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Abstract
In this thesis we derive a higher order diffuse approximation of the Willmore energy from
contributions by Karali and Katsoulakis [J. Differential Equations, 2007], who studied a
diffuse approximation of mean curvature flow. We prove Γ–convergence in smooth limit
points for the sum of diffuse perimeter and the higher order diffuse Willmore energy in
dimensions 2 and 3.

Moreover, we prove the convergence on arbitrary time intervals towards weak solutions of
mean curvature flow.

We also consider a gradient-free diffuse approximation of the Willmore energy in the
sense of Γ–convergence which we derive from a gradient-free diffuse approximation of the
perimeter by Amstutz and Van Goethem [Interfaces Free Bound., 2012]. We prove the
lim sup–property for the Γ–convergence towards a multiple of the Willmore energy.

In addition, we consider L2-type gradient flows of both diffuse Willmore energies, and
give an asymptotic convergence result. Formally these constitute diffuse approximations
of mean curvature flow and Willmore flow. In a restricted class of diffuse phase-field
evolutions, we prove that these gradient flows convergence towards rescaled mean curvature
flow and rescaled Willmore flow, respectively.
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“To witness secrets sealed, one must endure the harshest punishment.”1

1quoted from a lore tablet in the Path of Pain in the video game Hollow Knight developed and
published by Team Cherry in 2017
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1 Introduction

The Willmore energy W(Γ) of a C2-hypersurface Γ ⊆ Rn with n ∈ N≥2 is defined as

W(Γ) :=
�

Γ
|H⃗|2 dHn−1. (1.1)

Here H⃗ denotes the mean curvature vector. Functionals like W have been investigated for
more than two centuries, in fact already Poisson [Poi14] in 1814 and Germain [Ger21] in
1821 have discussed curvature based energies. The name Willmore energy has been used
since the early 2000s as an acknowledgment of the contributions of Thomas Willmore
[Wil65, Wil93]. During the 20th century the Willmore energy has appeared in many
different important works such as [Tho24, GG29, Can70, Hel73].
The Willmore energy is closely related to the perimeter and its gradient flow. The
perimeter of a set E with smooth boundary can be defined as

P(E) := Hn−1(∂E).

The perimeter is connected to the mean curvature vector via

∇L2P = −H⃗. (1.2)

The mean curvature vector H⃗ points in the direction of the steepest area descent. Next
we consider the gradient flow induced by P, the mean curvature flow.

The mean curvature flow is one of the most prominent geometric flows and has been
studied extensively in the past decades. We consider an evolution of open sets (E(t))t∈(0,T )
with smooth boundaries Γt := ∂E(t). We say that the surfaces (Γt)t∈(0,T ) evolve by mean
curvature flow if for all t ∈ (0, T ) we have

V⃗(t) = H⃗t, (1.3)

where V(t) is the velocity of the evolution. This is well-described with the image that
the velocity of each point coincides with the direction of the steepest area descent. For
convex sets this results in a shrinking motion, giving rise to a singularity as the surface
shrinks to a single point.

The perimeter is decreasing along solutions of the mean curvature flow and we can quantify
this with the Willmore energy. We have

∂tP(E(t)) = −
�

Γt

H⃗t · V⃗(t) dHn−1 = −
�

Γt

∣∣H⃗t

∣∣2 dHn−1 = −W(Γt). (1.4)
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This is called the energy-dissipation. This relation can be used to define a weak formulation
of the mean curvature flow which we will discuss later.
In 1975 De Giorgi and Franzoni [DGF75] published a conjecture about a diffuse approxi-
mation of the perimeter in the sense of Γ–convergence; see Section 2.3. If Ω ⊆ Rn is the
ambient space with sufficient regularity the authors consider a version of the Van der
Waals-Cahn-Hilliard energy from physics

Pε(u) :=
�

Ω

(ε
2
∣∣∇u∣∣2 + 1

ε
W (u)

)
dLn, u ∈ H1(Ω)

where W is a suitable potential. Shortly after the conjecture was published, the papers
by Modica and Mortola from 1977 [MM77] and 1987 [Mod87] proved that

Pε
Γ(L1(Ω))−→ c0P as ε→ 0 with c0 :=

� 1

−1

√
2W dL1;

see Theorem 2.4.2. Since then many authors have conducted analysis based on the result
or in style of the result from Modica and Mortola, for instance [AB98, AVG12].

The Modica-Mortola Theorem establishes a diffuse approximation of the perimeter thus
it is only consequent to use (1.2) and consider −∇L2Pε = −ε∆u+ 1

εW
′(u) as a diffuse

mean curvature. This leads to possible diffuse approximations of other energies based on
the mean curvature (vector). The first to come up with possible diffuse approximations
based on this was De Giorgi. He posed several open questions in 1991, among them he
considered (see Conjecture 4 in [DG91]) the diffuse energy

WdG
ε (u) :=

�
Ω

[
1 +

∣∣∣− ε∆u+ 1
ε
W ′(u)

∣∣∣2](ε2 ∣∣∇u∣∣2 + 1
ε
W (u)

)
dLn. (1.5)

The second factor in (1.5) is the integrand of the diffuse perimeter, thus it is a natural
question to ask if these terms combined converge towards a linear combination of the
perimeter and the Willmore energy. In a recent paper [BFP22] the authors show that the
Γ(L1(Ω))–limit of WdG

ε in (1.5) is a multiple of the perimeter and that the Willmore
energy does not appear.

Another idea is to replicate the energy-dissipation for ε > 0. We have

∇L2Pε(u) = −ε∆u+ 1
ε
W ′(u)

and thus the gradient flow of Pε is described by the Allen-Cahn equation

−ε∂tuε = −ε∆uε + 1
ε
W ′(uε). (1.6)

Let uε be a solution to (1.6) with suitable boundary conditions, then we obtain that

∂tPε(uε) =
�

Ω

(
− ε∆uε + 1

ε
W ′(uε)

)
∂tuε dLn = −

�
Ω

1
ε

∣∣∣− ε∆uε + 1
ε
W ′(uε)

∣∣∣2 dLn.

(1.7)

A comparison with (1.4) suggests that the expression on the right-hand side could be a
diffuse Willmore energy. The first to consider this diffuse expression were Bellettini and
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Paolini who called this a modified version of this De Giorgi conjecture. They considered
the energy

Wε(u) :=
�

Ω

1
ε

∣∣∣− ε∆u+ 1
ε
W ′(u)

∣∣∣2 dLn. (1.8)

In [BP93] the authors prove that the modified functional suffices the lim sup–property of

Wε
Γ(L1(Ω))−→ c0W as ε→ 0.

The next major milestone was the Γ(L1) − lim inf estimate for the modified de Giorgi
approximation. In 2006 Röger and Schätzle proved in [RS06] the lim inf–estimate for

Pε +Wε
Γ(L1(Ω))−→ c0

(
P +W

)
in smooth points and low dimensions, i.e. n ∈ {2, 3}. This was done by incorporating
techniques from geometric measure theory which have already been used in other
publications such as [Ilm93] and a blow up inspired by [HT00].

In 2007 the paper [KK07] by Karali and Katsoulakis considered a combination of the
Allen-Cahn and the Cahn-Hilliard equation

−ε∂tu = (−ε2∆ + Id)
(
− ε∆u+ 1

ε
W ′(u)

)
. (1.9)

Given a family of surfaces evolving under mean curvature flow, the authors construct
a family of classical solutions to (1.9) which converge as ε → 0 towards the modified
indicator function of the original family which evolves by mean curvature flow. This may
seem surprising at first because it means that the higher order term contributes on the
same order as the terms from the Allen-Cahn equation. For the asymptotic expansion
(2.4.5) this can be explained by the fact that the factor ε2 cancels out the 1/ε terms from
the chain rule in the lowest order.

Since (1.9) is a diffuse version of mean curvature flow we consider its energy-dissipation
related to the diffuse perimeter. Let uε be a solution to (1.9) with suitable boundary
conditions, then setting Hε := −ε∆uε + 1

εW
′(uε) we have

∂tPε(uε) =
�

Ω

(
− ε∆uε + 1

ε
W ′(uε)

)
∂tuε dLn = −

�
Ω

(1
ε
|Hε|2 + ε

∣∣∇Hε

∣∣2) dLn. (1.10)

The comparison to (1.4) and (1.7) suggests that the functional WKK
ε : H3(Ω) −→ [0,∞]

with

WKK
ε (w) :=

�
Ω

[1
ε

∣∣∣− ε∆w + 1
ε
W ′(w)

∣∣∣2 + ε
∣∣∣∇(− ε∆w + 1

ε
W ′(w)

)∣∣∣2] dLn

is a good candidate for a diffuse Willmore energy. In Chapter 4, see Theorem 4.3.1 we
identify the possible Γ(L1(Ω))–limit of WKK

ε as c0σW and prove the lim sup–property of

WKK
ε

Γ(L1(Ω))−→ c0σW. (1.11)
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Here σ > 1 is a constant which can be calculated from the double-well potential. The
fact σ > 1 also means that the higher order term actually contributes in the limit. The
harder problem of establishing a lower bound is addressed in Chapter 5, see Theorems
5.2.5 and 5.1.1, where we prove the lim inf–estimate of

Pε +WKK
ε

Γ(L1(Ω))−→ c0
(
P + σW

)
. (1.12)

For the proof we utilize a blow-up, similar to the proof by Röger and Schätzle. The
hardest challenge was to overcome the non-locality of a solution operator.
A further motivation to consider the lim inf–estimate is that the inequality is useful for
the proof that solutions to (1.9) converge towards varifold solutions to mean curvature
flow. In Chapter 6, see Theorems 6.3.5, 6.3.17 and 6.3.16 we prove that weak solutions to
(1.9) with suitable boundary and initial conditions converge in a suitable sense towards a
De Giorgi type varifold solution for rescaled mean curvature flow; see Definition 2.5.3.

For the proof we need another blow-up. In contrast to the blow-up in Chapter 5 there is
no issue of non-locality, however the blow-up is done with the additional parameters t, δ
which introduces additional complications. In particular the time-dependency is difficult
because we can not use the blow-up argument in time-space. Instead we use results from
[MR08] to get the proper convergences of the measures involved.

Then the remaining properties of De Giorgi type varifold solution for rescaled mean
curvature flow can be proven. It remains an open problem to show that the varifold is a
solution to mean curvature flow in the Brakke sense, to which we give a partial result.

In 2012 Amstutz and Van Goethem presented a gradient-free diffuse approximation of
the perimeter in [AVG12].

PAG
ε (u) := inf

v∈H1(Ω)

�
Ω

(ε
2
∣∣∇v∣∣2 + 1

2ε(u− v)2 + 1
2εW (u)

)
dLn. (1.13)

The expression “gradient-free” refers to the fact that no derivative is applied towards the
argument u of the functional. The approximation is based on the two variable diffuse
perimeter approximation by Solci and Vitali [SV03]. For a particular double-well potential
W Amstutz and Van Goethem prove that

PAG
ε

Γ(L1(Ω))−→ cAGP.

As before we can derive a diffuse Willmore energy by considering the energy-dissipation.
The L2-gradient of PAG

ε is given by

∇L2PAG
ε (u) = 1

ε

(
u+ 1

2W
′(u)− uε

)
. (1.14)

Here uε is a weak solution to

−ε2∆uε + uε = uε (1.15)

with suitable boundary conditions. Let uε be a solution to

−ε∂tuε = 1
ε

(
uε + 1

2W
′(uε)− uε

)
(1.16)

4



with suitable boundary conditions. The energy-dissipation is given by

∂tPAG
ε (uε) =

�
Ω

1
ε

(
uε + 1

2W
′(uε)− uε

)
∂tuε dLn

= −
�

Ω

1
ε3

∣∣∣uε + 1
2W

′(uε)− uε

∣∣∣2 dLn.

This suggests that

WAG
ε (uε) :=

�
Ω

1
ε3

∣∣∣uε + 1
2W

′(uε)− uε

∣∣∣2 dLn

is a good candidate to be a diffuse Willmore energy. We remark that no gradients appear
(explicitly) in the functional, instead we have to deal with the non-local solution operator
u 7→ uε associated to (1.15).

In Chapter 3, see Theorem 3.4.1, we prove the lim sup–property of

WAG
ε

Γ(L1(Ω))−→ cAGP. (1.17)

The ansatz is to assume that, in a small neighborhood of the surface, we can expand uε as
a power series in ε with coefficient profile functions which have to be determined. Then
we expand all of the functions, operators, and the functional itself by powers of ε and
minimize each order, finding the optimal choices for the profile functions in the process.
The main difficulty here is, that we have to prove that the non-local solution operator
(−ε2∆ + Id)−1 preserves the property that such a local expansion exists. We introduce
spaces of functions which decay exponentially away from the surface with respect to the
modified distant functions to justify this. We will also prove a lim inf–estimate for this
very specific class of functions with exponential decay, however the general case remains
open.

Next, we will briefly discuss the Willmore flow, which is the L2-gradient flow induced by
the Willmore energy. Let (Γt)t∈(0,T ) be a family of evolving surfaces with mean curvature
Ht, normal velocity V(t, ·), and the second fundamental form II(t, ·). As was proven in
Sections 7.4 - 7.5 in [Wil93] by Willmore the family evolves by Willmore flow if

V = −∆ΓH + 1
2H

3 −H|II|2, (1.18)

where ∆Γ is the Laplace-Beltrami operator on Γt. The Willmore flow is a fourth
order geometric evolution law, which introduces several additional challenges in the
analysis of the flow. We refer to the fundamental contributions [Sim01, KS01, KS02, KS04].

The Willmore flow can be approximated by a phase field approximation in the following
sense: we consider the L2-gradient flow induced by the diffuse Willmore energy (1.8), i.e.

−ε∂tuε = 1
ε

(
− ε∆ + 1

ε
W ′′(uε) Id

)(
− ε∆uε + 1

ε
W ′(uε)

)
. (1.19)

In their paper [LM00] from 2000, Loretti and March considered asymptotic expansions
of (1.19) and concluded that in a formal sense the solutions to (1.19) converge towards
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solutions of the Willmore flow as ε → 0. They employed a formal asymptotic ansatz
involving expanding uε in powers of ε. Based on this idea Wang published similar results
in 2008; see [Wan08].

Convergence proofs based on asymptotic expansion techniques are known for the standard
diffuse approximation of mean curvature and Willmore flow; see [dMS90] and [FL21].

The last type of results in this thesis is similar for the Amstutz-Van Goethem approxi-
mation and the Karali-Katsoulakis approximation. In both cases we constructed diffuse
approximations of the Willmore energy. We use these functionals to construct formal
diffuse approximations of the Willmore flow by considering the induced gradient flows of
the diffuse approximations. The L2-gradient flow of WKK

ε is given by

−ε∂tuε = 2
ε2

(
− ε2∆ +W ′′(uε)

)
(−ε2∆ + Id)

(
− ε∆uε + 1

ε
W ′(uε)

)
. (1.20)

Similarly we can consider the L2-gradient flow of WAG
ε , i.e.

−ε∂tuε = 2
ε3

(
1 + 1

2W
′′(uε)− (−ε2∆ + Id)−1

)(
uε + 1

2W
′(uε)− uε

)
. (1.21)

We may expect that the diffuse flows both converge in the sharp interface limit ε → 0
to the Willmore flow. We discuss the convergence of (1.20) in Chapter 4, see Theorem
4.4.4, and the convergence of (1.21) in Chapter 3, see Theorem 3.5.4, both under rather
restrictive assumptions by considering asymptotic expansions. For the proof we will
follow the approach by Loreti and March [LM00] and Wang [Wan08]. However in our
setting the operators that define the gradient-free approximation are different from the
standard case, and the derivation of the convergence property is much more involved.

The results of Chapter 3 have already been published in the paper “‘Gradient-free‘ diffuse
approximations of the Willmore functional and Willmore flow” of N. Dabrock, M. Röger,
and myself, published in Asymptot. Anal. in 2022. The paper contains an additional
section discussing numerical simulations done by N. Dabrock but the analysis is not as
detailed as in Chapter 3 of this thesis.

The outline for the thesis is as follows. In the second chapter we point out the mathematical
foundations. In Chapter 3 we construct a recovery sequence for (1.17) and prove a formal
approximation of the Willmore flow by considering (1.21). In Chapter 4 we construct
a recovery sequence for (1.11) and prove a formal approximation of the Willmore flow
by considering (1.20). In Chapter 5 we prove the lim inf–property of (1.12). In Chapter
6 we construct De Giorgi type varifold solutions for rescaled mean curvature flow by
considering the limit ε→ 0 in (1.9) and give a partial result for the Brakke flow.
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2 Preliminaries

In this chapter we give a brief overview over the relevant terms and important previous
results. We start with notations most commonly used throughout the thesis followed by
the definitions of the central objects of this thesis i.e. the Willmore energy, the perimeter,
the Willmore flow, and the mean curvature flow. In the later sections we introduce the
basic terms of geometric measure theory such as functions of bounded variation, rectifiable
sets, and varifolds. One short section is dedicated to Γ–convergence and in the last section
we present weak formulations of mean curvature flow.
The following notations will be applied throughout the entire thesis.

• n ∈ N will always denote the dimension of the surrounding space Rn. Usually
Ω ⊆ Rn will be a non-empty open set with varying additional properties.

• Every limit for ε will only occur for positive ε, we will simply write ε→ 0 instead
of ε ↘ 0. Furthermore we will refer to objects indicated by ε > 0 as sequences,
even if the index set is not countable. A subsequence in this context will be an
actual sequence, meaning that it is indicated by a sequence (εk)k∈N with 0 < εk → 0.
Usually we will not relabel subsequences.

• Constants are usually denoted by C > 0 and may change from line to line without
introducing a new variable if the value of C is not important. Sometimes we denote
the dependencies of C in parentheses.

• We try to avoid double parentheses as much as possible, thus we will write C0[−1, 1)
instead of C0([−1, 1)) for the space of continuous functions on the interval [−1, 1).
Similar for other spaces, we write L2(0, T ;C0(Γ)) instead of L2((0, T );C0(Γ)) for
the Bochner space of L2-functions defined on (0, T ) with values in C0(Γ).

2.1 Some terms from differential geometry
In this section we only give definitions for the objects which are relevant for this thesis.
For the sake of introducing the basic terminology and theory of (sub-)manifolds we follow
and adapt the content of [Jos17]. In the entire thesis when restricting to the smooth case
we only discuss embedded and compact hypersurfaces in Rn. Thus we can simplify the
more general definition.

In the following we consider a smooth hypersurface Γ ⊆ Rn with a Riemannian metric, i.e.
a smooth family of scalar products g = (gp)p∈Γ where gp is defined on the tangent space
TpΓ. We will denote a vector basis of TpΓ by e1, . . . , en−1. More details can be found in
the appendix.
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Definition 2.1.1 (Differential operators on hypersurfaces).
Let Γ be a C1-hypersurface and let f ∈ C1(Γ). For p ∈ Γ let e1(p), . . . , en−1(p) be a basis
of TpΓ as in (8.1.1). We define the gradient

gradΓ(f) := ∇Γf :=
n−1∑

j,k=1
gjkek∂jf.

Let Z = ∑n−1
j=1 Zjej ∈ C1(Γ;Rn) be a vector field on Γ, then we define the divergence

divΓZ := ∇Γ · Z := 1
√
g

n−1∑
j,k=1

ej
(√
gZj

)
= 1
√
g

n−1∑
j,k=1

ej

(√
ggjk〈Z, ∂k

〉
TpΓ

)
Lastly if Γ is a C2-hypersurface and f ∈ C2(Γ) we define the Laplace-Beltrami operator

∆Γ := divΓ∇Γf = 1
√
g

n−1∑
j,k=1

ej

(√
ggjkekf

)
.

Definition 2.1.2 (Second fundamental form).
Let Γ be a C2-hypersurface and p ∈ Γ. The second fundamental form of Γ at p is the map

S : TpΓ× TpΓ⊥ −→ TpΓ, S(X, ν) := ΠTpΓDXν, X ∈ TpΓ, ν ∈ TpΓ⊥

with the orthogonal projection ΠTpΓ : Rn −→ TpΓ. By Lemma 8.1.6 the directional
derivative only depends on ν and X and thus S is well-defined.
In the general case of manifolds that are not necessarily embedded we would need the
concept of Levi-Civita-connection and parallel transport in order to compare vectors from
different tangent spaces, however we can use the surrounding algebraic structure, i.e. the
directional derivative and the scalar product on Rn instead.
Lemma 2.1.3 (Second fundamental form and mean curvature vector).
Let Γ be a C2-hypersurface, p ∈ Γ and ν ∈ TpΓ⊥. The bilinear form

Lν : TpΓ× TpΓ −→ R, Lν(X,Y ) := ⟨S(X, ν)|Y ⟩TpΓ

is symmetric and thus its eigenvalues κ1(p), . . . , κn−1(p) are real. They are called principal
curvatures of Γ at p in direction ν. We define the mean curvature and the mean curvature
vector

HΓ,ν(p) :=
n−1∑
j=1

κj(p) and H⃗Γ(p) := HΓ,ν(p)ν.

When the choice of normal ν or the surface Γ is clear from the context either or both are
omitted from the notation. We call Lν and its representation with respect to the standard
basis the second fundamental form. It is also commonly referred to as Weingartenmapping.
Note that the mean curvature vector is independent from ν however the scalar mean
curvature switches its sign under the change of orientation ν 7→ −ν.

Next we examine how the total area of a hypersurface changes with a perturbation. Let Γ
be a C2-hypersurface and X ∈ C2(Γ;Rn), then there exists δ > 0 such that

Γ + rX := {p+ rX(p) | p ∈ Γ}

is a C2-hypersurface for |r| < δ by the Implicit Function Theorem.
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Theorem 2.1.4 (First variation of the surface of a hypersurface).
Let Γ be an oriented C2-hypersurface and X ∈ C1(Γ;Rn). Then we have

∂rHn−1(Γ + rX)|r=0 = −
�

Γ
X · H⃗ dHn−1. (2.1.1)

This implies in particular that surfaces are stationary with respect to small perturbations
if and only if the mean curvature vanishes.
Having discussed H we can introduce one of the central objects of this thesis.

Definition 2.1.5 (Willmore energy of smooth hypersurfaces).
Let Γ ⊆ Rn be a smooth hypersurface without boundary. We define the Willmore energy
of Γ

W(Γ) :=
�

Γ

∣∣H⃗∣∣2 dHn−1.

This is the definition for surfaces, later we will consider the Willmore energy defined on
function spaces; see Definition 2.4.6.

Next we move from the static setting to dynamics. We consider two different geometric
flows, namely the mean curvature flow and the Willmore flow. We need to define velocity
and normal velocity in advance.

Definition 2.1.6 ((Normal) velocity).
Let (Γt)t>0 be a family of evolving surfaces without boundary that can be parametrized
over a fixed surface Γ0 without boundary, i.e., for t > 0 there exists an immersion
Φt : Γ0 −→ Γt. At a given time t ∈ (0, T ) the velocity vector at V⃗(t, ·) : Γt −→ Rn of the
evolution is given by

V⃗(t, ·) := [∂tΦt] ◦ Φ−1
t .

If ν(t, ·) is a given unit normal of Γt we also define the normal velocity with respect to
ν(t, ·) as the function Vν(t, ·) : Γt −→ R

Vν(t, ·) := V⃗ · ν(t, ·).

If the chosen normal vector is clear from the context it is omitted from the notation and
we simply write V = Vν .

Now we can introduce the mean curvature flow.

Definition 2.1.7 (Mean curvature flow).
Let (Γt)t∈(0,T ) be an evolving family of smooth hypersurfaces without boundary with velocity
V⃗. The family evolves by mean curvature flow if

V⃗(t, ·) = H⃗t. (2.1.2)

If we can apply the chain rule we get the energy-dissipation

∂tHn−1(Γt) = −
�

Γt

V⃗ · H⃗t dHn−1 = −
�

Γt

∣∣H⃗t

∣∣2 dHn−1 = −W(Γt) ≤ 0. (2.1.3)
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Since the velocity points in the direction of the mean curvature vector which itself points
in the direction of steepest area descent the mean curvature flow is usually associated with
a shrinking motion. This is true especially for convex sets as the next theorem shows.

Theorem 2.1.8 (Huisken (1984)).
Let n ≥ 2 and assume that Γ0 is uniformly convex, i.e., the eigenvalues of its second
fundamental form are strictly positive everywhere. Then (2.1.2) has a smooth solution on
a finite time interval [0, T ) and the surfaces converge towards a single point as t→ T .

For non-convex sets the evolution can be more complicated. In Chapter 3 in [Eck04]
examples are given for surfaces that break apart under mean curvature flow, examples for
other singularities can be found in [Ton19]. Surfaces are expected to develop singularities
in a finite time under mean curvature flow.

At last we introduce the concept of Willmore flow.

Definition 2.1.9 (Willmore flow).
Let (Γt)t>0 be an evolving family of smooth hypersurfaces without boundary with normal
velocity V and second fundamental from IIt. The family evolves by Willmore flow if

V = −∆ΓtHt + 1
2H

3
t −Ht|IIt|2, (2.1.4)

where ∆Γt is the Laplace-Beltrami operator on Γt.

The Willmore flow is a rather new field of research, the most important contributions are
the papers from Kuwert and Schätzle [KS01, KS02] and the paper from Simonett [Sim01].
The L2-gradient of the Willmore energy is given by

∇L2W = −∆ΓtHt + 1
2H

3
t −Ht|IIt|2;

see [Wil65]. The Willmore energy is decreasing along solutions of the Willmore flow.

In the following we introduce a new coordinate system in a neighborhood of a smooth
hypersurface. These coordinates will be very useful for the construction of recovery
sequences for phase-field approximations of the Willmore energy in Chapters 3 and 4.

Definition 2.1.10 (Normal and tangential coordinates).
Let Ω ⊆ Rn be open and E a domain E ⋐ Ω with C4-boundary Γ := ∂E. We write νΓ(y)
for the inner normal of Γ at y ∈ Γ. Since Γ is compact there exists 0 < δ < 1 such that
the following hold.

• The orthogonal projection Π : {|d| < 5δ} −→ Γ with x 7→ Π(x) =: y(x) ∈ Γ is
well-defined with

sup
y∈Γ

n−1max
j=1
|kj(y)| < 1

5δ ,

where kj denote the principle curvatures of Γ for j ∈ {1, . . . , n− 1}.

• For ε > 0 the coordinate transformation

Ψε :
(
− 5δ

ε
,
5δ
ε

)
× Γ −→ {|d| < 5δ} ⋐ Ω, Ψε(z, y) := y + εzνΓ(y) (2.1.5)

is a well-defined C3-diffeomorphism. We write ω := {|d| < 5δ}.
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The first claim is true because Γ has C2 regularity, meaning the principle curvatures are
continuous functions on a compact set. By definition we get for x ∈ ω

Ψε

(
d(x)
ε
, y(x)

)
= x.

We now follow [LorettiMarch2000] and calculate for x ∈ ω

∆d(x) =
n−1∑
j=1

kj(y)
1 + kj(y)d(x) =

n−1∑
j=1

∞∑
l=0

(−1)lkj(y)1+ld(x)l

=
∞∑

l=0
(−1)ld(x)l

n−1∑
j=1

kj(y)1+l =: H(y)− d(x)|II(y)|2 + gR(x).

This is an absolute convergent powerseries in ω. The error term can be estimated as
follows: there exists C(Γ) > 0 such that for all x ∈ ω

|gR(x)| ≤ ε2C(Γ)z2. (2.1.6)

Possibly lowering the value of δ > 0 we can assume that in (−5δ
ε ,

5δ
ε )× Γ

2ε ≥ det(DΨε(z, y)) = ε− ε2zH(y) + ε3z2R(z, y) ≥ ε

2 , (2.1.7)

where R : R×Γ→ R is uniformly bounded. The coordinates are displayed in Figure 2.1.

Ω

Γ y x
εz

Figure 2.1: Visualization of the geometry and coordinates.

Notations 2.1.11 (Geometry).
We can represent a function u : ω −→ R as

ũ :
(
− 5δ

ε
,
5δ
ε

)
× Γ −→ R with ũ(z, y) := u(Ψε(z, y)).

It is convenient to extend ũ to a function U that is constant in normal directions, i.e.

U :
(
− 5δ

ε
,
5δ
ε

)
× ω −→ R with U(z, x) := ũ(z, y)

11



for all x ∈ ω with ΠΓ(x) = y and all z ∈ (−5δ/ε, 5δ/ε).

From [LM00, Wan08] we recall that

∇u = 1
ε
U ′∇d+∇U, ∆u = 1

ε2U
′′ + ∆d

ε
U ′ + ∆U, (2.1.8)

|∇d| = 1, ∇d · ∇Γ = 0, ∆d(x) = H(y)− εz|II|2(y) + ε2|z|2RH
ε (x), (2.1.9)

where |RH
ε | ≤ C(Γ, δ) in ω. We will often write u(z, x) instead of U(z, x) or ũ(z, y) if it

is clear from the context what is meant.

2.2 Geometric measure theory

In this section we introduce functions of bounded variation, the perimeter, and the
Willmore energy. We also consider varifolds. Varifolds are very relevant for us as they
are in some sense a relaxation of the term (hyper-)surface to a setting with lower
regularity and better compactness properties. This is comparable to the step from
classical derivatives and the Ck-spaces to weak derivatives and Sobolev spaces.

The basic properties of Radon measures can be found in Section 8.2 in the appendix.
Here we recall two important theorems about Radon measures; see [AFP00].

Theorem 2.2.1 (Riesz’s representation Theorem).
Let Ω be a locally compact and separable metric space and m ∈ N.
(i) Let L ∈ C0

c (Ω;Rm)′ then there exist a Rm-valued Radon measure µ and a Rm-valued
function f ∈ L1(Ω, µ;Rm) such that for all η ∈ C0

c (Ω;Rm)

⟨η, L⟩C0
c (Ω;Rm)′ =

�
Ω
f · dµ.

(ii) Let L ∈ C0
0(Ω;Rm)′ then there exist a finite Rm-valued Radon measure µ and a

Rm-valued function f ∈ L1(Ω, µ;Rm) such that for all η ∈ C0
0 (Ω;Rm)

⟨η, L⟩C0
0 (Ω;Rm)′ =

�
Ω
f · dµ and ∥L∥ = |µ|(Ω).

We will identify the continuous linear form with the measure and thus simply write
µ ∈ C0

c (Ω;Y )′ or µ ∈ C0
0(Ω;Y )′ respectively. Note C0

0(Ω;Y )′ ↪→ C0
c (Ω;Y )′. As a dual

space of C0
c (Ω;Rm)′ or C0

0(Ω;Rm)′ we can consider the weak∗ convergence for Radon
measures and finite Radon measures. It has good compactness properties, as is stated in
the next theorem.

Theorem 2.2.2 (Compactness of Radon measures).
Let Ω be a locally compact and separable metric space.
(i) Let (µk)k∈N ∈ C0

c (Ω)′ be a sequence of Radon measures on Ω such that for all K ⋐ Ω it
holds supk∈N µk(K) <∞. Then there exists a subsequence (µkj

)j∈N and a Radon measure
µ ∈ C0

c (Ω)′ such that

µkj

w∗
−→ µ as j →∞ in C0

c (Ω)′.
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(ii) Let (µk)k∈N ∈ C0
0 (Ω)′ be a sequence of finite Radon measures on Ω such that it holds

supk∈N µk(Ω) <∞. Then there exists a subsequence (µkj
)j∈N and a finite Radon measure

µ ∈ C0
0 (Ω)′ such that

µkj

w∗
−→ µ as j →∞ in C0

0 (Ω)′.

Additionally it holds

µ(Ω) ≤ lim inf
k→∞

µk(Ω).

Remark.
• This is a specialized version of Alaoglu’s Theorem, which is also called Banach-

Alaoglu or Alaoglu-Bourbaki Theorem and can be found in [Kab14, Thm. 8.6].

• If Ω is an open subset of Rn then Ω is locally compact and separable.

Next we introduce the concept of bounded variation. We follow [AFP00] and [EG15].
In one dimension this can be explained without measure theory and can be reduced to
monotone functions. However in higher dimensions more abstract concepts are necessary.

Definition 2.2.3 (Functions of bounded variation).
Let Ω ⊆ Rn be open and f ∈ L1(Ω). f is said to have bounded variation in Ω, i.e.
f ∈ BV (Ω), if

sup
{�

Ω
f∇ · ϕ dLn

∣∣∣ ϕ ∈ C1
c (Ω;Rn), ∥ϕ∥C0(Ω;Rn) ≤ 1

}
<∞.

We can characterize the derivatives of functions of bounded variation with Radon measures.

Theorem 2.2.4 (Structure theorem for BV functions).
Let Ω ⊆ Rn be open and f ∈ BV (Ω). Then there exists a unique finite Rn-valued Radon
measure ∇f such that for all ϕ ∈ C1

c (Ω)

−
�

Ω
f · ∇ϕ dLn =

�
Ω
ϕ · d∇f.

By Theorem 2.2.4 and the Riesz representation Theorem ∇f ∈ C0
0 (Ω;Rn)′ is well-defined.

The following proposition shows that this theorem can also be used to define functions of
bounded variation as the properties of the theorem and the definition are equivalent.

Proposition 2.2.5.
Let Ω ⊆ Rn be open and f ∈ L1(Ω). Then f ∈ BV (Ω) if and only if ∇f ∈ C0

0 (Ω;Rn)′. In
that case we have

|∇f |(Ω) = sup
{�

Ω
f∇ · ϕ dLn

∣∣∣ ϕ ∈ C1
c (Ω;Rn), ∥ϕ∥C0(Ω;Rn) ≤ 1

}
and the mapping BV (Ω) ∋ f 7→ |∇f |(Ω) is lower semicontinuous with respect to the
L1(Ω)-topology.

The expression

∥η∥BV (Ω) := ∥η∥L1(Ω) + |∇η|(Ω), η ∈ BV (Ω)

is a norm on BV (Ω) and with this norm BV (Ω) is a Banach space. Another important
property of BV (Ω) is its compact embedding into L1(Ω).
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Theorem 2.2.6 (Compactness in BV (Ω)).
Let Ω ⊆ Rn be open and bounded with Lipschitz boundary and assume (fj)j∈N is a bounded
sequence in BV (Ω). Then there exists f ∈ BV (Ω) such that up to a subsequence

fj −→ f as j →∞ in L1(Ω).

In other words the embedding BV (Ω) ↪→ L1(Ω) is compact. Combined with the lower
semicontinuity of f 7→ |∇f |(Ω) we conclude the following corollary.

Corollary 2.2.7.
Let Ω ⊆ Rn be open and bounded with Lipschitz boundary and assume (fj)j∈N is a
sequence in BV (Ω) with fj −→ f in L1(Ω) and lim infj→∞ |∇fj |(Ω) < ∞. Then it
follows f ∈ BV (Ω) and

|∇f |(Ω) ≤ lim inf
j→∞

|∇fj |(Ω).

Functions of bounded variation satisfy a generalized version of Gauß’s Divergence Theorem
8.3.6.

Theorem 2.2.8 (Trace Theorem for BV -functions).
Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Then there exists a bounded
linear mapping

T : BV (Ω) −→ L1(∂Ω;Hn−1)

such that for all f ∈ BV (Ω) and all ϕ ∈ C1(Ω;Rn)
�

Ω
f∇ · ϕ dLn =

�
∂Ω
ϕ · νTf dHn−1 −

�
Ω
ϕ · d∇f,

where ν is the outer unit normal of ∂Ω.

As a slight abuse of notation we usually write f for Tf . With these preparations we are
ready to define the perimeter.

Definition 2.2.9 (Perimeter).
Let Ω ⊂ Rn be open, then we define PΩ : L1(Ω) −→ [0,∞] by

PΩ(u) :=


1
2
∣∣∇u∣∣(Ω), if u ∈ BV (Ω, {±1})

+∞, else.
(2.2.1)

As a slight abuse of notation we sometimes write P(E) instead of P(2χE − 1). If it is
clear from the context the index Ω will be omitted from the notation and we simply write
P. By this definition BV (Ω; {±1}) is the set which contains the sets of finite perimeter
in Ω, where we associate to a set E of finite perimeter the rescaled characteristic function
u := 2χE − 1.

By definition if χE has bounded variation then E has finite perimeter. We can represent
the perimeter with the Hausdorff measure. Therefore we need to define the essential
boundary first.
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Definition 2.2.10 (Essential boundary).
Let E ⊆ Rn be a Borelset. The essential boundary ∂∗E is defined as

∂∗E :=
{
x ∈ Rn

∣∣ lim sup
ρ→0

ρ−nLn(Bρ(x) ∩ E) > 0 and lim sup
ρ→0

ρ−nLn(Bρ(x) \ E) > 0
}
.

If E ⊆ Rn has smooth boundary, then for all x ∈ ∂∗E both limits equal 1/2.

Theorem 2.2.11.
Let Ω ⊆ Rn be open and E ⊆ Ω have finite perimeter. Then it holds

PΩ(2χE − 1) = Hn−1(∂∗E ∩ Ω).

Next we define measure-function pairs and their weak convergence, which was presented
in [Hut86].

Definition 2.2.12 (Measure-function pair).
Let m,n ∈ N, Ω ⊆ Rn be open, µ ∈ C0

c (Ω)′ be a Radon measure on Ω and f ∈ L1
loc(Ω;Rm).

Then (µ, f) is a measure-function pair over Ω with values in Rm.

Definition 2.2.13 (Weak convergence of measure-function pairs).
Assume that for all k ∈ N (µ, f), (µk, fk) are measure-function pairs over Ω with values
in Rm and that µk

w∗
−→ µ in C0

c (Ω)′. We say that (µk, fk)k∈N converges to (µ, f) in the
weak sense if

fkµk
w∗
−→ fµ as k →∞ in C0

c (Ω;Rm)′.

In that case we write (µk, fk) w−→ (µ, f).

The central part of this theory is the following compactness result (we give a special
version which fits our purposes).

Theorem 2.2.14 (Compactness Theorem for measure-function pairs).
Assume (µk, fk)k∈N is a sequence of measure-function pairs over Ω with values in Rm and
that µk

w∗
−→ µ in C0

c (Ω)′ for some Radon measure µ ∈ C0
c (Ω)′. Assume that there exists

Λ > 0 such that we have for all k ∈ N
�

Ω
|fk|2 dµk ≤ Λ.

Then there exists f ∈ L1
loc(Ω;Rm) such that up to a subsequence we have (µk, fk) w−→ (µ, f)

as k →∞.

Next we introduce varifolds. The idea behind the concept is to find a “weaker”definition
for surfaces while maintaining a concept of tangent spaces. We follow the introductions
in [Sim83] and [FX06].

Definition 2.2.15 (Grassmannian).
Let n ∈ N and k ∈ {1, . . . , n− 1}. We write G(n, k) for the set of all k-dimensional linear
subspaces of Rn and ⊕G(n, k) for the set of all k-dimensional oriented linear subspaces of
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Rn. We can identify a linear subspace E with the orthogonal projection onto E. This way
we can define a scalar product on G(n, k) and ⊕G(n, k)

P : Q := tr(P TQ) =
n∑

j,k=1
Pj,kQk,j for P,Q ∈ G(n, k) or P,Q ∈ ⊕G(n, k).

In the following we identify subspaces with the orthogonal projection onto them. Most
relevant will be the case k = n− 1 where we can construct P from a normal vector ν of
the hypersurface

P = Id−ν ⊗ ν.

Furthermore, we can identify ⊕G(n, n− 1) ∼= Sn−1.

Let U ⊆ Rn be open and k ∈ {1, . . . , n − 1}. We define Gk(U) := U × G(n, k) and
⊕Gk(U) := U × ⊕G(n, k).

If not specified otherwise we will always consider unoriented subspaces.

Definition 2.2.16 (Countably k-rectifiable sets).
A set M ⊆ Rn is called countably k-rectifiable (k ∈ {1, . . . , n− 1}) if

M ⊆
∞⋃

j=0
Mj

where Hk(M0) = 0 and Mj = Fj(Rk) for j ∈ N and Lipschitz continuous functions
Fj : Rk −→ Rn.

In fact we can represent k-rectifiable sets in a smoother way.

Lemma 2.2.17.
A set M ⊆ Rn is countably k-rectifiable if and only if there exists N0 ⊆ Rn with Hk(N0) = 0
and if for all j ∈ N there exists a k-dimensional C1-submanifold Nj in Rn such that

M ⊆
∞⋃

j=0
Nj . (2.2.2)

As mentioned before a concept of tangent spaces is important for the theory. To define
the approximate tangent space we first introduce some notation.

Definition 2.2.18 (Pushforward and pullback).
Given r > 0 and x ∈ Rn we introduce the function ζx,r : Rn −→ Rn with ζx,r(y) := y−x

r .
We write ζr := ζ0,r. Furthermore we define the pushforward. Let µ be a measure on
Ω ⊆ Rn, then we define for any set A in the associated σ-algebra on ζx,r(Ω)

ζx,r,#µ(A) := µ(ζ−1
x,r(A)), ζx,r,#µ ∈ C0

c (ζx,r(Ω))′.

Analogously we define for any η ∈ C0
c (ζx,r(Ω)) the pullback

ζ#
x,rη := η ◦ ζx,r ∈ C0

c (Ω).
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With these notations we have
�

ζx,r(Ω)
η dζx,r,#µ =

〈
η, ζx,r,#µ

〉
C0

c (ζx,r(Ω))′ =
〈
ζ#

x,rη, µ
〉

C0
c (Ω)′ =

�
Ω
ζ#

x,rη dµ.

If µ = Hk for some k ∈ {1, . . . , n− 1} then a coordinate transformation yields that
�

Ω
ζ#

x,rη dHk = rk

�
ζx,r(Ω)

η dHk (2.2.3)

and thus ζx,r,#Hk = rkHk.

Definition 2.2.19 (Approximate tangent space).
Let k ∈ {1, . . . , n − 1} and M ⊆ Rn be Hk-measurable with Hk(M ∩ K) < ∞ for all
compact sets K ⋐ Rn. P ∈ G(n, k) is called approximate tangent space for M at a given
point x ∈M if for all η ∈ C0

c (Rn):

lim
r→0

�
ζx,r(M)

η dHk =
�

P
η dHk. (2.2.4)

By (2.2.3) this is equivalent to

lim
r→0

1
rk

�
Ω
ζ#

x,rη dHk =
�

P
η dHk.

In that case we write TxM = P .

Remark.
• If such a P exists it is unique and will be noted as P = TxM in analogy to the

classical tangent spaces of manifolds.

• If Nj is a submanifold as in (2.2.2) for some j ∈ N we get

TxNj = TxM for Hk − a.e. x ∈M ∩Nj .

Definition 2.2.20 (Approximate tangent space with multiplicity).
Let k ∈ {1, . . . , n − 1} and M ⊆ Rn be Hk-measurable and θ ∈ L1

loc(M,Hk) be non-
negative. P ∈ G(n, k) is called approximate tangent space with respect to the multiplicity
θ(x) for M at a given point x ∈M if for all η ∈ C0

c (Rn):

lim
r→0

�
ζx,r(M)

η(y)θ(x+ ry) dHk(y) = θ(x)
�

P
η dHk. (2.2.5)

By (2.2.3) this is equivalent to

lim
r→0

1
rk

�
Ω
θζ#

x,rη dHk = θ(x)
�

P
η dHk.

In that case we write TxM = P .

The following theorem shows that approximate tangent spaces are directly linked to
countably rectifiable sets.
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Theorem 2.2.21.
Let M ⊆ Rn be a Hk-measurable set with Hk(M ∩K) <∞ for all compact sets K ⊆ Rn.
Then M is countably k-rectifiable if and only if there exists a non-negative θ ∈ L1

loc(M,Hk)
such that at Hk-a.e. x ∈ M the approximate tangent space TxM with multiplicity θ(x)
exists.

Definition 2.2.22 ((unoriented) Varifold).
Let U ⊆ Rn be open and k ∈ {1, . . . , n− 1}, a (unoriented) k-varifold V on U is a Radon
measure on U ×G(n, k), we write V ∈ Vk(U) := C0

c (U ×G(n, k))′. For V ∈ Vk(U) we
define the weight measure ∥V ∥ which is the measure on U defined by

⟨ϕ, ∥V ∥⟩C0
c (U)′ :=

�
Gk(U)

ϕ(z) dV (z, S) for all ϕ ∈ C0
c (U).

The term varifold and unoriented varifold will be used as synonyms while we will clearly
state oriented varifold whenever it comes up. The difference comes from the space where
the measures are defined. The subspaces in G(n, k) can be seen as unoriented. If k = n−1
we can also define Radon measures on the space of oriented subspaces, identifying the
spaces with the normal. This leads to the following definition.

Definition 2.2.23 (oriented Varifold).
Let U ⊆ Rn be open and k ∈ {1, . . . , n − 1}, an oriented varifold ⊕V on U is a Radon
measure on U × ⊕G(n, k), we write V ∈ ⊕Vk(U) := C0

c (U × ⊕G(n, k))′. In the case
k = n− 1 we simply write Vn−1(U) := C0

c (U × Sn−1)′

For all k ∈ {1, . . . , n − 1} there exists a projection ⊕G(n, k) −→ G(n, k) which simply
forgets the orientation (an oriented subspace is a subspace after all). Thus every oriented
varifold can also be seen as an unoriented varifold. The definition of the weight measure
is also valid for oriented varifolds.

Example (Rectifiable varifolds).
Let U ⊆ Rn be open k ∈ {1, . . . , n− 1} and M ⊆ U countably (n− 1)-rectifiable. We can
define a varifold in a natural way: For all ϕ ∈ C0

c (Gn−1(U))

⟨ϕ, VM ⟩C0
c (Gn−1(U))′ :=

�
Gn−1(U)

ϕ dVM :=
�

M
ϕ(x, TxM) dHn−1(x).

The weight measure is given by its action on ϕ ∈ C0
c (U):

⟨ϕ, ∥VM∥⟩C0
c (U)′ :=

�
Gn−1(U)

ϕ(x) dVM =
�

M
ϕ(x) dHn−1(x).

Varifolds induced this way by a (n − 1)-rectifiable set are much more concrete than a
general varifold and are easier to handle. Thus we define the term of a rectifiable varifold
motivated by this example.

Definition 2.2.24 (Rectifiable and integral varifolds).
Let U ⊆ Rn be open and V ∈ Vk(U). V is called rectifiable if there exists a countably
k-rectifiable and Hk-measurable set M ⊆ U and a non-negative function θ ∈ L1

loc(M,Hk)
such that

V = θHk M ⊗ δT·M ,

18



which means that for all ϕ ∈ C0
c (Gk(U)) we have

⟨ϕ, V ⟩C0
c (Gk(U))′ =

�
Gk(U)

ϕ(x, P ) dV (x, P ) =
�

M
ϕ(x, TxM)θ(x) dHk(x).

V is called an integral varifold if V is rectifiable and θ(x) ∈ N for Hk−a.e. x ∈M .

Next we proceed by defining the first variation of a varifold. This is motivated by the
connection between the first variation of submanifolds and its mean curvature. We want
to define weak mean curvature vectors similarly.

Definition 2.2.25 (First variation).
Let U ⊂ Rn be open, V ∈ Vk(U) and X ∈ C1

c (U ;Rn). We define

⟨X, δV ⟩C0
c (U)′ :=

�
Gk(U)

P : DX(x) dV (x, P ).

Example. If V is rectifiable with ∥V ∥ = θHk M we get for X ∈ C1
c (U ;Rn)

⟨X, δV ⟩C0
c (U)′ =

�
U

divMX d∥V ∥ =
�

M
divMXθ dHk.

We use the analogy to (2.1.1) from the theory of hypersufaces in order to define a weak
mean curvature vector.

Definition 2.2.26 (Generalized mean curvature).
A rectifiable varifold V ∈ Vk(U) has the generalized mean curvature vector H⃗ = H⃗V if for
all X ∈ C1

c (U ;Rn) we have

⟨X, δV ⟩C0
c (U)′ = −

�
U
X · H⃗ d∥V ∥.

2.3 Introduction to Γ–convergence
Next we explain the sense in which we will approximate curvature based energies. We use
a general concept of “convergence of functionals” introduced by De Giorgi and Franzoni
in [DGF75]. The motivation for the definition of Γ–convergence is to find a convergence
for extended real-valued functionals which forces minima and minimizers to converge
alongside the functional under mild assumptions.

Let X be a metric space and for j ∈ N let F, Fj : X −→ R̂ be functionals with values in
R̂ := R ∪ {+∞}. We define Fj

Γ(X)−→ F as j →∞ if for all x ∈ X:

For all sequences xj → x in X : lim inf
j→∞

Fj(xj) ≥ F (x) (Γ− inf)

there exists a sequence x∗
j → x in X : lim sup

j→∞
Fj(x∗

j ) ≤ F (x). (Γ− sup)
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The definition is made such that if Fε
Γ(X)−→ F as ε→ 0 in (X, d) we get in many cases

lim
ε→0

min{Fε(x) | x ∈ X} = min{F (x) | x ∈ X}

and all cluster points of (xε)ε>0 with xε ∈ argmin
x∈X

Fε(x) for all ε > 0 are minimizers of F .
In this sense the functional F is well approximated as the convergence of minima and
minimizers is very useful.

The following theorem, which corresponds to Theorem 12.1.1. in [ABM14] precises the
previous remark.

Theorem 2.3.1 (Stability of minima).
Let (X, d) be a metric space and for j ∈ N let Fj , F : X −→ R̂ be functionals with
Fj

Γ(X)−→ F in X. Let xj ∈ X be such that Fn(xj) ≤ infX Fj + δj with 0 ≤ δj → 0. Assume
that {xj}j∈N is relative compact, then every cluster point x of {xj}j∈N is a minimizer of
F and

lim
j→∞

inf
X
Fj = F (x).

This implies the desired convergence of minima and minimizers. More information on
Γ–convergence can be found in [Bra02] or [DM93].

2.4 Phase-field approximations
In this section we list the diffuse approximations relevant for this thesis. As mentioned in
the introduction the first important result is the approximation of the perimeter.

Definition 2.4.1 (Cahn-Hilliard energy).
Let Ω ⊆ Rn be open, bounded with Lipschitz boundary and W ∈ C(R) with W ≥ 0 and
{W = 0} = {±1}. We define the diffuse perimeter Pε : L1(Ω) −→ [0,∞], with

Pε(u) :=


�

Ω

(
ε

2 |∇u|
2 + 1

ε
W (u)

)
dLn, if u ∈ H1(Ω) ∩ L4(Ω)

+∞, else.

Theorem 2.4.2 (Modica-Mortola).
Let Ω ⊆ Rn be open and bounded with Lipschitz boundary and W as in Definition 2.4.1.
Then we have

Pε
Γ−→ c0P as ε→ 0 in L1(Ω)

for c0 =
� 1

−1
√

2W dL1.

In addition to the Γ–convergence result we also have a compactness result for sequences
with bounded energy. The following theorem can be found in [Alb00] or [Leo13].

Theorem 2.4.3 (Compactness for sequences with bounded energy).
Let Ω ⊆ Rn be open and bounded with Lipschitz boundary and W (r) := (1 − r2)2. Let
(uε)ε>0 be a sequence in L1(Ω) with

sup
ε>0
Pε(uε) ≤ Λ.
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for some Λ > 0. Then there exists a limit function u ∈ BV (Ω; {±1}) such that up to a
subsequence we have

uε −→ u as ε→ 0 in L1(Ω) and c0P(u) ≤ lim inf
ε→0

Pε(uε).

Building upon results from [SV03] Amstutz and Van Goethem considered a gradient-free
approximation of the perimeter.

Definition 2.4.4 (Diffuse gradient-free perimeter by Amstutz and Van Goethem).
We define the gradient-free diffuse perimeter by PAG

ε : L1(Ω) −→ [0,∞],

PAG
ε (u) := inf

v∈H1(Ω)

�
Ω

(
ε

2 |∇v|
2 + 1

2ε(u− v)2 + 1
2εW (u)

)
dLn.

This infimum is attained for v = uε, where uε ∈ H1(Ω) is the unique solution to the
Euler-Lagrange equation

−ε2∆uε + uε = u in Ω (2.4.1)
∂νuε = 0 on ∂Ω. (2.4.2)

This leads to the representation

PAG
ε (u) = inf

v∈H1(Ω)

�
Ω

(ε
2 |∇v|

2 + 1
2ε(u− v)2 + 1

2εW (u)
)

dLn

=
�

Ω

(ε
2 |∇uε|2 + 1

2ε(u− uε)2 + 1
2εW (u)

)
dLn

=
�

Ω

1
2ε
(
u(u− uε) +W (u)

)
dLn. (2.4.3)

The resulting diffuse energy is well-defined and finite if only W (u) ∈ L1(Ω) in contrast to
the Cahn-Hilliard energy, which requires H1-regularity because the gradient is shifted to
the auxiliary function uε.

