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Abstract
In this thesis, the adaption of models and methods known from the electrical transmission

line (TL) theory to thermal heat transfer problems in cables is analyzed. Possibilities and
limitations are presented.

Based on the consequent usage of analogies between electrical and thermal domains, a
thermal analog to the electrical TL theory is derived for a single wire cable. The necessary
assumptions and simplifications are discussed. For more complex cable arrangements, a gen-
eral modeling approach is presented, which allows setting up an equivalent circuit diagram
(ECD) and the corresponding system of partial differential equations (PDEs) directly based
on the physical cable properties. The electrical and thermal models are compared.

The PDEs are solved using different simplifications. At first, basic linear analytical solu-
tion approaches for constant excitations are calculated beginning with solutions of the PDEs
for special cases (neglection of time and/or spatial dependence). In addition, for relevant ca-
bles (single wire cable, system consisting of axially combined single wire cables, two single
wire cables, coaxial cable, N identical single wire cables, and a general form), analytical
calculation approaches of the complete PDE or system of PDEs are given. Approaches for
the consideration of time and spatial varying initial and boundary conditions and inhomo-
geneity are discussed. For the nonlinear parameter dependence, a fast converging fixed-point
iteration is proposed.

The solutions are validated by comparison with measurement results (indirect temper-
ature measurement based on resistance measurement and thermocouple temperature mea-
surement) and numerical reference solutions. An approach for determining some cable pa-
rameters that are extremely difficult to be measured directly from the physical arrangement
is presented, for example, the coupling conductance between the conductors of a twisted pair
cable. Overall, very good accordance between numerically and analytically calculated tem-
peratures is observed. For a cable bundle consisting of 33 cables, the general applicability of
the presented methods to complex problems is shown.

The results are discussed with regard to the model and solution accuracy. In addition,
the new models are compared to literature approaches for the single wire cable. For multi-
conductor arrangements, the influence of the bundle on the individual cable temperatures is
discussed using the example of a twisted pair cable. Also, the influence of the assumption of
a solid conductor in contrast to a stranded conductor is analyzed. Finally, as an application
example, a protection strategy for a twisted pair cable for power over data line (PoDL) ap-
plications is developed based on the presented calculation approaches and implemented on a
microcontroller. The setup is tested in a laboratory environment which shows the applicabil-
ity of cable protection strategies directly based on the cable temperature.
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1 Introduction

1 Introduction
The technical development of electrical and electronic components is proceeding at a rapid

pace. More powerful and at the same time smaller components are taking on more complex
functions. These also include safety-relevant features that lead to new demands concern-
ing reliability - safety-relevant functions should not simply be switched off in critical cases
because this can result in potentially dangerous situations for the end user. Overall, these de-
velopments lead to new challenges and requirements concerning diagnosis functions as well
as architectures [1]. In this context, heat generation and dissipation play an important role.
In addition to the individual functional elements, the consideration of the interconnecting
conductor structures is gaining importance due to the increasing power levels. The thermal
behavior must therefore always be taken into account when cables, busbars, or conductor
traces that are used to supply individual functions are dimensioned [2].

In this thesis, the focus is put on cables. During operation, the cable has to be protected
from damage to the temperature-sensitive insulation and, in the worst case, a cable fire.
Classically, melting fuses are used for this safety-relevant purpose. Those cannot fulfill the
ever-rising requirements of flexibility and their tripping behavior only partly depends on
the relevant cable temperature. That is why electronic fuses are developed, that consist of
a (software) controlled switch and therefore allow very flexible switching strategies. As the
temperature of the cable that has to be protected is the relevant parameter, strategies for
continuous cable temperature monitoring are necessary. For high power transmission cables,
various approaches for online temperature monitoring already exist. One example of such
an approach is distributed temperature sensing (DTS) [3], where the response of a thin op-
tical fiber to laser pulses is analyzed. Overall, this procedure is quite complex, so it is only
economical for special applications (especially very long, large and expensive cables such as
submarine cables).

In practice, however, thinner and shorter cables are often used and the cost pressure on
cable systems is high. Simple single cables are necessary for various application fields to
supply a wide range of elements. In some cases, shielded single (coaxial) or multiconductor
cables are also used to reduce interference emissions. Twisted pair cables are applied, for
example, to supply low-power consumers via communication lines (power over data line,
PoDL, [4]). Systems constructed from three identical cables are particularly used for power
supply. In general, conductor bundles of any complexity can appear, for example, in the main
wiring harness of vehicles.

For all these applications of comparatively thin and short cables, thermal considerations
play an increasing role. Direct temperature measurements are too complex and expensive.
Thus, indirect model-based approaches based on current measurements are necessary. Un-
til now, in addition to the application of elaborate measurements, the thermal behavior of
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1 Introduction

those cables has been described almost exclusively by numerical approaches, primarily finite
element methods (FEMs) [2]. However, since these numerical calculation approaches are as-
sociated with a high effort (in form of computing capacity and runtime), these approaches
are usually not real-time capable. The aim of this thesis is therefore to determine analytical
calculation rules for the current-based cable temperature estimation for selected, particularly
relevant conductor arrangements.

In chapter 2, an overview of different cable protection approaches is given with a focus
on automotive applications. Besides classical (melting) fuses, also approaches based on con-
trolled switches are shown. A current-based and a temperature-based decision are discussed
and the different protection strategies are compared. In the next step, an overview of the
theoretical basics and the state of the art concerning thermal effects on cables is briefly sum-
marized in chapter 3. In addition, electrical effects on cables are presented in the form of the
electrical transmission line (TL) theory.

In chapter 4, the basic modeling approach that is used in this thesis for the thermal cable
models is introduced, which is the usage of analogies between electrical and thermal do-
mains. This is followed by the development of a thermal analog to the electrical TL theory,
i.e., a kind of thermal TL theory in chapter 5. After preliminary considerations concerning
the general similarities and differences between the electrical and thermal domain, formula-
tions for a single wire cable and more complex cable arrangements are derived. The electrical
and thermal TL models are critically compared.

The resulting system of nonlinear partial differential equations (PDEs) cannot directly be
solved analytically. That is why in chapter 6, at first analytical solutions for the linearized
PDE system with constant excitations are derived, mostly based on the solution approaches
known from the electrical domain as the solution in the Laplace domain or Green’s function
approaches. Solutions for a single wire cable, a system of axially connected single wire ca-
bles, two single wire cables, a coaxial cable, N identical single wire cables, and a general
solution approach are described. In the next step, approaches for the consideration of time
and spatial varying initial and boundary conditions and inhomogeneity as well as the nonlin-
ear parameter dependence are discussed. The calculation approaches are validated in chapter
7 using measurements and numerical reference solutions.

The results are analyzed in chapter 8: The model and solution accuracies are discussed
and the new models are compared to previous literature approaches. Typical simplifying
assumptions such as the neglect of cable bundles or branded conductors are evaluated. In
addition, an application example is shown: A protection strategy for a twisted pair cable
is developed, implemented on a simple microcontroller, and tested to show the practical
applicability of the approaches. This thesis concludes with a summary.
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2 Cable Protection
Overload scenarios can lead to critical situations in electrical circuits, which on the one

hand can endanger users, but on the other hand potentially damage or destroy sensitive com-
ponents. For more than a century [5, p. 2], protection strategies have therefore been used to
minimize the risks for people and components. Various approaches have been developed for
this purpose. In this thesis, the focus is put on cable protection.

2.1 Overview
When an electric current flows through a cable, the finite conductivity of the conductor

material causes electrical power losses. These losses are converted into heat, which heats
the cable. The insulation material reacts more sensitively to temperature increases than the
inner (metal) conductor: When the insulation material heats up, initially its aging process
is massively accelerated. Further heating can also lead to (plastic) deformation and, in the
worst case, to a cable fire. These undesirable consequences of an excessively high insulation
temperature have to be avoided. The cables must therefore be protected from overcurrent-
induced overtemperatures. If only the cable heating due to the ohmic losses plays a role and
the environment cools the cable, the hottest point of the insulation is found at the transition
between the inner conductor and the insulation. Accordingly, the inner conductor tempera-
ture is relevant for the insulation status.

The most popular and widespread devices concerning cable protection are (melting) fuses
[5, p. 1], in which a wire melts during overload operation and thus interrupts the circuit,
and circuit breakers, which interrupt the circuit by the thermally induced deformation of
a bimetal [6]. For more specialized applications, also many other protection devices were
developed in the past, which include, for example, resettable fuses [5, 6]. Those typically
consist of positive temperature coefficient devices (for example polymers [7, 8] or ceramic
materials [6]) that show a very large resistance in case of an overcurrent, thus limiting the
current flow [5, p. 15]. Permanent power fuses, or sodium fuses, use the phase transition of
sodium from solid to plasma to dramatically increase the resistance in case of a fault [9, 10].
Electronically controlled systems represent another group of protection devices, in which,
for example, a tripping decision is made based on a current or temperature estimation and
the circuit is interrupted using some kind of switch (e.g., field effect transistor or relay) [5,
6].

Overall, many possible protection methods and elements exist for different applications
and a complete overview would be beyond the scope of this thesis. Therefore, exemplarily,
the development of cable protection strategies for application in automotive vehicles from
(melting) fuses to modern flexible strategies is motivated in the following.
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2.2 Melting Fuses
Melting fuses, or shortly fuses, are widely used in many applications. The worldwide pro-

duction was estimated to be over 10 billion fuses annually in 2004 [5, p. 16]. The history of
fuses goes back to the 19th century [5, p. 2]. According to [11], the first design specifications
for fuses were patented by Thomas Edison in 1881. The basic principle has remained the
same throughout this time: A comparatively short (and thus inexpensive) piece of wire is
sacrificed in case of an overload to protect the rest of the circuit from damage [5, p. 1]. Thus,
the geometrical and/or physical properties of this short piece must differ from those of the
rest of the circuit in such a way that a predetermined breaking point is created here, which
is destroyed by an overload before the other elements suffer serious damage. Usually, this is
ensured by a comparatively thin wire made of a material with a low melting temperature.

Basically, a melting fuse behaves like a controlled resistor (see figure 2.1): Before tripping,
the (time-dependent) resistance R(t) is comparatively low, after tripping, the resistance is
very high. The exact triggering time of the melting fuse is influenced by the temperature of
the melting wire. In addition to the geometrical and physical fuse properties and the current,
this depends in particular on the ambient conditions such as the ambient temperature or the
type of installation. Overall, there is a complex dependence on the load current I , but also on
many other influencing variables such as the ambient temperature Te, the initial temperature
T0, or the connected cables.

The tripping behavior can be realized by different types of melting fuses. Those are sub-
divided into three categories [5, p. 11]. High voltage (HV) fuses and low voltage (LV) fuses
differ in terms of voltage (limit 1000V alternating current (AC)). The third category, minia-
ture fuses, is primarily determined by the geometrical dimensions. Typical automotive fuses
belong to this category. Fuses can also be classified in terms of their spatial structure into
enclosed fuses and semi-enclosed fuses [5, p. 11]. Thermal models for different fuse types
can be found for example in [12–18].

Fuses play a major role in automotive applications. Already in 2004, each vehicle was
equipped with 30 to 75 fuses, depending on the price category [5, p. 134]. Due to increas-
ing automation and electrification in the vehicle, the number of consumers, the complexity

?

I(t)

Te(t)

T0

R(t)

Figure 2.1: Function of a melting fuse as a controlled resistor.
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of the wiring harness, and thus the number of elements to be protected from overcurrents
continues to increase [19]. At the end of the 1970s, blade-type fuses (see, for example, [20])
were developed primarily for use in automobiles [5, pp. 134-137], which quickly became
established and today represent the typical fuse form in automotive vehicles. They are used
to protect circuits with rated currents of up to 100A, typically with voltages of up to 32V.

The design process for cable and fuse is now briefly outlined. Current-time characteristics
as given in figure 2.2 are used to illustrate the typical behavior of the individual elements
(see e.g. [6, 20]): In the normal load characteristic, the typical time is shown that a certain
current flows in normal operation. For a fuse, the characteristic shows, depending on the load
current, after what time the fuse operates. For a cable, the characteristic typically indicates
the time a given constant current has to flow to heat up the cable to a certain temperature.
First of all, the basis is the supplied load. Based on its current-time characteristic (yellow
curve in figure 2.2) a fuse is designed which can permanently tolerate the standard load. The
tripping characteristic of this fuse (green curve in figure 2.2) then indicates the time the wire
needs to melt as a function of the current and is typically chosen to be higher than the load
characteristic by a factor of 1.25 to two [5, pp. 141-142]. The cable, which is used for supply
and has to be protected against overtemperatures, must have a destruction characteristic (blue
curve in figure 2.2) that is even higher to ensure that the fuse breaks the circuit before the
cable suffers irreversible damage. Typically, the cable and fuse show a comparable behavior
regarding low overcurrents, but at high overcurrents, the fuse (which is thin compared to the
cable) reacts much faster than the cable [21]. So, there can be significant distances between
the characteristic curves (red area in figure 2.2).

Fuses are widely used, established, and trusted. In [22], a list of advantages for LV fuses
is given, many of which also apply to HV fuses and miniature fuses [5, p. 140]. Among
them are the following advantages: Generally, no complicated short-circuit calculations are
required for the use. Fuses are simple, reliable, and overall inexpensive components. Because
they cannot be reset, the user is encouraged to take a closer look at the problem that caused

100
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Figure 2.2: Characteristics of load, melting fuse, and cable.
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the overload to identify and correct the fault. Fuses reliably switch off even high currents and
minimize supply voltage drops because of the short tripping times.

There are also some disadvantages associated with fuses. Using melting fuses implicitly
assumes homogeneous cables and cable environments, so variations along the cables cannot
be considered. The real cable temperature is not known in this approach. Fuse and cable
ideally are exposed to the same environmental and initial conditions, nevertheless, both react
differently to them, so the influence of those conditions on the real cable temperature is only
partly considered in the triggering decision. Safety distances must be included: The minimum
fusing current always has to be lower than the current that the cables and other elements can
tolerate. Conversely, cables need to be selected that withstand, for example, a 50% higher
continuous current than the fuse rating (if the fusing factor is 1.5), which increases the cable
price and weight. In addition, depending on the chosen fuse, different cables are necessary
[5, p. 153], so the fusing strategy must already be known in detail when selecting the cable.
This reduces the flexibility of the entire wiring system. In addition, the fuse must be replaced
after operating (reset is not possible), so all fuses have to be placed in easily accessible
locations in the wiring system, which further limits the possible arrangements. Overall, fuses
are very unflexible as the switching behavior of an installed fuse cannot be adapted. Many
fuses do not allow full-range protection over the entire current range [5, p. 142]. Also, there
are critical cases and current loads in which the fuse has not tripped but plastic deformation
has already occurred [5, p. 141]. Then, when a new load is applied, the fusing behavior is
unspecified and it usually operates much earlier than expected. These critical cases form
a narrow band in the current-time diagram, which should be avoided if possible. Another
critical aspect regarding the characteristic curves for fuses is that they do not depend on
the fuse alone, but for comparatively small overcurrents also on the ambient conditions and
the connected cables [5, p. 33]. The specification of “the” fuse characteristic for a specific
fuse is therefore not possible. So, again, safety margins are inevitably necessary. Quantifying
these precisely is not trivial, so usually, significantly over-dimensioned designs are the result.
Because of these disadvantages, other protection strategies are developed. An overview of
advantages and disadvantages in comparison with the other protection strategies presented
in the following is given in table 2.1.

2.3 Controlled Switches
In the case of fuses, a large safety margin is required between the tripping characteristic of

the fuse and the cable characteristic due to the different behaviors of fuses and cables, result-
ing in over-dimensioned cables and unusable cable reserves. Smart fuse protection strategies
allow better adaption of the tripping characteristic to the actual physical conditions. In prin-
ciple, a software-controlled switch is used for disconnecting the circuit [23], whereby a wide
variety of approaches can be considered for the specific implementation of the tripping rule.
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R(t)strategy/
decision

χ(t)
calculate χ

I(t)

Te(t)

T0

controller
χ: decision variable

Figure 2.3: Function of a controlled switch as a controlled resistor.

The underlying setup is shown in figure 2.3: The input variables serve as the basis for the
decision. Those typically include the time-dependent measured current I(t) and can be sup-
plemented by other variables such as the ambient temperature Te or the initial temperature
T0. From these input variables, the development of the decision variable χ is first calculated
in a controller. Based on this decision variable, the tripping decision is then made and the
current is switched, which can be understood as equivalent to the control of a variable resis-
tor. In contrast to the simple (melting) fuse (see figure 2.1), the entire decision process in the
controller is freely programmable and thus much more flexible. Resetting or switching on is
also possible.

The time-depending input variables have to be measured. On the one hand, more infor-
mation enables a more precise assessment of the cable situation and thus a more accurate
switching behavior, on the other hand, it also causes an increased measurement effort. A
compromise must therefore be found between these two effects: The overall goal is to enable
a safe decision with as little (measurement) effort as possible. Compared to the melting fuse,
more different components are now involved in the decision-making process. Each of these
components can fail and thus cause the failure of the protection strategy so the overall failure
probability increases.

In the general approach, the decision variable is not specified in detail - a wide variety of
variables can be chosen here. Two prominent approaches are presented below.

2.3.1 Current-Based Decision
One possibility is to directly use the cable characteristic. In this current-time characteristic,

the permissible load duration of the cable until the selected maximum temperature is reached
is given as a function of the electrical current. When determining these curves, the axial heat
flow is neglected, i.e. long cables are assumed. In addition, a constant current pulse, as well
as an initially cold cable, are assumed and the ambient temperature is set to a fixed value.

In practically relevant applications, single constant current pulses only rarely occur. Nev-
ertheless, the current-time characteristics that are usually given by the manufacturer are often
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2 Cable Protection

used for cable protection. To relate continuous transient currents with the cable characteris-
tics, moving root mean square (RMS) windows are therefore used [24, A.1].

The procedure is as follows: First, a point (I, τ) is chosen on the current-time characteris-
tic. Then, at each time t, the question is whether an unacceptably high load (i.e., greater than
I) has occurred in the time window of width τ ending at time t. Therefore, the RMS value

RMSτ (t) =

√︄
1

τ

∫︂ t

t−τ

I2(t̃) dt̃ = χ(t) (2.1)

for the window of width τ is used as decision variable χ(t) and compared with the allowed
value from the characteristic I . The RMS value is continuously updated during operation. In
total, such a dynamic approach is carried out in parallel for different points on the charac-
teristic curve (typically between six and ten points) to reproduce the entire bandwidth of the
characteristic curve as far as possible. Overall, the decision variables are here the RMS values
that are continuously calculated from the measured current and compared to the maximum
permissible values for the switching decision (see figure 2.4).

However, problems can also arise with this approach. These are discussed in the following.
By selecting specific points on the characteristic curve, it is reproduced in discretized

form. In the next step, the RMS values for window widths between the explicitly selected
and considered widths are analyzed. For this purpose, it is first assumed that two window
widths τ1 and τ2 were selected for the fuse protection and that the permissible limit values I1
and I2 are not exceeded by the associated RMS values for a current waveform not defined in
more detail. Mathematically this means for all t̂ ≤ t:

RMSτ1(t̂) =

√︄
1

τ1

∫︂ t̂

t̂−τ1

I2(t̃) dt̃ ≤ I1, RMSτ2(t̂) =

√︄
1

τ2

∫︂ t̂

t̂−τ2

I2(t̃) dt̃ ≤ I2. (2.2)

Without a restriction of generality, I1 ≥ I2 and τ1 ≤ τ ≤ τ2 are assumed. Then, the following
worst-case estimation holds for the RMS for window width τ :

RMSτ (t) ≤

√︄
1

τ

[︃
τ2I22 −

∫︂ t−τ

t−τ2

I2(t̃) dt̃

]︃
≤
√︃

τ2
τ
I2. (2.3)

R(t)switch off, if
RMSτi > Ii for

at least one i

RMSτi(t)
calculate

χi = RMSτi ,
i = 1, 2, ...

I(t)

t

I

t

RMSi

t

R

Figure 2.4: Controller function for a current-based switching decision using RMS values.
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Explicitly, no statement of form RMSτ (t) ≤ I1 is possible, so an estimation against the
smaller of the two considered windows is not directly possible.

Based on this approach, using a given cable characteristic, windows can be chosen left
of the characteristic which ensures that for all possible current developments, the moving
RMS value does not exceed the characteristic. The area with high currents for short times
is uncritical here, as there, the worst case and the characteristic show the same behavior.
Heat conduction and all kind of interaction with the environment do not play any role in this
adiabatic case. Unlike, for comparatively low overcurrents, critical cases can occur.

Due to the worst case, higher values can appear for longer windows than for short win-
dows. An example of such a problematic case is shown in the following. The current-time
characteristic for a 6mm2 cable with the initial and ambient temperature of 60 ◦C and the
maximum permissible temperature of 105 ◦C (black curve in figure 2.5) is analyzed. The
green and black points of this characteristic curve are now used for protection. The worst-
case curve between the selected window widths is given. The current development shown in
figure 2.6 is assumed: Three single, comparatively high pulses occur. In figure 2.6, the time
evolution of some of the selected windows is shown together with the maximum allowed
values (green). At all these windows, the allowed values are not exceeded. Also, the devel-
opment of the maximum occurring RMS values as a function of the window width is shown
continuously in yellow in figure 2.5. It can be seen that in some cases the permissible values
are exceeded in the areas between the windows for protection, which would not be noticed
by the protection strategy. An example of a particularly critical window width is shown in
yellow in figures 2.5 and 2.6. There, an RMS value is reached that is about 7.5A above the
allowable current value for this window.

In addition to the RMS values for different window widths, the actual temperature devel-
opment is also calculated (see figure 2.6, blue). It can be seen that the first pulse raises the
temperature close to the permissible limit, as also expected based on the RMS value for the
window width of 55 s. Between the pulses, the cable cools down again, yet the starting tem-
perature at the beginning of the second pulse is already 80 ◦C so the characteristic curve can
actually no longer be applied. Thus, within the second pulse, the permissible temperature of
105 ◦C is exceeded.

100 300 1000
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50 60 70 80
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200

400 characteristic
windows fuse
additional point
maximal RMS
worst case

Figure 2.5: Cable characteristic and chosen windows for an exemplary protection strategy.
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Figure 2.6: Exemplary critical load current that leads to an overheating cable but is not de-
tected by the protection strategy.
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Here another problem of the described approach becomes apparent: The given character-
istic curve is based on the assumption of a starting temperature of 60 ◦C and therefore cannot
be used already for the second pulse. However, the actual cable temperature is not known in
this approach. It could be continuously measured in parallel, but due to the high effort of this
approach, it is not practically relevant. Worst-case assumptions would be necessary, but the
question arises of which cable temperature should be used: After all, during operation, tem-
peratures can occur right up to the permissible limit temperature, so this would represent the
formal worst case. However, the specification of a characteristic curve for heating starting at
the maximum permissible temperature up to the same temperature is not reasonable. Thus,
the initial conditions are not sufficiently continuously considered in this approach. To be able
to track the initial temperature and thus the characteristic curve, a temperature monitoring
system running in parallel would be necessary. However, if the actual cable temperature is
known, it is also possible to trigger directly on this basis and the entire RMS approach is
no longer needed. For the ambient temperature, worst-case assumptions or additional mea-
surements are also necessary for the selection of the characteristic curve. Implicitly, constant
values are assumed by choosing a characteristic curve here. Nevertheless, the possibility of
choosing an appropriate cable characteristic allows more flexible strategies than the simple
melting fuse.

With the use of controlled switches, controlled overload and switching on is possible.
Nevertheless, because of the unknown cable temperature in the RMS-based approach, both
of those functions cannot be used directly based on the physical cable status but can only be
implemented based on assumptions or rough approximations.

In principle, the discretization of the current sampling can also lead to further problems.
Maxima of the RMS values can thus possibly no longer be resolved. However, this problem
also occurs in other protection strategies, so it is assumed here and in the following that
the actual current waveform is known with sufficient accuracy not to cause any additional
problems.

A very relevant question is to what extent the RMS value is at all directly related to the
evolving conductor temperature. The underlying idea here is that the squared current in-
fluences the injected power and therefore the RMS value corresponds to the temperature.
However, nonlinear effects are not taken into account: In particular, the heat dissipation from
the cable surface to the environment is highly nonlinear. In the literature, therefore, the ac-
tual exponent for the current influence on the temperature is given overall between 1.5 and 2

(depending on the emissivity of the surface) [25] or between 1.5 and 1.85 [26]. Various fac-
tors influence this behavior. Therefore, the pure RMS value does not reproduce the occurring
effects well enough and is thus not always suitable for a sufficiently accurate estimation of
the conductor temperature.

Overall, some difficulties arise in the application of this algorithm. Therefore, cables are
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usually significantly oversized in practice and switched off far before reaching critical tem-
peratures, so reserves can often not be utilized. Many windows and/or significant cable re-
serves have to be taken into account. The necessary reserves vary depending on the selected
window width. Good protection strategies can only be found for the special case where am-
bient and initial temperatures are constant and only individual current pulses occur between
which the cable cools down completely. All conditions that differ from these strict assump-
tions can lead to significant problems.

2.3.2 Temperature-Based Decision
The two previous approaches had in common that the actual cable temperature was not

known and therefore could not be taken into account. Based on this, various difficulties arose.
To avoid these, the cable temperature T itself is required as decision variable χ and therefore
has to be continuously monitored. In the ideal case, both the time and spatial temperature
development along the complete cable are known.

On the one hand, this can be achieved via measurement. For example, the DTS [3] can
be applied: Here, a thin optical fiber is placed directly in the cable, and the response of this
fiber to laser pulses is analyzed, so the conductor temperature can be determined with a spa-
tial and temporal resolution. This procedure needs a rather complex technique for measuring
and processing the recorded data. Typical resolutions are in the range of meters, but special
techniques also allow higher spatial resolutions for shorter cables (e.g. [27, 28]). The optical
fiber itself should not relevantly distort the measured temperature curve, so this method is
only partly suitable for thin cables. Because of the complexity of this procedure, it is only
economical if the optical fiber is laid directly with the cable and very long, large, and expen-
sive cables (e.g. underground cables or submarine cables) are to be monitored.

Alternatively, the cable temperature can be calculated using appropriate thermal cable
models. Typically, based on the current measurement (and possible additional inputs) the
time-dependent temperature development is calculated. Then, the current can be switched off
if the maximum permissible temperature Tlim is exceeded and switched on again if the cable
temperature falls below the lower temperature Thys, thus using hysteresis to avoid permanent

R(t)
switch off, if
T > Tlim,

switch on, if
T < Thys

T (t)calculate
χ = T

I(t)

Te(t)

T0

t

I

t

T

t

R

Figure 2.7: Controller function for a temperature-based switching decision using thermal ca-
ble models.
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switching. An overview of this approach is given in figure 2.7. On the one hand, appropriate
models must describe the physical conditions reliably and with sufficient accuracy, but on
the other hand, they must not become too complex to remain competitive compared to the
very cheap fuse protection. This thesis aims to contribute to such protection strategies in the
form of simple (therefore analytical) models for cable temperature calculation.

2.4 Comparison of Different Protection Strategies
Finally, in table 2.1, the properties of the presented protection approaches (melting fuse,

controlled switch with RMS-based and temperature-based decision) are directly compared to
highlight the advantages of controlled switches with temperature-based protection strategies.

In the first two approaches, the cable temperature is not known: The melting fuse is cho-
sen to fit the thermal behavior of the cable, but cannot reproduce its behavior under varying
conditions or give any information about the real cable temperature. Therefore, high safety
margins are necessary. With the RMS-based approach, the aim is to know whether the max-
imum permissible cable temperature is exceeded or not – but the real cable temperature is
not known in detail, which causes again safety margins. The three approaches also differ
in terms of their consideration of the environmental temperature, the initial cable temper-
ature, and earlier loads. Using the melting fuse, this is partly considered as the fuse is on
the one hand exposed to the same conditions and loads, but on the other hand, reacts dif-
ferently than the cable. In the RMS-based approach, the consideration of the environmental
temperature is possible via measurement, although implicitly a constant environmental tem-
perature is assumed when choosing a cable characteristic. Nevertheless, slow changes in
the environmental temperature can be considered by choosing the appropriate characteristic.
For the initial characteristic choice, an initial cable temperature is necessary, which has to
be measured or assumed. The continuous update of this initial temperature for the choice
of the appropriate characteristic for each window is highly problematic in this approach, as
the cable temperature is unknown. Using the thermal cable model, again, via measurement
the environmental temperature can be determined and used as input for the calculation. An
initial cable temperature has to be known as in the previous case but then, at each moment
the temperature calculation is performed based on the earlier results which directly allows
the consideration of earlier loads. In addition, also spatial varying temperatures can be taken
into account by appropriate models, which is not supported for the melting fuse and the
RMS-based approach. In contrast to the other two approaches, also the safety margin can
be reduced. Overall, the usage of a thermal cable model directly provides the temperature
information, so in this case, thinner cables can be chosen, which reduces the cable weight.

A melting fuse cannot be switched on again but has to be replaced after operating once.
Therefore, it has to be placed at a well-accessible fuse box in the final setup, which limits
possible boardnet architectures. Also, controlled overload is not possible and the switching
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strategy cannot be influenced after the installation of the fuse. Unlike, the controlled switches
can flexibly change their strategy during operation, be switched off later to allow controlled
overload, or be switched on again, although in the case of the RMS-based approach this
procedure has to be predetermined without knowledge of the cable temperature, so it is
uncontrolled to some extend. As the switch does not have to be replaced after an operation,
no central and accessible fuse box is necessary any longer, which allows new architectures
of the overall boardnet. All in all, the melting fuse is very unflexible in comparison with the
other two alternatives.

A melting fuse is a very simple protection device that can directly be integrated into the
circuit. Therefore, only this single element is necessary for protection without additional sup-
ply or calculation, which is why high reliability is achieved. Unlike, the usage of controlled
switches causes calculation effort (which also goes ahead with a necessary power supply),
implementation effort, and memory requirements depending on the chosen algorithm. Each
of the involved elements or steps can fail and therefore, result in reduced reliability. A higher
effort has to be put into the implementation.

Table 2.1: Comparison between different cable protection strategies.

(melting) fuse controlled switch (RMS) controlled switch
(thermal model)

cable temperature unknown unknown known
consideration of environ-
mental temperature

partly possible (not continuous) possible

initial cable temperature partly has to be known has to be known
consideration of earlier
loads

partly highly problematic possible

consideration of spatial
temperature distribution

not possible not possible possible

cable weight high medium low

safety margin high high low

reset/switch-on not possible possible (partly controlled) possible

controlled overload not possible possible (partly controlled) possible

fuse positions well accessible flexible flexible

flexibility low partly high

implementation effort none low high

calculation effort none low medium/high

memory requirements none medium/high medium

reliability very good medium medium

effort low high high
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3 Fundamentals of Thermal and Electrical
Effects on Transmission Lines

In this chapter, the fundamentals of thermal and electrical effects on TLs are discussed.
Some considerations of this chapter were already published in [A.2].

3.1 Thermal Effects on Transmission Lines
Thermal issues for a wide variety of structures and elements play an important role in

many different disciplines. The focus of this thesis is on the thermal modeling of current-
carrying cables. Also in this field, many modeling approaches were developed and many
investigations were performed. For example, a large number of dissertations (e.g., [2, 29–
39]) already dealt with this topic. Numerous publications, review papers, and basic literature
(e.g., [40–45]) have presented and systematized the diverse investigations. Selected methods
have also been standardized (e.g., [46–52]) and, accordingly, are widely used commercially.
An overview of the historical development of thermal cable modeling can be found in [53].
Many important approaches and developments are addressed there. Due to the long devel-
opment of thermal cable models (first considerations go back to the 19th century [53]) and
the resulting number of investigations (a search of the database of the Institute of Electrical
and Electronics Engineers, IEEE, with the keyword “thermal cable model” returns more
than 1200 entries), an overview of all approaches cannot be given in the following. Instead,
a classification according to different criteria is suggested for already existing approaches.
The mentioned sources in each case are meant as examples and do not claim to be complete.

3.1.1 Heat Flow Directions
Many round cables can be considered cylindrical structures. Therefore, cylindrical coordi-

nates are appropriate, as shown in figure 3.1. Two prominent transport directions for the heat
can be distinguished, the current flow direction (z-direction, axial) and the directions in the
plane transverse to the current flow, which sum up φ- and r-directions (radial direction).

Different modeling approaches can be distinguished concerning their treatment of the dif-
ferent heat flow directions: First, all three spatial directions can be considered (see, e.g.,
[54–56]). Thus, arbitrary arrangements of cables can be described without the need for ro-
tational symmetry. For example, the complete heat flow along a bundle of cables [57] can

radial, r
axial, z

φ

Figure 3.1: Coordinates, axial and radial direction along a cable.
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be considered in this way. However, the resulting models are very complex and usually can
only be solved with great effort, so simplifications are sought wherever possible. One widely
used simplification is the neglection of axial heat flow: In the case of long, homogeneous
conductors whose ends are at non-critical temperatures, only the heat transport processes in
the transverse direction are relevant for the maximum conductor temperature, especially if
the internal ohmic losses in the conductor are the only heat source to be considered. The
heat flux in the current flow direction in the cable middle, where the highest temperatures are
expected, is then negligible, so it is sufficient to consider any cross-section of the conductor,
obtaining a two-dimensional (2 D) radial model (see, e.g., [55, 58–67]). If, in addition, the
arrangement is also symmetrical in the φ-direction (the typical case for this is a single cable),
the model order can be further reduced, leaving only a one-dimensional (1 D) radial model
(see, e.g., [68–77]). If, in addition to the heat flux in the r-direction, the axial cable direction
is also taken into account (z-direction), the result is again a 2 D model in which the rotational
symmetry of the arrangement is considered. Examples of such approaches can be found in
[57, 78, 79]. Also in this thesis, basically the heat flux in φ-direction is not considered. Based
on this, approximations for the description of rotationally unsymmetrical cable arrangements
(multiconductor cable arrangements) are also proposed.

3.1.2 Time Dependence
Thermal models can also be classified with respect to their consideration of transient ef-

fects. In steady-state models, thermal equilibrium is assumed: Here, the long-term state after
all adjustment processes is described. Such models without consideration of time dependence
are widely used (see e.g. [58, 60, 61, 63–65, 67, 78–80]), but reach their limits in practically
relevant problems. For example, cables can tolerate much higher currents in the short term
than in the long term. To describe this behavior, transient models are needed (see, e.g., [54,
57, 68–77, 81–86]). However, fully accounting for all transient effects is very challenging
due to retroactive effects (e.g., temperature-dependent thermal cable parameters, see section
5.2.2), so limiting assumptions are almost always made. For example, it is implicitly assumed
that temporal changes occur slowly, so a quasi-static approach can be used and the separa-
tion of cable heating and heat conduction is a good approximation. This assumption is also
made in this thesis. Furthermore, for most of the presented solutions, it is assumed that the
instantaneous parameter values have already existed since the beginning of the investigation
and thus, did not change during a transient calculation.

3.1.3 Basic Modeling Approach
For the description of thermal phenomena on conductors, on the one hand, the basic phys-

ical equations can directly be used. Here, the heat conduction equation plays a special role,
which is based on the conservation of energy. This approach is widely used (see, e.g., [60,
62, 64, 75, 78, 80, 81]) and directly provides a differential equation describing the problem.
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Together with appropriate initial, boundary, and transition conditions, an overall mathemat-
ical description can be found. A drawback of this approach is that the formulations are not
very descriptive and interrelationships and influences can sometimes be difficult to discern.
An alternative approach is given by using the equivalence between electrical and thermal do-
mains (see also chapter 4). This approach allows using equivalent circuit diagrams (ECDs)
known from electrical engineering also for the description of thermal problems. The indi-
vidual effects are separated from each other and represented in concentrated elements. The
result is a descriptive formulation, which, however, is also accompanied by approximations
due to the separation of effects. This approach is widely used (see e.g. [57, 59, 68–74, 76,
82, 84]) and is also used in this thesis.

3.1.4 Cable Environment
In liquids and gases, all three heat transfer mechanisms, conduction, radiation, and convec-

tion, occur. In contrast, only heat conduction occurs in solids [87, p. 1]. Thus, for the thermal
behavior of current-carrying cables, heat conduction within the cable dominates. However,
since interaction with the environment also occurs, radiation and convection have to be taken
into account for a complete description, depending on the type of installation. In the case of
air installation (see e.g. [66]), for example, the interaction between cable and environment
occurs primarily via convection and radiation - heat conduction plays only a subordinate role
here due to the comparatively low density of the air. Practically relevant examples of cables
laying freely in the air are overhead lines, for which transient models are needed to account
for the influence of weather on temperature development [45, 88–95]. At the other extreme,
cables may be surrounded by solids, so coupling with the environment primarily occurs via
thermal conduction. Typical examples are cables surrounded by soil (e.g. underground cables
[62, 63, 71, 76, 82, 96] or buried submarine cables [56]). Determining the thermal parame-
ters of the earth is particularly challenging since these depend on variables that are difficult
to predict, such as humidity [71]. Laying in water [97] or combinations of laying in air and
solids are also possible (e.g., cable laying in a pipe [62, 64, 98–101] or cable bundles [23,
58–61, 81, 85, 102–107]). Often, the highest temperatures are expected for installation freely
in the air (worst case) [36]. This assumption is reasonable if surrounding elements cool the
cables, but can lead to problems if, for example, there is a current through several cables in
a bundle and thus they are heated at the same time (see section 8.4.1) or close to the cable
additional heated elements appear [79].

3.1.5 Modeled Area
Thermal models can be further distinguished in terms of their spatial scope: What exactly

is covered by the model? In the general case, both the cable and the transition to the en-
vironment as well as the environment itself in a selected area around the cable are directly
modeled (see e.g. [55, 56, 63, 66, 84]). However, especially for the consideration of air as
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an ambient material, this approach leads to very complex models due to the different effects
that occur. Alternatively, as a simplification, only the cable itself is modeled directly and the
transition to the environment is defined in terms of boundary conditions (see e.g. [57, 60]). In
this context, a constant ambient temperature is assumed (see e.g. [59, 61]), so the heating of
the environment via the cable itself is not directly modeled. Rather, the ambient temperature
is measured, for example, and serves as an input variable for the model (see e.g. [60]). It is
assumed that the ambient temperature changes comparatively slowly, so these changes can
be taken into account via quasi-static approaches (using the current ambient temperature for
each time). This approach is also used in this thesis. Another possibility is to only model the
effects in the cable itself. In this case, the coupling to the environment is no longer modeled,
but the surface temperature of the cable is measured and used as an input variable for the
model (see e.g. [74, 76, 82, 108]). This simplifies the model itself considerably, but tem-
perature measurements on the cable can be comparatively expensive and time-consuming,
depending on the application.

3.1.6 Numerical vs. Analytical Solution Approaches
Due to the complex nonlinear parameter dependencies that occur in the thermal domain,

numerical methods for temperature calculation (e.g., [70, 77]) are widely used. With the help
of commercial computer programs for thermal simulations, complex three-dimensional (3 D)
models of cable structures can be built up and calculated. Mostly FEMs are used (e.g. [54–
56, 58, 62–64, 66, 67, 83, 96]), but also other approaches such as finite difference methods
(FDMs) [69, 77, 83] or finite volume methods (FVMs) [30, 81, 104] appear. Using numerical
methods, the transient temperature distributions can be calculated even for complex conduc-
tive structures with inhomogeneous environmental conditions. In principle, however, these
methods are associated with considerable numerical effort, although a reduction of the com-
putational effort can be achieved by neglecting the time dependence (see e.g. [58]). Since the
steady state is often not sufficient for practical problems, the practical applicability of such
calculations is significantly limited. In contrast, analytical descriptions [61, 75, 76, 80, 85,
86, 98, 109] are computationally faster but mostly rely on simplifications. A combination of
both approaches is proposed, for example, in [60]: Analytical relations are used to describe
the problem with constant parameters, and the nonlinear parameter dependence is taken into
account via a superimposed fixed-point iteration. This approach is also used in this thesis.

3.2 Electrical Transmission Line Theory
For many decades, electrical cable behavior has been deeply investigated [110, p. 2]. Over

time, the knowledge and understanding of the appearing effects grew, leading from the first
basic models for simple conductive structures to more and more detailed models for more
complex cable arrangements. For several parallel cables, the multiconductor TL theory was
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established, e.g. [110–112]. Today, a huge variety of methods is known, allowing current
and voltage calculations along conductive structures. Special cases lead to simplified formu-
lations for several applications.

3.2.1 Equivalent Circuit Diagrams and Partial Differential Equations
Often, ECDs for infinitesimally short cable segments are used. For a field excited system

consisting of a reference conductor and a second parallel conductor, oriented in the direc-
tion of the coordinate z, the ECD in figure 3.2 is found for a segment of the infinitesimal
length dz [110, p. 584]. The cable elements (resistance R′

el, inductance L′
el, capacitance1 C ′

el,
and conductance G′

el) and the sources that are used to model the coupling of external mag-
netic (voltage source U ′

fi) and electrical (current source I ′fi) fields are given as per unit length
parameters, which means that they are normalized to the length, which is a (spatial) deriva-
tive. In this thesis, per unit length parameters are marked with an upstroke. In the ECDs in
this whole thesis, all per unit length quantities formally have to be multiplied by the length,
which is neglected due to the clarity of the figures. Using Kirchhoff’s laws, a system of
coupled PDEs relating the current I and voltage U of the segment is derived with the time t:

∂U(z, t)

∂z
+ L′

el

∂I(z, t)

∂t
+R′

elI(z, t) = U ′
fi,

∂I(z, t)

∂z
+ C ′

el

∂U(z, t)

∂t
+G′

elU(z, t) = I ′fi.

(3.1)

This system, which couples voltage and current, can be reduced to a single PDE for the
voltage in the case of ∂U ′

fi/ ∂z = 0 and ∂I ′fi/ ∂t = 0:

∂2U(z, t)

∂z2
−L′

elC ′
el

∂2U(z, t)

∂t2
− (L′

elG
′
el+R′

elC ′
el)

∂U(z, t)

∂t
−R′

elG
′
elU(z, t) = −R′

elI
′
fi. (3.2)

reference

L′
elR′

el
U ′
fiI(z, t)

I ′fi

C ′
el G′

el

I(z + dz, t)

U(z, t) U(z + dz, t)

Figure 3.2: Electrical ECD for an infinitesimally long segment of a single conductor and a
reference conductor.

1In this thesis, some mathematical symbols (A, B, C, D, E, L, N , W , ε, φ) are used to describe different
quantities. To distinguish between them, one (typically the more rarely occurring) quantity is therefore writ-
ten in a different font (A, B, C, D, E , L, N , W , ϵ, ϕ). This sometimes results in an unusual appearance of
widely known relationships, which is why this distinction is briefly pointed out again when the corresponding
quantities are introduced. The corresponding assignments can be found in the list of mathematical symbols. C
describes electrical or thermal capacitances, whereas C is a parameter of the partial differential equations.
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N∑︂
i=1

Ii(z, t)
N∑︂
i=1

Ii(z + dz, t)

reference

L′
el,11R′

el,1
U ′
fi,1

I1(z, t)

I ′fi,1

C ′
el,11 G′

el,11

I1(z + dz, t)
line 1

L′
el,NNR′

el,N
U ′
fi,N

IN(z, t)

I ′fi,N
C ′
el,NN

G′
el,NN

...

IN(z + dz, t)
line N

C ′
el,1N

G′
el,1N

... L′
el,1N

...

U1(z, t)

UN(z, t)

U1(z + dz, t)

UN(z + dz, t)

Figure 3.3: Electrical ECD for an infinitesimally long segment of a multiconductor arrange-
ment.

To model not only a single conductor with a reference conductor but N+1 parallel conduc-
tors (one of which is again the reference conductor) and their interaction, the ECD in figure
3.3 is used for the case of an ideal reference conductor (resistance is equal to zero). The
interaction between the different conductors leads to matrix-vector expressions, that relate
currents and voltages on the analyzed conductors to each other:

∂U(z, t)

∂z
+ L′

el

∂I(z, t)

∂t
+R′

elI(z, t) = U ′
fi,

∂I(z, t)

∂z
+ C′

el

∂U(z, t)

∂t
+G′

elU (z, t) = I ′
fi.

(3.3)

Again, an expression only for the voltage can be derived equivalently to equation (3.2) with

∂U ′
fi/ ∂z = 0, ∂I ′

fi/ ∂t = 0 and U = U(z, t):

∂2U

∂z2
− L′

elC′
el

∂2U

∂t2
− (L′

elG
′
el +R′

elC′
el)

∂U

∂t
−R′

elG
′
elU = −R′

elI
′
fi. (3.4)

To sum up, the scalar parameters from the single conductor now become matrices. The en-
tries in the different per unit length matrices depend on the geometry and material parame-
ters. All of those matrices are in general fully occupied and symmetrical. A system of coupled
PDEs is formulated.

3.2.2 Solution Approaches
Generally, the solution of the previously presented systems of PDEs is not trivial. In the

electrical TL theory, many methods were developed to solve these equations for different ap-
plications. Because of the variety of methods, here, only a little proportion can be presented
shortly.

Often, transformations [110–114] are used to solve the differential equations. Especially
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the Laplace domain or the frequency domain play important roles. The basic idea in the
use of transformations is to convert derivatives to algebraic operations to reduce the PDEs
to ordinary differential equations (ODEs) or even algebraic equations [110, p. 241]. Often,
those simplified formulations can be solved for example using similarity transformations
[110–112] directly in the image domain. In many cases, the complex structure of the result
prevents the transformation back into the time domain. Then, numerical solutions (see for ex-
ample [115]) can be used for the inverse transformation or model order reduction approaches
[110, 111, 116] are applied, that enable an analytical inverse transformation even for complex
arrangements. Another approach for the solution of the PDE is the use of Green’s functions
(see for example [117–122]) in the time domain or the image domain. The basic idea here
is to find a characteristic function for the differential equation (“kernel”) that is used as the
basis for the consideration of stimuli, initial, and boundary conditions. When applied in com-
bination with a transformation, choosing an appropriate approach for Green’s function can
help to avoid problems with the inverse transformation.

To describe the current and voltage signals, macromodels can be applied (see for example
[110, pp. 450-453]). The aim is to transfer the PDEs to a set of ODEs via some kind of dis-
cretization to enable the implementation in given circuit simulators. One prominent approach
(see for example [110, pp. 265-269] and [123]) is to divide the conductive structure into seg-
ments with a length that is short compared to the typical wavelength of the system. Each
of those segments is modeled using an ECD with lumped elements. Then, numerical solu-
tions can be used for the solution. A problem with this approach is that especially for high
frequencies, a huge number of segments is necessary. That is why also different techniques
for a more efficient discretization were developed for example the method of characteristics
(delayed controlled sources), developments in basic function, or approximations for special
expressions [111].

In the general case, the cable parameters are nonlinear (see for example [124–126]), typi-
cally frequency-dependent. Then, also the corresponding PDE is nonlinear. For the solution
considering this behavior, for example, the harmonic balance method [127], the waveform
relaxation [128], or iterations [129] are used.

All in all, the complexity and solvability of the different problems vary. For general con-
ductor arrangements, very complex systems can result, that sometimes can only be solved
with a high effort by numerical approaches [110, 111, 130] as finite differences or recursive
approaches. Nevertheless, the amount of methods and approaches is huge and continuously
increasing. Current research is, for example, focused on inhomogeneous or bent conductors
[131] and the analysis of statistical influences on the conductor arrangement (see for example
[132]).
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4 Thermo-Electrical Analogy
Over the years, a huge variety of methods was developed to describe electrical cable be-

havior (electrical TL theory). A comparably well-established thermal TL theory has not been
derived so far. A fundamental question, therefore, is whether methods from the electrical do-
main can be used for the description of thermal processes as well. That is why in this section,
the analogy between thermal and electrical domains is analyzed. This chapter is based on
[A.2].

Electrical charges qel form the fundamental basis for observable electromagnetic effects.
Charges of equal sign repel each other. Electrical charges are discretized on the elementary
level as multiples of the elementary charge. However, since this elementary charge is ex-
tremely small, this discretization no longer plays a role on the macroscopic level. There,
the spatial charge distribution can often be described very precisely by a continuous charge
density ρel. Without further external influences, electrical charges strive towards a spatial uni-
form distribution, which manifests itself in a constant volume charge density. A completely
analog behavior can be observed in the thermal domain: Here, a temperature difference in-
duces a balancing process, which eventually leads to a uniform temperature distribution.
On a molecular level, the temperature of a medium characterizes the average of the kinetic
energy, rotation energy, and oscillation energy of the molecules. Analog to the electrical vol-
ume charge density, which strives for an equal distribution, an energy density ρ is used in the
thermal sense.

In the thermal and electrical domain, the charge (or energy) in a given volume is calculated
by integration over this density. A thermal charge

q =

∫︂
V

ρ dV (4.1)

thus represents a certain amount of energy. In the electrical domain, this charge

qel =

∫︂
V

ρel dV (4.2)

is carried by particles, for example, electrons, and is a characteristic property of the particle
that cannot be easily transferred from one particle to another. In the thermal domain, the
energy is also carried by molecules but can be exchanged between them by collision and
radiation. Thus, molecules in the thermal domain cannot initially be understood as being
equivalent to electrons in the electrical domain. Instead, however, it is possible to understand
quasiparticles as carriers of the energy portions, which are the thermal charges q. A funda-
mental difference between the electrical and thermal charges consists of the fact that there are
no negative energies - and thus no negative thermal charges and no negative thermal charge
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densities.
The charge quantity that passes a given cross-section per time defines the electrical current

I =
dqel
dt

=

∫︂
A
Jel dnA (4.3)

which is an effect or through quantity. Jel is the electrical current density. In the thermal
domain, the heat flow

P =
dq

dt
=

∫︂
A
J dnA (4.4)

fulfills an equivalent role and is also defined accordingly (energy that passes a given cross-
section per time) with the thermal current density J .

