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Abstract

Time series arise in a variety of application domains—whenever data points are recorded
over time and stored for subsequent analysis. A critical question is whether the occurrence
of events like natural disasters, technical faults, or political interventions leads to changes in
a time series, for example, temporary deviations from its typical behavior. The vast majority
of existing research on this topic focuses on the specific impact of a single event on a time
series, while methods to generically capture the impact of a recurring event are scarce. In this
thesis, we fill this gap by introducing a novel framework for event impact analysis in the
case of randomly recurring events. We develop a statistical perspective on the problem and
provide a generic notion of event impacts based on a statistical independence relation. The
main problem we address is that of establishing the presence of event impacts in stationary
time series using statistical independence tests. Tests for event impacts should be generic,
powerful, and computationally efficient. We develop two algorithmic test strategies for
event impacts that satisfy these properties. The first is based on coincidences between events
and peaks in the time series, while the second is based on multiple marginal associations.
We also discuss a selection of follow-up questions, including ways to measure, model
and visualize event impacts, and the relationship between event impact analysis and
anomaly detection in time series. At last, we provide a first method to study event impacts
in nonstationary time series. We evaluate our methodological contributions on several
real-world datasets and study their performance within large-scale simulation studies.
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Technological advances have enabled the large-scale monitoring of
many systems—natural or artificial—over time. Examples include
monitoring of electricity demand on power grids, air pollution
levels in cities, and share values in financial markets. When this
data is recorded for subsequent analyses, it forms a time series of
observations. Time series capture a specific feature of a system over
time, and the behavior of a time series, i.e., its trend, variability, or
the existence of anomalous patterns, yields insights into the state of
the system at any point in time. Natural disasters, technical faults,
political interventions and other events often have a multitude of
ecological, societal, or economic side-effects. A solid understanding
of the impacts of such events on a given system is important for
future risk assessment and informed decision making. Time series
are perfectly suited to assess the impacts of events, and are used
for that purpose in many application domains.

Since the 1960s, research on event impacts on time series has
primarily focused on singular events [AG03; BT65; CS63; SMP86;
WAG+21], as visualized in Figure 1.1. An illustrative present-day
example is the study by Silver et al. [SHA+20] who analyze the
impacts of the first COVID-19 lockdown in China on time series
that measure air quality. In the past decade, an increasing number
of publications set out to generalize beyond case studies of singular
events. The stated goal is to capture the impacts of recurring events
on time series [CRK11; KQP+16; LLL+14; ZYW+09]. Since an event
is rarely identical to any other event, the notion of a recurring event
requires meaningful pooling of prima facie singular events to a
family of events that are similar in some regard. This pooling is
always application-dependent, and two events that are similar for
one analysis may not be similar for another analysis.

An impact analysis with recurring events provides three major
advantages over case studies with singular events. On the applied
side, the recurring approach justifies general statements on the re-
sponse of the time series to such events. On the technological side,
it enables improved time series forecasting algorithms that exploit
information on recent event occurrences, and it facilitates the devel-
opment of event detection algorithms that operate on the time series.
Unfortunately, despite some initial work on the impacts of recur-
ring events on time series, there is still no common understanding
of that subject in the scientific literature.



2 1 Introduction

While events may be the root cause
for the deviant behavior of the time
series, the methods we develop in
this work are not meant for causal
inference. Statistical association does
not imply causation.

1.1 Contributions

This dissertation provides—to the best of our knowledge—the
first framework to systematically analyze the impacts of recurring
events on time series. We translate the information needs expressed
in well-established approaches for the analysis of singular event
impacts into a novel, probabilistic definition of event impacts for
the recurring case. The most important step in this direction is to
regard event occurrences as realizations of a stochastic process that,
from now on, will be referred to as an event series. In our framework,
events appear randomly at any point in time according to some
probability distribution. The stochastic perspective on events is
standard procedure in many fields [DV03; DHL+16; Wei18] but has
not found its way into studies of event impacts on time series. We
also view the time series as a stochastic process, which is in line
with the existing literature [BJR+16]. In a nutshell, we propose to
study the impacts of recurring events by analyzing the statistical
associations between the event series and the time series.

We formalize our novel framework for event impact analysis in
Section 1.3, on the level of elementary probability theory. Inspired
by the concept of Granger causality [Gra69], we define event
impacts very generically via the absence of a specific independence
relation across the two stochastic processes. We assume that events
occur rarely, so that we can distinguish the typical behavior of the
time series from its (potentially) deviant behavior in the presence of
an event, using probability distributions only. We further assume
that there are no long-range dependencies within the time series.
These assumptions considerably simplify our statistical arguments,
since they allow taking observations from the time series after
two distinct event occurrences as approximately independent.
We provide a detailed survey of related work on singular event
impacts and on statistical associations between stochastic processes
in Section 1.4, and highlight the differences to our framework.

In Chapter 2, we develop statistical tests for event impacts based
on coincidences between events and peaks in the time series. We im-
plement these tests by combining concepts from event coincidence
analysis [DSS+16] with results from extreme value theory [Col01].
We use the trigger coincidence rate as a measure for the association
of events and peaks, and analytically derive its null distribution for
a large class of stationary time series. We extend this methodology
to peaks over multiple thresholds, and introduce quantile-trigger
rate plots as a novel visualization of the strength of association.

A focus on peaks is already quite generic, since many patterns of
interest within a time series can be reduced to peaks when a suitable
feature transformation function is applied before the analysis. In
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Chapter 3, we propose an alternative test procedure that is not
based on peaks. It is directly applicable even on multivariate time
series and on time series of other objects like strings or graphs,
without preprocessing with a feature transformation function. The
procedure is based on a simplified criterion for event impacts that
considers only marginal associations. This criterion can be tested
effectively with multiple two-sample testing, using an algorithm
that is computationally efficient even for very long time series.

Once the existence of event impacts has been established by one
of the tests from above, a natural follow-up question is how these
impacts can be characterized. For this purpose, in Chapter 4, we
propose a probabilistic model to capture the deviant behavior of
univariate time series in a meaningful way. We assume that there
is a prototypical pattern that appears in the time series whenever
an event occurs. However, this pattern is not replicated exactly,
but appears in a temporally distorted form. Our model captures
the data-generating process for such patterns by employing a
probabilistic time warping mechanism based on multivariate statistics.
We study the performance of this model with different choices for
the distribution of the probabilistic warping component.

In Chapter 5, we briefly revisit the association measures from
Chapter 2, and draw some connections to evaluation measures
commonly used in machine learning to assess the performance of
anomaly detectors for time series, in particular, precision and recall.
We demonstrate that these measures potentially overestimate
the performance of a detection algorithm when employed with
temporal tolerance, and argue that they are uninformative unless
their null distributions are provided.

While all of the methods sketched so far assume stationarity
of the time series, Chapter 6 addresses a specific nonstationary
case. We assume that the time series follows a segmented model,
where the data-generating process changes its dynamics at discrete
change points, and remains stationary within each segment. We
develop a continuous relaxation of the standard segmented model
formulation that allows estimating the change points and all other
model parameters with standard algorithms for gradient descent.
Event impact analysis can then be performed individually within
each segment, or by correlating the occurrence of events with the
occurrence of change points.

We conclude this dissertation in Chapter 7 by summarizing our key
findings and pointing out interesting directions for future work.
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1.2 Terminology

We briefly describe elementary probabilistic concepts following the
textbooks of Shao [Sha03] and Wasserman [Was04], using our own
notation. Further results and intuitions are taken from Rosenthal
[Ros06], Anderson [And03], Gallager [Gal13] Park [Par18] and
Koller and Friedman [KF09]. The purpose of this section is to
introduce our notation to the reader, along with some important
results that we use. For generality, we describe most concepts in
this work in terms of cumulative distribution functions.

Random variables

Let (Ω,A, Pr) be a probability space with sample space Ω, 𝜎-
field A, and probability measure Pr. The sample space Ω is the
set of possible outcomes of the phenomenon that we study, the
𝜎-field A contains subsets of outcomes 𝐴 ⊆ Ω for which we
would like to make probability statements, and the probability
measure Pr : A−→ ℝ is the function that consistently assigns these
probabilities. The axioms of probability enforce that Pr(𝐴) ≥ 0
for all 𝐴 ∈ A, Pr(Ω) = 1, and

Pr
(⋃

𝑖

𝐴𝑖
)
=

∑
𝑖

Pr(𝐴𝑖) (1.1)

for disjoint sets 𝐴𝑖 ∈ A. A random variable for the probability
space (Ω,A, Pr) captures features of the phenomenon that can be
expressed numerically. Formally, a random variable is a measur-
able function x : Ω −→ ℝ. All functions on countable sample
spaces Ω are measurable, and so are continuous functions over
real-valued sample spaces, indicator functions, and many other
functions encountered in practice. Importantly, concatenations
of measurable functions are also measurable functions. A vector-
valued measurable function x : Ω −→ ℝ𝐷 is called a random
vector. We write x(𝜔) = 𝑥 for outcomes of random variables, and
x(𝜔) = 𝒙 for outcomes of random vectors. Vectors of random
variables are random vectors, and vice-versa. Sometimes, we also
consider sets of random variables as random vectors, where the di-
mensions are ordered lexicographically. A measurable function to
an arbitrary target set ξ : Ω −→ Ω′ is called a random element.

The probability measure Pr induces a distribution Prx for every
random variable x, where

Prx(𝐴) := Pr(x−1(𝐴)) = Pr({𝜔 ∈ Ω | x(𝜔) ∈ 𝐴}) (1.2)

denotes the probability that the random variable x has an out-
come from the set 𝐴 ⊆ ℝ. Formally, the distribution Prx is a new
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cumulative distribution function

marginal distribution

discrete

probability measure over a standardized probability space (the
Borel space). Throughout this work, we use the common simpli-
fied notation with logical statements such as Pr(x ∈ 𝐴) := Prx(𝐴),
Pr(x ≤ 𝑥) := Prx((−∞, 𝑥]), or Pr(𝑎 < x ≤ 𝑏) := Prx((𝑎, 𝑏]), etc.,
to refer to probabilities under the distribution of x. In the same
way, the probability measure Pr induces a (joint) distribution
Prx = Prx1 ,...,x𝐷 for the random vector x = (x1 , ..., x𝐷). We use
the same logical notation to refer to probabilities under the joint
distribution, such that, in the bivariate case, Pr(x ∈ 𝐴, y ∈ 𝐵) :=
Pr(x ∈ 𝐴 ∧ y ∈ 𝐵) := Prxy({(𝑥, 𝑦) | 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}).

Characterizing distributions

The distribution of a random variable x is fully specified by the
cumulative distribution function (cdf)

𝐹x : ℝ −→ [0, 1], 𝑥 ↦→ Pr(x ≤ 𝑥), (1.3)

and we have that Pr(𝑎 < x ≤ 𝑏) = 𝐹x(𝑏) − 𝐹x(𝑎). Similarly, the
distribution of a 𝐷-dimensional random vector x is fully specified
by the (joint) cdf

𝐹x : ℝ𝐷 −→ [0, 1], (𝑥1 , ..., 𝑥𝐷) ↦→ Pr(x1 ≤ 𝑥1 , ..., x𝐷 ≤ 𝑥𝐷). (1.4)

We omit the subscript from the cdf 𝐹, if it is clear from the con-
text, and write x ∼ 𝐹 or x ∼ 𝐹 to denote that the random vari-
able (random vector) has a distribution with cdf 𝐹. Any joint cdf
𝐹(𝑥1 , ..., 𝑥𝐷) for the random vector x yields𝐷 marginal cdfs 𝐹𝑑(𝑥𝑑)
for its component random variables x𝑑 via

𝐹𝑑(𝑥𝑑) := lim
𝑥𝑑′→∞, 𝑑′≠𝑑

𝐹(𝑥1 , ..., 𝑥𝐷) (1.5)

The marginal cdf of x𝑑 derived from the joint cdf 𝐹 of x is identical
to the cdf of x𝑑, and we use the terms interchangeably. Usually,
we refer to the distribution of x𝑑 as the marginal distribution of
x𝑑 if it was inferred from a joint distribution. Marginal cdfs and
distributions can be defined analogously for any subset of random
variables from a random vector.

We distinguish two types of random variables according to the
functional forms of their cdfs:

Definition 1.2.1 A random variable x is discrete, if there is a sequence
of real numbers 𝑎1 < 𝑎2 < ..., and a sequence of non-negative numbers
𝜋1 ,𝜋2 , ... with

∑
𝑘 𝜋𝑘 = 1, such that

𝐹x(𝑥) =
{∑𝑘

𝑖=1 𝜋𝑖 , if 𝑎𝑘 ≤ 𝑥 < 𝑎𝑘+1 , 𝑘 = 1, 2, ...
0, if 𝑥 < 𝑎1.
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The function 𝑝x : ℝ −→ ℝ with 𝑝x(𝑎𝑘) = 𝜋𝑘 for 𝑘 = 1, 2, ..., and
𝑝x(𝑥) = 0 everywhere else is called the probability mass function
(pmf) of x, and x ∼ 𝑝x denotes that x is discrete with mass function 𝑝x.

Definition 1.2.2 A random variable x is continuous, if there is a
non-negative function 𝑓x with

∫ ∞
−∞ 𝑓x(𝑢) 𝑑𝑢 = 1 such that

𝐹x(𝑥) =
∫ 𝑥

−∞
𝑓x(𝑢) 𝑑𝑢.

The function 𝑓x is the probability density function (pdf) of x, and
x ∼ 𝑓x denotes that x is continuous with density function 𝑓x.

In the discrete case, the random variable takes a countable number
of outcomes 𝑎𝑘 , and we have that Pr(x ∈ 𝐴) = ∑

𝑎𝑘∈𝐴 𝑝x(𝑎𝑘), which
entails Pr(x = 𝑥) = 𝑝x(𝑥). In the continuous case, the random
variable takes an uncountable number of outcomes, and we have
that Pr(𝑎 < x < 𝑏) = Pr(𝑎 < x ≤ 𝑏) = Pr(𝑎 ≤ x < 𝑏) = Pr(𝑎 ≤ x ≤
𝑏) = 𝐹x(𝑏) − 𝐹x(𝑎), which entails Pr(x = 𝑥) = 0.

In the same way, we say that a random vector is discrete (continu-
ous) if its joint cdf can be expressed via a joint pmf (pdf). Marginal
pmfs (pdfs) can be obtained from the joint pmf (pdf) by summing
(integrating) over the unwanted dimensions. They completely
specify the marginal cdfs of the marginal distributions. A random
vector is mixed if it can be partitioned into a set of discrete random
variables and a set of continuous random variables.

We also make conditional probability statements for a random
variable x given that another random variable y takes the value 𝑦.
The conditional distribution Prx|y=𝑦 is completely specified by the
conditional cdf 𝐹x|y=𝑦 , and we write

x | y = 𝑦 ∼ 𝐹x|y=𝑦 (1.6)

to define the conditional distribution of x given y = 𝑦 via the
conditional cdf. If x and y are discrete random variables with joint
pmf 𝑝xy and marginal pmf 𝑝y, the conditional cdf can be expressed
by the conditional pmf

𝑝x|y=𝑦(𝑥) :=
𝑝xy(𝑥, 𝑦)
𝑝y(𝑦)

(1.7)

for 𝑝y(𝑦) > 0. This entails

𝑝x(𝑥) =
∑
𝑦

𝑝xy(𝑥, 𝑦) =
∑
𝑦

𝑝x|y=𝑦(𝑥) · 𝑝y(𝑦). (1.8)

The case with two continuous random variables is analogue, with
pdfs and integrals instead of pmfs and sums, and the generaliza-
tions for discrete and continuous random vectors are straightfor-
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ward. We can express the cdf of mixed random variables, where
x is continuous and y is discrete with outcomes 𝑎1 , 𝑎2 , ..., via the
conditional cdf of x given y = 𝑎𝑘 and the marginal pmf of y:

𝐹xy(𝑥, 𝑦) =
∑
𝑎𝑘≤𝑦

𝐹x|y=𝑎𝑘 (𝑥) · 𝑝y(𝑎𝑘) (1.9)

In this case, the marginal distribution of x,

𝐹x(𝑥) =
∑
𝑎𝑘

𝐹x|y=𝑎𝑘 (𝑥) · 𝑝y(𝑎𝑘). (1.10)

is called a mixture distribution.

In the following, we use the common simplified notation with
logical statements Pr(x ∈ 𝐴 | y = 𝑦) := Prx|y=𝑦(𝐴) to refer to
probabilities under the conditional distribution of x given y = 𝑦.
Conditional distributions Prx|y∈𝐵 for the random variable x given
that y takes any value from the set 𝐵 are defined analogously.

An important property of a random variable is its expected value.
If x is discrete with outcomes 𝑎1 , 𝑎2 , ..., its expected value is

E[x] :=
∑
𝑘

𝑎𝑘𝑝x(𝑎𝑘). (1.11)

If x is continuous, its expected value is defined as

E[x] :=
∫

𝑥 𝑓x(𝑥) 𝑑𝑥. (1.12)

If the expected value is infinity, it is said to not exist. Sometimes,
we add a subscript Ex[x] to distinguish the expected value from
the conditional expectation defined below. The expected value of a
random vector is the vector of expected values of its component
random variables; conversely, we refer to the components of the
expected value of a random vector as the marginal expectations.
A key result is that the expected value of the continuous random
variable y with y = 𝑔(x) can be expressed as

Ey[y] =
∫

𝑦 𝑓y(𝑦) 𝑑𝑦 =

∫
𝑔(𝑥) 𝑓x(𝑥) 𝑑𝑥 = Ex[𝑔(x)], (1.13)

and analogously for the discrete case. The variance of the random
variable x is the expected value Var[x] := E[(x − E[x])2]. The
covariance of two random variables x and y is the expected value
Cov[x, y] := Exy[(x−Ex[x])(y−Ey[y])] under the joint distribution
Prxy. The conditional expectation Ex|y=𝑦[x] is the expected value
of x under the conditional distribution Prx|y=𝑦 . It is computed with
the conditional pmf or conditional pdf, respectively.
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Independence

A key concept for the present work is independence. The most
fundamental definition of independence in the probability space
(Ω,A, Pr) is a statement on the probability of the intersection of
two sets of outcomes from the 𝜎-field:

Definition 1.2.3 Let (Ω,A, Pr) be a probability space. The sets 𝐴 ∈ A

and 𝐵 ∈ Aare independent if Pr(𝐴 ∩ 𝐵) = Pr(𝐴) · Pr(𝐵).

This definition directly yields a notion of independence for random
variables defined on the same probability space. The formal notion
of independence for random variables is rather technical, but can
be characterized more conveniently with the help of cdfs:

Theorem 1.2.1 Let {x1 , ..., x𝑁 } be a set of random variables. Furthermore,
let 𝐹 be the joint cdf of the random vector x = (x1 , ..., x𝑁 ), and 𝐹𝑛 be the
marginal cdf of x𝑛 for 𝑛 = 1, ..., 𝑁 .

The random variables are independent if and only if

𝐹(𝑥1 , ..., 𝑥𝑁 ) =
∏
𝑛

𝐹𝑛(𝑥𝑛).

For independent random variables x and y, we have that

Pr(x ∈ 𝐴, y ∈ 𝐵) = Pr(x ∈ 𝐴) · Pr(y ∈ 𝐵) (1.14)

and
Pr(x ∈ 𝐴 | y ∈ 𝐵) = Pr(x ∈ 𝐴) (1.15)

for all sets of outcomes 𝐴 and 𝐵. This entails that, if x and y are
independent, the conditional cdf of x given y ∈ 𝐵 is equal to its
marginal cdf, 𝐹x|y∈𝐵 = 𝐹x. If the random variables x1 , ..., x𝑁 are
independent and have the same marginal cdf 𝐹, we say that they
are iid (independent and identically distributed) and write x𝑛

iid∼ 𝐹.
In the case of discrete random variables, independence holds if
and only if the joint pmf factorizes over the marginal pmfs

𝑝x1 ,...,x𝑁 (𝑥1 , ..., 𝑥𝑁 ) =
∏
𝑛

𝑝x𝑛 (𝑥𝑛). (1.16)

As a consequence, two discrete random variables x and y are
independent if and only if the conditional pmf 𝑝x|y=𝑦(𝑥) = 𝑝x(𝑥)
equals the marginal pmf. Again, the continuous case is analogue,
with pdfs instead of pmfs.

The concept of independence can be generalized to multiple sets
of random variables, in the following way:
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Theorem 1.2.2 Let {x1 , ..., x𝑁 } and {y1 , ..., y𝑀} be two sets of random
variables, and let x = (x1 , ..., x𝑁 ) and y = (y1 , ..., y𝑀) be the corre-
sponding random vectors with joint cdfs 𝐹x and 𝐹y. Furthermore, let 𝐹xy
be the joint cdf of the random vector (x1 , ..., x𝑁 , y1 , ..., y𝑀).

The two sets of random variables are independent if and only if

𝐹xy(𝑥1 , ..., 𝑥𝑁 , 𝑦1 , ..., 𝑦𝑀) = 𝐹x(𝑥1 , ..., 𝑥𝑁 ) · 𝐹y(𝑦1 , ..., 𝑦𝑀).

We write x1 , ..., x𝑁 ⊥⊥ y1 , ..., y𝑀 to express this independence.

The notion of event impacts defined in Section 1.3 below is, in fact,
a statement on the independence of two sets of random variables.
At last, the random variables x and y can also be conditionally
independent given the random variable z. Conditional indepen-
dence is characterized by a factorization of the conditional joint
cdf into the conditional marginal cdfs,

𝐹xy|z=𝑧(𝑥, 𝑦) = 𝐹x|z=𝑧(𝑥) · 𝐹y|z=𝑧(𝑦), (1.17)

for all values of 𝑧, and expressed notationally by x ⊥⊥ y | z. If x
and y are conditionally independent given z, we have that

Pr(x ∈ 𝐴, y ∈ 𝐵 | z ∈ 𝐶)
= Pr(x ∈ 𝐴 | z ∈ 𝐶) · Pr(y ∈ 𝐵 | z ∈ 𝐶)

(1.18)

and
Pr(x ∈ 𝐴 | y ∈ 𝐵, z ∈ 𝐶) = Pr(x ∈ 𝐴 | z ∈ 𝐶). (1.19)

for all sets of outcomes 𝐴, 𝐵 and 𝐶. Same as the unconditional
notion of independence, conditional independence can be char-
acterized by a factorization of the conditional pmfs in the case of
discrete random variables, and by a factorization of the conditional
pdfs in the case of continuous random variables. Conditional in-
dependence for random vectors (or sets of random variables) is
characterized and expressed in the straightforward way.

1.3 Event impacts

We are now in the position to formalize our framework for event
impact analysis. The two primal concepts are time series and event
series, which are special stochastic processes:

Definition 1.3.1 A time series X = (x𝑡)𝑡∈ℤ is a sequence of continuous
random variables over a common probability space (Ω,A, Pr).

We interpret the index 𝑡 as the time of observation. All time series
encountered in practice are finite, and we restrict our attention
to indices 𝑡 ∈ {1, ..., 𝑇} in the main part of this work, where 𝑇
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is the length of the time series. Strictly speaking, a finite time
series is a 𝑇-dimensional random vector. In some chapters, we
encounter more general time series that are sequences of random
vectors or random elements. Therefore, we retain separate terms
and notations for these concepts. Sometimes, we refer to a time
series in the sense of Definition 1.3.1 as a univariate time series to
distinguish it from a multivariate time series of random vectors.

We develop event impact analysis to study the effect of randomly
recurring events on the behavior of a time series. We assume that
these events also follow a stochastic process:

Definition 1.3.2 An event series E = (e𝑡)𝑡∈ℤ is a sequence of discrete
random variables over a common probability space (Ω,A, Pr), with only
two possible outcomes e𝑡(Ω) = {0, 1} for all 𝑡.

Semantically, the outcome 0 means that no event has occurred
at time 𝑡, while the outcome 1 indicates an event occurrence at
time 𝑡. As before, we restrict our attention to the finite index set
𝑡 ∈ {1, ..., 𝑇}. Our notion of an event series is a discrete-time
analogue of point processes [DV03], and a special case of a discrete-
valued time series [DHL+16; JR19; Wei18]. Viewing the event series
as a stochastic process is a key aspect that distinguishes our work
from previous approaches to study event impacts.

Stationarity and sparsity

An important property of stochastic processes that we need for
our exposition is stationarity. Stationarity means that the statistical
properties of the process do not change over time [BJR+16]:

Definition 1.3.3 A stochastic process Z = (z𝑡)𝑡∈ℤ with random variables
over a common probability space (Ω,A, Pr) is stationary if, for all finite
index sets T= {𝑡1 , ..., 𝑡𝑁 } ⊂ ℤ with 𝑁 = 1, 2, ..., we have

𝐹z𝑡1 ,...,z𝑡𝑁 = 𝐹z𝑡1+𝛿 ,...,z𝑡𝑁+𝛿

for every 𝛿 ∈ ℤ, i.e., all finite cdfs are shift-invariant.

Figure 1.2: A stationary (top) and a
nonstationary time series (bottom).

An immediate consequence of stationarity is that the marginal
distribution of z𝑡 is identical for every 𝑡. If a stochastic process
is stationary and all finite selections of random variables are
independent, we call it an iid process. Furthermore, we say that
two processes Z and Z′ are jointly stationary if all finite joint cdfs
𝐹z𝑡1 ,...,z𝑡𝑁 ,z

′
𝑡1
,...,z′𝑡𝑁

are shift-invariant.

Throughout this work, we assume that the event series E is station-
ary. Furthermore, we assume that the event series is sparse, i.e.,
Pr(e𝑡 = 1) := 𝜖 for a very small 𝜖 > 0. Sparsity formally reflects
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independent processes

our focus on rare and potentially extreme events. In a sparse event
series, on average, we have a lag of 𝐿 = 1−𝜖

𝜖 ≫ 0 time steps between
two event occurrences. If we restrict our attention to finite event
series of length 𝑇, sparsity can be expressed by assuming that the
number of event occurrences is much smaller than the length of
the time series, i.e., ∑𝑇

𝑡=1 e𝑡 := 𝑁E ≪ 𝑇 with 𝑇
𝑁E

≈ 𝐿.

Figure 1.3: Sparse (top) and dense
event series (bottom).Event impacts via statistical association

The assumption that the time series and the event series are
both stochastic processes comes with two major benefits. First
and foremost, we can now study event impacts by focusing on
statistical associations between the two processes; in particular, we
can develop statistical independence tests for this purpose. Second,
we can use probability theory to characterize the nature of the event
impacts, e.g., by estimating probability distributions or complex
probabilistic models for the impact. Formally, the event series E
has no association with the time series X if the two are independent
processes in the following sense:

Definition 1.3.4 The time series X and the event series E are independent
processes if for all finite index sets T = {𝑡1 , ..., 𝑡𝑁 } ⊂ ℤ with 𝑁 =

1, 2, ... we have that x𝑡1 , ..., x𝑡𝑁 ⊥⊥ e𝑡1 , ..., e𝑡𝑁 . We write X ⊥⊥ E to
denote that X and E are independent processes.

If X and E are independent processes, the behavior of one of the
two processes does not yield any information about the behavior
of the other process. However, if we find that the two processes
are not independent, we do not know how they are associated:
there is an infinite number of independence relations that could be
violated, and countless ways to describe the corresponding associ-
ation. Therefore, most existing independence tests for stochastic
processes do not test for independent processes, but for a subset of
independence relations that has a specific semantic interpretation
and can be described in a meaningful way—see the related work
in Section 1.4.2 (Statistical associations).

The notion of event impacts that we develop here focuses on a
novel set of independence relations between an event series and a
time series: Informally, event impact analysis studies the statistical
association of the value of the event series E at time 𝑡, and the
values of the time series X within a window around time 𝑡. A focus
on this association is compatible with previous works on impact
analysis for singular events—see the related work in Section 1.4.1
(Singular events). Formally, we distinguish two cases that we treat
separately, depending on whether X is stationary or not.
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Similar challenges were discussed
earlier by Chi et al. [CSH+16].

window of interest

The window of interest may also be
defined symmetrically around 𝑡 or
with an explicit time lag.

event impacts

1.3.1 Stationary case

In the first case, we assume that the time series X and the event
series E are jointly stationary, which entails that both processes are
also marginally stationary. The methods developed in Chapter 2 to
Chapter 5 are designed for the stationary case, and only Chapter 6
discusses a specific nonstationary case.

In the stationary case, event impacts can only be temporary. There
is a specific notion of typical behavior of the time series—a term that
will be specified more precisely soon. An event occurrence may
lead to (or coincide with) a temporary deviation from this typical
behavior, and if enough time passes after the event occurrence, the
time series will eventually return to its typical behavior. However,
we cannot expect that the individual occurrences of a recurring
event will always lead to exactly the same behavior in the time
series. Randomness is central in our definition of event impacts.

Random impacts of random events

There are three main challenges directly associated with the ran-
domness that we allow. First, there is an unknown and possibly
non-deterministic temporal lag between each event occurrence and
an observable event impact in the time series. Second, the duration
of the event impact, i.e., the number of time steps until the time
series returns to its typical behavior, is unknown and possibly non-
deterministic. Third, the observable impact itself is unknown and
possibly non-deterministic. We circumvent the first two challenges
by limiting our attention to event impacts within a certain window
of interest, parametrized by a maximum lag Δ that must be chosen
prior to the analysis. The parameter Δ must be selected such that
an event occurrence at time 𝑡 is expected to affect the time series
somewhere between time steps 𝑡 and 𝑡 + Δ. To address the third
challenge, we define event impacts in the most generic probabilistic
way possible, via the absence of a specific independence relation:

Definition 1.3.5 Let X be a time series and E be an event series. We say
that X has event impacts if x𝑡 , ..., x𝑡+Δ ⊥̸⊥ e𝑡 for any 𝑡 ∈ ℤ.

If we assume that X and E are jointly stationary, the independence
relations that do or do not hold at any point in time 𝑡 ∈ ℤ also hold
at any other point in time. In contrast, in the nonstationary setting,
the independence relations potentially change over time. The key
advantage of this formalization of event impacts is that it does not
impose any restrictions as to where in the window of interest the
impact materializes, how many time steps it encompasses, or how
it looks like. Moreover, it captures scenarios where not every single
event occurrence has an observable impact on the time series.



1.3 Event impacts 13

typical behavior

deviant behavior

Formal characterizations

Event impacts in the sense of Definition 1.3.5 can be character-
ized very generically with the help of cdfs, either by lack of the
factorization of the joint cdf into two marginal cdfs,

𝐹e𝑡 ,x𝑡 ,...,x𝑡+Δ(𝑒𝑡 , 𝑥𝑡 , ..., 𝑥𝑡+Δ)
≠ 𝐹e𝑡 (𝑒𝑡) · 𝐹x𝑡 ,...,x𝑡+Δ(𝑥𝑡 , ..., 𝑥𝑡+Δ),

(1.20)

or by diverging conditional and marginal cdfs:

𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=1 ≠ 𝐹x𝑡 ,...,x𝑡+Δ (1.21)
𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=0 ≠ 𝐹x𝑡 ,...,x𝑡+Δ (1.22)

𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=1 ≠ 𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=0 (1.23)

The latter characterization allows us to clarify the notion of typical
behavior of the time series mentioned earlier, and how events lead
to a deviation from this typical behavior. The marginal cdf 𝐹x𝑡 ,...,x𝑡+Δ
can be expressed as a mixture of the conditional cdfs,

𝐹x𝑡 ,...,x𝑡+Δ = 𝜖 · 𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=1 + (1 − 𝜖) · 𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=0 (1.24)

where 𝜖 = Pr(e𝑡 = 1) is the probability to observe an event at time 𝑡.
Since we assume a sparse event series with a very small 𝜖 > 0, this
marginal cdf is dominated by the conditional cdf given e𝑡 = 0,

𝐹x𝑡 ,...,x𝑡+Δ ≈ 𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=0. (1.25)

The sparser the event series, the more similar the marginal cdf to
the conditional cdf given e𝑡 = 0, with the extreme case 𝐹x𝑡 ,...,x𝑡+Δ =

𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=0 in the limit 𝜖 −→ 0. For this reason, we say that, when
the event series is sparse, the marginal cdf 𝐹x𝑡 ,...,x𝑡+Δ represents the
typical behavior in a window of interest starting at time 𝑡, while
the conditional cdf 𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=1 represents (potentially) deviant
behavior in that window induced by an event at time 𝑡.

These characterizations hold regardless of whether the time series
and the event series are jointly stationary or not. However, in the
stationary case, the typical behavior and the deviant behavior do
not depend on the time step 𝑡—they are shift-invariant. Therefore,
we can say that, in the stationary case, the two cdfs represent the
typical behavior and the deviant behavior of the time series.

Figure 1.4 illustrates random event impacts in a univariate time
series. The general shape of the impacts is the same as in the
deterministic example from Figure 1.1, but with a random delay
before the onset of the impact, random magnitude, and random
decay rate. We can gain insights into the nature of these event im-
pacts by studying the statistical properties of the deviant behavior
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Figure 1.4: Random event impacts.
a: Excerpts from the time series and
the event series. b: Samples from
the deviant behavior 𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=1;
(∗) samples from the marginal cdf
𝐹x𝑡+𝛿 |e𝑡=1 at lag 𝛿. c: Expected value
of the deviant behavior; (†) marginal
expectation at lag 𝛿. d: Covariance
matrix with entries Cov[x𝑡+𝛿 , x𝑡+𝛿′]
for all 𝛿, 𝛿′ in the window of interest,
computed from 𝐹x𝑡+𝛿 ,x𝑡+𝛿′ |e𝑡=1.

0 𝛿 Δ

∗

0 𝛿 Δ

†

a

b
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𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=1, e.g., its expected value or its covariance structure.
For comparison, the expected value of the typical behavior is always
a straight horizontal line at E[x𝑡+𝛿] = � for all 𝛿, while the covari-
ance matrix is always a Toeplitz matrix, i.e., a matrix with constant
diagonals [BJR+16]. This allows simple visual assessment of event
impacts in the first two moments of the distribution. However,
this visual approach cannot easily be extended to event impacts
in higher-order moments of the distribution, or to scenarios with
multivariate or more general time series.

Statistical independence tests for event impacts

The characterizations of event impacts via diverging conditional
and marginal cdfs from Equation 1.21 to Equation 1.23 provide a
means to implement statistical tests for event impacts based on
observed data: we have to find statistical evidence in the data that
the respective cdfs are, in fact, diverging. Due to Equation 1.25,
the most effective approach is to seek evidence that the deviant
behavior diverges from the typical behavior—similar to the visual
approach from above. However, in a finite sparse event series of
length𝑇, there are only𝑁E ≪ 𝑇 event occurrences, so that we have
access to only few examples of the deviant behavior. This renders
statistical inference on the multivariate function 𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=1 less
reliable, especially for larger values of Δ. For example, for reliable
estimation of the covariance matrix in Figure 1.4, we need 𝑁E ≥ Δ2

event occurrences. Therefore, instead of working directly with the
multivariate cdf, we simplify the statistical procedures involved in
our tests by exploiting the following result:

Lemma 1.3.1 Let g(x𝑡 , ..., x𝑡+Δ) be a measurable function.

If x𝑡 , ..., x𝑡+Δ ⊥⊥ e𝑡 , then g(x𝑡 , ..., x𝑡+Δ) ⊥⊥ e𝑡 .

An immediate consequence is that if we find a measurable function
g such that g(x𝑡 , ..., x𝑡+Δ) ⊥̸⊥ e𝑡 , we know that x𝑡 , ..., x𝑡+Δ ⊥̸⊥ e𝑡 ,
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i.e., we know that X has event impacts. We can translate the
independence relation into an equivalent statement on the cdfs,
and say that X has event impacts if

𝐹g(x𝑡 ,...,x𝑡+Δ)|e𝑡=1 ≠ 𝐹g(x𝑡 ,...,x𝑡+Δ). (1.26)

The advantage of this perspective over the perspective from Equa-
tion 1.21 is that—at least for scalar-valued functions g—the involved
cdfs are univariate and thus more easily accessible for statistical
inference. Moreover, the function g can be viewed as a statistic that
captures properties of the time series that we expect to be associated
with event occurrences. Importantly, the converse of Lemma 1.3.1
does not hold: There exist functions g such that g(x𝑡 , ..., x𝑡+Δ) ⊥⊥ e𝑡 ,
but not x𝑡 , ..., x𝑡+Δ ⊥⊥ e𝑡 . If we cannot find event impacts with a
specific choice of function g, we cannot conclude that there are no
event impacts in the general sense of Definition 1.3.5.