In Theorem 3.7 of [AVG12] the authors state their approximation result, we adjusted the
wells of W .

Theorem 2.4.5 (Gradient-free approximation of the perimeter).
Let Ω ⊆ Rn be an open and bounded set with Lipschitz boundary and assume W (r) = 1−r2

for r ∈ R. Then it holds, writing cAG :=
� 1

−1(1 + 1
2W

′′)
√
W + 1

4(W ′)2 dL1

PAG
ε

L1(Ω;[−1,1])−→ cAGP.

Next we give the results for approximations of the Willmore energy.
First we introduce the Willmore energy as a functional on L1(Ω).

Definition 2.4.6 (Willmore energy as a functional).
Let Ω ⊂ Rn be open, we define W : L1(Ω) −→ [0,∞] such that

W(u) :=


�

Ω∩∂E
|H∂E |2 dHn−1, if u = 2χE − 1 and ∂E is a C2-hypersurface

+∞, else.
(2.4.4)
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Defining W on functions instead of sets has the advantage that L1(Ω) is a Banach
space, i.e. it has an algebraic and a topologic structure that we can use to construct
approximations in the sense of Γ–convergence.

Bellettini and Paolini [BP93] proved the lim sup–condition for an approximation of the
Willmore energy. Let Ω ⊆ Rn be open, W (r) := (1− r2)2 for r ∈ R and let u ∈ H2(Ω).
Then we define Hε = Hε(u) := −ε∆u+ 1

εW
′(u) and the standard diffuse Willmore energy

by Bellettini and Paolini Wε : L1(Ω) −→ [0,∞] with

Wε(u) :=


�

Ω

1
ε

∣∣Hε(u)
∣∣2 dLn, if u ∈ H2(Ω) ∩ L6(Ω)

+∞, else.

Theorem 2.4.7 (Bellettini-Paolini).
Let Ω ⊆ Rn be open and assume E ⊆ Ω has C2-boundary Γ. Then there exists a sequence
(uε)ε>0 such that uε −→ u in L1(Ω) and

lim sup
ε→0

Wε(uε) ≤ c0W(u)

for u := 2χE − 1.

The central idea of their proof was to reduce to a one dimensional problem. First they
assumed that uε can be represented as a polynomial in ε close to the surface, i.e.

uε(x) = U0
(d(x)

ε
, y
)

+ εU1
(d(x)

ε
, y
)

+ . . . (2.4.5)

Here d(x) := sdist(x,Γ) ∈ R is the signed distance from x to the surface Γ and y ∈ Γ is the
orthogonal projection from x ∈ Ω onto Γ, which is well-defined in a small neighborhood
of Γ. For more on the coordinate system see Definition 2.1.10. Then Wε(uε) can be
expanded as a polynomial in ε as well, and the profile functions U0, U1, . . . are chosen in
way to minimize each order of Wε(uε).

It will turn out that the tangential coordinate y is far less important after minimizing
than the normal coordinate, thus this process reduces the n-dimensional coordinate of
x to a real number sdist(x,Γ). This method will serve as a prototype for proving the
Γ(L1)− lim sup estimate in different models.

The lim inf–estimate in smooth limit points and small dimensions was proven by Röger
and Schätzle [RS06]. The authors considered the sum of perimeter and Willmore energy.

Theorem 2.4.8 (Röger-Schätzle).
Let n ∈ {2, 3}, Ω ⊆ Rn be open and assume E ⊆ Ω with C2-boundary in Ω. Consider a
sequence (uε)ε>0 with uε −→ u in L1

loc(Ω), then it holds

c0
(
P(u) +W(u)

)
≤ lim inf

ε→0

(
Pε(uε) +Wε(uε)

)
for u := 2χE − 1.
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Given a sequence uε −→ u in L1(Ω) the authors consider the diffuse perimeter and diffuse
Willmore energy as Radon measures

µε :=
(ε

2
∣∣∇u∣∣2 + 1

ε
W (u)

)
Ln Ω ∈ C0

c (Ω)′,

ξε :=
(ε

2
∣∣∇u∣∣2 − 1

ε
W (u)

)
Ln Ω ∈ C0

c (Ω)′,

and αε := 1
ε

∣∣∣− ε∆uε + 1
ε
W ′(uε)

∣∣∣2Ln Ω ∈ C0
c (Ω)′.

With the diffuse normal vector νε := ∇uε
|∇uε| on {∇uε ≠ 0} they also define the varifold

Vε := µε ⊗ ν⊥
ε such that for all η ∈ C0

c (Rn ×G(n, n− 1))

〈
η, Vε

〉
C0

c (Rn×G(n,n−1))′ =
�

Ω×G(n,n−1)

η(x, S) dV (x, S) :=
�

Ω

η(x, νε(x)⊥) dµε(x).

The authors assume without loss of generality that lim infε→0
(
Pε(uε) +W(uε)

)
< ∞,

which yields compactness for (µε)ε>0, (ξε)ε>0 and (αε)ε>0. Thus there exist finite Radon
measures µ, ξ, α ∈ C0

0(Ω)′, a varifold V ∈ C0
c (Ω × G(n, n − 1))′, such that up to a

subsequence we have as ε→ 0

µε
w∗
−→ µ, ξε

w∗
−→ ξ, αε

w∗
−→ α in C0

0 (Ω)′,

and Vε
w∗
−→ V in C0

c (Ω×G(n, n− 1))′.

Then the authors prove that ξ = 0 and that V is (n − 1)-rectifiable, which are also
achieved in [Ilm93] or [PT98], though with different context and proofs. However the
critical and new component for the proof of the lim inf–property is the integrality of 1

c0
V .

This has been a question of big interest as in both of the publications [Ilm93] and [PT98],
the integrality of the limit varifold is explicitly mentioned as an open question. A reason
for that is the following. From the (n− 1)-rectifiability we have

∥V ∥ = µ = θ̃Hn−1 Γ

for some Hn−1-measurable function θ̃ : Γ −→ R. Knowing that 1
c0
V is integral implies

1
c0
θ̃(y) ∈ N for all y ∈ Γ and in particular that θ̃ ≥ c0. Thus we can estimate

c0Hn−1 Γ ≤ µ

which is the key to the lim inf–estimate as it connects back to the Willmore energy after
discussing µ and its properties. The proof of integrality employs the blow-up method and
is inspired by a proof from Hutchinson and Tonegawa in [HT00].

Having proven the integrality of 1
c0
V , the core argument of their proof starts with the

observation that for all η ∈ C1
c (Ω;Rn) we have

�
Ω
η · ∇uε

(
− ε∆uε + 1

ε
W ′(uε)

)
dLn −→

�
Ω
η · H⃗V dµ as ε→ 0. (2.4.6)
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Then the authors estimate

�
Ω
η · H⃗V dµ ≤ lim inf

ε→0

[ �
Ω
ε|η|2

∣∣∇uε

∣∣2 dLn

�
Ω

1
ε
|Hε|2 dLn

] 1
2

(2.4.7)

=
√
⟨|η|2, µ⟩C0

c (Ω)′ lim inf
ε→0

√
αε(Ω).

Taking the supremum over η ∈ C1
c (Ω;Rn) with

�
Ω |η|

2 dµ ≤ 1 yields

∥H⃗V ∥L2(Ω,µ;Rn) ≤ lim inf
ε→0

√
αε(Ω),

and thus

c0W(u) = c0

�
Ω

∣∣H⃗V

∣∣2 dHn−1 ≤
�

Ω

∣∣H⃗V

∣∣2 dµ (2.4.8)

≤ lim inf
ε→0

�
Ω

1
ε

∣∣∣− ε∆uε + 1
ε
W ′(uε)

∣∣∣2 dLn ≤ lim inf
ε→0

WKK
ε (uε).

A more detailed presentation of the results from [RS06] can be found in Theorem 5.2.3,
the central proof of the paper is shortly outlined in a remark at the end of Section 5.2.

2.5 Varifold solutions to mean curvature flow
There are several concepts for weak solutions for the mean curvature flow, of which the
first and most prominent is the Brakke flow. In his book [Bra78] from 1978, Brakke
presents the results of his dissertation from 1975. He introduced a weak formulation of
mean curvature flow with the idea to generalize the energy-dissipation. Here we present a
different but equivalent definition, which was proposed by Tonegawa in [Ton19].

Assumption 2.5.1.
Let Ω ⊆ Rn be open, k ∈ {1, . . . , n− 1} and T, σ > 0. Assume (Vt)t∈[0,T ) in Vk(Ω) is a
family of integral varifolds and for a.e. t ∈ [0, T ) V t has a weak mean curvature vector H⃗t,
we define H⃗(t) := H⃗t. Furthermore, it holds H⃗ ∈ L2

loc([0, T )× Ω,L1 ⊗ (∥V t∥)t∈[0,T );Rn).
The family is bounded in the following sense: for all K ⋐ Ω and all t ∈ [0, T ) we have

sup
s∈[0,t]

∥V s∥(K) <∞.

Definition 2.5.2 (Brakke flow).
Let Assumptions 2.5.1 hold. Then (Vt)t∈[0,T ) is moving by mean curvature flow in the
sense of Brakke if for all non-negative ψ ∈ C1

c [0, T ), η ∈ C1
c (Ω) and all 0 ≤ t1 < t2 < T

ψ(t)
�

Ω
η d∥Vt∥

∣∣∣∣t2

t=t1

≤ −σ
� t2

t1

ψ

�
Ω
η
∣∣H⃗t

∣∣2 d∥V t∥ dt+ σ

� t2

t1

ψ

�
Ω
∇η · H⃗t d∥Vt∥ dt

+
� t2

t1

ψ′
�

Ω
η d∥Vt∥ dt. (2.5.1)

The identity (2.5.1) is an inequality because this way sudden losses of k-dimensional
are accounted for. As mentioned in the introduction singularities can not only occur in
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evolutions by mean curvature flow, they are even expected to occur.

The original definition from Brakke uses an upper difference quotient fro the time derivative
instead of a weak derivative as we explain in the following. Let V := (V t)t>0 be a family
of varifolds in Ω with mean curvature vectors H⃗t for t > 0. Then V is a solution to mean
curvature flow in the sense of Brakke if for all ψ ∈ C1

c (Ω) with ψ ≥ 0 and all t > 0 we
have

∂t

�
Ω
ψ d∥V t∥ ≤ −

�
Ω
ψ
∣∣H⃗t

∣∣2 d∥V t∥+
�

Gn−1(Ω)
H⃗t(x) · S⊥∇ψ(x) dV t(x, S).

Here ∂t is the upper partial derivative and is the lim sup of the difference quotient. By far
the most important contribution with respect to phase-field approximations is Ilmanen’s
paper [Ilm93]. Ilmanen starts with solutions to the Allen-Cahn equation

−ε∂tuε = −ε∆uε + 1
ε
W ′(uε) (2.5.2)

for a double-well potential W and defines

µt
ε :=

(ε
2
∣∣∇uε(t, ·)

∣∣2 + 1
ε
W ′(uε(t, ·))

)
Ln

ξt
ε :=

(ε
2
∣∣∇uε(t, ·)

∣∣2 − 1
ε
W ′(uε(t, ·))

)
Ln

V t
ε := µt

ε ⊗∇uε(t, ·)⊥

such that for all η ∈ C0
c (Gn−1(Rn)),

〈
η, V t

ε

〉
C0

c (Gn−1(Rn))′ =
�

Gn−1(Rn)
η(x, S) dV (x, S) :=

�
Rn

η(x,∇uε(t, x)⊥) dµt
ε(x).

Important steps in the paper are the use of the monotonicity formula by Huisken [Hui90],
the proof that there exists a subsequence (ε→ 0) such that µε

w∗
−→ µt in C0

c (Rn)′ for all
t > 0, and that ξt

ε
w∗
−→ 0. The author then proves that there exists a limit varifold, which

is a solution to mean curvature flow in the sense of Brakke. After Theorem 2.4.8 was
proven in [RS06], Ilmanen’s proof was significantly shortened in small dimensions by Sato
[Sat08].

Another type of varifold solutions for mean curvature flow was recently proposed in
[HL21]. This concept considers evolving varifolds with mean curvature vector and normal
velocity. The key requirement is to characterize the motion law in form of an optimal
energy-dissipation inequality. If (Γt)t∈[0,T ) is a family of smooth surfaces evolving by
mean curvature flow we get by the chain rule

∂tHn−1(Γt) =
�

Γt

V⃗ · H⃗t dHn−1 ≥ −1
2

�
Γt

∣∣V|2 dHn−1 − 1
2

�
Γt

∣∣H⃗t

∣∣2 dHn−1. (2.5.3)

Thus if the inequality holds with “≤” we have the energy-dissipation equality of mean
curvature flow. The idea behind the De Giorgi formulation is to define this optimal
energy-dissipation inequality with “≤” as the motion law for mean curvature flow, even
in absence of a chain rule.
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Definition 2.5.3 (De Giorgi type varifold solutions for rescaled mean curvature flow).
Let ⊕V = L1 ⊗ (⊕V t)t∈[0,T ) be a family of oriented varifolds in Ω such that for all
ϕ ∈ L1(0, T ;C0

0(Ω × Sn−1)) the map (0, T ) ∋ t 7−→
�

Ω×Sn−1 ϕ(t, ·, ·) d⊕V t is measur-
able. We consider a family (E(t))t>0 of open subsets of Ω with finite perimeter in
Ω such that the associated indicator function u(t, ·) := 2χE(t) − 1, t > 0, satisfies
u ∈ L∞(0, T ;BV (Ω; {±1})). Let c0 > 0 be a surface tension constant and σ > 0 be a
time rescaling factor. We call ⊕V0 the initial oriented varifold. Let u0 ∈ BV (Ω; {±1})
be an initial phase indicator function, we call the pair (⊕V, u) a De Giorgi type varifold
solution for the rescaled mean curvature flow V = σH with initial data (⊕V 0, u0) if the
following hold.

(a) For t ∈ (0, T ) we write µt := ∥⊕V t∥ for the weight measure and µ := L1⊗ (µt)t∈[0,T ).
We require the existence of V ∈ L2(0, T ;L2(Ω, µt)) encoding a generalized normal
velocity in the sense of

c0
2

�
Ωτ

u∂tϕ dLn+1 −
�

Ωτ

Vϕ dµ = c0
2

�
Ω
u(τ, ·)ϕ(τ, ·) dLn − c0

2

�
Ω
u0ϕ(0, ·) dLn

(a)

for a.e. τ ∈ (0, T ) and every ϕ ∈ C∞
c ([0, T )× Ω)).

(b) We require the existence of H⃗ ∈ L2(0, T ;L2(Ω, µt;Rn)) encoding a generalized mean
curvature vector by

�
ΩT

H⃗ · η dµ = −
�

ΩT ×Sn−1

(Id−s⊗ s) : Dη(t, x) d⊕V (t, x, s) (b)

for all η ∈ C∞
c ([0, T )× Ω;Rn).

(c) A sharp energy-dissipation principle in form of

µτ (Ω) + σ

2

�
Ωτ

∣∣H⃗∣∣2 dµ+ 1
2σ

�
Ωτ

|V|2 dµ ≤ µ0(Ω) (c)

for a.e. τ ∈ (0, T ).

(d) For a.e. t ∈ (0, T ) and all η ∈ C∞
c (Ω;Rn) we have

c0
2

�
Ω
η(x) · d∇u(t, x) =

�

Ω×Sn−1

η(x) · sd⊕V t(x, s). (d)

Note that there are a few differences in the definition from the source because we consider
the space [0, T )×Ω instead of [0,∞)×R and the interface function u takes values in {±1}
instead of {0, 1} which is the reason for the additional factor 1

2 in (a) and (d). Also we
added the additional parameter σ > 0 which does not exist in the original definition. Note
that in the case of any smooth evolution of smooth surfaces we have, writing H(t) := H⃗t ·ν
where ν is the inner normal of the surface
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∂tµ
t(Ω) = −

�
Ω
H(t, ·)V(t, ·) dµt

= −σ2

�
Ω
|H(t, ·)|2 dµt − 1

2σ

�
Ω

∣∣V(t, ·)
∣∣2 dµt + 1

2σ

�
Ω

∣∣∣σH(t, ·)− V(t, ·)
∣∣∣2 dµt.

We conclude for all τ ∈ (0, T )

µτ (Ω) + σ

2

�
Ωτ

|H(t, ·)|2dµ+ 1
2σ

�
Ωτ

∣∣V(t, ·)
∣∣2dµ = µ0(Ω) + 1

2σ

�
Ωτ

∣∣∣σH(t, ·)− V(t, ·)
∣∣∣2dµ.

Hence, if (c) holds for a smooth evolution of smooth surfaces then the classical energy-
dissipation equality and

σH(t, x) = V(t, x)

hold for µ-a.e. (t, x) ∈ ΩT .

2.6 Other weak formulations of the mean curvature flow
In the mean curvature flow sets are expected to develop singularities in finite times. For
instance for boundaries of non-convex sets the surfaces can break apart into multiple
surfaces; see Chapter 3 in [Eck04]. Such singularities have been studied by Huisken
[Hui90]. Classical solutions rely on parametrizations over a fixed surface, however when
the topology (in a geometric way) changes, as described above this is no longer possible.
Thus classical solutions stop existing at singularities, which makes weak solutions and
possible weak formulations much more interesting.

In the 1980’s the notion of viscosity solutions was established. Starting with the works of
Crandall and Lions in [CL83] and [Lio83] this allows for a weak formulation of mean
curvature flow. Other important contributions are the papers from Chen, Giga, and
Goto, mainly [CGG91]; see also the references therein. For us the framework of viscos-
ity solutions is unsuitable owing to the lack of comparison principle for fourth-order PDEs.

In 1992 a discretization scheme to approximate the mean curvature flow was established
called BMO (Bence-Merriman-Osher) or Thresholding scheme; see [MBO92]. The setup
is inspired by the Allen-Cahn equation (2.5.2) where the double-well potential W has
its wells at ±1. We start with a given set E0. For each time step we encode Ek with a
{±1}-valued characteristic function. We imitate the effect of the Laplacian by convolving
the function with a fundamental solution of the heat equation. Motivated by the
forcing term in the Allen-Cahn equation we set Ek+1 as the super-level set of 0. Other
important contributions to the study of the scheme can be found in [Law93, ELO15, LO16].

Another solution concept that should be mentioned, even though it is not connected
to our research is the method of De Giorgi’s barriers using functions which map point
of time onto sets whose signed distance function is a solution to the heat equation.
The concept is centered around the inclusion principle for mean curvature flow . For a
precise definition we refer to [Bel13], where the concept is explained in detail. Important
contributions to this theory include the paper [BP95] from Bellettini and Paolini from
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1995, its errata [BP02] from 2002, and the paper [BN00] from Bellettini and Novaga from
2000.
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3 A gradient-free approximation
of the Willmore energy based
on the Amstutz-Van Goethem
model

In this chapter we prove the Γ–lim sup estimate for a new, “gradient free”approximation
based on the article [AVG12] by Amstutz and Van Goethem from 2012. They consider a
different diffuse perimeter than the standard Cahn-Hilliard energy from 2.4.1, motivated
by a two-variable energy studied by Solci and Vitali in [SV03]. The energy in [AVG12] is
given by

PAG
ε (u) = inf

v∈H1(Ω)

�
Ω

(ε
2
∣∣∇v∣∣2 + 1

2ε(u− v)2 + 1
2εW (u)

)
dLn,

where W is a double-well potential. In [AVG12] the authors consider WAG(r) := r(1− r)
for r ∈ [−1, 1], however we pose different assumptions on W which excludes WAG; see
Assumptions 3.1.1. The infimum is attained for v = uε where uε ∈ H1(Ω) is a solution to

−ε2∆uε + uε = u in Ω (3.0.1)
∂νuε = 0 on ∂Ω, (3.0.2)

which yields

PAG
ε (u) =

�
Ω

(ε
2 |∇uε|2 + 1

2ε(u− uε)2 + 1
2εW (u)

)
dLn

=
�

Ω

1
2ε
(
u(u− uε) +W (u)

)
dLn.

The solution operator to −ε2∆ + Id with Neumann boundary conditions is linear and
self-adjoint. The L2-gradient of PAG

ε therefore is given by

∇L2PAG
ε (u) = 1

ε

(
u+ 1

2W
′(u)− uε

)
=: HAG

ε ,

which can be seen as a diffuse mean curvature. This suggests the formal Willmore energy
approximation

WAG
ε (u) :=

�
Ω

1
ε3

∣∣∣u+ 1
2W

′(u)− uε

∣∣∣2dLn, (3.0.3)
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which is the main object we study in this chapter. The additional factor ε−1 in WAG
ε

accounts for the small volume of the transition layer region.

The second topic we consider in this chapter is convergence for the gradient flows of PAG
ε

and WAG
ε . Under rather restrictive assumptions on the approximations we prove that up

to a factor we get that the gradient flow of PAG
ε converges to mean curvature flow and

WAG
ε converges to the Willmore flow, again up to a rescaling in time. The content of this

chapter (in a shorter version) has already been published in [DKR22].

3.1 Preparations

Assumption 3.1.1 (on Ω and W ).
Throughout this chapter we assume n ∈ N and Ω ⊆ Rn is an open, bounded set with
Lipschitz boundary and ε > 0.

Furthermore we assume for the double-well potential

• W ∈ Cm(R), m ∈ N≥4.

• W ≥ 0, {W = 0} = {±1}, W ′′(±1) > 0.

• 1 + 1
2W

′′ > 0 in [−1, 1].

• W has at least linear growth at ±∞.

We associate W with the mapping f : R −→ R, f(r) := r + 1
2W

′(r).

Remark.
We have f ′(r) = 1+ 1

2W
′′(r) ≥ γ for some γ > 0 and all r ∈ [−1, 1]. Thus f ∈ Cm−1[−1, 1]

is strictly increasing and we further obtain that f : [−1, 1] → [−1, 1] is one-to-one and
that f has an inverse function f−1 ∈ Cm−1[−1, 1] such that for all r ∈ (−1, 1)

(f−1)′(r) = 1
f ′(f−1(r)) ≤

1
γ

and
∣∣(f−1)′′(r)

∣∣ =
∣∣f ′′(f−1(r))

∣∣∣∣f ′(f−1(r))|3
≤
∥W ′′′∥C0[−1,1]

γ3 .

(3.1.1)

Since we have f ′(r) ≥ γ for all r ∈ [−1, 1] and f ′ is continuous on R there exists an open
interval U ⊇ [−1, 1] such that f is strictly increasing on U . Thus we can consider the
derivatives of f and f−1 on the closure [−1, 1].

If W is an even function then f and f−1 are odd.

The conditions in the Assumption 3.1.1 cover a large class of admissible double-well
potentials, such as the standard quartic double-well potential W (r) = 1

4(1 − r2)2

that is most often used in simulations. On the other hand the particular choice
W (r) = 1− r2, r ∈ [−1, 1], with locally constant linear growth outside [−1, 1] in [AVG12]
is not allowed, since in this case f would be constant in (−1, 1) and is not C1-regular on R.

For many diffuse approximations the study of the optimal transition between the pure
phases on the real line is key for understanding its behavior, see for example [Alb00]
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and the references therein. As for the Cahn–Hilliard approximation Pε and Willmore
functional Wε we expect that typical small-energy configurations for PAG

ε and WAG
ε are

quasi one-dimensional and can be constructed from an optimal transition profile and the
rescaled signed distance from the zero-level set.
To characterize the optimal profile associated to PAG

ε we consider the following minimiza-
tion problem on the real line. We fix a suitable class of real functions

M := {u ∈ L∞(R) : ess-lim sup
r→−∞

u(r) < 0, ess-lim inf
r→∞

u(r) > 0}.

Moreover we define for u ∈M, v ∈ H1
loc(R) with limx→±∞ v(x) = ±1 the energies

GRε (u, v) :=
�
R

1
2
(
ε(v′)2 + 1

ε
(u− v)2 + 1

ε
W (u)

)
dL1,

Eε(u) := inf
{
GRε (u, v) : v ∈ H1

loc(R), lim
r→±∞

v(r) = ±1
}
.

By rescaling we see that the minimization problem can be reduced to the case ε = 1
and we write E = E1, G = GR1 in what follows. Looking at the proof in [BP93] for the
lim sup condition of Γ-convergence from WAC

ε to the Willmore energy we are interested
in information about one-dimensional minimizing profiles of E with limit behavior as inM.

Before we turn to the theorem on the one-dimensional profiles we prove that an auxiliary
function has the properties of a double-well potential on [−1, 1].

Lemma 3.1.2 (Modified double-well potential).
Let W, f, U be as in Assumptions 3.1.1. Then the function

W∗ : U −→ R, W∗(r) := 1
4W

′(f−1(r))2 +W (f−1(r))

has the following properties

• W∗ ∈ Cm(U) and W∗ ≥ 0,

• {W∗ = 0} = {±1},

• W ′
∗(r) = W ′(f−1(r)) = 2(r − f−1(r)),

•
√
W∗ is Lipschitz and

∣∣∣∂√W∗(r)
∣∣∣ ≤ 1.

In particular W∗ can be considered as the restriction of a double-well potential Ŵ : R −→ R
to U .

Proof. W∗ ≥ 0 is clear and from the regularity of W we have W∗ ∈ Cm−1(U). To
determine {W∗ = 0}, we calculate for r ∈ U

W∗(r) = 0⇐⇒W ′(f−1(r)) = 0 and W ′(f−1(r)) = 0
⇐⇒ f−1(r) = ±1⇐⇒ r = ±1.
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Let r ∈ U , then we have for the derivative

W ′
∗(r) = 1

2W
′(f−1(r)) ·W ′′(f−1(r)) · (f−1)′(r) +W ′(f−1(r)) · (f−1)′(r)

= W ′(f−1(r)) · (f−1)′(r) ·
(

1 + 1
2W

′′(f−1(r))
)

= W ′(f−1(r)) · (f−1)′(r) · f ′(f−1(r)) = W ′(f−1(r)) = 2(r − f−1(r)),

which implies W ′
∗ ∈ Cm−1(U) hence W∗ ∈ Cm(U). At last we prove that

√
W∗ is Lipschitz.

We have for any r ∈ U
∣∣∣∂√W∗(r)

∣∣∣ = |W ′
∗(r)|

2
√
W∗(r)

≤ |W ′(f−1(r))|
2 · 1

2 |W ′(f−1(r))|
≤ 1.

Theorem 3.1.3 (Optimal profile).
Let W be as in Remark 3.1.1. Every minimizer of E lies in Cm−1(R). There exists a
unique minimizer q0 of E that satisfies q0(0) = 0. This minimizer is determined by

q0 = f−1(q0), (3.1.2)

where q0 ∈ Cm+1(R) is the unique solution to

q′
0 =

√
W∗(q0) with q0(0) = f(0). (3.1.3)

We also have

• 1 < q0, q0 < 1,

• q′
0 > 0, q′

0 > 0,

• lim
r→±∞

q0(r) = ±1 = lim
r→±∞

q0(r)

and

−q′′
0 + q0 = q0 in R. (3.1.4)

Remark. We use the simpler first order ODE (3.1.3) to define q0 and show that it solves
equation (3.1.4) instead of the other way around, even though it would be more natural to
use (3.1.4) as definition.
We also remark that a priori we consider functions with values in R instead of (−1, 1).
In the proof below that we can also restrict the minimization to functions with values in
[−1, 1] and obtain that the optimal profile takes it values only in (−1, 1). Since the diffuse
Willmore flow is of fourth order and does not satisfy a maximum principle, we cannot
guarantee that evolutions take values only in (−1, 1). In particular, the behavior of the
double-well potential on R matters for the analysis below.

Proof of Theorem 3.1.3. We start with (u, v) ∈ L∞(R)×H1
loc(R) and assume that (u, v)

is a minimizer of G thus u is a minimizer of E . In the following we deduce necessary
properties of u and v which we can then use to prove that these minimizers exist and
satisfy the claims of the theorem.
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First we can assume that the integral is finite. This implies u ∈ L4(R) and v ∈ H1(R).
Next we restrict the function values of u, v to [−1, 1]. We write P[−1,1] : R −→ [−1, 1] for
the projection

P[−1,1](r) :=
{

sgn(r) if |r| ≥ 1,
r if |r| < 1.

For v ∈ H1(R) we have from standard theory P[−1,1]v ∈ H1(R) and

∇P[−1,1]v = χ{|v|<1}∇v,
∣∣P[−1,1]u− P[−1,1]v

∣∣ ≤ |u− v| and W (P[−1,1]u) ≤W (u).

It follows

G(P[−1,1]u, P[−1,1]v) ≤ G(u, v)

which implies −1 ≤ u, v ≤ 1.

Next we are looking for a formula to calculate u from v and vice versa. Let x ∈ R and
v(x) ∈ [−1, 1], we minimize (u(x)− v(x))2 +W (u(x)) pointwise in u(x) ∈ [−1, 1]. The
existence of a minimizer is guaranteed because [−1, 1] is compact and the considered
function is continuous, it is even C2. If the minimizing u(x) lies in (−1, 1) then the choice
u(x) = f−1(v(x)) is optimal because of

0 != ∂u(x)
(
(u(x)− v(x))2 +W (u(x))

)
= 2(u(x)− v(x)) +W ′(u(x))

⇐⇒ v(x) = u(x) + 1
2W

′(u(x)) = f(u(x))

and

∂2
u(x)

(
(u(x)− v(x))2 +W (u(x))

)
= 2 +W ′′(u(x)) = 2f ′(u(x)) > 0.

The analysis of the boundary shows that u(x) = ±1 can only be optimal when v(x) = ±1,
but this is also covered by u(x) = f−1(v(x)). It follows u = f−1(v).

Plugging u = f−1(v) hence v − f−1(v) = 1
2W

′(u) into the energy leads to

E
(
f−1(v)

)
= 1

2

�
R

(
(v′)2 + (f−1(v)− v)2 +W (f−1(v))

)
dL1

= 1
2

�
R

(
(v′)2 + 1

4W
′(f−1(v))2 +W (f−1(v))

)
dL1

= 1
2

�
R

(
(v′)2 +W∗(v)

)
dL1.

Knowing that W∗ is a double-well potential we can proceed in the following as in section 3a
of [Alb00]: we estimate with the so-called Modica-Mortola trick with the Young-inequality

E
(
f−1(v)

)
≥
�
R
v′
√
W∗(v) dL1.
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In the Young-inequality there is equality if and only if v′ = ±
√
W∗(v). The condition

limr→±∞ v(r) = ±1 in the definition of E can not be satisfied by a decreasing function
which implies

v′ =
√
W∗(v). (3.1.5)

Since
√
W∗ is Lipschitz on U ⊇ [−1, 1] we get that for any initial value v0 ∈ U there

exists a unique the solution to the inital value problem (3.1.5) by the Picard-Lindelöf
Theorem. Furthermore we get from the Lipschitz condition that every solution to
an initial value problem of (3.1.5) with v0 ∈ U can be extended to a function on
R by Theorem 2.5.6 in [Aul04]. Thus we can always the initial value v(0) = v0. If
v0 = ±1 then the solution is constant because of W∗(±1) = 0. By the uniqueness
of the solution we get |v| < 1 if |v0| < 1. Since u = f−1(v) and u ∈M it follows |v(0)| < 1.

Since v is increasing and bounded we have the existence of limr→∞ v(r) = supr∈R v(r).
From the ODE it follows that limr→∞ v′(r) exists. This has to be 0, because oth-
erwise v(r) could not be bounded as r → ∞. From (3.1.5) we can conclude that
limr→∞ v(r) = 1, since W∗ has no other zeroes in (−1, 1], v0 ∈ (−1, 1), and v is strictly
increasing. The same argument can be applied for r → −∞. For u this implies
limr→±∞ u(r) = limr→±1 f

−1(v(r)) = ±1.

This also shows that the initial value for v can not satisfy |v0| > 1 because this solution
satisfies |v| > 1 by the uniqueness of the solution. Since W∗ ∈ Cm(U) we get from
standard regularity theory for ODE’s v ∈ Cm+1(R) and the respective minimizer
u = f−1(v) ∈ Cm−1(R).

We conclude that any minimizer u of E and thus any minimizer (u, v) of G is characterized
by v = f(u) and v is a solution to (3.1.5) with |v0| < 1. From limr→±∞ v(r) = ±1
and the uniqueness of the solution to the initial value problem we get, that all of the
minimizers are the same up to a shift of the argument.

Now we consider the additional condition u(0) = 0. This translates into the condition
v(0) = f(0) ∈ (−1, 1) for v. By the previous argumentation the existence of the unique
minimizer with u(0) = 0 is guaranteed by the Picard-Lindelöf Theorem and we denote
these functions with q0 := u and q0 := v. We also have q′

0 = (f−1)′(q0)q′
0 > 0 and thus q0

is strictly increasing as well.

Now we can verify that q0 and q0 solve (3.1.4). Owing to q′
0 > 0 we get

(q′
0)2 = W∗(q0), thus 2q′

0q
′′
0 = W ′

∗(q0)q′
0 and q′′

0 = 1
2W

′
∗(q0) = q0 − f−1(q0).

This yields

−q′′
0 + q0 = q0.

Next we prove even better decay for the profile functions q0, q0, and their derivatives as
r → ±∞.
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Lemma 3.1.4 (Exponential decay of q0, q0, and derivatives).
There exist R,C, c > 0 such that for all |r| > R we have

1− e−c|r| ≤ |q0(r)| < 1, 1− e−c|r| ≤ |q0(r)| < 1,
0 < q′

0(r) ≤ Ce−c|r|, 0 ≤ q′
0(r) ≤ Ce−c|r|,

|q′′
0(r)| ≤ Ce−c|r|, and |q′′

0(r)| ≤ e−c|r|.

It follows q0 − sgn, q0 − sgn ∈ L2(R), and q′
0, q

′
0 ∈ H1(R).

Proof. Since W∗(1) = W ′
∗(1) = 0 and W ′′

∗ (1) > 0 we can Taylor-expand W∗ as follows,
defining 0 < c < 1

2 such that 2c2 := W ′′
∗ (1)
2 =

1
2 W ′′(1)

1+ 1
2 W ′′(1)

q′
0 =

√
2c2(1− q0)2 +O((1− q0)3) (q0 → 1). (3.1.6)

There exists τ > 0 such that 1 − τ ≤ q0 ≤ 1 implies
∣∣O((1 − q0)3)

∣∣ ≤ c2(1 − q0)2. We
chose R1 > 0 such that for all r > R1 we have 1− τ ≤ q0(r) ≤ 1 and estimate

(q0(r)− 1)′ ≥
√
c2(1− q0(r))2 for r > R1

=⇒ (1− q0(r))′ ≤ −c(1− q0(r)) for r > R1.

Now we can use the Gronwall Lemma and limr→∞ q0(r) = 1 to obtain for r > R1

(1− q0)(r) ≤ e−cr and thus q0(r) ≥ 1− e−cr.

Since q0(r) < 1 we have the claimed exponential convergence. Plugging this into (3.1.6)
we find for r > R1

0 < q′
0(r) ≤

√
4c2(1− q0(r))2 = 2c(1− q0(r)) ≤ 2ce−cr.

We can transfer this decay to q0. Let r > R1, owing to the monotonicity of f we get

1 > q0(r) = f−1(q0(r)) ≥ f−1(1− e−cr)
Now we Taylor-expand f−1

f−1(1− e−cr) = 1− (f−1)′(1)e−cr +O
(
e−2cr).

Since (f−1)′(1) < 1 by (f−1)′(1) = 1
1+ 1

2 W ′′(1) and W ′′(1) > 0 we can find R > R1 such
that for r > R we have

1 > q0(r) ≥ 1− e−cr.

For q′′
0 we use (3.1.4) and get for r > R

q′′
0 = q0 − q0

{
≤ 1− (1− e−cr) = e−cr

≥ 1− e−cr − 1 = −e−cr and thus |q′′
0| ≤ e−cr.

For q′
0 we calculate for r > R1

0 < q′
0(r) = (f−1)′(q0(r))q′

0 ≤
2c
γ
e−cr.
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At last we estimate for r > R using (3.1.1)

|q′′
0(r)| ≤

∣∣(f−1)′′(q0(r))
∣∣|q′

0(r)|2 +
∣∣(f−1)′(q0(r))q′′

0(r)
∣∣

≤
2c∥W ′′′∥C0[−1,1]

γ3 e−2cr + 1
γ
e−cr ≤ C(W )e−cr.

The estimates can be done the same way for r → −∞.

The following two constants will be relevant for our approximations.

Corollary 3.1.5 (Double-well potential depending constants).
The constants

cAG := min
M
E =

�
R
|q′

0|2 dL1 and σAG := cAG
∥q′

0∥2L2(R)
, (3.1.7)

are in terms of the double-well potential characterized by

cAG =
� 1

−1

(
1 + 1

2W
′′
)√

W + 1
4(W ′)2 dL1 and cAG

σAG
=
� 1

−1

√
W + 1

4(W ′)2

1 + 1
2W

′′ dL1.

(3.1.8)

Proof. We get equation (3.1.8) from

∥q′
0∥2L2(R) =

� 1

−1
W

1
2∗ dL1 =

� 1

−1
f ′
√
W + 1

4(W ′)2 dL1

and

∥q′
0∥2L2(R) =

�
R

|q′
0|2

|f ′ ◦ f−1|2
dL1 =

� 1

−1

W
1
2∗

f ′ dL1 =
� 1

−1

√
W + 1

4(W ′)2

1 + 1
2W

′′ dL1.

For a special choice of W the constants are calculated in the appendix; see Section 8.3.
Motivated by the equations occurring in the minimizing of the one-dimensional energy we
are looking for a solution operator with “good” properties. Given a function u we solve
for v with

−v′′ + v = u with v′(±∞) = 0

in a suitable sense. A possible ansatz would be to consider u ∈ L2(R) and to use the
Lax-Milgram Theorem to find solutions in H1(R) or even H2(R). However the functions
we considered before are not in L2(R) as they approach ±1 at ±∞. So we need a solution
operator that works on L∞(R) as well. We get this by considering the Green’s function
of the ODE and the induced convolution operator. This leads to the following definition.

Definition 3.1.6 (Solution operator on R).
We define A0 : L2(R) + L∞(R) −→ L2(R) + L∞(R),

A0w := A0(w) := J1 ∗ w. (3.1.9)

where J1 : R −→ R is the Green’s function of −∂2 + Id in R

J1(r) := 1
2e

−|r| for r ∈ R;

see Theorem 6.23 in [LL01].

36



This is well-defined for w ∈ L2(R) + L∞(R) and restricted to L2(R) this coincides with
the operator constructed from Lax-Milgram, as we will prove in Proposition 3.1.8. Before
we can prove properties of A0 we collect a few properties of J1.

Lemma 3.1.7 (Properties of J1).
The function J1 : R −→ R with J1(r) = 1

2e
−|r| has the following properties

• J1 ∈ C0
b (R) and J1 ≥ 0,

• J1 ∈W 1,1(R) ∩W 1,∞(R),

• ∥J1∥L1(R) = 1 = ∥J ′
1∥L1(R) and ∥J1∥L2(R) = 1

2 = ∥J ′
1∥L2(R).

Proof. J1 ≥ 0 and J1 ∈ C0
b (R) is clear. We calculate the weak derivative. Let ψ ∈ C∞

c (R)
then we have

−
�
R
ψ′J1 dL1 = −1

2

� 0

−∞
ψ′(r)er dr − 1

2

� ∞

0
ψ′(r)e−r dr

= −1
2ψ(0) + 1

2

� 0

−∞
ψ(r)er dr + 1

2ψ(0)− 1
2

� ∞

0
ψ(r)e−r dr

=
�
R
ψ(r)1

2 sgn(−r)e−|r| dr.

For r ∈ R we conclude J ′
1(r) = 1

2 sgn(−r)e−|r| in the weak sense. We have |J ′
1| = J1

and J1, J
′
1 ∈ L1(R) ∩ L∞(R) from the exponential decay, which implies the second claim.

Since |J ′
1| = J1 it suffices for the last claim to calculate ∥J1∥L1(R) and ∥J1∥L2(R). We have

∥J1∥L1(R) =
�
R
|J1(r)|dr =

�
R

1
2e

−|r| dr =
� ∞

0
e−r dr = 1

and

∥J1∥2L2(R) =
�
R
|J1(r)|2 dr =

�
R

1
4e

−2|r| dr = 1
2

� ∞

0
e−2r dr = 1

4 .

Proposition 3.1.8 (One-dimensional solution operator).
The operator A0 : L2(R) + L∞(R) −→ L2(R) + L∞(R) satisfies

(1) A0(L2(R)) ⊆ H2(R) ∩ C1
b (R), A0(L∞(R)) ⊆W 2,∞(R) ∩ C1

b (R) and
A0(C0

b (R)) ⊆ C2
b (R).

(2) If u ∈ L2(R) then A0(u) is the unique solution to

(−∂2+ Id)A0u = u a.e. in R and in the weak sense.

(3) A0|L2(R) : L2(R) −→ L2(R) is linear, continuous, self-adjoint, and positive.

(4) A0|L∞(R) : L∞(R) −→ L∞(R) is linear, continuous and if lim
r→∞

u(r) = y for some
u ∈ L∞(R) and some y ∈ R then we have lim

r→∞
A0u(r) = y. The same is true for

r → −∞.

(5) If h ∈ C1
b (R) we have ∂A0h = A0h

′.
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Proof. We start with proving (1) and (2). Given u ∈ L2(R) we can find a unique solution
v ∈ H1(R) using the Lax-Milgram Theorem such that

∀ψ ∈ H1(R) :
�
R
ψ′v′ dL1 +

�
R
ψv dL1 =

�
R
ψu dL1. (3.1.10)

From v′′ = v − u ∈ L2(R) and we get v ∈ H2(R) ↪→ C1(R). Furthermore we have
J1 ∗ u ∈ H2(R) from Theorem 5.18 in [Kab14]. Since J1 is the Green’s function of the
ODE can conclude with to the uniqueness of the solution v = A0u. We get with the
standard properties of convolutions and Lemma 3.1.7

A0u = J1 ∗ u, |A0u(r)| ≤ ∥J1∥L2(R)∥u∥L2(R) = 1
4∥u∥L2(R) for all r ∈ R,

A0u
′ = J ′

1 ∗ u, |A0u
′(r)| ≤ ∥J ′

1∥L2(R)∥u∥L2(R) = 1
4∥u∥L2(R) for all r ∈ R

and thus A0u ∈ C1
b (R).

A0(L∞(R)) ⊆ W 2,∞(R) is shown in [LL01]. To show A0(L∞(R)) ⊆ C1
b (R) we estimate

similar as before. Let u ∈ L∞(R) then we have

A0u = J1 ∗ u, |A0u(r)| ≤ ∥J1∥L1(R)∥u∥L∞(R) = ∥u∥L∞(R) for all r ∈ R,
A0u

′ = J ′
1 ∗ u, |A0u

′(r)| ≤ ∥J ′
1∥L1(R)∥u∥L∞(R) = ∥u∥L∞(R) for all r ∈ R

and thus A0u ∈ C1
b (R).

If u ∈ C0
b (R) then we get A0(u) ∈ C2(R) from standard ODE regularity theory

by considering the ODE locally. A0u,A0u
′ ∈ L∞(R) follow from the previous case.

A0u
′′ ∈ L∞(R) follows from the ODE, in fact we have A0u

′′ = A0u− u ∈ C0
b (R).

For (3) and (4) the linearity is clear. To estimate the norm we test the ODE with the
solution v itself. With a Young estimate and a partial integration we get

�
R
|A0u

′|2 dL1 +
�
R
|A0u|2 dL1 =

�
R
uA0u dL1 ≤ 1

2

�
R
|u|2 dL1 + 1

2

�
R
|A0u|2 dL1

=⇒ ∥A0u∥L2(R) ≤ ∥u∥L2(R).

Thus A0 : L2(R) −→ L2(R) is linear and continuous. From (3.1.10) we get that it is also
self-adjoint and positive.

If u satisfies limr→∞ u(r) = y for some y ∈ R we get with the Dominated Convergence
Theorem

lim
r→∞

A0u(r) = lim
r→∞

�
R
J1(s)u(r − s) ds = y

�
R
J1(s) ds = y.

Same for r → −∞.
(5) follows immediately from standard theory about parameter integrals.

Next we prove that if u has exponential decay at ±∞, so does A0(u).
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Lemma 3.1.9 (Further properties of A0).
(a) Let u ∈ L∞(R) and assume there exist C, c > 0 such that

|u(r)| ≤ Ce−c|r| for all r ∈ R, (3.1.11)

then there exist C1, c1 > 0 with

|A0u(r)| ≤ C1e
−c1|r| for all r ∈ R.

(b) Let u ∈ L2(R) be uniformly continuous, then

lim
r→±∞

u(r) = 0.

In particular we get that for v ∈ L∞(R)

lim
r→±∞

A0v(r) = 0

and for v ∈ C0
b (R)

lim
r→±∞

A0v(r) = 0 = lim
r→±∞

A0v
′(r).

(c) Let a± ∈ R and define we define α̃ : R −→ R with

α̃ := a−χ(−∞,0) + a+χ[0,∞)

Then we have α := A0α̃ ∈ C1
b (R) and

α = asgn(−r)
e−|r|

2 + asgn(r)
(
1− 1

2e
−|r|

)
for r ̸= 0

and α(0) = a−+a+
2 .

Proof. (a) Without loss of generality we can assume C = 2 and c = 1, otherwise we
consider the function ũ(r) := 2

Cu
(

r
c

)
. We analyse the behavior for r > 0, by definition we

have

|A0u(r)| ≤
�
R
J1(r − s)|u(s)|ds ≤

�
R

1
2e

−|r−s|2e−|s| ds

=
� 0

−∞
e−(r−s)es ds+

� r

0
e−(r−s)e−s ds+

� ∞

r
e−(s−r)e−s ds

= e−r

� 0

−∞
e2s ds+ re−r + er

� ∞

r
e−2s ds

= 1
2e

−r + re− 1
2 r︸ ︷︷ ︸

≤ 2
e

≤1

e− 1
2 r + 1

2e
−r ≤ 2e− 1

2 r.

The same can be done for r < 0.

(b) Assume not lim
r→∞

u(r) = 0. Then there exist ε > 0 and a sequence (xk)k∈N in R with
xk →∞ for all k ∈ N such that

|u(xk)| ≥ ε for all k ∈ N.
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Since xk ↗∞ we can choose a subsequence (xkj
)j∈N such that for all j ∈ N: xkj+1 > xkj

+2.
u is uniformly continuous thus there exists 0 < δ < 1 such that

|u(r)| ≥ ε

2 for all r ∈ (xkj
− 2δ, xkj

+ 2δ) and all j ∈ N.

This leads to a contradiction because of

∞ >

�
R
|u|2 dL1 ≥

∞∑
j=1

� xkj
+2δ

xkj
−2δ

|u|2 dL1 ≥
∞∑

j=1
δε2.

We prove the last remarks. If v ∈ L∞(R) then A0v ∈ C1
b (R) by Proposition 3.1.8. The

Mean Value Theorem implies A0v is Lipschitz and hence uniformly continuous. If
v ∈ C0

b (R) then A0v ∈ C2
b (R) by Proposition 3.1.8 and thus A0v,A0v

′ ∈ C1
b (R) and the

claim follows.

For the proof of (c) we calculate the convolution. Since α̃ ∈ L∞(R) we have α ∈ C1
b (R)

by Proposition 3.1.8. We get for r > 0

α(r) = 1
2

�
R
e−|r−s|α̃(s) ds = a−

2

� 0

−∞
e−|r−s| ds+ a+

2

� ∞

0
e−|r−s| ds

= a−
2

� 0

−∞
es−r ds+ a+

2

� r

0
es−r ds+ a+

2

� ∞

r
er−s ds

= a−
2 es−r

∣∣∣0
−∞

+ a+
2 es−r

∣∣∣r
0
− a+

2 er−s
∣∣∣∞
r

= a−
2 e−r + a+

2 (1− e−r) + a+
2 = a−

e−r

2 + a+
(
1− 1

2e
−r
)

We calculate similar for r < 0

α(r) = 1
2

�
R
e−|r−s|α̃(s) ds = a−

2

� 0

−∞
e−|r−s| ds+ a+

2

� ∞

0
e−|r−s| ds

= a−
2

� r

−∞
es−r ds+ a−

2

� 0

r
er−s ds+ a+

2

� ∞

0
er−s ds

= a−
2 es−r

∣∣∣r
−∞
− a−

2 er−s
∣∣∣0
r
− a+

2 er−s
∣∣∣∞
0

= a−
2 + a−

2 (1− er) + a+
2 er = a−

(
1− 1

2e
r
)

+ a+
2 er.

Hence the claimed representation follows.

We also need the solution operator on open sets of Rn.

Lemma 3.1.10 (Solution operator on bounded open sets).
Given n ∈ N, Ω ⊆ Rn open, bounded with Lipschitz-boundary, u ∈ H1(Ω)′ and ε > 0 there
exists a unique solution Aεu := uε ∈ H1(Ω) such that

−ε2∆uε + uε = u in Ω (3.1.12)
∂νuε = 0 on ∂Ω (3.1.13)

in the weak sense. The operator Aε : H1(Ω)′ −→ H1(Ω) is linear and continuous.
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If Ω has C2-boundary and u ∈ L2(Ω) then we get Aεu ∈ H2(Ω). As H2(Ω) ↪→ L2(Ω) we
can also consider Aε as an operator on L2(Ω) without introducing a different notation.
Aε : L2(Ω) −→ L2(Ω) is linear, continuous, self-adjoint, and positive. We have for all
ψ, ϕ ∈ H1(Ω)′

⟨Aεϕ, ψ⟩H1(Ω)′ = ⟨Aεψ, ϕ⟩H1(Ω)′ . (3.1.14)

Proof. Let ε > 0 and u ∈ H1(Ω)′, we consider the weak formulation of the PDE. By
definition we are looking for uε ∈ H1(Ω) such that for all ψ ∈ H1(Ω)

ε2
�

Ω
∇v · ∇ψ dLn +

�
Ω
vψ dLn = ⟨ψ, u⟩H1(Ω)′ . (3.1.15)

The bilinear form on the left-hand side is symmetric and positive definite as ε > 0 is fixed.
Thus it induces an equivalent scalar product ( · , · ) on H1(Ω). Since the scalar product
is equivalent to the standard scalar product on H1(Ω) the space H1(Ω) equipped with
( · , · ) is a Hilbert space. By Riesz’s representation Theorem there exists a unique solution
uε =: Aεu ∈ H1(Ω) to (3.1.15) such that for all ψ ∈ H1(Ω) we have ⟨ψ, u⟩H1(Ω)′ = (ψ, uε).
It follows√

(uε, uε) ≤ ∥u∥H1(Ω)′ and in particular ∥Aεu∥L2(Ω) = ∥uε∥L2(Ω) ≤ ∥u∥H1(Ω)′ .

(3.1.16)

In the case of higher regularity we get uε ∈ H2(Ω) by Friedrich’s Theorem.

As an operator on L2(Ω) the linearity of Aε follows from the uniqueness of uε and the
bilinearity of ( · , · ). The continuity was already shown in (3.1.16). We prove that Aε is
self-adjoint. Let u,w ∈ L2(Ω), define ψ := Aεu and ϕ := Aεw. The partial integration
combined with the boundary data allows to calculate

�
Ω
uAεw dLn =

�
Ω
ϕ(−ε2∆ + Id)ψ dLn =

�
Ω

(
ε2∇ψ · ∇ϕ+ ϕψ

)
dLn

=
�

Ω
ψ(−ε2∆ + Id)ϕ dLn =

�
Ω
wAεu dLn.

The positivity of Aε follows by considering u = w in this calculation. Using the definition
of Aε we get for all ψ, ϕ ∈ H1(Ω)′

⟨Aεψ, ϕ⟩H1(Ω)′ = ⟨Aεψ,−ε2∆Aεϕ+Aεϕ⟩H1(Ω)′ =
�

Ω

(
ε2∇Aεψ · ∇Aεϕ+AεψAεϕ

)
dLn

= ⟨Aεϕ,−ε2∆Aεψ +Aεψ⟩H1(Ω)′ = ⟨Aεϕ, ψ⟩H1(Ω)′

In addition to these properties we prove a maximum principle for Aε.

