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Abstract

In this thesis we derive a higher order diffuse approximation of the Willmore energy from
contributions by Karali and Katsoulakis [J. Differential Equations, 2007], who studied a
diffuse approximation of mean curvature flow. We prove I'-convergence in smooth limit
points for the sum of diffuse perimeter and the higher order diffuse Willmore energy in
dimensions 2 and 3.

Moreover, we prove the convergence on arbitrary time intervals towards weak solutions of
mean curvature flow.

We also consider a gradient-free diffuse approximation of the Willmore energy in the
sense of ['-convergence which we derive from a gradient-free diffuse approximation of the
perimeter by Amstutz and Van Goethem [Interfaces Free Bound., 2012]. We prove the
lim sup—property for the ['-convergence towards a multiple of the Willmore energy.

In addition, we consider L?-type gradient flows of both diffuse Willmore energies, and
give an asymptotic convergence result. Formally these constitute diffuse approximations
of mean curvature flow and Willmore flow. In a restricted class of diffuse phase-field
evolutions, we prove that these gradient flows convergence towards rescaled mean curvature
flow and rescaled Willmore flow, respectively.
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1 Introduction

The Willmore energy W(I') of a C%-hypersurface I' C R” with n € N2 is defined as

W) = /F |H|? dH L. (1.1)

Here H denotes the mean curvature vector. Functionals like W have been investigated for
more than two centuries, in fact already Poisson [Poil4] in 1814 and Germain [Ger21] in
1821 have discussed curvature based energies. The name Willmore energy has been used
since the early 2000s as an acknowledgment of the contributions of Thomas Willmore
[Wil65, Wil93]. During the 20" century the Willmore energy has appeared in many
different important works such as [Tho24, GG29, Can70, Hel73].

The Willmore energy is closely related to the perimeter and its gradient flow. The
perimeter of a set ¥ with smooth boundary can be defined as

P(E) = H"(OF).
The perimeter is connected to the mean curvature vector via
V2P =—H. (1.2)

The mean curvature vector H points in the direction of the steepest area descent. Next
we consider the gradient flow induced by P, the mean curvature flow.

The mean curvature flow is one of the most prominent geometric flows and has been
studied extensively in the past decades. We consider an evolution of open sets (E(t)):c(o,1)
with smooth boundaries I'; := OE(t). We say that the surfaces (I't);¢(o,7) evolve by mean
curvature flow if for all ¢ € (0,7) we have

V(t) = H, (1.3)

where V() is the velocity of the evolution. This is well-described with the image that
the velocity of each point coincides with the direction of the steepest area descent. For
convex sets this results in a shrinking motion, giving rise to a singularity as the surface
shrinks to a single point.

The perimeter is decreasing along solutions of the mean curvature flow and we can quantify
this with the Willmore energy. We have

OP(E(t)) = — A Hy - V() dH ' = —/F |H,|” dH™ T = —W(T). (1.4)



This is called the energy-dissipation. This relation can be used to define a weak formulation
of the mean curvature flow which we will discuss later.

In 1975 De Giorgi and Franzoni [DGF75] published a conjecture about a diffuse approxi-
mation of the perimeter in the sense of I'-convergence; see Section 2.3. If 2 C R" is the
ambient space with sufficient regularity the authors consider a version of the Van der
Waals-Cahn-Hilliard energy from physics

Pt = | (GIVef*+ TWw) act, we @)

where W is a suitable potential. Shortly after the conjecture was published, the papers
by Modica and Mortola from 1977 [MM77] and 1987 [Mod87] proved that

L 1
Pe F(L—(@) coP as e —0 with ¢g:= / Vow ALt
-1

see Theorem 2.4.2. Since then many authors have conducted analysis based on the result
or in style of the result from Modica and Mortola, for instance [AB98, AVG12].

The Modica-Mortola Theorem establishes a diffuse approximation of the perimeter thus
it is only consequent to use (1.2) and consider —V 2P. = —eAu + LW/ (u) as a diffuse
mean curvature. This leads to possible diffuse approximations of other energies based on
the mean curvature (vector). The first to come up with possible diffuse approximations
based on this was De Giorgi. He posed several open questions in 1991, among them he
considered (see Conjecture 4 in [DG91]) the diffuse energy

1 2 1
WG () = / [1 | - e+ TWw) } Clvaf+ 2ww) . (1.5)
Q € 2 €
The second factor in (1.5) is the integrand of the diffuse perimeter, thus it is a natural
question to ask if these terms combined converge towards a linear combination of the
perimeter and the Willmore energy. In a recent paper [BFP22] the authors show that the
(LY (92))-limit of WIG in (1.5) is a multiple of the perimeter and that the Willmore
energy does not appear.
Another idea is to replicate the energy-dissipation for € > 0. We have
1
Vi2P-(u) = —eAu + gW’(u)
and thus the gradient flow of P. is described by the Allen-Cahn equation
1
—e0pue = —eAue + W' (ue). (1.6)
€
Let u. be a solution to (1.6) with suitable boundary conditions, then we obtain that
2
dc".
(1.7)

O P-(ue) = / ( —eAu, + EVV/(ug))&tu‘E dL™ = —/ 1‘ —eAue + }WI(’LLE)
Q 15 Q¢ g

A comparison with (1.4) suggests that the expression on the right-hand side could be a
diffuse Willmore energy. The first to consider this diffuse expression were Bellettini and
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Paolini who called this a modified version of this De Giorgi conjecture. They considered
the energy

W (u) ::/Qi’_eAHiw'(u)fdm. (1.8)

In [BP93] the authors prove that the modified functional suffices the lim sup—property of

1
W, F(L—“f” coW as e —0.

The next major milestone was the I'(L!) — liminf estimate for the modified de Giorgi
approximation. In 2006 Roger and Schétzle proved in [RS06] the lim inf-estimate for

1
P+, "

Co (P + W)

in smooth points and low dimensions, i.e. n € {2,3}. This was done by incorporating
techniques from geometric measure theory which have already been used in other
publications such as [[lm93] and a blow up inspired by [HTO00].

In 2007 the paper [KK07] by Karali and Katsoulakis considered a combination of the
Allen-Cahn and the Cahn-Hilliard equation

—e0iu = (—e*A + Id)( —eAu+ éW’(u)) (1.9)

Given a family of surfaces evolving under mean curvature flow, the authors construct
a family of classical solutions to (1.9) which converge as ¢ — 0 towards the modified
indicator function of the original family which evolves by mean curvature flow. This may
seem surprising at first because it means that the higher order term contributes on the
same order as the terms from the Allen-Cahn equation. For the asymptotic expansion
(2.4.5) this can be explained by the fact that the factor 2 cancels out the 1/¢ terms from
the chain rule in the lowest order.

Since (1.9) is a diffuse version of mean curvature flow we consider its energy-dissipation

related to the diffuse perimeter. Let u. be a solution to (1.9) with suitable boundary
conditions, then setting H, := —eAu. + 1W’(u.) we have

atpg(ug):/Q<—5Aug+iW/(u5))3tug dcnz_/g(imgﬁﬂwﬂgf) e, (1.10)

The comparison to (1.4) and (1.7) suggests that the functional WXX : H3(Q) — [0, oq]
with

WEE () = / E‘ —eAw + éW/(w)‘z + EIV( —eAw + %W’(w)) ’2] dc”
Q

is a good candidate for a diffuse Willmore energy. In Chapter 4, see Theorem 4.3.1 we
identify the possible I'(£!(Q))-limit of WXX as cyoWV and prove the lim sup-property of

1
WKK T o, (1.11)



Here o > 1 is a constant which can be calculated from the double-well potential. The
fact o > 1 also means that the higher order term actually contributes in the limit. The
harder problem of establishing a lower bound is addressed in Chapter 5, see Theorems
5.2.5 and 5.1.1, where we prove the lim inf-estimate of

P+ WK TEED (P +oW). (1.12)
For the proof we utilize a blow-up, similar to the proof by Roger and Schétzle. The
hardest challenge was to overcome the non-locality of a solution operator.
A further motivation to consider the lim inf—estimate is that the inequality is useful for
the proof that solutions to (1.9) converge towards varifold solutions to mean curvature
flow. In Chapter 6, see Theorems 6.3.5, 6.3.17 and 6.3.16 we prove that weak solutions to
(1.9) with suitable boundary and initial conditions converge in a suitable sense towards a
De Giorgi type varifold solution for rescaled mean curvature flow; see Definition 2.5.3.

For the proof we need another blow-up. In contrast to the blow-up in Chapter 5 there is
no issue of non-locality, however the blow-up is done with the additional parameters t,
which introduces additional complications. In particular the time-dependency is difficult
because we can not use the blow-up argument in time-space. Instead we use results from
[MROS] to get the proper convergences of the measures involved.

Then the remaining properties of De Giorgi type varifold solution for rescaled mean
curvature flow can be proven. It remains an open problem to show that the varifold is a
solution to mean curvature flow in the Brakke sense, to which we give a partial result.

In 2012 Amstutz and Van Goethem presented a gradient-free diffuse approximation of
the perimeter in [AVG12].

. € 2 1 1 n
PAC () = UE}%f(Q)/Q(Q\w (=0 W () AL (1.13)

The expression “gradient-free” refers to the fact that no derivative is applied towards the
argument u of the functional. The approximation is based on the two variable diffuse
perimeter approximation by Solci and Vitali [SV03]. For a particular double-well potential
W Amstutz and Van Goethem prove that

1
PG T p

As before we can derive a diffuse Willmore energy by considering the energy-dissipation.
The L?-gradient of P?G is given by

1 1

AG _ - v Vel e

V2P (u) = E (u + 2W (u) ug). (1.14)
Here @, is a weak solution to

—2AU, + e = ue (1.15)

with suitable boundary conditions. Let u. be a solution to

1 1

—edu. = g(ue + oW () - u) (1.16)
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with suitable boundary conditions. The energy-dissipation is given by

OiPAC (ue) = / é(ua + %W’(ug) — ) Opuc AL”
Q

/1
- [ =

1
AG — -
W (ue) ._/983

is a good candidate to be a diffuse Willmore energy. We remark that no gradients appear
(explicitly) in the functional, instead we have to deal with the non-local solution operator
u +— U, associated to (1.15).

1 2
Ue + 5W’(u5) —u.| dLc™.

This suggests that

1 2
Ue + §W'(u€) —u.| dL"

In Chapter 3, see Theorem 3.4.1, we prove the lim sup—property of

1
W?G F(L—(@) cacP. (1.17)

The ansatz is to assume that, in a small neighborhood of the surface, we can expand u. as
a power series in € with coefficient profile functions which have to be determined. Then
we expand all of the functions, operators, and the functional itself by powers of € and
minimize each order, finding the optimal choices for the profile functions in the process.
The main difficulty here is, that we have to prove that the non-local solution operator
(—e2A +1d)~! preserves the property that such a local expansion exists. We introduce
spaces of functions which decay exponentially away from the surface with respect to the
modified distant functions to justify this. We will also prove a lim inf—estimate for this
very specific class of functions with exponential decay, however the general case remains
open.

Next, we will briefly discuss the Willmore flow, which is the L?-gradient flow induced by
the Willmore energy. Let (I't);c(0,7) be a family of evolving surfaces with mean curvature

Hy, normal velocity V(t,-), and the second fundamental form II(¢,-). As was proven in
Sections 7.4 - 7.5 in [Wil93] by Willmore the family evolves by Willmore flow if

1
V= —-ArH + 5H3 — H[I?, (1.18)
where Ar is the Laplace-Beltrami operator on I';. The Willmore flow is a fourth
order geometric evolution law, which introduces several additional challenges in the

analysis of the flow. We refer to the fundamental contributions [Sim01, KS01, KS02, KS04].

The Willmore flow can be approximated by a phase field approximation in the following
sense: we consider the L?-gradient flow induced by the diffuse Willmore energy (1.8), i.e.

—e0yue = é( —eA+ éW”(ug) Id) ( —eAu. + éW’(us)) (1.19)

In their paper [LMO00] from 2000, Loretti and March considered asymptotic expansions
of (1.19) and concluded that in a formal sense the solutions to (1.19) converge towards

5



solutions of the Willmore flow as ¢ — 0. They employed a formal asymptotic ansatz
involving expanding u. in powers of €. Based on this idea Wang published similar results
in 2008; see [Wan08].

Convergence proofs based on asymptotic expansion techniques are known for the standard
diffuse approximation of mean curvature and Willmore flow; see [dMS90] and [FL21].

The last type of results in this thesis is similar for the Amstutz-Van Goethem approxi-
mation and the Karali-Katsoulakis approximation. In both cases we constructed diffuse
approximations of the Willmore energy. We use these functionals to construct formal
diffuse approximations of the Willmore flow by considering the induced gradient flows of
the diffuse approximations. The L2-gradient flow of WXK is given by

_ 2 2 " 2 1 /
—edue = Z2< — A+ W (u.) ) (~2A +1d) ( — eAu. + W (). (1.20)

Similarly we can consider the L?-gradient flow of WAG | i.e.
et = 5 (14 W () — (~2A +1d) ) (ue + S W' (ue) — ). (1.21)
g3 2 2

We may expect that the diffuse flows both converge in the sharp interface limit ¢ — 0
to the Willmore flow. We discuss the convergence of (1.20) in Chapter 4, see Theorem
4.4.4, and the convergence of (1.21) in Chapter 3, see Theorem 3.5.4, both under rather
restrictive assumptions by considering asymptotic expansions. For the proof we will
follow the approach by Loreti and March [LMO00] and Wang [Wan08|. However in our
setting the operators that define the gradient-free approximation are different from the
standard case, and the derivation of the convergence property is much more involved.

The results of Chapter 3 have already been published in the paper “‘Gradient-free‘ diffuse
approximations of the Willmore functional and Willmore flow” of N. Dabrock, M. Roger,
and myself, published in Asymptot. Anal. in 2022. The paper contains an additional
section discussing numerical simulations done by N. Dabrock but the analysis is not as
detailed as in Chapter 3 of this thesis.

The outline for the thesis is as follows. In the second chapter we point out the mathematical
foundations. In Chapter 3 we construct a recovery sequence for (1.17) and prove a formal
approximation of the Willmore flow by considering (1.21). In Chapter 4 we construct
a recovery sequence for (1.11) and prove a formal approximation of the Willmore flow
by considering (1.20). In Chapter 5 we prove the lim inf-property of (1.12). In Chapter
6 we construct De Giorgi type varifold solutions for rescaled mean curvature flow by
considering the limit ¢ — 0 in (1.9) and give a partial result for the Brakke flow.



2 Preliminaries

In this chapter we give a brief overview over the relevant terms and important previous
results. We start with notations most commonly used throughout the thesis followed by
the definitions of the central objects of this thesis i.e. the Willmore energy, the perimeter,
the Willmore flow, and the mean curvature flow. In the later sections we introduce the
basic terms of geometric measure theory such as functions of bounded variation, rectifiable
sets, and varifolds. One short section is dedicated to I'-convergence and in the last section
we present weak formulations of mean curvature flow.

The following notations will be applied throughout the entire thesis.

e n € N will always denote the dimension of the surrounding space R™. Usually
Q C R™ will be a non-empty open set with varying additional properties.

e Every limit for € will only occur for positive €, we will simply write € — 0 instead
of € \( 0. Furthermore we will refer to objects indicated by € > 0 as sequences,
even if the index set is not countable. A subsequence in this context will be an
actual sequence, meaning that it is indicated by a sequence (e )geny with 0 < g — 0.
Usually we will not relabel subsequences.

o Constants are usually denoted by C' > 0 and may change from line to line without
introducing a new variable if the value of C' is not important. Sometimes we denote
the dependencies of C' in parentheses.

o We try to avoid double parentheses as much as possible, thus we will write C°[—1,1)
instead of C°([—1,1)) for the space of continuous functions on the interval [—1,1).
Similar for other spaces, we write L?(0,T; C°(T")) instead of L?((0,T); C°(T)) for
the Bochner space of L2-functions defined on (0,7 with values in C%(T).

2.1 Some terms from differential geometry

In this section we only give definitions for the objects which are relevant for this thesis.
For the sake of introducing the basic terminology and theory of (sub-)manifolds we follow
and adapt the content of [Jos17]. In the entire thesis when restricting to the smooth case
we only discuss embedded and compact hypersurfaces in R™. Thus we can simplify the
more general definition.

In the following we consider a smooth hypersurface I' C R™ with a Riemannian metric, i.e.
a smooth family of scalar products g = (gp)per where g, is defined on the tangent space
T,I". We will denote a vector basis of T),I" by e1,...,e,—1. More details can be found in
the appendix.



Definition 2.1.1 (Differential operators on hypersurfaces).
Let T be a C*-hypersurface and let f € CY(I'). Forp € T let e1(p),...,en_1(p) be a basis
of T,I' as in (8.1.1). We define the gradient

n—1
gradp(f) == Vrpf = Z gjkekajf.
Ji.k=1

Let Z = Z?;l Zjej € CH(I;R™) be a vector field on T, then we define the divergence

n—1

1 n—1 1 A
NG j,%::l ei(V9Z;) = 7 jgl e (Vg™ (2, 0),. )

Lastly if T is a C?-hypersurface and f € C?(I") we define the Laplace-Beltrami operator

1 n—1 ( )
jk

— > ¢i(vag'terf).

=

Definition 2.1.2 (Second fundamental form).
Let T be a C?-hypersurface and p € T'. The second fundamental form of T' at p is the map

S:T,I x T,I'* — T,I', S(X,v)=UprDxv, XeT,I, veT,I*

divpZ =V - Z =

Ar = divpVrf =

with the orthogonal projection Il r : R" — T,I". By Lemma 8.1.6 the directional
derivative only depends on v and X and thus S is well-defined.

In the general case of manifolds that are not necessarily embedded we would need the
concept of Levi-Civita-connection and parallel transport in order to compare vectors from
different tangent spaces, however we can use the surrounding algebraic structure, i.e. the
directional derivative and the scalar product on R" instead.

Lemma 2.1.3 (Second fundamental form and mean curvature vector).
Let T be a C?*-hypersurface, p € T and v € TpFL. The bilinear form

Ly : T, x T,I — R, L,(X,Y) = (S(X,)|Y)r,r

is symmetric and thus its eigenvalues k1(p), . . ., kn—1(p) are real. They are called principal
curvatures of I at p in direction v. We define the mean curvature and the mean curvature
vector

n—1

Hr,(p) = ki(p) and Hp(p) = Hr ,(p)v.
1

<.
Il

When the choice of normal v or the surface I' is clear from the context either or both are
omitted from the notation. We call L, and its representation with respect to the standard
basis the second fundamental form. It is also commonly referred to as Weingartenmapping.

Note that the mean curvature vector is independent from v however the scalar mean
curvature switches its sign under the change of orientation v +— —v.

Next we examine how the total area of a hypersurface changes with a perturbation. Let T’
be a C2-hypersurface and X € C?(I'; R"), then there exists § > 0 such that

F+rX ={p+rX(p) |pel}

is a C%-hypersurface for |r| < § by the Implicit Function Theorem.
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Theorem 2.1.4 (First variation of the surface of a hypersurface).
Let T be an oriented C%-hypersurface and X € C*(I'; R™). Then we have

OH" T +7rX)|po = — / X - HdH (2.1.1)
r

This implies in particular that surfaces are stationary with respect to small perturbations
if and only if the mean curvature vanishes.
Having discussed H we can introduce one of the central objects of this thesis.

Definition 2.1.5 (Willmore energy of smooth hypersurfaces).
Let T' CR"™ be a smooth hypersurface without boundary. We define the Willmore energy
of T

W(T) ::/ \H|” an 1,
r

This is the definition for surfaces, later we will consider the Willmore energy defined on
function spaces; see Definition 2.4.6.

Next we move from the static setting to dynamics. We consider two different geometric
flows, namely the mean curvature flow and the Willmore flow. We need to define velocity
and normal velocity in advance.

Definition 2.1.6 ((Normal) velocity).

Let (T'y)¢>0 be a family of evolving surfaces without boundary that can be parametrized
over a fized surface I'g without boundary, i.e., for t > 0 there exists an immersion
®; : Ty —> [y At a given time t € (0,T) the velocity vector at V(t,-) : Iy — R™ of the
evolution is given by

V(t,) == [0,8] o B; 1.

If v(t,-) is a given unit normal of T'y we also define the normal velocity with respect to
v(t,-) as the function V,(t,-) : Ty — R

Vo(t,-) =V u(t,).

If the chosen normal vector is clear from the context it is omitted from the notation and
we simply write V =V,

Now we can introduce the mean curvature flow.

Definition 2.1.7 (Mean curvature flow).
Let (Ft)te(O,T) be an evolving family of smooth hypersurfaces without boundary with velocity

V. The family evolves by mean curvature flow if

—

V(t,) = H,. (2.1.2)

If we can apply the chain rule we get the energy-dissipation

OH M) =~ | VeH dH =~ | [H[ an" = -wr) <0 (213)
Ft Ft



Since the velocity points in the direction of the mean curvature vector which itself points
in the direction of steepest area descent the mean curvature flow is usually associated with
a shrinking motion. This is true especially for convex sets as the next theorem shows.

Theorem 2.1.8 (Huisken (1984)).

Let n > 2 and assume that Ty is uniformly convex, i.e., the eigenvalues of its second
fundamental form are strictly positive everywhere. Then (2.1.2) has a smooth solution on
a finite time interval [0,T) and the surfaces converge towards a single point ast — T.

For non-convex sets the evolution can be more complicated. In Chapter 3 in [Eck04]
examples are given for surfaces that break apart under mean curvature flow, examples for
other singularities can be found in [Ton19]. Surfaces are expected to develop singularities
in a finite time under mean curvature flow.

At last we introduce the concept of Willmore flow.

Definition 2.1.9 (Willmore flow).
Let (T'y)i>0 be an evolving family of smooth hypersurfaces without boundary with normal
velocity V and second fundamental from ;. The family evolves by Willmore flow if

1
V= —Ar, H; + §H§> — Hy I, |%, (2.1.4)

where Ar, is the Laplace-Beltrami operator on T'y.

The Willmore flow is a rather new field of research, the most important contributions are
the papers from Kuwert and Schétzle [KS01, KS02] and the paper from Simonett [Sim01].
The L?-gradient of the Willmore energy is given by

1
VL2W = _AFth + thS — Ht‘]It‘Q;

see [Wil65]. The Willmore energy is decreasing along solutions of the Willmore flow.

In the following we introduce a new coordinate system in a neighborhood of a smooth
hypersurface. These coordinates will be very useful for the construction of recovery
sequences for phase-field approximations of the Willmore energy in Chapters 3 and 4.

Definition 2.1.10 (Normal and tangential coordinates).

Let Q C R" be open and E a domain E € Q with C*-boundary T == OE. We write vr(y)
for the inner normal of I at y € I'. Since I is compact there exists 0 < § < 1 such that
the following hold.

e The orthogonal projection 11 : {|d| < 56} — T with x — II(z) = y(x) € T is
well-defined with

n—1 1
sup max |k; < —,
Sup i i)l < =5

where k; denote the principle curvatures of I' for j € {1,...,n —1}.

e For e > 0 the coordinate transformation

()
v : (— 5?, i) xI'— {|d| <50} €Q, V.(z,y)=y+ezrr(y) (2.1.5)

is a well-defined C3-diffeomorphism. We write w = {|d| < 56}.
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The first claim is true because I has C? regularity, meaning the principle curvatures are
continuous functions on a compact set. By definition we get for x € w

U, (d(m) , y(a;)) =z.

3

We now follow [LorettiMarch2000] and calculate for z € w

B n—1 k (y n—1 oo
Ad(z) = Z W z:: ;0 (y) d(x)’
00 n—1
=Y (=D'd@)" Y kj(y) = H(y) — d(@)[U(y)[* + g™ ().
1=0 Jj=1

This is an absolute convergent powerseries in w. The error term can be estimated as
follows: there exists C(I") > 0 such that for all z € w

192 (z)] < £2C(I)22. (2.1.6)
Possibly lowering the value of § > 0 we can assume that in (—5?5, 5?‘5) xT
9% > det(DV.(z,y)) = £ — e22H(y) + 322R(z,y) > g (2.1.7)

where R : R x I' = R is uniformly bounded. The coordinates are displayed in Figure 2.1.

Figure 2.1: Visualization of the geometry and coordinates.

Notations 2.1.11 (Geometry).
We can represent a function u :w — R as

il <_ 555’ 55) xI'— R with a(z,y) =u(V(z,9)).

It is convenient to extend @ to a function U that is constant in normal directions, i.e.

U : (—56,55> Xxw—R with U(z,x)=1u(z,v)

g ¢
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for all x € w with Up(z) =y and all z € (=55 /e,5d/¢).
From [LM00, Wan08] we recall that

g, Ad

1
Vu=_UVd+VU,  Au U" + —U' + AU, (2.1.8)

=5
IVd| =1, Vd-Vr=0, Ad(z)=H(y)—ez|l|*(y) + *|2]*RI (z), (2.1.9)

where |RE| < C(T,6) in w. We will often write u(z, ) instead of U(z,x) or i(z,y) if it
1s clear from the context what is meant.

2.2 Geometric measure theory

In this section we introduce functions of bounded variation, the perimeter, and the
Willmore energy. We also consider varifolds. Varifolds are very relevant for us as they
are in some sense a relaxation of the term (hyper-)surface to a setting with lower
regularity and better compactness properties. This is comparable to the step from
classical derivatives and the C*-spaces to weak derivatives and Sobolev spaces.

The basic properties of Radon measures can be found in Section 8.2 in the appendix.
Here we recall two important theorems about Radon measures; see [AFP00].

Theorem 2.2.1 (Riesz’s representation Theorem).

Let Q be a locally compact and separable metric space and m € N.

(i) Let L € CO(Q;R™) then there exist a R™-valued Radon measure p and a R™-valued
function f € LY(Q, u; R™) such that for all n € CO(Q;R™)

(n, L)co(ormy = /Qf' dp.

(ii) Let L € CY(;R™)’ then there exist a finite R™-valued Radon measure i and a
R™-valued function f € LY (2, p; R™) such that for all n € C§(;R™)

(n Lhcgosey = [ £+ dn and L] = |ul(@),

We will identify the continuous linear form with the measure and thus simply write
€ CUY) or pe CJ(;Y) respectively. Note CH(2;Y) — C2(2;Y)". As a dual
space of CO(;R™) or C§(£;R™)" we can consider the weak* convergence for Radon
measures and finite Radon measures. It has good compactness properties, as is stated in
the next theorem.

Theorem 2.2.2 (Compactness of Radon measures).

Let ) be a locally compact and separable metric space.

(1) Let (jug)ren € C2(Q) be a sequence of Radon measures on Q such that for all K € Q it
holds supyey pr(K) < 0o. Then there exists a subsequence (i, )jen and a Radon measure
p € CYUQ)" such that

ukjw—*>u as j—oo in CYQ).
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(ii) Let (ug)ren € CY(Q) be a sequence of finite Radon measures on Q0 such that it holds
supgen Hk(2) < oo. Then there exists a subsequence (juy;)jen and a finite Radon measure
p € CQ() such that
ks BN poas j—oo in CY(Q).
Additionally it holds
() < liminf pg(Q).
k—o0

Remark.

e This is a specialized version of Alaoglu’s Theorem, which is also called Banach-
Alaoglu or Alaoglu-Bourbaki Theorem and can be found in [Kab1lj, Thm. 8.6].

o If Q is an open subset of R™ then ) is locally compact and separable.

Next we introduce the concept of bounded variation. We follow [AFP00] and [EG15].
In one dimension this can be explained without measure theory and can be reduced to
monotone functions. However in higher dimensions more abstract concepts are necessary.

Definition 2.2.3 (Functions of bounded variation).
Let @ C R™ be open and f € LY(). f is said to have bounded variation in ), i.e.
feBV(Q), if

sup{/QfV ~pdL” ’ ¢ € CLQR™), [9llcorny < 1} < 0.

We can characterize the derivatives of functions of bounded variation with Radon measures.

Theorem 2.2.4 (Structure theorem for BV functions).
Let Q CR™ be open and f € BV (Q2). Then there exists a unique finite R™-valued Radon
measure V f such that for all ¢ € C1(Q)

—/Qf'wdcnz/Q(p.de.

By Theorem 2.2.4 and the Riesz representation Theorem V f € C§(Q;R") is well-defined.
The following proposition shows that this theorem can also be used to define functions of
bounded variation as the properties of the theorem and the definition are equivalent.

Proposition 2.2.5.
Let  CR™ be open and f € L'(Q). Then f € BV(Q) if and only if Vf € CY(;R™) . In
that case we have

V@ =sup{ [ 7V-6dcn | o€ CURR, [dlcoamn <1}

and the mapping BV (2) > f — |Vf|(Q) is lower semicontinuous with respect to the
LY (Q)-topology.
The expression

Inllzve) = InllLi@ + IVnl(Q), ne€ BV(Q)
is a norm on BV () and with this norm BV (2) is a Banach space. Another important
property of BV () is its compact embedding into L!(£).
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Theorem 2.2.6 (Compactness in BV (2)).
Let 2 C R™ be open and bounded with Lipschitz boundary and assume (f;)jen is a bounded
sequence in BV (). Then there exists f € BV (Q2) such that up to a subsequence

fi—f as j—o00 in LY(Q).

In other words the embedding BV (Q) < L'(Q) is compact. Combined with the lower
semicontinuity of f +— |V f|(Q2) we conclude the following corollary.

Corollary 2.2.7.

Let @ C R™ be open and bounded with Lipschitz boundary and assume (f;)jen is a
sequence in BV (Q) with f; — f in LY(Q) and liminf; o [V£;|(Q) < oco. Then it
follows f € BV () and

VA1(9) < limint [V£](9).

Functions of bounded variation satisfy a generalized version of Gauf3’s Divergence Theorem
8.3.6.

Theorem 2.2.8 (Trace Theorem for BV -functions).
Let © C R™ be open and bounded with Lipschitz boundary. Then there exists a bounded
linear mapping

T:BV(Q) — LY0Q;H™ )

such that for all f € BV () and all ¢ € C*(;R")

/va-qsdﬁnz/aﬂdqude"1—/Q<;$'de,

where v is the outer unit normal of 0€).

As a slight abuse of notation we usually write f for T'f. With these preparations we are
ready to define the perimeter.

Definition 2.2.9 (Perimeter).
Let © C R™ be open, then we define Pq : L'(Q) — [0, 00] by

3IVu|(Q), if ue BV(Q,{£1})
Palu) = (2.2.1)
+-00, else.

As a slight abuse of notation we sometimes write P(E) instead of P(2xg — 1). If it is
clear from the context the index Q) will be omitted from the notation and we simply write
P. By this definition BV (Q;{£1}) is the set which contains the sets of finite perimeter
in Q, where we associate to a set E of finite perimeter the rescaled characteristic function
u=2xg — 1.

By definition if yg has bounded variation then E has finite perimeter. We can represent
the perimeter with the Hausdorff measure. Therefore we need to define the essential
boundary first.
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Definition 2.2.10 (Essential boundary).
Let E CR"™ be a Borelset. The essential boundary 0*FE is defined as

O'FE = {:c € R" | limsup p~"L"(B,(z) N E) > 0 and limsup p~"L"(B,(z) \ E) > 0}.
p—0 p—0

If £ C R™ has smooth boundary, then for all x € 0*E both limits equal 1/2.

Theorem 2.2.11.
Let 2 CR™ be open and E C Q have finite perimeter. Then it holds

Pa(2xp — 1) =H"HO*ENQ).

Next we define measure-function pairs and their weak convergence, which was presented
in [Hut86].

Definition 2.2.12 (Measure-function pair).
Let m,n € N, Q CR" be open, pn € C2(Q) be a Radon measure on Q and f € LL _(C;R™).
Then (w, f) is a measure-function pair over Q with values in R™.

Definition 2.2.13 (Weak convergence of measure-function pairs).
Assume that for all k € N (u, f), (ux, fx) are measure-function pairs over £ with values

in R™ and that AN p in CO(Q)'. We say that (ur, fr)ren converges to (u, f) in the
weak sense if

Trtor BN fu as k—oo in COQLR™Y.
In that case we write (ug, fr) — (i, f).

The central part of this theory is the following compactness result (we give a special
version which fits our purposes).

Theorem 2.2.14 (Compactness Theorem for measure-function pairs).
Assume (pg, fr)keN 8 a sequence of measure-function pairs over  with values in R™ and

that pu BN w in C2Q) for some Radon measure p € CO(Q)'. Assume that there exists
A > 0 such that we have for all k € N

/ | f? dp < A
Q

Then there exists f € L (Q;R™) such that up to a subsequence we have (ug, fr) — (1, f)
as k — .

Next we introduce varifolds. The idea behind the concept is to find a “weaker”definition

for surfaces while maintaining a concept of tangent spaces. We follow the introductions
in [Sim83] and [FXO06].

Definition 2.2.15 (Grassmannian).
Letn € Nand k € {1,...,n—1}. We write G(n, k) for the set of all k-dimensional linear
subspaces of R"™ and ®G(n, k) for the set of all k-dimensional oriented linear subspaces of
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R™. We can identify a linear subspace E with the orthogonal projection onto E. This way
we can define a scalar product on G(n,k) and ®G(n, k)

P:Q=tr(PTQ) = ZP,;CQ;” for P,Q € G(n,k) or PQec®G(n,k).
7,k=1

In the following we identify subspaces with the orthogonal projection onto them. Most
relevant will be the case k =n — 1 where we can construct P from a normal vector v of
the hypersurface

P=Id-—v®v.
Furthermore, we can identify ®G(n,n — 1) =2 S~ 1,

Let U C R™ be open and k € {1,...,n — 1}. We define Gx(U) = U x G(n,k) and
PGLU) =U x ®G(n, k).

If not specified otherwise we will always consider unoriented subspaces.

Definition 2.2.16 (Countably k-rectifiable sets).
A set M CR"™ is called countably k-rectifiable (k € {1,...,n—1}) if

&)
MC | M;
j=0

where H*(My) = 0 and M; = Fj(Rk) for 7 € N and Lipschitz continuous functions
Fj:RF — R",

In fact we can represent k-rectifiable sets in a smoother way.

Lemma 2.2.17.
A set M C R™ is countably k-rectifiable if and only if there exists Ng C R™ with H*(Ng) = 0
and if for all j € N there exists a k-dimensional C'-submanifold N; in R" such that

MC N (2.2.2)
j=0

As mentioned before a concept of tangent spaces is important for the theory. To define
the approximate tangent space we first introduce some notation.

Definition 2.2.18 (Pushforward and pullback).
Given r > 0 and x € R" we introduce the function (g, : R" — R™ with (;,(y) = =

.
We write ¢, = Co. Furthermore we define the pushforward. Let ;i be a measure on
Q CR", then we define for any set A in the associated o-algebra on (;,(Q2)

Cayr #,U,( ) = u(¢y, 7'( ) Car gt € CS(CJU,T(Q))/'

Analogously we define for any n € C2((x () the pullback
Cﬁm =1n0(er € CE(Q)
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With these notations we have
ACar gt = (s Car et = (¢Eom, ) = [ ¢Endu.
’ (9)77 x,rH# M 1 Ga,r #1 CO(lar(Q)) z,r’h 1 co(Q)! 0 z,r 1A
If u =H* for some k € {1,...,n — 1} then a coordinate transformation yields that

/Q ¢ dHh =rF /C (Q)ndﬁk (2.2.3)

and thus CLn#Hk = rhHF.

Definition 2.2.19 (Approximate tangent space).

Let k € {1,...,n — 1} and M C R" be H*-measurable with H*(M N K) < oo for all
compact sets K @ R". P € G(n,k) is called approxrimate tangent space for M at a given
point x € M if for alln € CO(R™):

lim ndH* = / ndH". (2.2.4)
Ca,r (M) P

r—0

By (2.2.3) this is equivalent to

1
i # k _ k
71}3%) . /Qg“m,n dH /Pnd'H .
In that case we write T, M = P.

Remark.

o If such a P exists it is unique and will be noted as P = T, M in analogy to the
classical tangent spaces of manifolds.

e If Nj is a submanifold as in (2.2.2) for some j € N we get

T,N; =T,M for H"—a.e. x€MnNN;.

Definition 2.2.20 (Approximate tangent space with multiplicity).

Let k € {1,...,n — 1} and M C R" be H*-measurable and 6 € LL (M, H*) be non-
negative. P € G(n, k) is called approximate tangent space with respect to the multiplicity
O(x) for M at a given point x € M if for all n € CO(R™):

lim n()0(z + ry) dH () = 0(=) / n A", (2.2.5)
r—0 CIJ‘(M) P

By (2.2.3) this is equivalent to

lim — / 0t mdH" = 0(x) / ndH”.
Q P

r—0 ’I“k
In that case we write T,M = P.

The following theorem shows that approximate tangent spaces are directly linked to
countably rectifiable sets.

17



Theorem 2.2.21.
Let M CR™ be a HE-measurable set with H*(M N K) < oo for all compact sets K C R™.
Then M is countably k-rectifiable if and only if there exists a non-negative 6 € Li. (M, HF)

such that at H*-a.e. x € M the approximate tangent space Ty M with multiplicity 6(z)
exists.

Definition 2.2.22 ((unoriented) Varifold).

Let U C R™ be open and k € {1,...,n— 1}, a (unoriented) k-varifold V- on U is a Radon
measure on U x G(n, k), we write V € Vi (U) = CO(U x G(n,k)). ForV € Vi(U) we
define the weight measure ||V || which is the measure on U defined by

GV Doy = / o(2)AV(2,5) for all ¢ € COU).

G (U)

The term varifold and unoriented varifold will be used as synonyms while we will clearly
state oriented varifold whenever it comes up. The difference comes from the space where
the measures are defined. The subspaces in G(n, k) can be seen as unoriented. If Kk =n—1
we can also define Radon measures on the space of oriented subspaces, identifying the
spaces with the normal. This leads to the following definition.

Definition 2.2.23 (oriented Varifold).

Let U C R™ be open and k € {1,...,n — 1}, an oriented varifold ®V on U is a Radon
measure on U x G (n, k), we write V. € PV (U) = CUU x ®G(n,k))'. In the case
k=n—1 we simply write V,,_1(U) :== CO(U x "~ 1Y

For all k € {1,...,n — 1} there exists a projection ®G(n, k) — G(n, k) which simply
forgets the orientation (an oriented subspace is a subspace after all). Thus every oriented
varifold can also be seen as an unoriented varifold. The definition of the weight measure
is also valid for oriented varifolds.

Example (Rectifiable varifolds).
Let U CR™ be open k € {1,...,n—1} and M C U countably (n — 1)-rectifiable. We can
define a varifold in a natural way: For all ¢ € C(G,—_1(U))

(0, Var) o )y = /

¢ dVas ::/ oz, T, M) dH" ().
Gn-1(U) M

The weight measure is given by its action on ¢ € CO(U):

@ WVarloswy = [

Grn-1(U)

P(x) AV = /M o(z) dH ().

Varifolds induced this way by a (n — 1)-rectifiable set are much more concrete than a
general varifold and are easier to handle. Thus we define the term of a rectifiable varifold
motivated by this example.

Definition 2.2.24 (Rectifiable and integral varifolds).

Let U C R™ be open and V € Vi(U). V is called rectifiable if there exists a countably
k-rectifiable and H*-measurable set M C U and a non-negative function € Ll (M, HF)
such that

V=0H"_L M ®dépu,
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which means that for all ¢ € CO(Gr(U)) we have

(6. V)en Gy = / o(x, P)dV (z, P) = /M o, T, M)0(x) dH ().

Gr(U)
V is called an integral varifold if V is rectifiable and 0(x) € N for HF—a.e. x € M.

Next we proceed by defining the first variation of a varifold. This is motivated by the
connection between the first variation of submanifolds and its mean curvature. We want
to define weak mean curvature vectors similarly.

Definition 2.2.25 (First variation).
Let U CR™ be open, V € Vi(U) and X € CL(U;R"). We define

(X, 0V )y = / P: DX(x)dV(x, P).
Gr(U)

Example. If V is rectifiable with |V|| = 0H* _ M we get for X € CL(U;R")
(X, 0V) oy = / divy X d||V| = / divy X6 dHF.
U M

We use the analogy to (2.1.1) from the theory of hypersufaces in order to define a weak
mean curvature vector.

Definition 2.2.26 (Generalized mean curvature).
A rectifiable varifold V € Vi (U) has the generalized mean curvature vector H = Hy if for
all X € CHU;R™) we have

(X,0V)cowy = —/UX.FIdeH.

2.3 Introduction to ['-convergence

Next we explain the sense in which we will approximate curvature based energies. We use
a general concept of “convergence of functionals” introduced by De Giorgi and Franzoni
in [DGF75]. The motivation for the definition of I'-convergence is to find a convergence
for extended real-valued functionals which forces minima and minimizers to converge
alongside the functional under mild assumptions.

Let X be a metric space and for j € N let F, F} : X — R be functionals with values in
R :=RU {+oo}. We define F; F(—>X)Fausj—><>o if for all z € X:

For all sequences z; — « in X : liminf Fj(z;) > F(x) (T — inf)
j—00

there exists a sequence z; — z in X : limsup Fj(z}) < F(x). (I" — sup)
j—o0
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The definition is made such that if F F(—XQ F as e — 0in (X,d) we get in many cases

ii_r}r(l)min{Fg(x) | v € X} =min{F(z) |z € X}

and all cluster points of (z.).~¢ with z € argmin F.(x) for all £ > 0 are minimizers of F.
zeX
In this sense the functional F' is well approximated as the convergence of minima and

minimizers is very useful.

The following theorem, which corresponds to Theorem 12.1.1. in [ABM14] precises the
previous remark.

Theorem 2.3.1 (Stability of minima).

Let (X,d) be a metric space and for j € N let F;, F : X — R be functionals with

F; "X Foin X, Let xj € X be such that F,(x;) <infx F; +6; with 0 < 6; — 0. Assume

that {x;},en is relative compact, then every cluster point T of {x;}en is a minimizer of
F and

lim inf F; = F(T).

j—oo X

This implies the desired convergence of minima and minimizers. More information on
I'~convergence can be found in [Bra02] or [DM93].

2.4 Phase-field approximations

In this section we list the diffuse approximations relevant for this thesis. As mentioned in
the introduction the first important result is the approximation of the perimeter.

Definition 2.4.1 (Cahn-Hilliard energy).
Let Q C R™ be open, bounded with Lipschitz boundary and W € C(R) with W > 0 and
{W =0} = {&1}. We define the diffuse perimeter P. : L*(Q) — [0, 00|, with

I3 1 n )
P :{ [ (Givue+ twa)azr, irue moyn i

400, else.

Theorem 2.4.2 (Modica-Mortola).
Let 2 C R"™ be open and bounded with Lipschitz boundary and W as in Definition 2.4.1.
Then we have

P. L5 cP as £—0 in LY(Q)

for cg = fil VW dLt.

In addition to the I'-convergence result we also have a compactness result for sequences
with bounded energy. The following theorem can be found in [Alb00] or [Leol3].

Theorem 2.4.3 (Compactness for sequences with bounded energy).
Let Q C R™ be open and bounded with Lipschitz boundary and W (r) == (1 —r?)2. Let
(ue)eso be a sequence in L' () with

sup P-(ue) < A.
e>0
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for some A > 0. Then there exists a limit function u € BV (Q;{£1}) such that up to a
subsequence we have

ue —u as €—0 in LY(Q) and cP(u) < limi(l)afPE(uE).
E—
Building upon results from [SV03] Amstutz and Van Goethem considered a gradient-free
approximation of the perimeter.

Definition 2.4.4 (Diffuse gradient-free perimeter by Amstutz and Van Goethem).
We define the gradient-free diffuse perimeter by PAG : L1(Q) — [0, o0,
PAC(Y) = inf / (€|Vv\2 L 1W(u)> acr.
€ veH(Q) Jo \ 2 2¢e 2¢e

This infimum is attained for v = %., where 7. € H'(Q) is the unique solution to the
Euler-Lagrange equation

—&?AU. + U =u in Q (2.4.1)
Ou: =0 on ON.

This leads to the representation

1 1
AG _ : 2 . s n
P2 (u) = vellEIIllf(Q) ( |Voul© + 8(u v)? + 92 4% (u)) dc

:/Q( V. |? + 1€(u—u5)2+2%W(u)) ac”

—/ 215< (u =) + W(w)) dL™ (2.4.3)

The resulting diffuse energy is well-defined and finite if only W (u) € L'() in contrast to
the Cahn-Hilliard energy, which requires H'-regularity because the gradient is shifted to
the auxiliary function ..

In Theorem 3.7 of [AVG12] the authors state their approximation result, we adjusted the
wells of W.

Theorem 2.4.5 (Gradient-free approximation of the perimeter).
Let Q C R™ be an open and bounded set with Lipschitz boundary and assume W (r) =1—r

for r € R. Then it holds, writing cag = fil(l + W)W+ T(W)2dct

1. [—
pac PG |

Next we give the results for approximations of the Willmore energy.
First we introduce the Willmore energy as a functional on L'(£2).

Definition 2.4.6 (Willmore energy as a functional).
Let Q C R™ be open, we define W : L}(Q) — [0, 00| such that

) / |Hop|? dH™,  ifu=2xg — 1 and OF is a C*-hypersurface

W(u) = QNOE
400, else.

(2.4.4)
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Defining W on functions instead of sets has the advantage that L!(Q) is a Banach
space, i.e. it has an algebraic and a topologic structure that we can use to construct
approximations in the sense of I'-convergence.

Bellettini and Paolini [BP93] proved the lim sup—condition for an approximation of the
Willmore energy. Let 2 C R™ be open, W(r) := (1 —72)? for r € R and let u € H%(Q).
Then we define H, = H.(u) = —eAu+ %W’ (u) and the standard diffuse Willmore energy
by Bellettini and Paolini W; : L!(£2) — [0, cc] with

We(u) = { /Qi’HE(U)Ed[,n’ if u e H2(Q) N LS(Q)

400, else.

Theorem 2.4.7 (Bellettini-Paolini).
Let Q C R™ be open and assume E C Q has C?-boundary T'. Then there exists a sequence
(us)eso such that ue — u in L'(Q) and

lim sup Wk (ue) < coW(u)

e—0
for u=2xg — 1.

The central idea of their proof was to reduce to a one dimensional problem. First they
assumed that u. can be represented as a polynomial in € close to the surface, i.e.

d(z) d(x)
ue(z) = UO(?,y) + el (?,y) +... (2.4.5)
Here d(z) = sdist(z, ") € R is the signed distance from z to the surface I" and y € I is the
orthogonal projection from x € 2 onto I', which is well-defined in a small neighborhood
of I". For more on the coordinate system see Definition 2.1.10. Then W.(u.) can be
expanded as a polynomial in € as well, and the profile functions Uy, Uy, ... are chosen in

way to minimize each order of W, (u.).

It will turn out that the tangential coordinate y is far less important after minimizing
than the normal coordinate, thus this process reduces the n-dimensional coordinate of
x to a real number sdist(x,I"). This method will serve as a prototype for proving the
['(L') — lim sup estimate in different models.

The lim inf-estimate in smooth limit points and small dimensions was proven by Roger
and Schétzle [RS06]. The authors considered the sum of perimeter and Willmore energy.

Theorem 2.4.8 (Roger-Schitzle).
Let n € {2,3}, Q CR" be open and assume E C Q with C%-boundary in Q. Consider a
sequence (ug)eso with ue — u in LL (), then it holds

co(P(u) + W(u)) < liIEn_}(I)lf (Pe(ue) + We(ue))

foru=2xg — 1.
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Given a sequence u: — u in L'(£2) the authors consider the diffuse perimeter and diffuse
Willmore energy as Radon measures

5 9 1 "
[l = (§|w| + gW(u))z LQe oy,

€ 1
€ = (§|Vu|2 - gW(u)),cm_n e CO(Q),

2
LML e C%Q).

1 1
and ag = g‘ —eAu, + EW’(uE)

With the diffuse normal vector v, = @—Zil on {Vu. # 0} they also define the varifold
V. = pe ® v such that for all n € CY(R™ x G(n,n — 1))

0 Vocpmorcnn iy = | 1SV S) = [0 dueo)
QxG(n,n—1) Q

The authors assume without loss of generality that liminf. o (Pz(us) + W(ue)) < oo,
which yields compactness for (fz)e>0, (£c)e>0 and (ce)e>o. Thus there exist finite Radon
measures p1,&, € CJ(Q), a varifold V € C2(Q x G(n,n — 1)), such that up to a
subsequence we have as ¢ — 0

:u&‘ w—*> ,U,, €€ w_*> 57 aE w—*> « in Cg(Q)/7

and V. %5V in C%Qx G(n,n—1)).
Then the authors prove that ¢ = 0 and that V is (n — 1)-rectifiable, which are also
achieved in [Ilm93] or [PT98], though with different context and proofs. However the
critical and new component for the proof of the lim inf—property is the integrality of %V.
This has been a question of big interest as in both of the publications [Ilm93] and [PT98],

the integrality of the limit varifold is explicitly mentioned as an open question. A reason
for that is the following. From the (n — 1)-rectifiability we have

V| =p=01"""LT

for some H" '-measurable function § : ' — R. Knowing that %V is integral implies
%é(y) €N for all y € I' and in particular that § > ¢y. Thus we can estimate

coH" LT <p
which is the key to the lim inf-estimate as it connects back to the Willmore energy after
discussing i and its properties. The proof of integrality employs the blow-up method and
is inspired by a proof from Hutchinson and Tonegawa in [HT00].

