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1 Introduction

Empirical research in finance and economics usually focuses on estimating (causal)
relationships between inputs and an output, also known as statistical inference. As
researchers in these fields can rarely conduct randomized controlled experiments because
these are often impractical or unethical, they must rely on econometric methods applied
to observational data where, according to the principle of ceteris paribus, all other
factors remain fixed (Wooldridge, 2010; Tiffin, 2019). This observational approach
makes it possible to interpret how a causal effect is identified and how likely it is that
the observed effect is due to chance, as the effect could have arisen from sampling error
alone (Einav and Levin, 2014).

Machine learning research, on the other hand, focuses mainly on finding generalizable
predictive patterns to predict an output given certain inputs (Bzdok et al., 2018). Here,
researchers are less interested in estimating (causal) effects from in-sample data than
in making predictions for out-of-sample data. However, machine learning research is
strongly linked to the technology sector and therefore mainly interested in image, speech
or text data (Krizhevsky et al., 2012; Hinton et al., 2012; Devlin et al., 2018). Due to
the increasing amount of data and available processing capacity, these methods are also
heavily used by the financial industry, e.g. for fraud detection, robo-advisory, chatbots
for banks or algorithmic trading (Buchanan, 2019).

This dissertation consists of four independently written essays dealing with both,
inference and prediction of financial data sets. Following this brief introduction, the
remainder will provide detailed summaries of the individual essays and publications
details.

The first part of this dissertation covers two chapters that explore the question of
how financial markets priced companies’ stocks during the market collapse caused by
the COVID-19 pandemic in the beginning of 2020. As the COVID-19 pandemic and the
subsequent economic lockdown represented one of the most impacting exogenous shocks
to financial markets in recent history, it led to a huge increase in uncertainty about a
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1 Introduction

firm’s future cash flows (Fahlenbrach et al., 2020). This environment thus allowed us to
examine the drivers and characteristics that may make firms more resilient to crises
and help to reduce investor uncertainty.

Against this background, Chapter 2 examines how firm efficiency influenced stock
returns during the COVID-19 crisis. There are two opposing theories on how firm
efficiency may influence stock returns given that a firm’s operational efficiency should
determine its future cash flows and associated returns. On the one hand, inefficient
firms likely have a higher risk associated with their future cash flows, and hence these
firms must offer higher rates of return to attract risk-averse investors (Nguyen and
Swanson, 2009). One the other hand, investors’ demand for efficiently operating firms
may be high and so their stock returns, since these firms have more secured future cash
flows and are consequently exposed to a lower risk of default (Frijns et al., 2012).

We investigate the link between firm efficiency and stock returns during the COVID-
19 crisis using a sample of 884 US firms. We follow Frijns et al. (2012) and argue
that firms using their resources more efficiently should be more resilient during the
crisis since they have a significant lower risk of corporate default. This should lead
to a higher valuation by investors. Our empirical analysis supports this hypothesis.
Based on efficiency scores obtained from a Stochastic Frontier Analysis (SFA) and a
Data Envelopment Analysis (DEA), we find that highly efficient firms experienced at
least 9.44 percentage points higher cumulative returns than inefficient firms during the
COVID-19 crisis. Additionally, we find that a long-short portfolio consisting of efficient
and inefficient firms would have realized a significant positive weekly return of 3.5% on
average in a backtesting setting.

Chapter 3 investigates the value of investor relations (IR) during the COVID-19
crisis. As mentioned above, the COVID-19 pandemic and the respective lockdown
measures have caused uncertainty on capital markets. Particularly, the rumours and
news in the media and on the internet, which mainly revolved around whether companies
were able to overcome the crisis might have overwhelmed investors and might have
led to information fictions. This is because investors have been shown to possess only
limited information processing capacities (Hirshleifer and Teoh, 2003). In this paper, we
therefore hypothesize that an effective communication by a company’s IR department
with its investors might have helped to reduce uncertainty and to alleviate information
frictions; and thus, this should have paid off during the crisis.

2



In our main tests as well as in our additional tests, we find consistent evidence to
support our hypothesis. Using a sample of almost 1,000 companies from 16 different
European countries and IR rankings from Institutional Investor, we find that companies
with better-quality IR experienced significantly higher returns during the crisis period.
Particularly, we document that firms with strong IR experienced between five and
eight percentage points higher stock returns than firms with weak IR during the
COVID-19 crisis. This result is robust to controlling for a several firm and governance
characteristics, industry and country-fixed effects, and to using an entropy balanced
sample, which helps us to address possible endogeneity concerns.

To tighten the link between a firm’s IR quality and its stock performance during the
crisis, we also run regressions with weekly stock returns over the entire year 2020 as the
dependent variable and interactions of all independent variables with the weekly growth
of COVID-19 cases, similar to Ding et al. (2021). Further, we run daily cross-sectional
regressions during the first quarter of 2020 and difference-in-differences regressions with
daily abnormal returns following Albuquerque et al. (2020) and Lins et al. (2017). But
despite these different settings, the results confirm our earlier findings.

Apart from our main tests, we also focus in Chapter 3 on how a firm’s IR functions
might have increased its firm value. We first examine two different IR functions, namely
public and private IR. We find that mainly private IR functions, such as one-to-one
meetings of senior management with investors, are the main drivers of our results,
and that the public IR function does not seem to have increased the performance of
firms with strong IR. Further, our results provide evidence that a firm’s (private) IR
functions have boosted its stock performance by increasing credibility with incumbent
shareholders and by diversifying the shareholder base. Strong IR firms have not only
managed to retain incumbent institutional investors, but also seem to have managed to
attract new institutional investors during the crisis.

In further tests, we also find differences in the value of (private) IR depending on the
countries the firms are headquartered in. In line with Karolyi et al. (2020) we find that
strong (private) IR was even more valuable for firms headquartered in countries with
lower-quality legal institutions. Furthermore, we find that firms with better-quality
IR benefited significantly more in countries with a low level of societal trust and in
uncertainty-avoidance countries.