Lemma 3.1.11 (Maximum principle).
Let ε > 0, Ω as in Lemma 3.1.10 and u ∈ L2(Ω) with u ≤ R a.e. in Ω for some R ∈ R.
Then the function uε := Aεu also satisfies uε ≤ R a.e. in Ω. This remains correct if
“≤” is replaced with “≥” in the statement.
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Proof. The function uε −R satisfies

−ε2∆(uε −R) + uε −R = u−R in Ω
∂νuε = 0 on ∂Ω

in the weak sense. We test with (uε −R)+ ∈ H1(Ω) and get
�

Ω

(
ε2∇

(
uε −R

)
· ∇(uε −R)+ + (uε −R)(uε −R)+

)
dLn =

�
Ω

(u−R)(uε −R)+ dLn

=⇒
�

Ω

(
ε2∣∣∇(uε −R)+

∣∣2 + |(uε −R)+|2
)

dLn ≤ 0.

Thus we get uε ≤ R a.e. in Ω. This carries over to lower bounds as well, assume u ≥ R
a.e. for some R ∈ R, then

−ε2∆(−uε) + (−uε) = −u ≤ −R and hence − uε ≤ −R.

Next we consider a Fredholm operator as a preparation. It appears in the linearization of
the first variation of the diffuse perimeter on R.

Lemma 3.1.12 (L0 is Fredholm).
We consider the function f from the Assumptions 3.1.1, the optimal profile q0 from
Theorem 3.1.3 and the one-dimensional solution operator A0 from Definition 3.1.6. The
operator

L0 : L2(R) −→ L2(R), L0 := f ′(q0) Id−A0 (3.1.17)

is a Fredholm operator with index 0.

The proof uses a clever splitting of L0, which was to our knowledge first introduced in the
proof of Lemma 5.3. in [BFRW97]. The idea is to write L0 as the sum of an isomorphism
and a compact operator. We adapt the method from L∞(R) to L2(R).

Proof. We choose a function α ∈ C(R) such that

• There exist c,R > 0 such that
∣∣α(±r)− f ′(±1)

∣∣ ≤ e−c|r| for all |r| > R.

• There exist 1 < m < M such that m ≤ α ≤M .

If W is even we can use α(x) := f ′(1) + e−x2 . In the general case we define α̃ : R −→ R
with

α̃ := f ′(−1)χ(−∞,0) + f ′(1)χ[0,∞) and α := A0α̃.

From Lemma 3.1.9 (c) we get

α(r) = f ′(sgn(−r))e
−|r|

2 + f ′(sgn(r))
(
1− 1

2e
−|r|

)
for r ̸= 0

and α(0) = f ′(−1)+f ′(1)
2 . From this representation we can immediately conclude that the

exponential convergence towards f ′(±1) as r → ±∞ is satisfied. Since the function is a
convex combination of f ′(±1) and f ′(±1) = 1 + 1

2W
′′(±1) > 1 we also get the second
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condition.

We rewrite L0(w) for w ∈ L2(R)

L0(w) = f ′(q0)
(
L(1)(w) + L(2)(w)

)
with

L(1)(w) := w − 1
α
J1 ∗ w and L(2)(w) :=

( 1
α
− 1
f ′(q0)

)
J1 ∗ w.

Owing to 0 < γ ≤ f ′(q0(r)) ≤ C <∞ for all r ∈ R we get that if the operator L(1) + L(2)

is Fredholm then L0 is also a Fredholm operator with the same index. We start by
showing that L(1) is an isomorphism and prove that L(2) is compact.

For w ∈ L2(R) with ∥w∥L2(R) ≤ 1 we get from Lemma 3.1.7∥∥∥ 1
α
J1 ∗ w

∥∥∥
L2(R)

≤ 1
m
∥J1∥L1(R)∥w∥L2(R) ≤

1
m
< 1.

Therefore L(1) = Id− 1
αA0 : L2(R)→ L2(R) is a bijection with continuous inverse operator,

given by the corresponding Neumann series. It follows that L(1) is an isomorphism and
hence a Fredholm operator with index 0. If we can prove that L(2) : L2(R)→ L2(R) is a
compact operator the proof is finished. We can write L(2) as an integral operator and
calculate the Hilbert-Schmidt norm

�
R

∣∣∣∣ 1
f ′(q0(r)) −

1
α(r)

∣∣∣∣2 �
R

1
4e

−2|r−s| ds dr ≤ 1
4m2γ2

�
R
|f ′(q0)− α|2 dr.

To ensure that the last integral exists we check that f ′(q0)− f ′(±1) has exponential decay.
Here it is sufficient to have that f ′ is Lipschitz on [−1, 1]. This is satisfied because of
f ′′ = 1

2W
′′′ ∈ C0(R). Thus we get with R, c > 0 from Lemma 3.1.4 for r > R

∣∣f ′(q0(±r))− f ′(±1)
∣∣ ≤ ∥f ′∥C1[−1,1]

∣∣∣± 1− q0(±r)
∣∣∣ ≤ ∥W ′′′∥C0[−1,1]

2 e−cr.

So L(2) is Hilbert-Schmidt and hence compact.

We can even provide more information on the kernel of L0. It follows from equations (3.1.2)
and (3.1.4) that L0(q′

0) = 0. The next lemma shows, that the kernel is a one-dimensional
subspace.

Lemma 3.1.13 (L0 has a one-dimensional kernel).
The operator L0 has a one-dimensional kernel, more precisely

ker(L0) = span(q′
0) (3.1.18)

and L0 : {q′
0}⊥ → {q′

0}⊥ is an isomorphism.

We follow and adapt the proof of Lemma 5.3 in [BFRW97].

Proof. It follows from f(q0) = A0q0 that w = q′
0 is a solution to the equation L0(w) = 0. In

order to get that every other solution is a multiple of q′
0 we follow the line of argumentation

from Lemma 5.3 in [BFRW97]. Because of

J1 ∗ q0 = A0q0 = f(q0) we have J1 ∗ q′
0 = f ′(q0)q′

0.

43



Assume L0(w) = 0 for some w ∈ L2(R) \ {0}. Owing to the assumptions on f we know
f ′(q0) ≥ γ for some γ > 0. The equation

w = J1 ∗ w
f ′(q0) . (3.1.19)

implies higher regularity. Since w ∈ L2(R) we have from Proposition 3.1.8
J1 ∗ w = A0w ∈ C1

b (R) thus w ∈ C1
b (R). By rescaling we can assume w to

have a positive value somewhere on R.

For β ∈ R we define wβ := βw + q′
0 and

β := sup{β < 0
∣∣ ∃r ∈ R : wβ(r) < 0}.

Since our goal will be to show wβ ≡ 0, it is useful to consider infRwβ. Let β < β, then
we know infRwβ < 0 by definition of β. We claim that there exists ξβ ∈ R, such that
infRwβ = wβ(ξβ). If not, without loss of generality there exists a sequence (rj)j∈N in R,
such that rj −→∞ and wβ(rj) −→ infRwβ < 0. We conclude with 1

2W
′′(q0) = f ′(q0)− 1

and (3.1.19)

0 > 1
2W

′′(1) · inf
R
wβ = lim

j→∞

1
2W

′′(q0(rj))wβ(rj) = lim
j→∞

[
J1 ∗ wβ − wβ

]
(rj)

= lim
j→∞

[
(J1 ∗ wβ)(rj)− inf

R
wβ

]
≥ 0

which is a contradiction. It follows infRwβ = wβ(ξβ). This yields

1
2W

′′(q0(ξβ))wβ(ξβ) =
(
J1 ∗ wβ − wβ

)
(ξβ) > 0 so W ′′(q0(ξβ)) < 0. (3.1.20)

We can deduce that (ξβ)β<β can be found in the interval where W ′′(q0) is negative. Since
W ′′(±1) > 0 and q0(r) −→ ±1 as r → ±∞, this interval is bounded. Therefore we can
extract a subsequence such that ξβ −→ ξ as β → β. Since w, q′

0 are bounded we know
wβ −→ wβ as β → β uniformly. We conclude

wβ(ξ)←− wβ(ξβ) = inf
R
wβ −→ 0 as β → β.

Since f ′ ̸= 0 it follows with (3.1.19)

0 =
(
J1 ∗ wβ

)
(ξ) =

�
R
J1(ξ − s)︸ ︷︷ ︸

>0

wξ(s)︸ ︷︷ ︸
≥0

ds =⇒ wξ ≡ 0.

For the construction of the recovery sequence we are concerned with the minimization of
the functional Ξ from the following lemma.

Lemma 3.1.14 (Existence of q1).
Let L0 be as in Lemma 3.1.12, A0 as in Definition 3.1.6 and q0 as in Theorem 3.1.3.
Then for every minimizer w∗ ∈ L2(R) of the functional Ξ : L2(R) −→ R with

Ξ(w) :=
�
R

∣∣∣L0(w)−A0q
′
0

∣∣∣2dL1 for w ∈ L2(R), (3.1.21)

44



we have w∗ ∈ Cm−2
b (R). There exists a unique minimizer q1 ∈ L2(R) ∩ Cm−2

b (R) that
satisfies q1(0) = 0. It is determined by the equation

L0(q1)−A0(q′
0) = −σAGq

′
0, (3.1.22)

where σAG is the constant from (3.1.7). Furthermore we get that for λ ∈ R with λ ̸= σAG
there exists no u ∈ L2(R) such that

L0(u)−A0(q′
0) = −λq′

0.

Proof. First we prove the existence of a minimizer with the direct method from the
calculus of variations. We have Ξ ≥ 0 and L2(R) is reflexive. Since L0 is a Fredholm
operator it has a closed and convex range, in particular range(L0) is weakly closed in
L2(R). Ξ is the distance between an element of range(L0) and A0q

′
0 in L2(R) and thus it

is weakly lower semi-continuous. It follows that there exists w∗ ∈ L2(R) such that

∥L0(w∗)−A0q
′
0∥2L2(R) = inf

L2(R)
Ξ.

Let w∗ ∈ L2(R) be any minimizer of Ξ thus w∗ is a solution to the Euler-Lagrange
equation

L0
(
L0(w∗)−A0q

′
0
)

= 0 and thus
L0(w∗)−A0q

′
0 = λq′

0 for some λ ∈ R,

by Lemma 3.1.13. Rearranging yields

w∗ = 1
f ′(q′

0)
(
A0q

′
0 + λq′

0 + A0w∗
)
.

We can apply a bootstrap argument. Proposition 3.1.8 yields A0w∗ ∈ C1
b (R) thus we get

w∗ ∈ C1(R). This improves the regularity of the right-hand side and by iteration we get
w∗ ∈ Cm−2

b (R) which is the regularity of f ′ and q′
0. Now that we have continuity it is

well-defined to discuss the additional condition w(0) = 0.

From L0 : {q′
0}⊥ −→ {q′

0}⊥ we know that the Euler-Lagrange equation can only be solved
if

λq′
0 + A0q

′
0 ∈ {q′

0}⊥.

Thus we calculate

0 != ⟨q′
0|λq′

0 + A0(q′
0)⟩L2(R) ⇐⇒ λ = −

∥q′
0∥2L2(R)
∥q′

0∥2L2(R)
= −σAG

with σAG > 0 as in (3.1.7).

At last we next prove that there a exists a unique minimizer q1 ∈ L2(R) ∩ Cm−2
b (R) of Ξ

that satisfies q1(0) = 0. From the Euler-Lagrange equation and the previous argument we
get that every minimizer w∗ of Ξ is a solution to

L0(w∗) = σAGq
′
0 + A0q

′
0.
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L0 : {q′
0}⊥ −→ {q′

0}⊥ is an isomorphism by Lemma 3.1.13, thus there exists a unique
ŵ∗ ∈ {q′

0}⊥ such that L0(ŵ∗) = σAGq
′
0 + A0q

′
0.

Since ker(L0) = span(q′
0) the minimizer can only be unique up to adding τq′

0 for τ ∈ R.
We know q′

0(0) > 0 and thus there exists a unique τ∗ ∈ R such that

q1(0) = ŵ∗(0) + τ∗q
′
0(0) = 0.

The last preparation we need for the Γ–lim sup construction is the exponential decay of
q1, q

′
1.

Lemma 3.1.15 (Exponential decay).
There exist R,C, c > 0 such that for all |r| > R we have

|q1(r)| ≤ Ce−c|r|, |q′
1(r)| ≤ Ce−c|r|,

|q̂1(r)| ≤ Ce−c|r|, and |q̂′
1(r)| ≤ Ce−c|r|.

Proof. We consider the auxiliary function q̂1 ∈ Cm
b (R) ∩ L2(R)

q̂1 := A0(q1 + q′
0). (3.1.23)

Combining this with (3.1.22) we get

q1 = 1
f ′(q0)

(
q̂1 − σAGq

′
0
)
. (3.1.24)

Since q̂1 ∈ Cm
b (R) ∩ L2(R) we get from Lemma 3.1.9

lim
r→±∞

q̂1(r) = 0 = lim
r→±∞

q̂′
1(r). (3.1.25)

We observe that ξ := (q0 − 1, q′
0, q̂1, q̂

′
1) is a solution to the ODE system

ξ′
1 = ξ2,

ξ′
2 = ξ1 + 1− f−1(ξ1 + 1),
ξ′

3 = ξ4,

ξ′
4 = ξ3 − ξ2 −

1
f ′(f−1(ξ1 + 1))

(
ξ3 −

σAGξ2
f ′(f−1(ξ1 + 1))

)
.

Lemma 3.1.4 combined with (3.1.25) yield

|ξ(r)| −→ 0 as r →∞.

We recall 2c2 =
1
2 W ′′(1)

1+ 1
2 W ′′(1) = 1− (f−1)′(1) ∈ (0, 1) from the proof of Lemma 3.1.4. The

linearization of the right-hand side of the ODE at ξ = 0 is given by
0 1 0 0

1
2 W ′′(1)

1+ 1
2 W ′′(1) 0 0 0

0 0 0 1
0 σAG

(1+ 1
2 W ′′(1))2 − 1

1
2 W ′′(1)

1+ 1
2 W ′′(1) 0

 =


0 1 0 0

2c2 0 0 0
0 0 0 1
0 σAG[1− 2c2]2 − 1 2c2 0


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Owing to the block structure we get the Eigenvalues ±
√

2c with algebraic multiplicity 2
and geometric multiplicity 1 respectively. We compute a Jordan-Decomposition and get

−
√

2c 1 0 0
0 −

√
2c 0 0

0 0
√

2c 1
0 0 0

√
2c

 .
We conclude that the stationary point 0 is hyperbolic. We already know ξ(r) −→ 0 as
r →∞ and thus the solution is on the stable manifold. It follows from stable manifold
theory that the convergence is exponential; see the remark on page 115 in [Per96]. The
exponential convergence of q1, q

′
1 follow from the representation

q1 = 1
f ′(q0)

(
− σAGq

′
0 + q̂1

)
, (3.1.26)

q′
1 = 1

f ′(q0)
(
− σAGq

′′
0 + q̂′

1
)

+ f ′′(q0)q′
0

|f ′(q0)|2
(
− σAGq

′
0 + q̂1

)
, (3.1.27)

and the previous estimates from Lemma 3.1.4. Similar for r → −∞.

3.2 Formal identification of a candidate for the Γ–limit and
for a recovery sequence

With the preparations from the last section we can start with the key objects. We adapt
the concept presented in [BP93] where the classical Γ–lim sup estimate was shown. We
concentrate on a small neighborhood of the given surface as in Definition 2.1.10, formally
expand WKK

ε in powers of ε and minimize each order. The idea to do an asymptotic
expansion uε in powers of ε is not new, it was presented in [LM00] and considered by
[Wan08].

Definition 3.2.1 (Diffuse Willmore energy). We define the gradient-free diffuse Willmore
energy WAG

ε : L2(Ω) −→ [0,∞]

WAG
ε (u) :=

�
Ω

1
ε3

∣∣∣f(u)−Aεu
∣∣∣2 dLn. (3.2.1)

and the diffuse mean curvature

HAG
ε (u) := ∇L2PAG

ε = 1
ε

(
u− uε + 1

2W
′(u)

)
= 1
ε

(
f(u)−Aεu

)
Let E ⋐ Ω be open with smooth boundary Γ := ∂E, we write u := 2χE − 1. For the
lim sup condition of Γ-convergence we have to construct an approximation (uε)ε>0 of u in
L1(Ω) such that

lim sup
ε→0

WAG
ε (uε) ≤ cAGσAGW(u).

We recall the geometry from Figure 2.1 and the coordinates for x ∈ ω = {|d| < 5δ}. The
idea behind the construction is visualized in Figure 3.1.

x = Ψε(z, y) = y + εzνΓ(y) with (z, y) ∈ R× Γ
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from Definition 2.1.10. We use the ansatz

uε(x) = U0(z, x) + εU1(z, x), (3.2.2)

where U0, U1 are profile functions with properties specified below. As in 2.1.11 we consider
profile functions that are constant in normal direction. We pose the following conditions
on the profile functions:

• U0 ∈ C0(R× ω) with U0(0, x) = 0 and U0(·, x)− sgn ∈ L2(R) for all x ∈ ω.

• U1 ∈ H1(R;C(ω)) with U1(0, x) = 0 for all x ∈ ω.

Ω uε ≈ −1

uε ≈ 1Γ y x
εz

Figure 3.1: Visualization of the geometry and coordinates.

We write ∂Uj = U ′
j for the z-derivative and ∇ΓUj for the tangential gradient with respect

to the y variable. In addition we assume an expansion for the corresponding solution
uε := Aεuε of the PDE (3.0.1) of the form

uε(x) ≈ V0(z, x) + εV1(z, x)

with similar properties as the expansion for uε. We plug this formally into (3.0.1) and
use the expansion of the differential operator in the new coordinates (2.1.9)-(2.1.8). We
get at each point x ∈ ω

U0 + εU1 = uε = (−ε2∆ + Id)uε = (−∂2 + Id−ε∆d∂ − ε2∆Γ)(V0 + εV1)
= (−∂2 + Id−εH∂)(V0 + εV1) +O(ε2)
= −V ′′

0 + V0 + ε(−V ′′
1 + V1 −HV ′

0) +O(ε2).

We conclude formally

−V ′′
0 + V0 = U0 and − V ′′

1 + V1 = U1 +HV ′
0 . (3.2.3)

In the next step we expand WAG
ε by powers of ε and choose U0, U1 by minimizing the

functionals in each order. We neglect the integral over Ω \ ω and use a Taylor expansion

WAG
ε (uε) ≈

�
ω

1
ε3
∣∣f(uε)− uε

∣∣2dLn =
�

ω

1
ε3

∣∣∣f(U0) + εf ′(U0)U1 − V0 − εV1
∣∣∣2dLn.
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For the transformation x = Ψε(z, y) we have |det(DΨε)| = ε+O(ε2) ≈ ε from (2.1.7)

WAG
ε (uε) ≈

�
Γ

� 5δ
ε

− 5δ
ε

∣∣∣∣1ε (f(U0)− V0) + f ′(U0)U1 − V1

∣∣∣∣2dL1 dHn−1

≈
�

Γ

�
R

∣∣∣∣1ε (f(U0)− V0) + f ′(U0)U1 − V1

∣∣∣∣2dL1 dHn−1

We will minimize this expression on each order of ε-powers. We fix y ∈ ω, then first term
to minimize is �

R

∣∣f(U0(·, y)− V0(·, y)
∣∣2dL1

The lowest possible value is 0 and this is achieved with the choice U0 = q0 and thus
V0 = q0. In particular U0 is independent from the second variable. We get

WAG
ε (uε) ≈

�
Γ

�
R

∣∣∣f ′(q0)U1 − V1
∣∣∣2dL1 dHn−1.

We plug in V1 = A0(U1 +Hq′
0) and get

WAG
ε (uε) ≈

�
Γ

�
R

∣∣∣∣(f ′(q0)−A0
)
U1 −HA0q

′
0

∣∣∣∣2dL1 dHn−1.

We see that if H = 0 the optimal choice is U1 = 0 and thus the set {y ∈ Γ | H(y) = 0} has
no impact on the value of the integral. For all y ∈ Γ with H(y) ̸= 0 we write U1 = H U1

H
and get

WAG
ε (uε) ≈

�

{H ̸=0}

∣∣H∣∣2 �
R

∣∣∣∣(f ′(q0)−A0
)U1
H
−A0q

′
0

∣∣∣∣2dL1 dHn−1. (3.2.4)

Here we minimize the inner integral again. For y ∈ {H ̸= 0} fixed the term 1
H(y) is just a

factor independent from z. We consider

Ξ : L2(R) −→ [0,∞], Ξ(w) :=
�
R

∣∣∣L0(w)−A0q
′
0

∣∣∣2dL1,

In Lemma 3.1.14 we have proven the existence of a unique minimizer q1 that satisfies
q1(0) = 0. Since U1(0, x) = 0 for all x ∈ ω was a condition for U1 we get

U1 = Hq1 and L0(q1)−A0q
′
0 = −σAGq

′
0.

We conclude that the minimum is

Ξ(q1) = cAGσAG. (3.2.5)

Combining this with (3.2.4) we get that for the choices U0 = q0, U1 = Hq1 we obtain

WAG
ε (uε) ≈ cAGσAG

�
Γ
H2 dHn−1 = cAGσAGW(u). (3.2.6)

The right-hand side in this equation characterizes our Γ–limit candidate of (WAG
ε )ε>0.

We get the lim sup-condition of Γ-convergence if ’≤’ is proven rigorously.
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z

ϕ1(z)

Figure 3.2: Plot of ϕ1

3.3 Γ–lim inf estimate for a specific class of functions
In this section we construct a suitable class of functions which are constant ±1 far away
from the surface and has an asymptotic expansion uε = U0 + εU1 + . . . as in (3.2.2) close
to the surface. In between we interpolate with a cut-off function. The difficulty is to
do the construction in a way such that the family (uε)ε>0 with uε := Aεuε also has an
asymptotic expansion uε = V0 + εV1 + . . . as in (3.2.2) close to the surface. This is not
trivial because the normal and tangential coordinates are not well-defined on Ω, just in a
neighborhood of Γ and the solution operator is nonlocal, meaning that all values from uε

in Ω influence the solution uε.

Assumption 3.3.1 (General assumptions).
Let Ω,W as in Assumptions 3.1.1. Let E ⋐ Ω with C4-boundary Γ := ∂E, recall
u = 2χE − 1, d = sdist(·,Γ) and ω = {|d| < 5δ} ⋐ Ω with δ > 0 sufficiently small such
that the coordinate transformation Ψε from Definition 2.1.10 for ε > 0 is well-defined on
ω.

In the following we introduce a modification of the signed distance function with a cut-off
function.

Definition 3.3.2 (Modified distance and cut-off functions).
Choose an odd and increasing function ϕ1 ∈ C∞(R) with

ϕ′
1(0) = 0, 0 < ϕ1(z) ≤ 9

10z, 0 ≤ ϕ′
1(z) ≤ 1 for all z ∈ (0,∞),

ϕ1(z) =
{
z − 1

4 , if z ∈ (1
2 , 2)

2, if z ∈ (5
2 ,∞).

We set ϕδ(z) := δϕ1
(

z
δ

)
for z ∈ R and define a modification of the signed distance function

(being constant ±2δ outside {|d| < 5
2δ}) by

dδ := ϕδ ◦ d ∈ C4(Ω).

Finally, choose an even and on (0,∞) decreasing function η1 ∈ C∞
c (R) with

0 ≤ η1 ≤ 1, |η′
1| ≤ 2, η1 =

{
1 in [0, 3],
0 in [4,∞)
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and define the cut-off function

ηδ(x) := η1
(d(x)

δ

)
for all x ∈ Ω.

We remark that ηδ ∈ C4(Ω) since ηδ has support in {|d| ≤ 4δ}.

We next define spaces of functions that are exponentially controlled in terms of the
modified distance function dδ far away from Γ.

Definition 3.3.3. For Λ, µ > 0 we consider

Xµ,Λ
δ (Ω) :=

{
w ∈ L∞(Ω)

∣∣ ess-sup
x∈Ω

∣∣eµ|dδ(x)|w(x)
∣∣ ≤ Λ

}
and

Xµ,Λ(R; Γ) :=
{
w ∈ L∞(R× ω)

∣∣ ess-sup
(z,x)∈R×ω

∣∣eµ|z|w(z, x)
∣∣ ≤ Λ,

w(z, ·) is constant in normal direction}

and set X(R; Γ) := ⋃
µ,Λ>0X

µ,Λ(R; Γ).

Note that for 0 < µ1 < µ2 and any Λ > 0 we have Xµ2,Λ
δ (Ω) ⊆ Xµ1,Λ

δ (Ω). Next we define
a suitable class of phase field approximations that have an expansion in powers of ε close
to Γ and are constant ±1 far away from Γ.

Assumption 3.3.4 (Additional assumptions for lim inf–estimate).
We assume 3.3.1 and let K ∈ N0. Consider a family (uε)0<ε<ε0 that can be represented as
follows: There exist 0 < µ < 1, Λ > 0, and profile functions uj, j = 0, . . . ,K, such that
for all 0 < ε < ε0

uε = ηδu
in
ε + (1− ηδ) sgn(d) + εK+1Ru

ε in Ω, (3.3.1)

uin
ε =

( K∑
j=0

εjuj

)
◦Ψ−1

ε in {|d| < 4δ}, (3.3.2)

and such that the following properties hold:

1. The profile functions uj ∈ C0(R× ω), uj = uj(z, x) are C4-regular with respect to
the x-variable and satisfy

u0 − sgn ∈ X(R; Γ), uj ∈ X(R; Γ) for 1 ≤ j ≤ K,
|∇xuj |, ∆xuj , |∇x∆xuj |, ∆2

xuj ∈ X(R; Γ) for 0 ≤ j ≤ K.

2. The remainder satisfies Ru
ε ∈ X

µ
ε

,Λ
δ (Ω) for all 0 < ε < ε0.

Finally we assume that there are height functions hj, j = 0, . . . ,K − 1 such that

y 7→ y + ε
(K−1∑

j=0
εjhj(y) + εKRH

ε (y)
)
νΓ(y), y ∈ Γ (3.3.3)

is a C4-diffeomorphism onto {uε = 0} with supε>0 ∥RH
ε ∥C4(Γ) <∞.
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Lemma 3.3.5 (Convergence towards u).
Consider (uε)0<ε<ε0 as in Assumption 3.3.4. Then we have uε −→ u in Lp(Ω) for all
1 ≤ p <∞.

Proof. Note that u = 2χE − 1 = sgn(d). We fix Λ, µ, δ > 0 such that Ru
ε ∈ X

µ
ε

,Λ
δ (Ω) and

u0 − sgn, uj ∈ Xµ,Λ(R; Γ) for all 1 ≤ j ≤ K. Using the representation of uε and (2.1.7)
we have�

Ω
|uε − u|p dLn =

�
Ω

∣∣∣ηδ(uin
ε − sgn(d)) + εK+1Ru

ε

∣∣∣pdLn

≤ C(p)
�

{|d|<4δ}

∣∣uin
ε − sgn(d)

∣∣p dLn + εK+1C(p)
�

Ω

∣∣Ru
ε

∣∣p dLn

≤ C(p)
�

Γ

� 4δ
ε

− 4δ
ε

ε

∣∣∣∣ K∑
j=0

εjuj − sgn
∣∣∣∣pdL1 dHn−1 + εK+1C(p)ΛpLn(Ω).

We use the bounds for the profile functions to further estimate the right-hand side and
deduce that for some Λ > 0 and some µ ∈ (0, 1)

�
Ω
|uε − u|p dLn ≤ C(Γ, p)

K∑
j=0

εj+1
�
R
e−pµ|t|Λp dt+ εK+1C(Λ,Ω, p)

≤ C(Γ,Λ, p, µ)
K∑

j=0
εj+1 + εK+1C(Λ,Ω, p).

Next we show that (f(uε))0<ε<ε0 also has an appropriate expansion. For the proof we
need the following lemma.

Lemma 3.3.6. Let a < b and f̃ ∈ C2(U), for an open set U ⊇ [a, b] and define for
0 ≤ λ ≤ 1

g(λ) := f̃
(
(1− λ)a+ λb

)
−
(
(1− λ)f̃(a) + λf̃(b)

)
.

Then
|g(λ)| ≤ C∥f̃ ′′∥C0[a,b]λ(1− λ)(a− b)2 (3.3.4)

holds.

Proof. We have g(0) = g(1) = 0. Taylor expansions give

g(λ) = f̃ ′(a)(b− a)λ+ 1
2 f̃

′′(ξ1)(b− a)2λ2 − λ
(
f̃(b)− f̃(a)

)
= f̃ ′(a)(b− a)λ+ 1

2 f̃
′′(ξ1)(b− a)2λ2 − λf̃ ′(a)(b− a)− 1

2λf̃
′′(ξ2)(b− a)2

= 1
2(b− a)2λ

(
f̃ ′′(ξ1)λ− f̃ ′′(ξ2)

)
for some ξ1, ξ2 ∈ (a, b). Similar we have

g(λ) = f̃ ′(b)(b− a)(λ− 1) + 1
2 f̃

′′(ξ3)(b− a)2(1− λ)2 − (λ− 1)
(
f̃(b)− f̃(a)

)
= 1

2(b− a)2(1− λ)
(
f̃ ′′(ξ3)(1− λ)− f̃ ′′(ξ4)

)
for some ξ3, ξ4 ∈ (a, b). Multiplying the first equality by 1 − λ, the second by λ and
adding up yields the desired estimate.
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Lemma 3.3.7.
Consider K ≤ 2 and (uε)0<ε<ε0 as in Assumption 3.3.4. Let f̃ ∈ C2(U) for an open set
U ⊇ [−1, 1] then the family

(
f̃(uε)

)
0<ε<ε̃0

can be represented as

f̃(uε) = ηδf̃(uε)in + (1− ηδ) sgn d+ εK+1Rε (3.3.5)

with f̃(uε)in ◦Ψε = ∑K
j=0 ε

jFj,

F0 = f̃(u0), F1 = f̃ ′(u0)u1, F2 = 1
2 f̃

′′(u0)(u1)2 + f̃ ′(u0)u2.

Moreover, F0 − sgn, F1, F2 ∈ X(R; Γ), Rε ∈ X
µ
ε

,C(f̃)Λ
δ (Ω) holds.

Proof. We proof the claim for K = 2. Choose ε̃0 < ε0 such that uε(x) ∈ U for all x ∈ Ω.
Choose µ,Λ such that u0, u1, u2 ∈ Xµ,Λ(R), Rε ∈ X

µ
ε

,Λ
δ . We first obtain

f̃(uε) = f̃
(
ηδu

in
ε + (1− ηδ) sgn d+ ε3Ru

ε

)
= f̃

(
ηδu

in
ε + (1− ηδ) sgn d

)
+ ε3R(1)

ε , (3.3.6)

with |R(1)
ε | ≤ C(f̃)|Ru

ε |. Since f̃ ∈ C2(U) with [−1, 1] ⊆ U Lemma 3.3.6 yields∣∣f̃(ηδu
in
ε +(1−ηδ) sgn d

)
−ηδf̃(uin

ε )−(1−ηδ) sgn d
∣∣ ≤ C(f̃)ηδ(1−ηδ)(uin

ε −sgn d)2. (3.3.7)

Another Taylor expansion implies that in {ηδ > 0}∣∣∣f̃(uin
ε )−

(
f̃(u0)+εf̃ ′(u0)u1 +ε2

(1
2 f̃

′′(u0)(u1)2 + f̃ ′(u0)u2
))
◦Ψ−1

ε

∣∣∣ ≤ ε3C(f̃)R(2)
ε (3.3.8)

for R(2)
ε with R

(2)
ε ≤ (|u|1 + |u2| + |u3|)2 ◦ Ψ−1

ε . From (3.3.6)-(3.3.8) we conclude the
desired representation (3.3.5) with

|Rε| ≤ C(f̃)
[
R(1)

ε + ηδ(1− ηδ)(uin
ε − sgn d)2 + (|u|1 + |u2|+ |u3|)2 ◦Ψε

]
.

Since |uin
ε − sgn d| ≤

(
|u0 − sgn |+ |u1|+ |u2|

)
◦Ψε we deduce that Rε ∈ X

µ
ε

,Λ
δ . Finally,

F0− sgn, F1, F2 ∈ X(R; Γ) follows from |f̃(u0)− sgn | = |f̃(u0)− f̃(sgn)| ≤ C(f̃)|u0− sgn |
and the assumptions on u0, u1, u2.

Below we will only need orders K ≤ 2. The key observation at this point is that the
solution operator Aε conserves the expansion properties. For the proof we need a few
preparations. First we extend the solution operator A0 from 3.1.8 to functions defined on
R× ω.
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Lemma 3.3.8.
The convolution operator A0w = J1 ∗ w can be extended. For w ∈ L∞(R× ω) we define

A0w(z, x) :=
�
R
J1(z − ζ)w(ζ, x)dζ = [J1 ∗ w(·, x)](z).

It has the following properties:

1. If w ∈ Cj1(R;Cj2(ω)), j1, j2 ∈ N0 then A0w ∈ Cj1+2(R;Cj2(ω)).

2. If w ∈ Xµ,Λ(R; Γ) for some Λ > 0 and µ ∈ (0, 1) we get
A0w, (A0w)′, (A0w)′′ ∈ Xµ,Λ̃(R; Γ) for some Λ̃ = Λ̃(Λ, µ).

Proof. The first claim follows from standard theory of parameter dependent integrals.
For the second claim we estimate∣∣eµ|z|A0w(z, x)

∣∣ ≤ �
R
J1(ζ)eµ|z|∣∣w(z − ζ, y)

∣∣ dζ ≤ Λ
�
R
J1(ζ)eµ|z|e−µ|z−ζ| dζ

≤ Λ
�
R
J1(ζ)eµ|ζ| dζ = Λ

2

�
R
e−(1−µ)|ζ| dζ = Λ

1− µ.

The estimate for (A0w)′ follows similarly since J ′
1 ∈ L∞(R) also decays exponentially.

Finally, these properties also yield the decay of (A0w)′′ = (A0w)− w.

The next lemma contains the key argument why the exponential control from uε carries
over to uε. We consider the PDE that is solved by the phase-field function multiplied
with an exponential term of the form introduced in the Definition 3.3.3.

Lemma 3.3.9.
Let Λ > 0, δ ∈ (0, 1), and µ ∈ (0, 1) be given. There exists ε0 = ε0(δ, µ,Γ) > 0 with the
following property: Let 0 < ε < ε0, ũε ∈ X

µ
ε

,Λ
δ (Ω) be given and assume ṽε ∈ C2(Ω)∩C1(Ω)

solves

(−ε2∆ + Id)ṽε = ũε in Ω
∂ν ṽε = 0 on ∂Ω.

Then we have ṽε ∈ X
µ
ε

,Λ̃
δ (Ω) for Λ̃ = 2

1−µ2 Λ.

Proof. We obtain that the function Z := e
µ
ε

|dδ|ṽε satisfies

−ε2∆Z + 2µε∇|dδ| · ∇Z + (1 + µε∆|dδ| − µ2|∇|dδ||2)Z = e
µ
ε

|dδ|ũε in Ω
∂νZ = 0 on ∂Ω.

Choose ε0 > 0 sufficiently small such that

inf
Ω

(
1 + µε∆|dδ| − µ2∣∣∇|dδ|

∣∣2) ≥ 1− µ2

2 > 0.

This is possible because of

∣∣∇|dδ|
∣∣ =

∣∣ϕ′
δ(d)∇d

∣∣ =
∣∣∣ϕ′

1

(d
δ

)∣∣∣ ≤ 1 and
∣∣∆|dδ|

∣∣ ≤ C(η1, δ, ∥d∥C2(Ω)).
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We have d ∈ C2
b (Ω) because Γ ⋐ Ω is a C4-hypersurface.

Assume that M := maxΩ Z > Λ̃ := 2
1−µ2 Λ and observe that in {Z > Λ̃}

−ε2∆(Z − Λ̃) + 2µε∇|dδ| · ∇(Z − Λ̃) + 1− µ2

2 (Z − Λ̃) ≤ e
µ
ε

|dδ|ũε − Λ ≤ 0 (3.3.9)

since ũε ∈ X
µ
ε

,Λ
δ (Ω). If the maximum of Z is attained at a point x0 ∈ ∂Ω we choose an

open ball B ⊂ Ω ∩ {Z > Λ̃} with B ∩ ∂Ω = {x0}. We deduce from the Hopf-Lemma and
∇Z · νΩ = 0 that Z = M in B holds. This implies that the maximum of Z is always
attained in Ω, which yields by (3.3.9) that Z ≤ Λ̃, contradicting the assumption. Similarly
we obtain −Z ≤ Λ̃.

The next lemma shows a quasi-locality of the operator −ε2∆ + Id if applied to functions
that are exponentially close to ±1 away from the interface.
Lemma 3.3.10.
Let µ,Λ > 0, 0 < δ < 1

2 , and a cut-off function η1 as in Definition 3.3.2 be given. Then
there exists ε0 = ε0(δ,Γ, η1) > 0 such that for all ε ∈ (0, ε0) and any wε ∈ C2(ω) the
following property holds: If for all x ∈ {|d| ≥ 3δ}

|ε∇wε(x)| ≤ Λe− µ
ε

|dδ(x)| and |wε(x)− sgn(d(x))| ≤ Λe− µ
ε

|dδ(x)|,

then there exists Rε ∈ X
µ
ε

,Λ
δ (Ω) such that

(−ε2∆ + Id)(ηδwε + (1− ηδ) sgn(d))
= ηδ · (−ε2∆ + Id)wε + (1− ηδ) sgn(d) + χ{|d|≥3δ}Rε. (3.3.10)

Proof. We calculate

(−ε2∆ + Id)(ηδwε + (1− ηδ) sgn(d))
= ηδ · (−ε2∆ + Id)wε + (1− ηδ) sgn(d)− 2ε2∇wε∇ηδ − ε2∆ηδ · (wε − sgn(d)).

For the last two terms we obtain

2ε2∣∣∇wε∇ηδ

∣∣ ≤ 4ε2

δ
χ{|d|≥3δ}

∣∣∇wε

∣∣ ≤ 4εΛ
δ
χ{|d|≥3δ}e

− µ
ε

|dδ|

and

|ε2∆ηδ · (wε − sgn(d))| ≤ ε2ΛC(η1,Γ)
δ2 χ{|d|≥3δ}e

− µ
ε

|dδ|.

Choosing ε0 ≤ min{1
8 ,
(
2C(η1,Γ)

)− 1
2 }δ yields the claim.

We need a corresponding statement for functions that are defined in terms of the inner
variables.
Lemma 3.3.11.
There exists ε0 > 0 such that for all ε ∈ (0, ε0) and any w ∈ C2(R × ω) the following
holds: Assume

w − sgn, ∂zw, ∇xw ∈ Xµ,Λ(R; Γ)

and define win
ε := w ◦Ψ−1

ε ∈ C2(ω). Then there exist Rw
ε ∈ X

µ̃
ε

,2Λ
δ (Ω) such that (3.3.10)

holds for wε = win
ε .
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Proof. We observe that |dδ(x)| ≤ 2
3 |d(x)| in {|d| ≥ 3δ} and deduce in {3δ ≤ |d| ≤ 5δ}

ε
∣∣∇win

ε (x)
∣∣ ≤ ∣∣∂zw(z, x)

∣∣+ ε
∣∣(∇xw)(z, x)

∣∣ ≤ 2Λe−µ|z| ≤ 2Λe− 3µdδ(x)
2ε

and

|win
ε (x)− sgn(d(x))| ≤ Λe−µ|z| ≤ Λe− 3µdδ(x)

2ε .

The claim then follows from Lemma 3.3.10.

Now can prove that Aε preserves the properties listed in Assumptions 3.3.4.

Proposition 3.3.12.
Consider K ≤ 2 and (uε)0<ε<ε0 as in Assumption 3.3.4. Then the family (uε)0<ε<ε0,
uε = Aεuε has an analogue representation, meaning that there exist Λ̃ > 0 and profile
functions vj ∈ C2(R × ω), j = 0, . . . ,K such that vj are C4 with respect to x ∈ ω and
such that for all 0 < ε < ε0

uε = ηδu
in
ε + (1− ηδ) sgn(d) + εK+1Rv

ε in Ω, (3.3.11)

uin
ε =

( K∑
j=0

εjvj

)
◦Ψ−1

ε in {|d| < 4δ}, (3.3.12)

with Rv
ε ∈ X

µ
ε

,Λ̃
δ (Ω) for all 0 < ε < ε0.

The profile functions are given by

v0(z, x) = A0u0(z, x) (3.3.13)
v1(z, x) = A0

(
u1(z, x) +H(y)v′

0(z, x)
)

(3.3.14)
v2(z, x) = A0

(
u2(z, x) +H(y)v′

1(z, x) + (∆x − z|II|2(y)∂z)v0(z, x)
)

(3.3.15)

for z ∈ R, x ∈ ω, y = ΠΓ(x). Moreover,

v0 − sgn, v1, v2 ∈ X(R; Γ) and ∂zvj , |∇xvj |, ∆xvj ∈ X(R; Γ) for j = 0, 1, 2.

Proof. Assume K = 2, let 0 < µ < 1, Λ > 0, and u0, u1, u2 ∈ Xµ,Λ(R; Γ) as in Assumption
3.3.4. Using the representation for ∆d from (2.1.9) we obtain in {|d| < 3δ}

−ε2∆ + Id = −∂2
z + Id−ε∆d∂z − ε2∆x

= −∂2
z + Id−εH∂z − ε2(∆x − z|II|2∂z)− ε3|z|2RH

ε ∂z,

and (
uin

ε − (−ε2∆ + Id)uin
ε

)
◦Ψ−1

ε

= u0 + εu1 + ε2u2 − (−∂2
z + Id)v0 − ε

(
(−∂2

z + Id)v1 −H∂zv0
)

− ε2((−∂2
z + Id)v2 −H∂zv1 − (∆x − z|II|2∂z)v0

)
+ ε3Rv

ε . (3.3.16)

The equations (3.3.13)-(3.3.15) are then equivalent to the property, that the expression
in (3.3.16) vanishes up to order O(ε3). We then obtain

(−ε2∆ + Id)uin
ε = uin

ε + ε3Rv
ε ◦Ψε, (3.3.17)
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with

Rv
ε ◦Ψε = −|z|2RH

ε ∂zv0 +H∂zv2 + (∆x − z|II|2∂z)v1

− ε|z|2RH
ε ∂zv1 + ε(∆x − z|II|2∂z)v2 − ε2|z|2RH

ε ∂zv2. (3.3.18)

It remains to show that the profile functions v0, v1, v2, their derivatives and the error
term Rv

ε have the claimed exponential control. In this proof Λ may change from line to
line but will always be independent of ε.

We first observe from Lemma 3.3.8 and (A0 sgn) = sgn(z)(1− e−|z|) that v0 inherits the
exponential decay to ±1 from u0, since

v0 − sgn = A0(u0 − sgn) +
(
A0 sgn− sgn

)
∈ Xµ,Λ(R; Γ).

Lemma 3.3.8 also yields
∣∣∇v0

∣∣ =
∣∣A0∇u0

∣∣ ≤ A0
∣∣∇u0

∣∣ ∈ Xµ,Λ(R; Γ), ∂zv0 ∈ Xµ,Λ(R; Γ),
∆v0 = A0∆u0 ∈ Xµ,Λ(R; Γ), and v0 ∈ C2(R× ω) is C4-regular with respect to x.

For v1 Lemma 3.3.8 yields

v1 = A0
(
u1 +H∂zv0

)
∈ C2(R× ω) ∩Xµ,Λ(R; Γ),

v1 is C4 with respect to x ∈ ω and ∂zv1 ∈ Xµ,Λ(R; Γ). Using A0∂
2
z = −A0(−∂2

z + Id) +
A0 = A0 − Id we get in addition∣∣∇xv1

∣∣ =
∣∣∣A0

(
∇xu1 +H∂2

zv0
)∣∣∣ ≤ A0

∣∣∇xu1
∣∣+ |H|∣∣(A0 − Id)v0

∣∣ ∈ Xµ,Λ(R; Γ)

because
∣∣∇u1

∣∣ ∈ Xµ,Λ(R; Γ) by assumption, the previous results, and Lemma 3.3.8.
Similar we have

∆xv1 = A0
(
∆xu1 +H∆∂zv0

)
= A0∆u1 +H∂zA0∆xv0 ∈ Xµ,Λ(R; Γ)

by assumptions for u1, the previous results, and Lemma 3.3.8.

Owing to Xµ,Λ(R; Γ) ⊆ X
10µ
11 ,Λ(R; Γ), II ∈ C2

b (ω), and
∣∣zv0e

10µ
11 |z|∣∣ =

∣∣ze− µ
11 |z|∣∣∣∣v0e

µ|z|∣∣ ≤ Λ
we have for u2

v2 = A0
(
u2 +H∂zv1 + (∆x − z|II|2∂z)v0

)
∈ X

10
11 µ,Λ(R; Γ),

with v2 ∈ C2(R× ω), v2 is C4 with respect to x ∈ ω and ∂zv2 ∈ X
10
11 µ,Λ(R; Γ) by Lemma

3.3.8. In addition we have∣∣∇xv2
∣∣ ≤ ∣∣A0∇xu2

∣∣+ ∣∣H∂zA0∇xv1
∣∣+ ∣∣A0∇x(∆x − z|II|2∂z)v0

∣∣ ∈ X 10
11 µ,Λ(R; Γ) and

∆xv2 =
∣∣A0∆xu2

∣∣+ ∣∣H∂zA0∆xv1
∣∣+ ∣∣A0∆x(∆x − z|II|2∂z)v0

∣∣ ∈ X 10
11 µ,Λ(R; Γ).

From the asymptotic control of v0, v1, v2 and their derivatives we conclude from (3.3.18)
Rv

ε ◦Ψε ∈ X
10
11 µ,Λ(R; Γ). Since ϕ1(z) ≤ 9

10z for all z ≥ 0 by Definition 3.3.2 we deduce
|dδ| ≤ 9

10 |d| and therefore obtain Rv
ε ∈ X

µ,Λ
δ (Ω).
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The previous observations show that w := v0 + εv1 + ε2v2 satisfies the assumptions of
Lemma 3.3.11 with µ replaced by 10

11µ. Applying the lemma to win
ε = uin

ε and using
(3.3.17) we therefore obtain for some Rw

ε ∈ X
15µ
11ε

,Λ
δ (Ω)

(−ε2∆ + Id)
(
ηδu

in
ε + (1− ηδ) sgn(d)

)
= ηδ · (−ε2∆ + Id)uin

ε + (1− ηδ) sgn(d) + χ{|d|≥3δ}R
w
ε

= ηδu
in
ε + ε3ηδR

v
ε + (1− ηδ) sgn(d) + χ{|d|≥3δ}R

w
ε

= uε + ε3Rε,

where Rε ∈ X
µ
ε

,Λ
δ (Ω) due to the stronger exponential decay of Rw

ε .
Since ∇

(
ηδu

in
ε + (1− ηδ) sgn(d)

)
· νΩ = 0 at ∂Ω we deduce from Lemma 3.3.9

uε = ηδu
in
ε + (1− ηδ) sgn(d) + ε3R̃ε,

with R̃ε ∈ X
µ
ε

,Λ̃
δ (Ω).

The next theorem proves a lower bound estimate for phase-field approximations that
satisfy the Assumptions 3.3.4.

Theorem 3.3.13 (Γ–lim inf estimate for special class of function).
We assume 3.3.1 and let (uε)0<ε<ε0 satisfy the Assumptions 3.3.4. Then we have

cAGσAGW(u) ≤ lim inf
ε→0

WAG
ε (uε). (3.3.19)

Proof. Let uε = Aε(uε), recall HAG
ε = 1

ε

(
f(uε)−Aεuε

)
. By Assumption 3.3.4, Proposition

3.3.12, and Lemma 3.3.7 we deduce in {|d| < 2δ} for ε sufficiently small

εHAG
ε =

(
f(uε)− uε

)
= ηδf(uε)in + (1− ηδ) sgn d−

(
ηδu

in
ε + (1− ηδ) sgn(d)

)
+ εK+1Rε

= ηδ

(
f(uε)in − uin

ε

)
+ εK+1Rε, (3.3.20)

and in particular for K = 0

εHAG
ε = ηδ ·

(
f(u0)−A0u0

)
◦Ψ−1

ε + εRε.

Together with (2.1.7) we deduce

ε2Wε(uε) =
�

Ω

1
ε
η2

δ

(
f(u0)−A0u0

)2 ◦Ψ−1
ε dLn

+ 2
�

Ω
ηδ

(
f(u0)−A0u0

)
◦Ψ−1

ε Rε dLn + ε

�
Ω
R2

ε dLn

≥
�

Γ

� 3δ
ε

− 3δ
ε

1
2
(
f(u0)−A0u0

)2 dL1 dHn−1

− Cε
�

Γ

� ∞

−∞

∣∣f(u0)−A0u0
∣∣ dL1 dHn−1

≥
�

Γ

� 3δ
ε

− 3δ
ε

1
2
(
f(u0)−A0u0

)2 dL1 dHn−1 − Cε, (3.3.21)

58



where we have used, that f(u0)− sgn and A0u0 − sgn both decay exponentially at ±∞.
In order to prove (3.3.19) it is sufficient to consider the case lim infε→0 ε

2Wε(uε) = 0.
This implies f(u0) = A0u0, that is u0(·, x) = q0(· − z0(y)) and v0(·, x) = q0(· − z0(y))
with y = ΠΓ(x). The condition (3.3.3) implies that z0(y) = h0(y).
With u0(·, x) = q0(· − h0(y)) and v0(·, x) = q0(· − h0(y)) we deduce from Proposition
3.3.12, Lemma 3.3.7, and (3.3.20) with K = 1

HAG
ε (x) = ηδ(x)

[
f ′[q0(z − h0(y))

]
u1(z, x)−A0

[
u1(z, x) +H(y)q′

0(z − h0(y))
]]

+ εRε(x).
(3.3.22)

and by similar calculations as above

lim inf
ε→0

Wε(uε)

≥
�

Γ

� 3δ
ε

−h0(y)

− 3δ
ε

−h0(y)

∣∣(f ′(q0)−A0
)
u1(·+ h0(y), x)−H(y)A0(q′

0)
∣∣2 dL1 dHn−1(y) (3.3.23)

≥
�

Γ

� ∞

−∞

∣∣(f ′(q0)−A0
)
u1(·+ h0(y), x)−H(y)A0(q′

0)
∣∣2 dL1 dHn−1(y). (3.3.24)

If H(y) = 0 the inner integral is minimized by u1(·+ h0(y), x) ≡ 0. Therefore, to prove a
lower bound, we can assume u1(z + h0(y), x) = H(y)ũ1(z, x) and compute

lim inf
ε→0

Wε(uε) ≥
�

Γ
|H(y)|2 inf

w(·,y)∈L2(R)
Ξ(w(·, y)) dHn−1(y) ≥ cAGσAG

�
Γ
|H|2 dHn−1,

(3.3.25)

with the functional Ξ as in Lemma 3.1.14. We obtain that for every minimizer ũ1 of
Ξ there exists α ∈ R such that ũ1 = q1 + αq′

0. This proves (3.3.19). Finally, we can
determine α from condition (3.3.3), which implies

0 = uε
(
y + ε(h0(y) + εh1(y) + ε2Rh

ε (y))ν(y)
)

= q0
(
εh1(y) + ε2Rh

ε (y)
)

+ ε
(
q1
(
εh1(y) + ε2Rh

ε (y)
)

+ αq′
0
(
εh1(y) + ε2Rh

ε (y)
))

+O(ε2)
= εq′

0(0)
(
h1(y) + α

)
+O(ε2)

and therefore α = −h1(y).

The proof shows that equality in (3.3.19) can only be attained if u0(z, x) = q0(· − h0(y))
and u1(z, x) = H(y)q1(z − h0(y))− h1(y)q′

0(z − h0(y)). By Theorem 3.1.3 we have that
q0 − sgn, q0 − sgn, q′

0 all decay exponentially at ±∞. Combining the Lemmata 3.3.7,
3.1.15, and 3.3.8 shows that q1, q′

0 also decay exponentially at ±∞.

We therefore obtain as a candidate for a recovery sequence (uε)ε>0

uε = ηδu
in
ε + (1− ηδ) sgn(d), uin

ε (·, x) = q0 + εH(y)q1. (3.3.26)

3.4 Rigorous proof of the Γ–lim sup estimate
In this section we do the constructive part of the Γ–convergence statement. We use
the previous computations from the asymptotic expansion of approximations and the
successive minimization of the energy order as orientation for the rigorous proof.
We use the previous computations and the candidate (3.3.26).
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Theorem 3.4.1 (lim sup estimate for “gradient-free” Willmore approximation).
We assume 3.3.1. Then there exists a sequence (uε)ε>0 such that uε −→ u in L1(Ω) and

lim
ε→0
Wε(uε) = cAGσAGW(u).

