit
variance:

G :=
F − (a − µB − TTCµC)

√

σ2
B + TTC2σ2

C

=
F − µF

σF

(8.1.21)

G ∼ N (0, 1) (8.1.22)

This allows to use the tabulated cummulative distribution function or any standard ap-
proximation to it:

ϕµG,σG
(ξ) = ϕ0,1(ξ) =

1√
2π

∫ ξ

−∞
exp

(

− ξ̃2

2

)

dξ̃ (8.1.23)

The chance-constraints now reads:

P(F ≤ 0) ⇔ P
(

F − µF

σF

≤ −µF

σF

)

= ϕµG,σG

(

−µF

σF

)

≥ η (8.1.24)

leading to:

ϕµG,σG

(

−µF

σF

)

≥ η ⇔ −µF

σF

≥ ϕ−1
µG,σG

(η) (8.1.25)

⇔ − 1
√

σ2
B + TTC2σ2

C

· (a − µB − TTCµC) ≥ ϕ−1
µG,σG

(η)

Resubtitution of all variables gives the following constraint that is affine in the decision
variables and can hence be used in Quadratic Programming:

− 1
√

σ2
LL

(tc) + TTC2σ2
L̇L

(tc)
· (LE(tc) + L̇E(tc)TTC − µLL

(tc) − TTCµL̇L
(tc)) ≥ ϕ−1

0,1(η)

(8.1.26)

A similar approach can be used to derive the following Time Headway safety constraint:

− 1
√

σ2
LL

(tc)
· (LE(tc) + L̇E(tc)THW − µLL

(tc)) ≥ ϕ−1
0,1(η) (8.1.27)

The generalization to formulate chance-constraints concerning following vehicles in the
back of the ego-vehicle works the same way.
Figure 8.1 shows the trajectory optimization results for a simple lane-keeping maneuver
of the ego-vehicle. It approaches a slower vehicle O1. The increasing standard deviation
of the position and velocity are shown in light-grey. The optimization results for a set
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Figure 8.1.: InĆuence of η on the optimized trajectory of a lane-keeping maneuver with a slower

vehicle in front of the ego-vehicle.

of different values of η are shown. Clearly, with higher η, the chance-constraint becomes
more strict and leads to more conservative ego-vehicle behavior as expected. Thus, a
careful choice of η is necessary for avoiding over-conservative ego-vehicle behavior. An-
other option is to decrease the variance of the sampling distributions in the Monte Carlo
situation prediction approach, leading to decreased uncertainty.

InĆuence of the Cooperation Factor λ on the Optimization

The inĆuence of λ on the trajectory optimization results is next analyzed for a simple
two-vehicle traffic scene. The follower vehicle drives on the left lane 50 m behind the
ego-vehicle with a velocity of 33.33 m/s. Due to the slower ego-vehicle velocity of 27.7 m/s

the amount of velocity increase of the ego-vehicle will depend on the cooperativeness of
the follower.
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(b) InĆuence of λ on the optimized longitudinal velocity.

Figure 8.2.: InĆuence of λ on the optimized trajectory of a lane change to the left with a faster

follower vehicle on the target lane.

Figure 8.2 shows the results of the position and velocity over the optimization horizon.
The dashed lines correspond to the follower quantities, whereas the solid ones reĆect the
ego-vehicle motion. Notice that a small λ such as λ = 0.1 means that the ego-vehicle
quantities are punished much less than the follower with (1 − λ) = 0.9. Hence to fulĄll
safety constraints to ensure a safe Time Headway and Time-to-Collision between both
vehicles, the ego-vehicle will speed up and accelerate strongly. On the other hand, the
follower vehicle only slightly reduces its velocity to show courtesy. This is reĆected in the
black lines in Figure 8.2. The other shown extreme case is when λ = 0.9 is chosen and
shown in green. Here, the follower vehicle strongly reduces its velocity to give way to the
ego-vehicle, which has to accelerate less to ensure safety. Notably, the ego-vehicle reaches
a velocity of approximately 32 m/s, but not necessarily to ensure safety. The reason for
this behavior is that the desired velocity used in the optimization is set to 33.33 m/s.
Notice that it is necessary to scale η by the situation probabilities to ensure that unlikely
predictions result in less strict constraints.

Next, the value λ = 0.5 is chosen for the illustration of the inĆuence of varying distances
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of the follower vehicle to the ego-vehicle. Figures 8.3 (a) and (b) correspond to an initial
distance of 70 m between both vehicles. Figures 8.3 (c) and (d) correspond to 50 m and
(e) and (f) to 30 m.
8.3 (b) shows that in the Ąrst case, the follower vehicle does not need to show courtesy to
ensure safety. The ego-vehicle accelerates to approach its desired velocity. On the other
hand, 8.3 (d) shows in case of 50 m distance, a certain amount of courtesy is necessary.
The most interesting case is when the distance is 30 m. As shown in 8.3 (f), the follower
needs to decelerate comparably strong, whereas the ego-vehicle needs to accelerate. Only
this way, the safety constraints can be fulĄlled. Notice that in this case, optimizing only
the ego-vehicle trajectory would lead to an infeasible solver state. It is especially those
situations where the cooperative LQ game formulation adds the most value in robustness.