3



1 Introduction

The last two essays of this dissertation move away from the inference element and deal
with the prediction of financial time-series data using unsupervised machine learning
methods. In the finance literature so far, machine learning models are mainly used
for discriminative tasks, such as point forecasts or classifications. However, in this
dissertation, we show how the finance literature can be extended by using generative
probabilistic models, which aim to learn the underlying distribution of the data and
are able to generate realistic artificial samples. Since time-series in the real world are
highly stochastic, probabilistic sampling has the advantage of providing a complete
distribution of possible scenarios instead of a single prediction.

Chapter 4 studies measures for the evaluation of generative probabilistic models for
time-series data. Prior literature has shown that generative machine learning models
are capable of generating artificial data of exceptional quality in areas such as natural
language processing or computer vision (Karras et al., 2018), but there is still a gap in
the literature regarding time-series data. This may be due to the fact that humans can
easily judge whether a generated image or a text is realistic, deciding whether generated
time-series are realistic is more challenging because of a lack of reliable quality measures.
Against this background, we aim to quantify the similarity between real time-series
samples and samples from generative models by using the popular maximum mean
discrepancy (MMD) (Gretton et al., 2006) as well as our new proposal, the Hausdorff
discrepancy (HD). The latter takes the shape of the generated samples into account
by using the well-known Hausdorff distance. Since both discrepancies require an inner
core distance, we consider the Euclidean, the dynamic time warping and the Fréchet
distance to finally obtain six discrepancy measures.

We compare implicit and explicit probabilistic models, to find the best generator for
time-series data. For implicit models, which are likelihood-free, we employ generative
adversarial networks (Goodfellow et al., 2014) and variational autoencoders (Kingma
and Welling, 2013; Rezende et al., 2014). For explicit models, we use Markow random
fields (Piatkowski et al., 2013), which allow us to estimate an explicit likelihood function.
However, both model classes allow us to sample from the underlying data distribution.

In our empirical analysis, we train several hundred generative models and evaluate
them using the discrepancy measures. To do so, we employ two real-world time series
data sets: (I) hourly day-ahead electricity prices from the European Power Exchange
and (II) hourly humidity measurements from the Intel Berkeley Research Lab.
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Using both data sets, our results suggest implicit models outperform explicit models
based on our discrepancy measures. For the MMD, we find that generative adversarial
networks outperform variational autoencoders and Markow random fields in 4 out of 6
distance measures. Considering our new proposal, the Hausdorff discrepancy, we find
the variational autoencoders to win in 4 out of 6 cases. A visual examination of the
generated sample paths shows that GANs and VAEs tend to generate samples close to
the mean of the data set, while Markow random fields generate more realistic paths with
extreme values close to those the original data set. This visual result is strengthened in
our additional tests, where we compare the first four statistical moments of the original
data distributions with the generated samples of all models. In these tests, Markow
random fields outperform the implicit models and are able to generate samples with
statistical properties similar to the moments of the original data.

Overall, our study suggests that multiple measures should be considered when
assessing the quality of generative models for time-series data, and that even the most
advanced measures can be misleading.

Finally, Chapter 5 shifts the focus from the simulation to the prediction of time-series
data using generative models. In order to make reliable decisions in high uncertainty
environments, probabilistic forecasting allowing to quantify the underlying uncertainty
and to obtain a sample of forecasts instead of a deterministic point forecast is vital. For
instance, especially decision-makers in the energy sector rely on accurate probabilistic
forecasting given the high levels of uncertainty due to climate change and the threat
of the COVID-19 pandemic. In this chapter, we therefore investigate the predictive
power of generative models on energy time-series. We employ two popular frameworks
of generative models, namely generative adversarial networks (GAN) (Goodfellow et al.,
2014) and variational autoencoders (VAE) (Kingma and Welling, 2013; Rezende et al.,
2014), which can be used as drop-in Monte Carlo samplers (Piatkowski et al., 2021a).
To incorporate conditional information in the generative sampling process, we apply the
conditional forms of the generative frameworks, the conditional GAN (CGAN) (Mirza
and Osindero, 2014) and conditional VAE (CVAE) (Sohn et al., 2015).

In our empirical analysis, we conduct tests on two real-world energy time-series. First,
a data set from the European Energy Exchange (EEX) that includes hourly day-ahead
power prices, available at SMARD.de. Second, a data set from an IEEE-dataport
competition (Farrokhabadi et al., 2022) with hourly electricity loads from an unnamed
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but real city with a median consumption of 1.1 GW. We train over 800 generative models
on these data sets and automate the hyper-parameter search using the state-of-the-art
optimization tool Optuna (Akiba et al., 2019). Here we apply the maximum mean
discrepancy and the Hausdorff discrepancy as optimization objective and also propose
the use of both discrepancies as a final goodness-of-fit for time-series forecasting tasks.
Finally, we evaluate the predictive power of generative models on out-of-sample test
sets using the discrepancy measures as well as point-wise error metrics.

Our results show that generative models, which were optimized by the maximum
mean discrepancy, outperform the models optimized by the Hausdorff discrepancy on
both data sets. In a visual inspection and an additional analysis of the prediction
interval, we find those models to generate larger prediction intervals as well as more
accurate sample median predictions. Comparing several generative model frameworks,
our results are not in favour of one framework. Instead, multiple generative models
should be evaluated to select the most suitable for the respective task.

6



1.1 Publication Details

1.1 Publication Details
Paper I (Chapter 2):
Firm Efficiency and Stock Returns during the COVID-19 Crisis

Authors:
Daniel Neukirchen, Nils Engelhardt, Miguel Krause, and Peter N. Posch

Abstract:
We investigate the relationship between firm efficiency and stock returns during the
COVID-19 pandemic. We find that highly efficient firms experienced at least 9.44
percentage points higher cumulative returns during the market collapse. A long-short
portfolio consisting of efficient and inefficient firms would have also yielded a significantly
positive weekly return of 3.53% on average. Overall, our results show that firm efficiency
has significant explanatory power for stock returns during the crisis period.

