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Abstract
In this paper we derive martingale estimating functions for the dimensionality parameter
of a Bessel process based on the eigenfunctions of the diffusion operator. Since a Bessel
process is non-ergodic and the theory of martingale estimating functions is developed for
ergodic diffusions, we use the space-time transformation of the Bessel process and formulate
our results for a modified Bessel process. We deduce consistency, asymptotic normality and
discuss optimality. It turns out that the martingale estimating function based of the first
eigenfunction of the modified Bessel process coincides with the linear martingale estimating
function for the Cox Ingersoll Ross process. Furthermore, our results may also be applied to
estimating the multiplicity parameter of a one-dimensional Dunkl process and some related
polynomial processes.

Keywords Bessel process · Non-ergodic diffusion · Martingale estimating function ·
Eigenfunctions

Mathematics Subject Classification Primary 62M15 · Secondary 60J60

1 Introduction

Martingale estimating functions introduced in Bibby and Sørensen (1995) provide a well-
established method for inference in discretely observed diffusion processes, when the
likelihood function is unknown or too complicated. The idea behind martingale estimat-
ing functions is to provide a simple approximation of the true likelihood, which forms a
martingale and hence leads under suitable regularity assumptions to consistent and asymp-
totically normal estimators. One way of approximating the likelihood function is by Taylor
expansion leading to linear and quadratic martingale estimating functions, cf. Bibby and
Sørensen (1995). Another possibility is to use the eigenfunctions of the associated diffu-
sion operator, cf. Kessler and Sørensen (1999). In this context a suitable optimality concept
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was introduced by Godambe and Heyde (1987) and Heyde (1988). For a general theory of
asymptotic statistics for diffusion processes we refer e.g. to Höpfner (2014).

Our aim in this paper is to estimate the dimensionality or index parameter ϑ ∈ � ⊂
(− 1

2 ,∞) of a classical one-dimensional Bessel process given by the stochastic differential
equation

{
dYt = dBt + (

ϑ + 1
2

) 1
Yt
dt,

Y0 = y0 > 0,
(1.1)

where B denotes a standard Brownian motion. Since a Bessel process is non-ergodic, we
transform it into a stationary and ergodic process by adding a mean reverting term with speed
of mean reversion α > 0 in the drift, which we call modified Bessel process in the following.
The two processes are then related by the well-known space-time transformation of a Bessel
process. Since the eigenfunctions of the associated diffusion operator of the modified Bessel
process are known, we base our martingale estimation function on these eigenfunctions and
follow the lines of Kessler and Sørensen (1999).

For the estimating function based on the first eigenfunction we obtain an explicit formula
for the estimator, which only depends quadratically on the observations. We see that the
estimator coincides with the one of a linear martingale estimation function for the Cox
Ingersoll Ross process, which is the square of the modified Bessel process. We discuss
optimality in the sense of Godambe and Heyde. Note that in Overbeck and Ryden (1997) also
local asymptotic normality for estimators in the Cox Ingersoll Ross model was established.

Furthermore, we consider martingale estimating functions based on the first two eigen-
functions and discuss the improvement of the asymptotic variance. In this case we do not get
an explicit result for the estimator anymore.

Note that our results for the Bessel process may also be used to estimate the multiplicity
parameter k of a one-dimensional Dunkl process, a special jump diffusion given by the
generator

Lku(x) = u′′(x) + k

(
2

x
u′(x) + u(−x) − u(x)

x2

)
, k ≥ 0.

By the last term in the generator we see that the associated process possesses jumps due to a
reflection, which lead to a sign change. Hence, the modulus of this Dunkl process is a Bessel
process with dimensionality parameter k − 1/2, cf. Chybiryakov et al. (2008). For the Dunkl
process the multiplicity parameter is of special interest, since it determines the jump activity,
namely for k ≥ 1

2 a Dunkl process has a finite jump activity, whereas for k < 1/2 we have
infinite jump activity.

Furthermore, the technique transforming a non-ergodic process to an ergodic one via
a space-time transformation may also be used for larger classes of polynomial diffusion
processes given by a generalization of the stochastic differential equation of a Bessel process.
We introduce these processes and provide results for themartingale estimating function based
on the first eigenfunction.

The paper is organised as follows: in Sect. 2 we collect the basic facts on the processes,
Sect. 3 is devoted to martingale estimation functions based on the first eigenfunction for
Bessel processes, while in Sect. 4 we provide an extension to a larger class of polynomial
diffusions. Section 5 considers estimators based on two eigenfunctions for Bessel processes.
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2 Basic results on Bessel processes and a stationarymodification

In this section we introduce the basic results on the underlying diffusions, which wewill need
in the following for the theory of martingale estimation functions. Our aim is to estimate the
parameter ϑ ∈ � ⊂ (− 1

2 ,∞) of a classical one-dimensional Bessel process. Since a Bessel
process is non-ergodic and most results on parameter estimation for diffusions are developed
for ergodic diffusions, we start by introducing a modification of a Bessel process which is
ergodic.

We consider the stochastic differential equation
{

dXt = dBt +
[(

ϑ + 1
2

) 1
Xt

− αXt

]
dt,

X0 = x0 > 0
(2.1)

for a Brownianmotion B, some fixed α > 0 and the parameter of interestϑ ∈ � ⊂ (− 1
2 ,∞).