Having proven the integrality of %V, the core argument of their proof starts with the
observation that for all n € C1(€;R") we have

1 -
/ n - Vu€< —eAu, + EW/(UE)) dc™ — / n-Hydy as e —0. (2.4.6)
0 0
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Then the authors estimate

1
. 1 2
/n.HVd,ugliminf /6|77|2|Vu5|2d£"/ |H€2d£"] (2.4.7)
Q e—0 Q 0€

(1012, 1) coy hmmf ().
Taking the supremum over n € C2(€;R™) with [, [n]? dp < 1 yields
”HV”LQ(Q,M;R”) < hlen_%lf aE(Q)v
and thus
coW(u) = ¢ / By P ann! < / By 2 du (2.4.8)
Q Q

1 1, 2 .. KK
< lim inf f’ —eAu, + —-W'(ue)| dL" < liminf W™ (u,).
Q € e—0

e—0 £

A more detailed presentation of the results from [RS06] can be found in Theorem 5.2.3,
the central proof of the paper is shortly outlined in a remark at the end of Section 5.2.

2.5 Varifold solutions to mean curvature flow

There are several concepts for weak solutions for the mean curvature flow, of which the
first and most prominent is the Brakke flow. In his book [Bra78] from 1978, Brakke
presents the results of his dissertation from 1975. He introduced a weak formulation of
mean curvature flow with the idea to generalize the energy-dissipation. Here we present a
different but equivalent definition, which was proposed by Tonegawa in [Ton19].

Assumption 2.5.1.
Let Q@ CR™ be open, k € {1,...,n—1} and T,0 > 0. Assume (Vi)icpr) in Vi(Q) is a

family of mtegml vamfolds and for a.e. t €0, T) V! has a weak mean curvature vector Ht,
we define H(t) := H,. Furthermore, it holds H & L3 (10,7) x 9, LY @ (|[VH])eepo,r); R™).
The family is bounded in the following sense: for all K € Q and allt € [0,T) we have

sup [V¥(K) < oo.
s€[0,t]

Definition 2.5.2 (Brakke flow).
Let Assumptions 2.5.1 hold. Then (W)te[oﬂ“) is moving by mean curvature flow in the
sense of Brakke if for all non-negative v € C[0,T), n € CX(Q) and all 0 < t; <ty <T

to

(1) /Q nd|Vi

to o t2 N
<o [ [PV o [0 [ oy i a
t1 Q t1 Q

to
+/ zp’/ndumdt. (2.5.1)
t1 Q

The identity (2.5.1) is an inequality because this way sudden losses of k-dimensional
are accounted for. As mentioned in the introduction singularities can not only occur in

t=t1
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evolutions by mean curvature flow, they are even expected to occur.

The original definition from Brakke uses an upper difference quotient fro the time derivative
instead of a weak derivative as we explain in the following. Let V := (V!);~¢ be a family
of varifolds in © with mean curvature vectors ﬁt for ¢ > 0. Then V is a solution to mean
curvature flow in the sense of Brakke if for all 1 € C}(Q) with ¢ > 0 and all t > 0 we
have

B | waVH < — [ wlH) vt Jy(z) - S+ dvi(z, S).
at/Qw v < /lefm ”V”+/n o @) 590 V@, )

Here 0; is the upper partial derivative and is the lim sup of the difference quotient. By far
the most important contribution with respect to phase-field approximations is Ilmanen’s
paper [[Im93]. Ilmanen starts with solutions to the Allen-Cahn equation

1
—eOiue = —eAu, + EW’(ug) (2.5.2)

for a double-well potential W and defines

pti= ([t )+ W (et ) )£

t._ (¢ NEE ) n
ge T <2|vu€(t7 )| EW (Ug(t, )))‘C
VE=pb @ Vaue(t, )t

such that for all n € CY(G,—1(R")),
0V sy = | o NS (,) = [ nta Vst o)) dul o).
n—1 n n

Important steps in the paper are the use of the monotonicity formula by Huisken [Hui90],
the proof that there exists a subsequence (¢ — 0) such that p. —— p! in C2(R") for all

t > 0, and that & % 0. The author then proves that there exists a limit varifold, which
is a solution to mean curvature flow in the sense of Brakke. After Theorem 2.4.8 was
proven in [RS06], Ilmanen’s proof was significantly shortened in small dimensions by Sato

[Sat08].

Another type of varifold solutions for mean curvature flow was recently proposed in
[HL21]. This concept considers evolving varifolds with mean curvature vector and normal
velocity. The key requirement is to characterize the motion law in form of an optimal
energy-dissipation inequality. If (I't);c(o,r) is a family of smooth surfaces evolving by
mean curvature flow we get by the chain rule

oH (T = [ VoHan =~ [ P annt - 1/ At (253)
I 2 Jr, 2 Jr,
Thus if the inequality holds with “<” we have the energy-dissipation equality of mean
curvature flow. The idea behind the De Giorgi formulation is to define this optimal
energy-dissipation inequality with “<” as the motion law for mean curvature flow, even
in absence of a chain rule.
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Definition 2.5.3 (De Giorgi type varifold solutions for rescaled mean curvature flow).
Let ®V = L' ® (®Vt)te[0,T) be a family of oriented varifolds in € such that for all
¢ € LY0,T;CH(Q2 x S*°1)) the map (0,T) 3 t — [q, gu1 &(t,-,-) APV is measur-
able. We consider a family (E(t))i>o0 of open subsets of Q with finite perimeter in
Q such that the associated indicator function u(t,) = 2xpw — 1, t > 0, satisfies
u € L>®(0,T; BV(2;{£1})). Let co > 0 be a surface tension constant and o > 0 be a
time rescaling factor. We call ®Vy the initial oriented varifold. Let ug € BV (Q;{+1})
be an initial phase indicator function, we call the pair (PV,u) a De Giorgi type varifold
solution for the rescaled mean curvature flow V = o H with initial data (PV9 ug) if the
following hold.

(a) Fort e (0,T) we write ' := ||®V*|| for the weight measure and p = L* @ (u')rejo 1)-
We require the existence of V € L*(0,T; L?(, ut)) encoding a generalized normal
velocity in the sense of

€0

o Uat¢ d£n+1 - ng dH = CO/ U(Tv ')¢(T7 ) dL™ — CO/ u0¢(07 ) dc"
2 Ja, Q. 2 Ja 2 Ja
(a)
for a.e. 7€ (0,T) and every ¢ € C°([0,T) x Q)).
b) We require the existence ofﬁ € L2(0,T; L?(Q, u'; R™)) encoding a generalized mean
( 1 gag
curvature vector by
/Q H-ndp=— / (Id—s ® s) : Dn(t,z)d®V(t,z,s) (b)
T QTXSTLfl
for alln € C°([0,T) x Q;R™).

(c) A sharp energy-dissipation principle in form of
T g 712 1 2 0
@)+ 2 [ APk o [ VPan < 10(©) (¢)
Q, o Ja,

for a.e. 7€ (0,T).

(d) For a.e. t € (0,T) and all m € C°(Q;R™) we have

%0 Qn(x)~qu(t,a:): / n(z) - sd®Vi(, 5). (d)
QxSn—1

Note that there are a few differences in the definition from the source because we consider
the space [0, T") x Q instead of [0,00) x R and the interface function u takes values in {£1}
instead of {0,1} which is the reason for the additional factor 1 in (a) and (d). Also we
added the additional parameter ¢ > 0 which does not exist in the original definition. Note
that in the case of any smooth evolution of smooth surfaces we have, writing H(t) := H;-v
where v is the inner normal of the surface
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ou'(@) = [ H(t () an'
== [P = o [ ol a + o [ o) - v

We conclude for all 7 € (0,7

t

2
’du.

- o 1 2 1 2
pr @)+ 5 [P o [ =@+ o [ [or) - v du
Q. o Jo, 20 Ja,
Hence, if (¢) holds for a smooth evolution of smooth surfaces then the classical energy-
dissipation equality and

oH(t,z) =V(t,z)

hold for p-a.e. (t,x) € Qr.

2.6 Other weak formulations of the mean curvature flow

In the mean curvature flow sets are expected to develop singularities in finite times. For
instance for boundaries of non-convex sets the surfaces can break apart into multiple
surfaces; see Chapter 3 in [Eck04]. Such singularities have been studied by Huisken
[Hui90]. Classical solutions rely on parametrizations over a fixed surface, however when
the topology (in a geometric way) changes, as described above this is no longer possible.
Thus classical solutions stop existing at singularities, which makes weak solutions and
possible weak formulations much more interesting.

In the 1980’s the notion of viscosity solutions was established. Starting with the works of
Crandall and Lions in [CL83] and [Lio83] this allows for a weak formulation of mean
curvature flow. Other important contributions are the papers from Chen, Giga, and
Goto, mainly [CGGI1]; see also the references therein. For us the framework of viscos-
ity solutions is unsuitable owing to the lack of comparison principle for fourth-order PDEs.

In 1992 a discretization scheme to approximate the mean curvature flow was established
called BMO (Bence-Merriman-Osher) or Thresholding scheme; see [MBO92]. The setup
is inspired by the Allen-Cahn equation (2.5.2) where the double-well potential W has
its wells at +1. We start with a given set Ey. For each time step we encode E} with a
{#£1}-valued characteristic function. We imitate the effect of the Laplacian by convolving
the function with a fundamental solution of the heat equation. Motivated by the
forcing term in the Allen-Cahn equation we set Ejy1 as the super-level set of 0. Other
important contributions to the study of the scheme can be found in [Law93, ELO15, LO16].

Another solution concept that should be mentioned, even though it is not connected
to our research is the method of De Giorgi’s barriers using functions which map point
of time onto sets whose signed distance function is a solution to the heat equation.
The concept is centered around the inclusion principle for mean curvature flow . For a
precise definition we refer to [Bell3], where the concept is explained in detail. Important
contributions to this theory include the paper [BP95] from Bellettini and Paolini from
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1995, its errata [BP02] from 2002, and the paper [BN0O] from Bellettini and Novaga from
2000.
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3 A gradient-free approximation
of the Willmore energy based

on the Amstutz-Van Goethem
model

In this chapter we prove the I'-lim sup estimate for a new, “gradient free”approximation
based on the article [AVG12] by Amstutz and Van Goethem from 2012. They consider a
different diffuse perimeter than the standard Cahn-Hilliard energy from 2.4.1, motivated
by a two-variable energy studied by Solci and Vitali in [SV03]. The energy in [AVG12] is
given by

. € 2 1 1 n
P;*G(u):ve}%f(m/ﬂ(2|w| +o(u— 0+ W) ac”,

where W is a double-well potential. In [AVG12] the authors consider Wag(r) :==r(1 —r)
for r € [—1,1], however we pose different assumptions on W which excludes Wyg; see
Assumptions 3.1.1. The infimum is attained for v = @, where @. € H'(Q) is a solution to

—&?AU. +T. =u in Q (3.0.1)
dyus =0 on 01,

which yields

€l 1 — 1 n
PAS() = [ (GIVal + 5w =) + 5 W(w) dL

= / i(u(u — W) + W(u)) dc".

925

The solution operator to —e2A 4 Id with Neumann boundary conditions is linear and
self-adjoint. The L?-gradient of PAC therefore is given by

1 1
VPG () = —(ut W) - a:) = HAY,

which can be seen as a diffuse mean curvature. This suggests the formal Willmore energy
approximation

2
acr, (3.0.3)




which is the main object we study in this chapter. The additional factor ¢! in W?G
accounts for the small volume of the transition layer region.

The second topic we consider in this chapter is convergence for the gradient flows of P?G
and W?G. Under rather restrictive assumptions on the approximations we prove that up
to a factor we get that the gradient flow of P?G converges to mean curvature flow and
W?G converges to the Willmore flow, again up to a rescaling in time. The content of this
chapter (in a shorter version) has already been published in [DKR22].

3.1 Preparations

Assumption 3.1.1 (on Q and W).
Throughout this chapter we assume n € N and Q@ C R" is an open, bounded set with
Lipschitz boundary and € > 0.

Furthermore we assume for the double-well potential
e W e C™(R), me N4,
e W>0,{W =0} ={x1}, W'(£1) > 0.
o 14+ W >0in[-1,1].
e W has at least linear growth at +oo.

We associate W with the mapping f: R — R, f(r) :==r + %W’(r).

Remark.
We have f'(r) = 1+3W"(r) > ~ for some~y > 0 and allr € [—1,1]. Thus f € C™1[-1,1]
is strictly increasing and we further obtain that f : [—1,1] — [—1,1] is one-to-one and

that f has an inverse function f~t € C™1[—1,1] such that for all v € (—1,1)

" 717, w 011
ond 1570 = e <

—1y\/ _ 1
(f)(r) = ) <

1
8

(3.1.1)
Since we have f'(r) >~ for all v € [—1,1] and ' is continuous on R there exists an open

interval U D [—1,1] such that f is strictly increasing on U. Thus we can consider the
derivatives of f and f=% on the closure [—1,1].

If W is an even function then f and f~' are odd.

The conditions in the Assumption 3.1.1 cover a large class of admissible double-well
potentials, such as the standard quartic double-well potential W(r) = (1 — r?)?
that is most often used in simulations. On the other hand the particular choice
W(r) =1—1r2 r € [~1,1], with locally constant linear growth outside [—1, 1] in [AVG12]

is not allowed, since in this case f would be constant in (—1, 1) and is not C''-regular on R.

For many diffuse approximations the study of the optimal transition between the pure
phases on the real line is key for understanding its behavior, see for example [Alb00]
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and the references therein. As for the Cahn—Hilliard approximation P, and Willmore
functional W, we expect that typical small-energy configurations for P?G and W?G are
quasi one-dimensional and can be constructed from an optimal transition profile and the
rescaled signed distance from the zero-level set.

To characterize the optimal profile associated to PfG we consider the following minimiza-
tion problem on the real line. We fix a suitable class of real functions

M ={u € L®(R) : ess-limsupu(r) <0, ess;llnonoinfu(r) > 0}.

T——00

Moreover we define for u € M, v € HL _(R) with lim,_,+o v(z) = &1 the energies

G2 (u,v) = /]R %(5(7}’)2 + %(u —v)? + éW(u)) dct,
E-(u) == inf {ggg(u,v) cv € HL (R), Tgrfoov(r) = :i:l}.

By rescaling we see that the minimization problem can be reduced to the case ¢ = 1
and we write & = &, G = GI' in what follows. Looking at the proof in [BP93] for the
lim sup condition of I'-convergence from ch to the Willmore energy we are interested
in information about one-dimensional minimizing profiles of £ with limit behavior as in M.

Before we turn to the theorem on the one-dimensional profiles we prove that an auxiliary
function has the properties of a double-well potential on [—1, 1].

Lemma 3.1.2 (Modified double-well potential).
Let W, f,U be as in Assumptions 3.1.1. Then the function

W,:U—R, W.(r):= %W’(f*l(r))2 +W(f(r))

has the following properties

W, € C™(U) and W, > 0,

(W, =0} = {1},
Wi(r) =W'(f~(r)) =2(r — f~'(r)),
VW, is Lipschitz and ‘(%/W*(r)‘ <1.

In particular W, can be considered as the restriction of a double-well potential W:R—R
toU.

Proof. W, > 0 is clear and from the regularity of W we have W, € C™ }(U). To
determine {W, = 0}, we calculate for r € U

Wo(r) =0« W (f1r)=0 and W' (f(r))=0
— fir) = 41 <= r = +1.
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Let r € U, then we have for the derivative
Wi(r) = %W’(f_l(r)) W) - (T )+ W) - (Y ()
— W) Y0 (14 W )
=W/ - (' @) fFH) = W) = 2(r = (),

which implies W! € C™~1(U) hence W, € C™(U). At last we prove that /W, is Lipschitz.
We have for any r € U

ol WL )
o] = 5 v = 7 g < .

Theorem 3.1.3 (Optimal profile).
Let W be as in Remark 3.1.1. Every minimizer of € lies in C™ Y(R). There evists a
unique minimizer qo of € that satisfies qo(0) = 0. This minimizer is determined by

g = (@), (3.1.2)

where g, € C™L(R) is the unique solution to

G0 =\ Wi(@o) with go(0) = f(0). (3.1.3)
We also have
e 1 <qo,q9<1,
e q¢,>0,7,>0,

e lim go(r)==x1= lim gy(r)

r—+oo r—+oo

and
—qo+qy=q in R. (3.1.4)

Remark. We use the simpler first order ODE (3.1.3) to define g, and show that it solves
equation (3.1.4) instead of the other way around, even though it would be more natural to
use (3.1.4) as definition.

We also remark that a priori we consider functions with values in R instead of (—1,1).
In the proof below that we can also restrict the minimization to functions with values in
[—1, 1] and obtain that the optimal profile takes it values only in (—1,1). Since the diffuse
Willmore flow is of fourth order and does not satisfy a maximum principle, we cannot
guarantee that evolutions take values only in (—1,1). In particular, the behavior of the
double-well potential on R matters for the analysis below.

Proof of Theorem 3.1.5. We start with (u,v) € L®(R) x HL_(R) and assume that (u,v)
is a minimizer of G thus w is a minimizer of £. In the following we deduce necessary
properties of u and v which we can then use to prove that these minimizers exist and
satisfy the claims of the theorem.
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First we can assume that the integral is finite. This implies u € L*(R) and v € H'(R).
Next we restrict the function values of u,v to [~1,1]. We write P_; ; : R — [~1,1] for
the projection

) sen(r) ifr[ =1,
Proy(r) = { r if |r| <1

For v € H'(R) we have from standard theory P,_; ;jv € H'(R) and
VP_110 = X{oj<1}V,  [Pigu—Pygo| < Ju—v| and W(P_yu) < W(u).
It follows
G(P1u, Py 1v) < G(u,v)
which implies —1 < u,v < 1.
Next we are looking for a formula to calculate u from v and vice versa. Let x € R and
v(x) € [~1,1], we minimize (u(z) — v(x))? + W (u(x)) pointwise in u(z) € [-1,1]. The
existence of a minimizer is guaranteed because [—1,1] is compact and the considered
function is continuous, it is even C2. If the minimizing u(z) lies in (—1,1) then the choice
u(x) = f~Y(v(x)) is optimal because of
!
0= Dugey (ul@) = v(@))? + W (u()) = 2(ulx) - v(@)) + W' (u(x))
1
= (@) = u(x) + s W' (u(2)) = f(u(x))
and

02 ((ulx) —v(@))? + W (u(x))) =2+ W (u(z)) = 2f (u(z)) > 0.

The analysis of the boundary shows that w(z) = 1 can only be optimal when v(z) = £1,
but this is also covered by u(z) = f~(v(z)). It follows u = f~1(v).

Plugging u = f~!(v) hence v — f~1(v) = $W’(u) into the energy leads to

S = 5 [ (@ + (7 0) — o 4 W (w)) e
=5 [ @+ W @) + W o) ac!
_ 2/ ()2 + Wi (v) AL,
R

Knowing that W, is a double-well potential we can proceed in the following as in section 3a
of [AIb00]: we estimate with the so-called Modica-Mortola trick with the Young-inequality

E(f(w)) Z/Rv’\/W*(v) dct.

33



In the Young-inequality there is equality if and only if v/ = +4/W,(v). The condition
lim, 1~ v(r) = =1 in the definition of £ can not be satisfied by a decreasing function
which implies

v =/ Wi(v). (3.1.5)

Since /W, is Lipschitz on U 2 [—1,1] we get that for any initial value v9 € U there
exists a unique the solution to the inital value problem (3.1.5) by the Picard-Lindel6f
Theorem. Furthermore we get from the Lipschitz condition that every solution to
an initial value problem of (3.1.5) with vg € U can be extended to a function on
R by Theorem 2.5.6 in [Aul04]. Thus we can always the initial value v(0) = wvg. If
vg = =£1 then the solution is constant because of W, (£1) = 0. By the uniqueness
of the solution we get |v| < 1if |ug| < 1. Since u = f~1(v) and u € M it follows |v(0)| < 1.

Since v is increasing and bounded we have the existence of lim, o v(r) = sup,.cg v(r).
From the ODE it follows that lim, ., v'(r) exists. This has to be 0, because oth-
erwise v(r) could not be bounded as r — oo. From (3.1.5) we can conclude that
lim, o v(r) = 1, since W, has no other zeroes in (—1,1], v € (—1,1), and v is strictly
increasing. The same argument can be applied for r — —oo. For u this implies
lim, 400 u(r) = lim, o1 f~H(v(r)) = £1.

This also shows that the initial value for v can not satisfy |vg| > 1 because this solution
satisfies |v| > 1 by the uniqueness of the solution. Since W, € C™(U) we get from
standard regularity theory for ODE’s v € C™V!(R) and the respective minimizer
u= f"(v) e C"(R).

We conclude that any minimizer u of £ and thus any minimizer (u,v) of G is characterized
by v = f(u) and v is a solution to (3.1.5) with |vg] < 1. From lim, i v(r) = £1
and the uniqueness of the solution to the initial value problem we get, that all of the
minimizers are the same up to a shift of the argument.

Now we consider the additional condition u(0) = 0. This translates into the condition
v(0) = f(0) € (—=1,1) for v. By the previous argumentation the existence of the unique
minimizer with u(0) = 0 is guaranteed by the Picard-Lindel6f Theorem and we denote
these functions with go := u and g, == v. We also have ¢}, = (f~1)(g,)q, > 0 and thus qo
is strictly increasing as well.

Now we can verify that ¢y and g, solve (3.1.4). Owing to g, > 0 we get

1
SWi@o) =0 — £ (@)-

(@)* = Wi(qo), thus 2q4q; = Wi(d)q, and qn=
This yields
—I —
—qo + 4o = qo- U

Next we prove even better decay for the profile functions qg, gy, and their derivatives as
r — Z£o0.
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Lemma 3.1.4 (Exponential decay of qo, gy, and derivatives).
There exist R,C,c > 0 such that for all |r| > R we have

1— 670‘7”| S |q0(70)’ < 17 1— efc‘r| S ‘qoon)’ < 17
0 < go(r) < Ce e, 0 < gp(r) < CeeIl]
()] < Cem and |g(r)] < eelr,

It follows qy — sgn, Gy — sgn € L?(R), and g}, g, € H*(R).
Proof. Since W, (1) = W/(1) = 0 and W/ (1) > 0 we can Taylor-expand W, as follows,

: 1 2. Wr@) _ _sW'Q)
defining 0 < ¢ < 5 such that 2¢* = —5= = 1i%W”(1)
B = /2213 + O((1 = %)) (@ — D). (3.16)

There exists 7 > 0 such that 1 — 7 < g, < 1 implies |[O((1 — 7y)?)| < (1 — gy)%. We
chose Ry > 0 such that for all » > R; we have 1 — 7 < gy(r) < 1 and estimate

@(r) = 1) 2 /21— gy(r))2 for 7> Ry
— (1-gy(r)) < —c(1=Go(r))  for r>Ry.

Now we can use the Gronwall Lemma and lim, . Gy(r) = 1 to obtain for r > R
(1-Go)(r) < e andthus go(r) >1—e .

Since Gp(r) < 1 we have the claimed exponential convergence. Plugging this into (3.1.6)
we find for r > Ry

0 <qp(r) < /4c2(1 = Go(r))? = 2¢(1 — Gy (r)) < 2ce” .
We can transfer this decay to gg. Let r > R7, owing to the monotonicity of f we get
1> qo(r) = [~ (@o(r)) = fH(1—e™)
Now we Taylor-expand f~!
Fll—e ) =1 — (FN (1)e + Oe2).

Since (f71)'(1) < 1 by (f71)'(1) = m and W”(1) > 0 we can find R > R; such
that for r > R we have :

1>qy(r)>1—e .

For g we use (3.1.4) and get for r > R

_ _ <l—-(1—e“)=¢e"“" _ _
qg =dqp — QO{ >1-— ifcr -1 ): _ecr and thus ’qg‘ <e .

For g, we calculate for r > R;
2c

0 <qp(r) = (f 1) @(r))ap < 767“-
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At last we estimate for » > R using (3.1.1)

a6 ()] < |(F7" @ (r)lgo ()1 + [(F @0 (r)go (7))

2¢||W" || ror_
< W01 e 2 4 le*mﬂ <C(W)e™ .
73 gl

The estimates can be done the same way for r — —oco. O

The following two constants will be relevant for our approximations.

Corollary 3.1.5 (Double-well potential depending constants).
The constants

cAGq = min & = / [q6|? ALY and oag = #, (3.1.7)
M R HQO||L2 R

are in terms of the double-well potential characterized by

1 1 CAG LW+ i(W,)2
_ 1 ot v vald N2 1 :/
cAG /_1( W W 5 (W) act and 3¢ = [

act.
(3.1.8)

Proof. We get equation (3.1.8) from

A / Wi dc — / pw Laveac
I B W
|QOHL2(]R)_/]R|f’0f1|2 e = - / W O

For a special choice of W the constants are calculated in the appendix; see Section 8.3.
Motivated by the equations occurring in the minimizing of the one-dimensional energy we
are looking for a solution operator with “good” properties. Given a function u we solve
for v with

and

—" +v=u with v'(+o0) =0

in a suitable sense. A possible ansatz would be to consider u € L?(R) and to use the
Lax-Milgram Theorem to find solutions in H'(R) or even H?(R). However the functions
we considered before are not in L?(R) as they approach +1 at +00. So we need a solution
operator that works on L>°(R) as well. We get this by considering the Green’s function
of the ODE and the induced convolution operator. This leads to the following definition.

Definition 3.1.6 (Solution operator on R).
We define Ag : L*(R) + L*°(R) — L?(R) + L*¥(R),

Aow = Ap(w) = J1 *x w. (3.1.9)
where Ji : R — R is the Green’s function of —0% +1d in R
1
Ji(r) = 56_‘” for reR;

see Theorem 6.23 in [LL0O1].
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This is well-defined for w € L?(R) + L*°(R) and restricted to L?(R) this coincides with
the operator constructed from Lax-Milgram, as we will prove in Proposition 3.1.8. Before
we can prove properties of Ag we collect a few properties of Jj.

Lemma 3.1.7 (Properties of J;).
The function J; : R — R with Ji(r) = %e‘m has the following properties

e J1 € CS(R) and J; > 0,
e Ji € WH(R) N WL (R),
o il =1 =1l w) and |1l r2®) = 5 = |1l r2R)-

Proof. J; >0 and J; € C)(R) is clear. We calculate the weak derivative. Let ¢ € C2°(R)
then we have

1 0 1 00
_/Rl/}ljl det = —2/_001/1'(7“)6'@7"— 2/0 ' (r)e " dr
1 I 1 1 [
=500+ [ v a5 =5 [T weTar
—/w(r)lsgn(—r)e“"| dr.
R 2

For r € R we conclude Jj(r) = 1sgn(—r)e™I"l in the weak sense. We have |J|| = J;
and Jp, J] € LY(R) N L>°(R) from the exponential decay, which implies the second claim.
Since |J]| = J; it suffices for the last claim to calculate ||.J1][z1(r) and [|J1][z2(r). We have

1 o0
A / ()] dr = / Leldr = / T dr— 1
R R 0

and

1, 1o, 1
1l = [ 1a@)Pdr = [ Gear =5 [T errar— 0. =

Proposition 3.1.8 (One-dimensional solution operator).
The operator Ag : L*(R) + L>®(R) — L?(R) 4+ L>®(R) satisfies

(1) Ao(LA(R)) € HA(R) N CL(R), Ao(L*(R)) C W2<(R) N C}(R) and
Ao(CY(R)) C CE(R).

(2) If u € L*(R) then Ag(u) is the unique solution to

(—=0*4+1d)Agu =u a.e. in R and in the weak sense.

(3) Aol : L*(R) — L?(R) is linear, continuous, self-adjoint, and positive.

(4) Aolreem) : L°(R) — L(R) is linear, continuous and if hﬁm u(r) =y for some
T—00
u € L*(R) and some y € R then we have Jim Aou(r) = y. The same is true for
r— —00.

(5) If h € CL(R) we have dAgh = Ah'.

37



Proof. We start with proving (1) and (2). Given u € L?(R) we can find a unique solution
v € HY(R) using the Lax-Milgram Theorem such that

Vz/JeHl(R):/Rz//v’ d£1+/Rz/w dc! :/Rz/zudﬁl. (3.1.10)

From v" = v —u € L*(R) and we get v € H?(R) < C*(R). Furthermore we have
J1 *u € H*(R) from Theorem 5.18 in [Kab14]. Since .J; is the Green’s function of the
ODE can conclude with to the uniqueness of the solution v = Agu. We get with the
standard properties of convolutions and Lemma 3.1.7

1
Aou=Jrxu, [Aou(r)| < |[ill2mllull 2@ = llull2@ forall reR,

1
Aot = T wu, (A (r) < Al sy llull iz = lullzag for al 7 e R
and thus Agu € C}(R).

Ao(L>®(R)) C W2°°(R) is shown in [LLO1]. To show A¢(L®(R)) C CL(R) we estimate
similar as before. Let u € L°°(R) then we have

Aou = Jrxu, [Aou(r)| < [|Nllpiwyllullre®) = lullpew) forall reR,
Ao’ = Jyxu, Aot (r)] < Il llull oo ry = llull o)  forall reR

and thus Agu € C}(R).

If u € C)(R) then we get Ag(u) € C?(R) from standard ODE regularity theory
by considering the ODE locally. Agu, Agu’ € L*°(R) follow from the previous case.
Agu” € L>(R) follows from the ODE, in fact we have Agu” = Agu —u € Cp(R).

For (3) and (4) the linearity is clear. To estimate the norm we test the ODE with the
solution v itself. With a Young estimate and a partial integration we get

1 1
/\Aou’y2d£1+/ |Agu|? dC? —/quudcl < / yu\2d£1+/ |Agul? dC?
R R R 2 Jr 2 Jr
= [lAoul 2wy < llullz2(w)-

Thus Ag : L*(R) — L?(R) is linear and continuous. From (3.1.10) we get that it is also
self-adjoint and positive.

If u satisfies lim, o u(r) = y for some y € R we get with the Dominated Convergence
Theorem

lim Agu(r) = lim [ Ji(s)u(r —s)ds = y/ Ji(s)ds = y.
r—00 = R

Same for r — —oo.
(5) follows immediately from standard theory about parameter integrals. O

Next we prove that if v has exponential decay at +o00, so does Ag(u).
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Lemma 3.1.9 (Further properties of Ap).
(a) Let uw € L*°(R) and assume there exist C,c > 0 such that

lu(r)] < Ce=" forall reR, (3.1.11)
then there exist C1,c1 > 0 with
|Agu(r)| < Cre™ "l for all reR.
(b) Let u € L*(R) be uniformly continuous, then

lim w(r) =0.

r—+o00

In particular we get that for v € L*°(R)

lim Apv(r) =0

r—Foo
and for v € CP(R)

lim Agv(r)=0= lim Agv'(r).

r—+oo r—+oo

(¢) Let ax € R and define we define & : R — R with

Q= A—X(—00,0) T A+X[0,00)

Then we have o == Aga € CL(R) and

—Ir| 1
€ —|r
= Gsgn(—r) 5 + Gggn(r) (1 — 3¢ | |> for r=#£0

and a(0) = %

Proof. (a) Without loss of generality we can assume C' = 2 and ¢ = 1, otherwise we
consider the function @(r) :== Zu(%). We analyse the behavior for r > 0, by definition we
have

1
|Agu(r)] < / Ji(r = s)|u(s)|ds < / ie—lr—s\26—|s| ds
R

R

0 r [e's)
= / e (r=5)es ds + / e (r=9)e=5ds + / e~ (5 es qs
o 0 r

0 o)
= e_r/ e25ds +re " + €T/ e 2% ds
'

—00
= le_r + re~3" 5" + le_r < 2737,
2 ~—— 2

<2<1
<<

The same can be done for r < 0.

(b) Assume not ILm u(r) = 0. Then there exist € > 0 and a sequence (zj)ken in R with
r—00
xp, — oo for all k € N such that

|u(zg)| > e forall keN.
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Since z, 0o we can choose a subsequence (ackj )jen such that for all j € N: Thyy, > Th;+2.
u is uniformly continuous thus there exists 0 < § < 1 such that

u(r)| =

This leads to a contradiction because of

00 > / lu|? dLt > / > dct >y 6e.
R T

k; —20 j=1

for all 7 € (wy, — 20, 7x; +26) andall jeN.

| ™

We prove the last remarks. If v € L%°(R) then Agv € C}(R) by Proposition 3.1.8. The
Mean Value Theorem implies Agv is Lipschitz and hence uniformly continuous. If
v € CY(R) then Agv € CZ(R) by Proposition 3.1.8 and thus Agv, Agv’ € C}(R) and the
claim follows.

For the proof of (c¢) we calculate the convolution. Since & € L*(R) we have a € C}(R)
by Proposition 3.1.8. We get for r > 0

1 0 0o
afr) = /6|TS|54(5) ds = a/ e~Ir=slds 4 a;/ e~ Imsl s
oo 0
:/ e* " ds +/ S_Tds+a2+/ e *ds

:afesr +a+esr _a’ier—soo

2 —c0 2 2 r
e (PR UL L
=5 —1—2(1 e)+2—a_2—|—a+(1 26)

We calculate similar for r < 0

— CL; s—r a; r—s aier—s
2 —0o0 2 r 2 0
_ L s + r o ai r
2—&—2(1 e’)+ e—a_(l )+26
Hence the claimed representation follows. ]

We also need the solution operator on open sets of R”.

Lemma 3.1.10 (Solution operator on bounded open sets).
Givenn € N, Q C R" open, bounded with Lipschitz-boundary, u € H*(Q) and ¢ > 0 there
exists a unique solution A.u =1, € H(Q) such that

—2AT + T =u in Q (3.1.12)
Oue =0 on 0N (3.1.13)

in the weak sense. The operator A. : H(Q)" — H'(Q) is linear and continuous.
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If Q has C?-boundary and u € L*(Q) then we get Acu € H*(Q2). As H*(Q) — L*(Q) we
can also consider A. as an operator on L*(Q)) without introducing a different notation.
Az : L2(Q) — L3(2) is linear, continuous, self-adjoint, and positive. We have for all

Vv, ¢ € HY(Q)
(Ach, V) )y = (A, &) riqy- (3.1.14)

Proof. Let € > 0 and u € H'(Q), we consider the weak formulation of the PDE. By
definition we are looking for 7. € H'(f2) such that for all ¢» € H(Q)

62/ Vo - VydL" + / v AL™ = (P, u) g (qy - (3.1.15)
Q Q

The bilinear form on the left-hand side is symmetric and positive definite as € > 0 is fixed.
Thus it induces an equivalent scalar product (-, - ) on H!(Q). Since the scalar product
is equivalent to the standard scalar product on H'(£2) the space H'(2) equipped with
(-, -)is a Hilbert space. By Riesz’s representation Theorem there exists a unique solution
Te = Acu € HY() to (3.1.15) such that for all ¢p € H(Q2) we have (W, u) gy = (¥, ).
It follows

(e, ) < |lull g1y and in particular || Acul| 20y = [Tl z2) < [Jull gy -
(3.1.16)

In the case of higher regularity we get 7. € H?(f)) by Friedrich’s Theorem.

As an operator on L?(2) the linearity of A. follows from the uniqueness of %, and the
bilinearity of ( -, - ). The continuity was already shown in (3.1.16). We prove that A. is
self-adjoint. Let u,w € L?(Q), define ¢ := A.u and ¢ := A.w. The partial integration
combined with the boundary data allows to calculate

/ uAcw dL" = / H(—e*A +1d)y dL" = / (£2Ve) - Ve + ¢p) dL™
Q Q Q
= / Y(—e*A +1d)p dL" = / wA:udL"”.
) Q

The positivity of A, follows by considering u = w in this calculation. Using the definition
of A. we get for all ¥, ¢ € H(Q)'

(A, ¢>H1(Q)/ = (A1), _EQAAE¢ + A5¢>H1(Q)' - /Q

= (A, —*AA + Ap) iy = (A, 9) i qy O

(ﬁww VAP + AgwquS) acr

In addition to these properties we prove a maximum principle for A..

Lemma 3.1.11 (Maximum principle).

Let e >0, Q as in Lemma 3.1.10 and v € L*(Q) with u < R a.e. in Q for some R € R.
Then the function u. = A:u also satisfies U < R a.e. in Q. This remains correct if
“<7 4s replaced with “>7 in the statement.
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Proof. The function @, — R satisfies

—EQA(Hg—R)+H€—R:u—R in Q
Ou.=0 on 0N

in the weak sense. We test with (7. — R)y € H*() and get

/Q (2V(@. - R) - V(@ — R)s + (5. — R)(@. — ). ) dL" = /Q(u _ R)(d. — R), dL"
— [ (219~ R (@ - B a2 <o

Thus we get w. < R a.e. in 2. This carries over to lower bounds as well, assume v > R
a.e. for some R € R, then

—e?A(—1.) + (@) = —u < —R and hence —7. < —R. [

Next we consider a Fredholm operator as a preparation. It appears in the linearization of
the first variation of the diffuse perimeter on R.

Lemma 3.1.12 (L is Fredholm).

We consider the function f from the Assumptions 3.1.1, the optimal profile qo from
Theorem 8.1.8 and the one-dimensional solution operator Ag from Definition 3.1.6. The
operator

Ly: L*(R) — L*(R), Lo:= f'(q)Id—A, (3.1.17)
is a Fredholm operator with index 0.

The proof uses a clever splitting of Lg, which was to our knowledge first introduced in the
proof of Lemma 5.3. in [BFRW97]. The idea is to write Lg as the sum of an isomorphism
and a compact operator. We adapt the method from L*(R) to L?(R).

Proof. We choose a function o € C'(R) such that
e There exist ¢, R > 0 such that |a(+r) — f/(£1)| < el for all |r| > R.
e There exist 1 < m < M such that m < a < M.

If W is even we can use a(z) == f'(1) + e~**. In the general case we define & : R —s R
with

&= f'(=1)X(=00,0) + [ (DX[o,00) and a:= Agd.
From Lemma 3.1.9 (c) we get

67|7'|

ofr) = f(sem(~r) S5 + Flsm(r) (1 - e ) for 0

and a(0) = W From this representation we can immediately conclude that the
exponential convergence towards f/(+1) as r — +oo is satisfied. Since the function is a
convex combination of f/(+1) and f/(£1) = 1 + W”(&£1) > 1 we also get the second
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condition.

We rewrite Lo(w) for w € L?(R)
Lo(w) = f'(q0) (LW (w) + L& (w)) with

1 1 1
(1) — —_—— (2) :— —_—— ——— .
LY (w) = w Jyxw and L'Y(w):= ( ’(q0)>J1 * W

Owing t0 0 < v < f'(qo(r)) < C < oo for all r € R we get that if the operator L) 4 L(?)
is Fredholm then L is also a Fredholm operator with the same index. We start by
showing that LY is an isomorphism and prove that L® is compact.

For w € L*(R) with [|w]|2®) < 1 we get from Lemma 3.1.7

Héjl*w‘ < 1.

Sl=

1
L®) < EHJlnLl(R)HwHL?(R) <

Therefore L) = Id —éAo : L*(R) — L%(R) is a bijection with continuous inverse operator,
given by the corresponding Neumann series. It follows that LY is an isomorphism and
hence a Fredholm operator with index 0. If we can prove that L : L2(R) — L2(R) is a
compact operator the proof is finished. We can write L® as an integral operator and
calculate the Hilbert-Schmidt norm

1 1 1 1

? 2r—s| 2
/R Flaor) ~ alr) /Rf dsdr < 4m272/R'f (@) — ol dr.

To ensure that the last integral exists we check that f/(qo) — f’(£1) has exponential decay.
Here it is sufficient to have that f’ is Lipschitz on [—1,1]. This is satisfied because of
f"=3W" € C°R). Thus we get with R,c > 0 from Lemma 3.1.4 for r > R

HWWH or_ 7 .
[ ao(r) = F'ED] < 1 ora| +1 - ao(en)| < 57 =e.

So L? is Hilbert-Schmidt and hence compact. O

We can even provide more information on the kernel of L. It follows from equations (3.1.2)
and (3.1.4) that Lo(g)) = 0. The next lemma shows, that the kernel is a one-dimensional
subspace.

Lemma 3.1.13 (Lo has a one-dimensional kernel).
The operator Ly has a one-dimensional kernel, more precisely

ker(Lg) = span(qj) (3.1.18)
and Lo : {gh}*+ — {gh}* is an isomorphism.
We follow and adapt the proof of Lemma 5.3 in [BFRW97].

Proof. Tt follows from f(qo) = Aoqo that w = g is a solution to the equation Lo(w) = 0. In
order to get that every other solution is a multiple of ¢, we follow the line of argumentation
from Lemma 5.3 in [BFRW97|. Because of

Jixqo = Aogo = f(q) we have Jy*q) = f'(q0)q)-
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Assume Lg(w) = 0 for some w € L2(R) \ {0}. Owing to the assumptions on f we know
f'(qo) = for some v > 0. The equation

J1 * W

w = . 3.1.19

f"(q0) ( )
implies higher regularity. Since w € L?(R) we have from Proposition 3.1.8
Jixw = Apw € CHR) thus w € CL(R). By rescaling we can assume w to
have a positive value somewhere on R.

For 8 € R we define wg = fw + ¢, and
B =sup{B8 < 0| Ir € R:wg(r) < 0}.

Since our goal will be to show wz =0, it is useful to consider infg wg. Let 8 < B, then
we know infg wg < 0 by definition of 3. We claim that there exists 5 € R, such that
infr wg = wg(&p). If not, without loss of generality there exists a sequence (r;) ey in R,
such that r; — oo and wg(r;) — infr wg < 0. We conclude with W (qo) = f'(qo) — 1
and (3.1.19)
0> }W”(l) -infwg = lim 1VV”( (ri))wa(rj) = lm [J1 *wg — wg](r;)
2 R P j—oo 2 QAT3))0BTS j—00 ! A AIV
= lim [(J1 xwg)(r;) — ilﬁf wg] >0

Jj—00

which is a contradiction. It follows infr wg = wg(&g). This yields

%W//(QO(fﬁ))wﬁ(gﬁ) = (J1 xwg —wg)(§p) > 050 W (qo(§s)) < 0. (3.1.20)

We can deduce that (£3)4_5 can be found in the interval where W"(qo) is negative. Since
W”(+1) > 0 and ¢o(r) — £1 as r — $o0, this interval is bounded. Therefore we can
extract a subsequence such that {g — & as 8 — B. Since w, ¢ are bounded we know
wg — wz as B — B uniformly. We conclude

wﬁ(g) +— wg(&p) = iﬁfu}g —0 as [ —B.

Since f’ # 0 it follows with (3.1.19)

——
2

O:(Jl*wﬁ)(f)Z/RJl(ﬁ—s)wg(s) ds = wz = 0. O
>0 5

For the construction of the recovery sequence we are concerned with the minimization of
the functional Z from the following lemma.

Lemma 3.1.14 (Existence of ¢).
Let Ly be as in Lemma 3.1.12, Ao as in Definition 3.1.6 and G, as in Theorem 3.1.3.
Then for every minimizer w. € L?>(R) of the functional Z : L?>(R) — R with

E(w) = / ’Lo(w) — Aoq, 2d£1 for w e L*(R), (3.1.21)
R
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we have w, € C;""%(R). There exists a unique minimizer ¢ € L*(R) N Ci" %(R) that
satisfies q1(0) = 0. It is determined by the equation

Lo(q1) — Ao(qp) = —oacp, (3.1.22)

where oag 1s the constant from (3.1.7). Furthermore we get that for A € R with A # oag
there exists no u € L*(R) such that

Lo(u) — Ao() = —Agp-

Proof. First we prove the existence of a minimizer with the direct method from the
calculus of variations. We have = > 0 and L?(R) is reflexive. Since Lg is a Fredholm
operator it has a closed and convex range, in particular range(Lg) is weakly closed in
L?(R). = is the distance between an element of range(Lg) and Aog) in L?(R) and thus it
is weakly lower semi-continuous. It follows that there exists w, € L?(R) such that

—1 112 -
| Lo (wy) — AOqOHLQ(R) = Lgréﬂg) =

Let w, € L*(R) be any minimizer of = thus w, is a solution to the Euler-Lagrange
equation

Lo (Lo(ws) — Aogy) =0 and thus
Lo(ws) — Agqy = Aqy for some € R,

by Lemma 3.1.13. Rearranging yields

1
Wy = ———— Aoq/ + )\q/ + Agqws ).
f’(Q())( 0 )

We can apply a bootstrap argument. Proposition 3.1.8 yields Agqw. € C,} (R) thus we get
w, € C(R). This improves the regularity of the right-hand side and by iteration we get
wy € C’g”fz(R) which is the regularity of f’ and ¢). Now that we have continuity it is
well-defined to discuss the additional condition w(0) = 0.

From Lo : {g)}* — {g)}*+ we know that the Euler-Lagrange equation can only be solved
if

Ag) + Aoy € {g0}+
Thus we calculate

H%H%Q(R) B

! _
0= <q()‘)\Q6 + AO(Q6)>L2(R) <= A= —OAG

A

with oag > 0 as in (3.1.7).
At last we next prove that there a exists a unique minimizer ¢; € L2(R) N C}" *(R) of =
that satisfies ¢1(0) = 0. From the Euler-Lagrange equation and the previous argument we

get that every minimizer w, of = is a solution to

Lo(wy) = UAGQ(/) + AQ@E).
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Lo : {g)}* — {g)}™ is an isomorphism by Lemma 3.1.13, thus there exists a unique
Wy € {gh}* such that Lo(s) = oacqh + Aod).

Since ker(Lg) = span(g() the minimizer can only be unique up to adding 7¢(, for 7 € R.
We know ¢;,(0) > 0 and thus there exists a unique 7, € R such that

q1(0) = 10,(0) + 7 q,(0) = 0. 0

The last preparation we need for the I'-lim sup construction is the exponential decay of
/
q1,497-

Lemma 3.1.15 (Exponential decay).
There exist R,C,c > 0 such that for all |r| > R we have

lg1(r)] < Ceel, ¢i(r)] < Ce,
()| < Ce= " and | (r)] < Cee,

Proof. We consider the auxiliary function ¢; € Cf*(R) N L?(R)
q1 = Ao(ql —I—QE)) (3123)
Combining this with (3.1.22) we get

]‘ /
Q= m(@l — 0AGY))- (3.1.24)

Since ¢1 € C*(R) N L*(R) we get from Lemma 3.1.9

lim ¢1(r)=0= lim ¢(r). (3.1.25)

r—+oo r—+oo

We observe that & == (g, — 1,40, §1,@}) is a solution to the ODE system

£ =6,

G=+1—fH&+1),

& =6,

/ 1 oAGE2
G868 g )& Frie )

Lemma 3.1.4 combined with (3.1.25) yield

£E(r)] — 0 as r — oo.
We recall 2¢2 = ELA(C . 1—(f71)Y(1) € (0,1) from the proof of Lemma 3.1.4. The
= S = , p .1.4.
linearization of the right-hand side of the ODE at £ = 0 is given by

0 1 0

0
lW”(l) 0 1 0 0
I 0 01 _ |22 0 0 0
0 0 0 1 0 0 0 1
0 oAQ 1 W (1) 0 0 oag[l— 262]2 -1 22 0

A+iwr)? 1+IW7(1)
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Owing to the block structure we get the Eigenvalues 4++/2¢ with algebraic multiplicity 2
and geometric multiplicity 1 respectively. We compute a Jordan-Decomposition and get

—V2c¢ 1 0 0
0 —V2 0 0
0 0 V2e 1
0 0 0 V2

We conclude that the stationary point 0 is hyperbolic. We already know &(r) — 0 as
r — oo and thus the solution is on the stable manifold. It follows from stable manifold
theory that the convergence is exponential; see the remark on page 115 in [Per96]. The
exponential convergence of ¢, ¢} follow from the representation

1

/ A
@ = 57—~ (—0acq +4q1), 3.1.26
f/(QO) ( 0 ) ( )
q = 7,1 (—oacao +41) + f”,( )4y 2( oacqy + a1, (3.1.27)
f'(q0) /(g0
and the previous estimates from Lemma 3.1.4. Similar for » — —oo0. O

3.2 Formal identification of a candidate for the I'-limit and
for a recovery sequence

With the preparations from the last section we can start with the key objects. We adapt
the concept presented in [BP93] where the classical I'-lim sup estimate was shown. We
concentrate on a small neighborhood of the given surface as in Definition 2.1.10, formally
expand WXX in powers of ¢ and minimize each order. The idea to do an asymptotic
expansion u. in powers of ¢ is not new, it was presented in [LMO00] and considered by
[Wan08].