Fallback Lane-Keeping Solution

As mentioned in the introduction of this Chapter, the above optimization can lead to
situations where no feasible trajectory exists due to constraints. Typically, this happens
in emergency situations where the limits of comfortable acceleration or yerks are violated.
Chapter 4 introduced the use of the Intelligent Driver Model as the chosen car-follow-
ing model used in Monte Carlo simulations for situation predictions. The fact that the
model is collision-free makes it an appropriate choice for obtaining a fallback lane-keeping
solution. To this end, a worst-case situation evolution is derived for the lane-keeping
maneuver. This imposes both a upper bound on the position Lub(tk) and velocity L̇ub(tk)

for all timesteps of the optimization horizon tmax. With this information, calculating the
Intelligent Driver Model (IDM) lane-keeping trajectory can be done assuming double in-
tegrator system dynamics. The IDM acceleration L̈E,IDM of the ego-vehicle acts as the
control input of the system.
Figure 8.4 shows the comparison of the chance-constrained optimization approach and
the fallback solution for both the position L and velocity L̇ in an exemplary traffic scene.
The deceleration of the IDM trajectory is more immediate compared to the optimized
one. This can be explained since the jerk is punished in the optimization. The IDM
trajectory matches the velocity of the preceding vehicle at the end of the horizon. In
contrast, the optimization approach leads to a slightly lower velocity, potentially dictated
by the change constraint and the uncertainty of the situation prediction.
The above fallback solution is very simple and effective. Another more complex alternative
would be introducing slack variables to relax the constraints until a feasible solution can
be found.

Lane Change Initiation Time Determination

The baseline optimization approach described in Chapter 7 uses a safety-based heuristic
to derive the time TI to initiate the lateral movement. However, such a heuristic might
lead to suboptimal results, and this Subsection proposes an alternative. The geometric
intuition behind the idea is illustrated in Figure 8.5.
In a Ąrst step, the time tI,min is found. It represents the moment when the reachable
set Ąrst crosses the boundary of a lane change area shown in dark-blue. By deĄnition,
this time is tI,min = 0 s in case of immediate lane changes. Next tI,max = 4 s is deĄned
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Figure 8.3.: Illustration of the optimization results in a simple lane change left scenario with a

faster following vehicle using λ = 0.5.
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Figure 8.4.: Illustration of the fallback lane-keeping solution using the IDM model and compared

to the result obtained using chance-constrained optimization.

Figure 8.5.: Illustration of the geometric ideas for determining the lane change initiation time.

The left Figure shows an immediate lane change. On the other hand, the middle Figure shows

a delayed one in a gap in front of the ego-vehicle. The right Figure corresponds to a delayed

lane change in a gap behind the ego-vehicle.

to be the last point in time of valid initiation of the lane change in the current planning
cycle. The interval [tI,min, tI,max] is next subdivided uniformly using nI = 5 points. This
number is motivated since h = 0.5 s is used as the step size in any optimization within
the thesis at hand. In case of immediate lane changes, this means that the following
candidate times ¶0 s, 1 s, 2 s, 3 s, 4 s♢ are analyzed. For each of these candidate times, the
optimization is done until a feasible solution is found. Note that this choice saves runtime.
An alternative would be to conduct all optimizations and compare their resulting cost
values to Ąnally choose the solution with the lowest cost. However, the user should
rather consider imposing comfortable boundaries to calculate the reachable set such that
all feasible solutions are by deĄnition comfortable. Similarly, in case of a delayed lane
change (middle and right graphs in Figure 8.5), the interval [tmin, tI,max] is subdivided
uniformly using nI = 5 points and the resulting candidates times are rounded towards the
uniform grid with h = 0.5 s stepsize and Ąltered for uniqueness. The above algorithm can
be modiĄed to, for example, use a more simple optimization for the determination of the
lane change initiation time if runtime needs to be saved. Due to the low runtime of the
OSQP solver, such modiĄcations are not made here.
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8.2. Cost Specification using Inverse Reinforcement

Learning

Inverse Reinforcement Learning allows obtaining cost function parameters such that the
demonstrated behavior is best explained. It hence removes the need for cumbersome
manual tuning of those parameters and therefore saves time. The Maximum Entropy
Inverse Reinforcement Learning approach is used in the thesis at hand, refer to [Zie+08].
It models the demonstrated behavior or sequence of actions using a exponential probability
distribution and optimizes parameters of a given cost function such that the likelihood
of demonstrations or actions is maximized. It does not require an online application in a
simulation and is well suited for the optimization of cost function parameters of trajectory
and behavior planning approaches in automated driving, refer to [Nau+20].
Later in this Section, the approach is mathematically formulated and the results described.

Dataset Creation for IRL

This Subsection describes the creation of a trajectory dataset using the highD data
[Kra+18]. In a Ąrst step, all traffic scenes are found where a vehicle is changing lane
to the left, is visible for at least 6 s and has a follower vehicle during the past 2 s. A total
of 906 trajectories fulĄll these requirements. Next, only those traffic scenes are chosen
where the ego-vehicle has a leading vehicle both on the start and target lane of a lane
change such that safety constraints with respect to them need to be fulĄlled in the op-
timization. Finally, a simpliĄcation is made to Ąlter out scenes in which vehicles other
than the ego-vehicle are changing lanes. This way, a total of 713 trajectories remain.
Those 713 traffic scenes are further analyzed regarding Time Headways and Time-to-Col-
lisions. The histograms and empirical cumulative distribution functions Φ are shown in
Figure 8.6. The subscript indicates the respective vehicle pair. German law treats Time
Headways below 1.5 s as a misdemeanor, and below 0.9 s Ąnes are imposed on the driver.
It is striking that a huge part of the drivers does not drive rule-consistent. The Time Head-
way to the leading vehicle at the end of a lane change is frequently very low, as reĆected
in Figure 8.6 (c). One possible explanation for this behavior is a phenomenon called
relaxation, refer to [Sch+12] for more information. Drivers tend to accept smaller head-
ways during merging to apply smaller decelerations and drive more comfortably. Hence
a trade-off between comfort and safety is observed in real-world driving on highways.
The analysis results can be used to set the Time Headway and Time-to-Collisions con-
straints used in lane change behavior planning. Another option is to impose constraints
that ensure rule-conformity. Since this Section aims to analyze the performance of lane
change behavior planning algorithms on the created dataset, a compromise needs to be
found. Hence a Time Headway constraint of 1.0 s and Time-to-Collisions constraint of
6.0 s is used.
Applying this constraint to the dataset leads to just 97 trajectories. Those will be used
for the Maximum Entropy Inverse Reinforcement Learning to obtain the weights of all
cost functions involved in the various optimizations. Relaxing the constraints to include
scenes with minimum Time-to-Collisions of 4.5 s and Time Headways of 0.5 s leads to a
total of 423 scenes. Those will be used later to evaluate the robustness gain of formulating
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(f) Time-to-Collision distribution of ego-vehicle

to its left lane follower vehicle.