The equation (2.1) is similar to the equation defining a Bessel process except for the drift
term −αXt dt , which we add to ensure ergodicity and stationarity. We can also state the
generator

Lϑ f (x) = 1

2
f ′′(x) +

[(
ϑ + 1

2

)
1

x
− αx

]
f ′(x).

In order to determine the density of (Xt )t≥0, we consider the space time transformation

Xt = exp(−αt)Y exp(2αt)−1
2α

(2.2)

for a Bessel process (Yt )t≥0 with index ϑ , which immediately follows by Itô’s formula. For
simplicity, we use the notation f (t) := exp(−αt) and g(t) := exp(2αt)−1

2α

dXt
(2.2)= d( f (t)Yg(t)) = f (t) dYg(t) + Yg(t) d f (t)

= f (t)

[
dBg(t) +

(
ϑ + 1

2

)
1

Yg(t)
dg(t)

]
+ Yg(t) f

′(t) dt

= f (t)
√
g′(t) dWt +

(
ϑ + 1

2

)
f (t)g′(t)
Yg(t)

dt − α f (t)Yg(t) dt

(2.2)= f (t)
√
g′(t) dWt +

(
ϑ + 1

2

)
f (t)2g′(t)

Xt
dt − αXt dt

= dWt +
(

ϑ + 1

2

)
1

Xt
dt − αXt dt

for some Brownian motion W as f (t)2g′(t) = 1 and f ′(t) = −α f (t). Therefore, we derive
the distribution of (Xt )t≥0 by using thewell-known distribution of the Bessel process (Yt )t≥0,
namely

P(Yt ≤ z|Y0 = x) = 2

(2t)ϑ�(ϑ + 1)

∫ z

0
jϑ

(
i xy

t

)
e− x2+y2

2t y2ϑ+1 dy; x, z > 0,

where

jϑ(z) := �(ϑ + 1)

�(ϑ + 1
2 )�( 12 )

∫ 1

−1
eisz(1 − s2)ϑ− 1

2 ds
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is the Bessel function with index ϑ [see for instance Itô and McKean (1974)]. Hence, we
obtain

P(Xt ≤ z|X0 = x)
(2.2)= P(Y exp(2αt)−1

2α
≤ exp(αt)z|Y0 = x)

= Cϑ,α,t

∫ z

0
jϑ

(
i xy

2α exp(αt)

exp(2αt) − 1

)
exp

(
−α

x2 + y2 exp(2αt)

exp(2αt) − 1

)
y2ϑ+1 dy

with

Cϑ,α,t := 2αϑ(exp(2αt))ϑ+1

�(ϑ + 1)(exp(2αt) − 1)ϑ
.

We denote the density of X� with starting point x by pϑ(x, ·,�) and the distribution of X�

by Pϑ . In the following, we check that (Xt )t≥0 is indeed stationary and ergodic and determine
the invariant measure. The density of the scale measure for a fixed ξ ∈ (0,∞) is defined as

s(x) := exp

(
−2

∫ x

ξ

(
ϑ + 1

2

)
1

y
− αy dy

)

=
(
x

ξ

)−(2ϑ+1)

eα(x2−ξ2).

Note that, due to the singularity in the drift, we initially have to consider some positive interior
point ξ .

By Sørensen (2012, p. 9) and Skorokhod (1989) we may deduce that (Xt )t≥0 is ergodic
as we see that the conditions

∫ ξ

0
s(x) dx = ∞,

∫ ∞

ξ

s(x) dx = ∞ and
∫ ∞

0

1

s(x)
dx < ∞

are satisfied.
As the invariant measure is defined via the scale measure m( dx) := 1

s(x) dx , we obtain
by a straightforward calculation that the density of the invariant probability measure is given
by

μϑ(x) = 2αϑ+1

�(ϑ + 1)
x2ϑ+1e−αx2

on (0,∞) with respect to the Lebesgue measure (Sørensen 2012, Eq. (1.15)).
For the calculation of the asymptotic variance we will need the symmetric distribution

Qϑ
� of two consecutive observations X(i−1)� and Xi� on (0,∞)2. It is given by

Qϑ
�( dx, dy) = μϑ(x)pϑ (x, y, �) dx dy

= Cϑ jϑ

(
i xy

2α exp(α�)

exp(2α�) − 1

)
exp

(
− α exp(2α�)

exp(2α�) − 1
(x2 + y2)

)
(xy)2ϑ+1 dy dx

with

Cϑ := 4α2ϑ(exp(2α�))ϑ+1

�(ϑ + 1)2(exp(2α�) − 1)ϑ
.
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3 Martingale estimating functions based on eigenfunctions

In this section we proceed similarly to Bibby and Sørensen (1995) and Kessler and Sørensen
(1999) to construct martingale estimation functions for our parameter of interest ϑ . The
concepts in these papers are based on ergodic diffusions. As Bessel processes are non-
ergodic we constructed the ergodic and stationary version in (2.1). Let X�, . . . , Xn� be
discrete observations of the process. We consider the eigenfunctions of the generator

Lϑ f (x) = 1

2
f ′′(x) +

[(
ϑ + 1

2

)
1

x
− αx

]
f ′(x),

which are the solutions of Lϑφη = −ληφη given by

λη = 2αη, φη(x, ϑ) =
η∑

k=0

(−η)k

(ϑ + 1)kk! (αx
2)k, η ∈ N

with the Pochhammer symbols (x)0 := 1 and (x)k := �(x+k)
�(x) = x(x + 1) . . . (x + k − 1)

for k ∈ N cf. (Rösler and Voit 2008, 2.58 Corollary (i)). According to (Kessler and Sørensen
1999, 5. Eigenfunctions and Martingals), the property