Definition 3.2.1 (Diffuse Willmore energy). We define the gradient-free diffuse Willmore
energy WAG 1 L2(Q) — [0, o0]

WAC (1) /Q 5 [F(w) — A ’ (3.2.1)

and the diffuse mean curvature

HAG () = V2 PACG = é(u — e + %W’(u)) = é(f(u) — Asu)

Let E € Q) be open with smooth boundary I' := O0F, we write u := 2xg — 1. For the
lim sup condition of T'-convergence we have to construct an approximation (ue)s>o of u in

LY(2) such that

lim sup WAS (u.) < eagoacW(u).
e—0

We recall the geometry from Figure 2.1 and the coordinates for € w = {|d| < 56}. The
idea behind the construction is visualized in Figure 3.1.

=V (z,y) =y+ezvr(y) with (z,y) e RxT

47



from Definition 2.1.10. We use the ansatz
ue(z) = Up(z,x) + eUs(z, x), (3.2.2)

where Uy, Uy are profile functions with properties specified below. As in 2.1.11 we consider
profile functions that are constant in normal direction. We pose the following conditions
on the profile functions:

e Up € C°R x w) with Up(0,z) =0 and Up(-, ) —sgn € L?(R) for all z € w.
e Uy € H'(R;C(w)) with U1(0,z) =0 for all z € w.

Figure 3.1: Visualization of the geometry and coordinates.

We write O0U; = U J’ for the z-derivative and VrU; for the tangential gradient with respect
to the y variable. In addition we assume an expansion for the corresponding solution
u. = Acu. of the PDE (3.0.1) of the form

e (x) = Vp(z,2) + eVi(z,x)

with similar properties as the expansion for u.. We plug this formally into (3.0.1) and
use the expansion of the differential operator in the new coordinates (2.1.9)-(2.1.8). We
get at each point z € w

Up+eUp = u. = (—2A + 1d)u. = (—0% + 1d —eAdO — 2Ar) (Vo + V1)
= (=0* +1d—cHI)(Vy + Vi) + O(e?)
= —VJ' + Vo +e(=V{" + Vi — HV}) + O(?).

We conclude formally
Vi +Vo=Uy and —V/'+Vi=U;+HV. (3.2.3)

In the next step we expand W?G by powers of € and choose Uy, U; by minimizing the
functionals in each order. We neglect the integral over 2\ w and use a Taylor expansion

1 1 2
W (ue) / 1 (ue) — AL = / 5| F(U0) + < (U0) Uy — Vo — eV dL™.
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For the transformation = = \Ile(z, y) we have |det(DV.)| = ¢ + O(e?) = ¢ from (2.1.7)

WAG (4 / /
55

2
— Vo) + f{(Uy)Uy — Vi| ALt dnnt

2
— Vo) + f{(U)U, — Vi| At At

We will minimize this expression on each order of e-powers. We fix y € w, then first term
to minimize is

[ 11(@ate) = Vol Pac?

The lowest possible value is 0 and this is achieved with the choice Uy = q¢ and thus
Vo = @y In particular Uj is independent from the second variable. We get

WAC (u,) N// ‘f q0)U1 — V1] act dpnt,

We plug in Vi = Ag(Ur + Hq) and get

2

WACG (u,) — Ao)U; — HAgg)y| dLt dH™ L

We see that if H = 0 the optimal choice is Uy = 0 and thus the set {y € T | H(y) = 0} has
no impact on the value of the integral. For all y € T" with H(y) # 0 we write Uy = H%
and get

WAG (4,) ~

{H#0}

Ao)Z — Aoq)

1 n— 1
i dE dH (3.2.4)

Here we minimize the inner integral again. For y € {H # 0} fixed the term ﬁ is just a
factor independent from z. We consider

Z:L*(R) — [0,00], E(w) :z/\Lo(w)—Aoqé2
R

In Lemma 3.1.14 we have proven the existence of a unique minimizer ¢; that satisfies
q1(0) = 0. Since U1(0,2) = 0 for all z € w was a condition for U; we get

Up=Hg and Lo(q1) — Aoy = —0acqp-
We conclude that the minimum is
E(q1) = cAGOAG- (3.2.5)
Combining this with (3.2.4) we get that for the choices Uy = qo, U3y = Hqy we obtain

WAC(u,) ~ cacoac / H? dH" ™ = cacoacW(u). (3.2.6)
r

The right-hand side in this equation characterizes our I'-limit candidate of (W&AG)DO.
We get the lim sup-condition of I'-convergence if ’<’ is proven rigorously.
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$1(2)

Figure 3.2: Plot of ¢

3.3 TI'-liminf estimate for a specific class of functions

In this section we construct a suitable class of functions which are constant +1 far away
from the surface and has an asymptotic expansion u. = Uy +eU; + ... as in (3.2.2) close
to the surface. In between we interpolate with a cut-off function. The difficulty is to
do the construction in a way such that the family (u.)c~o with . := A.u. also has an
asymptotic expansion T, = Vo +¢eVi + ... as in (3.2.2) close to the surface. This is not
trivial because the normal and tangential coordinates are not well-defined on {2, just in a
neighborhood of I' and the solution operator is nonlocal, meaning that all values from wu.
in Q influence the solution ..

Assumption 3.3.1 (General assumptions).

Let QW as in Assumptions 3.1.1. Let E € Q with C*-boundary T' :== OF, recall
u=2xp — 1, d =sdist(-,I') and w = {|d| < 50} € Q with 6 > 0 sufficiently small such
that the coordinate transformation V. from Definition 2.1.10 for € > 0 is well-defined on
w.

In the following we introduce a modification of the signed distance function with a cut-off
function.

Definition 3.3.2 (Modified distance and cut-off functions).
Choose an odd and increasing function ¢1 € C*°(R) with

#1(0) =0, 0<¢1(2) S%z, 0<¢i(z) <1 for all z € (0, 00),
1 ;
¢1(z)_{z i fze :2)

(
2, if z € (
We set ¢s(z) = 5¢1(§) for z € R and define a modification of the signed distance function
(being constant £28 outside {|d| < 34}) by

[N [S NI

ds = ¢s0d € CHQ).
Finally, choose an even and on (0,00) decreasing function m € C°(R) with

1 in]0,3],

0<m <1, |fl<2, m=
<m < b m {0 in 4, 00)
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and define the cut-off function

ns(x) =m <d(5x)> for all x € Q.

We remark that ns € C*(Q) since 15 has support in {|d| < 45}.

We next define spaces of functions that are exponentially controlled in terms of the
modified distance function dgs far away from I'.

Definition 3.3.3. For A, u > 0 we consider

Xg’A(Q) = {w € L=(Q) | ess—essélp ‘e“‘dé(mﬂw(x)] < A}

and
XPA(R;T) = {w € L®R x w) | ess-sup |e!*lw(z,z)| <A,
(z,2)ERXw

w(z, ) s constant in normal direction}
and set X (R;T) := U, po0 XPA(R;T).

Note that for 0 < p; < pg and any A > 0 we have X(’;Q’A(Q) - Xg“’A(Q). Next we define
a suitable class of phase field approximations that have an expansion in powers of & close
to I and are constant +1 far away from I'.

Assumption 3.3.4 (Additional assumptions for lim inf-estimate).

We assume 3.3.1 and let K € Ng. Consider a family (ue)o<e<e, that can be represented as
follows: There exist 0 < u <1, A > 0, and profile functions uj, j =0,..., K, such that
for all 0 < e < g

e = 5wl + (1= ) sgn(d) + <K TIRE in (33.)
K

ul" = (Zejuj) oWl in {|d| < 45}, (3.3.2)
=0

and such that the following properties hold:

1. The profile functions u; € CO(R x w), uj = u;(z,x) are C*-regular with respect to
the z-variable and satisfy

up —sgn € X(R;T'), u; € X(R;I') for 1<j<K,
\Vauil, Agug, [VeAgus|, AZu; € X(R;T) for 0<j<K.

P23
2. The remainder satisfies R} € X ’A(Q) for all 0 < e < gp.

Finally we assume that there are height functions hj, 7 =0,..., K —1 such that

K-1
yry+e( X hily) + ¥R W)r@), yer (3:3.3)
j=0

is a C*-diffeomorphism onto {ue = 0} with sup.~ ||R£IHC4(F) < 0.
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Lemma 3.3.5 (Convergence towards u).
Consider (ug)oce<e, as in Assumption 3.53.4. Then we have u. — u in LP(Q) for all
1<p<oo.

Proof. Note that u = 2yg — 1 = sgn(d). We fix A, u,d > 0 such that RY € X (Q) and
up — sgn, uj € X*MR;T) for all 1 < j < K. Using the representation of u. and (2.1.7)
we have

/Q |ue — ulP AL = / ’775(uian —sgn(d)) + sK“R};

<C(p ,/ ul —sgn(d)[” dL™ + 5T C(p) !//R“Wdﬁn
ww4a

o [ [

We use the bounds for the profile functions to further estimate the right-hand side and
deduce that for some A > 0 and some p € (0,1)

Pacn

Cac AH" 1+ KO (p)AP LY (Q).

u] — sgn

/Wus—upd£”<(jfg)§:é+{/ e PHIUAP dt 4 KH1C(A, Q, p)
3=0 R

K
<O A p,p) Y e 4+ MF1O(A, Q). O
j=0

Next we show that (f(us))o<e<e, also has an appropriate expansion. For the proof we
need the following lemma.

Lemma 3.3.6. Let a < b and f € C?(U), for an open set U D [a,b] and define for
0<A<1

g(A) = F((1 = Na+ b)) = (1= M) f(a) + AF(b)).
Then )
9N < O oAl = M(a — b)? (3.3.4)

holds.
Proof. We have g(0) = g(1) = 0. Taylor expansions give

9(N) = F(@)(b— A+ £ F(€)(6 — )22 = A(F(b) - f(@)
F(@)(b— )+ 3 F'(E)(b — X2 = AF(@)(b — ) — IAF(€)(b — a)?
= 20— A (FE)A - ()

|
S)

>
+
N | b—'[\DM—l

for some &1,&2 € (a,b). Similar we have
900 = FO)b—a)A — 1)+ 5 7/(E) 6~ a)2(1 =AY — A= D((B) - f(a)
= 20— a0 - X&)~ X) - (&)

for some &3,&4 € (a,b). Multiplying the first equality by 1 — A, the second by A and
adding up yields the desired estimate. O
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Lemma 3.3.7. ~
Consider K <2 and (u5)0<8<§0 as in Assumption 3.3.4. Let f € C?(U) for an open set
U 2 [-1,1] then the family (f(ue)) ...z, can be represented as

f(ue) = néf(ue)in + (1 —ns)sgnd + e"HIR, (3.3.5)
with f(ue)in oV, = Z]K:O 5ij7

Fy=f(uo), Fi=f(uo)ur, Fop==f"(uo)(w)?+ f (uo)us.

N

P
Moreover, Fy —sgn, I, F> € X(R;T'), R. € Xy ’C(f)A(Q) holds.

Proof. We proof the claim for K = 2. Choose &y < gp such that u.(z) € U for all z € Q.
I3
Choose 1, A such that ug, uy, us € X**(R), R, € Xy ’A. We first obtain

Fus) = fnsul™ + (1 —ns)sgnd + €2 RY) = f(nsu + (1 — ns) sgnd) + >RV, (3.3.6)
with |[RM| < C(f)|RY|. Since f € C2(U) with [~1,1] C U Lemma 3.3.6 yiclds
| F(nsul +(1—n5) send) —ns f(ul) — (1—ns) sgnd| < C(f)ms(1—ns)(u —sgnd)?. (3.3.7)

Another Taylor expansion implies that in {ns > 0}

Fl) = (F(uo) +ef (uo)us +52(%fm(uo)(ul)2+f/(UO)U2))O\Ifs_l < SC(HRP (3.3.8)

for R with R® < (Julr + |ua| + |us|)? o ¥Z1. From (3.3.6)-(3.3.8) we conclude the
desired representation (3.3.5) with

[Re| < C(F)[RY 4 ns(1 = ns)(ul® = sgnd)?® + (July + [us] + ug)? 0 @],
A

. J22
Since |ul —sgnd| < (Jup —sgn| + |u1| + |uz|) o ¥, we deduce that R. € X¢ ™. Finally,
Fy—sgn, Fy, Fy € X(R;T') follows from |f(ug) —sgn | = |f(up) — f(sgn)| < C(f)|uo—sgn|
and the assumptions on wug, u1, us. ]

Below we will only need orders K < 2. The key observation at this point is that the
solution operator A, conserves the expansion properties. For the proof we need a few
preparations. First we extend the solution operator Ag from 3.1.8 to functions defined on
R x w.
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Lemma 3.3.8.
The convolution operator Agw = Jy x w can be extended. For w € L™ (R x w) we define

Agw(z,z) = /RJl(Z — Qw(¢,z)d¢ = [J1 *w(-,2)](2).

It has the following properties:
1. If w € C7(R; C2(w)), j1,j2 € No then Agw € CI1T2(R; C72(w)).
2. If w € XY (R;T) for some A >0 and p € (0,1) we get
Agw, (Agw)’, (Agw)" € XPNR;T) for some A = A(A, p).

Proof. The first claim follows from standard theory of parameter dependent integrals.
For the second claim we estimate

e Agu(z, )| < / T(Qe w(z — ¢, y)[d¢ < A / Ti(Q)erFlemri==lag
R R
A A
A melqe = = —(=mwlllqe = =,
< /RJl(C)e d¢ 2/Re =1

The estimate for (Apw)’ follows similarly since J; € L>°(R) also decays exponentially.
Finally, these properties also yield the decay of (Aqw)” = (Agw) — w. O

The next lemma contains the key argument why the exponential control from u. carries
over to .. We consider the PDE that is solved by the phase-field function multiplied
with an exponential term of the form introduced in the Definition 3.3.3.

Lemma 3.3.9.
Let A >0, 6 € (0,1), and p € (0,1) be given. There exists eg = £0(0, u, I') > 0 with the
following property: Let 0 < € < gq, U € X?A(Q) be given and assume 9. € C2(Q)NCH(Q)
solves
(—2A 4+ 1d)i. = 4. in 0
0,0. =0 on ON.

123 ~
Then we have 9. € X5 A(Q) for A = 1—27A'
Proof. We obtain that the function Z = e14s15, satisfies

—2AZ +2ueV|ds| - VZ + (1 + peAlds| — 12|V|ds| ) Z = e<1@la. in Q
o,Z =0 on Of).

Choose gy > 0 sufficiently small such that

: 2 1—p?
inf (1 + pelds| - p2|V|ds][*) > ;> 0.
This is possible because of

d
[VIdsl| = [65(@) V| = |61 (5)| <1 and [Aldsl] < Clm, 8, | dlcza)):
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We have d € CZ(f2) because I' € Q is a C**-hypersurface.

Assume that M = maxg Z > A= IEHQA and observe that in {Z > [X}

L=12 0 3y < otldilg
Sz Ry <l - A<0 (339)

—2A(Z — A) 4 2ueVds| - V(Z — A) +

since . € X 5% A(Q) If the maximum of Z is attained at a point xo € 92 we choose an
open ball B C QN {Z > A} with BN dQ = {xo}. We deduce from the Hopf-Lemma and
VZ - -vg =0 that Z = M in B holds. This implies that the maximum of Z is always
attained in €2, which yields by (3.3.9) that Z < A, contradicting the assumption. Similarly
we obtain —Z < A. ]

The next lemma shows a quasi-locality of the operator —?A + Id if applied to functions
that are exponentially close to +1 away from the interface.

Lemma 3.3.10.

Let py,A >0,0<6 < %, and o cut-off function n1 as in Definition 3.53.2 be given. Then
there exists €9 = €o(6,1,m1) > 0 such that for all € € (0,2¢) and any w. € C*(w) the
following property holds: If for all x € {|d| > 30}

eV (2)] < Ae”E@1 and Jw.(z) - sgn(d(z))] < Ae~ £ @],

then there exists R € X(?’A(Q) such that
(—&2A + 1d) (nswe + (1 — n5) sgn(d))
=75 (—€2A + Id)we: + (1 — ns) sgn(d) + X{|d|236}Rs- (3.3.10)
Proof. We calculate
(—e?A +1d) (nsw: + (1 — ns) sgn(d))
=15 - (—2A 4+ Id)w. + (1 — ns) sgn(d) — 262Vw.Vns — e2Ans - (w, — sgn(d)).

For the last two terms we obtain

4e2 4eA B
22| Vw:Vns| < TX{|d|z35}|sz| < —5X{jd|>35)€ e ldsl

and
e2AC(m,T _n
|2 Ans - (we — sgn(d))| < (S(Qm)X{d|>35}€ cldsl,
Choosing g9 < min{3, (2C(n1, F))_%}cS yields the claim. O

We need a corresponding statement for functions that are defined in terms of the inner
variables.

Lemma 3.3.11.
There exists €9 > 0 such that for all ¢ € (0,e0) and any w € C*(R x w) the following
holds: Assume

w — sgn, d,w, Vyw € X“’A(R;F)

. I3
and define wi* == w o V-1 € C?(w). Then there exist R € X(;E’QA(Q) such that (3.3.10)
holds for w. = w™.
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Proof. We observe that |ds(z)| < Z|d(z)| in {|d| > 36} and deduce in {35 < |d| < 55}

i 3udg(x)
and
i 3udg ()
[wi® (@) — sen(d(x))| < Ae M < Aem T2
The claim then follows from Lemma 3.3.10. -

Now can prove that A, preserves the properties listed in Assumptions 3.3.4.

Proposition 3.3.12.

Consider K < 2 and (us)o<e<e, as in Assumption 3.3.4. Then the family (Ug)o<e<e,,
ue. = A:-ue has an analogue representation, meaning that there exist A >0 and profile
functions v; € C*](R x w), j =0,...,K such that v; are C* with respect to x € w and
such that for all 0 < & < gg

Te = 50" + (1 — ng) sgn(d) + e5TIRY  in Q, (3.3.11)
K

" = <Zajvj> oWt in {|d| < 46}, (3.3.12)
j=0

P23
with RY € X A(Q) for all 0 < e < gg.
The profile functions are given by

vo(z, ) = Agup(z, ) (3.3.13)
v1(z,2) = Ao(u1(z,z) + H(y)vy(z,2)) (3.3.14)
va(z,2) = Ag(ua(z,z) + H(y)vi(z,2) + (Ap — 2|13 (y)0)vo(2, 7)) (3.3.15)

for z € R, x € w, y =1Ip(z). Moreover,
vo —sgn, vi,v2 € X(R;T)  and  0,vj, [Vev4], Agvj € X(R;T) for j =0,1,2.

Proof. Assume K = 2,1let 0 < pu < 1, A > 0, and ug, u1, us € X**(R;T) as in Assumption
3.3.4. Using the representation for Ad from (2.1.9) we obtain in {|d| < 3d}

—2A+1d = —62 +1Id —eAdd, — 2N,
= 02 +1d—cHO, — *(A, — 2|0,) — 3|2)? R 2.,

and
(ult = (—A + 1)) o ;!
= ug + euy + £2ug — (=02 +1d)vy — 5((—83 +Id)vy — HO,vp)
—e2((=02 + 1d)vg — HO,v1 — (A, — 2|20, )v0) +€*RY.  (3.3.16)

The equations (3.3.13)-(3.3.15) are then equivalent to the property, that the expression
in (3.3.16) vanishes up to order O(e%). We then obtain

(—e’A +1d)a™ = u® +3RY o T, (3.3.17)
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with

RloVW, = —\z|2Rfﬁzv0 + HO,va + (A, — Z\I[|282)v1
—e|z|PRE,v1 + £(A, — 2|20 )vg — €2|2)? RE D, vs. (3.3.18)

It remains to show that the profile functions vg, v1, v, their derivatives and the error
term RY have the claimed exponential control. In this proof A may change from line to
line but will always be independent of .

We first observe from Lemma 3.3.8 and (Agsgn) = sgn(z)(1 — e~?l) that vg inherits the
exponential decay to +1 from wug, since

vo — sgn = Ag(up — sgn) + (Agsgn —sgn) € X*A(R;T).

Lemma 3.3.8 also yields |Vuo| = |AoVug| < Ag|Vug| € XHAR;T), 0,09 € XHA(R;T),
Avg = AgAug € XHMR;T), and vy € C%(R x w) is C*-regular with respect to .

For v; Lemma 3.3.8 yields
v1 = Ag(u1 + Hd,v) € C*HR x w) N XHA(R;T),

vy is C* with respect to z € w and d,v1 € X**(R;T). Using Agd? = —Ag(—02 +1d) +
Ay = Ay — Id we get in addition

Vovi| = |Ao(Vaur + HO2uo )| < Ao| Vo] + | HI|(Ag — Td)uo| € X (R;T)

because \Vu1| € X“’A(]R; I') by assumption, the previous results, and Lemma 3.3.8.
Similar we have

Ay = Ag(Dgur + HAD-v9) = AgAur + HO-AgAyug € XM (R;T)
by assumptions for uy, the previous results, and Lemma 3.3.8.

Owing to X*MR;T) C X%’A(R; ), I € C%(w), and |zvoe%|z‘} = |267%|Z|||voe“‘z|| <A
we have for ug

vy = Ag(uz + Hvr + (A, — 2|T20.)u) € X1 (R;T),

with vy € C%(R x w), vy is C* with respect to € w and 0,v € X%“’A(]R; I') by Lemma
3.3.8. In addition we have

Vo] < [AgVaus| + |HO.AgVavr| + |AoVa(Ay — 2|20, )v0| € XTTHA(R;T)  and
AI'UQ = |A0AI’LL2| + |H8ZA0A95111| + |A0AI(AI — Z|H|28z)’00| S X%%A(R; F)

From the asymptotic control of vy, v1,ve and their derivatives we conclude from (3.3.18)
RVo W, € X%"’A(R;F). Since ¢1(z) < 5z for all z > 0 by Definition 3.3.2 we deduce
|ds| < 2|d| and therefore obtain RY € X} A(Q)
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The previous observations show that w = vy + vy + €2vy satisfies the assumptions of
Lemma 3.3.11 with u replaced by p Applying the lemma to w™ = ™ and using

15p

(3.3.17) we therefore obtain for some RY € X' A(Q)

(—e2A +1d) (nsa™ + (1 — ;) sgn(d))
=15 - (—e? A +1d)ul + (1 — ns) sgn(d) + x{|a=35) R
= nsul’ +°nsRY + (1 — ns) sgn(d) + Xqja>35) R
= U + €3R5,

122
where R. € Xy A(Q) due to the stronger exponential decay of RY.
Since V (nsu® + (1 — ns) sgn(d)) - vg = 0 at 9Q we deduce from Lemma 3.3.9

. = nsu + (1 — 1) sgn(d) + £°Re,
oy A LA
with R. € X5 (). O

The next theorem proves a lower bound estimate for phase-field approximations that
satisfy the Assumptions 3.3.4.

Theorem 3.3.13 (I'-liminf estimate for special class of function).
We assume 3.3.1 and let (u:)o<e<e, Satisfy the Assumptions 3.3.4. Then we have

cacoacW(u) < lim inf WAS (u,). (3.3.19)
&

Proof. Let u, = A (u.), recall H?G = é(f(ug) —A.u;). By Assumption 3.3.4, Proposition
3.3.12, and Lemma 3.3.7 we deduce in {|d| < 26} for ¢ sufficiently small

eHA = (f(ue) — T2)
= n5.f(uz)™ + (1 — ns) sgnd — (nsul + (1 — ns) sgn(d)) + "' R,
= ns(f(ue)™ =) + "R, (3.3.20)

and in particular for K =0
eH2S = ns - (f(uo) — Agug) o - + eR...
Together with (2.1.7) we deduce
1 — n
EWe(ue) = /Q g"?g (f(uo) — Agug)® 0 WZ1dL

+2/ 15 (f (o) — Agug) o W' R, d£”+5/ R2dL"
Q

/ / — Agug)® dLt ap!
—05// — Agup| ALt dH™ 1

/ / — Agup)® ALt A = C, (3.3.21)
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where we have used, that f(ug) —sgn and Agup — sgn both decay exponentially at +oo.
In order to prove (3.3.19) it is sufficient to consider the case liminf. ,oe?W.(u:) = 0.

This implies f(ug) = Aguo, that is ug(-,2) = qo(- — 20(y)) and vo(-,z) = Go(- — 20(y))
with y = IIp(z). The condition (3.3.3) implies that zo(y) = ho(y).

With ug(-,z) = qo(- — ho(y)) and vo(-,z) = Go(- — ho(y)) we deduce from Proposition
3.3.12, Lemma 3.3.7, and (3.3.20) with K =1

HAS () = s @) [£'ao (= — o)) ua (2, 2) — Aofua(z.2) + H(y)y(= — ho(w))]] + eRe(a).
(3.3.22)

and by similar calculations as above

lim inf Wg(ug)

ﬁ—ho
=/ /. (d0) — Ao)ur (- + ho(y), ) — H(y) Ao(gh)[* AL dH™1(y) (3.3.23)

3*6—/10(?J
/ / — Ao)us(- + ho(y), @) — H(y)Ao(ah) > dL W™ y).  (3.3.24)

If H(y) = 0 the inner integral is minimized by w1 (- + ho(y), z) = 0. Therefore, to prove a
lower bound, we can assume u1(z + ho(y),z) = H(y)u1(z, ) and compute

lim inf W, (us) > / |H (y)|? Z(w(-,y)) dHH(y) > cAGaA(;/ |H|? dH™ 1,
e—0 T T

(3.3.25)

inf
w(-,y)eL?(R)

with the functional = as in Lemma 3.1.14. We obtain that for every minimizer @; of
= there exists @ € R such that 43 = ¢1 + aq(. This proves (3.3.19). Finally, we can
determine « from condition (3.3.3), which implies

0 = uc(y +e(ho(y) + ehi(y) + *RE(y)v(y))
= qo(ehi(y) +€* R (y)) +e(a1(ehiy) + R (y)) + agy(eha(y) + € RE(y))) + O(?)
= £5(0) (h1(y) + a) + O(e?)
and therefore o = —hy(y). O
The proof shows that equality in (3.3.19) can only be attained if ug(z,z) = qo(- — ho(y))
and ui(z,2) = H(y)q1(z — ho(y)) — h1(y)qo(z — ho(y)). By Theorem 3.1.3 we have that

go — sgn, gy — sgn, ¢ all decay exponentially at +0o. Combining the Lemmata 3.3.7,
3.1.15, and 3.3.8 shows that ¢1, g{, also decay exponentially at +oo.

We therefore obtain as a candidate for a recovery sequence (ug)e>0

Uy = ngui.n + (1 — ns) sgn(d), uign(-, x)=qo+eH(y)q. (3.3.26)

3.4 Rigorous proof of the ['-limsup estimate

In this section we do the constructive part of the I'-convergence statement. We use
the previous computations from the asymptotic expansion of approximations and the
successive minimization of the energy order as orientation for the rigorous proof.

We use the previous computations and the candidate (3.3.26).
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Theorem 3.4.1 (limsup estimate for “gradient-free” Willmore approximation).
We assume 3.3.1. Then there exists a sequence (ug)eso such that u. — u in L'(Q) and

Hm Wk (ue) = cagoacW(u).
e—0
Proof. We will use the Ansatz (3.3.26) and let

us(2) = ns(x) (q0(2) + eH (y)q1(2)) + (1 — ms(x)) sgn(d(x)),

where x = U.(z,y). The convergence towards u was already shown in Lemma 3.3.5. We
deduce from Proposition 3.3.12 that @, := A.u. can be represented as

Ue(z) = 15(2) (q(2) + €01 (2, 7)) + (1 — ms(x)) sgn z + > Re ()
with gy = Aopqo as in (3.3.13) and
vi(,2) = H(y)g, forany zecw,y=Ip(x), g =A¢(qr —i—%), (3.4.1)

as introduced before Lemma 3.1.15. Moreover, we have sup,qsup,cq |R:(z)| < C and
Gy, q) decay exponentially at +00 by Lemma 3.3.8. We deduce from equations (3.3.22)
and (3.1.22).

H2C%(x) = ns(2)H(y) (f (q0)a1 — Ao(q1 + 7)) (2) + eRe(x)
= —ns(x)oacH (y)q0(2) + eRe ().

By similar calculations as above this implies
1
We(ue) = / gngyaAquyQHZ oW tdLh + 2/ ns(oacgy)H o U R dL™ + 5/ RZdc"
Q Q Q

< o2 /F wan [ i act s o me [ e act o

—00 —

< CA(;UA(;/H2 dH 1 + Ce.
r

This yields lim sup,_,o Wz(u:) < cagoacWV(u) and together with (3.3.19) the recovery
sequence property. O

3.5 Diffuse gradient flows in the AG model

In this section we consider the dynamic of evolving surfaces I'(¢). We assume that there
exists a phase-field function (uc)e>o which has an expansion with respect to I'(¢) and
is a solution to either the rescaled gradient flow of the diffuse perimeter (3.5.2) or the
gradient flow of the rescaled diffuse Willmore energy (3.5.3). Our goal is to show that
the surfaces evolve by mean curvature flow or Willmore flow respectively. We refer
to Definitions 2.1.7 and 2.1.9 for the formulation of mean curvature flow and Willmore flow.

We already know the L?-gradient of P?G, in fact we have

1 1
VL27D€AG = E(—ﬂ5+u+§W/(’U,)> :HEAG
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For the L?-gradient of WAS we get for all test functions 7

2 n
(0, SWEE (ue)) o=@y = /Q Sn(F(ue) 1d A HAC dL

and thus
2 1 2
V2 WG (u) = 7(1 + W (u) — AE)HEAG - —Q(f’(u) - AE)H?G. (3.5.1)
€ 2 €
Now we can formulate the gradient flow equations for the diffuse mean curvature flow
edyue = —HAC (3.5.2)
and diffuse Willmore flow
2
eOyue = =5 (f'(ue) 1d — A HAC. (3.5.3)

We write
L. = f'(us)1d —A..

Assumption 3.5.1 (Set evolution).
Consider a continuous evolution of open sets (E(t))iejo,m in @ with associated signed
distance function d : Qp — R, d(-,t) = dist(-,Q \ E(t)) — dist(-, E(t)), phase boundaries
['(t) = 0E(t) fort €[0,T] and Qp == Q x [0,T].
We assume the following properties:
1. T'(t) is a C*-regular hypersurface for all t € [0,T).
2. U E@) e
t€[0,T]
With this assumption we can choose § > 0 sufficiently small such that for allt € [0,T]
the projections Ipyy : {|d(-,t)| < 50} — ['(t) are well defined and set

wr = {(x,t) € Qp : |d(z,t)| < 55}.

3. d € CH(wr) and D}d € CP(wr) for all v € N§ with |y] < 4.

Let U (-,t), t € [0,T] denote the parametrization that are defined according to (2.1.5) with
I replaced by T'(t).

We extend the definition of functions that are exponentially decaying to the time-dependent
case and set

XSL’A(QT) = {u € L=(Qr) : ess-sup |etlB @y )] < A} (3.5.4)
z€QT
and
X(R;Tp) == {u €L®R xwrp)|IA, p>0: ess-sup et lu(z, 2 8)| < A, (3.5.5)

(z,z,t)ERXw

u(z,-,t) is constant in normal direction}.

We consider the modified distance functions ds and the cut-off functions 75 as defined in
Assumption 3.3.2 and introduce classes of phase field evolutions that we will consider in
the following.
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Assumption 3.5.2 (Phase field evolution).

Let (E(t))icio,r) be a continuous evolution of sets in ), the signed distance function d,
and 0 > 0 as in Assumption 3.5.1 be given. Consider an evolution of smooth phase
fields (ug)o<e<e,- We assume that there exist p € (0,1), A > 0, and profile functions
uj R xwr =R, je{0,1,2}, such that for all 0 < e < g9 and all t € [0,T

ue(-t) = ns(-, )ul" (-, 1) + (1 — ns(-, 1)) sgn(d(-,t)) + 3R, in Qr, (3.5.6)

2
u () = (Y1) 0wzt in {ld( )] < 49}, (3.5.7)
7=0

and such that the following properties hold:

1. The profile functions uj € CO(R x wr), u; = u;(z,2,t) satisfy uj(z,-) € Ct(wr),
D)u;(z,-) € CQ(wr) for all v € N§ with |y| < 4

up—sgn € X (R;T'r), uj, |Vaujl, Aguj, |Velguj|, A2u; € X(R;Tr) for j € {1,2}.

©
2. The remainder satisfies R. € X ’A(QT) for all 0 < e < gg.

Moreover, we assume that
{uc(-,t) =0} =T(t) forallt€[0,T],0<e<eg (3.5.8)

and that
WA (ue(+,0)) + P2 (ue(-,0)) < C (3.5.9)

for all 0 < e < egg. We want to highlight operators which only refer to the z-variable and
thus we write them in bold letter, such as Lo and Ag from (3.1.17) and Definition 3.1.6.

We have chosen in (3.5.8) for a more restrictive setting than in the static case. We could
also have allowed for an offset between the zero level set of u.(-,t) and I'(t) as in (3.3.3).
For simplicity we restrict ourselves to (3.5.8) but allow an additional contribution of order
¢ in the gradient flow equations; see (3.5.15) and (3.5.10) below.

Theorem 3.5.3 (Convergence towards the mean curvature flow).

Consider a sequence of evolutions of smooth phase fields (us)o<e<e, as in Assumption 3.5.2,
satisfying an asymptotic expansion (3.5.6)-(3.5.7) with respect to an evolution (E(t))ic(o,1]
of sets in Q). Assume that u. satisfies

B, = é( ) — Ac(u.)) + <R.. (3.5.10)

with sup || R = < C.
0<€<soH SHCO(QT)

Then (I'(t))iejo,1] evolves by the rescaled mean curvature flow
V =oacH (3.5.11)
with oag as defined in (3.1.7).
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Proof. We consider the equation (3.5.10), expand both sides of and evaluate the identity
order by order. To identify the evolution law in the limit ¢ — 0 it is sufficient to consider
the region {|d| < 24}, in which ns = 1.

We in particular use that the right-hand side of equation (3.5.10) is in this region to the
relevant orders already determined by the inner expansion with respect to € of u.: even
though A.u. and depend on the values of u. in the whole set €0, applying Proposition
3.3.12 shows that we only need the inner expansion of u. to determine the relevant
contributions in {|d| < 2d}.

For the left-hand side of (3.5.10) we obtain in {|d| < 2d} from (3.5.6), (3.5.17), and the
definition of V

1
—eOiue = —€ Z (Gtuj + gﬁzujﬁtd) + O(e) = —0,up0d + O(g) = —q)V + O(e).
p
(3.5.12)

We expand the right-hand side and deduce from Proposition 3.3.12, Lemma 3.3.7, and
(3.3.20) that in {|d| < 24}

H2C(2,t) = Ho(z,z,t) + eRE (x, 1) (3.5.13)
I3
with RY € X¢ ’A(QT) and Hy is characterized as follows: Firstly, by (3.3.22)
Hy = f'(qo)u1r — Ao(u1 + Hgp) = Lo(u1) — Ai(qo), (3.5.14)

where Ay = H Agaz and where here and below HEAG, R, are evaluated in (z,t), go in z,
uj in (z,2,t) and H in (y,t) with y = Iz,

Now we consider the e~ !-order gives and get

0= f(uo) — Aouo

and thus up = gp. We further expand the right-hand side of (3.5.10) and get in {|d| < 26}

S (f(ue) = Ac(oi)) = F(ao)ur — Ao(ur) — A(ao) + O(e)
= Lo(u1) — Ai(q0) + O(e).

Equating this with the expansion in (3.5.12) we get by testing with ¢, € ker(Ly)
2
v [l act == [ dbsfao) ac’
R R

Taking the defining integrals (3.1.7) and A; = HAZ20. into account we get the evolution
by mean curvature

V =oacH. OJ
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Theorem 3.5.4 (Convergence towards the Willmore flow).

Consider a sequence of evolutions of smooth phase fields (us)o<e<e, as in Assumption 3.5.2,
satisfying an asymptotic expansion (3.5.6)-(3.5.7) with respect to an evolution (E(t))icpo,1]
of sets in Q. Assume that u. satisfies

+ eR., (3.5.15)

—e0ue = %(f/(ug) Id —AE) (-f(UE)_‘A‘?(u‘g))

€

with sup HRé‘HcO(@) < C. Then (T'(t))ejo,m evolves by the rescaled Willmore flow
0<e<eo

1
vzmﬁd—AﬁLJmW+§H% (3.5.16)

with oac as defined in (3.1.7).

Proof. Similar to the proof for the other evolution we will expand both sides of (3.5.15)
and evaluate the identity order by order. To identify the evolution law in the limit € — 0
it is sufficient to consider the region {|d| < 20} as before. We in particular use that
the right-hand side of equation (3.5.15) is in this region to the relevant orders already
determined by the inner expansion with respect to € of u.: Even though w. = A.u. and
AEH?G depend on the values of u. in the whole of €2, applying Proposition 3.3.12 and
Lemma 3.3.7 shows that we only need the inner expansion of u. to determine the relevant
contributions in {|d| < 2d}.

To expand the right-hand side of (3.5.15) we first consider HA%. Since under the flow
(3.5.15) the energy WAG decreases with time and by (3.5.9) we obtain that W; (u.(-,t))
is uniformly bounded. By the calculations in the proof of Theorem 3.3.13, see (3.3.21),
we therefore deduce that

uo(z,z,t) = qo(2) for all (z,t) € wry. (3.5.17)
We deduce from Proposition 3.3.12, Lemma 3.3.7, and (3.3.20) that in {|d| < 2d}

HAC(z,t) = Ho(z,x,t) + eHy (2, x,t) + €2 Ho (2, z,t) + 2 R (. 1) (3.5.18)

I3
with RH € X¢ ’A(QT) and Hy, Hy characterized as follows: Firstly, by (3.5.14) we have
Ho = Lo(u1) — A1(qo),

where A; = HAZ20, and where HAG| R, are evaluated in (z,1), qo in z, uj in (z,z,t) and
H in (y,t) with y = Ip)z.
Secondly, we derive from (3.3.20) with K = 2 and Proposition 3.3.12, Lemma 3.3.7

Hy = (%fﬂ(uo)(m)2 + f’(uo)m) — Ao (uz + Hvi + (A; — 2[T70; )vo)

= Lous) + 5 (o) — Ax(ur) — Aofu), (3.5.19)
where

Ay = A A2 — [P Ag20, A + H?A}9? and (3.5.20)
Lo = f'(q0) Id—A( as defined in (3.1.17).
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The function Hs in (3.5.18) belongs to X (R;T'7) and is C2-regular with respect to the
x variable. We will see below that this term is not relevant for the identification of the
evolution law, thus we will not include its precise characterization.

We next consider the action of L. = f/(u.)Id — A on HEAG. Since we are only interested
in the values in the region {|d| < 2} we can use a Taylor expansion and the representation
of u. in this region for the local term f’(u.)Id.

For the application of A, to H ?G we use analogue arguments as in Proposition 3.3.12 with
the following difference. We only have C?-regularity with respect to the z-variable of the
profile functions that represent H, ?G. Therefore we obtain only C-regularity with respect
to the z-variable for the profile functions representing A, H ?G. Therefore, following the
analogue computation as in the proof of Proposition 3.3.12 we deduce

L.(HA®) = Lo(Ho)+e(L1(Ho)4+Lo(Hy))+e(La(Ho)+ L1 (Hy)+Lo(H)) +£3R. (3.5.21)

and

1
L1 = f”(qo)u1 Id —./41, LQ = f”(QQ)UQ Id +§f'"(q0)u% Id —.AQ. (3.5.22)
LA
and R. € X¢" (Qr).

Now we expand the equation (3.5.15). For the left-hand side we obtain in {|d| < 2d} from
(3.5.12)

edpue = Oupdid + O(e) = gV + O(e).
We next consider the right-hand side of evolution (3.5.15). By (3.5.18)-(3.5.19) we obtain

e 2L (HAS) = e 2L (Hy) 4 ¢ 1 (Lo(Hy) + L1 (Hy))
+ (Lo(Hs) + L1(Hy) + La(Hyp)) + O(e). (3.5.23)

To order ¢~2 we deduce from equations (3.5.15) and (3.5.12) that Lo(Hp) = 0, which is
by (3.5.14) equivalent to

0 = Lo(Lo(u1) — HA(qp))-

In addition we have the condition u;(0) = 0. Comparing this to Lemma 3.1.14 and in
particular equation (3.1.22) we deduce u; = Hq; and Hy = —Hopagq). In particular,

L = HLy, A= HAq,
Li = f"(q0)q1 1d —A20., A, = A20.,

where Ly and A only depend on z. From (3.5.15) we conclude that also the contribution
of order ! of the right-hand side in (3.5.15) vanishes, thus

0= L1(Hp) + Lo(Hy) = —oac H?Ly(q) + Lo(Hy). (3.5.24)

We will now proceed to the crucial order €° in equation (3.5.15). We test the corresponding
equation with ¢ and integrate with respect to the variable z. We get by formulas (3.5.15)
and (3.5.12)

1
—§||q6||%2(R)V = /RQ6(L1(H1) + Lo(Hy)) dL*. (3.5.25)
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For the second term on the right-hand side of equation (3.5.25) we use
1
Lo(Ho) = (f"(q0)u2 + gfm(%)u% — Ag)(—Hoacqy)
OAG
= —oacH [ (a0)dyuz — =5~ Hf" (q0)abai + oacAz(Hp). (3.5.26)
We obtain the following commutator rule, with [A, B] := AB — BA for operators A, B
[0, Lo)(w) = (Lo(w))" — Lo(w') = f"(qo)ghw for all w e L*(R) N C'(R)
and rewrite equation (3.5.19)
. 1
Lo(u2) =w with w:= H; — H2§f"(qo)q% + H?*Aq(q1) + A2(qo). (3.5.27)

The commutator helps us to generate Lg in front of ug in the right-hand side of equation
(3.5.26) so we can apply equation (3.5.27)

/ abf" (q0)qhuz ALY = / g6 (W' — Lo(uh)) dLt = / qow’ ALt
R R R
Together with equation (3.5.26) we obtain

1
/ ghL2(Ho) AL = —UAGH/ ghw' ALY — opc / Q6(§H3f/”(CI0)Q6Q% — A2(HQ6)) ac!
R R R

1 /
——oncH [ dy(H~ B2 o)t + H2Ar () + Ao(an)) 4!
R
1
- UAG/R%(QHB’f”’(QO)q{)Qf — As(Hap) ) dL".
= UAGH/ (ngl - Q63zA2QO> act
R
1
+ UAGH?’/RCJ() (/" () nds + 3" (0)aoa? — As(ah)) AL
1
—oac [ ab(GH " )bt — Ao(1Te))) 0L

= UAGH/ qoHy ALt + UAGH?)/ q()(f”(qo)qm’l — Alqll) act
R R
(3.5.28)

+oac / ab[ Az, HO,](q0) AL
R

Next we calculate the commutator
[ Az, HO | (w)
for w € L?(R) N C'(R). Since w is independent from = we have A, w = 0 and thus

[As, HO,](w) = Ay(HO,w) — HO, Agw = Ay HAR — H|T2Ag(zAow”)
+ HPAfw” + H[*Aq (0. (2 Agw)) — H* Afuw"
= A HAM + HI?PAZw' = (A H + H|T*)Ajw.
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Since the functions in w are constant in normal direction we can replace A, it with the
Laplace-Beltrami operator on I'(t). We write Ar = Ap( for simpler notation.

We get with [ ¢hA1q0 AL = [ [Aogh? AL = caq and the definition of L;

/]Rq(/)LQ(HO) dct = O'AgH/ngHl dct + aAGHS/Rq()Ll(qg) dct
+ caqoag(ArH + H[II%). (3.5.29)
By differentiating formula (3.1.22) we have
—oacqy = ["(a0)aom + f'(q0)ar — Aolqr) — A1(gp) = Li(qp) + Lo(qy).  (3.5.30)

The next tool we need is the commutator [Ag, z]. Since the operators are defined on
L?(R) we need to make sure, that the functions multiplied with z are still in L?(R).
Let h € C)(R) N L*(R) with exponential decay. This implies z — zh(z) € L*(R)
and Agh, Agh’, Agh” all have exponential decay. From Proposition 3.1.8 we have
Ag(zh), Agh € C}(R) N L%(R) and we get

—zAgh" + zAgh = zh
—2A0h — Ag(zh") + Ag(zh) = —Ag(zh)" + Ag(zh) = zh.

Equating and rearranging yields

AO(Zh) — zApgh = 2A0h/ + AO(ZhH) — ZthH
<~ [Ao, Z} (—h” + h) = 2A0h/

We conclude by replacing h with Agh the following commutator rule
[Ao, z](h) = 2A%H = 2A,h.

Since ¢, satisfies the conditions for A we can apply the commutator rule together with
Lo(gp) = 0 and get

0 = 2Lo(g0) = f"(g0)za0 — 2A0(gp) = Lo(2qp) + 2A1(gp)- (3.5.31)

Before moving to the final calculations we need the anti-symmetric part of L;. Since A;
is anti-symmetric because of the negative sign in the partial integration formula we have
for wy,wy € L*(R)

/R (w1Ly (wa) — woliy (wy)) dL* = /IR (wl (f"(q0)qrwz — w1A1w2) dc!
- / (w2f"(QO)Q1’w1 - w2A1w1) act
R

= / 2woAq (wy) dLL. (3.5.32)
R
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We consider the sum of the contributions from the first terms of the right-hand side of

formulas (3.5.25) and (3.5.29) to deduce

3.5.30
1 [ (ahLa () + onca ) dct “E [ (L) ~ Hy(La(gh) + Lodh) ) e
R R

(3.5.32

S [ (20 6) ~ Toa) ac!

2 G HB / (o + )La(gh) LY (3.5.33)
R

CAG

(3:5:31) H/ HLo(—zq) — ;) dC?
R
(3.5.24)
Plugging the results from equations (3.5.33) and (3.5.29) into the identity (3.5.25) we
obtain
—V = 20% ¢ (ArH + H[I? + —L H3),
CAG
with
k1= /R (a6L1(g1) — (26 + 1)L (gp) ) dL*
(3.5.32)
=0 [ (26iA1(h) ~ 2abLa(ah) dc!
R
(3.5.30)

3.5.31
(Gosn / 2 (Ln(gh) + Lo(d})) d.L?

which proves the Willmore-flow equation.

68

2 i



4 A higher order approximation
of the Willmore energy based on
the Karali-Katsoulakis model

In this chapter we consider a new diffuse Willmore energy, motivated by the contributions
of Karali and Katsoulakis [KKO07]. They considered a combination of surface diffusion
and ad/de-sorption, modelled by

. = (— A +1d) (- cAu, + %W’(us)), (4.0.1)

which is a cross-over between the Allen-Cahn and the Cahn-Hilliard equation. Here W is
a double-well potential, as before. The PDE (4.0.1) has gradient flow structure as the
right-hand side is the gradient of the standard diffuse perimeter P, from Definition 2.4.1
with respect to the metric induced by (¢, ) — [, pA dL™ where A, = (— A+ Id)_1
is the solution operator from Lemma 3.1.10. In the case of smooth solutions we can apply
the chain rule and obtain for solutions of (4.0.1) (with suitable boundary conditions)

€ 1 1
0P (ue) = at/ (51Vue* + =W (u) ) L™ = / (= Aue + =W (ue) ) dpue dL”
Y € Q 5
1 1
- _/ “H.(—A+1d)H. dL" = _/ (SIH* + e[ VH ") dL”. (4.0.2)
Q¢ Q¢
We write H. = H.(uc) = —eAu. + %W’(ue) for the diffuse mean curvature. To
interpret this identity we compare it to the sharp interface setting and the standard
approximation of the perimeter. If a family of surfaces is evolving by mean curvature

flow we have 0, = —W. Here the Willmore energy appears on the right-hand side of the
energy-dissipation .

If w, is a solution to a formulation of diffuse mean curvature flow, i.e.

1

—eOw. = —eAw. + W' (w.)

€
we get yP. = —W,.. Here the energy-dissipation features the standard diffuse Willmore
energy. With this background we expect the right-hand side of (4.0.2) to be a new diffuse
Willmore energy. This is the motivation for us to investigate whether the diffuse functional
WEEK  H3(Q) — [0, 00] with

KK 1 2 2 n
WEK () = / (1) + | VH. () £ (4.0.3)
Q
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is converging towards a multiple of the Willmore energy in the sense of ['-convergence
with respect to the L!(Q)-topology. We start with the I'-lim sup estimate in this chapter
and handle the I'-liminf estimate in Chapter 5. It is important to mention that we
obtain a larger factor in front of the Willmore energy in the limit compared to the
standard Willmore approximation. Thus the higher order term contributes on the same
e-scale as the classical [, 1[H.|[>dL" term.

Another motivation to consider the I'-convergence is the fact that the diffuse Willmore
energy (4.0.3) appears in diffuse formulations of the Brakke flow (see Definition 2.5.2)
or the De Giorgi type varifold solutions for rescaled mean curvature flow (see Definition
2.5.3), i.e. the I'-convergence helps prove that solutions to (4.0.1) converge towards
solutions for mean curvature flow in a suitable sense.

4.1 Preparations

We introduce the notations for this chapter and prove a few lemmata that we need below.

Assumption 4.1.1 (and Notations).
In this chapter we assume Q0 C R™ is open. We consider the standard double-well potential
W(r) == (1 —7r2)? for r € R, the induced optimal profile qo € C*(R) which solves

4% =/2W(q0) and qo(0) = 0. (4.1.1)
In addition to that we define gy = Aoqo such that
—qo+do=q0 in R and Gyo(z) — £1 as =z — +oo.
The important constants in this model are given by

o

co ::/ |q6|2d,C1 and o= —F— . (4.1.2)
" /Rqé% dc!