Figure 8.6.: Time Headway and Time-to-Collision statistics of the created example trajectory

subset based on the highD dataset. The distribution of data is shown using histograms and the

corresponding cummulative distributions functions.
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Table 8.1.: Datasets created based on the highD data used for Inverse Reinforcement Learning

and subsequent evaluations of its results.

Number of trajectories

Initial Ąltered dataset 906
All ROI vehicles without doing lane changes 713

TTC ≤ 4.5 s ∧ THW ≤ 0.5 s 423
TTC ≤ 6.0 s ∧ THW ≤ 1.0 s 97

the optimization as a cooperative LQ game. All information is summarized in Table 8.1.

Inverse Reinforcement Learning Results and Evaluation on highD dataset

This Subsection describes the Maximum Entropy Inverse Reinforcement Learning ap-
proach applied to the following three cost functions:

JG
I =λ[θ1

np
∑

i=1

(L̇E,i − L̇E,des)
2 + θ2

np
∑

i=1

L̈2
E,i + θ3

np
∑

i=1

(L
(3)
E,i)

2]+ (8.2.1)

+ (1 − λ)[θ4

np
∑

i=1

(L̇LB,i − L̇LB,des)
2 + θ5

np
∑

i=1

L̈2
LB,i + θ6

np
∑
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(L
(3)
LB,i)

2],
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np
∑

i=1
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L̈2
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(L
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N =β1

np
∑
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(NE,i − NE,des)
2 + β2

np
∑

i=1

N̈2
E,i + β3

np
∑
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(N
(3)
E,i )

2. (8.2.3)

Cost function JG
I reĆects the one used in the cooperative LQ game formulation, JO

L is
used for optimizing just the ego-vehicle longitudinal trajectory, and JO

N reĆects the lateral
optimization for both former cases. Notice, that in above lateral cost formulation the
lateral velocity is omitted compared to Equation 7.2.5.
The Maximum Entropy formulation of [LK12] or more speciĄcally [Nau+20] is used.
Assuming a set of demonstration D = ¶τD,j♢nD

j=1, the Maximum Entropy formulations
aims to maximize the feature likelihood. Practically making trajectories with lower cost
more likely outcomes of the optimization. For some general parameter vector Θ and cost
function depending on those parameters Jτ, Θ, the following problem is solved:

Θ∗ = argmin
Θ

−P (D♣Θ) (8.2.4)

= argmin
Θ

−
nD
∑

j=1

exp(−J(τD,j, Θ))
[∫

exp(J(τ̃D,j, Θ))dτ̃D,j

]−1

. (8.2.5)

Assuming a Maximum Entropy probability distribution leads to:

Θ∗ = argmin
Θ

nD
∑

j=1

1

2
g∗

Θ(τD,j)H
−1
Θ (τD,j)gΘ(τD,j) − 1

2
log(det(HΘ(τD,j))) +

dτ

2
log(2π)

(8.2.6)
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Table 8.2.: Resulting optimized weights for each respective cost function.

Interactive (JG
I ) Ego-Only (JO

L ) Lateral (JO
N )

θ1 = 0.21 α1 = 0.10 β1 = 0.13

θ2 = 6.00 α2 = 2.82 β2 = 13.47

θ3 = 38.34 α3 = 17.99 β3 = 27.31

θ4 = 0.12

θ5 = 5.80

θ6 = 40.21

λ = 0.47

Therein gΘ and HΘ are the gradient and Hessian of the cost function with respect to its
parameters Θ. dτ is the dimension of a demonstrated trajectory τ . A detailed derivation
is found in [Zie+08] and [LK12]. Problem (8.2.6) is formulated using CasADi [And+19]
and its automatic differentiation functionality. The resulting problem is then solved with
the IPOPT (Interior Point OPTimizer) solver [WB06].
The optimized parameters of the three cost functions are shown in Table 8.2. Notice that
λ = 0.47 was found, indicating that the demonstrations are best explained using almost
the most cooperative cost-sharing between the ego-vehicle and left following vehicle. The
parameters of JG

E are approximately half that of the ones of JG
I which is reasonable due

to λ = 0.47. A comparably low cost is assigned to reaching the desired velocity. However,
the cost is quadratic, and there are signiĄcant deviations from the desired velocity in the
demonstrations. A comparably high parameter is assigned to the jerk part of the cost
function. These results match the discussion of [Wer+10] well, that indicates that human
drivers tend to drive jerk optimal. Similarly, the parameter regarding the lateral deviation
is comparably low, again due to the high lateral deviation values observed during a lane
change. In the following Section 8.3, the resulting cost functions with parameters shown
in 8.2 are evaluated using a set of demonstration trajectories of the highD dataset. This
way, a comparison of both the interactive and baseline optimization are assessed in terms
of how good the optimized trajectories match the observed ones of human drivers.

8.3. Evaluation of the Game Theoretic Lane Change

Planning

Those optimized cost function parameters are used in the following. The Ąrst evaluation
analyzes the success rate of using the cooperative LQ game formulation compared to opti-
mizing only the ego-vehicle longitudinal trajectory with identical safety constraints. The
data with minimum Time-to-Collisions of 4.5 s and Time Headways of 0.5 s consisting
of 423 demonstrations is used, refer to Table 8.3. A total of four conĄgurations, C1 to
C4, are analyzed. The distinguishing factors are whether chance-constraints are imposed
and the ego-vehicle is forced to change lanes in the situation prediction. Therefore the
column Force Ego-LC means that in the Monte Carlo Situation Prediction approach de-
scribed in Chapter 4, in each simulation run, the ego-vehicle is forced to change lane at
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Table 8.3.: Success rates on the highD trajectory dataset consisting of a total of 423 examples.