The electrical scalar potential2 ϕel describes the ability of the conservative (electrical) force
field to relocate charge carriers and therefore, to perform work. This electrical scalar potential
is a property that is assigned to the space itself and thus, does not depend on the presence
of matter or charges at the evaluated point, because the charges causing the potential can
be far away due to the infinite range of the Coulomb interaction. Constant offsets in the
potential do not change the physical behavior, which allows the definition of a reference
potential. Generally, the electrical scalar potential can have any value. The corresponding
(potential) quantity in the thermal domain is the temperature T and therefore, is always
coupled to appearing matter and energy stored in it. Equivalently to the electrical domain,
a reference temperature can be chosen. But, in contrast to the electrical domain, an overall
absolute temperature scale exists that is especially characterized by the absolute zero point
(thermal energy is zero). Temperatures below this value (and strictly speaking also the zero
point itself) cannot be reached. To sum up, in both domains, a potential quantity can be found
(electrical scalar potential respectively temperature), but their properties differ between the
electrical and thermal domains. The potential is related to the current density via

Jel = −λel grad(ϕel), J = −λ grad(T ) (4.5)

with the corresponding conductivities λel (electrical) and λ (thermal), respectively. The con-
servation of electrical charge is equivalent to energy conservation in the thermal domain,
both of which are described via a continuity equation:

div(Jel) = − ∂ρel

∂t
, div(J) = − ∂ρ

∂t
. (4.6)

From the electrical scalar potential, the electrical voltage U between two points in space
can be found as their potential difference. This voltage is the cause or across quantity cor-
responding to the through quantity of the current. Equivalently, a temperature difference

2ϕ is the scalar potential, whereas φ is a coordinate.
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between two points causes a heat flow between these points.
(Negative) electrical charges at points with lower potential have lower potential energy

than charges at points with higher potential. Due to energy minimization, therefore, a force
exists that pulls positive charges to points with lower potential. Therefore, a voltage between
two points induces a charge movement and thus a current as long as an appropriate path is
provided (without potential barriers, which especially means that a finite resistance between
the two points is necessary). A very typical case is a current through a conductor. For different
materials, the same voltage typically leads to different currents. This dependence is described
via the resistance

Rel =
U

I
(4.7)

which is defined as the ratio between the voltage and the current. In the thermal domain, a
directly parallel formulation can be found: Energy minimization here causes energy (thermal
charges) to move from higher temperatures (potentials) to lower temperatures. The ratio
between temperature difference and heat flow again defines the (thermal) resistance

R =
∆T

P
. (4.8)

The similarity of this formulation of the resistance manifests in the calculation formulas
for the resistances for identical geometries: For a cylinder (length l, cross-section A), the
axial resistances Rel (electrical) and R (thermal) are

Rel =
l

λelA
, R =

l

λA
. (4.9)

For a cylindrical shell (inner radius rin, outer radius rout), the radial resistances are

Rel =

ln

(︃
rout
rin

)︃
2πλell

, R =

ln

(︃
rout
rin

)︃
2πλl

. (4.10)

Heat can also be stored in the medium. To model this, a thermal capacitance C is necessary:

P = Cd(∆T )

dt
⇒ C =

q

∆T
. (4.11)

Mathematically, C connects the time derivative of the temperature difference with the heat
flow analog to the electrical domain (capacitance Cel):

I = Cel
dU

dt
⇒ Cel =

qel
U
. (4.12)

There is no thermal equivalent to the electrical inductance because a thermal equivalent to
the magnetic field does not exist.
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Based on these equivalences between the electrical and thermal domain, also, the often ne-
glected thermal propagation processes along the longitudinal cable direction show analogies
to electrical propagation processes on cables. So far, only isolated modeling approaches have
been proposed that are directly based on the electrical TL theory (e.g., [133]). This analogy
is also mentioned in [134], but not consequently used to find new solution approaches for the
thermal problem. The potential of this analogy was not systematically evaluated in the past.
In this thesis, selected approaches from the electrical domain are used to describe thermal
effects on cables.
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5 Thermal Cable Modeling Based on the
Electrical Transmission Line Theory

In the previous chapter, correlations between the electrical and thermal domains were ob-
served. Based on these results, in this chapter, a modeling approach for electrical propaga-
tion processes on homogeneous cables (see chapter 3 in [110]) is analyzed concerning its
applicability to thermal processes. First, a detailed comparison between the two domains is
performed for this purpose. Subsequently, approaches for a thermal TL theory are developed
for a single cable and a multiconductor system. The results are compared to the formulations
in the electrical domain.

5.1 Preliminary Considerations - Comparison Between
Electrical and Thermal Effects on Cables

Before the potentials of a thermal analogy to the electrical TL theory are evaluated, elec-
trical and thermal effects on cables are compared. Some parts of those considerations are
based on [A.2].

5.1.1 Basic Physical Equations
In this section, the physical relationships that characterize the electrical and thermal do-

mains, respectively, are compared. For this purpose, the basic equations are analyzed.
The following paragraph is based on the discussion in [135, pp. 521-522]. Electrical and

magnetic processes can be described time-dependently via Maxwell’s equations3

rot(E) = − ∂

∂t
B, div(D) = ρel,

rot(H) = Jel +
∂

∂t
D, div(B) = 0

(5.1)

together with the material equations for the linear case4

D = ϵE ,B = µH ,Jel = λelE . (5.2)

Here, E and H represent the electric and magnetic fields, respectively, and D and B are the
associated flux densities. µ is the magnetic permeability and ϵ is the permittivity. Using the
Lorenz gauge condition, a hyperbolic PDE (wave equation) follows for the electrical scalar

3In this thesis, E describes the electric field strength, whereas E is the energy. D is the electric flux density.
In contrast, D is a parameter of the PDEs. B describes the magnetic flux density, and B is a parameter of the
PDEs.

4ϵ is the permittivity, whereas ε is the emissivity.
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potential ϕel:

div (grad (ϕel))− µϵ
∂2

∂t2
ϕel = −ρel

ϵ
. (5.3)

Thermally, no similarly compact closed formulation can be found. This is because there
are three basic heat transport mechanisms, which are based on different physical effects.
Thus, thermal conduction, radiation, and convection are described by different mathematical
relationships. Heat conduction is mediated at the microscopic level by collisions between
particles. Macroscopic, the associated energy transfer is described mathematically by the
heat conduction differential equation [136, p. 85], i.e., a parabolic PDE for the temperature
T (analog to the hyperbolic PDE for the electrical scalar potential, see equation (5.3)):

div (grad (T ))− c

λ

∂T

∂t
= − ω̇

λ
. (5.4)

Here, c represents the specific heat capacity and ω̇ is the (external) heat source density. λ
is the thermal conductivity, which, according to Fourier’s law [136, 137] (see also equation
(4.5), thermal formulation) describes the relationship between the heat flux density J and the
temperature gradient. Thus, it is an analog of the material equation for the electrical current
density (see equation (4.5), electrical formulation).

Thermal radiation is based on a fundamentally different mechanism. Here, heat is trans-
ferred by electromagnetic radiation [136, 137] which is emitted by accelerated charges in the
molecules. In contrast to the other heat transfer mechanisms, this effect also occurs without
an intermediary medium and can therefore take place in a vacuum [136, 137]. The heat flow
P passing a radiating surface is linearly dependent on the fourth power of the temperature T
of this surface5 A [136, p. 737]:

P = εσAT 4. (5.5)

σ = 5.67 · 10−8W/m2K4 is the Stefan-Boltzmann constant and ε is the surface emissivity.
Convection, on the other hand, is a flow effect in a liquid or gas and describes a combi-

nation of diffusion and a macroscopic motion [136, p. 378]. Typically, it is presented as a
third individual heat transfer mechanism, nevertheless, heat conduction is a part of this effect
[136, p. 378]. In addition, the fluid dynamics of the surrounding material are important here.
A distinction is made between free and forced convection. In the case of free convection, the
flow is caused only by density differences in the fluid as a result of heating and the associated
temperature differences [136, 137]. In the case of forced convection, there is a forced exter-
nal flow [136, 137]. In the general case, the calculation of all effects is very complicated. In
many cases, no exact analytical closed-form expression can be found [137, p. 17]. However,
for special geometrical arrangements, approaches are given in [138, pp. 27-29] which can
be used to describe the relationship between heat flow and temperature. For free convection

5A describes areas, and A is a parameter of the PDEs.
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around a horizontally oriented cylinder, the relationship is given in section 5.2.2.
Thus, in contrast to the electrical domain, the processes in the thermal domain are more

diverse and more difficult to accommodate in a common formulation. In the cables under
consideration, all three propagation processes, heat conduction, radiation, and convection,
play a role. Radiation and convection occur at the surface of the cable, while thermal con-
duction occurs primarily in the interior. Assuming that the cables are located in the air, the
heat conduction in the surroundings is neglected, since the thermal conductivity is assumed
to be very low, so radiation and convection dominate at the cable surface.

To find a comparable formulation in the thermal domain, despite the very dominant dif-
ferences between the electrical and thermal domains, the focus is now put on the heat con-
duction inside the cable. There, structural similarities to the electrical domain can be found
(PDE of second order, equivalent material equation). Nevertheless, the differential equations
also show differences: In the electrical domain, hyperbolic equations describe an oscillating
system with wave propagation effects (see equation (5.3)). The second time derivative cor-
responds to an oscillating behavior. Unlike, in the thermal domain, the differential equation
is parabolic (see equation (5.4)). Therefore, wave phenomena such as reflections, standing
waves, and resonances do not appear in the thermal domain. Nevertheless, based on the un-
derlying similarities, a similar formulation in the thermal domain is searched. The idea is
now to set the model boundary to the cable surface, and thus, describe a purely thermal
conduction system. However, since this system is not closed (because there are heat fluxes
beyond the system boundaries), appropriate boundary conditions are necessary. First, the
ohmic heating of the cable is chosen as input variable. To describe the heat flow through
the cable surface to the environment via convection and radiation, (rather complicated and
nonlinear) boundary conditions are defined at this surface. The model itself only describes
the cable itself, because only up to this point the modeling can be applied purely via heat
conduction.

5.1.2 Modeling Goal
In the electrical domain, cables are often primarily an unwanted interference factor. Ide-

ally, for many applications, current and voltage should transfer from the input to the output
without loss and delay [110, p. xviii] (of course, there are also exceptions, in which, for ex-
ample, cable inductances are used quite specifically to influence the oscillation behavior of
the overall circuit). Since current and voltage at the input and output of real cables are gen-
erally not identical, often, the connection behavior of cables is searched. Therefore, two-port
networks or chain matrices for the direct connection of the currents and voltages at the cable
terminations are typically used [110, pp. 269-278]. However, there are applications where
the pure connection behavior is not sufficient. An example from the field of electromagnetic
compatibility is the determination of the radiated fields of a conductor arrangement, which
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are potential interference sources for other elements.
In the thermal domain, one of the main motivations for temperature calculation is the

protection of the cables themselves and nearby installed components. For this purpose, the
decisive variable is usually the maximum (possibly only locally appearing) cable temper-
ature. That is why not only the connection behavior but explicitly the entire temperature
development along the cable is decisive here.

5.1.3 Basic Modeling Approaches
a) TEM Assumption and Fields

The following paragraph is based on the explanations in [110, pp. 4-5]. In the electrical
domain, the assumption that only transverse electromagnetic (TEM) fields are present plays
a major role, which means that only the TEM mode is capable of propagation, i.e., no field
components in the axial cable direction appear. This ensures that current and voltage are
uniquely defined for the case of frequencies not equal to 0Hz. Theoretically, there are also
higher modes. However, these are strongly attenuated below a cutoff frequency (typically low
GHz range), so their influence becomes negligible. The TEM mode, on the other hand, has
a cutoff frequency of 0Hz and is therefore always capable of propagation. The assumption
that only transverse electromagnetic fields occur is no longer accurate for lossy conductors
and/or inhomogeneous surrounding materials. However, assuming that the effects occurring
due to the additional modes are small, they can be incorporated into the formulation for
ideal TEM modes (quasi-TEM). An important consequence of the TEM assumption is that
the current sum becomes zero in any cross-section of the conductor arrangement. Therefore,
one conductor can be thought of as a reference or return conductor through which the cur-
rent flows back. For this central assumption to be valid, as mentioned above, the frequency
has to be low enough, which corresponds to electrically short structures. Then, the modeling
approach via an ECD can be applied. If this circuit is built up for a cable segment of infinites-
imal length (which is, obviously, electrically short), an overall electrically long cable length
does not cause any problems. Unlike, in the radial direction, electrically short structures are
mandatory.

The concept of the reference conductor and TEM fields cannot be applied to the thermal
domain. At first, in the thermal domain, the field concept is only partially applicable. Here
the modeling ends at the cable surface, the environment is only considered by boundary
conditions. That is why no fields can meaningfully be defined or even calculated in the
space between the two conductors. An equivalent to magnetic fields does not appear in the
thermal domain at all. An analog to the electric field can be defined in the conductor itself
as a gradient of the temperature, but not in a vacuum - a temperature is always necessary
and therefore, so is a medium. Also, there is no physically closed circuit in the thermal
domain - heat flows from places of higher temperature to places of lower temperature, but
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not back again. Therefore, there is no physical thermal equivalent for the reference conductor
from the electrical domain. Nevertheless, it is possible and necessary to define a common
reference in the thermal domain as well, to which the different effects refer. However, this
reference then has no physical equivalent. This becomes clear also by the consideration that
electrically, typically, charge conservation is assumed in a closed circuit. So there is a closed
system. However, the thermal equivalent to the charge, the energy, is always supplied by the
ohmic losses in the inner conductor - so there is no closed system. The interaction with the
environment (which is only taken into account by the boundary conditions) ensures that an
energy flow beyond the system boundary can also be observed at the outer model termination.
Nevertheless, the thermal effects in the model refer to one shared reference which is why the
ECD can be closed via this reference path, even though there is no physical equivalent and
thus, the heat flow through this reference does not physically exist.

Fields mediate long-distance effects in the electrical domain: Even if two structures do not
touch each other, they can interact. Thermally this happens with radiation. In the following
models, however, only heat conduction is explicitly considered mathematically as only the
cable itself is directly modeled - and the basic prerequisite for heat conduction is that there
is direct contact. For thermal conduction, therefore, there is no long-distance effect.

b) Closed System Assumption
Thermally, a spatially closed system is necessary to find a comparable formulation to the

electrical domain, since radiation and convection at the conductor surface mathematically
follow fundamentally different relationships than thermal conduction (which, comparable
to the wave effects in the electrical domain, also follows a PDE of second order). A ther-
mal insulation material, which is placed around thermal conductors and in which therefore
no thermal conduction takes place, thus also directly prevents the coupling between these
conductors via thermal conduction. Therefore, it is rather to be understood as a boundary
condition for single conductor considerations but is not suitable to build up a multiconductor
problem equivalent to the electrical domain. These observations can be traced back to the
different meanings that capacitance fulfills in the thermal and electrical domains.

c) Capacitances
In the electrical domain, a capacitance is not directly assignable to a point in space but

is a property between two mutually insulated conductive structures. This capacitance then
crucially depends on what material is placed in the space between them. Knowledge of the
field in the insulating material alone is sufficient to determine the capacitance [110, pp. 26-
27]; the material properties of the conductor are irrelevant. The geometrical arrangement of
the conductors, on the other hand, plays a major role. A capacitance is thus usefully defined
independently of electrical conduction between these two conductive structures.

In the thermal domain, a fundamentally different situation is observed. There, capacitances
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describe a local property. The governing quantity is the specific heat capacity. The capaci-
tance of a conductor against reference does not depend at all on the surrounding material and
only from the surroundings no conclusions about the capacitance are possible. Only the ma-
terial properties of the conductor determine the capacitance, the geometrical arrangement is
not relevant - the total heat capacitance remains the same for an element of constant volume
(or constant mass) even if it is transformed into a different shape. The heat capacitance is
always related to the reference [52, 134, 139] - it is a local property, so there is no physical
equivalent for the second node. In this respect, however, there is also no thermal capacitance
between two conductive structures, as is the case (the only one occurring) in the electrical
domain. Thus, in thermal models that directly aim to describe the physical properties, only
capacitances against reference occur.

The underlying fundamental difference is that in the thermal domain, heat conduction and
heat capacitance cannot be separated. This can be seen directly in the heat conduction dif-
ferential equation, where both effects occur together. To each infinitesimal volume element
a resistance can be assigned, which it opposes a directed heat flow, but also a heat capaci-
tance, which relates the supplied energy and the resulting temperature increase. In the later
modeling for conduction, this is exactly what becomes a critical point - because there, heat
conduction and heat radiation have to be separated. This is one of the key approximations
necessary to find a formulation similar to the electrical domain. However, a direct physical
arrangement, where thermal conduction and capacitance naturally occur separately, does not
exist. In this respect, there is no thermal equivalent to an electrical insulator. Therefore, it
is also not possible to find an example in which a transferability between the electrical and
thermal domain can be found directly without approximations.

5.2 Single Conductor Transmission Line Theory
In the electrical TL theory, a typical basic arrangement consists of two parallel conductors,

one of which is selected as the reference conductor. Equivalently, in the thermal domain, a
single conductor with an insulation layer is the basic arrangement. The cross-section of this
cable is shown in figure 5.1: Around the solid conductor with radius rc, there is an insulation

Te

rc

ri

Tsw

Ts

ci, λi

cc, λc

Figure 5.1: Cross-section of the analyzed single wire cable.
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5 Thermal Cable Modeling Based on the Electrical Transmission Line Theory

layer with outer radius ri. The specific volume-related heat capacities of the conductor and
insulation material are cc and ci, respectively. The corresponding thermal conductivities are
λc and λi. The temperature at the junction between the conductor and insulation is Tsw (single
wire), and the cable surface temperature is Ts. The environment has a constant temperature
of Te.

5.2.1 Partial Differential Equation
For many applications, the temperature development between Tsw and Ts is not relevant,

so only the temperatures at specific nodal points are necessary. That is why a description
of the dependence of those nodal temperatures on each other is searched. So, a differential
equation depending only on one spatial coordinate z and the time t is derived in this section,
which describes the behavior of the relevant nodal temperatures (in this case primarily the
conductor temperature). First, the heat equation is derived as the basic description of the
physical behavior. Assuming constant material parameters, individual differential equations
for the conductor and the insulation layer are found. Then, boundary and transition conditions
are defined that are necessary to couple the conductor and insulation temperatures. After that,
the equations for the conductor and the insulation are integrated separately to get rid of the
radial dependence. Finally, the PDE for the conductor temperature is derived.

a) Heat Equation
The heat equation describes heat conduction in a medium. This equation is derived in the

following. According to the first law of thermodynamics, an extended form of the conserva-
tion of energy applies to changes in the energy E, the heat Q, and the work6 W:

dE = δQ+ δW . (5.6)

Here it has to be distinguished between total differentials (d) and inexact or incomplete
differentials (δ). For the total differential dE, an associated potential can be given and the
integral (i.e. E) does not depend on the path of state changes. In contrast, for δQ and δW ,
in general, no associated potential can be given. Thus, there is no state variable “heat” or
“work” and the integral depends on the path. In thermodynamics, δW can be described as

δW = −pdV + ξdN (5.7)

with pressure p and chemical potential ξ. Therefore, for a closed system (constant number of
particles7 N ) with no volume work (constant volume V ), the work has to vanish:

δW = 0 ⇒ dE = δQ. (5.8)

6In this thesis, W describes the work, whereas W is an abbreviation in some solutions.
7N is the number of particles. In contrast, N describes the number of conductors.
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Due to conservation of energy, in this case, also conservation of heat applies. Generally, a
continuity equation can be determined from a conservation variable. In general, the temporal
change of the density belonging to this conservation variable (here: heat density ∂Q/ ∂V ) is
related to the spatial change of the corresponding current density. The current density here is
the heat flux density

J =
1

A
∂Q

∂t
nA (5.9)

across the edge of the volume, where nA points in the direction of the energy propagation,
indicating the direction of the heat flow, and A is the area through which the heat flows.
Thus, the continuity equation becomes

∂2Q

∂t ∂V
+ div (J) = ω̇. (5.10)

ω̇ is an additional heat source density in the volume. Via Fourier’s law (see equation (4.5),
thermal formulation, analog to Ohm’s law), the heat flux density can be expressed via the
temperature. The heat capacitance CV is defined as follows, assuming a constant volume and
a constant number of particles:

CV =
∂Q

∂T

⃓⃓⃓⃓
V,N

. (5.11)

Inserting the volumetric specific heat capacity c with

∂CV
∂V

= c =
∂ ( ∂Q/ ∂V )

∂T

⃓⃓⃓⃓
V,N

⇒ ∂Q

∂V
= cT (5.12)

and equation (4.5) into equation (5.10) leads to

∂(cT )

∂t
− div (λ grad (T )) = ω̇. (5.13)

With ∂c/ ∂t = 0 and grad (λ) = 0 the heat equation follows:

c
∂T

∂t
− λ div (grad (T )) = ω̇. (5.14)

For application to radially symmetric cables, this is formulated in cylindrical coordinates:

ω̇ = c
∂T

∂t
− λ

(︃
1

r

∂

∂r

(︃
r
∂T

∂r

)︃
+

1

r2
∂2T

∂φ2
+

∂2T

∂z2

)︃
(5.15)

with radius r, axial coordinate z, and angle φ. Due to the symmetry of the analyzed cable, it
is

∂2T

∂φ2
= 0. (5.16)
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b) Boundary and Transition Conditions
The temperatures in the different cable areas are linked by boundary and transition con-

ditions. These are used later to determine the special solutions for the problem from the
general solutions, i.e. to calculate the constants. First of all, a steady temperature curve is
required at the transition between the conductor (radial temperature distribution Tcond(r))
and the insulation (radial temperature distribution Tinsu(r)):

Tcond(r = rc) = Tinsu(r = rc). (5.17)

Fourier’s law in cylindrical coordinates leads to

J = −λ

(︃
∂T

∂r
er +

1

r

∂T

∂φ
eφ +

∂T

∂z
ez

)︃
. (5.18)

The heat flow in the radial direction is therefore

Jr(r) = Jer = −λ
∂T

∂r
. (5.19)

This heat flow has to be continuous at the junction between conductor (Jr,c(r)) and insulation
(Jr,i(r)):

Jr,c(r = rc) = Jr,i(r = rc) ⇔ −λc
∂Tcond

∂r
(r = rc) = −λi

∂Tinsu

∂r
(r = rc). (5.20)

In the conductor, there should be no kinks in the temperature curve, because this would
represent an unphysical behavior. Due to the radial symmetry, the following condition must
therefore apply in the center of the conductor:

∂Tcond

∂r
(r = 0) = 0. (5.21)

At a surface, the heat flux density

J =
1

A
PnA = α(Ts,1 − Ts,2)nA (5.22)

depends on the heat transfer coefficient α as well as the area A and the temperatures Ts,1 and
Ts,2 of the media involved, where nA indicates the direction of the heat flux. Thus, at the
surface of the insulation, the heat flux density in the radial direction is

Jr,i(r = ri) = Jer = α (Tinsu(r = ri)− Te) = α(Ts − Te). (5.23)

Here, Tinsu(r) is the insulation temperature, so at the surface (r = ri) it just gives the cable
surface temperature Ts = Tinsu(r = ri). On the other hand, this heat flux density can also be
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calculated from the derivative of the insulation temperature:

Jr,i(r = ri) = −λi
∂Tinsu

∂r
(r = ri) = α(Ts − Te). (5.24)

c) Conductor
For the conductor the heat equation is

cc
∂Tcond(r)

∂t
− λc

(︃
1

r

∂

∂r

(︃
r
∂Tcond(r)

∂r

)︃
+

∂2Tcond(r)

∂z2

)︃
= ω̇cond. (5.25)

A positive value of ω̇cond corresponds to heat input. Formally, heat conduction (mediated by
the thermal conductivity of the conductor λc) and the heating of the material (capacitance,
mediated by the specific heat capacity per volume of the conductor cc) in the conductor are
coupled. Modeling in an ECD would therefore require an infinite sequence of infinitesimal
RC elements in the radial direction. Here, however, a reduction to one resistor and one ca-
pacitance only is searched, which effectively equals a separation of the two effects. Since
only the temperature at the junction between the conductor and the insulation, i.e. at the
point r = rc, is considered later, it is assumed that the complete capacitance of the conduc-
tor becomes effective at this point. Moreover, due to the high thermal conductivity of the
conductor material, the resistance in the radial direction becomes very small. For vanishing
resistance, the assumption of an equivalent capacitance at the junction between conductor
and insulation is even exact. Therefore,

∂Tcond(r)

∂t
≈ ∂Tsw

∂t
, Tsw = Tcond(r = rc) (5.26)

is assumed. An analog procedure can also be applied for the derivative in z-direction: For
the case of very high conductivity in the conductor material, an almost uniform temperature
distribution will occur radially and stronger temperature variations will be observed in the
axial direction due to the significantly different size ratios (conductor length8 L ≫ conductor
radius rc). As an approximation, the z-dependence can thus be evaluated at an arbitrary but
fixed position in the radial direction. Since only the position r = rc is of interest later, i.e.
the transition between conductor and insulation, this position is directly used here as an
approximation:

∂2Tcond(r)

∂z2
≈ ∂2Tsw

∂z2
. (5.27)

Thus, in this case, the heat equation becomes

λc
∂

∂r

(︃
r
∂Tcond(r)

∂r

)︃
= rcc

∂Tsw

∂t
− rλc

∂2Tsw

∂z2
− rω̇cond. (5.28)

8In this thesis, L describes the cable length, whereas L is an inductance.
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Applying separation of variables and the assumption that ω̇cond is constant over the conductor
cross-section, it follows for the derivative of the conductor temperature in radial direction:

λc
∂Tcond(r)

∂r
=

κ1,c

r
+

cc
2
r
∂Tsw

∂t
− λc

2
r
∂2Tsw

∂z2
− 1

2
rω̇cond (5.29)

with the integration constant κ1,c. Performing a second integration leads to

λcTcond(r) = κ2,c + κ1,c ln(r) +
cc
4
r2

∂Tsw

∂t
− λc

4
r2

∂2Tsw

∂z2
− 1

4
r2ω̇cond (5.30)

with the second integration constant κ2,c. With equation (5.21) it follows

κ1,c = 0. (5.31)

In addition, equation (5.26) leads to

κ2,c = λcTsw +
1

4
r2c ω̇cond −

cc
4
r2c

∂Tsw

∂t
+

λc

4
r2c

∂2Tsw

∂z2
. (5.32)

In total, the radially dependent conductor temperature is

Tcond(r) = Tsw +
1

4λc

(︁
r2c − r2

)︁
ω̇cond −

cc
4λc

(︁
r2c − r2

)︁ ∂Tsw

∂t
+

1

4

(︁
r2c − r2

)︁ ∂Tsw

∂z2
(5.33)

and its derivative is

∂Tcond(r)

∂r
=

cc
2λc

r
∂Tsw

∂t
− r

2

∂2Tsw

∂z2
− 1

2λc

rω̇cond. (5.34)

d) Insulation
In contrast to the conductor, no heat source is assumed in the insulation, so the heat equa-

tion for the radially dependent insulation temperature Tinsu(r) is reduced to

ci
∂Tinsu(r)

∂t
− λi

(︃
1

r

∂

∂r

(︃
r
∂Tinsu(r)

∂r

)︃
+

∂2Tinsu(r)

∂z2

)︃
= 0. (5.35)

ci is the specific heat capacity per volume of the insulation material. Due to the low thermal
conductivity λi of the insulation compared to the conductor, the heat flow in the insulation in
the z direction is neglected:

∂2Tinsu(r)

∂z2
≈ 0. (5.36)

Similar to the conductor, heat conduction and heating of the material are formally coupled in
the insulation. For a reduction to a single resistor and a single capacitance, these two effects
must be decoupled. Because later the temperature at the transition between conductor and
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insulation is particularly relevant, the assumption is made that the entire capacitance of the
insulation is already effective at the transition between conductor and insulation. Thus,

∂Tinsu(r)

∂t
≈ ∂Tsw

∂t
(5.37)

is used. Then, from the heat equation, it follows

ci
∂Tsw

∂t
− λi

1

r

∂

∂r

(︃
r
∂Tinsu(r)

∂r

)︃
= 0. (5.38)

In the first step, an expression for the derivative of the insulation temperature can be deter-
mined by applying the separation of variables:

λi
∂Tinsu(r)

∂r
=

κ1,i

r
+

ci
2
r
∂Tsw

∂t
. (5.39)

With equation (5.24) the integration constant κ1,i is determined:

κ1,i = riα(Te − Ts)−
ci
2
r2i

∂Tsw

∂t
. (5.40)

Inserting this leads to

λi
∂Tinsu(r)

∂r
=

ri
r
α(Te − Ts) +

ci
2

(︃
r − r2i

r

)︃
∂Tsw

∂t
. (5.41)

Using again that the complete insulation capacitance is already effective at the inner insula-
tion radius (r = rc) allows the following simplification:

ci
2

(︃
r − r2i

r

)︃
∂Tsw

∂t
≈ ci

2

(︃
rc −

r2i
rc

)︃
∂Tsw

∂t
. (5.42)

After a second integration, it follows for the insulation temperature:

λiTinsu(r) = κ2,i + riα ln(r)(Te − Ts) +
ci
2

(︃
rc −

r2i
rc

)︃
r
∂Tsw

∂t
(5.43)

with the integration constant κ2,i. Using r = rc for the capacitance-related term leads to

Tinsu(r) =
κ2,i

λi

+
riα

λi

ln(r)(Te − Ts) +
ci
2λi

(︁
r2c − r2i

)︁ ∂Tsw

∂t
. (5.44)

Therefore, the surface temperature Ts is

Ts = Tinsu(r = ri) =
κ2,i

λi

+
riα

λi

(Te − Ts) ln(ri) +
ci
2λi

(︁
r2c − r2i

)︁ ∂Tsw

∂t
(5.45)
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and the temperature at the transition to the conductor is

Tsw = Tinsu(r = rc) =
κ2,i

λi

+
riα

λi

(Te − Ts) ln(rc) +
ci
2λi

(︁
r2c − r2i

)︁ ∂Tsw

∂t
. (5.46)

Using equation (5.46), κ2,i is calculated:

κ2,i = λiTsw − riα(Te − Ts) ln(rc)−
ci
2

(︁
r2c − r2i

)︁ ∂Tsw

∂t
. (5.47)

The difference between surface and conductor temperature then results in a linear relation-
ship between the two temperatures:

Ts =
1

1 +
riα

λi

ln

(︃
ri
rc

)︃Tsw +

riα

λi

ln

(︃
ri
rc

)︃
1 +

riα

λi

ln

(︃
ri
rc

)︃Te, (5.48)

which leads to a formulation for the insulation temperature and its derivative as a function of
the conductor temperature rather than the surface temperature:

Tinsu(r) =
1 +

riα

λi

ln
(︂ri
r

)︂
1 +

riα

λi

ln

(︃
ri
rc

)︃Tsw +

riα

λi

ln

(︃
r

rc

)︃
1 +

riα

λi

ln

(︃
ri
rc

)︃Te, (5.49)

∂Tinsu(r)

∂r
=

1

r

riα

λi

1 +
riα

λi

ln

(︃
ri
rc

)︃(Te − Tsw)−
ci
2λi

(︃
r2i
r
− r

)︃
∂Tsw

∂t
. (5.50)

e) Thermal Transmission Line Equation
In the remaining condition for the continuity of the heat flow at the transition between

the conductor and the insulation (see equation (5.20)), the expressions derived above for the
derivative of the temperatures (see equations (5.34) and (5.50)) are inserted. Rearranging
then provides the differential equation for the present case:

1

R′
∂2Tsw(z, t)

∂z2
− C ′ ∂Tsw(z, t)

∂t
−G′Tsw(z, t) = − (G′Te + P ′

el)

⇔ ∂2Tsw(z, t)

∂z2
− Asw

∂Tsw(z, t)

∂t
−BswTsw(z, t) = Csw.

(5.51)

Here, the cable parameters C ′, R′, G′, and P ′
el, which are explained in detail in the following

subsection, and the following substitutes are introduced:

Asw = R′C ′, Bsw = R′G′, Csw = −R′ (P ′
el +G′Te) . (5.52)
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An equivalent formulation for this PDE connects the axial heat flow P (z, t) with the temper-
ature:

∂Tsw(z, t)

∂z
+R′P (z, t) = 0,

∂P (z, t)

∂z
+ C ′ ∂Tsw(z, t)

∂t
+G′Tsw(z, t) = P ′

el +G′Te.

(5.53)

5.2.2 Parameter Calculation
By inserting equations (5.34) and (5.50) into equation (5.20) and comparing them with the

differential equation (5.51), the parameters C ′, R′, G′, and P ′
el can directly be identified. The

following presentation of the corresponding calculation formulas is based on the presentation
in [A.3].

Using the specific heat capacities per volume of the conductor (cc) and insulation (ci)
material and the volume filled with the materials, the thermal per unit length capacitances
for the conductor (C ′

c) and the insulation (C ′
i) are calculated:

C ′
c = ccπr

2
c , C ′

i = ciπ
(︁
r2i − r2c

)︁
. (5.54)

Both of those capacitances are summed up in one complete cable capacitance C ′:

C ′ = C ′
c + C ′

i . (5.55)

The thermal per unit length resistance

R′
i =

ln

(︃
ri
rc

)︃
2πλi

(5.56)

is used to model the heat flow through the insulation. The thermal per unit length resistance

R′
α(Ts) =

1

2πriα(Ts)
(5.57)

models the heat transfer between the cable surface and the environment. The necessary heat
transfer coefficient

α(Ts) = αrad(Ts) + αconv(Ts) (5.58)

consists of a part to mention radiation (αrad) and a second part for convection (αconv). The
heat transfer coefficient for free convection in the air is calculated via

αconv(Ts) =
Nu(Ts) · λair(Ts)

lα
(5.59)

with the thermal conductivity of air λair, the characteristic length of the cable lα = 2ri, and
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the Nusselt number for a horizontal cylinder freely in the air [140]

Nu(Ts) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.6 +

0.387 · Ra(Ts)

1

6

⎛⎜⎝1 +

(︃
0.559

Pr(Ts)

)︃ 9

16

⎞⎟⎠
8

27

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

. (5.60)

Here, Pr is the Prandtl number and

Ra(Ts) = Gr(Ts) · Pr(Ts) (5.61)

is the Rayleigh number. The Grashof number Gr is calculated via

Gr(Ts) =
gl3α |Ts − Te|
Te,Kν2

air(Ts)
(5.62)

using the environmental air temperature (Te in ◦C and Te,K in K), the gravity of earth g =

9.81m/s2, and the kinematic viscosity νair [140].
Values for the material parameters λair, νair, and Pr are given in form of tables for example

in [138, pp. 197-198]. In this thesis, the following fourth-degree polynomial approximations
of those table data for dry air and pressure of 1 bar are used:

νair

1 m2

s

= 1.77 · 10−17T 4
m − 4.83 · 10−14T 3

m + 1.14 · 10−10T 2
m + 8.81 · 10−8Tm + 1.35 · 10−5,

(5.63)

Pr = 2.23 · 10−13T 4
m − 6.27 · 10−10T 3

m + 5.91 · 10−7T 2
m − 1.58 · 10−4Tm + 0.711,

(5.64)
λair

1 W
Km

= −1.35 · 10−14T 4
m + 3.64 · 10−11T 3

m − 4.33 · 10−8T 2
m + 7.7 · 10−5Tm + 2.43 · 10−2.

(5.65)

Tm is the value of the mean temperature of the cable surface temperature and the environ-
mental temperature:

Tm(Ts) =
0.5(Ts + Te)

1 ◦C
. (5.66)

For the calculation of the heat transfer coefficient for radiation

αrad(Ts) = εσ (Ts,K + Te,K) ·
(︁
T 2
s,K + T 2

e,K

)︁
(5.67)
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the absolute cable surface temperature in Kelvin Ts,K and the emissivity of the insulation
surface ε (the value 0.95 is used in this thesis [141]) are needed. σ ≈ 5.6704·10−8W/(m2K4)

is the Stefan-Boltzmann constant. The conductance G′ is calculated via

G′(Ts) =
1

R′
i +R′

α(Ts)
(5.68)

and thus depends on the cable surface temperature. For the calculation of the heat source
P ′
el, due to the relatively small temperature rises that are assumed in this thesis, a linearly

temperature-dependent electrical conductor resistance [142, p. 99] is assumed:

P ′
el(Tsw) = πr2c ω̇cond = I2R′

ref (1 + ηT (Tsw − Tref)) . (5.69)

ηT is the linear temperature coefficient for the conductor’s conductivity and R′
ref is the elec-

trical per unit length resistance at the reference temperature Tref . The axial thermal per unit
length resistance R′ is calculated via

R′ =
1

λcπr2c
. (5.70)

5.2.3 Thermal Equivalent Circuit Diagram
In the electrical domain, an ECD for an infinitesimally short cable segment (length

dz → 0) can be found that directly corresponds to the differential equation and provides
the same information. This ECD can be regarded as an alternate descriptive representation
form of the mathematical model (differential equation). Equivalently, in the thermal domain,
based on the PDE a corresponding thermal ECD can be found that also allows a more intu-
itive interpretation of the basic model. Comparing equation (3.2) from the electrical domain
with the thermal formulation (see equation (5.53)) directly leads from the electrical ECD
(see figure 3.2) to the corresponding thermal ECD shown in figure 5.2. All per unit length
quantities, marked with an upstroke, have to be multiplied by the segment length. Here and
in the following, this multiplication is neglected in the ECDs for the sake of clarity.

In this circuit, the assumptions from the theoretical derivation of the PDE can be found
again. In addition, the influence of the different physical layers can directly be observed in

reference

R′P (z, t)

C ′ G′

P (z + dz, t)

Tsw(z, t) Tsw(z + dz, t)

P ′
el +G′Te

Figure 5.2: ECD for an infinitesimally short segment of a single wire cable.
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this representation: Due to the finite electrical cable resistance, an electrical current flowing
through the cable will always cause electrical losses in form of heat. This heat is impressed
on the conductor and modeled by the heat source P ′

el. All parts of the cable, in this case,
conductor and insulation material, can store heat and thus, heat up. The heat storage capacity
of the cable is represented using the thermal capacitances C ′

c and C ′
i , which are summed up

to the capacitance C ′. This complete capacitance is connected to the conductor temperature
node, which shows again the assumption from above: The complete insulation capacitance
is assumed directly at the connection between conductor and insulation. The insulation sets
the resistance R′

i against a radial heat flow. This resistance causes different inner and outer
insulation surface temperatures. For the conductor, typically, the thermal conductivity is sig-
nificantly higher (three orders) than the thermal conductivity of the insulation [73]. That is
why the appearing radial temperature differences in the conductor are very small and thus,
neglected in this thesis. So, there is no radial resistance for the conductor in the ECD. The
heat flow between the cable surface and the environment (here: air) is represented in the re-
sistance R′

α. R′
i and R′

α are combined to find the conductance G′. The resistance R′ describes
the axial heat flow in the conductor (which is not negligible unlike the radial heat flow in the
conductor due to the much higher cable length in comparison with the cable radius). Due to
the already mentioned relationship between the thermal conductivities, the axial heat flow
in the insulation material is not directly considered (infinite resistance), but only indirectly
modeled via the path through the conductor.

5.3 Multiconductor Transmission Line Theory
In this section, more complex cable arrangements are analyzed. In the first step, the formu-

lation known from the electrical domain is used to set up an ECD as well as the corresponding
system of PDEs in the thermal domain. In the next step, the limitations of this analogy are
discussed and an expansion is presented to find a more general thermal formulation.

5.3.1 Analogy to the Electrical Domain
In the electrical domain, the corresponding ECD for an arrangement of multiple cables

is given in figure 3.3. From this, the thermal ECD in figure 5.3 is derived by setting the
inductances as well as the voltage sources to zero. Furthermore, the capacitances between the
individual cables are zero, as thermal capacitances always refer to the reference temperature
[139]. Analogously, the associated differential equations are set up. In analogy to equation
(3.3), the system of coupled PDEs for the temperatures T and heat flows P is

∂T (z, t)

∂z
+R′P (z, t) = 0,

∂P (z, t)

∂z
+ C′ ∂T (z, t)

∂t
+G′T (z, t) = P ′

el +G′
(︂
Te . . . Te

)︂T
.

(5.71)
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Figure 5.3: Electrical ECD for an infinitesimally short segment of a multiconductor arrange-
ment (N conductors).

The cable properties are described by the matrices R′, C′, G′, and the vector P ′
el. The corre-

sponding formulation only for the cable temperatures (as in equation (3.4) for the electrical
domain) is as follows:

∂2T (z, t)

∂z2
−R′C′ ∂T (z, t)

∂t
−R′G′T (z, t) = −R′

⎛⎜⎜⎝P ′
el +G′

⎛⎜⎜⎝
Te

...
Te

⎞⎟⎟⎠
⎞⎟⎟⎠

⇔ ∂2T (z, t)

∂z2
−A

∂T (z, t)

∂t
−BT (z, t) = C.

(5.72)

In the electrical domain, the matrix C′
el has diagonal and non-diagonal entries. In contrast, in

the thermal domain, the matrix C′ is diagonal because as mentioned already thermal capac-
itances always refer to the reference temperature, and the individual conductors only couple
via a resistance, not via a capacitance. So the thermal matrix shows a simpler overall structure
than the general electrical matrix.

5.3.2 Limitations of the Analogy and General Problem Formulation
The problem formulation from the previous section describes the cable temperatures at

specific cross-sectional points (“nodes”). At those temperature nodes, the axial heat con-
duction is considered and, in addition, a thermal capacitance is placed. This leads to the
appearance of both derivatives (time and spatial). Nevertheless, for example, the coupling
between a cable and the environment depends on the cable surface temperature, which does
not appear in the above formulation until now. Thus, an expansion is proposed here that
allows the consideration of additional temperatures:

D̃
∂2T̃ (z, t)

∂z2
− Ã

∂T̃ (z, t)

∂t
− B̃T̃ (z, t) = C̃. (5.73)
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It has to be mentioned, that both, Ã and D̃ are diagonal matrices. For a problem that can be
formulated equivalently to the electrical domain only two types of equations appear in this
system: On the one hand, PDEs that include both, the first time derivative and the second
spatial derivative, and on the other hand, linear equations without any derivatives arise. Then,
the temperature vector T̃ (z, t) can be split up into a part with derivatives (variant, T ) and a
part without derivatives (linear, Tl) by using appropriate matrices (consisting only of zeros
and ones) Ev for T and El for Tl:

T̃ = EvT + ElTl. (5.74)

Inserting this into equation (5.73) and multiplying with ET
l leads to a formulation for the

linear part:

Tl = −
(︂
ET

l B̃El

)︂−1

ET
l

(︂
B̃EvT + C̃

)︂
. (5.75)

Inserting this into ET
v multiplied with equation (5.73) leads to a formulation only for the

variant parts equivalent to equation (5.72):

C =
∂2T (z, t)

∂z2
−A

∂T (z, t)

∂t
−BT (z, t), (5.76)

D̂ = ET
v D̃Ev, A = D̂

−1
ET

v ÃEv,

B = D̂
−1
ET

v B̃

[︃
Ev − El

(︂
ET

l B̃El

)︂−1

ET
l B̃Ev

]︃
,

C = D̂
−1
ET

v

[︃
−B̃El

(︂
ET

l B̃El

)︂−1

ET
l +UN

]︃
C̃.

The matrix D̂ is diagonal without any zeros at the main diagonal, so D̂
−1

can be calculated
easily.

This rearranging only works, if zero rows appear simultaneously in Ã and D̃. This is
not always the case. As seen before, thermal storage capacitance and thermal conductivity
are separated in the model by evaluating only specific radial points. For example, for the
insulation layer of a single wire cable, the complete thermal capacitance was positioned at the
inner insulation radius. This is an approximation that can only be applied for comparatively
slow thermal effects. A better approximation can be found for example by placing one part
of the capacitance on the inner side and the rest on the outside, as proposed by Van Wormer
[143]. The known ECD from figure 5.2 is rearranged to a new version, see figure 5.4. At the
conductor temperature node (green), an axial resistance and a conductance are connected, but
at the cable surface (red node), a capacitance is placed, but no axial heat flow is considered.
This leads to an entry in the corresponding line in matrix Ã but there is no entry in the
corresponding line of D̃. Then, the above-presented reduction would not work any longer
and no ECD and PDE directly analog to the electrical domain can be found.
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T , axial resistance and capacitance

Ts, capacitance without axial resistance

Figure 5.4: Exemplary ECD that cannot be treated equivalently to the electrical domain.

5.3.3 Thermal Equivalent Circuit Diagrams, Partial Differential
Equations, and Parameter Calculation

Using a single wire cable, the basic procedure for deriving the thermal TL equation with
the necessary assumptions was presented in section 5.2. The approach can be divided into
the following steps:

1. Nodal points in the radial direction are defined at which the temperature is to be deter-
mined.

2. For all homogeneous layers, the heat conduction equation is integrated twice about r.
Assumptions have to be introduced regarding negligible or vanishing dependencies.
For example, symmetry considerations or knowledge of the magnitude of the material
parameters can be used for this purpose. For the derivatives with regard to z and t,
values at specific nodal points are chosen as an approximation. Thus, heat conduction
and heat storage capacitance are separated in the radial direction and each is modeled
by a concentrated element.

3. Transition and boundary conditions for the elements under consideration are estab-
lished.

4. Based on these additional conditions, the still unknown constants in the formulation
from step 2 are determined and the differential equation is derived.

In principle, this procedure can be transferred to other conductor arrangements. For more
complex conductor arrangements, there are more areas for which the temperature is calcu-
lated individually. In addition, a higher number of transition and boundary conditions oc-
curs, more assumptions are necessary, and altogether more complex calculations result. In
the case of non-concentric structures (e.g. several conductors, an example is shown in figure
5.5), formally, the assumption of symmetry in the φ-direction is no longer tenable and be-
comes a rough approximation. In this case, additional resistances or conductances are added
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ref

cable 1 cable 2

coupling conductor 1
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coupling between
conductor 1 and

conductor 2

axial

Figure 5.5: Exemplary ECD for the visualization of the treatment of unconcentric cable
structures.

to model the coupling between the conductors. These can be understood as integral quantities
between both conductors. To avoid a double consideration, an appropriate scaling of some
resistances can be used in a later step. This requires assumptions for the area over which the
coupling occurs. Overall, the formal mathematical derivation of these coupling resistances
is very complex and depends on parameters that are difficult to determine in reality, such
as the contact pressure. It is therefore advisable to determine these parameters metrologi-
cally for specific arrangements using test measurements. Some approaches for specific cable
arrangements are presented in chapter 7.

All in all, the formal mathematical derivation of the PDE for complex conductor arrange-
ments requires many assumptions and a lot of complex calculations. That is why a simpler
approach is searched. Remembering the results from the single wire structure, an equivalent
presentation form of the PDE was the corresponding ECD, in which the necessary elements
could directly be linked to the physical properties of the different cable layers. Extending
this understanding of the basic physical properties of the different cable layers, here, a more
intuitive approach is presented: Instead of the formal evaluation and integration of the heat
equation, the relevant nodes are defined based on the geometrical arrangement for the indi-
vidual layers and partial ECD diagrams are set up. Via a formalism, that shows similarities
with the stamp formalism known from the (modified) nodal analysis from the electrical do-
main, a system of coupled PDEs is set up, which has the form known from equation (5.73).
In the following, for different physical layers, the corresponding formulations are presented.
A shielded two-conductor cable is used to exemplarily highlight the modeled nodes.
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a) Conductive Layer
The three conductive layers of the exemplary cable are sketched in green in figure 5.6.

Such a conductive layer is characterized radially via its per unit length heat capacitance

C ′
c = ccAc. (5.77)

Here, cc is the specific volumetric heat capacitance of the conductor and Ac is the cross-
section area of the conductor layer. Due to the typically high thermal conductivity compared
to typical insulation material conductivities, the thermal resistance in the radial direction is
neglected. So, the complete conductor is represented by one radial node mc. Furthermore, an
electrical current Ic in this conductive structure induces losses that heat the conductor, which
is modeled via the heat source

P ′
el,c = I2c ·R′

ref,c · (1 + ηT · (Tc − Tref,c)) . (5.78)

R′
ref,c is the reference resistance, i.e. the electrical resistance of the conductor in the unloaded

state at reference temperature Tref,c. ηT is the linear temperature coefficient of the conductor
material. A typical value for copper is ηT = 3.93 · 10−3 1/K, which is used throughout this
complete thesis. In the axial direction, on the other hand, heat conduction is modeled via the
resistance

R′
c =

1

λcAc

(5.79)

with the specific thermal conductivity of the conductor material λc. Combining these three
elements provides an ECD component as shown in figure 5.7. The described node mc in
the radial direction is split up into two nodes mc,z and mc,z+dz at different axial positions.
As dz → 0, this reduces to just one radial node mc. Thus, to describe such a layer, the
conductor temperature Tc(z, t) is introduced as a variable. In the nodal equation, this yields
an expression of the form

1

R′
c

∂2Tc

∂z2
= C ′

c

∂

∂t
Tc + P ′

el,c. (5.80)

node mc,
temperature Tc

Figure 5.6: Exemplary conductive layers (cross-section, green).
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Figure 5.7: ECD for a conductive layer.

b) Concentric Insulation Layer
In contrast to a conductor layer, for a concentric insulation layer, as exemplarily sketched

in figure 5.8, the heat conduction and thus the temperature difference between the inside and
outside of the insulation plays a role that can no longer be neglected due to the low thermal
conductivity. Physically, heat conduction and heat storage cannot be separated. Nevertheless,
a modeling approach is chosen in which individual discrete elements are used to describe
those two physical effects. Additional correction factors can be necessary to avoid a double
consideration of physical effects (see chapter 7). Those are not considered in this section.

Single RC-Structure Usually, it is assumed that the entire capacitance of the insulation
structure is already effective on its inner side. Then a single resistance and a single capaci-
tance are sufficient for the description. The total capacitance of the insulation layer can be
calculated from the cross-section area Ai and the specific heat capacity of the insulation
material ci:

C ′
i = ciAi = ciπ

(︁
r2i,out − r2i,in

)︁
. (5.81)

Here ri,out represents the outer radius of the considered layer, and ri,in is the inner radius.
The conductance for the description of the radial heat conduction through this layer is given

node mi,out,
temperature Tout

mi,in,Tin

Figure 5.8: Exemplary insulation layer (cross-section).
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by

G′
i =

2πλi

ln

(︃
ri,out
ri,in

)︃ , (5.82)

where λi is the specific thermal conductivity of the insulation material. The combination of
these two elements provides an ECD component as shown in figure 5.9(a). Thus, to describe
such a layer, the temperatures on the inside and outside of the layer are needed as variables. If
one or both temperatures are already used as variables (conductor temperatures), correspond-
ingly fewer new unknowns are needed. In the nodal equation for node mi,in, the temperature
at the inner side results in an additional expression of the form

+G′
i(Tin − Tout) + C ′

i

∂Tin

∂t
. (5.83)

For the outside (node mi,out) a term of the following form results:

−G′
i(Tin − Tout). (5.84)

Transient processes are partly not modeled accurately due to the drastic assumption of
only one equivalent capacitance. For more accurate modeling, the finer modeling proposed
in [143] can be used here, in which the capacitance is divided among several positions in the
radial direction. Long- and short-term transients are distinguished, depending on whether the
transient duration times are greater or lower than

1

3
R′

tC
′
t, (5.85)

where C ′
t is the total thermal per unit length capacitance of the complete cable and R′

t is the
sum of the radial per unit length resistances of the cable [144].

Van Wormer Capacitances for Long-Term Transients For long-term transients, [143]
proposes a division of the capacitances between the inner and outer insulation boundaries,
so the portion pi,loC ′

i is applied on the inside and the portion (1 − pi,lo)C ′
i is applied on the

outside with
pi,lo =

1

2 ln

(︃
ri,out
ri,in

)︃ − 1(︃
ri,out
ri,in

)︃2

− 1

. (5.86)

The corresponding ECD is shown in figure 5.9(b). The expression for the nodal equation for
the temperature on the inside is then given as

+ pi,loC ′
i

∂Tin

∂t
+G′

i (Tin − Tout) . (5.87)
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For the outside, there is a term of the form

+G′
i(Tout − Tin) + (1− pi,lo)C ′

i

∂Tout

∂t
. (5.88)

Van Wormer Capacitances for Short Term Transients For short-time transients, accord-
ing to [143], an additional node is introduced in the insulation layer and the division known
from the last section is implemented individually for the inner and outer cylinder shell, re-
sulting in three capacitances. The resistance for heat conduction through the entire insulation
layer is divided between the two sublayers accordingly. With

C ′
i,1 = ciπ

(︁
ri,inri,out − r2i,in

)︁
, (5.89)

C ′
i,2 = ciπ

(︁
r2i,out − ri,inri,out

)︁
, (5.90)

pi =
1

2 ln

(︃
ri,out
ri,in

)︃ − 1
ri,out
ri,in

− 1
, (5.91)

the ECD shown in figure 5.9(c) results. All three node temperatures are then required as
variables in the representation. For the newly introduced intermediate temperature Tmid, the
nodal equation is

0 = 2G′
i(2Tmid − Tout − Tin) +

(︁
(1− pi)C ′

i,1 + piC ′
i,2

)︁ ∂Tmid

∂t
. (5.92)

For the internal insulation temperature Tin, the additional expression is

+ piC ′
i,1

∂Tin

∂t
+ 2G′

i(Tin − Tmid), (5.93)
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C ′
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Figure 5.9: ECDs for a concentric insulation layer. (a) Simple RC structure. (b) Van Wormer
capacitances for long-term transients. (c) Van Wormer capacitances for short-
term transients.
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and for the external temperature Tout, the necessary expression is

+ 2G′
i(Tout − Tmid) + (1− pi)C ′

i,2

∂Tout

∂t
. (5.94)

c) Common Filling (Insulation) Around Several Structures
For a common filling around several structures as shown in figure 5.10(a), the assumption

of radial symmetry is a rough approximation. In contrast to the previous considerations, it
does not make sense here to place the capacitance on the inside, since the total capacitance
must play a role for all enclosed structures. Therefore, the total capacitance of the filler
material

C ′
f = cfAf (5.95)

is placed at the surface node of the filling. cf is the specific volume-related heat capacity of
the filling and Af is the cross-section area of the filling. Again, the assumption of a uniform
surface temperature is not always justifiable. But, in particular, if the filling is followed by a
conductive layer that has high thermal conductivity, it is expected that the approximation of
a uniform temperature at the transition between this conductor and the insulation only leads
to small errors.