∫ ∞

0
(φ′

η(x, ϑ))2μϑ( dx) = 2αϑ+1

�(ϑ + 1)

∫ ∞

0
(φ′

η(x, ϑ))2x2ϑ+1e−αx2 dx < ∞

for the polynomials φη is sufficient to deduce

Eϑ(φη(Xi�, ϑ)|X(i−1)�) = e−λη�φη(X(i−1)�, ϑ)

by Itô’s formula. Consequently, we may use the general theory on estimators based on
eigenfunctions given in Kessler and Sørensen (1999). However, in our case we may calculate
the involved quantities and obtain explicit results. For the first eigenfunction φ1(x, ϑ) =
1 − αx2

ϑ+1 we consider the estimator based on the martingale estimating function

Gn(ϑ) =
n∑

i=1

(φ1(Xi�, ϑ) − e−λ1�φ1(X(i−1)�, ϑ))

= n(1 − e−2α�) +
n∑

i=1

(
e−2α�

αX2
(i−1)�

ϑ + 1
− αX2

i�

ϑ + 1

)
.

The unique solution of Gn(ϑ̂n) = 0 is

ϑ̂n = α
∑n

i=1(X
2
i� − X2

(i−1)�e
−2α�)

n(1 − e−2α�)
− 1.

Now, we may deduce consistency and asymptotic normality along the same lines as for
general martingale estimating functions.

Theorem 3.1 For every true value ϑ0 ∈ � ⊂ (− 1
2 ,∞), we have

(i) ϑ̂n → ϑ0 in probability and
(ii)

√
n(ϑ̂n − ϑ0) → N (0, σ 2(ϑ0)) in distribution

under Pϑ0 with σ 2(ϑ0) := (ϑ0 + 1) 1+e−2α�

1−e−2α� .
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Proof We define

g(x, y, ϑ) := 1 − αy2

ϑ + 1
− e−2α�

(
1 − αx2

ϑ + 1

)

a continuously differentiable function with respect to ϑ . The absolute value of the derivative

∂

∂ϑ
g(x, y, ϑ) = α

(ϑ + 1)2
(y2 − e−2α�x2)

is dominated by 4α(y2 + e−2α�x2), which is independent of ϑ and square integrable with
respect to Qϑ0

� . Moreover, the symmetry in x and y of the density of Qϑ0
� implies

f (ϑ0) :=
∫ ∞

0

∫ ∞

0

∂

∂ϑ
g(x, y, ϑ0)Q

ϑ0
� ( dx, dy)

= α

(ϑ0 + 1)2
(1 − e−2α�)

︸ ︷︷ ︸
>0

∫ ∞

0

∫ ∞

0
x2Qϑ0

� ( dx, dy)
︸ ︷︷ ︸

>0


= 0,

which completes the proof of (i) and (ii) according to (Kessler and Sørensen 1999, Theorem
4.3).

Due to (Kessler and Sørensen 1999, Theorem 4.3), the asymptotic variance is given by

σ 2(ϑ0) = v(ϑ0)

f 2(ϑ0)
with

v(ϑ0) :=
∫ ∞

0

∫ ∞

0
g2(x, y, ϑ0)Q

ϑ0
� ( dx, dy)

!= 1 − e−4α�

ϑ0 + 1
.

Because of the symmetry of Qϑ0
� and

g2(x, y, ϑ) = (1 − e−2α�)2 + α2

(ϑ + 1)2
y4 + α2e−4α�

(ϑ + 1)2
x4 − (1 − e−2α�)

2α

ϑ + 1
y2

+ (1 − e−2α�)
2αe−2α�

ϑ + 1
x2 − 2α2e−2α�

(ϑ + 1)2
x2y2,

we get

v(ϑ0) = (1 − e−2α�)2
(
1 − 2α

ϑ0 + 1

∫ ∞

0

∫ ∞

0
x2Qϑ0

� ( dx, dy)

)

+ α2(1 + e−4α�)

(ϑ0 + 1)2

∫ ∞

0

∫ ∞

0
x4Qϑ0

� ( dx, dy)

− 2α2e−2α�

(ϑ0 + 1)2

∫ ∞

0

∫ ∞

0
x2y2Qϑ0

� ( dx, dy).

Furthermore, we can calculate∫ ∞

0

∫ ∞

0
x2nQϑ0

� ( dx, dy) =
∫ ∞

0

∫ ∞

0
x2nμϑ0(x)p(x, y,�) dx dy

=
∫ ∞

0
x2nμϑ0(x) dx = �(n + ϑ0 + 1)

αn�(ϑ0 + 1)
.

By calculating E (X2
i� | X(i−1)� = x) explicitly, we conclude∫ ∞

0

∫ ∞

0
x2y2Qϑ0

� ( dx, dy) =
∫ ∞

0

∫ ∞

0
x2y2μϑ0(x)p(x, y,�) dy dx
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=
∫ ∞

0
x2 E (X2

i� | X(i−1)� = x)μϑ0(x) dx

=
∫ ∞

0
x2

(
x2e−2α� − ϑ0 + 1

α
(e−2α� − 1)

)
μϑ0(x) dx

= (ϑ0 + 1)2

α2 + e−2α� ϑ0 + 1

α2 .