Success Rates

ConĄguration Force Chance-Const. Interactive Ego-Only
Ego-LC (η = 0.85)

C1 No No 300/423(70.9%) 206/423(48.7%)
C2 No Yes 274/423(64.8%) 169/423(40.0%)
C3 Yes No 301/423(71.2%) 212/423(50.1%)
C4 Yes Yes 276/423(65.2%) 188/423(44.4%)

the earliest possible and safe time. Forcing a lane change leads potentially to a breaking
maneuver of the left following vehicle and could increase the success rate. The column
Chance-Const. (η = 0.85) distinguishes if in the respective conĄguration the Time Head-
way and Time-to-Collision safety constraints are formulated in a probabilistic manner or
assuming the predicted trajectories of surrounding vehicles are deterministic. Imposing
chance-constraints leads to more conservative safety constraints.
The results are shown in Table 8.3. Imposing the chance-constraints during the default
lane change duration of tLC = 6 s does alter the success rate when using η = 0.85 due to ac-
counting for uncertainties. Forcing an ego-vehicle lane change during situation prediction
has only a slight effect on the results. Still, it depends heavily on the parametrization
of the driver models during the Monte Carlo simulations. This aspect is not analyzed
in-depth within the thesis at hand. The results indicate that the cooperative LQ game
formulation leads to a signiĄcantly increased success rate, meaning that feasible solutions
are successfully calculated.
Another important evaluation considers how well each approach reconstructs the driven
trajectories of the ego-vehicle. The hypothesis is that the target lane following vehicle
will show courtesy which is reĆected in the parameter λ leading to better results for
the cooperative LQ game formulation referred to as interactive in Table 8.4. It shows
a total of eight metrics. To ensure a fair comparison, only examples are used that lead
to feasible solutions for both optimization variants. The Ąrst three consider the absolute
deviation of the optimized longitudinal position, velocity, acceleration, and jerk to the
driven trajectories in the ego-vehicle coordinate frame for several timesteps. The last
three consider the trajectory as a whole and use the DTW (Dynamic Time Warping)
metric, refer for example to [BC94]. It is a typical metric used for the comparison of
two time-series with frequent uses in automated driving, see [Hu+19c] for an example
of its use in trajectory prediction. Assuming two time-series a = [a1 a2 . . . an]⊺ and
b = [b1 b2 . . . bm]⊺ represented as vectors. The series are Ąrst arranged as a n-by-m
grid. Each point (i, j) in the grid represents a alignment of points ai and bj. A path in
the grid represents a warping between both series such that the distance between both is
minimized. The problem can be formulated as a recursive optimization problem under a
certain set of constraints. This way, similar time-series with for example just slight phase
shifts lead to small DTW distances whereas a simple euclidean distance calculation might
lead to signiĄcantly higher values.
The results indicate that forcing ego-vehicle lane changes within the situation prediction
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8.3. Evaluation of the Game Theoretic Lane Change Planning

leads to worse results. Similarly, imposing chance-constraints leads to safer driving but
worse results for imitating human driving behavior, at least on the dataset considered here.
Most importantly, the cooperative LQ formulation outperforms the ego-only optimization
in all metrics when comparing identical conĄgurations. Therefore, the novel formulation
not only increases the success rates and robustness but also leads to optimized trajectories
closer to the driven ones. The runtime analysis shows that this comes at the cost of an
increased runtime due to larger matrices involved in the Quadratic Program.

Some example reference trajectories (denoted as Ref) and optimization results (denoted
as Opt) are shown in Figure 8.7 (a) - (d) with their respective DTW metrics. Solid lines
represent ego-vehicle velocity trajectories (denoted as Ego), whereas dashed lines represent
the left lane following vehicle (denoted as LB). Its predicted trajectory is referred to as
LB-Pred. Example (a) shows an example where the cooperative LQ game formulation
(denoted as Int-Opt) leads to a velocity trajectory almost identical to the driven one.
It is also shown that the left following vehicle shows courtesy, which also results from
the optimization. In contrast, if only the ego-vehicle trajectory is optimized (denoted as
Ego-Only-Opt) based on the initial trajectory prediction, stronger acceleration is involved
to ensure safety. In example (b), both approaches lead to similar results mainly because
the velocities of ego-vehicle and left following vehicle are similar and safety is hence easier
to ensure without requiring courtesy. In example (c), the ego-only optimization leads
to better results. Notice here how the initial situation prediction is closer to the driven
trajectory of the left following vehicle compared to its optimized trajectory. The Ąnal
example (d) again shows an example where the optimization of both vehicleŠs trajectories
leads to superior results. Again, the initial situation prediction does not reĆect the driven
trajectory of the left following vehicle well, and the optimization accounts for this fact.

Runtime Evaluation in the ZF Software Framework

Both the approach of the previous Chapter 7 (called Ego-Only) and the cooperative LQ
game variant are integrated into the ZF software framework using the C programming lan-
guage. The algorithms can be conĄgured to use Polygon Clipping or avoid it by assuming
lane-keeping surrounding vehicles. Table 8.5 provides an overview of the achieved run-
times averaged over a total of 1538 cycles of the algorithm. Both the mean and standard
deviation of the runtimes are provided.

Inspection of the Table shows that the Polygon Clipping application takes more time
compared to all involved optimizations. [Mar+09] is a much more efficient algorithm
compared to [Vat92] that was used here. [Mar+09] should therefore be the algorithm of
choice to reduce the runtime further. The maximum number of lane change initiation
time optimizations for immediate and delayed lane changes are set to 5 and reĆected in
the nI.