The key question in the stationary case is how to define the function
g such that we obtain a powerful statistical test procedure for the
kind of event impacts that we expect. The procedures that we
propose in Chapter 2 and Chapter 3 are based on different choices
for the function g in Lemma 1.3.1. In Chapter 4, we devise a generic
probabilistic model for the deviant behavior 𝐹x𝑡 ,...,x𝑡+Δ |e𝑡=1.

1.3.2 Nonstationary case

In the nonstationary case, we do not assume that the time series X
and the event series E are jointly stationary. If we have access to
only a single paired realization from the event series and the time
series, we are rather limited in the statistical methodology that
we can apply in this case, unless other structural assumptions are
made. In this work, we discuss methods for event impact analysis
for two types of nonstationarity that may be present within the
time series. For both types, we can eliminate the nonstationarity by
preprocessing, and reduce the problem to the stationary case.

In the first type that we treat below, we assume that the time
series follows an integrated process. This type of nonstationarity
results in stochastic trends in the time series, and can be eliminated
by the differencing operation. In the second case that we treat in
Chapter 6, we assume that the time series is segmented, i.e., its
data-generating process changes its dynamics at specific points in
time, and is stationary within each segment. The two types can be
combined, so that we can first eliminate stochastic trends by differ-
encing, and capture nonstationarity in other statistical properties
by partitioning the time series into stationary segments.
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difference operator

integrated time series

Figure 1.5: Integrated time series
(top) can be studied with our meth-
ods when differencing is applied as
a preprocessing step (bottom).

In contrast to the stationary case, in a nonstationary time series,
event impacts can be temporary or permanent. However, it is not
trivial to formalize the concepts of temporary and permanent event
impacts in a nonstationary time series concisely and comprehen-
sively, i.e., in a way that reflects all reasonable meanings of the
terms. We defer this typological discussion to future work.

Integrated time series

The notion of an integrated time series that we use here is moti-
vated from the autoregressive integrated moving average (ARIMA)
model in time series analysis. It is meant to capture what Box et al.
[BJR+16] call a form of homogeneous nonstationarity. Let X be a
time series. Formally, we use the classical difference operator ∇
to express differences between consecutive observations within
the time series, i.e., ∇x𝑡 := x𝑡 − x𝑡−1. We write ∇𝑞x𝑡 to apply the
difference operator 𝑞 times, so that the random variable

z𝑡 := ∇𝑞x𝑡 = z(x𝑡−𝑞 , ..., x𝑡) (1.27)

is a function of the past 𝑞 values of the time series up to time step 𝑡.
We say that X is an integrated time series of order 𝑞 if 𝑞 is the
smallest value such that the time series Z = (z𝑡)𝑡∈ℤ is stationary. In
the literature on time series analysis, integrated time series are also
called difference-stationary processes or unit root processes [Ham94].

Figure 1.5 shows an example of an integrated time series with
event impacts that appear to be permanent in an informal sense.
We observe that, after one differencing operation, the resulting
time series is stationary with temporary event impacts.

If there are reasons to believe that X is an integrated time series
of unknown order 𝑞, we have to perform iterative differencing
on the observed data as a preprocessing step, until the resulting
time series is stationary. We can then apply the methods for event
impact analysis in the stationary case developed in the main part
of this work. Strictly speaking, we must assume that the time series
after differencing Z and the event series E are jointly stationary for
our methods to be applicable.

There is an additional subtlety that needs to be considered: Event
impacts in the sense of Definition 1.3.5 are defined via the lack of
independence e𝑡 ⊥̸⊥ x𝑡 , ..., x𝑡+Δ for a specific window of interest
parametrized by Δ. If we apply the methods for event impact
analysis in the stationary case unchanged on the time series Z,
strictly speaking, we do not test for event impacts in X, but for
event impacts in Z. More precisely, if we find that e𝑡 ⊥̸⊥ z𝑡 , ..., z𝑡+Δ,
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we cannot conclude that e𝑡 ⊥̸⊥ x𝑡 , ..., x𝑡+Δ. The reason is that due to
the differencing operation,

(z𝑡 , ..., z𝑡+Δ) = g(x𝑡−𝑞 , ..., x𝑡+Δ) (1.28)

contains information from the time series that lies outside of the
original window of interest—information that temporally precedes
the event. Therefore, the window of interest within Z must be
shrunk to the random variables z𝑡+𝑞 , ..., z𝑡+Δ that only contain
information from the original window of interest in the time series
X. Moreover, the nature of the event impacts can only be understood
by studying the statistical properties of the deviant behavior of the
time series Z—which is shift-invariant—, in contrast to the deviant
behavior of the time series X—which changes over time. Apart
from that, no changes are necessary. This simple observation makes
the methods developed in the main part of this work applicable to
a large class of problems with nonstationary time series.

Segmented time series

The other type of nonstationarity that we consider in this work
is the case of a segmented time series with stationary segments.
An introduction to event impact analysis in this case is provided
in Chapter 6. The idea is to first detect the change points, i.e., the
points in time at which the data-generating process changes its
dynamics, and perform event impact analysis separately for each
segment. Alternatively, we can correlate the occurrence of change
points itself with the occurrence of events in the event series.

1.4 Related work

Our research is motivated by a continuous stream of application-
oriented papers that discuss the impacts of recurring events on
time series. For example, Zhang, Lai, and Wang [ZLW08] and
Zhang et al. [ZYW+09] estimate the impacts of extreme events on
crude oil prices, while Chesney, Reshetar, and Karaman [CRK11]
analyze the behavior of stock markets after terrorist attacks. Luo
et al. [LLL+14] seek methods to correlate performance metrics of a
computing system with critical system incidents. Chi, Han, and
Wang [CHW16] and Chi et al. [CSH+16] identify more application
domains that may benefit from such methodology, including traffic
control, customer behavior analytics and finance. Kalyanam et al.
[KQP+16] study the activity bursts in social media time series
after news events. More recently, Madaan et al. [MSK+19] studied
the impact of weather events and hoarding events on prices of
agricultural commodities in India, while Dortmont, Elzen, and
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As pointed out earlier, this limitation
applies in the same way to the meth-
ods that we develop in this work.

Wĳk [DEW19] discussed event impacts from the perspective of
visual analytics, with applications in electronic health and IT
security. The set of tools employed in these works is highly diverse,
and to date, there seems to be no common understanding of how
to capture the impacts of recurring events in a meaningful way.

In this thesis, we make the case for a statistical perspective on the
impacts of recurring events. Some of the works mentioned above
contain initial ideas to study such impacts with statistical methods,
in particular, with two-sample tests. Luo et al. [LLL+14] propose
to compare all subsequences within a fixed window of interest
before and after event occurrences with a set of subsequences
sampled randomly from the time series, using two-sample tests.
Similarly, Chi, Han, and Wang [CHW16] and Chi et al. [CSH+16]
directly compare the subsequences after event occurrences with
the subsequences before event occurrences, with a two-sample
test. A shortcoming of these works is that—although they make
use of statistical methodology—they do not discuss the statistical
assumptions that allow the use of such methodology. Many of
the ideas from these works are compatible with our notion of
event impacts from Definition 1.3.5, either directly or with some
minor adaptations. In fact, these works have inspired the multiple
two-sample testing procedure that we develop in Chapter 3. In
the following sections, we give an overview of methodologically
related problems and approaches.

1.4.1 Singular events

There is a large body of research that studies the impact of a
singular event on the behavior of a time series; we summarize the
most popular approaches below. The occurrence of the event is
often controlled by an experimenter, and the event is referred to as
the “intervention.” The ultimate goal of many of these studies is to
assess whether the intervention caused a change in the behavior of
the time series, but, strictly speaking, they can only assess whether
it coincides with a change in the time series. These methods have
been developed and matured concurrently in many disciplines,
from econometrics to ecology and medicine, often using similar
terms for different ideas or different terms for similar ideas.

In all of these approaches, the time series can be split into a pre-
intervention phase and a post-intervention phase. If the time series
follows an iid process in both phases, a standard two-sample test
would be sufficient to assess whether there is a change from one
phase to the other [BT65], potentially caused by the event. Research
in this field focuses primarily on the development of methods for
various types of non-iid time series, and on the discussion of
techniques that allow for more compelling causal inferences.
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Intervention analysis

A well-established methodology to study singular event impacts
is intervention analysis [BT65; BT75; Gla72], sometimes referred to
as interrupted time series analysis [MMM+80]. Classical intervention
analysis seeks to estimate the deterministic linear impact of a single
event on the behavior of a time series that follows an autoregressive
model (ARIMA), as illustrated in Figure 1.1. It is a special case of a
linear transfer function model, where the input series is either a pulse
function or a step function at the time point of the event. The impact
of this event has one of several parametric forms defined by a linear
transfer function [BJR+16]. The representation of the event as a
pulse or step function and the choice of the transfer function are
application-dependent and usually hypothesis-driven. Originally
formulated only for univariate time series, it has been extended to
multivariate time series [Abr80; ES93] and to models other than
ARIMA [FF10; FF12; FLE+14; LKF+14; SL21; WO20]. Intervention
analysis can also be applied in settings with multiple events, either
by assuming that every event has the same deterministic impact,
or its own deterministic impact, unrelated with the other impacts.
A potential downside of intervention analysis is that it assumes
parametric models both for the event impacts and for the other
components of the time series.

Regression-based approaches

Similar in spirit, but quite different methodologically, the segmented
regression approach of interrupted time series [CS63; GMS81] captures
changes in the linear trend and level of a time series that coincide
with an intervention. The key idea is to estimate a segmented linear
regression model for the pre- and post-intervention phase, using
time as the covariate. The approach can be extended to capture time
series with seasonal patterns and known outliers [WSZ+02], and to
generalized linear models with additional covariates that account
for any other potential confounding factors [KDS+15; LCL+21;
LCG17]. Guidelines for correct model specification are given by
Huitema and McKean [HM00] and, more recently, Lopez Bernal,
Soumerai, and Gasparrini [LSG18].

The segmented regression approach can also use control time series
that are unaffected by the intervention. This allows more reliable
causal inferences [BSI19; Lin15; LA11; LCG18; Sim77]. Estimation
of regression models with control time series and additional
covariates is also known as the difference-in-differences method [Aba05;
AC85; LCL+21]. However, the classical difference-in-difference
model captures changes in the level of the time series only.
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in contrast to observed confounders
that can be included as covariates

The synthetic control method [ADH11; ADH+10; AG03] is a factor
model that extends the difference-in-differences approach to set-
tings with unobserved confounders that potentially vary with time.
The key idea is to learn a weighted combination of all available
control time series that best approximates the time series of interest
within the pre-intervention phase. The weighted combination of
the control time series in the post-intervention phase then yields a
counterfactual “synthetic control” for the time series of interest,
had the event not happend. Any departures of the time series of
interest from the synthetic control within the post-intervention
phase are attributed to the intervention. The Bayesian counterfac-
tual approach of Brodersen et al. [BGK+15] is a variation of this
scheme based on a structural state-space model for time series.

When using any regression-based approach to assess event impacts
in time series, it is important to take serial correlations in the error
terms into account [BDM04]. Same as intervention analysis, the
regression-based approaches to event impact analysis are generally
limited by their parametric model assumptions.

BACIP analysis

An alternative methodology that does not require parametric mod-
els is known as BACIP (Before-After Control-Impact Paired) [Ber83;
Smi14; SBO92; SMP86] or randomized intervention analysis [CFH+89].
It can be applied to study the impact of a single intervention event
on a time series, when a control time series is available. The control
time series is assumed to follow the same dynamics as the time
series of interest, without being affected by the intervention. Event
impacts are then assessed by comparing the mean difference between
the two time series before the event with the mean difference after
the event. If the difference of the mean differences is statistically
significant, the event has impact on the time series.

This approach has been extended for multiple control time se-
ries [Und92; Und94], for impacts other than level shifts [TKO+17;
Und92; Und94; WAG+21], for multivariate time series [TBB+05],
and has been augmented with Bayesian methods [CSB+16; CTM96].
Murtaugh [Mur00; Mur02] raised a debate on whether BACIP over-
states the statistical evidence for event impacts in the presence of
serial correlations [Mur03; Ste03]. Recently, Christie et al. [CAM+19]
performed a simulation study that showed that BACIP is better in
detecting event impacts than simpler variations thereof. Additional
measures to characterize impacts within the BACIP framework
have been proposed [CRK19]. However, the main limiting factor of
BACIP that it shares with difference-in-differences and synthetic
control methods is the availability of control time series.
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This approach should not be con-
fused with the differencing oper-
ation described in Section 1.3.2 to
handle nonstationarity in integrated
time series.

In the terminology of this branch of research, our approach to
capture impacts of recurring events can be viewed as an aggregated
Before-After (BA) analysis without control time series: we aggregate
event impacts over all individual event occurrences to make statis-
tical inferences on relevant probability distributions. We stress that
control time series can—principally—be included in our approach
to event impact analysis, by applying our methods on the difference
time series between the time series of interest and the control time
series. The statistical requirement is that the difference time series
and the event series are jointly stationary.

1.4.2 Statistical associations

As noted earlier, we perform event impact analysis by studying
the statistical associations between a time series and an event series.
There is a long history of research on the statistical associations of
two or more time series, and we have seen an increasing interest
in the statistical associations of two or more event series (or rather,
continuous-time point processes) in the past two decades. However,
literature on statistical associations across time series and event
series is virtually non-existent. A possible explanation is that an
event series can be viewed as a special case of a time series, so that
there seems to be no reason for a separate treatment of this case.

We believe that the specific properties of event series—in particular,
discreteness and sparsity—demand for novel ways to capture their
statistical associations with time series in a meaningful way. This
is corroborated by the fact that the approaches to study impacts of
singular events on time series outlined above are remarkably differ-
ent from the existing measures and tests for statistical associations
between time series or between event series.

In the following, we provide an overview of existing measures and
tests for statistical associations between two time series X and Y.
Some of these methods can be applied for event impact analysis
by simply exchanging one of the time series with an event series E.
However, such applications stand on shaky statistical grounds, as,
more often than not, these statistical methods are developed under
the assumption of continuous random variables.

Pairwise associations

The simplest way to study associations across two time series is to
consider pairwise associations, i.e., associations between a single ran-
dom variable x𝑡 from X and a single random variable y𝑡+𝛿 from Y.
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The boundary between association
measures and other test statistics for
independence can be fuzzy.

Pairwise associations can be characterized nominally with asso-
ciation measures, or directly tested with statistical independence
tests. For example, the cross-correlation function

𝜌XY
𝑡 (𝛿) :=

Cov[x𝑡 , y𝑡+𝛿]√
Var[x𝑡]Var[y𝑡+𝛿]

(1.29)

for 𝛿 ∈ ℤ measures the pairwise linear associations between the
random variable x𝑡 and every random variable y𝑡+𝛿. A value of
0 indicates a lack of linear association at lag 𝛿, and a value of
±1 indicates a fully deterministic linear relationship at that lag.
If X and Y are jointly stationary, the cross-correlation function
is independent of the time index 𝑡 and fully determined by the
temporal lag between the two time points [BJR+16], so that

𝜌XY
𝑡 (𝛿) = 𝜌XY(𝛿) = 𝜌YX(−𝛿) = 𝜌YX

𝑡 (−𝛿) (1.30)

for all 𝑡 ∈ ℤ. In principle, any measure designed to capture
associations between two random variables can be applied to as-
sess pairwise associations across time series at arbitrary lags. An
overview of classical association measures for random variables
can be found in Tjøstheim [Tjø96], and more recent developments
in Tjøstheim, Otneim, and Støve [TOS18]. In the time series con-
text, the number of co-movements [GG61; HP91; YS81; YH86] and
ranks [Sch89] have been explored as nonparametric alternatives to
the cross-correlation function that capture monotonic associations.
Nonparametric measures for quantile dependence across time series
have attracted some attention recently [BK19; HLO+16].

A non-zero value of an association measure implies lack of indepen-
dence of the two random variables x𝑡 and y𝑡+𝛿, but not necessarily
vice-versa. Only if the association measure reflects the complete cdf,
or the complete pdf (pmf) in the continuous (discrete) case, lack
of association implies independence. Such measures are based,
e.g., on the Kolmogorov-Smirnov distance or the mutual information
[Tjø96]. An alternative to interpretable association measures is to
directly test independence with a suitable test statistic. For example,
Fernandes and Néri [FN09] proposed a test for the instantaneous
independence of two time series X and Y, i.e., the case x𝑡 ⊥⊥ y𝑡 for all
𝑡 ∈ ℤ, with an entropy-based test statistic, while Chwialkowski and
Gretton [CG14] use the Hilbert-Schmidt independence criterion
(HSIC) [GBS+05] for the same problem. These tests can easily be
adapted for pairwise independence at an arbitrary lag 𝛿.

The key challenge when applying association measures or statistical
independence tests across time series lies in establishing statistical
significance in the presence of serial dependencies. In the context
of event impact analysis, pairwise associations of e𝑡 and x𝑡+𝛿
for 𝛿 = 1, ...,Δ are a special case of event impacts in the sense
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of Definition 1.3.5. They provide a limited perspective on the
overall statistical association, but may yield powerful tests in many
scenarios. In fact, the method that we develop in Chapter 3 is a test
for pairwise independence e𝑡 ⊥⊥ x𝑡+𝛿 for 𝛿 = 1, ...,Δ.

Tests for pairwise independent processes

A more complex problem that has received much attention in the
literature is to establish pairwise independence of X and Y, which is
defined via an infinite number of pairwise independence relations
x𝑡 ⊥⊥ y𝑡′ for all 𝑡 ≠ 𝑡′. However, the vast majority of approaches
test whether the time series X and Y are uncorrelated processes, i.e.,
whether they have an all-zero cross-correlation function. These
works assume either ARMA [DR03; Gew81; Hau76; KY86] or
AR(∞) [Hon96; Sha09] representations for the time series. The
proposed tests have been generalized to tests for non-correlation
of multivariate time series with VARMA [ER97; HS05; RF15], VAR(𝑝)
[HS07], or VAR(∞) [BR06] representations, to time series with more
generic stationarity assumptions [ERD03], and to nonstationary,
cointegrated time series [BD08; PRC03; Sai07].

Since these tests are based on the cross-correlation function, they
may miss nonlinear pairwise associations between the time series. If
the time series are stationary and Gaussian, uncorrelated processes
are, in fact, pairwise independent, and the tests listed above can
be used to establish pairwise independence. Only few tests exist
to establish pairwise independence in a non-Gaussian setting.
Hong [Hon01] proposed a test statistic for pairwise independence
of X and Y based on empirical characteristic functions instead
of cross-correlations. The test of Kim and Lee [KL05] for the
same problem uses a Cramér-von Mises statistic for this purpose,
and was extended by Duchesne, Ghoudi, and Rémillard [DGR12]
for nonlinear time series. Besserve et al. [BJL+11] and Besserve,
Logothetis, and Schölkopf [BLS13] developed a widely applicable
test statistic for pairwise independence based on a kernelized
cross-spectral density (KCSD) operator, while Lacal and Tjøstheim
[LT19] exploit local Gaussian correlations.

Recently, Khan and Khan [KK20] performed a comparative study
of various tests for uncorrelated or pairwise independent processes,
and found the approach of Atiq-ur-Rehman and Malik [AM14] to
be superior to its competitors in many experiments.

Tests for independent processes

In general, pairwise independence of X and Y does not imply that
the two time series are independent processes X ⊥⊥ Y in the
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sense of Definition 1.3.4. However, if the time series are stationary
and Gaussian, pairwise independence does imply independent
processes, so that the tests for uncorrelated processes and pairwise
independent processes listed above are, in fact, tests for independent
processes in this case. Besserve, Logothetis, and Schölkopf [BLS13]
derived very generic regularity conditions under which pairwise
independence implies independent processes, without assuming
normality. They use this result to extend the KCSD test for pairwise
independence mentioned above [BJL+11] to a test for independent
processes in the sense of Definition 1.3.4.

Zhang et al. [ZGS+08] proposed a test statistic based on the HSIC to
test for independent processes when the time series jointly follow
a 𝑘-th order Markov process, while the model-free tests based on
permutation entropy [CGd11; MRM10] or the symbolic correlation
integral [CMR+19] detect any statistical cross-dependence up to
order 𝑘. Laumann, Kügelgen, and Barahona [LKB21] apply the
HSIC to test for independent processes in a nonstationary setting,
when multiple realizations of the time series are available.

Granger causality

A specific independence relation across time series that has re-
ceived considerable attention in the past decades is known as
Granger (non-) causality [BS11; Gew82; Gra69; PH77]. In the sim-
plest bivariate form, the time series Y is said to Granger cause the
time series X if and only if

x𝑡 ⊥̸⊥ y𝑡−Δ , ..., y𝑡−1 | x𝑡−Δ , ..., x𝑡−1 (1.31)

for a fixed lag Δ. Intuitively, Granger causality means that the time
series Y contains additional information on the present value of
the time series X that is not included in the past of X itself. The
choice of independence relations reflects a predictive scenario, where
one aims at predicting the present value of X from the past of
both X and Y. In fact, the classical approach to test for Granger
causality [BS11] is to compare the residual variance of an estimated
forecasting model for X based on its own past only, with that of a
joint forecasting model based on the past of X and Y. If the joint
forecasting model has a significantly lower residual variance, the
null hypothesis of Granger non-causality must be rejected.

The classical approach is to implement the test with VAR forecast-
ing models, but more generic tests have been developed, e.g., based
on state-space models [BS15], kernel regressions [MPS08], neural
networks [MV21], or nonparametric predictors [BKM96]. Since
forecasts are only based on the conditional mean of x𝑡 , other char-
acteristics of its conditional distribution are ignored by these tests.



1.4 Related work 25

Therefore, Granger causality is often viewed as predictive causality
or causality in mean. There are a few tests for Granger causality
that take more characteristics of the conditional distribution into
account [DP06; HJ94; NHK+11; TBE14]. Quite prominently, transfer
entropy [KS02; Sch00] measures the conditional mutual information
of x𝑡 and y𝑡−𝑘 , ..., y𝑡−1 given x𝑡−𝑘 , ..., x𝑡−1, and thus provides the
most generic test statistic for Granger causality [BBH+16; TBE14].
For some parametric models, transfer entropy yields the classical
test statistic for Granger causality in mean [BBS09; BB12].

Tests for Granger causality from E to X are useful to assess whether
event occurrences help forecasting the time series. However, the
choice of (conditional) independence relations from Equation 1.31
does not reflect the information needs expressed in existing studies
of event impacts in the case of singular events. All of the works
discussed in Section 1.4.1 monitor the behavior of the time series
over windows of interest before and after the event (the pre- and post-
intervention phases). In contrast, Granger causality considers the
behavior of the time series at a single point in time, while taking into
account its own past and the past behavior of the event series. In
this dissertation, we blend the probabilistic perspective of Granger
causality with existing methods for singular event impacts to obtain
a novel, probabilistic framework for event impact analysis.
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Perhaps the most illustrative way to analyze event impacts on
stationary time series is to consider the association between event
occurrences and the occurrence of peaks in the time series. In
this chapter, we propose a novel statistical methodology to test,
measure, and visualize precisely this association. Intuitively, a peak
is a drastic, sudden and short-lived increase of the values of the
time series. We show that if there is an unusually large number of
coincidences between event occurrences and peaks, there is evidence
for event impacts in the time series. The coincidence rate, i.e., the
number of coincidences normalized by the total number of events,
serves as a measure of association between event occurrences and
peaks in the time series. At last, a plot of these coincidence rates
for peaks of increasing magnitudes provides a visual summary of
this specific type of association.

Technically, we define a peak as the exceedance of a large threshold
within the window of interest. We refine the notion of event impacts
from Definition 1.3.5 so that it reflects our interest in peaks. We
show that a test for our refined notion of event impacts can be
implemented effectively within the framework of event coincidence
analysis (ECA) [DSS+16]. ECA was originally developed to correlate
point processes in continuous time. We formulate a discrete-time
variant of ECA and derive all required distributions to enable
analyses of peaks in stationary time series, with a special focus
on serial dependencies and on peaks over multiple thresholds.
Our derivations exploit a central result from extreme value theory
(EVT) [Col01] and thus establish an interesting connection between
event impact analysis, ECA and EVT. We demonstrate the utility
of our approach by analyzing whether Islamist terrorist attacks in
Western Europe and North America systematically trigger bursts
of hate speech and counter-hate speech on Twitter.

2.1 Introduction

From the perspective of a human analyst peaks are often the most
salient features of a time series. It is therefore quite natural to ask
whether these peaks systematically coincide with a recurring event
of interest. The relevance of peaks has been recognized already
in early works on intervention analysis [BT75], where the goal is
to model the effect of a singular event on a time series. At first
glance, a focus on peaks may seem overly simplistic: Peaks are a

https://doi.org/10.1214/20-AOAS1338
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Figure 2.1: In the upper time se-
ries, the variance is temporarily in-
creased at two points in time. The
feature transformation described on
the right results in the lower time
series, where these points in time
are clearly indicated by peaks.

univariate concept that cannot easily be extended to multivariate
time series. Furthermore, event occurrences may coincide with
other patterns in the time series, e.g., temporarily alter its variance
or induce various anomalies. We argue that in many cases such
patterns can be reduced to peaks after preprocessing the time
series with a suitable feature transformation function. The feature
transformation function must be designed or learned in such a
way that it provides high values when the pattern of interest is
observed, and low values when it is not observed.

For example, a useful feature transformation to study the effect of
events on the variance of a time series would be the ratio between
the variance in a short-term window and a long-term window
of the time series. Increases in the variance of the original time
series will then lead to peaks in the preprocessed time series, as in
Figure 2.1. In case we expect events to trigger anomalies in the time
series, we can preprocess the time series with an anomaly detection
algorithm [MVS+15; RXW+19] that provides a score at every time
point indicating how anomalous each observation is. If no suitable
feature transformation is available, the methods developed later
on in Chapter 3 are required.

In summary, we make the following contributions:

▶ We show that coincidences of peaks and events are indicators
for event impacts in the sense of Definition 1.3.5.

▶ We implement a test for coincidences of peaks and events
within the framework of ECA and analytically derive the
null distribution of the ECA test statistic for this scenario,
under mild assumptions on the time series.

▶ Since a single threshold may not be sufficient to comprehen-
sively capture the association between event occurrences and
peaks, we further derive the joint distribution of the ECA
test statistic at multiple thresholds.

▶ We discuss two hypothesis tests for coincidences at multi-
ple thresholds and propose a novel visualization of these
coincidences via quantile-trigger rate plots (QTR plots).

▶ We validate our statistical methodology with a simulation
study and use it to test the systematic association between
terrorist attacks and online hate speech.

2.1.1 Problem statement

Let X = (x1 , ..., x𝑇) be a time series and E = (e1 , ..., e𝑇) be an event
series. We assume that X and E are jointly stationary and that the
event series is sparse, i.e., Pr(e𝑡 = 1) = 𝜖 for a very small 𝜖 > 0, so
that ∑𝑡 e𝑡 = 𝑁E ≪ 𝑇. On average, we have 𝐿 = 1−𝜖

𝜖 ≫ 0 time steps
between two event occurrences.
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maximum statistic

point processes

event coincidence analysis

Our goal is to detect event impacts in the sense of Definition 1.3.5.
We exploit Lemma 1.3.1 and focus on specific properties of the time
series by testing the association between event occurrences and a
statistic g(x𝑡 , ..., x𝑡+Δ). In this chapter, we address the association
between event occurrences and peaks in the time series. We assume
that the time series has already been preprocessed in such a way
that a focus on peaks is justified. Statistically, a focus on peaks
translates to an interest in the extremal properties of the time series
after event occurrences. Formally, we use the maximum statistic

g(x𝑡 , ..., x𝑡+Δ) := max(x𝑡 , ..., x𝑡+Δ) (2.1)

to encode this interest, and test the following pair of hypotheses:

𝐻0 : max(x𝑡 , ..., x𝑡+Δ) ⊥⊥ e𝑡 (2.2)
versus

𝐻1 : max(x𝑡 , ..., x𝑡+Δ) ⊥̸⊥ e𝑡 . (2.3)

If we have evidence to reject the null hypothesis 𝐻0 in favor of the
alternative hypothesis 𝐻1, we have evidence for event impacts in
the sense of Definition 1.3.5.

The maximum statistic has two desirable properties: First, it is
robust with respect to temporal delays. The statistic will take the
same value regardless of whether a peak occurs at the beginning
or end of the window of interest. Second, it is sensitive for very
short-lived increases of the values of the time series by ignoring
all but the largest observation.

The most straightforward way to implement a test for event impacts
in the maximum statistic would be to estimate 𝐹max(x𝑡 ,...,x𝑡+Δ)|e𝑡=1
and 𝐹max(x𝑡 ,...,x𝑡+Δ) from the data and check whether the two cdfs are
identical. The downside of this approach is that due to the sparsity
of the event series, the number of samples available to estimate
the conditional distribution of the maximum statistic is potentially
low. Instead, we propose a novel way to implement this test by
counting the number of coincidences between event occurrences and
peaks in the time series, where a peak is defined as a point in time
where the maximum statistic exceeds a large threshold.

2.1.2 Related work

In the literature, coincidences are primarily used to measure the as-
sociation between two event series, or between two point processes,
i.e., event series in continuous time. Most importantly for us, event
coincidence analysis (ECA) [DSS+16] was developed to measure
the association between two types of recurring events within a
fixed window of interest. It has been used to assess whether floods
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event synchronization (ES)

systematically trigger epidemic outbreaks [DSS+16], whether natu-
ral disasters systematically trigger violent conflicts [SDD+16], and
to assess many other coincidences [DDT+11; RWD+15; RBM+16;
Sar18; SSH+16; SSD17; SWD+16]. Methodologically, it has been
extended to conditional and joint coincidences [SSH+16] of events.
We provide an introduction to ECA in Section 2.2.1, since it forms
the basis of our test for event impacts in the maximum statistic.

The method of event synchronization (ES) [QKG02] is conceptu-
ally similar to ECA in that it counts coincidences between events.
The main difference is that the window of interest for coincidences
is not fixed but varies dynamically. While this makes the approach
completely nonparametric, it also renders derivations of an analyt-
ical null distribution for the test statistic very hard to impossible.
Odenweller and Donner [OD20] and Wolf et al. [WBB+20] demon-
strate that ECA has clear advantages over ES in the presence
of serially correlated events, but also that ES and ECA provide
qualitatively similar results in other application scenarios.

Early measures to quantify the association of point processes have
been studied in neuroscience for the analysis of neural spike trains
[BKM04] and include cross-correlograms [Bro99], cross-intensity
functions [Bri92], and the reliability statistic of Hunter and Milton
[HM03]. A related measure from spatial statistics is Ripley’s cross-
𝐾 function [Dix02] that uses deviations from the expected number
of coincidences within a certain radius under independence to
measure event association. In the past decade, tests for Granger
causality in point processes that transcend coincidences have been
investigated thoroughly [BV18; EDD17; KPG+11; NRJ+09; XFZ16;
ZPJ+20]. A recent alternative approach is the score-based likelihood
ratio test of Galbraith, Smyth, and Stern [GSS20].

In contrast to all of the works listed above that operate on pairs of
event series or point processes, we explicitly address the statistical
association between an event series and extremal properties of
a time series. Therefore, the approach developed in this chapter
is closely related to measures and models for tail dependence of
random variables [FJS05; YWZ19].

2.2 Methodology

Our key observation is that an unusually large number of coinci-
dences between event occurrences and peaks in the time series is
an indicator for event impacts in the maximum statistic defined in
Equation 2.1. This observation allows us to implement a test for
such event impacts using ECA.
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trigger coincidences

precursor coincidences

This section is structured as follows. In Section 2.2.1, we provide
a discrete-time formulation of ECA for pairs of event series that
corresponds to the original continuous-time formulation for point
processes [DSS+16]. In Section 2.2.2, we use our formulation of
ECA to implement a test for event impacts in the maximum statistic.
For this purpose, we derive a novel analytical null distribution
for the ECA test statistic in our setting, i.e., its distribution under
the assumption that 𝐻0 from Equation 2.2 holds. Next, in Section
2.2.3, we derive the joint null distribution for coincidences at
multiple thresholds and describe two test procedures to assess
statistical significance. At last, in Section 2.2.4, we complement our
analytical results with a novel visualization of the association via
quantile-trigger rate (QTR) plots.

2.2.1 Event coincidence analysis

ECA is a statistical methodology to assess whether two types of
events are independent or whether one kind of event systematically
triggers or precedes the other kind of event. The basic idea of ECA
is to count how many times the two kinds of events coincide within
a given window of interest, and to assess whether this number is
statistically significant under an independence assumption.

Definition

Let A = (a1 , ..., a𝑇) and B = (b1 , ..., b𝑇) be two event series of
length 𝑇 with a fixed number of events ∑

𝑡 a𝑡 = 𝑁A and ∑
𝑡 b𝑡 = 𝑁B.

Furthermore, let Δ ∈ ℕ0 be the user-defined size of the window
of interest. ECA measures the extent to which B events precede
A events within the window of interest. We thus refer to A as
the lagging and B the leading event series. ECA considers two
possibilities to measure this extent: trigger coincidences and
precursor coincidences. A trigger coincidence occurs whenever a
B event triggers an A event within the window of interest, whereas
a precursor coincidence occurs whenever an A event is preceded by
a B event within the window of interest. In the special case Δ = 0,
the two concepts are identical. The two types of coincidences are
illustrated in Figure 2.2 with Δ = 4. In the example, there are
three trigger coincidences and four precursor coincidences. A large
number of trigger or precursor coincidences indicates a violation of
an independence assumption that is yet to be specified, and—due
to the temporal ordering—a possible causal link from B to A. The
opposite direction can be analyzed by exchanging the labels.
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Figure 2.2: Trigger coincidences and
precursor coincidences for two event
series A and B, with a window of
interest of size Δ = 4.

trigger
precursor

B

A

number of trigger coincidences

number of precursor coincidences

coincidence rates

Formally, the number of trigger coincidences is defined as

ktr = kΔ
tr(B,A) :=

𝑇−Δ∑
𝑡=1

b𝑡 ·
(

max
𝛿=0,...,Δ

a𝑡+𝛿
)

(2.4)

and the number of precursor coincidences as

kpre = kΔ
pre(B,A) :=

𝑇∑
𝑡=Δ+1

a𝑡 ·
(

max
𝛿=0,...,Δ

b𝑡−𝛿
)
. (2.5)

The order of the function arguments B and A corresponds to the
temporal ordering that is analyzed (and thus the potential causal
direction). We omit the parameter Δ and the function arguments
whenever they are clear from the context. The corresponding coin-
cidence rates are given by normalizing the numbers of coincidences
by the number of B events and A events, i.e.,

rtr = rΔtr(B,A) := kΔ
tr(B,A)/𝑁B (2.6)

and

rpre = rΔpre(B,A) := kΔ
pre(B,A)/𝑁A. (2.7)

The coincidence rates serve as measures for the association of the
two event series. In the example from Figure 2.2, we have observed
rates 𝑟tr = 1 and 𝑟pre = 2

3 . A high trigger coincidence rate indicates
that a large fraction of B events is followed by an A event. In other
words, B events systematically trigger A events. A high precursor
coincidence rate indicates that a large fraction of A events is preceded
by a B event, i.e., the occurrence of A events can be explained to a
large degree by B events. The two measures are complementary
and should be selected based on the research question.

Null distribution

The null hypothesis in ECA is that the event series A and B are
independent processes; the alternative hypothesis is that B events
systematically trigger or precede A events—depending on the
research question under study. All quantities defined above are
statistics computed from the event series A and B and thus them-
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or a Poisson process, the continuous-
time analogue of a Bernoulli process

selves random variables with probability distributions induced
by A and B. To assess whether an observed number of trigger
coincidences or precursor coincidences is statistically significant
under the null hypothesis, we must obtain the null distributions
of these numbers, i.e., their probability distributions under the
assumption that the null hypothesis is true.

We focus on the null distribution of the number of trigger coinci-
dences. For this purpose, we introduce the helper variables

a∗𝑡 := max
𝛿=0,...,Δ

a𝑡+𝛿 (2.8)

for all 𝑡 = 1, ..., 𝑇 − Δ that indicate whether there is an A event in
the window 𝑡 , ..., 𝑡 + Δ. The helper variables are binary random
variables and can thus be viewed as Bernoulli trials with a marginal
success probability induced by the distribution of A. The helper
variables allow rewriting Equation 2.4 as

ktr =
𝑇−Δ∑
𝑡=1

b𝑡 · a∗𝑡 =
∑
𝑡:b𝑡=1

a∗𝑡 , (2.9)

which reveals that the number of trigger coincidences is a sum of
𝑁B Bernoulli trials, where each summand is associated with an
event occurrence in B. Sums over fixed numbers of independent and
identically distributed Bernoulli trials follow binomial distributions.
In general, however, two helper variables a∗𝑡 and a∗𝑡′ with 𝑡 ≠ 𝑡′

are neither identically distributed nor independent. Additional
assumptions on the distribution of the event series A are required
to derive the null distribution of ktr analytically.