Publication Details:
Finance Research Letters (2021), 102037.
https://doi.org/10.1016/j.frl.2021.102037
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Paper II (Chapter 3):
The Value of (Private) Investor Relations during the COVID-19 Crisis

Authors:
Daniel Neukirchen, Nils Engelhardt, Miguel Krause, and Peter N. Posch

Abstract:
We investigate the value of investor relations (IR) and find firms with strong IR to
experience between five and eight percentage points higher stock returns than those
with weak IR during the COVID-19 crisis. Firms with better-quality IR are also
associated with higher investor loyalty and appear to have attracted significantly more
institutional investors over the crisis period. This suggests that a firm’s IR contributes
to value generation by enhancing credibility with shareholders and by diversifying its
shareholder base. After decomposing IR into public and private transmission channels,
we find the private IR function to be the main driver of our results.

Publication Details:
The Journal of Banking & Finance (2022), 106450.
https://doi.org/10.1016/j.jbankfin.2022.106450
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Paper III (Chapter 4):
How to Trust Generative Probabilistic Models for Time-Series Data?

Authors:
Nico Piatkowski, Peter N. Posch and Miguel Krause

Abstract:
Generative machine learning methods deliver unprecedented quality in the fields of
computer vision and natural language processing. When comparing models for these
task, the user can fast and reliably judge generated data with her bare eye—for humans,
it is easy to decide whether an image or a paragraph of text is realistic. However,
generative models for time-series data from natural or social processes are largely
unexplored, partially due to a lack of reliable and practical quality measures. In
this work, measures for the evaluation of generative models for time-series data are
studied—in total, over 1000 models are trained and analyzed. The well-established
maximum mean discrepancy (MMD) and our novel proposal: the Hausdorff discrepancy
(HD) are considered for quantifying the disagreement between the sample distribution of
each generated data set and the ground truth data. While MMD relies on the distance
between mean-vectors in an implicit high-dimensional feature space, the proposed HD
relies on intuitive and explainable geometric properties of a “typical” sample. Both
discrepancies are instantiated for three underlying distance measures, namely Euclidean,
dynamic time warping, and Frechét distance. The discrepancies are applied to evaluate
samples from generative adversarial networks, variational autoencoders, and Markov
random fields. Experiments on real-world energy prices and humidity measurements
suggest, that considering a single score is insufficient for judging the quality of a
generative model.

Publication Details:
In Proceedings of the International Conference on Learning and Intelligent Optimization
(2021), (pp. 283-298).
https://doi.org/10.1007/978-3-030-92121-7_23
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Paper IV (Chapter 5):
Deep Generative Models for Probabilistic Time Series Forecasting

Authors:
Miguel Krause and Peter N. Posch

Abstract:
We investigate the predictive power of deep generative models on energy times series.
As electricity markets face high levels of uncertainty due to the climate change and the
ongoing COVID-19 pandemic, decision-makers can particularly benefit from probabilistic
forecasts from generative models to obtain robust estimates for underlying risks and
predictions. Particularly, we use the conditional forms of generative adversarial networks
(CGAN) and variational autoencoders (CVAE) to generate probabilistic forecasts on
two real-world energy data sets, and propose a goodness-of-fit for generative models
in a forecasting setting using the maximum mean and Hausdorff discrepancies. In
total, 800 models are trained and evaluated using automated Optuna optimization.
Our experiments show that the generative models optimized with the maximum mean
discrepancy generate realistic and accurate time-series forecasts.
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the COVID-19 Crisis

The following is based on Neukirchen et al. (2021a).

11



2 Firm Efficiency and Stock Returns during the COVID-19 Crisis

(Fama, 1990; Subrahmanyam and Titman, 2001; Vuolteenaho, 2002; Demsetz, 1973; Peltzman, 1977; Nguyen and Swanson, 2009; Frijns et al., 2012; Fahlenbrach et al., 2020; Contessi and De Pace, 2021; Engelhardt et al., 2020b; Espinosa-Méndez and Arias, 2020; Zaremba et al., 2020; Zhang et al., 2020; Ramelli and Wagner, 2020; Albuquerque et al., 2020; Landier and Thesmar, 2020; Cheema-Fox et al., 2020; Engelhardt et al., 2020a; Cepoi, 2020; Carhart, 1997)

12



2.2 Data

13



2 Firm Efficiency and Stock Returns during the COVID-19 Crisis

SFA and DEA Parameters (Koetter et al., 2006; Aigner et al., 1977; Chambers et al., 1996; Charnes et al., 1978; Meeusen and van Den Broeck, 1977; Frijns et al., 2012; Habib and Ljungqvist, 2005; Nguyen and Swanson, 2009; Fahlenbrach et al., 2020; Fama and MacBeth, 1973; Albuquerque et al., 2020; Lins et al., 2017; Ramelli and Wagner, 2020; Ding et al., 2021; Goldman, 2020)

14



2.3 Empirical Analysis and Results

Descriptive Statistics

15



2 Firm Efficiency and Stock Returns during the COVID-19 Crisis

Firm Efficiency and Stock Returns

16



2.3 Empirical Analysis and Results

17



2 Firm Efficiency and Stock Returns during the COVID-19 Crisis

Fama-MacBeth Regressions

18



2.3 Empirical Analysis and Results

19



2 Firm Efficiency and Stock Returns during the COVID-19 Crisis

20



2.3 Empirical Analysis and Results

Portfolio Performance

21



2 Firm Efficiency and Stock Returns during the COVID-19 Crisis

22



3 The Value of (Private) Investor Relations
during the COVID-19 Crisis

The following is based on Neukirchen et al. (2021b).
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The following is based on Piatkowski et al. (2021b).
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5 Deep Generative Models for Probabilistic
Time Series Forecasting

The following is based on Krause and Posch (2022).