Proof. We will use the Ansatz (3.3.26) and let

uε(x) = ηδ(x)
(
q0(z) + εH(y)q1(z)

)
+
(
1− ηδ(x)

)
sgn(d(x)),

where x = Ψε(z, y). The convergence towards u was already shown in Lemma 3.3.5. We
deduce from Proposition 3.3.12 that uε := Aεuε can be represented as

uε(x) = ηδ(x)
(
q0(z) + εq1(z, x)

)
+ (1− ηδ(x)) sgn z + ε2Rε(x)

with q0 = A0q0 as in (3.3.13) and

v1(·, x) = H(y)q1 for any x ∈ ω, y = ΠΓ(x), q1 = A0
(
q1 + q′

0
)
, (3.4.1)

as introduced before Lemma 3.1.15. Moreover, we have supε>0 supx∈Ω |Rε(x)| ≤ C and
q1, q

′
1 decay exponentially at ±∞ by Lemma 3.3.8. We deduce from equations (3.3.22)

and (3.1.22).

HAG
ε (x) = ηδ(x)H(y)

(
f ′(q0)q1 −A0(q1 + q′

0)
)
(z) + εRε(x)

= −ηδ(x)σAGH(y)q′
0(z) + εRε(x).

By similar calculations as above this implies

Wε(uε) =
�

Ω

1
ε
η2

δ

∣∣σAGq
′
0
∣∣2H2 ◦Ψ−1

ε dLn + 2
�

Ω
ηδ(σAGq

′
0)H ◦Ψ−1

ε Rε dLn + ε

�
Ω
R2

ε dLn

≤ σ2
AG

�
Γ
H2 dHn−1

� ∞

−∞
|q′

0|2 dL1 + CHn−1(Γ)ε
� ∞

−∞

∣∣q′
0
∣∣(z) dL1 + εCLn(Ω)

≤ cAGσAG

�
Γ
H2 dHn−1 + Cε.

This yields lim supε→0Wε(uε) ≤ cAGσAGW(u) and together with (3.3.19) the recovery
sequence property.

3.5 Diffuse gradient flows in the AG model

In this section we consider the dynamic of evolving surfaces Γ(t). We assume that there
exists a phase-field function (uε)ε>0 which has an expansion with respect to Γ(t) and
is a solution to either the rescaled gradient flow of the diffuse perimeter (3.5.2) or the
gradient flow of the rescaled diffuse Willmore energy (3.5.3). Our goal is to show that
the surfaces evolve by mean curvature flow or Willmore flow respectively. We refer
to Definitions 2.1.7 and 2.1.9 for the formulation of mean curvature flow and Willmore flow.

We already know the L2-gradient of PAG
ε , in fact we have

∇L2PAG
ε = 1

ε

(
− uε + u+ 1

2W
′(u)

)
= HAG

ε .
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For the L2-gradient of WAG
ε we get for all test functions η

⟨η, δWAG
ε (uε)⟩C∞

c (Ω)′ =
�

Ω

2
ε2 η

(
f ′(uε) Id−Aε

)
HAG

ε dLn

and thus

∇L2WAG
ε (u) = 2

ε2

(
1 + 1

2W
′′(u)−Aε

)
HAG

ε = 2
ε2

(
f ′(u)−Aε

)
HAG

ε . (3.5.1)

Now we can formulate the gradient flow equations for the diffuse mean curvature flow

ε∂tuε = −HAG
ε (3.5.2)

and diffuse Willmore flow

ε∂tuε = − 2
ε2
(
f ′(uε) Id−Aε

)
HAG

ε . (3.5.3)

We write

Lε := f ′(uε) Id−Aε.

Assumption 3.5.1 (Set evolution).
Consider a continuous evolution of open sets (E(t))t∈[0,T ] in Ω with associated signed
distance function d : ΩT → R, d(·, t) = dist(·,Ω \ E(t))− dist(·, E(t)), phase boundaries
Γ(t) := ∂E(t) for t ∈ [0, T ] and ΩT := Ω× [0, T ].
We assume the following properties:

1. Γ(t) is a C4-regular hypersurface for all t ∈ [0, T ].

2. ⋃
t∈[0,T ]

E(t) ⋐ Ω.

With this assumption we can choose δ > 0 sufficiently small such that for all t ∈ [0, T ]
the projections ΠΓ(t) : {|d(·, t)| < 5δ} −→ Γ(t) are well defined and set

ωT := {(x, t) ∈ ΩT : |d(x, t)| < 5δ}.

3. d ∈ C1
b (ωT ) and Dγ

xd ∈ C0
b (ωT ) for all γ ∈ Nn

0 with |γ| ≤ 4.

Let Ψε(·, t), t ∈ [0, T ] denote the parametrization that are defined according to (2.1.5) with
Γ replaced by Γ(t).

We extend the definition of functions that are exponentially decaying to the time-dependent
case and set

Xµ,Λ
δ (ΩT ) :=

{
u ∈ L∞(ΩT ) : ess-sup

x∈ΩT

|eµ|dδ(x)|u(x, t)| ≤ Λ
}

(3.5.4)

and

X(R; ΓT ) :=
{
u ∈ L∞(R× ωT )

∣∣ ∃Λ, µ > 0 : ess-sup
(z,x,t)∈R×ωT

|eµ|z|u(z, x, t)| ≤ Λ, (3.5.5)

u(z, ·, t) is constant in normal direction}.

We consider the modified distance functions dδ and the cut-off functions ηδ as defined in
Assumption 3.3.2 and introduce classes of phase field evolutions that we will consider in
the following.
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Assumption 3.5.2 (Phase field evolution).
Let (E(t))t∈[0,T ] be a continuous evolution of sets in Ω, the signed distance function d,
and δ > 0 as in Assumption 3.5.1 be given. Consider an evolution of smooth phase
fields (uε)0<ε<ε0. We assume that there exist µ ∈ (0, 1), Λ > 0, and profile functions
uj : R× ωT → R, j ∈ {0, 1, 2}, such that for all 0 < ε < ε0 and all t ∈ [0, T ]

uε(·, t) = ηδ(·, t)uin
ε (·, t) + (1− ηδ(·, t)) sgn(d(·, t)) + ε3Rε in ΩT , (3.5.6)

uin
ε (·, t) =

( 2∑
j=0

εjuj(·, t)
)
◦Ψ−1

ε in {|d(·, t)| < 4δ}, (3.5.7)

and such that the following properties hold:

1. The profile functions uj ∈ C0(R × ωT ), uj = uj(z, x, t) satisfy uj(z, ·) ∈ C1
b (ωT ),

Dγ
xuj(z, ·) ∈ C0

b (ωT ) for all γ ∈ Nn
0 with |γ| ≤ 4

u0−sgn ∈ X(R; ΓT ), uj , |∇xuj |, ∆xuj , |∇x∆xuj |, ∆2
xuj ∈ X(R; ΓT ) for j ∈ {1, 2}.

2. The remainder satisfies Rε ∈ X
µ
ε

,Λ
δ (ΩT ) for all 0 < ε < ε0.

Moreover, we assume that

{uε(·, t) = 0} = Γ(t) for all t ∈ [0, T ], 0 < ε < ε0 (3.5.8)

and that
WAG

ε (uε(·, 0)) + PAG
ε (uε(·, 0)) ≤ C (3.5.9)

for all 0 < ε < ε0. We want to highlight operators which only refer to the z-variable and
thus we write them in bold letter, such as L0 and A0 from (3.1.17) and Definition 3.1.6.

We have chosen in (3.5.8) for a more restrictive setting than in the static case. We could
also have allowed for an offset between the zero level set of uε(·, t) and Γ(t) as in (3.3.3).
For simplicity we restrict ourselves to (3.5.8) but allow an additional contribution of order
ε in the gradient flow equations; see (3.5.15) and (3.5.10) below.

Theorem 3.5.3 (Convergence towards the mean curvature flow).
Consider a sequence of evolutions of smooth phase fields (uε)0<ε<ε0 as in Assumption 3.5.2,
satisfying an asymptotic expansion (3.5.6)-(3.5.7) with respect to an evolution (E(t))t∈[0,T ]
of sets in Ω. Assume that uε satisfies

−ε∂tuε = 1
ε

(
f(uε)−Aε(uε)

)
+ εRε, (3.5.10)

with sup
0<ε<ε0

∥Rε∥C0(ΩT ) ≤ C.

Then (Γ(t))t∈[0,T ] evolves by the rescaled mean curvature flow

V = σAGH (3.5.11)

with σAG as defined in (3.1.7).
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Proof. We consider the equation (3.5.10), expand both sides of and evaluate the identity
order by order. To identify the evolution law in the limit ε→ 0 it is sufficient to consider
the region {|d| < 2δ}, in which ηδ ≡ 1.
We in particular use that the right-hand side of equation (3.5.10) is in this region to the
relevant orders already determined by the inner expansion with respect to ε of uε: even
though Aεuε and depend on the values of uε in the whole set Ω, applying Proposition
3.3.12 shows that we only need the inner expansion of uε to determine the relevant
contributions in {|d| < 2δ}.

For the left-hand side of (3.5.10) we obtain in {|d| < 2δ} from (3.5.6), (3.5.17), and the
definition of V

−ε∂tuε = −ε
2∑

j=0

(
∂tuj + 1

ε
∂zuj∂td

)
+O(ε) = −∂zu0∂td+O(ε) = −q′

0V +O(ε).

(3.5.12)

We expand the right-hand side and deduce from Proposition 3.3.12, Lemma 3.3.7, and
(3.3.20) that in {|d| < 2δ}

HAG
ε (x, t) = H0(z, x, t) + εRH

ε (x, t) (3.5.13)

with RH
ε ∈ X

µ
ε

,Λ
δ (ΩT ) and H0 is characterized as follows: Firstly, by (3.3.22)

H0 = f ′(q0
)
u1 −A0

(
u1 +Hq′

0
)

= L0(u1)−A1(q0), (3.5.14)

where A1 = HA2
0∂z and where here and below HAG

ε , Rε are evaluated in (x, t), q0 in z,
uj in (z, x, t) and H in (y, t) with y = ΠΓ(t)x.

Now we consider the ε−1-order gives and get

0 = f(u0)−A0u0

and thus u0 = q0. We further expand the right-hand side of (3.5.10) and get in {|d| < 2δ}

1
ε

(
f(uε)−Aε(uε)

)
= f ′(q0)u1 −A0(u1)−A1(q0) +O(ε)

= L0(u1)−A1(q0) +O(ε).

Equating this with the expansion in (3.5.12) we get by testing with q′
0 ∈ ker(L0)

−V
�
R

∣∣q′
0
∣∣2 dL1 = −

�
R
q′

0A1(q0) dL1

Taking the defining integrals (3.1.7) and A1 = HA2
0∂z into account we get the evolution

by mean curvature

V = σAGH.
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Theorem 3.5.4 (Convergence towards the Willmore flow).
Consider a sequence of evolutions of smooth phase fields (uε)0<ε<ε0 as in Assumption 3.5.2,
satisfying an asymptotic expansion (3.5.6)-(3.5.7) with respect to an evolution (E(t))t∈[0,T ]
of sets in Ω. Assume that uε satisfies

−ε∂tuε = 2
ε2

(
f ′(uε) Id−Aε

)(f(uε)−Aε(uε)
ε

)
+ εRε, (3.5.15)

with sup
0<ε<ε0

∥Rε∥C0(ΩT ) ≤ C. Then (Γ(t))t∈[0,T ] evolves by the rescaled Willmore flow

V = 2σ2
AG
(
−∆ΓH −H|II|2 + 1

2H
3) (3.5.16)

with σAG as defined in (3.1.7).

Proof. Similar to the proof for the other evolution we will expand both sides of (3.5.15)
and evaluate the identity order by order. To identify the evolution law in the limit ε→ 0
it is sufficient to consider the region {|d| < 2δ} as before. We in particular use that
the right-hand side of equation (3.5.15) is in this region to the relevant orders already
determined by the inner expansion with respect to ε of uε: Even though uε = Aεuε and
AεH

AG
ε depend on the values of uε in the whole of Ω, applying Proposition 3.3.12 and

Lemma 3.3.7 shows that we only need the inner expansion of uε to determine the relevant
contributions in {|d| < 2δ}.
To expand the right-hand side of (3.5.15) we first consider HAG

ε . Since under the flow
(3.5.15) the energy WAG

ε decreases with time and by (3.5.9) we obtain that Wε(uε(·, t))
is uniformly bounded. By the calculations in the proof of Theorem 3.3.13, see (3.3.21),
we therefore deduce that

u0(z, x, t) = q0(z) for all (x, t) ∈ ωT . (3.5.17)

We deduce from Proposition 3.3.12, Lemma 3.3.7, and (3.3.20) that in {|d| < 2δ}

HAG
ε (x, t) = H0(z, x, t) + εH1(z, x, t) + ε2H2(z, x, t) + ε3RH

ε (x, t) (3.5.18)

with RH
ε ∈ X

µ
ε

,Λ
δ (ΩT ) and H0, H1 characterized as follows: Firstly, by (3.5.14) we have

H0 = L0(u1)−A1(q0),

where A1 = HA2
0∂z and where HAG

ε , Rε are evaluated in (x, t), q0 in z, uj in (z, x, t) and
H in (y, t) with y = ΠΓ(t)x.
Secondly, we derive from (3.3.20) with K = 2 and Proposition 3.3.12, Lemma 3.3.7

H1 =
(1

2f
′′(u0)(u1)2 + f ′(u0)u2

)
−A0

(
u2 +Hv′

1 + (∆x − z|II|2∂z)v0
)

= L0(u2) + 1
2f

′′(u0)u2
1 −A1(u1)−A2(u0), (3.5.19)

where

A2 = ∆xA2
0 − |II|2A0z∂zA0 +H2A3

0∂
2
z and (3.5.20)

L0 = f ′(q0) Id−A0 as defined in (3.1.17).
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The function H2 in (3.5.18) belongs to X(R; ΓT ) and is C2-regular with respect to the
x variable. We will see below that this term is not relevant for the identification of the
evolution law, thus we will not include its precise characterization.
We next consider the action of Lε = f ′(uε) Id−Aε on HAG

ε . Since we are only interested
in the values in the region {|d| < 2δ} we can use a Taylor expansion and the representation
of uε in this region for the local term f ′(uε) Id.
For the application of Aε to HAG

ε we use analogue arguments as in Proposition 3.3.12 with
the following difference. We only have C2-regularity with respect to the x-variable of the
profile functions that represent HAG

ε . Therefore we obtain only C0-regularity with respect
to the x-variable for the profile functions representing AεH

AG
ε . Therefore, following the

analogue computation as in the proof of Proposition 3.3.12 we deduce

Lε(HAG
ε ) = L0(H0)+ε

(
L1(H0)+L0(H1)

)
+ε2(L2(H0)+L1(H1)+L0(H2)

)
+ε3Rε (3.5.21)

and

L1 = f ′′(q0)u1 Id−A1, L2 = f ′′(q0)u2 Id +1
2f

′′′(q0)u2
1 Id−A2. (3.5.22)

and Rε ∈ X
µ
ε

,Λ
δ (ΩT ).

Now we expand the equation (3.5.15). For the left-hand side we obtain in {|d| < 2δ} from
(3.5.12)

ε∂tuε = ∂zu0∂td+O(ε) = q′
0V +O(ε).

We next consider the right-hand side of evolution (3.5.15). By (3.5.18)-(3.5.19) we obtain

ε−2Lε(HAG
ε ) = ε−2L0(H0) + ε−1(L0(H1) + L1(H0)

)
+
(
L0(H2) + L1(H1) + L2(H0)

)
+O(ε). (3.5.23)

To order ε−2 we deduce from equations (3.5.15) and (3.5.12) that L0(H0) = 0, which is
by (3.5.14) equivalent to

0 = L0(L0(u1)−HA2
0(q′

0)).

In addition we have the condition u1(0) = 0. Comparing this to Lemma 3.1.14 and in
particular equation (3.1.22) we deduce u1 = Hq1 and H0 = −HσAGq

′
0. In particular,

L1 = HL1, A1 = HA1,

L1 = f ′′(q0)q1 Id−A2
0∂z, A1 = A2

0∂z,

where L1 and A1 only depend on z. From (3.5.15) we conclude that also the contribution
of order ε−1 of the right-hand side in (3.5.15) vanishes, thus

0 = L1(H0) + L0(H1) = −σAGH
2L1(q′

0) + L0(H1). (3.5.24)

We will now proceed to the crucial order ε0 in equation (3.5.15). We test the corresponding
equation with q′

0 and integrate with respect to the variable z. We get by formulas (3.5.15)
and (3.5.12)

−1
2∥q

′
0∥2L2(R)V =

�
R
q′

0(L1(H1) + L2(H0)) dL1. (3.5.25)
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For the second term on the right-hand side of equation (3.5.25) we use

L2(H0) = (f ′′(q0)u2 + 1
2f

′′′(q0)u2
1 −A2)(−HσAGq

′
0)

= −σAGHf
′′(q0)q′

0u2 −
σAG

2 H3f ′′′(q0)q′
0q

2
1 + σAGA2(Hq′

0). (3.5.26)

We obtain the following commutator rule, with [A,B] := AB −BA for operators A,B

[∂,L0](w) =
(
L0(w)

)′ − L0(w′) = f ′′(q0)q′
0w for all w ∈ L2(R) ∩ C1(R)

and rewrite equation (3.5.19)

L0(u2) = w with w := H1 −H2 1
2f

′′(q0)q2
1 +H2A1(q1) +A2(q0). (3.5.27)

The commutator helps us to generate L0 in front of u2 in the right-hand side of equation
(3.5.26) so we can apply equation (3.5.27)

�
R
q′

0f
′′(q0)q′

0u2 dL1 =
�
R
q′

0
(
w′ − L0(u′

2)
)

dL1 =
�
R
q′

0w
′ dL1.

Together with equation (3.5.26) we obtain
�
R
q′

0L2(H0) dL1 = −σAGH

�
R
q′

0w
′ dL1 − σAG

�
R
q′

0

(1
2H

3f ′′′(q0)q′
0q

2
1 −A2(Hq′

0)
)

dL1

= −σAGH

�
R
q′

0

(
H1 −H2 1

2f
′′(q0)q2

1 +H2A1(q1) +A2(q0)
)′

dL1

− σAG

�
R
q′

0

(1
2H

3f ′′′(q0)q′
0q

2
1 −A2(Hq′

0)
)

dL1.

= σAGH

�
R

(
q′′

0H1 − q′
0∂zA2q0

)
dL1

+ σAGH
3
�
R
q′

0

(
f ′′(q0)q1q

′
1 + 1

2f
′′′(q0)q′

0q
2
1 −A1(q′

1)
)

dL1

− σAG

�
R
q′

0

(1
2H

3f ′′′(q0)q′
0q

2
1 −A2(Hq′

0)
)

dL1.

= σAGH

�
R
q′′

0H1 dL1 + σAGH
3
�
R
q′

0

(
f ′′(q0)q1q

′
1 −A1q

′
1

)
dL1

(3.5.28)

+ σAG

�
R
q′

0
[
A2, H∂z

]
(q0) dL1.

Next we calculate the commutator [
A2, H∂z

]
(w)

for w ∈ L2(R) ∩ C1(R). Since w is independent from x we have ∆xw = 0 and thus[
A2, H∂z

]
(w) = A2(H∂zw)−H∂zA2w = ∆xHA2

0w
′ −H|II|2A0

(
zA0w

′′)
+H3A3

0w
′′′ +H|II|2A0

(
∂z(zA0w

′)
)
−H3A3

0w
′′′

= ∆xHA2
0w

′ +H|II|2A2
0w

′ =
(
∆xH +H|II|2

)
A1w.
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Since the functions in ω are constant in normal direction we can replace ∆x it with the
Laplace-Beltrami operator on Γ(t). We write ∆Γ = ∆Γ(t) for simpler notation.

We get with
�
R q

′
0A1q0 dL1 =

�
R |A0q

′
0|2 dL1 = cAG and the definition of L1

�
R
q′

0L2(H0) dL1 = σAGH

�
R
q′′

0H1 dL1 + σAGH
3
�
R
q′

0L1(q′
1) dL1

+ cAGσAG(∆ΓH +H|II|2). (3.5.29)

By differentiating formula (3.1.22) we have

−σAGq
′′
0 = f ′′(q0)q′

0q1 + f ′(q0)q′
1 −A0(q′

1)−A1(q′
0) = L1(q′

0) + L0(q′
1). (3.5.30)

The next tool we need is the commutator
[
A0, z

]
. Since the operators are defined on

L2(R) we need to make sure, that the functions multiplied with z are still in L2(R).
Let h ∈ C0

b (R) ∩ L2(R) with exponential decay. This implies z 7→ zh(z) ∈ L2(R)
and A0h,A0h

′,A0h
′′ all have exponential decay. From Proposition 3.1.8 we have

A0(zh),A0h ∈ C2
b (R) ∩ L2(R) and we get

−zA0h
′′ + zA0h = zh

−2A0h
′ −A0(zh′′) + A0(zh) = −A0(zh)′′ + A0(zh) = zh.

Equating and rearranging yields

A0(zh)− zA0h = 2A0h
′ + A0(zh′′)− zA0h

′′

⇐⇒
[
A0, z

]
(−h′′ + h) = 2A0h

′

We conclude by replacing h with A0h the following commutator rule[
A0, z

]
(h) = 2A2

0h
′ = 2A1h.

Since q′
0 satisfies the conditions for h we can apply the commutator rule together with

L0(q′
0) = 0 and get

0 = zL0(q′
0) = f ′(q0)zq′

0 − zA0(q′
0) = L0(zq′

0) + 2A1(q′
0). (3.5.31)

Before moving to the final calculations we need the anti-symmetric part of L1. Since A1
is anti-symmetric because of the negative sign in the partial integration formula we have
for w1, w2 ∈ L2(R)

�
R

(
w1L1(w2)− w2L1(w1)

)
dL1 =

�
R

(
w1
(
f ′′(q0)q1w2 − w1A1w2

)
dL1

−
�
R

(
w2f

′′(q0)q1w1 − w2A1w1
)

dL1

=
�
R

2w2A1(w1) dL1. (3.5.32)
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We consider the sum of the contributions from the first terms of the right-hand side of
formulas (3.5.25) and (3.5.29) to deduce

H

�
R

(
q′

0L1(H1) + σAGq
′′
0H1

)
dL1 (3.5.30)= H

�
R

(
q′

0L1(H1)−H1
(
L1(q′

0) + L0(q′
1)
))

dL1

(3.5.32)= H

�
R
H1
(
2A1(q′

0)− L0(q′
1)
)

dL1

(3.5.31)= H

�
R
H1L0(−zq′

0 − q′
1) dL1

(3.5.24)= −σAGH
3
�
R

(zq′
0 + q′

1)L1(q′
0) dL1. (3.5.33)

Plugging the results from equations (3.5.33) and (3.5.29) into the identity (3.5.25) we
obtain

−V = 2σ2
AG
(
∆ΓH +H|II|2 + κ1

cAG
H3),

with

κ1 =
�
R

(
q′

0L1(q′
1)− (zq′

0 + q′
1)L1(q′

0)
)

dL1

(3.5.32)=
�
R

(
2q′

1A1(q′
0)− zq′

0L1(q′
0)
)

dL1

(3.5.31)= −
�
R
zq′

0
(
L1(q′

0) + L0(q′
1)
)

dL1 (3.5.30)= −cAG
2 ,

which proves the Willmore-flow equation.
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4 A higher order approximation
of the Willmore energy based on
the Karali-Katsoulakis model

In this chapter we consider a new diffuse Willmore energy, motivated by the contributions
of Karali and Katsoulakis [KK07]. They considered a combination of surface diffusion
and ad/de-sorption, modelled by

−ε∂tuε =
(
− ε2∆ + Id

)(
− ε∆uε + 1

ε
W ′(uε)

)
, (4.0.1)

which is a cross-over between the Allen-Cahn and the Cahn-Hilliard equation. Here W is
a double-well potential, as before. The PDE (4.0.1) has gradient flow structure as the
right-hand side is the gradient of the standard diffuse perimeter Pε from Definition 2.4.1
with respect to the metric induced by (ϕ, ψ) 7→

�
Ω ϕAεψ dLn where Aε =

(
− ε2∆ + Id

)−1

is the solution operator from Lemma 3.1.10. In the case of smooth solutions we can apply
the chain rule and obtain for solutions of (4.0.1) (with suitable boundary conditions)

∂tPε(uε) = ∂t

�
Ω

(ε
2
∣∣∇uε

∣∣2 + 1
ε
W ′(uε)

)
dLn =

�
Ω

(
−∆uε + 1

ε
W ′(uε)

)
∂tuε dLn

= −
�

Ω

1
ε
Hε
(
− ε2∆ + Id

)
Hε dLn = −

�
Ω

(1
ε
|Hε|2 + ε

∣∣∇Hε

∣∣2) dLn. (4.0.2)

We write Hε := Hε(uε) := −ε∆uε + 1
εW

′(uε) for the diffuse mean curvature. To
interpret this identity we compare it to the sharp interface setting and the standard
approximation of the perimeter. If a family of surfaces is evolving by mean curvature
flow we have ∂tP = −W . Here the Willmore energy appears on the right-hand side of the
energy-dissipation .

If wε is a solution to a formulation of diffuse mean curvature flow, i.e.

−ε∂twε = −ε∆wε + 1
ε
W ′(wε)

we get ∂tPε = −Wε. Here the energy-dissipation features the standard diffuse Willmore
energy. With this background we expect the right-hand side of (4.0.2) to be a new diffuse
Willmore energy. This is the motivation for us to investigate whether the diffuse functional
WKK

ε : H3(Ω) −→ [0,∞] with

WKK
ε (u) :=

�
Ω

(1
ε
|Hε(u)|2 + ε

∣∣∇Hε(u)
∣∣2) dLn (4.0.3)
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is converging towards a multiple of the Willmore energy in the sense of Γ–convergence
with respect to the L1(Ω)-topology. We start with the Γ–lim sup estimate in this chapter
and handle the Γ–lim inf estimate in Chapter 5. It is important to mention that we
obtain a larger factor in front of the Willmore energy in the limit compared to the
standard Willmore approximation. Thus the higher order term contributes on the same
ε-scale as the classical

�
Ω

1
ε |Hε|2 dLn term.

Another motivation to consider the Γ–convergence is the fact that the diffuse Willmore
energy (4.0.3) appears in diffuse formulations of the Brakke flow (see Definition 2.5.2)
or the De Giorgi type varifold solutions for rescaled mean curvature flow (see Definition
2.5.3), i.e. the Γ–convergence helps prove that solutions to (4.0.1) converge towards
solutions for mean curvature flow in a suitable sense.

4.1 Preparations
We introduce the notations for this chapter and prove a few lemmata that we need below.

Assumption 4.1.1 (and Notations).
In this chapter we assume Ω ⊆ Rn is open. We consider the standard double-well potential
W (r) := (1− r2)2 for r ∈ R, the induced optimal profile q0 ∈ C1(R) which solves

q′
0 =

√
2W (q0) and q0(0) = 0. (4.1.1)

In addition to that we define q0 := A0q0 such that

−q′′
0 + q0 = q0 in R and q0(x) −→ ±1 as x→ ±∞.

The important constants in this model are given by

c0 :=
�
R

∣∣q′
0
∣∣2 dL1 and σ := c0�

R
q′

0q
′
0 dL1

. (4.1.2)

The existence of the integrals is proved in the next lemmata. In this model we consider
the Cahn–Hilliard energy Pε : L1(Ω) −→ [0,∞], also called standard diffuse perimeter
introduced in 2.4.1

Pε(u) :=


�

Ω

(ε
2
∣∣∇u∣∣2 + 1

ε
W (u)

)
dLn, if u ∈ H1(Ω) ∩ L4(Ω)

+∞, else.
(4.1.3)

Lemma 4.1.2 (Properties of q0).
The optimal profile q0 is given by

q0(r) = tanh(
√

2r).

It holds

• q0 ∈ C∞(R), q′′
0 = W ′(q0), and q′

0 > 0 on R.

• lim
r→±∞

q0(r) = ±1 for all r ∈ R.
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•
∣∣q0(r)− sgn(r)

∣∣ ≤ 2e−2|r| for r ∈ R.

• q0 − sgn ∈ L1(R) ∩ L∞(R).

• There exist C, c > 0 such that for all j ∈ {1, 2, 3} and all r ∈ R we have∣∣q(j)
0 (r)

∣∣ ≤ Ce−c|r|.

• q′
0, q

′′
0 , q

′′′
0 ∈ L2(R) and q′

0 ∈ H2(R).

• q0 is odd.

Most of these properties can be proven for more general double well potentials, see
[BNN15], however the formulation of the lemma is sufficient for this thesis.

Proof. Differentiating tanh we get for all r ∈ R

tanh′(r) = cosh2(r)− sinh2(r)
cosh2(r)

= 1
cosh2(r)

= 1− tanh2(r).

It follows that q0 = tanh(
√

2·) is indeed the unique solution to (4.1.1). From there we
conclude by squaring and differentiating again

2q′
0q

′′
0 = 2W (q0)q′

0 and thus q′′
0 = W ′(q0).

We also have for all r > 0

q0(r) = er − e−r

er + e−r
= 1− 2e−2r

1 + e−2r
and thus

∣∣q0(r)− 1
∣∣ ≤ 2e−2r.

We can proceed similar for r < 0. Thus the second and third claim are proven. The
exponential decay immediately implies the fourth claim. For the last claims we need to
transfer the exponential decay from q0− sgn to its derivative. We use (4.1.1) and estimate
for all r ∈ R with the third property

0 < q′
0(r) =

√
2W (q0(r)) =

√
2
∣∣1− q0(r)2∣∣ =

√
2
∣∣1 + q0(r)

∣∣∣∣1− q0(r)
∣∣ ≤ 4

√
2e−2|r|.

Thus we get q′
0 ∈ L2(R). For the second derivative we use q′′

0 = W ′′(q0), the previous
estimate and get for all r ∈ R∣∣q′′

0(r)
∣∣ =

∣∣W ′(q0(r))
∣∣ = 4|q0(r)|

∣∣1− q0(r)2∣∣ ≤ 16e−2|r|.

We get q′′
0 ∈ L2(R). Lastly we prove a similar estimate for the third derivative. Let r ∈ R,

then we have ∣∣q′′′
0
∣∣ =

∣∣W ′′(q0(r))
∣∣q′

0 = |12q2
0 − 4|q′

0 ≤ 32
√

2e−2|r|.

It follows q′′′
0 ∈ L2(R) and thus q′

0 ∈ H2(R). Since tanh is odd so is q0.

With the properties of A0 we can transfer most of these properties to q0.
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Lemma 4.1.3 (Properties of q0).
The function q0 = A0q0 has the following properties

• q0 ∈ C∞(R) and q′
0 > 0 on R.

• lim
r→±∞

q0(r) = ±1 for all r ∈ R.

• There exist C, c > 0 such that
∣∣q0(r)− sgn(r)

∣∣ ≤ Ce−c|r| for r ∈ R.

• q0 − sgn ∈ L1(R) ∩ L∞(R).

• There exist C, c > 0 such that for all j ∈ {1, 2, 3} and all r ∈ R we have∣∣q(j)
0 (r)

∣∣ ≤ Ce−c|r|.

• q′
0, q

′′
0, q

′′′
0 ∈ L2(R) and q′

0 ∈ H2(R).

• q0 is odd.

Proof. From q0 ∈ C∞(R) and the fact that A0 is a convolution operator and thus only
improves the regularity, see 3.1.8, we get q0 ∈ C∞(R). We get q′

0 > 0 from (5) in
Proposition 3.1.8 which implies q′

0 = J1 ∗ q′
0. The limit as r → ±∞ follows from the limit

of q0 and (4) from Proposition 3.1.8. The next claim follows from (a) and (c) in Lemma
3.1.9 and

q0 − sgn = A0(q0 − sgn) + A0 sgn− sgn .

The exponential decay of q0 − sgn yields q0 − sgn ∈ L1(R) ∩ L∞(R). The exponential
decay of q′

0, q
′′
0, q

′′′
0 follows from the exponential decay of q′

0, q
′′
0 , q

′′′
0 and (a) in Lemma 3.1.9.

It follows that q′
0, q

′′
0, q

′′′
0 ∈ L2(R) and q′

0 ∈ H2(R). q0 is odd because q0 is and this carries
over because of the explicit representation of A0 as the convolution operator induced by
J1.

It is typical for asymptotic constructions that a Fredholm operator appears in the relevant
ε-scale. This is also the case here and thus we prove suitable properties of the operator
that we need to consider.

Lemma 4.1.4 (T0 is Fredholm).
The operator

T0 : H2(R) −→ L2(R), T0 := −∂2 +W ′′(q0) Id (4.1.4)

is a Fredholm operator with index 0.

Proof. We have

T0 =− ∂2 +W ′′(q0) = 8
(
− 1

8∂
2 + Id +1

8W
′′(q0)− Id

)
=8
[

Id +
(1

8W
′′(q0)− Id

)(
− 1

8∂
2 + Id

)−1](
− 1

8∂
2 + Id

)
The operator

(
− 1

8∂
2 + Id

)
: H2(R) −→ L2(R) is an isomorphism (which can be shown

with the Lax-Milgram Theorem), thus it suffices to show that(1
8W

′′(q0)− Id
)(
− 1

8∂
2 + Id

)−1
: L2(R) −→ L2(R)
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is a compact operator. We prove that it is a Hilbert-Schmidt operator which implies the
compactness. Since (−∂2 + Id)−1 can be represented as a convolution operator we can use
this representation to characterize

(
− 1

8∂
2 + Id

)−1. The Greens function of −1
8∂

2 + Id is
given by

J̃(r) := 1√
8
J1(
√

8r) = 1
4
√

2
e−2

√
2|r|,

for r ∈ R, where J1 is the Greens function of (−∂2 + Id) from (3.1.9). We calculate the
Hilbert-Schmidt norm using W ′′(r) = 8 + 12(r2 − 1) and |1− q2(r)| ≤ 4e−2|r| from the
proof of Lemma 4.1.2
�
R

∣∣∣∣18W ′′(q0(r))− 1
∣∣∣∣2 �

R

1
32e

−4
√

2|r−s| ds dr =
�
R

∣∣∣32(q0(r)2 − 1)
∣∣∣2 �

R

1
32e

−4
√

2|s| ds dr

= 9
64

�
R

∣∣1− q0(r)2∣∣2 dr
� ∞

0
e−4

√
2s ds

≤ 9
16
√

2

�
R
e−4|r| dr = 9

32
√

2
<∞.

Since compact perturbations of the identity are Fredholm operators with index 0 [Alt12,
Thm. 9.8] the proof is complete.

We can even provide more information on the kernel of T0. It follows from Lemma 4.1.2
that T0(q′

0) = 0. The next Lemma shows, that the kernel is a one-dimensional subspace
thus ker(T0) = span(q′

0).

Lemma 4.1.5 (T0 has a one-dimensional kernel).
The operator T0 : H2(R) −→ L2(R) has a one-dimensional kernel, more precisely

ker(T0) = span(q′
0) (4.1.5)

and T0 : {q′
0}⊥ → {q′

0}⊥ is an isomorphism.

The proof is inspired by Lemma 5.3 in [BFRW97] and similar to the one in Lemma 3.1.13.

Proof. Owing to 2W (q0) = |q′
0|2 we have q′

0 ∈ ker(T0). Since H2(R) ↪→ C1(R) we know
for any w ∈ H2(R)

T0(w) = 0⇐⇒ w′′ = W ′′(q0)w ∈ C1(R)

making w ∈ C3(R). By possibly multiplying with (−1) we can assume w(x) > 0 for some
x ∈ R. For β ∈ R we define wβ := βw + q′

0 and

β := sup{β < 0
∣∣ ∃x ∈ R : wβ(x) < 0}.

Since our goal will be to show wβ ≡ 0, it is useful to consider infRwβ. For β < β there
exists ξβ ∈ R, such that wβ(ξβ) = infRwβ < 0. This is true because w′ ∈ H1(R) ↪→ L∞(R)
yields that w is uniformly continuous, implying limr→±∞w(r) = 0 by Lemma 3.1.9. Since
wβ is C2 and has a local mimimum at ξβ we get

W ′′(q0(ξβ))wβ(ξβ) = w′′
β(ξβ) ≥ 0 so W ′′(q0(ξβ)) ≤ 0. (4.1.6)
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We can deduce that (ξβ)β<β can be found in the interval where W ′′(q0) is non-positive.
Since W ′′(±1) > 0 and q0(x) −→ ±1 as x→ ±∞, this interval is bounded. Therefore we
can extract a subsequence such that ξβ −→ ξ as β → β. Since w is bounded we know
wβ −→ wβ as β → β uniformly. So

wβ(ξ) β→β←− wβ(ξβ) = inf
R
wβ

β→β−→ 0.

Due to the definition of β we know wβ ≥ 0, making ξ a local minimum, thus w′
β
(ξ) = 0.

Collecting everything we now have T0(wβ) ≡ 0, wβ(ξ) = 0 and w′
β
(ξ) = 0. This violates

the uniqueness part of the Picard-Lindelöf Theorem, unless wβ ≡ 0 which is what we
wanted to prove. Picard-Lindelöf is applicable to T0 because it is a linear differential
operator with non-constant but smooth coefficients.

Since T0 is a Fredholm operator with index 0, ker(T0) = span(q′
0), and T0 is self-adjoint

we conclude that T0 : {q0}⊥ −→ {q0}⊥ is an isomorphism.

For the following lemma recall σ from (4.1.2).

Lemma 4.1.6 (Existence and properties of q1).
The functional Ξ : H3(R) −→ [0,∞]

Ξ(w) :=
�
R

(∣∣∣T0w − q′
0

∣∣∣2 +
∣∣∣(T0w − q′

0
)′∣∣∣2) dL1

has a unique minimizer q1 on {w ∈ H3(R) | w(0) = 0} which is also a minimizer on
H3(Ω). q1 is determined by

T0(q1) = −σq′
0 + q′

0 with q1(0) = 0. (4.1.7)

The minimal value is given by

min
H3(Ω)

Ξ = Ξ(q1) = c0σ. (4.1.8)

Furthermore we get that for λ ∈ R with λ ̸= σ there exists no u ∈ H3(R) such that

T0(u) = −λq′
0 + q′

0.

Note that the condition w(0) = 0 is well posed because of H3(R) ↪→ C0(R).

Proof. From Lemma 4.1.5 we have ker(T0) = span(q′
0). We calculate for any σ̃ ∈ R

�
R
q′

0
(
− σ̃q′

0 + q′
0
)

dL1 =
�
R

(
− σ̃q0q

′
0 +

∣∣q′
0
∣∣2) dL1 =

�
R

(
− σ̃q0q

′
0 +

∣∣q′
0
∣∣2) dL1.

We conclude by (4.1.2) that −σ̃q′
0 + q′

0 ∈ {q′
0}⊥ if and only if σ̃ = σ. By Lemma 4.1.5

thus there exists q̂1 ∈ {q′
0}⊥ ⊆ H2(R) such that

−q̂′′
1 +W ′′(q0)q̂1 = T0(q̂1) = −σ̃q′

0 + q′
0
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if and only if σ̃ = σ. In that case q̂1 with this property is unique because T0 is an
isomorphism. Rearranging yields

q̂′′
1 = σq′

0 − q′
0 +W ′′(q0)q̂1. (4.1.9)

Since q̂1 ∈ H2(R) ↪→ C1(R) we get that the right-hand side lays in C1(R), thus
q̂1 ∈ C3(R) by the left-hand side. This implies that the right-hand side lays in C3(R)
thus q̂1 ∈ C5(R). By bootstrapping this way we get q̂1 ∈ C∞(R). Furthermore we know
from the exponential decay of q′

0, q
′
0, and q̂1 ∈ H2(R) that the right-hand side lays in

H1(R) thus q̂1 ∈ H3(R).

Since q′
0(0) > 0 we can find λ ∈ R such that

q1 := q̂1 + λq′
0

satisfies q1(0) = 0 and keeps all of the other properties of q̂1. From (4.1.7) it follows

(−∂2+ Id)(T0(q1)− q′
0) = −σq′

0. (4.1.10)

Since T0(q1)− q′
0 = −σq′

0 we can calculate with a partial integration

Ξ(q1) =
�
R

(∣∣∣T0q1 − q′
0

∣∣∣2 +
∣∣∣(T0q1 − q′

0
)′∣∣∣2) dL1

=
�
R

(
T0q1 − q′

0
)
(−∂2+ Id)

(
T0q1 − q′

0
)

dL1

= −σ
�
R

(
T0q1 − q′

0
)
q′

0 dL1 = c0σ.

We show that q1 is a minimizer of Ξ by calculating for any w ∈ H3(R)

Ξ(w) = Ξ(q1) +
�
R

T0(w − q1)(−∂2+ Id)T0(w − q1) dL1

+ 2
�
R

T0(w − q1)(−∂2+ Id)(T0(q1)− q′
0) dL1.

The last term vanishes due to (4.1.10) and Lemma 4.1.5 leaving us with

Ξ(w) = Ξ(q1) +
�
R

T0(w − q1)(−∂2+ Id)T0(w − q1) dL1

= Ξ(q1) +
�
R

(∣∣T0(w − q1)
∣∣2 +

∣∣∂T0(w − q1)
∣∣2) dL1.

It follows (4.1.8) and the uniqueness of q1 up to adding ker(T0) = span(q′
0). The condition

q1(0) = 0 makes it unique.

Before we can move on to the lim sup statement and its proof we need to show the
exponential decay of the profile functions and their derivatives. For q0, . . . , q

′′′
0 and

q0, . . . , q
′′′
0 we already established an exponential decay in the Lemmata 4.1.2 and 4.1.3.

Lemma 4.1.7 (Exponential decay).
There exist C, c > 0 such that for all r ∈ R we have

|q1(r)| ≤ Ce−c|r|, |q′
1(r)| ≤ Ce−c|r|,

|q′′
1(r)| ≤ Ce−c|r|, and |q′′′

1 (r)| ≤ Ce−c|r|.
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Proof. We start with the analysis of the behavior as r →∞. We observe that the vector
ξ := (q0 − 1, q′

0,A0(q0)− 1,A0(q′
0), q1, q

′
1) is a solution to the ODE system

ξ′
1 = ξ2,

ξ′
2 = W ′(1 + ξ1),
ξ′

3 = ξ4,

ξ′
4 = −ξ1 + ξ3,

ξ′
5 = ξ6,

ξ′
6 = −ξ2 + σξ4 +W ′′(1 + ξ1)ξ5.

From H3(R) ↪→ L∞(R) and (4.1.9) we conclude q′′
1 ∈ C0

b (R). This implies that q′
1 is

uniformly continuous and thus by Lemma 3.1.9 we get limr→±∞ q′
1(r) = 0. It also

follows limr→±∞ q1(r) = 0 and thus we get limr→∞ ξ(r) = 0. Writing c :=
√
W ′′(1) the

linearization of the right-hand side of the ODE at ξ = 0 is given by

0 1 0 0 0 0
c2 0 0 0 0 0
0 0 0 1 0 0
−1 0 1 0 0 0

0 0 0 0 0 1
0 −1 0 σ c2 0


For the calculation of the eigenvalues we use that the matrix is a lower triangular matrix if
we consider the 2×2 block structure. We get the eigenvalues ±c with algebraic multiplicity
2 and ±1 with algebraic multiplicity 1. Thus the stationary point ξ = 0 is hyperbolic. We
already know that |ξ| vanishes at ∞. From the stable manifold theory, see for example
[Per96, p. 115], we get that the solution approaches the stationary state exponentially.
This works the same way for r → −∞. We can transfer the result to q′′

1 and q′′′
1 because

of (4.1.9).

4.2 Formal identification of a candidate for the Γ–limit and
for a recovery sequence

We proceed as in Chapter 3. Motivated by the diffuse energy-dissipation (4.0.2) we
introduce the candidate for new diffuse Willmore energy.

Definition 4.2.1 (Definition of the diffuse Willmore energy).
Recall Hε := Hε(u) := −ε∆u+ 1

εW
′(u), we define WKK

ε : L1(Ω) −→ [0,∞]

WKK
ε (u) :=


�

Ω

(1
ε
|Hε(u)|2 + ε

∣∣∇Hε(u)
∣∣2) dLn, if u ∈ H3(Ω) ∩ L6(Ω)

+∞, else.
(4.2.1)

We use the notations and assumptions from Assumptions 4.1.1 and the coordinates from
Definition 2.1.10. To get an idea how to construct the recovery sequence associated to
the lim sup property we will do some formal calculations and use them as a motivation
for the rigorous proof. The method of asymptotic expansions was already presented by
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Loreti and March [LM00] and considered by Wang [Wan08].

We use the ansatz for uε

uε(x) = U0(z, x) + εU1(z, x) (4.2.2)

as in Notations 2.1.11. We pose the following conditions on our functions:

• U0 ∈ C0(R× ω) with U0(0, x) = 0 and U0(·, x)− sgn ∈ L2(R) for all x ∈ ω.

• U1 ∈ H1(R;C(ω)) with U1(0, x) = 0 for all x ∈ ω.

• For all z ∈ R and all j ∈ {0, 1} we have that Uj(z, ·) is constant in normal direction.

The concept for the recovery sequence is visualized in Figure 4.1.

Ω uε ≈ −1

uε ≈ 1Γ y x
εz

Figure 4.1: Visualization of the geometry and coordinates.

In the first condition sgn refers to the z-variable. We write ∂zUj = V ′
j for the z-derivative

and ∇ΓUj for the tangential y-derivative.
We formally expand Hε in the new coordinates and get by (2.1.8)

Hε =
(
− 1
ε
∂2

z −H∂z − ε(∆x − z|II|2∂z)
)[
U0 + εU1

]
+ 1
ε
W ′(U0) +W ′′(U0)U1 +O(ε)

= 1
ε

(
− U ′′

0 +W ′(U0)
)

+
(
− U ′′

1 +W ′′(U0)U1 −HU ′
0
)

+O(ε)

=: 1
ε
H−1 +H0 +O(ε). (4.2.3)

We take a look of the lowest order in WKK
ε (uε). We plug in the expansion and consider

{|d| < 3δ} instead of Ω. We get with the coordinate transformation Ψε from Definition
2.1.10

WKK
ε (uε) =

�
Γ

� 3δ
ε

− 3δ
ε

1
ε2

(∣∣∣H−1 + εH0
∣∣∣2 +

∣∣∣ε∇H−1 + ε2∇H0
∣∣∣2) dL1 dHn−1 +O(ε).
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The lowest order term |H−1|2 is minimized by U0 = q0, which implies H−1 = 0 and thus

WKK
ε (uε) =

�
Γ

� 3δ
ε

− 3δ
ε

(
|H0|2 + ε2∣∣∇H0

∣∣2) dL1 dHn−1 +O(ε)

=
�

Γ

� 3δ
ε

− 3δ
ε

(
|T0U1 −Hq′

0|2 +
∣∣∂z(T0U1 −Hq′

0)
∣∣2) dL1 dHn−1 +O(ε).

We can see that at points y ∈ Γ with H(y) = 0 the optimal choice is U1(·, y) = 0 and there
is no contribution to the integral. Thus we can reduce the integral to the set {H ̸= 0}.
We get

WKK
ε (uε) ≤

�
{H ̸=0}

|H|2
�
R

(∣∣∣T0
U1
H
− q′

0

∣∣∣2 +
∣∣∣∂z

(
T0

U1
H
− q′

0

)∣∣∣2) dL1 dHn−1 +O(ε).

Thus we want to minimize the functional

Ξ(w) =
�
R

(∣∣∣T0(w)− q′
0

∣∣∣2 +
∣∣∣∂z

(
T0(w)− q′

0

)∣∣∣2) dL1, w ∈ H3(R).

from Lemma 4.1.6. Ξ is minimized for U1 = q1H by Lemma 4.1.6. Inserting this back
into WKK

ε (uε) we get on a formal level

WKK
ε (uε) = c0σW(u) +O(ε).

4.3 Rigorous proof of the Γ− lim sup estimate
In this section we construct the recovery sequence associated to the lim sup property of
WKK

ε
Γ−→ c0σW with respect to L1(Ω)-topology. The process is motivated by the formal

calculations from the previous section. To handle the transition from the set ω which is
close to Γ to the rest of Ω we can work with the same cut-off function as in the Γ–lim sup
construction for the AG-model.

Theorem 4.3.1 (lim sup estimate for Willmore approximation).
Let Ω,W as in Assumptions 4.1.1. Let E ⋐ Ω with ∂E ∈ C5. There exists (uε)ε>0 such
that uε −→ u in L1(Ω) as ε→ 0 and

lim
ε→0
WKK

ε (uε) ≤ c0σW(u),

with u := 2χE − 1.

Proof. We choose an even and on (0,∞) decreasing function η1 ∈ C∞
c (R) with

0 ≤ η1 ≤ 1, |η′
1|, |η′′

1 |, |η′′′
1 | ≤ C(η1), η1 =

{
1 in [0, 3],
0 in [4,∞)

and define the cut-off function

ηδ(x) := η1
(d(x)

δ

)
for all x ∈ Ω.

We remark that ηδ ∈ C4(Ω) since ηδ has support in {|d| < 4δ}.
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Now we can define the recovery sequence

uε(x) := ηδ(x)
(
q0(z) + εH(y)q1(z)

)
+
(
1− ηδ(x)

)
sgn(d(x)),

= u(x) + ηδ(x)
(
q0(z) + εH(y)q1(z)− sgn(z)

)
with x = Ψε(z, y) as in the coordinates from Definiton 2.1.10. Note u(x) = sgn(sdist(z))
For shorter notation we will drop the arguments (x, y, z) from now on.

We start with the proof of uε → u in L1(Ω). For δ > 0 from Definition 2.1.10 we have
�

Ω
|uε − u| dLn =

�
{|d|<4δ}

|uε − u| dLn =
�

Γ

� 4δ
ε

− 4δ
ε

εηδ

∣∣∣q0 + εHq1 − sgn(d)
∣∣∣ dL1 dHn−1

≤
�

Γ

�
R
ε
∣∣∣q0 + εHq1 − sgn(d)

∣∣∣ dL1 dHn−1

≤
�

Γ

�
R
ε
∣∣∣q0 − sgn(d)

∣∣∣ dL1 dHn−1 +
�

Γ

�
R
ε2∣∣Hq1

∣∣ dL1 dHn−1

≤ εC(Γ)∥q0 − sgn ∥L1(R) + ε2C(Γ)∥q1∥L1(R)∥H∥L1(Γ).

The respective integrals exist because Γ is compact, H ∈ C0(Γ) and the exponential decay
from q0 − sgn, q1. Next we calculate Hε and ∇Hε and get

uε = u+ ηδ(q0 + εHq1 − u)

∇uε = η′
δ(q0 − u+ εHq1)∇d+ ηδ

ε
(q′

0 + εHq′
1)∇d+ εηδq1∇ΓH

Hε = −ε(η′′
δ + η′

δ∆d)(q0 − u+ εHq1)− (2η′
δ + ηδ∆d)(q′

0 + εHq′
1)

− ηδ

ε
(q′′

0 + εHq′′
1)− ε2ηδq1∆ΓH + 1

ε
W ′(uε)

∇Hε = −ηδ

ε2 (q′′′
0 + εHq′′′

1 )∇d− 1
ε

(3η′
δ + ηδ∆d)(q′′

0 + εHq′′
1)∇d

−
[
(3η′′

δ + 2η′
δ∆d)∇d+ ηδ∇∆d

]
(q′

0 + εHq′
1)

− ε
[
(η′′′

δ + η′′
δ ∆d)∇d+ η′

δ∇∆d
]
(q0 − u+ εHq1)

−
[
ηδq

′′
1 + ε(2η′

δ + ηδ∆d)q′
1 + ε2(η′′

δ + η′
δ∆d)q1

]
∇ΓH

− ε(ηδq
′
1 + εη′

δq1)∇d∆ΓH − ε2ηδq1∇Γ∆ΓH

+ 1
ε
W ′′(uε)

[
η′

δ(q0 − u+ εHq1)∇d+ ηδ

ε
(q′

0 + εHq′
1)∇d+ εηδq1∇ΓH

]
.