Applying these formulas we establish

σ 2(ϑ0) = v(ϑ0)

f 2(ϑ0)
= (ϑ0 + 1)

1 + e−2α�

1 − e−2α�
.

��
Let us discuss the results. Looking at the asymptotic variancewe see that it decreaseswhenα�

is increasing. This seems surprisingly at the first glance, since it implies that the asymptotic
variance decreases when the distance between observations increases, as we keep the mean
reverting parameter α fixed. Note that we have the observation scheme X�, · · · , Xn�, hence
n → ∞ and � → 0 such that n� → ∞ would correspond to continuous observations.
However, keeping in mind that equidistant observations for the stationary version of the
Bessel process means that the distance between two observations of the underlying Bessel
process is exponentially growing, this leads to a fast growing observation interval. This might
capture the non-stationary behaviour of the original Bessel process. Furthermore, we see that
the asymptotic variance tends to infinity as the mean-reverting parameter tends to zero.

Having a closer look at the estimator, we see that it only depends on the square of the
observations, hence we could reformulate our problem and consider the squared process
Yt := X2

t . Itô’s formula yields

dYt = 2
√
Yt dBt + (2ϑ + 2 − 2αYt ) dt,

an equation describing a Cox Ingersoll Ross process. We consider now the canonical linear
martingale estimating function

G̃n(ϑ) :=
n∑

i=1

(Yi� − E(Yi�|Y(i−1)�))

=
n∑

i=1

(Yi� − Y(i−1)�e
−2α� + ϑ + 1

α
(e−2α� − 1))

= −ϑ + 1

α
Gn(ϑ).

For ϑ > − 1
2 the unique solution of G̃n(ϑ̂n) = 0 is again

ϑ̂n = α
∑n

i=1(X
2
i� − X2

(i−1)�e
−2α�)

n(1 − e−2α�)
− 1.

Hence, we see that the two estimators coincide. In 3.1 we have already established the
consistence and asymptotic normality of ϑ̂n .

The next step is to increase the flexibility of G̃n by adding the weight gi−1 depending on
the parameter of interest and the previous observation

n∑
i=1

gi−1(ϑ, X(i−1)�)

(
X2
i� − X2

(i−1)�e
−2α� + ϑ + 1

α
(e−2α� − 1)

)
,
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Fig. 1 The asymptotic behavior for α = 1, x0 = 0.1, ϑ0 = 3

where gi−1 is σ(X�, . . . , X(i−1)�) measurable and continuously differentiable to keep the
martingale property. Using the same technique we search for the optimal estimator with
the smallest asymptotic variance. Considering this second approach via linear martingale
estimating functions for the squared process, allows us easily to determine this optimal
estimator, cf. Heyde (1988) and Godambe and Heyde (1987). By Bibby and Sørensen (1995,
Eq. (2.10)) the optimal estimator is given by

gi−1(ϑ, X(i−1)�) :=
d
dϑ E (X2

i� | X(i−1)�)

ϕ(X(i−1)�, ϑ)
= 1

ϑ+1
α

(1 − e−2α�) + 2X2
(i−1)�e

−2α�
,

where ϕ(X(i−1)�, ϑ) is the conditional variance of Xi� given X(i−1)�. Unfortunately, the
equation defining the optimal estimator

n∑
i=1

1
ϑ+1

α
(1 − e−2α�) + 2X2

(i−1)�e
−2α�

×
(
X2
i� − X2

(i−1)�e
−2α� + ϑ + 1

α
(e−2α� − 1)

)
= 0

is not explicitly solvable with respect to ϑ . However, we can nevertheless determine the
improvement in the asymptotic variance. Following again the same lines as (Bibby and
Sørensen 1995, Theorem 3.2), we have to establish the finiteness of

E μϑ0

(
gi−1(ϑ0, X(i−1)�)

d

dϑ
E (X2

i� | X(i−1)�)

)
= E μϑ0

⎛
⎝ 1

ϑ0 + 1 + 2αe−2α�

1−e−2α� X2
(i−1)�

⎞
⎠

<
1

ϑ0 + 1
,

the reciprocal of the asymptotic variance, the asymptotic information. Consequently, we can
deduce that a lower bound of the optimal variance is given by ϑ0 + 1.
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Figure 1 shows the asymptotic information of the 10.000 simulated optimal estimator (tri-
angles) and ϑ̂n (dots) for n = 1.000. The solid line corresponds to the calculated asymptotic
information of ϑ̂n in Theorem 3.1. The dotted line represents our computed bound above. As
the lines nearly touch around� = 3, the improvement of the optimal estimator quickly tends
to zero. Starting from the value � = 1 the simulated asymptotic information is almost the
same for both estimators. Beforehand, the improvement is clearly visible but we do not want
to maintain such a high variance as we can choose the value of α� such that the asymptotic
variance is close to the lower bound.

We take a closer look at the asymptotic variance of ϑ̂n , which decreases monotonously in
α�:

lim
α�→∞(ϑ0 + 1)

1 + e−2α�

1 − e−2α�
= ϑ0 + 1.

Due to the fast convergence to the lower bound ϑ0 + 1, we can for practical purposes restrict
ourselves to the estimator ϑ̂n and hence have an explicit estimator.