Comparing the last two rows of the Table shows that the runtime of the cooperative LQ
game formulation is triple that of the ego-only formulation. Part of the reason is that no
simpliĄed dynamics are used for the lane change initiation time optimization. But the
higher runtime is mainly due to the larger matrices involved since the trajectories of two
vehicles are optimized simultaneously. Hence runtime is traded-off against robustness,
and the system designer decides which approach is best suited for their application.
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Figure 8.7.: Several example reference trajectories of the ego-vehicle and its following vehicle on

the left lane. The optimization results are shown and the captions of each Figure shows the

DTW results for the interactive (Int) and baseline (Ego-Only) optimizations.

Note that all approaches result in low runtimes, allowing for applying the algorithms on
embedded hardware platforms. This is in stark contrast to many literature approaches
that require more accurate satisfaction of non-holonomic and system dynamics constraints
leading to nonlinear programs that are harder to solve and hence take more time. It is
argued within the thesis at hand that a Quadratic Programming approach using simpliĄed
dynamics is a good choice for lane change behavior planning for application in todayŠs
software systems without the need for parallel computing hardware.

Qualitative Results of the Closed-Loop Application in Simulation

Note that the term lane change behavior planning was deĄned in Chapter 2, more specif-

Table 8.5.: Runtimes of several conĄgurations of the optimization-based lane change planning

algorithms described in the thesis at hand. They are measured on a standard PC (i5-6500, 16GB

RAM) and realized using the C programming language.

Type Polygon Clipping nI Avg. runtime [ms] Cycles

None Yes - 10.60± 6.70 1538
Ego-Only Yes 5 18.80± 7.00 1538
Ego-Only No 5 5.80± 7.20 1538

Interactive No 5 15.30±13.70 1538
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ically in Section 2.1. From that discussion, it is obvious that the goal of a lane change
behavior planning algorithm is not its closed-loop application. It rather just serves as
a globalization strategy for any suitable local trajectory planning approach. Ideally,
the local planner should make fewer vehicle dynamics simpliĄcations and consider the
non-holonomic constraints accurately. The above box constraint formulation is just an
underapproximation of KammŠs Circle. Nevertheless, the closed-loop application of the
cooperative LQ approach with chance-constraints is discussed. The DESIM simulation en-
vironment is used for the evaluation. A simple, pure pursuit trajectory tracking approach
with 1 s look-ahead time is used. Note that the following only presents a qualitative eval-
uation. A quantitative evaluation needs to analyze the interplay of all algorithms in more
detail. The work [Lie+19b] was the Ąrst step in that direction.
Figure 8.8 shows the initial traffic scene and its temporal evolution. The optimized ego-ve-
hicle trajectory is shown in grey, and nine dots are placed uniformly in time along the
trajectory. A planning horizon of tmax = 10 s is used. The ego-vehicle merges into the gap
between the vehicles with ID2 and ID4 to overtake the slower vehicle with ID1.
A more detailed look at the driven trajectory of the ego-vehicle is shown in Figure 8.9.
First, Figure 8.9 (a) shows the driven trajectories of all vehicles in the initial ego-vehicle
coordinate at time t = 0 s. Figure 8.9 (c) and (e) show the velocities and acceleration.
The ego-vehicle Ąnally drives with the same velocity as its new leading vehicle on the
target lane and keeps a safe distance to it as speciĄed by the Time Headway and Time-to-
Collision constraints. The lateral position trajectory is shown in Figure 8.9 (b), whereas
8.9 (d) and (f) show the lateral velocity and acceleration respectively. Note that the
ego-vehicle reaches the target lane and aligns itself correctly to it.
One adaption necessary for the lane change behavior planning approach to work in a
closed-loop is adapting the optimization constraints according to the lateral progress
towards the target lane center. For example, at the start of the lane change, the safety
constraints regarding the start lane leading vehicle need to be imposed at least for three
seconds, assuming a default lane change duration of tLC = 6 s. However, if the ego-vehicle
already approached the target lane, a constraint adaption is necessary. Therefore, the
constraints shift in time backward with further lateral progress towards the target lane,
similar to a shrinking horizon mechanism.

100



8.3. Evaluation of the Game Theoretic Lane Change Planning
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(b) Traffic scene and optimized trajectory at t = 3 s.
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(c) Traffic scene and optimized trajectory at t = 6 s.
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(d) Traffic scene and optimized trajectory at t = 9 s.

Figure 8.8.: Illustration of the closed-loop application of the cooperative LQ game formulation

with imposed chance-constraints in simulation. A simple left lane change scenario was chosen.
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Chapter 8. Game Theoretic Lane Change Planning
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(b) Position Y of the ego-vehicle.
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0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

Time t [s]

Ẏ
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(d) Velocity Ẏ of the ego-vehicle.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

Time t [s]

Ẍ
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(e) Acceleration Ẍ of the ego-vehicle.
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(f) Acceleration Ÿ of the ego-vehicle.