To date, the only scenario that has been treated analytically in the
literature is the case where A is an iid Bernoulli process

a𝑡
iid∼ Bernoulli(𝜋a), (2.10)

with success probability Pr(a𝑡 = 1) = 𝜋a for all 𝑡. In this case, the
helper variables a∗𝑡 are themselves identically distributed Bernoulli
trials, with marginal success probability

𝜋a∗ := Pr(a∗𝑡 = 1)
= 1 − Pr(a∗𝑡 = 0)
= 1 − Pr(a𝑡 = 0, ..., a𝑡+Δ = 0)
= 1 −

∏
𝛿=0,...,Δ

Pr(a𝑡+𝛿 = 0)

= 1 − (1 − 𝜋a)Δ+1. (2.11)

Furthermore, any two helper variables a∗𝑡 and a∗𝑡′ are independent
if the associated windows are non-overlapping, i.e., if |𝑡 − 𝑡′ | > Δ.
Therefore, under the additional assumption that the events in B
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If B events are not strictly separated
by more than Δ time steps, this null
distribution still approximates the
true null distribution as long as the
probability to have two B events
close to each other is very small.

𝑝-value

Alternatively, we can estimate �̂�a∗

from the observations of the helper
variables 𝑎∗

𝑡
using its ML estimator.

are separated by more than Δ time steps, so that their respective
windows of interest are non-overlapping, the null distribution of
ktr for a fixed number of B events is the binomial

ktr ∼ Binomial(𝑁B ,𝜋a∗). (2.12)

The derivation of the null distribution for the number of precursor
coincidences kpre given a fixed number of A events is completely
analogue, when assuming that B is also an iid Bernoulli process.

No such analytical derivations of the null distributions exist for
event series other than iid Bernoulli processes (or in fact, point
processes that are not Poisson processes). In any other case, Monte
Carlo simulations are required to approximate the distributions,
e.g., using one of the methods described in Donges et al. [DSS+16].

Statistical test procedure

In ECA, the number of trigger coincidences kΔ
tr(B,A) is used as

a test statistic to decide between the null hypothesis that A and
B are independent processes, and the alternative hypothesis of
a trigger relationship from B to A. If that number is unusually
large, the null hypothesis is rejected in favor of the alternative
hypothesis. Formally, the 𝑝-value for an observed number of
trigger coincidences 𝑘tr is defined as the probability of obtaining a
test statistic value at least as large as the observed one:

𝑝 := Pr(ktr ≥ 𝑘tr). (2.13)

The null hypothesis is rejected at the desired significance level 𝛼 if
𝑝 < 𝛼. In the scenario discussed above, where A is an iid Bernoulli
process and the 𝑁B event occurrences in B are well separated,
the 𝑝-value can be obtained directly from the probability mass
function of the binomial distribution from Equation 2.12:

𝑝 =

𝑁B∑
𝑘=𝑘tr

Binomial(𝑘;𝑁B ,𝜋a∗). (2.14)

To apply this test in practice, we first estimate the success probability
of the Bernoulli process A, e.g., with the maximum likelihood
(ML) estimator �̂�a := 𝑁A/𝑇. We then use the plug-in principle
and estimate the success probability from Equation 2.11 for the
binomial distribution as

�̂�a∗ := 1 − (1 − �̂�a)Δ+1. (2.15)

A test procedure based on the number of precursor coincidences
can be obtained analogously.



2.2 Methodology 35

threshold

threshold
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Figure 2.3: Threshold exceedance
series (bars) for time series with and
without serial dependencies (lines).

peak

threshold exceedance series

2.2.2 Peak coincidences

We now apply the framework of ECA described above to implement
a test for event impacts in the maximum statistic as defined in
Equation 2.1. For this purpose, we define a discretized notion of
peak in the time series as an exceedance of a large threshold 𝜏 ∈ ℝ.
The threshold exceedance series is the event series obtained by
applying the threshold at every time step:

A𝜏(X) := (1x1>𝜏 , ..., 1x𝑇>𝜏) (2.16)

The indicator function 1𝐶 is 1 if and only if the condition 𝐶 is
true, and 0 otherwise. The threshold exceedance series retains only
information on the timing of the peaks, and disregards all other
distributional characteristics of the time series. Figure 2.3 shows
two example time series with their threshold exceedance series.

In the following, we show that when applying ECA to test for a
trigger relationship between the event series and the threshold
exceedance series, we implement a test for event impacts in the
maximum statistic. Figure 2.3 illustrates two challenges that need
to be addressed in this context: serial dependencies and threshold
selection. Serial dependencies in the time series lead to clustering
of events in the threshold exceedance series, so that the analytical
results from Section 2.2.1 for Bernoulli processes cannot be applied.
Furthermore, the choice of threshold has a strong impact on the
results of the analysis, but is often not straightforward. In fact,
the magnitude of the peak may vary from event to event: a full
picture of the association between events and peaks can only be
obtained when considering exceedances at multiple thresholds.
We address the first challenge below by deriving a novel analytical
null distribution for the number of trigger coincidences when the
lagging event series is a threshold exceedance series. We address
the second challenge in Section 2.2.3.
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number of trigger coincidences

trigger coincidence rate

Observe that our null hypothesis
is more specific than the null hy-
pothesis of independent processes
employed in standard ECA.

Definition

We obtain the number of trigger coincidences for a leading event
series E and peaks in a lagging time series X by substituting the
threshold exceedance series A𝜏(X) into Equation 2.4:

ktr = kΔ,𝜏
tr (E, X) := kΔ

tr(E,A𝜏(X))

=

𝑇−Δ∑
𝑡=1

e𝑡 ·
(

max
𝛿=0,...,Δ

1x𝑡+𝛿>𝜏

)
. (2.17)

The trigger coincidence rate is obtained as before by normalizing
the number of trigger coincidences by𝑁E. It yields an interpretable
measure of association between event occurrences and peaks in
the time series. The number of precursor coincidences and the
precursor coincidence rate are defined analogously. However, the
derivations for the null distribution below are only valid for trigger
coincidences, and a different strategy (and null hypothesis) must
be applied for precursor coincidences.

Null distribution

We derive the distribution of the number of trigger coincidences ktr
under the assumption that the null hypothesis 𝐻0 from Equation
2.2 holds, i.e., that there are no event impacts in the maximum
statistic. Same as before, we introduce binary helper variables

a∗𝑡 := max
𝛿=0,...,Δ

1x𝑡+𝛿>𝜏 (2.18)

for all 𝑡 = 1, ..., 𝑇−Δ that now indicate whether there is a threshold
exceedance in X in the window of interest 𝑡 , ..., 𝑡 +Δ. These helper
variables are Bernoulli trials with a success probability induced
by X. Our key observation that enables an analytical derivation
of the null distribution of ktr is that we can swap the order of the
max-operator and the indicator function in the helper variables,

a∗𝑡 = 1(max𝛿=0,...,Δ x𝑡+𝛿)>𝜏. (2.19)

This simple trick reveals that the marginal success probability
of the binary helper variables can be obtained directly from the
marginal distribution of the maximum statistic:
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Extremal Types Theorem

Generalized Extreme Value

Limited long-range dependencies in
the time series mean that distant ob-
servations are approximately inde-
pendent, e.g., Pr(x𝑡 ≤ 𝜏∧ x𝑡′ ≤ 𝜏) ≈
Pr(x𝑡 ≤ 𝜏) ·Pr(x𝑡′ ≤ 𝜏) if |𝑡 − 𝑡′ | > 𝐿

for some large 𝐿.

𝜋a∗ := Pr(a∗𝑡 = 1)

= Pr
(

max
𝛿=0,...,Δ

1x𝑡+𝛿>𝜏 = 1
)

= Pr
(
1(max𝛿=0,...,Δ x𝑡+𝛿)>𝜏 = 1

)
= Pr

(
max

𝛿=0,...,Δ
x𝑡+𝛿 > 𝜏

)
= 1 − Pr

(
max

𝛿=0,...,Δ
x𝑡+𝛿 ≤ 𝜏

)
(2.20)

Probability distributions of maxima as in Equation 2.20 are studied
in Extreme Value Theory (EVT). In fact, a central result from
EVT is the Extremal Types Theorem (ETT), which states that the
distribution of the maximum of many random variables approaches
the Generalized Extreme Value (GEV) distribution. The most basic
formulation of the ETT is for iid random variables:

Theorem 2.2.1 (ETT, Theorem 3.1.1 of Coles [Col01])

Let x1 , ..., x𝑛
iid∼𝐹 and z𝑛 = max𝑖=1,...,𝑛 x𝑖 . If there exist constants 𝑎𝑛 > 0

and 𝑏𝑛 for 𝑛 = 1, 2, ... such that

Pr
(
z𝑛 − 𝑏𝑛
𝑎𝑛

≤ 𝑧

)
−→ 𝐺(𝑧;𝜽) as 𝑛 −→ ∞

for a non-degenerate distribution function 𝐺 with parameter vector 𝜽,
then 𝐺 is a member of the GEV family

𝐺(𝑧;𝜽) = exp
{
−

[
1 + �

( 𝑧 − �

𝜎

)]− 1
�

}
,

defined on {𝑧 : 1 + �(𝑧 − �)/𝜎 > 0}, with parameters 𝜽 = (�, �, 𝜎)
such that −∞ < � < ∞, 𝜎 > 0 and −∞ < � < ∞.

The ETT also applies more generally to the maxima of stationary
time series, as long as they fulfill a regularity condition that
limits their long-range dependencies; see Coles [Col01, ch. 5.2] for
technical details. We state the following intermediate result:

Lemma 2.2.2 Let X be a stationary time series that fulfills the conditions
of the ETT such that Pr(max𝛿=0,...,Δ x𝑡+𝛿 ≤ 𝜏) ≈ 𝐺(𝜏;𝜽Δ). The helper
variables a∗𝑡 defined in Equation 2.18 are then identically Bernoulli
distributed with success probability approximated by

𝜋a∗ ≈ 1 − 𝐺(𝜏;𝜽Δ). (2.21)

The larger Δ, the better the approximation by the GEV distribution.
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In other words, the theorem states
that if there are no event impacts
in the maximum statistic, the num-
ber of trigger coincidences follows
a binomial distribution that can be
estimated using the ETT.

Proof. This is a direct consequence of Equation 2.20 and the ETT.
The normalizing constants from the ETT disappear in the GEV
parameter vector 𝜽Δ that depends on X and Δ.

The regularity conditions of the ETT for stationary time series
enforce limited long-range dependencies within X only. To obtain
the distribution of ktr, we need an additional regularity condition
that limits long-range dependencies in the joint process (E, X); more
precisely, we need to limit the long-range dependencies between E
and peaks in X. The intuition is that if events trigger peaks in the
time series, the peak should appear within the window of interest
just after an event occurrence—not much later. In other words,
the probability of having a peak within the window 𝑡 , ..., 𝑡 + Δ

should be largely unaffected by knowledge of an event occurrence
at some time point 𝑡′ ≪ 𝑡. We formalize this regularity condition
via approximate independence of the helper variables a∗𝑡 :

We require that there exists some 𝐿 such that for every subset of
time points {𝑡1 , ..., 𝑡𝑁 } with |𝑡𝑖 − 𝑡 𝑗 | > 𝐿 for all 𝑖 ≠ 𝑗, we have

Pr
(∧

𝑖

a∗𝑡𝑖 = 1 |
∧
𝑖

e𝑡𝑖 = 1
)
≈

∏
𝑖

Pr(a∗𝑡𝑖 = 1 | e𝑡𝑖 = 1). (2.22)

If this is the case, a selection of helper variables associated with
event occurrences can be viewed as approximately independent,
as long as the event occurrences are separated by enough time
steps. The key result of this section is the following:

Theorem 2.2.3 Let X be a stationary time series that fulfills the conditions
of the ETT. Let E be an event series such that the additional regularity
condition of Equation 2.22 is fulfilled for some 𝐿. Furthermore, assume
that the 𝑁E events in E are separated by more than 𝐿 time steps.

Under𝐻0 from Equation 2.2, the null distribution of the number of trigger
coincidences from Equation 2.17 is given by the binomial distribution

kΔ,𝜏
tr (E, X) ∼ Binomial(𝑁E ,𝜋a∗), (2.23)

where 𝜋a∗ is approximated by Equation 2.21.

Proof. The number of trigger coincidences is a sum of 𝑁E Bernoulli
trials, each associated with an event occurrence:

ktr =
𝑇−Δ∑
𝑡=1

e𝑡 · a∗𝑡 =
∑
𝑡:e𝑡=1

a∗𝑡 . (2.24)

With the regularity condition from Equation 2.22 and sparsity
of E, these Bernoulli trials are approximately independent and
identically distributed with success probability Pr(a∗𝑡 = 1 | e𝑡 = 1).
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Alternatively, we could estimate �̂�a∗

directly from the observations of
the helper variables 𝑎∗

𝑡
using the

Bernoulli ML estimator.

We can therefore model their sum by a binomial distribution with
𝑁E trials and the given success probability. Under𝐻0, we have that
Pr(a∗𝑡 = 1 | e𝑡 = 1) = Pr(a∗𝑡 = 1) = 𝜋a∗ , which can be approximated
by Equation 2.21 according to Lemma 2.2.2.

We stress that these novel analytical results are valid in the presence
of serial dependencies in the time series, where the previous
analytical results from Section 2.2.1 for Bernoulli processes fail.
Our derivations establish an interesting connection between ECA,
EVT and the notion of event impacts from Definition 1.3.5.

Statistical test procedure

We adapt the ECA test procedure from Section 2.2.1 to test for event
impacts in the maximum statistic. We use kΔ,𝜏

tr (E, X) with fixed Δ

and 𝜏 as a test statistic to decide between 𝐻0 from Equation 2.2
and 𝐻1 from Equation 2.3. The only difference to standard ECA is
that we use the binomial model from Theorem 2.2.3 to compute
the 𝑝-value for an observed number of trigger coincidences 𝑘tr. If
we reject 𝐻0 in favor of 𝐻1, we have evidence for event impacts in
the wider sense of Definition 1.3.5.

To apply this test in practice, we use the ML estimates �̂�Δ for the
parameters of the GEV distribution 𝐺(·;𝜽Δ). They are obtained by
splitting the observed time series X into consecutive blocks of size
Δ+1, extracting the maximum from each block, and optimizing the
likelihood function on these block maxima. Unfortunately, there is
no analytical solution for the ML estimates of the GEV parameters,
so that numerical optimization techniques are required; see Coles
[Col01, ch. 3.3] for details. After estimating the GEV parameters,
we use the plug-in principle and estimate the success probability
𝜋a∗ for the binomial model from Theorem 2.2.3 by evaluating the
estimated GEV distribution at the threshold 𝜏, i.e.,

�̂�a∗ := 1 − 𝐺(𝜏, �̂�Δ). (2.25)

The common procedure in statistical hypothesis testing is to reject
the null hypothesis if the observed test statistic value—in our case,
the number of trigger coincidences—is so large that 𝑝 < 𝛼. It is
important to keep in mind that the 𝑝-value depends not only on the
null hypothesis, but on all other assumptions as well. The 𝑝-value
may be small if any of these assumptions is violated [GSR+16], so that,
in fact, any of these assumptions may potentially be rejected. Before
applying the test procedure from above to test for event impacts,
the assumptions of Theorem 2.2.3 should be verified carefully
for the data at hand—using existing statistical methodology, any
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trigger coincidence process

canonical

available domain knowledge, and, in the end, human judgment.
The key questions to answer beforehand are the following:

▶ Are the time series and the event series stationary?
▶ Are there no long-range dependencies within the time series?
▶ Is it reasonable to assume that the events have no long-range

influence on the time series? More precisely, is it reasonable
to assume that an event occurrence only influences the time
series within its own window of interest, and never within
the window of interest of a later event occurrence?

If the sequences are not stationary, the methodology described in
this chapter is not applicable in the first place. If there are long-
range dependencies in the time series, the ETT is not applicable, i.e.,
the GEV distribution does not approximate the marginal success
probabilities of the helper variables. At last, if events have long-
range influence on the time series, the binomial distribution is not
a suitable model for the number of trigger coincidences.

2.2.3 Multiple thresholds

The methodology proposed above depends on a threshold 𝜏. In
case a suitable threshold is unknown, or if a full picture of the
association with peaks of various magnitudes is required, thresh-
old exceedances at multiple thresholds have to be considered.
Exceedances of multiple thresholds are highly dependent: if an
observation exceeds any threshold 𝜏, it also exceeds all lower thresh-
olds. The numbers of trigger coincidences at multiple thresholds
are thus dependent as well. We now derive the joint null distribution
of the numbers of trigger coincidences at multiple thresholds.
This enables joint analyses of multiple threshold exceedances and
eliminates the need of selecting a single threshold.

Trigger coincidence processes

Let 𝝉 = (𝜏1 , ..., 𝜏𝑀) be a sequence of increasing thresholds, i.e.,
𝜏1 < ... < 𝜏𝑀 . The trigger coincidence process

ktr = kΔ,𝝉
tr (E, X) =

(
kΔ,𝜏1

tr (E, X), ..., kΔ,𝜏𝑀
tr (E, X)

)
(2.26)

is the corresponding sequence of the numbers of trigger coinci-
dences for all given thresholds 𝜏𝑚 . A trigger coincidence process
is always monotonically decreasing. The canonical trigger co-
incidence process is given by the specific threshold sequence
𝝉 = (𝜏1 , ..., 𝜏𝑇) = (x(1) , ..., x(𝑇)), where x(𝑡) denotes the 𝑡-th order
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Figure 2.4: Canonical trigger coincidence processes (bottom left) and corresponding QTR plots (bottom right) with Δ = 7
for a simulated time series and two event series (excerpts shown on top). We generated a time series of length 𝑇 = 4096
from iid exponential random variables, applied a moving average (MA) filter of order 8, standardized and subtracted the
minimum to obtain a time series X with serial dependencies. We then generated two event series E : an independent and a
dependent one. In the dependent case, we randomly sampled 𝑁 = 32 time steps 𝑡 from the time series where 𝑥𝑡 > 4, and
set 𝑒𝑡−4 = 1 for these 𝑡. In the independent case, we distributed 32 events completely at random.

statistic of the time series, i.e., x(1) < ... < x(𝑇). Trigger coinci-
dence processes for other sequences of thresholds approximate the
canonical trigger coincidence process.

In Figure 2.4 (bottom left), we visualize two canonical trigger
coincidence processes by plotting the threshold values against
the numbers of trigger coincidences; simulation details are in the
caption. At low thresholds, large numbers of trigger coincidences
are observed both for the dependent and the independent event
series. For higher thresholds, the numbers of trigger coincidences
for the dependent event series dramatically exceed the numbers of
the independent event series. By construction, all 32 events in the
dependent event series trigger an exceedance of the threshold 4;
see the marker (∗). The threshold 5 is exceeded after 13 out of 32
events from the dependent event series, see the marker (†). For the
independent series, the numbers are much lower in both cases.

Markov model

We consider the joint distribution of the trigger coincidence process
ktr = (kΔ,𝜏1

tr , ..., kΔ,𝜏𝑀
tr ). The product rule yields

Pr(ktr) = Pr(kΔ,𝜏1
tr ) ·

𝑀∏
𝑚=2

Pr
(
kΔ,𝜏𝑚

tr | kΔ,𝜏1
tr , ..., kΔ,𝜏𝑚−1

tr

)
. (2.27)
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Alternatively, the conditional suc-
cess probability of the helper vari-
ables could be approximated with
the generalized Pareto distribu-
tion by employing a peaks-over-
threshold perspective [Col01].

We have derived the marginal distribution Pr(kΔ,𝜏
tr ) under the null

hypothesis 𝐻0 in Theorem 2.2.3 and now focus on the conditional
distributions Pr(kΔ,𝜏𝑚

tr | kΔ,𝜏1
tr , ..., kΔ,𝜏𝑚−1

tr ).

Suppose there is an exceedance of the threshold 𝜏′ in X within the
window of interest 𝑡 , ..., 𝑡 + Δ. Using the helper variables from
Equation 2.18, we write this condition as a∗𝑡(𝜏′) = 1, where we
highlight in the notation that the helper variables are functions
of the threshold. The probability that there is an exceedance of a
threshold 𝜏 > 𝜏′ in the same window of interest is given by

Pr(a∗𝑡(𝜏) = 1 | a∗𝑡(𝜏′) = 1) =
Pr(a∗𝑡(𝜏) = 1)
Pr(a∗𝑡(𝜏′) = 1) (2.28)

≈ 1 − 𝐺(𝜏;𝜽Δ)
1 − 𝐺(𝜏′;𝜽Δ)

, (2.29)

where we use Lemma 2.2.2 for the approximation. Equation 2.29
is therefore valid whenever the conditions of the lemma are met.
Observations in the time series that do not exceed the threshold 𝜏′

cannot exceed the higher threshold 𝜏, so that

Pr(a∗𝑡(𝜏) = 1 | a∗𝑡(𝜏′) = 0) = 0 (2.30)

With these two results we can specify the conditional distribution
for the number of trigger coincidences at threshold 𝜏, given the
number of coincidences at threshold 𝜏′:

Theorem 2.2.4 Let X be a stationary time series that fulfills the conditions
of the ETT. Let E be an event series such that the additional regularity
condition of Equation 2.22 is fulfilled for some 𝐿 for two thresholds 𝜏
and 𝜏′ with 𝜏′ < 𝜏. Furthermore, assume that the 𝑁E events in E are
separated by more than 𝐿 time steps.

Under 𝐻0 from Equation 2.2, the conditional null distribution of the
number of trigger coincidences at threshold 𝜏, given the number of
coincidences 𝑘′ at threshold 𝜏′, follows the binomial distribution

kΔ,𝜏
tr (E, X) | kΔ,𝜏′

tr (E, X) = 𝑘′ ∼ Binomial(𝑘′,𝜋), (2.31)

where 𝜋 is approximated by Equation 2.29.

Proof. With the regularity condition from Equation 2.22 and spar-
sity of E, we can model the conditional number of trigger coin-
cidences by a binomial with 𝑘′ trials and success probabilities
Pr(a∗𝑡(𝜏) = 1 | a∗𝑡(𝜏′) = 1, e𝑡 = 1). Under 𝐻0, we have

Pr(a∗𝑡(𝜏) = 1 | a∗𝑡(𝜏′) = 1, e𝑡 = 1)
= Pr(a∗𝑡(𝜏) = 1 | a∗𝑡(𝜏′) = 1) =: 𝜋,

(2.32)

which is approximated by Equation 2.29.
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multiple hypothesis testing

multiple threshold test

For three thresholds 𝜏 > 𝜏′ > 𝜏′′, the number of trigger coinci-
dences at threshold 𝜏 is conditionally independent of the number
at threshold 𝜏′′ given the number at threshold 𝜏′. Therefore, the
conditional distributions from Equation 2.27 can be simplified to a
first-order Markov structure

Pr(kΔ,𝜏𝑚
tr | kΔ,𝜏1

tr , ..., kΔ,𝜏𝑚−1
tr ) = Pr(kΔ,𝜏𝑚

tr | kΔ,𝜏𝑚−1
tr ). (2.33)

As a final result, we have that the joint distribution Pr(ktr = 𝒌tr)
of the trigger coincidence process for a sequence of thresholds
𝝉 under the null hypothesis 𝐻0 is fully described by Theorem
2.2.3 for the smallest threshold and Theorem 2.2.4 for all larger
thresholds, when the number of events in E is fixed to 𝑁E.

Statistical test procedures

With our results from above and from Section 2.2.2, we can now
devise two additional procedures to test for event impacts in the
maximum statistic. These test procedures take a more holistic
perspective on the association of event occurrences and peaks in
the time series, in that they consider peaks over multiple thresholds
instead of a single threshold only:

1. We can employ our test for pointwise exceedances of individ-
ual thresholds from Section 2.2.2 multiple times at all given
thresholds and adjust the resulting 𝑝-values using standard
methods for multiple hypothesis testing [DL07]. A poten-
tial shortcoming of this procedure is that the dependency
structure of trigger coincidence processes is ignored.

2. We can compute the likelihood of the observed trigger coin-
cidence process Pr(ktr = 𝒌tr) with the distributions derived
above and reject the null hypothesis if the whole process is
unusually unlikely under the null hypothesis, in the sense
specified below. This approach takes the full dependency
structure into account, but requires Monte Carlo simulations.
We refer to it as the multiple threshold test.

For the second approach, we observe that the trigger coincidence
process is a high-dimensional discrete random variable, where
every single realization—even the mode of the distribution—has
a very small likelihood. We have to assess whether the observed
likelihood is unusually small with respect to the distribution of
the likelihood values under the null hypothesis, i.e., we treat the
likelihood as a random variable. For numerical reasons, we work
with the negative log-likelihood

s(ktr) = − log Pr(ktr) (2.34)
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quantile-trigger rate (QTR) plots

instead of the likelihood. Formally, we use s as our test statistic
in the multiple threshold test and reject the null hypothesis 𝐻0 at
significance level 𝛼 if the 𝑝-value Pr(s ≥ 𝑠) < 𝛼, where 𝑠 is the ob-
served value. We use Monte Carlo simulations to approximate this
𝑝-value. For this purpose, we generate 𝑅 independent event series
E′ by randomly permuting the observed E . For each independent
event series, we determine the test statistic value 𝑠′ and compute
the Monte Carlo 𝑝-value [DH97] via �̂� =

1+|{𝑠′ |𝑠′≥𝑠}|
𝑅+1 .

2.2.4 Quantile-trigger rate plots

We conclude our methodological contributions by discussing
means to visualize the association between event occurrences and
peaks in the time series. Plots of trigger coincidence processes as in
Figure 2.4 (bottom left) should help in visually assessing whether
events in E systematically trigger peaks of various magnitudes in a
time series X or not. However, the scales of the axes depend on the
range of values in X and the number of events 𝑁E, which makes it
difficult to visually recognize patterns. Furthermore, the absolute
threshold value is not informative about the actual extremeness of
a peak with respect to the bulk of the data. Therefore, we propose
quantile-trigger rate (QTR) plots as a standardized visualization of
trigger coincidence processes with normalized axes. In a QTR plot,
the horizontal axis is normalized by using empirical 𝑝-quantiles
from X instead of the absolute thresholds 𝜏𝑚 , while the vertical
axis is normalized by using the trigger coincidence rate rtr instead
of the absolute number of trigger coincidences ktr.

The QTR plot for the simulated example from above is shown in
Figure 2.4 (bottom right). The most striking difference is that now
the dependent curve appears more extreme, since the thresholds
larger than 4 correspond to high empirical 𝑝-quantiles. Intuitively,
the closer an observed trigger coincidence process to the top-right
corner of the QTR plot, the more events coincide with threshold
exceedances, at more extreme levels.

However, QTR plots have to be interpreted with care. The shape
of a trigger coincidence process for an independent pair of event
series and time series in a QTR plot depends on the statistical
properties of the input data. For example, if X is an iid time series
and E an iid Bernoulli process, the fraction of events that coincide
with an exceedance of the empirical 𝑝-quantile of X with Δ = 0
is exactly 1 − 𝑝, and the trigger coincidence process is a straight
line from (0, 1) to (1, 0) in the QTR plot. Figure 2.5 illustrates the
impact of serial dependencies in X and increasing Δ on the shape
of the trigger coincidence process under independence in a QTR
plot. With increasing Δ, there are more trigger coincidences under
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Figure 2.5: Expected QTR plots for three time series with different levels of serial dependencies (MA orders 0, 32, 128) and
independent event series. For every MA order, we simulate a single time series X of length 𝑇 = 4096 from the exponential
moving average model described in Figure 2.4, and select 50 thresholds at equally spaced 𝑝-quantiles between 0 and 1. For
every threshold 𝜏 and every Δ ∈ {0, 1, 2, 4, 8, 16, 32, 64}, we estimate the expected trigger coincidence rate 𝑟tr = 𝑘tr/𝑁 for
an independent event series by simulating 100 independent event series E with 𝑁 = 32 events and averaging the trigger
coicidence rates over the 100 runs. For large Δ and 𝜏, this expectation can be approximated by the expected value of the
GEV-based binomial distribution from Theorem 2.2.3.

independence, and the lines in the QTR plot move towards the top-
right corner of the plot. This effect is strongest for iid time series,
but also occurs for time series with serial dependencies. Thus, a
curve that bends towards the top-right corner of the QTR plot is
necessary, but not sufficient to conclude a trigger relationship. We
need one of the tests from Section 2.2.3 to assess whether the curve
in a QTR plot is, in fact, unusual under the null hypothesis.

Given the intricacies of interpreting QTR plots, we suggest to use
them primarily to put an observed curve into context by comparing
it to the expected curve under the null hypothesis. An interesting
direction for future research would be to make the curves in
QTR plots comparable across different pairs of event series and
time series by making them invariant to specific properties of the
data. One possible way to achieve this is by plotting the ratios or
differences between the observed trigger coincidence rates and the
rates under independence, with suitable rescaling.

2.3 Experiments

The experimental part of this chapter is twofold. First, we validate
our findings from above with Monte Carlo simulations. Second,
we apply our methodology to a real-world problem, where we
study the association between an event series of Islamist terrorist
attacks and a time series that reflects hate speech on Twitter.
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2.3.1 Simulations

Quality of the GEV-based binomial distribution

The central result from Section 2.2.2 is Theorem 2.2.3, which states
that, under some regularity conditions, the null hypothesis𝐻0 from
Equation 2.2 implies that the number of trigger coincidences for
a single threshold approximately follows a binomial distribution
with success probability obtained from the GEV distribution. This
approximate result is useful specifically for the case of time series
with serial dependencies, where the Bernoulli-based null distribu-
tion from standard ECA cannot be applied. We now demonstrate
that the Bernoulli-based null distribution indeed fails to describe
the empirically observed numbers of trigger coincidences for time
series with serial dependencies, while our GEV-based null distri-
bution accurately describes the observed data.

For this purpose, we simulate three time series with MA orders
0 (iid), 32 and 64 from the exponential time series model de-
scribed earlier in Figure 2.4. For every time series, we simulate
1,000 independent pairs of event series with 𝑁E = 32 events, and
record the numbers of trigger coincidences at the three thresh-
olds 𝜏 ∈ {3, 4, 5} with Δ = 7. For every time series and choice of
threshold, we compare the empirically obtained (Monte Carlo)
null distribution of the number of trigger coincidences with the
two analytical null distributions. The three cumulative distribution
functions are visualized in Figure 2.6 for every threshold and MA
order. The visualizations clearly show that our GEV-based estimate
closely follows the empirical distribution in all runs, while the
Bernoulli-based estimate is only correct for iid time series. The
results also demonstrate that—in these examples—a value of Δ = 7
is large enough for the GEV approximation to be appropriate.
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Figure 2.6: Cumulative distribution functions for the number of trigger coincidences under the null hypothesis 𝐻0,
obtained empirically by Monte Carlo simulations (MC), and analytically with the Bernoulli-based binomial distribution
(Ber) and the GEV-based binomial distribution (GEV).
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Figure 2.7: Simulated trigger coin-
cidence processes under indepen-
dence, colorized by the test statistic
value, along with the processes that
attain the theoretical minimum and
maximum test statistic value.
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Behavior of the multiple threshold test statistic

The central result from Section 2.2.3 is the Markov model for trigger
coincidence processes based on Theorem 2.2.3 and Theorem 2.2.4.
The Markov model yields the likelihood-based test statistic for our
multiple threshold test. The underlying assumption is that larger
values of the test statistic correspond with visually more “extreme”
trigger coincidence processes in a QTR plot, i.e., curves that bend
towards the top-right corner of the QTR plot.

To confirm this assumption, we illustrate the test statistic values for
a single simulated time series (MA order 8) and 1,000 independent
event series (with 32 events). We use Δ = 7 and 32 thresholds
at equally spaced 𝑝-quantiles between 0.75 and 1 from the time
series. All resulting trigger coincidence processes are plotted in
Figure 2.7, colorized by their test statistic values. We also plot the
trigger coincidence process with the highest (lowest) test statistic
value that is theoretically possible; we obtain them by maximizing
(minimizing) the test statistic over all possible processes with a
dynamic programming approach. At last, we show the marginally
expected trigger coincidence process at every threshold 𝜏𝑚 , i.e.,
the value of E[kΔ,𝜏𝑚

tr ] obtained with the binomial distribution from
Theorem 2.2.3. All simulated trigger coincidence processes are
close to the marginally expected sequence; the more they bend
towards the top-right corner of the plot, the higher the test statistic
value. The trigger coincidence process with the highest possible test
statistic value closely traces the top-right corner. This corresponds
to our intuitive notion of the most unusual outcome, where all
events trigger exceedances of the highest quantile.
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2.3.2 Hate speech on Twitter

A recent publication by the United Nations Educational, Scientific
and Cultural Organization (UNESCO) points out that the “char-
acter of hate speech online and its relation to offline speech and
action are poorly understood” and that the “causes underlying
the phenomenon and the dynamics through which certain types
of content emerge, diffuse and lead—or not—to actual discrimi-
nation, hostility or violence” should be investigated more deeply
[GGA+15]. The methodology proposed in this chapter enables such
investigations; in particular, it enables analyses of the systematic
relation between rare offline events and online hate speech.

Following recent studies by Burnap et al. [BWS+14] and Olteanu
et al. [OCB+18], we analyze whether Islamist terrorist attacks sys-
tematically trigger bursts of hate speech and counter-hate speech
on Twitter. We operationalize these speech acts by tracking us-
age of the hashtags #stopislam (anti-Muslim hate speech) and
#notinmyname (Muslim counter-hate speech), as well as the Arabic
keyword kafir (jihadist hate speech against “non-believers”) over
a period of three years (2015–2017). We correlate usage of these
terms with severe terrorist incidents in Western Europe and North
America in the same time period. If bursts of hate speech—peaks
in the Twitter time series—coincide with terrorist attacks more
often than expected under the null hypothesis, there is evidence
for a systematic statistical relationship between the two.

Data

For a quantitative analysis of social media usage in reaction to
Islamist terrorist attacks we have to operationalize these terms. We
stress that our study design is not intended to provide definitive
answers, but rather as a proof-of-concept that demonstrates how
our statistical methodology can be applied to a research question
from the social sciences. The selection of events and the definitions
of hate speech and counter-hate speech from below can be criticized
in many ways with regard to implicit biases and assumptions.

Islamist terrorist attacks. We obtained a comprehensive list of
global terrorist attacks from the publicly available Global Terrorism
Database (GTD) [Nat18]. We filtered the GTD for attacks that
occurred in Western Europe and North America between January
2015 and December 2017, left at least 10 people wounded, and were
conducted by the so-called Islamic State of Iraq and the Levant (ISIL),
Al-Qaida in the Arabian Peninsula (AQAP), Jihadi-inspired extremists
or Muslim extremists, according to the GTD. The resulting 17 severe
Islamist terrorist attacks are shown in Table 2.1.
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Table 2.1: Severe Islamist terrorist at-
tacks in Western Europe and North
America.

Date City Date City

2015-01-07 Paris, France 2016-12-19 Berlin, Germany
2015-11-13 Paris, France 2017-03-22 London, UK
2015-12-02 San Bernardino, USA 2017-04-07 Stockholm, Sweden
2016-03-22 Brussels, Belgium 2017-05-22 Manchester, UK
2016-06-12 Orlando, USA 2017-06-03 London, UK
2016-07-14 Nice, France 2017-08-17 Barcelona, Spain
2016-07-24 Ansbach, Germany 2017-09-15 London, UK
2016-09-17 New York City, USA 2017-10-31 New York City, USA
2016-11-28 Columbus, USA

Social media response. We retrieved time series of the global
Twitter volume in the same time period (2015–2017) for the three
keywords #stopislam, #notinmyname and kafir (“non-believer”)
that represent hate speech and counter-hate speech:

▶ The hashtag #stopislam has been observed in anti-Muslim
hate speech before [MDA15; OCB+18] and has also received
some media attention [Dew16; Hem16]. Many posts that
contain the hashtag actually condemn its usage, so spikes in
the volume should not be seen as pure bursts of hate speech.
Yet, such condemnation is typically triggered by initial anti-
Muslim posts. Due to the mixed usage, the magnitude of a
spike is no indicator for the extent of online hate, only the
presence of a spike is informative.