4 An extension to some polynomial diffusion processes

Next, we aim to extend the previously developed technique to some larger class of processes.
We consider some non-ergodic polynomial processes solving the stochastic differential
equation {

dYt,p = Y
p+1
2

t,p dBt + (
ϑ + 1

2

)
Y p
t,p dt,

Y0,p = x0 > 0
(4.1)

for a Brownian motion B, the parameter of interest ϑ ∈ � ⊂ (− 1
2 ,∞) and the additional

parameter p < 1. Note that for p = −1, we get the Bessel process back. We briefly analyze
a martingale estimator based on the first eigenfunction with the same technique as before.
Using the space-time transformation

Xt,p := e−αt Y e(1−p)αt−1
(1−p)α ,p

for some α > 0, we receive by Itô’s formula an ergodic and stationary version{
dXt,p = X

p+1
2

t,p dBt + [(
ϑ + 1

2

)
X p
t,p − αXt,p

]
dt,

X0,p = x0 > 0.
(4.2)

The corresponding generator can be stated as

Lϑ,p f (x) = 1

2
x p+1 f ′′(x) +

[(
ϑ + 1

2

)
x p − αx

]
f ′(x).

With a similar calculation as for μϑ , we obtain the invariant measure

μϑ,p(x) = 1 − p

�
(
2ϑ+2
1−p

)
(

2α

1 − p

) 2ϑ+2
1−p

x2ϑ+1e− 2α
1−p x

1−p

on (0,∞) with respect to the Lebesgue measure. After a brief calculation we get

φ1,p(x) = x1−p − 2ϑ + 1 − p

2α
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as the first eigenfunction of the generator Lϑ,p with eigenvalue λ1,p = (1 − p)α. Let
X�,p, . . . , Xn�,p be discrete observations of (4.2). We consider the estimator based on the
martingale estimating function

Gn,p(ϑ) =
n∑

i=1

(φ1,p(Xi�,p, ϑ) − e−λ1,p�φ1,p(X(i−1)�,p, ϑ))

=
n∑

i=1

(
X1−p
i� − e−(1−p)αX1−p

(i−1)�

)
− 2ϑ + 1 − p

2α
n(1 − e−(1−p)α�).

The unique solution of Gn,p(ϑ̂n,p) = 0 is

ϑ̂n,p = α
∑n

i=1(X
1−p
i�,p − X1−p

(i−1)�,pe
−(1−p)α�)

n(1 − e−(1−p)α�)
− 1 − p

2
. (4.3)

Next, we review how this process is related to a linear martingale estimating function. Appli-
cation of Itô’s formula yields

dX1−p
t,p =

[
(1 − p)

(
ϑ + 1

2

)
+ (1 − p)(−p)

2
− α(1 − p)X1−p

t,p

]
dt + (1 − p)X

1−p
2

t,p dBt ,

hence we can determine the conditional mean f (t) := E (X1−p
t,p |Xt0,p) by solving the dif-

ferential equation{
f ′(t) = (1 − p)

(
ϑ + 1

2

) + (1−p)(−p)
2 − α(1 − p) f (t),

f (t0) = X1−p
t0,p .

Thus, we receive the linear martingale estimating function

G̃n,p(ϑ) :=
n∑

i=1

(X1−p
i�,p − E(X1−p

i�,p|X(i−1)�,p))

=
n∑

i=1

(
X1−p
i�,p − X1−p

(i−1)�,pe
−(1−p)α� + 2ϑ + 1 − p

2α
(e−(1−p)α� − 1)

)

and see that the unique solution of G̃n,p(ϑn,p) = 0 is again (4.3).

Theorem 4.1 For every true value ϑ0 ∈ � ⊂ (− 1
2 ,∞), we have

(i) ϑ̂n,p → ϑ0 in probability and
(ii)

√
n(ϑ̂n,p − ϑ0) → N (0, σ 2(ϑ0)) in distribution

under Pϑ0 with σ 2(ϑ0) := (1−p)(ϑ0+1)e−(1−p)α�

1−e−(1−p)α� + (2ϑ0+1−p)(1−p)
4 .

Proof Obviously, σ 2(ϑ0) ∈ (0,∞) applies. According to (Bibby and Sørensen 1995,
Theorem 3.2), the convergences (i) and (ii) are given if the equation

σ 2(ϑ0) = v(ϑ0)

f (ϑ0)2

holds, where

f (ϑ) := −E μϑ,p

(
∂

∂ϑ
E (X1−p

�,p | X0,p)

)
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= −E μϑ,p

(
− 1

α

(
e−(1−p)α� − 1

))

= e−(1−p)α� − 1

α
,

v(ϑ) := E μϑ,p (ϕ(X0,p, ϑ)),

and ϕ is the conditional variance of X1−p
�,p given X0,p determined by

ϕ(X0,p, ϑ) = (1 − p)X1−p
0,p

α
(e−(1−p)α� − e−2(1−p)α�)

+ (2ϑ + 1 − p)(1 − p)

4α2 (1 − e−(1−p)α�)2.