Figure 8.9.: Results using the cooperative LQ game approach closed-loop in a simple lane change

left scenario. Left left column represents the longitudinal quantities wheres the right on shows

the lateral quantities.
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9
Conclusion and Outlook

Automated highway driving promises increased comfort for passengers, enhanced safety
and offers many commercial advantages by automating various transportation tasks. Com-
pared to urban scenarios, there is more structure on highways, such as lane markings
reducing the complexity signiĄcantly. Yet, the problem is not solved, and the thesis at
hand contributes to the behavior planning aspect, focusing on automated lane changes. A
probabilistic model for discretionary lane change proposals in highway driving situations
is presented. The parameters of the module are optimized using data from a driving
simulator study. The results show that the model can accurately mirror the driverŠs lane
change intentions and propose suitable discretionary lane changes. Evaluation of data
from an actual test vehicle also conĄrms the effectiveness and suitability of the model.
The consideration of trajectory predictions promises several beneĄts for lane change behav-
ior planning. It avoids the combinatoric explosion when traffic participants are considered
individually and allows seamless use within lane change behavior planning. To this end,
an approach from literature is enhanced to provide situation predictions for the whole
traffic scene. Next, it is shown how maneuver options for lane changes of the ego-vehicle
can be identiĄed using Polygon Clipping. A graph structure is proposed that encodes
these options. The situation prediction predicts lane changes of surrounding traffic par-
ticipants, and it is beneĄcial to use this information in lane change behavior planning.
Hence, the maneuver identiĄcation is modiĄed to handle lane changes of surrounding
traffic participants in a principled way. Finally, a complexity reduction step results in
reduced graphs that are easier to work within the subsequent lane change planning step.

A total of three different approaches for lane change behavior planning are presented in
the thesis at hand. The Ąrst assumes that surrounding traffic participants stick to their
respective lanes during the whole planning horizon. The spatiotemporal areas resulting
from maneuver identiĄcation are exploited for sampling knots of splines for the longitudi-
nal and lateral lane change trajectories. Interactions are considered by injecting a set of
ego-trajectories back into the situation prediction to calculate an interaction cost. Finally,
a combined cost function is used to choose a trajectory.

The sampling of trajectories is, in general, computationally expensive when current gen-
eration ECUs without parallelization are used. Therefore, an alternative approach for the
optimization of lane change trajectories is developed that uses Quadratic Programming.
Safety plays a crucial role in automated driving. It is shown how Time-to-Collision and
Time Headway constraints can be integrated into the Quadratic Program for longitudinal
trajectory optimization.
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Chapter 9. Conclusion and Outlook

Generality

Vehicle
Dynamics

Interaction-Awareness

Runtime

Sampling-Based
Optimization-Based
Game Theoretic

Figure 9.1.: Spider diagramm giving an overview of the attributes of all three lane change

behavior planning approaches described within the thesis at hand. The sampling-based approach

is the slowest when no parallelization is used and hence scores worst in the runtime dimension.

Both approaches mentioned above inject the optimized ego-vehicle trajectories into the
situation prediction engine for interaction awareness. However, the sampling of knots and
the constraints of the trajectory optimization result from the initial trajectory predictions.
Prediction and planning are therefore decoupled. This results in conservative behavior in
traffic situations where cooperation is needed. The third approach for lane change behav-
ior planning is presented to circumvent this problem, where the trajectory optimization
problem is formulated as a cooperative linear-quadratic (LQ) game. Uncertainty due to
the uncertain sensor reading and multimodality are incorporated using chance constraints.
A fallback strategy is developed to handle the situation in which an already started lane
change needs to be aborted for safety reasons.
The spider diagram shown in Figure 9.1 ranks the three lane change behavior planning ap-
proaches in the dimensions runtime, generality, fulĄllment of vehicle dynamics constraints,
and interaction awareness. All approaches have different strengths and weaknesses. The
sampling-based approach allows for accurate vehicle dynamics checks, but the developed
heuristic does not generalize to traffic scenes where surrounding vehicles change lanes. On
the other hand, the optimization-based approach is the fastest but does not anticipate
other vehiclesŠ cooperative behavior and acts more conservatively. Finally, the LQ game
approach corrects this weakness at the cost of higher runtime. Of all approaches, it seems
the most suitable for practical application on current generation ECUs in a modular au-
tomated driving software system. It fulĄlls all requirements formulated in the motivation
of the thesis at hand.
Note that all behavior planning approaches described in the thesis at hand have several
limitations. A Quadratic Programming formulation allows the use of linear system dy-
namics and achieves the runtime requirements. Such simpliĄed dynamics will not perform
equally well in all highway driving velocity regions, leading to unsuitable trajectories pro-
vided to a local trajectory planner. There are two general strategies to cope with this.
One possibility is to eradicate the behavior planning stage and work with a local trajec-
tory planning approach with responsibilities including discretionary lane changes. The
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second approach is to use more accurate system dynamics models within the behavior
planning stage and stick to a modular software system. In both cases, the requirement
for a low runtime needs to be relaxed.
There are still numerous challenges in the Ąeld of trajectory prediction and behavior
planning for automated driving. One exciting direction focuses on the integration of
driving rules into trajectory predictions, refer to [Li+21]. The authors analyze various
approaches for integration such rules as inductive biases into Deep Learning-based trajec-
tory predictions. They use a generative adversarial network and analyze the integration
of Signal Temporal Logic (STL) and syntax trees into the learning problem. [Iva+20]]
proposes MATS (Mixtures of Affine Time-varying Systems), where they learn dynamical
system representations for trajectory forecasting and integrate those predictions with a
multimodal planning methodology. Hence, it aims to solve the prediction and planning
problem at once. The approach [GS21] also focuses on the integration of both problems.
They develop an end-to-end trainable architecture to solve prediction and planing together
by integrating game-theoretic reasoning into neural networks. An implicit differentiable
layer maps preferences based on the agentŠs past trajectories to local Nash Equilibria rep-
resenting the potential situation modes. Finally, [Liu+21] proposes an energy-based Deep
Learning model to solve the combined prediction and planning problem for automated
driving.
While learning-based approaches seem omnipresent in current research, it should be noted
that human driving behavior is frequently not rule-consistent and doesnŠt always serve as
the proper behavior to imitate. So, to summarize, future research should focus on a close
integration of the situation prediction and behavior planning task. The critical research
questions will be the algorithmsŠ safety, robustness, high interpretability, and predictable
behavior.
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A
Appendix

A.1. SAE Levels of Driving Automation

The SAE (Society of Automotive Engineers) J3016 norm, refer to [Soc21], describes the
taxonomy and deĄnitions for terms related to driving automation systems for on-road
motor vehicles. It deĄnes a total of six levels counted from zero to Ąve. The deĄnitions
of these levels are used in the thesis at hand. Figure A.1 provides an overview of them.