▶ The phrase “not in my name” is used by members of a group
to express their disapproval of actions that are associated
with that group or (perceived or actual) representatives of the
group [ČB08; Tor06]. It was observed, for example, during
global protests against the 2003 war of the US-led coalition
against Iraq [Ben05], or more recently during protests sparked
by the murder of a Muslim boy by Hindu nationalists in India
2017 [Kri17]. Most importantly for the present study, Muslim
social media users have repeatedly used the hashtag after
Islamist terrorist attacks [Dav14]. Due to the generic nature of
the phrase, it cannot solely be viewed as Muslim counter-hate
speech. Nonetheless, online social media posts that contain
#notinmyname right after Islamist terrorist attacks are likely
to convey a Muslim counter-hate message.

▶ The Arabic word kafir translates to the English word “non-
believer.” It is used by Muslim fundamentalists against other
Muslims that do not adhere to the fundamentalist ideology
[Alv14], and against non-Muslims [BM12], in both cases to
justify their killing. The occurrence of the keyword kafir

within online social media posts was recently shown to be
a strong indicator for jihadist hate speech [DDV18]. We use
male, female and plural forms (kafir—kafirah—kuffar)
in Arabic script for the query.
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#stopislam

#notinmyname

kafir

2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 2018-01

Figure 2.8: Daily Twitter volume of the keywords analyzed in this study. The vertical lines indicate dates of severe Islamist
terrorist attacks in Western Europe and North America.

http://brandwatch.com/

We used the ForSight platform by Crimson Hexagon/Brandwatch
to retrieve daily time series of the global Twitter volume for our
keywords. Posts with the keyword RT were excluded to ignore
retweets. We preprocessed the original time series by taking the
logarithm to base 2 and subtracting the running mean over the
past 30 days to make them stationary. The global daily volume for
all queries after preprocessing is shown in Figure 2.8, along with
all Islamist terrorist attacks from Table 2.1.

Experimental setup

The data described above spans a total of 𝑇 = 1, 096 days with
𝑁E = 17 events. We choose a window of interest with Δ = 7
days to allow enough time for the news about the incidents to
spread globally. For every social media time series X𝑖 , we estimate
a GEV distribution 𝐺𝑖 by splitting X𝑖 into consecutive blocks of
size Δ + 1 and fitting the parameters of 𝐺𝑖 to the block maxima by
maximum likelihood estimation. We then select𝑀 = 32 thresholds
𝝉𝑖 = (𝜏𝑖 ,1 , ..., 𝜏𝑖 ,32) at equidistant 𝑝-quantiles between 0.75 and 1
from X𝑖 , and use the GEV distribution 𝐺𝑖 to obtain the parameters
of the binomial distributions from Theorem 2.2.3 and Theorem
2.2.4. We compute the observed trigger coincidence processes
between the terrorist attack event series E and all social media
time series X𝑖 , and obtain the respective test statistic values 𝑠𝑖 for
the multiple threshold test from our Markov model. To assess
statistical significance, we compute Monte Carlo 𝑝-values for every
time series with 𝑅 = 10,000 simulated independent event series.

http://brandwatch.com/
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Model checking

The results of our statistical analysis are only reliable if the under-
lying assumptions are met. Before discussing the results, we verify
that the GEV distributions used in our approach appropriately
describe the observed block maxima from the time series. For this
purpose, Figure 2.9 shows probability-probability plots (P-P plots)
and quantile-quantile plots (Q-Q plots) that enable visual com-
parisons of the estimated GEV distributions 𝐺𝑖 and the empirical
distributions of the block maxima of the time series X𝑖 . When the
model perfectly describes the observed data, all points in the plots
reside on the diagonal lines.

We observe that the GEV distribution appears to be an appropriate
model for the block maxima of all three time series. The goodness-
of-fit is best on the #stopislam time series, and slightly worse on
the other two time series. The Q-Q plot indicates that in all three
cases the GEV distribution slightly underestimates the values of
the highest quantiles. Note that we evaluate the GEV distributions
only at the threshold locations to obtain estimates for the binomial
success probabilities. The horizontal lines in the Q-Q plots show
these threshold locations. It turns out that the vast majority of the
thresholds lie within a region where the GEV distribution provides
an appropriate fit to the observed data.

Results

QTR plots for the time series and event series under study are
depicted in Figure 2.10, along with the Monte Carlo 𝑝-values
obtained from the multiple threshold test. The plots also show
the marginally expected trigger coincidence rates under the null
hypothesis, and the marginal 95% percentiles to additionally assess
pointwise exceedances of individual thresholds.

The analysis shows that Islamist terrorist attacks in Western Europe
and North America systematically trigger bursts of anti-Muslim
hate speech on Twitter (#stopislam, �̂� = 0.0317). 90% of Islamist
terrorist attacks triggered an exceedance of the 0.85-quantile, and
60% of Islamist terrorist attacks even triggered an exceedance of the
0.95-quantile. Our results confirm the findings of previous quanti-
tative studies [BWS+14; MDA15; OCB+18] with a novel statistical
methodology and a larger study period.

On the other hand, our analysis does not provide evidence for a
systematic association between Islamist terrorist attacks and peaks
in jihadist hate speech (kafir, �̂� = 0.2075) or Muslim counter-hate
speech (#notinmyname, �̂� = 0.3561) in the study period. We stress
that individual terrorist attacks may still have triggered such a
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Figure 2.9: P-P plots and Q-Q plots to assess the goodness-of-fit of the GEV distribution to block maxima of the respective
time series. The diagonal lines represent a perfect model fit. The right-most Q-Q plots are restricted to the empirical 0.1- to
0.9-quantiles, i. e., the central 80% of the observed data. The horizontal lines in the Q-Q plots indicate the locations of the
32 thresholds used for the test.
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Figure 2.10: QTR plots for severe
Islamist terrorist attacks and their
online social media response.
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social media response. Visual inspection of the data in Figure 2.8
suggests peaks in the hashtag #notinmyname for Islamist terrorist
attacks before July 2016. Hashtag usage is typically subject to
trends, so a systematic relationship can only be established for
hashtags that are used consistently throughout the study period.
The impact of an individual terrorist attack on the social media time
series can be assessed, e.g., with methods from Section 1.4.1.

Figure 2.10 shows that even for jihadist hate speech and Muslim
counter-hate speech, the observed numbers of trigger coincidences
fall above the pointwise 95% percentiles for some thresholds. Point-
wise tests at these specific thresholds would reject the null hypoth-
esis of independence at level 𝛼 = 0.05 on the basis of only a narrow
perspective on the total association. The multiple threshold test
thus decreases the dangers of data dredging at the cost of a lower
sensitivity. To validate the results from the multiple threshold test,
we computed all 𝑝-values for the pointwise tests at all thresholds
and used different adjustment methods that control the family-
wise error rate at level 𝛼 = 0.05: Bonferroni, single-step Šidák,
step-down Holm in its original variant and in the Šidák variant
[DL07]. For all multiple test adjustment methods, the results agree
with our multiple threshold test.

Sensitivity analysis

To assess the stability of the results, we further experimented
with different values of Δ = 4, ..., 16 (ceteris paribus). We found
that for Δ = 4, ..., 8, the results of all tests on all time series are
unchanged. For Δ = 9, ..., 14, our multiple threshold test fails to
reject the null hypothesis for the #stopislam time series, while
the multiple pointwise test procedures still reject. For Δ = 15, only
the Šidák procedures reject the null hypothesis on #stopislam,
while for Δ = 16 no test procedure rejects the null hypotheses
on any time series. Choosing a value of Δ that is longer than
necessary thus reduces the sensitivity of the tests. We also varied
the number of thresholds 𝑀 between 8 and 64 (ceteris paribus),
which did not change the outcome of any test. At last, we moved the
thresholds upwards to more extreme levels by choosing equidistant
𝑝-quantiles from the ranges 0.85 to 1 and 0.95 to 1, respectively
(ceteris paribus). The outcomes on the #stopislam and kafir time
series remain unchanged, while our multiple threshold test now
detects an additional trigger relationship for #notinmyname that is
not detected by the multiple pointwise test procedures. Overall,
the trigger relationship for #stopislam is very stable across all test
procedures with different parametrizations, whereas the results
on #notinmyname are inconclusive.
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2.4 Conclusions

In this chapter, we have proposed a statistical methodology to
study the association between event occurrences and peaks in a
time series. For this purpose, we have formalized the notion of event
impacts in the maximum statistic as a special case of event impacts in
the sense of Definition 1.3.5. We showed that a test for event impacts
in the maximum statistic can be implemented effectively within
the framework of event coincidence analysis (ECA) by Donges et al.
[DSS+16]. The major benefit of ECA is that it yields an interpretable
measure of association between event occurrences and peaks in
the time series: the trigger coincidence rate. We also proposed a
novel visualization of this association via quantile-trigger rate plots
(QTR plots). Technically, by using ECA, we avoid estimating the
event-conditional distribution of the maximum statistic, which
may be difficult in applications with few events. We validated our
results with a simulation study and demonstrated the utility of
our approach on a research question from the social sciences.

In our analytical derivations, we have used the extremal types
theorem (ETT) and thus established a novel link between ECA
and extreme value theory (EVT). We restricted our attention to
the number of trigger coincidences for a leading event series and
lagging peaks in a time series. For other research questions, one
might be interested in the number of precursor coincidences in
the same scenario, or in the reverse scenario with leading peaks
in the time series and a lagging event series, or the association
between peaks in two time series. We believe that EVT provides
many more useful results that potentially improve our theoretical
understanding of ECA applied on these problems. In particular,
the threshold excess models based on the generalized Pareto
distribution and the point process characterization of extremes
[Col01] may fill some gaps in the theory of ECA that currently
require practitioners to perform Monte Carlo simulations.

A potential downside of the approach described in this chapter is
that the focus on peaks in the time series may not be suitable for all
application scenarios. If we are interested in the association between
event occurrences and other features of the time series, we must
preprocess the time series with a function that transforms these
features into peaks. In the next chapter, we discuss an approach for
event impact analysis that does not require such transformations.
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In the previous chapter, we studied the association between event
occurrences and peaks in the time series. Here, we develop a
statistical test to detect event impacts in a more general setting.
This test is based on the observation that the joint independence
relation that defines event impacts in Definition 1.3.5 can be split
into multiple marginal independence relations. We propose to test
the marginal independence relations with pairwise two-sample
tests and combine the results with a multiple hypothesis testing
approach. Our algorithm is highly computationally efficient and
thus applicable to very long time series and event series. It requires
only minimal regularity conditions that limit long-range depen-
dencies similar to the regularity conditions seen in the previous
chapter. Moreover, with a suitable two-sample test at hand, it can
be applied to time series over arbitrary domains such as strings or
graphs. We perform a large-scale simulation study with different
types of event impacts to study the power and error rate of our
multiple two-sample testing approach. Furthermore, we apply our
test to analyze event impacts on household electricity meters in a
smart home environment, and to analyze the impact of earthquake
events on a Twitter time series.

3.1 Introduction

There are numerous ways in which a time series and an event
series can be statistically associated. Some associations are easy to
recognize by visual inspection of the data, others require advanced
statistical methods to be uncovered. Figure 3.1 shows example
pairs of event series and time series, where each pair is associated
in a different way. In the simplest case, events lead to temporary
changes of the mean of the time series, as illustrated in Figure
3.1 (first two rows). Every event occurrence induces the same
pattern in the time series. The box plots on the right summarize
the value distributions of the time series for 𝛿 = 0, ..., 15 time steps
after event occurrences. The box plots show that the means of
the distributions fluctuate for a few time steps and then stabilize.
However, events can have more subtle effects. In Figure 3.1 (third
row), events temporarily increase the variance of the time series—
as indicated by wider boxes and whiskers in the box plots. In Figure
3.1 (fourth row), events increase the risk of extreme observations
from the tails of the distribution—as indicated by a larger number
of outliers in the box plots.

https://doi.org/10.1137/1.9781611976236.2
https://doi.org/10.1137/1.9781611976236.2
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Such visual analyses are limited to univariate numeric time series.
If we consider multivariate numeric time series, or time series
of graphs or strings, it is unclear how to proceed visually, and
quantitative statistical methods are required.
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Figure 3.1: Different types of event impacts in a time series. The plots on the left show excerpts from the respective time
series and event series; vertical lines indicate event occurrences. The box plots on the right summarize the observed value
distributions at lags 𝛿 = 0, ..., 15 after event occurrences, i. e., all values 𝑥𝑡+𝛿 where 𝑒𝑡 = 1. The blue shading indicates lags
with event impacts by construction. The models used to generate these examples are described in Section 3.3.1.
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In Chapter 2, we argued that in many cases such event impacts can
be reduced to peaks by preprocessing the time series with a suit-
able feature transformation function. In this chapter, we develop
a more general test for event impacts that is directly applicable
on a large variety of time series without requiring a feature trans-
formation function. Formally, we test for event impacts by testing
independence of the marginal statistics of the time series within the
window of interest. In a nutshell, our algorithm tests whether the
conditional distributions represented by the box plots in Figure
3.1 are all identical or not—without being restricted to univariate
or even numeric time series. This is possible by leveraging recent
advancements in kernel-based two-sample testing [GBR+12] that
make our test applicable to time series from arbitrary domains
augmented with a kernel function, including multivariate numeric,
string or graph data, as in Figure 3.2.

𝑡 − 1 𝑡 𝑡 + 1

Figure 3.2: A time series of random
graphs [SMD+16] can be analyzed
with the approach developed in this
chapter using a suitable graph ker-
nel function [VSK+10].

With the focus on marginal independence, we restrict our attention
to associations that affect at least one of the random variables
within the window of interest marginally. Consequently, we lose the
ability to detect event impacts that exclusively affect the dependency
structure of the random variables within the window of interest.
For example, two random variables within the window might be
strongly correlated after an event occurrence, but uncorrelated
when there was no event. This type of event impact cannot be
detected by testing independence of the marginal statistics. In such
a case, preprocessing with a feature transformation function that
monitors the statistical associations of the random variables within
the window of interest will still be required.

In summary, we make the following contributions:

▶ We show that marginal independences are an indicator for
event impacts in the sense of Definition 1.3.5.

▶ We implement a simple and generic test for event impacts,
under mild assumptions on the time series, via multiple
pairwise two-sample tests of the conditional distributions at
different lags after event occurrences.

▶ We propose realistic models for event impacts to analyze the
performance of our test and two competing algorithms in a
large-scale simulation study.

▶ We apply our approach to study event impacts in two real-
world scenarios, including very long time series that could
not be studied effectively before.
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marginal statistics

two-sample testing

Two-sample tests based on specific
properties of the samples are often
more powerful for this specific prop-
erty than generic tests on the full
distribution, but—by design—fail to
reject the null hypothesis if other
properties of the samples diverge.

3.1.1 Problem statement

Let X = (x1 , ..., x𝑇) be a time series and E = (e1 , ..., e𝑇) be an event
series. We assume that X and E are jointly stationary and that the
event series is sparse, i.e., Pr(e𝑡 = 1) = 𝜖 for a very small 𝜖 > 0, so
that ∑𝑡 e𝑡 = 𝑁E ≪ 𝑇. On average, we have 𝐿 = 1−𝜖

𝜖 ≫ 0 time steps
between two event occurrences.

Our goal is to detect event impacts in the sense of Definition 1.3.5.
Same as in Chapter 2, we exploit Lemma 1.3.1 and focus on specific
properties of the time series by testing the association between
event occurrences and a statistic g(x𝑡 , ..., x𝑡+Δ). In this chapter, we
address the association between event occurrences and the time
series at each individual lag after an event occurrence. Formally, we
use the marginal statistics

g𝛿(x𝑡 , ..., x𝑡+Δ) := x𝑡+𝛿 (3.1)

for all 𝛿 ∈ {0, ...,Δ} and test the following hypotheses:

𝐻0 : ∀𝛿 ∈ {0, ...,Δ} x𝑡+𝛿 ⊥⊥ e𝑡 (3.2)
versus

𝐻1 : ∃𝛿 ∈ {0, ...,Δ} x𝑡+𝛿 ⊥̸⊥ e𝑡 (3.3)

If we have evidence to reject the null hypothesis 𝐻0 in favor of the
alternative hypothesis 𝐻1, we have evidence for event impacts in
the sense of Definition 1.3.5.

The pair of hypotheses from Equation 3.2 and Equation 3.3 can eas-
ily be generalized to time series over random vectors X = (x1 , ..., x𝑇)
or arbitrary random elements X = (ξ1 , ..., ξ𝑇) like random graphs
or random strings: The marginal statistics g𝛿 are always well-
defined, and, as we discuss below, there are simple and effective
ways to test their independence with two-sample tests.

3.1.2 Related work

Methodologically, our approach heavily relies on multiple two-
sample testing. In two-sample testing, the problem is to decide
whether two random samples come from the same probability
distribution, or from different distributions. Some two-sample
tests focus only on specific properties of the two samples. For
example, Student’s two-sample 𝑡-test [Stu08] and its variants [Hot31;
Wel47] compare their means, while 𝐹-tests compare their variances
[DS12]. In contrast, the Kolmogorov-Smirnov [Kol41; Was04] and
the Anderson-Darling [Dar57; Pet76] two-sample tests compare the
complete empirical distribution functions of univariate continuous
samples. For multivariate continuous samples, nonparametric
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nearest-neighbor tests have been proposed [Hen88; Sch86]. In the
case of categorical samples, a test of homogeneity based on the
𝜒2 distribution [DS12] can be used as a two-sample test. More
recent works focus on testing means of high-dimensional random
samples [CLX14; CQ10], testing random samples of graphs [GL18]
and employing classifiers for two-sample testing [LO17]. In the past
decade, kernel-based approaches to two-sample testing have been
studied extensively [GBR+12; GBR+06; GHF+09; GSS+12; ZBG13].
They are applicable for arbitrary domains with a suitable kernel
function, and have recently been combined with deep learning
approaches [KKK+20; LXL+20]. At last, Ramdas, Trillos, and Cuturi
[RTC17] provide an interesting unified perspective on several
nonparametric two-sample tests, including kernel-based tests and
the Kolmogorov-Smirnov test, via the Wasserstein distance.

3.2 Methodology

In the following, we provide a detailed exposition of the algorithm
that we propose to test for marginal event impacts, i.e., to decide
between𝐻0 from Equation 3.2 and𝐻1 from Equation 3.3. We begin
with a well-known, generic procedure for independence testing
and continue with the necessary background to test independence
of an event occurrence and multiple marginal statistics.

Marginal independence at a single lag. Independence of a mixed
pair of random variables can be characterized by equality of all
conditional cumulative distribution functions:

Theorem 3.2.1 (Theorem 15.11 of Wasserman [Was04]) Let x and k be
random variables, where x is continuous and k is discrete with outcomes
1, ..., 𝐾. We have that x ⊥⊥ k if and only if 𝐹x|k=1 = ... = 𝐹x|k=𝐾 .

For this reason, the individual independence relations between
an event occurrence e𝑡 and a marginal statistic x𝑡+𝛿 that appear
in the null hypothesis 𝐻0 from Equation 3.2 can be expressed
equivalently via equality of the two conditional cdfs at lag 𝛿,

x𝑡+𝛿 ⊥⊥ e𝑡 ⇔ 𝐹x𝑡+𝛿 |e𝑡=0 = 𝐹x𝑡+𝛿 |e𝑡=1. (3.4)

This observation can be translated into a statistical test that operates
on random samples from the two conditional cdfs at lag 𝛿: If
the statistical properties of the two random samples of 𝐹x𝑡+𝛿 |e𝑡=0
and 𝐹x𝑡+𝛿 |e𝑡=1 diverge significantly, the assumption that the two
conditionals at lag 𝛿 are identical must be rejected. Since the
marginal statistics are univariate, this test can be implemented
easily with any of the two-sample tests listed in Section 3.1.2.
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This observation justifies our visual
comparisons of the box plots from
Figure 3.1 to assess event impacts.

We observe that under the null hypothesis of marginal indepen-
dence at lag 𝛿, the conditional distributions from Equation 3.4 are
identical to the marginal distribution of the time series:

𝐹x𝑡+𝛿 |e𝑡=0 = 𝐹x𝑡+𝛿 = 𝐹x𝑡 (3.5)
𝐹x𝑡+𝛿 |e𝑡=1 = 𝐹x𝑡+𝛿 = 𝐹x𝑡 . (3.6)

The first equality in each equation holds due to marginal indepen-
dence, and the second equality in each equation holds due to the
stationarity assumption.

Marginal independence at multiple lags. The complete null
hypothesis 𝐻0 from Equation 3.2 is composed of Δ + 1 marginal
independence relations in the form of Equation 3.4, one for each
lag 𝛿 ∈ {0, ...,Δ} within the window of interest. In this work, we
propose to compare random samples across different lags. For this
purpose, we exploit that under the null hypothesis of marginal
independence at lags 𝛿 and 𝛿′, we have 𝐹x𝑡+𝛿 |e𝑡=1 = 𝐹x𝑡 = 𝐹x𝑡+𝛿′ |e𝑡=1.
The null hypothesis 𝐻0 from Equation 3.2 assumes marginal
independence at all lags within the window of interest. Therefore,

𝐻0 ⇒ 𝐹x𝑡 |e𝑡=1 = 𝐹x𝑡+1 |e𝑡=1 = ... = 𝐹x𝑡+Δ |e𝑡=1. (3.7)

As a result, we can test𝐻0 against𝐻1 by comparing random samples
from the conditional distributions at different lags using multiple
two-sample tests. If we reject 𝐻0 due to diverging conditionals, we
have evidence for event impacts in the sense of Definition 1.3.5.

It is important to note that the implication from Equation 3.7 does
not hold in reverse, i.e., the two statements are not equivalent. As
a counterexample, consider the case where an event has exactly
the same impact on all marginal statistics within the window of
interest. In this case, the null hypothesis 𝐻0 is violated, but the
conditional distributions from Equation 3.7 will be identical. For
this reason, the size of the window of interest used in the test
should be larger than the duration of any potential event impact.

The biggest challenge when comparing random samples from the
conditional distributions is sample construction. The reason is
that we do not have access to independent random samples from
the distributions as required for the two-sample tests. Instead,
we must extract observations from the time series, which are
potentially serially correlated or otherwise dependent. We discuss
this challenge in Section 3.2.2 below. The fewer random samples
we need for the tests, the better. However, the number of random
samples should not be confused with the size of each random
sample—the larger each random sample, the better for the tests.
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MEITEST

3.2.1 Multiple test procedure

An overview of our test procedure is given in Algorithm 1. We call
it MEITEST (Marginal Event Impact Test). This test is a modified
version of the EITEST (Event Information Test) algorithm proposed
in our previous work [SM20c] (Copyright © 2020 by SIAM). EITEST
was derived from causation entropy [SB14], while MEITEST is
derived here from event impact analysis in the sense of Definition
1.3.5. The difference between MEITEST and EITEST is the choice
of conditional distributions in the two-sample tests.

The input is an observed time series X = (𝑥1 , ..., 𝑥𝑇), an observed
event series E = (𝑒1 , ..., 𝑒𝑇) with 𝑁 =

∑
𝑒𝑡 events, and the parame-

ter Δ for the window of interest. The output of the algorithm is a
𝑝-value. If the 𝑝-value is smaller than the desired significance level
𝛼, we reject 𝐻0 in favor of 𝐻1. In line 3, random samples T𝛿 from
the conditional cdfs 𝐹x𝑡+𝛿 |e𝑡=1 are constructed for all lags 𝛿 within
the window of interest. In line 7, pairwise two-sample tests are
performed for all of these random samples, where the output of
each two-sample test is a 𝑝-value. In lines 11 and 12, the obtained
𝑝-values are adjusted for the multiple testing setting with Simes
adjustments [DBW+10] to correctly control Type I errors. Details
on sample construction and error control follow in Section 3.2.2
and Section 3.2.3.

The overall time complexity of the algorithm has the order

𝑂(𝑇 + Δ · 𝑁 + Δ2 · �(𝑁) + Δ logΔ), (3.8)

where �(𝑁) is the complexity of the underlying two-sample test.
The first term in Equation 3.8 is incurred by extracting the time
points of all 𝑁 event occurrences from the event series. The second
term comes from the construction of all Δ + 1 random samples of
size 𝑁 by accessing the time series at the respective lags after event
occurrences. The third term comes from the pairwise two-sample
tests between all lags. Here, �(·) is a function of 𝑁 since all random
samples T𝛿 contain (at most) 𝑁 observations. The last term is the
cost of sorting the 𝑝-values for Simes adjustments.

Typically, we choose Δ ≪ 𝑇 for the window of interest, and we
have 𝑁 ≪ 𝑇 due to the sparsity of the event series. The running
time of the algorithm is thus dominated by a term that is linear
in 𝑇, which makes MEITEST highly computationally efficient and
applicable for very long time series and event series.
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Algorithm 1: MEITEST
1 for 𝛿 = 0, ...,Δ do
2 T𝛿 := {𝑥𝑡+𝛿 | 𝑒𝑡 = 1} with potential sparsification ;
3 for 𝑖 = 0, ...,Δ − 1 do
4 for 𝑗 = 𝑖 + 1, ...,Δ do
5 𝑝𝑖 𝑗 := TwoSampleTest(T𝑖 ,T𝑗) with potential

dissociation ;

6 𝑀 := Δ · (Δ + 1)/2 ;
7 𝑝(1) , ..., 𝑝(𝑀) := SortIncreasing({𝑝𝑖 𝑗 | 𝑖 < 𝑗}) ;
8 return min𝑚

{
𝑀
𝑚 · 𝑝(𝑚)

}
;

sparsified

3.2.2 Sample construction

The two-sample tests used in MEITEST require random samples
from the conditional cdfs 𝐹x𝑡+𝛿 |e𝑡=1 at all lags 𝛿 ∈ {0, ...,Δ} within
the window of interest. Principally, any observation 𝑥𝑡+𝛿 from the
time series is a realized value from the conditional cdf at lag 𝛿, when
𝑒𝑡 = 1 in the event series. In other words, all of these values from
the time series are identically distributed with this conditional cdf.
However, as noted earlier, these observations may be statistically
associated due to serial dependencies within the time series—they
are not, in general, independent. The observations within a random
sample, however, must be identically distributed and independent
for the statistical guarantees of the two-sample tests to apply. We
need a regularity condition similar to the conditions in Chapter 2 to
enforce that the observations within a random sample constructed
from the time series are at least approximately independent.

Formally, we assume limited marginal long-range dependencies
in the time series. We require that there exists some 𝐿 such that
for every subset of time points {𝑡1 , ..., 𝑡𝑁 } with |𝑡𝑖 − 𝑡 𝑗 | > 𝐿 for all
𝑖 ≠ 𝑗, for 𝛿 ≥ 0, and for all outcomes 𝑥1 , ..., 𝑥𝑁 ∈ ℝ, we have

Pr
(∧

𝑖

x𝑡𝑖+𝛿 < 𝑥𝑖 |
∧
𝑖

e𝑡𝑖 = 1
)
≈

∏
𝑖

Pr(x𝑡𝑖+𝛿 < 𝑥𝑖 | e𝑡𝑖 = 1). (3.9)

If this regularity condition holds, and we assume that the event
series E is so sparse that the 𝑁 events are separated by more
than 𝐿 time steps, the set of observations T𝛿 := {𝑥𝑡+𝛿 | 𝑒𝑡 = 1}
approximates a random sample of 𝐹x𝑡+𝛿 |e𝑡=1. If these assumptions
do not hold, the sets constructed in line 3 of Algorithm 1 cannot
be viewed as random samples. However, in the case where the
regularity condition is fulfilled, but the event series is too dense,
the sets can be sparsified by dropping observations that are too
close to be seen as approximately independent.
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dissociated

false positive rate

For example, the number of trigger
coincidences ktr introduced in Chap-
ter 2 was used as a test statistic to
collect evidence against the null hy-
pothesis of extremal independence
from Equation 2.2.

The regularity condition above and the potential sparsification are
necessary to make the set T𝛿 a random sample of 𝐹x𝑡+𝛿 |e𝑡=1. However,
a two-sample test for random samples T𝛿 and T𝛿′ as in line 7 of
Algorithm 1 also requires the random samples to be independent
across each other. In time series with serial dependencies, this
is not the case. For example, if X is the realization of a first-
order autoregressive process, the two observations 𝑥𝑡 and 𝑥𝑡+1 are
correlated for all 𝑡. If there is an event at time step 𝑡, the sample
construction scheme from above will place 𝑥𝑡 in the set T0 and
𝑥𝑡+1 in the set T1, thereby breaking the independence assumption
across random samples. However, the two random samples can
be dissociated ad hoc before performing the two-sample test, by
passing observations from alternating event occurrences to the
test. In the example above, 𝑥𝑡 would be retained in T0, but 𝑥𝑡+1
would not be retained in T1. For the next event occurrence at time
step 𝑡′, the observation 𝑥𝑡′ would not be retained in T0, but the
observation 𝑥𝑡′+1 would be retained in T1, and so on, alternately.

With the ad hoc dissociation procedure outlined above, the effective
sample size used within each two-sample test is reduced by half.
The procedure makes sure that the two random samples passed
to the two-sample test are independent, but it does not make all
random samples at all lags pairwise independent. To achieve pairwise
independence, it would be necessary to retain only every (Δ+ 1)-st
time step from each random sample. This reduces the effective
sample size by a factor of Δ + 1, which can drastically decrease
the power of the two-sample tests for event series with relatively
few event occurrences. If enough data is available, this approach
would be a viable alternative to ad hoc dissociation.

3.2.3 Error control

In statistical hypothesis tests, the false positive rate (Type I error)
is controlled at significance level 𝛼 by rejecting the null hypothesis
if and only if the 𝑝-value returned by the test is smaller than 𝛼.
In standard statistical hypothesis testing problems (no multiple
testing), the 𝑝-value is directly computed from a test statistic that
collects evidence against the null hypothesis. The 𝑝-value in a
standard statistical test is simply the probability of obtaining a test
statistic value at least as extreme as the observed one, under the
assumption that the null hypothesis is true.

When performing multiple two-sample tests, we have multiple null
hypotheses, and we obtain multiple 𝑝-values: one for every two-
sample test. Formally, we have the individual null hypotheses

𝐻
𝑖 𝑗

0 : 𝐹x𝑡+𝑖 |e𝑡=1 = 𝐹x𝑡+𝑗 |e𝑡=1 (3.10)
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family-wise error rate

Simes adjustments

for all 0 ≤ 𝑖 < 𝑗 ≤ Δ, with alternative hypotheses

𝐻
𝑖 𝑗

1 : 𝐹x𝑡+𝑖 |e𝑡=1 ≠ 𝐹x𝑡+𝑗 |e𝑡=1. (3.11)

Under the complete null hypothesis 𝐻0 from Equation 3.2 all of
the individual null hypotheses are simultaneously true. If any of
the individual null hypotheses 𝐻 𝑖 𝑗

0 is rejected in favor of 𝐻 𝑖 𝑗

1 by
the respective two-sample test, the complete null hypothesis 𝐻0
must be rejected in favor of the complete alternative hypothesis 𝐻1
from Equation 3.3. The challenge of multiple hypothesis testing
is that we have to control the false positive rate of the complete
test at the significance level 𝛼—not the false positive rates of the
individual tests. We cannot reject the individual null hypotheses if
their respective 𝑝-values are smaller than 𝛼, since this approach
would not control the false positive rate of the complete test.

There are several ways to define a false positive rate for multiple
hypothesis testing [DBW+10]. In our case, we do not care which
of the individual null hypotheses is false. In this scenario, the
family-wise error rate (FWER) is a suitable choice. Formally, let
H0 = {𝐻 𝑖 𝑗

0 | 0 ≤ 𝑖 < 𝑗 ≤ Δ} be the family of null hypotheses that
we want to test, T ⊆ H0 be the set of true null hypotheses and
R ⊆ H0 be the set of null hypotheses rejected by some procedure.
The FWER is the probability that at least one of the true null
hypotheses is rejected, i.e., Pr(T∩R ≠ ∅) [DL07]. We use Simes
adjustments [DBW+10] to guarantee Pr(T∩ R ≠ ∅) < 𝛼 at the
desired significance level 𝛼. Let 𝑀 := |H0 | = Δ · (Δ + 1)/2 be the
total number of pairwise two-sample tests, and 𝑝(1) , ..., 𝑝(𝑀) be the
𝑝-values returned by the tests, ordered increasingly. We reject the
complete null hypothesis 𝐻0 if 𝑝(𝑚) <

𝑚
𝑀 𝛼 for any 𝑚 = 1, ..., 𝑀.

The corresponding adjusted 𝑝-value for the complete test is then
obtained from the individual 𝑝-values via 𝑝 := min𝑚{𝑀𝑚 𝑝(𝑚)}.

3.3 Experiments

We evaluate MEITEST against the standard Granger causality test
based on linear predictive models (GC) [Gra69] and a nonparamet-
ric test for non-zero transfer entropy (TE) [Sch00]. We perform a
large-scale simulation study, where we assess the performance of
all approaches on coupled pairs of time series and event series,
generated by different event impact models. We also generate
uncoupled pairs by randomly permuting the event series after
generating a coupled pair. To assess the detection performance,
we report true positive rates and false positive rates. At last, we
demonstrate the utility of our test with two real-life applications.
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true positive rate

false positive rate

https://cran.r-project.org/

package=lmtest

https://cran.r-project.org/

package=RTransferEntropy

order

Evaluation measures. A true positive is a coupled pair of time
series and event series, generated by any of the event impact models
described below, that is correctly detected as being coupled. A
false positive is an uncoupled pair that is falsely detected as being
coupled. The corresponding true positive rate (TPR, power) and
false positive rate (FPR) are obtained by normalizing over the total
number of coupled and uncoupled pairs, respectively. TPR should
ideally be close to 1, whereas the FPR should be upper bounded
by the significance level 𝛼 that was chosen for the test.

Setup. We set the significance level to 𝛼 = 0.05. In MEITEST,
we use a window of interest with a maximum lag of Δ = 32. We
report results with the Kolmogorov-Smirnov (KS) two-sample
test [Was04], and the Maximum Mean Discrepancy (MMD) two-
sample test [GBR+12] with the default RBF kernel with median
heuristic and the gamma approximation to the null distribution.
Furthermore, we report results based on Welch’s two-sample t-test
(TT) [Wel47] that is sensitive only for differences in the means of the
two samples. For GC, we use a history of length 32 for consistency
with the window of interest employed in MEITEST. In contrast, for
TE, we use a history of length 1 only, since larger histories required
significantly more running time (from a few hours to more than two
weeks) and actually lowered the performance of TE; possibly due to
estimation issues of the high-dimensional conditional distributions.
For a fair comparison across all algorithms, we parametrize all
event impact models such that events have impacts at lag 1.

We implemented MEITEST and the underlying two-sample tests in
Python. The source code can be found on https://github.com/

diozaka/eitest. For the experiments with GC, we used the R pack-
age lmtest. For TE, we used the R package RTransferEntropy.

3.3.1 Simulations

We first describe the four event impact models used for evaluation
and then report the performances of all approaches. In the first two
models, events have impact on the mean of the time series, in the
third they modulate its variance, while in the fourth they alter the
tails of its distribution. Examples from the models are illustrated
in Figure 3.1. In all experiments, we first generate an event series
of length 𝑇 with 𝑁 event occurrences by sampling 𝑁 time steps
𝑡1, ..., 𝑡𝑁 without replacement and setting 𝑒𝑡𝑛 = 1 for these time
steps. Then, we sample a time series given the event series using
the models described below. All models below induce finite event
impacts, and the parameter 𝑞 determines their order, i.e., their
temporal duration. The parameter 𝑟 in the models controls the
difficulty of the detection problem in different ways.

https://cran.r-project.org/package=lmtest
https://cran.r-project.org/package=lmtest
https://cran.r-project.org/package=RTransferEntropy
https://cran.r-project.org/package=RTransferEntropy
https://github.com/diozaka/eitest
https://github.com/diozaka/eitest
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The tail impact model simulates the
associations analyzed with ECA in
Chapter 2 in a systematic way.

Impacts in mean. We modulate the mean of the time series by a
moving average model [Ham94] of order 𝑞 ∈ ℕ that uses the event
series as innovations, with additive noise:

x𝑡 =
𝑞∑
𝑗=1

𝜙 𝑗e𝑡−𝑗 + z𝑡 . (3.12)

The weights 𝝓 = (𝜙1 , ..., 𝜙𝑞) ∈ ℝ𝑞 determine the shape of the
event impacts and z𝑡

iid∼Normal(0, 1) is normally distributed. In this
model, every event has the same deterministic impact on the time
series and overlapping impacts simply add up. In the random mean
model, we sample 𝝓—for each coupled pair individually—from
the isotropic normal distribution Normal(0, 𝑟m · 𝑰), where 𝑟m is the
signal-to-noise ratio between event impacts and noise term. In the
constant mean model, we set 𝝓 = (𝑟m , ..., 𝑟m) ∈ ℝ𝑞 so that events
lead to a constant mean shift over 𝑞 time steps. In both cases, larger
values of 𝑟m make the detection problem easier.