As shown in figure 5.10(b), additional conductances are assumed between the enclosed
structures and the surface of the filler material to model heat conduction. Again, the temper-
atures at the surfaces of the enclosed structures Tin,i and additionally the temperature at the
surface of the filling Tout are needed as variables. For the nodal equations at the inner nodes,
a new term of the form

+G′
f,i (Tin,i − Tout) , i = 1, . . . , N (5.96)

node mf,out,
temperature Tout

mf,in,1,
Tin,1

mf,in,2,
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Tin,N

C ′
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ref

mf,out,
Tout

...

(b)

dcrm

df

β

(c)

Figure 5.10: Exemplary filling layer. (a) Cross-section. (b) ECD. (c) Filling geometry for
parameter calculation.
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results, for the nodal equation at the surface the term

+ C ′
f

∂Tout

∂t
+

N∑︂
i=1

G′
f,i (Tout − Tin,i) (5.97)

is added. The determination of the resistances is non-trivial in the general case. According to
[145], for the thermal conduction between the inner conductor and the surface of the filling,
the same conductance

G′
f,i =

1

2πλf

arcosh

(︃
d2f + d2c − 4r2m

2dfdc

)︃
, i = 1, . . . , N (5.98)

can be used for all inner conductors analog to the characteristic impedance of an eccentric
coaxial cable. This approach is valid for the assumption that the enclosed structures are iden-
tical conductors having the same distance from the center of the cable and being uniformly
distributed. λf represents the specific thermal conductivity of the filling material, df is the
outer diameter of the filling and dc is the outer diameter of the enclosed inner conductors. rm
is the distance of the center of the inner conductors from the center of the filling, as sketched
in figure 5.10(c).

d) Interaction Between Surface and Environment
The cable surface (see figure 5.11(a)) interacts with the environment via convection and

radiation in the case of a cable surrounded by air, which is assumed in this complete thesis.
This is modeled via a conductance

G′
s = (αconv + αrad)2πrs (5.99)

which links the surface (radius rs) with the ambient temperature Te (given as the difference
from the reference temperature). Here, convection and radiation are taken into account via the
heat transfer coefficients αconv and αrad (for their calculation see section 5.2.2) and multiplied
by the surface perimeter 2πrs. Additional correction factors, again, are not considered in this
section. The resulting ECD can be found in figure 5.11(b). In the nodal equation for the

node ms,
temperature Ts

(a)

G′
s

Te

ms, Ts ref

(b)

Figure 5.11: Exemplary surface. (a) Cross-section. (b) ECD.
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surface temperature, the new expression is as follows:

+G′
s(Ts − Te). (5.100)

e) Coupling Between Conductors
The coupling between two conductors (nodes mc,1 and mc,2, see figure 5.12(a)) is modeled

via a resistor as shown in figure 5.12(b). In the nodal equation for the first conductor, an
expression of the form

+R′
c,1G

′
12(Tc,1 − Tc,2) (5.101)

is added. For the second conductor, the necessary expression is

+R′
c,2G

′
12(Tc,2 − Tc,1). (5.102)

The calculation of the needed resistor is non-trivial and only for special cases, analytical
estimations are possible. One example of such a special case is the direct coupling of adjacent
identical conductors via a common filling under the assumption that the total arrangement
consists of identical and uniformly distributed conductors at the same distance from the cable
center. Then, the resistance can be calculated analog to the characteristic impedance of an
eccentric coaxial cable according to [145]:

G′
12 =

1

πλf

arcosh

(︃
af
dc

d2f − a2f + d2c
d2f + a2f − d2c

)︃
, af = 2rm sin

(︃
β

2

)︃
. (5.103)

Here, β is the angle between two inner conductors as shown in figure 5.10(c).
In the general case, the coupling is very complex and can only be determined numerically

or via measurements. By directly modeling the coupling between the two conductors, part
of the material located between these conductors is already taken into account. Accordingly,
a correction of the resistances describing this area is necessary. Convection and radiation
are typically also restricted, so a correction is necessary here as well. Approaches for these
parameter determinations from measurement results for specific cable arrangements are pre-
sented in chapter 7.

node mc,1,
temperature Tc,1

mc,2,
Tc,2

(a)

G′
12

mc,1, Tc,1 mc,2, Tc,2

(b)

Figure 5.12: Exemplary coupling between two conductors. (a) Cross-section. (b) ECD.
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From those different approaches, the complete system of partial differential equations is
set up. For all of the presented elements, the corresponding entries for the matrices Ã to D̃

are shown in table A.1.

f) Algorithm
All in all, the following steps, which are also presented in figure A.1, are necessary to set

up the differential equation: First, the necessary nodes and thus the relevant temperatures
must be determined from the geometry. A node is provided for each conductive layer. For
insulating layers, one node is provided on the inside and one on the outside. For several
concentric radial layers, a continuous temperature curve at the transition is assumed. For
example, if a conductive solid inner conductor is directly surrounded by an insulation layer,
two nodes or relevant temperatures are defined for this arrangement: The conductor temper-
ature, which also is the temperature on the inside of the insulation, and the temperature on
the outside of the insulation. Using the defined nodes, the general form of the PDE is set up.

In the next step, individual ECDs are now set up for each of the different geometrical el-
ements (concentric conductor layer, concentric insulation layer, common filling) as well as
physical effects (interaction between surface and environment, coupling between conduc-
tors) as summed up in figure A.1. These are linked at the defined nodes, resulting in an
overall ECD. If this ECD is not explicitly searched, this step can also be omitted. In addition,
stamps are used to directly define the corresponding nodal equations. Based on the material
parameters and geometrical dimensions of the individual layers, the associated parameters
are calculated. Especially for non-radial symmetric effects, this parameter determination can
be challenging. In some cases, the parameters have to be found by measurement.

Finally, the calculated parameters are inserted into the previously defined PDE system.
All in all, with this formalism, the differential equations can directly be formulated in the
notation presented in equation (5.73), even without an explicit evaluation of the ECD.

5.4 Comparison Between Electrical and Thermal
Transmission Line Models

In this section, the derived thermal models are compared with approaches from the electri-
cal domain. The necessary assumptions are discussed first, followed by a direct comparison
of the PDEs and ECDs and a discussion on the model classification.

5.4.1 Assumptions
As already mentioned in section 5.1.3, in the electrical domain, the TEM field assumption

is decisive. As there is no physical equivalent to the reference conductor in the thermal
domain, this assumption does not hold there.

However, some approximations and assumptions are also necessary for the thermal do-

55



5 Thermal Cable Modeling Based on the Electrical Transmission Line Theory

main. First, a constant ambient temperature is assumed: The heating of the environment is
not taken into account here. The ambient air is not covered by the model whose boundaries
are at the cable surface. At this termination, boundary conditions are specified to consider
radiation and convection. Heat conduction in the surrounding air is explicitly not consid-
ered here. The assumption of a constant ambient temperature is a good approximation if it
changes slowly or only slightly compared to the other thermal processes in the system. Then,
for each time, the ambient temperature at that time is assumed as an approximation in the
later calculations.

Nonlinear effects appear widely in the thermal domain. In the derivation of the differen-
tial equation, the temperature dependence of the material parameters was not considered.
Consequently, already the PDE is an approximation. To take into account the temperature-
dependent behavior in the second step, the temperature dependences of the electrical losses
that heat the cable and radiation and convection at the cable surface are included in the pa-
rameter calculation. In the electrical domain, such self-consistent problems do not typically
appear. There, frequency-dependent parameters are common, but not voltage-dependent pa-
rameters. That is why the methods from the electrical domain can be transferred, especially
if the parameters are assumed to be constant in the thermal domain as well. For the solution
in the next chapter exactly this approach is used. Later, an iterative procedure is used to ad-
just the parameters to the conductor temperature. Implicitly, however, constant parameters
are still assumed in the solution - so this approach only leads to good results if the conductor
temperature changes slowly.

Since the thermal conductivity of the conductor material is much higher than that of the
insulation, segments adjacent to each other in the axial direction are assumed to couple to
each other much stronger in the inner conductor than in the insulation. As an approximation,
the direct coupling in the insulation is therefore neglected, so the insulation temperatures at
adjacent segments are only indirectly coupled to each other via the inner conductor temper-
ature. In the radial direction, the temperature drop across the insulation layer is much higher
than across the inner conductor due to the size ratios of the thermal conductivities, which is
why the entire inner conductor is regarded as a single node with a radially constant temper-
ature. This consideration is based on the assumption that the radial expansion of the inner
conductor is considerably smaller than its axial expansion (along which temperature changes
are indeed taken into account). This requirement is thus quite comparable to the requirement
for electrically short cross-sections in the electrical domain, which is needed there to allow
the TEM assumption.

5.4.2 Partial Differential Equations and Equivalent Circuit Diagrams
Comparing the PDE (5.51) with the corresponding equation (3.2) in the electrical domain

shows a very similar form. Setting L′
el = 0 directly leads to an equivalent formulation with
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I ′f = − (G′Te + P ′
el). The same changes are necessary to transform the ECDs from the elec-

trical to the thermal domain. But there are also differences: As already mentioned in section
5.1, the final differential equations in the electrical domain are hyperbolic and describe an
oscillating system, whereas, in the thermal domain, the differential equations are parabolic.
An equivalent to the electrical inductance cannot be found.

The choice of a physically existing conductor as the electrical reference conductor pro-
vides an additional degree of freedom, so to speak: If only one conductor differs from the
other conductors, then it is still possible to exploit certain symmetries in the equations and
the ECD, which may result in a quite simple formulation. In particular, for the solution of
the resulting equations, this can have significant advantages. Also in the thermal ECD, there
is a common reference node, which seems to lead back the heat flow to the inner conduc-
tor. However, since there is no physical equivalent to this reference node, this is a modeling
artifact. The heat does not flow back into the conductor.

Applying the general approach for thermal modeling of different cable structures from
section 5.3.3 can result in an equivalent circuit or PDE, respectively, that cannot be treated
analog to the electrical domain. Then, methods known from the electrical TL theory cannot
be directly transferred to the thermal problem. That is why in the following, the focus is on
thermal models analog to the electrical domain.

5.4.3 Model Classification
In the electrical domain, cable models can be classified in different ways according to

[110, pp. 33-37]. First, a distinction can be made between uniform and nonuniform lines:
In the general case of nonuniform lines, the cable parameters change along the line and thus
depend on the coordinate z. This violates the TEM assumption. For the important case of uni-
form lines, i.e., constant cross-sections through the entire setup along z, on the other hand,
these parameters are independent of z. Another widely spread dependence in the electrical
domain is the frequency dependence of the cable parameters. Often, solutions are found us-
ing approaches in the frequency domain together with a superposition approach based on
the linearity of the problem. In the thermal domain, this frequency dependence does not ap-
pear in a comparable form. Instead, here, the cable parameters are partially dependent on
the cable temperature. As the temperature changes along the cable, the parameters also vary
with z, resulting in a nonuniform cable. This implicit temperature dependence leads to a self-
consistent problem in the thermal domain - the differential equation is nonlinear. Approaches
based on superposition and uniform lines are thus formally not directly applicable. Never-
theless, in the remainder of this thesis, exactly such procedures will be used to determine
an approximate solution in the thermal domain, since they form the basis of the classical
TL theory. The nonlinear implicit temperature dependence is initially excluded for the solu-
tion of the differential equation and later approximately taken into account via an iterative
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approach.
In the electrical domain, a further distinction can be made between homogeneous and in-

homogeneous surrounding materials. For inhomogeneous environments (e.g., combinations
of insulation material and air), the velocities of the propagating waves are not identical. The
TEM assumption is formally no longer exact, but can still be used as an approximation for
many cases (quasi-TEM). Primarily, there are changes in the calculation of the cable pa-
rameters in contrast to the homogeneous case. In the thermal domain, the model does not
cover the environment. That is why inhomogeneity is not considered in an equivalent way
as in the electrical domain. Within the cable, however, homogeneity is often assumed for the
determination of the cable parameters.

A special but important case in the electrical domain is the presence of perfect conductors
and lossless surrounding materials. The cable parameters G′

el and R′
el then vanish. This elim-

inates the damping terms in the wave equation and simplifies the solution. Some methods
have been developed specifically for this idealized case. However, if the losses in the con-
ductor are considered (R′

el ̸= 0), this formally violates the TEM assumption. Nevertheless,
the quasi-TEM approximation is typically assumed. In the thermal domain, R′ can also be
neglected. However, this corresponds directly to the case where the inner conductor is at an
axially constant temperature. In general, axial boundary conditions can no longer be fulfilled
in a meaningful way. However, the conductance G′ cannot be neglected at all, since it rep-
resents the heat conduction through the insulation layer (which may become unnecessary in
the case of an uninsulated inner conductor) and the transition to the environment (which is
always present). In this respect, in the thermal domain, losses always have to be incorporated
into the model and the specific approaches for the lossless case from the electrical domain
cannot be transferred in a meaningful way.
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6 Solutions
In this section, analytical solution methods for selected cable arrangements and thus con-

crete calculation rules for the temperature profile are developed. Methods known from the
electrical TL theory are used to find solutions in the thermal domain. That is why the ad-
ditional matrix D̃ from equation (5.73) is not considered here, but the reduced formulation
given in equation (5.72) (equivalent to the electrical domain) is analyzed. Then, in general,
the following system of coupled differential equations with initial and boundary conditions
has to be solved:

C̃(T (z, t),Ts(z, t), z, t) =
∂2T (z, t)

∂z2
−A

∂T (z, t)

∂t
−B(Ts(z, t))T (z, t), (6.1)

Ts(z, t) = f(T (z, t),Ts(z, t)), (6.2)

T (z, 0) = T̃ 0(z), T (0, t) = T̃ 1(t), T (L, t) = T̃ 2(t). (6.3)

Depending on the exact conductor arrangement, the functional (implicit) dependence of the
surface temperature on the conductor temperature f(T (z, t),Ts(z, t)) varies. For the single
conductor, for example, the required relationship has the following form:

Ts,sw(z, t) = Tsw(z, t)−R′
iG

′(Ts,sw(z, t)) · (Tsw(z, t)− Te). (6.4)

Overall, on the one hand, spatial and time-dependent initial and boundary conditions can
occur. The excitation C̃ also has an explicit spatial and time dependence in the general
case. On the other hand, the formulation is implicit because the parameters C̃ and B in
the differential equation depend again on the sought conductor temperature and the surface
temperature. The surface temperature itself is a function of the inner conductor temperature.
This formulation is also implicit. These two effects (location and time dependences as well
as implicitness of the formulation) considerably complicate the solution of the differential
equation system. In the following, a formulation for this problem is approached step by
step. Two main approximations are used: On the one hand, the explicit location and time
dependencies of the initial and boundary conditions as well as the excitation are neglected:

T̃ 0(z) = T0, T̃ 1(t) = T1, T̃ 2(t) = T2, (6.5)

C̃(T (z, t),Ts(z, t), z, t) = C(T (z, t),Ts(z, t)). (6.6)

These assumptions are summarized with the term “constant excitations”. Many practically
relevant problems can be described approximately or at least investigated concerning their
worst-case behavior using this assumption. On the other hand, the implicit parameter depen-
dencies are neglected:
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section problem equations dependence excitations presented solutions

6.3 nonlinear

C̃(T (z, t), Ts(z, t), z, t)

=
∂2T (z, t)

∂z2
− A

∂T (z, t)

∂t
−B(Ts(z, t))T (z, t),

Ts(z, t) = T (z, t)−R′
iG

′(Ts(z, t)) · (T (z, t)− Te),
T (z, 0) = T̃ 0(z), T (0, t) = T̃ 1(t), T (L, t) = T̃ 2(t)

P ′
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T
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t
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0
z

T̃ 0

L

t

I

0 z
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t

L

completely
numerical

approximation via
analytical solution with
superimposed numerical

approach

6.2 linear
C̃(z, t) =

∂2T (z, t)

∂z2
− A

∂T (z, t)

∂t
−BT (z, t),

Ts(z, t) = T (z, t)−R′
iG

′(Ts(z, t)) · (T (z, t)− Te),
T (z, 0) = T̃ 0(z), T (0, t) = T̃ 1(t), T (L, t) = T̃ 2(t)

P ′

C̃

T

G′

B see above
completely
numerical

rectangularly shaped
excitations
⇒ expansion

of analytical solutions

6.1
linear with
constant

excitations

C =
∂2T (z, t)

∂z2
− A

∂T (z, t)

∂t
−BT (z, t),

Ts(z, t) = T (z, t)−R′
iG

′(Ts(z, t)) · (T (z, t)− Te),
T (z, 0) = T0, T (0, t) = T1, T (L, t) = T2

P ′
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B
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T1

t

T2
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analytical
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linearization
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Figure 6.1: Overview of the different problems that have to be solved for the single wire cable. The sections that deal with the different
problems are given.
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B(Ts(z, t)) = B = const., C̃(T (z, t),Ts(z, t), z, t) = C(z, t). (6.7)

These assumptions are described in the following with the expression “linearized”. The sur-
face temperature calculation is then decoupled from the conductor temperature calculation
and can thus be excluded from the primary problem formulation. Then, preliminary guesses
are necessary to determine the parameters. One possibility is to use initial estimates for the
conductor temperature and the cable parameters. In principle, with suitable guesses, the tem-
perature curves can be approximated well. This is discussed in section 7.3.1.a).

In the following section 6.1, both simplifications are used together. Thus, solutions or
solution methods of the linearized problem for special cable arrangements and constant ex-
citations are determined. The focus here is on analytical approaches. These form the basis for
the further course of this thesis. In the second step (see section 6.2), temporally and spatially
varying excitations are then discussed. The implicit nonlinear dependence on the conductor
and surface temperatures is again neglected. Finally, in section 6.3, the influence of nonlin-
earity is investigated. Different solutions to the general problem are discussed. Numerical
approaches are needed here due to the non-trivial relationships. An overview of the different
(simplified) problems and the corresponding sections and solutions for the example of the
single wire cable is given in figure 6.1.

6.1 Basic Linear Analytical Solution Approaches for
Special Setups and Constant Excitations

For the solution to the linearized problem with constant excitations,

C =
∂2T (z, t)

∂z2
−A

∂T (z, t)

∂t
−BT (z, t), (6.8)

T (z, 0) = T0, T (0, t) = T1, T (L, t) = T2, (6.9)

a modification of the three-step approach presented in [110, p. 3] for the electrical domain
is used. There, in the first step, the general form of the differential equation is adapted to the
actual problem by determining the required parameters. The general solution of this problem
is found in the second step. The result describes not yet the concrete time development, but
the set of all possible time courses. In the third step, the specific searched development is de-
termined from this set of possible developments by the inclusion of the boundary conditions.

In the thermal domain, this procedure can be applied completely analogously. After con-
cretizing the general PDE for the given problem in the first step, the solution is developed in
the second step. In the following, different possible approaches for the considered cases (ap-
proach via Laplace transform with approximation (index La), via Green’s functions in the
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time domain (index G), via Green’s functions in the Laplace domain (index GL), a simplified
form of the ECD (index simp) and an iterative approach (index it)) are presented. A gen-
eral solution results here as well, in which remaining unknown factors are determined by the
boundary conditions. However, since this is partially done, e.g., in the Laplace domain, and
only the complete solution is transformed back into the time domain, the clear separation
between the second and third steps from [110, p. 3] is omitted in the further course. Instead,
the boundary conditions are directly used for the solution of the PDE.

First, based on the PDE in matrix-vector form, simplified solutions are derived, which
result if the time and/or spatial dependence can be neglected. In the following, a single wire
cable (index sw), a system of single wire cables, an arrangement of two single wire cables
(index tsw), a coaxial cable (index co), an arrangement of N identical single wire cables
(index id) as well as a rather general conductor arrangement analog to the electrical domain
are investigated considering the temporal and spatial dependence.

Throughout this complete thesis, many and more indices appear to distinguish, for exam-
ple, between different temperatures. Often, even several indices are combined, as shown in
figure 6.2. That is why a specific index directory can be found within the list of mathematical
symbols.

Tic,sw,La

solution part for con-
sideration of initial
condition, alterna-
tives:
• bc: boundary

conditions
• inh: inhomogeneity

cable arrangement,
here: single wire ca-
ble, alternatives:
• tsw: two single

wire cables
• co: coaxial cable
• id: N identical

cables

solution approach, here: Laplace do-
main solution with approximation,
alternatives:
• G: solution via Green’s functions

in the time domain
• GL: solution via Green’s functions

in the Laplade domain
• it: solution via iterative approach
• simp: solution via problem

simplifcation

Figure 6.2: Example for multiple indices with a short explanation.

6.1.1 Neglection of Spatial and/or Time Dependence
In the first step, simplified versions of the complete PDE are analyzed neglecting the spatial

and/or the time dependence. Under those assumptions, solutions can be found for the general
case analog to the electrical domain known from equation (5.72).

a) Radial Steady State
If only the steady-state temperatures Trs for long cables are searched, the time and spa-

tial dependencies can both be neglected. Then, the system of PDEs is reduced to a simple
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algebraic expression, that can directly be solved:

−BTrs = C ⇔ Trs = −B−1C. (6.10)

b) Axial Steady State
If the spatial dependence has to be considered, but only the steady-state temperature distri-

bution Tstst(z) along the cable arrangement is searched, the following system of differential
equations describes the system:

∂2

∂z2
Tstst(z)−BTstst(z) = C (6.11)

with the boundary conditions (assumed constant temperatures at cable terminations)

Tstst(0) = T1 =

⎛⎜⎜⎜⎜⎝
T1,1

T1,2

...
T1,N

⎞⎟⎟⎟⎟⎠ , Tstst(L) = T2 =

⎛⎜⎜⎜⎜⎝
T2,1

T2,2

...
T2,N

⎞⎟⎟⎟⎟⎠ . (6.12)

Those coupled differential equations are decoupled diagonalizing the matrix B:

B = EBDBE
−1
B , DB =

⎛⎜⎜⎜⎜⎝
DB,1 0 . . . 0

0 DB,2
. . . ...

... . . . . . . 0

0 . . . 0 DB,N

⎞⎟⎟⎟⎟⎠ . (6.13)

Then, the complete solution Tstst(z) is the superposition of the homogeneous solution

Thom,stst(z) = EBe
√
DBzTstst,1 + EBe

−
√
DBzTstst,2 (6.14)

with

e±
√
DBz =

⎛⎜⎜⎜⎜⎜⎝
e±
√

DB,1z 0 . . . 0

0 e±
√

DB,2z . . . ...
... . . . . . . 0

0 . . . 0 e±
√

DB,Nz

⎞⎟⎟⎟⎟⎟⎠ (6.15)

and a particulate solution Tpart,stst = Trs:

Tstst(z) = Thom,stst(z) + Tpart,stst. (6.16)

Via the evaluation of the boundary conditions, the factors Tstst,1 and Tstst,2 are determined:
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Tstst,1 =
(︂
e−

√
DBL − e

√
DBL

)︂−1 [︂
e−

√
DBLE−1

B (T1 − Trs)− E−1
B (T2 − Trs)

]︂
, (6.17)

Tstst,2 =
(︂
e−

√
DBL − e

√
DBL

)︂−1 [︂
−e

√
DBLE−1

B (T1 − Trs) + E−1
B (T2 − Trs)

]︂
. (6.18)

c) Radial Transient Case
If the axial temperature distribution is not relevant, but the transient temperature develop-

ment has to be considered, the reduced form of the PDE system is

−A
∂

∂t
Trt(t)−BTrt(t) = C. (6.19)

This general matrix formulation can directly be solved. Again, the solution is the superposi-
tion of the homogeneous solution and a particulate part:

Trt(t) = EA−1Bexp (−DA−1Bt)Trt,0 + Trs (6.20)

with the diagonalization of the matrix A−1B:

A−1B = EA−1BDA−1BE
−1
A−1B. (6.21)

Evaluating the initial condition Trt(0) = T0 (assumed constant cable temperature at t = 0 s)
leads to

Trt,0 = E−1
A−1B (T0 − Trs) . (6.22)

6.1.2 Single Wire Cable
In this section, a single wire cable is analyzed. The thermal ECD for such a cable is given

in figure 5.2. As derived in section 5.2, the PDE

∂2Tsw(z, t)

∂z2
− Asw

∂Tsw(z, t)

∂t
−BswTsw(z, t) = C̃sw(z, t), (6.23)

with a constant excitation C̃sw(z, t) = Csw and the constant boundary and initial conditions

Tsw(0, t) = T̃ 1,sw(t) = T1,sw, Tsw(L, t) = T̃ 2,sw(t) = T2,sw, (6.24)

Tsw(z, 0) = T̃ 0,sw(z) = T0,sw (6.25)

has to be solved. The problem can be classified as an inhomogeneous differential equation
with inhomogeneous boundary and initial conditions as generally, Csw, T0,sw, T1,sw, and T2,sw

are not zero. Assuming linearity, according to the principle of superposition, the complete so-
lution results as the superposition of solutions that take into account only one of the different
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initial and boundary conditions and the stimulations (C̃sw) assuming the others to vanish:

Tsw(z, t) = TT̃ 0,sw
(z, t, T0,sw) + TT̃ 1,sw

(z, t, T1,sw) + TT̃ 2,sw
(z, t, T2,sw) + TC̃,sw(z, t, Csw).

(6.26)
Due to symmetry considerations, the influence of the cable termination temperatures has to
fulfill the following condition:

TT̃ 1,sw
(z, t, T1,sw) = Tbc,sw(z, t, T1,sw), TT̃ 2,sw

(z, t, T2,sw) = Tbc,sw(zL, t, T2,sw) (6.27)

with zL = L−z. Analogously, also for the initial conditions and the inhomogeneity, explicit
functions are introduced:

TT̃ 0,sw
(z, t, T0,sw) = Tic,sw(z, t, T0,sw), TC̃,sw(z, t, Csw) = Tinh,sw(z, t, Csw). (6.28)

The corresponding cable surface temperature is

Ts,sw(z, t) = Tsw(z, t)−R′
iG

′(Tsw(z, t)− Te). (6.29)

a) Direct Solution in the Laplace Domain and Approximation
In this section, solution approaches based on a Laplace domain solution are presented for

a finite and a semi-infinite single wire cable. This section is based on [A.3].

Finite Cable In the first step, the Laplace transform about the time of the PDE together
with constant initial and boundary conditions is performed to reduce the complexity of the
differential equation: Time derivatives do not appear any longer, so the PDE is reduced to an
ODE with the Laplace variable s:

d2Tsw(z, s)

dz2
− (sAsw +Bsw)Tsw(z, s) =

Csw

s
− AswT0,sw, (6.30)

Tsw(0, s) =
T1,sw

s
, Tsw(L, s) =

T2,sw

s
. (6.31)

Then, in the Laplace domain, the differential equation is directly solved by superpositioning
a homogeneous and a particulate term:

Tsw(z, s) = Tsw,1(s)e
zã + Tsw,2(s)e

−zã + Tpart,sw(s), (6.32)

ã =
√︁
sAsw +Bsw, Tpart,sw(s) =

sAswT0,sw − Csw

s(sAsw +Bsw)
.

The boundary conditions in the Laplace domain are used to calculate the prefactors Tsw,1(s)

and Tsw,2(s), which results in
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Tsw,1(s) =
T1,sw − sTpart,sw(s)

s (1 + eLã)
+

(T1,sw − T2,sw)e
−Lã

s (e−2Lã − 1)
, (6.33)

Tsw,2(s) =
T2,sw − sTpart,sw(s)

s (1 + e−Lã)
+

T2,sw − T1,sw

s (e−2Lã − 1)
. (6.34)

As originally the time domain solution was searched, the complete solution has to be trans-
formed from the Laplace domain back to the time domain. For some of the expressions from
the prefactors, no corresponding expression in the time domain is known. That is why an al-
ternate formulation is necessary, that allows an analytical transformation back into the time
domain. For this purpose, the prefactors are approximated suitably:

e−Lã ± 1 ≈ ±1. (6.35)

This approximation leads to good results especially for long cables (see also section 7.3.1.d),
[A.3, A.4]). The new, reduced form of the prefactors then becomes

Tsw,1(s) ≈
(︃
T2,sw

s
− Tpart,sw(s)

)︃
e−Lã, Tsw,2(s) ≈

T1,sw

s
− Tpart,sw(s). (6.36)

This new formulation allows the analytical transformation back into the time domain yielding

Tsw,La(z, t) = Tic,sw,La(z, t, T0,sw) + Tbc,sw,La(z, t, T1,sw)

+ Tbc,sw,La(zL, t, T2,sw) + Tinh,sw,La(z, t, Csw)
(6.37)

with

Tic,sw,La(z, t, T0,sw) = −Γ(t)T0,swΛ3(t)[1− Λ1(z, t)− Λ1(zL, t)], (6.38)

Tbc,sw,La(z, t, Tbc) = −Γ(t)
Tbc

2
Λ2(z, t), (6.39)

Tinh,sw,La(z, t, Csw) = −Csw

Bsw

Γ(t) + Tic,sw,La

(︃
z, t,

Csw

Bsw

)︃
+ Tbc,sw,La

(︃
z, t,

Csw

Bsw

)︃
+ Tbc,sw,La

(︃
zL, t,

Csw

Bsw

)︃
, (6.40)

Λ1(z, t) = erf

(︄
z

2

√︃
Asw

t

)︄
, Λ2(z, t) = θ1(z, t) + θ2(z, t), Λ3(t) = e

−
Bsw

Asw

t
, (6.41)

θ1(z, t) = −e−z
√
Bsw erfc

(︃
zAsw − 2t

√
Bsw

2
√
Aswt

)︃
, (6.42)

θ2(z, t) = −ez
√
Bsw erfc

(︃
zAsw + 2t

√
Bsw

2
√
Aswt

)︃
. (6.43)
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This solution approach was also discussed in [A.3, A.5, A.6].

Semi-infinite Cable If not a finite cable is described but an infinitely long cable starting
at z = 0m, the prefactor Tsw,1(s) from the above-presented solution has to be set to zero:
Tsw,1(s) = 0. Then, the remaining boundary condition Tsw,La,semi(0, s) = T1,sw/s is used to
calculate the second prefactor:

Tsw,2(s) =
T1,sw

s
− Tpart,sw(s). (6.44)

The final result is derived via transformation back into the time domain:

Tsw,La,semi(z, t) =
Csw

Bsw

−
(︃
Csw

Bsw

− T0,sw

)︃
Λ3(t)Λ1(z, t)+

(︃
Csw

Bsw

− T1,sw

)︃
Λ2(z, t)

2
. (6.45)

b) Solution via Green’s Functions in the Time Domain
In this approach, a time domain Green’s functions formulation is used to solve the PDE.

This approach was earlier presented in [A.4] and can be used to derive the (already known)
solutions for an infinitely long or semi-infinite cable but also for the finite cable, for which,
in the last approach, an approximation was necessary. For the derivation of the fundamental
solutions of the given problem, analog to [146, pp. 150-151], the spatial Fourier transform is
used. The Green’s function Gsw(z, t|z̃, t̃) for the problem

− 1

Asw

∂2

∂z2
Tsw(z, t) +

∂

∂t
Tsw(z, t) +

Bsw

Asw

Tsw(z, t) = −Csw

Asw

(6.46)

with the boundary and initial conditions from equations (6.24) and (6.25) is

Gsw(z, t|z̃, t̃) = Γ(t− t̃)exp

(︃
−Bsw

Asw

(t− t̃)

)︃√︄
Asw

4π(t− t̃)

·
∞∑︂

n=−∞

[︃
exp

(︃
−Asw(ñ+ z − z̃)2

4(t− t̃)

)︃
− exp

(︃
−Asw(ñ+ z + z̃)2

4(t− t̃)

)︃]︃
(6.47)

with ñ = 2nL. It is important to mention, that this Green’s function only applies for the finite
cable. The different solution parts are calculated as follows for constant initial and boundary
conditions and excitation:

Tic,sw,G(z, t, T0,sw) =

∫︂ L

0

Gsw(z, t|z̃, 0)T0,sw dz̃

= −Γ(t)T0,swΛ3(t)

{︄
1− Λ1(z, t)− Λ1(zL, t) +

∞∑︂
n=1

[Λ1(−zL + ñ, t)

− Λ1(z + ñ, t) + Λ1(−zL − ñ, t)− Λ1(z − ñ, t)

]︄}︄
, (6.48)
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Tbc,sw,G(z, t, Tbc) =

∫︂ t

0

√︃
1

Aswπt̃

∂

∂z

∞∑︂
n=−∞

exp

(︃
−Asw(ñ+ z)2

4t̃
− Bsw

Asw

t̃

)︃
Tbc dt̃

= −Γ(t)
Tbc

2

{︄
Λ2(z, t) +

∞∑︂
n=1

[Λ2(z + ñ, t)− Λ2(−z + ñ, t)]

}︄
, (6.49)

Tinh,sw,G(z, t, Csw) = −
∫︂ t

0

∫︂ L

0

Gsw(z, t̂|z̃, 0)
Csw

Asw

dz̃ dt̂

= −Csw

Bsw

Γ(t) + Tic,sw,G

(︃
z, t,

Csw

Bsw

)︃
+ Tbc,sw,G

(︃
z, t,

Csw

Bsw

)︃
+ Tbc,sw,G

(︃
zL, t,

Csw

Bsw

)︃
, (6.50)

Tsw,G(z, t) = Tic,sw,G(z, t, T0,sw) + Tbc,sw,G(z, t, T1,sw) + Tbc,sw,G(zL, t, T2,sw)

+ Tinh,sw,G(z, t, Csw). (6.51)

All in all, the earlier expression from the solution in the Laplace domain Tsw,La(z, t) ap-
pears again in this solution and is extended by new terms. This series formulation covers the
complete solution of the partial differential equation, because, unlike the earlier approach,
here, approximations were not necessary. If this solution is implemented, nevertheless, the
sum has to be stopped after a finite number of addends, which practically also causes an
approximation. The convergence behavior of this solution is analyzed in section 7.3.1.c).

c) Solution via Green’s Functions in the Laplace Domain
The Laplace domain solution from above could not directly be transformed back into the

time domain due to some problematic expressions. In this section, an alternative formulation
in the Laplace domain is derived using Green’s functions that can directly be transformed
back into the time domain. This approach is also known from the electrical TL theory [118].
This section is based on [A.4].

In the Laplace domain, the problem has the form of the Helmholtz equation, so the known
Green’s function for this problem could be used directly. This way, the above-presented
solution is found again and thus, the same problem with the transformation back into the
time domain appears again. That is why an alternate formulation for the necessary Green’s
function is used:

Gsw,L(z, z̃, s) = − 2

L

∞∑︂
n=1

sin (nLz) sin (nLz̃)

(sAsw +Bsw) + n2
L

(6.52)

with nL = nπ/L. Using the abbreviation nu,L = (2n + 1)π/L, the individual solution
components are calculated and directly transformed back into the time domain:

68



6 Solutions

Tic,sw,GL(z, s, T0,sw) = −
∫︂ L

0

Gsw,L(z, z̃, s)AswT0,sw dz̃

=
4AswT0,sw

L

∞∑︂
n=0

sin (nu,Lz)

(sAsw +Bsw) + n2
u,L

1

nu,L

Tic,sw,GL(z, t, T0,sw) = T0,sw
4

π

∞∑︂
n=0

exp

(︃
− t

Asw

(︁
n2
u,L +Bsw

)︁)︃ sin (nu,Lz)

2n+ 1
, (6.53)

Tinh,sw,GL(z, s, Csw) = −
∫︂ L

0

Gsw,L(z, z̃, s)
Csw

s
dz̃ =

4Csw

sL

∞∑︂
n=0

sin(nu,Lz)

(sAsw +Bsw) + n2
u,L

1

nu,L

Tinh,sw,GL(z, t, Csw) = −Csw
4

π

∞∑︂
n=0

1− exp

(︃
− t

Asw

(︁
n2
u,L +Bsw

)︁)︃
Bsw + n2

u,L

sin (nu,Lz)

2n+ 1
, (6.54)

Tbc,sw,GL(z, s, Tbc) = −Tbc

s

∂

∂z̃
Gsw,L(z, z̃, s)|z̃=0 =

2

L
π
Tbc

s

∞∑︂
n=1

nL sin (nLz)

(sAsw +Bsw) + n2
L

Tbc,sw,GL(z, t, Tbc) =
2

L
Tbc

∞∑︂
n=1

[︃
1− exp

(︃
− t

Asw

[︁
n2
L +Bsw

]︁)︃]︃ nL sin (nLz)

n2
L +Bsw

, (6.55)

Tsw,GL(z, t) = Tic,sw,GL(z, t, T0,sw) + Tbc,sw,GL(z, t, T1,sw) + Tbc,sw,GL(zL, t, T2,sw)

+ Tinh,sw,GL(z, t, Csw). (6.56)

At the cable terminations, the applied boundary conditions are only fulfilled for the limits

lim
z→0

Tbc,sw,GL(z, t, T1,sw) = T1,sw, lim
z→0

Tbc,sw,GL(zL, t, T2,sw) = T2,sw, (6.57)

but not if the coordinates z = 0m and zL = 0m are directly inserted. Also, the corresponding
solution part Tbc,sw,GL(z, t, Tbc) only converges very slowly (see section 7.3.1.c)), so many
addends have to be taken into account for a precise result. Overall this limits the applicability
of this complete formulation. For the special case of identical cable termination temperatures
T1,sw = T2,sw, setting the reference temperature to this value T1,sw allows a formulation
without the unsteady and slowly converging part.
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6.1.3 Systems of Single Wire Cables
In this section, a thermal model for a system of single wire cables that are thermally con-

nected at the cable terminations is developed. This model considers the axial heat exchange
between the individual cables and is based on [A.7].

In section 6.1.2.a), an analytical calculation method for the calculation of the temperature
of a single cable of length L oriented in z-direction consisting of conductor and insulation
loaded with the current I was presented. From this known temperature distribution, the corre-
sponding heat flow distribution P (z, t) along the cable is calculated, which linearly depends
on the cable termination temperatures T1 and T2:

P (z, t) = − 1

R′
∂T (z, t)

∂z
= F1(z, t)T1 + F2(z, t)T2 + F3(z, t), (6.58)

F1(z, t) =
Λ4(z, t)

2R′ , F2(z, t) = −Λ4(zL, t)

2R′ ,

F3(z, t) =

(︃
C

B
+ T0

)︃
1

R′

√︃
A

tπ
exp

(︃
−B

A
t

)︃(︃
exp

(︃
−Az2L

4t

)︃
− exp

(︃
−Az2

4t

)︃)︃
+

C

B
(F1(z, t) + F2(z, t)) ,

Λ4(z, t) = 2

√︃
A

tπ
exp

(︃
−Az2

4t
− Bt

A

)︃
cosh

(︂z
2

√
B
)︂
+
√
B (θ1(z, t)− θ2(z, t)) .

Based on this, a network of N single wire cables that are thermally connected at K nodes
is analyzed. An example of such a system is given in figure 6.3. The axial heat exchange
between the cables is calculated, assuming that there is no coupling between the cables
transversal to the axial direction.

As in the earlier presented solution, the cable termination temperatures are needed and
have to be precalculated. To do that, in the first step, the vectors with the cable end tem-
peratures for all conductors, Ti, i = 1, 2, are split up into the given values Ti,g at the outer
boundaries of the network and the unknown values Ti,u at the inner nodes using the matrices
Ei,g and Ei,u:

Ti = (Ti,1 Ti,2 . . . Ti,N)
T = Ei,gTi,g + Ei,uTi,u. (6.59)

T1,1

cable 1

T2,1 T1,2

cable 2

T2,2 T1,3

ca
ble

3

T2,3

T2,4

ca
ble

4
T1,4

T2,5

ca
ble

5
T1,5

Tk,1

Tk,2

Figure 6.3: Exemplary system of single wire cables.
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Perfect thermal connections are assumed. Then, the temperature behaves continuously at the
nodes. The unknown cable temperatures are expressed in terms of the nodal temperatures
Tk = (Tk,1 Tk,2 . . . Tk,K)

T using the matrix Ei,k which reduces the number of unknowns:

Ti = (Ti,1 Ti,2 . . . Ti,N)
T = Ei,gTi,g + Ei,uEi,kTk = Ei,gTi,g + ÊiTk. (6.60)

At the nodes, the heat flow fulfills Kirchhoff’s law, which means that the incoming heat
(cables with local z = L and T2 at the node) equals the heat that leaves the node (cables with
local z = 0m and T1 at the node). Using the vector of the heat flow

P (z1, z2, ..., zN , t) = F1(z1, z2, ..., zN , t)T1 + F2(z1, z2, ..., zN , t)T2

+ F3(z1, z2, ..., zN , t),
(6.61)

with
Fi(z1, z2, ..., zN , t) = diag (Fi,1(z1, t), ..., Fi,N(zN , t)) , i = 1, 2,

F3(z1, z2, ..., zN , t) = (F3,1(z1, t) . . . F3,N(zN , t))
T ,

(6.62)

Kirchhoff’s laws can be expressed as

Ê
T

2P (L1, ...,LN , t)− Ê
T

1P (0, ..., 0, t) = 0. (6.63)

Inserting equation (6.60) and equation (6.61) into equation (6.63) and rearranging leads to
the system of linear equations that has to be solved to find the unknown nodal temperatures:[︂

Ê
T

2

(︂
F1,L(t)Ê1 + F2,L(t)Ê2

)︂
− Ê

T

1

(︂
F1,0(t)Ê1 + F2,0(t)Ê2

)︂]︂
Tk

=
(︂
Ê

T

1F1,0(t)− Ê
T

2F1,L(t)
)︂
E1,gT1,g +

(︂
Ê

T

1F2,0(t)− Ê
T

2F2,L(t)
)︂
E2,gT2,g

+ Ê
T

1F3,0(t)− Ê
T

2F3,L(t)

(6.64)

with
Fi,0(t) = Fi(0, ..., 0, t), Fi,L(t) = Fi(L1, ...,LN , t), i = 1, 2,

F3,0(t) = F3(0, ..., 0, t), F3,L(t) = F3(L1, ...,LN , t).
(6.65)

Knowing the nodal temperatures, the axial temperature distribution along the cables is cal-
culated using equation (6.37) (solution for a single wire cable from the Laplace domain with
approximation).

6.1.4 Two Single Wire Cables
In this section, an arrangement of two coupled single wire cables is analyzed (cross-section

see figure 6.4). In the general case, those two wires do not necessarily have to be identical.
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Te

rc,1

ri,1

Ttsw,1

Ts,tsw,1

ci,1, λi,1

cc,1,
λc,1

rc,2

ri,2

Ttsw,2

Ts,tsw,2

ci,2, λi,2

cc,2, λc,2

Figure 6.4: Cross-section of the analyzed arrangement of two single wire cables.

a) Partial Differential Equations and Equivalent Circuit Diagram
Using the precede presented in section 5.3.3, the ECD given in figure 6.5 is derived that

describes this cable arrangement. The corresponding PDE system is

Ctsw =
∂2

∂z2
Ttsw(z, t)−Atsw

∂

∂t
Ttsw(z, t)−BtswTtsw(z, t), (6.66)

Atsw =

(︄
A11 0

0 A22

)︄
=

(︄
R′

1C ′
1 0

0 R′
2C ′

2

)︄
, Ctsw =

(︄
Ctsw,1

Ctsw,2

)︄
=

(︄
−R′

1(P
′
el,1 +G′

1Te)

−R′
2(P

′
el,2 +G′

2Te)

)︄
,

Btsw =

(︄
B11 B12

B21 B22

)︄
=

(︄
R′

1(G
′
1 +G′

12) −R′
1G

′
12

−R′
2G

′
12 R′

2(G
′
2 +G′

12)

)︄
, Ttsw(z, t) =

(︄
Ttsw,1(z, t)

Ttsw,2(z, t)

)︄
.

The surface temperatures are calculated from the cable temperatures via

reference

P ′
el,1

C ′
1

G′
1

Te

conductor 1

P ′
el,2

C ′
2

G′
2

Te

conductor 2

R′
1

R′
2

G′
12

Figure 6.5: ECD for an infinitesimally short cable segment (two single wire cables).
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Ts,tsw(z, t) = Ttsw(z, t)−R′
i,tswG

′
ii,tsw

(︄
Ttsw(z, t)− Te ·

(︄
1

1

)︄)︄
, (6.67)

R′
i,tsw =

(︄
R′

i,1 0

0 R′
i,2

)︄
,G′

ii,tsw =

(︄
G′

11 0

0 G′
22

)︄
, G′

ii =
1

R′
i,i +R′

α,i

, i = 1, 2.

b) Closed Formulation for the Radial Transient Case
In the general solution for the radial transient case known from section 6.1.1.c), a matrix

diagonalization is necessary. For the special case of two coupled single wire cables, in the
following, an explicit formulation is derived. In the case of this cable arrangement, the matrix
formulation of the system of differential equations can be rewritten as two coupled equations:

−A11
∂

∂t
Ttsw,rt,1(t)−B11Ttsw,rt,1(t)−B12Ttsw,rt,2(t) = Ctsw,1,

−A22
∂

∂t
Ttsw,rt,2(t)−B21Ttsw,rt,1(t)−B22Ttsw,rt,2(t) = Ctsw,2.

(6.68)

Rearranging leads to a differential equation for the temperature Ttsw,rt,1(t):

∂2

∂t2
Ttsw,rt,1(t) + θtsw,1

∂

∂t
Ttsw,rt,1(t) + θtsw,2Ttsw,rt,1(t) = θtsw,3,1, (6.69)

θtsw,1 =
A22B11 + A11B22

A11A22

, θtsw,2 =
B11B22 −B21B12

A11A22

, θtsw,3,1 =
Ctsw,2B12 − Ctsw,1B22

A11A22

.

This differential equation is solved with

Ttsw,rt,1(t) = Ttsw,rt,1,1e
θtsw,4t + Ttsw,rt,2,1e

θtsw,5t +
θtsw,3,1

θtsw,2

, (6.70)

θtsw,i = −θtsw,1

2
+ (−1)i

√︄
θ2tsw,1

4
− θtsw,2, i = 4, 5.

Using the second conductor temperature

Ttsw,rt,2(t) = −A11

B12

∂

∂t
Ttsw,rt,1(t)−

B11

B12

Ttsw,rt,1(t)−
Ctsw,1

B12

(6.71)

and the initial conditions for both temperatures, Ttsw,rt,1(0) = T0,tsw,1 and Ttsw,rt,2(0) =

T0,tsw,2, it follows with i = 1, 2:

Ttsw,rt,i,1 = (−1)i
T0,tsw,1B11 + T0,tsw,2B12 + Ctsw,1 + A11θtsw,6−i

(︃
T0,tsw,1 −

θtsw,3,1

θtsw,2

)︃
A11

√︂
θ2tsw,1 − 4θtsw,2

.
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So now, the complete temperature development is known for the first conductor. The corre-
sponding temperature of the second conductor is derived using equation (6.71):

Ttsw,rt,2(t) = Ttsw,rt,1,2e
θtsw,4t + Ttsw,rt,2,2e

θtsw,5t +
θtsw,3,2

θtsw,2

, (6.72)

θtsw,3,2 =
Ctsw,1B21 − Ctsw,2B11

A11A22

, i = 1, 2,

Ttsw,rt,i,2 = (−1)i
T0,tsw,2B22 + T0,tsw,1B21 + Ctsw,2 + A22θtsw,6−i

(︃
T0,tsw,2 −

θtsw,3,2

θtsw,2

)︃
A22

√︂
θ2tsw,1 − 4θtsw,2

.

c) Direct Solution in the Laplace Domain and Approximation
In this section, both, the time and the spatial dependence are considered. In the Laplace

domain, the solution of the complete PDE system is

Ttsw(z, s) = EÃ,tswe
z
√

DÃ,tswTtsw,1(s) + EÃ,tswe
−z
√

DÃ,tswTtsw,2(s)− Ã
−1

tswĈtsw, (6.73)

Ttsw,i(s) = EL,tsw

{︃
(−1)i+1e

(−1)iL
√

DÃ,tswE−1

Ã,tsw

[︃
T1,tsw

s
+ Ã

−1

tswĈtsw

]︃
+(−1)iE−1

Ã,tsw

[︃
T2,tsw

s
+ Ã

−1

tswĈtsw

]︃}︃
,

i = 1, 2, Ĉtsw =
Ctsw

s
−AtswT0,tsw, EL,tsw =

[︂
e
−L

√
DÃ,tsw − e

L
√

DÃ,tsw

]︂−1

with the diagonalization of the matrix Ãtsw:

Ãtsw = sAtsw +Btsw = EÃ,tswDÃ,tswE
−1

Ã,tsw
, DÃ,tsw =

(︄
DÃ,tsw,1 0

0 DÃ,tsw,2

)︄
. (6.74)

As Ãtsw and its diagonalization depend on the Laplace variable s, an explicit expression is
necessary for the transformation back into the time domain. In the following, for a shorter
notation, Â = A11 − A22 and B̂ = B11 − B22 are used. Depending on the parameters and
exact setup, different cases can occur:
case 1: B12B21 ̸= 0

In this case, the different conductor temperatures couple. Then, in the calculation, a double
square root appears. The inner square root is

Wtsw =

√︃
1

4

(︂
Âs+ B̂

)︂2
+B12B21, (6.75)

which is of the order one with regard to s. To transform this back into the time domain, a
Taylor series expansion (order one) is used to find a linear approximation of the square root:
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Wtsw ≈ W1s+W0, W1 =
ÂB̂

2

√︂
B̂

2
+ 4B12B21

, W0 =

√︄
B̂

2

4
+B12B21. (6.76)

Depending on the different parameters, this approximation changes. It is important to know
if W1 and W0 become zero or not because this influences the partial fraction decomposition
that is performed in the following. That is why two different subcases are necessary. For both
of them, the result for the complete solution of the differential equation is a very complicated
expression, which can be found in appendix B.
case 2: (B12 = 0 ∧B21 ̸= 0) ∨ (B12 ̸= 0 ∧B21 = 0)

Here, B12 and B21 are not both equal or both unequal to zero. Physically, this would mean a
coupling only in one direction, which is not reasonable. That is why this case is not further
evaluated.
case 3: B12 = B21 = 0

In this case, two uncoupled equations are the result. The solution is already known from the
solution for a single wire cable. Physically, both conductor temperatures do not influence
each other.
As can be seen from those solutions for a finite cable, the results are very complicated and
computationally intensive, even though analytical formulations were found. This is due to
the decoupling similarity transform, which depends on the Laplace variable s and therefore
massively increases the complexity as an explicit formulation is necessary for the transform
back into the time domain. Because of this complexity, numerical instabilities become more
probable. Therefore, this approach with the solution in the Laplace domain and approxima-
tion for the transformation back into the time domain is not usable for real setups. This is
the reason why this approach will not be further investigated for more general arrangements.
Instead, different approaches are necessary.

d) Solution via Green’s Functions in the Laplace Domain
As already presented for the single wire cable, Green’s functions can be used in the Laplace

domain to find a series formulation for the cable temperatures. The complete calculation
formula in the general case is calculated here. In the Laplace domain, the formulation of the
general PDE system analog to the electrical domain is

∂2

∂z2
T (z, s)− (sA+B)T (z, s) =

C

s
−AT0 = Ĉ(s), (6.77)

T (0, s) = T̃ 1(s) =
T1

s
, T (L, s) = T̃ 2(s) =

T2

s
. (6.78)
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So, a differential equation of the following form has to be solved:

∂2

∂z2
T (z)− (sA+B)T (z) = f(z), T (0) = T̃ 1, T (L) = T̃ 2. (6.79)

The corresponding Green’s function Ggen(z, z̃, s), therefore, has to fulfill the following equa-
tions, where N is the number of conductors:

∂2

∂z2
Ggen(z, z̃, s)− (sA+B)Ggen(z, z̃, s) = δ(z, z̃)UN , (6.80)

Ggen(0, z̃, s) = Ggen(L, z̃, s) = Ggen(z, 0, s) = Ggen(z,L, s) = 0, (6.81)

Ggen(z, z̃, s) = Ggen(z̃, z, s). (6.82)

Because of the structure of Ggen(z, z̃, s), it is also:

∂2

∂z2
Ggen(z, z̃, s)−Ggen(z, z̃, s)(sA+B) = δ(z, z̃)UN . (6.83)

Generally, applying the product rule leads to∫︂ L

0

[︃
d2

dz̃2
(u2) · u1 − u2

d2

dz̃2
u1

]︃
dz̃ =

[︃
d

dz̃
(u2) · u1 − u2

d

dz̃
u1

]︃L
z̃=0

. (6.84)

Using
u1 = T (z̃) and u2 = Ggen(z, z̃, s), (6.85)

equation (6.84) can be written as∫︂ L

0

[︃
d2

dz̃2
(Ggen(z, z̃, s)) · T (z̃)−Ggen(z, z̃, s)

d2

dz̃2
T (z̃) dz̃

]︃
=

[︃
d

dz̃
(Ggen(z, z̃, s)) · T (z̃)−Ggen(z, z̃, s)

d

dz̃
T (z̃)

]︃L
z̃=0

.