5.1 Introduction
The global electricity markets are confronted with two major challenges: one, the
rising impact of renewable energy production as a consequence of the transition to a
carbon-free society in order to limit climate change, and two, more recently, the ongoing
COVID-19 pandemic, which has resulted in massive changes in energy consumption
behaviour in industry and households. However, both difficulties increase the uncertainty
in the context of decision-making for both energy producers and distributors. As a
result, anticipating power prices and demand is crucial for grid operators, as the power
generation has to balance the consumption due to the lack of storage capacity compared
to the net load (de Vilmarest and Goude, 2021). Point forecasting and heuristic
Monte Carlo approaches are commonly used in the energy industry to handle this
problem, although both have significant limitations. While Monte Carlo simulations
are often based on theoretical assumptions that do not always hold in reality, point
forecasts are deterministic and can lead to low-quality predictions in a highly stochastic
environment. To alleviate these limitations we apply generative probabilistic models,
which are widely used in the machine learning community for generating artificial images
(Karras et al., 2018, 2019; Kang and Park, 2020) or in natural language processing
(de Masson d’Autume et al., 2019; Li et al., 2017). Generative models aim to learn
the distribution of the underlying data generating process and can capture inherent
uncertainty through latent variables which account for components of the target that
are not explainable by the observed input (Henaff et al., 2017). We can use generative
models as drop-in samplers for Monte Carlo techniques and create forecast samples and
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Figure 5.1: Experiment framework

prediction intervals without the need for theoretical assumptions (Piatkowski et al.,
2021a; Dumas et al., 2022).

In this work, we focus of on two of the most popular frameworks for unsupervised
generative modeling, namely generative adversarial networks (GAN) and variational
autoencoders (VAE). In order to enforce valid forecast sample scenarios, we employ
the conditional forms of these generative models. Conditional models allow us to
include additional information and delimit the sample space to a smaller subspace of
realistic forecasting samples. To improve forecast sampling quality we combine different
conditional feature types of previous studies (Koochali et al., 2019; Fu et al., 2019).

We conduct experiments on two energy data sets to assess the predictive power
of our generative probabilistic models. We use the SMARD day-ahead electricity
prices data set from Piatkowski et al. (2021a) and an electricity loads data set from
a recent IEEE-dataport competition ("day-ahead-electricity-demand-forecasting-post-
covid-paradigm") (Farrokhabadi et al., 2022). Figure 5.1 provides the general framework
of the experiments. For reproducibility, all data sets and code are available online after
acceptance.1 In summary, this paper makes the following contributions:

1. We investigate the predictive power of conditional generative models on two types
of energy time-series, day-ahead prices and electricity loads, to demonstrate the
benefits of deep generative models for different aspects of the energy market.

2. Up to our knowledge, we are the first study that applies the Hausdorff and
the maximum mean discrepancy in a forecasting setting as goodness-of-fit of

1https://github.com/firrm/ConditionalGenerativeModels
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generative models. Furthermore, we automate the hyper-parameter search using
the state-of-the-art optimization tool Optuna (Akiba et al., 2019) based on both
discrepancies.

3. We combine multiple conditional features types in our generative models and
generate fully data driven multi-step ahead forecasts.

5.2 Related Work
In this section, we provide relevant studies concerning generative models for time-series.
An overview is provided in Table 5.1.

Most of the existing literature on generative models for time-series focuses on learning
the underlying data distribution from the historical data without any additional condi-
tional features. For example, Ge et al. (2020) examine GANs and VAEs on electricity
load data and show that the generative models are able to capture the spatial-temporal
correlation of daily load profiles. Piatkowski et al. (2021a) use GANs, VAEs and
Markow random fields to generate realistic samples of electricity prices and investigate
the use of discrepancies as evaluation measures. Cramer et al. (2022) apply GANs,
WGANs and VAEs to energy time-series and discuss validation methods for generated
scenario data. Wu et al. (2021) propose a deep generative model based on dynamic
Gaussian mixture noise (DGM2) to predict sparse multivariate time-series, and show
its robustness and effectiveness on real-life data sets.

While these approaches are adequate for general sample generation, recent papers
include conditional information such as numerical or categorical features to generate
samples for forecasting tasks. For example, Dumas et al. (2022) show the forecasting
competitiveness of normalizing flows, CGANs and CVAEs on electricity load, wind
and solar time-series using weather forecasts as conditions. Ravuri et al. (2021) apply
a CGAN on a radar field data and show that the probabilistic forecasts improve the
forecast value and provide fast and accurate short-term weather predictions. Koochali
et al. (2019) introduce the ForGAN, a conditional GAN that uses the lagged target
values as conditional input and show that the ForGAN outperforms a comparable
discriminative model. Salazar et al. (2022) employ a CVAE and generate reliable
wind time-series forecasts using weather forecasts and spatio-temporal encodings as
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Table 5.1: Overview of related work about generative models for time-series forecasting. The column
OPT indicated which kind of hyper-parameter optimization was conducted.

Paper Models Data sets OPT
This work CGAN, CVAE electricity prices Optuna

electricity loads
Dumas et al. (2022) NF, CGAN, CVAE solar, wind, hand-tuning

electricity loads
Ravuri et al. (2021) CGAN radar field hand-tuning
Koochali et al. (2019) CGAN Lorenz, genetic algo.

Mackey-Glass,
Internet Traffic

Salazar et al. (2022) CVAE wind speed, wind power hand-tuning
Jeha et al. (2021) PSA-GAN electricity loads, grid search

solar, traffic, M4
Ge et al. (2020) NICE, GAN, VAE London smart meter hand-tuning
Piatkowski et al. (2021a) GAN, VAE, MRF electricity prices grid search

intel humidity readings
Cramer et al. (2022) GAN, WGAN, VAE wind, solar hand-tuning

electricity prices
Wu et al. (2021) DGM2 weather, air quality hand-tuning

hospital admission records

conditional features and and an increase in performance compared to a conventional
numerical weather prediction model. Jeha et al. (2021) introduce the PSA-GAN which
uses the popular self-attention architecture (Vaswani et al., 2017) and progressive
growing (Karras et al., 2018), and show that the PSA-GAN can improve downstream
forecasting tasks on various data sets. Furthermore, Fu et al. (2019) propose the use of
CGANs with categorical and continuous variables as conditions and show that CGANs
can be used for a variety of financial time-series applications.