Impacts in variance. We modulate the variance of the time series
by sampling from a normal distribution with variance that depends
on whether there was an event within the last 𝑞 ∈ ℕ time steps:

x𝑡 | max
𝑞′=1,...,𝑞

e𝑡−𝑞′ = 1 ∼ Normal(0, 𝑟v) (3.13)

x𝑡 | max
𝑞′=1,...,𝑞

e𝑡−𝑞′ = 0 ∼ Normal(0, 1) (3.14)

The more 𝑟v deviates from 1, the stronger the event impacts, and
the easier the detection problem. By construction, this event impact
model alters only the variance of the distribution, and no other
properties. In particular, the mean remains unchanged.

Impacts in tails. We modulate the tail behavior of the time series
by sampling either from a normal distribution (light tails) or from
Student’s t-distribution (heavy tails), depending on whether there
was an event occurrence within the last 𝑞 ∈ ℕ time steps:

x𝑡 | max
𝑞′=1,...,𝑞

e𝑡−𝑞′ = 1 ∼ Student-t(𝑟t) (3.15)

x𝑡 | max
𝑞′=1,...,𝑞

e𝑡−𝑞′ = 0 ∼ Normal
(
0,

𝑟t
𝑟t − 2

)
(3.16)

The parameter 𝑟t > 0 specifies the degrees of freedom for Student’s
t-distribution. A random variable z ∼ Student-t(𝑟t) with 𝑟t > 2
has E[z] = 0 and Var[z] = 𝑟t

𝑟t−2 . Therefore, our model for event
impacts in tails does not alter the mean or variance of the time
series when 𝑟𝑡 > 2. In the tail impact model, events increase the
risk of extremely large or small observations in the time series.
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For 𝑟t −→ ∞, Student’s t-distribution approximates a normal
distribution, and the detection problem will be harder. Detection
of event impacts is easiest when |𝑟t − 2| −→ 0.

Benchmark and results. Our default parametrization for the
event series is 𝑇 = 8192, with 𝑁 = 64 events in case of the mean
and variance impact models, and𝑁 = 512 for the tail impact model.
We need more events in the tail impact model since extreme values
are rare even in a heavy-tailed distribution. The default impact
order is 𝑞 = 4 in all models. In the random mean model, we use the
default signal-to-noise ratio 𝑟m = 1; in the constant mean model,
we use a default level shift of 𝑟m = 0.5. In the variance model,
the default variance is 𝑟v = 8. For the tail impact model, we set
the default degrees of freedom to 𝑟t = 3. We change the detection
difficulty by varying all parameters from these default values. For
every parametrization, we generate 100 pairs of coupled event
series and time series and 100 uncoupled pairs.

Figure 3.3 shows the true positive rates of all competing tests;
the corresponding false positive rates are depicted in Figure 3.4.
MEITEST outperforms or is on par with all competitors almost
across the whole model space that we explore. The TT and KS
variants of MEITEST slightly outperform the MMD variant on
impacts on mean, but MMD drastically outperforms the other
variants on impacts in variance and tails. Clearly, the TT variant
cannot detect event impacts that do not alter the mean of the
time series. These results suggest that a two-sample test for the
mean or other specific properties of the random samples that
we assume to be affected by event occurrences provides higher
detection rates than generic tests if this assumption is met. Without
prior knowledge of the nature of the event impacts, the MMD test
should be favored over the KS test.

As expected, MEITEST fails to detect identical event impacts if the
impact order matches the size of the window of interest, i.e., if
𝑞 ≈ Δ. At last, we observe that all tests approximately control the
false positive rates at the desired significance level 𝛼 = 0.05. There
is a slight tendency of MMD to overreject, i.e., its false positive rates
are slightly larger than 𝛼. Since we do not observe this behavior in
KS, we suspect this behavior is due to the gamma approximation
to the null distribution of the MMD test statistic.
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Figure 3.3: TPR of MEITEST, Granger causality (GC) and transfer entropy (TE) under different event impact models.
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Figure 3.4: FPR of MEITEST, Granger causality (GC) and transfer entropy (TE) under different event impact models.
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3.3.2 Electricity monitoring

In our first application, we demonstrate the utility of MEITEST for
household electricity monitoring in a smart home environment.
Specifically, we analyze the effect of turning on the clothes washer
on various electricity meters in a residential house.

Data. For the experiment, we use the publicly available Almanac
of Minutely Power dataset (AMPds) [MEB+16]. The dataset contains
two years of minutely electricity, water and natural gas measure-
ments from a residential house in Canada. We focus on electricity
consumption, which was recorded using 21 physical meters placed
at various locations in the building to separately measure the
consumption of different household appliances (clothes washer,
clothes dryer, dishwasher, etc.), rooms (bedroom, home office,
garage, etc.), and the whole house consumption. Each time series
contains 1,051,200 measurements. We extract 413 clothes washing
events from the clothes washer electricity (CWE) meter. We are
thus dealing with a very long time series and a very sparse event
series where Pr(e𝑡 = 1) ≈ 0.0004, or approximately 𝐿 ≈ 2,500 time
steps between two event occurrences. An excerpt of the resulting
event series is depicted in Figure 3.5 along with the clothes washer
meter (CWE, top) and the whole house meter (WHE, bottom)
between April 4th, 2012 and April 7th, 2012. The different scales
of the y-axes indicate the low signal to noise ratio of the clothes
washer impacts within the whole house time series, which makes
the detection problem hard.

Results. In all experiments, we set the maximum lag in the
window of interest to Δ = 120 minutes (2 hours). The 𝑝-values
obtained on all meters are shown in Table 3.1. Results that are
significant at level 𝛼 = 0.05 (unadjusted) are shaded. Since the
time series are very long, neither GC nor TE terminated within
one hour and had to be aborted. The MMD-based test rejects on all
instances where the TT- and KS-based tests reject, and some more.
This behavior indicates that the MMD variant of MEITEST is more
powerful than the other variants for generic event impacts.

On the other hand, it could also be
a consequence of the tendency of
MMD to overreject. A conservative
user would trust a result only if at
least two variants of MEITEST agree.
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Figure 3.5: Clothes washer and whole house electricity consumption (excerpts); vertical lines are clothes washing events.
We ignore the apparent periodicity in the WHE time series that, strictly speaking, makes it nonstationary.

meter MEITEST-TT MEITEST-KS MEITEST-MMD

WHE < 0.0001 < 0.0001 < 0.0001
RSE 0.9996 1.0000 0.9334
GRE 0.7376 1.0000 0.9718
MHE < 0.0001 < 0.0001 < 0.0001
B1E 1.0000 1.0000 0.0012
BME 0.9998 0.6959 < 0.0001
CWE < 0.0001 < 0.0001 < 0.0001
DWE 0.9998 1.0000 0.0341
EQE 0.9980 1.0000 0.9447
FRE 0.9998 1.0000 0.4338
HPE 0.2049 1.0000 0.0622
OFE 0.6952 1.0000 0.6240
UTE 1.0000 1.0000 0.0002
WOE 0.9999 1.0000 0.5589
B2E < 0.0001 0.0045 < 0.0001
CDE < 0.0001 < 0.0001 < 0.0001
DNE 1.0000 1.0000 0.3284
EBE 1.0000 1.0000 0.0068
FGE 0.9999 1.0000 0.9300
HTE < 0.0001 < 0.0001 < 0.0001
OUE < 0.0001 < 0.0001 < 0.0001
TVE 0.4342 1.0000 0.0004
UNE 0.0271 0.0270 < 0.0001

Table 3.1: AMPds 𝑝-values for all
electricity meters as returned by
MEITEST. The 𝑝-values are adjusted
internally for multiple testing at
all pairs of lags, but not externally
across meters and two-sample tests.
Shaded rows are significant at level
𝛼 = 0.05 for at least one of the em-
ployed two-sample tests.

Despite the low signal to noise ratio, all variants correctly identify
an association between the clothes washer and the whole house
meter (WHE). The tests also consistently identify associations in
several other meters, e.g., the clothes dryer meter (CDE). Since the
time series are univariate, we can visualize the event impacts using
box plots. These visualizations are shown in Figure 3.6. They nicely
illustrate the diversity of the event impacts that can be detected
with our approach. In particular, they illustrate that events do not
always lead to peaks in the time series.
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Figure 3.6: Box plots of the data dis-
tributions at lags 𝛿 = 0, ..., 120 after
event occurrences for several elec-
tricity meters, along with mean and
median lines. Thick boxes mark the
lower and upper quartiles of the dis-
tributions, thin boxes mark whiskers,
and individual points are outliers.
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Figure 3.7: Volume of the keyword “earthquake” in German Twitter (excerpt), along with two earthquake event series.

http://brandwatch.com/

http://emdat.be/

3.3.3 Earthquakes on Twitter

At last, we analyze the coupling between earthquakes and German
social media usage. Since social media reactions often come in
bursts of posts, we expect that events temporarily fatten the tails
of the time series. We first test whether daily usage of the keyword
“earthquake” in German Twitter is influenced by the occurrence
of severe earthquakes worldwide. We then focus specifically on
earthquakes that hit China, the country with the largest number
of disastrous earthquakes in the time period we study.

Data. We obtained time series of the daily number of tweets
posted in Germany that contain the keyword earthquake, trans-
lated into more than 30 languages, between 2010 and 2017 (2,557
days), using the ForSight platform by Crimson Hexagon/Brand-
watch. For the daily earthquake event series, we used the publicly
available Emergency Events Database (EM-DAT) provided by the
Centre for Research on the Epidemiology of Disasters (CRED) and
extracted all severe earthquakes in the same time period. We cre-
ated two event series: the first containing all earthquakes globally
(162 events), the second containing only earthquakes in China (40
events). Excerpts from the two pairs are depicted in Figure 3.7.

Results. We set the maximum lag in the window of interest to
Δ = 7 days. According to all variants of MEITEST (TT, KS, and
MMD), the event series with all global earthquakes is coupled
with German Twitter activity: We obtain 𝑝 = 0.0069 with TT, and
𝑝 < .0001 with KS and MMD. This result matches the intuition

http://brandwatch.com/
http://emdat.be/
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Figure 3.8: Box plots of the data
distributions at lags 𝛿 = 0, ..., 7 af-
ter event occurrences, for the Twit-
ter time series and two earthquake
event series (global and China).
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that there should be an association between the series. GC does
not detect an association (𝑝 = 0.1919). When it comes to the event
series with earthquakes in China, the TT and KS variants of our
test do not have enough evidence for a statistical association (TT:
𝑝 = 0.6154, KS: 𝑝 = 0.6039), whereas the MMD variant finds
an association with 𝑝 = 0.0254. GC now detects an association
as well (𝑝 = 0.0090), and thus contradicts its earlier result. TE
provides inconsistent results on both tasks: the test delivers largely
fluctuating 𝑝-values when run repeatedly. Overall, the results
on earthquakes in China are inconclusive. Visualizations of the
conditional distributions for both event series can be found in
Figure 3.8.

3.4 Conclusions

In this chapter, we have proposed a simple and versatile test for
event impacts that is sensitive for violations of marginal indepen-
dence at all lags within the window of interest. Our approach
reduces the test for event impacts to a multiple two-sample testing
problem, which makes it applicable to time series over arbitrary
domains, as long as a two-sample test is available for this domain.
The main challenge when applying our test in practice is the con-
struction of valid random samples of the conditional distributions
from time series with serial dependencies. We have worked out
the assumptions on the time series and the event series that are
required for effective sample construction. In a nutshell, the time
series and the event series must satisfy a regularity condition that
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limits the long-range dependencies between event occurrences
and the marginal statistics of the time series. We proposed sparsi-
fication and an ad hoc dissociation scheme to further reduce the
dependencies within and between random samples.

In our large-scale simulation study, we have shown that our test
detects a large variety of event impacts with high sensitivities and
low error rates. The test can be fine-tuned to event impacts that
affect only specific properties of the time series (like its mean),
by choosing a two-sample test that is sensitive only towards the
respective properties of the random samples. Since our test focuses
on the marginal statistics within the window of interest, it cannot—
by design—detect event impacts that only affect the dependency
structure of the random variables within the window of interest.
In this case, a feature transformation that extracts information on
the dependency structure is required before performing the test.

An alternative to the multiple two-sample testing approach pro-
posed in this chapter is to perform a single 𝐾-sample test on all
random samples together. The most prominent approach is the
analysis-of-variance (ANOVA) procedure to test equality of all means
[War14], and some tests for the complete empirical distribution
functions exist as well [SS87]. The literature on 𝐾-sample testing
is less active than for two-sample testing, but may enable tests for
marginal event impacts with even higher power than our multiple
two-sample testing approach.

The advantage of the marginal independence testing approach over
the ECA-based approach from Chapter 2 is that it is applicable out-
of-the-box for time series over different domains and for different
types of event impacts. The disadvantage is that the detection of
event impacts per se does not contribute to much understanding of
the nature of these event impacts. The focus on peaks in Chapter 2
enabled using the trigger coincidence rate as an intuitive measure
to quantify the degree of association between the event series and
the time series. The choice of the two-sample test in this chapter
can at least shed some light on the properties of the time series
that are affected by event occurrences. In the following chapter, we
propose an alternative way to study this association, by modeling
the behavior of the time series within the window of interest with
a versatile probabilistic model.
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Once a statistical association between the event series and the time
series is established with the tests from Chapter 2 or Chapter 3,
we can proceed to describe the nature of this association in more
detail. The trigger coincidence rates and QTR plots introduced in
Section 2.2 are first steps in this direction, in that they measure
and visualize the strength of the association in an interpretable
way. However, they are useful only in the case where events trigger
threshold exceedances in univariate time series. Box plots of the
data distributions at individual lags within the window of interest
as in Figure 3.1, Figure 3.6 and Figure 3.8 are another way of
visualizing the impact of events in univariate time series, but they
neglect information about serial dependencies between lags. In
this chapter, we propose an alternative way to describe the impact
of events in univariate time series using probabilistic models.

Formally, we model the deviant behavior of the time series, i.e., the
conditional distribution of the window of interest (x𝑡 , ..., x𝑡+Δ)
from the time series X given that e𝑡 = 1 in the event series E,

(x𝑡 , ..., x𝑡+Δ) | e𝑡 = 1 ∼ 𝐹𝑡 , (4.1)

where 𝐹𝑡 is the joint cdf at time step 𝑡 that needs to be specified.
Due to stationarity, we have that 𝐹𝑡 = 𝐹 for all 𝑡. As in the previous
chapters, we assume that the long-range dependencies in the time
series are limited and that the event series is sparse, so that the
windows of interest associated with different event occurrences
are approximately independent.

Let X and E be (finite) realizations of the time series and the event
series, respectively, and let 𝑡𝑖 for 𝑖 = 1, ..., 𝑁 denote the time points
of the 𝑁 =

∑
𝑡 𝑒𝑡 event occurrences in E . We treat the subsequences

𝒙 𝑖 = (𝑥𝑡𝑖 , ..., 𝑥𝑡𝑖+Δ) of length 𝑇′ = Δ + 1 as approximately iid
realizations of a multivariate random sample x𝑖

iid∼ 𝐹 for 𝑖 = 1, ..., 𝑁 .
In the following, we proceed with this simplified notation.

time

Figure 4.1: Two subsequences that
follow the same generic pattern but
are subject to temporal distortion.

Our model family is based on the observation that event impacts
often follow the same generic pattern across all event occurrences,
but the pattern may come at different delays or be otherwise
temporally distorted. This can be observed, for example, in the box
plots for the CWE data distributions in Figure 3.6. The peaks in
electricity consumption may occur somewhere between lag 45 and
lag 80, but most of the time they occur between lags 60 and 70. An
illustration of temporal distortion is given in Figure 4.1.
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From now on, we refer to subse-
quences of the original time series
simply as sequences. From a model-
ing perspective, it does not matter
where these sequences come from.

A suitable probabilistic model for the subsequences must be able
to temporally align the subsequences and identify the underlying
prototypical pattern. This can be achieved by first applying an
existing time warping algorithm [SC78] for alignment and then
modeling the aligned subsequences. However, by separating the
alignment step from the modeling step, we lose information on
the stochastic mechanism that generates the temporal distortions.
Instead, we propose a novel family of discrete-time probabilistic
models with an embedded temporal distortion mechanism. Our
model family learns a low-dimensional prototype for the underly-
ing pattern that is stochastically stretched in time to produce a set
of structurally similar but temporally misaligned sequences.

In contrast to previous work, we place emphasis on different choices
for the stochastic warping mechanism. While previous work is
restricted by Markov assumptions, our model family allows em-
ploying a large variety of distributions for the warping mechanism.
We instantiate our model family with Markov, multinomial and
Dirichlet-compound multinomial warping distributions to demon-
strate its modeling capacity, and provide a generic Monte Carlo
Expectation-Maximization algorithm for inference. We empirically
study various characteristics of these model instantiations and
show that they yield state-of-the-art performance in structural
averaging and preserve relevant features for classification. We
developed our model family with applications in event impact
analysis in mind, but it is useful whenever modeling short se-
quences that are subject to temporal distortions. Therefore, in the
following, we provide a generic treatment of the model family
without a special focus on event impact analysis.

4.1 Introduction

Figure 4.2: Optimal alignment be-
tween two short sequences accord-
ing to the DTW algorithm.

Invariance to time warping is a key feature of many state-of-the-art
learning algorithms for sequences. The seminal dynamic time
warping (DTW) distance was defined more than four decades ago
[SC78] and its underlying principles have since spurred numerous
adaptations and improvements. In a nutshell, time warping refers
to a—possibly nonuniform—transformation of the time axis of the
input. The large majority of works treat time warping as a pairwise
problem: time warping distances like the DTW distance search
for optimal alignments between two or more sequences by jointly
transforming their time axes to maximize similarity (see Figure
4.2 for an example). Although very successful, these solutions
are often ad hoc and heuristic in nature: they do not establish a
deeper understanding of the stochastic mechanism that generates
the individual warped sequences from a prototypical pattern.
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In this work, we shed more light on the genesis of warped sequences
by developing a family of generative models for time warping. The
key idea of our model family is that a set of structurally similar
but temporally misaligned sequences is generated by stochastically
stretching a low-dimensional prototype in time. Models from our
family thus jointly solve the problems of sequence alignment and
low-dimensional approximation on the time axis. We observe that
a nonuniform transformation of the time axis can be formulated
as the product of a random warping matrix and the prototype vector.
A member of our model family is defined by specifying a prior
distribution over warping matrices. Our work generalizes and
unifies existing discrete-time warping models based on monotone
Markov chains or semi-Markov models [CGS03; GS00; HTR03;
LNR+05]. We view the warping prior as a probabilistic alternative
to the hard constraints typically employed to regularize DTW
distances [RK04; SC78; THF+18], and to the deterministic warping
functions in curve registration [KG92].

Our models for time warping are useful in many ways: (1) When
trained on an observed set of structurally similar sequences, the
prototype is recovered and provides a concise structural average
of the dataset. (2) After training, the models can be used to align
any input sequence to an arbitrary reference time axis without
solving a new optimization problem. (3) For any input sequence,
the models yield piecewise constant approximations to the ob-
served data. (4) The models can be integrated into probabilistic
learning architectures such as classification with Bayes classifiers
or clustering via mixture modeling.

We focus on learning low-dimensional prototypes that retain and
amplify relevant information for the downstream task. However,
our work can easily be adapted to higher-dimensional prototypes,
as in the Continuous Profile Model of Listgarten et al. [LNR+05].
Although we do not explicitly focus on periodic sequences or
sequences that are only partially observed, the model family and
MCEM algorithm also have the capacity to describe the genera-
tive process of such data with appropriate warping priors and
corresponding Monte Carlo sampling schemes.

4.1.1 Related work

Literature on time warping is vast. It ranges from approaches that
make classical DTW distance computation more efficient [KP00;
PDM16], less constrained [AZ18; RK04], or differentiable [CB17],
to approaches that focus on completely different dynamics in
the input sequences [KP01; ZT09]. An important line of research
addresses the extension of DTW from pairwise alignment towards
joint alignment of multiple sequences [KMP19; WMP+16; ZT12].
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Recently, recurrent neural networks have been shown to implement
a form of time warping [TO18]. However, most related are works
that incorporate time warping into statistical models. They can be
divided into continuous time models and discrete time models.

Continuous-time models. Curve registration [KG92; RL98; Sil95]
is a statistical formulation of time warping for functional data
analysis, where the input data is a set of curves in continuous
time [RS05]. Curve registration has received considerable atten-
tion in the statistics community in the past two decades [GS04;
KR08; KSW11; LWT19; WK19; WG99; WED+19]. The basic idea is
to estimate continuous monotonic time warping functions that
minimize a misfit criterion over the input curves. The deformable
motifs model [SDK07] and congealing [Lea06; MHL12; MRL09],
are hybrid approaches that model temporal transformations for
discrete-time input in a continuous-time space. In contrast, we
focus on direct modeling of time warping in discrete time, which
matches the DTW approach and can be formulated with methods
from multivariate statistics.

Discrete-time models. Few methods were proposed to model
time transformations in discrete time. In the simplest case, se-
quences are shifted by random global offsets [CGM+03]. An early
method to model nonuniform transformations of discrete time
builds on semi-Markov and segmental Markov models [GS00], but
the authors only provide a heuristic training procedure. Several
authors refined this idea and developed Markov models to capture
nonuniform time transformations [CGS03; HTR03; KS06; KSL04;
LNR+05]. The warping component of our model family is more
generic and can be instantiated with a Markov prior—among others.
Our model family thus overcomes the restriction to geometric dura-
tion distributions inherent in Markov models, and the restriction to
independent state durations in semi-Markov models. A downside
of this generality is that we cannot provide an efficient Baum-Welch
algorithm, but need Monte Carlo methods for estimation.

Structural averaging. Many of the statistical models mentioned
above provide a temporal alignment of the sequences that allows
computing a structural average. There are other approaches for
alignment and structural averaging of sequences that are not based
on statistical models. Most of them directly optimize pairwise DTW
distances [BFF+18; GMT+96; PKG11; WG97] or some variation
thereof, such as generalized time warping [ZT12], graphical time
warping [WMP+16], and trainable time warping [KMP19]. We include
some of them as competitors in our evaluation.
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4.2 Methodology

4.2.1 Discrete warping

Let 𝝁 = (�1 , ..., �𝐿) ∈ ℝ𝐿 be a prototype of length 𝐿. We generate a
warped sequence 𝒙 of length 𝑇′ ≥ 𝐿 by stretching the prototype 𝝁
in time. The prototype is stretched by repeating every entry �𝑙
exactly 𝑛𝑙 times, where 𝑛𝑙 ≥ 1 is a positive integer that denotes
the number of repetitions of the 𝑙-th entry of the prototype. The
resulting sequence is piecewise constant and has length 𝑇′ =

∑
𝑛𝑙 .

A transformation is uniform if 𝑛1 = ... = 𝑛𝐿, and nonuniform if
𝑛𝑙 ≠ 𝑛𝑙′ for some 𝑙 and 𝑙′. Nonuniform transformations lead to
temporal distortion of the prototype.

Discrete time transformations, uniform or nonuniform, can be
formulated as a linear operation on the prototype vector: Let 𝑨 ∈
{0, 1}𝑇′×𝐿 be the discrete warping matrix

𝑨 =

©«

1 0 0 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 1 0 · · · 0 0
. . .

. . .

0 0 0 · · · 0 1
...

...
...

. . .
...

...

0 0 0 · · · 0 1

ª®®®®®®®®®®®®®®®®®®®¬

 𝑛1

 𝑛2

 𝑛𝐿
(4.2)

The warped sequence 𝒙 is given by the product

𝒙 = 𝑨𝝁 = (�1 , ..., �1︸    ︷︷    ︸
𝑛1

, �2 , ..., �2︸    ︷︷    ︸
𝑛2

, ..., �𝐿 , ..., �𝐿︸    ︷︷    ︸
𝑛𝐿

) ∈ ℝ𝑇′
. (4.3)

The warping matrix 𝑨 is fully determined by the vector (𝑛1 , ..., 𝑛𝐿).
We can thus conveniently switch between the vector representation
and the matrix representation of the warping operation, 𝑨 ≡
(𝑛1 , ..., 𝑛𝐿). The total number of𝑇′×𝐿warping matrices is given by
the number of 𝐿-compositions of the integer𝑇′, and can be obtained
from the binomial coefficient

(𝑇′−1
𝐿−1

)
[Sta11]. The inner product of

a warping matrix 𝑨′𝑨 = diag(∑𝑡 𝑎𝑡1 , ...,
∑
𝑡 𝑎𝑡𝐿) = diag(𝑛1 , ..., 𝑛𝐿)

has full rank since 𝑛𝑙 ≥ 1 for all 𝑙.
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For example, in applications in event
impact analysis, we would model all
subsequences within the windows
of interest of size 𝑇′ = Δ + 1 after 𝑁
event occurrences.

4.2.2 Probabilistic warping

We model𝑁 random sequences x1 , ..., x𝑁 of the same length𝑇′. We
assume that all of these sequences were generated by warping the
same (fixed, but unknown) prototype𝝁 of length 𝐿 to length𝑇′ with
random warping matrices A𝑖 and additive noise, i.e., x𝑖 = A𝑖𝝁+ z𝑖 .
We view the warping matrices A𝑖 as iid random matrices with
prior pmf Pr(A𝑖 = 𝑨;𝝍) := 𝑝(𝑨;𝝍) that depends on the parameter
𝝍. Furthermore, we assume isotropic normal noise z𝑖 with zero
mean and variance 𝜎2, such that

x𝑖 | A𝑖 = 𝑨 iid∼ Normal(𝑨𝝁, 𝜎2𝑰), (4.4)

where 𝑰 is the 𝑇′ × 𝑇′ identity matrix. The warping matrices
are latent variables in our model. The marginal pdf of x𝑖 thus
decomposes into the mixture density

𝑓 (𝒙;𝜽) =
∑
𝑨

𝑓Normal(𝒙;𝑨𝝁, 𝜎2𝑰) · 𝑝(𝑨;𝝍) (4.5)

with parameters 𝜽 = (𝝁, 𝜎2 ,𝝍). Since we use an isotropic normal
distribution for the noise term, the serial dependencies within
the sequence are completely captured by the prior distribution
of the warping matrices. The key modeling question is how to
parametrize the prior pmf of the warping matrices 𝑝(𝑨;𝝍). Due
to the equivalence of the representations, any discrete multivariate
distribution over vectors of positive integers n = (n1 , ..., n𝐿) is a
valid prior distribution for the random warping matrix A. Since the
length of the observed sequences is fixed to 𝑇′, the support of the
prior is constrained to vectors of positive integers 𝒏 = (𝑛1 , ..., 𝑛𝐿)
that sum to 𝑇′. In the following, we demonstrate how to instantiate
this model family with Markovian, multinomial, and Dirichlet-
compound multinomial warping priors.

Markovian time warping

In the Markovian time warping model, the numbers of repetitions
n1 , ..., n𝐿 for each entry in the prototype are obtained from a
monotonic Markov chain that sequentially traverses 𝐿 states over
𝑇′ time steps and stays in each state 𝑙 for exactly n𝑙 ≥ 1 time steps.
Let 𝜙𝑙 ∈ (0, 1] for 𝑙 = 1, ..., 𝐿 − 1 be the probability to switch from
state 𝑙 to state 𝑙+ 1, and 1−𝜙𝑙 be the probability to stay in state 𝑙. If
the chain has reached state 𝐿, it stays in this state with probability 1.
We obtain the prior pmf

𝑝(𝒏; 𝝓) = 1
𝑍(𝝓)

𝐿−1∏
𝑙=1

(1 − 𝜙𝑙)𝑛𝑙−1𝜙𝑙 , (4.6)
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where 𝝓 = (𝜙1 , ..., 𝜙𝐿−1) are the trainable parameters. Equation
4.6 reveals that the monotonic Markov model is a product of
geometric duration distributions. It needs to be renormalized to
yield a valid pmf over the finite set of 𝑇′ × 𝐿 warping matrices.
The normalizing constant 𝑍(𝝓) := 𝑍𝑇′,𝐿(𝝓) can be computed by
dynamic programming using

𝑍𝑡 ,𝑙(𝝓) = 𝜙𝑙−1

𝑡−𝑙+1∑
𝑛=1

(1 − 𝜙𝑙−1)𝑛−1𝑍𝑡−𝑛,𝑙−1(𝝓) (4.7)

with recursion start 𝑍𝑡 ,1 = 1 for 𝑡 = 1, ..., 𝑇′. Although Markov
models have been used for warping fixed-length sequences in
the past, the above distribution has not been described in this
context before. Existing works apply models that are normalized
over sequences of arbitrary length. For consistency with previous
works, we ignore the normalization term for inference. We write
A𝑖

iid∼MkWarp(𝑇′, 𝐿,𝝓) if the prior distribution of the warping ma-
trices A𝑖 ≡ (n𝑖1 , ..., n𝑖𝐿) is given by the (unnormalized) Markovian
distribution from Equation 4.6.

Multinomial time warping

In the multinomial time warping model, the numbers of repetitions
n1 , ..., n𝐿 jointly follow the multinomial distribution

(n1 − 1, ..., n𝐿 − 1) ∼ Multinomial(𝑇′ − 𝐿,𝝅), (4.8)

with repetition probabilities 𝝅 = (𝜋1 , ...,𝜋𝐿), 𝜋𝑙 ∈ (0, 1), ∑𝑙 𝜋𝑙 = 1.
The multinomial distribution allows outcomes with counts of 0. By
modeling n𝑙 − 1 instead of n𝑙 as multinomial, we make sure that
all count values are strictly larger than zero. The total number of
additional repetitions to draw from the multinomial distribution is
𝑇′ − 𝐿. We write A𝑖

iid∼ MWarp(𝑇′, 𝐿,𝝅) if the prior distribution of
the warping matrices A𝑖 ≡ (n𝑖1 , ..., n𝑖𝐿) is given by the multinomial
distribution from Equation 4.8.

Dirichlet-compound multinomial time warping

Finally, we instantiate our model family with a Dirichlet-compound
multinomial distribution [JKB97]. From a Bayesian perspective,
this distribution takes the repetition probabilities 𝝅 of the multi-
nomial distribution as the outcome of a symmetric Dirichlet trial
π ∼ Dirichlet(𝛼), and marginalizes over all possible values 𝝅. In
the Dirichlet-compound multinomial time warping model, the
numbers of repetitions n1 , ..., n𝐿 jointly follow the distribution

(n1 − 1, ..., n𝐿 − 1) ∼ Dirichlet-Multinomial(𝑇′ − 𝐿, 𝛼). (4.9)
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Figure 4.3: Expected warping matri-
ces after training on ECG200 (class
-1, 𝑇′ = 96, 𝐿 = 16).

MkWarp MWarp DMWarp

We write A𝑖
iid∼ DMWarp(𝑇′, 𝐿, 𝛼) if the warping matrices A𝑖 ≡

(n𝑖1 , ..., n𝑖𝐿) follow the Dirichlet-compound multinomial distribu-
tion from Equation 4.9. The concentration parameter 𝛼 > 0 of the
compound distribution is usually treated as a hyper-parameter
that is known a priori. It controls the variability of the resulting
warping matrices: For 𝛼 −→ 0, few entries from the prototype are
stretched strongly, while other values are not stretched at all. For
𝛼 −→ ∞, the prototype is stretched linearly with high probability.
The symmetry assumption implies that for any 𝛼 the expected
warping matrix is linear. If prior knowledge on the warping process
is available, an asymmetric Dirichlet-compound distribution with
a bias towards nonlinear transformations may be more suitable.

Visualization

Some intuitions about the behavior of the three warping priors
can be developed by looking at the expected warping matrices
EA;𝝍[A] ∈ [0, 1]𝑇′×𝐾 under the respective prior pmfs 𝑝(𝑨;𝝍) with
(hyper-) parameters 𝝍. A visualization can be found in Figure
4.3. For the visualization, we performed training on the ECG200
dataset (class -1, 𝑇′ = 96, 𝐿 = 16) from the UCR Time Series
Classification Archive [DBK+18]. We use the MCEM procedure
described in Section 4.2.4 for training and estimate the expected
values with importance sampling. We observe that the three priors
have very different ways to distribute the warping uncertainty.
The multinomial warping prior MWarp has the lowest variability
and induces a strong bias towards the warping matrices observed
during training, while the Dirichlet-compound warping prior
DMWarp has the highest variability with a bias towards linear
warping. The Markovian prior MkWarp combines bias towards the
warping matrices observed during training with a high variability.
Interestingly, in this example, it has a rather low variability in
the beginning of the warping process, and increasing variability
towards the end of the warping process.
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low-dimensional representation

piecewise constant approximation

reference warping matrix

aligned

4.2.3 Using the model

The probabilistic warping model yields quantities for sequence
approximation, alignment, and structural averaging. They are
visualized in Figure 4.4. All quantities require expected warping
matrices either from the prior distribution PrA;𝝍 or from the
posterior distribution given an observed sequence PrA𝑖 |x𝑖=𝒙 𝑖 ;𝜽.

▶ �̂� 𝑖 := EA𝑖 |x𝑖=𝒙 𝑖 ;𝜽[A𝑖]† · 𝒙 𝑖 ∈ ℝ𝐿 is the low-dimensional repre-
sentation of an observed sequence 𝒙 𝑖 obtained by inverting
the expected warping under the posterior distribution. We
use 𝑩† = (𝑩′𝑩)−1𝑩′ to denote the pseudo-inverse of 𝑩.

▶ �̄� 𝑖 := EA𝑖 |x𝑖=𝒙 𝑖 ;𝜽[A𝑖] · �̂� 𝑖 ∈ ℝ𝑇′ is the piecewise constant ap-
proximation of an observed sequence, obtained by mapping
the low-dimensional representation back to the original time
axis, again using the expected warping matrix under the
posterior distribution. The piecewise constant approximation
may be smoothed at the transitions between the levels due
to variability in the posterior distribution PrA𝑖 |x𝑖=𝒙 𝑖 ;𝜽.

▶ In fact, any �̃� 𝑖 := �̃� · �̂� 𝑖 ∈ ℝ𝑇′ is a piecewise constant rep-
resentation of an observed sequence, where the warping
matrix �̃� maps the low-dimensional representation back to
some time axis. If the same reference warping matrix �̃�
is used for all sequences, the sequences are aligned to a
common time axis. Unless otherwise noted, we use the prior
expectation �̃� := EA;𝝍[A] as the reference warping matrix.
Due to variability in the prior distribution, the result will
typically be strongly smoothed. With �̃� 𝑗 := EA𝑗 |x𝑗=𝒙 𝑗 ;𝜽[A𝑗]
for some 𝑗, all 𝒙 𝑖 are aligned to the observed sequence 𝒙 𝑗 .

The reference warping matrix can also be used to obtain a structural
average �̃� of a dataset, by warping the prototype 𝝁 to the common
time axis, �̃� := �̃� · 𝝁. If smoothing is undesired, the posterior and
prior expectations in the equations above can be replaced with
the posterior mode arg max𝑨{Pr(A𝑖 = 𝑨 | x𝑖 = 𝒙 𝑖 ;𝜽)} and prior
mode arg max𝑨{Pr(A = 𝑨;𝝍)}. With this approach, we obtain
hard (Viterbi) alignments between time points in the sequences
and entries in the prototype.

4.2.4 Inference

In practice, the parameters of the models described above are un-
known and must be estimated from observed data before they can
be used for approximation, alignment and structural averaging.
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Figure 4.4: Various quantities ob-
tained with the MWarp model on
ECG200 (class -1, 𝑇′ = 96, 𝐿 = 8).
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maximum likelihood estimation

In the incomplete-data log-
likelihood function, only the
sequences themselves are observed,
not the (latent) warping matrices
that produced these sequences.