The existence of the integrals is proved in the next lemmata. In this model we consider
the Cahn-Hilliard energy P. : L'(Q) — [0,00], also called standard diffuse perimeter
introduced in 2.4.1

Pow) = { /Q (gyvu\z + éW(u)) dcr, ifue HY(Q) N LY(Q) (413

400, else.

Lemma 4.1.2 (Properties of qp).
The optimal profile qo is given by

qo(r) = tanh(\/ir).
It holds
e q € C*(R), g5 = W'(qo), and g5 > 0 on R.

e lim gqo(r) ==£1 forallr € R.

r—+oo
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]qo(r) — sgn(r)] < 2¢ 27l forr e R.

e qo —sgn € LY(R) N L2(R).

There exist C,c > 0 such that for all j € {1,2,3} and all r € R we have
]qé])(r)‘ < Ceclrl,

4,490, a0’ € L*(R) and ¢, € H*(R).

e (o is odd.

Most of these properties can be proven for more general double well potentials, see
[BNN15], however the formulation of the lemma is sufficient for this thesis.

Proof. Differentiating tanh we get for all r € R

cosh?(r) — sinh?(r) 1

= =1 — tanh?(r).
cosh?(r) cosh?(r) anh™(r)

tanh’(r) =

It follows that go = tanh(v/2-) is indeed the unique solution to (4.1.1). From there we
conclude by squaring and differentiating again

2q’ 6/— 2W (qo)qo ' and thus qg =W'(qo)-

We also have for all » > 0

e —e " 2e~2" 9
— — —4Tr
qo(r) = e 1-— Troo and thus |go(r) — 1| < 2e

We can proceed similar for r < 0. Thus the second and third claim are proven. The
exponential decay immediately implies the fourth claim. For the last claims we need to
transfer the exponential decay from gy — sgn to its derivative. We use (4.1.1) and estimate
for all » € R with the third property

0<q0 \/QW qo \/Wl—(]o !—f’l—i—(]o Hl—qO )|§4\/§672|T‘.

Thus we get ¢) € L?(R). For the second derivative we use ¢ = W”(qo), the previous
estimate and get for all r € R

g5 ()| = W' (go(r))| = 4lgo(r)]|1 — qo(r)?| < 1662,

We get ¢ € L2(R). Lastly we prove a similar estimate for the third derivative. Let r € R,
then we have

gt = W (q0(r))|gh = 1243 — 4lq < 32v/2e 2.
It follows ¢ € L*(R) and thus ¢ € H%(R). Since tanh is odd so is qo. O

With the properties of Ay we can transfer most of these properties to g.
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Lemma 4.1.3 (Properties of g).
The function qy = Aoqo has the following properties

e Gp € C°(R) and g, > 0 on R.

e lim gy(r) =+£1 forallr € R.
+oo

r=

e There exist C,c > 0 such that [gy(r) — sgn(r)| < Ce=I"l for r € R.

e Gy —sgn € L'(R) N L>®(R).

e There exist C,c > 0 such that for all j € {1,2,3} and all r € R we have
35 (r)| < Ceme.

* 9,907 € L*(R) and gy € H*(R).

e G is odd.

Proof. From gg € C*°(R) and the fact that Ay is a convolution operator and thus only
improves the regularity, see 3.1.8, we get g, € C*°(R). We get g, > 0 from (5) in
Proposition 3.1.8 which implies g, = Ji * ¢{. The limit as » — +oo follows from the limit
of go and (4) from Proposition 3.1.8. The next claim follows from (a) and (¢) in Lemma
3.1.9 and

Go — sgn = Ao(go —sgn) + Agsgn —sgn.

The exponential decay of g, — sgn yields g, — sgn € L*(R) N L>(R). The exponential

decay of g;,, 4y, gy follows from the exponential decay of ¢, ¢, ¢y’ and (a) in Lemma 3.1.9.

It follows that g, g5, qs’ € L*(R) and g, € H2(R). g, is odd because qq is and this carries
over because of the explicit representation of Ay as the convolution operator induced by
Ji. O

It is typical for asymptotic constructions that a Fredholm operator appears in the relevant
e-scale. This is also the case here and thus we prove suitable properties of the operator
that we need to consider.

Lemma 4.1.4 (Ty is Fredholm).
The operator

Ty : H*(R) — L*(R), To:=—0*+W"(q)1d (4.1.4)
is a Fredholm operator with index 0.

Proof. We have
T =— 0%+ W (q0) = 8( - éaQ +1d +éw”(q0) —~1d)
=8[ 10+ (3" () ~10) ( ~ 30* +1d) ] (- 3% +1a)

The operator ( — 20 +1d) : H*(R) — L?(R) is an isomorphism (which can be shown
with the Lax-Milgram Theorem), thus it suffices to show that

(§W" () ~1a) (= g* 1) L2R) — L*(®)
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is a compact operator. We prove that it is a Hilbert-Schmidt operator which implies the
compactness. Since (—9% 4 1d)~! can be represented as a convolution operator we can use
this representation to characterize (— %82 +1d )71. The Greens function of —%82 +1d is
given by

J(r) = \}g.]l(\/gr) = 4\1@(3_2‘@”,

for r € R, where J; is the Greens function of (—9% + Id) from (3.1.9). We calculate the
Hilbert-Schmidt norm using W”(r) = 8 + 12(r2 — 1) and |1 — ¢(r)| < 4e~2I"l from the
proof of Lemma 4.1.2

J

Ly S L avaey _[3 2y [ L —avas
W) 1| [ e irdasar = [ [Sa? - vf [ e dsar

—9/ |1—Q()(7")2|2d7“/ e~4V2s g
64 Jr 0

9 4 9
<2 _ [ etlgr= 2 <« .
- 16\/5/[@ 32v/2

Since compact perturbations of the identity are Fredholm operators with index 0 [Alt12,
Thm. 9.8] the proof is complete. ]

We can even provide more information on the kernel of Ty. It follows from Lemma 4.1.2
that To(gj) = 0. The next Lemma shows, that the kernel is a one-dimensional subspace
thus ker(Ty) = span(qp).

Lemma 4.1.5 (T has a one-dimensional kernel).
The operator Ty : H*(R) — L%(R) has a one-dimensional kernel, more precisely

ker(To) = span(q) (4.1.5)
and Ty : {gh}*+ — {gh}* is an isomorphism.
The proof is inspired by Lemma 5.3 in [BFRW97] and similar to the one in Lemma 3.1.13.

Proof. Owing to 2W (qg) = |gb|*> we have ¢, € ker(Tp). Since H?(R) < C*(R) we know
for any w € H%(R)

To(w) =0 <= v’ = W"(g)w € C*(R)

making w € C3(R). By possibly multiplying with (—1) we can assume w(x) > 0 for some
z € R. For § € R we define wg = fw + ¢} and

B =sup{B < 0] Iz € R: wg(z) < 0}.

Since our goal will be to show wz =0, it is useful to consider infg wg. For 8 < 3 there

exists £5 € R, such that wg(€3) = infgr wg < 0. This is true because w' € H*(R) < L*(R)
yields that w is uniformly continuous, implying lim, 1, w(r) = 0 by Lemma 3.1.9. Since
wg is C? and has a local mimimum at §p we get

W (qo(&g))ws(€s) = wi(€s) = 0 s0o W (go(£5)) < 0. (4.1.6)
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We can deduce that (£g) 5<7 can be found in the interval where W"(qp) is non-positive.
Since W”(+£1) > 0 and qo(z) — £1 as © — £oo, this interval is bounded. Therefore we
can extract a subsequence such that {5 — £ as B — (. Since w is bounded we know
wg — wg as B — 3 uniformly. So

\
oS
1
@l

wg(€p) = iﬁf wg =Ly

I

wg5(8)

Due to the definition of 3 we know wg > 0, making ¢ a local minimum, thus w’B(g) =0.

Collecting everything we now have To(wz) =0, wz(§) = 0 and w’g(ﬁ ) = 0. This violates

the uniqueness part of the Picard-Lindel6f Theorem, unless w = 0 which is what we
wanted to prove. Picard-Lindel6f is applicable to Ty because it is a linear differential
operator with non-constant but smooth coefficients.

Since T is a Fredholm operator with index 0, ker(To) = span(g), and Ty is self-adjoint
we conclude that Tq : {go}* — {qo}* is an isomorphism. O

For the following lemma recall o from (4.1.2).

Lemma 4.1.6 (Existence and properties of ¢j).
The functional Z : H3(R) — [0, oc]

2) act

E(w) = /R (|Tow - q{)‘Q + |(Tow — gp)’

has a unique minimizer ¢ on {w € H3(R) | w(0) = 0} which is also a minimizer on
H3(Q). q1 is determined by

To(q1) = —0qy +qy  with 1(0) = 0. (4.1.7)
The minimal value is given by

in E=2(q) = ¢o. 4.1.8
by (q1) = coo (4.1.8)

Furthermore we get that for X € R with \ # o there exists no u € H3(R) such that
To(u) = —Aqp + qp-
Note that the condition w(0) = 0 is well posed because of H3(R) < C°(R).

Proof. From Lemma 4.1.5 we have ker(T() = span(q(,). We calculate for any 5 € R
. - 2 - 2
[ b=+ dp) ac’ = [ (= ouy+ ") a2’ = [ (= day + ) ac”

We conclude by (4.1.2) that —6q) + ¢ € {gh}* if and only if & = 0. By Lemma 4.1.5
thus there exists ¢1 € {g)}+ € H?(R) such that
N

-1 + W"(q0)41 = To(q1) = —5q, + g
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if and only if 6 = o. In that case §; with this property is unique because Ty is an
isomorphism. Rearranging yields

@ =0 —qo + W ()1 (4.1.9)

Since ¢ € H*(R) — C'(R) we get that the right-hand side lays in C!(R), thus
41 € C3(R) by the left-hand side. This implies that the right-hand side lays in C3(RR)
thus ¢; € C°(R). By bootstrapping this way we get ¢ € C*°(R). Furthermore we know
from the exponential decay of qf),q), and §; € H?(R) that the right-hand side lays in
H(R) thus ¢ € H3(R).

Since ¢((0) > 0 we can find A € R such that
q1 = 41+ Aqp
satisfies ¢1(0) = 0 and keeps all of the other properties of ¢;. From (4.1.7) it follows
(—0°+1d)(To(q1) — q0) = —o g (4.1.10)

Since To(q1) — ¢y = —oq, we can calculate with a partial integration

2) act

E(q) = /R (‘Tolh - Qf)’Q + ‘(Toﬂh —qp)'
= /]R (Toq1 — q0) (—0*+ 1d) (Toqr — qp) dL'
= —U/R (Toq1 — 44) q0 dLt = eyo.
We show that ¢; is a minimizer of = by calculating for any w € H3(R)
=(w) = =) + | To(w = a)(~0+ 1) Tofw = a1) AL
+2 /R To(w — q1)(—0*+1d)(To(q1) — ¢p) dL*.
The last term vanishes due to (4.1.10) and Lemma 4.1.5 leaving us with

=(w) = Z(q1) + /R To(w — q1)(—0+ Td)To(w — q1) AL

=E(q) + /R (|T0(w —q)[* + |0To(w — Q1)‘2) ac'.

It follows (4.1.8) and the uniqueness of ¢; up to adding ker(Ty) = span(q). The condition
¢1(0) = 0 makes it unique. ]

Before we can move on to the limsup statement and its proof we need to show the
exponentlal decay of the profile functions and their derivatives. For qo,...,q) and
Qo, - - -, Gy we already established an exponential decay in the Lemmata 4.1.2 and 4.1.3.

Lemma 4.1.7 (Exponential decay).
There exist C,c > 0 such that for all r € R we have

1 (r)| < CeeI", gy (r)] < Ceme"l,
I (r)] < C’efcw, and |¢{"(r)] < Ce™ elrl,
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Proof. We start with the analysis of the behavior as r — co. We observe that the vector
€ :=1(q — 1,9y, Ao(q) — 1,A0(q)), q1,4}) is a solution to the ODE system

£ = &,

& =W'(1+&),
&5 = &4,

£ ==&+ &,
&5 = &,

=6 +o&+W'(1+&)s.

From H3(R) < L°°(R) and (4.1.9) we conclude ¢ € CP(R). This implies that ¢{ is
uniformly continuous and thus by Lemma 3.1.9 we get lim, 1o ¢j(r) = 0. It also
follows lim,_, 4.0 q1(r) = 0 and thus we get lim,_,o £(r) = 0. Writing ¢ := /W (1) the
linearization of the right-hand side of the ODE at £ = 0 is given by

0 100 00
000 00
0 00 1 00
-1 01 0 00
0 00 0 01
0 -1 0 o &2 0

For the calculation of the eigenvalues we use that the matrix is a lower triangular matrix if
we consider the 2 x 2 block structure. We get the eigenvalues +¢ with algebraic multiplicity
2 and +1 with algebraic multiplicity 1. Thus the stationary point £ = 0 is hyperbolic. We
already know that |£| vanishes at co. From the stable manifold theory, see for example
[Per96, p. 115], we get that the solution approaches the stationary state exponentially.

This works the same way for r — —oo. We can transfer the result to ¢f and ¢}’ because

of (4.1.9). O

4.2 Formal identification of a candidate for the I'-limit and
for a recovery sequence

We proceed as in Chapter 3. Motivated by the diffuse energy-dissipation (4.0.2) we
introduce the candidate for new diffuse Willmore energy.

Definition 4.2.1 (Definition of the diffuse Willmore energy).
Recall H, = H.(u) == —eAu+ 1W'(u), we define WEK : L1(Q) — [0, o0]

| G +VH.F) a2, ifue 1@) N 1)

WEK () = (4.2.1)

400, else.
We use the notations and assumptions from Assumptions 4.1.1 and the coordinates from
Definition 2.1.10. To get an idea how to construct the recovery sequence associated to

the lim sup property we will do some formal calculations and use them as a motivation
for the rigorous proof. The method of asymptotic expansions was already presented by
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Loreti and March [LMO00] and considered by Wang [Wan08].

We use the ansatz for u,
ue(x) = Up(z,x) + eUp(z, ) (4.2.2)
as in Notations 2.1.11. We pose the following conditions on our functions:
e Up € C'R x w) with Up(0,z) = 0 and Up(-,x) —sgn € L*(R) for all = € w.
e U; € HY(R;C(w)) with U1(0,2) = 0 for all z € w.
o Forall z € Rand all j € {0,1} we have that Uj(z, ) is constant in normal direction.

The concept for the recovery sequence is visualized in Figure 4.1.

Figure 4.1: Visualization of the geometry and coordinates.
In the first condition sgn refers to the z-variable. We write 0,U; = Vj’ for the z-derivative

and VrU; for the tangential y-derivative.
We formally expand H. in the new coordinates and get by (2.1.8)

H. = ( — é@f —HO, —e(A, — z]II|28Z)> Uy + eUy] + éW’(U@) +W"(Up)U; + O(e)
1
= g( — U+ W' (U) + (= U+ W"(Uo)Uy — HU{) + O(e)
1
= EH,1 + Hy + O(e). (4.2.3)

We take a look of the lowest order in WX (u.). We plug in the expansion and consider
{ld] < 30} instead of Q. We get with the coordinate transformation ¥, from Definition
2.1.10

WEEK (4,) = /F/_z é(‘H_l + 5H0‘2 + ‘5VH_1 + €2VH0‘2) ALt aH" ! + 0(e).
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The lowest order term |H_1|? is minimized by Uy = qo, which implies H_; = 0 and thus
36
WEE (u.) = / / N (|HO|2 + z—:QWH()]Z) dct dH™ ! + O(e)
rJ_38

38
:// (IToUs — Hah? + [0-(ToUy — Hap)[) AL dH™™" + O(e).
rJ_ss

We can see that at points y € I with H(y) = 0 the optimal choice is Uy (-, y) = 0 and there
is no contribution to the integral. Thus we can reduce the integral to the set {H # 0}.
We get

U 2
W) < [ [ (T - a
{H#0} R

Thus we want to minimize the functional

=(w) = [ (| Totw) - i +

9. (Toﬂ ~ ) \2) dct dH ! + 0(e).

* H

8Z(T0(w) — q())‘z) dct, we H3(R).

from Lemma 4.1.6. Z is minimized for U; = ¢1 H by Lemma 4.1.6. Inserting this back
into WXK(u.) we get on a formal level

WEE (1) = cooW(u) + O(e).

4.3 Rigorous proof of the I' — limsup estimate

In this section we construct the recovery sequence associated to the lim sup property of

WEK RN coo W with respect to L!(Q)-topology. The process is motivated by the formal
calculations from the previous section. To handle the transition from the set w which is
close to I' to the rest of €2 we can work with the same cut-off function as in the I'-lim sup
construction for the AG-model.

Theorem 4.3.1 (limsup estimate for Willmore approximation).
Let Q, W as in Assumptions 4.1.1. Let E € Q with OF € C°. There exists (u:)eso such
that ue — u in L1() as e — 0 and

lim WEE (u,) < cooW(u),

e—0
with u = 2xp — 1.

Proof. We choose an even and on (0, 00) decreasing function n; € C°(R) with

1 in |0, 3],
0<m <1, Il < ), m=qt P03
0 in [4,00)
and define the cut-off function
d
ns(x) = n1 ((;)) for all z € Q.

We remark that ns € C*(Q) since 15 has support in {|d| < 45}.
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Now we can define the recovery sequence
ue(@) = 15(2) (a0(2) + eHy)ar (2)) + (1 = ms(=)) sen(d(x)),
= u(x) + ns(x) (qo(z) +eH(y)q1(z) — sgn(z))

with x = U.(z,y) as in the coordinates from Definiton 2.1.10. Note u(x) = sgn(sdist(z))
For shorter notation we will drop the arguments (x,y, z) from now on.

We start with the proof of u. — u in L'(2). For § > 0 from Definition 2.1.10 we have

46
/ e — ul AL = / e — uf AL = / / " enmslgo + eHay — sgn(d)| AL dH"!
Q {|d|<45} rJj-4

< / / a‘qo +eHq — sgn(d)‘ det dapnt
rJr

S//s)qo—sgn(d)‘dﬁl dH”_l—i—//aQ‘qu]dﬁl dH™ !
rJ/r rJ/r

< eC(D)|lgo — sgn || 1wy + €2CO) larll ooy |1 H | £ 1y

The respective integrals exist because I' is compact, H € C°(T') and the exponential decay
from qg — sgn, q;. Next we calculate H, and VH. and get

ue = u+ns5(qo +eHq — u)
Ve = (g0 — u+cHa)Vd + 2 (g + cHi)Vd + ensa Ve H
H. = —e(ni +n5Ad)(qo — u+ eHaqr) — (205 + nsAd) (g0 + eHq))
— %(qé’ +eHq)) — e’*nsqi ArH + éW’(ug)
VH. = - (ql! + Ha!)Vd ~ ~ (30 + ) (gl + <Haf )V

— [(3n§ + 2n5Ad)Vd + sV Ad] (qp + eHd))

— e[ + i Ad)Vd + sV Ad) (g0 — u + eHgy)

— [nsqi + (2n5 + nsAd)q + % (n5 + nsAd)q ) Ve H
—e(nsdh + ensq1)VAArH — %051 Ve ArH

1
+ EW”(ug) m5(q0 —u+eHq)Vd + %(qé +eHqy)Vd + ensq1 VrH].

Now we can proceed to show the lim sup property. We split the integral (note H. = 0 on
{ld| > 46})
1 1
WEK (4,) = / g(\HE\Q + €2 VH.|*) L + / g(|H€|2 + e VH|") dL.
{ld|<30} {36<|d| <46}

On {|d| < 30} we have n; = 1 and thus u. = qo + ¢Hgq1 which means that the formal
calculations from the previous section can be applied to the first integral. In fact we have

1
g(\HEF + 52|VH5|2) dcr < E(ql)/ |H|? dH" ™ = cooW(u).
{|d|<36} :
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Thus it remains to show, that the integral over {36 < |d| < 46} does not contribute in
the limit. From H € C3(T') we have AH € C}(T') and VrArH € C%(T'; R™). Since T is
compact every continuous function on I' is bounded. Furthermore we have qg,q1 € Cg(R)
and thus |u.| < R for some R > 0 independent of € on Q. Thus we estimate with the

Mean-Value Theorem ‘T/V’(ug)]2 = |[W'(ue) — I/V’(u)‘2 < HW”H%O[?R R]|u€ — u|? and get

1 2 2
He? < 5, m5) (lao — sen” + 3 lag” + - ).
=1 =0

For the estimate of [V H.|* we also need d € Cj(€2) and [W” (uc)| < [W|coj_gr < C.
We get

VA" < 500 m5) (Jao - sen [+ 3 [as”[* + 3 [at”).
j=1 j=0

On the set {30 < |d| < 4} we have |z| > 3?5 — 00 as € = 0. From Lemma 4.1.7 we know
that all of the terms have exponential decay as |z| — co. There exist €9, A > 0 such that
for all 0 < e < gp and all x € {36 < |d| < 40} we have

30

1 1
|H.(z)]? < gcm%)e—% and |eVH.(z)]* < SO m)e <.
It follows that the integral vanishes

1 1 :
g(\H€|2 + EQ‘VHE‘Q) dL" < g—gC(F,& 775)67% — 0 as e—0. O
(36<|d| <46}

4.4 Diffuse gradient flows in KK model

In this section we consider the following rescaled gradient flows of the diffuse Willmore
and perimeter functional.

—edue = (—e?A 4+ 1d)H. (4.4.1)
2
—eu. = ;2( — A+ W (u))(—*A + 1d) H., (4.4.2)

where H. = —eAu. + 2W’(u.) denotes the diffuse mean curvature. The PDE (4.4.2) is a
gradient flow because of

2
V2 WEE () = g( — 2A + W (ue))(—€*A +1d) H...

We will prove convergence towards mean curvature flow respective Willmore flow in a
formal sense, as in the previous Chapter 3. For the Formulations of mean curvature and
Willmore flow see Definitions 2.1.7 and 2.1.9.

The justification of phase field approximations of geometric evolution laws has a long
history. Our analysis closely follows the formal analysis in [LMO00]; see also [Wan08,
BMO15] and [RR21]. We formulate here assumptions under which the derivation is
rigorous. This however does not give a general convergence proof, since the assumed
properties need to be verified for a phase field approximation. Complete convergence
proofs based on asymptotic expansion techniques are known for the standard diffuse
approximation of mean curvature and Willmore flow; see [dMS90] and [FL21].
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Assumption 4.4.1 (Set evolution).

Consider a continuous evolution of open sets (E(t))cio,m in 2 with associated signed
distance function d : Qp — R, d(-,t) = dist(-, 2\ E(t)) — dist(-, E(t)), phase boundaries
I'(t) == 0E(t) fort € [0,T] and We assume the following properties:

1. T(t) is a CO-regular hypersurface for all t € [0,T].

2. U E(t) € Q. With this assumption we can choose § > 0 sufficiently small such
te[0,7)
that for all t € [0,T] the projections Il : {|d(-,t)| <56} — T'(t) are well defined

and set

wr = {(x,t) € @ x [0,T] : |d(t,z)| < 56}

3. d € C}(wr) and D}d € CP(wr) for all v € N§ with |y] < 4.

Let W.(-,t), t € [0,T] denote the parametrization that are defined according to (2.1.5) with
T replaced by T'(t).

We consider the cut-off function 7s from the proof of Theorem 4.3.1 and introduce classes
of phase field evolutions that we will consider in the following. We use the function
spaces of exponentially decaying functions from (3.5.4) and (3.5.5). Recall the coordinate
transformation V. (z,y) = y + ezvr(y) from Definition 2.1.10.

Assumption 4.4.2 (Phase field evolution).

Let (E(t))icjo,m be a continuous evolution of sets in €, the signed distance function d
and & > 0 as in Assumption 4.4.1 be given. Consider an evolution of smooth phase
fields (ug)o<e<ey- We assume that there exist p € (0,1), A > 0, and profile functions
uj : R xwp = R for j € {0,1,2}, such that for all 0 < e < e and all t € (0,T")

ue (-, t) = n5ul (1) + (1 = ns) sgn(d) + e’Re in €, (4.4.3)
2
W () = (Zsjuj> oWl in {|d| < 45}, (4.4.4)
=0

and such that the following properties hold:

1. The profile functions u; € CO(R x wr), uj = u;(z,x,t) satisfy uj(z,-,-) € C}(wr),
D)u;j(z,-,-) € CYwr) for all v € N§ with |y| < 4

up —sgn € X(R;I'r), uj, |Vauj|, Azu; € X(R;T'r)  for j e {1,2}.

I3
2. The remainder satisfies R. € X ’A(QT) for all0 < e < ggp.
E
The spaces X ’A(QT),X(]R; I'r) have been introduced in 3.5.1. Moreover, we assume that
{us(,t) =0} =T(t) forall t€[0,T], 0<e< ey, (4.4.5)

and that
WEK (e (-, 0)) + Pe(ue(-,0)) < C (4.4.6)

for all 0 < e < gp.
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Theorem 4.4.3 (Convergence towards the mean curvature flow).

Consider a sequence of evolutions of smooth phase fields (us)o<e<e, as in Assumption 4.4.2,
satisfying an asymptotic expansion (4.4.3)-(4.4.4) with respect to an evolution (E(t))ic(o,1]
of sets in Q. Assume that u. satisfies

1
—eOhue = (= A +1d) (- cAu. + EW’(ug)) +eR., (4.4.7)

with sup HRgﬂco(m) < C then (I'(t))icpo,r) evolves by the rescaled mean curvature flow
0<e<eop

V=cH (4.4.8)
with o as in (4.1.2).

Proof. We expand both sides of (4.4.7) and evaluate the identity order by order. To
identify the evolution law in the limit & — 0 it is sufficient to consider the region {|d| < 20},
in which ns; = 1. We deduce from Lemma 3.3.7

W (ue(z,t) = W' (ug(z, z,t)) + eW" (ug(z, z,t))us + e?RY (, t)

ole

with RY € X ’A(QT). Next we expand H. as in (4.2.3) and get

1
H. = —eAu. + EW’(ue(x,t)) =e (= uf +W'(ug)) + Tous — Hqy + eRH (2, 2,1)
= e 'H |(2,2,t) + Ho(z,2,t) + eRH (2,2, 1) (4.4.9)

3
with R € X ’A(QT). We expand the evolution (4.4.7). For the left-hand side we obtain
in {|d| < 20}

~che = =Y (s + éazujatd) + O(E) = —Boupded + O(e) = —uhV + Oe).
o (4.4.10)
The e~ !-order of the evolution (4.4.7) yields
0=(-9*+1d)H_; thus H_; =0,

because H_; is bounded by the assumptions on ug. We conclude ug = W' (ug) and thus
up = qo. The next order yields in {|d| < 20}

(—2A+1d)H. = (- 02 +1d)Hy + O(e)
= (=82 +1d)(— To(ur) — Hgp) + O(e).

Equating this with the expansion of —£d;u. done in (4.4.10) we get by testing with g,
—V/ g0 AL = / go( — To(u1) — Hqp) AL = —H/ a6 ac".
R R R
With (4.1.2) we get that the evolution evolves by mean curvature flow
YV =0H. O
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We can prove a similar result for the gradient flow of the diffuse Willmore energy.

Theorem 4.4.4 (Convergence towards the Willmore flow).

Consider a sequence of evolutions of smooth phase fields (us)o<e<e, as in Assumption 4.4.2,
satisfying an asymptotic expansion (4.4.3)-(4.4.4) with respect to an evolution (E(t))ic(o,1]
of sets in . Assume that u. satisfies

€ 1 9 9 1
- O = ;2( — A+ W (u.)) (— A +1d) (— eAu. + EW'(UE)) +eR., (4.4.11)

with sup |’R€“CO(TT) < C. Then (T(t))ejo,m) evolves by the rescaled Willmore flow
0<e<eo

1
V=20 (~ Ar,H - H|I? + §H3) (4.4.12)
with o as in (4.1.2).
Proof. We expand both sides of (4.4.11) and evaluate the identity order by order. To
identify the evolution law in the limit & — 0 it is sufficient to consider the region {|d| < 24},
in which 5 = 1. We deduce from Lemma 3.3.7
W (ue(z,t)) = W (uo(z,2,t)) + eW" (up(z, z,t))uy

1
+ &2 [W (uo(, 2,1)) + S W (=, t)ui] + R (z,1)
©
with RV € X ’A(QT). Next we expand H. as in (4.2.3) and get

1
H. = —eAu. + EW’(uE(a}, ) = e (—uf + W (uo)) + Tour — Hup + eR* (1)
= e 'H ((z,2,t) + Ho(z,z,t) + O(e). (4.4.13)

Expanding W{f{K by orders of € we get

20
1 e
WS () = 5 [ [ (1 + ) = act + o)

1
62/R/F(uar1|2+\H'_1|2) aH AL + 0(1).

Since under the flow (4.4.11) the energy WXX decreases with time and by (4.4.6) we
obtain that WXX(u.(-,t)) is uniformly bounded, which implies

0=H_ 1 =—uy+W(up) andthus wug(z,x,t)=qo(z) forall (x,t)€ wr.

Now we can expand the next order of H. with less effort because terms like Ar,uq vanish.
We get

1
H. = Tou; — Hq) + E(T()UQ + 2|?q) — Huy + §W”(QO)U%) +e?RH (x,t)
= Ho(z,x,t) + eHy (2, z,t) + 2R (x, 1). (4.4.14)
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P23
with RE € X¢ ’A(QT). Since the left-hand side of the evolution (4.4.11) is the same as
in the gradient flow of the diffuse mean curvature flow up to a factor of % we get from
(4.4.10) in {|d| < 20}

—g@tus - —%ugv +0(e). (4.4.15)

To expand the right-hand side of (4.4.11) we define the operators T. == —?A + W" (u.),
D, == —e?A + Id and expand

Do = 9> 4+1d, D;:=—HJ,, Dy:=—Ar, + 2[IJ?9,,

1
Ty = W"(ug)uy — HO, and Ty := W" (ug)us + §W(4) (uo)u? — Ar, + z|II%9,.

The expansion of D, has already been done in (2.1.8), (2.1.9). We plug this into the
right-hand side of the evolution and expand in {|d| < 2§}

T.D.H. = ToDoHy + €(T1DOH0 + ToD1Hg + ToDoHl) + 0(52).

Since on the left-hand side of the evolution (4.4.11) the lowest order is £° and there is a
factor €72 in front of the operators on the right-hand side we know that the lowest two
orders have to vanish. We conclude

0=To[(—0?+1d)(Tous — Hg})].
From Lemma 4.1.5 it follows that there exists A € R such that
(=02 +1d)(Tous — Hgp) = Ag). (4.4.16)

If H(IIx) =0 for © € w then A = 0 and ¢1(z,x,t) = 0 are solutions. If H(Ilz) # 0 we get
with the solution operator Ay from Proposition 3.1.8
u o A
From Lemma 4.1.6 we get that this equation can only be solved if A = —oH. Thus we get

Ty

up = Hqy and thus Hy = —o Hgj,. (4.4.17)
This also covers the case H(Ilz) = 0.

Considering the 7!

-order of the evolution (4.4.11) we get
0="Ty [D()Hl + DlH()] +T1DgHy and thus Ty [D(]Hl + DlH(]] = HUqu(/). (4418)

For the next calculations we recall the commutator of two operators [A, B] = AB — BA.
We have for h € H3(R)

[0z, To](h) = 0:To(h) — To(h') = k" + W"(qo)h" + W"(q0)goh — (— 1" + W"(qo)h)
= W"(q0)q\h- (4.4.19)

We calculate with the product rule

To(zqp) = —0:(q0 + 2q0) + W (q0)2q0 = —2q§ + 2To(q)) = —2¢;. (4.4.20)
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With these preparations we are ready to consider the e’-order of the evolution (4.4.11).
Since the lower orders vanished with the right choices for ug, u; we have

T.D.H. = &2 (T2D0H0 + Ty (D1Hy + T'DoH:) + To(*)) + 3R,

with R, € X 5% ’A(QT). To calculate this precisely we would need to consider the e2-order
in the expansion of H.. However we will test the evolution with ¢, thus all of the terms
with T will vanish because T is self-adjoint and T¢(g)) = 0. Thus e2-order of (4.4.11)
is given by

1
=540V = To(+) + Ty [DoH1 + DiHo] + ToDoHo.

Testing this equation with g we get
_%OV - /ng [Ty (Do H; + D1 Hp) + ToDoHy| dL*
= /ng( — HO, + W"(q0)Hq1) (DoHy + D1 Hyp) dC*
+ /R 40 [W" (qo)u2 + %WM) (g0)H?qi — Ar, + 2[]?0.] (— Hogp) AL

We split the first term and apply a partial integration on the first summand. We get

C
- EOV = Hqg(D()Hl + DlH()) dct + / HW///(qO)q6q1 (D()Hl + DlHo) dct (4421)
R R
/ n / 1 / H3 4 /2 / 2 2 1
/RHaqu (90)gous L /RUQO{ 5 W (q0)aoat — apAr H + 2[I*Hgy | AL,

=[0:,To](u2)

Now we isolate some of the terms to calculate them. We start with the second term on
the right-hand side of (4.4.21). We use that T is self-adjoint and (4.4.19) to get

/ HW" (0)gha1 (DoH + Dy Ho) AL = / H(0.To(q1) — To(gh)) (DoHy + Dy Ho) dL!
R R
= / H(To(q1)) (DoHy + D1Hp) dL' — / H¢yTo(DoH; + D1 Hy) dL'. (4.4.22)
R R

By (4.4.14) and (4.4.17) we have HTo(q1) = Hy + Hgqj. Together with (4.4.18) and
Dy = —HO, this yields

/ H(To(q1)) (DoHy + D1 Hp) AL — / Hq|To(DoH; + D1Hp) dC*
R R
— / (Ho + q) (DoHy + Dy Hp) dL* — / o H?¢ Tqh AL
R R

= / H\(DoH, — HH}) ' + / Hql(DoHy + D1Hyp) L — / ocH?q\Thq) ALt
R R R
(4.4.23)

For the first term of the second line of (4.4.21) we use the representation from (4.4.14)
Tous = Hy + H?¢; — 2|1Iq) — AW" (q0)H?q}, (4.4.19), To(q)) = 0 and that Ty is
self-adjoint. We get
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/ HogyW" (q0)qhus act = / Hog (aZTO(UQ) — To(ué)) dact
R R
1 '
_/RHaq(') (Hl + H2q'1 — z|]I]2q6 — §W"’(q0)H2qf) dct
- /R oab(HH] + Hq{ — [N2Hgy — =[U[2Hg]
_E (4) 12 rr3yxsn AWTL
5 W (q0)qpqy — H°W (qo)qlql) L. (4.4.24)

Now we plug (4.4.23) and (4.4.24) into (4.4.21). We rearrange the terms and get

—%Ov / 2q0 (DoHy + D1 Ho)H dL' — / oH?¢\ Tq) AL (4.4.25)
R
+ / H(DoHy — HHy) dL' — / o) (HH{ + H3q{ — H3W’"(qo)q1q’1) dc!
R R
(4.4.26)
+ coo(Ar, H + H[II?). (4.4.27)

We again isolate some of the integrals for further calculations. We start with the first
term on the right-hand side of (4.4.25). We apply (4.4.20), the fact that Ty is self-adjoint
and (4.4.18). This yields

/ 2q0 (DoHy + D1 Ho)H AL = / To(2q) (DoHy + D1 Ho)H dL!
R
= —/ oH?2q)Tyq) AL
R

Next we use the definition of 77, (4.4.19), a partial integration and the fact that T is
self-adjoint. We get

_/ aH2zq6T1q6 dct = —/ UH3zq(’)(W’”(q0)q1 —9.)qp dct
R R
—— [ o0 Tola) ~ To(ah)) L+ [ oH s A
R R

B / oH?((qh + 2q5)To(q1) — ¢, To(—2qp)) dL*
R

1
—/JH3|q6]2dL‘1.
2 Jr

Now we use (4.4.20), To(gj) = 0 and Tog1 = g — 0qp. This yields
1
/0H3((Q6+ZQ6')T0((11) — ¢ To(—2qp)) AL — /UH?’IQOIQdE1
R
= / oH? (zqé’To(ql) — 2q6’q’1) det — coaH3
R

1
= / oH? (zng(') — 02q0q — 2q(’)'q'1) et — §COJH3. (4.4.28)
R
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Next we consider the second integral on the right-hand side of (4.4.25). Here we just plug
in the definition of 77 and get

/ oH?*¢\ Tiqh AL = / oH? (qiqg — W’”(qo)qéqqu dct. (4.4.29)
R R

For the first term in (4.4.26) we use a partial integration and that Dy is self-adjoint. We
get with Hy = —o Hg, from (4.4.17)

/R H)(DoH, — HH}) dC! = /R (— H{DoHo + HH{ Hy) dL!
- /RH((;ngg ~ (—H{ + Ho — Hy)Hy) dL!
= /R H (o High — HoDoHo + H3) dL!
= [ ot (Hids = oHo4igs + o5 ac”.
Applying the definition of ¢ yields

| ot (Hidh - o aiy + o) oL = [ ot (Higy ~ Il + o) dc’
R R
(4.4.30)

We plug (4.4.28)-(4.4.30) into (4.4.25)-(4.4.27). The terms containing oH3qq; and
oH3q)q} combine to 0 after a partial integration, the terms o H3W"(q0)qhq1¢; cancel
each other out and the same is true for c HqyH]. We get

c 1
-0V = oo (Ar, 1+ HITP - SH) + UH?’/R (=ath — 1ab|* — o=atdy + olapl*) AL™.

Thus the proof is finished if we can prove that the last integral vanishes. We use

_(4
a = a5’

+ gg and calculate with a partial integration
| (st~ 166 = oty + ola ) dc*
R
3 _ _(4) | i~
= [ (= SlabP + olaif? o= + aipas) ac!

Thus the claim is proven if the remaining integral vanishes. We calculate with a few
partial integrations

3 _ _(4) e
/R (= Slaol” + ofgol” — o=(~ay” +ap)an) ac*
3 _ e _(4)_
= /R (= Slaol® + ofaol” — o=, + o=a5 30 ) d.*
3 /12 3 —1 12 I (=] 1! 1
= (—§\QO| +§U|QO\ —0qp (qo—i—zqo)) dC
R
3 _ _
= 2/11@ (U(\qg\z +[a/?) ~ \q6!2) dc'.
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The last formula we need for the Willmore flow is
[t act =a [ (i + aol) ac’
R

which comes from testing —q( + gy = go with g and using o [ qoqn dL' = ¢p. We finally
get

1
~V =20(Ar, H + H|I]? - §H3). O
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5 Liminf estimate for the dif-
fuse Willmore approximation
based on the Karali-Katsoulakis
model

In this chapter we will prove the liminf estimate of the sum of the standard diffuse
perimeter energy as discussed in [MM77] and a new diffuse Willmore energy introduced
in Chapter 4 and based on [KK07]. We modify and adapt ideas and concepts from
[RS06, HT00]. A main ingredient will be to characterize the w*-limit of a modified diffuse
surface measure.

5.1 TI'-liminf estimate for a new Willmore approximation

In this chapter we consider n € {2,3} and assume that Q C R" is open and bounded with
C?-boundary. We recall the functions from 4.1.1, among them the double-well potential
W (r) :== (1—r?)? for r € R, the induced optimal profile go(r) = tanh(v/2r) and g, = Aoqo.
qo solves

4% =/2W(q) and go(0)=0. (5.1.1)
Qo is characterized by
~q5 + 9o = qo-
We also recall the constants

CO:/]q6]2d£1 and o= 0 (5.1.2)
K /Rqé% dc’

The following theorem is the lim inf estimate for the approximation WfK AN cooW. We
also prove a more general version; see Theorem 5.2.5.

Theorem 5.1.1 (liminf estimate for a new Willmore approximation).
Let E C Q with OE N Q € C?. For any sequence (ug)eso with ue — u = 2xg — 1 in
Li (Q) we get

loc

co(P(u) + oW(w)) < lim inf (Pa(ue) + WE (u)). (5.1.3)

e—0
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Remark.

e Because of the Modica Mortola Theorem 2.4.2 we get
coP(u) < liminf Pg(u.). (5.1.4)
e—0

If the right hand side is finite we can conclude uw € BV (Q;{£1}) thus E has finite
perimeter.

o We can prove
cooW(u) < lim inf WEE (v,)
e—0

for any sequence (ug)e>o with bounded diffuse perimeter (Pe(us))eso. A suitable
formulation for that is to consider the lim inf-inequality for the sum P.+ W, because
the bound on the diffuse perimeter will then follow from the assumption that the
liminf s finite.

e Together with the limsup estimate in Theorem 4.3.1 and the Modica-Mortola Theo-
rem 2.4.2 this implies

I(£'(2) - lim (P + WEE) = o (P + oW) (5.1.5)

on the set of smooth limit points and for n < 3.
e Recall G,,—1() == Qx G(n,n —1) and V,,_1() :== C%G,,_1(RQ)) from Section 2.2.

Theorem 5.1.1 is a corollary of a more general result (see Theorem 5.2.5) and will be
proven later.

5.2 Measure-theoretic formulation of the main theorem and
preparations

Definition 5.2.1 (Diffuse Radon measures and varifolds).

For a sequence (u:)e>q in H3()) we introduce the diffuse area measure i, the discrepancy
measure &, the standard diffuse Willmore measure a. and add the new diffuse Willmore
MEASUTE K

1
- <;|Vu5’2 + €W(u5))cn Lo, (5.2.1)
g 2 1 n
1
o = E\HEFE” LQ, (5.2.3)
and ke = (inEP + a\VH5\2) £rLQ, (5.2.4)
with H. = —eAu. + %W’(ug). (5.2.5)
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The names stem from the obvious connections to the respective functionals
fre (§2) = Pe(ue)

e (Q2) = We(ue)
ke (Q) = WEE (u,).

For each € > 0 we fiz a Borel-measurable function v, : Q — S*~1 with v, = % on

{Vue # 0}, ve = ey on {Vu. =0} and define a (n — 1)-varifold V. = p. @ v € V,_1(Q)
by

/ &(x, S)dVe(z, S) ::/cb(x,ug(x)J‘)d,ug(x) for ¢ € CUGL_1(Q)). (5.2.6)
Gn-1(2) Q

Corollary 5.2.2 (Limit measures and varifold).
Let A > 0 such that

lim iglf (pe(2) + ke(2)) < A.
e—>

Then there exist a subsequence which realizes the liminf, a function u € BV (Q; {£1}),
finite Radon measures p, &, a, k € CO(Q)', and a varifold V € V,_1(2) such that

u. — u in LY(Q), (5.2.7
fe N poin CQ(Q), (5.2.8
few—*>§> aeb*a in Cg(Q !, (

)
V. SV in V,_1(Q), (5.2.10
and k. sk in Cco(). (5.2.11

Proof. By Theorems 2.4.2 and 2.4.3 we conclude that there exists u € BV (Q;{£1}) and a
subsequence such that u, — u in L'(Q). The claims (5.2.8)-(5.2.11) follow immediately
from Theorem 2.2.2. O

We highlight important results from [RS06] which will be used in the proof of the
lim inf-estimate.

Theorem 5.2.3 (Key results from [RS06]).
Let A > 0 with

liggiélf (e(2) + () <A
and assume (5.2.7)-(5.2.10). Then it holds
G) 1> $|Vul.

(i7) V is a rectifiable (n—1)-varifold with weak mean curvature vector Hy € L2(S2, ju; R™)
and ]ﬁv|2u < .

(tit) The discrepancy measure vanishes in the limit, i.e. £ = 0.
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(iv) o'V is an integral (n — 1)-varifold and thus
pw=coH" LT,
where ' is a countably (n — 1)-rectifiable set and 0 : T' — N is H" " '-measurable.

(v) limsup p*~"u(B,(z)) < oo for all x € (.

p—0
Proof. (1) follows from [MMT77], see also [Mod87]. The claims (i7)-(v) follow from Theo-
rems 4.1, Proposition 4.5, Proposition 4.9, and Theorem 5.1 in [RS06]. O
Remark.

e In (i) Vu is the derivative in the sense of Radon measures which exists because u
has bounded variation because of (5.1.4).

e The o used in [RS06] corresponds to cy here, not o.

o The space L2 .(Q,u;R™) is the L2 . space of the measure p for functions (more

precisely equivalence classes of functions) defined on Q with values in R™.

Lemma 5.2.4 (Approximation of the first variation).
Let the assumptions from Theorem 5.2.8 hold and let n € C}(£;R™), then we have

/ Hy -ndp =lim | Vu.-nH.dC™
Q e—0 [¢)
Proof. From Proposition 4.10 in [RS06] we have

<777 6‘/€>CQ(Q)/ = /S; Vue - nH. dc" + /Q Ve - D, d&..

The second term vanishes as € — 0 because of |v;| =1 and (i7i) from Theorem 5.2.3. For
the term on the left-hand side we have || V|| = pe by construction and thus

V| = [|[Ve]| = pe = p in CY(Q).
Combined with (5.2.10) we get
<777 5Vv€>C‘9(Q)/ — <77, 5V>Cg(ﬂ)’ = —/Qﬁv . ndM

which finishes the proof. O

With these notations and preparations we can formulate the general, measure-theoretic
formulation of the lim inf estimate.

Theorem 5.2.5 (Measure control of diffuse Willmore energy).
Let A > 0 such that

o < 9
hgn_)l(])nf (1e(Q) + ke (2)) <A (5.2.12)

for some A > 0 and assume (5.2.8)-(5.2.11). Then we have
o|Hy |’ <k, (5.2.13)

in the sense of Borel measures.
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The proof of Theorem 5.2.5 needs a lot of preparations and is presented in the last section
of this chapter. In particular we conclude the following Corollary, which will be useful in
Chapter 6.

Corollary 5.2.6.
Let (ug)e>o be a sequence in H3(Q) with (5.2.8), (5.2.10), and

lim sup p(2) < 0. (5.2.14)
e—0
Then we conclude
0/ |ﬁv‘2 dp < liminf k(). (5.2.15)
Q e—0

Assuming Theorem 5.2.5 is proven we can derive Corollary 5.2.6 and Theorem 5.1.1.

Prood of Corollary 5.2.6.

If the right hand-side of (5.2.15) is infinite there is nothing to prove. If it is finite we
can assume (5.2.12) by (5.2.14). Thus the claims from Corollary 5.2.2 and Theorem 5.2.3
hold. Take any ¢ € C?(Q2) with 0 < ¢ < 1, then by Theorem 5.2.5 we have that

512 512 . o
U/Q¢|HV| du = (¢, 0|Hy| M>Cg(m, < (9, K)oy = Liminf (¢, £e) ooy < liminf ke (€2).
Taking the supremum over ¢ € C(Q) with 0 < ¢ < 1 results in

a/ |Hy|? dp < lim inf £.(Q) (5.2.16)
T e—0

by the regularity of Radon measures. O

The proof of Theorem 5.1.1 is also based on (5.2.16), we just need to rewrite or estimate
the terms at the ends of the inequality.

Proof of Theorem 5.1.1.

If the right hand-side of (5.1.3) is infinite there is nothing to prove. Thus we can assume
(5.2.12) and the claims from Corollary 5.2.2 and Theorem 5.2.3 hold. As in the proof of
Corollary 5.2.6 we conclude (5.2.16). We deduce by (iv) from Theorem 5.2.3

e—0

coa/ |ﬁv‘2 dH 1 < a/ ‘ﬁv|2du < liminf k. (Q) = lim inf WE¥ (v,).
Q T e—0

In the following we connect the weak mean curvature vector Hy of the varifold V with
the mean curvature vector Hg of the hypersurface OE N Q. Owing to the C?-regularity
we have OEF N Q = 0*F N, where 0*F is the essential boundary defined in Definition
2.2.10. Since E C  and because of the C?-regularity at every point of OE N € there
exists an inner normal vg.

To compare the mean curvature vectors we need to compare the respective varifolds.
Define Vi == (H" '1LOEN Q) @ vy € V,,_1(Q). With (i) from Theorem 5.2.3 we can
apply Corollary 4.3 from [Sch09] which yields Hy = Hp and thus we get with (5.2.16)

cooW(u) = coa/

‘I—?EIZ dH" 1t < 0'/ ‘ﬁv‘2du < lim inf WE¥(w,).
OENQ Q €0

Since we also have the lim inf estimate for P. — ¢¢P from the Modica-Mortola Theorem
2.4.2 the claim follows. O
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Before starting with the technical preparations for the proof of Theorem 5.2.5 we
present the central notion to motivate why we need to examine the measures in the next
sections. The rigorous proof is done in Section 5.5, here we outline the idea in a formal way.

Remark.
Let us first recall the arguments from [RS06] for the proof of the liminf estimate for the
standard approximation and replicate the idea for our approximation.