5.3 Problem Formulation
In this paper we focus on the task of multi-step ahead forecasting for energy time-series.
Formally, we are given a data set D = {x(t), c(t)}1≤t≤T of targets x(t) = (x1, . . . , xN)(t),
consisting of N values corresponding to measurements over time, such as hourly
electricity prices over a day and additional conditions c(t) = (c1, . . . , cM)(t) consisting
of M feature values, such as the hourly weather forecast or categorical data such as
the weekday or the season. Our goal is now to generate multiple forecast samples
x̂S

pred = (x̂(t+1), . . . , x̂(t+k))(S) with forecast horizon k and number of samples S, given
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known conditions cpred = (c(t+1), . . . , c(t+k)). If we include the lagged target realizations
x(t−l) as conditions, the forecast horizon reduces to k = l.

5.4 Methods
Most of recent generative probabilistic models are based on the use of a differentiable
generator network that maps an input from a latent space to the data space (Goodfellow
et al., 2016). In this section, we describe two types of unsupervised deep generative
models, namely generative adversarial networks and variational autoencoders, which
differ in their learning process and how they include the generator in the network
structure. However, both frameworks can be modified to include conditional information
in their training and generation process.

Figure 5.2: GAN and VAE training and generation
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5.4.1 Conditional Generative Adversarial Network (CGAN)

Generative adversarial networks (GAN) (Goodfellow et al., 2014) are one of the most
prominent generative frameworks of the recent decade. Their popularity stems mainly
from their adversarial training technique, which involves two models competing against
each other in a game theoretic scenario. One of the models is a generator network that
learns to generate realistic data and tries to fool the other network, called the discrim-
inator. The discriminator simultaneously learns to improve its ability to distinguish
between real and artificial data from the generator. This process enables the GAN to
learn the dynamics of a multivariate stochastic process without having to make explicit
assumptions about its form (Madeka et al., 2018). Since we want to use GANs to
predict time-series data, we include additional information to delimit the generation
process and to generate conditional samples. We therefore use a conditional generative
adversarial network (CGAN) (Mirza and Osindero, 2014). Here, two neural networks
are trained simultaneously in a mini-max game: The generator G : Z × C −→ X takes
a random vector Z from a measure Q over Z, such as a multivariate Gaussian and
conditions C from the conditional space C as inputs and generates a new point in the
data domain X . The discriminator D : X × C −→ [0; 1] estimates the probability of
drawing a data point from the original data distribution P. In other words, G and D

play a two-player minimax game to determine their parameters with value function
V (D; G):

min
G

max
D

V (G; D) = EP[log D(X|C)] + EQ[log(1−D(G(Z|C)))] (5.4.1)

With sufficient capacity and training iterations, the minimax game reaches a Nash
equilibrium where the discriminator can no longer distinguish between generated and
real data, which implies that the generator can produce realistic samples as if they
came from the original data distribution (Chen et al., 2018).

To predict future signals X̃ we pass random input vectors from the prior Q and
conditional features C to the trained generator. The generator maps these inputs to
the data space X . This allows us to predict a wide range of possible future samples.
Additionally, we can easily compute a point forecast by the sample median and are
able to estimate prediction intervals using the sample quantiles to calculate a range of
the most likely predictions. The training and sample generation process is depicted in
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figure 5.2.

5.4.2 Conditional Variational Auto-Encoder (CVAE)

A variational autoencoder (VAE) (Kingma and Welling, 2013; Rezende et al., 2014) is
a generative latent variable model based on a variational Bayesian approach. A VAE
learns an approximation of the true underlying data distribution Pθ(x) by encoding
latent attributes of the data X as probability distributions in the latent space (Ivanovic
et al., 2020). Similar to an autoencoder the VAE consist in two models, an encoder
and an decoder, which in practice are parameterized by deep neural networks and
can be trained jointly with gradient-based methods. However, the decoder works as a
generator network which maps samples from the latent space distribution to the data
space (Dumas et al., 2022; Goodfellow et al., 2016).

Similar to the GAN we focus on the conditional form, the conditional variational
autoencoder (CVAE) (Sohn et al., 2015). Given conditional variables C and latent
variables Z from an associated prior Pθ(z|c) the encoder part of the VAE approximates
it’s true intractable posterior distribution Pθ(z|x, c) ∝ P(z|c)Pθ(x|z, c) by encoding the
data into parameters of the approximate posterior distribution Qϕ(z|x, c), parameterized
by ϕ. The decoder part Pθ(x|z, c), parameterized by θ, then learns to reconstruct a
sample from the posterior. We follow Kingma and Welling (2013) and choose as a
prior of the latent variables a multivariate Gaussian, where the mean and variance are
predicted by the encoder network. To perform inference on the marginal likelihood
Pθ(x|c) and train the VAE we maximize the evidence lower bound (ELBO):

logPθ(x|c) ≥ L(ϕ, θ; x, c)
= EQ(z|x,c)[logPθ(z, x|c)− logQϕ(z|x, c)]
= −DKL(Qϕ(z|x, c)||Pθ(z|c)) + EQϕ(z|x,c)[logPθ(x|z, c)]

(5.4.2)

where DKL is the Kullback-Liebler divergence that regularises the posterior Qϕ(z|x, c)
towards the prior Pθ(z). Optimization and sampling is typically carried out using
stochastic gradient descent and the reparameterization trick (Kingma and Welling,
2013). For example, let z ∼ Qϕ(z|x, c) = N(µ, Σ), where µ, Σ are predicted by the
encoder. We then sample from Q by reparameterizing z = µ + Σ ∗ ϵ, with ϵ ∼ N (0, I)
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(Camuto et al., 2021; Piatkowski et al., 2021a) .
To generate new forecast samples, random samples from the learned latent space

distribution and the conditional feature data are passed to the decoder network. In
this way, we can generate multiple prediction scenarios and estimate a point forecast as
well as prediction intervals by calculating the sample median and respective quantiles.
The training and sample generation process is shown in figure 5.2.