(6.86)

Inserting equations (6.79) and (6.83) leads to the calculation formula for the temperature
development:

T (z) =

∫︂ L

0

Ggen(z, z̃, s)f(z̃) dz̃

+
d

dz̃
(Ggen(z, z̃, s))

⃓⃓⃓⃓
z̃=L

T̃ 2(s)−
d

dz̃
(Ggen(z, z̃, s))

⃓⃓⃓⃓
z̃=0

T̃ 1(s).

(6.87)

Inserting the Green’s function

Ggen(z, z̃, s) = −
∞∑︂
n=1

[︁
B+ sA+ n2

LUN

]︁−1 2

L
sin (nLz) sin (nLz̃) (6.88)
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as well as f(z̃) = Ĉ(s) and equation (6.78) leads to

TGL(z, s) (6.89)

=
4

π

∞∑︂
n=0

sin (nu,Lz)
1

nu

X1(s, nu,T0,C)⏞ ⏟⏟ ⏞
Thom(z, s) = TT̃ 0

(z, s,T0) + TC̃(z, s,C)

+
∞∑︂
n=1

2nL

L
sin (nLz)X2(s, n,T1 − (−1)nT2)⏞ ⏟⏟ ⏞

Tinh(z, s) = TT̃ 1
(z, s,T1) + TT̃ 2

(z, s,T2)

,

X1(s, nu,T0,C) = −
[︁
B+ sA+ n2

u,LUN

]︁−1
Ĉ, (6.90)

X2(s, n,Tbc) =
1

s

[︁
B+ sA+ n2

LUN

]︁−1
Tbc. (6.91)

The solution part Thom(z, s) describes the solution for homogeneous boundary conditions.
Via Tinh(z, s), inhomogeneous boundary conditions are taken into account. The general so-
lution in the time domain then becomes

TGL(z, t) =
4

π

∞∑︂
n=0

sin (nu,Lz)
1

nu

x1(t, n,T0,C)

+
∞∑︂
n=1

2nL

L
sin (nLz)x2(t, n,T1 − (−1)nT2).

(6.92)

So, for a specific solution, only x1(t, nu,T0,C) and x2(t, n,T1−(−1)nT2) have to be calcu-
lated. In the case of an arrangement of two single wire cables, the following matrix inversion
can be calculated explicitly:

Â =
[︁
Btsw + sAtsw + n2

LU2

]︁−1
=

(︄
Â11(s, n) Â12

Â21 Â22(s, n)

)︄−1

(6.93)

=
1

Â11(s, n)Â22(s, n)− Â12Â21

(︄
Â22(s, n) −Â12

−Â21 Â11(s, n)

)︄
.

Then, equation (6.89) is reformulated:

X1(s, nu,T0,C) =
1

det(Atsw)

b1s
2 + b2s+ b3

s(s− atsw,1)(s− atsw,2)
, (6.94)

b1 = det(Atsw)T0,tsw,

b2 =
(︁
det(Btsw)B

−1
tsw + n2

u,LU2

)︁
AtswT0,tsw − det(Atsw)A

−1
tswCtsw,

b3 =
(︁
det(Btsw)B

−1
tsw + n2

u,LU2

)︁
Ctsw,

atsw,i = −1

2

(︃
B11 + n2

u,L

A11

+
B22 + n2

u,L

A22

)︃

− (−1)i

√︄
1

4

(︃
B11 + n2

u,L

A11

−
B22 + n2

u,L

A22

)︃2

+
B12B21

det(Atsw)
, i = 1, 2.
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The transformation back into the time domain leads to

x1(t, nu,T0,C) =
1

det(Atsw)atsw,1atsw,2(atsw,2 − atsw,1)
{b3(atsw,2 − atsw,1) (6.95)

−atsw,2 [atsw,1 (b1atsw,1 + b2) + b3] e
atsw,1t + atsw,1 [atsw,2 (b1atsw,2 + b2) + b3] e

atsw,2t
}︁
.

The corresponding expression for X2(s, n,Tbc) is

X2(s, n,Tbc) = − b4s+ b5
det(Atsw)s(s− atsw,3)(s− atsw,4)

, (6.96)

b4 = − det(Atsw)A
−1
tsw (T1,tsw − (−1)nT2,tsw) ,

b5 = −
(︁
det(Btsw)B

−1
tsw + n2

LU2

)︁
(T1,tsw − (−1)nT2,tsw) ,

atsw,i = −1

2

(︃
B11 + n2

L
A11

+
B22 + n2

L
A22

)︃
− (−1)i

√︄
1

4

(︃
B11 + n2

L
A11

− B22 + n2
L

A22

)︃2

+
B12B21

det(Atsw)
, i = 3, 4.

In the time domain, this leads to

x2(t, n,Tbc) = − 1

det(Atsw)atsw,3atsw,4(atsw,4 − atsw,3)

{︁
−atsw,4 [b4atsw,3 + b5] e

atsw,3t

+atsw,3 [b4atsw,4 + b5] e
atsw,4t + b5(atsw,4 − atsw,3)

}︁
. (6.97)

e) Iterative Approach Based on the Solution for Single Wire Cable
The basic ECD in figure 6.5 can be rearranged to a new version as presented in figure 6.6.

Then, it becomes more obvious, that two single cables are coupled in the model only by a
single conductance. This shows in the coupled differential equations as well:

∂2

∂z2
Ttsw,it,1(z, t)−R′

1C ′
1

∂

∂t
Ttsw,it,1(z, t)−R′

1(G
′
1 +G′

12)Ttsw,it,1(z, t)

= −R′
1

(︁
P ′
el,1 +G′

1Te +G′
12Ttsw,it,2(z, t)

)︁
, (6.98)

∂2

∂z2
Ttsw,it,2(z, t)−R′

2C ′
2

∂

∂t
Ttsw,it,2(z, t)−R′

2(G
′
2 +G′

12)Ttsw,it,2(z, t)

= −R′
2

(︁
P ′
el,2 +G′

2Te +G′
12Ttsw,it,1(z, t)

)︁
. (6.99)

Comparing this formulation with the differential equation for a single cable known from
equation (5.51) shows the equivalence between them if for each cable the temperature of the
other cable is treated as a constant. Based on this, an iterative solution approach is proposed
as presented in figure 6.7: At first, the solution for a single wire cable is used to calculate the
temperature distribution along the first cable using the corresponding value for Ttsw,it,2(z, t)

at each position. This temperature development is used to calculate the temperature distribu-
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reference

P ′
el,1

C ′
1

G′
1

Te

cable 1
R′

1

P ′
el,2

C ′
2

G′
2

Te

cable 2
R′

2

G′
12

Figure 6.6: Rearranged equivalent circuit for an infinitesimally short segment of a cable ar-
rangement of two single wire cables.

initialization: constant temperature distribution
for Ttsw,it,2(z, t) (for example Te)

solve equation (6.98) using the last value for Ttsw,it,2(z, t)
individually for each position (z, t)

solve equation (6.99) using the last value for Ttsw,it,1(z, t)
individually for each position (z, t)

termination condition

end
true

false

Figure 6.7: Iterative solution scheme for a coupled system of PDEs.

tion along the second cable Ttsw,it,2(z, t). This result is again used to recalculate the first cable
temperature. The iteration is stopped when the deviation between two consecutive iterations
falls below a given threshold.

f) Simplification of the Equivalent Circuit
As the coupling in the differential equations complicates their solutions, in this section,

simplifications of the ECD and the differential equations are discussed. The first idea is to
consider the axial heat flow only along one of the two cables and combine both of the capac-
itances. Then, the solution for a single wire cable can be applied. For better modeling of the
transient behavior, a capacitance correction is added: By now, the sum of the capacitances
of both cables was used. For the first conductor, however, the capacitance of the second con-
ductor is connected with an additional conductance. To find a suitable estimation to consider
this, the radial ECD is first analyzed for the case without current in conductor two as shown
in figure 6.8.
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reference

P ′
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G′
2

Te
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1

conductor 1

Figure 6.8: ECD without current in conductor 2.

A constant current is impressed. First, the capacitance C ′
1 is charged because here no re-

sistance appears. This increases the voltage at the temperature node Ttsw,1. However, the
further charging of the capacitance is opposed by a certain resistance due to the already
existing charge with increasing voltage (temperature), so now also the other branches gain
importance. As a first approximation, only the resistances of the branches are considered.
If the first capacitance is already sufficiently charged, the current will be distributed to the
remaining three radial branches (each with only one resistance). The branch with the second
capacitance will have the following part:

G′
12

G′
12 +G′

1 +G′
12G

′
2/(G

′
12 +G′

2)
= ptsw,simp. (6.100)

As the first approach, it is assumed that only this part of the capacitance C ′
2 is effective:

C ′ = C ′
1 + ptsw,simpC ′

2. (6.101)

The first cable temperature is calculated with the single wire approximation from section
6.1.2.a) using

Asw = R′
1C ′, Bsw = R′

1

(︃
G′

12G
′
2

G′
12 +G′

2

+G′
1

)︃
, (6.102)

Csw = −R′
1

(︄
P ′
el,1 +

G′
12

(︁
P ′
el,2 + TeG

′
2

)︁
G′

12 +G′
2

+G′
1Te

)︄
. (6.103)

For a better consideration of the transient behavior of the second conductor, the remain-
ing part of C ′

2 has to be charged as well. Therefore, the following calculation rule for
Ttsw,simp,2(z, t) is proposed:

Ttsw,simp,2(z, t) = T0,tsw,2 +

(︃
1− exp

(︃
− tG′

12

C ′
2,rem

)︃)︃
(6.104)

·
(︃

G′
12

G′
12 +G′

2

Ttsw,simp,1(z, t) +
TeG

′
2 + P ′

el,2

G′
12 +G′

2

− T0,tsw,2

)︃
,

C ′
2,rem = (1− ptsw,simp)C ′

2. (6.105)
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6.1.5 Coaxial Cable
a) Partial Differential Equations and Equivalent Circuit Diagram

For a coaxial cable with the cross-section shown in figure 6.9, the ECD is given in figure
6.10. The corresponding PDE system follows the same structure as the PDE system for the
arrangement of two single wire cables (see equation (6.66)):

Cco =
∂2

∂z2
Tco(z, t)−Aco

∂

∂t
Tco(z, t)−BcoTco(z, t), (6.106)

Aco =

(︄
A11 0

0 A22

)︄
=

(︄
R′

c(C ′
c + C ′

ii) 0

0 R′
sh(C ′

sh + C ′
oi)

)︄
,

Bco =

(︄
B11 B12

B21 B22

)︄
=

(︄
R′

cG
′
ii −R′

cG
′
ii

−R′
shG

′
ii R

′
sh(G

′
ii +G′)

)︄
,

Cco =

(︄
Cco,c

Cco,sh

)︄
=

(︄
−R′

cP
′
el,c

−R′
sh(P

′
el,sh +G′Te)

)︄
, Tco(z, t) =

(︄
Tco,c(z, t)

Tco,sh(z, t)

)︄
.

Te

rc

rii

rsh

roi

Tco,c

Tco,sh

Tco,s

cc, λc

cii, λii

csh, λsh

coi, λoi

Figure 6.9: Cross-section of the analyzed coaxial cable.
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Figure 6.10: ECD for an infinitesimally short segment of a coaxial cable.
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That is why most of the solutions presented in section 6.1.4 can also be applied to this
problem. The surface temperature is calculated from the shield temperature via

Tco,s(z, t) = Tco,sh(z, t)−R′
oiG

′(Tco,sh(z, t)− Te), (6.107)

where R′
oi describes the radial thermal resistance of the outer insulation.

b) Direct Solution in the Laplace Domain and Approximation
As the system of PDEs has the same appearance as for the arrangement of two single wire

cables, the solution that was presented in section 6.1.4.c) can also be applied here. Also, the
same numerical stability problems appear due to the complicated formulation of the solution.

c) Solution via Green’s Functions in the Laplace Domain
Again, the solution from section 6.1.4.c) for the arrangement of two single wires can di-

rectly be used for the temperature calculation of a coaxial cable. Using this, a series formu-
lation of the complete solution without any approximation is given.

d) Iterative Approach Based on the Solution for Single Wire Cable
The solution from section 6.1.4.e) for the arrangement of two single wires can also be

applied for the temperature calculation of a coaxial cable: The solution for a single wire cable
is used for the temperature calculation of the inner conductor and shield, assuming the other
temperature to be constant. An iteration is used to recalculate the conductor temperature
based on the known shield temperature, then the shield temperature based on the known
conductor temperature, and so on.

e) Simplification of the Equivalent Circuit
In this section, a simplification of the ECD is presented, that allows the calculation of

the cable temperature based on the solution for a single wire cable. The axial heat flow
along the shield is neglected. In addition, the capacitances for shield and outer insulation are
combined with the capacitances for the inner conductor and the inner insulation. This equals

ref.

P ′
el,c

C′ c
+
C′ ii

Tc Tsh

P ′
el,sh

C′ sh
+
C′ oi

Te

G′
ii G′

(a)

ref.

P ′
el,c

C ′

Tc

G′
12

P ′
el,sh

Tsh

G′

Te

cond.
R′

c

(b)

Figure 6.11: (a) Relocation of capacitances for the radial model for a coaxial cable. (b) Sim-
plified axial model for a coaxial cable.
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the relocation of the outer capacitances in the circuit, which is presented in figure 6.11(a)
for the radial model. As a result, a simplified radial ECD is found. The corresponding axial
model (with neglection of the axial heat flow along the shield) is presented in figure 6.11(b)
with

C ′ = C ′
c + C ′

ii + C ′
sh + C ′

oi, G′ =
1

R′
oi +R′

α

. (6.108)

The corresponding PDE equals the PDE for the single wire cable (see equation (5.51)) with

A = R′
cC ′, B = R′

c

G′G′
ii

G′ +G′
ii

, C = −R′
c

(︃
P ′
el,c +G′

ii

P ′
el,sh + TeG

′

G′ +G′
ii

)︃
. (6.109)

So the solutions for the single wire cable can be applied. The shield temperature is

Tco,simp,sh(z, t) =
G′

ii

G′ +G′
ii

Tco,simp(z, t) +
TeG

′ + P ′
el,sh

G′ +G′
ii

. (6.110)

6.1.6 Identical Single Wire Cables
a) Partial Differential Equations and Equivalent Circuit Diagram

The ECD for a cable arrangement consisting of N identical single wire cables (cross-
section see figure 6.12) is given in figure 6.13. The corresponding PDE system is as follows:

Cid =
∂2

∂z2
Tid(z, t)−Aid

∂

∂t
Tid(z, t)−BidTid(z, t), (6.111)

Aid = AidUN = R′C ′UN , Bid = R′G′, Cid = −R′(P ′
el + TeG

′
e),

G′ =

⎛⎜⎜⎜⎜⎝
G̃

′
11 −G′

12 . . . −G′
1N

−G′
12

. . . . . . ...
... . . . . . . −G′

N−1,N

−G′
1N . . . −G′

N−1,N G̃
′
NN

⎞⎟⎟⎟⎟⎠ , Tid =

⎛⎜⎜⎜⎜⎝
Tid,1

Tid,2

...
Tid,N

⎞⎟⎟⎟⎟⎠ ,

G′
e =

⎛⎜⎜⎜⎜⎝
G′

11

G′
22
...

G′
NN

⎞⎟⎟⎟⎟⎠ , P ′
el =

⎛⎜⎜⎜⎜⎝
P ′
el,1

P ′
el,2
...

P ′
el,N

⎞⎟⎟⎟⎟⎠ , G̃
′
ii =

N∑︂
j=1

G′
ij, i = 1, . . . , N.

The surface temperatures are calculated from the cable temperatures via

Tid,s(z, t) = Tid(z, t)−R′
iG

′
ii

⎛⎜⎜⎝Tid(z, t)− Te ·

⎛⎜⎜⎝
1
...
1

⎞⎟⎟⎠
⎞⎟⎟⎠, G′

ii =

⎛⎜⎜⎝
G′

11 0 0

0
. . . 0

0 0 G′
NN

⎞⎟⎟⎠,
(6.112)

where R′
i describes the resistance against the radial heat flow through the insulation.
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Te

rc

ri

Tid,1
Tid,s,1

ci, λi

cc, λc
rc

ri

Tid,2
Tid,s,2

ci, λi

cc, λc

rc

ri

Tid,i
Tid,s,i

ci, λi

cc, λc
rc

ri

Tid,N
Tid,s,N

ci, λi

cc, λc

. . . . . .

. . . . . .

Figure 6.12: Cross-section of the analyzed arrangement of N identical single wire cables.
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Figure 6.13: ECD for an infinitesimally short segment of an arrangement of N identical sin-
gle wire cables.

b) Direct Solution in the Laplace Domain and Approximation
This section is based on [A.8]. Transforming the general PDE analog to the electrical

domain into the Laplace domain leads to the formulation known from equations (6.77) and
(6.78). For the solution, those coupled differential equations have to be decoupled. In the gen-
eral case, this leads to very complex formulations as exemplarily shown in the comparatively
simple case of two conductors in section 6.1.4.c). This is because the matrix sA+B, which
has to be diagonalized, includes the Laplace variable s, which then also appears in the nec-
essary transformation matrices. To find a transformation that is independent of the Laplace
variable s, equivalently to the approaches known from the electrical domain (see chapter
9.2.4 in [110]), a special case is investigated: For identical conductors, it is Aid = AidUN as
already mentioned before. Then, only the matrix Bid, which is independent of s, has to be
diagonalized:
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Bid = EB,idDB,idE
−1
B,id, DB,id =

⎛⎜⎜⎜⎜⎝
DB,id,1 0 . . . 0

0 DB,id,2
. . . ...

... . . . . . . 0

0 . . . 0 DB,id,N

⎞⎟⎟⎟⎟⎠ . (6.113)

This leads to a decoupled system of PDEs in the Laplace domain for the modal temperatures
Tid,m = E−1

B,idTid:

∂2

∂z2
Tid,m − (sAidUN +DB,id)⏞ ⏟⏟ ⏞

ã2
id ⇒ diagonal matrix

Tid,m = E−1
B,id

(︃
Cid

s
− AidT0,id

)︃
⏞ ⏟⏟ ⏞

Ĉ id

. (6.114)

The solution is the superposition of a homogeneous and a particulate part:

Tid,m(z, s) = e−ãidzTid,1(s) + eãidzTid,2(s)− Tpart,id(s), (6.115)

Tpart,id(s) = ã−2
id E−1

B,idĈ id. (6.116)

As the matrix ã2
id is diagonal, its square root and inverse matrix can easily be calculated.

Using the boundary conditions, the remaining factors are calculated:

Tid,i(s) = (−1)i
(︁
eãidL − e−ãidL

)︁−1
[︂
−Tid,h,2 − e(−1)i+1ãidLTid,h,1

]︂
, i = 1, 2, (6.117)

Tid,h,j =
1

s
E−1

B,idTj,id + Tpart,id(s), j = 1, 2.

Now, the complete solution for the modal temperatures is known in the Laplace domain.
Based on this, the real temperatures in the Laplace domain are calculated. The result needs
to be transformed back into the time domain. Similar to section 6.1.2.a), some expressions
cannot be directly transformed. So, the approximation from section 6.1.2.a) is extended for
use here:

e−ãidL ±UN ≈ ±UN . (6.118)

Then, the transformation back into the time domain is possible. The result is reshaped using
that the matrix DB,id and functions of this matrix are diagonal and for two diagonal matrices,
the product commutates. For a function f(Bid), which can be expressed as a series, it is

EB,idf(DB,id)E
−1
B,id = f(Bid). (6.119)

This formulation applies to the complementary error function of a matrix [147] and the ma-
trix exponential function. It can be used to simplify the function evaluations for the imple-
mentation as those are easier to implement for diagonal matrices. All in all, the complete
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temperature distribution in the time domain is equivalent to the solution for the single wire
cable known from section 6.1.2.a):

Tid,La(z, t) = Tic,id,La(z, t,T0,id) + Tbc,id,La(z, t,T1,id)

+ Tbc,id,La(zL, t,T2,id) + Tinh,id,La(z, t,Cid)
(6.120)

with

Tic,id,La(z, t,T0,id) = −Γ(t)T0,idΛ3(t)[1− Λ1(z, t)− Λ1(zL, t)], (6.121)

Tbc,id,La(z, t, Tbc) = −Γ(t)
Tbc

2
Λ2(z, t), (6.122)

Tinh,id,La(z, t, Cid) = −B−1
id CidΓ(t) + TT̃ 0,su,La

(︁
z, t,B−1

id Cid

)︁
(6.123)

+ Tbc,id,La

(︁
z, t,B−1

id Cid

)︁
+ Tbc,id,La

(︁
zL, t,B

−1
id Cid

)︁
,

Λ1(z, t) = erf

(︄
z

2

√︃
Aid

t

)︄
,Λ2(z, t) = θ1(z, t) + θ2(z, t),Λ3(t) = exp

(︃
−Bid

Aid

t

)︃
,

θi(z, t) = e(−1)iz
√
Bid erfc

(︃
zAidUN + (−1)i2t

√
Bid

2
√
Aidt

)︃
, i = 1, 2.

For the implementation, however, the functions of the non-diagonal matrices are hard to
calculate, e.g., for the error function, the series formulation has to be used. The convergence
behavior is partly poor, so no sufficiently accurate values can be determined. Therefore, it is
easier to apply the already known transformation matrices again to use the diagonal matrices
as input for the functions. For the exponential function, a corresponding function is already
provided by MATLAB.

c) Solution via Green’s Functions in the Time Domain
Similar to Green’s function for a single wire cable, an equivalent formulation for the ar-

rangement of N identical cables is

Gid(z, t|z̃, t̃) = Γ(t− t̃)

√︄
Aid

4π(t− t̃)
exp

(︃
−Bid

t− t̃

Aid

)︃
(6.124)

·
∞∑︂

n=−∞

{︃
exp

(︃
−Aid

(ñ+ z − z̃)2

4(t− t̃)

)︃
− exp

(︃
−Aid

(ñ+ z + z̃)2

4(t− t̃)

)︃}︃
.

This approach works because Aid = AidUN allows Aid to commutate with each other ma-
trix. Identically to the precede presented in section 6.1.2.b), the complete solution is a super-
position of the solution parts that are caused by the different inhomogeneities:
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Tic,id,G(z, t,T0,id) =

∫︂ L

0

Gid(z, t|z̃, 0)T0,id dz̃,

= −Γ(t)T0,idΛ3(t)

{︄
1− Λ1(z, t)− Λ1(zL, t) +

∞∑︂
n=1

[Λ1(−zL + ñ, t)

− Λ1(z + ñ, t) + Λ1(−zL − ñ, t)− Λ1(z − ñ, t)

]︄}︄
, (6.125)

Tbc,id,G(z, t,Tbc) =

∫︂ t

0

√︃
1

Aidπt̃

∂

∂z

∞∑︂
n=−∞

exp

(︃
−Aid(ñ− z)2

4t̃
− Bid

Aid

t̃

)︃
Tbc dt̃

= −Γ(t)
Tbc

2

{︄
Λ2(z, t) +

∞∑︂
n=1

[Λ2(z + ñ, t)−Λ2(−z + ñ, t)]

}︄
, (6.126)

Tinh,id,G(z, t,Cid) =

∫︂ t

0

∫︂ L

0

Gid(z, t̂|z̃, 0)Cid dz̃ dt̂

= −B−1
id CidΓ(t) + TT̃ 0,id,G

(︁
z, t,B−1

id Cid

)︁
+ Tbc,id,G

(︁
z, t,B−1

id Cid

)︁
+ Tbc,id,G

(︁
zL, t,B

−1
id Cid

)︁
. (6.127)

The result is then, analog to the single wire cable:

Tid,G(z, t) = Tic,id,G(z, t,T0,id) + Tinh,id,G(z, t,Cid) + Tbc,id,G(z, t,T1,id)

+ Tbc,id,G(zL, t,T2,id). (6.128)

Again, for the implementation, the diagonalization of the matrix Bid can be used for the
matrix function evaluation. This way, series evaluations are avoided.

6.1.7 General Cable Arrangement Analog to the Electrical Problem
In this section, a thermal cable arrangement that can be regarded equivalently to the elec-

trical domain as known from section 5.3.1 is analyzed for constant excitations neglecting the
implicit parameter dependence. Via Green’s functions in the Laplace domain, a solution for
this rather general arrangement is derived.

In section 6.1.4.d), the general approach for the solution using Green’s functions in the
Laplace domain was presented. Based on these considerations, the functions x1(t, nu,T0,C)

and x2(t, n,T1 − (−1)nT2) have to be calculated. In the first step, only the homogeneous
solution is analyzed. This has to be transformed back into the time domain. As only the
part X1(s, nu,T0,C) depends on the Laplace variable s, only this expression needs to be
transformed back into the time domain. Typically, a partial fraction decomposition is used
for the transformation. In this case, the explicit formulation of the inverse matrix is necessary
due to the dependence on the Laplace variable s but cannot directly be specified in the general
case. That is why a different formulation is searched, which allows the transformation back
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into the time domain. Equation (6.89) is rearranged to

[︁
B+ n2

u,LUN

]︁
X1(s, nu,T0,C) + sAX1(s, nu,T0,C) = −Ĉ. (6.129)

Using the initial value of x1(t, nu,T0,C),

x1(0, nu,T0,C) = lim
s→∞

s ·X1(s, nu,T0,C) = T0, (6.130)

and the correspondence
f ′(t)� sf(s)− f(0+), (6.131)

equation (6.129) is transformed back into the time domain:

[︁
B+ n2

u,LUN

]︁
x1(t, nu,T0,C) +A

∂

∂t
x1(t, nu,T0,C) = −C, (6.132)

which is a differential equation for the prefactors x1(t, nu,T0,C). Rearranging leads to

∂

∂t
x1(t, nu,T0,C) = Λ(nu)x1(t, nu,T0,C)−A−1C, (6.133)

Λ(n) = −A−1
[︁
B+ n2

LUN

]︁
. (6.134)

Using the eigenvectors vi(n) and eigenvalues Di(n) of the matrix Λ(n), which means

Λ(n)vi(n) = Di(n)vi(n), (6.135)

gives the general homogeneous solution of the PDE (6.133) as a linear combination of the
corresponding fundamental solutions:

x1,hom(t, nu,T0,C) =
N∑︂
i=1

b1,ivi(nu)e
Di(nu)t. (6.136)

A constant particulate solution can be directly found via rearranging:

∂

∂t
x1,part(t, nu,T0,C) = 0 ⇒ x1,part(t, nu,T0,C) = −

[︁
B+ n2

u,LUN

]︁−1
C. (6.137)

The complete solution for x1(t, nu,T0,C) then is

x1(t, nu,T0,C) = x1,part(t, nu,T0,C) + x1,hom(t, nu,T0,C). (6.138)

The prefactors b1,i of the linear combination are undetermined by now and have to be calcu-
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lated via the evaluation of the initial condition

x1(0, nu,T0,C) = T0. (6.139)

This leads to

T0 +
[︁
B+ n2

u,LUN

]︁−1
C =

N∑︂
i=1

b1,ivi(nu), (6.140)

where N is the number of conductors in the system. This system of linear equations has to
be solved to find b1,i, i = 1, . . . , N . Then, the complete expression for x1(t, nu,T0,C) is
known. With nu = 2n+1 and nu,L = (2n+1)π/L, the resulting solution parts for the initial
condition and the inhomogeneity are then (by setting the other one to zero):

TT̃ 0
(z, t,T0) = Tic,GL(z, t,T0) =

4

π

∞∑︂
n=0

sin (nu,Lz)
1

nu

x1(t, nu,T0,0), (6.141)

TC̃(z, t,C) = Tinh,GL(z, t,C) =
4

π

∞∑︂
n=0

sin (nu,Lz)
1

nu

x1(t, nu,0,C). (6.142)

Analogously, the second solution part, which is used to consider inhomogeneous boundary
conditions, is transformed back into the time domain. With the initial condition

x2(0, n,Tbc) = 0, (6.143)

the solution in the time domain is

TT̃ 1
(z, t,T1) = Tbc,GL(z, t,T1), TT̃ 2

(z, t,T2) = Tbc,GL(zL, t,T2), (6.144)

Tbc,GL(z, t,Tbc) =
∞∑︂
n=1

2nL

L
sin (nLz)x2(t, n,Tbc) (6.145)

with

x2(t, n,Tbc) =
[︁
B+ n2

LUN

]︁−1
Tbc +

N∑︂
i=1

b2,ivi(n)e
Di(n)t, (6.146)

N∑︂
i=1

b2,ivi(n) = −
[︁
B+ n2

LUN

]︁−1
Tbc. (6.147)

Again, equation (6.147) represents a system of linear equations that has to be solved to find
b2,i, i = 1, . . . , N . The complete solution in the time domain then is

TGL(z, t) = Tic,GL(z, t,T0)+Tinh,GL(z, t,C)+Tbc,GL(z, t,T1)+Tbc,GL(zL, t,T2). (6.148)
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For each n, that should be considered, this calculation has to be repeated. Because of the
iteration, for different times and positions, the matrices B and C are not constant, which
means, that for each combination (z, t), the calculation has to be reperformed. All in all, this
means a huge numerical effort. Nevertheless, via this approach, a general formulation for N
arbitrary conductors (for formulations analog to the electrical domain) is found.

6.2 Consideration of Varying Initial and Boundary
Conditions and Inhomogeneity

In this section, solution methods for spatial varying initial conditions, time varying bound-
ary conditions, and for time and spatial varying inhomogeneities are discussed. The explicit
time and spatial dependencies for the initial temperature T̃ 0(z), the cable termination temper-
atures T̃ 1(t) and T̃ 2(t), and the excitation C̃(z, t) are considered. It is assumed that explicit
functional relations describing these dependencies are known. The overall problem that has
to be solved has the following form:

C̃(z, t) =
∂2T (z, t)

∂z2
−A

∂T (z, t)

∂t
−BT (z, t), (6.149)

T (z, 0) = T̃ 0(z), T (0, t) = T̃ 1(t), T (L, t) = T̃ 2(t). (6.150)

This is a parabolic initial boundary value problem. The surface temperature can be calculated
based on the known cable temperature in a second step:

Ts(z, t) = f(T (z, t),Ts(z, t)). (6.151)

In principle, the procedures from the previous chapter can also be applied to this more general
problem, but in most cases, the analytical solution can no longer be calculated. For the solu-
tion in the Laplace domain with approximation, the cable termination temperatures and the
excitation must be transformed accordingly. The course T̃ 0(z) is used instead of the constant
T0. This makes the solution of the ODEs in the Laplace domain and the transformation back
to the time domain complicated or impossible depending on the exact functional relation.
When solving using Green’s functions in the time domain, the corresponding dependencies
in the integrals (see for example equations (6.48) to (6.50) for the single wire cable) are
taken into account, so the integration becomes much more complicated and requires numeri-
cal methods. When using the solution via Green’s functions in the Laplace domain, the these
two difficulties occur in combination: On the one hand, (more challenging) transformations
are necessary again, on the other hand, again integrals (see for example equations (6.53) to
(6.55) for the single wire cable) appear. All in all, the direct mathematical consideration of
varying initial and boundary conditions as well as excitations is therefore only possible in
very rare special cases. Numerical approaches are often required.
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The numerical method of lines (MOL) [148] summarizes numerical solution techniques
for parabolic PDEs and is divided into a vertical MOL and a horizontal MOL (Rothe method
[149]). In the vertical MOL, the spatial discretization is performed in the first step and the
direct solution or time discretization is performed in the second step. The reverse approach
is used by the Rothe method, where the time discretization is done first.

For individual spatial and time discretizations, different methods can be used and com-
bined in various ways. Altogether, the result is a large number of possible numerical ap-
proaches. The goal of this thesis is not to provide a complete essay on numerical meth-
ods. Rather, only the basics are outlined to indicate the diversity of the corresponding
approaches. Therefore, using examples, the basic ideas of widely used methods are pre-
sented and discussed below. Specifically, the finite difference method (FDM), finite element
method (FEM), boundary element method (BEM), and finite volume method (FVM) are
briefly introduced.

6.2.1 Finite Difference Method (FDM)
The basic idea of this approach is to approximate derivatives by difference quotients di-

rectly in the differential equations. For the first partial derivative of the function f with regard
to the variable u, for example, the following approximations can be used:

forward difference:
∂f(u)

∂u
≈ f(u+∆u)− f(u)

∆u
, (6.152)

backward difference:
∂f(u)

∂u
≈ f(u)− f(u−∆u)

∆u
, (6.153)

central difference:
∂f(u)

∂u
≈ f(u+∆u)− f(u−∆u)

2∆u
. (6.154)

With central differences, the result for the second derivative is

∂2f(u)

∂u2
≈ f(u−∆u)− 2f(u) + f(u+∆u)

(∆u)2
. (6.155)

This allows the formulation of the derivatives directly as a function of temperature values at
discrete points. Thus, a system of equations is set up. This is used for the solution. To clarify
this procedure, possible procedures for the solution of the PDE system (6.149) are exemplar-
ily presented in the following. For illustration purposes, an equidistant grid in space and time
(see figure 6.14) is used here. In addition, the following abbreviations are introduced:

T (z −∆z, t) = Ti−1,j, T (z, t) = Ti,j, (6.156)

T (z +∆z, t) = Ti+1,j, T (z, t+∆t) = Ti,j+1, ... . (6.157)

i is the spatial index and j is the temporal index. A similar notation is also used for C.
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i− 1 i i+ 1

j − 1

j

j + 1

Ti,j,Ci,j

z

t

∆z

∆t

Figure 6.14: Grid in time and space for the numerical calculations.

a) Explicit Euler Method
Starting from PDE system (6.149), a vertical MOL is used in the explicit Euler method

[150, pp. 80-85]. First, the spatial derivative is discretized via central differences:

A
∂T (z, t)

∂t
=

T (z −∆z, t)− 2T (z, t) + T (z +∆z, t)

(∆z)2
−BT (z, t)−C(z, t). (6.158)

In the next step, the time derivative is approximated by the forward difference:

A
Ti,j+1 − Ti,j

∆t
=

Ti−1,j − 2Ti,j + Ti+1,j

(∆z)2
−BTi,j −Ci,j (6.159)

⇔ Ti,j+1 = ∆tA−1

(︃
Ti−1,j − 2Ti,j + Ti+1,j

(∆z)2
−BTi,j −Ci,j

)︃
+ Ti,j. (6.160)

Thus, an explicit calculation rule results for each time step. This method is easy to implement
[150, p. 82] and quite fast since no matrix inversions are necessary (except for the inversion
of A, which needs to be computed only once). However, it can also diverge easily and is not
always stable [150, p. 82].

b) Crank-Nicholson Method
As in the explicit Euler method, in the Crank-Nicholson method [150, pp. 87-88], the

second spatial derivative is first discretized via central differences, see equation (6.158):

A
∂T (z, t)

∂t
= f(z, t), (6.161)

f(z, t) =
T (z −∆z, t)− 2T (z, t) + T (z +∆z, t)

(∆z)2
−BT (z, t)−C(z, t). (6.162)

For time discretization,

A
∂T (z, t)

∂t
≈ A

Ti,j+1 − Ti,j

∆t
≈ 1

2
(fi,j+1 + fi,j) (6.163)

=
1

2

[︃
Ti−1,j+1 − 2Ti,j+1 + Ti+1,j+1 + Ti−1,j − 2Ti,j + Ti+1,j

(∆z)2

−B (Ti,j+1 + Ti,j)− (Ci,j+1 +Ci,j)

]︃
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is used. Evaluating this equation for all spatial points i and rewriting yields the following
system of linear equations, which has to be solved at each time step:⎛⎜⎜⎜⎜⎜⎜⎜⎝

b a 0 . . . 0

a b a
. . . ...

0
. . . . . . . . . 0

... . . . a b a

0 . . . 0 a b

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎝
T2,j+1

...
Timax−1,j+1

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
a2 − aT1,j+1

a3

...
aimax−2

aimax−1 − aTimax,j+1

⎞⎟⎟⎟⎟⎟⎟⎠ , (6.164)

a =
−1

2(∆z)2
UN , b =

1

(∆z)2
UN +

A

∆t
+

B

2
, i = 1, . . . , N,

ai = −1

2
(Ci,j +Ci,j+1) +

(︃
A

∆t
− 1

(∆z)2
UN − B

2

)︃
Ti,j − a (Ti−1,j + Ti+1,j) .

In contrast to the Euler method, the Crank-Nicholson method is implicit [151, pp. 182-183].
For each time step, a system of linear equations has to be solved. One advantage of this more
laborious procedure is its stability [150, p. 88].

c) Spatial Discretization and Solution via Integration
In this approach, the first step is again the spatial discretization from above (see equation

(6.158)). However, this equation is now evaluated directly at the different locations along the
cable and the results are reformulated as a matrix-vector problem, where i again represents
the spatial index:

A−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b a 0 . . . 0

a b a
. . . ...

0
. . . . . . . . . 0

... . . . a b a

0 . . . 0 a b

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎝
T2

...
Timax−1

⎞⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝
−C2(t)− a(t)T1

−C3(t)
...

−Cimax−2(t)

−Cimax−1(t)− aTimax

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
Ṫ 2

...
Ṫ imax−1

⎞⎟⎟⎠

⇔ Â · T̂ (t) + b̂(t) =
∂T̂ (t)

∂t
,

(6.165)

a =
1

(∆z)2
UN , b =

−2

(∆z)2
UN −B.

The solution for this system of ODEs can be described analytically. For this purpose, the
state-transition matrix or fundamental matrix [152, p. 9] is used, which is determined via
diagonalization:

Φ(t) = exp
(︂
Ât
)︂
. (6.166)
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Then, it follows [153]:

T̂ (t) = Φ(t) · T̂ (0) +

∫︂ t

0

Φ(t− t̂)b̂(t̂) dt̂. (6.167)

Depending on the exact form of the excitations Ci(t), sometimes this integral cannot be
solved analytically. Then, numerical methods for integral determination are necessary. The
basic idea of those methods is to divide the integration interval into shorter subintervals and
then express the value for each subintegral by a finite sum of weighted function values. More
information and concrete procedures can be found for example in [154, pp. 163-207] or [155,
pp. 475-533].

6.2.2 Finite Element Method (FEM)
To apply the finite element method (FEM), a so-called weak formulation of the PDE is

solved instead of the actual PDE. Using approach functions, the behavior in comparatively
small elements is locally approximated, and those approximations are combined into a global
solution. Based on the simplified scalar version of equation (6.158), the basic approach is
presented. More detailed presentations of this widespread method can be found for example
in [150, 156]. The beginning is a problem formulation in which the right side vanishes:

∂2T (z, t)

∂z2
− A

∂T (z, t)

∂t
−B T (z, t) − C(z, t) = 0. (6.168)

If now instead of the exact solution T (z, t) an approximate solution

Tapp(z, t) =
N+1∑︂
i=0

Ti(t)ui(z) (6.169)

built up from basic functions ui(z) and the searched temperature values Ti(t) at discrete
(spatial) locations i is used, the partial differential equation is no longer exactly satisfied and
a residual res is obtained:

∂2Tapp(z, t)

∂z2
− A

∂Tapp(z, t)

∂t
− BTapp(z, t) − C(z, t) = res(z, t). (6.170)

In the so-called method of weighted residuals, this residual is now multiplied individually
with N weight or test functions wi(z), i = 1, ..., N , and integrated over the entire space
under consideration [157, pp. 57-60]. These integrals should vanish:∫︂ L

0

res(z, t)wi(z) dz = 0. (6.171)
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For the example, this gives the following integral, where (·)′ abbreviates the spatial derivative
and (·)̇ the temporal derivative:∫︂ L

0

[︂
T ′′(z, t)wi(z) − AṪ (z, t)wi(z) − BT (z, t)wi(z) − C(z, t)wi(z)

]︂
dz = 0.

(6.172)
This is a weak formulation of the problem. Depending on the choice of weight functions,
different concrete methods can be derived from this rather general approach. In the Galerkin
method, the basis functions of the (sought) approximate solution are also used as test func-
tions: wi(z) = ui(z). This approach is applied in the following. With partial integration as
well as wi(z = 0) = 0 and wi(z = L) = 0, the following relation is derived:∫︂ L

0

T ′′(z, t)wi(z) dz = [T ′(z)wi(z)]
L
0 −

∫︂ L

0

T ′(z, t)w′
i(z) dz = −

∫︂ L

0

T ′(z, t)w′
i(z) dz.

(6.173)
This leads to∫︂ L

0

[︂
−T ′(z, t)w′

i(z) − AṪ (z, t)wi(z) − BT (z, t)wi(z) − C(z, t)wi(z)
]︂
dz = 0.

(6.174)
In the next step, the test functions wi(z), which are identical to the basis functions ui(z), are
defined. Widely used choices are the so-called hat functions [156, p. 154], which are shown
in figure 6.15. Effectively, a linear interpolation of the temperature development between the
selected interpolation points is used here.

For the i-th test function, substituting the test functions and the approximate solution (see
equation (6.169)) yields the following formulation:

0 =
N+1∑︂
j=0

Tj(t)

∫︂ L

0

[︁
−w′

j(z)w
′
i(z) − Bwj(z)wi(z) − C(z, t)wi(z)

]︁
dz

+
N+1∑︂
j=0

Ṫ j(t)

∫︂ L

0

[−Awj(z)wi(z)] dz. (6.175)

0.5

1

z1 z2 · · ·
z

zi · · · L0m

w
i

w0(z)

wN+1(z)w1(z)w2(z) wi(z)

Figure 6.15: Spatial hat functions.
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If this formulation is set up for all test functions wi(z), i = 1, ..., N , and those equations are
suitably rearranged, a matrix-vector problem of the following form is the result:

Â1T + Â2Ṫ = b̂ (6.176)

with matrices Â1 and Â2. In the vector T , the temperatures at the discrete evaluation points
are summed up and the vector b̂ describes the (known) excitation. Overall, then, this spatial
discretization provides a system of ODEs analog to section 6.2.1.c), which can be solved
using appropriate methods.

6.2.3 Boundary Element Method (BEM)
This section gives a short overview of the boundary element method (BEM). For a more

detailed discussion, see for example [158, 159].
The basis for the BEM is, as in the FEM, the weak formulation (6.172) of the problem

[159, p. 37]. The basic idea now is to reformulate this by applying appropriate integral cal-
culus rules to express the sought quantity depending only on the boundary elements [158,
p. 43]. For this purpose, in the first step, the weak formulation of the differential equation is
transformed in such a way that the use of Green’s function as the test function significantly
simplifies the expressions. An essential advantage of this method is that only the boundary of
the considered volume has to be discretized [158, pp. 8-9] instead of the total volume, which
is one dimension larger.

As for the FEM, the procedure is presented in simplified form using the already familiar
scalar version of the general equation. In this example, the product rule is applied first:∫︂ L

0

(T ′′(z, t)w(z) − T (z, t)w′′(z)) dz = [T ′(z, t)w(z) − T (z, t)w′(z)]
L
0 . (6.177)

Substituting together with w(z = 0) = 0 and w(z = L) = 0 then yields∫︂ L

0

[︂
T (z, t)w′′(z) −

(︂
AṪ (z, t) +BT (z, t)

)︂
w(z)

]︂
dz

=

∫︂ L

0

C(z, t)w(z) dz + [T (z, t)w′(z)]
L
0 . (6.178)

On the left side of this equation, in the integral, an expression of the form (DGL for w)·T (z)
is necessary. Then, the insertion of Green’s function as test function w only leaves T (z)

on the left side. Therefore, equation (6.178) is transformed into the Laplace domain. For
C(z, t) = C(z), the transformation leads to
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∫︂ L

0

[w′′(z̃, z, s)− (sA+B)w(z̃, z, s)]T (z̃) dz̃

=

∫︂ L

0

(︃
C(z̃)

s
− AT0(z̃)

)︃
w(z̃, z, s) dz̃ + [T (z̃)w′(z̃, z, t)]

L
z̃=0 . (6.179)

For time-varying C, the appropriate transformation must be used. If now for w(z̃, z, s) the
Green’s function for the differential equation

w′′(z̃, z, s)− (sA+B)w(z̃, z, s) = 0 (6.180)

(see also equation (6.52)) is inserted, the integral on the left side of the equation vanishes:

T (z) =

∫︂ L

0

(︃
C(z̃)

s
− AT0(z̃)

)︃
w(z̃, z, s) dz̃ + [T (z̃)w′(z̃, z, s)]

L
z̃=0 . (6.181)

Thus, on the left side, the desired term arises. Due to the initial and boundary conditions,
however, an integral over the entire volume still appears on the right side. Only for very
simple special cases, this integral can be calculated analytically. In many cases, however,
discretization is necessary again, so the main advantage of the BEM (no discretization in
the complete volume) [158, pp. 8-10] no longer exists. The result is finally available in the
Laplace domain and must still be transformed back into the time domain. This transformation
cannot always be performed analytically. Then, numerical transformations are necessary. In
principle, those can be traced back to the numerical approximation of the transformation
integral [160, p. 100]. However, this can be challenging, so specific methods have been de-
veloped for the numerical evaluation of these integrals, see e.g. [160, pp. 327-355].

Due to the necessary discretization of the complete volume to take into account initial
temperatures as well as excitations and due to the potential difficulties with the transforma-
tion back into the time domain, the use of BEM to solve the PDE causes considerable effort.
Other methods are therefore more appropriate.

6.2.4 Finite Volume Method (FVM)
The last method to be shortly presented here is the finite volume method (FVM). A more

detailed discussion can for example be found in [161] or [162, chapter 31]. Once again, the
basis is the weak formulation of the problem, see equation (6.172). As with the BEM, this
is rewritten so that a boundary integral occurs for the flow. In the one-dimensional case, this
boundary integral becomes an integral over a zero-dimensional (0 D) surface, i.e., the known
evaluation at the two terminations. Because of w(z) = 1 and w′(z) = 0, the result is∫︂ L

0

−
(︂
AṪ (z, t) +BT (z, t)

)︂
dz =

∫︂ L

0

C(z, t) dz + [T ′(z, t)]
L
0 . (6.182)
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In contrast to the FEM, where compliance with this equation was required for (several) spe-
cific test functions, the test function w(z) = 1 is chosen now. Instead, the considered volume
is discretized and it is required that the corresponding equation holds in each subvolume
[161, p. 9]. For the 1 D case, the considered distance along the cable is divided into subvol-
umes as shown in figure 6.16. The corresponding formulation for the subvolume i is then:∫︂ z

i+1
2

z
i− 1

2

−
(︂
AṪ (z, t) +BT (z, t)

)︂
dz =

∫︂ z
i+1

2

z
i− 1

2

C(z, t) dz + [T ′(z, t)]
z
i+1

2
z
i− 1

2
. (6.183)

For a subvolume i, the following reformulation allows the expression of the results in terms
of mean values:

−A

∫︂ z
i+1

2

z
i− 1

2

Ṫ (z, t) dz −B

∫︂ z
i+1

2

z
i− 1

2

T (z, t) dz = ∆zCi + [T ′(z, t)]
z
i+1

2
z
i− 1

2
(6.184)

⇔ −AṪ i − BT i = Ci +
1

∆z
[T ′(z, t)]

z
i+1

2
z
i− 1

2

. (6.185)

Here, T i represents the mean temperature in the considered subvolume. Because of the in-
terchangeability of the time derivative and averaging, Ṫ i is the associated mean of the time
derivative. Ci is the mean of C in this volume. The temperature mean values are assigned to
the position in the center of the cell:

T i = T (zi). (6.186)

Now, to find a representation for the temperature averages as new unknowns, the spatial
derivative at the cell boundaries has to be approximated as a function of the averages T i. For
this purpose, for example, an FDM approach can be used:

T ′(zi− 1
2
) ≈ T (zi)− T (zi−1)

∆z
=

T i − T i−1

∆z
. (6.187)

0 z 3
2

· · · zi− 1
2

zi+ 1
2

· · · L

z1

T (z1)

· · · zi−1

T (zi−1)

zi

T (zi)

zi+1

T (zi+1)

· · ·

T 1 T i−1 T i T i+1

∆z

Figure 6.16: Spatial discretization with cells and coordinate positions for FVM.
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For a single subvolume, this leads to a new ODE for the mean values of the temperatures in
the subvolume, which are assigned to the values at the central points:

− AṪ i −BT i = Ci +
T i − T i−1

(∆z)2
. (6.188)

If the corresponding equations are now set up for all considered subvolumes and suitably
transformed, a matrix-vector representation analog to equation (6.176) is again obtained,
where now the temperature averages over the cells are the unknowns. Overall, this approach
showed another possible spatial discretization. The time dependence has to be dealt with in
a second step.