Now we can proceed to show the lim sup property. We split the integral (note Hε = 0 on
{|d| ≥ 4δ})

WKK
ε (uε) =

�

{|d|<3δ}

1
ε

(
|Hε|2 + ε2∣∣∇Hε

∣∣2) dLn +
�

{3δ≤|d|<4δ}

1
ε

(
|Hε|2 + ε2∣∣∇Hε

∣∣2) dLn.

On {|d| < 3δ} we have ηδ = 1 and thus uε = q0 + εHq1 which means that the formal
calculations from the previous section can be applied to the first integral. In fact we have

�

{|d|<3δ}

1
ε

(
|Hε|2 + ε2∣∣∇Hε

∣∣2) dLn ≤ Ξ(q1)
�

Γ
|H|2 dHn−1 = c0σW(u).
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Thus it remains to show, that the integral over {3δ ≤ |d| < 4δ} does not contribute in
the limit. From H ∈ C3(Γ) we have ∆H ∈ C1(Γ) and ∇Γ∆ΓH ∈ C0(Γ;Rn). Since Γ is
compact every continuous function on Γ is bounded. Furthermore we have q0, q1 ∈ C0

b (R)
and thus |uε| ≤ R for some R > 0 independent of ε on Ω. Thus we estimate with the
Mean-Value Theorem

∣∣W ′(uε)
∣∣2 =

∣∣W ′(uε)−W ′(u)
∣∣2 ≤ ∥W ′′∥2C0[−R,R]|uε − u|2 and get

|Hε|2 ≤
1
ε2C(Γ, ηδ)

(
|q0 − sgn |2 +

2∑
j=1

∣∣q(j)
0
∣∣2 +

2∑
j=0

∣∣q1
∣∣2).

For the estimate of |∇Hε|2 we also need d ∈ C3
b (Ω) and |W ′′(uε)| ≤ ∥W ′′∥C0[−R,R] ≤ C.

We get

∣∣ε∇Hε

∣∣2 ≤ 1
ε2C(Γ, ηδ)

(
|q0 − sgn |2 +

3∑
j=1

∣∣q(j)
0
∣∣2 +

3∑
j=0

∣∣q(j)
1
∣∣2).

On the set {3δ ≤ |d| < 4δ} we have |z| ≥ 3δ
ε →∞ as ε→ 0. From Lemma 4.1.7 we know

that all of the terms have exponential decay as |z| → ∞. There exist ε0, λ > 0 such that
for all 0 < ε < ε0 and all x ∈ {3δ ≤ |d| < 4δ} we have

|Hε(x)|2 ≤ 1
ε2C(Γ, ηδ)e− 3δλ

ε and
∣∣ε∇Hε(x)

∣∣2 ≤ 1
ε2C(Γ, ηδ)e− 3δλ

ε .

It follows that the integral vanishes�

{3δ≤|d|<4δ}

1
ε

(
|Hε|2 + ε2∣∣∇Hε

∣∣2) dLn ≤ 1
ε3C(Γ, δ, ηδ)e− 3λδ

ε −→ 0 as ε→ 0.

4.4 Diffuse gradient flows in KK model
In this section we consider the following rescaled gradient flows of the diffuse Willmore
and perimeter functional.

−ε∂tuε = (−ε2∆ + Id)Hε (4.4.1)

−ε∂tuε = 2
ε2
(
− ε2∆ +W ′′(uε)

)
(−ε2∆ + Id)Hε, (4.4.2)

where Hε = −ε∆uε + 1
εW

′(uε) denotes the diffuse mean curvature. The PDE (4.4.2) is a
gradient flow because of

∇L2WKK
ε (uε) = 2

ε

(
− ε2∆ +W ′′(uε)

)
(−ε2∆ + Id)Hε.

We will prove convergence towards mean curvature flow respective Willmore flow in a
formal sense, as in the previous Chapter 3. For the Formulations of mean curvature and
Willmore flow see Definitions 2.1.7 and 2.1.9.
The justification of phase field approximations of geometric evolution laws has a long
history. Our analysis closely follows the formal analysis in [LM00]; see also [Wan08,
BMO15] and [RR21]. We formulate here assumptions under which the derivation is
rigorous. This however does not give a general convergence proof, since the assumed
properties need to be verified for a phase field approximation. Complete convergence
proofs based on asymptotic expansion techniques are known for the standard diffuse
approximation of mean curvature and Willmore flow; see [dMS90] and [FL21].
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Assumption 4.4.1 (Set evolution).
Consider a continuous evolution of open sets (E(t))t∈[0,T ] in Ω with associated signed
distance function d : ΩT → R, d(·, t) = dist(·,Ω \ E(t))− dist(·, E(t)), phase boundaries
Γ(t) := ∂E(t) for t ∈ [0, T ] and We assume the following properties:

1. Γ(t) is a C5-regular hypersurface for all t ∈ [0, T ].

2. ⋃
t∈[0,T ]

E(t) ⋐ Ω. With this assumption we can choose δ > 0 sufficiently small such

that for all t ∈ [0, T ] the projections ΠΓ(t) : {|d(·, t)| < 5δ} −→ Γ(t) are well defined
and set

ωT := {(x, t) ∈ Ω× [0, T ] : |d(t, x)| < 5δ}.

3. d ∈ C1
b (ωT ) and Dγ

xd ∈ C0
b (ωT ) for all γ ∈ Nn

0 with |γ| ≤ 4.

Let Ψε(·, t), t ∈ [0, T ] denote the parametrization that are defined according to (2.1.5) with
Γ replaced by Γ(t).

We consider the cut-off function ηδ from the proof of Theorem 4.3.1 and introduce classes
of phase field evolutions that we will consider in the following. We use the function
spaces of exponentially decaying functions from (3.5.4) and (3.5.5). Recall the coordinate
transformation Ψε(z, y) = y + εzνΓ(y) from Definition 2.1.10.

Assumption 4.4.2 (Phase field evolution).
Let (E(t))t∈[0,T ] be a continuous evolution of sets in Ω, the signed distance function d
and δ > 0 as in Assumption 4.4.1 be given. Consider an evolution of smooth phase
fields (uε)0<ε<ε0. We assume that there exist µ ∈ (0, 1), Λ > 0, and profile functions
uj : R× ωT → R for j ∈ {0, 1, 2}, such that for all 0 < ε < ε0 and all t ∈ (0, T )

uε(·, t) = ηδu
in
ε (·, t) + (1− ηδ) sgn(d) + ε3Rε in Ω, (4.4.3)

uin
ε (·, t) =

( 2∑
j=0

εjuj

)
◦Ψ−1

ε in {|d| < 4δ}, (4.4.4)

and such that the following properties hold:

1. The profile functions uj ∈ C0(R× ωT ), uj = uj(z, x, t) satisfy uj(z, ·, ·) ∈ C1
b (ωT ),

Dγ
xuj(z, ·, ·) ∈ C0

b (ωT ) for all γ ∈ Nn
0 with |γ| ≤ 4

u0 − sgn ∈ X(R; ΓT ), uj , |∇xuj |, ∆xuj ∈ X(R; ΓT ) for j ∈ {1, 2}.

2. The remainder satisfies Rε ∈ X
µ
ε

,Λ
δ (ΩT ) for all 0 < ε < ε0.

The spaces X
µ
ε

,Λ
δ (ΩT ), X(R; ΓT ) have been introduced in 3.5.1. Moreover, we assume that

{uε(·, t) = 0} = Γ(t) for all t ∈ [0, T ], 0 < ε < ε0, (4.4.5)

and that
WKK

ε (uε(·, 0)) + Pε(uε(·, 0)) ≤ C (4.4.6)

for all 0 < ε < ε0.

81



Theorem 4.4.3 (Convergence towards the mean curvature flow).
Consider a sequence of evolutions of smooth phase fields (uε)0<ε<ε0 as in Assumption 4.4.2,
satisfying an asymptotic expansion (4.4.3)-(4.4.4) with respect to an evolution (E(t))t∈[0,T ]
of sets in Ω. Assume that uε satisfies

−ε∂tuε =
(
− ε2∆ + Id

)(
− ε∆uε + 1

ε
W ′(uε)

)
+ εRε, (4.4.7)

with sup
0<ε<ε0

∥Rε∥C0(ΩT ) ≤ C then (Γ(t))t∈[0,T ] evolves by the rescaled mean curvature flow

V = σH (4.4.8)

with σ as in (4.1.2).

Proof. We expand both sides of (4.4.7) and evaluate the identity order by order. To
identify the evolution law in the limit ε→ 0 it is sufficient to consider the region {|d| < 2δ},
in which ηδ ≡ 1. We deduce from Lemma 3.3.7

W ′(uε(x, t)) = W ′(u0(z, x, t)) + εW ′′(u0(z, x, t))u1 + ε2RW
ε (x, t)

with RW
ε ∈ X

µ
ε

,Λ
δ (ΩT ). Next we expand Hε as in (4.2.3) and get

Hε = −ε∆uε + 1
ε
W ′(uε(x, t)) = ε−1(− u′′

0 +W ′(u0)
)

+ T0u1 −Hq′
0 + εRH

ε (z, x, t)

=: ε−1H−1(z, x, t) +H0(z, x, t) + εRH
ε (z, x, t) (4.4.9)

with RH
ε ∈ X

µ
ε

,Λ
δ (ΩT ). We expand the evolution (4.4.7). For the left-hand side we obtain

in {|d| < 2δ}

−ε∂tuε = −ε
2∑

j=0

(
∂tuj + 1

ε
∂zuj∂td

)
+O(ε) = −∂zu0∂td+O(ε) = −u′

0V +O(ε).

(4.4.10)

The ε−1-order of the evolution (4.4.7) yields

0 = (−∂2 + Id)H−1 thus H−1 = 0,

because H−1 is bounded by the assumptions on u0. We conclude u′′
0 = W ′(u0) and thus

u0 = q0. The next order yields in {|d| < 2δ}(
− ε2∆ + Id

)
Hε =

(
− ∂2

z + Id
)
H0 +O(ε)

=
(
− ∂2

z + Id
)(
−T0(u1)−Hq′

0
)

+O(ε).

Equating this with the expansion of −ε∂tuε done in (4.4.10) we get by testing with q′
0

−V
�
R
q′

0q
′
0 dL1 =

�
R
q′

0
(
−T0(u1)−Hq′

0
)

dL1 = −H
�
R

∣∣q′
0
∣∣2 dL1.

With (4.1.2) we get that the evolution evolves by mean curvature flow

V = σH.
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We can prove a similar result for the gradient flow of the diffuse Willmore energy.

Theorem 4.4.4 (Convergence towards the Willmore flow).
Consider a sequence of evolutions of smooth phase fields (uε)0<ε<ε0 as in Assumption 4.4.2,
satisfying an asymptotic expansion (4.4.3)-(4.4.4) with respect to an evolution (E(t))t∈[0,T ]
of sets in Ω. Assume that uε satisfies

−ε2∂tuε = 1
ε2

(
− ε2∆ +W ′′(uε)

)(
− ε2∆ + Id

)(
− ε∆uε + 1

ε
W ′(uε)

)
+ εRε, (4.4.11)

with sup
0<ε<ε0

∥Rε∥C0(ΩT ) ≤ C. Then (Γ(t))t∈[0,T ] evolves by the rescaled Willmore flow

V = 2σ
(
−∆ΓtH −H|II|2 + 1

2H
3
)

(4.4.12)

with σ as in (4.1.2).

Proof. We expand both sides of (4.4.11) and evaluate the identity order by order. To
identify the evolution law in the limit ε→ 0 it is sufficient to consider the region {|d| < 2δ},
in which ηδ ≡ 1. We deduce from Lemma 3.3.7

W ′(uε(x, t)) = W ′(u0(z, x, t)) + εW ′′(u0(z, x, t))u1

+ ε2
[
W ′′(u0(z, x, t)) + 1

2W
′′(u0(z, x, t))u2

1

]
+ ε3RW

ε (x, t)

with RW
ε ∈ X

µ
ε

,Λ
δ (ΩT ). Next we expand Hε as in (4.2.3) and get

Hε = −ε∆uε + 1
ε
W ′(uε(x, t)) = ε−1(− u′′

0 +W ′(u0)
)

+ T0u1 −Hu′
0 + εRH

ε (x, t)

=: ε−1H−1(z, x, t) +H0(z, x, t) +O(ε). (4.4.13)

Expanding WKK
ε by orders of ε we get

WKK
ε (uε) = 1

ε2

� 2δ
ε

− 2δ
ε

�
Γ

(
|H−1|2 + |H ′

−1|2
)

dHn−1 dL1 +O(1)

= 1
ε2

�
R

�
Γ

(
|H−1|2 +

∣∣H ′
−1
∣∣2) dHn−1 dL1 +O(1).

Since under the flow (4.4.11) the energy WKK
ε decreases with time and by (4.4.6) we

obtain that WKK
ε (uε(·, t)) is uniformly bounded, which implies

0 = H−1 = −u′′
0 +W ′(u0) and thus u0(z, x, t) = q0(z) for all (x, t) ∈ ωT .

Now we can expand the next order of Hε with less effort because terms like ∆Γtu0 vanish.
We get

Hε = T0u1 −Hq′
0 + ε

(
T0u2 + z|II|2q′

0 −Hu′
1 + 1

2W
′′(q0)u2

1

)
+ ε2RH

ε (x, t)

=: H0(z, x, t) + εH1(z, x, t) + ε2RH
ε (x, t). (4.4.14)
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with RH
ε ∈ X

µ
ε

,Λ
δ (ΩT ). Since the left-hand side of the evolution (4.4.11) is the same as

in the gradient flow of the diffuse mean curvature flow up to a factor of 1
2 we get from

(4.4.10) in {|d| < 2δ}

−ε2∂tuε = −1
2u

′
0V +O(ε). (4.4.15)

To expand the right-hand side of (4.4.11) we define the operators Tε := −ε2∆ +W ′′(uε),
Dε := −ε2∆ + Id and expand

D0 := −∂2
z + Id, D1 := −H∂z, D2 := −∆Γt + z|II|2∂z,

T1 := W ′′′(u0)u1 −H∂z and T2 := W ′′′(u0)u2 + 1
2W

(4)(u0)u2
1 −∆Γt + z|II|2∂z.

The expansion of Dε has already been done in (2.1.8), (2.1.9). We plug this into the
right-hand side of the evolution and expand in {|d| < 2δ}

TεDεHε = T0D0H0 + ε
(
T1D0H0 + T0D1H0 + T0D0H1

)
+O(ε2).

Since on the left-hand side of the evolution (4.4.11) the lowest order is ε0 and there is a
factor ε−2 in front of the operators on the right-hand side we know that the lowest two
orders have to vanish. We conclude

0 = T0
[(
− ∂2

z + Id
)(

T0u1 −Hq′
0
)]
.

From Lemma 4.1.5 it follows that there exists λ ∈ R such that

(−∂2
z + Id)

(
T0u1 −Hq′

0
)

= λq′
0. (4.4.16)

If H(Πx) = 0 for x ∈ ω then λ = 0 and q1(z, x, t) = 0 are solutions. If H(Πx) ̸= 0 we get
with the solution operator A0 from Proposition 3.1.8

T0
u1
H
− q′

0 = λ

H
q′

0.

From Lemma 4.1.6 we get that this equation can only be solved if λ = −σH. Thus we get

u1 = Hq1 and thus H0 = −σHq′
0. (4.4.17)

This also covers the case H(Πx) = 0.

Considering the ε−1-order of the evolution (4.4.11) we get

0 = T0
[
D0H1 +D1H0

]
+ T1D0H0 and thus T0

[
D0H1 +D1H0

]
= HσT1q

′
0. (4.4.18)

For the next calculations we recall the commutator of two operators [A,B] = AB −BA.
We have for h ∈ H3(R)

[∂z,T0](h) = ∂zT0(h)−T0(h′) = −h′′′ +W ′′(q0)h′ +W ′′′(q0)q′
0h−

(
− h′′′ +W ′′(q0)h′)

= W ′′′(q0)q′
0h. (4.4.19)

We calculate with the product rule

T0(zq′
0) = −∂z

(
q′

0 + zq′′
0
)

+W ′′′(q0)zq′
0 = −2q′′

0 + zT0(q′
0) = −2q′′

0 . (4.4.20)
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With these preparations we are ready to consider the ε0-order of the evolution (4.4.11).
Since the lower orders vanished with the right choices for u0, u1 we have

TεDεHε = ε2
(
T2D0H0 + T1(D1H0 + T1D0H1) + T0(∗)

)
+ ε3Rε

with Rε ∈ X
µ
ε

,Λ
δ (ΩT ). To calculate this precisely we would need to consider the ε2-order

in the expansion of Hε. However we will test the evolution with q′
0 thus all of the terms

with T0 will vanish because T0 is self-adjoint and T0(q′
0) = 0. Thus ε2-order of (4.4.11)

is given by

−1
2q

′
0V = T0(∗) + T1

[
D0H1 +D1H0

]
+ T2D0H0.

Testing this equation with q′
0 we get

−c0
2 V =

�
R
q′

0
[
T1
(
D0H1 +D1H0

)
+ T2D0H0

]
dL1

=
�
R
q′

0
(
−H∂z +W ′′′(q0)Hq1

)(
D0H1 +D1H0

)
dL1

+
�
R
q′

0
[
W ′′′(q0)u2 + 1

2W
(4)(q0)H2q2

1 −∆Γt + z|II|2∂z
](
−Hσq′

0
)

dL1.

We split the first term and apply a partial integration on the first summand. We get

− c0
2 V =

�
R
Hq′′

0
(
D0H1 +D1H0

)
dL1 +

�
R
HW ′′′(q0)q′

0q1
(
D0H1 +D1H0

)
dL1 (4.4.21)

−
�
R
Hσq′

0W
′′′(q0)q′

0u2︸ ︷︷ ︸
=[∂z ,T0](u2)

dL1 −
�
R
σq′

0

[
H3

2 W (4)(q0)q′
0q

2
1 − q′

0∆ΓtH + z|II|2Hq′′
0

]
dL1.

Now we isolate some of the terms to calculate them. We start with the second term on
the right-hand side of (4.4.21). We use that T0 is self-adjoint and (4.4.19) to get
�
R
HW ′′′(q0)q′

0q1
(
D0H1 +D1H0

)
dL1 =

�
R
H
(
∂zT0(q1)−T0(q′

1)
)(

D0H1 +D1H0
)

dL1

=
�
R
H(T0(q1))′(D0H1 +D1H0

)
dL1 −

�
R
Hq′

1T0
(
D0H1 +D1H0

)
dL1. (4.4.22)

By (4.4.14) and (4.4.17) we have HT0(q1) = H0 + Hq′
0. Together with (4.4.18) and

D1 = −H∂z this yields
�
R
H(T0(q1))′(D0H1 +D1H0

)
dL1 −

�
R
Hq′

1T0
(
D0H1 +D1H0

)
dL1

=
�
R

(
H0 + q′

0
)′(D0H1 +D1H0

)
dL1 −

�
R
σH2q′

1T1q
′
0 dL1

=
�
R
H ′

0
(
D0H1 −HH ′

0
)

dL1 +
�
R
Hq′′

0
(
D0H1 +D1H0

)
dL1 −

�
R
σH2q′

1T1q
′
0 dL1.

(4.4.23)

For the first term of the second line of (4.4.21) we use the representation from (4.4.14)
T0u2 = H1 + H2q′

1 − z|II|2q′
0 − 1

2W
′′′(q0)H2q2

1, (4.4.19), T0(q′
0) = 0 and that T0 is

self-adjoint. We get
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−
�
R
Hσq′

0W
′′′(q0)q′

0u2 dL1 = −
�
R
Hσq′

0

(
∂zT0(u2)−T0(u′

2)
)

dL1

= −
�
R
Hσq′

0

(
H1 +H2q′

1 − z|II|2q′
0 −

1
2W

′′′(q0)H2q2
1

)′
dL1

= −
�
R
σq′

0

(
HH ′

1 +H3q′′
1 − |II|2Hq′

0 − z|II|2Hq′′
0

− H3

2 W (4)(q0)q′
0q

2
1 −H3W ′′′(q0)q1q

′
1

)
dL1. (4.4.24)

Now we plug (4.4.23) and (4.4.24) into (4.4.21). We rearrange the terms and get

−c0
2 V =

�
R

2q′′
0
(
D0H1 +D1H0

)
H dL1 −

�
R
σH2q′

1T1q
′
0 dL1 (4.4.25)

+
�
R
H ′

0
(
D0H1 −HH0

)
dL1 −

�
R
σq′

0

(
HH ′

1 +H3q′′
1 −H3W ′′′(q0)q1q

′
1

)
dL1

(4.4.26)
+ c0σ(∆ΓtH +H|II|2). (4.4.27)

We again isolate some of the integrals for further calculations. We start with the first
term on the right-hand side of (4.4.25). We apply (4.4.20), the fact that T0 is self-adjoint
and (4.4.18). This yields

�
R

2q′′
0
(
D0H1 +D1H0

)
H dL1 = −

�
R

T0(zq′
0)
(
D0H1 +D1H0

)
H dL1

= −
�
R
σH2zq′

0T1q
′
0 dL1.

Next we use the definition of T1, (4.4.19), a partial integration and the fact that T0 is
self-adjoint. We get

−
�
R
σH2zq′

0T1q
′
0 dL1 = −

�
R
σH3zq′

0
(
W ′′′(q0)q1 − ∂z

)
q′

0 dL1

= −
�
R
σH3zq′

0
(
∂zT0(q1)−T0(q′

1)
)

dL1 +
�
R
σH3zq′

0q
′′
0 dL1

=
�
R
σH3((q′

0 + zq′′
0)T0(q1)− q′

1T0(−zq′
0)
)

dL1

− 1
2

�
R
σH3|q′

0|2 dL1.

Now we use (4.4.20), T0(q′
0) = 0 and T0q1 = q′

0 − σq′
0. This yields

�
R
σH3((q′

0 + zq′′
0)T0(q1)− q′

1T0(−zq′
0)
)

dL1 − 1
2

�
R
σH3|q′

0|2 dL1

=
�
R
σH3

(
zq′′

0T0(q1)− 2q′′
0q

′
1

)
dL1 − 1

2c0σH
3

=
�
R
σH3

(
zq′′

0q
′
0 − σzq′′

0q
′
0 − 2q′′

0q
′
1

)
dL1 − 1

2c0σH
3. (4.4.28)
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Next we consider the second integral on the right-hand side of (4.4.25). Here we just plug
in the definition of T1 and get

−
�
R
σH2q′

1T1q
′
0 dL1 =

�
R
σH3

(
q′

1q
′′
0 −W ′′′(q0)q′

0q1q
′
1

)
dL1. (4.4.29)

For the first term in (4.4.26) we use a partial integration and that D0 is self-adjoint. We
get with H0 = −σHq′

0 from (4.4.17)
�
R
H ′

0
(
D0H1 −HH ′

0
)

dL1 =
�
R

(
−H ′

1D0H0 +HH ′′
0H0

)
dL1

=
�
R
H
(
σH ′

1q
′
0 − (−H ′′

0 +H0 −H0)H0
)

dL1

=
�
R
H
(
σH ′

1q
′
0 −H0D0H0 +H2

0

)
dL1

=
�
R
σH

(
H ′

1q
′
0 − σH2q′

0q
′
0 + σH2|q′

0|2
)

dL1.

Applying the definition of σ yields
�
R
σH

(
H ′

1q
′
0 − σH2q′

0q
′
0 + σH2|q′

0|2
)

dL1 =
�
R
σH

(
H ′

1q
′
0 −H2|q′

0|2 + σH2|q′
0|2
)

dL1.

(4.4.30)

We plug (4.4.28)-(4.4.30) into (4.4.25)-(4.4.27). The terms containing σH3q′′
0q

′
1 and

σH3q′
0q

′′
1 combine to 0 after a partial integration, the terms σH3W ′′′(q0)q′

0q1q
′
1 cancel

each other out and the same is true for σHq′
0H

′
1. We get

−c0
2 V = c0σ

(
∆ΓtH +H|II|2 − 1

2H
3
)

+ σH3
�
R

(
zq′′

0q
′
0 − |q′

0|2 − σzq′′
0q

′
0 + σ|q′

0|2
)

dL1.

Thus the proof is finished if we can prove that the last integral vanishes. We use
q′′

0 = −q(4)
0 + q′′

0 and calculate with a partial integration
�
R

(
zq′′

0q
′
0 − |q′

0|2 − σzq′′
0q

′
0 + σ|q′

0|2
)

dL1

=
�
R

(
− 3

2 |q
′
0|2 + σ|q′

0|2 − σz(−q
(4)
0 + q′′

0)q′
0

)
dL1

Thus the claim is proven if the remaining integral vanishes. We calculate with a few
partial integrations

�
R

(
− 3

2 |q
′
0|2 + σ|q′

0|2 − σz(−q
(4)
0 + q′′

0)q′
0

)
dL1

=
�
R

(
− 3

2 |q
′
0|2 + σ|q′

0|2 − σzq′′
0q

′
0 + σzq

(4)
0 q′

0

)
dL1

=
�
R

(
− 3

2 |q
′
0|2 + 3

2σ|q
′
0|2 − σq′′′

0 (q′
0 + zq′′

0)
)

dL1

= 3
2

�
R

(
σ
(
|q′′

0|2 + |q′
0|2
)
− |q′

0|2
)

dL1.
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The last formula we need for the Willmore flow is�
R
|q′

0|2 dL1 = σ

�
R

(
|q′′

0|2 + |q′
0|2
)

dL1,

which comes from testing −q′′
0 + q0 = q0 with q′′

0 and using σ
�
R q

′
0q

′
0 dL1 = c0. We finally

get

−V = 2σ
(
∆ΓtH +H|II|2 − 1

2H
3
)
.
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5 Liminf estimate for the dif-
fuse Willmore approximation
based on the Karali-Katsoulakis
model

In this chapter we will prove the lim inf estimate of the sum of the standard diffuse
perimeter energy as discussed in [MM77] and a new diffuse Willmore energy introduced
in Chapter 4 and based on [KK07]. We modify and adapt ideas and concepts from
[RS06, HT00]. A main ingredient will be to characterize the w∗-limit of a modified diffuse
surface measure.

5.1 Γ–lim inf estimate for a new Willmore approximation

In this chapter we consider n ∈ {2, 3} and assume that Ω ⊆ Rn is open and bounded with
C2-boundary. We recall the functions from 4.1.1, among them the double-well potential
W (r) := (1−r2)2 for r ∈ R, the induced optimal profile q0(r) = tanh(

√
2r) and q0 = A0q0.

q0 solves

q′
0 =

√
2W (q0) and q0(0) = 0. (5.1.1)

q0 is characterized by

−q′′
0 + q0 = q0.

We also recall the constants

c0 =
�
R

∣∣q′
0
∣∣2 dL1 and σ = c0�

R
q′

0q
′
0 dL1

. (5.1.2)

The following theorem is the lim inf estimate for the approximation WKK
ε

Γ−→ c0σW . We
also prove a more general version; see Theorem 5.2.5.

Theorem 5.1.1 (lim inf estimate for a new Willmore approximation).
Let E ⊆ Ω with ∂E ∩ Ω ∈ C2. For any sequence (uε)ε>0 with uε −→ u = 2χE − 1 in
L1

loc(Ω) we get

c0
(
P(u) + σW(u)

)
≤ lim inf

ε→0

(
Pε(uε) +WKK

ε (uε)
)
. (5.1.3)
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Remark.

• Because of the Modica Mortola Theorem 2.4.2 we get

c0P(u) ≤ lim inf
ε→0

Pε(uε). (5.1.4)

If the right hand side is finite we can conclude u ∈ BV (Ω; {±1}) thus E has finite
perimeter.

• We can prove

c0σW(u) ≤ lim inf
ε→0

WKK
ε (uε)

for any sequence (uε)ε>0 with bounded diffuse perimeter (Pε(uε))ε>0. A suitable
formulation for that is to consider the lim inf-inequality for the sum Pε +Wε because
the bound on the diffuse perimeter will then follow from the assumption that the
lim inf is finite.

• Together with the lim sup estimate in Theorem 4.3.1 and the Modica-Mortola Theo-
rem 2.4.2 this implies

Γ(L1(Ω))− lim
ε→0

(
Pε +WKK

ε

)
= c0

(
P + σW

)
(5.1.5)

on the set of smooth limit points and for n ≤ 3.

• Recall Gn−1(Ω) := Ω×G(n, n− 1) and Vn−1(Ω) := C0
c (Gn−1(Ω))′ from Section 2.2.

Theorem 5.1.1 is a corollary of a more general result (see Theorem 5.2.5) and will be
proven later.

5.2 Measure-theoretic formulation of the main theorem and
preparations

Definition 5.2.1 (Diffuse Radon measures and varifolds).
For a sequence (uε)ε>0 in H3(Ω) we introduce the diffuse area measure µε, the discrepancy
measure ξε, the standard diffuse Willmore measure αε and add the new diffuse Willmore
measure κε

µε :=
(
ε

2
∣∣∇uε

∣∣2 + 1
ε
W (uε)

)
Ln Ω, (5.2.1)

ξε :=
(
ε

2
∣∣∇uε

∣∣2 − 1
ε
W (uε)

)
Ln Ω, (5.2.2)

αε := 1
ε
|Hε|2Ln Ω, (5.2.3)

and κε :=
(1
ε
|Hε|2 + ε

∣∣∇Hε

∣∣2)Ln Ω, (5.2.4)

with Hε := −ε∆uε + 1
ε
W ′(uε). (5.2.5)
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The names stem from the obvious connections to the respective functionals

µε(Ω) = Pε(uε)
αε(Ω) =Wε(uε)
κε(Ω) =WKK

ε (uε).

For each ε > 0 we fix a Borel-measurable function νε : Ω −→ Sn−1 with νε = ∇uε
|∇uε| on

{∇uε ̸= 0}, νε = e1 on {∇uε = 0} and define a (n− 1)-varifold Vε := µε ⊗ ν⊥
ε ∈ Vn−1(Ω)

by
�

Gn−1(Ω)
ϕ(x, S) dVε(x, S) :=

�
Ω
ϕ(x, νε(x)⊥) dµε(x) for ϕ ∈ C0

c (Gn−1(Ω)). (5.2.6)

Corollary 5.2.2 (Limit measures and varifold).
Let Λ > 0 such that

lim inf
ε→0

(
µε(Ω) + κε(Ω)

)
≤ Λ.

Then there exist a subsequence which realizes the lim inf, a function u ∈ BV (Ω; {±1}),
finite Radon measures µ, ξ, α, κ ∈ C0

c (Ω)′, and a varifold V ∈ Vn−1(Ω) such that

uε −→ u in L1(Ω), (5.2.7)

µε
w∗
−→ µ in C0

0 (Ω)′, (5.2.8)

ξε
w∗
−→ ξ, αε

w∗
−→ α in C0

0 (Ω)′, (5.2.9)

Vε
w∗
−→ V in Vn−1(Ω), (5.2.10)

and κε
w∗
−→ κ in C0

0 (Ω)′. (5.2.11)

Proof. By Theorems 2.4.2 and 2.4.3 we conclude that there exists u ∈ BV (Ω; {±1}) and a
subsequence such that uε −→ u in L1(Ω). The claims (5.2.8)-(5.2.11) follow immediately
from Theorem 2.2.2.

We highlight important results from [RS06] which will be used in the proof of the
lim inf-estimate.

Theorem 5.2.3 (Key results from [RS06]).
Let Λ > 0 with

lim inf
ε→0

(
µε(Ω) + αε(Ω)

)
≤ Λ

and assume (5.2.7)-(5.2.10). Then it holds

(i) µ ≥ c0
2
∣∣∇u∣∣.

(ii) V is a rectifiable (n−1)-varifold with weak mean curvature vector H⃗V ∈ L2(Ω, µ;Rn)
and

∣∣H⃗V

∣∣2µ ≤ α.

(iii) The discrepancy measure vanishes in the limit, i.e. ξ = 0.
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(iv) c−1
0 V is an integral (n− 1)-varifold and thus

µ = c0θHn−1 Γ,

where Γ is a countably (n− 1)-rectifiable set and θ : Γ −→ N is Hn−1-measurable.

(v) lim sup
ρ→0

ρ1−nµ(Bρ(x)) <∞ for all x ∈ Ω.

Proof. (i) follows from [MM77], see also [Mod87]. The claims (ii)-(v) follow from Theo-
rems 4.1, Proposition 4.5, Proposition 4.9, and Theorem 5.1 in [RS06].

Remark.
• In (i) ∇u is the derivative in the sense of Radon measures which exists because u

has bounded variation because of (5.1.4).

• The σ used in [RS06] corresponds to c0 here, not σ.

• The space L2
loc(Ω, µ;Rn) is the L2

loc space of the measure µ for functions (more
precisely equivalence classes of functions) defined on Ω with values in Rn.

Lemma 5.2.4 (Approximation of the first variation).
Let the assumptions from Theorem 5.2.3 hold and let η ∈ C1

c (Ω;Rn), then we have
�

Ω
H⃗V · η dµ = lim

ε→0

�
Ω
∇uε · ηHε dLn.

Proof. From Proposition 4.10 in [RS06] we have

⟨η, δVε⟩C0
c (Ω)′ = −

�
Ω
∇uε · ηHε dLn +

�
Ω
νε ·Dηνε dξε.

The second term vanishes as ε→ 0 because of |νε| = 1 and (iii) from Theorem 5.2.3. For
the term on the left-hand side we have ∥Vε∥ = µε by construction and thus

∥V ∥ w∗
←− ∥Vε∥ = µε

w∗
−→ µ in C0

c (Ω)′.

Combined with (5.2.10) we get

⟨η, δVε⟩C0
c (Ω)′ −→ ⟨η, δV ⟩C0

c (Ω)′ = −
�

Ω
H⃗V · η dµ

which finishes the proof.

With these notations and preparations we can formulate the general, measure-theoretic
formulation of the lim inf estimate.

Theorem 5.2.5 (Measure control of diffuse Willmore energy).
Let Λ > 0 such that

lim inf
ε→0

(
µε(Ω) + κε(Ω)

)
≤ Λ (5.2.12)

for some Λ > 0 and assume (5.2.8)-(5.2.11). Then we have

σ
∣∣H⃗V

∣∣2µ ≤ κ, (5.2.13)

in the sense of Borel measures.
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The proof of Theorem 5.2.5 needs a lot of preparations and is presented in the last section
of this chapter. In particular we conclude the following Corollary, which will be useful in
Chapter 6.

Corollary 5.2.6.
Let (uε)ε>0 be a sequence in H3(Ω) with (5.2.8), (5.2.10), and

lim sup
ε→0

µε(Ω) <∞. (5.2.14)

Then we conclude

σ

�
Ω

∣∣H⃗V

∣∣2 dµ ≤ lim inf
ε→0

κε(Ω). (5.2.15)

Assuming Theorem 5.2.5 is proven we can derive Corollary 5.2.6 and Theorem 5.1.1.

Prood of Corollary 5.2.6.
If the right hand-side of (5.2.15) is infinite there is nothing to prove. If it is finite we
can assume (5.2.12) by (5.2.14). Thus the claims from Corollary 5.2.2 and Theorem 5.2.3
hold. Take any ϕ ∈ C0

c (Ω) with 0 ≤ ϕ ≤ 1, then by Theorem 5.2.5 we have that

σ

�
Ω
ϕ
∣∣H⃗V

∣∣2 dµ =
〈
ϕ, σ

∣∣H⃗V

∣∣2µ〉
C0

c (Ω)′
≤ ⟨ϕ, κ⟩C0

c (Ω)′ = lim inf
ε→0

⟨ϕ, κε⟩C0
c (Ω)′ ≤ lim inf

ε→0
κε(Ω).

Taking the supremum over ϕ ∈ C0
c (Ω) with 0 ≤ ϕ ≤ 1 results in

σ

�
Γ

∣∣H⃗V

∣∣2 dµ ≤ lim inf
ε→0

κε(Ω) (5.2.16)

by the regularity of Radon measures.

The proof of Theorem 5.1.1 is also based on (5.2.16), we just need to rewrite or estimate
the terms at the ends of the inequality.

Proof of Theorem 5.1.1.
If the right hand-side of (5.1.3) is infinite there is nothing to prove. Thus we can assume
(5.2.12) and the claims from Corollary 5.2.2 and Theorem 5.2.3 hold. As in the proof of
Corollary 5.2.6 we conclude (5.2.16). We deduce by (iv) from Theorem 5.2.3

c0σ

�
Ω

∣∣H⃗V

∣∣2 dHn−1 ≤ σ
�

Γ

∣∣H⃗V

∣∣2 dµ ≤ lim inf
ε→0

κε(Ω) = lim inf
ε→0

WKK
ε (uε).

In the following we connect the weak mean curvature vector H⃗V of the varifold V with
the mean curvature vector H⃗E of the hypersurface ∂E ∩ Ω. Owing to the C2-regularity
we have ∂E ∩ Ω = ∂∗E ∩ Ω, where ∂∗E is the essential boundary defined in Definition
2.2.10. Since E ⊆ Ω and because of the C2-regularity at every point of ∂E ∩ Ω there
exists an inner normal νE .
To compare the mean curvature vectors we need to compare the respective varifolds.
Define VE := (Hn−1 ∂E ∩ Ω) ⊗ ν⊥

E ∈ Vn−1(Ω). With (i) from Theorem 5.2.3 we can
apply Corollary 4.3 from [Sch09] which yields H⃗V = H⃗E and thus we get with (5.2.16)

c0σW(u) = c0σ

�
∂E∩Ω

∣∣H⃗E

∣∣2 dHn−1 ≤ σ
�

Ω

∣∣H⃗V

∣∣2 dµ ≤ lim inf
ε→0

WKK
ε (uε).

Since we also have the lim inf estimate for Pε −→ c0P from the Modica-Mortola Theorem
2.4.2 the claim follows.
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Before starting with the technical preparations for the proof of Theorem 5.2.5 we
present the central notion to motivate why we need to examine the measures in the next
sections. The rigorous proof is done in Section 5.5, here we outline the idea in a formal way.

Remark.
Let us first recall the arguments from [RS06] for the proof of the lim inf estimate for the
standard approximation and replicate the idea for our approximation.

We use the dual representation of the L2(µ)-norm of H⃗V . Let η ∈ C1
c (Ω;Rn) with

�
Ω
|η|2 dµ ≤ 1. (5.2.17)

Then we apply Lemma 5.2.4 and get that�
Ω
H⃗V · η dµ = lim

ε→0

�
Ω
∇uε · ηHε dLn, (5.2.18)

where Hε = −ε∆uε + 1
εW

′(uε). We use the Cauchy-Schwarz inequality and get

�
Ω
H⃗V · η dµ ≤ lim

ε→0

[ �
Ω
ε|η|2

∣∣∇uε

∣∣2 dLn

�
Ω

1
ε
|Hε|2 dLn

] 1
2

≤
√

lim sup
ε→0

⟨|η|2, µε + ξε⟩C0
c (Ω)′ lim inf

ε→0
Wε(uε)

=
√
⟨|η|2, µ⟩C0

c (Ω)′︸ ︷︷ ︸
≤1

√
lim inf

ε→0
Wε(uε).

We take the supremum over all η with (5.2.17). We get by (iv) from Theorem 5.2.3

c0

�
Γ

∣∣H⃗V

∣∣2 dHn−1 ≤
�

Ω

∣∣H⃗V

∣∣2 dµ ≤ lim inf
ε→0

Wε(uε).

Applying Corollary 4.3 from [Sch09] ensures H⃗V = H⃗E and the proof for the standard
approximation is finished.

However our approximation is different because Hε is replaced by (−ε2∆ + Id)Hε. Thus
we need to modify the above argument and introduce uε as the solution to

−ε2∆uε + uε = uε in Ω
∂νuε = 0 on ∂Ω.

We will show that �
Ω
H⃗V · η dµ = lim

ε→0

�
Ω
∇uε · η(−ε2∆ + Id)Hε dLn

and can apply the Cauchy-Schwarz estimate for the inner product induced by the differential
operator. This results in

�
Ω
H⃗V · η dµ ≤ lim inf

ε→0

[ �
Ω
εη · ∇uε

(
− ε2∆ + Id

)
(η · ∇uε) dLn
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·
�

Ω

1
ε
Hε(−ε2∆ + Id)Hε dLn

] 1
2

.

Further manipulations yield

lim
ε→0

�
Ω
εη · ∇uε

(
− ε2∆ + Id

)
(η · ∇uε) dLn = lim

ε→0

�
Ω
ε(η · ∇uε)(η · ∇uε) dLn

and thus

�
Ω
H⃗V · η dµ ≤ lim inf

ε→0

[
κε(Ω)

�
Ω
|η|2ε

∣∣∇uε

∣∣∣∣∇uε

∣∣ dLn

] 1
2

.

Taking the supremum over η with (5.2.17) will result in the Willmore energy on the
left-hand side. The desired term κε(Ω) is already on the right-hand side so the key for
this proof is to deal with the remaining integral. We do so by examining the measure
ε
∣∣∇uε

∣∣∣∣∇uε

∣∣Ln and its weak∗-limit.

5.3 Uniform bounds for the modified phase fields

Definition 5.3.1 (Modified phase field and area measure).
Assume that uε ∈ C3(Ω) satisfies (5.2.12) for some Λ > 0. We define uε ∈ H1(Ω) as the
solution to

−ε2∆uε + uε = uε in Ω (5.3.1)
∂νuε = 0 on ∂Ω. (5.3.2)

We also define the Radon measure

ϑε := ε
∣∣∇uε

∣∣∣∣∇uε

∣∣Ln Ω ∈ C0
c (Ω)′. (5.3.3)

From elliptic regularity theory we get uε ∈ C5(Ω) ∩H5(Ω). We start with an estimate
that makes use of the boundary condition for uε.

Lemma 5.3.2.
Consider Ω, uε, uε as in Definition 5.3.1. Then we have for all ε > 0

�
{|uε|>1}

[
ε
∣∣∇uε

∣∣+ 1
2ε(|uε| − 1)2

]
dLn ≤

�
{|uε|>1}

1
2εW (uε) dLn (5.3.4)

Proof. We first obtain from (5.3.1) that

−ε∆(uε − 1) + 1
ε

(uε − 1) = 1
ε

(uε − 1) (5.3.5)

Testing this equation with (uε − 1)+ and using (5.3.2) yields
�

Ω

[
ε∇(uε − 1) · ∇(uε − 1)+ + 1

ε
(uε − 1)(uε − 1)+

]
dLn

=
�

Ω

1
ε

(uε − 1)(uε − 1)+ dLn ≤
�

Ω

1
ε

(uε − 1)+(uε − 1)+ dLn
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=⇒
�

{uε>1}

[
ε
∣∣∇uε

∣∣2 + 1
ε

(uε − 1)2
]

dLn

≤
�

{uε>1}

1
2ε(uε − 1)2 dLn +

�

{uε>1}

1
2ε(uε − 1)2 dLn

=⇒
�

{uε>1}

[
ε
∣∣∇uε

∣∣2 + 1
2ε(uε − 1)2

]
dLn

≤
�

{uε>1}

1
2ε(u2

ε − 1)2 dLn =
�

{uε>1}

1
2εW (uε) dLn

Similar we deduce
�

{uε<−1}

[
ε
∣∣∇uε

∣∣2 + 1
2ε(uε + 1)2

]
dLn ≤

�

{uε<−1}

1
2εW (uε) dLn.

Adding both estimates yields (5.3.4).

From (5.2.12) we get with a Cauchy-Schwarz estimate

�
Ω
|uε|2 dLn =

�
Ω

(|uε|2 − 1) dLn + C(Ω) ≤
[
C(Ω)

�
Ω
W (uε) dLn

] 1
2

+ C(Ω)

≤ C(Ω)(1 +
√
εΛ) ≤ C(Ω,Λ). (5.3.6)

With (5.3.4) we can deduce similarly
�

Ω
|uε|2 dLn ≤ C(Ω) +

�

{|uε|>1}

(|uε| − 1 + 1)2 dLn ≤ C(Ω) +
�

{|uε|>1}

2(|uε| − 1)2 dLn

≤ C(Ω)(1 + 2εΛ) ≤ C(Ω,Λ) (5.3.7)

Both of these estimates yield uniform bounds as ε→ 0. In the following we will rely on
(5.3.7) and prove results that hold independent from (5.3.2).

Lemma 5.3.3.
Consider u ∈ C3(Ω) with (5.2.12) and assume that uε ∈ H3(Ω) satisfies (5.3.1) and
(5.3.7). Then we have for any η ∈ C1

c (Ω) and all ε > 0
�

Ω

(
εη2∣∣∇(uε − uε)

∣∣2 + 1
ε
η2|uε − uε|2

)
dLn (5.3.8)

≤
�

Ω

(
10ε

∣∣∇η∣∣2(uε − uε)2 + 4εη2∣∣∇uε

∣∣2) dLn.

Furthermore we have for all j ∈ {1, . . . , n}
�

Ω

(
ε3η2∣∣∇∂juε

∣∣2 + εη2|∂juε|2
)

dLn ≤
�

Ω

(
4ε3|∂juε|2

∣∣∇η∣∣2 + εη2|∂juε|2
)

dLn. (5.3.9)
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Proof. We get from (5.3.1)

−ε∆(uε − uε) + 1
ε

(uε − uε) = ε∆uε.

By testing with η2(uε − uε) we get
�

Ω

(
ε∇(uε − uε) · ∇[η2(uε − uε)] + 1

ε
η2(uε − uε)2

)
dLn

= −
�

Ω
ε∇uε · ∇[η2(uε − uε)] dLn.

Rearranging and applying the Young-inequality yield
�

Ω

(
εη2∣∣∇(uε − uε)

∣∣2 + 1
ε
η2(uε − uε)2

)
dLn

= −
�

Ω

(
2
√
ε

4η∇(uε − uε) ·
√

4ε(uε − uε)∇η + 2
√
ε

4η∇(uε − uε) ·
√
εη∇uε

+ 2
√
εη∇uε ·

√
ε(uε − uε)∇η

)
dLn

≤
�

Ω

(ε
2η

2∣∣∇(uε − uε)
∣∣2 + 5ε

∣∣∇η∣∣2(uε − uε)2 + 2εη2∣∣∇uε

∣∣2) dLn.

By absorbing the good term on the right-hand side we get (5.3.8). For the proof of (5.3.9)
we deduce from (5.3.1) for j ∈ {1, . . . , n}

−ε2∆∂juε + ∂juε = ∂juε

and compute by testing with εη2∂juε

�
Ω

(
ε3∇∂juε · ∇[η2∂juε] + εη2(∂juε)2

)
dLn =

�
Ω
εη2∂juε∂juε dLn.

Rearranging and applying the Young-inequality yield
�

Ω

(
ε3η2∣∣∇∂juε

∣∣2 + εη2(∂juε)2
)

dLn

=
�

Ω

(
− 2

√
ε3

2 η∇∂juε ·
√

2ε3∂juε∇η + 2
√
ε

2η∂juε

√
ε

2η∂juε

)
dLn

≤
�

Ω

(ε3

2 η
2∣∣∇∂juε

∣∣2 + 2ε3(∂juε)2∣∣∇η∣∣2 + ε

2η
2(∂juε)2 + ε

2η
2(∂juε)2

)
dLn.

Absorbing the good terms from the right-hand side proves (5.3.9).
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Corollary 5.3.4.
Let uε ∈ C3(Ω) with (5.2.12) for some Λ > 0 and assume that uε ∈ H1(Ω) satisfies (5.3.1)
and (5.3.7). For any open set Ω0 ⋐ Ω there exists C = C(Ω,Ω0) > 0 such that for all
ε > 0 we have

�
Ω0

(
ε
∣∣∇uε

∣∣2 + 1
ε

(uε − uε)2 + 1
ε
W (uε)

)
dLn ≤ C(1 + Λ), (5.3.10)

where W (r) := min{(1− r)2, (1 + r)2} for r ∈ R. Also we have for any j ∈ {1, . . . , n}
�

Ω0

ε(∂juε)2 dLn ≤
�

Ω
ε(∂juε)2 dLn + ε2C(1 + Λ) (5.3.11)

and
�

Ω0

(
ε3∣∣D2uε

∣∣2 + ε
∣∣∇uε

∣∣2) dLn ≤ C. (5.3.12)

Proof. We start by estimating for r ∈ R and s > 0

(r − 1)2 = (r − s)2 + 2(r − s)(s− 1) + (s− 1)2

= (r − s)2 + 2r − 1√
2
√

2(s− 1)− (s− 1)2 ≤ (r − s)2 + 1
2(r − 1)2 + (s− 1)2

We can absorb the term 1
2(r − 1)2 and get

1
2(r − 1)2 ≤ (r − s)2 + (s− 1)2 ≤ (r − s)2 + (s− 1)2(s+ 1)2 = (r − s)2 +W (s).

It follows

W (r) ≤ (r − 1)2 ≤ 2(r − s)2 + 2W (s).

We proceed similar for s < 0 and get for all s, r ∈ R

W (r) ≤ 2(r − s)2 + 2W (s). (5.3.13)

Given Ω0 ⋐ Ω we can choose η ∈ C1
c (Ω) such that η = 1 on Ω0. Then we get from first

applying and (5.3.13) followed by (5.3.8)
�

Ω0

(
ε
∣∣∇uε

∣∣2 + 1
ε

(uε − uε)2 + 1
ε
W (uε)

)
dLn

≤
�

Ω

(
εη2∣∣∇(uε − uε + uε)

∣∣2 + 3
ε
η2(uε − uε)2 + 2

ε
η2W (uε)

)
dLn

≤
�

Ω

(
30ε

∣∣∇η∣∣2(uε − uε)2 + 2εη2∣∣∇uε

∣∣2 + 12εη2∣∣∇uε

∣∣2 + 2
ε
η2W (uε)

)
dLn

≤
�

Ω

(
60ε

∣∣∇η∣∣2u2
ε + 60ε

∣∣∇η∣∣2u2
ε + 14εη2∣∣∇uε

∣∣2 + 2
ε
η2W (uε)

)
dLn

≤ C(η)
�

Ω
ε
(
u2

ε + u2
ε

)
dLn + C(η)µε(Ω).

Note that η is only dependent on Ω0,Ω. Applying (5.3.6), (5.3.7), and (5.2.12) yields
(5.3.10).
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To prove (5.3.11) we choose and open set Ω1 such that Ω0 ⋐ Ω1 ⋐ Ω. Then we apply
(5.3.10) to Ω1 and get

�
Ω1

ε
∣∣∇uε

∣∣2 dLn ≤ C(1 + Λ).

We choose η ∈ C1(Ω1) such that η = 1 on Ω1 and use (5.3.9). This yields
�

Ω0

ε(∂juε)2 dLn =
�

Ω1

εη2(∂juε)2 dLn ≤
�

Ω1

(
4ε3(∂juε)2∣∣∇η∣∣2 + εη2(∂juε)2

)
dLn

≤
�

Ω
εη2(∂juε)2 dLn + ε2C(1 + Λ).

To prove (5.3.12) we use (5.3.9). First we choose η ∈ C1
c (Ω) with η = 1 on Ω0. then we

get by summing over j in (5.3.9)
�

Ω0

(
ε3∣∣D2uε

∣∣2 + ε
∣∣∇uε

∣∣2) dLn ≤
�

Ω

(
ε3η2∣∣D2uε

∣∣2 + εη2∣∣∇uε

∣∣2) dLn

≤
�

Ω

(
4ε3∣∣∇uε

∣∣2∣∣∇η∣∣2 + εη2∣∣∇uε

∣∣2) dLn

≤ C(η)
�

Ω

(
ε3∣∣∇uε

∣∣2 + ε
∣∣∇uε

∣∣2) dLn

By (5.3.10) and (5.2.12) we deduce (5.3.12).

Corollary 5.3.5 (Convergence and absolute continuity).
Let uε ∈ C3(Ω) with (5.2.12) for some Λ > 0 and assume that uε ∈ H1(Ω) satisfies (5.3.1)
and (5.3.7) for all ε > 0. There exists a finite Radon measure ϑ ∈ C0

c (Ω)′ such that up to
a subsequence we have

ϑε
w∗
−→ ϑ as ε→ 0 in C0

0 (Ω)′. (5.3.14)

Moreover, ϑ≪ µ holds.