5.5 Empirical Evaluation
In this section, we provide all the details of the experimental setup and the final results.
This includes the data sets, hyper-parameter search, goodness-of-fit and evaluation
measures.

5.5.1 Data

SMARD. The first data set contains the day-ahead prices of the German power market
starting from 01 January 2014 to 30 June 2020, available at SMARD.de. The European
Energy Exchange (EXX) runs a daily blind auction, which means all 24 prices for
each hour of the day are set at the same time through a clearing process that matches
supply and demand. The traded electricity is delivered the next day. Due to the fact
that supply and demand of electricity needs to be balanced, electricity prices have
characteristics that differ from those of financial assets or other commodities. For
example, negative prices can occur on days with low demand such as weekends or
public holidays and a strong infeed of renewable energy, as storage capacities are still
limited (Paraschiv et al., 2014). The data set contains T = 2373 data points of length
N = 24. As conditional features, we add the one day lagged day-ahead prices, and
categorical variables as one-hot vectors for months, seasons and weekends. Thus, we
aim to generate one-day-ahead forecasts. We split our data set into a training part
from 01 January 2014 to the 31 December 2019 and a test part from 01 January to 30
June 2020. Than we split the training part accordingly to the common 80 : 20 ratio
into a training and a validation set to obtain a data set that we can use to find the
best hyper-parameters. With this setup, we can shed light on the forecast ability of our
models during the beginning of the COVID-19 pandemic using pre-pandemic training
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and validation data. Figure 5.3 shows the day ahead prices for the train(TT rain = 1766),
validation (TV alidation = 442) and test sets (TT est = 165).
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Figure 5.3: Day-ahead electricity prices from the SMARD data set. The figure is our own contribution.

IEEE-dataport. The second data set contains electricity demand data from the recent
open-access IEEE-dataport competition ("Day-Ahead Electricity Demand Forecasting:
Post-COVID Paradigm") (Farrokhabadi et al., 2022). This challenge concerns the
POST-COVID aspects of electricity load forecasting and is based on real data of an
unknown city over a over 30-day test period from 16 January 2021 up to 16 February
2021 (Ziel, 2021). The training data covers the period from 18 March 2017 to 15
January 2020. We split the training data into training and validation sets using the
common 80:20 ratio and use the validation set to find the best hyper-parameters for the
generative models. All data is provided in a hourly shape, therefore each conditional
feature variable and the target have dimension N = 24. The data includes the historical
electricity demand (MW), historical weather observations (air pressure (kpa), cloud
cover (%), humidity(%), temperature (C), wind direction (deg), wind speed (kmh))
and weather forecasts (air pressure (kpa), cloud cover (%), temperature (C), wind
direction (deg), wind speed (kmh)) and is obtained from an unknown real-world utility
and weather service provider. A detailed data overview is described in Ziel (2021)
and de Vilmarest and Goude (2021). We add additional categorical features (seasons,
weeks, weekend) as one-hot vectors to pass some general information to the models
and the one week lagged historical weather observations as well as the one week lagged
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electricity loads. We use the historical data delayed by one week because the original
IEEE-dataport challenge only allows the use of historical data from at least 48 hours
before the forecast time. We therefore aim to generate one-week-ahead forecasts. We
adjust missing data points in the data set by linear interpolation. Figure 5.4 shows the
electricity loads for the train (TT rain = 1120), validation (TV alidation = 280) and test
sets (TT est = 32).
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Figure 5.4: Electricity loads from IEEE-dataport challenge 2021. The figure is our own contribution.

5.5.2 Hyper-parameter and Network Architecture Search

We adopt the network architectures and hyper-parameters from Piatkowski et al.
(2021a) and add conditional input layers to the vanilla models. The limits for the
hyper-parameter search of the CGAN and CVAE models are listed in table 5.2. All
experiments are implemented in TensorFlow (Abadi et al., 2016). The training procedure
is accelerated by two NVIDIA GeForce RTX 2080 Ti GPUs. To stabilize and accelerate
the training process, we normalize the data based on the mean and standard derivation
of the training data set.
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Table 5.2: Hyper-parameter search space for generative probabilistic models.

(a) CGAN hyper-parameter limits.

Parameter Values

Iterations 100, 2000
Batch size 32, 512
Hidden units 32, 512
Hidden layer 1, 8
Droprate 0.0, 0.5
Iterations D 1, 5
Learning rate D 0.001, 0.009
Learning rate G 0.0001, 0.0009

(b) CVAE hyper-parameter limits.

Parameter Values

Epochs 10, 300
Batch size 32, 512
Latent dim 128, 512
Hidden layer 1, 8
Hidden units 32, 512
Learning rate 0.0001, 0.001

We train the models using the Optuna optimization tool (Akiba et al., 2019), which
optimizes the hyper-parameters according to an objective value using a Tree-structured
Parzen Estimator algorithm (Bergstra et al., 2011). Since generative models aim to
estimate the underlying data probability distribution, we follow Piatkowski et al. (2021a)
and apply the maximum mean discrepancy and Hausdorff discrepancy as objective
values. In general, these discrepancies serve as a goodness-of-fit for generative models
and determine how well the models have learned the underlying data distribution. The
discrepancies are defined as follows:

Maximum Mean Discrepancy. The maximum mean discrepancy (MMD) (Gretton
et al., 2006, 2012) compares samples from two probability distributions by mapping
the distance between the embedding of the two data samples into a reproducing kernel
Hilbert space (RKHS).