EM algorithm

Parameter estimation

We perform maximum likelihood estimation on the observed se-
quences 𝒙1 , ..., 𝒙𝑁 to recover the underlying prototype 𝝁 ∈ ℝ𝐿, the
noise variance 𝜎2 > 0, and the parameters of the warping prior 𝝍.
Analytical maximization of the incomplete-data log-likelihood

LL(𝜽) :=
𝑁∑
𝑖=1

log 𝑓 (𝒙 𝑖 ;𝜽) (4.10)

with the pdf 𝑓 from Equation 4.5 is impossible, since we marginal-
ize over the warping matrices inside the logarithm. Instead, we use
the expectation-maximization algorithm (EM algorithm) and iter-
atively maximize the expected complete-data log-likelihood, where
we substitute the latent warping matrices with random matrices.
The expected value is then taken with respect to the conditional
distribution PrA𝑖 |x𝑖=𝒙 𝑖 ,𝜽old using an initial guess of the parameters
𝜽old. In our case, the expected complete-data log-likelihood is a
function of 𝜽 = (𝝁, 𝜎2 ,𝝍) and given by

Q(𝜽;𝜽old) =
𝑁∑
𝑖=1

{
EA𝑖 |x𝑖=𝒙 𝑖 ,𝜽old

[
log 𝑓Normal(𝒙 𝑖 ; A𝑖𝝁, 𝜎

2𝑰)
]

+ EA𝑖 |x𝑖=𝒙 𝑖 ,𝜽old [log 𝑝(A𝑖 ;𝝍)]
}
.

(4.11)

When Q is maximized with respect to 𝜽, a new set of parameters
�̂� is obtained. The new parameters are guaranteed to have an
incomplete-data log-likelihood LL(�̂�) ≥ LL(𝜽old). This procedure
is repeated with 𝜽old := �̂� until the EM algorithm converges to a
stationary point of the log-likelihood function.
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Prototype and noise variance

In our model family, the EM objective function from Equation 4.11
simplifies to a least squares problem. When taking the derivative
of Q(𝜽;𝜽old) with respect to 𝝁 and setting it to zero, we obtain

�̂𝑙 =

∑
𝑖
∑
𝑡 EA𝑖 |x𝑖=𝒙 𝑖 ,𝜽old[a𝑖𝑡 𝑙]𝑥𝑖𝑡∑

𝑖
∑
𝑡 EA𝑖 |x𝑖=𝒙 𝑖 ,𝜽old[a𝑖𝑡 𝑙]

(4.12)

for 𝑙 = 1, ..., 𝐿. The maximizing argument for the variance 𝜎2 is

�̂�2 =
1
𝑁𝑇′

(∑
𝑖

∑
𝑡

𝑥2
𝑖𝑡

− 2 ·
∑
𝑖

∑
𝑡

∑
𝑙

�𝑙 EA𝑖 |x𝑖=𝒙 𝑖 ,𝜽old[a𝑖𝑡 𝑙]𝑥𝑖𝑡

+
∑
𝑖

∑
𝑡

∑
𝑙

�2
𝑙

EA𝑖 |x𝑖=𝒙 𝑖 ,𝜽old[a𝑖𝑡 𝑙]
)
.

(4.13)

It turns out that both parameter updates depend on the warping
prior only via entries of the posterior expectations EA𝑖 |x𝑖=𝒙 𝑖 ,𝜽old [A𝑖]
and no other expected values.

Parameters of the warping priors

For the (unnormalized) Markovian time warping model, the state
change probabilities 𝝓 = (𝜙1 , ..., 𝜙𝐿−1) with 𝜙𝑙 ∈ (0, 1) have to
be updated as well. From Equation 4.11, we obtain the standard
estimates for geometric distributions:

�̂�𝑙 =

(
1
𝑁

∑
𝑖

∑
𝑡

EA𝑖 |x𝑖=𝒙 𝑖 ;𝜽old[a𝑖𝑡 𝑙]
)−1

. (4.14)

In the multinomial time warping model, we additionally estimate
the repetition probabilities 𝝅 = (𝜋1 , ...,𝜋𝐿). With a Lagrange
multiplier to ensure ∑

𝑙 𝜋𝑙 = 1 we obtain

�̂�𝑙 =

∑
𝑖
∑
𝑡 EA𝑖 |x𝑖=𝒙 𝑖 ;𝜽old[a𝑖𝑡 𝑙] − 𝑁∑

𝑖
∑
𝑡
∑
𝑙′ EA𝑖 |x𝑖=𝒙 𝑖 ;𝜽old[a𝑖𝑡 𝑙′] − 𝐿𝑁

. (4.15)

Again, the parameter updates can be computed from entries of
the posterior expectations EA𝑖 |x𝑖=𝒙 𝑖 ;𝜽old [A𝑖] and no other expected
values. The Dirichlet-compound multinomial time warping model
does not have extra parameters to estimate.
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importance sampling

Monte Carlo EM (MCEM)

Computing the expectations

For all model instantiations presented here, the only expected
values required for EM estimation are entries of the posterior ex-
pectation EA|x=𝒙;𝜽 [A]. In our model family, the pmf of the posterior
distribution is

𝑝A|x=𝒙(𝑨;𝜽) =
𝑓Normal(𝒙;𝑨𝝁, 𝜎2𝑰) · 𝑝(𝑨;𝝍)

𝑓 (𝒙;𝜽) (4.16)

with 𝑓 (𝒙;𝜽) from Equation 4.5. This pmf can be evaluated an-
alytically for the monotonic Markov prior using the standard
forward-backward algorithm [Rab89]. For many other priors, exact
evaluation is infeasible, and the posterior expectations must be
approximated with Monte Carlo methods.

We propose to estimate the posterior expectations with importance
sampling. We use the prior distribution with pmf 𝑝(𝑨;𝝍) as the
proposal distribution, and the numerator from above,

𝑝∗A|x=𝒙(𝑨;𝜽) := 𝑓Normal(𝒙;𝑨𝝁, 𝜎2𝑰) · 𝑝(𝑨;𝝍) (4.17)

as the unnormalized target function. This function is proportional
to the posterior pmf up to the denominator 𝑓 (𝒙;𝜽) that is constant
with respect to 𝑨. The posterior expectation is then estimated as
a weighted average of the warping matrices sampled from the
proposal distribution, with weights obtained from the unnormal-
ized target function and the proposal pmf [RC04]. More precisely,
for every 𝑖 = 1, ..., 𝑁 , we sample 𝑆 warping matrices 𝑨(1) , ...,𝑨(𝑆)

from the proposal and approximate the posterior expectation via

EA𝑖 |x𝑖=𝒙 𝑖 ;𝜽[A𝑖] ≈
𝑆∑
𝑠=1

(
𝑤

(𝑠)
𝑖∑

𝑠′ 𝑤
(𝑠′)
𝑖

)
𝑨(𝑠) (4.18)

with

𝑤
(𝑠)
𝑖

:=
𝑝∗A|x=𝒙 𝑖 (𝑨

(𝑠);𝜽)

𝑝(𝑨(𝑠);𝝍)
= 𝑓Normal(𝒙 𝑖 ;𝑨(𝑠)𝝁, 𝜎2𝑰). (4.19)

The importance sampling approach may be inefficient if the poste-
rior distribution is very different from the proposal distribution.
In some cases, it may be more efficient to use a uniform sampling
distribution, or to use Markov chain Monte Carlo (MCMC) meth-
ods instead. The full Monte Carlo EM (MCEM) procedure for
inference is shown in Algorithm 2.
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Algorithm 2: MCEM estimation
1 repeat
2 compute EA𝑖 |x𝑖=𝒙 𝑖 ;𝜽old [A𝑖] for 𝑖 = 1, ..., 𝑁 ;
3 compute �̂� and �̂�2 as in Equation 4.12 and Equation 4.13 ;
4 optionally, compute update for prior parameters �̂� ;
5 update 𝜽old := (�̂�, �̂�2 , �̂�)
6 until convergence;

ECG200 is particularly interesting
from the perspective of event impact
analysis, since it contains sequences
extracted from a long ECG time se-
ries at heart beat events.

4.3 Experiments

We now study the three instantiations of our model (MkWarp,
MWarp and DMWarp) empirically. Our main goal is to assess
whether there are tangible differences in the behavior of the three
warping priors for downstream tasks. We evaluate the effect of
the prototype length 𝐿 on their representative power in terms of
reconstruction error, and the impact of 𝐿 on the final alignments.
At last, we apply our models within a classification task.

We trained our models on several sequence datasets from the UCR
Time Series Classification Archive 2018 [DBK+18]. The UCR archive
contains sequence datasets from various domains, each separated
into two or more classes. We handpicked datasets that visually
exhibit strong temporal misalignments, as we designed our models
to capture the generative process of such data. We use the ECG200
dataset as a running example to demonstrate the properties of our
model family. For every training set, class, and value of 𝐿, we run
the MCEM algorithm for 20 iterations with 10 randomized restarts.
We average our performance measures over all restarts.

Prototypes are initialized by sampling from the standard normal
distribution. In the Markovian time warping model, we initialize
the state transition probabilities with 𝜙𝑙 := 1 − 𝐿

𝑇′ . In case of multi-
nomial time warping, the repetition probabilities are initialized
with 𝜋𝑙 := 1

𝐿 . For Dirichlet-compound multinomial warping, we
set 𝛼 := 1. Monte Carlo estimates for the expectations in Algorithm
2 are computed from 1,000 random samples.

4.3.1 Representative power

We first illustrate the representative power of our model family on
the ECG200 dataset (class -1, 𝑇′ = 96). Figure 4.5 shows the first se-
quence from the training dataset along with its piecewise constant
approximation �̄� 𝑖 (see Section 4.2.3) obtained from MWarp, with
𝐿 ∈ {2, 4, 8}. Clearly, a larger number of entries in the prototype 𝐿
allows a more fine-grained approximation to the original sequence.
If 𝐿 is chosen too small, salient features of the sequence are lost.
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𝐿 = 2 𝐿 = 4 𝐿 = 8

Figure 4.5: Representative power of the MWarp model on ECG200 for different prototype lengths 𝐿. Black lines depict the
original sequences 𝒙 𝑖 , blue lines the respective approximations �̄� 𝑖 .

Figure 4.6: Sum of squared recon-
struction errors (SSE) on ECG200
data by prototype length 𝐿.
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With only 𝐿 = 8 entries in the prototype, the approximation closely
follows the original sequence of length 𝑇′ = 96.

To assess the representative power quantitatively, we computed
the sum of squared errors (SSE) of the piecewise constant approxi-
mation SSE =

∑
𝑖 ∥𝒙 𝑖 − �̄� 𝑖 ∥2 on both classes of the ECG200 training

data for all three instantiations of our model family with various
values of 𝐿. Figure 4.6 shows that the SSE drops when increasing
𝐿 from 2 to 8, but then converges with only minor improvements
in SSE for higher values of 𝐿.

The three warping priors perform equally well in reconstructing
the datasets. We observe this result on all datasets that we exper-
imented with, with only minor differences in the reconstruction
performance of the priors.

4.3.2 Alignment quality

We now evaluate the performance of the model family in computing
alignments. In contrast to previous models for sequence alignment,
we align the input sequences not only by transforming the time
axes, but by jointly transforming the time axes and reducing their
temporal resolutions via the piecewise constant approximations
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𝐿 = 2 𝐿 = 4 𝐿 = 8

Figure 4.7: Alignment results �̃� 𝑖 of MWarp on ECG200, using �̃� = EA;𝝍[A] as the reference warping matrix.
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Figure 4.8: Pairwise Euclidean dis-
tances 𝐷 between the aligned se-
quences �̃� 𝑖 with �̃� = EA;𝝍[A].

pairwise Euclidean distances

described above. Generally, aligning coarse approximations is a
simpler problem than aligning fine-grained approximations. We
illustrate this observation in Figure 4.7, again using MWarp on the
ECG200 training data (class -1). When the dataset is reduced to
only two levels (𝐿 = 2), the jump from the first level to the second
level can easily be aligned across all sequences, and the two levels
have a low variability on the vertical axis across all sequences. As
the approximations contain more detail (𝐿 ∈ {4, 8}), some of the
aligned segments show a higher variability in the levels, which
indicates alignment errors.

To measure the alignment performance of our models quantita-
tively, we compute the pairwise Euclidean distances between all
sequences after alignment and obtain their average, i.e.,

𝐷 =
2

𝑁(𝑁 − 1)
∑
𝑖< 𝑗

𝑑(�̃� 𝑖 , �̃� 𝑗). (4.20)

Results can be found in Figure 4.8 using the prior expectation
�̃� = EA;𝝍[A] as the reference warping matrix. For comparison, the
average Euclidean distance on the raw unaligned ECG200 training
data is 𝐷 = 8.9 for class -1, and 𝐷 = 6.4 for class 1.

Our models improve over these baseline values for all choices
of 𝐿 by a large margin. The pairwise distances grow with 𝐿,
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This reference warping matrix aligns
all observed sequences to the first
observed sequence 𝒙1.

which confirms that the alignment problem becomes more difficult
when the models have to retain more details from the sequences.
The sequences are standardized to have mean 0 over time, so the
optimal value𝐷 = 0 is achieved when all sequences are represented
by a constant line at level 0. This corresponds to a model with
a prototype of length 𝐿 = 1. For a fair evaluation, 𝐷 should
only be compared across models with the same representational
power—in our case, with the same prototype lengths 𝐿. When
fixing the prototype length 𝐿, the Markovian model MkWarp
provides alignments with lower pairwise distances than DMWarp
on ECG200, which in turn provides lower distances than MWarp.

The differences in the pairwise Euclidean distances for the different
warping priors may be explained by the different levels of smooth-
ing in the aligned sequences that they induce. A warping prior
that distributes the alignment uncertainty over more time steps
leads to a stronger smoothing in the aligned sequences than a prior
with lower alignment uncertainty. The visualizations in Figure
4.3 suggest that the MkWarp and DMWarp priors have a higher
alignment uncertainty. The question is whether the differences in
the pairwise Euclidean distances are only due to the differences in
smoothing, or whether the alignments have also improved.

For comparison, Figure 4.9 shows the pairwise Euclidean distances
after alignment with the alternative reference warping matrix
�̃�1 = EA1 |x1=𝒙1;𝜽[A1]. The differences between the model instanti-
ations are smaller now, which confirms that the different levels
of smoothing may obscure the evaluation measure. The MkWarp
model still outperforms the other models, but the DMWarp model
does not appear superior to the MWarp model anymore.

At last, Figure 4.10 shows the pairwise Euclidean distances between
the low-dimensional representations �̂� 𝑖 before they are projected
to a common time axis by a reference warping matrix. The dif-
ferences in alignment quality become even less tangible in the
low-dimensional representations. In fact, optimal alignment in the
low-dimensional space is implicit in the Gaussian part of the likeli-
hood function from Equation 4.5, since the maximum likelihood
estimator for the prototype is the average of the low-dimensional
projections. Overall, the results on alignment quality remain in-
conclusive: The choice of the prior distribution does have an effect
on the aligned sequences according to our evaluation measure, but
we cannot clearly state whether this difference in the evaluation
measure actually reflects a change in the alignment quality.
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Figure 4.9: Pairwise Euclidean dis-
tances 𝐷 between the aligned se-
quences �̃� 𝑖 with the reference warp-
ing matrix �̃�1 = EA1 |x1=𝒙1;𝜽[A].
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Figure 4.10: Pairwise Euclidean
distances 𝐷 between the low-
dimensional projections �̂� 𝑖 . These
values cannot be compared with the
unaligned baselines due to the dif-
ferent dimensionalities.
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Figure 4.11: Reconstruction error
(SSE) against pairwise distance af-
ter alignment (𝐷) for all three pri-
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If we view our problem as a multiob-
jective optimization problem with
the two objectives SSE and𝐷, Figure
4.11 suggests that MkWarp is consis-
tently closer to the Pareto frontier
than MWarp and DMWarp.

4.3.3 Model selection

The experiments in Section 4.3.1 and Section 4.3.2 show that the
goals encoded in the two performance measures (good approxima-
tion and good alignment) are conflicting. By reconstruction error,
larger values of 𝐿 are better. By alignment quality, smaller values of
𝐿 are better. The question is how to choose a good trade-off between
these two goals. For this purpose, we plot the reconstruction error
against the pairwise distances in Figure 4.11 for various values of
𝐿 and our three warping priors. Note that we optimize neither
reconstruction error, nor alignment quality directly during train-
ing, but instead find the optimal model parameters for every 𝐿 by
maximum likelihood. For every warping prior, we thus highlight
the choice of 𝐿 that yielded the highest expected complete-data
log-likelihood (ECLL) on the training data.

We observe that the ECLL finds a trade-off between the two goals.
The models assign the highest likelihoods to parametrizations that
allow for a decent reconstruction and decent alignment of the time
series. In the example, the best values for ECG200 are 𝐿 = 6 for
MWarp and 𝐿 = 7 for DMWarp and MkWarp.

4.3.4 Classification

Finally, we evaluate the performance of our model family in down-
stream classification tasks from the UCR Time Series Classification
Archive [DBK+18]. We include several state-of-the-art methods
for sequence alignment in our experiments: Generalized Time
Warping (GTW) [ZT12], Soft-DTW (sDTW) [CB17], Trainable Time
Warping (TTW) [KMP19], and Temporal Transformer Networks
(TTN) [LWT19]. We employ our own models and the competitors
in two kinds of classifiers:

1. Bayes classifiers: Every class is modeled separately by fit-
ting our probabilistic time warping models to the data. As
probabilistic competitors, we model classes by normal distri-
butions with isotropic covariance structure (NormIso) and
full covariance structure (NormFull). Our models have 𝑂(𝐿)
free parameters per class, NormIso has𝑂(𝑇) free parameters,
and NormFull 𝑂(𝑇2).

2. Nearest centroid classifiers (NCC): Every class is represented
by a centroid, i.e., a structural average computed for each
class from the data. A new instance is assigned to the class
with the closest centroid according to the DTW distance.
NCC classifiers have 𝑂(𝑇) parameters per class.
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Table 4.1: Classification performance (test accuracy)

ECG200 CBF EthanolLevel HandOutlines Haptics InlineSkate Trace Coffee

Bayes MkWarp 0.69 0.96 0.27 0.68 0.37 0.24 0.82 0.64
Bayes MWarp 0.76 0.92 0.34 0.79 0.42 0.21 0.76 0.91
Bayes DMWarp 0.72 0.94 0.27 0.69 0.37 0.24 0.79 0.60
Bayes NormIso 0.76 0.79 0.29 0.76 0.39 0.16 0.58 1.00
Bayes NormFull 0.57 0.34 0.60 0.68 0.31 0.26 0.62 0.93

NCC MkWarp 0.73 0.76 0.25 0.65 0.30 0.18 0.54 0.54
NCC MWarp 0.79 0.80 0.33 0.89 0.42 0.18 0.56 0.96
NCC DMWarp 0.76 0.72 0.26 0.64 0.30 0.21 0.62 0.71
NCC TTN 0.70 0.58 0.25 0.67 0.24 0.16 0.43 0.46
NCC sDTW 0.78 0.80 0.26 0.81 0.38 0.19 0.49 0.93
NCC GTW 0.73 0.61 0.25 0.45 0.28 0.20 0.52 0.71
NCC TTW 0.77 0.82 0.28 0.81 0.40 0.20 0.55 0.92

Experimental setup

We use the train/test split from the UCR archive for training and
evaluation. We implemented our model family and the simple
Bayes classifiers in Python. For the NCC classifiers, we used differ-
ent approaches to compute structural averages for each class. We
obtained the source codes of GTW and TTW provided online from
the authors of TTW*. For TTW, we stick to the recommendation
of the original authors and set the order parameter to the values
4, 8, 16 and 32. We run the optimization algorithms for TTW and
GTW over 100 iterations. For sDTW, we used the implementation
from its original authors†, and set the exponent 𝛾 to the values
0.25, 0.5, 1, and 2. We compute structural averages from their
barycenter algorithm over 50 iterations. We implemented the TTN
architecture in Python using PyTorch‡, with one convolutional
layer with 4 filters and a kernel size of 9, followed by a fully
connected layer, tanh nonlinearities, and dropout (𝑝 = 0.2). For
a fair competition, we did not include the TTN in a supervised
classification architecture as the original authors, but instead use
the unsupervised loss function from [WED+19] to align the time
series for every class separately. We use the Adam optimizer with
a learning rate � = 0.0001 over 500 iterations for training.

Results

Classification accuracies can be found in Table 4.1. For methods
that depend on the choice of hyperparameters (our models, TTW,
and sDTW), we print the best result obtained using that method.
The classifiers built from our model family are highly competitive,

* https://github.com/soheil-khorram/TTW
† https://github.com/mblondel/soft-dtw
‡ https://pytorch.org/

https://github.com/soheil-khorram/TTW
https://github.com/mblondel/soft-dtw
https://pytorch.org/
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and provide the best results on many datasets. Among the Bayes
classifiers, our model family has by far the fewest parameters, and
still outperforms the competitors. The gain in accuracy is especially
strong for the CBF and Trace datasets, which contain simple shapes
that are highly misaligned. Among our three model instantiations,
there is no warping prior that strictly dominates the other priors in
terms of Bayes classification accuracy. This observation challenges
the widespread belief that Markovian models are sufficient. Among
the NCC classifiers, the multinomial prior MWarp yields the overall
best results. We believe that the difference in performance to the
other models from our family is mostly due to the lower variability
in the prior expectation EA;𝝍[A] of MWarp as visualized in Figure
4.3. When prior expectations are used as reference transformations
to compute structural averages, the multinomial prior contains
more and potentially discriminative information on the warpings
observed during training.

The Coffee dataset does not exhibit temporal misalignments, and
the simple Bayes classifier with isotropic normal distributions
achieves perfect classification results. All other datasets were
handpicked by visual inspection for the presence of distinct shapes
with temporal misalignments, before conducting the experiment.
We posit that the difference in performance to the state-of-the-art
approaches for time warping is due to their inability to distinguish
noise from signal in the warping process. We do not claim that our
probabilistic time warping models outperform the competitors in
general. However, the experiment suggests that our models indeed
preserve discriminative features of the input sequences.

4.3.5 Alignments and averages

At last, we visualize aligned sequences and structural averages
computed with MWarp on datasets from the classification ex-
periment in Figure 4.12. To compute the alignments, we selected
the prototype lengths that attain the maximal expected complete-
data log-likelihood (ECLL) after training. The models successfully
align the visually salient features of most sequences. Some high-
frequency components are not represented by the low-dimensional
prototypes and thus lost, most notably on EthanolLevel.

4.4 Conclusions

We have presented a generic model family for discrete time warp-
ing that can be instantiated with many prior distributions over the
warping matrices. Our model family generalizes existing work that
is restricted by Markov assumptions. In fact, it allows exploiting
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the large variety of discrete multivariate distributions [JKB97] to
encode complex dependencies in the warping matrices. We have
shown that maximum likelihood parameter estimation for our
model family simplifies to a least squares problem, and provided
a versatile Monte Carlo EM algorithm that is widely applicable
for many warping priors. Our experiments show that the choice
of warping prior indeed has impact on the model performance
in downstream tasks. When applied for classification, our mod-
els outperform state-of-the-art competitors. We believe that the
MWarp model is most suitable to provide a concise summary of
the data, as the multinomial warping prior seems to retain more
discriminative information than the other two priors we consid-
ered. This is particularly relevant for applications in event impact
analysis, where we are interested in visualizing the prototypical
pattern of the deviant behavior after event occurrences.
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Figure 4.12: Left: sequences 𝒙 𝑖 before
alignment; right: sequences �̃� 𝑖 after
alignment with MWarp, along with
the structural averages �̃�.

EthanolLevel (class 1), 𝑇′ = 1757, 𝐿 = 64

HandOutlines (class 1), 𝑇′ = 2709, 𝐿 = 128

Haptics (class 5), 𝑇′ = 1092, 𝐿 = 32

InlineSkate (class 7), 𝑇′ = 1882, 𝐿 = 32

Trace (class 4), 𝑇′ = 275, 𝐿 = 10
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We conclude the discussion of our methods for stationary time
series by pointing out important practical implications for the
evaluation of anomaly detection algorithms for time series. In
Chapter 2, we have presented the trigger coincidence rate and
precursor coincidence rate as measures for the association of event
occurrences and peaks in a stationary time series. In a wider
machine learning context, these measures can be viewed as time-
tolerant versions of the classical measures of precision and recall
routinely used for the evaluation of binary classifiers, event detection
and anomaly detection algorithms.

This chapter is based on:

[SM20b] Erik Scharwächter and Em-
manuel Müller. “Statistical Evalua-
tion of Anomaly Detectors for Se-
quences.” In: Proceedings of the ACM
SIGKDD International Conference on
Knowledge Discovery and Data Min-
ing, Workshop on Mining and Learning
from Time Series (KDD MiLeTS), 2020.

In this chapter, we focus on applications of these measures for
the evaluation of point-based anomaly detection algorithms in
time series. Although precision and recall are widely used for
evaluating anomaly detectors in sequential settings, their statistical
properties in these settings are poorly understood. In the following,
we demonstrate that the statistical perspective on these measures
developed in Chapter 2 for event impact analysis also helps un-
derstanding the behavior of precision and recall as evaluation
measures in sequential settings.

We first formalize notions of precision and recall with temporal
tolerance analogously to the trigger coincidence rate and precursor
coincidence rate seen earlier in this work. We argue that these
measures can be derived from time-tolerant confusion matrices
that also yield time-tolerant variants of many other standard
performance measures. However, care has to be taken to preserve
interpretability of these measures under temporal tolerance. We
perform a statistical simulation study to demonstrate that precision
and recall potentially overestimate the performance of a detector,
when computed with temporal tolerance. Our statistical perspective
on the evaluation problem allows us to compute null distributions
for the two evaluation measures—and any other measure derived
from a confusion matrix—to assess the statistical significance
of reported results under an independence assumption. While
statistical significance does not mean that the reported performance
of a detector is practically useful, lack of statistical significance
means that the reported results are not better than random guessing,
even if the nominal performance value is apparently large. Our
analysis reveals that, when developing an algorithm for point-
based anomaly detection in time series, we really seek an anomaly
scoring function that maximizes the statistical association between
the ground-truth label sequence and peaks in the anomaly score.
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Some authors, including the author
of this work, prefer the term “event
detection” if the ground-truth labels
correspond to some external event
of interest. However, for the evalu-
ation with precision and recall, it
does not matter whether the labels
are assigned based on external in-
formation outside of the time series
or based on properties of the time
series itself.

anomaly scoring function

http://twitter.com/

5.1 Introduction

Anomaly detection in sequential data is a highly active research
topic [BJR17; MVS+15; RXW+19; SFT+17; SLZ+19; XFC+18]. Precision
and recall are two widespread measures to evaluate the perfor-
mance of anomaly detectors, both for iid data and for sequential
data. An important characteristic of sequential data is that the
decisions of a detector can be imprecise [AM17; AM18] without im-
pairing its practical utility: if an anomaly at time step 𝑡 is detected
at time step 𝑡±Δ for some small lag Δ, this is still a useful result for
many applications. Recently, Tatbul et al. [TLZ+18] pointed out that
the classical precision and recall measures, when applied to sequen-
tial detection problems, may misrepresent the performance of the
detector. They introduced novel precision and recall measures for
range-based anomaly detection. However, the problem persists even
for point-based anomalies, where the ground-truth anomaly label is
a single time step. In this chapter, we study in detail time-tolerant
notions of precision and recall for point-based anomaly detection in
sequential data, with a special focus on the statistical properties
of these measures. We provide a generic problem statement for
anomaly detection and classical measures for precision and recall
below. In Section 5.2, we define notions of precision and recall
with temporal tolerance similar to the coincidence rates for event
impact analysis from Chapter 2. At last, we study the statistical
properties of these measures in Section 5.3.

5.1.1 Anomaly detection

We use a very generic formulation of the anomaly detection prob-
lem to capture a wide spectrum of approaches with our analysis.
We are given an input time series X = (x1 , ..., x𝑇) of length𝑇 over an
arbitrary domain. Furthermore, we are given an anomaly scoring
function z𝑡(X) ∈ ℝ to compute a time series of anomaly scores
Z = (z1 , ..., z𝑇) from the input time series. If the observation x𝑡
is likely an anomaly, the anomaly score z𝑡 should be high; if the
observation x𝑡 appears normal, z𝑡 should be low. An anomaly is
predicted at time step 𝑡 if the anomaly score is larger than some
predefined threshold, z𝑡 ≥ 𝜏. The exact notion of what constitutes
an anomaly is domain-specific and should be reflected in the choice
of the anomaly scoring function. Anomaly detectors of this type are
widely used across many disciplines. For example, Wiedermann
et al. [WRD+16] use the clustering coefficient as an anomaly score
for dynamic networks to detect El Niño events in climate data, and
Earle, Bowden, and Guy [EBG11] use an energy transient score
[WAY+98] to detect earthquakes from Twitter data.

http://twitter.com/
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time series X

time series of anomaly scores Z

event series of anomalies E

Figure 5.1: The running example:
Anomaly detection on Twitter data
for earthquake detection.

http://brandwatch.com/

http://emdat.be/

precision

recall

We use the problem of earthquake detection on Twitter as the
running example in this work. Figure 5.1 (top row) shows the
daily volume of tweets that were posted in Germany between
2010 and 2017 and contain the word “earthquake,” translated to
various languages. The plot also shows all severe earthquakes
that occurred globally in the same time period (bottom row).
We obtained the Twitter data using the ForSight platform by
Crimson Hexagon/Brandwatch, and the earthquake data from the
International Disaster Database EM-DAT, provided by the Centre
for Research on the Epidemiology of Disasters.

This is the same data that we used
for the experiments with MEITEST
in Section 3.3.3. While the focus in
Chapter 3 was to establish a statisti-
cal association between the Twitter
time series X and the earthquake oc-
currences in E, the focus here is how
to evaluate the performance of the
anomaly score Z for detection.

Our goal is to
evaluate whether an anomaly detector on the Twitter time series
has the potential to detect earthquakes globally. For this purpose,
we stick to Earle, Bowden, and Guy [EBG11] and use the energy
transient score as the anomaly score (middle row), i.e., we set
z𝑡 = STA𝑡/(LTA𝑡 + 1), where STA is the short-term average of the
input time series over the past 3 days, and LTA is the long-term
average over the past 14 days. The energy transient score reacts to
drastic changes in the level of the time series, while being robust
with respect to the absolute levels of these changes.

5.1.2 Evaluation measures

While the anomaly score encodes the feature of interest that the
anomaly detector should react to, the detection threshold 𝜏 controls
the precision and recall of the anomaly detector. Let E = (e1 , ..., e𝑇)
be the ground-truth event series of anomalies, with value e𝑡 = 1 if
there is an actual anomaly at time step 𝑡, and e𝑡 = 0 if there is no
anomaly. In our running example, actual anomalies correspond to
severe earthquakes captured within EM-DAT.

http://brandwatch.com/
http://emdat.be/
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Figure 5.2: Precision and recall by
threshold and tolerance Δ.
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Classical precision p0 and recall r0 are defined as

p0 =

∑
𝑡 e𝑡 · 1[z𝑡 ≥ 𝜏]∑
𝑡 1[z𝑡 ≥ 𝜏] (5.1)

r0 =

∑
𝑡 e𝑡 · 1[z𝑡 ≥ 𝜏]∑

𝑡 e𝑡
. (5.2)

The numerator is the number of true positives, i.e., the number
of time steps that are correctly predicted as anomalous, while the
denominator is either the number of predicted anomalies or the
number of actual anomalies. There is no temporal tolerance in the
classical definition of precision and recall.

The relationship between the threshold and precision and recall for
the earthquake detection problem is visualized in Figure 5.2. The
values for p0 and r0 correspond to the lines labeledΔ = 0 in the plots.
The detection thresholds on the horizontal axis are chosen from
the 𝑝-quantiles of the time series of anomaly scores. The results
are not particularly good: we can obtain acceptable recall values
at low detection thresholds, but the cost is an unacceptably low
precision. Furthermore, we observe that recall is a monotonically
decreasing function of the detection threshold 𝜏: the number of
true positives in the numerator decreases with increasing 𝜏 while
the denominator stays constant. Precision, on the other hand, is a
non-monotone function of the detection threshold, since both the
numerator and the denominator change with 𝜏.

The question is what to conclude from these bad results: Did we
use an inappropriate anomaly scoring function that should be
replaced by some other function? Or is our evaluation measure
too strict, as it does not allow temporal tolerance in the detection?
In the following, we study the effect of using evaluation measures
with temporal tolerance on the reported performance values.
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precision

recall

We use a different notation here to
emphasize how these measures re-
lax classical precision and recall.

true positives

confusion matrices

5.2 Methodology

5.2.1 Precision and recall

In sequential data, a predicted anomaly can often be considered
a true positive if there is an actual anomaly close to the predicted
time point. The higher the temporal tolerance, the higher the
number of true positives, and the higher will be both precision
and recall. We formalize measures for precision pΔ and recall
rΔ with symmetric temporal tolerance Δ by relaxing the classical
definitions as follows:

pΔ =

∑
𝑡

(
max𝑡+Δ

𝑡′=𝑡−Δ e𝑡′
)
· 1[z𝑡 ≥ 𝜏]∑

𝑡 1[z𝑡 ≥ 𝜏] (5.3)

rΔ =

∑
𝑡 e𝑡 ·

(
max𝑡+Δ

𝑡′=𝑡−Δ 1[z𝑡′ ≥ 𝜏]
)∑

𝑡 e𝑡
. (5.4)

These measures are symmetric variants of the trigger coincidence
rate and precursor coincidence rate from ECA [DSS+16] as defined
in Section 2.2.2. If Δ = 0, the time-tolerant measures are equivalent
to the classical measures for precision and recall. If Δ > 0, the
definition of a true positive in the numerator changes. In fact,
there are now two different types of true positives: In the case of
precision, a true positive is a predicted anomaly at time step 𝑡 with
an actual anomaly within the range [𝑡 − Δ, 𝑡 + Δ]. In the case of
recall, a true positive is an actual anomaly at time step 𝑡 with a
predicted anomaly within the range [𝑡 − Δ, 𝑡 + Δ].

Figure 5.2 shows the impact of various choices for the temporal
tolerance Δ on the measured values for precision and recall. De-
pending on the choice of the threshold and the temporal tolerance,
the reported values for precision and recall vary drastically. Even
for moderate temporal tolerances, the detection results appear
much better than before. In contrast to our earlier results with the
classical measures, the results with time-tolerant measures lead
us to the conclusion that the anomaly scoring function described
above applied on the Twitter time series provides a decent way to
detect severe earthquakes globally. Which conclusion is correct?
We will shed more light on this question in Section 5.3.

5.2.2 Confusion matrices

The extension of precision and recall to time-tolerant measures via
relaxed notions of true positives is intuitive, but has some subtleties.
In fact, the two measures are computed from two distinct confusion
matrices, where temporal tolerance is allowed either in the ground-
truth time steps or in the predicted time steps.
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Table 5.1: Confusion matrix

AA AnA

PA 𝑇𝑃 𝐹𝑃
∑

PnA 𝐹N 𝑇𝑁
∑∑ ∑
𝑇

The general structure of a confusion matrix is shown on the left.
It contains the numbers of observations that fall into the four
categories true positives (𝑇𝑃), false positives (𝐹𝑃), false negatives
(𝐹𝑁) and true negatives (𝑇𝑁), along with marginal sums. The
row and column headings define the marginal conditions: actual
anomaly (AA), actually no anomaly (AnA), predicted anomaly
(PA), predicted no anomaly (PnA). The confusion matrix partitions
the observations so that every observation falls into exactly one
category. Many performance measures can be computed from
confusion matrices [Pow07], typically by normalizing individual
entries by marginal sums. The measures are interpretable because
all entries and marginals have straightforward interpretations.

When allowing temporal tolerance in a confusion matrix, the result
must still be a partition with interpretable entries and marginals.
Table 5.2 and Table 5.3 show confusion matrices obtained when
allowing temporal tolerance either in the ground-truth time steps
or the predicted time steps. Both confusion matrices partition the
observations, but some entries and marginals are hard to interpret.
Some of the measures usually computed from confusion matrices
are therefore uninformative. The precision from Equation 5.3 is the
𝑇𝑃 entry from Table 5.2 (PA-AAΔ) normalized by the marginal row
sum (PA), whereas the recall from Equation 5.4 is given by the 𝑇𝑃
entry from Table 5.3 (PAΔ-AA) normalized the marginal column
sum (AA). In both cases, the 𝑇𝑃 entries and normalization terms
are interpretable and yield informative evaluation measures.

5.2.3 Null distributions

They key benefit of the statistical perspective on the evaluation
problem that we put forward here is that we can treat all entries
from the confusion matrices above, and all evaluation measures
derived thereof, as random variables. For this purpose, we assume
that the time series and the event series of ground-truth labels
are, in fact, realizations of two stochastic processes. The evaluation
measures are then statistics computed from these processes, with
probability distributions induced by the joint distribution of the
processes. This perspective allows us to establish the statistical
significance of observed values of these measures, under the
null hypothesis that the ground-truth labels and the time series
are independent—in the same way as we established statistical
significance of the number of trigger coincidences in Chapter 2.