Proof. Let η ∈ C0
0 (Ω), by Young’s inequality we get

⟨η2, ϑε⟩C0
0 (Ω)′ =

�
Ω
η2 dϑε ≤

1
2

�
Ω
η2ε
∣∣∇uε

∣∣2 dLn + 1
2

�
Ω
η2ε
∣∣∇uε

∣∣2 dLn ≤ C(η,Λ)

by 5.3.4 and (5.2.12). From Theorem 2.2.2 we get the existence of a subsequence such
that (5.3.14) holds. More precisely we get from (5.3.7) and (5.3.10) for η ∈ C1

c (Ω)

⟨η2, ϑ⟩C0
0 (Ω)′ ←− ⟨η2, ϑε⟩C0

0 (Ω)′ =
�

Ω
η2 dϑε ≤

1
2

�
Ω
η2ε
∣∣∇uε

∣∣2 dLn + 1
2

�
Ω
η2ε
∣∣∇uε

∣∣2 dLn

≤ 3⟨η2, µε⟩C0
c (Ω)′ +

�
Ω
η2ε
∣∣∇(uε − uε)

∣∣2 dLn

≤ 7⟨η2, µε⟩C0
c (Ω)′ +

�
Ω

10ε
∣∣∇η∣∣2(uε − uε)2 dLn

≤ 7⟨η2, µε⟩C0
c (Ω)′ + εC(η)

�
Ω

(u2
ε + u2

ε) dLn

≤ 7⟨η2, µε⟩C0
c (Ω)′ + εC(η,Ω,Λ) −→ 7⟨η2, µ⟩C0

0 (Ω)′ .

It follows ϑ≪ µ by Lemma 8.2.6.
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Lemma 5.3.6.
Let uε ∈ C3(Ω) with (5.2.12) for some Λ > 0 and assume that uε ∈ H1(Ω) satisfies (5.3.1)
and (5.3.7). Then for any η ∈ C1

c (Ω) we have for all ε > 0
�

{|uε|>1}

(
εη2∣∣∇(|uε| − 1)

∣∣2 + 1
ε
η2(|uε| − 1)2

)
dLn (5.3.15)

≤
�

{|uε|>1}

1
ε
η2W ′(uε)2 dLn +

�

{|uε|>1}

4ε
∣∣∇η∣∣2(|uε| − 1)2 dLn.

Furthermore for any Ω0 ⋐ Ω and k ∈ N there exist C(Ω0,Ω, k) > 0 and ε0(k,Ω0,Ω) such
that for all ε ∈ (0, ε0) we have

�
Ω0

1
ε

(|uε| − 1)2
+ dLn ≤ C

(
ε2αε(Ω) + ε2k−1). (5.3.16)

Proof. We start by proving a localized version of Lemma 5.3.2. Let η ∈ C1
c (Ω), then we

get by testing (5.3.5) with η2(uε − 1)+�
Ω

(
ε∇(uε − 1) · ∇[η2(uε − 1)+] + 1

ε
η2(uε − 1)(uε − 1)+

)
dLn

=
�

Ω

1
ε
η2(uε − 1)(uε − 1)+ dLn.

Rearranging and applying a Young inequality yield
�

Ω

(
εη2∣∣∇(uε − 1)+

∣∣2 + 1
ε
η2(uε − 1)2

+

)
dLn

≤
�

Ω
2 1√

2ε
η(uε − 1)+

1√
2ε
η(uε − 1)+ dLn

−
�

Ω
2
√
ε

2η∇(uε − 1)+ ·
√

2ε(uε − 1)+∇η dLn

≤
�

Ω

1
2εη

2(uε − 1)2
+ dLn +

�
Ω

1
2εη

2(uε − 1)2
+ dLn

+
�

Ω

ε

2η
2∣∣∇(uε − 1)+

∣∣2 dLn +
�

Ω
2ε
∣∣∇η∣∣2(uε − 1)2

+ dLn.

We can absorb the good terms and get
�

Ω

(
εη2∣∣∇(uε − 1)+

∣∣2 + 1
ε
η2(uε − 1)2

+

)
dLn

≤
�

Ω

1
ε
η2(uε − 1)2

+ dLn +
�

Ω
4ε
∣∣∇η∣∣2(uε − 1)2

+ dLn.

Estimating (uε − 1)2 ≤ 16u2
ε(uε − 1)2(uε + 1)2 = W ′(uε)2 on {uε > 1} yields

�

{uε>1}

(
εη2∣∣∇(uε − 1)

∣∣2 + 1
ε
η2(uε − 1)2

)
dLn

≤
�

{uε>1}

1
ε
η2W ′(uε)2 dLn +

�

{uε>1}

4ε
∣∣∇η∣∣2(uε − 1)2 dLn.
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We proceed similar on {uε < −1} and add the integrals to get (5.3.15).

For any two sets V1 ⋐ V2 ⊆ Ω we derive by choosing a cut-off function η ∈ C1
c (V2) with

η = 1 on V1 and |∇η| ≤ 2
r for r := dist(V1,Rn \ V2) that

�
V1

1
ε
η2(|uε| − 1)2

+ dLn ≤
�

V2

1
ε

(|uε| − 1)2
+ dLn + 16ε2

r2

�
V2

1
ε

(|uε| − 1)2
+ dLn (5.3.17)

Now we choose open sets Ω1, . . . ,Ωk such that

Ω0 ⋐ Ω1 ⋐ · · · ⋐ Ωk ⋐ Ωk+1 := Ω

with dist(Ωj ,Rn \ Ωj+1) ≤ C
k dist(Ω0,Rn \ Ω) for all j ∈ {0, 1, . . . , k}. Using iteratively

(5.3.17) and (5.3.7) yields
�

Ω0

1
ε

(|uε| − 1)2
+ dLn ≤ k

�
Ωk

1
ε

(|uε| − 1)2
+ dLn + 16ε2k

r2k

�
Ω

1
ε

(|uε| − 1)2
+ dLn

≤ k
�

Ωk

1
ε

(|uε| − 1)2
+ dLn + C(k,Ω0,Ω)ε2k−1. (5.3.18)

Since (1 − |r|)2
+ ≤ CW ′(r)2χ{|r|≥1} we can apply Propositions 3.5 and 3.6 from [RS06]

which implies that for all ε > 0 sufficiently small we have
�

Ωk

1
ε

(|uε| − 1)2
+ dLn ≤ C(k,Ω0,Ω)ε

�
Ω
|Hε|2 dLn + C(k,Ω0,Ω)ε2k

�
Ωk

1
ε
W ′(uε)2 dLn

≤ C(k,Ω0,Ω)ε
�

Ω
|Hε|2 dLn + C ′(k,Ω0,Ω)ε2k−1.

Together with (5.3.18) this yields (5.3.16).

5.4 Characterization of ϑ

To identify ϑ we apply the blow-up method as in [RS06], see also [HT00].

Theorem 5.4.1.
Consider (uε)ε>0 in C3(Ω) and assume that (5.2.12) holds for some Λ > 0 and restrict to
a subsequence such that (5.2.8)-(5.2.11) and (5.3.14) hold. Then it holds

ϑ = 1
σ
µ.

The proof is done throughout the entire section. First we introduce the notations for the
proof and reduce the claims without loss of generality. Recall Γ = supp(µ) as introduced
in Theorem 5.2.3.
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Lemma 5.4.2 (Good points).
Let (uε)ε>0 as in Definition 5.2.1, assume (5.2.8)-(5.2.12) and (5.3.14). Then we have
for µ-a.e. x ∈ Ω

• B2ρ0(x) ⋐ Ω for some ρ0 = ρ0(x) > 0,

• x is a µ-Lebesgue point of Dµϑ,

• lim sup
ρ→0

ρ1−nµ(Bρ(x)) <∞,

• κ({x}) = 0,

• the approximate tangent space TxΓ exists,

• there exist θ(x) ∈ N and Sx ∈ G(n, n− 1) such that Txµ = c0θ(x)Sx.

Proof. For x we can find a ρ0 as described because Ω is open. We know from Corollary
5.3.5 and the Radon-Nikodym Theorem 8.2.5 Dµϑ ∈ L1(Ω, µ) and ϑ = Dµϑµ. In
particular µ-a.e. x ∈ Ω is a µ-Lebesgue point of Dµϑ by Theorem 8.3.5. Furthermore, by
(5.2.12) we get lim supn→∞ ρ1−nµ(Bρ(x)) <∞ from (v) in Theorem 5.2.3.

The fourth condition is true for a cocountable subset of Ω because κ is a finite Radon
measure on Ω It follows that κ can at most have a countable set of atoms.

The fifth condition is satisfied by µ-a.e. x ∈ Ω because by (5.2.12) and Theorem 5.2.3
V is a rectifiable (n− 1)-varifold and µ = c0θHn−1 Γ. The last point stems from the
fact that 1

c0
V is integral, see Theorem 5.2.3, which implies that for µ-a.e. x ∈ Γ the

multiplicity θ(x) is a natural number.

Recall ζx,ρ(y) = y−x
ρ for ρ > 0 and y ∈ Rn, the pullback ζ#

ρ,x and the pushforward ζρ,x,#
from Definition 2.2.18. In the following we fix a good point x ∈ supp(µ) and ρ0 > 0
such that the properties in Lemma 5.4.2 hold. Set θ := θ(x). Without loss of generality
we can assume x = 0 and S := S0 = Rn−1 × {0} for the proof of Theorem 5.4.1. In
fact this is possible because we consider ζx,ρ,#µ in the following and ζ shifts x to 0
anyways, the assumption x = 0 simply translates into the expression ζρ,0,#µ instead of
ζρ,x,#µ. We write ζρ,#µ := ζρ,0,#µ. We get S = Rn−1×{0} with an orthogonal coordinate
transformation in the integrals where S appears.

Lemma 5.4.3.
Let (uε)ε>0 as in Definition 5.2.1, assume (5.2.8)-(5.2.12) and (5.3.14). Then there exist
sequences (ρj)j∈N and (εj)j∈N with 0 < ρj < ρ0 for all j ∈ N such that as j →∞ we have

εj → 0, ρj → 0, (5.4.1)
εj

ρj
→ 0,

ε2
j

ρn+1
j

→ 0, (5.4.2)

ρ1−n
j ζρj ,#µεj

w∗
−→ c0θHn−1 S in C0

c (B16(0))′, (5.4.3)

and ρ1−n
j ζρj ,#ϑεj

w∗
−→ Dµϑ(0)c0θHn−1 S in C0

c (B16(0))′, (5.4.4)
and for all j ∈ N κεj (Bρ(0)) ≤ κ(B2ρ(0)) + ρn−2

j for ρj ≤ ρ ≤ ρ0. (5.4.5)
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Proof. Let (ρj)j∈N be a decreasing sequence with ρ1 < ρ0 and ρj → 0 as j →∞. By the
definition of the approximate tangent space we have

ρ1−n
j ζρj ,#µ

w∗
−→ c0θHn−1 S in C0

c (B16(0))′.

Since 0 is a µ-Lebesgue point of Dµϑ we get by Lemma 8.2.7 that

ρ1−n
j ζρj ,#ϑ = ρ1−n

j ζρj ,#Dµϑµ
w∗
−→ Dµϑ(0)c0θHn−1 S in C0

c (B16(0))′.

Using that the weak∗-topology on bounded subsets of C0
c (B16(0))′ is metrizable, (5.2.8),

(5.3.14), and

ρ1−n
j ζρj ,#µε = ρ1−n

j ζρj ,#
(
µεj − µ

)
+ ρ1−n

j ζρj ,#µ

ρ1−n
j ζρj ,#ϑε = ρ1−n

j ζρj ,#
(
ϑε − ϑ

)
+ ρ1−n

j ζρj ,#ϑ

we can choose a subsequence (εj)j∈N dependent on (ρj)j∈N such that (5.4.1)-(5.4.4) hold.
Finally by possibly lowering the value of εj , we obtain for all l ∈ N0 with 2−lρ0 > ρj

κεj (B2−lρ0(0)) ≤ κ(B2−lρ0(0)) + ρn−2
j ≤ κ(B2−l+1ρ0(0)) + ρn−2

j .

We deduce for any ρj ≤ ρ ≤ ρ0 and l ∈ N0 such that ρ ∈ (2−l−1ρ0, 2−lρ0)

κεj (Bρ(0)) ≤ κεj (B2−lρ0(0)) ≤ κ(B2−lρ0(0)) + ρn−2
j ≤ κ(B2ρ0(0)) + ρn−2

j .

Thus (5.4.5) holds as well.

Proposition 5.4.4 (Properties of the rescaled functions and measures).
Let (uε)ε>0 as in Definition 5.2.1, assume (5.2.8)-(5.2.12) and (5.3.14). We set ε̃j := εj

ρj

and define for x ∈ B ρ0
ρj

(0)

ũε̃j (x) := uεj (ρjx), ûε̃j (x) := uεj (ρjx), H̃ε̃j (x) := ρjHεj (ρjx),

ν̃ε̃j (x) :=
∇ũε̃j (x)∣∣∇ũε̃j (x)

∣∣ for ∇ũε̃j (x) ̸= 0, and ν̃ε̃j (x) := e1 else.

Moreover we set

µ̃ε̃j
:=
(
ε̃j

2
∣∣∇ũε̃j

∣∣2 + 1
ε̃j
W (ũε̃j )

)
Ln B ρ0

ρj

(0), (5.4.6)

ξ̃ε̃j
:=
(
ε̃j

2
∣∣∇ũε̃j

∣∣2 − 1
ε̃j
W (ũε̃j )

)
Ln B ρ0

ρj

(0), (5.4.7)

α̃ε̃j
:= 1

ε̃j
H̃2

ε̃j
Ln B ρ0

ρj

(0), (5.4.8)

ϑ̃ε̃j
:= ε̃j

∣∣∇ũε̃j

∣∣∣∣∇ûε̃j

∣∣Ln B ρ0
ρj

(0), (5.4.9)

κ̃ε̃j
:=
( 1
ε̃j

∣∣H̃ε̃j

∣∣2 + ε̃j

∣∣∇H̃ε̃j

∣∣2)Ln B ρ0
ρj

(0), (5.4.10)

and Ṽε̃j
:= µ̃ε̃j ⊗ ν̃⊥

ε̃j
∈ Vn−1

(
B ρ0

ρj

(0)
)
. (5.4.11)
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Then it holds

ε̃j → 0 as j →∞, (5.4.12)

−ε̃j∆ũε̃j + 1
ε̃j
W ′(ũε̃j ) = H̃ε̃j in B ρ0

ρj

(0), (5.4.13)

−ε̃2
j∆ûε̃j + ûε̃j = ũε̃j in B ρ0

ρj

(0), (5.4.14)

and with j →∞ we have

ρ1−n
j ζρj ,#µεj = µ̃ε̃j

w∗
−→ c0θHn−1 S, (5.4.15)

ρ1−n
j ζρj ,#ϑεj = ϑ̃ε̃j

w∗
−→ c0θDµϑ(0)Hn−1 S, (5.4.16)

α̃ε̃j

w∗
−→ 0, and κ̃ε̃j

w∗
−→ 0 (5.4.17)

in C0
c (B16(0))′. Furthermore there exist Ṽ ∈ Vn−1(B15(0)) such that up to a subsequence

we have as j →∞

Ṽε̃j

w∗
−→ Ṽ in Vn−1(B15(0)). (5.4.18)

Finally,
�

B8(0)

(
ε̃j

∣∣∇ûε̃j

∣∣2 + 1
ε̃j

(ũε̃j − ûε̃j )2
)

dLn ≤ C(Ω,Λ). (5.4.19)

Proof. (5.4.12) follows directly from (5.4.1). For (5.4.13) we calculate

−ε̃j∆ũε̃j + 1
ε̃j
W ′(ũε̃j ) = −εj

ρj
ρ2

j∆uεj (ρj ·) + ρj

εj
W ′(uεj (ρj ·)) = ρjHεj (ρj ·) = H̃ε̃j .

We get (5.4.14) from

−ε̃2
j∆ûε̃j + ûε̃j = −ε2

j∆uεj (ρj ·) + uεj (ρj ·) = uεj (ρj ·) = ũε̃j .

(5.4.15) follows from (5.4.3) and the following calculation. Let j0 ∈ N such that 16 < ρ0
ρj

for all j ≥ j0 and let η ∈ C0
c (B16(0)), then we have

ρ1−n
j ⟨η, ζρj ,#µεj ⟩C0

c (B16(0))′ = ρ1−n
j ⟨ζ#

ρj
η, µεj ⟩C0

c (Ω)′ = ρ1−n
j

�

Ω

η ◦ ζρj dµεj

=
�

B16ρj
(0)

ρ1−n
j η

( x
ρj

)(εj

2
∣∣∇uεj (x)

∣∣2 + 1
εj
W (uεj (x))

)
dx

=
�

B16(0)

ρjη(x)
(εj

2
∣∣∇uεj (ρjx)

∣∣2 + 1
εj
W (uεj (ρjx))

)
dx

=
�

B16(0)

η(x)
(εj/ρj

2
∣∣ρj∇uεj (ρjx)

∣∣2 + 1
εj/ρj

W (uεj (ρjx))
)

dx

=
�

B16(0)

η
( ε̃j

2
∣∣∇ũε̃j

∣∣2 + 1
ε̃j
W (ũε̃j )

)
dLn = ⟨η, µ̃ε̃j ⟩C0

c (B16(0))′ .
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For (5.4.16) we use (5.4.4) and calculate for any η ∈ C0
c (B16(0))

ρ1−n
j ⟨η, ζρj ,#ϑεj ⟩C0

c (B16(0))′ = ρ1−n
j ⟨ζ#

ρj
η, ϑεj ⟩C0

c (Ω)′ = ρ1−n
j

�

Ω

η ◦ ζρj dϑεj

=
�

B16ρj
(0)

ρ1−n
j η

( x
ρj

)
εj

∣∣∇uεj (x)
∣∣∣∣∇uεj (x)

∣∣ dx
=

�

B16(0)

ρjη(x)εj

∣∣∇uεj (ρjx)
∣∣∣∣∇uεj (ρjx)

∣∣ dx
=

�

B16(0)

η(x)εj

ρj

∣∣ρj∇uεj (ρjx)
∣∣∣∣ρj∇uεj (ρjx)

∣∣ dx
=

�

B16(0)

ηε̃j

∣∣∇ũε̃j

∣∣∣∣∇ûε̃j

∣∣ dLn = ⟨η, ϑ̃ε̃j ⟩C0
c (B16(0))′ .

For the proof of (5.4.17) we choose j1 ∈ N such that 32 < ρ0
ρj

for all j ≥ j1. Then we have

κ̃ε̃j (B16(0)) =
�

B16(0)

(
ρj

εj

∣∣ρjHεj (ρj ·)
∣∣2 + εj

ρj

∣∣ρ2
j∇Hεj (ρj ·)

∣∣2) dLn

= ρ3−n
j

�
B16ρj

(0)

( 1
εj

∣∣Hεj

∣∣2 + εj

∣∣∇Hεj

∣∣2) dLn

= ρ3−n
j κεj (B16ρj (0)) ≤ ρ3−n

j

(
κ(B32ρj (0) + ρn−2

j ).

In the last step comes from (5.4.5). Since κ({0}) = 0, n ≤ 3, and α̃ε̃j ≤ κ̃ε̃j the claim
follows.

(5.4.18) follows from

∥Ṽε̃j∥(B15(0)) = µ̃ε̃j (B15(0)) ≤ C for all j ∈ N

because (µ̃ε̃j )j∈N is weakly∗-convergent in C0
c (B16(0))′ and Theorem 2.2.2.

At last we prove (5.4.19). We will reverse the previous coordinate transformation to get
back from ũε̃j to uεj and apply the estimates from Lemma 5.3.3. We choose j ≥ j0 and a
test function η ∈ C1

c (B16(0)) such that 0 ≤ η ≤ 1 and η = 1 on B8(0). We calculate with
the coordinate transformation ρjx 7→ x and (5.3.8)�

B8(0)

(
ε̃j

∣∣∇ûε̃j

∣∣2 + 1
ε̃j

(ũε̃j − ûε̃j )2
)

dLn

≤
�

B16(0)

η2
(
ε̃j

∣∣∇ûε̃j

∣∣2 + 1
ε̃j

(ũε̃j − ûε̃j )2
)

dLn

=
�

B16ρj
(0)

ρ1−n
j η2

( x
ρj

)(
εj

∣∣∇uεj (x)
∣∣2 + 1

εj
(uεj (x)− uεj (x))2

)
dx

≤
�

B16ρj
(0)

10ρ1−n
j

(
η2
( x
ρj

)
εj

∣∣∇uεj (x)
∣∣2 + εj

ρ2
j

∣∣∣∇η( x
ρj

)∣∣∣2(uεj − uε)2
)

dx.
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We apply (5.3.10) from Corollary 5.3.4 and transform x 7→ ρjx back and use (5.4.2). We
get

�

B8(0)

(
ε̃j

∣∣∇ûε̃j

∣∣2 + 1
ε̃j

(ũε̃j − ûε̃j )2
)

dLn

≤
�

B16ρj
(0)

20ρ1−n
j η2

( x
ρj

)
dµε +

ε2
j

ρn+1
j

C(η)
�

Bρ0 (0)

1
εj

(uεj − uε)2 dLn

≤
�

B16(0)

20η2 dµ̃ε̃j +
ε2

j

ρn+1
j

C(η,Ω,Λ, ρ0) −→ 20⟨η2, c0θHn−1 S⟩C0
c (B16(0))′ .

Since this is convergent as j →∞ there exists C(Ω,Λ) > 0 such that (5.4.19) holds.

In order to prove Theorem 5.4.1 it is therefore sufficient to prove the following statement
and apply it with Ω, (uεj )j∈N, (uεj )j∈N replaced with B8(0), (ũε̃j )j∈N, (ûε̃j )j∈N (the rescaled
functions and measures also satisfy the assumptions of Theorem 5.4.1).

Proposition 5.4.5.
Assume (uε)ε>0 as in Theorem 5.4.1 with B4(0) ⋐ Ω, modified phase fields (uε)ε>0 that
satisfy (5.3.1) and

�
Ω

(ε
2
∣∣∇uε

∣∣2 + 1
ε

(uε − uε)2
)

dLn ≤ Λ (5.4.20)

for some Λ > 0. Consider Radon measures µε, κε, ϑε ∈ C0
c (Ω)′ satisfying (5.2.1)-(5.2.5)

and (5.3.3), varifolds Vε ∈ C0
c (Ω×G(n.n− 1))′ with (5.2.6), a subsequence ε→ 0, finite

Radon measures µ, κ, ϑ, and a limit varifold V such that (5.2.8)-(5.2.11) and (5.3.14) hold
on B4(0). In addition assume that

µ = c0θHn−1 S for some θ ∈ N, S ∈ G(n, n− 1), and α = 0 = κ.

Then we have

ϑ = 1
σ
µ.

We prepare the proof of Proposition 5.4.5 with the following generalization of Proposition
5.5 in [RS06].

Proposition 5.4.6.
For all τ, δ ∈ (0, 1) and Λ > 0 there exist ω = ω(δ, τ,Λ) > 0 and L = L(δ, τ) ∈ (1,∞)
such that the following holds: Let the assumptions from Proposition 5.4.5 be satisfied with
Ω = B4Lε(0) and further assume

|uε(0)| ≤ 1− τ, (5.4.21)

|ξε|(B4Lε(0)) +
�

B4Lε(0)
ε|∇uε|2

√
1− |νε,n|2 dLn ≤ ω(4Lε)n−1, (5.4.22)

�
B4Lε

(
ε

n−1∑
l=1
|∂luε|2 + 1

ε
(|uε| − 1)2

+

)
dLn ≤ ω(4Lε)n−1, (5.4.23)
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with νε,n := en · νε, and

µε(B4Lε(0)) ≤ Λ(4Lε)n−1, (5.4.24)
κε(B4Lε(0)) ≤ Λ(4Lε)n−3. (5.4.25)

Then we also have, writing (0, t) ∈ Rn−1 × R

|uε(0, t)| ≥ 1− τ

2 for all Lε ≤ |t| ≤ 3Lε, (5.4.26)∣∣∣∣∣ 1
ωn−1(Lε)n−1µε(BLε(0))− c0

∣∣∣∣∣ ≤ δ, (5.4.27)
∣∣∣∣∣
� Lε

−Lε

1
ε
W (uε(0, t)) dt− c0

2

∣∣∣∣∣ ≤ δ, (5.4.28)
∣∣∣∣∣
� Lε

−Lε

(
ε
∣∣∇uε

∣∣∣∣∇uε

∣∣− 2
εσ
W (uε)

)
(0, t) dt

∣∣∣∣∣ ≤ δ. (5.4.29)

Here ωm is defined by Lm(B1(0)) = ωm for m ∈ N.

Proof. We follow the proof of Proposition 5.5 from [RS06]. The existence of ω,L such that
the statements (5.4.26)-(5.4.28) hold have already been proved there. In the following be
possibly lower the value of ω and increase the value of L, which maintains (5.4.26)-(5.4.28).

We prove in the following that we can assume ε = 1 without loss of generality. In fact
since ε is fixed, by rescaling x 7−→ εx and defining u(x) := uε(εx) for x ∈ BL(0), we can
drop the index. For the claims (5.4.26)-(5.4.28) this has already been done in [RS06], we
prove it for the remaining expression in (5.4.29)

Lε�

−Lε

ε|∇uε

∣∣∣∣∇uε|(0, t) dt =
� L

−L
ε|∇uε

∣∣∣∣∇uε

∣∣(0, εt)ε dt =
� L

−L
|∇u

∣∣∣∣∇u
∣∣(0, t) dt.

with −∆u + u = u.
We recall that by Lemma 4.1.2 and the definitions of c0, σ in Assumptions 4.1.1 we have

• |q0| < 1 and q′
0 > 0,

• lim
z→±∞

q0(z) = ±1,

•
�
R

1
2 |q

′
0|2 dL1 =

�
R
W (q0) dL1 = c0

2 ,

•
�
R
|q′

0||q′
0| dL1 = c0

σ
.

For a given a ∈ R we define

qa(t) := q0(t+ a), qa(t) := q0(t+ a) for t ∈ R, and Qa(x) := qa(xn) for x ∈ Rn,

and claim that we can choose L(τ, δ) sufficiently large such that: If

|q0(a)| ≤ 1− τ, −q′′
0 + q0 = qa with |q| ≤ 1
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then

|Qa(0, t)| ≥ 1− τ

3 for all L ≤ |t| ≤ 3L, (5.4.30)∣∣∣∣∣ 1
ωn−1Ln−1

�
BL(0)

(1
2 |∇Qa|2 +W (Qa)

)
dLn − c0

∣∣∣∣∣ ≤ δ

2 , (5.4.31)
∣∣∣∣∣
� L

−L
W (Qa(0, t)) dt− c0

2

∣∣∣∣∣ ≤ δσ

6 , (5.4.32)
∣∣∣∣∣
� L

−L

∣∣q′
a

∣∣∣∣q′∣∣(0, t) dt− c0
σ

∣∣∣∣∣ ≤ δ

3 . (5.4.33)

The first three properties are guaranteed by [RS06]. For the fourth identity we use
|q0(a)| ≤ 1− τ and thus |a| ≤ q−1

0 (1− τ). Furthermore we have q = A0qa = qa because
the difference q − qa is a bounded solution to the homogeneous equation −w′′ + w = 0
and thus vanishes. We conclude� L

−L

∣∣q′
a

∣∣∣∣q′∣∣(0, t) dt =
� L

−L

∣∣q′
a

∣∣∣∣q′
a

∣∣ dL1 =
� L−a

−L−a

∣∣q′
0
∣∣∣∣q′

0
∣∣ dL1 −→ c0

σ
.

Since we have a uniform bound on |a| only dependent on τ we can choose L(τ, δ) > 1
independent from a such that (5.4.33) holds.

Since H is bounded in H1(B4L(0)) by (5.4.25) we conclude by inner elliptic regularity
theory similar as in [RS06]

∥u∥H3(B 7L
2

(0)) ≤ C(Λ, L). (5.4.34)

We proceed by a contradiction argument, adapting [RS06]. Assume the claim is wrong
then there exists a sequence (uk)k∈N with ωk → 0 as k → ∞ and for any k ∈ N there
exist functions uk, uk, Hk satisfying the assumptions of Proposition 5.4.5 with ε = 1,
Ω = B4L(0), and satisfying the properties (5.4.21)-(5.4.25) but violating (5.4.29).

By inner elliptic regularity theory, see Theorem 2 in §6.3 in [Eva10], there exists C > 0
such that

∥u∥H5(B3L(0)) ≤ C
(
∥u∥L2(B 7L

2
(0)) + ∥u∥H3(B 7L

2
(0))
)
.

Thus we get

∥uk∥H5(B3L(0)) ≤ C(Λ, L)
(
∥uk∥H3(B 7L

2
(0) + ∥uk∥L2(B 7L

2
(0)
)
≤ C(Λ, L). (5.4.35)

Because of (5.4.34) and (5.4.35) we can find u ∈ H3(B3L(0)), u ∈ H5(B3L(0)), and
H ∈ H1(B3L(0)) such that we have up to a subsequence as k →∞

uk
w−→ u in H3(B3L(0)), uk

w−→ u in H5(B2L(0)), (5.4.36)
and Hk

w−→ H in H1(B3L(0)). (5.4.37)

By the compact Sobolev embedding H3(B3L(0)) c
↪→ C1(B3L(0)) as n ≤ 3 hence

uk −→ u and ∇uk −→ ∇u uniformly in B3L(0). (5.4.38)
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Similar we deduce from (5.4.35), (5.4.36)

uk −→ u in C2(B3L(0)). (5.4.39)

As in the proof of Proposition 5.5 in [RS06], letting x = (y, t) ∈ Rn−1 × R we get

u(y, t) = u0(t) for all (y, t) ∈ B3L(0),

where u0 = ±qt0 with t0 determined by u(0). Since a reflection (y, xn) 7→ (y,−xn) does
neither affect the assumptions nor the conclusions of the proposition we can assume
u0 = +qt0 without loss of generality.

Next we obtain from (5.4.23) and ωk → 0 that u(y, t) = u0(t) and |u0| ≤ 1 for a suitable
function u0 : R −→ R. Now we show with (5.4.33) that for large k (5.4.29) holds, in fact
we have∣∣∣∣∣

� L

−L

(∣∣∇uk

∣∣∣∣∇uk

∣∣− 2
σ
W (uk)

)
(0, t) dt

∣∣∣∣∣
≤
� L

−L

∣∣∣∣∣∇uk

∣∣∣∣∇uk

∣∣− ∣∣∇u∣∣∣∣∇u∣∣∣∣∣(0, t) dL1 +
∣∣∣∣∣
� L

−L

∣∣∇u∣∣∣∣∇u∣∣(0, t) dL1 − c0
σ

∣∣∣∣∣
+ 2
σ

∣∣∣∣∣c0
2 −

� L

−L
W (uk(0, t)) dL1

∣∣∣∣∣.
The last two terms are estimated by (5.4.32) and (5.4.33). For the first integral we use
(5.4.38) and (5.4.39) to choose k0 ∈ N large enough such that for all k ≥ k0 we have

∥uk − u∥C1(BL(0)) + ∥uk − u∥C1(BL(0)) ≤
δ

6RL

with R := sup
k∈N

(
∥uk∥C1(BL(0)) +∥uk∥C1(BL(0))

)
. The supremum is finite because converging

sequences are bounded. Thus we get∣∣∣∣∣
� L

−L

(∣∣∇uk

∣∣∣∣∇uk

∣∣− 2
σ
W (uk)

)
(0, t) dt

∣∣∣∣∣
≤
� L

−L

∣∣∇uk

∣∣∣∣∇uk −∇u
∣∣(0, t) dL1 +

� L

−L

∣∣∇u∣∣∣∣∇uk −∇u
∣∣(0, t) dL1 + δ

3 + 2
σ
· σδ6

≤ 2RL∥uk − u∥C1(BL(0)) + 2RL∥uk − u∥C1(BL(0)) + 2δ
3 ≤ 2RL · δ

6RL + 2δ
3 = δ.

Thus for k ≥ k0 (5.4.29) holds, a contradiction to our assumption.

Proof of Proposition 5.4.5. We assume that x = 0 is a good point in the sense of Lemma
5.4.2 and S = Rn−1 × {0}. Let Π : Rn −→ S be the orthogonal projection. We use the
representation x = (y, t) ∈ Rn−1 × R and denote by ∇′ = ∇y the horizontal gradient. By
Theorem 5.2.3 the limit of V of Vε is given by V = c0θHn−1 S ⊗ δS . Convergence as
varifolds yields in particular

lim
ε→0

�
B4(0)

ε
∣∣∇uε

∣∣2√1− ν2
ε,n dLn = 0.
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Moreover by (5.4.20) we can apply Corollary 5.3.4 and conclude from (5.3.11) and varifold
convergence�

B3(0)
ε
∣∣∇′uε

∣∣2 dLn ≤
�

B4(0)
ε
∣∣∇′uε|2 dLn + ε2C(Λ) (5.4.40)

≤
�

B4(0)
(1− |νε,n|2)ε

∣∣∇uε

∣∣2 dLn + ε2C(Λ) (5.4.41)

≤
�

B4(0)

√
1− |νε,n|2ε

∣∣∇uε

∣∣2 dLn + ε2C(Λ) −→ 0 as ε→ 0.

(5.4.42)

Furthermore by (5.3.16) for k = 1 we get
�

B3(0)

1
ε

(|uε| − 1)2
+ dLn ≤ Cε

(
εαε(Ω) + 1

)
−→ 0. (5.4.43)

By the proof of Proposition 5.2 in [RS06, page 711] for any δ > 0 there exist ω0, ε0, τ0 > 0,
all depending on δ such that for any 0 < ω < ω0, any 0 < τ < τ0 and any 0 < ε < ε0 the
following two properties hold:

(1)
�

{|uε|≥1−τ}∩B4(0)

1
ε
W ′(uε)2 dLn ≤ δ and µε

(
{|uε| ≥ 1− τ} ∩B4(0)

)
≤ 3δ.

(5.4.44)

(2) For the set

Aε :=
{
x ∈ B1(0)

∣∣∣ |uε(x)| ≤ 1− τ,
∀ε ≤ ρ ≤ 3 : |ξε|(Bρ(x)) +

�
Bρ(x) ε|∇uε|2

√
1− ν2

ε,n ≤ ωρn−1,

and αε(Bρ(x)) ≤ ωρ 1
2
}

we have
µε
(
B1(0) \Aε

)
≤ 4δ. (5.4.45)

We now define a subset of Aε with additional “good properties”,

A′
ε := Aε ∩

{
x ∈ B1(0)

∣∣ ∀ρ ∈ [ε, 3] :
�

Bρ(x)

(
ε
∣∣∇′uε

∣∣2 + 1
ε

(|uε| − 1)2
+

)
dLn ≤ ωρn−1

and κε(Bρ(x)) ≤ ωρ
1
2
}
.

We show that the complement in A′
ε is small. For all x ∈ Aε \A′

ε there exists ρx ∈
(
0, 1

2
)

such that B2ρx(x) ⊆ B1(0). It follows

Aε \A′
ε ⊆

⋃
x∈Aε\A′

ε

Bρx(x).

By Besicovitch’s covering Theorem there exist N ∈ N only dependent on n and sets
D1, . . . , DN ⊆ B1(0) such that for fixed k ∈ {1, . . . , N} the collections{

Bρx(x)
∣∣ x ∈ Dk

}
110



are disjoint and

Aε \A′
ε ⊆

N⋃
k=1

·
⋃

x∈Dk

Bρx(x).

Since for all k ∈ {1, . . . , N} the union ⋃x∈Dk
Bρx(x) ⊆ B1(0) is disjoint it follows that

ωn

∑
x∈Dk

ρn
x =

∑
x∈Dk

Ln
(
Bρx(x)

)
= Ln

(
·
⋃

x∈Dk

Bρx(x)
)
≤ Ln(B1(0)) = ωn <∞.

The sum is convergent and thus Dk has to be at most countable. We conclude

Aε \A′
ε ⊆

N⋃
k=1

·
⋃
j∈N

Bρk,j
(xk,j). (5.4.46)

Since xk,j ∈ Aε \A′
ε we have for all k, j that there exists ε ≤ ρk,j ≤ 3 such that
�

Bρk,j (xk,j )

(
ε
∣∣∇′uε

∣∣2 + 1
ε

(|uε| − 1)2
+

)
dLn > ωρn−1

k,j

or

κε(Bρk,j
(xk,j)) > ωρ

1
2
k,j .

Since xk,j ∈ Aε we can use αε(Bρ(xk,j)) ≤ ωρ 1
2 for all ε ≤ ρ ≤ 3 and (5.4.44). We deduce

from Proposition 4.7 in [RS06] that

µε(Bρk,j
(xk,j)) ≤ Cρn−1

k,j .

We then obtain by (5.4.46)

µε(Aε \A′
ε) ≤ C

N∑
k=1

∑
j∈N

ρn−1
k,j

≤ C

ω

N∑
k=1

∑
j∈N

�
Bρk,j

(xk,j)

(
ε
∣∣∇′uε

∣∣2 + 1
ε

(|uε| − 1)2
+

)
dLn

+ Cω2(1−n)κε(B4(0))2(n−1)−1
N∑

k=1

∑
j∈N

κε(Bρk,j
(xk,j))

≤ CN

ω

�
B4(0)

(
ε
∣∣∇′uε

∣∣2 + 1
ε

(|uε| − 1)2
+

)
dLn + ω2(1−n)Nκε(B4(0))2(n−1) ≤ δ

(5.4.47)

for ε sufficiently small, where we have used n ∈ {2, 3}, (5.4.42), (5.4.43), and κε
w∗
−→ 0.

By the definition of Aε for all x ∈ A′
ε we can apply Proposition 5.4 from [RS06] with

N = 1 and deduce (5.4.24) with (with 0 replaced by x). Together with the definition of A′
ε

we obtain that we can apply Proposition 5.4.6 for all x ∈ A′
ε. By page 713 in [RS06] this
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yields that for all y ∈ S ∩B1(0) there exist N ∋ K = K(y) ≤ θ and t1(y), . . . , tK(y) ∈ R
with

Aε ∩Π−1(y) ⊆ {y} ×
K⋃

l=1
(tl(y)− Lε, tl(y) + Lε).

We now fix an arbitrary η ∈ C1
c (B1(0)) and deduce from ξε

w∗
−→ 0, (5.4.45), and (5.4.48)

lim sup
ε→0

∣∣∣∣∣
�

B1(0)
η dϑε −

1
σ

�
B1(0)

η dµε

∣∣∣∣∣
≤ lim sup

ε→0

∣∣∣∣∣
�

A′
ε

η dϑε −
2
σ

�
A′

ε

η
1
ε
W (uε) dLn

∣∣∣∣∣+ Cδ∥η∥
C0(B1(0))

(5.4.48)

for some C > 0. Furthermore we obtain∣∣∣∣∣
�

A′
ε

η dϑε −
2
σ

�
A′

ε

η
1
ε
W (uε) dLn

∣∣∣∣∣
=
∣∣∣∣∣
�

Π(A′
ε)

K(y)∑
l=1

� tl(y)+Lε

tl(y)−Lε
η(y, t)

(
ε
∣∣∇uε

∣∣∣∣∇uε

∣∣− 2
σε
W (uε)

)
(y, t) dt dy

≤
∣∣∣∣∣
�

Π(A′
ε)

K(y)∑
l=1
|η(y, tj)|

� tl(y)+Lε

tl(y)−Lε

(
ε
∣∣∇uε

∣∣∣∣∇uε

∣∣− 2
σε
W (uε)

)
(y, t) dt dy

+ C sup
(y,s),(y,t)∈B1(0)

|t−s|<Lε

|η(y, t)− η(y, s)|
(
ϑε(B1(0)) + µε(B1(0))

)
.

For the first term we can apply (5.4.29). For the second term we use that η ∈ C1
c (B1(0))

is uniformly continuous, thus for ε sufficiently small we have for all s, t with |t− s| < Lε
that |η(y, t)− η(y, s)| < δ. We conclude

∣∣∣∣∣
�

A′
ε

η dϑε −
2
σ

�
A′

ε

η
1
ε
W (uε) dLn

∣∣∣∣∣
≤ ∥η∥C0(B1(0))

�
Π(A′

ε)
θδ dy + Cδ(Λ + Λ).

Hence we conclude with (5.4.48)

lim sup
ε→0

∣∣∣∣∣
�

B1(0)
η dϑε −

1
σ

�
B1(0)

η dµε

∣∣∣∣∣ ≤ C(Λ,Λ, η, θ)δ.

Since δ > 0 and η ∈ C1
c (B1(0)) were arbitrary we deduce

ϑ = lim
ε→0

ϑε = lim
ε→0

1
σ
µε = 1

σ
µ.
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5.5 Main proof of the lim inf-estimate
With the results from the previous section we can give a rigorous proof of Theorem 5.2.5.
We start by proving a lemma which allows us to neglect some error terms as ε→ 0.

Lemma 5.5.1 (Error estimates).
Let (uε)ε>0 be as in Definition 5.2.1 and assume (5.2.12). Let η ∈ C2

c (Ω;Rn) and
ψ ∈ C2

c (Ω). Then the following identities hold

lim
ε→0

�
Ω
Hεη · ∇(−ε2∆ + Id)uε dLn = lim

ε→0

�
Ω
∇uε · η(−ε2∆ + Id)Hε dLn (i)

lim sup
ε→0

�
Ω
ε
[
∇uε · η

]
(−ε2∆ + Id)

[
∇uε · η

]
dLn = lim sup

ε→0

�
Ω
ε
[
∇uε · η

][
∇uε · η

]
dLn (ii)

lim inf
ε→0

�
Ω

(1
ε

∣∣Hεψ
∣∣2 + ε

∣∣∇(Hεψ)
∣∣2) dLn = lim inf

ε→0

�
Ω
|ψ|2 dκε. (iii)

Proof. For (i) we have
�

Ω
Hεη · ∇(−ε2∆ + Id)u dLn =

�
Ω
∇uε · (−ε2∆ + Id)[ηHε] dLn

=
�

Ω
∇uε ·

[
− ε2Hε∆η − 2ε2Dη∇Hε + η(−ε2∆ + Id)Hε

]
dLn.

The claim is that the first and second term in
[
·
]

vanish in the integral as ε→ 0, so we
estimate∣∣∣∣∣

�
Ω
ε2∇uε ·

(
Hε ·∆η + 2Dη∇Hε

)
dLn

∣∣∣∣∣
≤ ∥η∥C2(Ω)ε

2
�

supp(η)
ε− 1

2 |Hε|ε
1
2
∣∣∇uε

∣∣ dLn

+ 2∥η∥C1(Ω)ε

�
supp(η)

ε
1
2
∣∣∇Hε

∣∣ε 1
2
∣∣∇uε

∣∣ dLn

≤ ∥η∥C2(Ω)ε
2
[ �

Ω

1
ε
|Hε|2 dLn

�
supp(η)

ε
∣∣∇uε

∣∣2 dLn

] 1
2

+ 2∥η∥C1(Ω)ε

[�
Ω
ε
∣∣∇Hε

∣∣2 dLn

�
Ω
ε
∣∣∇uε

∣∣2 dLn

] 1
2

By (5.2.12) and (5.3.10) we get for 0 < ε < 1∣∣∣∣∣
�

Ω
ε2∇uε ·

(
Hε ·∆η + 2Dη∇Hε

)
dLn

∣∣∣∣∣ ≤ C(Λ, η)ε.

For (ii) we have
�

Ω
ε
[
∇uε · η

]
(−ε2∆ + Id)

[
∇uε · η

]
dLn

=
�

Ω
ε
[
∇uε · η

][
− ε2∇uε ·∆η − 2ε2Duε : Dη + η · ∇(−ε2∆ + Id)uε

]
dLn
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Because of (5.3.1) the claim is that the first and second term in
[
·
]

vanish in the integral
as ε→ 0. We estimate∣∣∣∣∣
�

Ω
ε3(∇uε · η

)(
D2uε : Dη +∇uε ·∆η

)
dLn

∣∣∣∣∣
≤ 2∥η∥C1(Ω)∥η∥C0(Ω)ε

�
supp(η)

ε
1
2
∣∣∇uε

∣∣ε 3
2
∣∣D2uε

∣∣ dLn

+ ∥η∥C2(Ω)∥η∥C0(Ω)ε
2
�

supp(η)
ε
∣∣∇uε

∣∣2 dLn

≤ 2∥η∥C1(Ω)∥η∥C0(Ω)ε

[ �
supp(η)

ε
∣∣∇uε

∣∣2 dLn

�
supp(η)

ε3∣∣D2uε

∣∣2 dLn

] 1
2

+ 2Λ∥η∥C2(Ω)∥η∥C0(Ω)ε
2.

By (5.3.12) we get∣∣∣∣∣
�

Ω
ε3(∇uε · η

)(
∇uε ·∆η + 2D2uε : Dη

)
dLn

∣∣∣∣∣ ≤ C(η,Λ)ε.

For (iii) we calculate
�

Ω

(1
ε

∣∣Hεψ
∣∣2 + ε

∣∣∇(Hεψ)
∣∣2) dLn =

�
Ω

(1
ε

∣∣Hεψ
∣∣2 + ε

∣∣Hε∇ψ + ψ∇Hε

∣∣2) dLn

=
�

Ω

(1
ε

∣∣Hεψ
∣∣2 + ε

[∣∣Hε∇ψ
∣∣2 + 2Hεψ∇Hε · ∇ψ +

∣∣ψ∇Hε

∣∣2]) dLn.

Because of (5.2.4) the claim is that the first and second term in
[
·
]

vanish in the integral
as ε→ 0. We estimate for 0 < ε < 1�

Ω
ε

(∣∣Hε∇ψ
∣∣2 + 2 1√

ε

∣∣Hε∇ψ
∣∣√ε∣∣∇Hεψ

∣∣) dLn

≤ ∥ψ∥2C1(Ω)ε
2
�

Ω

1
ε
|Hε|2 dLn +

�
Ω

∣∣Hε∇ψ
∣∣2 dLn +

�
Ω
ε2∣∣∇Hεψ

∣∣2 dLn

≤ ∥ψ∥2C1(Ω)Λε2 + ∥ψ∥2C1(Ω)ε

�
Ω

1
ε

∣∣Hε

∣∣2 dLn + ∥ψ∥2C0(Ω)ε

�
Ω
ε
∣∣∇Hε

∣∣2 dLn

≤ 3Λ∥ψ∥2C1(Ω)ε.

Next we estimate the first variation of the varifold V .

Proposition 5.5.2 (Estimate for first variation).
Let (uε)ε>0 as in Definition 5.2.1 and assume (5.2.12). Let η ∈ C2

c (Ω;Rn) and ψ ∈ C2
c (Ω)

with 0 ≤ ψ ≤ 1 and ψ = 1 on supp(η). Then we have

lim
ε→0

�
Ω
Hεη · ∇uε dLn (5.5.1)

≤
[

lim sup
ε→0

�
Ω
|η|2ε

∣∣∇uε

∣∣∣∣∇uε

∣∣ dLn lim inf
ε→0

�
Ω
|ψ|2

[1
ε
|Hε|2 + ε

∣∣∇Hε

∣∣2] dLn

] 1
2

.

Before proving this proposition we improve the regularity of uε without loss of generality.
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Lemma 5.5.3 (Regularity of uε).
Let the assumptions from Proposition 5.5.2 hold. For the proof of (5.5.1) we can assume
uε ∈ C3(Ω) without loss of generality.

Proof. Since C∞(Ω) is dense in H3(Ω), uε ∈ H3(Ω), and H3(Ω) ↪→ C1(Ω) we can find a
sequence (ϕk)k∈N in C∞(Ω) such that

ϕk −→ uε as k →∞ in H3(Ω) and in C1(Ω).

From the definition of the H3(Ω)-norm we get ∆ϕk −→ ∆uε and ∇∆ϕk −→ ∇∆uε in
L2(Ω). Since ϕk −→ uε in C1(Ω) and W is a polynomial we also get W ′(ϕk) −→W ′(uε)
and W ′′(ϕk)∇ϕk −→W ′′(uε)∇uε in L2(Ω). This implies

WKK
ε (ϕk) −→WKK

ε (uε) as k →∞.

We choose k(ε) ∈ N such that ∣∣WKK
ε (ϕk)−WKK

ε (uε)
∣∣ < ε.

This implies that in the third integral in (5.5.1) we can replace uε with ϕk(ε). This also
works for the first integral because ∇ϕk −→ ∇uε in L2(Ω) and we have from the properties
above Hk −→ Hε as k →∞ in L2(Ω) with Hk := −ε∆ϕk + 1

εW
′(ϕk).

For the middle integral we have to consider ϕk := Aεϕk. Since ϕk −→ uε in L2(Ω) and
Aε is a bounded linear operator on L2(Ω) we also get ϕk −→ uε in L2(Ω). Thus we can
replace uε with ϕk(ε) in all three integrals without changing the value of the limits. It
follows that we can assume uε ∈ C3(Ω) (even C∞) without loss of generality for the proof
of Proposition 5.5.2.

Proof of Proposition 5.5.2.
Let Ω, η, ψ be as in the assumptions. Then we have by definition of uε

lim
ε→0

�
Ω
Hεη · ∇uε dLn = lim

ε→0

�
Ω
Hεη · ∇(−ε2∆ + Id)uε dLn.

The existence of the limit on the left-hand side is guaranteed by Lemma 5.2.4. In the
next step we want to shift the differential operator on Hε. This is correct without any
error terms because of (i) from Lemma 5.5.1. We get with the specific choice of ψ

lim
ε→0

�
Ω
Hεη · ∇uε dLn = lim

ε→0

�
Ω
∇uε · η(−ε2∆ + Id)Hε dLn

= lim
ε→0

�
Ω
∇uε · η(−ε2∆ + Id)ψHε dLn.

We want to apply a Cauchy-Schwarz estimate with the inner product induced by the
differential operator in the middle of the integral. However this is only a scalar product
on function spaces whose functions allow for an a partial integration. This is satisfied
here because the test functions make all of the involved functions vanish on the boundary.
Thus we get
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lim
ε→0

�
Ω
∇uε · η(−ε2∆ + Id)[Hεψ] dLn

≤ lim inf
ε→0

[�
Ω
ε
[
∇uε · η

]
(−ε2∆ + Id)

[
∇uε · η

]
dLn

︸ ︷︷ ︸
=:I(1)

ε

�
Ω

1
ε
Hεψ(−ε2∆ + Id)[Hεψ] dLn

︸ ︷︷ ︸
=:I(2)

ε

] 1
2

≤
[

lim sup
ε→0

I(1)
ε lim inf

ε→0
I(2)

ε

] 1
2
. (5.5.2)

To estimate I(1)
ε we use (ii) from Lemma 5.5.1 and get

lim sup
ε→0

I(1)
ε = lim sup

ε→0

�
Ω
ε
[
∇uε · η

][
∇uε · η

]
dLn = lim sup

ε→0

�
Ω
η ⊗ η : ε∇uε ⊗∇uε dLn

≤ lim sup
ε→0

�
Ω
|η|2ε

∣∣∇uε

∣∣∣∣∇uε

∣∣ dLn.

For I(2)
ε we do a partial integration and use (iii) from Lemma 5.5.1

lim inf
ε→0

I(2)
ε = lim inf

ε→0

�
Ω

(1
ε

∣∣Hεψ
∣∣2 + ε

∣∣∇(Hεψ)
∣∣2) dLn

= lim inf
ε→0

�
Ω
|ψ|2

(1
ε

∣∣Hε

∣∣2 + ε
∣∣∇Hε

∣∣2) dLn.

This variational estimate is the central notion for the proof of Theorem 5.2.5.

Proof of Theorem 5.2.5.
Let η ∈ C2

c (Ω, µ;Rn) with ∥η∥L2(Ω,µ;Rn) ≤ 1 and let ψ ∈ C2
c (Ω) with 0 ≤ ψ ≤ 1 and ψ = 1

on supp(η). From Lemma 5.2.4 and Proposition 5.5.2 we have

�
Ω
H⃗V · η dµ = lim

ε→0

�
Ω
Hεη · ∇uε dLn ≤

[
lim sup

ε→0

�
Ω
|η|2 dϑε lim inf

ε→0

�
Ω
|ψ|2 dκε

] 1
2

=
[ �

Ω
|η|2 dϑ

�
Ω
|ψ|2 dκ

] 1
2

.

Now we need the result ϑ = 1
σµ from Theorem 5.4.1. Together with ∥η∥L2(Ω,µ;Rn) ≤ 1 we

get
�

Ω
H⃗V · η dµ ≤

√
1
σ
κ(Ω).

We conclude by taking the supremum over all η ∈ C2
c (Ω;Rn) with ∥η∥L2(Ω,µ;Rn) ≤ 1.

Since V is (n− 1)-rectifiable C1
c (Ω;Rn) is dense in L2(Ω, µ;Rn) by Lemma 7.4. in [Ilm94].