Note that this formula can also be derived via the solution of a differential equation. By
establishing

E μϑ (X1−p
0,p ) = 1 − p

�
(
2ϑ+2
1−p

)
(

2α

1 − p

) 2ϑ+2
1−p

∫ ∞

0
x2ϑ+2−pe− 2α

1−p x
1−p

dx

= 1 − p

�
(
2ϑ+2
1−p

)
(

2α

1 − p

) 2ϑ+2
1−p

∫ ∞

0

(
1 − p

2α
y

) 2ϑ+2
1−p

e−y dy

2α

= 1 − p

2α�
(
2ϑ+2
1−p

)�

(
2ϑ + 2

1 − p
+ 1

)

= 1 − p

2α

2ϑ

1 − p
= ϑ + 1

α
,

we conclude

v(ϑ) = (1 − p)(ϑ + 1)

α2 e−(1−p)α�(1 − e−(1−p)α�)

+ (2ϑ + 1 − p)(1 − p)

4α2 (1 − e−(1−p)α�)2

and hence the equation σ 2(ϑ0) = v(ϑ0)

f (ϑ0)2
is valid. ��

We want to increase the flexibility of G̃n,p using the same scheme as for G̃n = G̃n,−1.
According to Heyde (1988); Godambe and Heyde (1987), we once more obtain the optimal
weight

gi−1,p(ϑ, X(i−1)�) :=
d
dϑ E (X1−p

i�,p | X(i−1)�,p)

ϕ(X(i−1)�,p, ϑ)

= 1
(2ϑ+1−p)(1−p)

4α (1 − e−(1−p)α�) + (1 − p)X1−p
(i−1)�,pe

−(1−p)α�

for the estimating function

n∑
i=1

gi−1,p(ϑ, X(i−1)�,p)

(
X1−p
i�,p − X1−p

(i−1)�,pe
−(1−p)α� + 2ϑ + 1 − p

2α
(e−(1−p)α� − 1)

)
,
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cf. Bibby andSørensen (1995, Eq. (2.10)).As before,we cannot explicitly derive the estimator
as a solution of

n∑
i=1

1
(2ϑ+1−p)(1−p)

4α (1 − e−(1−p)α�) + (1 − p)X1−p
(i−1)�,pe

−(1−p)α�

×
(
X1−p
i�,p − X1−p

(i−1)�,pe
−(1−p)α� + 2ϑ + 1 − p

2α
(e−(1−p)α� − 1)

)
= 0,

but we can analyze the improvement with respect to the estimator ϑ̂n,p . Following the same
lines as (Bibby and Sørensen 1995, Theorem 3.2), we have to establish the finiteness of

E μϑ0

(
gi−1,p(ϑ0, X(i−1)�,p)

d

dϑ
E (X1−p

i�,p | X(i−1)�,p)

)

= E μϑ0

⎛
⎝ 1

(2ϑ0+1−p)(1−p)
4 + (1−p)e−(1−p)α�

α(1−e−(1−p)α�)
X1−p

(i−1)�,p

⎞
⎠

<
4

(2ϑ0 + 1 − p)(1 − p)
,

the reciprocal of the asymptotic variance, to achieve consistency and asymptotic normality.
Comparing this result to the limit

lim
α�→∞ σ 2(ϑ0) = lim

α�→∞
(1 − p)(ϑ0 + 1)e−(1−p)α�

1 − e−(1−p)α�
+ (2ϑ0 + 1 − p)(1 − p)

4

= (2ϑ0 + 1 − p)(1 − p)

4
,

we recognize a fast convergence to the asymptotic variance’s lower bound of the optimal
estimator. This result resembling the case of the Bessel process justifies the restriction to the
explicit estimator ϑ̂n,p from a practical point of view.

5 Estimator based on two eigenfunctions

Now,we turn back to the Bessel process and try to improve the asymptotic variance further by
considering martingale estimating functions based on two eigenfunctions. Yet, this approach
suffers from the drawback that we do not get explicit results for the estimators anymore, but
for the asymptotic variance at least for weights depending only on the unknown parameter.

As in the previous sections we start with a class of martingale estimating functions with
weight depending on the unknown parameter only. We consider

Hn(ϑ) :=
n∑

i=1

2∑
j=1

β j (ϑ)
(
φ j (Xi�,ϑ) − e−λ j (ϑ)�φ j (X(i−1)�, ϑ)

)
,

where β1 and β2 are continuously differentiable functions only depending on ϑ . Under
suitable conditions on the interplay between the weights βi and the eigenfunctions, we can
easily achieve a consistent and asymptotic normal estimator.

Theorem 5.1 If for every ϑ ∈ �

f (β1, β2, ϑ) := β1(ϑ)
1 − e−2α�

ϑ + 1
+ β2(ϑ)

1 − e−4α�

(ϑ + 1)(ϑ + 2)

= 0
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is satisfied, then there exists a solution of Hn(ϑ̂n,2) = 0 with a probability tending to one as
n → ∞ under Pϑ0 . Furthermore, for every true value ϑ0 ∈ � ⊂ (− 1

2 ,∞) we have

(i) ϑ̂n,2 → ϑ0 in probability and

(ii)
√
n(ϑ̂n,2 − ϑ0) → N

(
0, v(β1,β2,ϑ0)

f 2(β1,β2,ϑ0)

)
in distribution

under Pϑ0 with

v(β1, β2, ϑ0) := β2
1 (ϑ0)

1 − e−4α�

ϑ0 + 1
+ β2

2 (ϑ0)
2 − 2e−8α�

(ϑ0 + 1)(ϑ0 + 2)
.