6.2.5 Approximation Based on Linear Solutions for Constant
Excitations

In the previous sections, numerical solutions were presented, which in principle allow
the consideration of variable initial and boundary conditions as well as excitations. Alterna-
tively, a semi-analytical approximation based on the results of section 6.1 is presented here.
First, it is assumed that the initial and boundary conditions as well as the excitation can be
represented by a sequence of rectangular shapes depending on the time and the location, re-
spectively. Real occurring courses must therefore be approximated in the first step of such
a development. By superposition of the results from section 6.1 and by application of an
analog procedure, suitable analytical solutions for these variable excitations are found. This
procedure is an approximation, but compared to the consideration of only constant values, it
allows an adaptation to changing conditions: For example, variable currents can be taken into
account via a suitable worst case. Also, different ambient temperature ranges along the cable
(spatially variable ambient temperature) as well as the consideration of temporal changes in
the ambient temperatures (for example in form of an update after some time) can be con-
sidered. For the initial temperature distribution and the cable termination temperatures, the
consideration of worst-case developments is also enabled.

a) Reformulation of the Solution for a Single Wire Cable
In the earlier examinations, the PDE from equation (6.23) with the constant initial and

boundary conditions (see equations (6.24) and (6.25)) was solved. In this section, for the
initial and boundary conditions and the inhomogeneity, rectangular shapes are assumed in-
stead of the previously used constant values. To enable the isolated evaluation of the effects
resulting from the ambient temperature Te and the current I , the inhomogeneity C̃sw in the
PDE is split up into the two parts C̃1,sw (depending on the ambient temperature) and C̃2,sw

(depending on the current):

C̃sw(z, t) = C̃1,sw(z, t) + C̃2,sw(z, t), (6.189)
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C̃1,sw(z, t) = C1,swΓ(t) = −R′G′TeΓ(t), (6.190)

C̃2,sw(z, t) = C2,swΓ(t) = −R′P ′
elΓ(t). (6.191)

Then, also in the solution approach (see equation (6.26)), two parts for the inhomogeneity
appear,

TC̃,sw(z, t, Csw) = TC̃1,sw
(z, t, C1,sw) + TC̃2,sw

(z, t, C2,sw). (6.192)

In the earlier derived solutions for constant initial and boundary conditions as well as stimu-
lation, the different solution parts were presented for three different approaches: Usage of the
Laplace domain with approximation (see section 6.1.2.a)), usage of Green’s functions in the
time domain (see section 6.1.2.b)) and usage of Green’s functions in the Laplace domain (see
section 6.1.2.c)). In the following, for the individual contribution parts, approaches for the
consideration of rectangularly shaped excitations instead of constant values are presented.

b) Rectangular Current
For the current, a single rectangular pulse as shown in figure 6.17 is assumed:

Ĩ(t) = Ii (Γ(t− t1,i,I)− Γ(t− t2,i,I)) . (6.193)

Then, the corresponding heat flow is

P̃
′
el,i(z, t) = I2i R

′
ref (1 + ηT (Tsw(z, t)− Tref)) (Γ(t− t1,i,I)− Γ(t− t2,i,I)) . (6.194)

In the derivation of the earlier solutions, it was assumed that the heat flow is constant which
is equivalent to the assumption of a constant cable temperature in combination with the con-
stant current. Therefore, for each position (z, t), it is implicitly assumed that the used cable
temperature holds for all times and spaces. This approximation decouples all positions and
times because, for each combination (z, t), a different PDE is solved. The same approach is
used here, which means the neglection of the z- and t-dependence of the cable temperature in
the calculation of the heat flow and therefore, replacing Tsw(z, t) with the local, but constant

I(t)single pulse:

t

I

superimposed
step functions:

t

I

Figure 6.17: Rectangularly shaped current as excitation.
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temperature Tsw,loc. Then, the heat flow also follows a rectangular shape:

P̃
′
el,i(z, t) = I2i R

′
ref (1 + ηT (Tsw,loc − Tref)) (Γ(t− t1,i,I)− Γ(t− t2,i,I)) . (6.195)

C̃2,sw(t), therefore, becomes

C̃2,sw(t) = C2,sw,i (Γ(t− t1,i,I)− Γ(t− t2,i,I)) , (6.196)

C2,sw,i = −R′I2i R
′
ref (1 + ηT (Tsw,loc − Tref)) . (6.197)

Because of the assumed linearity in the solution, the new solution is found via relocation and
superposition of the earlier derived solution:

TC̃2,sw
(z, t, C2,sw,i) = Tinh,sw (z, t− t1,i,I , C2,sw,i)− Tinh,sw (z, t− t2,i,I , C2,sw,i) . (6.198)

For a superposition of several rectangular current shapes (see figure 6.17), the resulting pro-
file becomes

Ĩ(t) =

imax,C2,sw∑︂
i=1

Ii (Γ(t− t1,i,I)− Γ(t− t2,i,I)) . (6.199)

Then, using t̃1 = t− t1,i,I and t̃2 = t− t2,i,I , the solution is

TC̃2,sw
(z, t, C2,sw,i) =

imax,C2,sw∑︂
i=1

[︁
Tinh,sw

(︁
z, t̃1, C2,sw,i

)︁
− Tinh,sw

(︁
z, t̃2, C2,sw,i

)︁]︁
. (6.200)

c) Rectangular Cable Termination Temperatures
Rectangular cable termination temperatures as shown in figure 6.18 are taken into account

similar to the approach used for the current. With t̃1,j = t − t1,i,Tj
and t̃2,j = t − t2,i,Tj

,
j = 1, 2, the corresponding solutions are derived:

Tsw(0, t) = T̃ 1,sw(t) =

imax,T1,sw∑︂
i=1

T1,sw,i

(︁
Γ(t̃1,1)− Γ(t̃2,1)

)︁
, (6.201)

Tsw(L, t) = T̃ 2,sw(t) =

imax,T2,sw∑︂
i=1

T2,sw,i

(︁
Γ(t̃1,2)− Γ(t̃2,2)

)︁
(6.202)

⇒ TT̃ 1,sw
(z, t) =

imax,T1,sw∑︂
i=1

[︁
Tbc,sw(z, t̃1,1, T1,sw,i)− Tbc,sw(z, t̃2,1, T1,sw,i)

]︁
, (6.203)

TT̃ 2,sw
(z, t) =

imax,T2,sw∑︂
i=1

[︁
Tbc,sw(zL, t̃1,2, T2,sw,i)− Tbc,sw(zL, t̃2,2, T2,sw,i)

]︁
. (6.204)
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Tsw(L, t) = T̃ 2,sw(t)Tsw(0, t) = T̃ 1,sw(t)

t

T̃ 1,sw

t

T̃ 2,sw

Figure 6.18: Rectangularly shaped cable termination temperatures.

d) Rectangular Initial Cable Temperature
A rectangular shape can also be assumed for the initial cable temperature as shown in

figure 6.19 for several rectangles. Unlike the earlier solutions, now, the rectangular shape is
given in the spatial coordinate z:

Tsw(z, 0) = T̃ 0,sw(z) = T0,sw,i (Γ(z − z1)− Γ(z − z2)) . (6.205)

For this initial condition, the corresponding solution part of the PDE needs to be recalculated
separately for all three solution approaches. For the solution via Green’s functions in the time
domain, the approach known from section 6.1.2.b) is applicable again, but the limits in the
integration differ from the earlier presented solution. To ensure the invariance of each addend
in the sum under the symmetry transformation

z → L− z, z1 → L− z2, z2 → L− z1, (6.206)

indices are shifted. Then, the result for a rectangularly shaped initial temperature for the
solution via Green’s functions in the time domain is

Tic,sw,rect,G(z, t, T0,sw,i, z1, z2) =
Γ(t)Λ3(t)T0,sw,i

2

[︄
Λ1(z2 − z, t)− Λ1(z2 + z − 2L, t)

− Λ1(z1 − z, t) + Λ1(z1 + z, t)− 2 +
∞∑︂
n=1

{Λ1(z2 − z − ñ, t) + Λ1(z2 − z + ñ, t)

− Λ1(z2 + z + 2(n− 1)L, t)− Λ1(z2 + z − 2(n+ 1)L, t)− Λ1(z1 − z − ñ, t)

−Λ1(z1 − z + ñ, t) + Λ1(z1 + z + ñ, t) + Λ1(z1 + z − ñ, t)}

]︄
. (6.207)

Tsw(z, 0) = T̃ 0,sw(z)

0
z

T̃ 0,sw

L

Figure 6.19: Rectangularly shaped initial cable temperature.
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Neglecting the sum leads to the corresponding formulation for the solution from the Laplace
domain with approximation:

Tic,sw,rect,La(z, t, T0,sw,i, z1, z2) =
Γ(t)Λ3(t)T0,sw,i

2
[Λ1(z2 − z, t)− Λ1(z2 + z − 2L, t)

−Λ1(z1 − z, t) + Λ1(z1 + z, t)− 2] . (6.208)

Accordingly, for the solution via Green’s functions in the Laplace domain, in the recalcu-
lation for the new initial condition, the limits of the integral change. The result in the time
domain is

Tic,sw,rect,GL(z, t, T0,sw,i, z1, z2) (6.209)

=
2

π
T0,sw,i

∞∑︂
n=1

exp

(︃
− t

Asw

(︁
n2
L +Bsw

)︁)︃
sin (nLz) [cos (nLz1)− cos (nLz2)]

1

n
.

All in all, the corresponding solution part of the PDE is

TT̃ 0,sw
(z, t) = Tic,sw,rect(z, t, T0,sw,i, z1, z2). (6.210)

For a linear combination of several rectangles (see figure 6.19), the initial temperature dis-
tribution is

T̃ 0,sw(z) =

imax,T0,sw∑︂
i=1

T0,sw,i (Γ(z − z1,i,T0)− Γ(z − z2,i,T0)) (6.211)

and the corresponding part of the solution becomes

TT̃ 0,sw
(z, t) =

imax,T0,sw∑︂
i=1

Tic,sw,rect(z, t, T0,sw,i, z1,i,T0,sw , z2,i,T0,sw). (6.212)

e) Rectangular Ambient Temperature
The ambient temperature does not only influence the inhomogeneous part C̃1,sw(z, t) in

the PDE but also appears in the parameter Bsw because there, the conductance G′ describing
the heat transfer from the cable to the ambient air appears. In this section, this dependence is
not considered. For the calculation of the parameter Bsw for a specific position in space and
time (z, t), only the value for the ambient temperature at exactly this position is considered.
The influence of a rectangular ambient temperature in the inhomogeneous part C̃1,sw(z, t)

is evaluated in the following. Generally, considering a rectangularly shaped ambient tem-
perature, spatial as well as time rectangles are possible. In practical applications, exactly
rectangular ambient temperatures will not appear, but this approach can be used to approx-
imate real ambient temperature developments. For a sum of rectangular shapes about the
time, but a constant distribution about the spatial coordinate (see figure 6.20(a)), the ambient
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temperature is

T̃ e(z, t) =

imax,C1,sw∑︂
i=1

Te,i (Γ(t− t1,i,Te)− Γ(t− t2,i,Te)) . (6.213)

For the inhomogeneity, it follows

C̃1,sw(z, t) =

imax,C1,sw∑︂
i=1

C1,sw,i (Γ(t− t1,i,Te)− Γ(t− t2,i,Te)) . (6.214)

As mentioned before, the conductance G′ depends on the ambient temperature. In addition,
the ambient temperature appears explicitly in the calculation rule for C1,sw,i:

C1,sw,i = −R′G′(Te,i)Te,i. (6.215)

Analog to the consideration of rectangular current pulses, the corresponding solution is

TC̃1,sw
(z, t, C1,sw,i) =

imax,C1,sw∑︂
i=1

[︁
Tinh(z, t̃1, C1,sw,i)− Tinh(z, t̃2, C1,sw,i)

]︁
(6.216)

with t̃1 = t−t1,i,Te and t̃2 = t−t2,i,Te . For spatial rectangular shapes without time dependence
(see figure 6.20(b)), the ambient temperature and the inhomogeneity are as follows:

T̃ e(z, t) = Te,i(Γ(z − z1)− Γ(z − z2)), (6.217)

C̃1,sw(z, t) = C1,sw,i(Γ(z − z1)− Γ(z − z2)). (6.218)

Then, similarly to the considerations for rectangular initial conditions, recalculations need to
be performed. Again, only the limits in the necessary integrations have to be changed. For
the solution with Green’s functions in the time domain, the result is

Tinh,sw,rect,G(z, t, C1,sw,i, z1, z2) = Tic,sw,rect,G

(︃
z, t,

C1,sw,i

Bsw

, z1, z2

)︃
− Γ(t)

C1,sw,i

2Bsw

{︃
−sgn(z1 − z) + sgn(z2 − z) +

1

2
[sgn(z2 − z)Λ2(|z2 − z|, t)

+Λ2(−z2 − z + 2L, t)− sgn(z1 − z)Λ2(|z1 − z|, t) + Λ2(z1 + z, t)]

}︃
− Γ(t)

C1,sw,i

4Bsw

∞∑︂
n=1

[−Λ2(−z2 + z + ñ, t) + Λ2(z2 − z + ñ, t)

− Λ2(z2 + z + 2(n− 1)L, t) + Λ2(−z2 − z + 2(n+ 1)L, t) + Λ2(−z1 + z + ñ, t)

−Λ2(z1 − z + ñ, t) + Λ2(z1 + z + ñ, t)− Λ2(−z1 − z + ñ, t)] . (6.219)
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For the Laplace approximation, the corresponding expression is

Tinh,sw,rect,La(z, t, C1,sw,i, z1, z2) = Tic,sw,rect,La

(︃
z, t,

C1,sw,i

Bsw

, z1, z2

)︃
− Γ(t)

C1,sw,i

2Bsw

{︃
−sgn(z1 − z) + sgn(z2 − z) +

1

2
[sgn(z2 − z)Λ2(|z2 − z|, t)

+Λ2(−z2 − z + 2L, t)− sgn(z1 − z)Λ2(|z1 − z|, t) + Λ2(z1 + z, t)]

}︃
. (6.220)

Using the solution via Green’s functions in the Laplace domain, it follows

Tinh,sw,rect,GL(z, t, C1,sw,i, z1, z2) = −Γ(t)
2

π
C1,sw,i

∞∑︂
n=1

1− exp

(︃
− t

Asw

(︁
n2
L +Bsw

)︁)︃
Bsw + n2

L

· sin (nLz) [cos (nLz1)− cos (nLz2)]
1

n
. (6.221)

For a single rectangle, the solution then is

TC̃1,sw
(z, t) = Tinh,sw,rect(z, t, C1,sw,i, z1, z2). (6.222)

For a sum of several rectangles, again, the corresponding expressions for the single rectangles
have to be superposed:

C̃1,sw(z) =

imax,Te∑︂
i=1

C1,sw,i (Γ(z − z1,i,Te)− Γ(z − z2,i,Te)) (6.223)

⇒ TC̃1,sw
(z, t, C1,sw,i) =

imax,C1,sw∑︂
i=1

Tinh,rect(z, t, C1,sw,i, z1,i,Te , z2,i,Te). (6.224)

Te(t)

t

Te

(a)

0
z

Te

L
(b)

0
z

t
Te

L

(c)

Figure 6.20: Rectangularly shaped environmental temperatures depending on (a) time, (b)
space, or (c) both.
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Rectangular shapes in the time and spatial coordinate (see figure 6.20(c)) are superposed for
the general case:

C̃1(z, t) =

imax,C1,sw∑︂
i=1

jmax,C1,sw∑︂
j=1

C1,sw,ij (Γ(z − z1,i,Te)− Γ(z − z2,i,Te))

· (Γ(t− t1,j,Te)− Γ(t− t2,j,Te)) (6.225)

⇒ TC̃1,sw
(z, t, C1,sw,ij) =

imax,C1,sw∑︂
i=1

jmax,C1,sw∑︂
j=1

[Tinh,rect(z, t− t1,j,Te , C1,sw,ij, z1,i,Te , z2,i,Te)

−Tinh,rect(z, t− t2,j,Te , C1,sw,ij, z1,i,Te , z2,i,Te)] . (6.226)

Here, the index i corresponds to the spatial dependence, the index j corresponds to the time
dependence.

f) Application to Multiconductor Arrangement
For a multiconductor arrangement analog to the electrical domain, the rectangularly

shaped conditions are considered equivalently to the single wire cable. The system of PDEs
is formulated as given in equation (5.72) with

C = C̃1(z, t) + C̃2(z, t). (6.227)

C̃1(z, t) considers the dependence on the environmental temperature Te and C̃2(t) depends
on the current excitation. The solution is built up from the partial solutions for the different
excitations and initial as well as boundary conditions:

T (z, t) = TT̃ 0
(z, t,T0) + TT̃ 1

(z, t,T1) + TT̃ 2
(z, t,T2) + TC̃1

(z, t,C1) + TC̃2
(z, t,C2).

(6.228)
In table 6.1, an overview of those solutions is given for constant and rectangular excitations.
Implicitly, here, it is assumed that the rectangular excitations for all conductors change at the
same positions in time and space.

The necessary functions for the solution based on the Laplace approximation for N iden-
tical conductors are given in equations (6.121) to (6.123) together with

Tic,id,rect,La(z, t,T0,id,i, z1, z2) =
1

2
Γ(t)[Λ1(z2 − z, t)− Λ1(z2 + z − 2L, t)

− Λ1(z1 − z, t) + Λ1(z1 + z, t)− 2]Λ3(t)T0,id,i, (6.229)

Tinh,id,rect,La(z, t,Cinh, z1, z2) = Tic,id,rect,La(z, t,B
−1
id Cinh, z1, z2) (6.230)

− 1

2
Γ(t)

{︃
−sgn(z1 − z)UN + sgn(z2 − z)UN +

1

2
[sgn(z2 − z)Λ2(|z2 − z|, t)

+Λ2(−z2 − z + 2L, t)− sgn(z1 − z)Λ2(|z1 − z|, t) +Λ2(z1 + z, t)]

}︃
B−1

id Cinh.
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Table 6.1: Overview of solution parts for rectangular stimulations.

solution
stimulus

constant rectangular

TT̃ 0
(z, t,T0) Tic(z, t,T0)

imax,T0∑︂
i=1

Tic,rect(z, t,T0,i, z1,i,T0 , z2,i,T0)

TT̃ 1
(z, t,T1) Tbc(z, t,T1)

imax,T1∑︂
i=1

[Tbc(z, t− t1,i,T1 ,T1,i)− Tbc(z, t− t2,i,T1 ,T1,i)]

TT̃ 2
(z, t,T2) Tbc(zL, t,T2)

imax,T2∑︂
i=1

[Tbc(zL, t− t1,i,T2 ,T2,i)− Tbc(zL, t− t2,i,T2 ,T2,i)]

TC̃1
(z, t,C1) Tinh(z, t,C1)

imax,C1∑︂
i=1

jmax,C1∑︂
j=1

[Tinh,rect(z, t− t1,j,Te ,C1,ij, z1,i,Te , z2,i,Te)

−Tinh,rect(z, t− t2,j,Te ,C1,ij, z1,i,Te , z2,i,Te)]

TC̃2
(z, t,C2) Tinh(z, t,C2)

imax,C2∑︂
i=1

[Tinh(z, t− t1,i,I ,C2,i)− Tinh(z, t− t2,i,I ,C2,i)]

The terms for the solution via Green’s functions in the time domain for N identical conduc-
tors can be found in equations (6.125) to (6.127) together with

Tic,id,rect,G(z, t,T0,i, z1, z2) = Tic,id,rect,La(z, t,T0,i, z1, z2) +
1

2
Γ(t)

∞∑︂
n=1

[Λ1(z2 − z − ñ, t)

+ Λ1(z2 − z + ñ, t)− Λ1(z2 + z + 2(n− 1)L, t)− Λ1(z2 + z − 2(n+ 1)L, t)

− Λ1(z1 − z − ñ, t)− Λ1(z1 − z + ñ, t) + Λ1(z1 + z + ñ, t)

+ Λ1(z1 + z − ñ, t)]Λ3(t)T0,i, (6.231)

Tinh,id,rect,G(z, t,Cinh, z1, z2) = Tinh,id,rect,La(z, t,Cinh, z1, z2)

− Tic,id,rect,La(z, t,B
−1
id Cinh, z1, z2) + Tic,id,rect,G(z, t,B

−1
id Cinh, z1, z2)

− 1

4
Γ(t)

∞∑︂
n=1

[−Λ2(−z2 + z + ñ, t) +Λ2(z2 − z + ñ, t)

−Λ2(z2 + z + 2(n− 1)L, t) +Λ2(−z2 − z + 2(n+ 1)L, t) +Λ2(−z1 + z + ñ, t)

−Λ2(z1 − z + ñ, t) +Λ2(z1 + z + ñ, t)−Λ2(−z1 − z + ñ, t)]B−1
id Cinh. (6.232)

For the solution via Green’s functions in the Laplace domain, the results are given in equa-
tions (6.141), (6.142), and (6.145) and are extended by

Tic,rect,GL(z, t,T0, z1, z2) =
2

π

∞∑︂
n=1

Trect,GL(z, z1, z2, n)x1(t, n,T0,0), (6.233)

Tinh,rect,GL(z, t,Cinh, z1, z2) =
2

π

∞∑︂
n=1

Trect,GL(z, z1, z2, n)x1(t, n,0,Cinh), (6.234)

Trect,GL(z, z1, z2, n) =
1

n
sin (nLz) [cos (nLz1)− cos (nLz2)] . (6.235)
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6.3 Consideration of Nonlinear Behavior
In this section, the implicit parameter dependence on the temperature is considered. The

overall problem from equations (6.1) and (6.2) can then be classified as a system of cou-
pled nonlinear implicit second order (parabolic) PDEs. This implicit system behavior, which
cannot be represented explicitly, also is a challenge for numerical solution approaches, since
such dependencies are not allowed in most basic methods. In this section, exemplary strate-
gies are discussed, which nevertheless allow consideration of this nonlinear dependence.
Once again, this presentation does not claim to be complete but is intended to provide exem-
plary options.

The determination of the surface temperature is non-trivial due to the implicit dependence
even if the conductor temperature distribution is known. Then, according to equation (6.2), a
self-consistent problem has to be solved. The solution can be found numerically directly via
a fixed-point iteration or via root-finding algorithms.

6.3.1 Fixed-Point Iteration
In a fixed-point iteration (see, e.g., [155, pp. 199-204]), a solution for the following prob-

lem is searched:
u = f(u). (6.236)

The start is an initial solution u0. Evaluation of the function f(u0) = u1 then gives the
next approximate solution for the (attracting) fixed-point. This new solution is inserted into
f again and so on. Thus, the iteration rule for the determination of the i-th approximate
solution is

ui = f(ui−1). (6.237)

6.3.2 Root-Finding Algorithms
The self-consistent problem (6.236) can directly be transformed into a root-finding prob-

lem:
f(u)− u = f̃(u) = 0. (6.238)

A wide variety of methods can be used for numerical root finding, of which only two are
shortly mentioned here as examples.

a) Bisection Method
With the bisection method (see e.g. [163, p. 379]) a root with sign change is searched. A

starting interval [u1, u2] is necessary, in which the root must be located. Then the signs of
f̃(u1), f̃(u2), and f̃

(︁
u1+u2

2

)︁
(interval center) are compared. The estimation interval is then

adjusted so that the edge point with the same sign as in the interval center is replaced by
the interval center. The estimation interval has thus been halved. This procedure is continued
iteratively until predefined termination criteria are met.
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b) Newton’s Method
In Newton’s method (see e.g. [155, p. 272]) the iteration rule is

ui = ui−1 −
f̃(ui−1)

f̃
′
(ui−1)

. (6.239)

So, based on the previous approximate solution, the new solution is determined using the
derivative (in the multidimensional case the Jacobian matrix). The (analytical or numerical)
determination of this derivative can be challenging and sometimes causes considerable effort
[155, pp. 274-275]. Then it may be worthwhile to approximate it. For this purpose, a gen-
eralization of the scalar secant method for the approximation of the derivative is used in the
so-called Quasi-Newton method [155, pp. 274-279].

6.3.3 Application of the Earlier Described Numerical Approaches
In principle, the numerical methods presented in sections 6.2.1 to 6.2.4 can also be used

here. If both temporal and spatial discretizations are available, the following procedure can
be used: First, the system of equations or the direct solution formula is set up for a time
step j. Then the temperature calculation for this time step is performed. The corresponding
surface temperature is then determined via a fixed-point iteration or root-finding algorithm.
This is used to determine the parameters C̃(T (z, t),Ts(z, t), z, t) and B(Ts(z, t)). These
(spatially variable) parameters are the basis for the calculation of the next time step j + 1.
This approach can be used to take into account distributed implicit parameter dependencies
along the cable only if there is a spatial discretization in that direction. The application of
BEM is not possible here (setting up the appropriate Green’s function for the overall problem
is already problematic there). However, FEM, FDM, and FVM allow this procedure. Thus,
an overall approach for temperature determination can be built up by superimposing several
numerical methods.

6.3.4 Approximation Based on the Linear Approaches
Alternatively, an approach is presented in the following, which is based on the previous

solutions for the linear case. Here, the solution is calculated individually for each combi-
nation of location and time (z, t) using the analytical relationships. A fixed-point iteration
is then performed for each (z, t) individually to adjust the parameter values and the surface
temperature, as shown in figure 6.21. All conductor temperature calculations are performed
via the analytical solutions.

After a first initial temperature guess together with typical parameter values, the cable
surface temperature is calculated. In the next step, the critical cable parameters (conductance
for convection and radiation as well as the electrical losses) are recalculated followed by the
conductor temperature calculation. After this first iteration, the second iteration starts again
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activity diagram

initialization

surface temperature
calculation

calculation of parameters
for convetion, radiation,

and electrical losses

conductor temperature
calculation

calculation of
termination condition ∆T

[∆T > ∆T,lim]

[∆T ≤ ∆T,lim]

pseudocode

initialize: Ti=0, G′
i=0;

Ts,i+1 = f(Ti, G
′
i);

G′
i+1 = G′(Ts,i+1);
P ′
el,i+1 = P ′

el(Ti);
Bi+1 = R′G′

i+1;
Ci+1 = −R′ (︁P ′

el,i+1 +G′
i+1Te

)︁
;

Ti+1 = T (Bi+1, Ci+1);

∆T = |Ti − Ti+1|;

if ∆T > ∆T,lim:
go to step 1;

steps

step 0

step 1

step 2

step 3

step 4

step 5

Figure 6.21: Iteration scheme to include nonlinear parameters, activity diagram, and pseu-
docode.

with the surface temperature calculation. As a stopping criterion, after each iteration i + 1,
the difference ∆T between the new and old conductor temperatures T is calculated:

∆T = |Ti − Ti+1| . (6.240)

This value is compared to a predefined value ∆T,lim to decide whether to stop the iteration
or continue with a new round. In [A.3], ∆T,lim = 0.001K is used to show the convergence
behavior (six to seven iterations were necessary), although in real applications, normally such
high precision is not required. Also, the necessary approximations in the models typically
already cause higher temperature deviations.

By this procedure, a different PDE is gradually solved for each point (z, t) due to the dif-
ferent parameters. In particular, for the temperature calculation at each point, it is implicitly
assumed that the used parameter values are valid for all times and places. To a certain extent,
the direct coupling between the neighboring points is thus broken, and each combination
(z, t) stands independently. In section 7.3.1.a), it is investigated how this approximation af-
fects the temperature results. This approach provides a semi-analytical procedure that allows
the analytical solutions to be used for temperature estimations with occurring nonlinearity.
Due to the very fast convergence of the fixed-point iteration, other methods, such as Newton’s
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method, which is more complex but converges faster, are not considered further here.
In the further course of the thesis, the analytical solutions are always combined with the

fixed-point iteration, if not mentioned differently. Exemplary MATLAB implementations of
the complete solution approach for the single wire cable with constant excitations and the
solution via Green’s functions in the Laplace domain for a cable arrangement consisting of
three not identical cables with constant excitations are given in appendix C.

111





7 Validation

7 Validation
In this section, the previously derived analytical solutions are validated. At first, the chosen

numerical reference solutions are shortly resumed and the temperature measurement meth-
ods are presented. Then, the validations for the different cable arrangements follow.

7.1 Numerical Reference Solutions
7.1.1 Direct Solution of the Partial Differential Equations

As already discussed in sections 6.2 and 6.3, the PDEs can also be solved numerically. In
the following, the methods that are used in the rest of this thesis are shortly presented.

a) Euler Method
The Euler method, see also section 6.2.1.a), is a very simple numerical approach. For the

consideration of the implicit nonlinear temperature dependency, the approach from section
6.3.3 is used here, which means the iterative parameter adaption based on the known temper-
ature as preparation for the next time step calculation. In the following, this basic approach
is used for the complexity analysis of the single wire cable.

b) MATLAB “pdepe”
For the solution of the coupled PDEs, the function “pdepe” from MATLAB can directly

be used, which solves systems of parabolic and elliptic PDEs by integrating the ODEs that
are found from the PDEs via space discretization [164]. This basic approach was earlier
discussed in section 6.2.1.c). Exemplarily, for the single wire cable, the corresponding for-
mulation for the implementation in MATLAB is analog to equations (6.1) and (6.4):

Asw
∂Tsw(z, t)

∂t
=

∂2Tsw(z, t)

∂z2
−BswTsw(z, t)− Csw, (7.1)

0 = Tsw − Ts −R′
iG

′(Tsw − Te). (7.2)

7.1.2 Equivalent Circuit Diagrams with Lumped Elements and
Solution via Simscape

In [165], the thermal ECDs for the radial heat flow in cable segments of finite length are
cascaded in the axial direction to find an axial transient thermal cable model. The complete
ECD is implemented in MATLAB Simulink/Simscape and validated using measurements in
[165]. This approach can be used for different cable arrangements based on the known ECDs
for an infinitesimally short cable segment.
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7.1.3 COMSOL Multiphysics
Using the FEM-based software COMSOL Multiphysics [166] (see also section 6.2.2), a

numerical solution to the heat transfer problem in cables can be found that is completely
independent of the ECD approach (and the necessary assumptions). For a single wire cable,
rotational symmetry considerations allow for the analysis of only a 2 D cut of the complete
3 D model for a single wire cable, which drastically reduces the calculation effort.

7.2 Temperature Measurement in Transmission Lines
For temperature measurement, many different approaches can be used depending on the

application (see for example [51, 167]). In this section, two approaches that are used for val-
idation in the following are briefly presented. The same two approaches were also discussed
in [A.7] and [A.9].

7.2.1 Indirect Temperature Measurement
The electrical cable resistance Rcable depends on the cable conductor temperature T . For

small temperature rises, a linear dependence can be observed [142, p. 99] as already used for
the calculation of the electrical losses (see equation (5.69)):

Rcable = Rref (1 + ηT (T − Tref)) . (7.3)

The linear temperature dependence of the resistance is a good approximation over a large
temperature range (nearly up to the melting temperature) for metals that are not magnetic
[168, pp. 128-130]. Thus, this dependence is used in the following and its error is neglected.
Based on a known reference resistance Rref at a defined reference temperature Tref , the cable
resistance can be approximated for other temperatures. For copper, the linear temperature
coefficient ηT at Tref = 20 ◦C is 3.93 · 10−3 1/K according to [169]. In this thesis, this
temperature coefficient is also used for other reference temperatures of the same magnitude.
This linear dependence is used to calculate the cable temperature from a cable resistance
measurement as also proposed in [170]:

T = Tref +
1

ηT

(︃
Rcable

Rref

− 1

)︃
. (7.4)

For the measurement of the cable resistance, a small measurement current Imeas is injected
into the cable. This measurement current has to be chosen small enough to not relevantly
change the cable temperature, but, on the other hand, to cause a measurable voltage drop
along the cable. In this thesis, typically, the measurement current Imeas = 0.12A is chosen.
Then, the voltage drop between two positions along the cable (distance Lmeas) is measured,
which allows the calculation of the resistance along this section. To avoid additional voltage
drops across the voltage measurement contacts, the measurement current is not directly in-
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jected via the voltage contacts but at the cable ends (four-terminal sensing). So, the distance
between those current injection points is the complete cable length, L. Both, impressing the
measurement current and measuring the corresponding (typically very low) voltage can be
performed by appropriate source measurement units (SMUs). An overview of the general
measurement setup is given in figure 7.1.

From the measured cable resistance Rcable, the cable temperature T is calculated via equa-
tion (7.4). The result is the mean temperature across the section for the voltage measurement.
That is why this method is especially applicable for the measurement of the cable temper-
ature across a section along which a constant temperature is expected, for example in the
middle of a long cable under homogeneous environmental conditions. The measurement of
axial temperature profiles using this method leads to problems. Very low voltage drops result
when using short sections for the voltage measurement. In addition, the connections for the
voltage measurement distort the cable temperature: As the insulation has to be removed there
and additional thermal bridges are added to the system, the cable temperature will be slightly
lower locally around the connections. If many connections are close to each other, this effect
gains importance and cannot be neglected. To sum up, this method is more feasible for the
measurement across a (longer) cable section with a constant temperature.

For the temperature calculation, in addition to the continuously recorded quantities and the
linear temperature coefficient of the conductor material, the reference resistance of the cable
at a known reference temperature is required. Therefore, a reference measurement is always
performed before the actual temperature measurement in this thesis. There, the cable resis-
tance is measured without a load current. The ambient temperature is recorded separately. It
is assumed that the cable temperature during the reference measurement equals this ambient
temperature. Accordingly, the cable must be stored for a sufficiently long time without a load
in the corresponding environment, so its temperature equals the ambient temperature.

source measurement unit

V

voltage measurement

measurement current

load current

Lmeas

L

Figure 7.1: Scheme for the measurement setup.
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a) Single Measurement
If a load current I heats the cable, the additional (small) measurement current Imeas is not

necessary. On the other hand, this measuring current hardly changes the occurring tempera-
tures and is also required for the voltage measurement without a load current. Therefore, in
this thesis, indirect temperature measurements are always performed with an additional mea-
surement current that is injected via the SMU. If, for example, the load current is switched
off during the measurement, the measured voltage drops abruptly but does not drop to zero.
If the measurement and load currents are known, the associated temperature curve can be
calculated. An example of this procedure is shown in figure 7.2.

To analyze the uncertainties of the measurement results, an exemplary twisted pair cable is
used9. The parameters of the individual cables are given in table D.1, cable 1 . The twisted
pair cable is loaded with 10A on one of the two cables.

In principle, the uncertainty limit ∆f for a quantity f calculated from quantities u1 and u2

with known maximal uncertainties ∆u1 and ∆u2 can be expressed as

∆f =

⃓⃓⃓⃓
∂f

∂u1

⃓⃓⃓⃓
∆u1 +

⃓⃓⃓⃓
∂f

∂u2

⃓⃓⃓⃓
∆u2 (7.5)

in accordance with the uncertainty estimations for resistance measurement in [171] and in-
spired by [167, p. 60] as well as appendix D of [172]. Based on this, the uncertainty limits
of the temperature are calculated. The individual quantities that are used in the temperature
calculation with the respective ranges of the uncertainty limits are also shown in figure 7.2.
The cable is loaded with the load current I +∆I with

∆I = 0.2% · 120A = 0.24A (7.6)

according to [173]. For the case without load current, it is assumed here that no current flows,
so I ± ∆I = 0A. In addition, the measurement current Imeas ± ∆Imeas = 0.12A ± ∆Imeas

with
∆Imeas = 0.03% · Imeas + 1.5mA (7.7)

according to [171] flows in the cable. The corresponding total current is It = I + Imeas with
the uncertainty limit

∆It = ∆I +∆Imeas . (7.8)

The voltage drop that is measured between the two voltage connections is U ±∆U with

∆U = 0.02% · U + 350µV (7.9)

according to [171]. From the total current and the measured voltage drop, the electrical re-

9The measurements were performed by student assistant Julian Hohmann.
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Figure 7.2: Cable temperature determination from the measured quantities using a single
voltage measurement for each temperature calculation. The uncertainty limits
are indicated transparently.
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sistance between the voltage connections is calculated according to

Rcable =
U

It
. (7.10)

The associated uncertainty limit is

∆Rcable
=

⃓⃓⃓⃓
1

It

⃓⃓⃓⃓
∆U +

⃓⃓⃓⃓
U

I2t

⃓⃓⃓⃓
∆It . (7.11)

In the last step, the cable temperature is calculated according to equation (7.4) with the
uncertainty limit

∆T =
1

ηTRref

∆Rcable
+

Rcable

ηTR2
ref

∆Rref
+∆Tref

. (7.12)

Here, it is assumed that the linear temperature coefficient of the conductor material is exact:
∆ηT = 0. The reference temperature Tref and the reference resistance Rref are determined via
a reference measurement before the actual temperature measurement as already mentioned
above. Both quantities are recorded several times (in this example 15 times) and the mean
value is used as the measured value. The associated uncertainty limits are calculated from
the individually measured values Rref,i and Tref,i, respectively, according to section 5.4.2 of
[172] with the coverage factor 2:

∆Rref
= 2 ·

⌜⃓⃓⎷ 1

15 · (15− 1)

15∑︂
i=1

(Rref,i −Rref)
2 = 1.7

µΩ

m
, (7.13)

∆Tref
= 2 ·

⌜⃓⃓⎷ 1

15 · (15− 1)

15∑︂
i=1

(Tref,i − Tref)
2 = 1.2 · 10−3K. (7.14)

Overall, very large uncertainty limits are shown for the temperature. The observed mea-
surement noise is much smaller. The large limits are primarily caused by the offset error
of the voltage measurement, which depends on variables such as ambient temperature and
humidity but is almost constant during measurement. In the case of a load current, the volt-
age that has to be measured is comparatively large, so this offset error plays almost no role
here. In the case without load current, on the other hand, only the small measurement current
flows, so the voltage drop is also very small. Here, the offset error plays a much greater role.
This can also be seen from the fact that the specific temperature curve shows unphysical
jumps at the times when the load current is switched on and off. The noise influence also
becomes greater when the load current is switched off. This is because although the load
current is associated with a comparatively high error margin, this offset hardly varies during
a measurement. An additional source of error can occur here if the load current has to be
measured. Then, on the one hand, the synchronization accuracy between current and voltage
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measurement and, on the other hand, the accuracy of the current measurement itself plays a
role. Overall, it can be stated that this simple measurement approach is not suitable for tem-
perature detection at small or vanishing load currents, in particular, due to the offset error of
the voltage measurement. To reduce this error, a suitable calibration has to be performed in
advance.

b) Differential Measurement Approach
An alternative to calibration for the elimination of the voltage measurement offset error

is the use of a differential measurement approach, which was originally proposed in [174].
In this approach, only the voltage drop that directly follows from the measurement current
is evaluated. That is why the corresponding voltages for negative and positive measurement
currents are compared. As it is not possible to measure both of those voltages at the same time
and due to the changing cable temperature, three voltage measurements are performed as
shown in figure 7.3: From the first and third measurements, which use the negative measure-
ment current, an estimation for the voltage drop in the middle between those measurements
is calculated using linear interpolation. At this central time, the voltage drop is measured
using the positive measurement current. By evaluating the difference between the voltages
for positive and negative measurement current and referring it to the measurement currents,
the cable resistance is calculated independently from the load current:

Rcable =
2U2 − U1 − U3

2I2 − I1 − I3
=

2U2 − U1 − U3

4Imeas

. (7.15)

The temperature determination via this procedure is shown together with the associated un-
certainty limits in figure 7.4. For the individual measurement currents and measured voltages,
the offset error plays a role as in the previous section. This offset can be easily recognized
by the differences in the absolutes of the measured voltages with positive and negative mea-
surement current (3.8mV vs. 3.3mV). However, since this offset is almost constant during

time

current

I
I + Imeas

I − Imeas

I1

I2

I3

time

voltage

U1

U2
U3

U1 + U3

2

Figure 7.3: Three-point measurement to eliminate load current dependence.
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Figure 7.4: Cable temperature determination from the measured quantities using three volt-
age measurements for each temperature calculation. The uncertainty limits are
indicated transparently.
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measurement, it is eliminated by the difference calculation. For the case with load current,
however, the voltage difference is now in a different order of magnitude than the originally
measured voltage (15.5mV vs. 0.3V). The relative error is thus amplified, resulting in more
noisy data. Overall, with the load current turned on, the determined temperature is much
noisier than before. In the case of cooling, the error is considerably smaller and the unphysi-
cal jumps no longer occur. Only at the moment of load current switching off, a single outlier
appears: If the load current is switched off between the three related measurements, the volt-
age curve can no longer be described by the assumed linear approximation and the current
values do not satisfy the assumptions. Accordingly, this one measured value is incorrect and
cannot be used.

The direct comparison between the results of both measurement variants is shown in fig-
ure 7.5. Overall, the differential measurement shows noisier data with somewhat lower un-
certainty limits for the case with load current, but the case without load current is recorded
much better. Therefore, this approach will always be used in the further course of this thesis.

0 250 500
-20

0

20

40

60

single measurement
differential measurement

Figure 7.5: Temperatures and uncertainty limits for both measurement approaches.

c) Post-Processing
The temperature data originally collected from the measurement are post-processed in

three steps. These are presented in the following. In the first step, the time axis is adjusted
so that at the time t = 0 s the current is switched on. In the second step, the outliers are
corrected, which were already mentioned above and resulted from changes in the load current
during the three related measurements. For this purpose, those points i are searched where
|Ti − Ti+1| > 5K. The temperature value at location i + 1 is then replaced by the average
of the two surrounding values Ti and Ti+2. Because of the very noisy measured values due
to the different magnitudes of the measured voltages and the differential voltages with load
current, filtering is necessary. In principle, different approaches such as low-pass filtering
or moving average filters [175] can be used here. In this thesis, moving average filters over
41 points (symmetrically less towards the edges) are always used. In order not to falsify the
kink in the temperature when the load current is switched off, an edge is also set here for the
filtering. An overview of the individual steps with exemplary curves is shown in figure 7.6.
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Figure 7.6: Post-processing of the measured temperature data.

d) Other Errors
Up to now, mainly the direct influence of the measurement technology on the measured

cable temperatures has been investigated. This caused a deviation between the measured
temperatures and the temperatures that actually occur. In addition, other errors can arise due
to the non-ideal use of the measurement technology: For example, suboptimal contacts can
cause highly noisy measurement data or systematically too high measured voltages, or cable
breaks in the connections can make measurement impossible. These deviations caused by
incorrect handling must therefore be avoided.

In addition, the inner conductor temperatures can differ from the temperatures occurring
in the ideally laid cable without measurement equipment due to different influences. For the
contacts for the voltage measurements, the cable is locally damaged as the insulation is re-
moved and thermal bridges are introduced. Thus, the cable temperature locally drops. How-
ever, the influence of this decrease on the measured temperature is negligible, because in this
thesis always sufficiently long cable sections are provided between the voltage connections,
so the average cable temperature is only minimally influenced by the local changes. In prin-
ciple, there are also influences at the current insertion points, where additional heat sources
are generated in case of poor contact. However, since the voltage measurement is performed
comparatively far away from this, these errors are also not relevant. The real setup differs
from an installation purely in the air. On the one hand, additional elements appear near the
cable due to the measurement equipment, and on the other hand, the cable is set up at a
height of about 15 cm to 30 cm above a tabletop. Both effects restrict free convection, but
this effect is so small that it hardly causes any distortion of the measured data. The occur-
rence of additional airflow in the laboratory that has not been recorded or taken into account
is more critical. Then, in addition to the considered free convection, forced convection oc-
curs, which cannot be reproduced. The influence caused by this additional heat dissipation
cannot be directly measured and thus quantified, but it is estimated to be a few Kelvin. As
an alternative to laying the cables freely in the laboratory with the associated possible forced
convection, the measuring box from [174] is available for the measurements, in which the
cables can be placed. The measurement equipment is then connected through small open-
ings. This significantly reduces the forced convection, but the free convection is even more
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restricted than before and the ambient air in the measurement box heats up more due to the
hot cable than in the overall laboratory without a box. Overall, similar temperature changes
are expected as in the case without a measurement box, but these cannot be quantified here
either. In this thesis, both approaches, i.e. placing the cable freely in the air and placing the
cable in the measurement box, are used. Overall, the expected temperature deviations due to
the additional mentioned effects are below the uncertainty limits caused by the measurement
equipment.

e) Exemplary Study on Reproducibility
To analyze the reproducibility of the measurement results between repeated measurements,

several measurements are performed using the exemplary twisted pair cable from section
7.2.1.a) again. This time, the twisted pair cable is loaded with 5A, 7.5A, and 10A, on
one or both cables. The different measurements10 are summed up in table D.2. The steady-
state temperature is calculated via averaging over a period of 60 s in the flat temperature
range. To exclude slightly different ambient conditions, the difference between the measured
temperatures and the mean value of the steady-state ambient temperature is evaluated. As an
example, in figure 7.7 the curves for (a) the loaded (case 1) and (b) the unloaded (case 4)
cable at a current of 10A in one conductor are shown. It can be observed from this figure
that the measured temperatures can vary even after correction with the ambient temperature.
In the next step, the deviation of the steady-state temperatures obtained for the different load
cases (corrected with the mean value of the ambient temperature for the steady state) from
the mean value of this quantity is shown first as an absolute value (in Kelvin)

∆Tabs = Tstst − Te −mean(Tstst − Te) (7.16)

and then also relative to the mean value

∆Trel =

⃓⃓⃓⃓
Tstst − Te −mean(Tstst − Te)

mean(Tstst − Te)

⃓⃓⃓⃓
. (7.17)
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Figure 7.7: Comparison between several measurements with current 10A. Measurement of
(a) loaded cable (case 1) and (b) unloaded cable (case 4).

10The measurements were performed by student assistant Julian Hohmann.
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Figure 7.8: Comparison between several measurements for different load cases. (a) Absolute
and (b) relative deviation from the mean value.

The results are presented in figure 7.8. In nearly all investigated cases the temperature differ-
ences are within ±1K, only in a single loading case do higher deviations occur. In relative
terms, this is equivalent to a maximum of 7%. These deviations must be kept in mind, espe-
cially if statements about the general behavior and the required parameters are determined
from individual measurements: The measurement results presented in the further course of
this thesis are therefore not exact, but can show deviations of up to a few Kelvin.

7.2.2 Thermocouple Temperature Measurement
For the measurement of the axial cable temperature distribution, often thermocouples can

be used. Those consist of two metallic wires of different materials that are connected at one
side (hot junction) [142, p. 631]. Then, at the other wire ends (cold junction), a voltage drop
between those two wires appears that depends on the temperature difference between the
connected and the unconnected wire ends due to the Seebeck effect [176, 177]. Different
metal combinations can be used for this purpose. In this thesis, type K thermocouples are
chosen, which consist of Chromel and Alumel [178]. They are widely spread due to the
nearly linear temperature dependence of the thermocouple voltage (about 40µV/K) and the
wide application range (−200 ◦C to 1260 ◦C) [176, pp. 92-96] in combination with low costs.

For the evaluation of the thermocouple voltage and the conversion to a temperature, dif-
ferent boards and instruments are available. Typically, an amplification of the relatively low
thermocouple voltages is used in combination with a compensation of the cold junction tem-
perature. To protect the sensitive electronics from damage and ensure the designed behavior,
the thermocouples themselves have to be installed electrically insulated from the cable po-
tential and the potentially high currents. This can for example be achieved by using Kapton
tape, which is electrically insulating but thermally comparatively conductive.

To measure the local cable temperature, the thermocouple has to be connected thermally
to the conductor. The temperature at the hot junction has to be as close as possible to the
searched conductor temperature, so the measured temperature directly depends on the qual-
ity of the thermal connection between the cable and the thermocouple, which has by far the
most important influence on the accuracy of the measured temperature in most cases. In ad-
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dition, the thermocouple itself influences the measured temperature: As a thermal connection
between the conductor and the thermocouple is necessary, the thermocouple leads away heat
from the conductor itself and therefore influences the measurement, especially for very thin
cables. This effect is studied in section 7.3.2. Other uncertainties coming from the measure-
ment equipment as the amplifier or the voltage reading are not further evaluated here, as their
influence on the overall measured temperature is negligible compared to the earlier described
effects. Nevertheless, overall, the accuracy of the thermocouple temperature measurement is
assumed to be worse than for the indirect temperature due to the retroactive effect and the
highly sensible dependence on the thermal contact quality.

7.3 Validation of the Analytical Solutions
In this section, the analytical solutions for selected different cable arrangements are val-

idated and analyzed using copper cables with polyvinyl chloride (PVC) insulation. For
the copper conductors, the specific heat capacity per volume cc = 3.4 · 106 J/(Km3),
the thermal conductivity λc = 386W/(Km), and the linear temperature coefficient ηT =

3.93 · 10−3 1/K are used. For the PVC insulation layer, the specific heat capacity per volume
ci = 2.245 · 106 J/(Km3) and the thermal conductivity λi = 0.21W/(Km) are assumed.

7.3.1 Single Wire Cable
At first, the solutions for a single wire cable are analyzed. After a comparison of the analyt-

ical solution with the numerical solution and measurement results, the convergence behavior
of the Green’s functions solutions and the influence of the cable length are analyzed followed
by a complexity analysis of the presented solutions.

a) Analytical Solutions vs. Numerical Reference Solutions
In this section, the analytical methods are validated via comparison with numerical refer-

ence solutions for a 6mm2 single wire copper cable (conductor radius rc ≈ 1.4mm, resis-
tivity ρ = 1.86 ·10−8Ωm at 20 ◦C, length L = 1m). The insulation (outer radius ri = 2mm)
consists of PVC. At t = 0 s, a constant current of 70A is switched on at t = 0 s. The ambient
air temperature Te and the initial cable temperature T0 are 15 ◦C. One cable termination is
fixed at the temperature T1 = 10 ◦C, the other termination has the temperature T2 = 50 ◦C.

For this cable, the transient axial temperature distribution is calculated using three numer-
ical solutions (MATLAB function “pdepe”, see section 7.1.1.b); Simscape, see section 7.1.2
and COMSOL, see section 7.1.3) and the presented analytical solutions (see sections 6.1.1.c)
and 6.1.2). For the solution via Green’s functions in the time domain, nmax = 1 is used as
the upper limit of the sum, for the solution via Green’s functions in the Laplace domain,
nmax,ic,inh = 10 is used as the upper limit for the parts resulting from the initial conditions
and the inhomogeneity, nmax,bc = 2000 is used for the part from the boundary conditions. In
section 7.3.1.c), the convergence behavior of those two solutions is analyzed.
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In figure 7.9, the results for the calculated temperature along the cable at t = 1000 s and
the time-dependent conductor temperature in the central cable section are shown. All results
fit well together. That is why in the next step, the absolute differences between the calculated
temperatures and the solution via COMSOL are evaluated as presented in figure 7.10. For
all solutions, maximum deviations of about 2.5K are the result. Only for the semi-infinite
solution, as expected, on the second half of the cable, much higher deviations appear because
there, the corresponding second boundary condition is not considered.

In the derivation of the solutions for the implicitly nonlinear PDE (5.51), a two-step proce-
dure was used: First, the linearized form of the differential equation was solved (see section
6.1.2). In the second step, the temperature dependence of the parameters P ′

el and G′ (in the
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Figure 7.9: (a) Axial cable temperature distribution in the steady state and (b) transient tem-

perature development in the central cable section. Most of the data in this plot
were already published in [A.3].
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Figure 7.10: Absolute differences between temperatures calculated with COMSOL and the
other numerical and analytical solutions, respectively. Most of the data in this
plot were already published in [A.3].
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Figure 7.11: Procedure for the analysis of the influence of the iterations.

elements Bsw and Csw of the PDE) was taken into account by applying a superimposed fixed
point iteration (see section 6.3.4). This adds a numerical part to the purely analytical solution,
which increases the computational effort. Therefore, the influence of this iteration is now an-
alyzed. For this purpose, the procedure shown in figure 7.11 is used: The cable and surface
temperatures T and Ts are first initialized with an estimated temperature Tguess. This is used
to calculate the parameters P ′

el and G′ and then the conductor temperature T . Thus, this tem-
perature Tw/o it represents the result without iteration. Then the first iteration follows: The
surface temperature is calculated. Based on this, the recalculation of the parameters and the
conductor temperature after one iteration, T1 it, follows. Besides the calculated temperature
without iteration and after one iteration, the temperature after convergence of the fixed-point
iteration with ∆T,lim = 0.001K is determined. For comparison, the solution of the PDE is
also calculated using the MATLAB function “pdepe”.

In the following, the 6mm2 copper cable from above is again analyzed. For the ambient,
initial, and termination temperatures, Te = T0 = T1 = T2 = 60 ◦C is assumed. For the
currents I = 15A and I = 70A, the corresponding temperature curves at the cable center
(z = 0.5m) without iteration, after the first iteration, after convergence, and from the numeri-
cal solution for the estimated initialization temperatures, Tguess = 60 ◦C and Tguess = 105 ◦C

are compared in figure 7.12. It is shown that the analytical solution after convergence fits
well with the numerical solution, but especially the solution without iteration can deviate
significantly from the actual temperatures. Already the first iteration leads to massively im-
proved temperatures. The calculated temperatures without iteration can be both higher and
lower than the actual cable temperature. It is also possible that already without iteration a
good agreement between analytical and numerical solution results. To investigate the occur-
ring effects more precisely, the absolute (∆Tabs) and relative (∆Trel) differences between the
analytical and the numerical solution are determined:

∆Tabs = |T − Tnum| , ∆Trel =

⃓⃓⃓⃓
T − Tnum

Tstst,num,mid − Te

⃓⃓⃓⃓
. (7.18)
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Figure 7.12: Comparison between analytically calculated temperatures with and without it-
erations and numerically calculated temperatures for different currents and ini-
tialization temperatures.