C2
c (Ω;Rn) is dense in C1

c (Ω;Rn) and thus the supremum yields the dual representation of
the L2(Ω, µ;Rn)–norm. Hence we get

�
Ω
σ
∣∣H⃗V

∣∣2 dµ ≤ κ(Ω) and thus
[
σ
∣∣H⃗V

∣∣2µ](Ω) ≤ κ(Ω).
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6 Convergence towards mean cur-
vature flow of solutions of the
Karali-Katsoulakis equation

In this chapter we prove the existence of weak solutions to the Karali-Katsoulakis equation

−ε∂tuε = (−ε2∆ + Id)
(
− ε∆uε + 1

ε
W ′(uε)

)
(6.0.1)

for ε > 0 and discuss convergence results as ε→ 0. This equation to our knowledge was
first considered by Karali and Katsoulakis in their paper [KK07] from 2007. The authors
start with a classical solution to mean curvature flow and prove that there exist so-
lutions to (6.0.1) that converge towards the given classical solution of mean curvature flow.

Since classical solutions of the mean curvature flow can cease to exist at singularities such
as topology changes, they can not be long time solutions in general. Here the concept of
weak solutions is advantageous as they allow for singularities.

As explained in the introduction of Chapter 4, the PDE (6.0.1) has gradient flow structure
as the right-hand side is the gradient of the diffuse perimeter 2.4.1 with respect to the
metric induced by the solution operator Aε from Lemma 3.1.10. Thus Pε(uε(t, ·)) will
decrease in time if uε solves (6.0.1).

6.1 Existence of solutions for the diffuse equation
We will apply an approximation method based on contributions from De Giorgi and put
together by Almgren-Taylor-Wang in their paper [ATW93] in 1993. It has also been
used in [LS95] and [JKO98]. Recently it was applied in [KL21] where it was proven
that solutions of the Allen-Cahn equation converge towards a De Giorgi varifold type
solutions for mean curvature flow; see Definition 2.5.3. The general approach to the
proof of existence is classical. We define functions that solve a discretized version of
the equation, similar to the Euler method. Then we use a priori estimates to generate
compactness in a suitable way, combined with an Aubin-Lions-Dubinskii embedding. The
last step is to prove that limit points of the constructed sequence solve the equation. The
general approach is well-known, and thouroughly described in [Sch13] for the example of
the heat-equation.

Notations 6.1.1.
We use the definitions and notations from section 5.1 regarding the double-well potential
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W, the profiles q0, q0, and the constants c0, σ. Let T > 0, ε > 0, n ∈ N, Ω ⊆ Rn open and
bounded with C3-boundary and outer unit normal field ν. We write ΩT := (0, T )× Ω. Let
u0,ε ∈ H1(Ω) ∩ L4(Ω).

Writing Hε := −ε∆uε + 1
εW

′(uε) we consider

−ε∂tuε = (−ε2∆ + Id)Hε in ΩT , (6.1.1)
uε(0, ·) = u0,ε in Ω, (6.1.2)
∂νuε = 0 on (0, T )× ∂Ω, (6.1.3)
∂νHε = 0 on (0, T )× ∂Ω. (6.1.4)

To define all occuring terms in the weak formulation we demand the following. We call
uε ∈ L2(0, T ;H1(Ω))∩H1(0, T ;H1(Ω)′)∩L3(0, T ;L3(Ω)) a weak solution to (6.1.1)-(6.1.4)
if for all ϕ ∈ C∞

c ([0, T )× Ω) we have
�

Ω
εϕ(0, x)Aεu0,ε(x) dx+

� T

0

�
Ω
εAεuε∂tϕ dLn dL1 (6.1.5)

=
� T

0

�
Ω

(
ε∇uε · ∇ϕ+ 1

ε
W ′(uε)ϕ

)
dLn dL1.

Here Aε = (−ε2∆ + Id)−1 : H1(Ω)′ −→ H1(Ω) is the solution operator introduced in
Lemma 3.1.10. The Neumann boundary condition for Hε is encoded in Hε = −εAε∂tuε

and Definition 3.1.10 of Aε. Recall that bv (3.1.14) we have for all ψ, ϕ ∈ H1(Ω)′

⟨Aεϕ, ψ⟩H1(Ω)′ = ⟨Aεψ, ϕ⟩H1(Ω)′ .

The following Theorem is the main result of this section. It provides the first long-term
existence result for weak solutions of (6.1.1)-(6.1.4).

Theorem 6.1.2 (Existence and regularity of solutions).
There exists a weak solution uε to (6.1.1)-(6.1.4) with the additional regularity

uε ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)′) ∩ C0([0, T ];L2(Ω))
∩L∞(0, T ;H1(Ω)) ∩ L∞(0, T ;L4(Ω)) ∩ L6(0, T ;L6(Ω))

and

lim
t→0

uε(t, ·) = u0,ε in L2(Ω).

Additionally, if n ≤ 3

• uε ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H1(Ω)).

• lim
t→0
Pε(uε(t, ·)) = Pε(u0,ε).

• The Cahn-Hilliard energy of the solution as a function in time

(0, T ) ∋ t 7−→ Pε(uε(t, ·)) =
�

Ω

(ε
2
∣∣∇uε(t, ·)

∣∣2 + 1
ε
W (uε(t, ·))

)
dLn

lies in W 1,1(0, T ).
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• For a.e. t ∈ (0, T ) we have the energy-dissipation

Pε(uε(t, ·)) +
� t

0

�
Ω

(1
ε
|Hε|2 + ε

∣∣∇Hε

∣∣2) dLn dL1 = Pε(uε,0). (6.1.6)

Since ε > 0 is fixed in this section we will not always denote if objects are dependent on ε.

The proof of Theorem 6.1.2 consists of several steps and is done throughout the remainder
of this section. First we consider a time discretization and prove that solutions to the
discretized equation exist. Starting with u(0) := u0,ε ∈ H1(Ω) ∩ L4(Ω) from (6.1.2) we
obtain time steps iteratively as described in the following lemma.

Lemma 6.1.3 (Existence of minimizers for discretized energy).
Given parameters ε, h > 0, and a function u(k) ∈ H1(Ω) for k ∈ N0 there exists a
minimizer u(k+1) ∈ H1(Ω) ∩ L4(Ω) of E : H1(Ω) −→ [0,∞],

E(u) :=
�

Ω

(ε
2
∣∣∇u∣∣2 + 1

ε
W (u)

)
dLn + ε

2h

�
Ω

(u− u(k))Aε(u− u(k)) dLn. (6.1.7)

u(k+1) is a weak solution to

−εAε

(
u(k+1) − u(k)

h

)
= −ε∆u(k+1) + 1

ε
W ′(u(k+1)) in Ω (6.1.8)

∂νu
(k+1) = 0 on ∂Ω.

Proof. We use the direct method from the calculus of variations. Since all of the terms are
non-negative the infimum exists in R. Let (uj)j∈N be a minimizing sequence. Since the
sequence (E(uj))j∈N is converging there exists Λ > 0 such that supj E(uj) ≤ Λ. Since ε > 0
is fixed we immediately get that (uj)j∈N is bounded in H1(Ω). Since W (t) = (1− t2)2

there exists R0 > 1 such that 1
2 t

4 ≤W (t) for all |t| > R0. This yields
�

Ω
|uj |4 dLn =

�
{|uj |≤R0}

|uj |4 dLn +
�

{|uj |>R0}
|uj |4 dLn (6.1.9)

≤ R4
0Ln(Ω) + 2

�
Ω
W (uj) dLn ≤ R4

0Ln(Ω) + 2εE(uj) ≤ C(Ω,Λ).

Thus (uj)j∈N is bounded in L4(Ω). Both H1(Ω) and L4(Ω) are reflexive thus we can find
limit functions u∗ ∈ H1(Ω), ũ∗ ∈ L4(Ω) such that up to a subsequence we have as j →∞

uj
w−→ u∗ in H1(Ω) and uj

w−→ ũ∗ in L4(Ω).

Both of these convergences imply weak convergence in L2(Ω) so by uniqueness of weak
limits we have u∗ = ũ∗ ∈ H1(Ω) ∩ L4(Ω). The weak lower semi-continuity of the norms
(both H1 and L4) imply

Pε(u∗) ≤ lim inf
j→∞

Pε(uj). (6.1.10)

To prove that u∗ is a minimizer of E we want to replace Pε with E in (6.1.10). Therefore
we need an analogous estimate for the second integral in (6.1.7). We get this by using
that Aε : L2(Ω) −→ L2(Ω) is a compact operator, thus it turns weak convergence into
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strong convergence. Now we have the L2(Ω)-product of the weakly convergent sequence
(uj − u(k))j∈N (k is fixed) with the strongly convergent sequence (Aε(uj − u(k)))j∈N which
gives convergence towards the product of the limits. These arguments combined result in

inf
H1(Ω)

E ≤ E(u∗) ≤ lim inf
j→∞

E(uj) = inf
H1(Ω)

E .

This implies that u∗ is a minimizer of E and we define u(k+1) := u∗ ∈ H1(Ω) ∩ L4(Ω).
Now that we have a minimizer we consider the Euler-Lagrange equation. For any
η ∈ H1(Ω) we have

0 = ∂δE(u(k+1) + δη)
∣∣∣
δ=0

=
�

Ω

(
ε∇u(k+1) · ∇η + 1

ε
W ′(u(k+1))η

)
dLn + ε

h

�
Ω
ηAε(u(k+1) − u(k)) dLn. (6.1.11)

For the last term we used that Aε is self-adjoint in L2(Ω). It follows that u(k+1) is a weak
solution to (6.1.8).

We define H(k) := −∆u(k) + 1
εW

′(u(k)) ∈ H1(Ω)′ for k ∈ N0. By (6.1.8) and the properties
of Aε it follows that H(k) has better regularity, in fact H(k) ∈ H1(Ω). From (H(k))k∈N
and (u(k))k∈N we construct approximate solutions defined on ΩT .

Definition 6.1.4.
Let h > 0 and t ∈ [0, T ) then there exists a unique k ∈ N0 such that t ∈ [hk, h(k + 1)).
We define uh, Hh : ΩT −→ R by

uh(t, x) :=
{
u(k)(x), if h(k + 1) < T
0 if h(k + 1) ≥ T

}
for t ∈ [hk, h(k + 1))

and Hh(t, x) :=
{
H(k)(x), if h(k + 1) < T
0 if h(k + 1) ≥ T

}
for t ∈ [hk, h(k + 1)).

We also define the piecewise affine functions in time uh, Hh : ΩT −→ R

uh(t, x) =
(

1− t− hk
h

)
u(k)(x) + t− hk

h
u(k+1)(x) for t ∈ [hk, h(k + 1)), (6.1.12)

Hh(t, x) =
(

1− t− hk
h

)
H(k)(x) + t− hk

h
H(k+1)(x) for t ∈ [hk, h(k + 1)). (6.1.13)

By definition of uh we get for every x ∈ Ω and t ∈ (0, T − h)

∂tuh(t, x) = ∂h
t uh(t, x) and ∂tHh(t, x) = ∂h

t Hh(t, x),

where ∂h
t is the discrete partial derivative defined by

∂h
t ϕ(t, x) := ϕ(t+ h, x)− ϕ(t, x)

h
for any real valued function ϕ and h ̸= 0.

Note that Hh = −εAε∂
h
t uh = −ε∆uh + 1

εW
′(uh) by (6.1.8). Since u(k), H(k) ∈ H1(Ω) for

all k ∈ N we have

120



uh ∈ L1(0, T ;H1(Ω)), uh ∈ C0([0, T ];H1(Ω)),
Hh ∈ L1(0, T ;H1(Ω)), and Hh ∈ C0([0, T ];H1(Ω)).

Furthermore we obtain that

∂νuh = 0 = ∂νuh and ∂νHh = 0 = ∂νHh on ∂Ω

because of ∂νu
(k) = 0 on ∂Ω for all k ∈ N and Hh = −εAε∂

h
t uh.

For all η ∈ H1(Ω) it follows from (6.1.11) and ∂νuh = 0

−
�

Ω
ε∂tuhAεη dLn =

�
Ω

(
ε∇uh · ∇η + 1

ε
W ′(uh)η

)
dLn =

�
Ω
ηHh dLn. (6.1.14)

We want to extend this identity such that it also holds for η ∈ H1(Ω)′. To prove that let
η ∈ H1(Ω), we embed η into H1(Ω)′ by defining

⟨ϕ, η⟩H1(Ω)′ :=
�

Ω
ϕη dLn for all ϕ ∈ H1(Ω).

In this sense we have that H1(Ω) is dense in H1(Ω)′. Note that with this identification we
can not use Riesz’ representation Theorem for Hilbert spaces as we used the L2(Ω)-scalar
product instead of the H1(Ω)-scalar product. Because of this density, Hh ∈ H1(Ω), and
Aε : H1(Ω)′ −→ H1(Ω) we get that (6.1.14) can be extended to hold for η ∈ H1(Ω)′, i.e.
we have for all η ∈ H1(Ω)′

−
〈
εAε∂tuh, η

〉
H1(Ω)′

= −
�

Ω
ε∂tuhAεη dLn = ⟨Hh, η⟩H1(Ω)′ . (6.1.15)

Lemma 6.1.5 (Precompactness of (uh)h>0).
Assume (uh)h>0, (uh)h>0, (Hh)h>0 are the one-parameter families of functions constructed
above. Then there exist

uε ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′) ∩ L∞(0, T ;L4(Ω)), Hε ∈ L2(0, T ;H1(Ω))

such that we have up to a subsequence as h→ 0

uh −→ uε in L3(0, T ;L3(Ω)) (6.1.16)
and Hh

w−→ Hε in L2(0, T ;H1(Ω)), (6.1.17)

with Hε = −ε∆uε + 1
ε
W ′(uε) in L2(0, T ;H1(Ω)′).

Proof. Since u(k) is admissible for the minimizing problem for u(k+1) in (6.1.7) we get

Pε(u(k+1)) + ε

2h

�
Ω

(u(k+1) − u(k))Aε(u(k+1) − u(k)) dLn ≤ Pε(u(k)).

With a telescope sum argument and u(0) = u0,ε we obtain for any j ∈ N

Pε(u(j+1)) + ε

2h

j∑
k=0

�
Ω

(u(k+1) − u(k))Aε(u(k+1) − u(k)) dLn ≤ Pε(u0,ε). (6.1.18)
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This yields bounds independent from j

�
Ω

∣∣∇u(j)∣∣2 dLn ≤ 2
ε
Pε(u0,ε) and

�
Ω
W (u(j)) dLn ≤ εPε(u0,ε).

By the same argument as in the proof of Lemma 6.1.3 we can find a bound for ∥u(j)∥L4(Ω)
independent from j

∥u(j)∥L4(Ω) ≤ C(Ω, u0,ε, ε).

Thus (u(j))j∈N is uniformly bounded in H1(Ω) ↪→ H1(Ω)′ and since Aε is continuous
we conclude by (6.1.8) that (H(j))j∈N is uniformly bounded in H1(Ω) as well and thus
Hh, Hh ∈ L∞(0, T ;H1(Ω)).

The uniform bounds for u(j) also yield bounds for uh independent from h, t. We obtain
that

∥uh∥L∞(0,T ;H1(Ω)), ∥uh∥L∞(0,T ;L4(Ω)) ≤ C(Ω, T, u0,ε, ε). (6.1.19)

Thus uh is uniformly bounded in L∞(0, T ;H1(Ω)) and in L∞(0, T ;L4(Ω)). We observe

∥uh∥4L∞(0,T ;L4(Ω)) = ess-sup
t∈[hk,h(k+1))

k∈N

�
Ω

∣∣∣∣(1− t− hk
h

)
u(k)(x) + t− hk

h
u(k+1)(x)

∣∣∣∣4 dx

Noting that t ∈ [hk, h(k + 1)) is equivalent to t−hk
h ∈ [0, 1) and using the convexity of the

function (0,∞) ∋ r 7−→ |r|4 we get that

∥uh∥4L∞(0,T ;L4(Ω)) ≤ ess-sup
s∈[0,1)

�
Ω

∣∣∣(1− s)u(k)(x) + su(k+1)(x)
∣∣∣4 dx

≤ ess-sup
s∈[0,1)

�
Ω

(
(1− s)

∣∣u(k)(x)
∣∣4 + s

∣∣u(k+1)(x)
∣∣4) dx

= ess-sup
s∈[0,1)

(
(1− s)∥u(k)∥4L4(Ω) + s∥u(k+1)∥4L4(Ω)

)
≤ C(Ω, u0,ε, ε).

We can use the technique similarly on ∇uh for a bound in L∞(0, T ;L2(Ω)). We conclude
that (uh)h>0 is uniformly bounded in L∞(0, T ;H1(Ω)) ↪→ L3(0, T ;H1(Ω)) and in
L∞(0, T ;L4(Ω)) ↪→ L4(0, T ;L4(Ω)).

Returning to (6.1.18) we rewrite the estimate for uh. For t ∈ [hj, h(j + 1)) we have
Pε(uh(t, ·)) = Pε(u(j)) and

1
2

j−1∑
k=0

h

�
Ω
ε
u(k+1) − u(k)

h
Aε

u(k+1) − u(k)

h
dLn ≥ 1

2

� t−h

0

�
Ω
ε∂h

t uhAε∂
h
t uh dLn dL1.

We rewrite (6.1.18) and obtain that for all t ∈ [h, T ]

Pε(uh(t, ·)) + ε

2

� t−h

0

�
Ω
∂h

t uhAε∂
h
t uh dLn dL1 ≤ Pε(u0,ε). (6.1.20)

122



We take the supremum over t and get

sup
t∈[0,T ]

Pε(uh(t, ·)) + 1
2

� T −h

0

�
Ω
ε∂h

t uhAε∂
h
t uh dLn dL1 ≤ 2Pε(u0,ε). (6.1.21)

To improve this estimate we establish a bound for (∂h
t uh)h>0 in L2(0, T ;H1(Ω)′). Let

t ∈ (0, T ), η ∈ H1(Ω), we have η = Aε(−ε2∆ + Id)η because (−ε2∆ + Id)η ∈ H1(Ω)′. We
estimate �

Ω
∂tuh(t, ·)η dLn =

�
Ω
∂h

t uh(t, ·)Aε(−ε2∆ + Id)η dLn (6.1.22)

=
〈
Aε∂

h
t uh(t, ·), (−ε2∆ + Id)η

〉
H1(Ω)′

=
�

Ω

(
ε2∇Aε∂

h
t uh(t, ·) · ∇η +Aε∂

h
t uh(t, ·)η

)
dLn.

Now we apply the Cauchy-Schwarz estimate for the H1(Ω)-scalar product and obtain that
�

Ω
∂tuh(t, ·)η dLn ≤

[ �
Ω

[
ε2∣∣∇Aε∂

h
t uh(t, ·)

∣∣2+ ∣∣Aε∂
h
t uh(t, ·)

∣∣2] dLn

·
�

Ω

[
ε2∣∣∇η∣∣2+ |η|2] dLn

] 1
2

≤
( �

Ω
Aε∂

h
t uh(t, ·)(−ε2∆ + Id)Aε∂

h
t uh(t, ·) dLn

) 1
2

∥η∥H1(Ω)

≤
( �

Ω
∂h

t uh(t, ·)Aε∂
h
t uh(t, ·) dLn

) 1
2

∥η∥H1(Ω).

It follows that the mapping η 7−→
�

Ω ∂
h
t uhη dLn lies in H1(Ω)′. Slightly abusing notation

we call this mapping ∂h
t uh without denoting the embedding into H1(Ω)′. By taking the

supremum over all η ∈ H1(Ω) with ∥η∥H1(Ω) ≤ 1 we get

∥∂h
t uh(t, ·)∥H1(Ω)′ ≤

(�
Ω
∂h

t uh(t, ·)Aε∂
h
t uh(t, ·) dLn

) 1
2

.

Squaring and integrating in time results in

∥∂h
t uh∥2L2(0,T −h;H1(Ω)′) ≤

� T −h

0

�
Ω
∂h

t uhAε∂
h
t uh dLn dL1 ≤ 4

ε
Pε(u0,ε).

Since ∂h
t uh(t, ·) = ∂tuh(t, ·) we also get that ∂tuh is uniformly bounded in L2(0, T ;H1(Ω)′).

We have

(uh)h>0 is bounded in L3(0, T ;H1(Ω)) ∩ L4(0, T ;L4(Ω)),
(∂tuh)h>0 is bounded in L2(0, T ;H1(Ω)′), and

H1(Ω) ∩ L4(Ω) c
↪→ L3(Ω) ↪→ H1(Ω)′.
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We apply a generalized Aubin-Lion-Dubinskii’s Theorem; see Lemma 7.7 in [Rou05].
It follows that there exists a limit function uε ∈ L3(0, T ;L3(Ω)) such that up to a
subsequence we have

uh −→ uε in L3(0, T ;L3(Ω)). (6.1.23)

Lemma 11.3 from [Sch13] implies uh −→ uε in L2(0, T ;L2(Ω)).

We proved that (uh)h>0 is bounded in L∞(0, T ;L4(Ω)), L∞(0, T ;H1(Ω)), and we have
a bound for (∂tuh)h>0 in L2(0, T ;H1(Ω)′). Since L1(0, T ;L 4

3 (Ω)), L1(0, T ;H1(Ω)′), and
L2(0, T ;H1(Ω)) are separable and

L∞(0, T ;L4(Ω)) ∼= L1(0, T ;L
4
3 (Ω))′, L∞(0, T ;H1(Ω)) ∼= L1(0, T ;H1(Ω)′)′,

and L2(0, T ;H1(Ω)′) ∼= L2(0, T ;H1(Ω))′

there exists a subsequence h→ 0 such that

uh
w∗
−→ uε in L1(0, T ;L

4
3 (Ω))′ ∼= L∞(0, T ;L4(Ω)).

The limit function is uε because L1(0, T ;L 4
3 (Ω))′ ↪→ L2(0, T ;L2(Ω))′ and in the latter

space weak∗-convergence is equivalent to w-convergence of the embedded objects in
L2(0, T ;L2(Ω)). We proceed similar for L∞(0, T ;H1(Ω)) and conclude

uh
w∗
−→ uε in L1(0, T ;H1(Ω)′)′ ∼= L∞(0, T ;H1(Ω)).

Next we show ∂tuε ∈ L2(0, T ;H1(Ω)′). We know that ∂tuh has a weak∗-cluster
point vε in L2(0, T ;H1(Ω)′) by the previous argument. On the other hand we have
uh −→ uε in L2(0, T ;L2(Ω)) and thus ∂tuh −→ ∂tuε in H−1(0, T ;L2(Ω)). Both
imply weak∗-convergence in H−1(0, T ;H1(Ω)′) and thus we conclude by uniqueness of
weak∗-limits ∂tuε = vε ∈ L2(0, T ;H1(Ω)′) and thus uε ∈ H1(0, T ;H1(Ω)′).

Since uh −→ uε in L2(0, T ;L2(Ω)) we also have u2
h −→ u2

ε in L1(0, T ;L1(Ω)). Furthermore
(u2

h)h>0 is bounded in L2(0, T ;L2(Ω)) because of the bound in L∞(0, T ;L4(Ω)). Thus
there exists a subsequence and a limit function w ∈ L2(0, T ;L2(Ω)) such that u2

h
w−→ w

in L2(0, T ;L2(Ω)) ↪→ L1(0, T ;L1(Ω)). By uniqueness of weak limits in L1(0, T ;L1(Ω)) we
conclude w = u2

ε.

Lastly we consider Hh. We rewrite (6.1.8) and get for a.e. t ∈ (h, T ) that

−εAε∂tuh(t, ·) = Hh(t, ·).

This identity holds in H1(Ω). We apply ∂tuh(t, ·) ∈ H1(Ω)′ to both sides plug both sides
and get〈

εAε∂tuh(t, ·), ∂tuh(t, ·)
〉

H1(Ω)′
= −

〈
Hh(t, ·), ∂tuh(t, ·)

〉
H1(Ω)′

= −
〈
Aε(−ε2∆ + Id)Hh(t, ·), ∂tuh(t, ·)

〉
H1(Ω)′

.
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Since Hh(t, ·) ∈ H1(Ω) we have (−ε2∆ + Id)Hh(t, ·) ∈ H1(Ω)′ and thus we get with
(6.1.15)〈
−Aε∂tuh(t, ·), (−ε2∆ + Id)Hh(t, ·)

〉
H1(Ω)′

= 1
ε

〈
Hh(t, ·), (−ε2∆ + Id)Hh(t, ·)

〉
H1(Ω)′

=
�

Ω

1
ε

(
|Hh(t, ·)|2 + ε2∣∣∇Hh(t, ·)

∣∣2) dLn.

We plug this into (6.1.20) and get for all t ∈ (h, T ]

Pε(uh(t, ·)) + 1
2

� t−h

0

�
Ω

1
ε

(
|Hh|2 + ε2∣∣∇Hh

∣∣2) dLn dL1 ≤ Pε(u0,ε). (6.1.24)

Since ε is fixed choosing t = T implies that (Hh)h>0 is uniformly bounded in
L2(0, T ;H1(Ω)). Thus there exists a limit function Hε ∈ L2(0, T ;H1(Ω)) such that
up to a subsequence we have as h→ 0

Hh
w−→ Hε in L2(0, T ;H1(Ω)).

We can apply the limit h → 0 to (6.1.24), use uh
w∗
−→ uε in L∞(0, T ;H1(Ω)) and in

L∞(0, T ;L4(Ω)), Hh
w−→ Hε in L2(0, T ;H1(Ω)), and the weakly and weakly∗ lower

semi-continuity of the norm to obtain for a.e. t ∈ (0, T )

Pε(uε(t, ·)) + 1
2

� t

0

�
Ω

1
ε

(
|Hε|2 + ε2∣∣∇Hε

∣∣2) dLn dL1 ≤ Pε(u0,ε). (6.1.25)

We can identify Hε by combining previous convergences. Let η ∈ C1
c (ΩT ) then we have

by Hh
w−→ Hε in L2(0, T ;L2(Ω))
� T

0

�
Ω
Hεη dLn dL1 h→0←−

� T

h

�
Ω
Hhη dLn dL1

=
� T

h

�
Ω

(
ε∇uh · ∇η + 1

ε
W ′(uh)η

)
dLn dL1

=
� T

h

�
Ω

(
ε∇uh · ∇η −

4
ε

(
uh − u3

h

)
η
)

dLn dL1.

Since η is bounded we get ηuh −→ ηuε in L2(0, T ;L2(Ω)). Furthermore we have u2
h

w−→ u2
ε

in L2(0, T ;L2(Ω)). Combining these we get the convergence of ⟨u2
h|ηuh⟩L2(0,T ;L2(Ω)). Using

this and uh
w−→ uε in L2(0, T ;H1(Ω)) we get

� T

h

�
Ω

(
ε∇uh · ∇η −

4
ε

(
uh − u3

h

)
η
)

dLn dL1

h→0−→
� T

0

�
Ω

(
ε∇uε · ∇η −

4
ε

(
uε − u3

ε

)
η
)

dLn dL1

=
〈
η,−ε∆uε + 1

ε
W ′(uε)

〉
L2(0,T ;H1(Ω))′

.

Since C1
c (ΩT ) is dense in L2(0, T ;H1(Ω)) we conclude Hε = −ε∆uε + 1

εW
′(uε) in

L2(0, T ;H1(Ω)′).
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At last we can prove Theorem 6.1.2.

Proof of Theorem 6.1.2. We start by showing that the limit function uε constructed in
Lemma 6.1.5 is a weak solution to (6.1.1)-(6.1.4). Take any ϕ ∈ C∞

c ([0, T )×Ω). For fixed
t ∈ [0, T ) we apply (6.1.14) and get

−
�

Ω
ε∂tuhAεϕ(t, ·) dLn =

�
Ω

(
ε∇uh · ∇ϕ(t, ·) + 1

ε
W ′(uh)ϕ(t, ·)

)
dLn

=
�

Ω
ϕ(t, ·)Hh(t, ·) dLn.

We integrate in time and use Fubini’s Theorem and a partial integration in time on the
left-hand side

−
�

Ω

� T

0
ε∂tuhAεϕ dL1 dLn = −

�
Ω
εuhAεϕ

∣∣∣T
0

dLn +
�

Ω

� T

0
εuh∂tAεϕ dL1 dLn

=
�

Ω
εϕ(0, ·)Aεu0,ε dLn +

� T

0

�
Ω
εuh∂tAεϕ dLn dL1.

Thus we have
�

Ω
εϕ(0, ·)Aεu0,ε dLn +

� T

0

�
Ω
εuh∂tAεϕ dLn dL1 =

� T

0

�
Ω
ϕHh dLn dL1.

Now we consider the limit h→ 0. We apply (6.1.16) on the second term on the left-hand
side and (6.1.17) on the right-hand side. We get

�
Ω
εϕ(0, ·)Aεu0,ε dLn +

� T

0

�
Ω
εAεuε∂tϕ dLn dL1

=
� T

0

�
Ω

(
ε∇uε · ∇ϕ+ 1

ε
W ′(uε)ϕ

)
dLn dL1

which is the weak formulation introduced in (6.1.5). Next we prove the higher regularity.
We have Hε ∈ L2(0, T ;L2(Ω)) and thus

∥Hε∥2L2(0,T ;L2(Ω)) =
� T

0

�
Ω

∣∣∣− ε∆uε + 1
ε
W ′(uε)

∣∣∣2 dLn dL1 (6.1.26)

=
� T

0

�
Ω

(∣∣ε∆uε

∣∣2 − 2∆uεW
′(uε) + 1

ε2
∣∣W ′(uε)

∣∣2) dLn dL1

=
� T

0

�
Ω

(∣∣ε∆uε

∣∣2 + 2
∣∣∇uε

∣∣2W ′′(uε) + 1
ε2
∣∣W ′(uε)

∣∣2) dLn dL1.

In the last step we applied Theorem 8.3.6. The boundary integral vanishes because of
the Neumann boundary conditions of uε. Using W ′′(r) = 12r2 − 4 for r ∈ R we get the
estimate

� T

0

�
Ω

(
ε2∣∣∆uε

∣∣2 + 24|uε|2
∣∣∇uε

∣∣2 + 1
ε2
∣∣W ′(uε)

∣∣2) dLn dL1

≤ ∥Hε∥2L2(0,T ;L2(Ω)) + 8∥uε∥2L2(0,T ;H1(Ω)) (6.1.27)
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and conclude ∆uε ∈ L2(0, T ;L2(Ω)). Since ∂Ω is C3 we conclude by elliptic regularity
theory that uε ∈ L2(0, T ;H2(Ω)). Furthermore we conclude uε ∈ L6(0, T ;L6(Ω)) because
W ′ is a polynomial of degree three. In fact we can use a similar argument as in the proof
of Lemma 6.1.3, where we extracted a uniform bound for (uj)j∈N in L4(Ω) from a bound
on (W (uj))j∈N in L1(Ω).

We have uε ∈ L2(0, T ;H1(Ω)) and ∂tuε ∈ L2(0, T ;H1(Ω)′). By Lemma 7.3 from [Rou05]
we conclude uε ∈ C0([0, T ];L2(Ω)) and thus the limt→0 uε(t, ·) exists in L2(Ω). From the
initial conditions of the PDE We conclude limt→0 uε(t, ·) = u0,ε in L2(Ω). It remains to
prove the additional claims for n ≤ 3.

If n ≤ 3 we prove ∇[W ′(uε)] ∈ L2(0, T ;L2(Ω;Rn)). With W ′′(r) = 12r2 − 4 and thus
|W ′′(r)|2 ≤ 288r4 + 32 in mind we estimate
� T

0

�
Ω

∣∣∇W ′(uε)
∣∣2 dLn dL1 =

� T

0

�
Ω
|W ′′(uε)|2

∣∣∇uε

∣∣2 dLn dL1

≤ 32∥uε∥2L2(0,T ;H1(Ω)) + 288
� T

0

�
Ω
|uε|4

∣∣∇uε

∣∣2 dLn dL1.

It is sufficient to control the last integral. Using a Hölder-estimate and the Sobolev
embedding H1(Ω) ↪→ L6(Ω) we continue

� T

0

�
Ω
|uε|4

∣∣∇uε

∣∣2 dLn dL1 ≤
� T

0

[�
Ω
|uε|6 dLn

] 2
3
[�

Ω

∣∣∇uε

∣∣6 dLn
] 1

3
dL1 (6.1.28)

≤
� T

0
∥uε∥4L6(Ω)∥∇uε∥2L6(Ω;Rn) dL1

≤ C(Ω)
� T

0
∥uε∥4H1(Ω)∥uε∥2H2(Ω) dL1

≤ C(Ω)∥uε∥4L∞(0,T ;H1(Ω))

� T

0
∥uε∥2H2(Ω) dL1

≤ C(Ω)∥uε∥4L∞(0,T ;H1(Ω))∥uε∥2L2(0,T ;H2(Ω)).

Since the right-hand side is finite it follows

∇W ′(uε) ∈ L2(0, T ;L2(Ω;Rn)) and thus W ′(uε) ∈ L2(0, T ;H1(Ω)). (6.1.29)

Finally we have

−ε∆uε = Hε −
1
ε
W ′(uε) ∈ L2(0, T ;H1(Ω))

and thus uε ∈ L2(0, T ;H3(Ω)) by elliptic regularity theory. Furthermore
we get with Lemma 7.3 from [Rou05] that uε ∈ C0([0, T ];H1(Ω)) because
we have the regularity uε ∈ L2(0, T ;H3(Ω)), ∂tuε ∈ L2(0, T ;H1(Ω)′), and
H3(Ω) c

↪→ H1(Ω) ↪→ H1(Ω)′ ↪→ H3(Ω)′.

It also follows limt→0 uε(t, ·) = u0,ε in H1(Ω) ↪→ L4(Ω). We conclude

lim
t→0
Pε(uε(t, ·)) = Pε(u0,ε)
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because the integrand in the definition of Pε is controlled by the norms inH1(Ω) and L4(Ω).

We have Pε(uε) ∈ L1(0, T ) because of uε ∈ L2(0, T ;H1(Ω)) ∩ C0(ΩT ). The next step is
to show the same for the weak derivative. Let ψ ∈ C1

c (0, T ), we use Fubini’s Theorem
and partial integrations (in space and time)

−
� T

0
Pε(uε)ψ′ dL1 = −

�
Ω

� T

0

(ε
2
∣∣∇uε

∣∣2 + 1
ε
W (uε)

)
ψ′ dL1 dLn

=
� T

0
ψ(t)

(
ε
〈
∇uε(t, ·),∇∂tuε(t, ·)

〉
H2(Ω)′

+ 1
ε

〈
W ′(uε(t, ·)), ∂tuε(t, ·)

〉
H1(Ω)′

)
dt

=
� T

0
ψ(t)

〈
Hε(t, ·), ∂tuε(t, ·)

〉
H1(Ω)′

dt

=
� T

0
ψ(t)

〈
Aε∂tuε(t, ·), (−ε2∆ + Id)Hε(t, ·),

〉
H1(Ω)′

dt.

We apply (6.1.1) and get
� T

0
ψ(t)

〈
Aε∂tuε(t, ·), (−ε2∆ + Id)Hε(t, ·)

〉
H1(Ω)′

dt

= −
� T

0
ψ(t)

�
Ω

1
ε

〈
Hε, (−ε2∆ + Id)Hε(t, ·),

〉
H1(Ω)′

dt

= −
� T

0
ψ

�
Ω

(1
ε
|Hε|2 + ε

∣∣∇Hε

∣∣2) dLn dL1.

Since Hε ∈ L2(0, T ;H1(Ω)) we conclude

∂tPε(uε(t, ·)) = −WKK
ε (uε(t, ·)) ∈ L1(0, T )

and thus Pε(uε) ∈W 1,1(0, T ). Since uε ∈ C0([0, T ];H1(Ω)) we also have Pε(uε) ∈ C0[0, T ].
From Theorem 2.2.8 and the continuity of Pε(uε) at t = 0 we deduce that for a.e. t ∈ (0, T )

Pε(uε(t, ·)) +
� t

0
WKK

ε (uε(s, ·)) ds = Pε(u0,ε),

which concludes the proof.

6.2 Construction of convergent subsequences as ε→ 0
In the last section ε > 0 was fixed and thus no assumption on the initial data with respect
to ε was necessary. In this section we establish compactness results for the solutions and
the induced measures as ε→ 0. To achieve this we need additional assumptions.

Assumption 6.2.1 (Well-prepared initial data).
We use Notations 6.1.1. Let n ≤ 3, u0,ε ∈ H1(Ω) ∩ L4(Ω), and assume there exist Λ > 0
and µ0 ∈ C0

0 (Ω)′ such that for µ0
ε :=

(
ε
2
∣∣∇u0,ε

∣∣2 + 1
εW (u0,ε)

)
Ln Ω ∈ C0

0 (Ω)′ we have
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sup
ε>0

µ0
ε(Ω) ≤ Λ

2 , (6.2.1)

lim
ε→0

µ0
ε(Ω) = µ0(Ω), (6.2.2)

and µ0
ε

w∗
−→ µ0 as ε→ 0 in C0

0 (Ω)′.

Let uε ∈ L2(0, T ;H1(Ω))∩H1(0, T ;H1(Ω)′)∩L3(0, T ;L3(Ω)) be a weak solution to (6.1.1)-
(6.1.4) such that (6.1.6) holds for a.e. t ∈ (0, T ). Furthermore we consider a sequence of
positive numbers with ε→ 0.

Remark.

• Note µ0
ε(Ω) = Pε(u0,ε).

• The energy-dissipation (6.1.6) immediately implies

uε ∈ L∞(0, T ;H1(Ω)) ∩ L∞(0, T ;L4(Ω)) and Hε ∈ L2(0, T ;H1(Ω))

with Hε := −ε∆uε + 1
εW

′(uε) as before.

• With the same calculation as in (6.1.26) and (6.1.27) we even get

uε ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H1(Ω)).

Corollary 6.2.2 (A priori bounds from the energy-dissipation).
Let Assumptions 6.2.1 hold. Then we have

ess-sup
t∈[0,T )

Pε(uε(t, ·)) +
� T

0

�
Ω

(1
ε
|Hε|2 + ε

∣∣∇Hε

∣∣2) dLn dL1 ≤ 2Pε(u0,ε) ≤ Λ. (6.2.3)

Analogously to the proof of Theorem 6.1.2, higher regularity implies that

lim
t→0

uε(t, ·) = u0,ε in H1(Ω), L4(Ω), and a.e. in Ω.

Proof. Let ε > 0 be arbitrary. The energy-dissipation follows from (6.1.6) and (6.2.1).
The convergence of uε(t, ·) as t→ 0 follows from uε ∈ C0([0, T ];H1(Ω)). This also implies
the convergence a.e. in Ω for a subsequence. To prove that this holds for the entire
sequence t → 0 we assume that there exist ε, τ > 0, a subsequence (tl)l∈N, and A ⊆ Ω
with Ln(A) > 0 such that for all x ∈ A

|uε(tl, x)− u0,ε(x)| > τ for all l ∈ N. (6.2.4)

However we have uε(t, ·) −→ u0,ε in L4(Ω) and thus there exists a subsequence (tlm)m∈N
such that uε(tlm , ·) −→ u0,ε as m→∞ a.e. in Ω, which is a contradiction to (6.2.4).

We introduce the measures

µt
ε :=

(ε
2
∣∣∇uε(t, ·)

∣∣2 + 1
ε
W (uε(t, ·))

)
Ln Ω for t ∈ [0, T ),

ξt
ε :=

(ε
2
∣∣∇uε(t, ·)

∣∣2 − 1
ε
W (uε(t, ·))

)
Ln Ω for t ∈ [0, T ),
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αt
ε := 1

ε
|Hε(t, ·)|2Ln Ω for t ∈ (0, T ),

κt
ε :=

(1
ε
|Hε(t, ·)|2 + ε

∣∣∇Hε(t, ·)
∣∣2)Ln Ω for t ∈ (0, T ),

µε := L1 ⊗ (µt
ε)t∈[0,T ), ξε := L1 ⊗ (ξt

ε)t∈[0,T ),

αε := L1 ⊗ (αt
ε)t∈(0,T ), and κε := L1 ⊗ (κt

ε)t∈(0,T ).

The a priori estimate (6.2.3) is an excellent basis for compactness results.

Lemma 6.2.3.
Let Assumptions 6.2.1 hold. Then we have

µε(ΩT ) + κε(ΩT ) ≤ C(Λ, T ) (6.2.5)

and for a.e. t ∈ (0, T )

sup
ε>0

µt
ε(Ω) + sup

ε>0
κε(Ωt) ≤ C(Λ, T ) (6.2.6)

lim inf
ε→0

[
µt

ε(Ω) + κt
ε(Ω)

]
<∞. (6.2.7)

Proof. From (6.2.3) we immediately get good bounds for µε and κε. Let ε > 0 then we
have for a.e. t ∈ (0, T )

µt
ε(Ω) + κε(Ωt) ≤ ess-sup

(0,T )
Pε(uε(t, ·)) + κε(Ωt) ≤ Λ

µε(ΩT ) + κε(ΩT ) ≤ T ess-sup
(0,T )

Pε(uε) +
� T

0
WKK

ε (uε) dL1 ≤ Λ(T + 1).

Thus (6.2.5) and (6.2.6) are proven. Using Fatou’s Lemma we deduce that
� T

0
lim inf

ε→0
κt

ε(Ω) dt ≤ lim inf
ε→0

� T

0
κt

ε(Ω) dt
(6.2.3)
≤ Λ.

we conclude that for a.e. t ∈ (0, T ) we have

lim inf
ε→0

κt
ε(Ω) <∞.

Thus we get from (6.2.3) for a.e. t ∈ (0, T )

lim inf
ε→0

[
µt

ε(Ω) + κt
ε(Ω)

]
≤ lim sup

ε→0
µt

ε(Ω) + lim inf
ε→0

κt
ε(Ω)

≤ sup
ε>0
Pε(u0) + lim inf

ε→0
κt

ε(Ω) <∞

and (6.2.7) is proven.

It follows that for a.e. t ∈ (0, T ) there exists a t-dependent subsequence ε→ 0 such that
the assumptions of the Γ–liminf estimate in Theorem 5.2.5 are satisfied. However the
subsequences chosen in the proof of Theorem 5.2.5 will depend on t. Next we will deduce
suitable uniform a priori bounds for (uε)ε>0.
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Lemma 6.2.4.
Let Assumptions 6.2.1 hold. Then

(i) (uε)ε>0 is bounded in L∞(0, T ;L4(Ω)).

(ii) (ε− 1
2W ′(uε))ε>0 is bounded in L2(0, T ;L2(Ω)).

(iii) (ε 1
2uε∇uε)ε>0 is bounded in L2(0, T ;L2(Ω)).

(iv) (ε 3
2 ∆uε)ε>0 is bounded in L2(0, T ;L2(Ω)).

(v) (uε)ε>0 is bounded in L6(0, T ;L6(Ω)).

(vi) For all ϕ ∈ L2(0, T ;H1(Ω)) we have∣∣∣∣∣
� T

0

〈
ϕ,
√
ε∂tuε

〉
H1(Ω)′

dL1
∣∣∣∣∣ ≤ √Λ

( �
ΩT

(
ε2∣∣∇ϕ∣∣2 + |ϕ|2

)
dLn+1

) 1
2

. (6.2.8)

Proof. From (6.2.3) we get

ess-sup
[0,T )

�
Ω

1
ε
W (uε) dLn ≤ Λ.

With the notations from the proof of Lemma 6.1.3 we have

ess-sup
[0,T )

�
Ω
|uε|4 dLn = ess-sup

[0,T )

�
{|uε|≤R0}

|uε|4 dLn + ess-sup
[0,T )

�
{|uε|>R0}

|uε|4 dLn

≤ R4
0Ln(Ω) + 2εΛ ≤ C(Ω,Λ).

Since 4
√
r ≤ r for all r ∈ [1,∞) we get 4

√
r ≤ 1 + r for all r ∈ [0,∞) and thus

∥uε∥L∞(0,T ;L4(Ω)) = ess-sup
[0,T )

[ �
Ω
|uε|4 dLn

] 1
4

≤ 1 + ess-sup
[0,T )

�
Ω
|uε|4 dLn

≤ 1 + ess-sup
[0,T )

�
{|uε|≤R0}

|uε|4 dLn + ess-sup
[0,T )

�
{|uε|>R0}

|uε|4 dLn

≤ 1 +R4
0Ln(Ω) + 2εΛ ≤ C(Ω,Λ),

which proves (i). Next we prove (ii)-(iv). From (6.2.3) we conclude

∥Hε∥L2(0,T ;L2(Ω)) ≤ εΛ and ∥uε∥L2(0,T ;H1(Ω)) ≤
ΛT
ε
.

With the same estimates as in (6.1.26) and (6.1.27) we deduce that
� T

0

�
Ω

(
ε3∣∣∆uε

∣∣2 + 24ε|uε|2
∣∣∇uε

∣∣2 + 1
ε

∣∣W ′(uε)
∣∣2) dLn dL1 ≤ Λ(8T + ε2). (6.2.9)

This proves (ii)-(iv). For (v) we argue as we did in the proof of (i). Since W ′(r) = 4r3−4r
for r ∈ R there exists R1 > 0 such that |r|3 ≤ |W ′(r)| for |r| ≥ R1. Thus we get

� T

0

�
Ω
|uε|6 dLn dL1 ≤ TLn(Ω)R6

1 + ε

� T

0

�
Ω

1
ε
|W ′(uε)|2 dLn dL1 ≤ C(Ω, T )
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which proves (v). To prove (vi) take ϕ ∈ L2(0, T ;H1(Ω)), we estimate similarly as in
(6.1.22), using ϕ = Aε(−ε∆ + Id)ϕ and the Cauchy-Schwarz estimate for the H1(Ω) scalar
product∣∣∣∣ � T

0

〈
ϕ,
√
ε∂tuε

〉
H1(Ω)′

dL1
∣∣∣∣

=
∣∣∣∣ � T

0

〈
Aε

√
ε∂tuε, (−ε2∆ + Id)ϕ

〉
H1(Ω)′

dL1
∣∣∣∣

=
∣∣∣∣ � T

0

�
Ω

(
ε2∇
√
εAε∂tuε · ∇ϕ+

√
εAε∂tuεϕ

)
dL1

∣∣∣∣
≤
� T

0

( �
Ω

(
ε2∣∣∇√εAε∂tuε

∣∣2 +
∣∣√εAε∂tuε

∣∣2) dLn

�
Ω

(
ε2∣∣∇ϕ∣∣2 + |ϕ|2

)
dLn

) 1
2

dL1

=
(� T

0
ε
〈
Aε∂tuε, (−ε2∆ + Id)Aε∂tuε

〉
H1(Ω)′

dL1
�

ΩT

(
ε2∣∣∇ϕ∣∣2 + |ϕ|2

)
dLn+1

) 1
2

=
(� T

0
ε
〈
Aε∂tuε, ∂tuε

〉
H1(Ω)′

dL1
�

ΩT

(
ε2∣∣∇ϕ∣∣2 + |ϕ|2

)
dLn+1

) 1
2

=
(� T

0
ε
〈
Hε, (−ε2∆ + Id)Hε

〉
H1(Ω)′

�
ΩT

(
ε2∣∣∇ϕ∣∣2 + |ϕ|2

)
dLn+1

) 1
2

≤
√

Λ
(�

ΩT

(
ε2∣∣∇ϕ∣∣2 + |ϕ|2

)
dLn+1

) 1
2

.

This proves a uniform bound for
√
ε∂tuε in L2(0, T ;H1(Ω)′). However in contrast to the

construction in the first section we do not have a uniform bound for uε in L2(0, T ;H1(Ω)).
Thus we can not directly apply an Aubin-Lion-Dubinskii type argument. We will work
around this difficulty by considering a different function as a stepping stone first. We
prove bounds for (Z(uε))ε>0 where Z(r) =

� r
0
√

2W (s) ds for r ∈ R as in Chapter 5.

Lemma 6.2.5.
Let Assumptions 6.2.1 hold. Then

(1) (Z(uε))ε>0 is bounded in L∞(0, T ;L 4
3 (Ω)).

(2) (∂tZ(uε))ε>0 is bounded in L2(0, T ;H2(Ω)′).

(3) (∇Z(uε))ε>0 is bounded in L∞(0, T ;L1(Ω)).

Proof. From the particular form of W we get that there exists C > 0 such that for all
r ∈ R we have |Z(r)| ≤ C(1 + |r|3). Using the convexity of (0,∞) ∋ r 7−→ r

4
3 we get for

all t ∈ (0, T )

∥Z(uε(t, ·))∥
4
3

L
4
3 (Ω)
≤
�

Ω

∣∣∣C(1 + |uε(t, ·)|3)|
∣∣∣ 4

3 dLn ≤ C
�

Ω

(
1 + |uε(t, ·)|4

)
dLn

≤ C(Ω)
(
1 + ∥uε(t, ·)∥4L4(Ω)

)
≤ C(Ω)

(
1 + ess-sup

[0,T )
∥uε∥4L4(Ω)

)
.
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This yields that for all 0 < ε < 1 we have

∥Z(uε)∥
L∞(0,T ;L

4
3 (Ω))

≤ C(Ω,Λ)

and thus (1). To show (2) we start with (vi) from Lemma 6.2.4. Let η ∈ C2
c (Ω) be

arbitrary, we define ϕ := 1√
ε

√
2W (uε)η. We want to apply estimate (6.2.8) to this ϕ,

therefore we need to confirm ϕ ∈ L2(0, T ;H1(Ω)) first. We have

∥ϕ∥2L2(0,T ;L2(Ω)) =
� T

0

�
Ω
|ϕ|2 dLn dL1 =

� T

0

�
Ω

2
ε
W (uε)|η|2 dLn dL1

≤ 2T∥η∥2C0(Ω) ess-sup
t∈[0,T )

Pε(uε(t, ·)) ≤ 2T∥η∥2C0(Ω)Λ. (6.2.10)

For the gradient estimate, we use that |W ′(r)|2 = 16r2W (r) for all r ∈ R and get

∥∇ϕ∥2L2(0,T ;L2(Ω;Rn)) =
� T

0

�
Ω

1
ε

∣∣∣∣η W ′(uε)√
2W (uε)

∇uε +
√

2W (uε)∇η
∣∣∣∣2 dLn dL1

≤
� T

0

�
Ω

16
ε

∣∣ηuε∇uε

∣∣2 dLn dL1 + 4
� T

0

�
Ω
W (uε)|∇η|2 dLn dL1

≤ 1
ε2 ∥η∥

2
C0(Ω)

� T

0

�
Ω

16ε
∣∣uε∇uε

∣∣2 dLn dL1

+
� T

0

[ �
Ω
|W (uε)|

3
2 dLn

] 2
3

dL1
[�

Ω
|∇η|6 dLn

] 1
3
.

In the last step we applied the Hölder-inequality for the last term. The first integral on
the right-hand side is bounded because of (iii) from Lemma 6.2.4 up to a factor of ε−2.
For the last term we use W (r) = (1− r2)2 ≤ (1 + r4) for r ∈ R. Thus we get

� T

0

�
Ω
|W (uε)|

3
2 dLn dL1 ≤

� T

0

�
Ω

(1 + |uε|4)
3
2 dLn dL1 (6.2.11)

≤
� T

0

�
Ω

(1 + |uε|6) dLn dL1 ≤ C(Ω, T ).

We used (v) from Lemma 6.2.4 and the convexity of (0,∞) ∋ r 7−→ r
3
2 . Back to the

previous estimate we get

∥∇ϕ∥2L2(0,T ;L2(Ω;Rn)) ≤
C(Ω, T,Λ)∥η∥2C0(Ω)

ε2 + C(Ω, T )∥η∥2W 1,6(Ω). (6.2.12)

For fixed ε > 0 this is finite and thus ϕ ∈ L2(0, T ;H1(Ω)). Since n ≤ 3 there exists
C(Ω) > 0 such that by the Sobolev and Sobolev-Morrey embedding we obtain that

∥η∥W 1,6(Ω) ≤ C(Ω)∥η∥H2(Ω) and ∥η∥C0(Ω) ≤ C(Ω)∥η∥H2(Ω).

Now we apply (vi), (6.2.10), and (6.2.12) to this particular ϕ and get that
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∣∣∣∣ � T

0

〈
η, ∂tZ(uε)

〉
H1(Ω)′

dL1
∣∣∣∣ =

∣∣∣∣ � T

0

〈
ϕ,
√
ε∂tuε

〉
H1(Ω)′

dL1
∣∣∣∣

≤
√

Λ
(
∥ϕ∥2L2(0,T ;L2(Ω)) + ε2∥∇ϕ∥2L2(0,T ;L2(Ω;Rn))

) 1
2

≤
√

Λ
(
C(Ω, T,Λ)∥η∥2C0(Ω) + ε2C(Ω, T )∥η∥2W 1,6(Ω)

) 1
2

≤ C(Ω, T,Λ)∥η∥2H2(Ω).