If we find that a reported value for, e.g., the precision or the
recall is statistically significant under the null hypothesis, we have
statistical evidence that the anomaly scoring function systematically
captures aspects of the time series that are encoded in the ground-
truth anomaly labels. In other words, we have evidence that the
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Table 5.2: Relaxed confusion matrix for sequential data, with tolerance in ground-truth

AAΔ AnAΔ

PA
∑
𝑡

(
𝑡+Δmax

𝑡′=𝑡−Δ
e𝑡′

)
1[z𝑡 ≥ 𝜏]

∑
𝑡

(
1 − 𝑡+Δmax

𝑡′=𝑡−Δ
e𝑡′

)
1[z𝑡 ≥ 𝜏]

∑
𝑡

1[z𝑡 ≥ 𝜏]

PnA
∑
𝑡

(
𝑡+Δmax

𝑡′=𝑡−Δ
e𝑡′

)
(1 − 1[z𝑡 ≥ 𝜏])

∑
𝑡

(
1 − 𝑡+Δmax

𝑡′=𝑡−Δ
e𝑡′

)
(1 − 1[z𝑡 ≥ 𝜏])

∑
𝑡

(1 − 1[z𝑡 ≥ 𝜏])

∑
𝑡

(
𝑡+Δmax

𝑡′=𝑡−Δ
e𝑡′

) ∑
𝑡

(
1 − 𝑡+Δmax

𝑡′=𝑡−Δ
e𝑡′

)
𝑇

AAΔ: actual anomaly with tolerance Δ, AnAΔ: actually no anomaly with tolerance Δ, PA: predicted anomaly, PnA: predicted no anomaly

Table 5.3: Relaxed confusion matrix for sequential data, with tolerance in predictions

AA AnA

PAΔ
∑
𝑡

e𝑡
(
𝑡+Δmax

𝑡′=𝑡−Δ
1[z𝑡′ ≥ 𝜏]

) ∑
𝑡

(1 − e𝑡)
(
𝑡+Δmax

𝑡′=𝑡−Δ
1[z𝑡′ ≥ 𝜏]

) ∑
𝑡

(
𝑡+Δmax

𝑡′=𝑡−Δ
1[z𝑡′ ≥ 𝜏]

)
PnAΔ

∑
𝑡

e𝑡
(
1 − 𝑡+Δmax

𝑡′=𝑡−Δ
1[z𝑡′ ≥ 𝜏]

) ∑
𝑡

(1 − e𝑡)
(
1 − 𝑡+Δmax

𝑡′=𝑡−Δ
1[z𝑡′ ≥ 𝜏]

) ∑
𝑡

(
1 − 𝑡+Δmax

𝑡′=𝑡−Δ
1[z𝑡′ ≥ 𝜏]

)
∑
𝑡

e𝑡
∑
𝑡

(1 − e𝑡) 𝑇

AA: actual anomaly, AnA: actually no anomaly, PAΔ: predicted anomaly with tolerance Δ, PnAΔ: predicted no anomaly with tolerance Δ

performance of the anomaly detector is better than random guessing.
This sounds like a minimal goal to achieve, but is not at all trivial:
The probability distributions of the evaluation measures depend
on (1) the statistical properties of the time series, (2) the choice of
threshold, and (3) the temporal tolerance. Therefore, a reported
performance measure is uninformative unless we have knowledge
of its probability distribution under the null hypothesis. We simply
cannot say, by looking at Figure 5.2, whether the performance of
the anomaly detector is good or not, for any choice of Δ. We need
the probability distributions for this purpose.

The analytical results derived by Donges et al. [DSS+16] for ECA
provide probability distributions of the two types of true positives
from Table 5.2 and Table 5.3 (PA-AAΔ and PAΔ-AA), under the
assumption that the ground-truth anomalies and the predicted
anomalies follow independent Bernoulli processes. In this case,
both quantities follow simple binomial distributions. Our analytical
results from Section 2.2.2 provide the distribution of PAΔ-AA in the
more general case where the anomaly score is a stationary process
with limited long-range dependencies. Unfortunately, there are no
analogous derivations for any other entry from the time-tolerant
confusion matrices. In this chapter, we do not use the existing
analytical results, but perform Monte Carlo simulations to estimate
the required probability distributions without potentially limiting
assumptions on the data generating processes.
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5.3 Experiments

In the following, we study the behavior of the probability distribu-
tions of precision and recall under the assumption of independent
processes, within our running example of earthquake detection.
For this purpose, we simulate 10,000 independent “ground-truth”
event series E′ by randomly permuting the actual ground-truth
event series E . In doing so, we keep the number of ground-truth
anomalies constant and assume that they follow a Bernoulli process.
We believe that this assumption is reasonable for ground-truth
anomalies, which typically occur rarely and are not clustered. We
compute time-tolerant confusion matrices and the time-tolerant
measures of precision and recall for all permuted event series E′

with the anomaly score Z to obtain Monte Carlo estimates of their
respective probability distributions.

5.3.1 Visualizations

First, we visualize the precision and recall values obtained from a
subset of 100 random permutations for various temporal tolerances
and thresholds in Figure 5.3. The visualization also shows the
performance measures observed on the non-permuted ground-
truth event series.

The observed precision and recall values on the non-permuted
ground-truth are generally higher than the values from the ran-
domly permuted event series, especially at larger thresholds. This
confirms that the anomaly score contains useful information on
earthquake occurrences. However, when the temporal tolerance
is increased, the gap between the simulated and the observed
performance values tends to shrink: the performance values on
the permuted event series increase to a stronger degree than the
performance values on the actual ground-truth. The consequence
is that reported performance values, in particular when computed
with a high temporal tolerance, may not reflect the actual per-
formance of the anomaly detector. In the worst case, one might
conclude that the anomaly score allows detection of anomalies
that are statistically independent of the anomaly score.

5.3.2 Using the distributions

The simulations clearly show that assessment of the statistical
significance of the observed performance measures is imperative.
For this purpose, we fix the temporal tolerance to Δ = 2 and set
the threshold 𝜏 to the empirical 0.9-quantile of the anomaly score
Z . We observe PAΔ-AA = 80 (recall 𝑟Δ = 0.49) and PA-AAΔ = 145
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Figure 5.3: Simulated and observed
values for the precision𝑃Δ and recall
𝑅Δ, for Δ ∈ {0, 1, 2, 4} and thresh-
olds at various 𝑝-quantiles.
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Figure 5.4: Cumulative distribution
functions of the two types of true
positives required to compute preci-
sion and recall, with Δ = 2 and 𝜏 set
to the empirical .9-quantile of Z.
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(precision 𝑝Δ = 0.56) on the non-permuted ground-truth from
our example. To assess the statistical significance of the reported
numbers, we now have a closer look at the null distributions for the
performance measures obtained in the Monte Carlo simulations
for this specific parametrization.

Figure 5.4 (simulated) shows the empirical cumulative distribu-
tion functions for the numbers of true positives obtained from
all 10,000 Monte Carlo simulations for the specific choice of Δ
and 𝜏 mentioned above. These distributions summarize vertical
slices (at the 0.9-quantile) of the corresponding plots in the third
row of Figure 5.3, without normalization. Given the simulated
distributions, we can easily compute Monte Carlo 𝑝-values [DH97]
for the numbers of true positives: The Monte Carlo 𝑝-value is the
fraction of simulations with a true positive value at least as high as
the value reported on the actual ground-truth event series. Since
all simulated values were smaller than the reported values (80 and
145, respectively), we have a highly significant 𝑝 < 0.0001 for both
precision and recall for this choice of Δ and 𝜏.

If we compare the reported values of the performance measures
with the expected values and variances of the Monte Carlo distri-
butions under the null hypothesis of independence, we also have
a means to assess how good the reported performance is. We obtain
an expected value of 39.87 ± 5.27 for PAΔ-AA and an expected
value of 71.42±10.14 for PA-AAΔ, where the range is one standard
deviation. The reported values of 80 and 145, respectively, are well
outside this range and about twice as good as random guessing.

The analytical null distributions derived in the literature [DSS+16]
and in Chapter 2 are all binomial. To complete our analysis, we now
check whether the Monte Carlo simulations also yield binomial
distributions in our running example. Figure 5.4 (binomial) shows
the cumulative distribution functions of binomial random variables
when the binomial success probabilities are estimated from our
Monte Carlo simulations. The plots suggest that the true positive
PAΔ-AA for the recall follows a binomial distribution, whereas the
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true positive PA-AAΔ for the precision seems to be overdispersed
with respect to the binomial distribution. We have repeated the
experiment with different thresholds and temporal tolerances and
observed the same behavior across all experiments.

5.4 Conclusions

Statistical evaluation of point-based anomaly detectors with time-
tolerant notions of precision and recall is surprisingly similar to
the methodology of peak event coincidence analysis described
in Chapter 2. We have shown that the time-tolerant measures for
precision and recall are computed from two distinct time-tolerant
confusion matrices. These time-tolerant confusion matrices can, in
principle, be used to derive time-tolerant variants of other well-
known measures. When interpreting the input time series and
the ground-truth event series as realizations of two stochastic
processes, we can estimate the probability distributions for all
these measures under the null hypothesis of independence. We
have presented a simple way to estimate these null distributions
with Monte Carlo simulations, by randomly permuting the ground-
truth labels. The null distributions allow assessing the statistical
significance of reported results, and provide a means to put the
reported results into context by comparing them with the expected
values of the respective measures under independence.

Since the probability distributions of the evaluation measures vary
with the statistical properties of the anomaly score Z, the detec-
tion threshold 𝜏, and the temporal tolerance Δ, we stress that a
reported performance value is completely uninformative unless its
null distribution is provided. Therefore, we believe that providing
null distributions for reported precision and recall values should
become a community standard in anomaly detection for sequential
data. While Monte Carlo simulations are sufficient in most prac-
tical cases, future theoretical work should improve the analytical
understanding of the null distributions required for this task.

At last, we believe that the statistical perspective on the evaluation
of anomaly detectors provides interesting links between association
measures for event impact analysis and evaluation measures for
anomaly detectors. In fact, any of the evaluation measures derived
from the confusion matrices in Table 5.2 and Table 5.3 could be
used as an association measure for event impact analysis. While
true positives, i.e., the numbers of trigger coincidences and precursor
coincidences from Chapter 2, indicate excitatory associations, false
positives and false negatives indicate inhibitory associations between
the event series and the time series. Therefore, these quantities can
also be used meaningfully in future tests for event impacts.
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The methods proposed in the previous chapters for event impact
analysis are all based on the assumption that the time series and the
event series are jointly stationary. The notion of event impacts from
Definition 1.3.5, the independence tests and association measures
developed in Chapter 2 and Chapter 3, as well as the probabilistic
warping model from Chapter 4 all require that the distribution of
the time series does not change over time. In this final chapter, we
focus on event impact analysis for nonstationary time series. Given
that there are countless ways in which nonstationarity can emerge,
we restrict our attention to one of the simplest possible types of
nonstationarity one can imagine: a segmented time series, where
the data-generating process changes its dynamics at specific points
in time, but remains stationary within each segment. Another type
of nonstationarity—the case of an integrated time series with a
stochastic trend—has been discussed earlier in Section 1.3.2.

This chapter is based on:

[SLM21] Erik Scharwächter,
Jonathan Lennartz, and Emmanuel
Müller. “Differentiable Segmenta-
tion of Sequences.” In: Proceedings
of the International Conference on
Learning Representations (ICLR),
2021.

There are two straightforward ways to study event impacts in
segmented time series. Given the locations of the change points,
we can apply any of the methods introduced in this work per
segment and make statements about event impacts on the level of
(stationary) segments. For example, in Figure 6.1, event occurrences
systematically lead to peaks in the second segment of the time series,
but not in the other segments. Alternatively, we can test whether
the occurrence of change points itself is statistically associated
with the occurrence of events. In this case, we could apply, e.g.,
the standard ECA approach of Donges et al. [DSS+16] for event
series described in Section 2.2.1, or any other method designed
to correlate pairs of event series, and assess to what extent events
systematically trigger or precede change points.

The key problem that needs to be solved in both cases is to es-
timate the locations of the change points. In the following, we
propose a solution to this problem that is based on segmented
models [Mug03]. Segmented models are widely used to describe
nonstationary sequential data with discrete change points. They
are well-suited for event impact analysis, since they provide not
only the locations of the change points, but also a description of
the data-generating process within each segment, in the form of a
probabilistic model. These descriptions can be used to assess the
nature of the event impact individually for each change point, by
comparing the models before and after a change.

Figure 6.1: Time series with three
segments and temporary event im-
pacts only in the second segment.
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Same as the probabilistic time warping model from Chapter 4,
we study segmented models with applications in event impact
analysis in mind, but they can be used in many other contexts.
In the following, we provide a generic treatment of the subject
without a special focus on event impact analysis.

6.1 Introduction

Nonstationarity is a classical challenge in the analysis of various
types of data. A common source of nonstationarity is the presence
of change points, where the data-generating process switches its
dynamics from one regime to another regime. In some applica-
tions, the detection of change points is of primary interest, since
they may indicate important tipping points in the phenomenon
under study [ACH19; BN93; BT65; LXD+15; MJ14; Pag54]. Other
applications require models for the dynamics within each segment,
which may yield more insights into the phenomenon under study
and enable predictions. A plethora of segmented models for re-
gression analysis [ADL+16; BP03; Haw76; Ler80; MC70; Mug03]
and time series analysis [AH13; DLR06; DXS+16; Ham90] have
been proposed in the literature, where the segmentation is either
in the data dimensions or the index set. In this work, we study
segmented models for sequential data, where the data-generating
process changes its dynamics at specific points in time.

Estimation of classical segmented models requires solving a mixed
discrete-continuous optimization problem, where the segmen-
tation is the discrete part and all other model parameters are
continuous. Several non-standard estimation algorithms have been
developed that are highly specialized for their specific model as-
sumptions. Unfortunately, the dependence on non-standard algo-
rithms for estimation makes it hard to integrate segmented models
with highly expressive deep learning architectures that critically
depend on gradient-based optimization. Therefore, we propose a
relaxed variant of segmented models that enables joint estimation
of all model parameters, including the segmentation function,
with gradient descent. Our relaxed model enables analyses of
event impacts for segmented time series under very expressive
data-generating processes.

In summary, we make the following contributions:

▶ We formulate a continuous relaxation of segmented models
for sequential data that can be estimated with standard
algorithms for gradient descent. Our model includes the
important class of segmented generalized linear models as a
special case, which makes it highly versatile.
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data-generating process (DGP)

segmented model

loss function

▶ We show that discrete segmentation functions can be replaced
by continuous warping functions during the estimation pro-
cess. As a result, the learnable warping functions proposed
recently for sequence alignment [LWT19; WED+19] can be
employed within our relaxed segmented model.

▶ We develop a novel family of warping functions based on
the two-sided power (TSP) distribution [KD04; VK02] that is
specifically designed for the segmentation task. TSP-based
warping functions are differentiable, have simple closed-form
expressions that allow fast evaluation, and their parameters
correspond with change points.

▶ We use our approach to model the spread of COVID-19 with
Poisson regression, apply it on a change point detection
task, and learn classification models with concept drift. The
experiments show that our approach effectively solves all
these tasks with a standard algorithm for gradient descent.

6.1.1 Problem statement

Let X = (x1 , ..., x𝑇) be a sequence of 𝑇 observations, and let
Z = (z1 , ..., z𝑇) be an additional sequence of covariates used to
predict these observations. We assume that observations and co-
variates are vectors, but they can be scalar-valued as well. The
data-generating process (DGP) of X given Z is time-varying and
follows a segmented model with 𝐾 ≪ 𝑇 segments on the time
axis. Let 𝜏𝑘 denote the beginning of segment 𝑘. We assume that

x𝑡 | z𝑡 = 𝒛𝑡
iid∼ 𝑓DGP (𝒛𝑡 , 𝜽𝑘) , if 𝜏𝑘 ≤ 𝑡 < 𝜏𝑘+1 , (6.1)

where the DGP in segment 𝑘 is parametrized by 𝜽𝑘 . For example,
in a segmented Gaussian autoregressive time series of order ℎ, the
vector of covariates is z𝑡 = (x𝑡−ℎ , ..., x𝑡−1 , 1) and the DGP satisfies
x𝑡 | z𝑡 = 𝒛𝑡

iid∼Normal(𝒛′𝑡𝜽𝑘 , 𝜎2). Although our notation in Equation
6.1 implies a probabilistic DGP, our formalism equally applies to
fully deterministic models, which can be viewed as probabilistic
models with degenerate distributions.

We express the segmentation of the time axis by a segmentation
function � : {1, ..., 𝑇} −→ {1, ..., 𝐾} that maps each time point 𝑡
to a segment identifier 𝑘 such that �(𝑡) = 𝑘 for all 𝜏𝑘 ≤ 𝑡 < 𝜏𝑘+1.
By design, the segmentation function is monotonically increasing
with boundary constraints �(1) = 1 and �(𝑇) = 𝐾. Equation 6.1
can now be rewritten as x𝑡 | z𝑡 = 𝒛𝑡

iid∼ 𝑓DGP(𝒛𝑡 , 𝜽�(𝑡)). We denote all
segment-wise parameters by 𝚯 = (𝜽1 , ..., 𝜽𝐾). The problem is to
find a segmentation function � as well as segment-wise parameters
𝚯 that minimize a loss function L(�,𝚯), for example, the negative
log-likelihood of the observations X.
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We use the term sequential data in-
stead of the term time series to reflect
this generality in applications.

6.1.2 Related work

The model from Equation 6.1 is typically studied for change point
detection [BW20; TOV20] and modeling of nonstationary time
series [Cai94; DLR06; GS99; KL01; RH08; SHJ+16], but is general
enough to capture classification models with concept drift [GŽB+13]
and segmented generalized linear models [Mug03]. Classical esti-
mation algorithms exploit the fact that model estimation within a
segment is often straightforward when the segmentation is known.
These approaches decouple the search for an optimal segmentation
� algorithmically from the estimation of the parameters 𝚯:

min
�,𝚯

L(�,𝚯) = min
�

min
𝚯

L(�,𝚯). (6.2)

Various algorithmic search strategies have been explored for the
outer minimization of �, including grid search [Ler80], dynamic
programming [BP03; Haw76], hierarchical clustering [MC70] and
other greedy algorithms [ADL+16], some of which come with
provable optimality guarantees. These algorithms are often tailored
to a specific class of models like piecewise linear regression, and
do not generalize beyond. Moreover, the use of non-standard
optimization techniques in the outer minimization hinders the
integration of such models with highly expressive deep learning
architectures, which usually require joint optimization of all model
parameters with gradient descent.

6.2 Methodology

We propose a continuous relaxation of the segmented model from
Equation 6.1 to enable joint estimation of all parameters with
gradient descent. In a nutshell, we replace the discrete segmen-
tation function � with a differentiable warping function 𝛾 in the
segmented model definition.

6.2.1 Relaxed segmented models

We begin by relaxing the segmented model definition to

x𝑡 | z𝑡 = 𝒛𝑡
iid∼ 𝑓DGP

(
𝒛𝑡 , �̂�𝑡

)
, (6.3)

where we substitute the actual parameter 𝜽𝑘 of the DGP at time
step 𝑡 in segment 𝑘 by the predictor �̂�𝑡 . The predictor �̂�𝑡 is a
weighted sum over the individual segment parameters,

�̂�𝑡 :=
∑
𝑘

�̂�𝑘𝑡𝜽𝑘 , (6.4)
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Alignment matrices are no different
from the warping matrices seen in
Chapter 4. The former align time
steps with segments, the latter align
time steps with prototype entries.

warping function

Similar transformations of warping
functions have recently been applied
for time series alignment with neu-
ral networks [WED+19].

exactly represents

with weights �̂�𝑘𝑡 ∈ [0, 1] such that ∑
𝑘 �̂�𝑘𝑡 = 1 for all 𝑡. The

weights implicitly define a soft alignment matrix that aligns time
steps 𝑡 and segment identifiers 𝑘. For each segmentation function
�, we can construct an alignment matrix by setting �̂�𝑘𝑡 = 1 if
and only if �(𝑡) = 𝑘. This leads to the original segmented model
from Equation 6.1. In our relaxed model, we employ continuous
predictors �̂𝑡 ∈ [1, 𝐾] for the values �(𝑡) ∈ {1, ..., 𝐾}. We define
the alignment weight �̂�𝑘𝑡 for segment 𝑘 and time step 𝑡 via the
difference between the continuous predictor �̂𝑡 and 𝑘:

�̂�𝑘𝑡 := max
(
0, 1 −

���̂𝑡 − 𝑘��) (6.5)

The smaller the difference in Equation 6.5, the closer the alignment
weight �̂�𝑘𝑡 will be to 1. With this choice of weights, when 𝑘 ≤ �̂𝑡 ≤
𝑘+1, the predictor �̂�𝑡 from Equation 6.4 will be a linear interpolation
of the parameters 𝜽𝑘 and 𝜽𝑘+1. Higher-order interpolations can be
achieved by redefining the weights accordingly.

Warping functions for segmentation

The key question is how to effectively parametrize the contin-
uous predictors �̂𝑡 for the discrete segmentation function. We
observe that the continuous analogue of a monotonically increas-
ing segmentation function is a warping function [RL98]. Warping
functions describe monotonic alignments between closed contin-
uous intervals. Formally, the function 𝛾 : [0, 1] −→ [0, 1] is a
warping function if it is monotonically increasing and satisfies
the boundary constraints 𝛾(0) = 0 and 𝛾(1) = 1. In our relaxed
model, we obtain the continuous predictors �̂𝑡 from such a warping
function. More precisely, we transform a warping function 𝛾 into
a sequence of continuous predictors by evaluating 𝛾 at 𝑇 evenly-
spaced grid points on the unit interval [0, 1] and rescaling the
result to the domain [1, 𝐾]. Let 𝑢𝑡 = (𝑡 − 1)/(𝑇 − 1) for 𝑡 = 1, ..., 𝑇
be a grid on the unit interval [0, 1]. We define the predictors for
the segmentation function as

�̂𝑡 := 1 + 𝛾(𝑢𝑡) · (𝐾 − 1). (6.6)

The continuous predictors are now fully determined by the warping
function 𝛾. An example segmentation function and predictors
based on warping functions are shown in Figure 6.2. Apparently,
ideal warping functions for segmentation are piecewise constant.
The following definition formalizes this observation:

Definition 6.2.1 The warping function 𝛾 : [0, 1] −→ [0, 1] exactly
represents the segmentation function � : {1, ..., 𝑇} −→ {1, ..., 𝐾} with
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Figure 6.2: Example segmentation
function �(𝑡) and warping functions
𝛾𝑖(𝑢). The shaded regions are piece-
wise constant in 𝛾1 and 𝛾2, respec-
tively; 𝛾3 is strictly increasing.
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respect to the unit grid (𝑢𝑡)𝑇𝑡=1 if for all 𝑡 = 1, ..., 𝑇 we have

𝛾(𝑢𝑡) =
𝑘 − 1
𝐾 − 1

⇔ �(𝑡) = 𝑘. (6.7)

Exact representation entails that the predictors �̂𝑡 defined in Equa-
tion 6.6 satisfy �̂𝑡 = �(𝑡) for all 𝑡. Clearly, exact representation can
only be achieved with piecewise-constant warping functions.

Relaxed optimization problem

The relaxed segmented model described above is parametrized by
the segment parameters 𝚯 and the warping function 𝛾. In general,
the loss LR under the relaxed segmented model is a lower bound
for the original loss from Equation 6.2,

min
�,𝚯

L(�,𝚯) ≥ min
𝛾,𝚯

LR(𝛾,𝚯). (6.8)

Therefore, we propose to solve the original discrete-continuous
optimization problem by minimizing the relaxed loss. To obtain a
discrete segmentation function from the optimal warping function,
the predictors �̂𝑡 can simply be rounded the nearest integers.

In practice, we cannot easily minimize over the space of all warping
functions, but have to optimize over a suitable family of warping
functions. If the family of warping functions is differentiable with
respect to its parameters, the relaxed model can be estimated with
gradient descent. The right-hand side of Equation 6.8 is a continu-
ous relaxation of the discrete-continuous optimization problem on
the left-hand side only if the family of warping functions used for
optimization can represent segmentation functions exactly.

Several families of warping functions have been proposed in the
literature and can principally be employed within our model.
[Aik91; CSS10; DFH18; FHB+15; GS04; GG04; KSW11; LWT19; RL98;
WED+19]. However, none of them contains piecewise-constant
functions. Therefore, none of them can exactly represent segmenta-
tion functions, which means that the relaxed optimization problem
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TSP distribution

three-parameter TSP distribution

is—strictly speaking—not a relaxation of the original problem.
Below, we define a novel family of piecewise-constant warping
functions that is tailored specifically for the segmentation task,
with only one parameter per change point.

6.2.2 TSP-based warping functions

Warping functions are similar to cdfs [LWT19]. Cdfs are mono-
tonically increasing, right-continuous, and normalized over their
domain [Was04]. If their support is bounded to [0, 1], they satisfy
the same boundary constraints as warping functions. Therefore,
we can exploit the vast literature on statistical distributions to
define and characterize families of warping functions. Our fam-
ily of warping functions is based on the two-sided power (TSP)
distribution [KD04; VK02].

Background: Two-sided power distribution

The TSP distribution models continuous random variables with
support [𝑎, 𝑏] ⊂ ℝ. In its most illustrative form, its pdf is unimodal
with power-law decay on both sides. Formally, the pdf is

𝑓TSP(𝑢; 𝑎, 𝑚, 𝑏, 𝑛) =


𝑛
𝑏−𝑎

(
𝑢−𝑎
𝑚−𝑎

)𝑛−1
, for 𝑎 < 𝑢 ≤ 𝑚

𝑛
𝑏−𝑎

(
𝑏−𝑢
𝑏−𝑚

)𝑛−1
, for 𝑚 ≤ 𝑢 < 𝑏

0, elsewhere,

(6.9)

with 𝑎 ≤ 𝑚 ≤ 𝑏. The parameters 𝑎 and 𝑏 define the boundaries of
the support, 𝑚 is the mode (anti-mode) of the distribution, and
𝑛 > 0 is the power parameter that tapers the distribution. The
triangular distribution [JKB94] is the special case with 𝑛 = 2. In
the following, we restrict our attention to the unimodal regime
with 𝑎 < 𝑚 < 𝑏 and 𝑛 > 1. In this case, the cdf is given by

𝐹TSP(𝑢; 𝑎, 𝑚, 𝑏, 𝑛) =


0, for 𝑢 ≤ 𝑎
𝑚−𝑎
𝑏−𝑎

(
𝑢−𝑎
𝑚−𝑎

)𝑛
, for 𝑎 ≤ 𝑢 ≤ 𝑚

1 − 𝑏−𝑚
𝑏−𝑎

(
𝑏−𝑢
𝑏−𝑚

)𝑛
, for 𝑚 ≤ 𝑢 ≤ 𝑏

1, for 𝑏 ≤ 𝑢.

(6.10)

For convenience, we introduce a three-parameter TSP distribution
with support restricted to subintervals of [0, 1] located around the
mode. This variant of the distribution is fully specified by the mode
𝑚 ∈ (0, 1), the width 𝑤 ∈ (0, 1] of the subinterval, and the power
𝑛 > 1. Depending on the mode and the width, the distribution
is symmetric or asymmetric. Intuitively, the three-parameter TSP
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Figure 6.3: Three-parameter variant of the two-sided power distribution TSP(𝑚, 𝑤, 𝑛) on the interval [0, 1]. Dashed lines
denote the modes 𝑚, arrows the widths 𝑤; shaded regions have probability zero. Top row: probability density function.
Bottom row: cumulative distribution function.

TSP-based warping function

distribution describes a symmetric two-sided power kernel of
window size 𝑤 that is located at 𝑚 and becomes asymmetric only
if a symmetric window would exceed the domain [0, 1].

We denote the three-parameter TSP distribution as TSP(𝑚, 𝑤, 𝑛)
and write 𝑓TSP(𝑢;𝑚, 𝑤, 𝑛) and 𝐹TSP(𝑢;𝑚, 𝑤, 𝑛) for its pdf and cdf,
respectively. Illustrations of the pdf and cdf of the three-parameter
TSP distribution for various parametrizations can be found in
Figure 6.3. The original TSP parameters 𝑎 and 𝑏 are given by

𝑎 = max
(
0,min

(
1 − 𝑤, 𝑚 − 𝑤

2

))
, (6.11)

𝑏 = min(1, 𝑎 + 𝑤), (6.12)

and yield a unimodal regime. The TSP distribution is a peaked
alternative to the beta distribution. An advantage of the TSP
distribution over the beta distribution is that its pdf and cdf have
closed form expressions that are easy to evaluate computationally.
Moreover, they are differentiable almost everywhere.

Warping with mixtures of TSP distributions

We define the TSP-based warping function 𝛾TSP : [0, 1] −→ [0, 1]
for 𝐾 segments as a mixture distribution of 𝐾 − 1 three-parameter
TSP distributions. Mixtures of unimodal distributions have step-
like cdfs that approximate segmentation functions. We use uniform
mixture weights, and treat the width 𝑤 and power 𝑛 of the TSP
component distributions as hyperparameters. The components
differ only in their modes 𝒎 = (𝑚1 , ..., 𝑚𝐾−1) with 𝑚𝑘 ∈ (0, 1):

𝛾TSP(𝑢;𝒎) :=
1

𝐾 − 1
∑
𝑘

𝐹TSP(𝑢;𝑚𝑘 , 𝑤, 𝑛). (6.13)
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We constrain the modes to be strictly increasing, so that 𝛾TSP is
identifiable. If the windows around two consecutive modes 𝑚𝑘−1
and 𝑚𝑘 are non-overlapping, then 𝛾TSP(𝑢;𝑚) = 𝑘−1

𝐾−1 between these
windows. Furthermore, 𝛾TSP(𝑢;𝑚) = 0 before the first window and
𝛾TSP(𝑢;𝑚) = 1 after the last window. Therefore, the family of TSP-
based warping functions contains piecewise-constant functions.
The functions 𝛾1 and 𝛾2 in Figure 6.2 are examples of TSP-based
warping functions. In fact, any segmentation function can be exactly
represented by a TSP-based warping function:

Lemma 6.2.1 For every segmentation function �, there is a TSP-based
warping function 𝛾TSP that exactly represents �.

Proof. We construct 𝛾TSP by placing the 𝐾 − 1 modes 𝑚𝑘 at the
locations of the 𝐾−1 change points in � (projected to the unit grid),
and choose a window size 𝑤 not larger than the grid resolution.

Formally, let 𝜏𝑘+1 be beginning of the (𝑘 + 1)-th segment, such
that �(𝜏𝑘+1 − 1) = 𝑘 and �(𝜏𝑘+1) = 𝑘 + 1. We place the 𝑘-th mode
of 𝛾TSP at the beginning of the (𝑘 + 1)-th segment, i.e., we set
𝑚𝑘 := (𝑢𝜏𝑘+1−1 + 𝑢𝜏𝑘+1)/2 for all 𝑘 = 1, ..., 𝐾 − 1, and use a window
size 𝑤 < 1/(𝑇 − 1). The power 𝑛 > 1 can be chosen freely. This
choice of 𝛾TSP satisfies the conditions from Definition 6.2.1.

The constructive proof reveals that the modes 𝒎 = (𝑚1 , ..., 𝑚𝐾−1)
of a TSP-based warping function 𝛾TSP correspond with change
points in the segmentation function �.

When using the family of TSP-based warping functions within the
relaxed segmented model, the continuous optimization problem
from Equation 6.8 is a proper relaxation of the original discrete-
continuous optimization problem. Furthermore, since TSP-based
warping functions are differentiable, the relaxed model can be
estimated with gradient descent.

6.2.3 Model architecture

We have described all components of the relaxed segmented model.
It can use any differentiable family of warping functions to approx-
imate a segmentation function with gradient descent. An overview
of the complete model architecture with TSP-based warping functions
is provided in Table 6.1. To simplify the estimation problem, we
rewrite the TSP modes as a normalized cumulative sum,

�̂�𝑘 :=
∑
𝑘′≤𝑘 exp(�𝑘′)∑𝐾
𝑘′=1 exp(�𝑘′)

for 𝑘 = 1, ..., 𝐾 − 1 (6.14)
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Table 6.1: The relaxed segmented model with TSP-based warping functions.

data-generating process x𝑡 | z𝑡 = 𝒛𝑡
iid∼ 𝑓DGP

(
𝒛𝑡 , �̂�𝑡

)
𝑡 = 1, ..., 𝑇

parameter predictors �̂�𝑡 :=
∑
𝑘

𝜽𝑘 max
(
0, 1 −

���̂𝑡 − 𝑘��) 𝑡 = 1, ..., 𝑇

segmentation predictors �̂𝑡 := 1 + 𝛾TSP

(
𝑡 − 1
𝑇 − 1

; �̂�
)
· (𝐾 − 1) 𝑡 = 1, ..., 𝑇

TSP mode predictors �̂�𝑘 :=
∑
𝑘′≤𝑘 exp(�𝑘′)∑𝐾
𝑘′=1 exp(�𝑘′)

𝑘 = 1, ..., 𝐾 − 1

segment parameters 𝜽𝑘 𝑘 = 1, ..., 𝐾
TSP parameters �𝑘 𝑘 = 1, ..., 𝐾

with unconstrained real parameters 𝝁 = (�1 , ..., �𝐾). The trans-
formation of the parameters guarantees that the modes �̂� =

(�̂�1 , ..., �̂�𝐾−1) are strictly increasing and come from the interval
(0, 1). The warping function is now overparametrized, since the
transformation is invariant to additive terms in the parameters 𝝁.
This issue can be resolved by enforcing �1 := 0.

The learnable parameters of this architecture are 𝚯 = (𝜽1 , ..., 𝜽𝐾)
for the DGP and 𝝁 = (�1 , ..., �𝐾) for the warping function. The
hyperparameters are the number of segments 1 < 𝐾 ≪ 𝑇, and the
window size 𝑤 ∈ (0, 1] and power 𝑛 > 1 of the TSP distributions.
This architecture is a concatenation of simple functions that are
either fully differentiable or differentiable almost everywhere.
Therefore, all parameters can be learned jointly using gradient
descent. As noted in Section 6.2.1, a hard segmentation � of the
input sequence can be obtained at any time during or after training
by rounding �̂𝑡 to the nearest integers.

For effective training with gradient descent, the window size of
𝛾TSP should initially be larger than the sampling resolution of the
unit grid, 𝑤 > 1/(𝑇 − 1), to allow the loss to back-propagate across
segment boundaries. The window size can be interpreted as the
receptive field of the individual TSP components. The window size
can be tapered down to 𝑤 ≤ 1/(𝑇 − 1) over the training epochs to
obtain a warping function that exactly represents a segmentation
function in the sense of Definition 6.2.1.

6.3 Experiments

Our relaxed segmented model is highly versatile and can be em-
ployed for many different tasks. In Section 6.3.1, we study the
performance of our approach in estimating a segmented general-
ized linear model (GLM) [Mug03] on COVID-19 data. In Section
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6.3.2, we evaluate our approach on a change point detection bench-
mark against various competitors. In Section 6.3.3, we apply it on
a streaming classification benchmark with concept drift. At last,
Section 6.3.4 illustrates potential future applications of our model
for discrete representation learning.

We implemented our model in Python* using PyTorch† and opti-
mize the parameters with Adam [KB15]. We employ three different
families of warping functions in our relaxed model: nonparametric
(NP) [LWT19], CPA-based (CPAb) [WED+19], and our TSP-based
functions (TSPb). Source codes for the model and all experiments
can be found online at https://github.com/diozaka/diffseg.

6.3.1 Poisson regression

Recent work has applied segmented Poisson regression to model
COVID-19 case numbers [KGB+20; MSP20]. We follow Küchenhoff
et al. [KGB+20] and model daily time series of newly reported COVID-
19 cases during the first wave of the pandemic in Germany in the
year 2020. We obtained official data from Robert Koch Institute‡,
the German public health institute. A visualization of the reported
data in Figure 6.4 (right plot, bars) reveals nonstationary growth
rates and weekly periodicity. Therefore, we use time and a day-of-
week indicator as covariates in the model. We tie the coefficients
for the day-of-week indicators across all segments, while the daily
growth rates and the bias terms differ in every segment.

We estimate a standard segmented Poisson regression model with
the baseline algorithm by [Mug03], and our relaxed models (TSPb,
CPAb, NP) with gradient descent. We estimate the baseline model
and the relaxed models with 𝐾 = 2, 4, 8, 16, 32, and 64 segments.
The true number of segments is unknown in this task. Additional
details and results can be found in Section 6.A.1.