For the determination of the relative temperature difference, the temperature difference is
related to the temperature deviation from the ambient temperature for the steady state in the
center of the conductor, Tstst,num,mid. 101 equally distributed time points between 0 s and
1000 s as well as 101 equally distributed positions along the cable between 0m and 1m

are considered. After the absolute and relative differences are calculated point by point, the
results are further processed: On the one hand, the average (mean) is taken over the entire
(z, t) range, and on the other hand, the maximum (max) is determined.

Using this approach, the accuracy of the estimated temperature as a function of the load
current is investigated first. The results are shown in figure 7.13 for Tguess = 105 ◦C. It
can be seen that the absolute error increases, but the relative error decreases as the current
increases. The absolute error is on average below 1K, so a good overall agreement is found
even without iteration. For small currents (and thus also small temperature increase compared
to the environmental temperature), the relative deviation can nevertheless exceed 25% at the
maximum, but after only one iteration this is already significantly reduced.

The dependence on the estimated temperature Tguess is investigated for I = 70A in fig-
ure 7.14. Here, a peak at the position of the ambient temperature appears: If the ambient
temperature is assumed for the conductor and surface temperature, the heat transfer between
the cable surface and the environment is significantly limited, so the cable reaches higher
temperatures and the occurring mean absolute differences are higher than before. Therefore,
the choice of the assumed initialization temperature plays an important role in the quality of
the temperature estimation without iteration.

Overall, even the first iteration can cause a massive improvement in the accuracy of the
temperature estimation. This also shows the very fast convergence behavior of the iteration.
Therefore, in the further course of this thesis, always the solution with iteration is used.
In principle, however, the direct analytical solution without iteration can also be used for a
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Figure 7.13: Mean and maximum values of the absolute and relative temperature differences
dependent on the load current.
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Figure 7.14: Mean and maximum values of the absolute and relative temperature differences
dependent on the estimated initialization temperature.

first temperature estimation if the initialization temperature is suitable and/or only a small
temperature rise compared to the environmental temperature appears which corresponds to
small currents.

b) Analytical Solutions vs. Measurement Results
In this section, the previously derived calculation formulas are compared to measurement

results. This section is based on [A.9]. A 1.5mm2 single wire copper cable (cable data see
table D.1, cable 3 ) with PVC insulation and the length L = 1.5m is analyzed. This ca-
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ble is connected to large copper plates to fix the cable termination temperatures at constant
values during the short measurements. The probe connections for the indirect temperature
measurement are at the positions z = 0.35m and z = 1.15m, and at the positons z = 5 cm,
z = 10 cm, and z = 75 cm thermocouples are connected to the conductor. At the time
t = 0 s, a current I = 30A is switched on.

In the cable modeling, by now, a solid conductor was assumed. Unlike, the analyzed flex-
ible cable consists of several strands with small air gaps in between. That is why an effec-
tive copper cross-section and a geometrical cross-section are introduced. The analyzed cable
consists of 30 strands (diameter dstrand = 0.25mm). Thus, the copper-filled area Aco and the
effective copper radius rc,eff are

Aco = 30 · π ·
(︃
dstrand

2

)︃2

≈ 1.47mm2 ⇒ rc,eff =

√︃
Aco

π
≈ 0.68mm. (7.19)

This effective radius is used for the parameters that characterize the conductor, namely the
thermal per unit length capacitance for the conductor C ′

c and the axial thermal per unit length
resistance R′. For the parameters that describe the insulation, the geometrical inner insulation
radius is relevant. From the outer cable radius ri = 1.7mm and the insulation layer thickness
di = 0.7mm, the inner insulation radius

rc,geom = ri − di = 1mm (7.20)

is calculated. This value is used for the parameters for the insulation, namely the thermal per
unit length capacitance for the insulation C ′

i and the thermal per unit length resistance R′
i that

is used to model the heat flow through the insulation.
In the calculation of the per unit length resistance R′

i (see section 5.2.2) the modeled insu-
lation was a perfect hollow cylinder. In the real cable, the insulation is defined by the strands
and therefore significantly differs from this assumption (see figure 7.15, cross-section of the
insulation). The green circle represents the outer insulation circumference, the black circle
shows the assumed inner insulation circumference and the yellow curve shows the real inner
insulation surface. As the yellow curve is much longer than the black one, the coupling area
between the conductor and the insulation is much higher than considered before. Assuming
that the heat flow depends on the coupling area, thus, the correction factor ki for the per unit
length resistance R′

i is introduced as the relation between the lengths of the black and the
yellow curves:

ki ≈ 0.7 ⇒ R′
i,corr = ki ·R′

i. (7.21)

This value is used throughout this thesis for all stranded conductors if not stated differently.
During the measurement, the cable heats the environment (see figure 7.16(b)). Due to the

low variations, in the calculations, the constant temperature 25 ◦C is assumed, which is as
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well the temperature at the cable terminations and the initial cable temperature. In figure
7.16, the axial (a) and transient (b) results are shown. For the transient case, in addition, the
absolute difference between the calculated temperatures and the temperatures measured with

outer 
circumference inner 

circumference
real
surface

Figure 7.15: Cross-section of the insulation with the assumed outer circumference (green),
inner circumference (black), and the real inner surface (yellow). A similar figure
was earlier published in [A.9].
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Figure 7.16: (a) Axial cable temperature distribution for the two different times t = 100 s
and t = 450 s. (b) Calculated and measured transient temperature development
at the fixed positions z = 5 cm, z = 10 cm, and z = 75 cm (cable center). Ab-
solute values and deviation from the thermocouple measurement results. Most
of the data in this figure were already published in [A.9].
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the thermocouples is presented. The differences are lower than 8K for all cases. As expected,
the temperatures that are measured with the thermocouples are lower than the calculated
temperatures because the thermocouple itself leads away heat from the conductor. As the
difference between both performed measurement approaches lies in the same magnitude as
the differences compared to the calculations, all in all, good accordance between calculation
and measurement is found.

c) Convergence Behavior of Green’s Functions Solutions
In this section, the convergence behavior of the Green’s functions solutions is evaluated us-

ing the 6mm2 single wire copper cable already known from section 7.3.1.a) with the reduced
length L = 0.1m because especially for short cables, the approximation from the Laplace
solution is not valid and additional addends lead to better accuracy. The environmental air
temperature Te and the initial cable temperature T0 are both 25 ◦C and the cable termination
temperatures are T1 = T2 = 50 ◦C. As a numerical reference, the corresponding calculated
temperature using the MATLAB function “pdepe” (see section 7.1.1.b)) is used. This section
is based on [A.4].

In figure 7.17, for the analysis of the convergence behavior of the Green’s functions series
solutions (TG for time-domain Green’s functions, TGL for Laplace domain Green’s func-
tions), the deviations between the calculated temperatures and the reference are presented for
the beginning and the center of the cable depending on the number of considered addends. In
addition, the corresponding deviation for the Laplace domain solution with approximation
(TLa, see section 6.1.2.a)) is given, which shows a much larger deviation than most of the
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Figure 7.17: Deviation between analytically and numerically calculated temperatures de-
pending on the number of addends at (a) the beginning and (b) the center of
the cable. The data in this plot were already published in [A.4].
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Green’s functions-based solutions. In the second line, a zoom to the first few addends is
given. Only the Green’s functions solution from the Laplace domain with consideration
of different cable termination temperatures shows higher deviations and very slow conver-
gence behavior. Due to the unsteady behavior of this solution near the cable terminations, the
slightly higher value z = 1mm was used for the calculation at the cable beginning. The bad
convergence behavior limits the practical applicability of this solution, as many addends have
to be taken into account for a precise result, which also massively increases the calculation
effort.

d) Influence of Cable Length
In section 6.1.2.a), an approximation was used to enable an analytical transformation of

the Laplace domain solution to the time domain. This approximation is analyzed in this
section. At first, the approximated and analytically transformed solution is compared to a
numerical inversion (Gaver-Stehfest-algorithm [115], parameter M = 3) of the Laplace do-
main expression from equations (6.32) and (6.34) without approximation for a 6mm2 ca-
ble. This analysis is based on [A.3]. For the ambient, initial, and boundary temperatures,
Te = T0 = T1 = T2 = 25 ◦C is used. For the three cable lengths L = 0.3m, L = 0.5m,
and L = 1m, figure 7.18(a) shows the analytically and numerically calculated temperatures
and their differences along the normalized axial coordinate z/L for the time t = 1000 s. In
figure 7.18(b), the corresponding time-dependent temperature development for the central
cable section is shown. For the longest cable with length L = 1m, analytical and numerical
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Figure 7.18: Deviation between temperature development calculated with approximation and
analytical solution vs. numerical transformation back into time domain for dif-
ferent cable lengths. (a) Axial temperature distribution at t = 1000 s. (b) Tran-
sient temperature development in the central section of the cable. Most of the
data in this plot were already published in [A.3].
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solutions match well (difference much lower than 1K). For the shorter cables, higher devia-
tions appear, which shows that then, the approximation of the Laplace domain solution can
lead to errors.

The following considerations concerning this effect are based on [A.4]. At the cable’s
beginning and in the central section of the cable, the deviation between analytically and
numerically calculated cable temperatures at the time t = 1000 s is shown depending on the
cable length in figure 7.19. An exponential growth of the deviations of the approximation
for short cables is observed, which also appears (for lower cable lengths) when using only
one additional addend from the Green’s functions solution in the time domain. Using five
addends from this solution or ten addends from the Laplace domain solution for identical
cable end temperatures leads to good accordance over the complete analyzed area down to
cable lengths of 0.1m. In the central cable section, the consideration of additional addends
also improves the accuracy for short cables. For longer cables, the Laplace domain Green’s
functions solution shows a worse behavior than the time domain Green’s functions solution.

To analyze the influence of the cable cross-section area on the accuracy of the Laplace do-
main solution with approximation, a critical cable length Lcrit is introduced in [A.4]. For this
critical cable length, the steady-state temperature in the central cable section is compared to
the reference and the maximum length is chosen under which the deviation exceeds 3K. For
the cables whose parameters are given in table D.3 those critical cable lengths are calculated
using the bisection method (see also section 6.3.2.a)) with an allowed uncertainty of 1mm

loading each cable with a current that leads to a steady-state central cable temperature of
(100± 0.2) ◦C. The results are shown in figure 7.20. The observed relation between conduc-
tor radius and critical cable length is linear, which means that especially for comparatively
short cables with high cross-sections, the approximation from section 6.1.2.a) leads to errors.
Then, the use of Green’s functions-based series formulations can improve the accuracy.
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Figure 7.19: Deviation between the analytically and numerically calculated temperatures de-
pending on the cable length (a) at the beginning and (b) in the central section of
the cable after t = 1000 s. The data in this plot were already published in [A.4].
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Figure 7.20: Critical cable length depending on the conductor radius. Comparable data were
already published in [A.4].

e) Complexity Analysis
The comparison of the calculation efforts of the different solutions, which is presented in

this section, is based on [A.3]. The total calculation effort for the analytical solution

etotal = epre + (esol + eit) ·
J∑︂

j=1

imax,j (7.22)

depends on the effort for the precalculations epre (identical for each combination (z, t)), the
effort for the necessary calculations in each iteration to update Bsw and Csw (eit), the effort of
the temperature calculation itself (esol) and the number of necessary iteration steps imax,j for
each combination j of z and t. esol,La describes the solution via approximation in the Laplace
domain (see section 6.1.2.a)), esol,G,n is the additional effort for solution calculation with
Green’s functions in the time domain for each addend n (see section 6.1.2.b)) and esol,GL,n

the effort for solution calculation with Green’s functions in the Laplace domain for each
addend n (see section 6.1.2.c)). In table 7.1, the numbers of mathematical operations for
the different solution parts are given. Those numbers are meant to give a rough approach
to the complexities of the different solutions but are highly dependent on the exact form
of the used expression for the solutions. Optimizations could be performed to reduce those
numbers. In contrast to the analytical solutions, the simplest numerical method is the first
order or Euler method ([150], see also section 7.1.1.a), esol,Euler). The usage of different
methods may on the one hand increase the accuracy of the calculated temperatures, but on the
other hand, also leads to greater calculation effort. So, the usage of the Euler method allows
finding a minimum for the numerical calculation effort. The iteration for the consideration
of the nonlinear parameter dependence is different here as no recalculation of temperature is
necessary: The last parameter values are used for the calculation of the next time step. The
overall effort, therefore, is

etotal,Euler = epre + esol · J + eit ·
J∑︂

j=1

imax,j. (7.23)
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Again, in table 7.1 the necessary operations for the temperature calculation of a single time-
spatial point are counted.

To find an overall effort estimation, the operations are weighted due to their individual
calculation effort. This highly depends on the used implementations. As the first approach,
here, the analysis from [179] is used. There, factors for multiplication, addition, division,
square root, and exponential functions are given. Based on these data, the effort for the other
operations is estimated (red entries in table 7.1). This estimation is meant to give a rough
approach. If, for example, for multiplication, a higher effort is necessary than for addition,
the individual numbers would change, but the basic statements that are found in the following
would still hold. For the different solutions, the weighted sums of the elemental operations
are calculated (see table 7.1) via the following dependencies:

epre = 11wm + 2wa + 3wd + 5wz + wl, (7.24)

eit = 40wm + 27wa + 6wd + wb + 21wz + 3wp, (7.25)

esol,La = 30wm + 14wa + 8wd + 11wr + 5wx + 7wz + 6we, (7.26)

esol,G = nmax · (58wm + 20wa + 12wd + 28wr + 8wx + 5wz + 12we) + esol,La, (7.27)

esol,GL = nmax,i · (7wm + 6wa + 4wd + wx + 4wz + ws)

+ nmax,bc · (9wm + 3wa + 3wd + wx + 3wz + 2ws) + 2wm + 2wd, (7.28)

esol,Euler = 5wm + 6wa + 2wd + wz. (7.29)

Here, esol,G is the effort for solution calculation with Green’s functions in the time domain
(see section 6.1.2.b)) and esol,GL is the effort for solution calculation with Green’s functions

Table 7.1: Complexity analysis for different solutions. Most of the data in this table were
already published in [A.3].

epre eit esol,La esol,G,n esol,GL,n esol,Euler weight
ic+inh bc [179]

multiplication 11 40 30 58 7 9 4 wm = 1
addition 2 27 14 20 6 3 5 wa = 1
division 3 6 8 12 4 3 2 wd = 4

square root 0 0 11 28 0 0 0 wr = 4
exponential function 0 0 5 8 1 1 0 wx = 8

absolute value 0 1 0 0 0 0 0 wb = 1
allocation 5 21 7 5 4 3 0 wz = 1

error function 0 0 6 12 0 0 0 we = 8
sine 0 0 0 0 1 2 0 ws = 8

power (non-integer) 0 3 0 0 0 0 0 wp = 8
natural logarithm 1 0 0 0 0 0 0 wl = 8

weighted sum (example) 38 137 215 403 49 51 17
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in the Laplace domain (see section 6.1.2.c)). As expected, the effort for the Euler method
is lower than for the analytical approaches. But those approaches also go ahead with an ad-
vantage: As all combinations (z, t) are calculated independently from each other, precasting
the temperature far in the future (for constant conditions) is no more expensive concerning
calculation effort than the calculation of a very close time step, as no discretization is needed.
Thus, the necessary calculation effort can be reduced compared to the numerical solution,
although the effort for a single combination is higher than in the simplest numerical case.

7.3.2 System of Single Wire Cables
In this section, the model for a system of single wire cables from section 6.1.3 is validated

with measurement results. This section is based on [A.7]. For this purpose, a 0.14mm2 PVC-
insulated copper cable with the length L = 1.61m is loaded with the current I = 6.5A.
Along the cable, between z = 18 cm and z = 143 cm, the indirect temperature measurement
is performed. In between those two connections, thermocouples are connected to the cable
with a distance of 25 cm. In this way, the temperature is measured directly at the connection.
This setup is shown in figure 7.21.

In addition, the environmental temperature is measured and only the differences concern-
ing this temperature are compared for different measurements. The results are shown in fig-
ure 7.22. As expected, the temperatures measured with the indirect temperature measurement
are higher than the temperatures measured with thermocouples. For comparison, the indirect
temperature measurement is additionally performed without any connected thermocouples,

0 cm 18 cm 43 cm 68 cm 93 cm 118 cm 143 cm 161 cm

Figure 7.21: Measurement setup for combined indirect temperature measurement (yellow)
and thermocouple measurement (green).
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thermocouple 0.05 mm
thermocouple 0.11 mm
thermocouple 0.15 mm
thermocouple 0.16 mm

Figure 7.22: Measurement results for different thermocouples and indirect temperature mea-
surement. For the thermocouples, the wire radius rtc is given.

which leads to the highest values. For the different thermocouples (especially different wire
radii) it can be systematically observed, that the measured temperatures are higher for smaller
thermocouple wire radii rtc.

The predictions from the presented model and the real measurement results are compared
in the following. In the model, a continuous cable is assumed. Both wires of the thermocouple
are combined into one effective conductor with the same overall conductor area, which leads
to the radius

rtc,eff =
√
2rtc, (7.30)

where rtc is the real thermocouple wire radius. In the middle of the first cable, a second cable
is thermally connected assuming an ideal thermal coupling and electrical insulation from the
conductor potential as shown in figure 7.23.

The current I flows through the complete first cable and no current is assumed to flow in
the second cable. Both cables are modeled with the inner conductor material copper and the
insulation material PVC. As the real thermocouple does not consist of these materials, this is
a first approximation: In the real thermocouple as well, metal inner conductors and insulating
surroundings are used, but the chosen materials vary. It is expected that the error due to the
not perfectly fitting parameters is low, especially in comparison with other assumptions (one
effective inner conductor instead of two separated conductors, neglection of the fact that
the thermocouple insulation typically does end a few millimeters before the hot junction,
neglection of the added Kapton tape and the openings for the contacts).

I I

Tflat Tnode

perfect thermal contact
electrically insulated contact

Figure 7.23: Modeled cable arrangement for the evaluation of the influence of thermocouples
on the cable temperature.
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T2,3

T1,1 T2,2

I

Figure 7.24: Thermal (orange) and electrical (blue) connections between the involved cables.

The setup is modeled using the presented analytical solution as well as the Simscape im-
plementation of cascaded ECDs (see section 7.1.2). The necessary ECD combining the elec-
trical and thermal model for the Simscape solution is given in figure 7.24. The choice of the
given cable end temperatures T1,1, T2,2, and T2,3 is not relevant for this analysis, so they can
exemplarily be set to the environmental temperature.

In the following, several combinations of different cables for the loaded cable and the
cable that leads away the heat are analyzed. The cable data from table D.3 are used. Using
the analytical solution, all combinations of loaded and connected cables are analyzed for the
two environmental temperatures 20 ◦C and 85 ◦C. To achieve a flat area in the center of the
cable for all cross-sections, all three modeled cable parts have a length of L = 5m. The
steady state is analyzed. That is why the time t = 8000 s is chosen. Different load currents
are chosen for the loaded cables to achieve a temperature at the cable center of 50 ◦C, 85 ◦C,
105 ◦C, and 155 ◦C for the lower environmental temperature and 105 ◦C and 155 ◦C for the
higher one. Then, the relative deviation

∆Trel =
Tflat − Tnode

Tflat − Te

(7.31)

between the temperature at the cable center Tflat and the temperature at the node Tnode (see
figure 7.23) is evaluated depending on the relation

r̂ =
rtc,eff
rc,load

(7.32)

between the radius rc,load of the loaded conductor and the radius rtc,eff of the unloaded con-
ductor. For the case that the unloaded cable has a conductor radius that is less or equal to the
conductor radius of the loaded cable, a linear behavior is found and fitted using the function

f(r̂) = a1r̂ + a0. (7.33)
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The found parameters for the Simscape model results are

a1,S ≈ 0.32, a0,S ≈ −0.0033 (7.34)

and for the analytical approach

a1,a ≈ 0.35, a0,a ≈ −0.011. (7.35)

The results are presented in figure 7.25(a), where the measurement results are also marked.
Overall, good accordance between both calculations and the measurement results can be
observed. For r̂ = 1, which means that the cable with the current has the same radius as
the effective thermocouple, a deviation value of about a third appears, which fits well with
the intuition for this case. In figure 7.25(b), a wider parameter range is evaluated with the
analytical approach. The complete curve is fitted exponentially using the function

f(r̂) = b1 − b2e
−b3r̂,

b1 ≈ 0.89, b2 ≈ 0.91, b3 ≈ 0.50.
(7.36)

The curve flattens with higher r̂ and slowly converges to 1, which means that all the heat is
led away via the connected thermocouple.

Based on this analysis, a condition for the choice of appropriate thermocouples for tem-
perature measurement in thin wire cables can be defined. To achieve a deviation ∆Trel lower
than 10%, the effective thermocouple conductor radius rtc,eff has to be lower than a third of
the conductor radius of the measured cable rc,meas:

rtc,eff <
1

3
rc,meas. (7.37)

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

2 4 6 8 10
0

0.25

0.5

0.75

1
analytical
linear fit analytical
exponential fit analytical
Simscape
linear fit Simscape
measurement

Figure 7.25: Temperature deviation depending on the relation between the conductor radii.
(a) Comparison between Simscape and analytical calculation and measurement.
(b) Analytical calculation for a wider parameter range.
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With equation (7.30), for the wire conductor radius of the thermocouple rtc, it follows

rtc <
1

3
√
2
rc,meas ≈

1

4
rc,meas. (7.38)

This approximation can be used to enable the choice of appropriate thermocouples for tem-
perature measurement, especially in cables with small cross-section areas. Exemplary, for a
25mm2 cable, a thermocouple with a conductor radius below 0.71mm is sufficient, which is
fulfilled for most thermocouples (exemplary radii see for example figure 7.22). For a 1.5mm2

cable, still all analyzed thermocouples can be used (conductor radius below 0.17mm), but
for a 0.14mm2 cable, a thermocouple with a maximum conductor radius of 0.05mm is nec-
essary to achieve a deviation ∆Trel lower than 10%.

7.3.3 Two Single Wire Cables
In practical applications, not only single wire cables consisting of an inner conductor and

insulation are used, but arrangements with several conductive structures appear. In addition
to shielded single cables, these can also be multicore cables or arrangements of several single
cables. The temperatures of the individual conductive structures then depend on each other.
In the modeling, this is represented by a coupling conductance, which is introduced directly
between the two conductive structures. However, the determination of this conductance is
challenging in many cases.

For the special case of a symmetrical cable arrangement surrounded by a common filling,
analytical estimations can still be found [145]. For other cases, different approaches are
necessary. In the following, an approach for a twisted pair cable is shown, i.e. two twisted
identical single wire cables.

a) Identical Cables
Some considerations in this section are based on [A.8]. In principle, the contact resistance

between two adjacent surfaces could analytically be described if the exact surface structure
was known. In practice, however, this procedure cannot be applied to the presented problem
as those parameters massively depend on variables like the contact pressure between the ca-
bles, which cannot easily be measured directly. In addition to the direct heat conduction path
across the contact area, heat radiation between the cable surfaces appears. The coupling con-
ductance should directly model the thermal coupling between the two inner conductors, so
heat conduction through the insulation layers has to be taken into account. All in all, different
effects contribute to the coupling between the conductor temperatures. In the modeling, all
these effects can be approximately summed up in a single, constant coupling conductance
G′

12. Furthermore, the second cable reduces radiation and convection at the cable surface
and only a part of the heat conduction through the insulation leads heat to the environment.
Therefore, a correction factor k is needed. This correction factor is assumed to be constant
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for a given cable. For the conductors i = 1, 2, therefore, the corrected conductance

G′
ii(Ti, Te) =

1

k
G̃

′
ii(Ti,m, Te) (7.39)

is used to describe the coupling between conductor and environment. G̃
′
ii is the corresponding

resistance for a single wire cable laid freely in the air, which depends (indirectly) on the inner
conductor temperature Ti,m and (directly) on the ambient temperature Te.

In the following, two methods11 are presented to find k and G′
12 based on the measured

steady-state values of the conductor temperatures for a sufficiently long cable. The simplified
ECD for the radial steady state is shown in figure 7.26. Exemplary, those methods are applied
to the cable and measurement result from section 7.2.1.e).

In the first step, a current is applied to only one cable (I1 = I , I2 = 0A). The radial steady-
state temperatures of both cables are measured (T1,m for the loaded cable and T2,m for the
unloaded cable). Then, the cable parameters can be calculated as outlined in figure 7.27(a).
Applying this approach (method 1) shows high variations in the reconstructed parameters
using different measurements, even from the same current loads (see figure 7.28(a)). Between
different load cases, this effect is even more dominant. In some cases, even unphysical values
are found (k < 1). The parameters seem to react very sensitively to small changes in the
measured temperatures.

In the second step, the first approach is therefore extended by another measurement (m1).
Here, both conductors are loaded with identical currents (I1 = I2 = I). Thus, T1,m1 = T2,m1

follows for the radial steady-state temperatures, since two identical cables are used. Then no
heat flows across G′

12 and only k appears. From this measurement, k is calculated:

k =
G̃

′
11(T1,m1, Te,m1)

P ′
el,1,m1

(T1,m1 − Te,m1) . (7.40)

The second measurement (m2, only one cable loaded) is then used to determine the coupling
conductance. Figure 7.27(b) shows the entire procedure of this method 2.

Both methods are compared for an exemplary twisted pair cable. The required measure-

P ′
el,1

G′
12

P ′
el,2

G′
11 =

G̃
′
11(T1,m, Te)

k

G′
22 =

G̃
′
22(T2,m, Te)

k

T1,m − Te T2,m − Te

Figure 7.26: Simplified ECD for the radial steady state for two coupled identical cables.

11The original versions of methods 1 and 2 were proposed by student assistant Julian Hohmann.
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measure T1,m and T2,m (radial steady state for I1 = I , I2 = 0A)

calculate P ′
el,1, G̃

′
1 = G̃

′
11(T1,m, Te) and G̃

′
2 = G̃

′
22(T2,m, Te)

k =
1

P ′
el,1

[︂
G̃

′
1(T1,m − Te) + G̃

′
2(T2,m − Te)

]︂

G′
12 =

T2,m − Te

T1,m − T2,m

G̃
′
2

k

(a)

measure T1,m1 and Te,m1 (radial steady state for I1 = I2 = I)

calculate P ′
el,1,m1 and G̃

′
1,1 = G̃

′
11(T1,m1, Te,m1)

k =
G̃

′
1,1

P ′
el,1,m1

(T1,m1 − Te,m1)

measure T1,m2, T2,m2 and Te,m2 (radial steady state for I1 = Î , I2 = 0A)

calculate G̃
′
2,2 = G̃

′
22(T2,m2, Te,m2)

G′
12 =

T2,m2 − Te,m2

T1,m2 − T2,m2

G̃
′
2,2

k

(b)

Figure 7.27: Calculation of k and G′
12 via (a) method 1 and (b) method 2.

ments are performed with currents of 5A, 7.5A, and 10A (measurements from reproducibil-
ity analysis in section 7.2.1.e)). The calculated parameters are given in figure 7.28(a). With
the second method, the fluctuations of the correction factor k for the same current load are
significantly smaller than with the first method. Systematically, it is observed that the cor-
rection factor increases for higher current loads. In both cases, the determined coupling con-
ductances fluctuate more significantly.

In figure 7.28(b), a short overview of notations is given: Little illustrations of the cable
cross-section are used to indicate the load case (cable with and without current) and the
cable for which the temperature is shown in the corresponding figure.

In the next step, the analytically calculated radial transient temperature developments us-
ing the different sets of parameters are compared (see figure 7.28(c)). The temperatures cal-
culated with the parameters of high current loads tend to be higher than the corresponding
temperatures with the parameters of lower current loads. Therefore, the usage of high current
measurements for the parameter calculation is proposed as worst case.

Based on the already known measurement data, this procedure is now applied: For the
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Figure 7.28: (a) Determined parameters k and G′
12 for a cable arrangement of two identical

single wire cables from repeated measurements. (b) Example of the illustrations
used in the following to visualize cables with and without current and the cable
that is chosen for the plot. (c) Numerically (“pdepe”) and analytically calculated
temperature development for cable 1 using the parameters from the different
measurements (10A, 7.5A, and 5A).

parameter determination, 10A measurements are used as a worst-case estimation. The deter-
mined pairs of k and G′

12 are shown in figure 7.29(a).
The temperature curves calculated with these different parameter sets are compared with

the measured temperature curves (see figure 7.29(b)). All temperature curves are displayed
transparently, so a higher color intensity indicates a more common appearance of the corre-
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Figure 7.29: (a) Parameter pairs for two coupled single wire cables reconstructed from re-
peated measurements with a load current of 10A. (b) Measured and calculated
temperature developments for cable 1 for different load scenarios. All curves
are plotted transparently.

sponding values. For high current loads, the measured and calculated temperatures fit well,
for lower current loads the calculated values are slightly higher and can be understood as the
worst case.
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For the same cable arrangement (length L = 0.6m) and the currents I1 = 15A and
I2 = 0A, the different axial analytical solutions are compared to the solution that is derived
via the function “pdepe” from MATLAB. For k and G′

12, the mean values from the previous
analysis are used:

k = 1.16, G′
12 = 0.29

W

Km
. (7.41)

The cable terminations are at the temperatures T1,id,i = 10 ◦C and T2,id,i = 50 ◦C, i = 1, 2.
The initial temperature for both cables and the environmental temperature are both 25 ◦C.
For the solution via Green’s functions in the time domain, one term is used in addition to the
solution with approximation. The axial temperature distribution at t = 300 s and the transient
temperature development in the center of the cable are shown in figure 7.30 for the compar-
ison between analytical and numerical (“pdepe”) solutions. The following abbreviations are
used: c1: cable 1, c2: cable 2, simp.: simplified, Lap.: Laplace, id.: identical, Gr.: Green,
and iter.: iterative. In figure 7.31, the absolute deviations between the analytical and numer-
ical solutions are shown depending on the time t and the axial coordinate z for both cables.
Overall, a good agreement is observed for the first three solutions (Laplace domain solution
with an approximation for two (possibly different) cables, Laplace domain solution with an
approximation for identical cables, and time domain Green’s functions solution for identical
cables) with deviations below 1K from the numerical solution. For the iterative approach
based on the single wire solutions, deviations of up to nearly 15K appear especially in the
transient case. This is because in this solution, the temperature of one conductor is fixed for
the calculation of the other conductor’s temperature and thus, implicitly, the calculated tem-
perature is assumed from the beginning. If now, for example, the conductors heat up and the
temperature at t = 50 s is calculated, the first guess for the first conductor temperature is used
to calculate the second conductor temperature. The result will be too high because the high
value for the first temperature is assumed from the start of the calculation of the second tem-
perature. In the iterative approach, this (too high) second temperature is then used to correct
the first temperature - finding a too high first temperature as well. So overall, this assumption
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Figure 7.30: Numerically (“pdepe”) and analytically calculated axial (left) and transient
(right) temperatures for an arrangement of two identical single wire cables.
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Figure 7.31: Difference between numerically (“pdepe”) and analytically calculated temper-
atures for an arrangement of two identical single wire cables.

of a constant temperature of the second conductor causes too fast transient responses, both
at heating up and cooling down. At the very beginning of the calculation, this effect reduces
as then, the assumption is more reasonable. Similar effects appear for the axial coordinate
z. The simplified solution leads to deviations below 5.5K for the first conductor and up to
21.7K for the second conductor and can only be used for the rough estimation of the first
conductor temperature.

b) Different Cables
In this section, the solutions for two different coupled single wire cables are analyzed. In

this case, for each cable i = 1, 2 a specific correction factor ki is necessary, so

G′
11 =

G̃
′
11(T1, Te)

k1
, G′

22 =
G̃

′
22(T2, Te)

k2
. (7.42)

Again, radial steady-state temperatures are measured. Two measurements m1 and m2 are
performed: In the first measurement, only the first cable is loaded with a current, and in
the second measurement, only the second cable is loaded. By evaluating the ECD (analog
to the one presented in figure 7.26), the necessary dependencies for the calculation of the
parameters are derived. The complete approach is shown in figure 7.32.

This approach is used to calculate the cable parameters for an arrangement of two different
twisted single wire cables. An overview of the cable parameters of the individual cables is
given in table D.1, cables 5 (cable 1 in the following) and 2 (cable 2 in the following).
The measured temperature developments on both cables for the two chosen load cases are
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measure T1,m1, T2,m1 and Te,m1 (radial steady state for I1 = I and I2 = 0A)

measure T1,m2, T2,m2 and Te,m2 (radial steady state for I1 = 0A and I2 = Î)

calculate P ′
el,1,m1, G̃

′
1,1 = G̃

′
11(T1,m1, Te,m1), G̃

′
2,1 = G̃

′
22(T2,m1, Te,m1),

P ′
el,2,m2, G̃

′
1,2 = G̃

′
11(T1,m2, Te,m2), G̃

′
2,2 = G̃

′
22(T2,m2, Te,m2)

G′
12 =

1

2

[︄
P ′
el,1,m1(T1,m2 − Te,m2)G̃

′
1,2

G̃
′
1,1(T2,m2 − T1,m2)(T1,m1 − Te,m1) + G̃

′
1,2(T1,m1 − T2,m1)(T1,m2 − Te,m2)

+
P ′
el,2,m2(T2,m1 − Te,m1)G̃

′
2,1

G̃
′
2,2(T1,m1 − T2,m1)(T2,m2 − Te,m2) + G̃

′
2,1(T2,m2 − T1,m2)(T2,m1 − Te,m1)

]︄

k1 =
T1,m2 − Te,m2

T2,m2 − T1,m2

G̃
′
1,2

G′
12

, k2 =
T2,m1 − Te,m1

T1,m1 − T2,m1

G̃
′
2,1

G′
12

Figure 7.32: Calculation of G′
12, k1, and k2 for two different coupled single wire cables.
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Figure 7.33: Measured (blue) and analytically calculated (green) temperature developments
and differences (ochre) for different load scenarios of two different coupled
single wire cables.
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shown in figure 7.33 (blue curves)12. The steady-state temperatures are again calculated via
averaging. The reconstructed parameters are

G′
12 = 0.16

W

Km
, k1 = 1.27, k2 = 1.46. (7.43)

As expected, for the smaller cable, a higher reduction factor appears as the bigger cable
covers a bigger angle range than vice versa. Using these parameters, the expected tempera-
ture development is calculated analytically via the solution for an infinitely long cable. The
results (difference to environmental temperature, green) and the difference between the mea-
sured and calculated temperatures (ochre) are shown in figure 7.33 in the first column for the
first cable and the second column for the second cable. The difference is lower than 3.5K.

For the same cable arrangement, numerically and analytically calculated axial and tran-
sient temperature developments are compared for the load currents I1 = 40A and I2 = 10A

with Te = T0,tsw,i = 25 ◦C, T1,tsw,i = 10 ◦C, T2,tsw,i = 50 ◦C, i = 1, 2. For the solution via
Green’s functions in the Laplace domain, 10 terms are considered for the sum that deals with
the initial condition and the inhomogeneity and 500 terms are used in the sum that describes
the boundary conditions. In figure 7.34, the axial temperature distributions and the transient
temperature development in the cable center are shown for the different analytical solu-
tions. The following abbreviations are used: c1: cable 1, c2: cable 2, simp.: simplified, Lap.:
Laplace, Gr.: Green, and iter.: iterative. In figure 7.35, the absolute differences between an-
alytically and numerically calculated temperatures are shown for both cables depending on
the axial coordinate z and the time t. For the solution in the Laplace domain and the solution
via Green’s functions in the Laplace domain, the maximum deviation reaches about 2K. In
the iterative approach based on the single wire cable, the maximum deviation is higher than
11K. In the simplified solution, the temperature of the first cable deviates by a maximum
of about 3K from the numerical result, the second cable temperature deviates up to more
than 20K. Overall, the observed effects are quite similar to the arrangement of two identical
cables from the previous section.
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Figure 7.34: Numerically (“pdepe”) and analytically calculated axial (left) and transient
(right) temperatures for an arrangement of two different single wire cables.

12The measurements were performed by student assistant Murat Sahan.
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Figure 7.35: Difference between numerically (“pdepe”) and analytically calculated temper-
atures for an arrangement of two different single wire cables.

7.3.4 Coaxial Cable
In this section, the derived analytical solutions for a coaxial cable are validated. At first, a

comparison between the measured13 and calculated radial temperature development is per-
formed. The parameters of the analyzed cable are given in table D.4. The difference to envi-
ronmental temperature for the measured (blue) and calculated (green) temperatures and the
difference between those temperatures (ochre) are shown in figure 7.36. The difference is
lower than 6K.

For the same cable, numerically and analytically calculated temperature developments are
compared for the load currents Ic = Ish = 15A with environmental and initial temperatures
Te = T0,c = T0,sh = 25 ◦C and cable termination temperatures T1,c = T1,sh = T2,c =

T2,sh = 50 ◦C. For the solution via Green’s functions in the Laplace domain, 100 terms are
considered for the sum that deals with the initial condition and the inhomogeneity. The other
expression is not needed due to the identical cable termination temperatures. In figure 7.37,
the axial temperature distributions and the transient temperature development in the center
of the cable are shown. The following abbreviations are used: c.: conductor, sh.: shield,
simp.: simplified, Lap.: Laplace, Gr.: Green, and iter.: iterative. In figure 7.38, the absolute
differences between analytically and numerically calculated temperatures are shown for the
inner conductor and the shield. For the solution in the Laplace domain and the solution
via Green’s functions in the Laplace domain, the maximum deviation is about 1.5K. In the

13The measurements were performed by student assistant Murat Sahan.
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Figure 7.36: Measured (blue) and analytically calculated (green) temperature developments
and differences (ochre) for different load scenarios (inner conductor and/or
shield loaded with 15A).
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Figure 7.37: Numerically (“pdepe”) and analytically calculated axial (left) and transient
(right) temperatures for a coaxial cable.

iterative approach based on the single wire cable, the deviations reach values higher than
35K. That is due to the assumptions made here: As implicitly, for the conductor temperature
calculation, a constant shield temperature (and vice versa) is assumed, again, way too fast
transient responses are the result. Compared to the two conductor arrangement this effect is
even stronger here because the coupling between the inner conductor and shield is dominant
for the inner conductor. In contrast, using the simplified solution, the temperature of the
inner conductor and shield deviates by a maximum between 5K and 7K from the numerical
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Figure 7.38: Difference between numerically (“pdepe”) and analytically calculated temper-
atures for a coaxial cable.

result. In contrast to the case of two single wire cables, here, this approach can be used to
approximate the cable temperatures.

7.3.5 Identical Single Wire Cables
In this section, the derived solutions for N identical single wire cables are validated with

measurement results and a numerical solution. A twisted cable built up from three identical
single wire cables is evaluated for this purpose. In the first step, again, the coupling conduc-
tances G′

12 = G′
13 = G′

23 have to be determined as well as the correction factor k analog
to section 7.3.3.a). Due to symmetry considerations, the same procedure can be applied as
before (see figure 7.27(b)). The first measurement is now performed with the same load cur-
rent for all three cables (thus, I1 = I2 = I3 = I , P ′

el,1 = P ′
el,2 = P ′

el,3, G′
11 = G′

22 = G′
33,

T1,m1 = T2,m1 = T3,m1). For the second measurement, only one cable is loaded with current
(I1 = I, I2 = I3 = 0A, G′

22 = G′
33, T2,m2 = T3,m2). Then, the same equations as in figure

7.27(b) are used to find the necessary values.
The evaluated cable consists of three 2.5mm2 copper cables (parameters of the individual

cables see table D.1, cable 4 ). Using measurements with I = 30A as described above,
k = 1.46 and G′

12 = 0.15W/Km are determined.
Using those parameters, in figure 7.39 the analytically calculated and measured14 temper-

atures are compared for different load scenarios (first line: all cables with current I = 30A,
second line: two cables with current I = 30A, third line: one cable with current I = 30A).

14The measurements were performed by student assistant Murat Sahan.
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Figure 7.39: Measured and analytically calculated temperatures for cable 1 of an arrange-
ment of three identical single wire cables under different load scenarios.

The temperature development (difference to environmental temperature, green and blue) and
the absolute difference between the calculated and measured temperatures (ochre) are shown.
For the cable heating up, in most cases, the differences are below 4K.

For the same cable arrangement and the currents I1 = 40A, I2 = 25A and I3 = 0A,
the axial analytical solutions are compared to the numerical solution (MATLAB function
“pdepe”). The cable terminations are at the temperatures T1,id,i = T2,id,i = 50 ◦C with
i = 1, 2, 3. The initial temperature for all three cables and the environmental temperature
are both 22 ◦C. For the solution via Green’s functions in the Laplace domain, ten terms of
the sum are considered, for the solution via Green’s functions in the time domain, one term
is used in addition to the solution with approximation. The axial temperature developments
at t = 1000 s and the transient temperature developments in the cable centers are shown in
figure 7.40. The following abbreviations are used: c1: cable 1, c2: cable 2, c3: cable 3, Lap.:
Laplace, id.: identical, and Gr.: Green. In figure 7.41, the absolute deviations between the
analytical and numerical solutions are given depending on the time t and the axial coordi-
nate z. Overall, good accordance is observed. In the solution via Green’s functions from the
Laplace domain, an oscillation is observed that results from the sine in the solution. Using
more terms of the solution reduces this effect.
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Figure 7.40: Numerically (“pdepe”) and analytically calculated axial (left) and transient
(right) temperatures for an arrangement of three identical single wire cables.
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Figure 7.41: Difference between numerically (“pdepe”) and analytically calculated temper-
atures for an arrangement of three identical single wire cables.

7.3.6 General Cable Arrangement Analog to Electrical Problem
a) Three Wire Cable

In this section, the analytical solution for the calculation of a general cable arrangement
analog to the electrical problem is validated. Exemplary, an arrangement consisting of two
identical single wire cables (cable 2 and 3) and a third, different cable (cable 1) is analyzed.

The unknown parameters that have to be determined by measurement are G′
12 = G′

13, G
′
23,

k1, and k2 = k3 due to symmetry considerations. To find those parameters, three measure-
ments are necessary. In the first measurement, only cable 1 is loaded with a current. In the

154



7 Validation

second measurement, cables 2 and 3 are loaded with an identical current. In both cases, ca-
bles 2 and 3 have identical temperatures, which means that G′

23 does not play any role and the
corresponding temperature nodes can be summarized. Then, a formulation analog to the one
for two different cables (see figure 7.32) results. Finally, a third measurement is necessary
for the determination of G′

23. In this measurement, only cable 3 is loaded with a current. An
overview of the complete procedure including the necessary calculation formulas is given in
figure 7.42.

This procedure is tested with a twisted cable consisting of one 2.5mm2 copper cable (cable
1, cable 5 in table D.1) and two 0.5mm2 copper cables (cables 2 and 3, cable 2 in table
D.1). The complete cable has a length of 2.45m before the twisting and 2.24m in the twisted
state. The distance between the connections for the voltage measurement for the indirect
temperature measurement in the cable center is 1.29m (1.23m) for cable one before (after)
twisting, 1.25m (1.15m) for cable two, and 1.21m (1.10m) for cable three.

The measured15 temperature developments for the different necessary load cases are shown

measure T1,m1, T2,m1 and Te,m1 (radial steady state for I1 = I and I2 = I3 = 0A)

measure T1,m2, T2,m2 and Te,m2 (radial steady state for I1 = 0A and I2 = I3 = Î)

calculate P ′
el,1,m1, G̃

′
1,1 = G̃

′
11(T1,m1, Te,m1), G̃

′
2,1 = G̃

′
22(T2,m1, Te,m1),

P ′
el,2,m2, G̃

′
1,2 = G̃

′
11(T1,m2, Te,m2), G̃

′
2,2 = G̃

′
22(T2,m2, Te,m2)

G′
12 =

1

4

[︄
P ′
el,1,m1(T1,m2 − Te,m2)G̃

′
1,2

G̃
′
1,1(T2,m2 − T1,m2)(T1,m1 − Te,m1) + G̃

′
1,2(T1,m1 − T2,m1)(T1,m2 − Te,m2)

+
2P ′

el,2,m2(T2,m1 − Te,m1)G̃
′
2,1

G̃
′
2,2(T1,m1 − T2,m1)(T2,m2 − Te,m2) + G̃

′
2,1(T2,m2 − T1,m2)(T2,m1 − Te,m1)

]︄

k1 =
T1,m2 − Te,m2

T2,m2 − T1,m2

G̃
′
1,2

2G′
12

, k2 =
T2,m1 − Te,m1

T1,m1 − T2,m1

G̃
′
2,1

G′
12

measure T1,m3, T2,m3, T3,m3 and Te,m3 (radial steady state for I1 = I2 = 0A and I3 = Ĩ)

calculate P ′
el,3,m3, G̃

′
1,3 = G̃

′
11(T1,m3, Te,m3), G̃

′
2,3 = G̃

′
22(T2,m3, Te,m3), G̃

′
3,3 = G̃

′
33(T3,m3, Te,m3)

G′
23 =

k2P
′
el,3,m3 − G̃

′
3,3(T3,m3 − Te,m3)− k2G

′
12(T3,m3 − T1,m3)

k2(T3,m3 − T2,m3)

G′
13 = G′

12, k2 = k3

Figure 7.42: Calculation of G′
12, G

′
23, k1, and k2 for an arrangement of two identical single

wire cables and a third different single wire cable.

15The measurements were performed by student assistant Murat Sahan.
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in figure 7.43 (blue curves). The reconstructed parameters are

G′
12 = 0.13

W

Km
, G′

23 = 0.17
W

Km
, k1 = 1.55, k2 = k3 = 2.01. (7.44)

Again, k2 = k3 is higher than k1 because the bigger cable 1 stronger suppresses convection
and radiation of the smaller cables in comparison with the other way round. G′

23 is higher
than G′

12 = G′
13. As the insulations have thicknesses of 0.8mm and 0.65mm, the coupling

path between the two identical (smaller) cables is shorter than the one between the smaller
and the thicker conductor, which is why G′

12 < G′
23 is reasonable.

With these parameters, the transient temperature development in the central region of a
long cable is calculated. The differences to the environmental temperature and the difference
between the measured and calculated temperatures (ochre) are shown in figure 7.43. The
difference is lower than 4K in nearly all cases.
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Figure 7.43: Measured (blue) and analytically calculated (green) temperature developments
for different load scenarios. The absolute difference between the results is plot-
ted transparently in ochre.
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For this cable arrangement, numerically and analytically calculated axial and transient
temperature developments are compared for the load currents I1 = 30A and I2 = I3 = 10A.
The environmental temperature, as well as the initial cable temperature, is Te = 25 ◦C and the
cable terminations are at the temperatures T1,i = 10 ◦C and T2,i = 50 ◦C, i = 1, 2, 3. 10 terms
are considered for the first sum in the solution (initial condition and inhomogeneity) and 500

terms are used for the second sum (boundary conditions). In figure 7.44, the calculated axial
temperature distributions and the transient temperature development in the center of the cable
are shown. The following abbreviations are used: c1: cable 1, c2: cable 2, c3: cable 3, Lap.:
Laplace, Gr.: Green, st. st.: steady state, and inf.: infinitely long cable (radial). In figure 7.45,
the absolute differences between analytically and numerically calculated temperatures are
shown for all three cables depending on the axial coordinate z and the time t. The deviation
reaches a maximum of about 7K. As can be seen, again, an oscillating behavior is observed.
This can be reduced by using more terms of the sum, which, on the other hand, leads to a
higher computational effort.
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Figure 7.44: Numerically (“pdepe”) and analytically calculated axial (left) and transient
(right) temperatures for an arrangement of three single wire cables that are not
all identical.
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Figure 7.45: Difference between numerically (“pdepe”) and analytically calculated temper-
atures for an arrangement of three single wire cables that are not all identical.
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b) Complex Application Example
In this section, the limitations of the above-presented approaches concerning practically

relevant conductor arrangements are discussed. For this purpose, the wiring harness of a
VW Golf V is studied which was analyzed in [2] and [58]. This cable harness consists of
33 individual cables with common outer insulation. In [2], measured data and numerically
calculated radial steady-state temperature distributions (FEM approach) are compared. The
exact positioning of the cables in the bundle is relevant for the maximum occurring temper-
atures but is not known for the measured bundle [2]. Instead, only a template is known into
which the cables are placed in the production process and then compressed. However, [2]
proposes an algorithm that allows the estimation of the cable distribution in the final bundle
based on this template. This results in the conductor arrangement shown in figure D.1 [2].

For this estimated conductor arrangement, a radial ECD is now constructed. For each con-
ductor, a heat source and a capacitance are used. For the sheath, a single capacitance and
a radial thermal resistance are assumed. Convection and radiation at the bundle surface are
represented by a conductance, and the ambient temperature is modeled by a temperature
(voltage) source. The heat flow between the individual conductors and between the conduc-
tors and the outer insulation is modeled using conductances. As a simple approximation,
three constant conductances are assumed: Between two adjacent cables, the conductance G′

1

is assumed. Between the conductor and the outer insulation, the conductance G′
2 is assumed

for direct contact and the conductance G′
3 for indirect contact (cable close to insulation,

but not touching). Table D.7 gives an overview of the positions for these three conductance
values.

The associated differential equation is determined and its radial steady-state solution is
implemented. The still unknown coupling coefficients G′

1, G
′
2, and G′

3 are varied with a
step size of 0.05W/Km between 0W/Km and 1.5W/Km and the differences to the mea-
surement results from [2] are rated via the root mean square (RMS) evaluation. The best
agreement is obtained for G′

1 = 0.3W/Km, G′
2 = 1.05W/Km, and G′

3 = 0.5W/Km with
RMS ≈ 2K. The radial steady-state temperatures calculated with this method are compared
to the measured and calculated temperatures from [2] in figure 7.46(a). The differences from
the measured values are shown in figure 7.46(b). Overall, there is good agreement with de-
viations between calculated and measured temperatures, which tend to be even lower than
the deviations of the numerical solution from [2]. In contrast, the temperature differences be-
tween the different conductors are not always correctly reproduced, but a slightly smoothed
temperature distribution is calculated.

The next step is to investigate whether also an axial model can be found for this problem.
In the previous ECD, axial thermal resistances for the inner conductors have to be added.
At this point, the sheath consideration is problematic: On its inner side, where no conduc-
tor is in direct contact, there is a capacitance. This initially results in a formulation in the
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Figure 7.46: Measured and calculated steady-state temperatures for the radial transient
model. Measured and numerically calculated temperatures are taken from [2].
Temperatures and differences between calculated and measured temperatures.

form according to section 5.3.2, which does not behave equivalently to the formulation from
the electrical domain and accordingly cannot be treated with the methods proposed above.
Therefore, it is necessary to revise the ECD so that capacitances appear only at conductors.
Therefore, the capacitance of the sheath is divided among the conductors directly coupled to
the insulation (n) in the ratio of the coupling strengths:

Ĉ
′
n = C ′

n + knC
′
she, kn =

G′
coup,n

33∑︂
j=1

G′
coup,j

. (7.45)

Here, G′
coup,n describes the coupling between conductor n and the sheath (i.e. G′

coup,n = 0 or
G′

coup,n = G′
2 or G′

coup,n = G′
3). In addition, the conductance for the transition between the

cable surface and the environment is connected directly in series with the conductance for
the coupling individually for each conductor coupled to the sheath, resulting in the overall
ECD and thus the differential equation for 33 coupled single wire cables. The three unknown
conductances have to be readjusted. The best agreement with the measurement results is
obtained for the combination G′

1 = 0.9W/Km, G′
2 = 0.2W/Km, and G′

3 = 0W/Km

with RMS ≈ 4K. For this new model, the calculated radial steady-state temperatures are
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Figure 7.47: Measured and calculated steady-state temperatures for the axial transient model.
Measured and numerically calculated temperatures are taken from [2]. Temper-
atures and differences between calculated and measured temperatures.
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again compared with the measured and calculated temperatures from [2] (see figure 7.47).
Compared to the previous model, larger deviations of up to 8.1K show up. Nevertheless, this
model can be used for a first estimation of the transient and axial behavior.