We use the dual representation of the L2(u)-norm of Hy. Let n € CL(Q;R™) with
/ Inl?dp < 1. (5.2.17)
Q
Then we apply Lemma 5.2.4 and get that
/ Hy -ndp = lim/ Vu. -nH.dL", (5.2.18)
Q e—0 0

where H, = —eAu, + %W’(ug). We use the Cauchy-Schwarz inequality and get

1

- 1 2

/HV'TIdH < lim [/ 5\77|2|Vu5|2 dE”/ ~|H.|? dﬁ”]
Q e—0 Q Q€

< \/hm sup(|n|?, pe + €€>CQ(Q)’ lim inf W, (uc)
e—=0 ¢ e—0

_ 2 . .
= VIl mcoy | [l inf We(ue).
<1

We take the supremum over all n with (5.2.17). We get by (iv) from Theorem 5.2.3
CQ/ |ﬁv|2 dH ! < / |FIV]2d;L < lim inf W (u,).
T 0 e—0

Applying Corollary 4.3 from [Sch09] ensures Hy = Hg and the proof for the standard
approzimation is finished.

However our approximation is different because H is replaced by (—e2A + Id)H.. Thus
we need to modify the above argument and introduce . as the solution to

— AU+ U =u. in Q
Oyu: =0 on ON.

We will show that
/ ﬁv -npdu = lim/ Vi, - n(—EZA +Id)H. dL"
O e—0 [¢)

and can apply the Cauchy-Schwarz estimate for the inner product induced by the differential
operator. This results in

/ﬁvmdugliminf l/an-Vug(—€2A+Id)(n-Vu5) dc"
0 e—0 O
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1
2
/ EHE(—52A+Id)H€ dL"] :
¢

Further manipulations yield

1 . a7 — 2 . ' n: 1 . 'm . n
;1_1[)1(1) an Vi, (—e’A+1d)(n- Vu:)dL il_rf(l) Qs(n V) (n - Vue) dL

and thus
1
2

/ Hy - ndp < liminf lfsg(Q)/ |77|25|Vﬂ5||Vu5| dE”]
Q e—0 Q

Taking the supremum over n with (5.2.17) will result in the Willmore energy on the
left-hand side. The desired term k.(Q2) is already on the right-hand side so the key for
this proof is to deal with the remaining integral. We do so by examining the measure
£‘Vﬂ5HVu5‘£” and its weak*-limit.

5.3 Uniform bounds for the modified phase fields

Definition 5.3.1 (Modified phase field and area measure).
Assume that ue € C3(Q) satisfies (5.2.12) for some A > 0. We define u. € H'(2) as the
solution to

—2AT T =u. in Q (5.3.1)
ou:. =0 on Of.

We also define the Radon measure
Je = e|Vu.||Va. LML Q € CY(Q). (5.3.3)

From elliptic regularity theory we get @. € C°(Q) N H5(2). We start with an estimate
that makes use of the boundary condition for ..

Lemma 5.3.2.
Consider Q, us,us as in Definition 5.8.1. Then we have for all e > 0
1 1
/ [5|Vﬂ5| + —([a.| - 1)2} acr < / —W(u.) dL" (5.3.4)
{[m|>1} 2 {luc|>1} 2€

Proof. We first obtain from (5.3.1) that

CeA(T — 1) + %(ae )= é@e ~1) (5.3.5)

Testing this equation with (u. — 1)1 and using (5.3.2) yields

/Q [EV(HE —1)-V(u. —1)4 + é(ﬂg —1)(u. — 1)4 acr

= / 1(us — 1)@ — 1), dL" < / l(us — 1) (u. — 1), dL™
Q Q

9 9
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— / [€|Vﬁg|2+§(m—l)2} ac"

{u->1}
< / L —2ae 4 / L —1)2acn
- 2e te 2e e
{ue>1} {ue>1}
— |2 1 — 2 n
— / [€]Vu€| +2—E(u€—1)}d£
{u>1}

1 2 2 n 1 1974 n
<
{ue>1} {us>1}

Similar we deduce

— |12 1 — 2 n 1 n
/ {8|Vug| + g(u‘E +1) } dc < / %W(ua) dacn.
(@.<—1} {ue<—1}

Adding both estimates yields (5.3.4). O
From (5.2.12) we get with a Cauchy-Schwarz estimate

1
2

/|ug|2d£”:/(|u€|2—1) dL™ +C(Q) < C(Q)/ W (ue) dC”] +C(Q)
Q Q Q

< C(Q)(1+ Ved) < C(Q,A). (5.3.6)

With (5.3.4) we can deduce similarly

/ [@|? dL™ < C(Q) + / (|Te| — 1+ 1)2dL™ < C(Q) + / 2(|@.| — 1)*dL”
Q
{lue|>1} {[ue|>1}
< C(Q)(1+2eA) < C(Q,A) (5.3.7)

Both of these estimates yield uniform bounds as € — 0. In the following we will rely on
(5.3.7) and prove results that hold independent from (5.3.2).

Lemma 5.3.3.
Consider u € C3(Q) with (5.2.12) and assume that u. € H3(Q) satisfies (5.3.1) and
(5.3.7). Then we have for any n € CX(Q) and all e > 0

1
/ (en*V (@ = we)|* + —n?fae — uel?) dL” (5.3.8)

0 9

< / (10| (1 — ue)? + den?| Ve |*) dL™.
Q
Furthermore we have for all j € {1,...,n}
/ (2| Vosu. | + en?|Oyucf?) dL” < / (46102 V| + en?|Ojucl?) dL”. (5.3.9)
) )
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Proof. We get from (5.3.1)
_ L
—eA(Te — ue) + g(us — ue) = eAu,.
By testing with n%(u. — u.) we get
1
/ (sV(ﬂE —u.) - V[ (. —u.)] + 2772@5 - uE)Q) acr
Q
= —/ eV, - V(. — u:)] dL™.
Q
Rearranging and applying the Young-inequality yield
1
/ (8772‘v(ﬁ6 - “6)’2 + = (. — u5)2) dc”
Q 9
= —/ (QﬁnV(ug —Ug) - \/E(ﬂE —u:)Vn + 2\/577V(u€ — ue) - VenVue
Q
+ 2venVue - Ve (e — ug)Vn) dcr
€
< /Q (5719 @ = w)|” + 8¢Vl (@ = ue)® + 220 | Ve ) ™

By absorbing the good term on the right-hand side we get (5.3.8). For the proof of (5.3.9)
we deduce from (5.3.1) for j € {1,...,n}

—e? A0, + 05U = Djue

and compute by testing with 51728jﬂ€
/ (*Vosu. - VIn?osu] + en?(9;1)?) dL™ = / en?0;u.0ju. AL
Q Q
Rearranging and applying the Young-inequality yield

/ (2| Vosu]* + en?(97u.)) dL”
Q

[ =3
= / ( -2 %nvajm - V2e30;u:Vn + 2\/§n8ju€\/§najus) dcr
Q

3
< [ (GPIvomel + 220w P Vnf + SrP(0,m)* + G0y ) g

Absorbing the good terms from the right-hand side proves (5.3.9). O
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Corollary 5.3.4.

Let ue € C3(Q2) with (5.2.12) for some A > 0 and assume that T. € H*(Q) satisfies (5.3.1)
and (5.3.7). For any open set Qg € Q there exists C = C(Q,Qy) > 0 such that for all
e > 0 we have

1 1
/ (VAL + L7 — )+ LW () dL” < O(1 4 ), (5.3.10)
Qo

where W (r) :== min{(1 — r)%, (1 + )2} for r € R. Also we have for any j € {1,...,n}

/ e(0;7.)? dﬁ”g/e(ﬁjus)Q dLm 4 2C(1 + A) (5.3.11)
Qo Q
312 |2 — |2 n
and / (8 |D*u.|” + e| V| )d£ <C. (5.3.12)
Qo

Proof. We start by estimating for »r € R and s > 0
(r—1)2%=(r—s%+20r—s)(s—1)+(s—1)°

r—1 1
7 \/5(5—1)—(3—1)2§(r—s)2+§(r—1)2+(s—1)2

We can absorb the term (r — 1)? and get

=(r—s)?+2

S =12 < (s + (5= 17 < (r = 8P (s~ D2+ 1)% = (r = 5)2 4 W(s).

It follows
W(r) < (r—1)2 <2(r —s)? +2W(s).
We proceed similar for s < 0 and get for all s,r € R
W(r) <2(r —s)*+2W(s). (5.3.13)

Given Qg € 2 we can choose 1 € C1(€Q) such that n = 1 on Q. Then we get from first
applying and (5.3.13) followed by (5.3.8)

1 1
/ (6]Vﬂ6|2 + = (e — ue)® + fW(HE)) dcr
Qo 9 9

< / (en* 1V (a = e +u)[* + S (e — ue)? + g172W(ua)) ac"
Q e €

< / (305|V77]2(HE —u)® + 25772\Vu5\2 + 125n2|Vu6|2 + §n2W(u6)) acr
Q

2

< / (605|V17|2@§ + 605\V17\2ug + 145172]Vu5]2 + EUQW(U€)> acr
Q

< C(n) / e (@ +u?) dL™ + C(n)ue ().

Q

Note that 7 is only dependent on €, 2. Applying (5.3.6), (5.3.7), and (5.2.12) yields
(5.3.10).

98



To prove (5.3.11) we choose and open set €2; such that Qy € Q; € 2. Then we apply
(5.3.10) to 21 and get

/ e|va.|> dL™ < C(1 + A).

951

We choose n € C(Q1) such that n = 1 on Q1 and use (5.3.9). This yields

/ £(8;1.)% AL = / en?(9;7.)% L™ < / (420,002 Ol + en(0yu.)7) AL
Q() Q1

1951

< / en*(Ojus)? dL™ + e2C(1 + A).
Q

To prove (5.3.12) we use (5.3.9). First we choose n € C1(Q) with n = 1 on Qq. then we
get by summing over j in (5.3.9)

| @l +eval)act < [ (0 +of val) ac
Q

0
< / (46| V. | Vn)* + e[ Ve |*) dL”
Q
< C(n)/ (*|Va|” + e Ve |*) e
Q
By (5.3.10) and (5.2.12) we deduce (5.3.12). O

Corollary 5.3.5 (Convergence and absolute continuity).

Let u. € C3(Q) with (5.2.12) for some A > 0 and assume that G. € H'(Q) satisfies (5.3.1)
and (5.3.7) for alle > 0. There exists a finite Radon measure 9 € CO(Q) such that up to
a subsequence we have

w

9. 29 as e—0 in CJQ). (5.3.14)
Moreover, 9 < u holds.

Proof. Let n € CJ(2), by Young’s inequality we get
1 2 n 1 — 12 n
<172,195>08(Q)/=/Q772d195§ 2/97725|Vu5| dc —1—2/97]26’Vu5| L™ < C(n, A)

by 5.3.4 and (5.2.12). From Theorem 2.2.2 we get the existence of a subsequence such
that (5.3.14) holds. More precisely we get from (5.3.7) and (5.3.10) for n € C1(Q)

1 2 n 1 — 12 n
<772,'19>08(Q)/ — <7]2,195>C(())(Q)/ :/andﬁg S 2/5;7725|VU5| dc "‘2/97728|VU5‘ dl
< 30, pe)cogay + /Q eV (@ — ue)[* L
< T0P ey + [ 109 @ — o) ac”

< 0P ey + 00 | (@2 + u) g
< 7%, pe) oy +C0, QU A) — T, 1) oy
It follows ¥ < p by Lemma 8.2.6. O
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Lemma 5.3.6.
Let ue € C3(Q2) with (5.2.12) for some A > 0 and assume that T. € H*(Q) satisfies (5.3.1)
and (5.3.7). Then for any n € CL(Q) we have for all e > 0

_ 2 1 5, n
(e’ 1V (el = D + Zn*(17e] - 1)?) dc (5.3.15)
{[ue|>1}
1
< / g772W’(u5)2cw”+ / 1|Vl (| — 1) dc™.

{lue|>1} {lwe[>1}

Furthermore for any Qo @ Q and k € N there exist C(Qp,Q, k) > 0 and eo(k, Qp, Q) such
that for all e € (0,g9) we have

1
/ — (e = 1)3 L™ < C(Pac(@) + 7). (5.3.16)
Qo

Proof. We start by proving a localized version of Lemma 5.3.2. Let € C1(Q), then we
get by testing (5.3.5) with n%(@. — 1)+

/ (V(@ = 1) - Vind(@. — 1)4] + Tn2(z. — 1)(@. — 1) ) dL”
Q IS
= / an(us - 1)(H€ - 1)+ dL".
Q€

Rearranging and applying a Young inequality yield
_ 2 1 5 "
/ (mﬂV(u6 =14+ —n*(u, — 1)1) dc
Q 3
</21 (T — 1) ——n(ue — 1), dL"
— n(u. — — n(u. —
= g \/%7] € + n{ue +
- / 2\/§nV(u€ —1)4 - V2 (T — 1)4 VndL®
Q
L o 2 L 2
< — -1 n _ -1 n
< [ gt —1Racn+ [ S — 17 4
+/ S|V (@ 1), ac” +/ 26|V’ (@ — 1)2 AL
Q Q
We can absorb the good terms and get
_ 2 1 5 n
/ (5772|V(u5 — 4"+ =n*(@ — 1)3) dc
Q 9
1
< / —n?(ue — 1)% dL" +/ 4e| V(@ — 1) ac”.
0¢ Q
Estimating (ue — 1) < 16u2(ue — 1)?(ue + 1)2 = W (u:)? on {u. > 1} yields
_ 2 1 5 n
(»3772|V(uE - 1)|"+ gr]Q(uE - 1)2) dc
{ue>1}

1
< / gnQW'(u5)2 dL"” + / 45|V77|2(ﬂ5 —1)%2dc.

{ue>1} {u:>1}
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We proceed similar on {t. < —1} and add the integrals to get (5.3.15).

For any two sets Vi € Vo C Q we derive by choosing a cut-off function n € C}(V3) with
n=1onV; and |Vn| < 2 for r := dist(V1,R™ \ V3) that

Lo 2 1pn 1 > o, 167 L 2 1p,n
—n°([te| — 1)1 dL" < —(Jue| = D)3 AL + —~ —(Jue| = 1)1 dL™  (5.3.17)
Vi 3] Vo 3 T Vo g
Now we choose open sets 21,...,; such that

e e €N €Ny =0

with dist(€2;, R™ \ Q;41) < € dist(Q,R" \ Q) for all j € {0,1,...,k}. Using iteratively
(5.3.17) and (5.3.7) yields

1, 2 n 1 2 n 16€2k L 2 n
/QO ~(fa| — 12 L < k/Qk ~(juel = D3 AL + —5- /Q ¢ ([l =13 dL
1
<k / ~(Juel = 3 L™ + C(k, 0, Q). (5.3.18)
Qp

Since (1 — |r|)3 < CW'(r)*xqjrj>1} We can apply Propositions 3.5 and 3.6 from [RS06]
which implies that for all € > 0 sufficiently small we have

1 1
/ ~(Jue| — 1)3 dL™ < O(k, Qo, Q)s/ |H. |2 dL™ + C(k, Q, Q)2 [ =W (ue)? dL™
Q € 9) Q €
< C(k,QO,Q)s/ |H.|?dL" + C' (k, Qq, Q)21
Q
Together with (5.3.18) this yields (5.3.16). O

5.4 Characterization of

To identify ¥ we apply the blow-up method as in [RS06], see also [HT00].

Theorem 5.4.1.
Consider (u:)eso in C3(Q
(

a subsequence such that

) and assume that (5.2.12) holds for some A > 0 and restrict to
5.2.8)-(5.2.11) and (5.3.14) hold. Then it holds

1
9= —p.
o

The proof is done throughout the entire section. First we introduce the notations for the

proof and reduce the claims without loss of generality. Recall I' = supp() as introduced
in Theorem 5.2.3.
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Lemma 5.4.2 (Good points).
Let (us)e>0 as in Definition 5.2.1, assume (5.2.8)-(5.2.12) and (5.3.14). Then we have
for pu-a.e. x € Q

o Bapy(x) € Q for some po = po(z) > 0,

x is a p-Lebesgue point of D1,

lim sup p! " u(B,(z)) < oo,
p—0

r({z}) =0,

the approximate tangent space T,I' exists,

o there exist O(x) € N and Sy € G(n,n — 1) such that Ty = cof(x)S,.

Proof. For x we can find a py as described because 2 is open. We know from Corollary
5.3.5 and the Radon-Nikodym Theorem 8.2.5 D,J € L'(Q,u) and ¥ = D,dpu. In
particular p-a.e. x € {2 is a p-Lebesgue point of D, by Theorem 8.3.5. Furthermore, by
(5.2.12) we get limsup,,_,, p' "u(B,(x)) < oo from (v) in Theorem 5.2.3.

The fourth condition is true for a cocountable subset of 2 because « is a finite Radon
measure on {2 It follows that x can at most have a countable set of atoms.

The fifth condition is satisfied by p-a.e. x € € because by (5.2.12) and Theorem 5.2.3
V is a rectifiable (n — 1)-varifold and p = cgfH" ' L T. The last point stems from the
fact that %V is integral, see Theorem 5.2.3, which implies that for p-a.e. x € I' the
multiplicity #(z) is a natural number. O

Recall (. ,(y) = % for p > 0 and y € R", the pullback ijx and the pushforward ¢, , 4
from Definition 2.2.18. In the following we fix a good point = € supp(u) and py > 0
such that the properties in Lemma 5.4.2 hold. Set 6 := 0(z). Without loss of generality
we can assume z = 0 and S := Sy = R"! x {0} for the proof of Theorem 5.4.1. In
fact this is possible because we consider (; ,#u in the following and ¢ shifts x to 0
anyways, the assumption x = 0 simply translates into the expression (, o 4/ instead of
Cow et We write Cp upt == (0. 44. We get S =R""! x {0} with an orthogonal coordinate
transformation in the integrals where S appears.

Lemma 5.4.3.
Let (uz)es>o as in Definition 5.2.1, assume (5.2.8)-(5.2.12) and (5.3.14). Then there exist
sequences (pj)jen and (€5)jen with 0 < p; < po for all j € N such that as j — oo we have

ej—0, pj—0, (5.4.1)
S0 S (5.4.2)
pi ottt T
PY o ptte; S BHTILS in C2(Big(0)), (5.4.3)
and  pt"Cpy 492, 2 Dp(0)cofH TILS in CO(Big(0)),  (5.4.4)
and for all j € N kg, (B,(0)) < k(B2,(0)) + p;-‘_Q for  pj < p < po. (5.4.5)
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Proof. Let (p;)jen be a decreasing sequence with p; < pg and p; — 0 as j — co. By the

definition of the approximate tangent space we have
p}fngpﬁ#u 2 cofHIL S in C%(By6(0)).
Since 0 is a pu-Lebesgue point of D, 9 we get by Lemma 8.2.7 that

p; "oy 10 = Py "oy 4 Dy —= Dy (0)cofH" LS in CP(Bus(0))'.

Using that the weak*-topology on bounded subsets of C?(Bi6(0))’ is metrizable, (5.2.8),

(5.3.14), and

p}_nCﬂjv#ME = p}_nCﬂja# (Mﬁj —p)+ pjl'_ncpﬂ'v#'u
P;_ngpj,#ﬁa = P}_ngpp#(ﬁa —-9)+ p}_ncf’jv#ﬂ

we can choose a subsequence () en dependent on (p;);en such that (5.4.1)-(5.4.4) hold.

Finally by possibly lowering the value of ¢, we obtain for all I € Ny with 27 py >
bie; (Ba-15(0)) < (Ba-15(0)) + pf =% < K(By-1414(0)) + pff 2.
We deduce for any p; < p < pg and | € Ny such that p € (271 pg, 27 po)

ie; (Bp(0)) < ke, (By15,(0)) < £(By1,,(0) + pj % < K(Bap, (0)) + 2.

Pj

Thus (5.4.5) holds as well. O
Proposition 5.4.4 (Properties of the rescaled functions and measures).
Let (uc)eso0 as in Definition 5.2.1, assume (5.2.8)-(5.2.12) and (5.3.14). We set &; := 6—;
and define for x € B (0)
Pj
aéj(x) = uéj(pjx)a aéj(x) = ﬂfj(pjx)7 ﬁéj(x) = ij€j(pjx)7
Viig, (z)
Uz = Vg, 0, d U (x) = Ise.
= () Ve, @)] for Vi, (z) # and Uz (z):=e1 else
Moreover we set
. 1
e, = <2ﬂwae~j i ~W(agj)) £L B (0), (5.4.6)
Ej Pj
o (& ~~2_lW~~ L' B 4
&, = 5 |V, |” — =W (i) r0 (0), (5.4.7)
€4 Pj
1 -
dz, = —HZ L"L B (0), (5.4.8)
g g
Uz, = &| Vg, || Vi, | £" L B (0), (5.4.9)
J
1 - -
/%gj = <6~|Hg].’2—|—€~j|Vng|2>£n|_Bﬁo(O), (5410)
j j
and Vi, = fie, @ U € Vn_l(Bm(O)). (5.4.11)
J pj
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Then it holds

§& —0 as j— oo, (5.4.12)
1 -

—&; A\l + gW’(a{;j) =H: in B% (0), (5.4.13)

J J
—&3Adg, + Gz, = Tig; in B (0), (5.4.14)

Pj

and with j — oo we have

P}, e, = fie; ~— o H"TILS, (5.4.15)
P 0e, = Ve, 2 oD B(0)H LS, (5.4.16)
dz; 250, and Re 50 (5.4.17)

in C9(B16(0)). Furthermore there exist V € V,,_1(B15(0)) such that up to a subsequence
we have as j — o0

Ve, 5V in Vi1(Bis(0)), (5.4.18)
Finally,
1
/ (&)1 Ve, " + = (@, — @,)?) d2" < C(Q, A). (5.4.19)
Bs(0) €5

Proof. (5.4.12) follows directly from (5.4.1). For (5.4.13) we calculate
C A+ W) = — S 2w (o) 4 P ) = piH. (p:) = -
&jAtg; + —Witg,) = pd ue; (Pg) + 2 Wiue (7)) = piHe,(pyr) = He,.
J j j

We get (5.4.14) from
_E?Aﬂéj + ﬂ5]’ = _E?Aﬂq (:0]") +U€j (pj') = Ug; (Pj') = a§j~

(5.4.15) follows from (5.4.3) and the following calculation. Let jo € N such that 16 < Z—?
for all j > jo and let n € C?(B16(0)), then we have

Pgl‘fn@l, Cpﬁ#ﬂﬁ)CQ(Bw(O))' = p;in«:;n’ M€j>Cg(Q)l - p}fn /77 ° ij dMaj
Q
n [T [Ef 2 1
p]l n(p—]) (EJ‘VUSJ. (x)\ + ij(usj (.1‘))) dz

—

Biep, (0)

[ 2 1
= [ o@(F 1T, )+ W (e, (psa)
BlG(O) /
_ gilpiy )Py L |
= [ 1@ (T s+ W e py2)
316(0)

€; ~ 2 1 ~ n ~

= U(53|VU5]~| +€TjW(uéj)> dL™ = (n, fiz;) co(By(0)) -
316(0)
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For (5.4.16) we use (5.4.4) and calculate for any n € C%(Bi6(0))

p}_n (n, ijv#ﬁa»CQ(BlG(O))’ = p}_n@j;n’ 195]->CQ(Q)’ B p;_n / e ij dﬁaj

Q

I _
= / p} n(;)gj]Vugj(x)HVuej(x)]d:L‘
Bi6p; (0) ’
= [ (@)= T 32|V, (00| da
316(0)

s
= / n(w)pi,!ijusj(pjw)lijVUsj(pijdfv
316(0) !
N / néj| Ve, || Vie,| L™ = (1,0z,) co(mio(0))-
Bl6(0)

For the proof of (5.4.17) we choose j; € N such that 32 < Z—‘; for all 5 > j;1. Then we have
" pj
e Bio0) = [ (Lot (o) + LIV (o)) e
Bi6(0)

=pi —|H.|" +¢&;|VH,[7) dC™
A o G ) )

- P?_ Ke; (Bl6pj (0)) < p?_n(K(B32Pj (O) + p;‘l_2)-

In the last step comes from (5.4.5). Since x({0}) = 0, n < 3, and Gz, < g, the claim
follows.
(5.4.18) follows from

IV2,11(B15(0)) = fiz; (Bi5(0)) < € for all j € N
because (fi;)jen is weakly*-convergent in C?(Bi6(0))" and Theorem 2.2.2.
At last we prove (5.4.19). We will reverse the previous coordinate transformation to get
back from g, to u., and apply the estimates from Lemma 5.3.3. We choose j > jo and a

test function 1 € C}(Bie(0)) such that 0 <7 <1 and = 1 on Bg(0). We calculate with
the coordinate transformation p;x +— x and (5.3.8)

1
/ (5j’Vngj |2 + gj(ﬂgj - aéﬂ‘)g) dc”

Bs(0)

1
< / Uk (éj|Vﬁ5~j|2 + g(ﬂgj - ﬁéj)2) acr
J

316(0)
n — 1 —
= [ AR V@ + e )~ (@)2) o
Bigy, (0) !
2. & 2 2
< / 10,0 —)6J|Vu5](x)| —|—p§‘V (p—J)‘ (ue; — Te) )dx
Bigy, (0)



We apply (5.3.10) from Corollary 5.3.4 and transform = — p;x back and use (5.4.2). We
get

1
/ (& Vi, |* + = (e, itz,)?) AL

J
Bg(0)
L-ny 2 532' 1 _\2
< 200} )dﬂe SO [ (e, —w)*aL”
Pj ; j
Bigp; (0) J By, (0)

< 20m° diiz; +

B16(0

C(n,Q A, po) — 20(n*, cofH" ™ L S) (16 (0)

TL

Since this is convergent as j — oo there exists C'(Q2, A) > 0 such that (5.4.19) holds. O

In order to prove Theorem 5.4.1 it is therefore sufficient to prove the following statement
and apply it with Q, (u,)jen, (U, )jen replaced with Bg(0), (i, ) jen, (e, ) jen (the rescaled
functions and measures also satisfy the assumptions of Theorem 5.4.1).

Proposition 5.4.5.
Assume (ug)eso as in Theorem 5.4.1 with B4(0) € 2, modified phase fields (U.)e>o that
satisfy (5.3.1) and

1 _
/ (gyvmy? + (@ - ue)?) dLm <A (5.4.20)
Q

for some A > 0. Consider Radon measures jic, ke, Vs € CO(Q) satisfying (5.2.1)-(5.2.5)
and (5.3.3), varifolds V. € C2(2 x G(n.n — 1)) with (5.2.6), a subsequence € — 0, finite
Radon measures i, k,9, and a limit varifold V such that (5.2.8)-(5.2.11) and (5.3.14) hold
on By(0). In addition assume that

p=coH"'LS for some HcN, ScGn,n—1), and a=0=ks.
Then we have
9= —p.
o

We prepare the proof of Proposition 5.4.5 with the following generalization of Proposition
5.5 in [RS06].

Proposition 5.4.6.

For all 7,6 € (0,1) and A > 0 there exist w = w(d,7,A) > 0 and L = L(d,7) € (1,00)
such that the following holds: Let the assumptions from Proposition 5.4.5 be satisfied with
Q = Byr:(0) and further assume

lu-(0)] <1 -1, (5.4.21)
|€2|(Bare(0)) +/ e|Vue*\/1 — |ven|? dL™ < w(4Le)" ™, (5.4.22)
By4r:(0)
n—1
1
/ (a > 0w + =(Jue| — 1)1) dL™ < w(4Le)" 1, (5.4.23)
Byre =1 €

106



with ve p == ey - Ve, and

pre(Bare(0)) < A(4Le)™ 1, (5.4.24)
ke(Byre(0)) < A(4Le)" 3, (5.4.25)
Then we also have, writing (0,t) € R"™1 x R
ue(0,8)] > 1 — % forall Le < |t| < 3Le, (5.4.26)
1
Wﬂg(BLE(O)) — Cp < (5, (5427)
‘/ fW (ue(0,)) dt — 02—0 <4, (5.4.28)
Le
‘/ e|Vue||Vu.| — — )(0 t)dt| < 6. (5.4.29)

Here wyy, is defined by L™(B1(0)) = wy, for m € N.

Proof. We follow the proof of Proposition 5.5 from [RS06]. The existence of w, L such that
the statements (5.4.26)-(5.4.28) hold have already been proved there. In the following be
possibly lower the value of w and increase the value of L, which maintains (5.4.26)-(5.4.28).

We prove in the following that we can assume € = 1 without loss of generality. In fact
since ¢ is fixed, by rescaling z — ex and defining u(z) = u.(ex) for z € Br(0), we can
drop the index. For the claims (5.4.26)-(5.4.28) this has already been done in [RS06], we
prove it for the remaining expression in (5.4.29)

Le
L L
/EWuEHVuEI(O,t)dt:/ e\VugHVual(O,at)edt:/ V[V (0, £) dt
L —L
—Le

with —Au+u=u.
We recall that by Lemma 4.1.2 and the definitions of ¢y, o in Assumptions 4.1.1 we have

e |go|] <1and ¢} >0,
0

o lim gqo(z) = %1,

z—+o0

1
. /QIQE)\Qdﬁl:/W(qO) act =
C
/ gbligh] dC! =

For a given a € R we define
@a(t) = qo(t+a), u(t):=qo(t+a) for teR, and Qu(2):=qa(rn) for zeR,
and claim that we can choose L(7,d) sufficiently large such that: If

lgo(a)| <1—7, —qo+qy=¢qa with [g] <1
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then

1Qu(0,8)] > 1 — g for all L < |t| < 3L, (5.4.30)
1/ <1WQ 2wQ )) arm — ol < 2 (5.4.31)
wp—1 L1 BL(0) 2 “ “ 0 =79 o
‘/ W (Qa(0,1)) dt—— g‘sg, (5.4.32)
_ o
\qa||q| 0,t) dt— ~1=3 (5.4.33)

The first three properties are guaranteed by [RS06]. For the fourth identity we use
lgo(a)] < 1 — 7 and thus |a| < g5 *(1 — 7). Furthermore we have § = Agq, = g, because
the difference g — g, is a bounded solution to the homogeneous equation —w” +w =0
and thus vanishes. We conclude

L 1=t L 1=t 1 La / 1 €0
/ \anCI!(Ovt)dh/ CAIAKYs =/ |90/ [70] L™ — —.
—L —L —L—a o

Since we have a uniform bound on |a| only dependent on 7 we can choose L(7,6) > 1
independent from a such that (5.4.33) holds.

Since H is bounded in H'(B4(0)) by (5.4.25) we conclude by inner elliptic regularity
theory similar as in [RS06]

HUHH?’(BTL( ) < C(AL). (5.4.34)

We proceed by a contradiction argument, adapting [RS06]. Assume the claim is wrong
then there exists a sequence (ug)reny With wy — 0 as k — oo and for any k& € N there
exist functions uy,uy, Hy satisfying the assumptions of Proposition 5.4.5 with ¢ = 1,
2 = By1,(0), and satisfying the properties (5.4.21)-(5.4.25) but violating (5.4.29).

By inner elliptic regularity theory, see Theorem 2 in §6.3 in [Eval0], there exists C' > 0
such that

]| 5 By (0)) < C(HHHL%B%(O)) + ||UHH3(B%(O)))'
Thus we get
I 25 o) < OO L) (ol gy 00 + [Tl 225y ) < CALD) (5:4:35)

Because of (5.4.34) and (5.4.35) we can find v € H3(B3.(0)), m € H?(Bs1(0)), and
H € HY(Bj31,(0)) such that we have up to a subsequence as k — 0o

up —u in H3(Bzr(0)), Up — 7 in  H°(Byz(0)), (5.4.36)
and Hp - H in H'(Bsg(0)). (5.4.37)

By the compact Sobolev embedding H3(Bs.(0)) < C*(BsL(0)) as n < 3 hence

up — u and Vugp — Vu uniformly in  Bsg(0). (5.4.38)
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Similar we deduce from (5.4.35), (5.4.36)
T, — T in  C?(Bsz(0)). (5.4.39)
As in the proof of Proposition 5.5 in [RS06], letting x = (y,t) € R"~! x R we get
u(y,t) = up(t) forall (y,t) € Bsp(0),

where ug = £¢q, with ¢y determined by «(0). Since a reflection (y, z,) — (y, —x,) does
neither affect the assumptions nor the conclusions of the proposition we can assume
ug = +q¢, without loss of generality.

Next we obtain from (5.4.23) and wy — 0 that u(y,t) = up(t) and |up| < 1 for a suitable

function g : R — R. Now we show with (5.4.33) that for large & (5.4.29) holds, in fact
we have

‘/—LL(WU”‘HV“’“’ - iW(Uk))(O,t) dt

o

L
g/ Ve[V — |Vl [Vl (0,8) dc! + |w\|vu|0t yac! —
-L

- /L W (g (0,1)) ALY
-L

The last two terms are estimated by (5.4.32) and (5.4.33). For the first integral we use
(5.4.38) and (5.4.39) to choose ko € N large enough such that for all k¥ > kg we have

_ 1)
e = vl @@y + 1% — Tl @@) < §gE

with R :== 21615 (HukHCl(BL el ;0 ))). The supremum is finite because converging

sequences are bounded. Thus we get

‘/—LLOV“‘C”VM - iW(uk)>(0,t) dt

L _ 7 Y L 0 2 06
< | Vul[Vae = val(0,0) det + [ |Va||Vuy = Vul(0,6) LT+ 5+ = o2
L _I
20 4] 25
< 2RL|ux — 1l o g5 + 2Rk — ullea gy + 5 S 2RL gpr + 5 =0
Thus for k > ko (5.4.29) holds, a contradiction to our assumption. O

Proof of Proposition 5.4.5. We assume that x = 0 is a good point in the sense of Lemma
5.4.2 and S = R"! x {0}. Let IT : R® — S be the orthogonal projection. We use the
representation = (y,t) € R""! x R and denote by V' = V, the horizontal gradient. By
Theorem 5.2.3 the limit of V of V. is given by V = ¢pfH" 1 _ S ® §5. Convergence as
varifolds yields in particular

lim e|Vu, 2,/1—V2ndE”=O
e—0 B4(0) | ‘ &
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Moreover by (5.4.20) we can apply Corollary 5.3.4 and conclude from (5.3.11) and varifold
convergence

/ e| V| der < / e|V'ue? dL™ 4+ £2C(A) (5.4.40)
BB(O) B4(0
< / (1- |u57n\2)5|Vug|2 dL™ + £2C(A) (5.4.41)
B4(0)
§/ \/1—|1/57n|25|Vu5|2d£”+520(A) —0 as e¢—0.
B4(0)
(5.4.42)

Furthermore by (5.3.16) for k = 1 we get
1
/ ~(Ju] — 1)} dL" < Ce(2ac(Q) +1) — 0. (5.4.43)
Bs(0) ©

By the proof of Proposition 5.2 in [RS06, page 711] for any ¢ > 0 there exist wy, €9, 70 > 0,
all depending on § such that for any 0 < w < wp, any 0 < 7 < 19 and any 0 < € < g¢ the
following two properties hold:

(1)

/{| |>1—7}NB4(0) %W’(us)z df" <6 and e ({‘Ua‘ >1-— T} N B4(0)) < 34.
Ug |2 1—T 4

(5.4.44)
(2) For the set

Ac={2eBi(0) | |uclw)|<1-7,
Ve < p <31 [&l(Bo(@) + [3, ) e|Vue?\ /1 =12, <wp"
and  a.(B,(z)) < wp%}

we have

e (BL(0)\ A:) < 45, (5.4.45)

We now define a subset of A. with additional “good properties”,

1
AL=A.n{z e Bi(0) | Vp € [¢,3] :/ (elv7a]* + ~(fa| - 1)3) dL” < wp™!

p(m)
and  Ke(By(x)) < wp%}.

We show that the complement in A~ is small. For all x € A, \ AL there exists p, € (0, 1)

2
such that By, (z) € B1(0). It follows

ANAC | B
TEAN\AL

By Besicovitch’s covering Theorem there exist N € N only dependent on n and sets
Dy, ...,Dy C Bi(0) such that for fixed k € {1,..., N} the collections

{sz(x) |z € Dk}
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are disjoint and

Aa\A’EQ

HCZ

€Dy,
Since for all k € {1,..., N} the union U,cp, By, (z) C B1(0) is disjoint it follows that
i X=X £(Br@) = £ B®)) < £(Bu(0) = < ox.
€Dy €Dy, z€Dy,
The sum is convergent and thus Dy has to be at most countable. We conclude
N e —
ANALC | | Bo, (@) (5.4.46)
k=1 jeN
Since zy, ; € A: \ AL we have for all k, j that there exists € < p; ; < 3 such that

(S‘V' | + (|7 — 1)2 ) dc" > wngl

Bpk,j(lk,j)

or

1

K/a(BPk,j (Tk,5)) > w/)li,j‘

Since zy, ; € Ac we can use o (B,(z,;)) < wp% for all e < p < 3 and (5.4.44). We deduce
from Proposition 4.7 in [RS06] that

Ma(Bpk,j (mk,j)) < CPZ,;l'

We then obtain by (5.4.46)

N
pe(A\NAD) <CY Y ot
k=1j€eN
1 n
<ZZ/ AR |u5|—1)2+)d[,
k=1jeNY By, ; (@ ;

N
1 w2171 (B4 (0))2n—D-1 Z Z ke(Bpy, ; (Tk5))

k=1 jeN

: = ( v | + (el = 1)3 ) dL" + WP Nk (B4(0)2D < 5

W JB4(0)
(5.4.47)

for e sufficiently small, where we have used n € {2,3}, (5.4.42), (5.4.43), and k. 5 0.

By the definition of A, for all z € AL we can apply Proposition 5.4 from [RS06] with
N =1 and deduce (5.4.24) with (with 0 replaced by ). Together with the definition of AL
we obtain that we can apply Proposition 5.4.6 for all z € AL. By page 713 in [RS06] this
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yields that for all y € SN B1(0) there exist N> K = K(y) <6 and t1(y),...,tx(y) € R
with

K
A-NTH(y) € {y} x J(ti(y) — Le, ti(y) + Le).

We now fix an arbitrary n € C1(B;(0)) and deduce from &, 50, (5.4.45), and (5.4.48)

1
lim sup / ndd. — / 1 dpe
e—0 B1(0) 0 JB1(0)
. 2 1 n
< hr;lj(l)lp ) ndd. — s " TIEW(’%) dL"| + C(SHUHCO(m)
(5.4.48)
for some C' > (0. Furthermore we obtain
2 1
//E ndde — s /A/E TZEW(UE) dcr
K(y) ( )+L€ 2
= Z / n(y,t) (€|Vu5||Vﬂg| — —W(ug))(y,t) dt dy
H(A’g) 1=1 Jti(y)—Le o
+L€ )
/ (elV el [V — W (ue) ) (9. 1) dt dy
Ay = (y)—Le o€

sup n(y,t) = n(y, )| (V=(B1(0) + pe(B1(0))).
(y» ‘)t(y»T)ELBl(O)
—s|<Le

For the first term we can apply (5.4.29). For the second term we use that n € C(B;(0))

is uniformly continuous, thus for ¢ sufficiently small we have for all s,¢ with |t — s| < Le
that |n(y,t) —n(y,s)| < . We conclude

/ ndv. —2/ nlW(ug) ac”
! g Al 9

< lInllcos, (o)) /H(A,)95dy+05(A+A).

Hence we conclude with (5.4.48)

1
/ ndd. — — / n dpe
B1(0) 9 JB1(0)

Since § > 0 and n € C1(B;(0)) were arbitrary we deduce

< O(A, A, n,0)0.

lim sup
e—0

1 1
¥ = lim 9, —hm — e = — L. O
o

e—0 e—0 0
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5.5 Main proof of the liminf-estimate

With the results from the previous section we can give a rigorous proof of Theorem 5.2.5.
We start by proving a lemma which allows us to neglect some error terms as € — 0.

Lemma 5.5.1 (Error estimates).
Let (uc)eso be as in Definition 5.2.1 and assume (5.2.12). Let n € C%(;R™) and
Y € C2(2). Then the following identities hold

lim [ H.n V(—&’A+1d)a. dL™ = lim [ V@, -n(—e?A +1d)H, dL™ (i)
0 e—0 0

e—0
lim sup/ e[V, - n](—*A +1d) [V, - 5] dL™ = lim sup/ e[V, - n][Vue - n] AL (i7)
e—0 [9) e—0 [9)
liminf/ (1‘HE¢|2 + 6’V(Hew)‘2> dct = liminf/ 1|2 dke. (131)
e—0 Q g e—0 Q

Proof. For (i) we have
/ H.n-V(—*A +1d)adL" = / Vi, - (—*A + 1d)[nH.] dL™
Q Q
- / Vi, - [ — 2H. Ay — 262DV H. + n(—2A + Id)HE} acr.
Q

The claim is that the first and second term in [ -] vanish in the integral as ¢ — 0, so we
estimate

/ e?Va,. - (H. - An+2DnVH,.) dC"
Q

2 _1 1 _ n
< [nllcze £ 2|H.|e2|Va.| dL
supp(n
ollenge [ V| R g

supp(n)

1
2

1 n 2
< ||77||c2(9)€2l/ ~|H.|*dL / e| V.| dﬁ”]
Q¢ supp(n)

2
+2H77H01(Q)€l/Q€\VH5\2dﬁ"/QE|Vu6\2d£”1

|—=

By (5.2.12) and (5.3.10) we get for 0 < e < 1

| / 2V, - (H. - An+2DnVH,) dL"| < C(A,n)e.
Q

For (ii) we have
/ e[V, - n](—*A +1d)[Va. - 9] dL™
Q
= / e[V, - ] [— 2V, - An —2e°Du, : Dy +n-V(—2A + Id)ﬂs] acr
Q
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Because of (5.3.1) the claim is that the first and second term in [ -] vanish in the integral
as € — 0. We estimate

/ 3 (V. - n) (]_72ﬂE : Dn + Vu, - An) dL"
Q

1, 3, 9 n
< 2nllery oo / 3 |va.|e3 | D27, | de
supp(n)

2
el [ el vafac
supp(n)
1
2
— |2 n 3 2 |2 n
S2H77||C’1(Q)||77”CO(Q)5[/ e|Va.|” dL / 3| D% |" AL
supp(n) supp(7)

+ 2Anll ez Il oo
By (5.3.12) we get

/ e3(Va. - 1) (Va. - An + 2D*a. : Dn) dL" < C(n, Ae.
Q

For (iii) we calculate
1 2 2 n 1 2 2 n
/Q<€]H€1M 4 e[ V(H)| )dc —/Q(E\ng\ © e|H.VY + VA )dc
1
- /Q <€|HE¢|2 + e[| H-V[* + 2H 4V H, - Vip + |¢VHE|2D dcn.

Because of (5.2.4) the claim is that the first and second term in | -] vanish in the integral
as € = 0. We estimate for 0 <e <1

1
/€<|H3V1M2 + 2|H€Vzp]\/E|VH5¢]) ac”
Q Ve
1
< lelél(mez/g6|H5]2d/£”—|—/9]Hevw|2d£"+/ﬂz-:2WHew|2d£”
1 2 1 2 1
< \|¢||?;1(Q)A52+||1/1||201(Q)5/Q€|He| dc +|1/)|?;0(Q)5/95|VH5| dc
< 3A[|1 3 e O

Next we estimate the first variation of the varifold V.

Proposition 5.5.2 (Estimate for first variation).
Let (ug)eso as in Definition 5.2.1 and assume (5.2.12). Let n € C?(S;R™) and ¢ € C2(9)
with 0 <1 <1 and ¢» =1 on supp(n). Then we have

lim [ H.n-Vu. dL" (5.5.1)
Q

e—0

<

1 2
limsup/ n|e| V.|| Vue| dC™ liminf/ |12 [|H€|2 + 5|VH€|2} dc”
e=0 Ja e=0 Jq €
Before proving this proposition we improve the regularity of u. without loss of generality.
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Lemma 5.5.3 (Regularity of w.).
Let the assumptions from Proposition 5.5.2 hold. For the proof of (5.5.1) we can assume
ue € C3(Q) without loss of generality.

Proof. Since C*(Q) is dense in H3(Q), u. € H3(Q), and H3(2) — C1(Q) we can find a
sequence (¢ )ken in C°°(2) such that

o — uc as k—oo in H*(Q) andin CY(Q).

From the definition of the H3(Q)-norm we get A¢p — Au. and VA¢, — VAu, in
L?(2). Since ¢ — ue in C1(Q) and W is a polynomial we also get W' (¢r) — W' (u.)
and W (¢x) Ve, — W (ue)Vue in L2(£2). This implies

WEE(g) — WEE(4)) as k= oo
We choose k(¢) € N such that
IWES (1) = WeH (ue)] < e

This implies that in the third integral in (5.5.1) we can replace u. with ¢(.). This also
works for the first integral because V¢ — Vu. in L%(Q) and we have from the properties
above Hy — H. as k — oo in L?(Q) with Hy = —eAg¢y + %W’(gbk).

For the middle integral we have to consider ¢;, := A.¢y. Since ¢, — u. in L?(Q2) and
A. is a bounded linear operator on L?(Q) we also get ¢, — @, in L?(Q). Thus we can
replace u. with ¢y in all three integrals without changing the value of the limits. It
follows that we can assume u. € C3() (even C™) without loss of generality for the proof
of Proposition 5.5.2. O

Proof of Proposition 5.5.2.
Let €, 7,4 be as in the assumptions. Then we have by definition of u.

lim [ H.n-VuedL" =lim | H.p-V(—e*A +1d)u. L™
e—0 Q e—0 QO

The existence of the limit on the left-hand side is guaranteed by Lemma 5.2.4. In the

next step we want to shift the differential operator on H.. This is correct without any

error terms because of (i) from Lemma 5.5.1. We get with the specific choice of 9

lim [ Hen-VuedL" = lim [ V. -n(—e*A +1d)H. dL"
e—0 QO e—0 QO

= lim/ Vi, - n(—e*A + 1d)y H. dL".
e—=0 Jo

We want to apply a Cauchy-Schwarz estimate with the inner product induced by the

differential operator in the middle of the integral. However this is only a scalar product

on function spaces whose functions allow for an a partial integration. This is satisfied

here because the test functions make all of the involved functions vanish on the boundary.

Thus we get
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lim / Vi, - n(—e*A + 1d)[H.4p) dL™
e—0 Q

1
2

< lim inf [/ e[V, - n] (—e2A 4 1d) [V, -] dﬁ"/ éHgl/J(—gA +1d)[Hcep] AL™
Q Q

e—0

1 @

D=

[hm sup I llmlan(Q)} (5.5.2)

e—0

To estimate ItV we use (79) from Lemma 5.5.1 and get

limsup I = lim sup/ e[Vue - 9] [Vae - n] dL™ = lim sup/ n®n:eVi, @ Vu, dL"
Q Q

e—0 e—0 e—0

< limsup/ |77]26]VE€HVUE| dc”.
e—0 Q
For 15(2) we do a partial integration and use (7i7) from Lemma 5.5.1

hmlnfl( ) = hmlglf/ <i|HE¢|2 +5|V(H57/))|2) dc”

e—0
.. 2 1 2 2 n
:hmlnf/ 4] <|Hg| + ¢|VH,| > dc". O
e—0 Q E
This variational estimate is the central notion for the proof of Theorem 5.2.5.

Proof of Theorem 5.2.5.
Let n € C2(, pu; R") with 7l 2 (,psmmy < 1 and let ¢ € C?(Q) with0 <y <landy =1
on supp(n). From Lemma 5.2.4 and Proposition 5.5.2 we have

/ﬁv'ndu: lim [ Hen-Vue dC" <
Q Q

e—0

- [ [ ks [ W"?d”r

Now we need the result ¥ = %,u from Theorem 5.4.1. Together with |[n]|z2(q rn) < 1 we
get

hmsup/ n|* do). hmmf/ ]2 dHE]

/ Hy -ndp < lH(Q)

9] g

We conclude by taking the supremum over all n € C?(Q;R") with 71l 22 (9,4R") < 1.
Since V is (n — 1)-rectifiable C}(Q; R™) is dense in L?(Q, u; R™) by Lemma 7.4. in [Ilm94].
C2(Q;R") is dense in C1(€2;R™) and thus the supremum yields the dual representation of
the L2(Q, u; R™)-norm. Hence we get

/ a’ﬁv|2du < k() and thus [a|ﬁv|2,u} (Q) < k(). O
Q
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6 Convergence towards mean cur-
vature flow of solutions of the
Karali-Katsoulakis equation

In this chapter we prove the existence of weak solutions to the Karali-Katsoulakis equation
2 1 !
—eOhue = (=e?A+1d) (- eAu. + =W (u2)) (6.0.1)
€

for € > 0 and discuss convergence results as € — 0. This equation to our knowledge was
first considered by Karali and Katsoulakis in their paper [KK07] from 2007. The authors
start with a classical solution to mean curvature flow and prove that there exist so-
lutions to (6.0.1) that converge towards the given classical solution of mean curvature flow.

Since classical solutions of the mean curvature flow can cease to exist at singularities such
as topology changes, they can not be long time solutions in general. Here the concept of
weak solutions is advantageous as they allow for singularities.

As explained in the introduction of Chapter 4, the PDE (6.0.1) has gradient flow structure
as the right-hand side is the gradient of the diffuse perimeter 2.4.1 with respect to the
metric induced by the solution operator A, from Lemma 3.1.10. Thus P-(uc(t,-)) will
decrease in time if u. solves (6.0.1).