A.2. Rational Approximation of the Error Function

There exists no closed-form solution of the cumulative distribution function Φ of a Gaus-
sian probability distribution. An approximation is therefore used in Chapter 3. SpeciĄ-
cally, the rational approximation using economized Chebyshev polynomials from [Has55]
is utilized:

erf(x) = 1 − [ϱ(a1 + ρ (a2 + ϱ (a3 + ϱ (a4 + a5ϱ))))] · exp
(

−x2
)

+ ϵ(x), (A.2.1)

with

ϱ =
1

1 + px
. (A.2.2)

The coefficients are the following:

p = 0.3275911, (A.2.3)

a1 = 0.254829592, (A.2.4)

a2 = −0.284496736, (A.2.5)

a3 = 1.421413741, (A.2.6)

a4 = −1.453152027, (A.2.7)

a5 = 1.061405429, (A.2.8)

and it achieves a maximum absolute error of:

♣ϵ(x)♣ < 1.5 · 10−7. (A.2.9)

106



A.3. Driving Simulator Study and Scenarios
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Figure A.1.: Adaption of the chart regarding SAE J3016, refer to [Soc21].

A.3. Driving Simulator Study and Scenarios

The driving simulator mock-up is shown in Figure A.2. A total of eleven male drivers
participated in the study. Nine participants were Ąnal-year undergraduate students and
have limited driving experience. One participant was a Ąnal-year graduate student, and
the last one was a second-year Ph.D. student. Before the study, the task was clearly
explained to the participants. The trigger signal was recorded using a speciĄc button of
the driving simulator mock-up. All participants were placed in several scenarios, refer to
Table A.1 and A.2, with varying traffic situations Si,L/R and SA,L. Their task was to
indicate their desire to do a lane change, independently of the safety of a lane change.
This is very important since the developed model triggers the maneuver planning module
in an modular automated driving software system. The maneuver planning moduleŠs task
is to prepare for a safe lane change Ąnally and position the ego-vehicle correctly next to
a target traffic gap. Therefore, the focus here is solely on lane change intention based on
dissatisfaction with the current driving lane.
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Appendix A. Appendix

Figure A.2.: Driving simulator of the Institute of Control Theory and Systems Engineering at

TU Dortmund University. It was used for conducting the driving simulator study.

The following advice was communicated to the study participants concerning their task:

You will be placed in a total of 11 scenarios. Your vehicle is doing lane-keeping and

Adaptive Cruise Control (ACC). Assume that your vehicle also can perform auto-

mated lane changes. Your initial speed is 30 m/s which is also your desired velocity.

By pushing the respective button on the steering wheel of the driving simulator mock-

up, you can issue a lane change request to your automated vehicle. Assume that your

vehicle will subsequently attempt to perform a lane change as soon as it is safe to

change lanes based on the traffic situation. Hence, you do not have to worry about

lane change safety since the vehicle takes care of it. Therefore, please push the button

on the steering wheel as soon as you feel that your current lane is less beneĄcial than

the target lane (left or right, depending on the scenario).

The scenarios were designed in a way to ensure that the model parameters can be opti-
mized. This in turn means, that all inĆuences in the utility functions Equation (3.1.2)
and Equation (3.1.3) needed to undergo variations. Tables A.1 and A.2 give an overview
of the scenarios, the initial ROI velocities, and their corresponding transitions for the left
and right lane change cases, respectively. A top view of the scenarios S2,L and S2,R is
given in Figure A.3 and Figure A.4 respectively. The dark vehicle in the middle always
corresponds to the ego-vehicle. Note how the traffic situation changes according to the
velocity transitions. There is a special scenario SA,L, for optimizing the accumulator
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A.3. Driving Simulator Study and Scenarios

Table A.1.: Description of left lane change scenarios, the ROI vehicle velocities and their tran-

sitions.

Scenario vCF vLB vLF
[

m
s

] [

m
s

] [

m
s

]

S1,L 30 → 10 − −
S2,L 30 → 10 40 40

S3,L 30 → 10 20 20

S4,L 30 → 10 50 → 20 20

S5,L 20 10 → 30 10 → 30

S6,L 20 50 → 30 20 → 30

SA,L 27.7 − −

Table A.2.: Description of right lane change scenarios, the ROI vehicle velocities and their

transitions.

Scenario vCF vCB vRF
[

m
s

] [

m
s

] [

m
s

]

S1,R 30 − 10 → 40

S2,R 30 50 → 30 10 → 40

S3,R 30 → 10 − 20

S4,R 30 → 10 50 → 10 20

trigger module for the left lane change. In this scenario, the desired ego velocity is un-
dershot only slightly, leading to the temporal accumulation of dissatisfaction with the
current driving lane. No such scenario is designed for the right lane change since the
german obligation to drive on the right-hand side of the road ensures a lane change if
the traffic situation permits it. The desired velocity of the ego-vehicle is in all scenarios
set Ąxed to vE,des = 30 m/s. All surrounding traffic participants use an Intelligent Driver
Model, refer to [Tre+00], with the standard parameters and are conĄgured to stick on
their corresponding initial lanes. The velocity transitions, therefore, happen because of
the safe car-following behavior.
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Figure A.3.: Scenario S2,L (refer to Table A.1) at three different times t = 0 s, t = 7.5 s and

t = 15 s.
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A.3. Driving Simulator Study and Scenarios
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Figure A.4.: Scenario S2,R (refer to Table A.2) at three different times t = 0 s,t = 7.5 s and

t = 15 s.
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Appendix A. Appendix