Overall, this complex practical example shows that despite only limited parameter avail-
ability, especially for the couplings, and thus, drastic assumptions (reduction to three simple
adjusted parameters), an acceptable accuracy of the temperature calculations is achieved.
Thus, first estimations of transient and axial processes are also possible.

7.3.7 Rectangular Pulse Excitations
In this section, the presented solutions for rectangular pulse excitations from section 6.2.5

are validated. As an example, a PVC-insulated 1.5mm2 copper cable (length L = 1m,
measured parameters rc = 0.7mm, ri = 1.5mm, R′

ref = 12mΩ/m at Tref = 23.2 ◦C) is
analyzed. If not mentioned differently, in the following, the current I = 25A is assumed
to be switched on at t = 0 s. The environmental temperature is Te = 22 ◦C, which is as
well the temperature of the cable at t = 0 s. In addition, the cable termination temperatures
are fixed to T1 = 10 ◦C and T2 = 50 ◦C, respectively. For this cable, in the following, the
different approaches for the consideration of rectangular pulse excitations are compared to
the numerical solution using the MATLAB function “pdepe”. For the analytical solution, the
finite solution from the Laplace domain with approximation and analytical transformation
back into the time domain is used.

a) Current Step Function Profile
For the validation of the solution for a current step function profile based on [A.10], exem-

plarily, the current development presented in figure 7.48(a) is used (15A for 400 s, 10A for
350 s, and 25A for 250 s). The measured and analytically and numerically calculated tem-
perature developments and the absolute differences to the measurement results are given in
figure 7.48(a), respectively. Generally speaking, the calculated values are a bit higher than
the measured ones, but the maximum deviation is lower than 3K. Especially for the first
load current, measured and calculated temperatures fit very well (deviation lower than 1K).
Overall, the deviation between both calculated temperatures is much lower than the deviation
from the measured temperatures.

In the next step, the analytically and numerically calculated axial and transient temper-
atures are compared. In figure 7.48(b), the analytically calculated temperatures are shown
depending on the time t and the spatial coordinate z together with the absolute difference be-
tween analytically and numerically calculated temperatures in figure 7.48(c). The deviation
is below 0.4K for all points (z, t).
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Figure 7.48: (a) Comparison between numerically and analytically calculated temperatures
and measurement results (left axis) for rectangular current profile (right axis)
and deviation between calculated and measured temperatures. (b) Analytically
calculated cable temperature and (c) deviation between numerically and analyt-
ically calculated temperatures. The data in this figure were already published in
[A.10].

b) Rectangular Cable Termination Temperature Profile
For the validation of the calculation formulas considering rectangularly shaped cable ter-

mination temperature profiles, the temperature developments shown in figure 7.49(a) are
used, which were also used in [A.10]. In figures 7.49(b) and (c), the analytically calculated
temperatures and the deviation between analytical and numerical solutions are presented.
Close to the cable terminations and the changing points of the cable termination tempera-
tures, in very few cases deviations over 0.5K appear, but for the vast majority of points (z, t)
the deviation is lower.
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Figure 7.49: (a) Rectangular cable termination temperature profiles. (b) Analytically calcu-
lated cable temperature. (c) Deviation between numerically and analytically cal-
culated temperatures. The data in this figure were already published in [A.10].
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c) Rectangular Initial Cable Temperature Profile
In the next step, the solution for initial cable temperature profiles is validated using the

profile shown in figure 7.50(a). The deviation between the analytically (see figure 7.50(b))
and numerically calculated temperature development is shown in figure 7.50(c). Overall,
good accordance between both solutions is observed.
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Figure 7.50: (a) Initial cable temperature profile. (b) Analytically calculated cable temper-
ature. (c) Deviation between numerically and analytically calculated tempera-
tures.

d) Environmental Temperature Profiles
Rectangularly Shaped Environmental Temperature Time Dependence: Using the time-
varying environmental temperature shown in figure 7.51(a), the analytically calculated tem-
perature development and the deviation between analytical and numerical solutions is shown
in figure 7.51 (b) and (c), respectively, as earlier published in [A.10]. As before, very good
accordance is observed for most combinations (z, t) (lower than 0.6K). Higher deviations
appear only for some points close to the changing of the environmental temperature.

Environmental Temperature Zones: For axially varying, but temporal constant environ-
mental temperatures, the used profile together with the analytically calculated temperature
development and the absolute difference between analytically and numerically calculated
cable temperatures are shown in figure 7.52. Again, only low deviations appear and all in all,
good accordance is observed.

Combination of Time and Spatial Rectangular Environmental Temperature Profile: In
the last step, both time and spatial varying rectangularly shaped environmental temperatures
are assumed as shown in figure 7.53(a). As in the previous calculations, the difference (see
figure 7.53(c)) between numerically and analytically (see figure 7.53(b)) calculated temper-
atures is below 1K for nearly all combinations of time t and spatial coordinate z.

162



7 Validation

0 1000 2000
20

40

60

0 0.5 1
0

1000

2000

25 50 75

0 0.5 1
0

1000

2000

0 0.25 0.5

Figure 7.51: (a) Time-dependent environmental temperature profile. (b) Analytically calcu-
lated cable temperature. (c) Deviation between numerically and analytically cal-
culated temperatures. The data in this figure were already published in [A.10].
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Figure 7.52: (a) Spatial environmental temperature profile. (b) Analytically calculated ca-
ble temperature. (c) Deviation between numerically and analytically calculated
temperatures.
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Figure 7.53: (a) Environmental temperature profile for a combination of time and spatial de-
pendence. (b) Analytically calculated cable temperature. (c) Deviation between
numerically and analytically calculated temperatures.
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8 Discussion and Application Examples
In this chapter, the proposed and validated models are discussed. The model accuracies for

the individual cable arrangements from the validation are compared followed by a discussion
of the accuracies of the analytical solutions. In addition, a comparison is made between
the new models and earlier temperature calculation methods, and an exemplary protection
strategy is presented as an application example.

8.1 Model Accuracy
To analyze the basic accuracy of the modeling approach, the deviations ∆T between the

analytical calculations for an infinitely long cable and the measurement results obtained via
the indirect temperature measurement are first summarized for the investigations from the
last chapter. The results are shown in figure 8.1. Both the temporal mean and maximum
values are shown. Overall, there is a good agreement with a maximum average difference
of about 3K between measurement and calculation. With one exception, mean deviations of
more than 2K only occur for the coaxial cable. Thus, here, the selected modeling approach
seems to be less accurate than for the other cable arrangements. Improvements could be
made by refining the modeling, for example by taking into account that the shield is not solid.
Since the temperature measurement is also not exact but can even lead to larger deviations
than the observed ones according to section 7.2.1, the overall agreement between calculation
and measurement is very good. The fact that the deviations are even below the expected
measurement accuracy is also favored by the fact that the same measurements were simulated
which were also used for parameter determination if coupled cables were involved. Taking
into account the model assumptions (see section 5.2) and the measurement inaccuracies, the
agreements are good overall, so the selected models are suitable for reproducing the observed
effects.

0.5 1 2 4

three different single wire cables
three identical single wire cables

coaxial cable
two different single wire cables
two identical single wire cables

single wire cable

mean max

Figure 8.1: Mean and maximum values of temperature differences between analytical calcu-
lations and measurement results.
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8.2 Analytical Solution Approach Accuracy
In addition to the accuracy of the modeling approaches, the selected solution methods go

ahead with additional assumptions and therefore add a further uncertainty factor. To estimate
the overall accuracy of the proposed calculation rules, an overview of the deviations ∆T

between the numerical (“pdepe”) and analytical calculation results with regard to the differ-
ent solution approaches is therefore presented in figure 8.2. Again, the mean and maximum
values are given. In the considered cases, using the Laplace approximation, the temperature
profile can be similarly well reproduced as when using the solutions based on Green’s func-
tions. The mean deviations are below 1K. However, as shown in section 7.3.1.d), the Green’s
functions-based solutions have an advantage for very short cables. Overall, the iterative so-
lution approach, in which in each step one quantity is set constant, leads to results that are
significantly worse than the results that are determined using the other solutions. In addition,
the exact runtime is difficult to predict due to the additional iterations. This approach is there-
fore less suitable. On average, the solution via simplified ECD can predict the temperatures
well for some cases. For other cases, there can also be larger deviations, so the use of this
solution must be critically weighed in each individual case.

Table 8.1 gives an overview of the presented methods for the individual cable arrangements
with central notes on their applicability. From the user’s point of view, the assumptions made
for constant initial and boundary conditions are critical for all methods, since these will
rarely occur in reality and therefore, worst-case assumptions are often necessary for the
calculations. A further challenge is the parameter availability for the cables as well as the
initial and boundary conditions.

0.25 0.5 1 2 4 8 16 32

simplified ECD
iterative approach

Green' functions (Laplace domain)
Green's functions (time domain)

Laplace approximation (identical)
Laplace approximation

mean max

solution approach: sections
Laplace approximation: 6.1.2.a), 6.1.4.c), 6.1.5.b)

Laplace approximation (identical): 6.1.6.b)
Green’s functions (time domain): 6.1.2.b), 6.1.6.c)

Green’s functions (Laplace domain): 6.1.2.c), 6.1.4.d), 6.1.5.c), 6.1.7
iterative approach: 6.1.4.e), 6.1.5.d)

simplified ECD: 6.1.4.f), 6.1.5.e)

Figure 8.2: Mean and maximum values of temperature differences between analytical and
numerical calculations.
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Table 8.1: Overview of calculation methods with hints regarding applicability.
solution approach

radial
steady state

axial steady
state

radial
transient

Laplace
domain with
approxima-
tion

Green’s
functions time
domain

Green’s
functions
Laplace domain

Laplace
domain-based
iterative
approach

simplified
solution
approach

cable ar-
rangement /

boundary
conditions
necessary

initial
condition
necessary

initial and boundary conditions necessary

single wire
cable suitable as a

first
approach,
very fast,
very simple,
sufficient
only for
special
cases or as
worst case

fast, simple,
spatial
boundary
conditions
necessary,
that are
often
difficult to
determine,
often
worst-case
assump-
tions, in
many
practically
relevant
cases, the
additional
effort is not
justified by
the
additional
information

fast, simple,
practically
more relevant
than axial
steady state,
allows
consideration
of transient
effects

approximation
not very
precise for
short cables

flexibly
extendable for
short cables

flexibly
extendable for
short cables,
convergence
problems for
boundary
conditions

two single
wire cables

/ coaxial
cable

complicated,
practically
often not
applicable due
to complexity

very unprecise,
practically not
relevant,
especially in
the transient
area

can be used as
a first approach
(only for the
temperature of
the first cable
in the case of
two single wire
cables)

identical
single wire

cables

matrix-vector
formulation,
manageable
complexity

flexibly
extendable for
short cables

(not explicitly
shown, but the
solution from the
general cable
arrangement is
applicable)

general
analog to

the
electrical
problem

very general
applicability,
flexibly
extendable for
short cables,
convergence
problems for
boundary
conditions
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Overall, the proposed methods can therefore currently only be used for special applica-
tions. A large-scale application is possible in principle, but due to the necessary worst-case
assumptions, some potential advantages of a direct temperature calculation (for example
higher accuracy) cannot be fully exploited.

8.3 Comparison of New Models with Literature
Approaches for the Single Wire Cable

In this section, the new temperature calculation rules are compared with the approaches
that are given in the literature. The methods of this thesis do not result in fundamentally
new model accuracies or modeling possibilities. Thus, the overall calculation results are not
better than the results of previous models, e.g. in terms of accuracy. Nevertheless, this thesis
focuses on new aspects that have not yet been widely used.

This includes on the one hand the joint consideration of axial and transient effects in a
single model. Previous models that consider these two effects together are mostly based on
numerical approaches [30, 54, 57, 59, 180–185]. Not all of these sources specifically describe
cable temperatures. For example, single-walled carbon nanotubes are described in [180] and
interconnects in [181]. An analytical consideration of the axial and transient heat propagation
processes can be found, for example, in [186], although no cables are modeled here either. In
this respect, analytical or semi-analytical calculation rules for the axial transient temperature
development in cables are new in this thesis.

On the other hand, this thesis provides a discussion of similarities between electrical and
thermal domains. Thus, the understanding of thermal propagation processes analogous to the
electrical domain in terms of similarities and differences has been discussed in more detail
than in the literature (see, for example, [133, 181, 187, 188]). The focus is on other aspects
of the still complicated relations describing thermal effects on cables. In addition to the
well-known specifically thermal methods, new methods can thus be applied to the thermal
domain.

In earlier research, mostly numerical models were used to accurately describe temperature
distributions. In contrast, this thesis focuses on analytical models. This simplifies parame-
ter studies and accelerates computations. An implementation using simple hardware for the
monitoring of critical systems is also enabled. In principle, some simplifying assumptions
were necessary for this thesis, not all of which are required in numerical approaches. In this
respect, a suitable analytical approach cannot be provided for all practically relevant applica-
tions. However, the proposed approaches can be used for many relevant cases, in which some
quantities may not be known exactly. An example of such parameter studies is presented in
appendix E. There, systematic effects are studied using many temperature calculations for
different cables. Based on this, local and temporal characteristic cable quantities are defined,
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which enable the normalization of temperature curves. Thus, a comparison between different
temperature developments is possible independent of the cable size. To derive these relation-
ships, the corresponding temperature curves are calculated for a wide variety of cables. Using
numerical methods the effort of these calculations would be enormous. The use of analytical
approaches allows the corresponding variations in a much lower time.

In summary, no methods have been proposed for the single wire cable that can provide
different results than already known methods. However, the semi-analytical calculation for-
mulas are new, which leads to less computational effort and is thus more flexible to use.

8.4 Comparison of New Models with Literature
Approaches for Multiconductor Arrangements

In this section, the new methods for multiconductor arrangements are compared with the
earlier approaches. Thermal models for bundles were already developed in the past, see e.g.
[23, 58–61, 81, 85, 102–107]. Often, these models are based on simplifying assumptions
or result in complicated relationships. Motivated by the analogy between the electrical and
thermal domains, this thesis focuses on a formulation in matrix-vector form, which describes
the corresponding relationships clearly and elegantly. The matrix-vector formulation of the
problem that was found via the presented generalized approach for the description of the
thermal problem for multiconductor arrangements allows the application of simple numerical
methods for the solution, see e.g. Euler’s method, for the linearized case. A superimposed
iteration as also for the analytical solutions can be used to consider the nonlinearities. In
contrast to 3 D discretized models, much simpler solutions become available that cause less
implementation effort. Such a solution is exemplarily applied at the end of this chapter for
the protection of a power over data line (PoDL) cable.

In the past, often massively simplifying assumptions regarding the geometry of the de-
scribed conductor arrangement were made when creating thermal models. Very often, it is
assumed that the cable is laid freely in the air. This assumption is also used throughout
this thesis. Since the modeling of coupled multiconductor arrangements is often very com-
plicated, so far mainly single conductors were considered, and bundle models only rarely
occurred. In addition, it is often neglected that the modeled conductor is not solid but is com-
posed of many individual strands. These two approximations will be investigated in detail in
the following by applying the presented methods. First, the error of the estimated tempera-
ture is analyzed if only a single wire cable in the air is modeled instead of an arrangement
consisting of two single wire cables. In the next section, the influence of the strands on the
cable temperatures is evaluated.
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8.4.1 Comparison Between Single Wire Cable and Two Single Wire
Cables

In this section, the influence of the second cable on the conductor temperatures is system-
atically analyzed. Since this is expected to depend on the coupling strength between the two
cables, it is first investigated within which bandwidth this coupling strength ranges by using
an example. Based on this, systematic comparisons between the expected single wire cable
and twisted pair cable temperatures follow.

a) Parameter Range
As shown in section 7.3.3.a), the parameters k and G′

12 can be determined from measure-
ments. To estimate their variation, two twisted pair cables are constructed from 0.14mm2

cables (identical to the one that was also used in section 7.3.2, parameters see table D.5).
One of the wires is only loosely twisted, and the other one is tightly twisted. A photo of a
short section of these two cables can be found in figure 8.3. Before twisting, the individual
cables each have a length of 1.6m. The associated geometrical parameters after twisting are
listed in table D.6. These two cables are loaded for 300 s with a current of I = 6A through
one or both cables. The measured differences to the environmental temperature are presented
in figure 8.4.

Based on these results, the second method from section 7.3.3.a) (see figure 7.27(b)) is
used to estimate the associated parameters. For the loosely twisted cable, k = 1.31 and
G′

12 = 0.19W/Km are obtained, and for the tightly twisted cable, k = 1.29 and G′
12 =

0.31W/Km are found. A comparison with the parameters determined in section 7.3.3.a)
(see figure 7.28) shows that values of k can also occur closer to 1 and that G′

12 can vary

loosely twisted

tightly twisted

Figure 8.3: Photo of a section of the two twisted pair cables.
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Figure 8.4: Measurement results for the two twisted pair cables.
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over a larger parameter range. Therefore, values of k between 1 and 1.4 and G′
12 between

0.05W/Km and 1W/Km are considered in the following.

b) Comparison
The influence of a second single wire cable twisted with the first one is analyzed in this

section. For this purpose, the expected temperature curve for a single wire cable is compared
with the temperatures of two twisted single wire cables using an identical current load (in one
or both conductors). As an example, such curves are shown in figure 8.5 for a twisted pair
cable (parameters of individual cables as above) with the mean values of the metrologically
determined coupling parameters, i.e. k = 1.3 and G′

12 = 0.25W/Km. For a current of
6A, it can be seen that in the case of the twisted pair cable, the reached temperatures are
higher than for the single wire cable if the current flows through both conductors. If only one
conductor is loaded, lower temperatures result compared to the single wire cable. This effect
is systematically investigated in the next step.

For this purpose, for conductor cross-sections between 1mm2 and 120mm2 (parameters
see table D.3), currents are selected in each case so the radial steady-state single conductor
temperatures 50 ◦C, 85 ◦C, 105 ◦C, or 140 ◦C are achieved at ambient temperatures 20 ◦C

and 85 ◦C, respectively, using only the two higher temperatures for Te = 85 ◦C. The relative
deviations of the radial steady-state temperatures resulting from the different loading cases
for the twisted pair cable from the radial steady-state single wire temperature are analyzed:

∆Trel =
Ttsw − Tsw

Tsw − Te

. (8.1)

In figure 8.6, the mean values of the calculated results are shown in bold. The range of
results (minimum and maximum values) is indicated by the transparent tube. In figure 8.6(a),
the dependence on G′

12 is investigated for the constant value k = 1.3. For equal current
load in both conductors (green), no dependence on G′

12 is shown as expected, since no heat
flow occurs between the two conductors due to the same temperature in both conductors.
Larger couplings in the case of only one loaded conductor cause the temperatures of the two
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0
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Figure 8.5: Exemplary calculated radial transient temperature developments for a single wire
cable in contrast to two single wire cables.
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Figure 8.6: Relative temperature deviation depending on (a) G′
12 and (b) k.

conductors of the twisted pair cable (yellow and ochre) to get closer together. The second
(unloaded) conductor cools the loaded conductor on the one hand. On the other hand, the
heat dissipation to the environment is reduced (mediated by k). In the case of very poor
coupling between the two conductors, the reduction of the heat dissipation to the environment
dominates, resulting in a higher conductor temperature overall than in the single conductor
case. For larger couplings, the improved heat dissipation via heat conduction through the
second conductor dominates. In figure 8.6(b), for the fixed value G′

12 = 0.25W/Km an
analog investigation is performed to determine the dependence on k. Overall, it can be seen
here that increasing values of k lead to increased conductor temperatures in all cases, as
expected, because this means a deterioration of the heat dissipation to the environment.

In conclusion, it is noted that the appearing temperatures of a single wire cable and a
twisted pair cable can significantly differ, so only the consideration of a single wire cable
freely in the air is not sufficient for a twisted pair cable. For the correct modeling of the
influence of the second single wire cable, the cable parameters have to be known, especially
the parameters describing the coupling. As the arrangement of two single wire cables is the
simplest case of a multiconductor arrangement, also the smallest deviations from the simple
single wire cable appear. Nevertheless, it was shown, that these deviations can be relevant.
So, for the general case of a multiconductor arrangement, even higher deviations can appear
if only the single wire cable is considered, and thus, for accurate temperature estimations,
always the bundle has to be taken into account.

8.4.2 Comparison Between Solid Conductor and Stranded Conductor
In the literature, solid conductors are often assumed and the influence of the individual

strands on the temperatures is not considered. In this thesis, this influence has so far only
been considered by a rough parameter adjustment (see section 7.3.1.b)) but has not yet been
systematically analyzed. This will be done in this section. The measurement of the temper-
ature curves for the individual strands is extremely complicated. Therefore, a computational
model based on the models for identical conductors is used instead, which allows estimations
and parameter studies.
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Figure 8.7: Cross-sections of the four analyzed cables with different strand numbers, from
left to right cable one to cable four. Colored strands are analyzed in the following
(others behave in the same way due to symmetry considerations).

In this section, common insulation around all strands is not considered. Instead, only the
metal strands themselves are modeled. As an example, the four configurations shown in fig-
ure 8.7 are considered: In addition to one solid conductor, arrangements of 7, 19, and 37

strands with the same total copper cross-section as the one solid conductor are considered.
Those strands are arranged in an idealized manner, in the form of the tightest packing. This
ideal arrangement is thus closest to a solid conductor. For real systems with non-ideal ar-
rangements, larger effects are to be expected than described in the following.

a) Parameter Range
To set up a suitable model for these conductor arrangements, a length-related conduc-

tance is required that describes the direct coupling strength between two adjacent strands.
This cannot directly be measured, since the individual strand temperatures cannot easily be
measured. Therefore, a rough estimate of the possible magnitudes is given here. For the
arrangement of two (insulated) single wire cables, the value G′

12 = 0.6W/Km was deter-
mined in section 7.3.3.a) as the maximum coupling conductor value. Here, the coupling was
mediated via an insulation layer. In the case of directly adjacent individual strands, a much
stronger coupling is therefore expected, even if these are coated. In the further course, the
value G′

12 = 1W/Km is therefore used as a minimum limit value for the parameter space.
To determine a maximum value, the procedure for coupling resistance calculation from [106]
is applied. Setting the outer cable radii to rc leads to

G′
12 = λc

√︃
ε

rc
, ε = 2rc − 2

√︁
r2c − h2. (8.2)

Unlike in the rest of this thesis and the overview of mathematical symbols, ε is defined as
in [106]. If an overlap is assumed in the entire “viewing angle” of two identical strands (i.e.
over an angle of π/6), it is:

tan
(︂π
6

)︂
=

h

rc
⇒ h =

rc
√
3

3
(8.3)
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⇒ ε = 2rc

(︄
1−

√︃
2

3

)︄
⇒ G′

12 = λc

⌜⃓⃓⎷2

(︄
1−

√︃
2

3

)︄
. (8.4)

With λc = 386W/Km it follows G′
12 = 234W/Km. Therefore, in the following, G′

12 =

250W/Km is used as the maximum value.

b) Parameter Studies
Using an exemplary copper cross-section of 1.5mm2 and a total current of 33A, the tem-

perature development is investigated for environmental, initial, and termination tempera-
tures of 25 ◦C. In the case of several strands, the total current is divided equally among all
strands without taking into account displacement effects. A transition conductance between
the strand and the environment is only determined for the outer strands. In total, for this
coupling, a circle is used which encloses the outer strands (see the blue circle in figure 8.7).
For this circle, R′

α, i.e. the influence of radiation and convection, is determined as shown in
section 5.2.2. This total conductance is then distributed among the surface strands in a way
that takes into account that for some strands four of the six potential neighboring places are
occupied but for others only three. The result are factors of 1/6 (7 strands), 2/30 or 3/30 (19
strands), and 2/42 or 3/42 (37 strands). For G′

12 = 3W/Km, the transient temperature pro-
files of the individual strands are calculated. The results can be found in figure 8.8 for all four
cables. Zooms close to the steady state are shown in the second line. For symmetry reasons,
only the marked strands are analyzed (see figure 8.7). In particular, a comparison of the solid
conductor with the other cables shows a significant reduction in the occurring temperatures
of about 10K. The temperature differences within the bundle itself are comparatively small
(< 1K).

In the next step, only those temperatures are considered which appear in the long term
in the middle of a long cable. For this purpose, the radial steady-state solution (see section
6.1.1.a)) is used. First, the occurring strand temperatures are plotted as a function of G′

12.
The results are given in figure 8.9: The strand temperatures depend on the number of strands.
The size of G′

12 determines how far apart the different strand temperatures are, whereby the
conductor temperatures in one cable differ by less than 1K in the investigated cases.

The maximum occurring strand temperatures together with the mean value over all strand
temperatures in one cable and the difference ∆T between maximum and minimum strand
temperature are shown in figure 8.10 for the four cables as a function of G′

12. Deviations of
about 10K occur in both the maximum and average temperature values comparing the solid
conductor to the stranded conductor. The difference between the minimum and maximum
strand temperature in the bundle, on the other hand, is much smaller. Overall, the influence
of the exact coupling strength is comparatively small. For the total temperatures that are
formed, rather the total dissipated heat and thus the modeling of the coupling of the outer
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strands to the environment plays the decisive role.
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Figure 8.8: Temperature developments for the four stranded conductors with zoom to the
steady state (second line).
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Figure 8.9: Steady-state strand temperatures of a long cable for the four different cables de-
pending on G′

12.
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Figure 8.10: (a) Maximum and (b) mean values of the steady-state strand temperatures of
a long cable for the four different cables depending on G′

12. (c) Difference be-
tween maximal and minimal temperatures.
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c) Comparison to Earlier Modeling
Finally, the new results are compared with the previously used modeling approaches. So

far, the correction factor ki = 0.7 was used for the radial thermal resistance due to the insu-
lation Ri, which resulted from the larger surface area compared to the ideal circular shape.
Here, too, an increased surface area of the stranded conductor is observed in comparison to
the solid conductor with the same copper cross-section, whereby the actual coupling area
is again approximated by a circle (with a larger radius). Compared to the solid cable, the
factors are

√
7/3 ≈ 0.88,

√
19/5 ≈ 0.87, and

√
37/7 ≈ 0.87. These are thus noticeably

larger than the factor 0.7 from before. This can be explained on the one hand by the fact
that in the presented modeling the actual course of the strand surfaces on the outside of the
cable was not taken into account, but instead, only a circle was assumed for simplification.
Strictly speaking, the relevant surface area is larger than the one that was taken into account,
so real heat dissipation is better than assumed. However, the exact quantification is compli-
cated here due to different effects that influence each other, so the proposed worst case is
used. In addition, for the arrangement of the conductors themselves, an idealized arrange-
ment in densest 2 D packing was adopted, so as much copper as possible is accommodated
in the intended radius. In real arrangements, the actual conductor arrangement may deviate
significantly from this ideal case, so the cable surface area can be increased even with the
same copper cross-section. In real arrangements, it can therefore be assumed that the heat
dissipation is more efficient than assumed above, so the presented investigation represents a
worst case. All in all, therefore, even greater deviations can appear in reality.

To sum up, a stranded conductor is associated with larger space requirements than an ana-
log solid conductor, and therefore a stronger heat dissipation can be observed. The maximum
temperatures that occur are therefore noticeably reduced. In contrast, the temperature differ-
ences between the individual strands are small and negligible in many practically relevant
cases. In principle, the largest temperature jump occurs at the transition from a solid conduc-
tor to a conductor made of 7 strands. An increase in the number of strands then only leads to
minor changes in the maximum temperatures.

8.5 Application Example
In this section, an exemplary protection strategy for a twisted pair cable is presented. Such

cables are used, for example, for power over data line (PoDL) applications [4]. In this ap-
proach, communication cables are also used for the power supply of low- to medium-power
consumers. Thin twisted pair cables are therefore typical. As an example, a vehicular appli-
cation is considered. For example, due to a fault at the device, unexpected high currents and
associated fast cable heating can occur, so a suitable protection strategy is required. In this
section, the previously developed methods are used for such a protection strategy for two
coupled single wire cables, which is implemented and tested.
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8.5.1 Algorithm
Overall, this section is not meant to give an accurate practical example for a concrete

application, but it should demonstrate the basic applicability of the presented models for the
protection and monitoring of real systems. On a microcontroller, a fuse protection strategy
can freely be implemented. This allows many functions. The algorithm that is proposed in
the following intends to give an example of possible strategies.

The basis for all temperature calculations in this thesis is the known current through the
cables. Thus, also in this section, it is assumed, that this current is measured. Based on the
current, an overcurrent shutdown can be directly implemented: As soon as the measured
current exceeds a predefined value, it can be switched off without further calculations. For
the temperature-dependent switching, a simple time step procedure is used to continuously
calculate the coupled conductor temperatures based on the model for two single wire cables,
because it was shown in section 8.4.1 that only the consideration of one single wire cable
can lead to high deviations from the real temperatures. With the time step j, it follows

Tj+1 = −∆t

A
(C +BTj) + Tj. (8.5)

Based on these temperatures, the tripping decision is made. Specifically, in this example,
the fuse trips as soon as one of the two conductor temperatures reaches or exceeds the tem-
perature Tlim and switches on again as soon as both calculated conductor temperatures are
below the temperature Thys < Tlim. A distinction is made between a “normal case” (index
no) and an “emergency case” (index em): For the “emergency case” it is assumed that it is a
particularly critical case and therefore the supply should be maintained as long as possible.
Accordingly, the thresholds are set higher for this case (Tlim,em = 75 ◦C, Thys,em = 65 ◦C)
than for the normal case (Tlim,no = 60 ◦C, Thys,no = 45 ◦C). At the end of the active load case
(e.g., the shutdown of a vehicle), the status switches from the case “vehicle on” to “vehicle
off” and the temperature continues to be monitored until it is only 0.1K above the ambient
temperature. This little offset makes sure that the temperature calculation finally shuts down
and does not run for a very long time as the cable temperature only asymptotically gets to the
environmental temperature. After that, continuous monitoring is terminated. This ensures in
particular that the information about the previous load and thus the starting temperature of
the cable is not lost, especially if a second load is applied before the cable has mostly cooled
down. Figure 8.11 shows this protection strategy in the form of an activity diagram.

An additional feature is added to the strategy via the previously presented analytical cal-
culation methods: Forecasts of possible overloads are generated and corresponding warnings
are returned if, for example, in the next minute an overload is expected (assuming a constant
current). This enables more advanced strategies to be implemented at a higher level for deal-
ing with possible cable overheating even before it occurs. Specifically, based on the radial

177



8 Discussion and Application Examples

measure Te

initialization

T =

(︃
Tc,1

Tc,2

)︃
:=

(︃
Te

Te

)︃
Tlast :=

(︃
Te

Te

)︃

measure I

T = −∆t

A
(C +BTlast) + Tlast

Tlast := T

return trigger off
fuse = off

return trigger on
fuse = on

return trigger off
fuse = off

return trigger on
fuse = on

[I < Ilim]

[vehicle off]

cond1

[vehicle on]

[normal mode]

[fuse = on]

cond2

[fuse = off]

cond3

cond3

[emergency
mode]

[fuse = on]

cond4

[fuse = off]

cond5

cond5

[I ≥ Ilim]
cond2

cond4

cond1

cond1 = [Tc,1 < Te + 0.1K and Tc,2 < Te + 0.1K]
cond2 = [Tc,1 < Tlim,no and Tc,2 < Tlim,no]
cond3 = [Tc,1 ≤ Thys,no and Tc,2 ≤ Thys,no]
cond4 = [Tc,1 < Tlim,em and Tc,2 < Tlim,em]
cond5 = [Tc,1 ≤ Thys,em and Tc,2 ≤ Thys,em]

normal path without overload

Figure 8.11: Activity diagram for the protection strategy.

model for the cable arrangement of two single wire cables (see section 6.1.1), the expected
temperatures after 60 s of load are calculated with the last measured current value. Then, if
either temperature is above the allowable limit temperature, the temperature is also calculated
for an interval half as long (30 s). Up to a minimum interval of 3.75 s, this continues until
a time is found when the maximum allowable temperature is not exceeded. The calculated
lower and upper time limits for the expected overheating are then returned.

8.5.2 Implementation
This protection strategy is now implemented and tested. Figure 8.12(a) shows a simplified

version of a small part of an automotive board net: A battery supplies different loads via
a power distribution unit (PDU), that sums up distribution, protection, and switches. The
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Figure 8.12: (a) Simplified partial automotive board net. (b) Test setup for the application of
the presented protection strategy.

circuit for one such load is now chosen and the earlier described protection is implemented
(see figure 8.12(b)).

The tightly twisted pair cable from section 8.4.1.a) is chosen as the device under test. An
Arduino Due is used as the microcontroller for the calculations. The high-side switch shield
with BTS50010-1TAD from Infineon is connected as a switch. A source is used to supply
the shield with a voltage of 12V and to provide the current to load the cables. A Hall effect-
based integrated circuit (Pololu ACS715) is used to measure the current, which is connected
directly to the current path and read out via the Arduino. Both cables are loaded with the same
current in the following, and thus, they are connected in series and a single load is sufficient,
at which the desired current is specified via control from MATLAB. The ambient temperature
is measured by the digital 1-wire temperature sensor DS18B20: Every 10 s the value for the
ambient temperature is read out and updated in the calculation. In addition, two pushbuttons
are provided, which enable the switching between “normal case” and “emergency case”
and between “vehicle on” and “vehicle off”. An overview of this arrangement is given in
figure 8.12(b). Via the indirect temperature measurement (see section 7.2.1), the conductor
temperature of one of the two cables is measured in parallel.

8.5.3 Exemplary Measurement
The implemented protection strategy is tested using an example. Figure 8.13 shows the

results: Both cables are loaded with a preset current of Ipreset = 7A. However, the mea-
sured current deviates up to about 0.2A. The measured and calculated cable temperatures
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Figure 8.13: Exemplary measurement results for the application of the protection strategy.

are corrected with the initial cable temperature. Their difference

∆T = |T − T0 − (Tmeas − Tmeas,0)| (8.6)

is almost everywhere below 4K, mostly even below 2K. During rapid temperature rises,
larger deviations occur than for slow temperature changes. This is because short-time tran-
sients are only partially considered via the selected model because radial heat conduction
and heat storing have to be separated from each other and are each modeled only via a single
element. In accordance with [143], an improvement of the simulation of highly transient ef-
fects is possible, for example, by splitting the cable capacitances, so not all of the capacitance

180



8 Discussion and Application Examples

is already effective on the inside of the insulation. However, this also changes the differen-
tial equation, so the presented solution methods for two identical cables cannot directly be
applied. A significant increase in the occurring deviations during the measurement cannot
be observed. Parallel to continuous temperature monitoring, the prediction of the expected
overload cases is carried out, which provides reliable predictions of the tripping times. Based
on the first warning, the system is switched to the emergency case at the beginning of the
measurement. Accordingly, at a cable temperature of 75 ◦C the circuit is interrupted and
switched on again after both conductor temperatures fall below 65 ◦C. After the circuit is
interrupted for the fourth time with these limits, it is switched to the normal case, where four
more shutdowns are observed. After that, the current is switched off and the fuse is set to
the “vehicle off” state. Approximately 70 s after the current is switched off, the continuous
temperature monitoring ends, and a constant value is assumed. Only shortly before the cur-
rent is switched on again, the fuse is again set to the “vehicle on” state. This is followed by
another current pulse which causes the fuse to switch off the current once again. This case is
similarly well reproduced as the first load.

In the exemplary measurement of the previous section, it was assumed that the current
path on which the overcurrent heats up the cable is switched on again after a certain cooling
phase, which, in contrast to the simple fuse, can be implemented easily due to the free pro-
grammability. Nevertheless, the question arises whether it makes sense at all to reconnect a
path with an overcurrent.

In principle, e.g. switching operations in the vehicle electrical system can generate propa-
gating short-term pulses that may exceed defined maximum overcurrent limits, but only last
for such a short time that even a fuse does not heat up sufficiently to operate. However, if
this overcurrent is detected by the current measurement, the electronic fuse may still trip.
In this case, it makes sense to switch on the current again, since there is no fault on the
corresponding load. If tripping was caused by a calculated overtemperature, then a fault in
the consumer that is supplied via the cable is more likely. However, it is also conceivable
that several consumers are supplied via a common cable and protected with a common fuse.
Then a fault in one of the consumers is sufficient to cause an overcurrent. Another consumer
may still be functioning properly. In this case, it can make sense to supply this consumer
again from time to time: For example, a camera could record at least some images in this
way, which can be better than a complete failure. Another possible case is the joint supply
of several consumers via a comparatively thin cable, so a maximum load of all consumers at
the same time very rarely occurs, but permanently leads to the exceeding of the permissible
conductor temperatures. Even then, it may make sense to switch on again, ideally coupled
with a higher decision level at which a further overload case is avoided by regulating indi-
vidual consumers. All in all, it can therefore make sense to switch a current on, even if these
are primarily special cases.

181



8 Discussion and Application Examples

8.5.4 Comparison to Melting Fuse
The designed protection strategy is now compared with an exemplary fuse. For this pur-

pose, it is first assumed that a nominal current of 1A flows through the two cables and the
fuse is designed for a maximum continuous current of 3A. At an overcurrent of 7A, such a
fuse would accordingly operate in less than one second. In figure 8.14, the associated current
and temperature developments of such a fuse are compared with those resulting from the
protection strategy shown above. In the beginning, the cables are loaded with the nominal
current 1A for 60 s. Then the current is increased to the fault value of 7A. The fuse oper-
ates almost immediately (< 1 s), even though the cable has not yet experienced a significant
temperature rise. In contrast, the overcurrent load is tolerated by the controlled switch for
about 18.7 s, so valuable time can be gained in an emergency. This means that the system
can still be transferred to a safe state before failure. Switching individual loads on or off via
the higher-level load management system can also help to deal with the fault. Overall, the
controlled switch offers significantly more flexibility during operation.
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Figure 8.14: Comparison between the proposed protection strategy and a melting fuse.

Overall, the presented examples show that the derived methods can be used for protection
and monitoring purposes. Links with higher levels and advanced smart fuse protection strate-
gies are conceivable due to the high flexibility of the approach, even for much more complex
systems.
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9 Summary and Outlook
In this thesis, analytical thermal cable models based on the well-known electrical TL the-

ory were developed, validated, and analyzed.
The necessity for those models was shown by a discussion of the drawbacks of melting

fuses and controlled switches with a current-based decision: As both of them are not based on
knowledge of the real cable temperature, high safety margins have to be taken into account.
To avoid those, fast and sufficiently precise thermal cable models are necessary.

After shortly resuming the state of the art regarding thermal and electrical effects on TLs,
the analogy between the electrical and thermal domain was discussed in detail to motivate
the application of approaches from the electrical to the thermal domain. Both domains were
compared concerning the basic physical equations, typical modeling goals, and basic as-
sumptions for the modeling: In the electrical domain, the TEM assumption plays a major
role, which is closely related to the reference conductor concept. Since a thermal analog to
the magnetic field does not exist and the electric field concept cannot be directly transferred
to the thermal domain, there is no physical thermal reference conductor. Also, the under-
standing of capacitances in both domains varies. Nevertheless, systematic similarities were
found that allowed the application of methods known from the electrical domain to thermal
problems.

Based on the heat equation, for a single wire cable, a simplified PDE was derived, in which
only one spatial variable (axial direction, along the cable) remains using symmetry consider-
ations and integration. A necessary approximation was to split up heat conduction and heat
capacity. The result was a PDE analog to the form known from the electrical domain. Thus,
also a corresponding ECD was used for the description. For the application to a multiconduc-
tor arrangement, a general approach was presented that allows the derivation of the system
of coupled PDEs and the ECDs directly from the physical arrangement without complex in-
tegration of the heat equation. The assumptions in both the electrical and thermal domains
were compared and the models were characterized.

The nonlinear system of coupled PDEs was linearized in the first step to allow analyti-
cal solutions for constant excitations. Using these assumptions, several analytical calculation
formulas were derived for the direct temperature calculation based on Laplace domain solu-
tions, Green’s functions, simplification of the ECDs and PDEs, or iterations. Explicit formu-
las were given for special important cable arrangements such as a single wire cable, a system
of several axially combined single wire cables, two single wire cables, a coaxial cable, and
an arrangement of N identical single wire cables. In the next step, numerical and analytical
approaches for time and spatial varying initial and boundary conditions and excitations were
presented. For the consideration of the nonlinear parameter dependence and the solution of
the resulting self-consistent problem, different approaches were presented and a fast con-
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verging fixed-point iteration was chosen for the remainder of the thesis. The solutions were
validated with measured and numerically calculated reference temperatures. In this context,
a procedure was proposed for the determination of some of the cable parameters, that de-
scribe the interference between different conductors. This interference highly depends for
example on surface effects and pressure, and thus is very challenging to be directly mea-
sured. In the presented approach, measured steady-state temperatures were evaluated to find
the parameters based on very few and easy measurements.

The derived and validated solution approaches were discussed in the next step. It was
shown that the accuracy of the basic model is within only a few Kelvin and thus, high enough
for many practically relevant applications. Many of the presented solution approaches al-
low temperature determination in good agreement with numerical solutions. The models
considering both the axial and radial heat flow along the cable together with the analytical
solution approaches enable faster temperature calculations than the mostly numerical estab-
lished methods. Compared to previous models, the understanding analogous to the electri-
cal domain provides a new perspective and new options for temperature determination. The
(semi-)analytical models allow calculations also for non-trivial conductor arrangements with
nevertheless manageable effort. It was shown that the exact conductor arrangement is very
relevant for the developing temperatures. Bundle arrangements must be taken into account
because neglecting them can result in too low estimated temperatures. If a stranded conduc-
tor is approximated by a solid conductor, the predicted temperatures are too high due to the
lower coupling to the (cooling) environment, so this approximation can be made as a worst-
case scenario to reduce the calculation effort. Finally, a complete protection strategy for a
twisted pair cable was developed, implemented, and tested in a laboratory environment. This
included current-based online monitoring of the cable temperature considering also the cool-
ing behavior, different temperature trigger levels depending on the safety relevance, and an
estimation of the future temperature development in combination with a warning function.
This example shows that the developed approaches can be used for temperature-based cable
protection and allow for flexible new switching strategies.

In future work, more complex cable systems with several loads with different safety re-
quirements should be protected by a network of combined controlled switches. Together with
PDUs, early fault detection and extremely flexible strategies for the reaction to faults can be
implemented to reach high overall reliability and safety.

In this thesis, only air installation was considered. The proposed models can be extended
for other installation types in further work. Firstly, this covers external air flows and thus,
forced convection. In addition, there may be other elements in the vicinity of the modeled
cables that can limit free convection. Preliminary investigations indicate that free air instal-
lation does not necessarily describe the worst case for cable temperatures, even if other ele-
ments near the described cable are not actively dissipating heat. For example, a plate above
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the cable can relevantly limit the free convection and therefore the heat dissipation of the
cable. Quantification of these effects and appropriate consideration in modeling approaches
should follow in future work. In addition, (heated or unheated) objects in direct contact with
the cables can also significantly change the conductor temperatures. Similar to the considera-
tion of the coupling between different conductors in a bundle, an adjustment of the model via
additional resistances and a coupling with the thermal models for the corresponding compo-
nents will then be necessary. Overall, the proposed models should be extended and reshaped
in such a way that coupling to other thermal models such as contact models is enabled and
the approaches can be used, for example, as part of larger simulation models.
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Appendices

Appendices
A Modeling of a Multiconductor Arrangement

define radial nodes:
for each conductive layer i: define one node mc,i;
for each insulation layer i:

if (inner neighbor ̸= conductor): define nodes mi,in,i at inner limits;
if (outer neighbor ̸= conductor): define node mi,out,i at outer limit;
if (concentric layer & short term transients): define node mi,mid,i in insulation;

find general form of PDE:
for each defined node i:

add nodal temperature to temperature vector T ;
add a new line and column to matrices A to D;

equivalent circuits and matrix entries for individual elements:
for each conductive layer i:

draw equivalent circuit with nodes mc,z,i, mc,z+dz,i and ref;
define or expand matrix entries for node mc,i;
for each conductive layer j > i:

if (consider coupling between conductor i and j):
draw equivalent circuit with nodes mc,i and mc,j;
expand matrix entries for node mc,i;
define matrix entries for node mc,j;

for each filling layer i:
draw equivalent circuit, nodes mf,in,1,i, ..., mf,in,N,i, mf,out,i, ref;
define or expand matrix entries for nodes mf,in,1,i, ..., mf,in,N,i, mf,out,i;

for each concentric insulation layer i:
draw equivalent circuit, nodes mi,in,i, mi,out,i, mi,mid,i (short-term transients), ref;
define or expand matrix entries for nodes mi,in,i, mi,out,i, mi,mid,i (short-term transients);

for each cable surface i:
draw equivalent circuit with nodes ms,i and ref;
expand matrix entries for node ms,i;

parameter calculation:
for each conductive layer i:

calculate heat capacitance with equation (5.77);
calculate heat flow with equation (5.78);
calculate resistance with equation (5.79);

for each concentric insulation layer i:
calculate conductance with equation (5.82);
if (simple RC-structure or long-term transients):

calculate heat capacitance with equation (5.81);
if (long-term transients): calculate pi,i with equation (5.86);

if (short-term transients):
calculate first heat capacitance with equation (5.89);
calculate second heat capacitance with equation (5.90);
calculate pi,i with equation (5.91);

for each filling layer i:
calculate capacitance with equation (5.95);
for each inner structure j:

calculate conductances (analytically, numerically or via measurement);
for each cable surface i:

calculate conductance with equation (5.99);
for all considered couplings between conductors i and j:

calculate conductance G′
ij (analytically, numerically or via measurement);

Figure A.1: Steps for the determination of the PDE from the physical setup (pseudocode).
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Table A.1: Matrix entries for the different elements.

Ã B̃ C̃ D̃

conductor
mc

mc (C ′
c)

/ mc

(︁
P ′
el,c

)︁ mc

mc

(︃
1

R′
c

)︃
insul. RC

mi,in

mi,in (C ′
i)

mi,in mi,out

mi,in

mi,out

(︃
G′

i −G′
i

−G′
i G′

i

)︃
/ /

insul. V.-W.
(long)

mi,in mi,out

mi,in

mi,out

(︃
pi,loC ′

i

(1− pi,lo)C ′
i

)︃ mi,in mi,out

mi,in

mi,out

(︃
G′

i −G′
i

−G′
i G′

i

)︃
/ /

insul. V.-W.
(short)

mi,in mi,mid mi,out

mi,in

mi,mid

mi,out

⎛⎝piC′
i,1

(1− pi)C′
i,1 + piC′

i,2

(1− pi)C′
i,2

⎞⎠
mi,in mi,mid mi,out

mi,in

mi,mid

mi,out

⎛⎝ 2G′
i −2G′

i

−2G′
i 4G′

i −2G′
i

−2G′
i 2G′

i

⎞⎠ / /

filling
mf,out

mf,out (C ′
f)

mf,in,1 mf,in,2 . . . mf,in,N mf,out

mf,in,1

mf,in,2
...

mf,in,N

mf,out

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

G′
f,1 −G′

f,1

G′
f,2 −G′

f,2
. . .

...
G′

f,N −G′
f,N

−G′
f,1 −G′

f,2 . . .−G′
f,N

N∑︂
i=1

G′
f,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
/ /

surface /
ms

ms (G
′
s)

ms (−G′
sTe) /

coupling /
mc,1 mc,2

mc,1

mc,2

(︃
G′

12 −G′
12

−G′
12 G′

12

)︃
/ /
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B Solution for Arrangement of Two Conductors
For the direct solution in the Laplace domain with approximation, the solution for case 1

is given in the following. For both subcases, the following parameters are used:

λ2 =
A22B11 + A11B22

A11A22

, λ3 =
B11B22 −B12B21

A11A22

,

λ22 =
1

2
(A11 − A22), λ23 =

1

2
(B11 −B22),

A−1B = VDV−1,(︄
T∞,1

T∞,2

)︄
= V exp(−γt) ·V−1(T0,tu +B−1C)−B−1C,

PBZ(k, a9, a6) = −exp(−a9t)

2

·
[︃
exp(−a6

√︁
a2,k − a1,ka9

{︃
erf

(︃
|a6|a1,k − 2

√
a2,k − a1,ka9t

2
√
a1,kt

)︃
− 1

}︃
+exp(a6

√︁
a2,k − a1,ka9

{︃
erf

(︃
|a6|a1,k + 2

√
a2,k − a1,ka9t

2
√
a1,kt

)︃
− 1

}︃]︃
,

a9,± = − =
1

2
(λ2 ±Q),

f1(y, l) = A11A22 (Tyl − T0l) ,

f2(y, l) = A3−l,3−lCl + (A22B11 + A11B22)Tyl − (3− 2l)A11B2,3−lT0,tu,1

+ (3− 2l)A22B1,2−lT0,tu,2,

f3(y, l) = (3− 2l)B2,3−lCtu,1 − (3− 2l)B1,3−lCtu,2

+ (B11B22 −B12B21)Tyl,

P1(n) = PBZ(+, a9,+, z + nL)− PBZ(+, a9,+,−z + (2− n)L),

P2(n) = PBZ(−, a9,+, z + nL)− PBZ(−, a9,+,−z + (2− n)L),

P3(n) = PBZ(+, a9,−, z + nL)− PBZ(+, a9,−,−z + (2− n)L),

P4(n) = PBZ(−, a9,−, z + nL)− PBZ(−, a9,−,−z + (2− n)L),

P5(n) = PBZ(+, 0, z + nL)− PBZ(+, 0,−z + (2− n)L),

P6(n) = PBZ(−, 0, z + nL)− PBZ(−, 0,−z + (2− n)L).

The solution for the subcase Â ̸= 0 ∧ B̂ ̸= 0 is

T (z, t) = T∞,l + F1(1, l)P1(0)− F2(1, l)P2(0) + F5(1, l)P3(0)− F4(1, l)P4(0)

+ F6(1, l)P5(0)− F7(1, l)P6(0)− F1(2, l)P1(1) + F2(2, l)P2(1)

− F5(2, l)P3(1) + F4(2, l)P4(1)− F6(2, l)P5(1) + F7(2, l)P6(1)

+ F3(1, l)[−PBZ(−,W, z) + PBZ(+,W, z) + PBZ(−,W,−z + 2L)
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− PBZ(+,W,−z + 2L)] + F3(2, l)[−PBZ(−,W, z + L)

+ PBZ(−,W, z + L)− PBZ(−,W,−z + L) + PBZ(+,W,−z + L)].