6.1 Existence of solutions for the diffuse equation

We will apply an approximation method based on contributions from De Giorgi and put
together by Almgren-Taylor-Wang in their paper [ATW93] in 1993. It has also been
used in [LS95] and [JKO98]. Recently it was applied in [KL21] where it was proven
that solutions of the Allen-Cahn equation converge towards a De Giorgi varifold type
solutions for mean curvature flow; see Definition 2.5.3. The general approach to the
proof of existence is classical. We define functions that solve a discretized version of
the equation, similar to the Euler method. Then we use a priori estimates to generate
compactness in a suitable way, combined with an Aubin-Lions-Dubinskii embedding. The
last step is to prove that limit points of the constructed sequence solve the equation. The
general approach is well-known, and thouroughly described in [Sch13] for the example of
the heat-equation.

Notations 6.1.1.
We use the definitions and notations from section 5.1 regarding the double-well potential
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W, the profiles qo,qy, and the constants co,o. Let T >0, ¢ >0, n € N, Q CR" open and
bounded with C3-boundary and outer unit normal field v. We write Qp == (0,T) x Q. Let
upe € HY(Q) N LA(Q).

Writing H, = —eAu. + 1W’(u.) we consider

—eOue = (—e?A+1d)H,. in Qr, (6.1.1)
ue(0,-) = up e in Q, (6.1.2)
Oyue =0 on (0,7) x 09, (6.1.3)
O,H. =0 on (0,7) x 0Q. (6.1.4)

To define all occuring terms in the weak formulation we demand the following. We call
us € L*(0,T; HY(Q)NHY0,T; HL(Q))NL3(0,T; L3(2)) a weak solution to (6.1.1)-(6.1.4)
if for all ¢ € C2°([0,T) x Q) we have

/Qeqb(O,:n)AEuo,E(a:) dx—I—/OT/QsAEug&ggde” dct (6.1.5)
_/T/ (EVug-V¢+1W'(u€)¢> acr dct.
0o Ja €

Here A, = (—e2A +1d)~! : HY(Q) — H!() is the solution operator introduced in
Lemma 3.1.10. The Neumann boundary condition for H, is encoded in H, = —cA.0u,
and Definition 3.1.10 of A.. Recall that bv (3.1.14) we have for all 1, ¢ € H(Q)’

(Ao, )iy = (A, @) oy

The following Theorem is the main result of this section. It provides the first long-term
existence result for weak solutions of (6.1.1)-(6.1.4).

Theorem 6.1.2 (Existence and regularity of solutions).
There exists a weak solution u. to (6.1.1)-(6.1.4) with the additional regularity

ue € L2(0,T; H*()) N H'(0,T; H' ()") N C°([0,T); L*(%2))
NL>®(0,T; HY () N L>=(0,T; LY(Q)) N L°(0, T; L8 ()
and

. _ : 2
%gr(l)ue(t, ) =upes in L(Q).

Additionally, if n <3
e ue € L2(0,T5 H3(©)) N CO(0, T); HY(Q)).
o I Pe(uet, ) = Pe(uo,e).

e The Cahn-Hilliard energy of the solution as a function in time

(0,T) >t — Pe(uc(t, ) = / (%}Vug(t, I+ %W(ue(t, ))) de”

Q

lies in W1L(0,T).
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e Fora.e. t € (0,T) we have the energy-dissipation
t
1
P (uelt,-)) +/ /Q (ngEF + | VH.[*) dL™ dL" = P.(u- ). (6.1.6)
0

Since € > 0 is fixed in this section we will not always denote if objects are dependent on &.

The proof of Theorem 6.1.2 consists of several steps and is done throughout the remainder
of this section. First we consider a time discretization and prove that solutions to the
discretized equation exist. Starting with u(®) = ug. € H'(Q) N L*(Q) from (6.1.2) we
obtain time steps iteratively as described in the following lemma.

Lemma 6.1.3 (Existence of minimizers for discretized energy).
Given parameters €,h > 0, and a function u*) € HY(Q) for k € Ny there exists a
minimizer u*tY) € HY(Q) N L4Y(Q) of £ : HY(Q) — [0, 0],

E(u) = /Q (%‘Vuﬁ + éW(u)) dL" + % /Q(u — UM A (u — Py L. (6.1.7)

w1 s a weak solution to
(k+1) _ , (k) 1
—eA. (uhu> = —eAuF) L W (D) i Q (6.1.8)
€
8,,u(k+1) =0 on ON.
Proof. We use the direct method from the calculus of variations. Since all of the terms are
non-negative the infimum exists in R. Let (u;)jeny be a minimizing sequence. Since the
sequence (&(u;))jen is converging there exists A > 0 such that sup; £(u;) < A. Since e > 0
is fixed we immediately get that (u;);en is bounded in H(Q). Since W (t) = (1 — ¢?)?
there exists Ry > 1 such that 3t* < W(¢) for all |¢| > Ro. This yields

/|uj|4 dE”:/ | d£”+/ Ve (6.1.9)
Q {luj|<Ro} {Ju;|>Ro}

< R3L™(Q) + 2/ W (u;) dL™ < RAL™(Q) + 2e€(u;) < C(Q, A).
Q

Thus (u;)jen is bounded in L*(2). Both H'(Q) and L*() are reflexive thus we can find
limit functions u, € H'(Q), @, € L*(2) such that up to a subsequence we have as j — 0o

uj 5 ue in HY(Q) and w; % d. in LYQ).

Both of these convergences imply weak convergence in L2(£2) so by uniqueness of weak
limits we have u, = i, € H*(Q) N L*(Q2). The weak lower semi-continuity of the norms
(both H! and L?) imply

P-(uy) < liminf P (uj). (6.1.10)

J—00

To prove that u, is a minimizer of £ we want to replace P, with £ in (6.1.10). Therefore
we need an analogous estimate for the second integral in (6.1.7). We get this by using
that A. : L2(2) — L%(f) is a compact operator, thus it turns weak convergence into
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strong convergence. Now we have the L?(§2)-product of the weakly convergent sequence
(uj —u®) ey (K is fixed) with the strongly convergent sequence (A (u; — u®)) ey which
gives convergence towards the product of the limits. These arguments combined result in
inf €< E&(uy) <liminf&(u;) = inf E.
H1(Q) j—00 H1(Q)
This implies that u, is a minimizer of £ and we define u**t1) == u, € H(Q) N L*(Q).

Now that we have a minimizer we consider the Euler-Lagrange equation. For any
n € HY(Q) we have

0 = 95 (uF+D) + 577)(5_0

1
= / (5Vu(k’+1) -V + EW’(u(kH))n) dL™ + 2/ nA () —u®yder. (6.1.11)
Q Q

For the last term we used that A, is self-adjoint in L2(Q). It follows that u**1 is a weak
solution to (6.1.8). O

We define H®) = —Au®) 4 %W’(u("‘)) € HY(Q)' for k € Ny. By (6.1.8) and the properties
of A. it follows that H*®) has better regularity, in fact H*) € H*(Q). From (H®),cn
and (u(k)) reN We construct approximate solutions defined on Q7.

Definition 6.1.4.
Let h > 0 and t € [0,T) then there exists a unique k € Ny such that t € [hk,h(k + 1)).
We define uy, Hy, : Qr — R by

_ Ju®@), if hE+1)<T
n(t, @) = { 0 if hk+1)>T

H®(z), if hk+1)<T
0 if h(k+1)>T

} for te€hk,h(k+1))
and Hy(t,x) = { } for t e lhk,h(k+1)).

We also define the piecewise affine functions in time up, Hp : Qp — R

un(t,z) = (1 _ t_hhk>u(k)(:c) + #UWU(U@) for t€[hk,h(k+1)), (6.1.12)

Hi(t, ) = (1 _ t_hh’“> H®) (z) + #H@H)(@ for t€[hkh(k+1)). (6.1.13)

By definition of uy we get for every x € Q and t € (0,7 — h)
Opun(t, x) = Py (t,x) and O Hy(t,x) = OV H (L, x),
where 9} is the discrete partial derivative defined by

d(t+ h,z) — o(t, x)
h

Mo(t,x) =

for any real valued function ¢ and h # 0.

Note that Hj, = —e A0/, = —eAuy, + 1W'(uy,) by (6.1.8). Since u® HE®) ¢ HY(Q) for
all £ € N we have
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a, € L0, T; H(Q)), up € CO([0,T); HY(Q)),

Hy € LY0,T; H(Q)), and Hy, € C°([0,T]; H'(Q)).
Furthermore we obtain that

Oup,b =0=0,u, and O0,H,=0=0,H; on ON
because of 9,u*) =0 on 9N for all k € N and Hj, = —e A.0M7,.

For all n € H(Q) it follows from (6.1.11) and 9,7, = 0
1 —
/ edpup Acn dL™ = / <6VHh -V + fW'(Uh)n) dc" = / nHp dL". (6.1.14)
Q Q € Q

We want to extend this identity such that it also holds for n € H*(Q2)". To prove that let
n € H'(Q), we embed 7 into H'(Q)’ by defining

(6.1 = /Q ondL" for all € HY().

In this sense we have that H'(Q) is dense in H'(Q)’. Note that with this identification we
can not use Riesz’ representation Theorem for Hilbert spaces as we used the L?(Q)-scalar
product instead of the H'()-scalar product. Because of this density, Hj, € H'(2), and
A.: HY(Q) — HY(Q) we get that (6.1.14) can be extended to hold for n € H*(Q2), i.e.
we have for all n € H(Q)’

~(cAcdumm) = /Q Oy Aen AL" = (. (6.1.15)

1(9)/

Lemma 6.1.5 (Precompactness of (up)p~0)-
Assume (up)n>0, @) n>0, (Hp)n>o are the one-parameter families of functions constructed
above. Then there exist

u. € L°°(0,7; HY(Q)) n HY(0,T; HY(Q)") N L>=(0,T; L*(Q)), H. € L*(0,T; H*(Q))

such that we have up to a subsequence as h — 0

Up — Ue in L3(0,T; L3()) (6.1.16)
and Hj - H. in L*(0,T; H'()), (6.1.17)
1
with He = —eAu, + EW,(UE) in L*(0,T; HY()").

Proof. Since u*) is admissible for the minimizing problem for v**1) in (6.1.7) we get

£ / (WD — ) A (uE+) — 8y azn < p(u®),
Q

(k+1)
P-(u )+ o

With a telescope sum argument and u(9) = up,e we obtain for any j € N
J
P-(ubt) + % > / () — u) A (WD — W) dL" < Po(uge).  (6.1.18)
k=0
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This yields bounds independent from j
VuO P dcr < 2 d [ wEWydcr <
Q| U ’ > EPE(UO,E) an o (U ) < 8775(11/075).

By the same argument as in the proof of Lemma 6.1.3 we can find a bound for ||u() (P20
independent from j

[ paga) < C(Q e, €).
Thus (u"));en is uniformly bounded in H'(Q) < H'(Q)" and since A. is continuous
we conclude by (6.1.8) that (H));cy is uniformly bounded in H'(Q) as well and thus
Hhaﬁh S LOO(O,T, Hl(Q))

The uniform bounds for u() also yield bounds for @, independent from h,t. We obtain
that

[@h | oo (0,721 ()5 1UR | oo (0.1:20(0)) < C(R, T uo e, €). (6.1.19)

Thus Ty, is uniformly bounded in L°°(0, T; H(2)) and in L>(0,T; L*(£2)). We observe

4
(1 ! hk)u(k) (x) + mu(kﬂ)(ac) dz

h h

4 — _
oo o,7;24(0)) = teﬁzskshs(}clfn) /Q
keN

Noting that ¢ € [hk, h(k + 1)) is equivalent to 5 € [0,1) and using the convexity of the
function (0,00) > 7 — |r|* we get that

4
lunl| 700 0,729 (52)) < €55 Osallp/ ] (1 - s)u®(z) + su*D(z )] dz
s€|l
< ess—sup/ ((1 — s)|u (k) (x)|4 I s|u(k+1)(x)|4) do
s€f0,1) JQ

:essEos%p(us)Hu 110y + slle™ D 1aq)) < C(Quoe,e).
se|0,

We can use the technique similarly on Vuy, for a bound in L°°(0,T; L?(€)). We conclude
that (up)pso is uniformly bounded in L°(0,7; H'(Q2)) < L3(0,T; H'(R2)) and in
L>®(0,T; L4(Q)) < L*(0,T; L*(2)).

Returning to (6.1.18) we rewrite the estimate for w,. For ¢t € [hj,h(j + 1)) we have
Pe(an(t, ) = Pe(u?) and

1971 / (k+1)h_ w®) n WD) _ g, k)

,Zh -

We rewrite (6.1.18) and obtain that for all ¢ € [h, T

1 t—h
ac" > o / /Q e, A.0May, dL™ ALt
0

t—h
Pe(un(t,-)) + ;/ / O A00 g, AL™ ALY < Pe(uge). (6.1.20)
o Jo
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We take the supremum over ¢ and get

T—h
sup P-(up(t,:)) + 1/ / €8£’ﬂh./458£1@h dcrdet < 2P (uoe). (6.1.21)
t€[0,T] 2 Jo 0

To improve this estimate we establish a bound for (9@, )n~o in L2(0,T; H(Q)"). Let

t € (0,T),n € H' (), we have n = A.(—?A +1d)n because (—?A +1d)n € H(Q)". We
estimate

/ Opup(t, )ndL™ = / ol (t —e?A +1d)pdL” (6.1.22)
_ — DN (22
= (A0l (t, ). (~ A+1d)n>H1 o
:/ (2VADL (. ) - Vi + AcOfn(t,)n) dL™.
Q

Now we apply the Cauchy-Schwarz estimate for the H'(€2)-scalar product and obtain that

/ Byun(t, )y dL” <
(9]

/ (2| VA an (L, ) [+ | AcOan (1, ) [°] dL”
Q

1
2

/Q {52|V77|2+ \77|2] dcr

2
< </Qv4ﬁfuh(t, ')(—52A+1d)«453?uh(757')dﬁ") 70l &1 (o)

1
< (/Qafuh(tv )AL (t, ) dﬁn) 7 1) -

It follows that the mapping n — [, OMaym AL lies in H'(2)'. Slightly abusing notation
we call this mapping 9/, without denoting the embedding into H'(Q)'. By taking the
supremum over all n € H'(Q) with |||z o) < 1 we get

1
2
108t sy < ( [ ot e, w) |

Squaring and integrating in time results in

T—h
4
b o oy < [ [ Olmndeofm, A" ALt < 2P (un).
Since 0Ty (t, ) = Oyun(t, -) we also get that Gyuy, is uniformly bounded in L2(0, T; H'(Q)").

We have

(uh)h>0 is bounded in L3(0 T Hl( ) N 1'14(07777 L4(Q>)7
(Orup)p>0 is bounded in L2(0 T; Hl(Q)’) and
H (Q)NLA(Q) <5 LP(Q) = H'(Q)'.
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We apply a generalized Aubin-Lion-Dubinskii’s Theorem; see Lemma 7.7 in [Rou05].
It follows that there exists a limit function u. € L3(0,7T;L3(€2)) such that up to a
subsequence we have

up — ue in L3(0,T; L3(Q)). (6.1.23)
Lemma 11.3 from [Sch13] implies @, — e in L?(0,T; L*(Q2)).

We proved that (Tp,)n~0 is bounded in L>(0,T; L4(£2)), L>(0,T; H(Q2)), and we have
a bound for (Jyup)nso in L2(0, T; HY(Q)). Since L}(0,T; L3 (Q)), L(0,T; H(Q)'), and
L?(0,T; H'(Q2)) are separable and

L0, T; L4(Q)) = L'(0,T: L5 (), L¥(0,T; H'(R)) = L(0,T; H'(Q)')',
and L*(0,7; HY(Q)) = L*(0,T; H'(Q))

there exists a subsequence h — 0 such that
an L ue in LN0,T; L3(Q)) = L0, T; L4()).

The limit function is u. because L(0,T; L%(Q))’ < L2(0,T;L*())" and in the latter
space weak*-convergence is equivalent to w-convergence of the embedded objects in
L%(0,T; L?(£2)). We proceed similar for L°(0,T; H!(2)) and conclude

a, L u. in LY0,T; HYQ)) = L0, T; HY(Q)).

Next we show Qe € L2(0,T;H*(Q)'). We know that du; has a weak*-cluster
point v, in L?(0,T; H'(Q)") by the previous argument. On the other hand we have
up, — ue in L*0,T;L%(Q)) and thus O, — Owue in H-1(0,T;L*(Q)). Both
imply weak*-convergence in H~1(0,7; H'(Q2)’) and thus we conclude by uniqueness of
weak*-limits dyu. = v. € L2(0,T; H*(Q)") and thus u. € HY(0,T; H(Q)").

Since U, —» u. in L2(0, T L*(£2)) we also have uz —» u? in L*(0,7; L'(£2)). Furthermore
(W7 )n>o is bounded in L?(0,T; L?(€2)) because of the bound in L>(0,T; L*(£2)). Thus
there exists a subsequence and a limit function w € L?(0,T; L?(2)) such that @2 —> w
in L2(0,T; L%(Q)) — L'(0,T; L*(2)). By uniqueness of weak limits in L(0,T; L*(Q)) we

conclude w = u?.

Lastly we consider Hj. We rewrite (6.1.8) and get for a.e. t € (h,T) that
—eAQpup(t,-) = Hp(t,-).

This identity holds in H'(£2). We apply dyuy(t,-) € H'(Q)’ to both sides plug both sides
and get

(eAduun(t, ), run(t, ) = —(Hn(t,"), drun(t, "))

HY(Q) HY(Q)

— —(APAHE ), (e ),
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Since Hy(t,-) € HY(Q)) we have (—e?A +Id)Hy(t,-) € HY(R2) and thus we get with
(6.1.15)

(= Adun(t, ), (~2A+IH(42)) = L(Hp(t, ), (~2A+ 1) Hy(t, )

HY(Q)Y € HY(QY

1, _ N
:/ ~(IHu(t, )2 + 2| VH(E,)|*) dL.
Q¢
We plug this into (6.1.20) and get for all ¢ € (h, T

1 t—h 1, -
P-(un(t, ")) + 2/ / g(|Hh|2 + &2 VHA[") dL™ dL" < Po(uoe). (6.1.24)
0 Q

Since € is fixed choosing t = T implies that (Hp)pso is uniformly bounded in
L?(0,T; H'(Q)). Thus there exists a limit function H. € L?(0,T; H'(2)) such that
up to a subsequence we have as h — 0

Hy - H. in L*0,T; H(Q)).
We can apply the limit ~ — 0 to (6.1.24), use @, 2% u. in L>(0,T; H'(Q2)) and in

L>®(0,T; LY()), H, = H. in L?(0,T; H'(Q)), and the weakly and weakly* lower
semi-continuity of the norm to obtain for a.e. ¢ € (0,7)

1t
P (ue(t, ) + / / = (IH? + 2| VH.[*) dL™ dL" < Po(uo,.). (6.1.25)
2 0 JQ¢€

We can identify H. by combining previous convergences. Let n € C!(Qr) then we have
by Hy — H. in L?(0,T; L*(Q))

T T
/ / Hopdcrdet 20 / / Hyndcrdc!
0 Q h Q

T
1
= / / (eVan - Vi + W/ (an)n) dL” d!
h JQ €
T — 4 —3 n 1
= (EVuh -V — —(up — uh)n) dcrdct.
R JQ €

Since 7 is bounded we get na;, — nu. in L2(0,T; L?()). Furthermore we have @2 — u2
in L2(0,7T; L?(€2)). Combining these we get the convergence of <H%‘7’]ﬂh>L2(O’T;L2(Q)). Using
this and @), — u. in L2(0,T; H'(Q)) we get

T
4
/ / (EVﬂh -Vn — *(ﬁh - ﬁ%)n) dcrdct
h JQ €
hso [T 4
' / / <5Vu5 VN — = (ue — ug)n) dcmdct
0 JO 3
= <17 —eAue + 1I/V'(ug)> .
’ € L2(0,T;H ()

Since C}(Qr) is dense in L2(0,T; H'(Q)) we conclude H. = —eAu. + 2W’(u.) in
L2(0,T; HY(Q)). O

125



At last we can prove Theorem 6.1.2.

Proof of Theorem 6.1.2. We start by showing that the limit function u. constructed in
Lemma 6.1.5 is a weak solution to (6.1.1)-(6.1.4). Take any ¢ € C2°([0,T") x ). For fixed
t €[0,7) we apply (6.1.14) and get

n — 1 ! (— n
- [ comnAcott ) A" = [ (eVa- Tolt.) + ZW@olr, ) de
:/Qqs(t, VHa(t,-) AL

We integrate in time and use Fubini’s Theorem and a partial integration in time on the
left-hand side

T T T
— / / edupAcp dLt dLm = — / cupA.p| AL + / / eupOpAcp ALt AL
QJo Q 0 QJo

T
= / e#(0, ) Azug . AL —I—/ / eupdp Acp dL™ ALY
Q 0 Q
Thus we have
T T o
/ e (0, ) Acug e L™ + / / cupOpAcp dL™ ALt = / / oHp, dL™ ALt
Q 0 Q 0 Q

Now we consider the limit A — 0. We apply (6.1.16) on the second term on the left-hand
side and (6.1.17) on the right-hand side. We get

T
/ £6(0,) Acug . L™ + / / MO dL™ AL
Q 0 Q
T 1
— / / (a—:Vug-ng—!—fW’(ug)gb) acr dot
0o JQ €

which is the weak formulation introduced in (6.1.5). Next we prove the higher regularity.
We have H. € L?(0,T; L*(Q)) and thus

2
dcrdc! (6.1.26)

T
1
HHEH%%O,T;H(Q)) :/0 /Q‘—eAug—i- EW/(’U,E)
r 2 / 1 2 1
:/ / (|€Au5\ — 2Au W (u5)+6—2|W/(u5)| )dﬁ” dc
0o Jo
T
z/ /Q(|5Au€|2+2|vu€|2w”(u€)+612|W’(u5)|2) dcr dct,
0

In the last step we applied Theorem 8.3.6. The boundary integral vanishes because of
the Neumann boundary conditions of u.. Using W”(r) = 12r2 — 4 for r € R we get the
estimate

T
1
/ /(52|Au5}2+24\u5\2|Vu5|2+62{W/(u5)|2> acr dc!
0 Q
<N HellZ2 0020y + 8lluellieo iy (6:1.27)
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and conclude Au. € L2(0,T; L%(€)). Since 952 is C3 we conclude by elliptic regularity
theory that u. € L?(0,T; H?(Q2)). Furthermore we conclude u. € L5(0,T; L5(£)) because
W' is a polynomial of degree three. In fact we can use a similar argument as in the proof
of Lemma 6.1.3, where we extracted a uniform bound for (u;)jen in L*(Q) from a bound

on (W (u;))ex n L' (9)

We have u. € L?(0,T; HY(Q)) and dyu. € L*(0,T; H(Q)'). By Lemma 7.3 from [Rou05]
we conclude u. € C°([0,T]; L3(2)) and thus the lim; g u.(t,-) exists in L?(Q2). From the
initial conditions of the PDE We conclude lim;_,o uc(t,-) = ug . in L?(2). Tt remains to

prove the additional claims for n < 3.

If n < 3 we prove V[W'(u.)] € L?(0,T; L?(Q;R™)). With W”(r) = 12r? — 4 and thus
W (r)|? < 288r* + 32 in mind we estimate

T T
/ /!VW’(UE)|2dL”dU:/ /|W”(ua)|2|Vua|2d£”d£1
0 Q 0 Q

T
g32||u5||iQ(OVT;H1(Q))+288/0 /Q|u5|4|Vus|2d£" dct.

It is sufficient to control the last integral. Using a Holder-estimate and the Sobolev
embedding H'(Q2) < L%(Q) we continue

T ) T 3 6 3
/ /\ua\4|V’u5‘ dﬁ”dﬁlg/ /|u5|6d£”] U |V | dﬁ”] dct - (6.1.28)
0 Q 0 Q Q

T
< /O ot 45 0 [Vt 2 gy ALY

T
< (@) /0 ot s e ey A2

< CO) el ranan | el 4!
< C()uell 700 0,7 ) [0l 7200, 520
Since the right-hand side is finite it follows
VW (uc) € L*(0,T; L*(Q;R™)) and thus W' (u.) € L*(0,T; H(Q)). (6.1.29)
Finally we have
—eAu. = H. - éW’(uE) € L2(0,T; H'(Q))

and thus w. € L2(0,T;H3(Q)) by elliptic regularity theory. Furthermore
we get with Lemma 7.3 from [Rou05] that u. € C°[0,7); H(Q2)) because
we have the regularity u. € L2(0,T;H?*(Q)), . € L?(0,T;HYQ)), and
H3(Q) < HY(Q) — HY(Q) — H3(Q)'.

It also follows lim;_,uc(t, ) = uge in HY(Q) < L4(Q). We conclude
%1_{% Pe(ue(t, ) = Pe(uo,e)
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because the integrand in the definition of P is controlled by the norms in H*(€2) and L*((2).

We have P-(u:) € L'(0,T) because of u. € L2(0,T; H'(Q)) N C°(Qr). The next step is
to show the same for the weak derivative. Let v € C1(0,T), we use Fubini’s Theorem
and partial integrations (in space and time)

T

- /0 0(0) (= Vel ), Vo, ')>H2(Q)’
(W (ue(t, ), Dot ) i)
T

:/O ¢(t)<H€(tv ')76tu5(t")> 1 dt

HY(QY

= / ' B(0)(AOpuc(t, ), (—£2A + 1d) H(t, dt.
0

), >H1(Q)/

We apply (6.1.1) and get

/T ¢(t)<“4€atu€(t7 ')7 (—EQA + Id)Hg(t, )> dt
0

Hl (Q)/

— —/Osz(t)/Qi<H€,(—52A+Id)H€(t, -),>H1(Q), dt
- _/Oqu/Q (é\Hg\Q + | VHL[*) dcm act.
Since H. € L*(0,T; H'(2)) we conclude
0P (us(t, ) = =WES (ue(t,-)) € L0, T)

and thus P (us) € WH(0,T). Since ue € CO([0,T]; H'(£2)) we also have P.(u.) € C°[0,T).
From Theorem 2.2.8 and the continuity of P.(u.) at ¢ = 0 we deduce that for a.e. t € (0,7)

/ WKK (us(s,-))ds = Pe(uoe),

which concludes the proof. O

6.2 Construction of convergent subsequences as ¢ — 0

In the last section € > 0 was fixed and thus no assumption on the initial data with respect
to € was necessary. In this section we establish compactness results for the solutions and
the induced measures as € — 0. To achieve this we need additional assumptions.

Assumption 6.2.1 (Well-prepared initial data).
We use Notations 6.1.1. Let n < 3, ug. € HY(Q) N L*(2), and assume there exist A > 0
+

and pu° € CY(Q) such that for pl = (%]Vu06| W (ug )).C” L Qe CY(Q) we have
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A
sup p2(Q) < 3 (6.2.1)
e>0
0 — /0
lim () = 17 (), (6.2.2)

and ,ugw—*>u0 as €—0 in CHQ).

Letu. € L*(0,T; HY(Q)NHY(0,T; HY(Q))NL3(0,T; L3(2)) be a weak solution to (6.1.1)-
(6.1.4) such that (6.1.6) holds for a.e. t € (0,T"). Furthermore we consider a sequence of
positive numbers with ¢ — 0.

Remark.
.+ Note p2(9) = P. (o).
e The energy-dissipation (6.1.6) immediately implies
us € L0, T; H'(Q)) N L0, T; LY(Q)) and H. € L*(0,T; HY(Q))
with H, = —eAu, + %W’(ug) as before.
o With the same calculation as in (6.1.26) and (6.1.27) we even get

ue. € L*(0,T; H3(Q)) n C°([0,T]; H(Q)).

Corollary 6.2.2 (A priori bounds from the energy-dissipation).
Let Assumptions 6.2.1 hold. Then we have

T
1
ess-sup P:(uc(t,)) +/ / <7\HE|2 + €]VH5]2) dcmdLt < 2P (uge) <A (6.2.3)
te[0,T) 0o Jo ‘¢

Analogously to the proof of Theorem 6.1.2, higher reqularity implies that

%i_r)r(l)ue(t, ) =wupge in HY(Q), LYQ), and a.e. in Q.

Proof. Let ¢ > 0 be arbitrary. The energy-dissipation follows from (6.1.6) and (6.2.1).
The convergence of u.(t, ) as t — 0 follows from u. € C°([0, T]; H*(Q)). This also implies
the convergence a.e. in ) for a subsequence. To prove that this holds for the entire
sequence t — 0 we assume that there exist ,7 > 0, a subsequence (¢;);en, and A C Q
with £™(A) > 0 such that for all z € A

luc(t;, ) —upe(x)| > 7 foralll e N. (6.2.4)

However we have ue(t, ) —s uo. in L*(2) and thus there exists a subsequence (¢, )men
such that uc(t;,,,-) — uo,e as m — oo a.e. in €, which is a contradiction to (6.2.4). O

We introduce the measures

1
= (5IVue(t, )] + SWlue(t, )£ LQ fort € [0,7),

¢ = (GIvue(t ) - Wi ))erLo fore0.1)

&€

129



o o+

1
— E‘Hs(t’ NPLrLQ for t € (0,7),
1
— (E\Ha(t, VP + €| VH(t, -)!2)£"'—Q for t € (0,7),

pe = L' (o), & =L @ (D)eppr),
ac =L ® (l)er)y, and ke =L@ (K)eor)-

M o+

K

The a priori estimate (6.2.3) is an excellent basis for compactness results.

Lemma 6.2.3.
Let Assumptions 6.2.1 hold. Then we have

pe(Qr) + ke(Qr) < C(A,T) (6.2.5)
and for a.e. t € (0,T)
sup pt(Q) 4 sup k() < C(A,T) (6.2.6)
e>0 e>0
lim iélf (1) + KL(Q)] < o0. (6.2.7)
e—

Proof. From (6.2.3) we immediately get good bounds for u. and k.. Let € > 0 then we
have for a.e. t € (0,7)

,uZ(Q) + ke () < ess-sup Pe(ue(t,-)) + k() <A
(0,1)

T
o) + () < Tesssup P + [ WEK(u) 4L < A(T +1),
(0,7) 0

Thus (6.2.5) and (6.2.6) are proven. Using Fatou’s Lemma we deduce that

T T (6.2.3)
/ lim inf % () dt < lim inf KL(Q)dt <A
0

e—0 e—0 0 €

we conclude that for a.e. t € (0,7) we have

.. ¢
hgn_}%lf k() < 0.

Thus we get from (6.2.3) for a.e. t € (0,7)

lim iélf [E(Q) + £L(Q)] < limsup pf () + lim iélf kL(Q)
E— E—

e—0
< sup P:(up) + liminf ££(Q) < oo
e>0 e—0
and (6.2.7) is proven. O

It follows that for a.e. t € (0,7T) there exists a t-dependent subsequence € — 0 such that
the assumptions of the I'-liminf estimate in Theorem 5.2.5 are satisfied. However the
subsequences chosen in the proof of Theorem 5.2.5 will depend on ¢. Next we will deduce
suitable uniform a priori bounds for (ue)e>0-
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Lemma 6.2.4.
Let Assumptions 6.2.1 hold. Then

(1) (ue)eso is bounded in L>(0,T; L*()).
(13 (6_%W’(u5))5>0 is bounded in L?(0,T; L?(52)).
(iii

)

) (e2u=Vug)esq is bounded in L*(0,T; L2(R2)).
(iv)

)

)

I\D\C»J

(e
(e2 Aug)e=o is bounded in L*(0,T; L?(52)).
(v) (ue)eso s bounded in L5(0,T; L5(52)).

(vi) For all ¢ € L?(0,T; H*(2)) we have

/T <¢’ \/gf)tug>H1(Q)/ dct

0

< JK(/ <€2|V¢|2+ |¢|2) d£”+1>2. (6.2.8)

Qp

Proof. From (6.2.3) we get

1
ess-sup | —W(uz)dL"™ < A.
o.1) Ja<
With the notations from the proof of Lemma 6.1.3 we have

ess- sup/ lug[* AL = ess—sup/ luc|* dL™ + ess—sup/ lug|* dLr
0,7 0,7)  J{|uc|<Ro} 0,7)  J{luc|>Ro}

< RIL™(Q) 4+ 2eA < C(,A).

Since /r < r for all r € [1,00) we get /r < 1+ for all r € [0,00) and thus

el e 0,729 = 5+ sup[ /| ww] <1 esssup [t de”
0,7) 0,7)

<1+ ess—sup/ luc|* dL™ + ess—sup/ lug|* L™
0,7)  J{|uc|<Ro} (0.7)  J{luc|>Ro}

<1+ RELYD) +2eA < C(Q,A),
which proves (7). Next we prove (ii)-(iv). From (6.2.3) we conclude

AT

[Hell220,m020)) < €A and luell L2011 (0)) < -

With the same estimates as in (6.1.26) and (6.1.27) we deduce that
g 3 2 2 2 1 2 1 2
/ / (6 |Auc|” + 24e|ue|? | Vue|” + E‘W’(us)] )dﬁ” dL < AT +¢7).  (6.2.9)
0 Q

This proves (ii)-(iv). For (v) we argue as we did in the proof of (7). Since W'(r) = 4r3 —4r
for r € R there exists Ry > 0 such that |r|3 < |W'(r)| for |r| > R;. Thus we get

/ /|u€|6d£”d£1 <TL™D R6+5/ /|W’ u )2 dLr det < ¢, 1)
Q¢



which proves (v). To prove (vi) take ¢ € L?(0,T; H'(Q)), we estimate similarly as in
(6.1.22), using ¢ = A.(—eA +1d)¢ and the Cauchy-Schwarz estimate for the H*(Q) scalar
product

/T <¢a ‘@at“€>H1(Q), dct

0

T
2 1
/ (AcvEte, (<A +10)0) | dr

0

(EQV\/gAgatug Vo + \@Agﬁtug¢) ac!

= /OT (/Q (EQW\@Aa&er‘Q + \\@Ag&gugﬁ dgn/Q (62|V¢\2 N "15\2) dﬁ"); !

|—=

T 2
_ 2 1 2 2 2 n+1
_ (/0 e(Adpue, (—e A+Id)A€8tue>Hl(Q)/ ac /QT (2IVel* + [6]2) L )

= (/0T6<Aaatu5)8tug>Hl(Q)/ dﬁl/Q (52]V¢‘2 4 |¢’2> d£n+1>
T
= (/OT5<H5,(_62A+Id)H5>H1(Q)//Q (52’V¢’2 + ‘¢|2> d£n+1>

1
2

(S

T

1
2

gﬁx(/g (52|v¢|2+\¢|2) dﬁ”“) : O

This proves a uniform bound for \/ed;u. in L?(0,T; H*(R)"). However in contrast to the
construction in the first section we do not have a uniform bound for u. in L(0,T; H'()).
Thus we can not directly apply an Aubin-Lion-Dubinskii type argument. We will work
around this difficulty by considering a different function as a stepping stone first. We
prove bounds for (Z(ue))eso where Z(r) = [ +/2W (s)ds for r € R as in Chapter 5.

Lemma 6.2.5.
Let Assumptions 6.2.1 hold. Then

(1) (Z(ug))eso0 is bounded in LOO(O,T;L%(Q)).
(2) (0:Z(ue))eso is bounded in L*(0,T; H*(Q)").
(3) (VZ(ue))eso is bounded in L°°(0,T; L*()).

Proof. From the particular form of W we get that there exists C' > 0 such that for all
r € R we have |Z(r)| < C(1 + |r|?). Using the convexity of (0,00) > r +— r3 we get for

all t € (0,T)
%
o < e

<caxuw%<ﬂm ) < C)(1 + esssup [ue[ 1y )
() 0.7) Q)

)

12 (ue(t, )]

N~ wie

acr < 0/ (1 + Juc(t, )[4) dcm
Q

w\»&
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This yields that for all 0 < € < 1 we have

12 (ue) | <C(Q,0)

Lo(0,T5L3 ()

and thus (1). To show (2) we start with (vi) from Lemma 6.2.4. Let n € C%(Q) be
arbitrary, we define ¢ = %\/2W(u€)n. We want to apply estimate (6.2.8) to this ¢,
therefore we need to confirm ¢ € L2(0,T; H'(2)) first. We have

T T
2
T F— / / 62 AL dct = / / 2 (w2 dm .
0 JQ 0o JQ€
<2730 essesup Pe(ue(t,-)) < 2|0l Eo () A- (6.2.10)
te|0,

For the gradient estimate, we use that |[W'(r)|? = 16r2W (r) for all r € R and get

o1l W (ue)
Vo220 7.7 200mn) = / / —Ip—LV 2W (ue)V
IVOllz20,:02(mm)) o o2 A Y +/2W (ue) Vi

4 16 2 1 T 2 1
S/ /|nu5Vu€| dcdL —|—4/ /W(ug)|V77| dc"dL
0o Ja € 0 JQ

2
dcrdcot

1

T
< Slalaey [ [ 1607l acr ac?
€ 0o Jo

+/0T [/Q|W(u5)]§dﬁ”]gdﬁl[/gwnﬁdﬁn]é.

In the last step we applied the Holder-inequality for the last term. The first integral on
the right-hand side is bounded because of (iii) from Lemma 6.2.4 up to a factor of 2.
For the last term we use W(r) = (1 —72)2 < (1 +r%) for r € R. Thus we get

T T
/ /|W(u5)|gd£” dclg/ /(1+|u5|4)§d£” ac! (6.2.11)
0 Q 0 Q
T
g/ /(1+|u5|6) dcrdot < o, ).
0 Q

We used (v) from Lemma 6.2.4 and the convexity of (0,00) > r — r2. Back to the
previous estimate we get

O(QvTv A)HnHéO(Q)

£2

IVéIZ20.1i02@umny) < +C(Q, D)l (0)- (6.2.12)

For fixed ¢ > 0 this is finite and thus ¢ € L?(0,T; H'(2)). Since n < 3 there exists
C(Q2) > 0 such that by the Sobolev and Sobolev-Morrey embedding we obtain that

[nllwre) < CEO)Mlla2@ and  |Inllco@) < CD Nl a2(0)-

Now we apply (vi), (6.2.10), and (6.2.12) to this particular ¢ and get that
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/OT <n’atZ(“E)>H1(m/ ac!

T

_ 1
= ‘ /0 <¢, ﬁ@tuE>H1(Q)/ dL

1
< \/K<H¢”%Q(O,T;L2(Q)) + 52HV¢H%2(O,T;L2(Q;R"))) i

1

< \/K(C(Q,ﬂ M1 E0 () + EQC(Q7T)H77H12/V176(Q)) i
< C(Q, T, NIl (-

Taking the supremum over 7 € C2(€)) with [l 52(0) < 1 yields (2). For (3) we calculate
for t € (0,7)

/ IV Z(ue(t, )| dL" = /Q 2V (et ) Ve (£, )| AL
Q
13 2 1 n
< /Q (519uelt, )+ 2 W e, )
< Pe(ue(t, ).
Taking the essential supremum over ¢ € (0,7 directly yields that

IV Z(ue) | poo 0,101 (rry) < ess-sup Pe(ue(t,-)) < A. O
te(0,T)

Lemma 6.2.6 (Convergent subsequence of (us)e>0)-
Let Assumptions 6.2.1 hold. There exists uw € L*=(0,T; BV (2;{£1})) such that up to a
(t-independent) subsequence we have as € — 0

o Z(us) — Z(u) in LY Qr),
e u. —u in LY(Q).
In addition we get for a.e. t € (0,T) as e — 0 that
o Z(u(t ) — Z(u(t, ) i LMQ),
o u(t,:) — u(t,”) in LY(Q),
e Forae x€Q:u(t,z) — u(t,x),

o There exist subsets E(t) C Q with finite perimeter such that u(t,-) = 2xg) — 1.
Proof. From Lemma 6.2.5 we get with L%(Q) — H%*(Q) and Lg(Q) — LYQ)
(Z(u:))o<e<1 is bounded in L0, T;Wh1(Q)) andin  H'(0,T; H*(R)").

With Lemma 8.3.2 we can extract a convergent subsequence from (Z(ug))e>0 as € — 0 in
LY(0,T; L*(2)). Thus there exists a further subsequence (g;)jen and k € LY(0,T; L*(Q2))
such that as j — oo

Z(ue;) — k in LY(Qq),

Z(ug,(t,)) — k(t,-) in L'(Q) forae te(0,7), and thus
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Z(ue,(t, ) — k(t, x) fora.e. t€(0,7) andae. z€Q.

Since Z' = V2W > 0 on R with {W = 0} = {£1} we know that Z has a continuous
inverse function Z~1. This results in

ue, (t,x) — u(t,z) = Z7Yk(t,z)) forae. te€(0,T7) andae. z€Q.

To prove the convergence u.;, — u in L' (1) we use a well-known technique, which is
for instance presented in the proof of Theorem 1.6 in [Leol3].

First we prove that (u.,);en is equi-integrable. We can find Ry > 0 such that [r| < W(r)
for all |r| > Ry. Then we estimate for any measurable subset A C Qp

j[uq]d£”+lf§j[ ]uq|d£"+1%—/[ e | L™
A An{lue,|<R2} An{lue,; [>Ra}

1
< RoL™N(A) +e; [ —Wo(ug,)de" !
Qr €j

1
< RoL"M(A) + ¢ ess-sup —W(ug,(t,-)) AL < Ro L™ A) 4 ¢4A.
te(0,T) JQ €j

(6.2.13)
Setting A = Qr yields that there exists A’ > 0 such that
sup/ |, | A < N < . (6.2.14)
jeENJQp

Next we prove that for all 7 > 0 there exists & > 0 such that for all measurable subsets
A C Qr we have

L (A) <= SLE]-II\T)/A |, | dcntt <7 (6.2.15)
J

We start by choosing jo € N such that for all j > jo we have ¢;A < § and define dy :== ﬁ.
Then we get for j > jo from (6.2.13) for any measurable set A C Qp with £*1(A) < 4y

R
sup/ |, | ettt <228 T oo
A

> 2Ry 2
By the absolute continuity of the Lebesgue measure and since uy,, ... s Uej, € LY (Q7)
there exist d1,...,d;, > 0 such that for all I € {1,...,jo} we have for measurable sets
ACQp
LrHA) < 5 :/ e, | dL™T < 7. (6.2.16)
A

By choosing ¢ := min{do, 61, ...,d;,} we conclude (6.2.15).

Now we prove u.; — u in L' (Q7) using Egorov’s Theorem. Let 7 > 0 be arbitrary, we
choose ¢ > 0 according to (6.2.15) such that

LMY A) <5 = sup/ |, | et < 2
jeNJa 3
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and such that

LA <5 :>/ ulacm < 7. (6.2.17)
A

This is possible by the same argument as before since u € L'(Q7). We have Ug; —> U
a.e. in Qp and thus by Egorov’s Theorem there exists A C Qp such that

L (A) <8 and e, — u uniformly on Qr\ A.

We choose j; € N such that for all j > j; we have

]
sup Jue, — 1

< N
QOr\A 3L (Qr)

Combining these results we get

/ ue, —u| AL = /|u5 —u|dL" 4 / |ue, —u| AL
Qr T\A
/|u | At /|u|d£”+1 / |ue, —u| AL
\A

n—&-lg —
3 3£"+1(QT)£ () =

Thus we have u., — u in L'(Qr) and also uc,(t,-) — u(t,-) for a.e. t € (0,T).

By the Modica-Mortola Theorem 2.4.2, the energy bound (6.2.3), and the assumption
(6.2.1) we conclude for a.e. t € (0,T)

P(u(t,-)) < liminf 1t (Q) < sup P-(ug) < A.

e—0 >0

The fact that this expression is finite shows u(t,-) € BV (Q;{£1}) for a.e. ¢t € [0,T),
hence we can write u = 2x () — 1 for some set E(t) C 2 with finite perimeter. O

The next goal is to find a subsequence independent from ¢ such that (ul).~o is convergent.
For that we need uniform bounds, one of which is provided by the next lemma. Here we
will again not label all subsequences.

Lemma 6.2.7.

Let Assumptions 6.2.1 hold and let t € (0,T) be arbitrary. We have for the finite Radon
measure it € CY() from Lemma 6.2.3 that there exists C = C(A,T) > 0 such that we
have for all € > 0 and all n € CZ() with n >0

1. 1) o @y llwra .y < CA, T)lInlloz ) (6.2.18)

which shows that the functions (0,T) > t — <77’M§>08(Q)' are uniformly bounded in
WHL(0,T) with respect to € > 0.

r

Proof. We have

dL' < [Inllco@)AT

€ 2 1., n
/Qn(2ymy +EW(u€)) ac
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and thus (7, ué)cg(g), is uniformly bounded in L'(0,T). Next we calculate the weak

derivative. Let 1 € C}(0,T). The following calculations are justified because of the
regularity u. € H*(0,T; HY(Q)) N LY(0, T; H3(1)).

T T
/ t 1 ) (€ 2 1 1 n
_/O (0 <777Ne>08(9)’ dL” = _/Q/O 1/}77(§|Vu5’ + EW(UE)) dL” dL
1

T
— - ”71 1
= /(; 1/}(<’I’]8VU5, V@tu5>H2(Q;Rn)/+ - < (UE), 8tu€>H1 (Q)/) dl

T
_ /0 (V- Vue — endu + —nW' (ue), 8tuE>H1(Q)/ 4

T
_ 1 2 1
_/O ¢<vn.vue ~ 0, (—< A+Id)H€>H1(Q)I act.

From this we can identify the weak derivative, we have

1
O(n, ,ugcg(ﬂ), = <Vn -Vue — gnHE, (—2A + Id)H€>H1(Q),.

In the next step we estimate the weak derivative in L'(0,T; L!(£2)) which would finish
the proof. We split the integral into two terms, one of which is a localized version of
0¢P:(us) and the other term contains Vr. The latter one is called drift term. We have

T T
t 1 2 1
/0 ’8t<77nue>08(9)’ dL S/o ’<V7I‘VU&(—5 A+1d)He) ) | AL
4 1 2 1
+/0 g]<77H€,(—e A+Td)He) 1 g | AL
We split the integrals even further and get
4 t 1 T 2 1
/O 90, 1) | AL < /0 (V- Ve, 2AH) | AL (6.2.19)
T
+ / / (Vn - Vue)H. dL™| dct (6.2.20)
o IJa
T
+/ /5(V17-VH5)H5 dcrldct (6.2.21)
o IJa
T
+/ (n, K)oy | AL (6.2.22)
0

The integral in (6.2.20) can be controlled with a Young estimate and the bounds from
the energy-dissipation inequality (6.2.3)

T
1 n 1
/0 /QﬁWUH\/EVueHHE\dﬁ dc
T
1
s”"”gl(m/ /(|H5]2+5\Vu5|2) AL AL < ||nllo ey C(A, T).
0 JO €

The integral in (6.2.21) can be controlled with a partial integration and the bounds from
the energy-dissipation inequality

137



dct (6.2.23)

T
dct :/
0
T €
:/ /A77|H€|2 dcr
0o 1Ja?2

g2 T r1 A
< HUHC%Q)/ /!Hs|2 dCm drl S82\\77\|C2(Q) .
2 0 Q & 2

r

/ e(Vn - VH.)H, dC"
Q

/ SV V|H.2dcm
02

dct

The integral in (6.2.22) is directly controlled by the bounds from the energy-dissipation
inequality. Since n > 0 we have

g t
/0 ‘<77= f?s>cg(9)/

The most difficult part is to estimate (6.2.19), which comes from the drift term. As a
stepping stone we define for ¢ € (0,7) and x € Q the function K; : Q — R"

dct = (n, ke)enary < IInllco) ke (Qr) < [Inllco@)A.-

Ki(z) = [Vn(x) - Vue(t,2)|[VH(t,2) — Vn(z) [Vue(t,z) - VH:(t, z)]
+ [Vn(z) - VH(t, 2)| Vue(t, x).

Since n € C1(2) and wc(t,-), He(t,-) € H(Q) for a.e. t € (0,T) we have K; € L'(Q; R")
for a.e. t € (0,7). It follows that for a.e. t € (0,7) and all ¢ € WH>(Q) we can define
<¢7 -V Kt>W1,oo(Q)/ = / ng . Kt dc”.

Q

In this sense we have V - K; € Wh*(Q) for a.e. t € (0,T). We conclude that

0 == —/ V]. . Kt d[,n = <1, V . Kt>W1,oo(Q)/ (6224)
Q

- <1, V. ([Vn - Vue|VH, — Vn[Vu. - VH.] + [Vn- VH,] Vug)>W17m(Q),

= / (Vn - D*u.VH. + VH. - D*Vu.) dL™ + (V7 - V., AH€>H1(Q),
Q

- / (V- D*u.VH. + [Vu. - VH] An) dL" — (V0 © Ve, DH.) ey
Q k)

+ / (Vug -D*nVH. + [Vn- VHS]AuE) dL™ 4+ (Vu. ® Vn, D2HE>H1(Q.Ran)I
Q b

= / (2VHE - D*nVue — [Vue - VHAn+ [V - VH,] Aus) dcr
Q

+(Vn - Vu,, AHE>H1(Q),.