Proof As by the assumption f (·, ·, ϑ) 
= 0 for every ϑ ∈ �, we conclude β1(ϑ) 
= 0 or
β2(ϑ) 
= 0 and consequently v(·, ·, ϑ) 
= 0 for every ϑ ∈ �. Using again (Kessler and
Sørensen 1999, Theorem 4.3) we only have to establish the formulas of f and v. In our
calculations below we need the following straightforward properties

(a) Q� symmetric,
(b)

∫ ∞
0 φ1(x, ϑ)φ2(x, ϑ)μϑ(x) dx = 0,

(c)
∫ ∞
0 φ j (x, ϑ)μϑ(x) dx = 0,

(d)
∫ ∞
0 x2ημϑ(x) dx = �(η+ϑ+1)

αη�(ϑ+1) for η ∈ N.

Step 1 Like in (Kessler and Sørensen 1999, Condition 4.2 (a)) we define f by

f (β1, β2, ϑ) :=
2∑

i=1

∫ ∞

0

∫ ∞

0

∂

∂ϑ
βi (ϑ)

(
φi (x, ϑ) − e−2α�φi (y, ϑ)

)
Qϑ

�( dx, dy).

The first step is to obtain the explicit expression given in Theorem 5.1.We can easily calculate
the two summands∫ ∞

0

∫ ∞

0

∂

∂ϑ
β1(ϑ)

(
φ1(x, ϑ) − e−2α�φ1(y, ϑ)

)
Qϑ

�( dx, dy)

(a)= (1 − e−2α�)

∫ ∞

0

∫ ∞

0

∂

∂ϑ
β1(ϑ)φ1(x, ϑ)Qϑ

�( dx, dy)

(c)= (1 − e−2α�)β1(ϑ)

∫ ∞

0

∂

∂ϑ
φ1(x, ϑ)μϑ(x) dx

= (1 − e−2α�)β1(ϑ)

∫ ∞

0

αx2

(ϑ + 1)2
μϑ(x) dx

(d)= β1(ϑ)
1 − e−2α�

ϑ + 1

and similarly ∫ ∞

0

∫ ∞

0

∂

∂ϑ
β2(ϑ)

(
φ2(x, ϑ) − e−4α�φ2(y, ϑ)

)
Qϑ

�( dx, dy)

= β2(ϑ)
1 − e−4α�

(ϑ + 1)(ϑ + 2)
.

Step 2 According to (Kessler and Sørensen 1999, Theorem 4.3), we receive

v(ϑ) =
2∑

i, j=1

βi (ϑ)β j (ϑ)αi j (ϑ)
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with

αi j :=
∫ ∞

0

∫ ∞

0

(
φi (y, ϑ) − e−λi�φi (x, ϑ)

) · (
φ j (y, ϑ) − e−λ j�φ j (x, ϑ)

)
Q�( dx, dy).

In the following we explicitly compute these integrals, starting with α11. If we take a look at
the proof of Theorem 3.1, we recognize the already calculated value

α11 =
∫ ∞

0

∫ ∞

0

(
1 − αy2

ϑ + 1
− e−2α�

(
1 − αx2

ϑ + 1

))2

Q�( dx, dy) = 1 − e−4α�

ϑ + 1
.

For the next term α12, it holds∫ ∞

0

∫ ∞

0

(
φ1(y, ϑ) − e−2α�φ1(x, ϑ)

)·(φ2(y, ϑ) − e−4α�φ2(x, ϑ)
)
Q�( dx, dy)

(a),(b)= −(e−2α� + e−4α�)

∫ ∞

0

∫ ∞

0
φ1(y, ϑ)φ2(x, ϑ)Q�( dx, dy)

= −(e−2α� + e−4α�)

∫ ∞

0

∫ ∞

0

(
1 − αy2

ϑ + 1

)
p(x, y,�) dyφ2(x, ϑ)μϑ(x) dx

(c)= (e−2α� + e−4α�)

∫ ∞

0

α

ϑ + 1
E μϑ (X2

� | X0 = x)φ2(x, ϑ)μϑ(x) dx

= (e−2α� + e−4α�)

∫ ∞

0

(
α

ϑ + 1
x2e−2α� + 1 − e−2α�

)
φ2(x, ϑ)μϑ(x) dx

(c)= α(e−4α� + e−6α�)

ϑ + 1

∫ ∞

0
x2φ2(x, ϑ)μϑ(x) dx

= α(e−4α� + e−6α�)

ϑ + 1

∫ ∞

0

(
x2 − 2αx4

ϑ + 1
+ α2x6

(ϑ + 1)(ϑ + 2)

)
μϑ(x) dx

(d)= (e−4α� + e−6α�)

ϑ + 1
(ϑ + 1 − 2(ϑ + 2) + ϑ + 3)

= 0

and similarly we obtain for α22∫ ∞

0

∫ ∞

0

(
φ2(y, ϑ) − e−4α�φ2(x, ϑ)

)2
Q�( dx, dy)

(a)= (1 + e−8α�)

∫ ∞

0
φ2
2(x, ϑ)μϑ(x) dx

− 2e−4α�

∫ ∞

0

∫ ∞

0
φ2(x, ϑ)φ2(y, ϑ)Q�( dx, dy)

= 2 − 2e−8α�

(ϑ + 1)(ϑ + 2)
.

��
Our aim is now to find βi s, which lead to the smallest asymptotic variance as α� → ∞.
Therefore, we define for fixed ϑ ∈ � the approximated functions

ṽ(β1, β2) := β2
1 (ϑ)

ϑ + 1
+ 2β2

2 (ϑ)

(ϑ + 1)(ϑ + 2)
,
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f̃ (β1, β2) := β1(ϑ)

ϑ + 1
+ β2(ϑ)

(ϑ + 1)(ϑ + 2)
,

for which

lim
α�→∞

∣∣∣∣ v(ϑ)

f 2(ϑ)
− ṽ(ϑ)

f̃ 2(ϑ)

∣∣∣∣ = 0

holds. This property justifies the search for the global minimum of

(β1, β2) 
→ ṽ(β1, β2)

f̃ 2(β1, β2)
.