The following parameters and abbreviations are used:

W =
(B11 −B22)

2 + 4B12B21

(A22 − A11)(B22 −B11)
,

Q =
√︂
λ2
2 − 4λ3,

V0 =

√︁
(B11 −B22)2 + 4B12B21

4A11A22|λ22λ23|
,

a1,± =
A11 + A22

2
± 2|λ22λ23|√︁

(B11 −B22)2 + 4B12B21

,

a2,± =
B11 +B22

2
± sign(λ22λ23)

2

√︁
(B11 −B22)2 + 4B12B21

F1(y, l) = V0 {(3− 2l)fy(y, l)λ22λ37 + [(3− 2l)(f1(y, l)λ23 + f2(y, l)λ22)

+Bl,3−lf1(y, 3− l)]λ40 + [(3− 2l)(f2(y, l)λ23 + f3(y, l)λ22)

+Bl,3−lf2(y, 3− l)]λ43 + [(3− 2l)f3(y, l)λ23 +Bl,3−lf3(y, 3− l)]λ46}

+
1

2a11a22Q

(︃
f1(y, l)

2
(λ2 +Q)− f2(y, l) +

f3(y, l

2λ3

(λ2 −Q)

)︃
,

F2(y, l) = F1(y, l)−
1

A11A22Q

(︃
f1(y, l)

2
(λ2 +Q)− f2(y, l) +

f3(y, l)

2λ3

(λ2 −Q)

)︃
,

F3(y, l) = V0

{︃
(3− 2l)f1(y, l)λ22λ38 + λ44

(︃
−W [(3− 2l)(f1(y, l)λ23 + f2(y, l)λ22)

+Bl,3−lf1(y, 3− l)] + [(3− 2l)(f2(y, l)λ23 + f3(y, l)λ22) +Bl,3−lf2(y, 3− l)]

− 1

W
[(3− 2l)f3(y, l)λ23 +Bl,3−lf3(y, 3− l)]

)︃}︃
,

F4(y, l) = −F1(y, l)− F3(y, l) + V0

{︃
(3− 2l)f1(y, l)λ22 −

1

Wλ3

[(3− 2l)f3(y, l)λ23

+Bl,3−lf3(y, 3− l)]

}︃
+

1

2a11a22Q

(︃
−2f2(y, l) + f3(y, l)

λ2

λ3

+ f1(y, l)λ2

)︃
,

F5(y, l) = −F1(y, l)− F3(y, l) + V0

{︃
(3− 2l)f1(y, l)λ22 −

1

Wλ3

[(3− 2l)f3(y, l)λ23

+Bl,3−lf3(y, 3− l)]

}︃
+

1

2A11A22

(︃
f1(y, l)−

f3(y, l)

λ3

)︃
,

F6(y, l) =
1

A11A22λ3

{︄
2

sign(λ22λ23)
√︁

(B11 −B22)2 + 4B12B21

·[(3− 2l)f3(y, l)λ23 +Bl,3−lf3(y, 3− l)] + f3(y, l)} ,

F7(y, l) = F6(y, l)−
f3(y, l

A11A22λ3

,
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λ44 =
1

λ3 − λ2W +W 2
, λ37 =

(Q+ λ2)(λ3 − λ2W ) + 2Wλ3

2Q
λ44,

λ38 = −λ2(λ3 − λ2W −W 2) +QW 2 + 2W 3

λ2 −Q− 2W
λ44, λ40 =

−2λ3 + λ2W +WQ

2Q
λ44,

λ43 =
λ2 −Q− 2W

2Q
λ44, λ46 = −(−λ2 +Q)(−λ2 +W )− λ3

2λ3Q
λ44.

The solution for the subcase (Â = 0 ∧ B̂ ̸= 0) ∨ (B̂ = 0) is

T (z, t) = T∞,l +X1(l, 1, 1, 1)P1(0)−X1(l, 1,−1, 1)P2(0) +X1(l, 1, 1,−1)P3(0)

−X1(l, 1,−1,−1)P4(0) +X2(l, 1, 1)P5(0)−X2(l, 1,−1)P6(0)

−X1(l, 2, 1, 1)P1(1) +X1(l, 2,−1, 1)P2(1)−X1(l, 2, 1,−1)P3(1)

+X1(l, 2,−1,−1)P4(1)−X2(l, 2, 1)P5(1) +X2(l, 2,−1)P6(1)

+X3(l, 1) (−Term0,−(z) + Term0,+(z) + Term0,−(−z + 2L)

−Term0,+(−z + 2L)) +X3(l, 2) (Term0,−(z + L)− Term0,+(z + L)

−Term0,−(−z + L) + Term0,+(−z + L)) .

The following parameters and abbreviations are used:

Term0,±(a6) =

a6
√
a1 exp

(︃
−a26a1

4t
− a2,±t

a1

)︃
2
√
t3π

,

a1,± =
A11 + A22

2
, a2,± =

B11 +B22

2
±W0,

X1(l, y, v1, v2) =
1

2A11A22W0

√︁
λ2
2 − 4λ3

[(f1(y, l) ((3− 2y)(3− 2l)λ22λ2 + (3− 2l)λ23

+v1W0) + f2(y, l)(3− 2l)λ22 +Bl,3−lf1(y, 3− l))
v2λ2 +

√︁
λ2
2 − 4λ3

2

− v2 ((3− 2y)f1(y, l)(3− 2l)λ22λ3 + f2(y, l) ((3− 2l)λ23 + v1W0)

+Bl,3−lf3(y, 3− l))
λ2 − v2

√︁
λ2
2 − 4λ3

2λ3

+ f3(y, l)(3− 2l)λ22

+Bl,3−lf2(y, 3− l)) + v2 (f3(y, l) ((3− 2l)λ23 + v1W0)] ,

X2(l, y, v1) =
1

2A11A22W0λ3

(f3(y, l) ((3− 2l)λ23 + v1W0)− bl,3−lf3(y, 3− l)) ,

X3(l, y) =
f1(y, l)(3− 2l)λ22

2A11A22W0

.
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C Exemplary MATLAB code
At first, the solution approach for the single wire cable with constant excitations is imple-

mented:

1 % temperature calculation for single wire cable
2
3 % define global parameters
4 global C_tot R R_i R_ref T_ref r_i I nu_T epsilon T_e sigma g T_0 T_1 T_2 % necessary

for solution with pdepe
5
6 %% parameters
7 % geometrical and physical cable properties
8 L = 1.5; % cable length, in m
9

10 n_strand = 30; % number of strands of the inner conductor
11 d_strand = 0.25e−3; % strand diameter, in m
12 d_i = 0.7e−3; % insulation thickness, in m
13 r_i = 1.7e−3; % outer insulation radius, in m
14
15 k_i = 0.7; % correction factor for R_i
16
17 c_c = 3.4e6; % specific heat capacitance of conductor, in J/m^3K
18 c_i = 2.2450e6; % specific heat capacitance of insulation, in J/m^3K
19
20 lambda_c = 386; % thermal conductivity of conductor, in W/(m*K)
21 lambda_i = 0.21; % thermal conductivity of insulation, in W/(m*K)
22
23 R_ref = 13e−3; % electrical reference resistance at T_ref, in Ohm/m
24 T_ref = 24.9; % reference temperature, in degC
25
26 nu_T = 3.93e−3; % linear temperature coefficient of conductor, in 1/K
27 epsilon = 0.95; % emissivity of cable surface
28
29 % define time and spatial points for analytical calculations
30 z = linspace(0,L,151); % z for analytical calculations, in m
31 t_end = 490; % last calculated time, in s
32 t = linspace(0,t_end,99); % t for analytical calculations, in s
33
34 % define time and spatial points for numerical calculations
35 Delta_z_num = L/150; % Delta z for numerical calculations, in m
36 z_num = 0:Delta_z_num:L; % z for numerical calculations, in m
37 Delta_t_num = 1; % Delta t for numerical calculations, in s
38 t_num = 0:Delta_t_num:round(t_end); % t for numerical calculations, in s
39
40 % current
41 I = 30; % current that is switched on at t = 0 s, in A
42
43 % envirionmental, initial and termination temperatures
44 T_e = 25; % environmental temperature, in degC
45 T_0 = 25; % initial conductor temperature for all z, in degC
46 T_1 = 25; % conductor temperature at z = 0 m for all times, in degC
47 T_2 = 25; % conductor temperature at z = L for all times, in degC
48
49 % termination condition
50 Delta_Tlim = 0.001; % termination condition, if temperatures from two iterations
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deviate by less than this value, iteration is stopped, in K
51
52 % number of addends for Geen's functions solutions
53 n_max = 1; % number of addends for Green's functions solution (time domain)
54 m_max = 10; % number of addends for Green's functions solution (Laplace domain), for

initial value and inhomogeneity
55 m_max_2 = 2000; % number of addends for Green's functions solution (Laplace domain),

for termination conditions
56
57 %% constants
58 sigma = 5.67040e−8; % Stefan−Boltzmann constant, in W/(m^2K^4)
59 g = 9.81; % graviational acceleration, in m/s^2
60
61 %% precalculations
62 % effective and geometrical conductor radius
63 r_ceff = sqrt(n_strand)*d_strand/2; % effective conductor radius, in m
64 r_cgeom = r_i−d_i; % geometrical conductor radius, in m
65
66 % calculation heat capacitance
67 C_c = c_c*pi*r_ceff^2; % heat capacitance of conductor
68 C_i = c_i*pi*(r_i^2−r_cgeom^2); % heat capacitance of insulation
69 C_tot = C_i + C_c; % total cable heat capacitance
70
71 % characteristic cable length
72 l_alpha = 2*r_i;
73
74 % resistance for heat conduction through insulation
75 R_i = k_i*log(r_i/r_cgeom)/(2*pi*lambda_i);
76
77 % resistance for axial heat conduction in conductor
78 R = 1/(lambda_c*pi*r_ceff^2);
79
80 % initialization
81 R_alpha_initial = 3.5; % initial value for R_alpha
82
83 % output
84 disp('Precalculations done.');
85
86 %% iterative temperature calculation
87 tic % for time measurement
88
89 T = zeros(numel(z), numel(t)); % initialization cable temperature
90 T(:,1) = T_0*ones(size(T(:,1))); % use initial cable temperature for t = 0 s
91
92 A = R*C_tot; % parameter of the PDE
93
94 T_guess = T_e; % initialization value for cable temperature
95
96 for idx_z = 1 : numel(z)
97 z_loc = z(idx_z); % local position
98 % termination conditions, no calculation necessary:
99 if z(idx_z) == 0

100 T(idx_z,:) = T_1*ones(1,numel(t));
101 continue
102 elseif z(idx_z) == L
103 T(idx_z,:) = T_2*ones(1,numel(t));
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104 continue
105 end
106 for idx_t = 2 : numel(t) % start with second time step, first one is t = 0 s (

initial cable temperature)
107 t_loc = t(idx_t); % local time
108 % initializations
109 R_alpha = R_alpha_initial;
110 counter_loop_it = 0; % counter for loop for iterations
111 T_last = −100;
112 % iteration for temperature calcualation
113 while counter_loop_it < 100 && (abs(T_last−T(idx_z,idx_t))>Delta_Tlim) %

termination condition
114 counter_loop_it = counter_loop_it + 1;
115 if counter_loop_it > 1
116 T_last = T(idx_z,idx_t); % update temperature
117 else
118 T_last = T_guess; % initialization temperature
119 end
120 % electrical losses
121 P_el = I^2*R_ref*(1+nu_T*(T_last − T_ref)); % electrical losses = thermal

power
122
123 % surface temperature
124 T_s = T_last−R_i/(R_i+R_alpha)*(T_last−T_e); % surface temperature
125
126 % 4th order polynomials for parameters
127 T_m = 0.5*(T_s+T_e); % mean temperature between surface and environement
128 v_air = 1.77e−17*T_m^4−4.83e−14*T_m^3+1.14e−10*T_m^2+8.81e−8*T_m+1.35e−5;

% kinematic viscosity of the air, in m^2/s
129 Pr = 2.23e−13*T_m^4−6.27e−10*T_m^3+5.91e−7*T_m^2−1.58e−4*T_m+0.711; %

Prandtl number
130 lambda_air = −1.35e−14*T_m^4+3.64e−11*T_m^3−4.33e−8*T_m^2+7.7e−5*T_m+2.43e

−2; % thermal conductivity of the air, in W/(m*K)
131
132 % temperatures in Kelvin
133 T_sK = T_s+273.15; % surface temperature in Kelvin
134 T_eK = T_e+273.15; % environmental temperature in Kelvin
135
136 % calculation of R_alpha
137 alpha_rad = epsilon * sigma * (T_sK^2+T_eK^2)*(T_sK+T_eK); % heat transfer

coefficient for radiation
138 Gr = g*l_alpha^3*abs(T_s−T_e)/(T_eK*v_air^2); % Grashof number
139 Ra = Gr*Pr; % Rayleigh number
140 Nu = (0.6+0.387*Ra^(1/6)/((1+(0.559/Pr)^(9/16))^(8/27)))^2; % Nusselt

number
141 alpha_conv = Nu*lambda_air/l_alpha; % heat transfer coefficient for

convection
142 R_alpha = 1/((alpha_conv + alpha_rad)*2*pi*r_i); % resistance for

convection and radiation
143
144 % coupling between conductor and environment
145 G = 1/(R_i+R_alpha); % conductance for coupling between conductor and

environment
146
147 % PDE parameters
148 B = R*G;
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149 C = −R*(P_el+G*T_e);
150
151 % temperature calculation for different solutions
152 T(idx_z,idx_t) = T_sw_La(A,B,C,L,T_0,T_1,T_2,z_loc,t_loc); % solution from

Laplace domain with approximation
153 % T(idx_z,idx_t) = T_sw_G(A,B,C,L,T_0,T_1,T_2,z_loc,t_loc,n_max); %

solution with Green's function in time domain
154 % T(idx_z,idx_t) = T_sw_GL(A,B,C,L,T_0,T_1,T_2,z_loc,t_loc,m_max,m_max_2);

% solution with Green's function in Laplace domain
155
156 end
157 time = toc; % measure time
158 end
159 end
160 disp(['Analytical calculation done (' num2str(time) ' s).']) % print time
161
162 %% numerical temperature calculation with pdepe
163 tic % for time measurement
164 m = 0;
165 sol = pdepe(m,@pde,@pdeic,@pdebc,z_num,t_num); % calculate solution
166 T_pdepe = transpose(sol(:,:,1));
167 time = toc; % measure time
168 disp(['Numerical calculation done (' num2str(time) ' s).']) % print time
169
170 %% local functions for pdepe
171 function [c,f,s] = pde(~,~,u,dudz) % pde(z,t,u,dudz)
172 global C_tot R R_i R_ref T_ref r_i I nu_T epsilon T_e sigma g % global variables
173
174 % characteristic cable length
175 l_alpha = 2*r_i;
176
177 % electrical losses
178 P_el = @(T) −I^2*R_ref*(1+nu_T*(T − T_ref));
179
180 % 4th order polynomials for parameters
181 v_air = @(T_s) 1.77e−17*(0.5*(T_s + T_e))^4−4.83e−14*(0.5*(T_s + T_e))^3+1.14e

−10*(0.5*(T_s + T_e))^2+8.81e−8*(0.5*(T_s + T_e))+1.35e−5; % kinematic viscosity
of the air, in m^2/s

182 Pr = @(T_s) 2.23e−13*(0.5*(T_s + T_e))^4−6.27e−10*(0.5*(T_s + T_e))^3+5.91e−7*(0.5*(
T_s + T_e))^2−1.58e−4*(0.5*(T_s + T_e))+0.711; % Prandtl number

183 lambda_air = @(T_s) −1.35e−14*(0.5*(T_s + T_e))^4+3.64e−11*(0.5*(T_s + T_e))^3−4.33e
−8*(0.5*(T_s + T_e))^2+7.7e−5*(0.5*(T_s + T_e))+2.43e−2; % thermal conductivity of
the air, in W/(m*K)

184
185 % temperatures in Kelvin
186 T_eK = T_e+273.15; % environmental temperature in Kelvin
187
188 % calculation of R_alpha
189 alpha_rad = @(T_s) epsilon * sigma * ((T_s + 273.15).^2+T_eK^2)*(T_s + 273.15+T_eK); %

heat transfer coefficient for radiation
190 Gr = @(T_s) g*l_alpha^3*abs(T_s−T_e)./(T_eK*v_air(T_s)^2); % Grashof number
191 Ra = @(T_s) Gr(T_s).*Pr(T_s); % Rayleigh number
192 Nu = @(T_s) (0.6+0.387*Ra(T_s)^(1/6)./((1+(0.559/Pr(T_s))^(9/16))^(8/27)))^2; %

Nusselt number
193 alpha_conv = @(T_s) Nu(T_s)*lambda_air(T_s)/l_alpha; % heat transfer coefficient for

convection
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194 R_alpha = @(T_s) 1/((alpha_conv(T_s) + alpha_rad(T_s))*2*pi*r_i); % resistance for
convection and radiation

195
196 % coupling between conductor and environment
197 G = @(T_s) 1./(R_i+R_alpha(T_s)); % conductance for coupling between conductor and

environment
198
199 % code equations
200 c = [C_tot*R;0];
201 f = [1; 0] .* dudz;
202 s = [−R*G(u(2))*u(1)+R*(−P_el(u(1))+G(u(2))*T_e); u(1)−u(2)−R_i*(u(1)−T_e)*G(u(2))]; %

u = [T; T_s]
203
204 end
205
206 function u0 = pdeic(~) % pdeic(z)
207 % code initial condition
208 global T_0
209 u0 = T_0 * [1;1];
210 end
211
212 function [pl,ql,pr,qr] = pdebc(~,ul,~,ur,~) % pdebc(zl,ul,zr,ur,t)
213 % code boundary condition
214 global T_1 T_2
215 pl = ul − T_1*[1;1];
216 ql = [0; 0];
217 pr = ur − T_2*[1;1];
218 qr = [0; 0];
219 end

For the solution in the Laplace domain with approximation, the following function is used:
1 function [T] = T_sw_La(A,B,C,L,T_0,T_1,T_2,z,t)
2
3 Lambda_1 = @(z) erf(z/2*sqrt(A/t));
4 theta_1 = @(z) −exp(−z*sqrt(B))*erfc((z*A−2*t*sqrt(B))/(2*sqrt(A*t)));
5 theta_2 = @(z) −exp( z*sqrt(B))*erfc((z*A+2*t*sqrt(B))/(2*sqrt(A*t)));
6 Lambda_2 = @(z) theta_1(z) + theta_2(z);
7 Lambda_3 = exp(−B/A*t);
8
9 T_ic_sw_La = @(T_0) −T_0*Lambda_3*(1−Lambda_1(z)−Lambda_1(L−z));

10 T_bc_sw_La = @(T_bc,z) −T_bc/2*Lambda_2(z);
11 T_inh_sw_La = −C/B + T_ic_sw_La(C/B) + T_bc_sw_La(C/B,z) + T_bc_sw_La(C/B,L−z);
12
13 T = T_ic_sw_La(T_0) + T_bc_sw_La(T_1,z) + T_bc_sw_La(T_2,L−z) + T_inh_sw_La;
14
15 end

For the solution via Green’s functions in the time domain, the following function is used:
1 function [T] = T_sw_G(A,B,C,L,T_0,T_1,T_2,z,t,n_max)
2
3 Lambda_1 = @(z) erf(z/2*sqrt(A/t));
4 theta_1 = @(z) −exp(−z*sqrt(B))*erfc((z*A−2*t*sqrt(B))/(2*sqrt(A*t)));
5 theta_2 = @(z) −exp( z*sqrt(B))*erfc((z*A+2*t*sqrt(B))/(2*sqrt(A*t)));
6 Lambda_2 = @(z) theta_1(z) + theta_2(z);
7 Lambda_3 = exp(−B/A*t);
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8
9 % expressions without sum

10 T_ic_sw_G = @(T_0) −T_0*Lambda_3*(1−Lambda_1(z)−Lambda_1(L−z));
11 T_bc_sw_G = @(T_bc,z) −T_bc/2*Lambda_2(z);
12
13 % additional terms in sum
14 for n = 1 : n_max
15 T_ic_sw_G = @(T_0) T_ic_sw_G(T_0) − T_0*Lambda_3*(Lambda_1(−(L−z)+2*n*L)−Lambda_1(

z+2*n*L)+Lambda_1(−(L−z)−2*n*L)−Lambda_1(z−2*n*L));
16 T_bc_sw_G = @(T_bc,z) T_bc_sw_G(T_bc,z) − T_bc/2*(Lambda_2(z+2*n*L)−Lambda_2(−z+2*

n*L));
17 end
18
19 % expression for inhomogeneities
20 T_inh_sw_G = −C/B + T_ic_sw_G(C/B) + T_bc_sw_G(C/B,z) + T_bc_sw_G(C/B,L−z);
21
22 % temperature calculation
23 T = T_ic_sw_G(T_0) + T_bc_sw_G(T_1,z) + T_bc_sw_G(T_2,L−z) + T_inh_sw_G;
24
25 end

For the solution via Green’s functions in the Laplace domain, the following function is used:

1 function [T] = T_sw_GL(A,B,C,L,T_0,T_1,T_2,z,t,m_max,m_max_2)
2
3 % solution part for initial condition and inhomogeneity
4 T_ic_sw_GL = 0;
5 T_inh_sw_GL = 0;
6 for n = 0 : m_max
7 T_ic_sw_GL = T_ic_sw_GL + T_0*4/pi*exp(−t/A*(((2*n+1)*pi/L)^2+B))*sin((2*n+1)*pi/L

*z)/(2*n+1);
8 T_inh_sw_GL = T_inh_sw_GL −C*4/pi*(1−exp(−t/A*(((2*n+1)*pi/L)^2+B)))/(B+((2*n+1)*

pi/L)^2 )*sin((2*n+1)*pi/L*z)/(2*n+1);
9 end

10
11 % solution part for boundary conditions
12 T_bc_sw_GL_1 = 0;
13 T_bc_sw_GL_2 = 0;
14 for n = 1 : m_max_2
15 T_bc_sw_GL_1 = T_bc_sw_GL_1 + 2/L*T_1*(1−exp(−t/A*((n*pi/L)^2+B)))*(n*pi/L*sin(n*

pi/L*z))/((n*pi/L)^2+B);
16 T_bc_sw_GL_2 = T_bc_sw_GL_2 + 2/L*T_2*(1−exp(−t/A*((n*pi/L)^2+B)))*(n*pi/L*sin(n*

pi/L*(L−z)))/((n*pi/L)^2+B);
17 end
18
19 % temperature calculation
20 T = T_ic_sw_GL + T_bc_sw_GL_1 + T_bc_sw_GL_2 + T_inh_sw_GL;
21
22 end

The approach for a general cable arrangement is shown for an arrangement of three not
identical cables with constant excitations:

1 % temperature calculation for three not identical single wire cables
2
3 % define global parameters
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4 global G_coupling C_tot R R_i R_ref T_ref r_i I nu_T epsilon T_e sigma g k T_0 T_1 T_2
n % necessary for solution with pdepe

5
6 %% parameters
7 % geometrical and physical cable properties
8 L = 1; % cable length, in m
9 n = 3; % number of cables

10
11 % cable 1
12 n_strand_1 = 39; % number of strands of the inner conductor
13 d_strand_1 = 0.25e−3; % strand diameter, in m
14 d_i_1 = 0.8e−3; % insulation thickness, in m
15 r_i_1 = 1.7e−3; % outer insulation radius, in m
16 k_i_1 = 0.7; % correction factor for R_i
17 k_1 = 1.55; % correction factor for G
18 R_ref_1 = 7.2e−3; % electrical reference resistance at T_ref, in Ohm/m
19 T_ref_1 = 22.7; % reference temperature, in degC
20 I_1 = 30; % current that is switched on at t = 0 s, in A
21
22 % cable 2
23 n_strand_2 = 16; % number of strands of the inner conductor
24 d_strand_2 = 0.17e−3; % strand diameter, in m
25 d_i_2 = 0.65e−3; % insulation thickness, in m
26 r_i_2 = 1.1e−3; % outer insulation radius, in m
27 k_i_2 = 0.7; % correction factor for R_i
28 k_2 = 2.01; % correction factor for G
29 R_ref_2 = 39e−3; % electrical reference resistance at T_ref, in Ohm/m
30 T_ref_2 = 22.8; % reference temperature, in degC
31 I_2 = 15; % current that is switched on at t = 0 s, in A
32
33 % cable 3
34 n_strand_3 = n_strand_2; % number of strands of the inner conductor
35 d_strand_3 = d_strand_2; % strand diameter, in m
36 d_i_3 = d_i_2; % insulation thickness, in m
37 r_i_3 = r_i_2; % outer insulation radius, in m
38 k_i_3 = k_i_2; % correction factor for R_i
39 k_3 = k_2; % correction factor for G
40 R_ref_3 = R_ref_2; % electrical reference resistance at T_ref, in Ohm/m
41 T_ref_3 = T_ref_2; % reference temperature, in degC
42 I_3 = 0; % current that is switched on at t = 0 s, in A
43
44 % coupling
45 G12 = 0.13; % coupling between cable 1 and cable 2
46 G23 = 0.17; % coupling between cable 2 and cable 3
47 G13 = G12; % coupling between cable 1 and cable 3
48
49 % parameters for all cables
50 nu_T = 3.93e−3; % linear temperature coefficient of conductor, in 1/K
51 epsilon = 0.95; % emissivity of cable surface
52
53 c_c = 3.4e6; % specific heat capacitance of conductor, in J/m^3K
54 c_i = 2.2450e6; % specific heat capacitance of insulation, in J/m^3K
55
56 lambda_c = 386; % thermal conductivity of conductor, in W/(m*K)
57 lambda_i = 0.21; % thermal conductivity of insulation, in W/(m*K)
58
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59 % define time and spatial points for analytical calculations
60 z = linspace(0,L,11); % z for analytical calculations, in m
61 t_end = 1e3; % last calculated time, in s
62 t = linspace(0,t_end,11); % t for analytical calculations, in s
63
64 % define time and spatial points for numerical calculations
65 Delta_z_num = L/10; % Delta z for numerical calculations, in m
66 z_num = 0:Delta_z_num:L; % z for numerical calculations, in m
67 Delta_t_num = 100; % Delta t for numerical calculations, in s
68 t_num = 0:Delta_t_num:round(t_end); % t for numerical calculations, in s
69
70 % envirionmental, initial and termination temperatures
71 T_e = 25; % environmental temperature, in degC
72 T_0 = 25*[1; 1; 1]; % initial conductor temperatures for all z for all cables, in degC
73 T_1 = 10*[1; 1; 1]; % conductor temperatures at z = 0 m for all times for all cables,

in degC
74 T_2 = 50*[1; 1; 1]; % conductor temperatures at z = L for all times for all cables, in

degC
75
76 % termination condition
77 Delta_Tlim = 0.001; % termination condition, if temperatures from two iterations

deviate by less than this value, iteration is stopped, in K
78
79 % number of addends for Geen's functions solutions
80 m_max = 10; % number of addends for Green's functions solution (Laplace domain), for

initial value and inhomogeneity
81 m_max_2 = 500; % number of addends for Green's functions solution (Laplace domain),

for termination conditions
82
83 %% constants
84 sigma = 5.67040e−8; % Stefan−Boltzmann constant, in W/(m^2K^4)
85 g = 9.81; % graviational acceleration, in m/s^2
86
87 %% precalculations
88 % change first and last z, if at cable termination
89 if z(1) == 0
90 z(1) = z(1) + 5e−3; % to avoid unsteady behavior at boundary
91 end
92 if z(end) == L
93 z(end) = z(end) − 5e−3; % to avoid unsteady behavior at boundary
94 end
95
96 % combine cable parameters to vectors
97 n_strand = [n_strand_1;n_strand_2;n_strand_3]; % number of strands of the inner

conductor
98 d_strand = [d_strand_1;d_strand_2;d_strand_3]; % strand diameter, in m
99 d_i = [d_i_1;d_i_2;d_i_3]; % insulation thickness, in m

100 r_i = [r_i_1;r_i_2;r_i_3]; % outer insulation radius, in m
101 k_i = [k_i_1;k_i_2;k_i_3]; % correction factor for R_i
102 k = [k_1;k_2;k_3]; % correction factor for G
103 R_ref = [R_ref_1;R_ref_2;R_ref_3]; % electrical reference resistance at T_ref, in Ohm/

m
104 T_ref = [T_ref_1;T_ref_2;T_ref_3]; % reference temperature, in degC
105 I = [I_1;I_2;I_3]; % current that is switched on at t = 0 s, in A
106
107 % matrix for coupling
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108 G_coupling = [0, G12, G13; G12, 0, G23; G13, G23, 0];
109
110 % effective and geometrical conductor radius
111 r_ceff = sqrt(n_strand).*d_strand/2; % effective conductor radius, in m
112 r_cgeom = r_i−d_i; % geometrical conductor radius, in m
113
114 % calculation heat capacitance
115 C_c = c_c*pi*r_ceff.^2; % heat capacitance of conductor
116 C_i = c_i*pi*(r_i.^2−r_cgeom.^2); % heat capacitance of insulation
117 C_tot = C_i + C_c; % total cable heat capacitance
118
119 % characteristic cable length
120 l_alpha = 2*r_i;
121
122 % resistance for heat conduction through insulation
123 R_i = k_i.*log(r_i./r_cgeom)/(2*pi*lambda_i);
124
125 % resistance for axial heat conduction in conductor
126 R = 1./(lambda_c*pi*r_ceff.^2);
127
128 % initialization
129 R_alpha_initial = 3.5; % initial value for R_alpha
130
131 % output
132 disp('Precalculations done.');
133
134 %% iterative temperature calculation
135 tic % for time measurement
136
137 T = zeros(numel(z), numel(t), n); % initialization cable temperature
138 for ii = 1 : n
139 T(:,1,ii) = T_0(ii)*ones(size(T(:,1,ii))); % use initial cable temperature for t =

0 s
140 end
141
142 A = diag(R.*C_tot); % parameter of the PDE
143
144 T_guess = T_e*ones(n,1); % initialization value for cable temperature
145
146 for idx_z = 1 : numel(z)
147 z_loc = z(idx_z); % local position
148 % termination conditions, no calculation necessary:
149 if z(idx_z) == 0
150 for ii = 1 : n
151 T(idx_z,:) = T_1(ii)*ones(1,numel(t),ii);
152 end
153 continue
154 elseif z(idx_z) == L
155 for ii = 1 : n
156 T(idx_z,:) = T_2(ii)*ones(1,numel(t),ii);
157 end
158 continue
159 end
160 for idx_t = 2 : numel(t) % start with second time step, first one is t = 0 s (

initial cable temperature)
161 t_loc = t(idx_t); % local time
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162 % initializations
163 T_ = zeros(n,1);
164 R_alpha = R_alpha_initial;
165 counter_loop_it = 0; % counter for loop for iterations
166 T_last = −100*ones(n,1);
167 % iteration for temperature calcualation
168 while (counter_loop_it < 100 && sum(abs(T_last−T_))>Delta_Tlim) % termination

condition
169 counter_loop_it = counter_loop_it + 1;
170 if counter_loop_it > 1
171 T_last = T_; % update temperature
172 else
173 T_last = T_guess; % initialization temperature
174 end
175 % electrical losses
176 P_el = I.^2.*R_ref.*(1+nu_T*(T_last − T_ref)); % electrical losses =

thermal power
177
178 % surface temperature
179 T_s = T_last−R_i./(R_i+R_alpha).*(T_last−T_e); % surface temperature
180
181 % 4th order polynomials for parameters
182 T_m = 0.5*(T_s+T_e); % mean temperature between surface and environement
183 v_air = 1.77e−17*T_m.^4−4.83e−14*T_m.^3+1.14e−10*T_m.^2+8.81e−8*T_m+1.35e

−5; % kinematic viscosity of the air, in m^2/s
184 Pr = 2.23e−13*T_m.^4−6.27e−10*T_m.^3+5.91e−7*T_m.^2−1.58e−4*T_m+0.711; %

Prandtl number
185 lambda_air = −1.35e−14*T_m.^4+3.64e−11*T_m.^3−4.33e−8*T_m.^2+7.7e−5*T_m

+2.43e−2; % thermal conductivity of the air, in W/(m*K)
186
187 % temperatures in Kelvin
188 T_sK = T_s+273.15; % surface temperature in Kelvin
189 T_eK = T_e+273.15; % environmental temperature in Kelvin
190
191 % calculation of R_alpha
192 alpha_rad = epsilon * sigma * (T_sK.^2+T_eK^2).*(T_sK+T_eK); % heat

transfer coefficient for radiation
193 Gr = g*l_alpha.^3.*abs(T_s−T_e)./(T_eK.*v_air.^2); % Grashof number
194 Ra = Gr.*Pr; % Rayleigh number
195 Nu = (0.6+0.387*Ra.^(1/6)./((1+(0.559./Pr).^(9/16)).^(8/27))).^2; %

Nusselt number
196 alpha_conv = Nu.*lambda_air./l_alpha; % heat transfer coefficient for

convection
197 R_alpha = 1./((alpha_conv + alpha_rad)*2*pi.*r_i); % resistance for

convection and radiation
198
199 % coupling between conductor and environment
200 G = diag(1./(k.*(R_i+R_alpha))+sum(G_coupling,2))−G_coupling; %

conductance for coupling between conductor and environment
201
202 % PDE parameters
203 B = diag(R)*G;
204 C = −diag(R)*(T_e./(k.*(R_i+R_alpha))+P_el);
205
206 % temperature calculation
207 T_ = T_gen_GL(A, B, C, n, L, T_0, T_1, T_2, z_loc, t_loc, m_max, m_max_2);
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% solution with Green's function in Laplace domain
208 end
209 T(idx_z,idx_t,:) = T_; % write calculated temperature to variable
210 end
211 end
212 time = toc; % measure time
213 disp(['Analytical calculation done (' num2str(time) ' s).']) % print time
214
215 %% numerical temperature calculation with pdepe
216 tic % for time measurement
217 m = 0;
218 sol = pdepe(m,@pde,@pdeic,@pdebc,z_num,t_num);
219 for ii = 1 : n
220 T_pdepe(:,:,ii) = transpose(sol(:,:,ii));
221 end
222 time = toc; % measure time
223 disp(['Numerical calculation done (' num2str(time) ' s).']) % print time
224
225 %% local functions for pdepe
226 function [c_e,f,s] = pde(~,~,u,dudz) % pde(z,t,u,dudz)
227 global G_coupling C_tot R R_i R_ref T_ref r_i I nu_T epsilon T_e sigma g k n
228
229 % characteristic cable length
230 l_alpha = @(no) 2*r_i(no);
231
232 % electrical losses
233 P_el = @(no, T) −I(no)^2*R_ref(no)*(1+nu_T*(T − T_ref(no)));
234
235 % 4th order polynomials for parameters
236 v_air = @(T_s) 1.77e−17*(0.5*(T_s + T_e))^4−4.83e−14*(0.5*(T_s + T_e))^3+1.14e

−10*(0.5*(T_s + T_e))^2+8.81e−8*(0.5*(T_s + T_e))+1.35e−5; % kinematic viscosity
of the air, in m^2/s

237 Pr = @(T_s) 2.23e−13*(0.5*(T_s + T_e))^4−6.27e−10*(0.5*(T_s + T_e))^3+5.91e−7*(0.5*(
T_s + T_e))^2−1.58e−4*(0.5*(T_s + T_e))+0.711; % Prandtl number

238 lambda_air = @(T_s) −1.35e−14*(0.5*(T_s + T_e))^4+3.64e−11*(0.5*(T_s + T_e))^3−4.33e
−8*(0.5*(T_s + T_e))^2+7.7e−5*(0.5*(T_s + T_e))+2.43e−2; % thermal conductivity of
the air, in W/(m*K)

239
240 % temperature in Kelvin
241 T_eK = T_e+273.15; % environmental temperature in Kelvin
242
243 % calculation of R_alpha
244 alpha_rad = @(T_s) epsilon * sigma * ((T_s + 273.15)^2+T_eK^2)*(T_s + 273.15+T_eK); %

heat transfer coefficient for radiation
245 Gr = @(T_s, no) g*l_alpha(no)^3*abs(T_s−T_e)/(T_eK*v_air(T_s)^2); % Grashof number
246 Ra = @(T_s, no) Gr(T_s, no)*Pr(T_s); % Rayleigh number
247 Nu = @(T_s, no) (0.6+0.387*Ra(T_s,no)^(1/6)/((1+(0.559./Pr(T_s))^(9/16))^(8/27))).^2;

% Nusselt number
248 alpha_conv = @(T_s, no) Nu(T_s, no)*lambda_air(T_s)/l_alpha(no); % heat transfer

coefficient for convection
249 R_alpha = @(T_s, no) 1./((alpha_conv(T_s, no) + alpha_rad(T_s))*2*pi*r_i(no)); %

resistance for convection and radiation
250
251 % coupling between conductor and environment
252 G = @(T_s, no) 1./(k(no).*(R_i(no)+R_alpha(T_s, no))); % conductance for coupling

between conductor and environment
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253
254 % code equations
255 c_e = [R.*C_tot;zeros(n,1)];
256 f = [ones(n,1);zeros(n,1)] .* dudz;
257 s = zeros(2*n,1);
258 for ii = 1 : n
259 s(ii) = R(ii)*(T_e*G(u(n+ii),ii)−P_el(ii,u(ii)));
260 for jj = 1 : n
261 if ii ~= jj
262 s(ii) = s(ii) + R(ii)*G_coupling(ii,jj)*u(jj);
263 else
264 G_ij = G(u(n+ii),ii)+sum(G_coupling(ii,:));
265 s(ii) = s(ii) − R(ii)*G_ij*u(jj);
266 end
267 end
268 end
269 for ii = n+1 : 2*n
270 s(ii) = u(ii−n)−u(ii)−k(ii−n)*R_i(ii−n)*(u(ii)−T_e)*G(u(ii),ii−n);
271 end
272 end
273
274 function u0 = pdeic(~) % pdeic(z)
275 % code initial condition
276 global T_0 n
277 u0 = zeros(n,1);
278 for ii = 1 : n
279 u0(ii) = T_0(ii);
280 u0(n+ii) = T_0(ii);
281 end
282 end
283
284 function [pl,ql,pr,qr] = pdebc(~,ul,~,ur,~) %pdebc(zl,ul,zr,ur,t)
285 global T_1 T_2 n
286 % code boundary condition
287 pl = ul;
288 for ii = 1 : n
289 pl(ii) = pl(ii)−T_1(ii);
290 pl(n+ii) = pl(n+ii)−T_1(ii);
291 end
292 ql = zeros(2*n,1);
293 pr = ur;
294 for ii = 1 : n
295 pr(ii) = pr(ii)−T_2(ii);
296 pr(n+ii) = pr(n+ii)−T_2(ii);
297 end
298 qr = zeros(2*n,1);
299 end

For the temperature calculation with the solution via Green’s functions in the Laplace do-
main, the following function is used:

1 function [T] = T_gen_GL(A,B,C,n,L,T_0,T_1,T_2,z,t,m_max,m_max_2)
2
3 % solution part for initial condition and inhomogeneity
4 T_ic_GL = zeros(n,1);
5 T_inh_GL = zeros(n,1);
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6 for m = 0 : m_max
7 Lambda = −inv(A)*(B+(((2*m+1)*pi)/L)^2*eye(n));
8 [v_i,D_i] = eig(Lambda);
9 % part for initial conditions

10 rs_ic = T_0;
11 b_1_ic = v_i\rs_ic;
12 x_1_ic = v_i*diag(exp(diag(D_i)*t))*b_1_ic;
13 T_ic_GL = T_ic_GL + 4/pi*sin((2*m+1)*pi*z/L)/(2*m+1)*x_1_ic;
14 % part for inhomogeneity
15 rs_inh = inv(B+(((2*m+1)*pi)/L)^2*eye(n))*C;
16 b_1_inh = v_i\rs_inh;
17 x_1_inh = −inv(B+(((2*m+1)*pi)/L)^2*eye(n))*C + v_i*diag(exp(diag(D_i)*t))*b_1_inh

;
18 T_inh_GL = T_inh_GL + 4/pi*sin((2*m+1)*pi*z/L)/(2*m+1)*x_1_inh;
19 end
20
21 % solution part for boundary conditions
22 T_bc_GL_T1 = zeros(n,1);
23 T_bc_GL_T2 = zeros(n,1);
24 if sum(abs(T_1)+abs(T_2)) ~= 0
25 if m_max_2 > 0
26 for m = 1 : m_max_2
27 Gamma = −inv(A)*(B+((m*pi)/L)^2*eye(n));
28 [v_i,D_i] = eig(Gamma);
29 % boundary 1
30 rs_T1 = −inv(B+((m*pi)/L)^2*eye(n))*T_1;
31 b_2_T1 = v_i\rs_T1;
32 x_2_T1 = inv(B+((m*pi)/L)^2*eye(n))*T_1 + v_i*diag(exp(diag(D_i)*t))*

b_2_T1;
33 T_bc_GL_T1 = T_bc_GL_T1 + 2*m*pi/L^2*sin(m*pi*z/L)*x_2_T1;
34 % boundary 2
35 rs_T2 = −inv(B+((m*pi)/L)^2*eye(n))*T_2;
36 b_2_T2 = v_i\rs_T2;
37 x_2_T2 = inv(B+((m*pi)/L)^2*eye(n))*T_2 + v_i*diag(exp(diag(D_i)*t))*

b_2_T2;
38 T_bc_GL_T2 = T_bc_GL_T2 + 2*m*pi/L^2*sin(m*pi*(L−z)/L)*x_2_T2;
39 end
40 end
41 end
42
43 % temperature calculation
44 T = T_ic_GL + T_bc_GL_T1 + T_bc_GL_T2 + T_inh_GL;
45
46 end
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D Validation and Application
D.1 Cable Parameters and Load Cases

In this section, an overview of the cable data of the cables chosen for validation is given.

Table D.1: Cable parameters for flexible single wire cables with copper conductors and PVC
insulation.

cable nstrand dstrand di ri R′
ref Tref

1 19 0.16 0.35 0.75 39 26.5

2 16 0.17 0.65 1.1 39 22.8

3 30 0.25 0.7 1.7 13 24.9

4 39 0.25 0.9 1.7 8.6 21.8

5 39 0.25 0.8 1.7 7.2 22.7

nstrand: number of strands
dstrand: strand diameter in mm

di: thickness of insulation in mm
ri: outer diameter with insulation mm

R′
ref : resistance at Tref in mΩ

m

Table D.2: Load cases for the evaluation of the reproducibility of the indirect temperature
measurement. Cable 1 (current I1) is measured.

load case 1 2 3 4 5 6 7 8 9
I1 in A 10 7.5 5 0 0 0 10 7.5 5
I2 in A 0 0 0 10 7.5 5 10 7.5 5

Table D.3: Cable parameters for single wire cables with solid copper conductors and PVC
insulation.

Ac 0.35 0.5 0.75 1 1.5 2.5 4 6
ri 1.2 1.4 1.7 1.9 2.2 2.6 3.4 4
R′

ref 52 37.1 24.7 18.5 12.7 7.6 4.7 3.1
Ac 10 16 25 35 50 70 95 120
ri 5.4 8.3 10.2 11.5 13.5 16 18 20.3
R′

ref 1.82 1.16 0.743 0.527 0.368 0.259 0.196 0.153

Ac: conductor cross-section area in mm2

ri: outer diameter with insulation mm
R′

ref : resistance at Tref = 20 ◦C in mΩ
m
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Table D.4: Cable parameters for the validation of the solution for a coaxial cable.

nstrand dstrand di ri R′
ref Tref

conductor, insulation 19 0.18mm 1mm 1.5mm 35mΩ/m 23.1 ◦C
shield, coating 111 0.1mm 0.8mm 2.5mm 16mΩ/m 23 ◦C

L dvo,c dvo,sh
2.44m 58 cm 61 cm

L: total cable length
dvo,c: distance of voltage connections (inner conductor) from cable ends
dvo,sh: distance of voltage connections (shield) from cable ends

Table D.5: Parameters of the chosen 0.14mm2 copper cable.

rc,eff in mm rc,geom in mm ri in mm ki R′
ref in mΩ/m Tref in ◦C

0.21 0.22 0.65 0.7 116 24.1

Table D.6: Geometrical parameters of the analyzed twisted pair cables.

cable dvo,1 in cm dvo in cm dvo,2 in cm turns per length in turns/cm
loosely twisted 28.5 98.5 30 0.24
tightly twisted 26 88.5 27 1.40

dvo,1: distance of first voltage connection from first cable end (after twisting)
dvo: distance between voltage connections (after twisting)

dvo,2: distance of second voltage connection from second cable end (after twisting)

D.2 33 Wire Example
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Figure D.1: Estimated conductor arrangement in the bundle. This figure is taken from [2]
and has only been extended by the cable numbers.
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Table D.7: Positioning of coupling conductances.
cable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 sheath

1 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1 G′
1

2 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1

3 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1

4 G′
1 G′

1 G′
1 G′

1 G′
1 G′

3

5 G′
1 G′

1 G′
1 G′

3

6 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1 G′
3

7 G′
1 G′

1 G′
1 G′

1 G′
1 G′

3

8 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1 G′
1

9 G′
1 G′

1 G′
1 G′

1 G′
3

10 G′
1 G′

1 G′
1 G′

2

11 G′
1 G′

1 G′
2

12 G′
1 G′

1 G′
1 G′

1 G′
3

13 G′
1 G′

1 G′
1 G′

1 G′
3

14 G′
1 G′

1 G′
3

15 G′
1 G′

1 G′
1 G′

3

16 G′
1 G′

1 G′
1 G′

3

17 G′
1 G′

1 G′
1 G′

2

18 G′
1 G′

1 G′
3

19 G′
1 G′

1 G′
1 G′

3

20 G′
1 G′

1 G′
3

21 G′
1 G′

1 G′
1 G′

1 G′
1 G′

2

22 G′
1 G′

1 G′
1

23 G′
1 G′

1 G′
3

24 G′
1 G′

1

25 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1 G′
3

26 G′
1 G′

1 G′
1 G′

1 G′
1 G′

3

27 G′
1 G′

1 G′
1 G′

1 G′
1 G′

2

28 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1

29 G′
1 G′

1 G′
3

30 G′
1 G′

1 G′
1 G′

1 G′
3

31 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1

32 G′
1 G′

1 G′
1 G′

1 G′
1 G′

1

33 G′
1 G′

1 G′
1 G′

3

sheath G′
3 G′

3 G′
3 G′

3 G′
3 G′

2 G′
2 G′

3 G′
3 G′

3 G′
3 G′

3 G′
2 G′

3 G′
3 G′

3 G′
2 G′

3 G′
3 G′

3 G′
2 G′

3 G′
3 G′

3

X
X

I
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E Spatial and Time Characteristic Cable Quantities
In some cases, measuring the temperature distribution of a cable is challenging. For ex-

ample, particularly large cables are often difficult to handle, as very long sections and a
correspondingly large measurement environment with controlled ambient conditions are re-
quired. In addition, large conductor cross-sections are associated with smaller resistances, so
indirect temperature measurement also has to be performed over comparatively long cable
sections to keep measurement inaccuracies within acceptable limits. Another disadvantage
is that large solid cables only slowly heat up, which means that measurements have to be
carried out over a long time.

Difficulties can also arise with cables with particularly small cross-sections. Here, the
length-related conductor resistance is higher and the cables heat up more quickly, but they
are particularly vulnerable to fluctuations in ambient conditions. Also, the cable tempera-
ture changes due to contacted measurement equipment (for example a thermocouple) gain
importance.

So, for cables with particularly small or particularly large copper cross-sections, measure-
ments can be challenging. Therefore, in this section, it is investigated whether the temper-
ature development of cables can be approximated from the known curves for other cables
using a rescaling approach and characteristic quantities to describe the cables.

E.1 Axial Steady State
For large conductor cross-sections, the influence of the cable terminations on the cable

temperature lasts over a longer distance. This behavior is now quantified. For this purpose,
the single wire cables from table D.3 are considered. It is assumed that the terminations
cool the cable. The current is chosen in each case in a way that the temperatures Trs =

50 ◦C, 85 ◦C, 105 ◦C, and 155 ◦C are reached for the steady state in the middle of a long
cable. The coordinate z is discretized with a step size of 1mm. The following values are
used as temperatures at the beginning of the cable: 0 ◦C, 20 ◦C, 50 ◦C, 85 ◦C. However, only
combinations are used where the termination temperature is lower than the temperature Trs.
For the ambient temperature, the values 20 ◦C and 85 ◦C are used. Altogether, this results
in different ambient conditions for each cable (characterized by its conductor radius). The
distance Lchar from the cable termination is calculated at which the temperature

Tlim,z = T1 + (Trs − T1)

(︃
1− 1

e

)︃
(E.1)

is exceeded. The calculation results are presented in figure E.1(a). A linear function is fitted
to these data:

Lchar

1m
= aL,charr̂c + bL,char, aL,char = 38.12, bL,char = 0.03788, r̂c =

rc
1m

. (E.2)
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To reproduce the curvature behavior more accurately, the following fourth-order polynomial
(black curve in figure E.1) can also be used as a fitting function instead:

Lchar

1m
= a4,Lr̂

4
c + a3,Lr̂

3
c + a2,Lr̂

2
c + a1,Lr̂c + a0,L, (E.3)

a0,L = 0.01108, a1,L = 80.54, a2,L = −1.812 · 104, a3,L = 3.161 · 106, a4,L = −2.049 · 108.

The quantity Lchar is interpreted as the characteristic length for the cable, which can be
used to rescale the temperature developments along the cables. As an example, two cables
are compared. The steady-state temperature of the first cable is calculated normally. For the
second cable, the length

L2 = L1 ·
Lchar,2

Lchar,1

(E.4)

is chosen and the current is changed, so both cables reach the same steady-state radial tem-
perature. Rescaling the temperature development along the second cable via

zplot,2 = z2 ·
Lchar,1

Lchar,2

(E.5)

leads to comparable results for both calculations. In figure E.1(b), exemplary results are
presented for a 1mm2 cable and a 120mm2 cable using the fit from equation (E.3) (4th
order polynomial). The results are in good accordance, so by introducing this characteristic
length, information about the temperature profile along one cable can be approximated from
the known profile of another cable.
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0

10

20

30

calculation
linear fit
polyn. fit
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(b)

Figure E.1: (a) Characteristic cable length depending on the conductor radius. (b) Scaling
with characteristic length to compare temperatures of different cables.
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E.2 Radial Transient Case
For the radial transient case, a similar procedure as in the previous section is used. For

long cables, the time tchar is searched, after which the temperature

Tlim,t = T0 + (Trs − T0)

(︃
1− 1

e

)︃
(E.6)

is exceeded assuming T0 < Trs. The time t is discretized with a step size of 1 s. For the
ambient and radial steady-state temperatures known from the previous section and the initial
temperatures T0 = 0 ◦C, 20 ◦C, 50 ◦C, and 85 ◦C, the results are presented in figure E.2(a).
A fourth-order polynomial fit is applied:

tchar
1 s

= a4,tr̂
4
c + a3,tr̂

3
c + a2,tr̂

2
c + a1,tr̂c + a0,t, a0,t = 55.33, (E.7)

a1,t = −9.025 · 104, a2,t = 1.546 · 108, a3,t = −3.177 · 1010, a4,t = 2.264 · 1012.

The relative deviations of the data points from the mean values

∆trel =
tchar − tchar,mean

tchar,mean

(E.8)

are given in figure E.2(b). Changes of up to about ±15% for the time tchar occur induced by
the variation of the environmental conditions. tchar is interpreted as the characteristic time of
the cable. Again, two cables are compared. The radial temperature development of the first
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Figure E.2: (a) Characteristic time depending on the conductor radius. (b) Relative deviation
between the data points and the mean value. (c) Scaling with characteristic time
to compare temperatures of different cables.
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cable is calculated normally. For the second cable, the end time

tend,2 = tend,1 ·
tchar,2
tchar,1

(E.9)

is chosen and the current is selected to result in the same radial steady-state temperature as
for the first cable. For plotting, the time values for the second cable are corrected again for
comparability:

tplot,2 = t2 ·
tchar,1
tchar,2

. (E.10)

In figure E.2(c), results for a 1mm2 cable and a 120mm2 cable are shown exemplarily. The
results agree well.

E.3 Axial Transient Case
In the general axial transient case, the results of the previous analysis are superimposed,

so both the characteristic time and the characteristic length of the cable are considered. For
an examplary application case (ambient temperature 25 ◦C, initial temperature 25 ◦C, left
termination at 85 ◦C, right termination at 125 ◦C, radial steady-state temperature: 105 ◦C,
cable 1: 1mm2, current I1 = 22.96A, length L1 = 0.4m, end time tend,1 = 500 s; cable
2: 120mm2, current I1 = 534.52A), the absolute deviation between the cable temperature
of the first cable and the rescaled temperature of the second cable is shown in figure E.3.
Overall, there is a good agreement (deviations lower than 2.5K). So, a known temperature
profile of one cable can be used to find a first approximation for the temperature profile along
another cable.
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Figure E.3: Deviation between temperature for cable 1 and rescaled temperature for cable 2.
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