We used the symmetry of the Hessian in the classical sense for D?n, for D?u, in the weak
sense and for D?H, in the sense of distributions. With this divergence we can rewrite the
integral (6.2.19). We get
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T
52/ ](vn-Vue,AH€>H1(Q), dct (6.2.25)
0

T
= ¢? / / (wa -VH.An—Vn- -VH.Au. — 2Vu, - DznVHa) dcr|dct.
0 Q
This creates three further integrals. We can estimate the last term by
T
2e? / / Vue - D*yVH, d£"| dct (6.2.26)
0 Q

T
§€H?7||c2(9)/0 </Q€|Vua|2d£”+/ﬂe|VH€]2 dﬁ”) act

< ellnllcz@)C(A,T).

The estimate is obtained analogously for the first term on the right-hand side of (6.2.25)
since both D?n and An can be estimated by [7llc2(q)- The remaining second term can
be estimated using that —eAu. = H. — %W’(us) and

T T
5/ dngs/
0 0
T
+
0

The first term is identical to (6.2.23) and we use its estimate again. For the remaining
second term we apply (ii) from Lemma 6.2.4 and get that

i

dct

/ —eAu.Vn-VH.dL"
Q

/ H.Vn-VH.dC"
Q

act.

/ W (us)Vn - VH. dL"
Q

T
1
A < ollovey [ [ W o VeIV a2 ac!

T 1 T
< oy / /Iw’mgfdﬁ”d‘l*/ /dVHEch"dﬁl
2 o Ja¢€ 0o JQ

< I[nllcr@)CA,T),

/ W' (u:)Vn - VH, dL™
Q

which concludes the proof. ]

With this preparation we can prove a compactness result. We follow the proofs by Mugnai
and Roger presented in [MR08, MR11].

Proposition 6.2.8 (Convergent sequence of the measures).
Let Assumptions 6.2.1 hold. Fort € [0,T) we can find finite Radon measures ut € C§(Q),
p € C[0,T) x Q) such that up to a t-independent subsequence we have as € — 0

forall te[0,T): pt 25 pt in CY(Q)
and e S p in Cd([0,T) x ),

with p = L' ® (Mt)te[o,T)-

Since a lot of subsequences appear in this proof we relabel the most important one. We
will return to the standard notation of not relabeling the subsequence after this proof is
completed.
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Proof. From (6.2.3) we obtain that

T
pe(Qp) = / pt(Q)dt < T ess-sup P.(u.) < TA.
0 (0,7)
By Theorem 2.2.2 we can find a finite Radon measure p € C{([0,T) x ) such that up to

a subsequence fic SN pin CJ([0,T) x Q). Next we want to show weak*-convergence of
(ul)eso in CJ(Q) for a subsequence independent of ¢ € [0,7). We choose a dense subset
and countable subset {¢;}jen € C3(Q2). From Lemma 6.2.7 we have that for every j € N
the function defined by

1) = (65, 190y, for te[0,T)
is uniformly bounded in W(0,T). Owing to the embeddings
W0, T) <= BV(0,T) < LY(0,7)

for each j € N we can extract asubsequence from the subsequence which was chosen in
the first step such that

f§€)—>fj as ¢—0 in LY0,T) (6.2.27)

for some f; € BV (0,T). By choosing the subsequences iteratively with the standard
technique of a diagonal sequence we find a subsequence (&,,)men independent of j € N
such that (6.2.27) holds for all 7 € N. We also obtain pointwise convergence a.e. in (0,7")
for this subsequence, i.e.

FEM(t) — fi(t) as m oo forall jEN andae tel[0,T).  (6.2.28)

Note that the exception set can be chosen independent of j since countable unions of
null sets still have measure 0. Since f; € BV(0,T) there exists v; € C§(0,T)’ such that
vj = O¢f; in the sense of measures . Since v; is o-finite as a Radon measure on (0,7")
the set of its singletons S; is at most countable. This remains true for S := U;S;. For
t € (0,7)\ S we prove (6.2.28) in the following. Let ¢t € (0,T) \ S, then there exists a
sequence (t;); in (0,7") \ S with ¢; ¢ and such that (6.2.28) holds for all #;. From basic
measure theory we get that for all j € N

lim v ([tr,1]) = vi( O[t.1) = v ({}) =0.

leN

Since vj({t,t;}) = 0 for all | € N we get with standard properties of Radon measure
convergence (see Proposition 1.62 (b) in [AFPO00]) that

Jim (85721 ) (1) = ([0, 1)

Additionally from Theorem 2.2.8 we get that

fj(t)—fj(tz)Z/ d;.

t
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From the collected results we obtain that

5 = <A@ = 7@ + 1157 (0) = £ @)+ | f(0) = @)
< | (@ L) (Mt )] + LT (0) = F(80] + [y (T )-

Taking lim sup,,,_,, yields

limsup | /7 (8) — f;(0)] < 2w ([t1,1])] — 0 as & At

m—r0o0

Thus we have shown (6.2.28) for all ¢t € (0,7") \ S.

In the next step we want to show that for all ¢ € (0,T) \ S there exists u' € CJ(Q2)' such
that

uémw—*>yt as m—oo in CJ(Q). (6.2.29)

Take any ¢t € (0,7) such that (6.2.28) holds. By (6.2.3) there exists a further (¢-dependent)
subsequence (&, ), and a Radon measure p! € C§(Q)’ such that

*

t wr ot
He,,, — H

as r—oo in CH(Q).
We know from (6.2.28) that for all ¢ € (0,7) \ S and all j € N we have

fi(t) = lim (¢, 1l ) coy-

m—o0

For the subsequence (&, )reny We now have

lim (¢, 12, )o@y = (05 1) oy

T—00

By uniqueness it follows that
£i@®) = (bs. 1) cocy

and that the limit exists for the whole sequence (uf )men. For the proof of (6.2.29) we
take any n € CJ(€2). Since {¢;}; is dense in C3(€2) and thus dense in C§(2) there exists
a subsequence (¢;,)ien such that ¢;, — 1 as | — oo in CJ(Q). Given any 7 > 0 there
exists lp = lo(7) € N such that for all [ > [y we have

We conclude

(nnt,, - Mt>08(9)” <|(n- 61, M§m>00(9),

0

+ ’<ni¢j10’“t>

Q)

+[{0mon - Mz’">08(9)/’ < BLAA * BLAA * % =T
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Since the remaining set S is at most countable continuing this process with another
diagonal sequence yields convergence for all ¢ € (0,7).

All that remains to be shown is the connection between the limit measures, given by
p=L'® (u')sepor)- To obtain this we consider test functions ¢ € C§[0,T),n € C§(£2).
Then ¢m € CJ([0,T) x Q) and thus

T
/ Y dp +— / vndpe,, = / / Yndug,, dL!
Qrp Qr 0o JQ
T T T
:/ @b/nd,ugmdﬁl—>/ w/nd/ﬁd[,l:/ /wndutdﬁl.
0 Q 0 Q 0 Q

The last convergence follows from the Dominated Convergence Theorem since

|w/ ndpt,,

It follows p1 = L' @ (1u")ef0,) because the linear hull of tensor products Cg[0,T) ® C3(€2)
is dense in CJ([0,T) x Q) . O

< [[Wllcoo,mImllco@yme,, (@) < I¥llcop,rlnllco)A-

6.3 De Giorgi type varifold solutions

Using the preparations from sections 6.1 and 6.2 we can prove that solutions of the diffuse
equation (6.1.5) converge as € — 0 towards a De Giorgi type varifold solution for rescaled
mean curvature flow; see Definition 2.5.3. First we construct oriented varifolds from the
measures fL.

Definition 6.3.1.
Let u. € L?(0,T; H3(Y)) such that (6.1.6) holds for a.e. t € (0,T). We recall

H. = —eAu. + 1W/(ug) € L*(0,T; H'(Q)), (6.3.1)

it (fyv% I+ W(ug( N)LLQ € CYQY, (6.3.2)
( \Vue(t,)|” - fW(ua(t, N)LLQ € CYQY, (6.3.3)

Kt = g(|H€(t, )2+ 2|V H.(t, -)|2)c” LQe ), (6.3.4)

ol = §|H5(t, VLML Q € QY (6.3.5)

pe =L@ (ue)icory, & =L (E)iepry € C(10,T) x Q),  (6.3.6)

and . = L' @ (al)eor), ke =L @ (K)ieor) € C3(Qr)'. (6.3.7)

Note that for . and & the time interval is closed at O while it is open for o and k (since
Qr = (0,T) x Q). Recall additionally that ug. € H*() and pl, u® € CY(Q)" are given by
Assumptions 6.2.1. We define the oriented and unoriented varifolds

69‘/80 = Mg ® Ve € EBVn—l(Q)a (6'3'8)
OV = e @ ve(t, ) € CVa1(Q), (6.3.9)
V= pt @v(t, )t € V,1(Q), (6.3.10)
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V= £1® (Vi € PV 1(0,T) x ), (6.3.11)
and Ve :=L"® (V))icor) € Vn-1([0,T) x Q), (6.3.12)
where
- Vue(t, ) _
ve(t,x) = Vuo(t.2) for Vuc(t,z) #0 and v.(t,x):=e; else
and vy e(x) = ]gzgegz;\ for Vupge(z)#0 and vy(x) :=e else.
€

For the comfort of the reader we gather the compactness results from the last section and
their immediate implications.

Lemma 6.3.2 (Compactness results from Section 6.2).
Let Assumptions 6.2.1 hold. Then there exists C(A,T) > 0 such that

pe(Q7) + ke(Qr) < C(A,T) (6.3.13)
and for a.e. t € (0,T):
sup pt(Q) 4 sup () < C(A,T) (6.3.14)
>0 £>0
and lig’i)i(l)lf (ui(ﬂ) + Ké(Q) < 0. (6.3.15)

Furthermore there exists a subsequence € — 0 such that the following hold.

There exist limit functions uw € L>(0,T; BV (Q;{£1})) and up € BV (Q;{£1}), oriented
varifolds ®V € CQ([0,T) x Q x S 1Y and PV € 9V, _1(Q), finite Radon measures
a,k € CY(Qr), ue CY[0,T) x Q), and for a.e. t € (0,T) there exists a Radon measure
pt e CYQ) with = L' @ (' )rejo.r) such that

ue(t, -) =9 Upe  a.e. in €, (6.3.16)
Ug,e — Up a.e. in Q and in LY(Q), (6.3.17)

Ue —> U a.e. in Qp and in L'(Q7), (6.3.18)

pt St i CQ) for allt €[0,T), (6.3.19)

pe S in CO(0,T) x QY (6.3.20)

a: Do in CUQpY, (6.3.21)

Ke w—*> Kk in CY(Qr), (6.3.22)

R VA @VO in OV, 1(Q), (6.3.23)

and ®V. X0V in CJ([0,T) x Q x S" Y. (6.3.24)

Note that ®V is not only an oriented varifold on [0,7) x €2, i.e. a Radon measure on
[0,7) x Q x S"~! but it is even a finite Radon measure on [0,T) x © x S*~!. Also note
that (6.3.18) yields in particular that for a.e. ¢ € (0,T)

us(t,-) — u(t,-) in LY(Q). (6.3.25)
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Proof. By Lemma 6.2.3 we can find a subsequence ¢ — 0 such that (6.3.13) holds
and that (6.3.14), (6.3.15) hold for a.e. t € (0,7"). (6.3.16) follows from Corollary
6.2.2. By Assumptions 6.2.1 and Theorem 2.4.3 there exists a subsequence ¢ — 0 and
ug € BV (£, {£1}) such that (6.3.17) holds.

The claims (6.3.18)-(6.3.20) have already been proven in Lemma 6.2.6 and Proposition
6.2.8. The convergences (6.3.21) and (6.3.22) follow immediately by applying Theorem
2.2.2 owing to the bound (6.3.13). By definitions of ®V., ®V? we have

IPVall(Qr) < supesssup pf(Q) <A and  [[FVI](Q) < suppd(Q) < A
e>0 ¢€(0,T) >0

and thus the sequences of varifolds (®Vz)c~0, (PV)cs0 are uniformly bounded with respect
to €. With the compactness Theorem 2.2.2 we can find a subsequence € — 0 and oriented
varifolds V € C([0,T) x Q x S*1), V9 € ®V,,_1(Q2) such that (6.3.23) and (6.3.24)
hold. O

Lemma 6.3.3 (Time dependent compactness).

Let Assumptions 6.2.1 hold. For a.e. t € (0,T) there exist finite Radon measures
ot kb € CY(Q) and an oriented varifold PVt € PV, _1(Q) (writing Vt € V,_1(Q) for the
unoriented varifold induced by V) such that up to a (possibly t-dependent) subsequence
we have as € — 0

2ol in (Y,

A e ()3

VISV i Vel (Q),

(6.3.26)
(6.3.27)
oyt L eyt i BV, (Q), (6.3.28)
(6.3.29)
and ||*V'|| = p' = V']]. (6.3.30)

Proof. Let t € (0,T) such that (6.3.15) holds. With the same arguments as in the proof
of Lemma 6.3.2 the claims (6.3.26)-(6.3.29) follow from (6.3.15) and Theorem 2.2.2. The
claim (6.3.30) follows from [|[V}|| = pl = ||®V/|| and (6.3.19). Note that the mass measures
even converge for a subsequence independent from ¢. O

Corollary 6.3.4 (Results from Chapter 5).
Let Assumptions 6.2.1 hold. For a.e. t € (0,T) the varifold %Vt is integral, thus

there exist a (n — 1)-rectifiable set T'y C Q and a H" ' -measurable multiplicity function
0; : Ty — N such that

IV = o H" LTy
and for H" -a.e. x € Ty there exists S, € G(n,n — 1) with
Tth = C()Qt(x)st@.

Additionally for a.e. t € (0,T) the varifold V' has a weak a mean curvature vector
Hy € L*(Q, ut; R™) such that

limsup p' " 1! (B,(x)) < 00 for all z € €,

p—0
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|ﬁt’2ﬂt < ata
=12
olHy| " < &',
and %|Vu(t, I <t
in the sense of Borel measures on Q.

Proof. Since (6.3.15) holds for a.e. t € (0,7') by Lemma 6.3.2 all of the claims follow
immediately from the Theorems 5.2.3 and 5.2.5. O

We highlight important results from [MRO8] which will be used in this section.

Theorem 6.3.5 (Key results from [MROS§]).
Let us € L*(0,T; H*(Q)) and assume that (6.3.13) holds for some A > 0. Then there
exists a subsequence such that as € — 0

& 50 in COQr) (6.3.31)
and HEVu€£"+1LQTL*ﬁu in  CYQr; R™Y, (6.3.32)

with H € L2(0,T; L2(Q, pt; R™)) for H(t) := Hy, for a.e. t € (0,T).
Proof. The claim (6.3.31) follows from Proposition 6.1 in [MRO8] because in the proof no
more than (6.3.13) is used.

For the proof of (6.3.32) we define H, := dVI{TZPVUEX{Vu#O}' By Lemma 7.1 in [MROS]
we have

(Na + &, ﬁa) w—*> (Na ﬁ)

in the sense of measure-function pair convergence; see Definition 2.2.13. Thus we have for
all ¢ € CY(Qr; R™)

Hegb-Vung"H:/ ¢ -H.dp. — | H-¢dp. O

Qp Qp Qp

We apply the results to our setting.

Corollary 6.3.6.
Let ue € L?(0,T; H3()) and assume that (6.3.13) holds for some A > 0. Then there
exists a subsequence such that as € — 0

& 250 in CU0,T) x Q) (6.3.33)
and ¢ 250 in CA(Q)" for a.e. t €[0,T). (6.3.34)

Proof. Since & = L' ® (L)) we have for all € > 0 that & ({0} x Q) = 0 thus we can
conclude (6.3.33) from (6.3.31). This implies

1
g’Vugyz—gW(ug)%O in LY(Qr) = LY0,T; LY(Q)).

This yields that there exists a subsequence ¢ — 0 such that for a.e. ¢ € [0,7") we have
(6.3.34). O
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Next we probe properties of the disintegration of ®V .

Lemma 6.3.7 (Disintegration of the limit varifold).
Let Assumptions 6.2.1 hold. For a.e. t € (0,T) there exists PVt e CY(Q x S (writing
V't for the unoriented varifolds induced by V') such that

e YV =C® (®Vt)t€(07T), (0,T) >t — ®V?* is Borel measurable.

e Given ¢ € LY (0,T;CY(®G,_1(2))) the mapping

(O7T) Str— ¢(t7,) d@‘?ﬁt
DGnp-1()

s Borel measurable.
e Fora.e. t € (0,T) we have
1SV = pt = V'] (6.3.35)
. ﬂor a.e. t € (0,T) the varifold V' has the same weak mean curvature vector
H; € L*(Q, ut;R™) as V.

Proof. By the Disintegration Theorem, see Theorem 9.1 in Ambrosio’s paper in [ADD"03],
we conclude that for a.e. ¢ € (0,7) there exists an oriented varifold ®V* € CJ(Q x SPLy
such that ¢ — ®V? is Borel measurable and we have

V=rL"9 (Vo) (6.3.36)

It also follows that for ¢ € L1(0,T;C(*Gp-1(9))) the mapping

(0,7) 3t — (t,-,-) AV
DG,-1(Q)

is Borel measurable. As before ®V* are not only oriented varifolds but even finite Radon
measures on  x S

Next we prove u! = [|#V*||. Let ¢ € C2(0,T) and ¢ € C2(Q) then we have

/()Tw(t)/gcbdutdt: T,Zmbdw—/ wgzbdus—/T@b( )/cbduadt

/ 0 [ oal*var / (1) / pdOVE dt

= / Yo dV, — / @D(ﬁd@v
OGn-1(2r) OGn-1(9r)

/w / pd®Vide = /OTw(t)/QWH@VtHdt-

By localizing in time we conclude ,uf = H@f/tu. Since V! is defined by the projection from
PV,,—1(Q) onto V,,_1(22) we have ||[V!|| = ||®V?!||. Thus (6.3.35) follows for a.e. t € (0,T).
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Lastly we prove that H, is the weak mean curvature vector of V. Let ¥ € C20,T) and
n € CY(£;R™). Then we use that the projection from oriented varifolds onto varifolds
is continuous with respect to varifold convergence and (in order of appearance in the
following calculation) (6.3.36), (6.3.24), Lemma 5.2.4, (6.3.32), and (6.3.33)

/?/)77,5Vt>co ydt = (§n,6V) oo,y xay < $810VE) 0o 0 myxay

T
:/0 (Ym, 6VE))cogqy dt

= - ¢77 -VuH, d£n+1 + Yue - Dnu, dé.
Qp Qr

T
— - 1/}77-th#=—/ w/ﬂn-thHthldt-
0

Qr

By localizing in time we conclude that for a.e. t € (0,7T) we have

057 gy = = [, - Fed V]| (6.3.37)
which concludes the proof. O

Before we are able to prove that ®V is a De Giorgi type varifold solution for rescaled
mean curvature flow we need a few technical preparations. In Chapter 3 the function
f with gy = f(qo) was helpful in many ways. For the estimates in this section we also
consider such a function. Recall the optimal profiles qo, g, from Assumptions 4.1.1 and
the Lemmata 4.1.2, 4.1.3. We define

= -1 .
fiR—[-1,1], f:={ o o ﬁ\lgi)l,l) (6.3.38)
and
G:R—R, Gr /f (6.3.39)

The functions qg, g, have been defined in 4.1.1. These functions have the following
properties.

Lemma 6.3.8 (Properties of f and G).
The functions f,G from (6.3.38) and (6.3.39) satisfy

(1) £,G € CO(R) and G' € CY(R),
(2) fl=1,1): Gl=1) € C*(=1,1),
3) 2f"W = —fW + f—1d in (~1,1),
(4) G'(q0) = -

)

(5) @ = G(1) - G(—1) = 2G(1).

q\g

147



Proof. Both qo,qy : (—1,1) — (—1,1) are C°, strictly increasing, go(+1) = +1 = gy(£1).
Thus f is well-defined, f € C%(R), G is well-defined on (—1, 1), and the restrictions to
(—=1,1) are smooth, i.e. f|11),Gl—1,1) € C*®°(=1,1). To prove that the improper
integral in the definition of G(£1) exists, G € C°(R) and G’ € C°(R) we need to examine
rl—i>r:rl:ll f(r)\/2W (r). For —1 < r < 1 we calculate

G'(r) = f'(r)\J2W(r) = Qg5 (r)(ag 1) (r)/2W (r)

:M r) =4d _17“ r—=1

In the last step we used the ODE ¢, = /2W(qo) of the profile. It follows that G is
well-defined on R, since f’(r) = 0 for all |r| > 1 and we have G € C°(R). With the limit
from above we conclude
1 4 1 1-h g 1 1
V2W AL — V2W dL
= lim Jo / 0o/ Jim fVow dct

/ — —
¢(1)= h—0 h =T

= }1_}11% f'(r)\/2W(r) =0

using a version of the Fundamental Theorem of Calculus. We argue analogously for
G'(—1). Tt follows that G’ € C°(R). Furthermore we have

1
9= [aoac = [ FalPact = [y ar = 60) - 6(-1) =260,

-1

In the last step we used that f’, W are even functions. f’ is even because f is odd. Thus
G is well-defined. We also get G’(qo) = g from gy = f'(qo)/2W (qo). For all r € (—1,1)
we have

IG'(r)] = G (q0(qo " (")) = [To(g0 " ()] < [[Tollor -
Furthermore we have

0=—qy+qo—
= —2f"(qo)W (q0) — f'(q0)a0 + f(q0) — qo
= —2f"(qo)W (q0) — f'(q0)W'(q0) + f(q0) — qo-

It follows for all r € (—1,1)
0==2f"(r)W(r) = f'(r)W'(r) + f(r) —r.
This ODE characterizes f on (—1,1). O

We additionally consider modified versions of the functions f,G. and g,. Given 0 < § < %
we choose an even test function y; € C2°(R) with

e 0<xs<1
o xs(r)=1for |r|<1—-2¢

e x5(r)=0for|r|>1-9¢
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o G <G, IXG(r)] < §2, and [x5'(r)] < & for some C > 0 independent from 4.

With this cut-off function we modify the functions f,G

Definition 6.3.9.
Let 0 < 9§ < % then we define

fo(r) = xs(r)f(r) + (1 = xs(r))sgn(r) for reR

q5(r) = f5(qo(2)) for reR
G(;(T) = fé(s) 2W(S) ds for reR.
0
We also define as > 0 by
c
Q. / ([gl? + [g41?) dc™.
0‘6 R

The functions have the following properties.

Lemma 6.3.10 (Properties of the modified auxiliary functions fs, Gs).

The modified functions satisfy supp(fs),supp(fy),supp(fs’) € [-1+6,1 —4],

f5 = xsf" + (f —sgn)xs,
I3 = xof" +2x5f" + (f —sgn)xs,
I3 = xof" +3x5 8"+ 3x5f 4+ (f —sgn)xy

and
o |[fsllcom) <1 and || fillcowy, 15 lcomy, 15" lcom)y < C(6),
o G llooys |Gl cogays G ooy < C16),
e Gs,G%5,GY are Lipschitz continuous,
o Gi(q0) =75,
e Gs— G as §—0 in CPR),
o G5 —qy as 6—0 in H\(R),

e limos=o0.
6—0

Proof. Let 0 < § < % then we have for all r € R
[fs(r)] < xs(r)[f ()] + (1 = x5(r)) | sgn(r)] < xs +1— x5 =1,

C
|5 < N1 llcojm1z61—5) + 5 S C(9),

2C C
£ () < N lcoj—1461-5) + 7Hfl||00[71+6,176] ta s C(6),

3
113 (r)] < C(6) Z!If”llco 1is1s < C(6),

1G5(qo0(r))| = f5(q0(r))\/2W (qo(r)) = f5(q0(r))ao(r) = qs(r) < C(9),
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W’)

f5 (r)\2W (r) + fi(r \/7 5 (r)\/2W (r) — 2V2r f5(r)
< V2| ff ooy IVW llco-1.7 + 2V2|| f5llcowy < C(6),

SN2 () — AV2Ef () = 221 (r)
< V1§ o W llool-1. + 4V21 7 ooy + 2V 2 ooy < C(6).

G5 (r)| =

G5 (r)] =

Since G, G§, G}’ are bounded on the whole space R we get that the functions Gs, G§, G
are Lipschitz continuous.

Next we show that G5 converges uniformly to G5 as § — 0. For r € R we estimate

G5(r) — G(r)| = /O (s — £)/(s)\/2W (s) ds

W'(s)

= |(fs(s) = f(s))/2W (s) 2W (s)

[ st - 560
0 0
<| (o) = £ /2w ()| +

In the last step we used the explicit formula for W. For the following step we apply
fs— f = (1 — xs)(sgn —f) which vanishes outside (—1,1):

Ga(r) = G(r)| < |(1 = xs(r) (sen(r) = £(r)y/2W (r)|

2 /0 (1~ xa(s))(sen(s) — £(s))s ds

<[ = xsry2w ] +2v2 [ 1= xs(opas

< \J2W (1 —28) + 2v2(1 — (1 — 26)) = /2W (1 — 20) 4 4v/20.

ds‘

22 [ |7s(s) = o)l s

This holds uniformly for all » € R and thus G converges uniformly to G as § — 0.

For the convergence of g5 — q( as § — 0 in H*(R) we have to show
/R|qg—q0|2d£1 — 0 and / |7i —qg?dLt — 0 as 6 — 0.
We start with the first term. Using the already proven properties we obtain that
[l - act = [ 16 - ¢t ac = [ 210 - FoPwe)a
= [[4hat1£0) + (60 s - S0 W ar

1 1
< [ 8= xs)PIr W+ [ 816) = 1P W ar
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From the definition and properties of x5 we get

1
/R g5 —ghl? dct < / St )W ar

1-6 2 9
[ sl = 1P )W) ar
1-26

1
</ 8|1/ ()W (r) dr + 86| (1 — 20) — 1 - gW(1_25)
1-26

In the first term we can transform 7 — go(r), in the second we use 2W (1 — 2§) < C§?
for0<5<%. We get

/|ng0|2d£1§4/ ()P dr + Colf(1—26) — 1 — 0 as 6 0.
R g " (1-25)

This follows from the continuity of f and § € L*(R). For the second derivatives we have

1
/|// 7//| d,Cl /|G6 C]O //(qo)|2|q6|2 d£1:2/0 |G:S’7G//|2 /72Wd£1

/ / 712
FINV2W + ?K "2w — \f/% Vow dct
2
1 ’zw Fl+ W —2W " — fW!
=2 / N dct.
0

We plug in (6.3.41)-(6.3.42) and afterwards (3) from Lemma 6.3.8 which results in

/|// 71/’2 dﬁl

2/1 “X& — 1 2W "+ f'W'] + 4xX5 W + [2X5W + WG] [f — sgn]
o V2W
< 6/1 1= xo’|f —Td[* + 8[x5G'PW + (4xgW|* + 2/W'x51*)If — 1
- Ji-2s V2w
Now we use |G'| < C, x5 < &, |x¥| < 62’ W'(r) = —4ry/W(r), W(1 —26) < C6? and

get
/ a5 —a5)” ac’
R

<C(X)/1i%<W+5252 (5453+7«25 )f()—1|2>dr

2
|

act.

L) P
<C dr + C(x) (0 +2|f(1 —26) — 1]*).
<ot [ s ar o (o4 2170 - 20) - 1F)
Owing to the continuity of f the second term vanishes for § — 0. It remains to prove
that the integral goes to 0 as well. We can do so by transforming the expressions back as
we did for the other integral as well. Since g € L*(R) we get

1 2 00
/ () ’”‘d:/ APdct —0 as 50
1-25 /2W(r) 4y ' (1-20)
From the H!(R)-convergence of g, it follows that o5 — o as § — 0. O
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Owing to the cut-off and the uniform convergence of G we can consider f5(u.) instead of
f'(ue). Similar to ¥, from Chapter 5 we introduce a modified diffuse area measure £, ;.
Here the modification is achieved using G instead of a PDE.

Definition 6.3.11 (Modified diffuse area measures).
Let u. € L*(0,T; HY(Q)). We define fore >0, t € (0,T), and 0 < < 3
Bls= ( G5 (ue) | + €| G (ue Vu5‘2>£"|_§2 and Bes=L'® (BL5)teor)- (6.3.44)

We can extend the compactness properties of (pue)eso and (pf)e>0 t0 (Bz,5)e>0 and (ﬁ§75)5>0.

Lemma 6.3.12 (Compactness of the modified diffuse area measures).
Let u. € L*(0,T; H3(R)), 0 < 6 < 3, and t € (0,T) then there exists C(5) > 0, such that
for all € > 0 we have

L5(Q) < CO)(Q). (6.3.45)

Proof. Recall that G5(u:) = f5(us)/2W (u.) from Definition 6.3.9. Furthermore we have
1 f5llcomys IG5 [l cory < C(0) by Lemma 6.3.10. Tt follows

50 = [ (ZIG et D + £V G st )) L
= [ (23t NPV (et ) + |Gt ) Pe Vet ) ac”
<) [ (51Vustt. ) + 2Wue(t, ) 4L” = COmLD). =

Next we want to calculate the weak*-limit of 52’5. As in Chapter 5 we use a blow-up
argument. The result is essential for the existence proof of the generalized normal velocity.

Theorem 6.3.13 (Blow-up argument).
Let (ue)eso in L2(0,T; H3(2)), 0 < 8 < 3, t € (0,T), and any subsequence € — 0 (possibly
depending on t) such that (6.3.19), (6.3.25), and

lim sup £%(Q) < oo (6.3.46)

e—0

are satisfied. Then for all 0 < § < % and the whole subsequence € — 0 it holds
w1
L Uﬂf in CYQ), (6.3.47)
[
with o5 > 0 from (6.3.40).
The proof for the first claim is done throughout Section 6.4.

This result enables us to prove convergence for (5 5)e>0-

Proposition 6.3.14.
There exists a subsequence ¢ — 0 such that (6.3.19) and (6.3.25) hold for almost all
€ (0,T) and such that

w1
Bes == —p in C%([0,T) x Q). (6.3.48)
[
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Proof. First we restrict ourselves to a subsequence ¢ — 0 such that (6.3.19) and (6.3.25)
hold for almost all ¢ € (0,7"). For € > 0, k € N, we define the sets

By = {t€(0,T) | K (Q) > k}. (6.3.49)

We then obtain from (6.3.13) that
T
A > / KL(Q)dt > LY(B. gk (6.3.50)
0

Next we define the Radon-measures B;(;’ & by

t for t € (0,7)\ Be .,
Bioy = { 0, ¢ 0.1)\B. (6.3.51)
oM ort € Bey.
Theorem 6.3.13 yields for any subsequence ¢; — 0 (j — oo) with
limsup x% (92) < oo
j—00 J
that
w1 .
Z_:jj’(; — U—,ut as j—oo in CY(Q). (6.3.52)
1)

By (6.3.51), (6.3.52) we therefore obtain for any 7 € C2([0,T) x Q) with n > 0, k € N
and almost all ¢ € (0,7)

1
(n(t, ')’5;6,k>cg(ﬂ)/ — ;5<n(t’ ')7“t>02(ﬂ)’ as € — 0. (6.3.53)

Furthermore, (6.3.45) yields

1
|<77( ) Be ék co(Q | - ( — XBe (t))<77(t7 ')7 |ﬁ§,6|>cg(g)/ + O_i(sXBs,k (t)<77(t’ ')’ |Mt|>cg(ﬂ)
< O(6. ) 0l oy (6.3.54)

The Dominated Convergence Theorem, (6.3.53), and (6.3.54) imply

T
/0 (1t ), B 51 oy A — — / (0t ) 1Yoy At a5 €= 0. (6.3.55)

Further we obtain that

T
/ (n(t,-), BLs) co(Q / (n(t,)Bes) coy 4
0

/ng‘n 56_7M>‘d
O [, {0

For k € N fixed we deduce from (6.3.13) (6.3.50), (6.3.56) that

IN
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T T
1
. t L Nt
lim sup /0 (n(t;-), Bes) ooy At o ) (n(t, ), 1) oy At
T T
‘ 1 C(,A,n)
t t 9 41y
< g% /[) <77(t7 ')7 ﬁ5,67k>og(g)/ dt — ;5 ] <77(t7 ')7 o >C§(Q)' dt| + T
(6.3.57)
By (6.3.55) and since k € N was arbitrary this proves the Proposition. O

Similar to Lemma 5.5.1 we want to ignore certain terms from the product rule in the
limit € — 0. This is achieved in the following lemma.

Lemma 6.3.15.

Let (us)e=0 be a sequence in L?(0,T; H3(2)), let ¢ € C2([0,T) x Q) and 7 € (0,T). If
either of the limits in the following identity exists, the other limit exists as well and we
have

lim (§|¢G5(u5)|2 + &V oG (ue)] |2) acrtt (6.3.58)

e—0 Q

e—0

1
= lim [ [2(Z|Gh(ue)? + €| Gh (u) Ve |*) L.
Qr €

Proof. Since supp(¢) € Qr we can find a bounded and open set with C'-boundary
between supp(¢) and Qp such that we can do a partial integration. We calculate

| E9G; P + Lo ) ac™!
Q €

.

= /Q (c1G5(ue) V6 + 6G3 (ue) Ve * + érws(ua)r?) et

.

:/Q (elG5(ua) Vol + EV[Gg(uE)Q].vW] + &6 G (ue) Ve | + %|¢Gf5(u5)|2) dcntl.,

-

The claim is that the first and second term in ( - ) vanish as e — 0in L'(£2;). We estimate
with a partial integration and the boundedness of G’

| / (G (e Vol + 3 VIGs ()] - V) den
Qr

=| / G5 (ue) P (|V9[* = SA@) AL < 06,6, 2,). T
Qr 2

To show that V from Lemma 6.3.7 is a De Giorgi type varifold solution for rescaled mean
curvature flow we mainly have to establish the existence of a generalized mean curvature
vector H , the existence of a generalized normal velocity V and the motion law which
connects H with V. For the existence of a generalized mean curvature vector we can
use the results from Theorem 5.2.3. The following theorem proves the existence of a
generalized normal velocity.
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Theorem 6.3.16 (Existence of generalized normal velocity).
Let Assumptions 6.2.1 hold, we use the Notations from Lemma 6.8.7. Then there exists
Ve L0, T; L*(Q, ') such that for all € C2([0,T) x Q) and a.e. 7 € (0,T)

o

n+1 n n
5 waoacr —/Q Vo du / e —2/u0¢(o, )L™, (6.3.59)

For all T € (0,T] the velocity V can be estimated by

1 2 .
U/QT [VI" dp < lim inf <€A53tus,8tue>L2(0’T;H1(Q))/. (6.3.60)

In addition we have w € BV (Qr) and Owu is a finite Radon measure on Qp. We have for
all 7 € (0,T) and all ¢ € C?(Q;)

—CO/ qbdc’?tu:/ Véd. (6.3.61)
2 Jo, Q,

Proof. Let ¢ € C2([0,T) x Q). First we prove that for a.e. 7 € (0,T) we have

Co nt+l _ Co . . n_ . n
20 Jo. udip dL 2O_/qu(T, Ju(T,-) dL 20/9@1)(0, Jup dL

— %i_r)r(l) lim (¢G5 (ue), Opue) (6.3.62)

L2(0,7;HY ()"

Let 7 € (0,T7). We start by using the auxiliary function G, u(t,-) € BV (€; {£1}) for
€ (0,7), &£ = G(1), and that G is odd

) 20

D udpdLntt = / G(u)0yp AL,
20 Ja, Q,

Next we use G5 — G in CP(R) by Lemma 6.3.10 and get

G(u)dpp AL = lim / Gs(u)0yp AL,
Q. 0—0 Q.

Applying that u. — u a.e. in Qr, G5 € CP(R), and the Dominated Convergence
Theorem we obtain that

. n+1l __ n+1
%1_%/% Gs(u)oyp dL %1_%;1;% o G(ug)0ip dL

We have lim; ,ou-(t,") = wup. a.e. in Q by (6.3.16), Gs € C’l}(R) and thus
limy—0 Gs(uc(t, ) = Gs(uoe) a.e. in Q. Also u. € HY(0,T; HY(2)") N C°([0, T); H())
and G5 € CZ(R) imply Gs(u:) € H(0,T; HX(Q)) N C°([0, T]; L>=(£)) such that

/ Gs(ue)0pp AL = /qb NGs(ue(r,-)) dL™ — /¢ Gs(uge) dL™
¢7 atGé(uz-:>>L2(0 T HL(Q))
/<z> )Gis(ue(r, ) AL — /<z> )Cs(uoz) AL”

)

¢G5(ue) 8tU€>L2(077_;H1(Q ’
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For the time-independent integrals we use (6.3.17), (6.3.18) and get for a.e. 7 € (0,7)

lim lim ( /Q 6, )Gs(uc(r,)) dL” - /Q 6(0,)Gs(uo,.) cw")

6—0e—0

6—0

/ é(r ) de” — / (0, )G(up) AL
:%/Qw,.) ydLn - /¢ Yup AL,

We conclude (6.3.62). In the next step we estimate the double limit. Therefor we apply
Id = (—£2A +1d).A. and get

<¢G6 Us atus>L2(0 T H(Q)) <-A atua ( 52A + Id)QZ)GS(Us)>L2(07T;H1(Q))/

_ / (S2VADpue - V [9G) ()] + 6Ch(ue) Ay ) AL,
Qr

= lim </ ¢(7_> ')G5(U(T> )) dL" — / (Z)(O? )Gé(u()) dﬁn)

We use the Cauchy-Schwarz estimate for the H'(Q) scalar product. We get

/ (2VADpue - ¥ [6G) (2] + 6Gh(ue) Ay ) AL
Qr

<

/ GWG%(UE)\Q + €|V [¢G(ue)] ]2) drnt!

-
1
2

: / 5(\A€8tu€|2+€2’VA56tu5|2) dﬁ”“]
Qr

|—=

2

1
= [ /Q (ZloG5(ue) + 2|V [6G5(ue)][) dﬁ”“<aAeatua7atu€>L2(ovT;Hl(m),]

We show that the first factor on the right-hand side is convergent as € — 0. We get from
Lemma 6.3.15

tim [ (216G (u)l? + €V [6Gh(ue)] ) dm

e—0 Q

=lim [ |¢? ( (G (ue) + €| Gy (ue) Ve [*) AL+t = lim/ 162 dBe.s
- e—0 Q.,.

e—0 0

where (. is the Radon measure introduced in (6.3.44). In the next step we use the
compactness result for (f; 5)->0. We have by Proposition 6.3.14

. 1
lim / 6P dBes = — / 6P dp.
e—0 Q‘r 0'(5 Q‘r

, 1 2\ 1o 1
lim | (216G (ue)l + ¢V [6Gh(uo)][*) 4L < o 18z -

e—0 0

Thus we get
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We conclude using g5 — 0 as § — 0

lim lim (pG(u:), Opue)

5—0e—0 L2(0,7;HL(Q))/ (6.3.63)

1.
< ”¢HL2(Q7_) \/U llgélf <5~A58tu57 atu5>L2(0,T;H1(Q))’

The right-hand side is finite because of the PDE (6.1.1) and (6.3.13). By (6.3.63) the
linear mapping L : (C’g([O,T) xQ), || - ”LQ(QT’M)) — R with

L(¢) = o lim lim (¢G%(u.), Oyue)

550 e—0 L2(0,T;H(Q)) (6.3.64)

is bounded. Owing to the Hahn-Banach Theorem we can extend this mapping, i.e. there
exists L € L?(Q7, 1)’ such that

L:L*Qp,p) — R with ||L]|z2.y = |LIl and  Llczqoryxa) = L. (6.3.65)

By Riesz’s Representation Theorem for Hilbert spaces there exists a unique V € L?(Qr)

with [[V[|22(p0) = [l 2@y such that for all v € L?(Qr) we have

Lv = Vudu.
Qp

In particular we have for all ¢ € C2([0,T) x ) that

o lim lim (¢G5 (ue), Ortie) 120 a1 (0 = L(¢)=L(¢)= | Vodpu. (6.3.66)

6—0e—0 Or

Combining this with (6.3.62) yields (6.3.68).

We have by (6.3.63)

Wizanm = Ll=  suwp  |[L(¢)] < \/oliminf Az, dyu e
L2(Q,p) eC2((0.1) %) e (eAOpue 6>L2(0,T,Hl(9))
H¢||L2(QT)§1

Squaring and rearranging yields (6.3.60).

By (6.3.62) and (6.3.63) we conclude that for all ¢ € C2(€;) (so no boundary integrals
at t =0 or t = 7) we have

< C(A,7,0)l1llcoge,)- (6.3.67)

/ udpp AL
Q-

Since we already knew wu(t,-) € BV(Q) from the Modica-Mortola Theorem 2.4.2 it
follows that w € BV (€2;). Now we also have this regularity with respect to time, and
Osu is a finite Radon measure on €2,. The measure a priori depends on 7. But since
for all 0 < 71 < 70 < T we have C?([0,71) x Q) — C?([0,72) x Q) the Radon measure
Opu € C%Qr)" is well-defined.
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By Theorem 2.2.8 we deduce that for all ¢ € C2([0,T) x Q)

€0

2 ) udy L™ + 020/Q¢(0, Yu(0,-) L™ — 020/Q¢(T,-)u(r,.) acn = —020/Q ¢ ddyu.
(6.3.68)

Here the pointwise evaluations u(0,-) and u(7,-) are traces in the sense of the Trace
Theorem. Combining this with (6.3.68) shows that the initial data ug is attained in the
sense of the Trace Theorem and that for a.e. 7 € (0,7") the function u € BV (Qr) attains
the value u(r,-) in the sense of the Trace Theorem.

Considering test functions ¢ € C2(£2;) proves (6.3.61).
O

Note that in the very first step of the proof we can use Z instead of G and apply

9y = Z(u). While we would have to deal with the term [, €[ Z” (ue) Vue[* AL it might

work as well. Now the stage is set for the major theorem of this Chapter where we prove
that PV is a De Giorgi type varifold solution for rescaled mean curvature flow as in
Definition 2.5.3.

Theorem 6.3.17 (De Giorgi type varifold solution for rescaled mean curvature flow).

Let the Assumptions 6.2.1 hold and assume ®V is the family of varifolds constructed in
Lemma 6.3.7. Then ®V is a De Giorgi type varifold solution for rescaled mean curvature
flow with initial data (V°,ug). The rescaling parameter is given by o > 0 from (6.3.40).

Proof. From Lemma 6.3.7 we already know that ®V = L' ® (|V"),co ) and that the
measurability condition from Definition 2.5.3 is satisfied for ®V". We show the conditions
(a)-(d) from Definition 2.5.3. Firstly (a) follows from Theorem 6.3.16.

For (b) let n € CO(;R™) and ¢ € C2[0,T). We consider (6.3.37) for 7, multiply by
and integrate in time. We obtain

T
Y(t)Dn(x) : (Id —s ® s) d®V (t,z,5) = / W(n, sV dt = — Y - Hdp.
0 Qr
®Gn-1(Qr)

Since C?[0,T) ® C2(Q;R") is dense in C2([0,T) x Q;R™) (b) follows.

For (c) we use that (6.3.15) holds for a.e. 7 € (0,7) and let € C2(f) such that 0 <7 < 1.
We estimate as a preparation

e or o " -,
lim inf p2 () > Hm inf(n, uZ) = (0, 1)
We take the supremum over all n € C2(2) with 0 <7 < 1 and obtain
liminf pl () > u" (). (6.3.69)
e—0
For . we estimate with Fatou’s Lemma

liminf k. (2;) = lim inf/ KE(Q) dt > / lim inf &£ () dt. (6.3.70)

e—0 e—>
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Let ¢t € (0,T) such that (6.3.14), (6.3.19), and (6.3.29) hold up to a possibly ¢-dependent
subsequence, which is true for a.e. t € (0,7). Then we can apply Corollary 5.2.6 and get
that

.. = 12
hran_}glf/{g(ﬁ) > O‘/Q |Hy|” dpt.
We conclude that

liminf k. (2;) > O'/ |ﬁt|2d,u. (6.3.71)
e—0

T

With these results we can prove (c). We rewrite (6.1.6)

- 1 1
e (Q) + 555(97) + §<5-AeatU57 atus>L2(0’T;H1(Q))/ = MS(Q)

We apply the limes inferior to both sides and apply (6.3.69), (6.3.71), (6.3.60), and (6.2.2).
It follows that

- o - 9 1
@)+ 5 [P dus o [ vPaus @)
2 Qr 20 Qr
This proves (c).
For (d) we use that as ¢ — 0 we have Z(u.(t,-)) — Z(u(t,-)) for a.e. t € (0,T) as in

Lemma 6.2.6. In the following we use in addition (6.3.18), (6.3.34), and (6.3.24). Let
n € CHQ;R™) and ¢ € CL(0,T), we calculate

T
¢/ n- dVau(t,-)dt = —/ Dpuv -pdemtt = — | 9Zw)V -y demt?
Q Qr 2 Qr

— —lim/ VZ(u )V -npdLm
e—0 QT

We apply Theorem 8.3.7 and get

—lim/ wZ(ug)V-ndE"H:lin%/ Yn - Vuey/2W (ug) AL
T E—> QT

e—0 QO
1 . n+1
= 21_1}%)/% Un - ve|Vue|/2W (ug) AL

We have
|Vue|\/2W (ue) ‘VUE + W(ug)
2
- <\/Q|Vug| - \/€W(ug)) .

This yields
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Yn - dVu(t,-)dt = hm YN - Ve dpte
. UL
_ /QT n - v, (\/?Vugl — iW(uE)>2d£n+1].

In the next step we show

2
lim/ n - Vg([‘Vug\—\/ ) dcrtt =o.
e—0

As an auxiliary identity we calculate for a,b > 0 that
(a—b)?=|a—blla—0b| <|a—Db|la+b| =|a*—b?.

We apply this with a = \/g|Vu€|, b= %(UE) and estimate

‘/ P - 1/E \/7|Vua|—1/ ) dcntt
S/ !wnl‘\[WuJ—

< W??!(JO(Q)/Q

= |[Ynllco@yy 1€1(Q21) — 0.

d£n+1

d£n+1

1
o Vel = W)

T

So far we have proven that
T
— 1/1/ n-dVu(t,-)dt = lim Yn - ve dpe.
0 QO e—0 QT
We can rewrite the first integral in terms of the oriented varifold V! and get

T
S [ avayd=tm [ wnsa®Vigns)
0 Q e—0

6BC:nfl(QT)

— / - 52V (-, 5)
OGr-1(Qr)

/ / n-sd®Vi(.,s).

EBGn 1

We localize in time and conclude (d).
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6.4 Proof of Theorem 6.3.13

By (6.3.19), (6.3.45), and Theorem 2.2.2 it follows that (5 )e>0 has a weak*-cluster
point in C2(Q). However we want to prove weak*-convergence of the entire sequence
for which the assumptions of Theorem 6.3.13 are satisfied. Assume that there exists a
subsequence which violates (6.3.47). Since the subsequence still satisfies (6.3.19) and
(6.3.45) we conclude by Theorem 2.2.2 that there exist a subsequence of the subsequence
(e — 0) and Bt € C(Q)' such that

s B in CoQ). (6.4.1)
In the following we consider this subsequence and prove 3§ = U%; ! which is a contradiction.

First we introduce the notations for the proof and reduce the claims without loss of
generality. As in Section 5.4 we use the concept of Lebesgue points and proceed similarly
with a blow-up.

Lemma 6.4.1 (Good points).

Assume (ug)e>o is a sequence in L*(0,T; H3(Q)) let Definition 6.3.1 hold. Let 0 < § < %
and assume that for t € (0,T) there exists a possibly t-dependent subsequence € — 0 such
that the conditions (6.3.15), (6.3.19), (6.3.26)-(6.3.29), (6.3.34), and (6.4.1) hold. Then
we have for p-a.e. x € Q (the exception set possibly depends on t, )

e By, (x) € Q for some py = po(z) > 0,

x s a pt-Lebesgue point of Dﬂtﬁg,

limsup p' " ut(B,(z)) < oo,

p—0

k' ({z}) =0,

the approximate tangent space T, exists,

there exist 0y(z) € N and Sy, € G(n,n — 1) such that Ty’ = coby(x)St s

Proof. Since () is open there exists pg : 2 — (0, 00) with By, ;) () € Q. We know from
from Lemma 6.3.12 and the Radon-Nikodym Theorem 8.2.5 that D, A% € L'(€, u') and
Bt = D, But. In particular pl-a.e. z € Q is a p'-Lebesgue point of D, B% by Theorem
8.3.5. Furthermore, we get from Corollary 6.3.4 that limsup, ,q p' " pu!(B,(z)) < oo for
all x € Q.

The fourth condition is true for a cocountable subset of Q) because ! is a finite Radon
measure on €. It follows that x’ can at most have a countable set of atoms.

By (6.3.15) the claims from Corollary 6.3.4 hold. Thus the fifth condition is satisfied by
pt-a.e. € Q because V! is a rectifiable (n — 1)-varifold and u' = cofyH" ' L T;. The
last point stems from the fact that %Vt is integral; see Theorem 6.3.7. O

In the following we fix a good point x € supp(u') and pg > 0 such that the properties in

Lemma 6.4.1 hold. Set ¢ := 6(x). In the following we consider the function ¢z ,(y) = 2%
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for p > 0 and y € R™. Recall also Cﬁfx and (p ;4 from Definition 2.2.19.