A.4. Additional Situation Prediction Results

This Section provides several additional illustrations and results of the situation prediction
approach described in Chapter 4 of the thesis at hand.
Table A.3 provides further situation prediction results on the simulation data for the
conĄgurations C3-S and C4-S, refer to Table 4.2 in Chapter 4.
Figure A.5 shows an threedimensional illustration of all clusters of example 4.6a.
Figure A.6 shows four additional prediction results of the application of the situation
prediction approach on the highD dataset as described in Chapter 4.
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A.4. Additional Situation Prediction Results
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Figure A.5.: Threedimensional illustration of all clusters of example 4.6a.
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Figure A.6.: Four examplary traffic scenes of the highD dataset for the illustration of the Monte

Carlo situation prediction results in additions to the ones shown in Figure 4.6.
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Appendix A. Appendix

A.5. Classification and Regression Metrics

This Section introduces all classiĄcation and regression metrics as used in Chapter 4 of
the thesis at hand.
Explained Variance:

Exp. Var = Exp. Var(vdes, v̂des) = 1 − Var(vdes − v̂des)

Var(vdes)
(A.5.1)

Mean Absolute Error:

MAE = MAE(vdes, v̂des) =
1

nD

nD
∑

i=1

♣vdes,i − v̂des,i♣ (A.5.2)

Root Mean Squared Error:

RMSE = RMSE(vdes, v̂des) =

√

√

√

√

1

nD

nD
∑

i=1

(vdes,i − v̂des,i)2 (A.5.3)

Median Absolute Error:

MedAE = MedAE(vdes, v̂des) (A.5.4)

= median(♣vdes,1 − v̂des,1♣, ♣vdes,2 − v̂des,2♣, . . . , ♣vdes,nD
− v̂des,nD

♣)
Coefficient of Determination R2:

R2 = R2(vdes, v̂des) = 1 −
∑nD

i=1(vdes,i − v̂des,i)
2

∑nD

i=1(vdes,i − 1
nD

∑nD

i=1 vdes,i)2
(A.5.5)

Accuracy:

AC = AC(cl, ĉl) =
1

nD

nD
∑

i=1

1(ĉl = cl) (A.5.6)

Precision:

Precision = Prec. =
TP

TP + FP
(A.5.7)

Recall:

Recall = Rec. =
TP

TP + FN
(A.5.8)

F1-Score:

F1 = 2
Precision · Recall

Precision + Recall
(A.5.9)

Balanced Accuracy:

BAC =
1

ncl

ncl
∑

m=1

Recallm (A.5.10)

A.6. Additional Lane Change Maneuver Identification

Illustrations

This Section provides further illustrations of all polygons involved in the complexity re-
duction mechanism described in Section 5.3 of Chapter 5. The areas shown in Figure A.7
correspond to the graph shown in Figure 5.11.
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A.6. Additional Lane Change Maneuver IdentiĄcation Illustrations
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Figure A.7.: Overview of all resulting spatiotemporal areas after applying the complexity reduc-

tion mechanism.
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A.7. Definition of Differential Flatness

The following deĄnition is taken from [Rat+95]. A (possibly) nonlinear system

ẋ(t) = f (x(t), u(t)) ∈ R
n, x(0) = x0, u(t) ∈ R

m, (A.7.1)

is Ćat, if there exists an (possibly Ąctious) output

z(t) = z
(

x, u, u̇, . . . , u(p)
)

∈ R
m (A.7.2)

such that the state and input can be expressed as follows:

x = x
(

z, ż, . . . , z(q)
)

(A.7.3)

u = u
(

z, ż, . . . , z(q)
)

(A.7.4)

The property is especially helpful in the Ąeld of trajectory planning. Given a Ćat model,
planning can be done in the space of the Ćat output and mapped back to the input
trajectory u(t).

A.8. Kinematic Double-Track Vehicle Model

In Chapter 6, a nonlinear kinematic double-track vehicle model is used to check the
sampled trajectories for feasibility in term of the front-wheel steering angle and steering
angle rate. The model, refer to [Sch+19j], is mathematically stated as follows:
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. (A.8.1)

Herein, the state x = [x y Ψ δ v]⊺ consists of the position x and y, orientation
in the inertial system Ψ, front-wheel steering angle δ and speed v. The control input
u = [usteer uacc]

⊺ consists of the front-wheel steering angle rate usteer and acceleration
measured in the inertial system uacc. The length of the vehicle is represented by l.
It is shown in [Vu+21] that the nonlinear kinematic double-track vehicle model is Ćat
with the output z = [x y]⊺. Chapter 6 makes use of the following two expressions for
the front-wheel steering angle and rate expressed in terms of the Ćat output:

δ = arctan

(

l
ÿẋ − ẍẏ

ẋ2 + ẏ2

)

(A.8.2)

δ̇ =
d

dt

(

l
ÿẋ − ẍẏ

ẋ2 + ẏ2

)





1

1 + l ÿẋ−ẍẏ
ẋ2+ẏ2



 . (A.8.3)
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A.9. Additional Game Theoretic Lane Change Planning Results

A.9. Additional Game Theoretic Lane Change Planning

Results

The disussion of Section 8.3 of Chapter 8 used the dataset consisting of 423 trajectories,
refer to Table 8.1. Here, additional results are provided using the dataset consisting of 97
examples.
The success rates are shown in A.4 and the results in terms of the remaining metrics are
shown in Table A.5.

Table A.4.: Success rates on the highD trajectory dataset consisting of a total of 97 examples,

refer to Table 8.1.

Success Rates

ConĄguration Force Chance-Const. Interactive Ego-Only
Ego-LC (η = 0.85)

C5 No No 97/97(100%) 95/97(97.9%)
C6 No Yes 97/97(100%) 95/97(97.9%)
C7 Yes No 97/97(100%) 95/97(97.9%)
C8 Yes Yes 97/97(100%) 95/97(97.9%)
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