Definition 5.5.1 (Maximum Mean Discrepancy). Let k be the kernel of a RKHS Fk

of functions on a topological space X . We define the mean embedding of a probability
measure P in Fk as µk(P) ∈ Fk such that EPf(X) = ⟨f, µk(P)⟩Fk

for all f ∈ Fk. Then
the MMD in Fk between two probability measures P and Q is defined as

MMDFk
(P,Q) = sup

f∈Fk

||EPf(X)− EQf(X)||2Fk
(5.5.1)

Given two sets DP = {x1, . . . , xm} ∼ P and DQ = {y1, . . . , yn} ∼ Q an unbiased
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estimate of the MMD is defined as

˜MMDFk
(P,Q) = 1

|DP|2
∑

x∈DP

∑
y∈DP

k(x, y)− 2
|DP||DQ|

∑
x∈DP

∑
y∈DQ

k(x, y)

+ 1
|DQ|2

∑
x∈DQ

∑
y∈DQ

k(x, y) .
(5.5.2)

As in Piatkowski et al. (2021a) we use the radial basis function (RBF) kernel,
which is a characteristic kernel. This choice implies that MMD is a metric and that
MMD(P,Q) = 0 if and only if P = Q (Sriperumbudur et al., 2010; Sutherland et al.,
2016).

The Hausdorff Discrepancy. The Hausdorff discrepancy (HD) (Piatkowski et al.,
2021a) is a geometrical discrepancy between two probability distributions and is based
on the well-known Hausdorff distance. The Hausdorff distance, which is often used
in computer vision tasks (Huttenlocher et al., 1993; Karimi and Salcudean, 2019),
measures how far two subsets in metric space are from being isometric. Using the
Hausdorff discrepancy, distributions are similar if the generated data points from these
distributions are at similar positions.

Definition 5.5.2 (Hausdorff Discrepancy). Let X, Y be random variables both having
state space X and following distributions P,Q, respectively. Given two (random) data
sets D = {x1, . . . , xN}, E = {y1, . . . , yN} of size N , containing independent samples
from P and Q, the Hausdorff discrepancy between P,Q is defined as

HD(P,Q) = max{EE

[
max
x∈D

min
y∈E

d(x, y) | D
]

,EE

[
max
x∈E

min
y∈D

d(x, y) | D
]
}. (5.5.3)

with d(., .) the euclidean distance.

Algorithm 1 shows the pseudo code of the training and optimization process.
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Algorithm 1 Optuna optimization
Input: Training set (XT rain, CT rain),
validation set (XV alidation, CV alidation),
optimization objective s(., .)

1: initialize hyper-parameters h1

2: for trial i = 1, 2, . . . , 100 do
3: Train the model on (XT rain, CT rain) with hi

4: Generate 1000 forecast samples X̂ with CV alidation

5: Compute objective scores ŝ = s(X̂, XV alidation)
6: Aggregate scores s̄ = mean(ŝ)
7: hi+1 ←− OptunaSampler(s̄, hi)
8: end for
9: return best model based on the minimal score s̄

5.5.3 Evaluation

We investigate the performance of the best generative models using the test data set.
For this purpose, we generate 1000 forecast samples per model and calculate the HD
and MMD between each of these samples and the original test data set. We aggregate
the discrepancies using the mean and calculate the standard derivation. In addition,
we compute point-wise error metrics which are commonly used in prediction tasks. As
point forecast we use the median sample of the generated forecast samples and report
the root mean squared error (RMSE) and mean absolute error (MAE)

RMSE =

√√√√ 1
S

N∑
i

(x(i) − x̂(i))2, MAE = 1
S

N∑
i

|x(i) − x̂(i)| (5.5.4)

with S number of target samples x(i), and forecasts x̂(i). However, the discrepancies show
how accurately the generative models have learned the underlying data distribution,
while the point-wise error metrics examine how well the models have accounted for the
conditional features (Koochali et al., 2019).

In an additional test, we want to shed light on the advantages of probabilistic forecasts
for decision-makers in energy trading and power generation scheduling. For this purpose,
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we evaluate the prediction interval coverage percentage (PICP), which indicates the
probability that the target values are covered by an (1 − α)% prediction interval.
A higher PICP is associated with more target values falling within the constructed
prediction interval and idyllically it should be close to its nominal value (1 − α)%
(Khosravi et al., 2010).

For example, to construct a 90% prediction interval, we estimate the the 95% and
5% quantiles of the forecast samples as the upper (Ui) and lower (Li) bounds. The
PICP is defined as

PICP = 1
S

S∑
i=1

ϵi, ϵi =

1, if x(i) ∈ [Li, Ui]

0, if x(i) /∈ [Li, Ui]
(5.5.5)

with S number of target samples x(i).

5.5.4 Results

In this section we present the results of our experiments on the out-of-sample test sets.
Table 5.3 presents the discrepancies and the point-wise error metrics of the SMARD data
set. Table 5.4 shows the discrepancies and the point-wise error of the IEEE-dataport
data set.

Table 5.3: This table shows the forecasting results for the SMARD data set with the Hausdorff
Discrepancy (HD), maximum mean discrepancy (MMD), mean absolute error (MAE) and root mean
squared error (RMSE). For HD and MMD we report the mean and standard derivation over the
forecast samples. The objective of the previous hyper-parameter search is noted column OPT. All
hyper-parameters for the GAN and VAE models are described Table C1 in the appendix.

Discrepancies Point-wise

OPT Model HD MMD MAE RMSE

H
D CGAN 114.695 ±14.146 0.054 ±0.007 7.168 10.731

CVAE 100.189±3.766 0.046 ±0.003 7.020 10.603

M
M

D CGAN 174.567 ±9.260 0.020±0.003 6.530 10.533
CVAE 102.332 ±7.776 0.031 ±0.002 6.817 10.938

For the SMARD data set, the GAN (optimized by the MMD objective) outperforms
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the VAE models in all metrics except the HD measure. In a visual inspection, we can
see that the VAE models only provide a small variation in the forecast samples around
the median sample forecast, while the GAN models exhibit larger variations and also
cover stronger variations of the original day-ahead prices. This is especially true for the
GAN, which was optimized by the MMD objective. Figure 5.5 depicts the forecasts and
90% prediction intervals for all models for the first 20 days of the COVID-19 Lockdown
in Germany starting from the 22 of March 2020. The PICP evaluation in table 5.5
support these visual results. The GAN prediction interval covers 70% of all target
realizations, while the best VAE prediction interval covers only 39% of all realizations.