Figure 6.4 (left plot) shows the goodness-of-fit (log-likelihood)
of all models. TSPb consistently reaches the performance of the
baseline algorithm. Moreover, TSPb consistently outperforms the
other families of warping functions in this experiment. The im-
provement over NP is particularly large, which indicates that the
“nonparametric” warping functions of Lohit, Wang, and Turaga
[LWT19] are harder to train than the parametric families. CPAb
performs similar to TSPb, but the training time is much longer due
to the more complex mathematical operations involved.

* https://python.org/
† https://pytorch.org/
‡ https://www.rki.de/

https://github.com/diozaka/diffseg
https://python.org/
https://pytorch.org/
https://www.rki.de/
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Figure 6.4: Segmented Poisson regression results on COVID-19 case numbers in Germany (2020).

saturated model

In the context of event impact analy-
sis, we could now correlate the epi-
demic change points with the imple-
mentation of lockdown policies and
assess the respective event impacts
by comparing the growth rates from
above from segment to segment.

We observe that the goodness-of-fit generally grows with the
number of segments 𝐾 and approaches the performance of a
saturated model (one Poisson distribution per data point). For
𝐾 > 8, the baseline of Muggeo [Mug03] terminates without a
model estimate. Figure 6.4 (right plot) visualizes the best TSPb
model for 𝐾 = 4 (blue line). We also provide smoothed predictions
where the average day of week (dow) effect is incorporated into the
bias term to highlight the change of the growth rate from segment
to segment (purple line).

The three change points are located at 2020-03-16, 2020-03-31, and
2020-05-05. The baseline algorithm of Muggeo [Mug03] detects
consistent change points at 2020-03-16 (±0 days), 2020-03-30 (−1
day), and 2020-05-01 (−4 days). Since the reported data is not iid
within a segment (it is only conditionally iid given the covariates),
other algorithms for change point detection cannot be applied
as competitors on this task. Overall, the experiment shows that
our model architecture allows effective training of segmented
generalized linear models using gradient descent, in particular,
when employed with TSPb warping functions.

6.3.2 Change point detection

In the next experiment, we evaluate our relaxed segmented model
on a change point detection task with simulated data. Our ex-
perimental design exactly follows Arlot, Celisse, and Harchaoui
[ACH19]. All details are given in Section 6.A.2. We sample random
sequences of length 𝑇 = 1000 with 10 change points at predefined
locations. For every segment in every sequence, a distribution is
chosen randomly from a set of predefined distributions, and obser-
vations within that segment are sampled independently from that
distribution. We follow scenario 1 of Arlot, Celisse, and Harchaoui
[ACH19], where all predefined distributions have different means
and/or variances. An example is shown in Figure 6.5 (left).
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Figure 6.5: Change point detection task of Arlot, Celisse, and Harchaoui [ACH19] with detection results from our model.

Table 6.2: Empirical change point detection results.

algorithm sensitivity #CPs (mean±std) 𝑑hdf (mean±std) 𝑑fro (mean±std) reference

random - 10 127.8 ± 45.5 3.3 ± 0.2 baseline

DP≥1 �𝜎 10 753.3 ± 120.8 4.1 ± 0.3 [TOV20]
DP≥10 �𝜎 10 123.6 ± 170.7 2.1 ± 0.7 [TOV20]
BinSeg �𝜎 10.0 ± 3.1 122.0 ± 97.7 2.5 ± 0.4 [SK74]
PELT �𝜎 86.2 ± 26.7 100.0 ± 26.9 8.7 ± 1.5 [KFE12]
NP (ours) �𝜎 10 88.4 ± 35.7 2.3 ± 0.4 this work
CPAb (ours) �𝜎 10 88.4 ± 32.3 2.7 ± 0.3 this work
TSPb (ours) �𝜎 10 82.5 ± 32.3 2.3 ± 0.3 this work

E-Divisive * 5.9 ± 1.9 162.0 ± 108.2 2.2 ± 0.4 [MJ14]
KCP * 8.6 ± 1.4 67.3 ± 55.1 1.4 ± 0.5 [ACH19]
KCpE * 10 33.8 ± 37.6 1.2 ± 0.6 [HC07]

sensitivity: �𝜎 = mean/variance only, * = full distribution.
#CPs: number of change points; if equal to 10, #CPs is a parameter, otherwise, it is inferred automatically.

We sample 𝑁 = 500 such sequences, with change points at the
same locations across all samples. We apply our relaxed segmented
model to estimate the change points. We model the data-generating
process by a normal distribution with different means and variances
in every segment. This design choice makes our approach sensitive
only to changes in the means and variances of the observed data,
and no other distributional characteristics.

We fit our model individually to all 𝑁 sequences to obtain individ-
ual estimates for the change points. Figure 6.5 (right) shows how
many times a specific time step was detected as a change point by
our approach (with TSPb warping functions). We observe clear
peaks at the correct change point locations, which indicates that
our model successfully recovers the original segmentations.

Table 6.2 summarizes the empirical detection performance of
our approach (TSPb, CPAb and NP) and various competitors,
including a baseline where change points are drawn randomly
without replacement. It shows the Hausdorff distance 𝑑hdf and
Frobenius distance 𝑑fro between the true segmentations and the
detected segmentations (the lower the better).
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Among the approaches that detect changes in the mean and vari-
ance, our model performs best in terms of 𝑑hdf and second best in
terms of 𝑑fro, regardless of the choice of warping function. Note that
all approaches in this group optimize the same objective function
(the likelihood of the data under a normal distribution). The dy-
namic programming approaches (DP≥ℓ ) [TOV20] exactly find the
optimal solution for a predefined number of change points, with
a minimum segment length of ℓ . PELT [KFE12] finds the optimal
solution with an arbitrary number of change points, while BinSeg
[SK74] approximates that solution. Although our gradient-based
method finds suboptimal solutions in terms of the likelihood, it
produces results with the lowest segmentation costs. This indicates
a regularizing effect of the relaxed segmented model that avoids
degenerate segmentations. Our approach is only outperformed by
algorithms for kernel-based change point detection [ACH19; HC07]
that are sensitive towards all distributional characteristics.

6.3.3 Concept drift

A key novelty of our segmented model architecture is that it allows
joint training of the segmentation and any other model component
using gradient descent. As a proof of concept, we apply our model
on a classification problem with concept drift [GŽB+13]. The model
has to learn the points in time when the target concepts change,
and a useful feature transformation for the task. We use the insect
stream benchmark of Souza et al. [SRM+20] for this purpose. The
task is to classify insects into 6 different species using 33 features
collected from an optical sensor. The challenge is that these species
behave differently when the air temperature (which is not included
as a feature) changes. The benchmark contains multiple data
streams, where the air temperature is controlled in different ways
(incremental, abrupt, incremental-gradual, incremental-abrupt-
reoccurring, incremental-reoccurring). The classifier must adapt
the learned concepts depending on the current air temperature.

We employ our relaxed segmented model for softmax regression
with the cross entropy loss to obtain segmentations of the data
streams. We focus on the five data streams with balanced classes
from the benchmark, and measure performance by the classification
accuracy. We fit models with 𝐾 = 2, 4, 8, ..., 128 segments using
TSPb warping functions. We transform the input instances with
a fully connected layer followed by a ReLU nonlinearity before
passing them to the segmented model. The feature transformation
is shared across all segments. We jointly learn the parameters of
the segmented model and the feature transformation with gradient
descent. Details can be found in Section 6.A.3.
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Figure 6.6: Classification performance on the insect stream benchmark of Souza et al. [SRM+20].

Results are visualized in Figure 6.6. In addition to our own results,
we include the prequential accuracies of the strongest competi-
tors reported by Souza et al. [SRM+20]: Leveraging Bagging (LB)
[BHP10] and Adaptive Random Forests (ARF) [GBR+17].

Our model reaches and outperforms the strongest competitors
on all streams from the benchmark, if the number of segments 𝐾
is large enough to accommodate the concept drift present in the
stream. Only the data stream with abrupt concept drift satisfies our
modeling assumption of a piecewise stationary data generating
process. It consists of six segments with constant air temperatures
within each segment. The incremental-gradual stream has three
segments, with mildly varying temperatures in the outer segments
and mixed temperatures in the inner segment. The black boxes in
their plots show the performances achieved with our approach for
𝐾 = 6 and 𝐾 = 3 segments, respectively. The results indicate that
these are in fact the minimum numbers of segments required to
obtain competitive performance on these data streams.

6.3.4 Representation learning

At last, we apply our model on a speech signal to showcase its poten-
tial for discrete representation learning on the level of phonemes.
We assume that the speech signal—represented by a sequence
of 12-dimensional MFCC vectors—is piecewise constant within
a phoneme. We model it by a minimal DGP with no covariates
that simply copies the parameter vectors to the output. See Section
6.A.4 for a complete model description. We fit the model to a single
utterance (“choreographer”, 10 phonemes) from the TIMIT corpus
[GLF+93] by minimizing the mean squared error, and obtain the
result visualized in Figure 6.7.

Although the simple DGP does not capture all dynamics of the
speech signal, 7 out of 9 phoneme boundaries were correctly iden-
tified, with a time tolerance of 20 ms. This minimal experiment
suggests that relaxed segmented models, when combined with
more powerful DGPs, may be useful for discrete representation
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observed sequence predicted sequence

Figure 6.7: Model fit on the utterance “choreographer” with true phoneme boundaries (vertical lines).

learning [FHL+19; OVK17; Rol17], in particular for learning seg-
mental embeddings [CMS+19; KDS16; KSK+20; WLL18]. In fact,
our relaxed segmented model may be part of a larger model archi-
tecture, where the covariates z𝑡 and the parameters 𝜽𝑘 come from
some upstream computational layer, and the outputs x𝑡 are passed
on to the next computational layer with an arbitrary downstream
loss function. We interpret z𝑡 as covariates and 𝜽𝑘 as parameters to
be consistent with prior work on segmented models. It is more
accurate to interpret z𝑡 as temporal variables that differ for every time
step 𝑡, and 𝜽𝑘 as segmental variables that differ for every segment 𝑘.
The DGP combines the information from both types of variables
to produce an output for every time step.

6.4 Conclusions

We have described a novel approach to learn segmented models
for nonstationary sequential data with discrete change points. Our
relaxed segmented model formulation can use any family of con-
tinuous warping functions to approximate a discrete segmentation
function. If the family of warping functions is differentiable, our
model can be trained with gradient descent. We have introduced the
novel family of TSP-based warping functions designed specifically
for the segmentation task: it is differentiable, contains piecewise-
constant functions that exactly represent segmentation functions,
its parameters directly correspond to segment boundaries, and it
is simple to evaluate computationally.

The most immediate limitation of our relaxed segmented model
that it shares with classical segmented models [BP03; Mug03] is
that the number of segments 𝐾 is a hyperparameter and needs to be
chosen prior to model fitting. This issue can be resolved externally
with any model selection criterion [DLR06]. However, due to our
differentiable formulation, future work may also perform model se-
lection internally within a single objective function that is optimized
with gradient descent, e.g., using the differentiable architecture
search approach of Liu, Simonyan, and Yang [LSY19].
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A key advantage of our relaxed segmented model formulation
is that it enables the integration of state-of-the-art deep learning
architectures with segmented models, which makes it highly ver-
satile. The only structure that our model imposes per se is that
the sequence under study is segmented, and that the individual
observations are conditionally iid given some covariates. The ex-
periments on a diverse set of tasks demonstrate the high modeling
capacities of our approach, when combined with a suitable model
for the data-generating process within each segment.

Due to these modeling capacities, our approach is well-suited for
applications in event impact analysis for nonstationary time series.
If we believe that an observed time series can be split into stationary
segments, we can use our approach to estimate a generic and highly
expressive segmented model for the data-generating process. After
estimating the model, we can correlate the resulting change points
with the event series and compare the data-generating processes
between two consecutive segments to assess the nature of the event
impact. Alternatively, we can apply any of the methods outlined in
this work for event impact analysis in stationary time series within
each segment individually.
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“Fallzahlen in Deutschland”
by Robert Koch Institut (RKI),
open data license “Data licence
Germany – attribution – Ver-
sion 2.0” (dl-de/by-2-0), URL:
https://www.arcgis.com/home/-

item.html?id=f10774f1c63e-

40168479a1feb6c7ca74

6.A Details on experiments

We provide additional details, formal model descriptions, and some
additional results for the experiments from Section 6.3 below.

6.A.1 Poisson regression

Data

We obtained official data on COVID-19 cases in Germany from
Robert Koch Institute (RKI), the German public health institute.
The data is publicly available under an open data license. For every
day in the study period, we aggregate all new cases reported on
that day. Due to the delays between the actual infection of a patient
and the time the infection is reported to the health authorities, the
new cases reported on a specific day contain new infections from
several days before.

Segmented Poisson regression model

Poisson regression is a generalized linear model (GLM) for count
data, where the data generating process is modeled by a Pois-
son distribution and the linear predictor is transformed with the
logarithmic link function [MN89].

Let x𝑡 denote the number of newly reported cases at time 𝑡. Further-
more, let zTu

𝑡 , zWe
𝑡 , zTh

𝑡 , zFr
𝑡 , zSa

𝑡 and zSu
𝑡 denote binary day-of-week

indicators. If the time step 𝑡 is a Monday, all indicators are 0. For all
other days, exactly one indicator is set to 1. We use the following
vector of covariates, with a bogus covariate 1 for the bias terms:

z𝑡 = [1, 𝑡 , zTu
𝑡 , z

We
𝑡 , zTh

𝑡 , z
Fr
𝑡 , z

Sa
𝑡 , z

Su
𝑡 ] (6.15)

In our segmented Poisson regression model, the bias terms and the
daily growth rates (the parameters associated with the covariates
1 and 𝑡) differ in every segment, while the parameters for the
day-of-week indicators are tied across all segments, i.e., they are
independent of the segment identifier 𝑘:

𝜽𝑘 = [�𝑘,1 , �𝑘,2 | �Tu , �We , �Th , �Fr , �Sa , �Su] (6.16)

In this model, the bias terms �𝑘,1 control the base rates of newly
reported cases on a Monday within every segment 𝑘, while the
parameters for the day-of-week indicators are global scaling factors
that control the relative increase or decrease of the base rates on

https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74
https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74
https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74
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the other days-of-week with respect to Monday. Overall, we have the
following segmented Poisson regression model:

�̂�𝑡 = Ex𝑡 |z𝑡=𝒛𝑡 [x𝑡]

:= exp

(
�𝑘,1 + �𝑘,2 · 𝑡 +

∑
day∈{Tu,We,Th,Fr,Sa,Su}

�day𝑧
day
𝑡

)
, (6.17)

if �(𝑡) = 𝑘. The training objective is to minimize the negative
log-likelihood under a Poisson distribution:

L(�,𝚯) := −
∑
𝑡

log Poisson(𝑥𝑡 ; �̂�𝑡) (6.18)

In our TSP-based warping functions (TSPb), we set the window
size to 𝑤 = 0.5 and the power to 𝑛 = 16. In the CPA-based
warping functions (CPAb) of Weber et al. [WED+19], we set the
dimensionality of the underlying velocity fields to 𝐾, the number
of segments to learn. This choice makes the function family flexible
enough to approximate warping functions with 𝐾−1 discrete steps,
using the minimum number of parameters necessary. Note that
the “nonparametric” warping functions (NP) of Lohit, Wang, and
Turaga [LWT19] have 𝑇 − 1 parameters, where 𝑇 is the sequence
length. We perform training with Adam with a learning rate of
� = 0.01 for a total of 10000 training epochs. In the last 2048 epochs,
we round the predictors �̂𝑡 to the nearest integers to obtain a hard
segmentation function �(𝑡). We perform 10 restarts of the training
procedure with random initialization and keep the model with the
best fit for evaluation (highest log-likelihood).

Competitor

We use the reference implementation of Muggeo [Mug03] from
the R segmented package. As pointed out in Section 6.1.1, our
segmented model architecture learns a segmentation of the index
set 𝑡 = 1, ..., 𝑇. The segmented models by Muggeo [Mug03] learn
a segmentation in the domain of one (or more) of the covariates. Since
we use the index 𝑡 as a covariate, we can configure the algorithm
of Muggeo [Mug03] to segment the covariate 𝑡, which makes the
two models equivalent.

Ablation study

Figure 6.8 shows the goodness-of-fit (log-likelihood, the higher
the better) obtained with our relaxed segmented model (TSPb)
using different settings of the hyperparameters. The performance
is quite robust with respect to the width and power of the TSP
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Figure 6.8: Ablation study for TSPb hyperparameters (segmented Poisson regression); default values for the fixed
hyperparameters are: 2048 integer epochs, 𝑤 = 0.5, and 𝑛 = 16, respectively.

components. The number of integer epochs (with hard segmenta-
tions) has impact on the estimation performance. We hypothesize
that the learning problem is simpler with soft segmentations, so
that gradient descent moves towards a better region of the loss
function. During integer epochs, the parameters within a segment
are fine-tuned within the region found during the soft epochs.

6.A.2 Change point detection

Data-generating process

We follow scenario 1 of Arlot, Celisse, and Harchaoui [ACH19]
to sample 𝑁 = 500 random sequences of length 𝑇 = 1000 with a
total of 10 change points (𝐾 = 11 segments). The change points are
located at time steps 100, 130, 220, 320, 370, 520, 620, 740, 790, and
870. We define a change point as the beginning of a new segment.
The data-generating process is described in Algorithm 3, where P

is a set of predefined probability distributions. We have

P := { Binomial(𝑛 = 10, 𝑝 = 0.2),
NegativeBinomial(𝑛 = 3, 𝑝 = 0.7),
Hypergeometric(𝑀 = 10, 𝑛 = 5, 𝑁 = 2),
Normal(� = 2.5, 𝜎2 = 0.25),
Gamma(𝑎 = 0.5, 𝑏 = 5),
Weibull(𝑎 = 2, 𝑏 = 5),
Pareto(𝑎 = 3, 𝑏 = 1.5)},

(6.19)

where 𝑎 is the shape parameter and 𝑏 is the scale parameter in the
case of Gamma, Weibull, and Pareto. For every algorithm in the
evaluation, we create a new sample of 500 sequences.
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Algorithm 3: Data-generating process of Arlot, Celisse, and
Harchaoui [ACH19].

1 for all sequences 𝑛 = 1, ..., 𝑁 do
2 for all segments 𝑘 = 1, ..., 𝐾 do
3 sample a distribution 𝐹𝑛𝑘 uniformly from P\ {𝐹𝑛,𝑘−1} ;
4 sample x𝑛𝑡

iid∼ 𝐹𝑛𝑘 for all time steps 𝑡 in segment 𝑘 ;

Segmented normal model

We employ our relaxed segmented model with the assumption
that the data-generating process within each segment is a normal
distribution with its own mean and variance,

x𝑡
iid∼ Normal(�𝑘 , 𝜎2

𝑘
), if �(𝑡) = 𝑘. (6.20)

With this design choice, we can detect changes in the mean and
variance between the segments, but no other distributional charac-
teristics. The training objective is the negative log-likelihood:

L(�,𝚯) := −
∑
𝑡

log Normal(𝑥𝑡 ;��(𝑡) , 𝜎
2
�(𝑡)) (6.21)

We ensure a positive variance throughout training by estimating
the logarithm of the variance, i.e., the parameter vector within a
segment 𝑘 is given by 𝜽𝑘 = [�𝑘 , log

(
𝜎2
𝑘

)
].

For TSPb, we set the window size to 𝑤 = 0.125 and the power to
𝑛 = 16. For CPAb, we set the dimensionality of the velocity field to
𝐾. NP has no hyperparameters. We perform training with Adam
with a learning rate of � = 0.1 for a total of 300 epochs with 100
integer epochs. We perform 10 restarts with random initialization
and keep the model with the best fit for evaluation.

Competitors

For the experiments with the dynamic programming approaches
(DP ≥ ℓ ), we use the implementation of Truong, Oudre, and Vayatis
[TOV20] from the Python ruptures module, using the normal cost
function with a minimum segment size of ℓ , 10 change points, and
no subsampling. For the binary segmentation approach (BinSeg)
by Scott and Knott [SK74] and the Pruned Exact Linear Time (PELT)
method of Killick, Fearnhead, and Eckley [KFE12], we use the R
changepoint package (cpt.meanvar, normal test statistic, MBIC
penalty [ZS07], minimum segment size 2, maximum number of
change points 100). The experiments with the E-divisive approach
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[MJ14] were conducted with the R ecp package (e.divisive, signif-
icance level 0.05, 199 random permutations, minimum, minimum
segment size 2, moment index 1). For the experiments with the
kernel-based approaches KCP [ACH19] and KCpE [HC07], we use
the Python package chapydette kindly provided by Jones and
Harchaoui [JH20], with the default Gaussian-Euclidean kernel,
bandwidth 0.1, and minimum segment size 2.

Performance measures

We use the same evaluation measures as Arlot, Celisse, and Har-
chaoui [ACH19] and follow their definitions. Let � and �′ be two
segmentations of a sequence of length 𝑇. Let T and T′ be the
corresponding sets of change points. The Hausdorff distance is the
largest distance between any change point from one segmentation
and its nearest neighbor from the other segmentation:

𝑑hdf(�, �′) := max
{

max
1≤𝑖≤|T|

min
1≤ 𝑗≤|T′ |

|𝜏𝑖 − 𝜏′𝑗 |, max
1≤ 𝑗≤|T|

min
1≤𝑖≤|T′ |

|𝜏𝑖 − 𝜏′𝑗 |,
}

(6.22)

The Frobenius distance between two segmentations [LAB14] is
defined as the Frobenius distance between the rescaled equivalence
matrix representations of the segmentations:

𝑑fro(�, �′) := ∥𝑴 � − 𝑴 �′∥𝐹 , (6.23)

where 𝑚�
𝑡 ,𝑡′ =

1�(𝑡)=�(𝑡′)∑
𝑡′′ 1�(𝑡)=�(𝑡′′)

. (6.24)

The Frobenius distance penalizes over-segmentation more strongly
than the Hausdorff distance.

Ablation study

We experimented with different values for the TSPb hyperparam-
eters; Table 6.3 shows the results. The detection performance is
robust towards the choice of hyperparameters.

6.A.3 Concept drift

Benchmark data

The insect stream benchmark is described in detail in Souza et al.
[SRM+20]. The five data streams with balanced class distributions
that we consider here have the following lengths. incremental:
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power 𝑛 width 𝑤 𝑑hdf (mean±std) 𝑑fro (mean±std)

16 0.5 78.8 ± 31.9 2.4 ± 0.3
16 0.25 83.3 ± 35.1 2.3 ± 0.3
16 0.125 82.5 ± 32.3 2.3 ± 0.3
16 0.0625 85.0 ± 36.1 2.4 ± 0.3

4 0.125 83.0 ± 34.4 2.4 ± 0.3
8 0.125 79.5 ± 31.3 2.3 ± 0.4
16 0.125 82.5 ± 32.3 2.3 ± 0.3
32 0.125 80.4 ± 30.1 2.3 ± 0.3

Table 6.3: Ablation study for TSPb
hyperparameters (change detection
task).

57,018; abrupt: 52,848; incremental-gradual: 24,150; incremental-abrupt-
reoccurring: 79,986; incremental-reoccurring: 79,986 (sic).

Softmax regression model

Softmax regression is a standard multi-class classification model,
where the data-generating process is modeled by a categorical
distribution with probabilities computed from the softmax function.
Let (𝑥𝑡 , 𝒚𝑡) denote a training instance from the insect stream
benchmark, where 𝑥𝑡 ∈ {1, ..., 𝐶} is the target class label and 𝒚𝑡 is
the raw observation. We learn a more informative representation
𝒛𝑡 of the observation 𝒚𝑡 by passing it through a linear layer with
output dimension 𝐷 = 8, followed by a ReLU nonlinearity. We
denote this feature transformation by 𝒛𝑡 := 𝑔𝝓(𝒚𝑡), where 𝝓 are
the learnable parameters of the transformation. The covariates 𝒛𝑡
are used within a segmented softmax regression model to predict
the targets x𝑡 ,

x𝑡 | z𝑡 = 𝒛𝑡
iid∼ Categorical(Softmax(𝚯𝑘𝒛𝑡)), if �(𝑡) = 𝑘. (6.25)

In this model, 𝚯𝑘 ∈ ℝ𝐶×𝐷 is a matrix, so that 𝚯𝑘𝒛𝑡 ∈ ℝ𝐶 contains
unnormalized classification scores for every class 𝑐 in segment 𝑘.
The softmax function transforms the scores into normalized class
probabilities. The feature transformation 𝑔𝝓 is shared across all
segments, while the parameters of the linear predictor 𝚯𝑘 change
from segment to segment. With this design, we learn a feature
transformation that is useful for the classification task in general,
while taking concept drift in the label associations into account.
The training objective is to minimize the negative log-likelihood
under the categorical distribution, more commonly known as the
cross-entropy loss

L(�,𝚯,𝝓) = −
∑
𝑡

log Categorical(𝑥𝑡 ; Softmax(𝚯�(𝑡)𝒛𝑡)) (6.26)

= −
∑
𝑡

( [
𝚯�(𝑡)𝒛𝑡

]
𝑥𝑡
− log

∑
𝑐

exp
[
𝚯�(𝑡)𝒛𝑡

]
𝑐

)
. (6.27)
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We employ TSPb warping functions with window size 𝑤 = 0.125
and power 𝑛 = 16. We perform training with Adam with a learning
rate of � = 0.1 for a total of 300 epochs, with 100 integer epochs.
We perform 10 restarts with random initialization and keep the
model with the best fit for evaluation.

6.A.4 Representation learning

Piecewise constant model

We assume the piecewise constant, deterministic DGP

𝒙𝑡 := 𝜽𝑘 , if �(𝑡) = 𝑘, (6.28)

and minimize the mean squared error of the output

L(�,𝚯) :=
∑
𝑡

∥𝒙𝑡 − 𝜽𝑘 ∥2. (6.29)

We fit our relaxed segmented model with TSPb warping functions
(𝐾 = 10 segments) with window size 𝑤 = 0.125 and power 𝑛 = 16.
We perform training with Adam with a learning rate of � = 0.1
for a total of 300 epochs with 100 integer epochs. We perform 10
restarts with random initialization and keep the model with the
best fit for evaluation.
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In this dissertation, we proposed the first framework to systemati-
cally study the impacts of recurring events on a time series. The key
innovation of our work is to view the time series and the event series
as stochastic processes, so that event impacts can be formulated
in terms of statistical associations and probability distributions.
Our framework merges the probabilistic perspective of Granger
causality [BS11; Gra69] with existing methods to analyze the im-
pacts of a singular event [BSI19; LCL+21; WAG+21]. Intuitively, in
the case of randomly recurring events, we say that there are event
impacts in a time series if the behavior of the time series within
a specific window of interest around an event is not statistically
independent of the occurrence of the event. We formalized and
characterized this novel notion of event impacts in Chapter 1, to
lay a solid foundation for our subsequent contributions.

In the main part of this work, we used our framework to test,
measure, and model event impacts in various ways. We provide
summaries of our contributions in each of these categories below.
Despite our efforts, event impact analysis is still in its infancy, and
much work remains to be done. Some of the most pressing open
questions are discussed after the respective summaries.

7.1 Tests

The primal question we addressed in Chapter 2 and Chapter 3
was how to develop powerful and computationally efficient test
procedures to detect event impacts in a stationary time series. In
both chapters, we introduced special cases of event impacts that
are easy to interpret and facilitate the detection problem. If a test
for these types of event impacts rejects the null hypothesis, this
implies event impacts in the general sense of Chapter 1.

In Chapter 2 (Peak Event Coincidence Analysis), we focused on
the association between event occurrences and the occurrence of
peaks, i.e., drastic, sudden and short-lived increases of the values
of the time series. We argued that a focus on peaks is quite generic,
since many other features of interest can be transformed into
peaks by preprocessing the time series with a suitable feature
transformation function. We proposed to capture this association
formally by testing independence between the maximum statistic
of the window of interest and the occurrence of events.
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We showed that Event Coincidence Analysis (ECA) [DSS+16] can
be used to implement this test. We count how many times an
event occurrence coincides with a peak in the time series, i.e.,
how many times the maximum statistic exceeds a user-defined
threshold after an event occurrence. If the number of coincidences
is unusually large with respect to an independence assumption,
we have evidence for event impacts. Our key contribution in this
chapter lies in the derivation of an approximate null distribution
for the number of coincidences under independence. For this
derivation, we made use of the Extremal Types Theorem, a central
result from Extreme Value Theory [Col01]. The ECA-based test
strategy depends on the choice of a threshold that defines peaks.
In situations where that choice is difficult, it is sensible to test for
event impacts using multiple thresholds. For this reason, we also
provide an approximate joint null distribution for the numbers of
coincidences at multiple thresholds, and describe two additional
test algorithms to handle multiple thresholds. We validated our
derivations in a simulation study and applied our test to assess the
impacts of terrorist attacks on Twitter time series.

In Chapter 3 (Multiple Two-Sample Testing), we followed a different
test strategy. We argued that many types of event impacts can be
detected by considering only marginal associations between event
occurrences and the behavior of the time series at individual lags
within the window of interest, instead of the joint behavior of
that window at all lags. With the focus on marginal associations,
we lose the ability to detect event impacts in the dependency
structure of the window of interest. The benefit is that we can
detect many types of marginal event impacts in time series over
arbitrary domains without applying a feature transformation first.
We proposed to capture these associations formally by testing
independence between all marginal statistics of the window of
interest and the occurrence of events.

Subsequently, we described a novel multiple two-sample testing
approach that implements a test for marginal event impacts by
comparing the probability distributions across various lags af-
ter event occurrences. The choice of two-sample test within our
algorithm determines which properties of the distributions are
compared, e.g., their means, variances, or complete distribution
functions. The latter is possible even for non-numeric data by lever-
aging recent advancements in kernel-based two-sample testing
[GBR+12]. We evaluated the performance of our algorithm against
two competitors by performing a large-scale simulation study with
a selection of exemplary models for event impacts, and applied it
on two real-world datasets.
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Future research

The tests from Chapter 2 and Chapter 3 are valid for large classes of
stationary time series, but many time series seen in applications are,
in fact, nonstationary. We discussed two types of nonstationary
time series in Chapter 1 that can be studied with our approaches:
integrated time series and segmented time series. However, with
the existing methods, event impact analysis for other types of
nonstationary time series is not possible yet. A feasible direction
for future work on nonstationary time series is the scenario where
multiple paired realizations of the time series and the event series
are available. This scenario may occur, for example, in industrial
plants where a repetitive manufacturing process is monitored and
subject to events. Tests for event impacts in this scenario could
identify whether the occurrence of an event at a specific time step
has impact on the time series. Similar nonstationary scenarios are
currently studied in tests for independent processes [LKB21].

In our test procedures, we assumed that the event series is sparse,
so that we can view the windows of interest after individual event
occurrences as approximately independent. When facing a dense
event series, our procedures are not suitable anymore, because
the windows of interest are too close to each other or overlap.
The sparsification scheme outlined in Chapter 3 may alleviate
this problem, but means that a lot of data must be dropped. In
fact, with a dense event series, our notions of typical behavior
and deviant behavior of the time series are not useful anymore.
Instead, we must try to capture event impacts differently using
novel test strategies. For example, we may be interested in whether
the number of events within some interval has influence on the
behavior of the time series, or whether the specific configuration of
events within some interval has influence. These questions have
a tendency towards Granger causality [Gra69], and depart from
previous approaches to study impacts of singular events.

Finally, in the scenario that we primarily discuss in this dissertation,
with a stationary time series and a sparse event series, it is possible
to compute alternative statistics from the window of interest
(other than the maximum and marginal statistics that we use), and
implement novel tests for event impacts using these statistics. For
example, we could devise a statistic that focuses on the dependency
structure within the window of interest. In the end, the choice of
statistic is highly application dependent, and new statistics may
directly incorporate some computations that we currently regard
as preprocessing steps for specific use cases.
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7.2 Measures

A secondary question we could only touch in this work was how to
measure the association between an event series and a time series
in a meaningful way. In Chapter 2, we borrowed the trigger coin-
cidence rate from ECA to quantify this association, and computed
the fraction of events that trigger a peak in the time series. We also
proposed quantile-trigger rate plots as a standardized visualization
of this measure for peaks at multiple thresholds. Our subsequent
discussion of anomaly detectors from Chapter 5 (Statistical Eval-
uation of Anomaly Detectors) revealed that measures typically
used to evaluate anomaly detection algorithms may serve as addi-
tional measures to quantify the association between an event series
and a time series. The fundamental challenge that we observed
was how to establish the statistical significance of the reported
quantities. As a workaround, we proposed a simple Monte Carlo
simulation scheme to obtain the null distribution of any measure
under independence by shuffling the event series.

Future research

Generally, analytical derivations of the null distributions are
preferable to Monte Carlo simulations. Therefore, a natural follow-
up to our work could focus on these derivations for other measures
and specific families of time series and event series. However,
statistical significance does not imply practical significance: as
pointed out in Chapter 5, an observed value may be considered as
statistically significant even if it hardly differs from its expected
value under the null distribution. An interesting direction for
future work is the development of association measures for event
impact analysis that satisfy the properties of effect sizes [KP12].
For example, in the context of peak event coincidence analysis, a
positive effect size value could indicate an excitatory relationship
between events and peaks, a negative effect size value an inhibitory
relationship, and a value of 0 the lack of relationship.

7.3 Models

The last question that we covered in this dissertation was how to
specify probabilistic models that support event impact analysis.
In Chapter 4 (Time Warping Impact Models), we developed a
model family for the deviant behavior of a stationary univariate
time series in the presence of events. The key idea of our model
family is that the individual event occurrences induce the same
prototypical pattern in the time series, but this pattern comes
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at different delays or is temporally distorted. Our model family
captures the data-generating process of the deviant behavior by
learning a low-dimensional prototype and a stochastic warping
mechanism that explains the temporal distortions. We showed
how to instantiate our model family with different warping priors
and derived a generic Monte Carlo Expectation-Maximization
algorithm for inference. We evaluated the performance of the
warping priors in terms of representative power, alignment quality,
and discriminative power, on a various datasets.

Finally, in Chapter 6 (Differentiable Segmentation), we focused
on a specific nonstationary case. We discussed how to perform
event impact analysis when the time series follows a segmented
model, where the data-generating process changes at specific
points in time, but remains stationary between two change points.
We proposed a relaxed variant of the segmented model that enables
joint estimation of the change points and the parameters within
each segment using standard gradient descent. Our relaxation
allows complex models for the data-generating process that could
not previously be employed within segmented models, like deep
neural networks. We demonstrate the modeling capacity of our
relaxed formulation by applying it on a diverse selection of tasks,
from Poisson regression to change point detection, classification,
and representation learning. After fitting our relaxed segmented
model to a nonstationary time series, we can use any of our methods
for event impact analysis in the stationary case individually within
each segment, or correlate the occurrence of change points with the
occurrence of events, or both.

Future research

We introduced our probabilistic warping model in Chapter 4 for
univariate stationary time series, but the observations that led to its
development equally hold for the multivariate case. An additional
challenge that arises in the multivariate case is that an underlying
prototype may not only be temporally distorted, but also subject to
transformations in its data dimensions. The effect is that the deviant
behavior after each event occurrence may appear very different
from event to event, when in fact it is generated from the same
lower-dimensional (both in time and data dimensions) prototype.
The state-of-the-art solution for this problem is Canonical Time
Warping (CTW) [TNZ+16; ZD16; ZT09], which combines Dynamic
Time Warping with Canonical Correlation Analysis. A useful
extension of our probabilistic warping model for the multivariate
case would include an additional latent transformation of the data
dimensions of the multivariate prototype.
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Generally, we believe that model-based approaches for event impact
analysis are a promising direction for future work. In particular,
event-driven time series models [CVJ16; YHH+16] that capture
the data-generating process of the complete time series using
information on event occurrences are useful for forecasting the
future behavior of a time series that is subject to event impacts.

7.4 Final note

At last, possibly one of the most pressing and most difficult chal-
lenges that is yet to be solved is causal inference for event impact
analysis. The methods we have proposed in this dissertation are
suitable to discover and capture specific statistical associations
between event occurrences and the behavior of the time series.
They do not immediately allow for causal statements. Adapting
the notion of Granger causality, an event series has causal impact on
a time series if the event series has impact on the time series under
the condition that “all the knowledge in the universe available at
that time” [Gra80] is considered. We leave this endeavor open for
future work, and hope that our contributions in this dissertation
provide a useful basis to start from.
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