To establish the minimum we first simplify the function

ṽ(β1, β2)

f̃ 2(β1, β2)
=

β2
1

ϑ+1 + 2β2
2

(ϑ+1)(ϑ+2)(
β1

ϑ+1 + β2
(ϑ+1)(ϑ+2)

)2

= (ϑ + 1)(ϑ + 2)
(ϑ + 2)β2

1 + 2β2
2

((ϑ + 2)β1 + β2)
2

and determine the first derivatives

d

dβ1

ṽ(β1, β2)

f̃ 2(β1, β2)
= 2(ϑ + 1)(ϑ + 2)2

β1β2 − 2β2
2

((ϑ + 2)β1 + β2)
3 ,

d

dβ2

ṽ(β1, β2)

f̃ 2(β1, β2)
= 2(ϑ + 1)(ϑ + 2)2

2β1β2 − β2
1

((ϑ + 2)β1 + β2)
3 .

Taking into account the properties of the βi s in Theorem 5.1, we get as possible minima
β1 = 2β2 
= 0 with value

ṽ(2β2, β2)

f̃ 2(2β2, β2)
= 2(ϑ + 1)(ϑ + 2)

2ϑ + 5
.

In order to check, if we indeed have minima, we consider β1 
= 2β2 and see

ṽ(β1, β2)

f̃ 2(β1, β2)
− 2(ϑ + 1)(ϑ + 2)

2ϑ + 5
= (ϑ + 1)(ϑ + 2)2

(β1 − 2β2)
2

(2ϑ + 5) ((ϑ + 2)β1 + β2)
2 > 0.

Hence, these critical points are global minima. Finally, we may specify the improvement of
the asymptotic variance

ϑ + 1 − 2(ϑ + 1)(ϑ + 2)

2ϑ + 5
= (ϑ + 1)

2ϑ + 5 − 2(ϑ + 2)

2ϑ + 5
= ϑ + 1

2ϑ + 5
> 0

if we consider the asymptotic behaviour α� → ∞. Hence, we see that relative improvement
compared toϑ+1, the bound of the asymptotic variance in the case of only one eigenfunction,
is 1

2ϑ+5 and decreases as ϑ increases. However, for the boundary case ϑ = −1/2 we get
an improvement of 25%. For the case ϑ = 0, which for a Dunkl process separates between
finite and infinite jump activity, we still get an improvement of 20%.

As a second stepwemayconsiderweightswhich also dependon the observations.Note that
though we may determine the optimal weights as solutions to a system of linear equations
with coefficients depending on higher order conditional moments, which is theoretically
feasible, we cannot provide an explicit result for the optimal asymptotic variance. Hence, we
are not able to quantify the improvement compared to the simpler weights before.
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If we take into account weights a�
j , that additionally depend on the trajectories, i.e. if we

consider estimating functions

n∑
i=1

2∑
j=1

a�
j (X(i−1)�, ϑ)(φ j (Xi�, ϑ) − e−λ j�φ j (x, ϑ))

the optimal weights in the sense of Godambe Heyde Godambe and Heyde (1987) are given
in (Kessler and Sørensen 1999, p. 305). The weights α�

j are specified by the equation
(
a11 a12
a12 a22

)(
a�
1

a�
2

)
=

(
b1
b2

)

with

ai j (x, ϑ) :=
∫ ∞

0
(φi (y, ϑ) − e−λi�φi (x, ϑ))(φ j (y, ϑ) − e−λ j�φ j (x, ϑ))pϑ(x, y,�) dy

for 1 ≤ i < j ≤ 2 and

b j (x, ϑ) := −
∫ ∞

0

d

dϑ
(φ j (y, ϑ) − e−λ j�φ j (x, ϑ))pϑ(x, y,�) dy

for j = 1, 2. Hence,

a11(x, ϑ) = (1 − e−2α�)2

ϑ + 1
+ 2αx2

(ϑ + 1)2
(e−2α� − e−4α�),

a12(x, ϑ) = 2α2

(ϑ + 1)2
ϕ(x, ϑ) − α3

(ϑ + 1)2(ϑ + 2)

× (
E (X6

i� | X(i−1)�=x ) − E (X2
i� | X(i−1)� = x)E (X4

i� | X(i−1)� = x)
)
,

a22(x, ϑ) = α4

(ϑ + 1)2(ϑ + 2)2
E ((X4

i� − E (X4
i� | X(i−1)� = x)2 | X(i−1)� = x)

+ 4α2

(ϑ + 1)2
ϕ(x, ϑ) − 4α3

(ϑ + 1)2(ϑ + 2)

× (
E (X6

i� | X(i−1)� = x) − E (X2
i� | X(i−1)� = x)E (X4

i� | X(i−1)� = x)
)

and

b1(x, ϑ) = −1 − e−2α�

ϑ + 1
,

b2(x, ϑ) = 2αx2(e−2α� − e−4α�)

(ϑ + 1)(ϑ + 2)
+ 2ϑ + 3

(ϑ + 1)(ϑ + 2)
(1 − e−2α�)2 − 2

ϑ + 1
(1 − e−2α�).
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