Table 5.4: This table shows the forecasting results for the IEEE-dataport data set with the Hausdorff
Discrepancy (HD), maximum mean discrepancy (MMD), mean absolute error (MAE) and root mean
squared error (RMSE). The objective of the previous hyper-parameter search is noted column OPT.
All hyper-parameters for the GAN and VAE models are described Table C2 in the appendix.

Discrepancies Point-wise

OPT Model HD MMD MAE RMSE

H
D CGAN 209.727 ± 35.644 0.116 ± 0.012 21.851 31.414

CVAE 168.052 ± 15.535 0.092 ± 0.009 19.459 26.271

M
M

D CGAN 258.952 ± 19.938 0.109 ± 0.005 28.037 42.671
CVAE 156.475 ±15.996 0.077 ±0.008 19.139 27.666

For the IEEE-dataport test data, the VAE (optimized by the MMD objective)
outperforms the other models in all metrics except the RMSE measure. Again as
depicted in Figure 5.6 the MMD optimization is in favour of a model that exhibits a
large variation in forecasts and therefore a wide prediction interval while the median
forecast is close to the target. The visual results on the prediction intervals are
strengthened by the PICP evaluation in table 5.5, where the VAE prediction interval
covers 81% of all target realizations. The CGAN (optimized by the HD objective)
exhibits the highest PICP of 93% but also high discrepancy values, indicating that
the CGAN is able to generate a large variation in forecast samples but these samples
are less realistic as they deviate from the geometric shape and statistical properties
of the real data. Overall, it can be seen for both data sets that the generative models
optimized by the MMD objective outperform the HD optimized models.
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Table 5.5: This table shows the prediction interval coverage percentage (PICP) results for the IEEE-
dataport data set and the SMARD data set. The objective of the previous hyper-parameter search is
noted column OPT. All hyper-parameters for the GAN and VAE models are described Table C1 and
Table C2 in the appendix.

PICP(%)

OPT Model SMARD IEEE-dataport

H
D CGAN 0.677 0.930

CVAE 0.389 0.863

M
M

D CGAN 0.696 0.253
CVAE 0.256 0.810

108



5.5 Empirical Evaluation

Figure 5.5: (a) CGAN (HD), (b) CGAN (MMD), (c) CVAE (HD) and (d) CVAE
(MMD) predictions over first 20 days of the lockdown time of the test data set. The
optimization objective is denoted in parenthesis. The realized electricity price shapes
over time are shown in orange, the median sample forecast in blue and the 90%
prediction interval in lightblue. The figure is our own contribution based on data
from SMARD.
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Figure 5.6: (a) CGAN (HD), (b) CGAN (MMD), (c) CVAE (HD), (d) CVAE (MMD)
predictions of the IEEE-dataport test sample. The optimization objective is denoted
in parenthesis. The realized electricity loads over the time are shown in orange, the
median sample forecast in blue and the 90% prediction interval in lightblue. The
figure is our own contribution based on data from IEEE-dataport.
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5.6 Conclusion
In this work, we investigated the predictive power of deep generative models for real world
energy time-series. For this purpose, we trained and optimized several hundred models
to find the optimal hyper-parameters, using the maximum mean discrepancy and the
Hausdorff discrepancy as optimization objectives. In the final out-of-sample evaluation,
we find that generative models optimized with the maximum mean discrepancy perform
better than those optimized with the Hausdorff discrepancy. Interestingly, the maximum
mean discrepancy favours models that generate larger variations in forecast samples
and a more accurate forecast sample median. When comparing the model classes, the
GAN model performs better in the electricity price data set, while the VAE model
performs better in the electricity load data set. Overall, our results argue for the use of
the maximum mean discrepancy when optimizing the hyper-parameters of a generative
probabilistic model for time-series forecasting and do not argue for a superior deep
generative model class for energy time-series forecasting tasks.
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Correlation analysis
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IR and crisis-period returns over alternative time windows

123



B Appendix for Chapter 3

IR and the severity of loss measure
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IR and abnormal returns surrounding the crisis-period on subsamples
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IR and abnormal returns surrounding the crisis-period for border country pairs
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Public and Private IR, weekly COVID-19 growth rates, and weekly returns

130



IR, Oxford Stringency Index, and weekly returns

131





C Appendix for Chapter 5

Table C1: Final hyper-parameter for the SMARD dataset optimized with Optuna

(a) GAN hyperparameter

Parameter (HD) (MMD)

Iterations 1200 1000
Batch size 64 288
Hidden units 320 352
Hidden layer 4 2
Droprate 0.0 0.0
Learning rate G 0.00061 0.00069
Learning rate D 0.00480 0.00100
Iterations D 3 3

(b) VAE hyperparameter

Parameter (HD) (MMD)

Epochs 260 250
Batch size 512 128
Latent dimension 512 128
Hidden layer 7 2
Hidden units 64 352
Learning rate 0.0010 0.0008

Table C2: Final hyper-parameter for the IEEE dataset optimized with Optuna

(a) GAN hyperparameter

Parameter (HD) (MMD)

Iterations 1650 1850
Batch size 32 224
Hidden units 224 96
Hidden layer 2 5
Droprate 0.1 0.1
Learning rate G 0.00023 0.00086
Learning rate D 0.00440 0.00210
Iterations D 5 2

(b) VAE hyperparameter.

Parameter (HD) (MMD)

Epochs 280 230
Batch size 384 256
Latent dimension 496 512
Hidden layer 1 2
Hidden units 288 448
Learning rate 0.0003 0.0001
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