Without loss of generality we can assume z = 0 and S = Sy, = R" ! x {0} for the
proof of Theorem 6.3.13. In fact this is possible because ( shifts  to 0 anyways. The
assumption x = 0 translates into the simpler notation ¢, 4 pt instead of Co,z,# ut. We
write Cp#ut = {pyo’#,ut. We can assume S = R"~! x {0} without loss of generality by
using an orthogonal coordinate transformation. We write 6 := 6,(x).

Lemma 6.4.2.

Assume (ug)e>o is a sequence in L?(0,T; H3(S2)). Let 0 < § < 3 and assume that for
t € (0,T) the conditions (6.3.15), (6.3.19), (6.3.26)-(6.3.29), (6.3.34), and (6.4.1) hold.
Then there exist sequences (p;)jen and (£5)jen with 0 < p; < po for all j € N such that
asj%oowehaveforall0<5<%

g5 — 0, pj — 0, (6.4.2)

2

€j <
Sy, i, (6.4.3)

Py o +1

Py oyt 5 ol HPTILS i C(Buo(0))' (6.4.4)
PG B 5 > D BE0)coH"TIL S in C(Big(0))',  (6.4.5)
and for all j € N : méj(Bp(O)) < K'(Ba,(0)) + p;-‘_z for p;j < p < po. (6.4.6)

Proof. Let (p;)jen be a decreasing sequence with p; < pg and p; — 0 as j — oo. By the
definition of the approximate tangent space we have

pjl-_”gpﬁ#,ut s cfH™IL S in CY(By6(0)).
Since 0 is a pt-Lebesgue point of Duzﬁg we get by Lemma 8.2.7 that
;"o 85 = pj "oy Dyt Bi" == Dy B5(0)cobH* LS in CP(Big(0))'.

Using that the weak*-topology on bounded subsets of C?(B1(0))’ is metrizable, (6.3.19),
(6.4.1), and

1- 1- 1-
P nij,#Ni = Pj nCPj:#(MZ - Mt) +; ncﬂj,#”t
1— 1— 1-

Pj nCPj,#IB(;(s =P nij,# (/85,5 - 63) + p; ngpj,#ﬁg

we can choose a subsequence () en dependent on (p;);en such that (6.4.2)-(6.4.5) hold.
Finally by possibly lowering the value of €;, we obtain for all [ € Ny with 27 py > pj
fie, (By-1(0) < ' (B, (0)) + 7 < £ (By-tv1,,(0)) + o 2.
We deduce for any p; < p < pg and | € Ng such that p € (271,27 po)
KL, (Bp(0)) < KL (By1,,(0)) < &' (By-1,,(0)) + pf 72 < £'(Bay(0)) + pf 2.
Thus (6.4.6) holds as well. O
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The blow-up method will be applied only to the space variable while the time variable
remains the fixed ¢ which we chose at the start of the proof. We drop the time variable in
the notation.

Proposition 6.4.3 (Properties of the rescaled functions and measures).
Let the assumptions from Theorem 6.3.13 hold. We use the notations from the Lemmata
6.4.1 and 6.4.2. We set &j .= =L and define for x € B (0)

o]

Pj
ﬂgj (33‘) = Ug, (tv pjx)a Ij[éj (.CC) = ijEj (t7pjx)a
Vﬂg(l‘)
d e (z) = =2~ Vil 0 and ve (z) = Ise.
and Uz (x) Ve, (@) for Vg (r) #0 and 7z (z) =e1 else
Moreover we set
it = ( 2|V, ()] + =W (g, (t,-) ) £ L Buw (0), (6.4.7)
J 2 J gj J pj
Eie - 1 .
€ = (ZL|Vag, (t, ) = =W (az, (t,) ) £"L Bu (0), (6.4.8)
J 2 €j pj
1 ~
at, = = 2 L"L B (0), (6.4.9)
J 3
~ 1 - - - 2 n
Lo = <5|Gg(ua~j)‘2 + ;| VG (e, )| )L I_B%(O), (6.4.10)
J J
_ 1~ 2 . ~ 2\
RE = <%1H5j| + &;|VHg| )E I_B%?(O), (6.4.11)
and VY = b, © 72 € Vo1 (Bea 0)). (6.4.12)
Py
Then it holds
Ej =0 as j— oo, (6.4.13)
1 ~
—&; A, + gI/V’(ag].) =H: in B% (0), (6.4.14)
J J
and with j — oo we have
PY oyt = B s oML, (6.4.15)
Py "o BL, 5 = B 5~ o@Dy BE(O)YH LS, (6.4.16)
Gt 50, and RL 50 (6.4.17)

in C9(Bi6(0))’. Furthermore, there exist Vt € V,,_1(B5(0)) such that up to a subsequence
we have as j — 00

*

VIS5V in V1 (Bis(0)). (6.4.18)

Proof. The claims (6.4.13), (6.4.14), (6.4.15), and (6.4.17) have analogous proofs in the
proof of Proposition 6.4.3. For (6.4.16) we use (6.4.5) and calculate for any n € C2(B14(0))
that

163



1-n t
Pj <T]7 <pj,#ﬁ6j,5>02(316(0))/

1— t 1— t
= Pj n<€;%~777/85j,5>08(9)/ =P; n/ﬁ ° gpj dﬁsj,é
Q

()

—

1 2
(2165 e, 1.0 + TGy (1.2 ) da
Biep, (0) !

1
pi1()( H1Giue 1 )+, VGt (. pyo ) i
J

I
—

BlG(O

=

Il
—

1 €5 2
() (1G5, (. py) E + 21, VG s, (0 py)? )
Pj J

8y
oy
o
~

(=]
=

1 B B 5 2 ~
= n(x) (5j|Gfs(uéj)!2 +&|VGj(ig;)| ) dz = (n, BE, 5) co(Bis(0)) -
Big 0)

—~

The claim (6.4.18) follows from
IVZ 11(B15(0)) = it (B15(0)) < C for all j € N
because (,&éj )jen is weakly*-convergent in C?(Bi6(0))’ and Theorem 2.2.2. O

In order to prove Theorem 6.3.13 it is therefore sufficient to prove the following statement
and apply it with €2, (uc,);jen replaced with Bg(0), (i, )jen (the rescaled functions and
measures also satisfy the assumptions of Theorem 6.3.13).

Proposition 6.4.4.

Let (ug)eso as in Theorem 6.3.13 with B4(0) € Q. Consider Radon measures
pb, &L ok, v, Bl s € C2(Q) with (6.3.2)-(6.3.5) and (6.3.44). Consider additionally vari-
folds VI € V,,_1(Q) with (6.3.10), a subsequence ¢ — 0, limit measures p', o, k", 8%, and
a limit varifold V' such that (6.3.19), (6.3.26), (6.3.27), (6.3.29), (6.3.34), and (6.4.1)
hold on B4(0). In addition, assume that

pt=coH" 'L S  for some OeN, ScG(n,n—1), and o =0=r"
Then

holds.

We prepare the proof of Proposition 6.4.4 with the following generalization of Proposition
5.5 in [RS06].

Proposition 6.4.5.

For all 7,~,6 € (0,1) and A > 0 there exist w = w(d,7,v,A) >0 and L = L(vy,7,9) > 1
such that the following holds: Let the assumptions from Proposition 6.4.4 be satisfied with
Q = By1:(0) and further assume

lus(0)] <1 -, (6.4.19)

164



1€L|(Baz:(0)) +/ e|Vue*\/1 — [ven|? dL™ < w(4Le)™

B4Ls(0)

with Ve = €, - Ve and

(4Le)" ",

pit(Bare(0)) < A
A(4Le)" 3.

KL (Bare(0))

IAIN

Then we also have, writing (0,s) € R"™1 x R

lue(0,8)] > 1— % for all Le < |s

1

WME(BLE(O)) — Cp

Le 1 o
/Ls EW(UE(O’ s))ds — 5}
2
‘/ \G(; (ue) | + | VG (us)| ) — mW(“€)> (0, s)ds

Here wy, is defined by L™(B1(0)) = wy, for m € N.

<3Le,

(6.4.20)

(6.4.21)
(6.4.22)

(6.4.23)

(6.4.24)

(6.4.25)

(6.4.26)

Proof. We follow the proof of Proposition 5.5 in [RS06]. From it follows the existence of
w, L satisfying (6.4.23)-(6.4.25). In the following we possibly lower the value of w and

increase the value of L, which maintains (6.4.23)-(6.4.25).

We prove in the following that we can assume € = 1 without loss of generality. In fact
since ¢ is fixed, by rescaling x — ez and defining u(z) = u(ex) for x € B, (0) we prove
the statements independent of €. For the claims (6.4.23)-(6.4.25) this has already been
done in [RS06], we prove it for the remaining expression in (6.4.26)

Le )
/ (( |G (ue) > + ¢| G (ue Vu5]2> - W(u5)>(0,s) ds
—Le [SIop)

= /_Ij; ((EIGS(uE)\Q + é!Gﬁs'(ug)Vugﬁ _ &ZW(UED)(O,&S)E ds

= /LL ((!Gi;(u)\2 + |Gg(u)vu|2) - ;W(u))(o, s)ds.

We recall that by Lemma 4.1.2 and the definitions of ¢y, o in Assumptions 4.1.1 we have

* |gol <1 and g5 >0,

o lim g¢o(z) = +£1,

z—+oo

1
o [l act = [ wia)ac! -
R R

+ [ (163 + I3 ) ) ac' =

€0

g5
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For a given a € R we define
Ga(s) = q(s+a) and Qu(x) :=qu(x,) for seR, x €R"

and claim that we can choose L(7,d) sufficiently large such that: If

lgo(a)| <1 -,
then
1Qa(0,8)] > 1— g for all L <|s| <3L, (6.4.27)
[ (GIVQP+wQn ) act -l < 2 (6.4.28)
w1 L Jp o \20 " ¢ =g -
L
|/ W(Qa(0,5)) ds — 2| < 220 (6.4.29)
r 2|=8
L ’ 2 1 712 1 €0 Y
| (165a)P +1G3aa?) act - 2| < . (6.4.30)
—L o) 4

The first three properties are guaranteed by [RS06]. For the fourth identity we use
lgo(a)| <1 — 7, thus |a| < gy ' (1 —7) and conclude

&
(1G5 () ? + 1G5 (a0)a?) dL — 2.

L—a
a gs

L

| (163 + Ghad, ) act = [
L —L—
Since we have a uniform bound on |a| only dependent on 7 we can choose L(7,6) > 1
independent from a such that (6.4.30) holds.

Since H is bounded in H*(By(0)) by (6.4.22) we conclude by inner elliptic regularity
theory similar as in [RS06]

ull i3 (B, 0)) < C(A,L). (6.4.31)

2

We proceed by a contradiction argument, adapting [RS06]. Assume that the claim is
wrong, then there exists a sequence (ug)reny with wy — 0 as k — oo and for any k € N
there exist functions uyg, Uy, Hy satisfying the assumptions of Proposition 6.4.4 with € = 1,
) = By1,(0) and satisfying the properties (6.4.19)-(6.4.22) but violating (6.4.26).

Because of (6.4.31) there exists u € H3(Bsz(0)) such that up to a subsequence we have
as k — oo

up > u in H3(Bsp(0)). (6.4.32)
By the compact Sobolev embedding H?(Bs,(0)) <» C(Bs1(0)) as n < 3 hence
up — v and Vugp — Vu uniformly in  Bsg(0). (6.4.33)
As in the proof of Proposition 5.5 in [RS06], writing = = (y,5) € R"™! x R we get

u(y,s) =up(s) forall (y,s)e€ Bsr(0),
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where ug = +¢s, with sg determined by w(0). Since a reflection (y, x,,) — (y, —x,) does
neither affect the assumptions nor the conclusions of the proposition we can assume
uy = +qs, without loss of generality. By uniform convergence we have |u(0)] < 1—17
which implies that (6.4.30) is satisfied. We use that to prove (6.4.26) for large k; in fact
we have

’/LL((‘G%(W)P + |VGZS(Uk)|2) _ ;W(uk)>(0,5) ds

< / LL (1G5 () + [V Gsme) ) 0, ) ds = 2|+ |28 / LL ;W<uk><o,s> ds
L L
< [ (163t + 19630 P) 0.9 ds = [ (16500 + ]G5/ 0.5)ds
| [ (e weswP)o.9as - 2+ |9 [* 2w as
L L
4 / ) ;W(u)(o, 5)ds — / ) ;W(uk)(o,s) ds|. (6.4.34)

The second term on the right-hand side is estimated by (6.4.30), the third term by (6.4.29).
For the first term we use that G5 € C3(R) which implies |G5[?, |G%|? € CL(R) and thus
we can apply the Mean-Value Theorem and assuming [lug — ul|co(p,, o)) < 1 we get that

L
‘ / (1G5 (u)? = 1G5 () + |G§ (wr) Vur|* — |G5 () Vul*) (0, 5) ds

|/ |G () 2 — |G (u) | + |G (ur) Vg |* — |G (w) Vg |

+ 1G5 () Vur|* ~ |G5 (w)Vul*) (0, 5) ds

< ALlu, = ullor sy, 0)) (IG5GH lcom) + lwellcr (Ba ) IGHGS ooy + 1G5 B0 )
Since u, — wu in C'(B31(0)) there exists R > 0 such that ukllc1 (s (o)) < R for all
k € N. We choose kg € N such that for all k& > kg we have

i
6L([|G5G com) + RIGHGY llcomy + 1 GHlZom ) +

lue — ullcr @y <
We estimate the last term on the right-hand side of (6.4.34) by

’/L 55V ()0, 5) ds—/LL ;W(uk)(o 5)ds

Then we choose N 3 k1 > kg such that it holds for all k > k; that

4L
< *HW/HCl ~rR)lur = ullco By, (0))-

lur — ullco(m,, () < 17
ST AL W | er— Ry
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By applying these estimates into (6.4.34) we get for all k > k; that

< -+

2

Y2 vyos Y
10, s T4

’/LL(QGS(W)P + |VG:S(Uk)|2> _ ;W(uk)>(0, s)ds

Thus for k£ > k; (6.4.26) holds, a contradiction to our assumption. O
In the following we prove 6.4.4 by proceeding similarly to the proof of Proposition 5.4.5.

Proof of Proposition 6.4.4. We assume that x = 0 is a good point in the sense of Lemma
6.4.1 and S = R"! x {0}. Let IT : R® — S be the orthogonal projection. We use the
representation z = (y,s) € R""! x R and denote by V' = V,, the horizontal gradient. By
Theorem 5.2.3 the limit of V' of V! is given by V! = cofH" 'L S ® §5. Convergence as
varifolds yields in particular

2
lim e|Vu(t, - 1—vepn(t,)2dL™ = 0.
tig [ ettt

By the proof of Proposition 5.2 in [RS06] for any « > 0 there exist wy,ep, 70 > 0, all

depending on -, d,t such that for any 0 < w < wg, any 0 < 7 < 79, and any 0 < € < g
the following two properties hold:

(1)
1
W (ue(t,)? AL <y and g ({ue(t, )] 2 1 -7} 0 Ba(0)) < 3.
{lue(t.)|=1-7}NBa(0)
(6.4.35)
(2) For the set
A={eeBi(0) | |u(ta)<1-7,

Ve<p<3: |§é|(BP($)) + / 5|Vu€(t, )|2 1- Vs,n(tv ')2 < wpn—l’

BP(I)
)

pe(Bi(0) \ A) < 4. (6.4.36)

N|=

and ol (B,(z)) <wp

€

we have

We now define a subset of A. with additional “good properties”,
ALi=A.n{z € Bi(0) | Vp € [6,3] : KL(By(x)) <wp? }.

We show that A. \ AL is “small”in a suitable sense. For all x € A\ AL there exists
pz € (0, 3) such that By, (z) C Bi(0). It follows that

A\ AL € U By, (x).
x€ANAL
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By Besicovitch’s covering Theorem there exist N € N only dependent on the dimension n
and sets D1, ..., Dy C B1(0) such that for all £ € {1,..., N} the collection

{sz(:c) EXC Dk}

is disjoint and

N
A\ AL C U U
k=1 z€Dj,
Since for all k € {1,..., N} the union U,cp, By, (z) € B1(0) is disjoint it follows that
€Dy €Dy €Dy,
The sum is convergent and thus Dy has to be at most countable. We conclude
N e —
ANALC U U Bo, () (6.4.37)
k=1 jeN

Since xy, j € A. \ AL we have for all k, j that there exists € < py ; < 3 such that

1
Ke(Bpy s (wh,3)) > wpi 5+

Since x, ; € A. we can use o (B,(zy, ;) < wp% for all e < p < 3 and (6.4.35). We deduce
from Proposition 4.7 in [RS06] that

1e(B,, (2r,)) < Cpp

We then obtain by (6.4.37) that

pe (A \ AL <czzp,w

k=1j€eN

£(Ba(0)) Y 122 (Bpy,; (r5)):

k=1jeN

For ¢ sufficiently small we conclude by using n € {2,3} and x! 2% 0 in CY9(Q)" with
B4(0) € Q that

pe(Ac\ AL) < WP NEE (B4 (0))2 D < 4, (6.4.38)

By the definition of A, for all z € AL we can apply Proposition 5.4 from [RS06] with
N =1 and deduce (6.4.21) (with 0 replaced by x). Together with the definition of AL we
obtain that we can apply Proposition 6.4.5 for all x € AL. By page 713 in [RS06] this
yields that for all y € S N B1(0) there exist N> K = K(y) < 6 and s1(y),...,sk(y) € R
with

K(y)

AN (y) C {y} x U (si(y) — Le, si(y) + Le).
=1
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We now fix an arbitrary n € C1(B;(0)) and deduce from ¢! AN 0, (6.4.36) and (6.3.45)

1
/ ndpls—— [ ndu
B1(0) 05 JB1(0)

/ st - [ (e ) de”

! gs§€

lim sup
e—0

< lim sup
e—0

+ CV”UHCO Bl(O))

(6.4.39)

for some C' > 0. Furthermore we obtain

/ gs§€

’ / ndﬁsa— W (ue(t, ) A"

K(y)

(y)+Le 1, ) ) 9 9
/ n(y: s) (Z1G5(ua)P + [ VG5 (ua)[* = ——W(ue) ) .y, 5) ds dy
si(y)—Le € g€

H(A’) =1

< 1y, s5)|
[ 25 s

+C  sup n(y,r) = n(y, )| (BLs(B1(0) + £L(B1(0)))
(y)s‘)u(yﬂ[)eLBl (0)
r—s|<lLe

siy)+le p - ) ) )
(Z1GH(ue) 2 + | VG (ua)|” = ——W(ue) ) (t,y, 5) dsdy
€ os§€

si(y)—Le

For the first term we apply (6.4.26). For the second term we use that n € C1(B1(0)) is
uniformly continuous, thus for ¢ sufficiently small we have for all s, with |r — s| < Le
that [n(y,r) —n(y, s)| <. We conclude that

‘ / ndﬂga— W ue(t, ) AL

AL gs§€

< Inllco(s, (o)) /H(A,)HvderWC(A)-

€

Hence, we conclude with (6.4.39) that

1
/ ndBls — — ndu
B1(0) 95 JB1(0)

Since v > 0 and n € C}(B1(0)) were arbitrary we deduce that

< C(A,n,0)y.

lim sup
e—0

1 1,
55—hmﬁsa—il_f)%;ﬂe—05 :

6.5 Brakke’s formulation

Owing to the results from Section 6.3 (Vt)te[()’T) satisfies Assumptions 2.5.1. Thus to
prove that (Vt)te[o,T) evolves by mean curvature flow in the sense of Brakke’s formulation
it is sufficient to prove (2.5.1).

Theorem 6.5.1 (Partial result for convergence towards mean curvature flow in the sense
of Brakke in the KK model).
Let Assumptions 6.2.1 hold and assume additionally that |us| < 1. Then there exists
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H, e L2(Q7, 13 R™) such that for all non-negative test functions ¢ € C1[0,T), n € C2(Q)
and for all 0 <t <ty <T

t2 t2 to
< 0/ @Z)/nIHtI dut dt+/ w/vn H JrHt)dM dt

to
/ /ndu dt.
t1

Where (u,ﬁ*) is characterized as

VHW' (us)\ w o
(Ne + fe; QVV(U(;;)) — (:U’a H*)

¢()/ndu

in the sense of weak measure-function pair convergence; see Definition 2.2.183.

If H, + ﬁt = Jﬁt then the family of varifolds (Vt)te[oj) constructed in Lemma 6.3.7
evolves by mean curvature flow in the sense of Brakke.

Proof. We begin by calculating a diffuse version of (2.5.1). Some calculations are similar
to those from the proof of Lemma 6.2.7. Let n € C?(Q), v € C}[0,T) be non-negative
and 0 < t; <ty < T be arbitrary.

t2 to

to
= [ ol ubcoyldt = [ ' (n, ul)coy AL

t1 t1 t1

+ /:2 w(<€77Vu€, V@tu5>

to )
1 1
_ w/<,’7’ IUE>CQ(Q)' dcL -+ / w<77HE — €V77 . Vusa atu€>H1(Q) dc*.

t1 t1

() (n, 1b) oy

H2(Q;R™)

Now we apply in the PDE (6.1.1) on the last term on the right-hand side.

)
1
/t1 w<nH€ —eVn - Ve, 8tu5>Hl(Q)/ dL

to 1
_ _: ] 2 1
_ /tl ¥( = ZnHe + V- Vue, (<A + Id)H€>H1(Q)I act.
Next we apply the weak definition of A and get a diffuse version of Brakke’s inequality.

to to

to
= @' (0, pl) ooy ALY — D (t)(n, kL) coqy dt (6.5.1)

t1 t1 t1

to to
- / " / eV - VH.H, dC" AL + / " / Vi - Vu H. dC" dL!
t1 Q t1 Q
(6.5.2)

() (n, pL) oy

to
— / (V- Vue, AHe) 1 AL (6.5.3)

t1
We examine each of the terms separately. For the term on the left-hand side of (6.5.1) we
have p! BN pt for all t € [0,T) by (6.3.19) and thus

to )

;%w(t)<n7ﬂi>cg(9)' =) (0, 1) eoy| - (6.5.4)

t1 t1
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Furthermore, from (6.3.14) we have the bound [¢/'(n, ut)coay | < 19llcrjo.myllnllco)A-
So we can apply the Dominated Convergence Theorem on the first term on the right-hand
side of (6.5.1) and get

to to

lim ¢/<777,LL£>CO(Q)/ dt = / W/ ndut dt. (6.5.5)
e—0 t1 ¢ t1 Q

For the second term on the right-hand side of (6.5.1) we use Fatou’s Lemma, (6.3.27),

and a|ﬁt‘2ut < k! from Corollary 6.3.4, which yield that

to to
. ¢ Vi t
lim sup l — Y{n, Ke)co(ay dt] =— hgnggf 1 Y{n, Ke)co(qy dt

e—0 t1 t
to

< - 3 Y lim inf (n, kg) ooy dt
to

= (0, &) coqy dt
1

T
< —0/ zp/ n| Hy|? dut dt. (6.5.6)
0 Q

In (6.2.23) we already estimated the first term on the right-hand side in (6.5.2) it vanishes
as e — 0, i.e.
to

lim [ @ / eVn-VH.H.dChdLl =0 (6.5.7)
Q

e—0 4

We use (6.3.32) on the second term on the right-hand side of (6.5.2) and get
to

to o
lim ¢/ H.V7-Vu, dCrdct :/ ¢/ H;-Vndutdct. (6.5.8)
Q t1 Q

e—0 t

For the remaining term in (6.5.3) we use the calculations from (6.2.24). As in (6.2.25) we
conclude that

[2)
e | (Vn:Vue, AH.) 1 o AL

i (@

to
=¢? / / (Vug -VH.An—Vn- -VH.Au. — 2Vu, - DQUVHE) dcrdct.
t1 Q
Since || < [[¥[|co(o,r) the error estimate from (6.2.26) holds for

to t2
/ 0 / e2VH, - D*npVu. dL"dLt  and / 0 / e2Vu, - VH.AndL" dLt.
t1 Q t1 Q
Thus we have

to to
W(eVn - Ve, AH:) 1y dct = lim w/ e2Vn - VH.Au. dL" dC'.
1 1 Q

— lim
e—0 (Q) e—0 ¢

t

We calculate further
to
/ 0 / e2Vn - VH.Au, dC™ dL?
t1 Q
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to 1
= —/ w/ eVn-VH, (HE - —W’(u5)> dcrdct
t1 Q €
to to
——[To [ v v+ [T [ v v acact
t1 Q t1 Q
The first term on the right-hand side vanishes as e — 0 because of (6.2.23). Thus we have

to
—lim [ {(e*Vn - Vu., AH.)

L= . / n+1
=0/ H () dL” = gll}n YVn-VHW (Ug) dL .

0 /o,
To deal with this term we write

VHW!(uc) 2

Vn - VHW (u.) dLnt! = Vn - W(us) dentt.
YV € (us) QT¢ n %W(ua) - (us)

Qr

This is well-defined because of W'(u.) = 0 whenever W (u.) = 0. We use the theory of
measure-function pairs by Hutchinson to show the convergence of this term. We have

2 w
gW(ua)E"Jrl LQr=p.—& 2 as e—0 in CYQr).

Furthermore we estimate with the assumption |u.| < 1 and W/(r)? = 16r*W (r) for r € R

that
I8

By Theorem 2.2.14 there exists H, € L2(Qp, ju; R") such that for all ¢ € CO(Qp; R™) we
have

, 2
VHW ) P2y ) qent — / 8e|VH.|*uZ 4L < 8A.
Qp

EW(UE)

£

e

¢-VHW (u)dc™' — | ¢-H,dp.
QT QT

This holds in particular for ¢ = ¢)Vn and thus we get

to

—lim [ {(e*Vn - Vu., AH.)

1_ g
b /. Q) dc = YVn - Hydp. (6.5.9)

Qp

Now we dealt with each of the terms from (6.5.1)-(6.5.3). We apply the limes superior onto
the identity and apply (6.5.4)-(6.5.9). Since the limsup is subadditive we can estimate
each of the terms separately and obtain that

T . t2 o 5
< —a/ ¢/ n\Ht|2d;ﬁdt+/ w/ V- (Ht+H*> dut dL!
0 Q t1 Q

t1
to
+/ wl/nd,utdt. O
t1 Q

to

(), 1) oy
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7 Summary and Outlook

We analyzed two new diffuse curvature models and modified the techniques and results
from the standard diffuse curvature model such that the could be applied to the new
models. In Chapter 3 we considered a gradient-free approximation of the Willmore energy
in the Amstutz-Van Goethem model and proved the I'-lim sup property by developing
techniques based on those presented in [BP93]. The biggest hurdle here was to prove that
an asymptotic expansion of u. leads to a similar expansion for 7. = (—2A + Id)lu..
We considered function classes with a suitable exponential control for that proof.
Unfortunately the I'-lim inf estimate remains open, we could not identify an ansatz for
an approximation in the sense of varifolds with suitable properties like it was done in
[RS06]. To prove the full '—convergence would be of high mathematical interest. We
also proved convergence of the gradient flow of the diffuse perimeter in the Amstutz-Van
Goethem model towards the mean curvature flow and of the diffuse Willmore energy
towards the Willmore flow respectively by asymptotic methods under strict assumptions.
For the proof we adapted methods from [LMO00] and [Wan08].

We also considered a higher order approximation of the Willmore energy in the
Karali-Katsoulakis model. =~ We proved I'-convergence towards a multiple of the
Willmore energy in smooth points and small dimensions. At first glance it seems
surprising that the higher order term contributes on the same scale as the standard
terms. However this makes sense as it is a consequence from the distribution as a
quasi one dimensional profile in the lim sup—construction. For the construction of the
recovery sequence in Chapter 4 we proceeded similarly as in the construction of the
recovery sequence in the AG model. The proof of the lim inf-estimate in Chapter 5
however was much more difficult. The proof builds on the results from [RS06]. We
introduced a modified diffuse area measure and the central part of our proof is to
identify its weak*-limit. Here we apply and adapt the blow up method from [HT00, RS06].

We also considered the convergence of the gradient flow of the standard diffuse perimeter
with respect to the inner product induced by (—2A + Id)~! towards a rescaled mean
curvature flow. In Chapter 4 we proved this in the asymptotic setting with strict
assumptions using similar strategies as in Chapter 3. The same is true for the convergence
of the gradient flow of the diffuse Willmore energy in the Karali-Katsoulakis model, we
proved convergence towards a rescaled Willmore flow under strict assumptions with the
methods from Chapter 3.

In Chapter 6 we firstly constructed weak solutions for the gradient flow of the
diffuse perimeter with respect to the metric induced by (—&?A + Id)~!, which was
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the original equation considered in [KKO07]. We gave suitable compactness results
and proved that there exists a limit varifold which satisfies the conditions for a
De Giorgi type solution for rescaled mean curvature flow. This is a new type of
varifold solutions introduced in [HL21]. We made use of another blowup in the
process. The proof has a similar structure as the blow up in Chapter 5 but there
are also differences as there is an additional parameter and all of the functions and
measures are time dependent. It remains open to prove that the limit varifold is a
Brakke solution to mean curvature flow. The challenge is to identify the limit of the
drift term, a partial result is given. This remains open and is a question for future research.

It would be interesting to generalize the different diffuse approximations of the perimeter
and the Willmore energy, as many of the techniques repeat themselves from the standard
approximation to the gradient-free approximations and the higher order approximation.
Examples for reoccurring patterns are the reduction to quasi-one dimensional functions
in the construction of the recovery sequences, the appearing of a Fredholm operator with
one dimensional kernel and the need for exponential decay of the profile functions.
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8 Appendix

8.1 Basic terms of differential geometry
We follow [Jos17] for the entire section.

Definition 8.1.1 (Hypersurface).

A topological space (I',T) with T' C R™ is called hypersurface, or (n — 1)-dimensional
submanifold, if it is a connected and compact Hausdorff space for which every point p € T’
has a neighborhood U = U, that is homeomorphic to an open subset ¥ of R, Such a
homeomorphism x = x, : U — X is called a (coordinate) chart. An atlas is a family

{Up: zp}per-
Remark.

e A point q € U, is determined by its image x,(q), hence they are often identified.
Often the index p is omitted and the components of x(q) € R"™1 are called local
coordinates of q.

e [t is customary to write the Fuclidean coordinates x = (x1,...,xn—1) and these then
are considered as local coordinates on I' when x : U — X is a chart.

Definition 8.1.2 (C™-regularity of hypersurfaces and functions).
An atlas on a hypersurface is called C™-differentiable, C™-regular or just C™-atlas for
m € NU {+oo} if all chart transitions

Tp o x;l cxg(UgNUp) — xp (U, N U)

have C™ regularity for UyNU, # 0. A C™-hypersurface is a hypersurface with a mazimal
C™-atlas. The chart transitions are diffeomorphisms.

Let T' be a C™-hypersurface. For k € N with k < m a function f : ' — R is called
k-times continuously differentiable on T or f € CF(I) if for all charts x : U — X the
function fox:U — X is differentiable in the classical sense, i.e., fox € CF(U; ).

Definition 8.1.3 (Orientation of hypersurfaces).
An atlas for a C™-hypersurface is called oriented if all chart transitions have positive
functional determinant. A C™-hypersurface is called orientable if it possesses an oriented

atlas. For an oriented hypersurface there exists a continuous normal, i.e., there exists
v e Colr;Sv 1),
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Definition 8.1.4 (Tangent space).
Let T be C™-hypersurface and p € I'. We define

T,I = {U ER"|Te>0 and c:(—e,e) — T with c(0) =0 and (0) = U}.
This is well-defined and in addition we get

T,I' = span ([8196_1} (2(p), .-+ [Op—127!] (x(p))) (8.1.1)

for each chart x of p. As usual we will denote X = 3>, Xje; for a vector X € Tpl" with
components X; and a vector basis {e;}; of TpX.

Definition 8.1.5 (Riemannian metric and Riemannian surface).

Let T be a hypersurface. A Riemannian metric is a function g which maps p € I' smoothly
onto a scalar product gy(-,-) on T,I'. We write g = (gp)per for the Riemannian metric.
(T, g) is called a Riemannian surface.

In local coordinates we can express the scalar product on T,I" with a positive definite and
symmetric matriz gj,(v) with coefficients that depend smoothly on x. This property is
independent from the choice of coordinates. Often the dependency on p is omitted in the
notation of g. Let v,w € T,I' with coordinates v = Z?;ll vje; and w = ?;11 wje; then
we have

n—1
wlw)r,r = Y vigrwy  and (ejler),r = gji-
jk=1
It is standard to denote the coefficients of the inverse matrix of g as upper indices
ik . -
9" = (g 1)jk~

As usual we define the induced norm for v € T,I'

[v]lz,r =/ (v|v)T,r
The standard surface measure on I' is defined by
pr = /gH" LT,
where /g = \/det(g) and H"~! is the (n — 1)-dimensional Hausdor[f measure.

Lemma 8.1.6 (Dircetional derivative).
Let T be a C*-hypersurface, p € T, U a neighborhood of p, and let X,Y € CY(U;R").
Then the directional derivative

Dy Y (p) = lim L2+ XP) = Y(p)

r—0 r
exists and is only dependent on the values of X,Y at p. In fact we have for any € > 0
and any Cl-curve v : (—e,e) — R™ with v(0) = p and v'(0) = X (p)

DAY (p)  tim YO =Y ()

r—0 T
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8.2 Radon measures

We follow [AFP00] until other sources are cited.

Definition 8.2.1 (Borel and Radon measure).

Let Q be a locally compact and separable metric space. We denote by B(2) its Borel
o-algebra. A positive measure on (2, B(2)) is called Borel measure. If a Borel measure has
the property that each compact set has finite measure, it is called a positive Radon measure.

Let m € N and assume that for every K € ) there exists a R™-valued measure pg on
(K,B(K)) such that if Ki,Ko € Q and A € B(K1) N B(K2) it holds pk,(A) = pr,(A).
Then the family (ug)keq s called a (R™-valued) Radon measure on Q and is denoted by .

If p: B(2) — R™ is a R™-valued measure then p is called a finite (R™-valued) Radon
measure on (2, B(S2)). Often it is referred to as a Radon measure on §Q.

Note that if m = 1 the R-valued measure is not necessarily non-negative. Also note that
real-valued positive Radon measures are Borel measures and that every finite Radon
measure is a Radon measure. Usually € will be an open set of R™.

Borel measures are regular as described by the next proposition.

Proposition 8.2.2 (Inner and Outer regularity of Borel measures).
Let Q be a locally compact and separable metric space, p a Borel measure on 2, and let
E CQ be p-measurable.

o If u is o-finite then
w(E) = sup{u(K) | K  E}.
o Assume that a sequence (£2;)jen of open sets in §) exists such that u(€);) < oo for
all j € N and Q = U ey 255 then

w(E) =inf{u(A) | EC A and A is open in }.

If Q CR™ and p is a Radon measure then both of the additional conditions are satisfied.

For every measure there exists the total variation measure, which counts every volume
non-negatively. We denote disjoint unions by .

Definition 8.2.3 (Total variation measure).
Let ) be a locally compact and separable metric space and u a R™-valued measure on €.
Then we define for all E € B(Q2)

|1l (E) i—sup{Z\ﬂ(Ej)! : E—UEJ}-

JEN JEN
If p is a finite R™-valued Radon measure on §) then it holds for all open sets A C Q
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The space of Radon measures can be represented as a dual space. Let € be a locally
compact and separable metric space and Y a normed vector space, then we consider the
function spaces

CYUQ;Y) == {f:Q— Y| f is continuous and supp(f) € Q}.

If Y = R we simply write C2(Q2) := C%(Q;R). Endowed with the supremum norm
|- llcoyy the space C%(Q;Y) is a normed vector space and we define

() = Co( )l iy ooy y),

which is a representation of the completion of (C2(;Y), | - [co,y)). Again we write
C(2) == CO%R). We will consider the space of Y-valued Radon measures and finite
Y-valued Radon measure as the dual spaces of C(Q;Y) and C§(£;Y) however therefore
we need to endow these spaces with suitable topologies. We consider CJ(Q;Y) with the
standard norm of uniform convergence || - [|co(q;y)). For CY%(Q;Y)" we need a topology
which acknowledges the structure of the functions with compact support. For all K € 2
we define the seminorm

pr: CAY) — Y, pr(f) = fleowy)-

Then we endow C?(Q;Y) with topology induced by the family of seminorms {pg } xecq,
we refer to it as the natural topology on CO(Q;Y). If not specified otherwise we will always
consider C?(;Y) with the natural topology, in particular the dual space C2(£2;Y) is the
space of all linear functionals on C%(Q;Y) that are continuous with respect to the natural
topology. This can be characterized by the following criterion: let L : C?(€;Y) — R be
linear, then L € C2(Q;Y) if and only if for all K € Q

sup {L(n) | n € COK;Y) and ||l ooy < 1} < oc.

Definition 8.2.4 (Absolute continuity of measures).
Let 2 CR"™ be open and p,v Borel measures on ). We say that v is absolute continuous
with respect to u, i.e. v < p if for all Borel sets A C Q we have p(A) =0 = v(A) = 0.

The following result can be found as Theorem 1.30 in Section 1.6 of [EG15].

Theorem 8.2.5 (Radon-Nikodym).

Let p,v € CO(R™) with v < u. Then there exists f € L'(R™; 1) such that
v=fu.

We call D,v := f the measure derivative.

The theorem remains true if u,v € C(2)’ for some open set Q C R™. We get this by
defining i € CY(R")" with ji(A) :== u(Q2 N A) for all Borel sets A C R", same for v. If
v < i then we get 7 < i and thus 7 = fi as Radon measures on R" by Theorem 8.2.5.
It follows v = fu as Radon measures on {2 and thus D,v = D;v.

Lemma 8.2.6 (Absolute continuity of measures).
Let Qg C R™ be open and bounded, let u,9 be Radon measures on g with the property:
For all ¢ € C°(Qp) with ¢ > 0 we have

pdv < [ ¢dp.
Qo Qo
Then we get Y(U) < u(U) for all Borel-measurable U C Qq, in particular ¥ < p.
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Proof. Assume there is a Borel-measurable set U C Qg with u(U) < 9(U). Owing to the
inner regularity of Radon measures we find a compact set K C M such that

p(K) < 9(K).
We choose a test function ¢ € C2°(B1(0)) with 0 <1 <1 and fBl(O) 1 d¥ = 1. Define for
8 >0and z € R"

osta) = [ 3705 xw) (o) (321)

¢ has the properties 0 < ¢g < 1 and ¢g(z) — 0 as f — 0 if z ¢ K. Hence we get for
all z € Qg

lim sup g5 () < xxc(x)
B—0

For < dist(K, 0R2) we get g5 € C°(Qyp), fQo ¢ppdd = fQO Xk dv and thus

0
u() < 0(8) = [ a0 < [ gpd ™8 (o),
Q Qo
by dominated convergence which is a contradiction. Hence ¢ < p and ¥ < p. O

In the following we consider the function ¢, ; : R" — R" for p > 0 and z € R" with

y—x
p

Cpa (y) =

and the push-forward measure introduced in Definition 2.2.18.

Lemma 8.2.7.

Let 2 C R™ be open, pu a Radon measure on 2, and f € L*(Q, ). Let x € Q be a p-
Lebesgue point of f such that that there exists C'> 0 with limsup,_,q pl_",u(Bp(:r)) <C.
Then we have

lim 0!~ (F10) = (@) lim o " Coppn im CUBLO). (8:2.2)

Proof. Let x € Q be a p-Lebesgue point of f, we can assume x = 0 because (, , would
shift = to 0 anyways. Take n € C2(£2) with n(0) # 0, we can assume 7(0) = 1, otherwise
we can rescale 1. For R > 0 large enough we get supp(n) C Bg(0), we can assume R = 1,
because if not we could scale the variable p by the factor of R which does not affect p — 0.
Testing the measures gives

P M, o (f10)) (B, (0)y
= ﬂln/ ndpu(fr) = pl"/ nodl,- fdu
B1(0)

B,(0
— pl—n /
B,

[ . (L)1 anw) 0 [ Y (L)) = 70) duto)
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o 1-n 1-n y _
= f(0)p /Bl(o)ndép,#ﬂw /Bp(o)n(p>(f(y) f(0)) du(y)

= P Oy + 0 [ ) 0(2) 0w - £0) dulw)

p

P

This yields the desired result if we can show that the second term vanishes as p — 0. This
is true because of

< Inllooe*™ / F() — £(0)] du(y)

B, (0

‘ /Bp(O) pln”(i) (f(y) = f(0)) duly)

< Inlloay 9B, (0)) f ) — £O) du(y) — 0
<C By(0)

because 0 is a u-Lebesgue point of f. O

We used the notation f, fdu = ﬁ Jo fdpu.

8.3 Some results from analysis

Lemma 8.3.1 (Standard Aubin-Lions-Dubinskii Lemma).
Let X,Y, Z be Banach spaces with X, Z reflexive and

XSy 2z
The the embedding
L*0,T; X)N HY0,T; Z) — L*(0,T;Y)

is compact, meaning that if a sequence is bounded in both spaces on the left-hand side it
has a convergent subsequence in the space on the right-hand side.

Based on the standard result we can prove a specialized version.

Lemma 8.3.2 (Aubin-Lions-Dubinskii type embedding).
Let Q C R" be open and bounded with C'-boundary. For s € [1,3/2) the embedding

L*(0, T WHH(Q)) N HY (0, T; HA(Q)') — L*(0,T; L*(Q))
18 compact.

Proof. Given s € [1,3/2) we can choose 7,7 > 0 small such that
WhHQ) — WI=rH1(Q) S L3(Q) — H2(Q).

W=7 1(Q) has the advantage of being reflexive whereas W11(Q) is not. This also
makes the Bochner-space reflexive. After this setup it is sufficient to consider

L2(0, T; WM m(Q))y 0 HY0, T; H*(Q)') — L*(0,T; L*(Q)).
This embedding is compact owing to Lemma 8.3.1. O
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Remark. More versions of the Aubin-Lions-Dubinskii works [Aub63, Dub65] can be found
in [Stim87, CJL14, Moul6]. For the comfort of the reader we gave a proof based on a
standard version of the lemma.

Lemma 8.3.3 (Continuaicion of monotone functions).
Let D C R be dense and F': D — R decreasing. Then the function

F:R—R, F(z)=sup{F(y)|yeDn[z,00)}

is well-defined, decreasing, right-continuous with limits to the left and F|p = F.

Proof. We start by showing, that F(ai) is well-defined for z € R. Since D C R is dense
we can find £ € DN [z — 1,z). Since F' is decreasing we have

Yye DN (z,00): F(y) < F(€)€R.

So the supremum exists and is finite. Next we prove F' = F on D. Take any = € D and
z € DN[x,00) then we have

F(z) = sup{F(y) | y € DN [z,00)} > F(x) > F(2).
Now we take the supremum over z € D N [x,00) and get

F(x) > F(x) >sup{F(z) | z € DN[z,00)} = F(x).

Thus F(x) = F(x). For the monotonicity take any z,y € R with < y. Then we can
find z € DN (z,y). Thus we get

F(x) =sup{F(a) | a € DN[z,00)} o sup{F(a) | a € DN[z,2)} > F(z) > F(b)

for all b € DN [z,00), in particular for all b € D N [y, 00). Taking the supremum over
be DN ly,o0) we get

F(z) > F(z) > sup{F(b) | be DN [z,00)} = F(z),

so F' is decreasing as well. We proceed to the right-continuity. Let z € R be arbitrary
and (x;);en a sequence in (z,00) with z; — 2 as j — oco. For a given k € N we can find
yr € D N (z,00) such that

F(e) 2 Flg) > Fla) - ¢

owing to the properties of the supremum. Since z; — z we find j; € N with
x < x5, < Y.

Since F' is decreasing we get

F(a) > Flej,) > Flu) = Flo) > Fla) — 1.

Thus we get

lim F(zj,) = F(z).

k—o00
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If (z;)jen is decreasing then (F'(x;))jen is decreasing and has a convergent subsequence,
forcing lim;_,o F'(z;) = F(x).

Assume not F(z) = limj_,o F'(x). Then there is 7 > 0 and a subsequence (F(z;,,))meN
such that

|F(xz) — F(zj,,)| > 7 forall meN.

We choose a decreasing subsequence (z;,, )qen thus F(z;,, ) is convergent towards F/(x)
by the previous argument, which is a contradiction. This shows that F' is right continuous.
The last step is to show that at every point # € R the limit lim, », F'(y) exists. Let
(zj)jen be a sequence in (—oo, ) with z; — 2 as j — co. Owing to the last argument
from the right-continuity proof it is sufficient to consider an increasing sequence. From
this we get

F(z) < F(zj41) < F(z;) forall j € N.

So (F(2j))jen is convergent. We still need to prove that the limit is independant from the
sequence (zj)jen. Let (wp)nen be another increasing sequence in (—oo, z) with w, — x.
Because of w;, ,/* z we can find n; € N such that z; < wy; and we find j, € N with
wp, < zj,. Since F' is decreasing we get

lim F(z;) > lim F(w,,) = nhﬂnolo F(wy,) > lim F(z;,) = lim F(z).

j—r00 j—o0 n—oo J—00
Thus the limit are the same and is independant from the chosen sequence. ]

Definition 8.3.4 (Lebesgue point).
Let Q C R™ be open, u a Borel measure on Q and f € L'(Q,p). = € Q is called a
u-Lebesgque point of f if

lim fdu= f(z).
x)

r—0 Br(

In the following we state the main result on Lebesgue points, which can be found as
Theorem 5.16 in [Magl2].

Theorem 8.3.5 (On Lebesgue points).
Let pu be a Radon measure on R™, p € [1,00), and f € L}, (R™, ). Then p-a.e. x € Q is
a p-Lebesgue point of f.

Theorem 8.3.6 (Gau’ Divergence Theorem).
Let  C R™ be open and bounded with C*-boundary and f € C1(Q;R™). Then we have

/V-udﬁ”:/ w-vdH* !
Q o0

where v denotes the outer normal of O€).

Theorem 8.3.7 (Theorem of Partial Integration).

Let Q CR"™ be open.

(i) Let Q be bounded with C'-boundary and let u,v € C'(Q). Then we have for all
jed{l,...,n}

/uﬁjv dﬁ”:/ uvv; d?—l”_l—/vﬁju dcr
Q l9) Q
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where v denotes the outer normal of O€).

(ii) Let u,¢ € CY(Q) and let supp(¢) € Q. Then we have for all j € {1,...,n}

/u3j¢d£”: —/ ¢8jud£n.
Q Q

The second claim follows from the first because we can find an open and bounded set U
with C'-boundary such that supp(¢) € U C Q.

Calculation of constants for the Amstutz-Van Goethem model

We consider W (z) :== (1 — 22)? for € R. We can calculate the constants for the

approximations and flow equations.

70172 r) /%W /Fdﬁl /\/WOflJri(W’Ofl)zdﬁl

(=11

/f\/mdﬁl / <1+;W”> W+~ (W’) act.

Now we need to plug in the concrete double-well potential and substitute x = sinh(6)
with @ := Arsinh(1) = log(1 + v/2)

1
0017 2@) = 5 /(O 1)(3952 +1)(1 - 2®)V1+ 22 da

2

—} sinh? — sinh?
- 2/(0a)(3 h2(0) + 1)(1 — sinh’(6)) d6

128 (4a + 19sinh(2a) + 7sinh(4a) — sinh(6a))

32(13\[+10g( +v2)).

Next we have
iR

/112 — T 1= N
HQOHLZ’(R) —/]R f’(f_l(%))

:/ / \/W-l- W’
(f/ L

1+1W~

2
dct

Now we need to plug in the concrete double-well potential and substitute x = sinh(0)

)9 2(1 — 22)y/1 + 22 2(1 — sinh?(6))(1 + sinh?(0))
||QO”L2(JR) = 2 dz = )
3zs +1 0.a 3sinh*(0) + 1

de.

)

We shorten the fraction by a factor of sinh®(#) and apply (coth?(x) — 1) sinh?(z) = 1

185



2(—L -~ —1 IS 1
sinh? (0 sinh2(9 sinh? (0
b2 = / ( (0) 3) ( ©) ) ©) 49

1
+ sinh®(6)

sinh?* ()
2 coth?(z)(coth?(z) — 2) =4~
_ / sinh®(6) do
(0,a)  coth®(8) — 3 coth?(6) + 2

Having prepared the substitution we can now transform w = coth(6)

2uw? (w? — 2) 2w? (w? — 2)
/112 _ -~ @@ =
ldollz2) = / w32 12" / (w—1(w+ 2?2 "

(V2,00) (V2,00)

B 16 5 5 1 1 .
- / (9(w2+2) TRw-1 WBw+1) 6w+1?  6w— 1)2> v

(V2,00)
8v/2 w 5 w—1 w >
_[ 9 arctan(\/i>+Blog‘w+1‘+3(w2_l)]f

= %(2\@% —5log(V2 — 1) — 3v2).
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‘Day 30: I might have a problem here. "
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