Taking the supremum over η ∈ C2
c (Ω) with ∥η∥H2(Ω) ≤ 1 yields (2). For (3) we calculate

for t ∈ (0, T )
�

Ω

∣∣∇Z(uε(t, ·))
∣∣ dLn =

�
Ω

√
2W (uε(t, ·))

∣∣∇uε(t, ·)
∣∣ dLn

≤
�

Ω

(ε
2
∣∣∇uε(t, ·)

∣∣2 + 1
ε
W (uε(t, ·))

)
dLn

≤ Pε(uε(t, ·)).

Taking the essential supremum over t ∈ (0, T ) directly yields that

∥∇Z(uε)∥L∞(0,T ;L1(Ω;Rn)) ≤ ess-sup
t∈(0,T )

Pε(uε(t, ·)) ≤ Λ.

Lemma 6.2.6 (Convergent subsequence of (uε)ε>0).
Let Assumptions 6.2.1 hold. There exists u ∈ L∞(0, T ;BV (Ω; {±1})) such that up to a
(t-independent) subsequence we have as ε→ 0

• Z(uε) −→ Z(u) in L1(ΩT ),

• uε −→ u in L1(Ω).

In addition we get for a.e. t ∈ (0, T ) as ε→ 0 that

• Z(uε(t, ·)) −→ Z(u(t, ·)) in L1(Ω),

• uε(t, ·) −→ u(t, ·) in L1(Ω),

• For a.e. x ∈ Ω : uε(t, x) −→ u(t, x),

• There exist subsets E(t) ⊆ Ω with finite perimeter such that u(t, ·) = 2χE(t) − 1.

Proof. From Lemma 6.2.5 we get with L
4
3 (Ω) ↪→ H2(Ω)′ and L

4
3 (Ω) ↪→ L1(Ω)

(Z(uε))0<ε<1 is bounded in L∞(0, T ;W 1,1(Ω)) and in H1(0, T ;H2(Ω)′).

With Lemma 8.3.2 we can extract a convergent subsequence from (Z(uε))ε>0 as ε→ 0 in
L1(0, T ;L1(Ω)). Thus there exists a further subsequence (εj)j∈N and k ∈ L1(0, T ;L1(Ω))
such that as j →∞

Z(uεj ) −→ k in L1(ΩT ),
Z(uεj (t, ·)) −→ k(t, ·) in L1(Ω) for a.e. t ∈ (0, T ), and thus
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Z(uεj (t, x)) −→ k(t, x) for a.e. t ∈ (0, T ) and a.e. x ∈ Ω.

Since Z ′ =
√

2W ≥ 0 on R with {W = 0} = {±1} we know that Z has a continuous
inverse function Z−1. This results in

uεj (t, x) −→ u(t, x) := Z−1(k(t, x)) for a.e. t ∈ (0, T ) and a.e. x ∈ Ω.

To prove the convergence uεj −→ u in L1(ΩT ) we use a well-known technique, which is
for instance presented in the proof of Theorem 1.6 in [Leo13].

First we prove that (uεj )j∈N is equi-integrable. We can find R2 > 0 such that |r| ≤W (r)
for all |r| > R2. Then we estimate for any measurable subset A ⊆ ΩT�

A
|uεj | dLn+1 ≤

�
A∩{|uεj |≤R2}

|uεj | dLn+1 +
�

A∩{|uεj |>R2}
|uεj | dLn+1

≤ R2Ln+1(A) + εj

�
ΩT

1
εj
W (uεj ) dLn+1

≤ R2Ln+1(A) + εj ess-sup
t∈(0,T )

�
Ω

1
εj
W (uεj (t, ·)) dLn+1 ≤ R2Ln+1(A) + εjΛ.

(6.2.13)

Setting A = ΩT yields that there exists Λ′ > 0 such that

sup
j∈N

�
ΩT

|uεj | dLn+1 ≤ Λ′ <∞. (6.2.14)

Next we prove that for all τ > 0 there exists δ > 0 such that for all measurable subsets
A ⊆ ΩT we have

Ln+1(A) < δ =⇒ sup
j∈N

�
A
|uεj | dLn+1 < τ. (6.2.15)

We start by choosing j0 ∈ N such that for all j > j0 we have εjΛ < τ
2 and define δ0 := τ

2R2
.

Then we get for j > j0 from (6.2.13) for any measurable set A ⊆ ΩT with Ln+1(A) < δ0

sup
j≥j1

�
A
|uεj | dLn+1 <

R2τ

2R2
+ τ

2 = τ.

By the absolute continuity of the Lebesgue measure and since uε1 , . . . , uεj0
∈ L1(ΩT )

there exist δ1, . . . , δj0 > 0 such that for all l ∈ {1, . . . , j0} we have for measurable sets
A ⊆ ΩT

Ln+1(A) < δl =⇒
�

A
|uεl
| dLn+1 < τ. (6.2.16)

By choosing δ := min{δ0, δ1, . . . , δj0} we conclude (6.2.15).

Now we prove uεj −→ u in L1(ΩT ) using Egorov’s Theorem. Let τ > 0 be arbitrary, we
choose δ > 0 according to (6.2.15) such that

Ln+1(A) < δ =⇒ sup
j∈N

�
A
|uεj | dLn+1 <

τ

3
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and such that

Ln+1(A) < δ =⇒
�

A
|u| dLn+1 <

τ

3 . (6.2.17)

This is possible by the same argument as before since u ∈ L1(ΩT ). We have uεj −→ u
a.e. in ΩT and thus by Egorov’s Theorem there exists A ⊆ ΩT such that

Ln+1(A) < δ and uεj −→ u uniformly on ΩT \A.

We choose j1 ∈ N such that for all j ≥ j1 we have

sup
ΩT \A

|uεj − u| <
τ

3Ln+1(ΩT )

Combining these results we get
�

ΩT

|uεj − u| dLn+1 =
�

A
|uεj − u| dLn+1 +

�
ΩT \A

|uεj − u| dLn+1

≤
�

A
|uεj | dLn+1 +

�
A
|u| dLn+1 +

�
ΩT \A

|uεj − u| dLn+1

<
τ

3 + τ

3 + τ

3Ln+1(ΩT )L
n+1(ΩT ) = τ.

Thus we have uεj −→ u in L1(ΩT ) and also uεj (t, ·) −→ u(t, ·) for a.e. t ∈ (0, T ).

By the Modica-Mortola Theorem 2.4.2, the energy bound (6.2.3), and the assumption
(6.2.1) we conclude for a.e. t ∈ (0, T )

P(u(t, ·)) ≤ lim inf
ε→0

µt
ε(Ω) ≤ sup

ε>0
Pε(u0) ≤ Λ.

The fact that this expression is finite shows u(t, ·) ∈ BV (Ω; {±1}) for a.e. t ∈ [0, T ),
hence we can write u = 2χE(t) − 1 for some set E(t) ⊆ Ω with finite perimeter.

The next goal is to find a subsequence independent from t such that (µt
ε)ε>0 is convergent.

For that we need uniform bounds, one of which is provided by the next lemma. Here we
will again not label all subsequences.

Lemma 6.2.7.
Let Assumptions 6.2.1 hold and let t ∈ (0, T ) be arbitrary. We have for the finite Radon
measure µt

ε ∈ C0
0(Ω)′ from Lemma 6.2.3 that there exists C = C(Λ, T ) > 0 such that we

have for all ε > 0 and all η ∈ C2
0 (Ω) with η ≥ 0

∥⟨η, µt
ε⟩C0

0 (Ω)′∥W 1,1(0,T ) ≤ C(Λ, T )∥η∥C2(Ω), (6.2.18)

which shows that the functions (0, T ) ∋ t 7−→ ⟨η, µt
ε⟩C0

0 (Ω)′ are uniformly bounded in
W 1,1(0, T ) with respect to ε > 0.

Proof. We have
� T

0

∣∣∣∣ �
Ω
η
(ε

2
∣∣∇uε

∣∣2 + 1
ε
W ′(uε)

)
dLn

∣∣∣∣ dL1 ≤ ∥η∥C0(Ω)ΛT
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and thus ⟨η, µt
ε⟩C0

0 (Ω)′ is uniformly bounded in L1(0, T ). Next we calculate the weak
derivative. Let ψ ∈ C1

0(0, T ). The following calculations are justified because of the
regularity uε ∈ H1(0, T ;H1(Ω)′) ∩ L1(0, T ;H3(Ω)).

−
� T

0
ψ′⟨η, µt

ε⟩C0
0 (Ω)′ dL1 = −

�
Ω

� T

0
ψ′η

(ε
2
∣∣∇uε

∣∣2 + 1
ε
W (uε)

)
dL1 dLn

=
� T

0
ψ
(〈
ηε∇uε,∇∂tuε

〉
H2(Ω;Rn)′

+ 1
ε
⟨W ′(uε), ∂tuε⟩H1(Ω)′

)
dL1

=
� T

0
ψ
〈
− ε∇η · ∇uε − εη∆uε + 1

ε
ηW ′(uε), ∂tuε

〉
H1(Ω)′

dL1

=
� T

0
ψ
〈
∇η · ∇uε −

1
ε
ηHε, (−ε2∆ + Id)Hε

〉
H1(Ω)′

dL1.

From this we can identify the weak derivative, we have

∂t⟨η, µt
ε⟩C0

0 (Ω)′ =
〈
∇η · ∇uε −

1
ε
ηHε, (−ε2∆ + Id)Hε

〉
H1(Ω)′

.

In the next step we estimate the weak derivative in L1(0, T ;L1(Ω)) which would finish
the proof. We split the integral into two terms, one of which is a localized version of
∂tPε(uε) and the other term contains ∇η. The latter one is called drift term. We have

� T

0

∣∣∣∂t⟨η, µt
ε⟩C0

0 (Ω)′

∣∣∣ dL1 ≤
� T

0

∣∣∣〈∇η · ∇uε, (−ε2∆ + Id)Hε
〉

H1(Ω)′

∣∣∣ dL1

+
� T

0

1
ε

∣∣∣〈ηHε, (−ε2∆ + Id)Hε
〉

H1(Ω)′

∣∣∣ dL1.

We split the integrals even further and get
� T

0

∣∣∣∂t
〈
η, µt

ε

〉
C0

0 (Ω)′

∣∣∣ dL1 ≤
� T

0

∣∣∣〈∇η · ∇uε, ε
2∆Hε

〉
H1(Ω)′

∣∣∣ dL1 (6.2.19)

+
� T

0

∣∣∣∣ �
Ω

(
∇η · ∇uε

)
Hε dLn

∣∣∣∣ dL1 (6.2.20)

+
� T

0

∣∣∣∣ �
Ω
ε
(
∇η · ∇Hε

)
Hε dLn

∣∣∣∣ dL1 (6.2.21)

+
� T

0

∣∣∣⟨η, κt
ε⟩C0

0 (Ω)′

∣∣∣ dL1. (6.2.22)

The integral in (6.2.20) can be controlled with a Young estimate and the bounds from
the energy-dissipation inequality (6.2.3)

� T

0

�
Ω

1√
ε

∣∣∇η∣∣∣∣√ε∇uε

∣∣|Hε| dLn dL1

≤
∥η∥C1(Ω)

2

� T

0

�
Ω

(1
ε
|Hε|2 + ε

∣∣∇uε

∣∣2) dLn dL1 ≤ ∥η∥C1(Ω)C(Λ, T ).

The integral in (6.2.21) can be controlled with a partial integration and the bounds from
the energy-dissipation inequality
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� T

0

∣∣∣∣ �
Ω
ε
(
∇η · ∇Hε

)
Hε dLn

∣∣∣∣ dL1 =
� T

0

∣∣∣∣ �
Ω

ε

2∇η · ∇|Hε|2 dLn

∣∣∣∣ dL1 (6.2.23)

=
� T

0

∣∣∣∣ �
Ω

ε

2∆η|Hε|2 dLn

∣∣∣∣ dL1

≤
ε2∥η∥C2(Ω)

2

� T

0

�
Ω

1
ε
|Hε|2 dLn dL1 ≤ ε2 ∥η∥C2(Ω)Λ

2 .

The integral in (6.2.22) is directly controlled by the bounds from the energy-dissipation
inequality. Since η ≥ 0 we have

� T

0

∣∣∣⟨η, κt
ε⟩C0

0 (Ω)′

∣∣∣ dL1 = ⟨η, κε⟩C0
0 (ΩT )′ ≤ ∥η∥C0(Ω)κε(ΩT ) ≤ ∥η∥C0(Ω)Λ.

The most difficult part is to estimate (6.2.19), which comes from the drift term. As a
stepping stone we define for t ∈ (0, T ) and x ∈ Ω the function Kt : Ω −→ Rn

Kt(x) :=
[
∇η(x) · ∇uε(t, x)

]
∇Hε(t, x)−∇η(x)

[
∇uε(t, x) · ∇Hε(t, x)

]
+
[
∇η(x) · ∇Hε(t, x)

]
∇uε(t, x).

Since η ∈ C1(Ω) and uε(t, ·), Hε(t, ·) ∈ H1(Ω) for a.e. t ∈ (0, T ) we have Kt ∈ L1(Ω;Rn)
for a.e. t ∈ (0, T ). It follows that for a.e. t ∈ (0, T ) and all ϕ ∈W 1,∞(Ω) we can define

⟨ϕ,−∇ ·Kt⟩W 1,∞(Ω)′ :=
�

Ω
∇ϕ ·Kt dLn.

In this sense we have ∇ ·Kt ∈W 1,∞(Ω)′ for a.e. t ∈ (0, T ). We conclude that

0 = −
�

Ω
∇1 ·Kt dLn = ⟨1,∇ ·Kt⟩W 1,∞(Ω)′ (6.2.24)

=
〈
1,∇ ·

([
∇η · ∇uε

]
∇Hε −∇η

[
∇uε · ∇Hε

]
+
[
∇η · ∇Hε

]
∇uε

)〉
W 1,∞(Ω)′

=
�

Ω

(
∇η ·D2uε∇Hε +∇Hε ·D2η∇uε

)
dLn +

〈
∇η · ∇uε,∆Hε

〉
H1(Ω)′

−
�

Ω

(
∇η ·D2uε∇Hε +

[
∇uε · ∇Hε

]
∆η
)

dLn −
〈
∇η ⊗∇uε, D

2Hε
〉

H1(Ω;Rn×n)′

+
�

Ω

(
∇uε ·D2η∇Hε +

[
∇η · ∇Hε

]
∆uε

)
dLn +

〈
∇uε ⊗∇η,D2Hε

〉
H1(Ω;Rn×n)′

=
�

Ω

(
2∇Hε ·D2η∇uε −

[
∇uε · ∇Hε

]
∆η +

[
∇η · ∇Hε

]
∆uε

)
dLn

+
〈
∇η · ∇uε,∆Hε

〉
H1(Ω)′ .

We used the symmetry of the Hessian in the classical sense for D2η, for D2uε in the weak
sense and for D2Hε in the sense of distributions. With this divergence we can rewrite the
integral (6.2.19). We get
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ε2
� T

0

∣∣∣⟨∇η · ∇uε,∆Hε⟩H1(Ω)′

∣∣∣ dL1 (6.2.25)

= ε2
� T

0

∣∣∣∣ �
Ω

(
∇uε · ∇Hε∆η −∇η · ∇Hε∆uε − 2∇uε ·D2η∇Hε

)
dLn

∣∣∣∣ dL1.

This creates three further integrals. We can estimate the last term by

2ε2
� T

0

∣∣∣∣ �
Ω
∇uε ·D2η∇Hε dLn

∣∣∣∣ dL1 (6.2.26)

≤ ε∥η∥C2(Ω)

� T

0

(�
Ω
ε
∣∣∇uε

∣∣2 dLn +
�

Ω
ε
∣∣∇Hε

∣∣2 dLn

)
dL1

≤ ε∥η∥C2(Ω)C(Λ, T ).

The estimate is obtained analogously for the first term on the right-hand side of (6.2.25)
since both D2η and ∆η can be estimated by ∥η∥C2(Ω). The remaining second term can
be estimated using that −ε∆uε = Hε − 1

εW
′(uε) and

ε

� T

0

∣∣∣∣ �
Ω
−ε∆uε∇η · ∇Hε dLn

∣∣∣∣ dL1 ≤ ε
� T

0

∣∣∣∣ �
Ω
Hε∇η · ∇Hε dLn

∣∣∣∣ dL1

+
� T

0

∣∣∣∣ �
Ω
W ′(uε)∇η · ∇Hε dLn

∣∣∣∣ dL1.

The first term is identical to (6.2.23) and we use its estimate again. For the remaining
second term we apply (ii) from Lemma 6.2.4 and get that
� T

0

∣∣∣∣ �
Ω
W ′(uε)∇η · ∇Hε dLn

∣∣∣∣ dL1 ≤ ∥η∥C1(Ω)

� T

0

�
Ω

1√
ε

∣∣W ′(uε)
∣∣√ε∣∣∇Hε

∣∣ dLn

∣∣∣∣ dL1

≤
∥η∥C1(Ω)

2

(� T

0

�
Ω

1
ε

∣∣W ′(uε)
∣∣2 dLn dL1 +

� T

0

�
Ω
ε
∣∣∇Hε

∣∣2 dLn dL1
)

≤ ∥η∥C1(Ω)C(Λ, T ),

which concludes the proof.

With this preparation we can prove a compactness result. We follow the proofs by Mugnai
and Röger presented in [MR08, MR11].

Proposition 6.2.8 (Convergent sequence of the measures).
Let Assumptions 6.2.1 hold. For t ∈ [0, T ) we can find finite Radon measures µt ∈ C0

0 (Ω)′,
µ ∈ C0

0 ([0, T )× Ω)′ such that up to a t-independent subsequence we have as ε→ 0

for all t ∈ [0, T ) : µt
ε

w∗
−→ µt in C0

0 (Ω)′

and µε
w∗
−→ µ in C0

0 ([0, T )× Ω)′,

with µ = L1 ⊗ (µt)t∈[0,T ).

Since a lot of subsequences appear in this proof we relabel the most important one. We
will return to the standard notation of not relabeling the subsequence after this proof is
completed.
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Proof. From (6.2.3) we obtain that

µε(ΩT ) =
� T

0
µt

ε(Ω) dt ≤ T ess-sup
(0,T )

Pε(uε) ≤ TΛ.

By Theorem 2.2.2 we can find a finite Radon measure µ ∈ C0
0 ([0, T )×Ω)′ such that up to

a subsequence µε
w∗
−→ µ in C0

0 ([0, T )× Ω)′. Next we want to show weak∗-convergence of
(µt

ε)ε>0 in C0
0 (Ω)′ for a subsequence independent of t ∈ [0, T ). We choose a dense subset

and countable subset {ϕj}j∈N ⊆ C2
0 (Ω). From Lemma 6.2.7 we have that for every j ∈ N

the function defined by

f
(ε)
j (t) := ⟨ϕj , µ

t
ε⟩C0

0 (Ω)′ , for t ∈ [0, T )

is uniformly bounded in W 1,1(0, T ). Owing to the embeddings

W 1,1(0, T ) ↪→ BV (0, T ) c
↪→ L1(0, T )

for each j ∈ N we can extract asubsequence from the subsequence which was chosen in
the first step such that

f
(ε)
j −→ fj as ε→ 0 in L1(0, T ) (6.2.27)

for some fj ∈ BV (0, T ). By choosing the subsequences iteratively with the standard
technique of a diagonal sequence we find a subsequence (εm)m∈N independent of j ∈ N
such that (6.2.27) holds for all j ∈ N. We also obtain pointwise convergence a.e. in (0, T )
for this subsequence, i.e.

f
(εm)
j (t) −→ fj(t) as m→∞ for all j ∈ N and a.e. t ∈ [0, T ). (6.2.28)

Note that the exception set can be chosen independent of j since countable unions of
null sets still have measure 0. Since fj ∈ BV (0, T ) there exists νj ∈ C0

0(0, T )′ such that
νj = ∂tfj in the sense of measures . Since νj is σ-finite as a Radon measure on (0, T )
the set of its singletons Sj is at most countable. This remains true for S := ∪jSj . For
t ∈ (0, T ) \ S we prove (6.2.28) in the following. Let t ∈ (0, T ) \ S, then there exists a
sequence (tl)l in (0, T ) \ S with tl ↗ t and such that (6.2.28) holds for all tl. From basic
measure theory we get that for all j ∈ N

lim
l→∞

νj([tl, t]) = νj

( ⋂
l∈N

[tj , t]
)

= νj
(
{t}
)

= 0.

Since νj({t, tl}) = 0 for all l ∈ N we get with standard properties of Radon measure
convergence (see Proposition 1.62 (b) in [AFP00]) that

lim
m→∞

(
∂tf

(εm)
j L1

)
([tl, t]) = νj([tl, t]).

Additionally from Theorem 2.2.8 we get that

fj(t)− fj(tl) =
� t

tl

dνj .
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From the collected results we obtain that∣∣f (εm)
j (t)− fj(t)

∣∣ ≤ ∣∣f (εm)
j (t)− f (εm)

j (tl)
∣∣+ ∣∣f (εm)

j (tl)− fj(tl)
∣∣+ ∣∣fj(tl)− fj(t)

∣∣
≤
∣∣∣(∂tf

(εm)
j L1

)(
[tl, t]

)∣∣∣+ ∣∣f (εm)
j (tl)− fj(tl)

∣∣+ ∣∣νj
(
[tl, t]

)∣∣.
Taking lim supm→∞ yields

lim sup
m→∞

∣∣f (εm)
j (t)− fj(t)

∣∣ ≤ 2
∣∣νj
(
[tl, t]

)∣∣ −→ 0 as tl ↗ t.

Thus we have shown (6.2.28) for all t ∈ (0, T ) \ S.

In the next step we want to show that for all t ∈ (0, T ) \ S there exists µt ∈ C0
0 (Ω)′ such

that

µt
εm

w∗
−→ µt as m→∞ in C0

0 (Ω)′. (6.2.29)

Take any t ∈ (0, T ) such that (6.2.28) holds. By (6.2.3) there exists a further (t-dependent)
subsequence (εmr )r and a Radon measure µt ∈ C0

0 (Ω)′ such that

µt
εmr

w∗
−→ µt as r →∞ in C0

0 (Ω)′.

We know from (6.2.28) that for all t ∈ (0, T ) \ S and all j ∈ N we have

fj(t) = lim
m→∞

⟨ϕj , µ
t
εm
⟩C0

0 (Ω)′ .

For the subsequence (εmr )r∈N we now have

lim
r→∞
⟨ϕj , µ

t
εmr
⟩C0

0 (Ω)′ = ⟨ϕj , µ
t⟩C0

0 (Ω)′ .

By uniqueness it follows that

fj(t) = ⟨ϕj , µ
t⟩C0

0 (Ω)′

and that the limit exists for the whole sequence (µt
εm

)m∈N. For the proof of (6.2.29) we
take any η ∈ C0

0 (Ω). Since {ϕj}j is dense in C2
0 (Ω) and thus dense in C0

0 (Ω) there exists
a subsequence (ϕjl

)l∈N such that ϕjl
−→ η as l → ∞ in C0

0(Ω). Given any τ > 0 there
exists l0 = l0(τ) ∈ N such that for all l ≥ l0 we have

|η − ϕjl
| ≤ τ

3Λ on Ω.

We then find m0 = m0(τ, l0) ∈ N such that for all m ≥ m0 we have∣∣∣〈ϕjl0
, µt

εm
− µt

〉
C0

0 (Ω)′

∣∣∣ ≤ τ

3 .

We conclude∣∣∣〈η, µt
εm
− µt

〉
C0

0 (Ω)′

∣∣∣ ≤ ∣∣∣〈η − ϕjl0
, µt

εm

〉
C0

0 (Ω)′

∣∣∣+ ∣∣∣〈η − ϕjl0
, µt
〉

C0
0 (Ω)′

∣∣∣
+
∣∣∣〈ϕjl0

, µt − µt
εm

〉
C0

0 (Ω)′

∣∣∣ < τ

3ΛΛ + τ

3ΛΛ + τ

3 = τ.
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Since the remaining set S is at most countable continuing this process with another
diagonal sequence yields convergence for all t ∈ (0, T ).
All that remains to be shown is the connection between the limit measures, given by
µ = L1 ⊗ (µt)t∈[0,T ). To obtain this we consider test functions ψ ∈ C0

0 [0, T ), η ∈ C0
0(Ω).

Then ψη ∈ C0
0 ([0, T )× Ω) and thus

�
ΩT

ψη dµ←−
�

ΩT

ψη dµεm =
� T

0

�
Ω
ψη dµt

εm
dL1

=
� T

0
ψ

�
Ω
η dµt

εm
dL1 −→

� T

0
ψ

�
Ω
η dµt dL1 =

� T

0

�
Ω
ψη dµt dL1.

The last convergence follows from the Dominated Convergence Theorem since∣∣∣∣∣ψ
�

Ω
η dµt

εm

∣∣∣∣∣ ≤ ∥ψ∥C0(0,T )∥η∥C0(Ω)µ
t
εm

(Ω) ≤ ∥ψ∥C0[0,T )∥η∥C0(Ω)Λ.

It follows µ = L1 ⊗ (µt)t∈[0,T ) because the linear hull of tensor products C0
0 [0, T )⊗C0

0 (Ω)
is dense in C0

0 ([0, T )× Ω) .

6.3 De Giorgi type varifold solutions
Using the preparations from sections 6.1 and 6.2 we can prove that solutions of the diffuse
equation (6.1.5) converge as ε→ 0 towards a De Giorgi type varifold solution for rescaled
mean curvature flow; see Definition 2.5.3. First we construct oriented varifolds from the
measures µt

ε.

Definition 6.3.1.
Let uε ∈ L2(0, T ;H3(Ω)) such that (6.1.6) holds for a.e. t ∈ (0, T ). We recall

Hε = −ε∆uε + 1
ε
W ′(uε) ∈ L2(0, T ;H1(Ω)), (6.3.1)

µt
ε =

(ε
2
∣∣∇uε(t, ·)

∣∣2 + 1
ε
W (uε(t, ·))

)
Ln Ω ∈ C0

0 (Ω)′, (6.3.2)

ξt
ε =

(ε
2
∣∣∇uε(t, ·)

∣∣2 − 1
ε
W (uε(t, ·))

)
Ln Ω ∈ C0

0 (Ω)′, (6.3.3)

κt
ε = 1

ε

(
|Hε(t, ·)|2 + ε2∣∣∇Hε(t, ·)

∣∣2)Ln Ω ∈ C0
0 (Ω)′, (6.3.4)

αt
ε = 1

ε
|Hε(t, ·)|2Ln Ω ∈ C0

0 (Ω)′, (6.3.5)

µε = L1 ⊗ (µt
ε)t∈[0,T ), ξε = L1 ⊗ (ξt

ε)t∈[0,T ) ∈ C0
0 ([0, T )× Ω)′, (6.3.6)

and αε = L1 ⊗ (αt
ε)t∈(0,T ), κε = L1 ⊗ (κt

ε)t∈(0,T ) ∈ C0
0 (ΩT )′. (6.3.7)

Note that for µε and ξε the time interval is closed at 0 while it is open for α and κ (since
ΩT = (0, T )×Ω). Recall additionally that u0,ε ∈ H1(Ω) and µ0

ε, µ
0 ∈ C0

0 (Ω)′ are given by
Assumptions 6.2.1. We define the oriented and unoriented varifolds

⊕V 0
ε := µ0

ε ⊗ ν0,ε ∈ ⊕Vn−1(Ω), (6.3.8)
⊕V t

ε := µt
ε ⊗ νε(t, ·) ∈ ⊕Vn−1(Ω), (6.3.9)

V t
ε := µt

ε ⊗ νε(t, ·)⊥ ∈ Vn−1(Ω), (6.3.10)
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⊕Vε := L1 ⊗ (⊕V t
ε )t∈[0,T ) ∈ ⊕Vn−1([0, T )× Ω), (6.3.11)

and Vε := L1 ⊗ (V t
ε )t∈[0,T ) ∈ Vn−1([0, T )× Ω), (6.3.12)

where

νε(t, x) := ∇uε(t, x)
|∇uε(t, x)| for ∇uε(t, x) ̸= 0 and νε(t, x) := e1 else

and ν0,ε(x) := ∇u0,ε(x)
|∇u0,ε(x)| for ∇u0,ε(x) ̸= 0 and ν0,ε(x) := e1 else.

For the comfort of the reader we gather the compactness results from the last section and
their immediate implications.

Lemma 6.3.2 (Compactness results from Section 6.2).
Let Assumptions 6.2.1 hold. Then there exists C(Λ, T ) > 0 such that

µε(ΩT ) + κε(ΩT ) ≤ C(Λ, T ) (6.3.13)

and for a.e. t ∈ (0, T ):

sup
ε>0

µt
ε(Ω) + sup

ε>0
κε(Ωt) ≤ C(Λ, T ) (6.3.14)

and lim inf
ε→0

(
µt

ε(Ω) + κt
ε(Ω

)
<∞. (6.3.15)

Furthermore there exists a subsequence ε→ 0 such that the following hold.

There exist limit functions u ∈ L∞(0, T ;BV (Ω; {±1})) and u0 ∈ BV (Ω; {±1}), oriented
varifolds ⊕V ∈ C0

0([0, T ) × Ω × Sn−1)′ and ⊕V 0 ∈ ⊕Vn−1(Ω), finite Radon measures
α, κ ∈ C0

0 (ΩT )′, µ ∈ C0
0 ([0, T )× Ω)′, and for a.e. t ∈ (0, T ) there exists a Radon measure

µt ∈ C0
0 (Ω)′ with µ = L1 ⊗ (µt)t∈[0,T ) such that

uε(t, ·) t→0−→ u0,ε a.e. in Ω, (6.3.16)
u0,ε −→ u0 a.e. in Ω and in L1(Ω), (6.3.17)
uε −→ u a.e. in ΩT and in L1(ΩT ), (6.3.18)

µt
ε

w∗
−→ µt in C0

0 (Ω)′ for all t ∈ [0, T ), (6.3.19)

µε
w∗
−→ µ in C0

0 ([0, T )× Ω)′, (6.3.20)

αε
w∗
−→ α in C0

0 (ΩT )′, (6.3.21)

κε
w∗
−→ κ in C0

0 (ΩT )′, (6.3.22)
⊕V 0

ε
w∗
−→ ⊕V 0 in ⊕Vn−1(Ω), (6.3.23)

and ⊕Vε
w∗
−→ ⊕V in C0

0 ([0, T )× Ω× Sn−1)′. (6.3.24)

Note that ⊕V is not only an oriented varifold on [0, T ) × Ω, i.e. a Radon measure on
[0, T )× Ω× Sn−1 but it is even a finite Radon measure on [0, T )× Ω× Sn−1. Also note
that (6.3.18) yields in particular that for a.e. t ∈ (0, T )

uε(t, ·) −→ u(t, ·) in L1(Ω). (6.3.25)
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Proof. By Lemma 6.2.3 we can find a subsequence ε → 0 such that (6.3.13) holds
and that (6.3.14), (6.3.15) hold for a.e. t ∈ (0, T ). (6.3.16) follows from Corollary
6.2.2. By Assumptions 6.2.1 and Theorem 2.4.3 there exists a subsequence ε → 0 and
u0 ∈ BV (Ω, {±1}) such that (6.3.17) holds.

The claims (6.3.18)-(6.3.20) have already been proven in Lemma 6.2.6 and Proposition
6.2.8. The convergences (6.3.21) and (6.3.22) follow immediately by applying Theorem
2.2.2 owing to the bound (6.3.13). By definitions of ⊕Vε,

⊕V 0
ε we have

∥⊕Vε∥(ΩT ) ≤ sup
ε>0

ess-sup
t∈(0,T )

µt
ε(Ω) ≤ Λ and ∥⊕V 0

ε ∥(Ω) ≤ sup
ε>0

µ0
ε(Ω) ≤ Λ

and thus the sequences of varifolds (⊕Vε)ε>0, (⊕V 0
ε )ε>0 are uniformly bounded with respect

to ε. With the compactness Theorem 2.2.2 we can find a subsequence ε→ 0 and oriented
varifolds V ∈ C0

c ([0, T ) × Ω × Sn−1)′, V 0 ∈ ⊕Vn−1(Ω) such that (6.3.23) and (6.3.24)
hold.

Lemma 6.3.3 (Time dependent compactness).
Let Assumptions 6.2.1 hold. For a.e. t ∈ (0, T ) there exist finite Radon measures
αt, κt ∈ C0

0 (Ω)′ and an oriented varifold ⊕V t ∈ ⊕Vn−1(Ω) (writing V t ∈ Vn−1(Ω) for the
unoriented varifold induced by ⊕V t) such that up to a (possibly t-dependent) subsequence
we have as ε→ 0

αt
ε

w∗
−→ αt in C0

0 (Ω)′, (6.3.26)

κt
ε

w∗
−→ κt in C0

0 (Ω)′, (6.3.27)
⊕V t

ε
w∗
−→ ⊕V t in ⊕Vn−1(Ω), (6.3.28)

V t
ε

w∗
−→ V t in Vn−1(Ω), (6.3.29)

and ∥⊕V t∥ = µt = ∥V t∥. (6.3.30)

Proof. Let t ∈ (0, T ) such that (6.3.15) holds. With the same arguments as in the proof
of Lemma 6.3.2 the claims (6.3.26)-(6.3.29) follow from (6.3.15) and Theorem 2.2.2. The
claim (6.3.30) follows from ∥V t

ε ∥ = µt
ε = ∥⊕V t

ε ∥ and (6.3.19). Note that the mass measures
even converge for a subsequence independent from t.

Corollary 6.3.4 (Results from Chapter 5).
Let Assumptions 6.2.1 hold. For a.e. t ∈ (0, T ) the varifold 1

c0
V t is integral, thus

there exist a (n− 1)-rectifiable set Γt ⊆ Ω and a Hn−1-measurable multiplicity function
θt : Γt −→ N such that

∥V t∥ = c0θtHn−1 Γt

and for Hn−1-a.e. x ∈ Γt there exists St,x ∈ G(n, n− 1) with

TxΓt = c0θt(x)St,x.

Additionally for a.e. t ∈ (0, T ) the varifold V t has a weak a mean curvature vector
H⃗t ∈ L2(Ω, µt;Rn) such that

lim sup
ρ→0

ρ1−nµt(Bρ(x)) <∞ for all x ∈ Ω,
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∣∣H⃗t

∣∣2µt ≤ αt,

σ
∣∣H⃗t

∣∣2µt ≤ κt,

and c0
2
∣∣∇u(t, ·)

∣∣ ≤ µt,

in the sense of Borel measures on Ω.

Proof. Since (6.3.15) holds for a.e. t ∈ (0, T ) by Lemma 6.3.2 all of the claims follow
immediately from the Theorems 5.2.3 and 5.2.5.

We highlight important results from [MR08] which will be used in this section.

Theorem 6.3.5 (Key results from [MR08]).
Let uε ∈ L2(0, T ;H3(Ω)) and assume that (6.3.13) holds for some Λ > 0. Then there
exists a subsequence such that as ε→ 0

|ξε|
w∗
−→ 0 in C0

0 (ΩT )′ (6.3.31)

and Hε∇uεLn+1 ΩT
w∗
−→ H⃗µ in C0

c (ΩT ;Rn)′, (6.3.32)

with H⃗ ∈ L2(0, T ;L2(Ω, µt;Rn)) for H⃗(t) := H⃗t for a.e. t ∈ (0, T ).

Proof. The claim (6.3.31) follows from Proposition 6.1 in [MR08] because in the proof no
more than (6.3.13) is used.

For the proof of (6.3.32) we define Ĥε := Hε
ε|∇uε|2∇uεχ{∇uε ̸=0}. By Lemma 7.1 in [MR08]

we have

(µε + ξε, Ĥε) w∗
−→ (µ, H⃗)

in the sense of measure-function pair convergence; see Definition 2.2.13. Thus we have for
all ϕ ∈ C0

c (ΩT ;Rn)
�

ΩT

Hεϕ · ∇uε dLn+1 =
�

ΩT

ϕ · Ĥε dµ̂ε −→
�

ΩT

H⃗ · ϕ dµ.

We apply the results to our setting.

Corollary 6.3.6.
Let uε ∈ L2(0, T ;H3(Ω)) and assume that (6.3.13) holds for some Λ > 0. Then there
exists a subsequence such that as ε→ 0

ξε
w∗
−→ 0 in C0

0 ([0, T )× Ω)′ (6.3.33)

and ξt
ε

w∗
−→ 0 in C0

0 (Ω)′ for a.e. t ∈ [0, T ). (6.3.34)

Proof. Since ξε = L1 ⊗ (ξt
ε)t∈[0,T ) we have for all ε > 0 that ξε({0} × Ω) = 0 thus we can

conclude (6.3.33) from (6.3.31). This implies

ε

2
∣∣∇uε

∣∣2 − 1
ε
W (uε) −→ 0 in L1(ΩT ) ∼= L1(0, T ;L1(Ω)).

This yields that there exists a subsequence ε → 0 such that for a.e. t ∈ [0, T ) we have
(6.3.34).
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Next we probe properties of the disintegration of ⊕V .

Lemma 6.3.7 (Disintegration of the limit varifold).
Let Assumptions 6.2.1 hold. For a.e. t ∈ (0, T ) there exists ⊕Ṽ t ∈ C0

0 (Ω× Sn−1)′ (writing
Ṽ t for the unoriented varifolds induced by ⊕Ṽ t) such that

• ⊕V = L1 ⊗ (⊕Ṽ t)t∈(0,T ), (0, T ) ∋ t 7→ ⊕Ṽ t is Borel measurable.

• Given ϕ ∈ L1(0, T ;C0
0 (⊕Gn−1(Ω))) the mapping

(0, T ) ∋ t 7−→
�

⊕Gn−1(Ω)
ϕ(t, ·, ·) d⊕Ṽ t

ε

is Borel measurable.

• For a.e. t ∈ (0, T ) we have

∥⊕Ṽ t∥ = µt = ∥Ṽ t∥ (6.3.35)

• For a.e. t ∈ (0, T ) the varifold Ṽ t has the same weak mean curvature vector
H⃗t ∈ L2(Ω, µt;Rn) as V t.

Proof. By the Disintegration Theorem, see Theorem 9.1 in Ambrosio’s paper in [ADD+03],
we conclude that for a.e. t ∈ (0, T ) there exists an oriented varifold ⊕Ṽ t ∈ C0

0 (Ω× Sn−1)′

such that t 7→ ⊕Ṽ t is Borel measurable and we have
⊕V = L1 ⊗ (⊕Ṽ t)t∈(0,T ). (6.3.36)

It also follows that for ϕ ∈ L1(0, T ;C0
c (⊕Gn−1(Ω))) the mapping

(0, T ) ∋ t 7−→
�

⊕Gn−1(Ω)
ϕ(t, ·, ·) d⊕Ṽ t

is Borel measurable. As before ⊕Ṽ t are not only oriented varifolds but even finite Radon
measures on Ω× Sn−1.

Next we prove µt = ∥⊕Ṽ t∥. Let ψ ∈ C0
c (0, T ) and ϕ ∈ C0

c (Ω) then we have
� T

0
ψ(t)

�
Ω
ϕ dµt dt =

�
ΩT

ψϕdµ←−
�

ΩT

ψϕdµε =
� T

0
ψ(t)

�
Ω
ϕ dµt

ε dt

=
� T

0
ψ(t)

�
Ω
ϕ d∥⊕V t

ε ∥ dt =
� T

0
ψ(t)

�
⊕Gn−1(Ω)

ϕ d⊕V t
ε dt

=
�

⊕Gn−1(ΩT )

ψϕd⊕Vε −→
�

⊕Gn−1(ΩT )

ψϕd⊕V

=
� T

0
ψ(t)

�
⊕Gn−1(Ω)

ϕ d⊕Ṽ t dt =
� T

0
ψ(t)

�
Ω
ϕ d∥⊕Ṽ t∥dt.

By localizing in time we conclude µt = ∥⊕Ṽ t∥. Since Ṽ t is defined by the projection from
⊕Vn−1(Ω) onto Vn−1(Ω) we have ∥Ṽ t∥ = ∥⊕Ṽ t∥. Thus (6.3.35) follows for a.e. t ∈ (0, T ).
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Lastly we prove that H⃗t is the weak mean curvature vector of Ṽ t. Let ψ ∈ C0
c (0, T ) and

η ∈ C0
c (Ω;Rn). Then we use that the projection from oriented varifolds onto varifolds

is continuous with respect to varifold convergence and (in order of appearance in the
following calculation) (6.3.36), (6.3.24), Lemma 5.2.4, (6.3.32), and (6.3.33)

� T

0
ψ
〈
η, δṼ t〉

C0
c (Ω)′ dt =

〈
ψη, δV

〉
C0

c ([0,T )×Ω)′ ←−
〈
ψη, δVε

〉
C0

c ([0,T )×Ω)′

=
� T

0

〈
ψη, δV t

ε

〉
⟩C0

c (Ω)′ dt

= −
�

ΩT

ψη · ∇uεHε dLn+1 +
�

ΩT

ψνε ·Dηνε dξε

−→ −
�

ΩT

ψη · H⃗t dµ = −
� T

0
ψ

�
Ω
η · H⃗t d∥Ṽ t∥ dt.

By localizing in time we conclude that for a.e. t ∈ (0, T ) we have

〈
η, δṼ t〉

C0
c (Ω)′ = −

�
Ω
η · H⃗t d∥Ṽ t∥, (6.3.37)

which concludes the proof.

Before we are able to prove that ⊕V is a De Giorgi type varifold solution for rescaled
mean curvature flow we need a few technical preparations. In Chapter 3 the function
f with q0 = f(q0) was helpful in many ways. For the estimates in this section we also
consider such a function. Recall the optimal profiles q0, q0 from Assumptions 4.1.1 and
the Lemmata 4.1.2, 4.1.3. We define

f : R −→ [−1, 1], f :=
{
q0 ◦ q−1

0 , on (−1, 1)
sgn, on R \ (−1, 1) (6.3.38)

and

G : R −→ R, G(r) :=
� r

0
f ′(s)

√
2W (s) ds. (6.3.39)

The functions q0, q0 have been defined in 4.1.1. These functions have the following
properties.

Lemma 6.3.8 (Properties of f and G).
The functions f,G from (6.3.38) and (6.3.39) satisfy

(1) f,G ∈ C0(R) and G′ ∈ C0
b (R),

(2) f |(−1,1), G|(−1,1) ∈ C∞(−1, 1),

(3) 2f ′′W = −f ′W ′ + f − Id in (−1, 1),

(4) G′(q0) = q′
0,

(5) c0
σ = G(1)−G(−1) = 2G(1).
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Proof. Both q0, q0 : (−1, 1) −→ (−1, 1) are C∞, strictly increasing, q0(±1) = ±1 = q0(±1).
Thus f is well-defined, f ∈ C0(R), G is well-defined on (−1, 1), and the restrictions to
(−1, 1) are smooth, i.e. f |(−1,1), G|(−1,1) ∈ C∞(−1, 1). To prove that the improper
integral in the definition of G(±1) exists, G ∈ C0(R) and G′ ∈ C0(R) we need to examine
lim

r→±1
f ′(r)

√
2W (r). For −1 < r < 1 we calculate

G′(r) = f ′(r)
√

2W (r) = q′
0(q−1

0 (r))(q−1
0 )′(r)

√
2W (r)

= q′
0(q−1

0 (r))
q′

0(q−1
0 (r))

√
2W (r) = q′

0(q−1
0 (r)) r→±1−→ 0.

In the last step we used the ODE q′
0 =

√
2W (q0) of the profile. It follows that G is

well-defined on R, since f ′(r) = 0 for all |r| > 1 and we have G ∈ C0(R). With the limit
from above we conclude

G′(1) = lim
h→0

� 1
0 f

′√2W dL1 −
� 1−h

0 f ′√2W dL1

h
= lim

h→0

1
h

� 1

1−h
f ′√2W dL1

= lim
r→1

f ′(r)
√

2W (r) = 0

using a version of the Fundamental Theorem of Calculus. We argue analogously for
G′(−1). It follows that G′ ∈ C0(R). Furthermore we have

c0
σ

=
�
R
q′

0q
′
0 dL1 =

�
R
f ′(q0)|q′

0|2 dL1 =
� 1

−1
f ′(r)

√
2W (r) dr = G(1)−G(−1) = 2G(1).

In the last step we used that f ′,W are even functions. f ′ is even because f is odd. Thus
G is well-defined. We also get G′(q0) = q′

0 from q′
0 = f ′(q0)

√
2W (q0). For all r ∈ (−1, 1)

we have

|G′(r)| = |G′(q0(q−1
0 (r)))| = |q′

0(q−1
0 (r))| ≤ ∥q0∥C1(R).

Furthermore we have

0 = −q′′
0 + q0 − q0

= −2f ′′(q0)W (q0)− f ′(q0)q′′
0 + f(q0)− q0

= −2f ′′(q0)W (q0)− f ′(q0)W ′(q0) + f(q0)− q0.

It follows for all r ∈ (−1, 1)

0 = −2f ′′(r)W (r)− f ′(r)W ′(r) + f(r)− r.

This ODE characterizes f on (−1, 1).

We additionally consider modified versions of the functions f,G. and q0. Given 0 < δ < 1
2

we choose an even test function χδ ∈ C∞
c (R) with

• 0 ≤ χδ ≤ 1

• χδ(r) = 1 for |r| < 1− 2δ

• χδ(r) = 0 for |r| > 1− δ
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• |χ′
δ(r)| ≤ C

δ , |χ′′
δ (r)| ≤ C

δ2 , and |χ′′′
δ (r)| ≤ C

δ3 for some C > 0 independent from δ.

With this cut-off function we modify the functions f,G.

Definition 6.3.9.
Let 0 < δ < 1

2 then we define

fδ(r) := χδ(r)f(r) + (1− χδ(r)) sgn(r) for r ∈ R
qδ(r) := fδ(q0(z)) for r ∈ R

Gδ(r) :=
� r

0
f ′

δ(s)
√

2W (s) ds for r ∈ R.

We also define σδ > 0 by

c0
σδ

:=
�
R

(
|q′

δ|2 + |q′′
δ |2
)

dL1. (6.3.40)

The functions have the following properties.

Lemma 6.3.10 (Properties of the modified auxiliary functions fδ, Gδ).
The modified functions satisfy supp(f ′

δ), supp(f ′′
δ ), supp(f ′′′

δ ) ⊆ [−1 + δ, 1− δ],

f ′
δ = χδf

′ + (f − sgn)χ′
δ, (6.3.41)

f ′′
δ = χδf

′′ + 2χ′
δf

′ + (f − sgn)χ′′
δ , (6.3.42)

f ′′′
δ = χδf

′′′ + 3χ′
δf

′′ + 3χ′′
δf

′ + (f − sgn)χ′′′
δ , (6.3.43)

and

• ∥fδ∥C0(R) ≤ 1 and ∥f ′
δ∥C0(R), ∥f ′′

δ ∥C0(R), ∥f ′′′
δ ∥C0(R) ≤ C(δ),

• ∥G′
δ∥C0(R), ∥G′′

δ∥C0(R), ∥G′′′
δ ∥C0(R) ≤ C(δ),

• Gδ, G
′
δ, G

′′
δ are Lipschitz continuous,

• G′
δ(q0) = q′

δ,

• Gδ −→ G as δ → 0 in C0
b (R),

• q′
δ −→ q′

0 as δ → 0 in H1(R),

• lim
δ→0

σδ = σ.

Proof. Let 0 < δ < 1
2 then we have for all r ∈ R

|fδ(r)| ≤ χδ(r)|f(r)|+ (1− χδ(r))| sgn(r)| ≤ χδ + 1− χδ = 1,

|f ′
δ(r)| ≤ ∥f ′∥C0[−1+δ,1−δ] + C

δ
≤ C(δ),

|f ′′
δ (r)| ≤ ∥f ′′∥C0[−1+δ,1−δ] + 2C

δ
∥f ′∥C0[−1+δ,1−δ] + C

δ2 ≤ C(δ),

|f ′′′
δ (r)| ≤ C(δ)

3∑
j=0
∥f (j)∥C0[−1+δ,1−δ] ≤ C(δ),

|G′
δ(q0(r))| = f ′

δ(q0(r))
√

2W (q0(r)) = f ′
δ(q0(r))q′

0(r) = q′
δ(r) ≤ C(δ),
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|G′′
δ (r)| =

∣∣∣∣f ′′
δ (r)

√
2W (r) + f ′

δ(r) W ′(r)√
2W (r)

∣∣∣∣ =
∣∣∣∣f ′′

δ (r)
√

2W (r)− 2
√

2rf ′
δ(r)

∣∣∣∣
≤
√

2∥f ′′
δ ∥C0(R)∥

√
W∥C0[−1,1] + 2

√
2∥f ′

δ∥C0(R) ≤ C(δ),

|G′′′
δ (r)| =

∣∣∣∣f ′′′
δ (r)

√
2W (r)− 4

√
2rf ′′

δ (r)− 2
√

2f ′
δ(r)

∣∣∣∣
≤
√

2∥f ′′′
δ ∥C0(R)∥W∥C0[−1,1] + 4

√
2∥f ′′

δ ∥C0(R) + 2
√

2∥f ′
δ∥C0(R) ≤ C(δ).

Since G′
δ, G

′′
δ , G

′′′
δ are bounded on the whole space R we get that the functions Gδ, G

′
δ, G

′′
δ

are Lipschitz continuous.

Next we show that Gδ converges uniformly to Gδ as δ → 0. For r ∈ R we estimate

∣∣Gδ(r)−G(r)
∣∣ =

∣∣∣∣∣
� r

0

(
fδ − f

)′(s)√2W (s) ds
∣∣∣∣∣

=
∣∣∣∣∣(fδ(s)− f(s)

)√
2W (s)

∣∣∣∣r
0
−
� r

0

(
fδ(s)− f(s)

) W ′(s)√
2W (s)

ds
∣∣∣∣∣

≤
∣∣∣(fδ(r)− f(r)

)√
2W (r)

∣∣∣+ ∣∣∣∣∣2√2
� r

0

∣∣∣fδ(s)− f(s)
∣∣∣|s| ds∣∣∣∣∣.

In the last step we used the explicit formula for W . For the following step we apply
fδ − f = (1− χδ)(sgn−f) which vanishes outside (−1, 1):

∣∣Gδ(r)−G(r)
∣∣ ≤ ∣∣∣(1− χδ(r))(sgn(r)− f(r))

√
2W (r)

∣∣∣
+
∣∣∣∣∣2√2

� r

0
(1− χδ(s))(sgn(s)− f(s))s ds

∣∣∣∣∣
≤
∣∣∣(1− χδ(r))

√
2W (r)

∣∣∣+ 2
√

2
� 1

0
(1− χδ(s)) ds

≤
√

2W (1− 2δ) + 2
√

2(1− (1− 2δ)) =
√

2W (1− 2δ) + 4
√

2δ.

This holds uniformly for all r ∈ R and thus Gδ converges uniformly to G as δ → 0.

For the convergence of q′
δ −→ q′

0 as δ → 0 in H1(R) we have to show
�
R
|q′

δ − q′
0|2 dL1 −→ 0 and

�
R
|q′′

δ − q′′
0|2 dL1 −→ 0 as δ → 0.

We start with the first term. Using the already proven properties we obtain that
�
R

∣∣q′
δ − q′

0
∣∣2 dL1 =

�
R

∣∣G′
δ(q0)−G′(q0)

∣∣2 dL1 =
� 1

−1
2
∣∣f ′

δ(r)− f ′(r)
∣∣2W (r) dr

=
� 1

0
4
∣∣∣χδ(r)f ′(r) + (f(r)− sgn(r))χ′

δ(r)− f ′(r)
∣∣∣2W (r) dr

≤
� 1

0
8
∣∣1− χδ(r)

∣∣2∣∣f ′(r)
∣∣2W (r) dr +

� 1

0
8
∣∣f(r)− 1

∣∣2∣∣χ′
δ(r)

∣∣2W (r) dr.
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From the definition and properties of χδ we get�
R

∣∣q′
δ − q′

0
∣∣2 dL1 ≤

� 1

1−2δ
8
∣∣1− χδ(r)

∣∣2∣∣f ′(r)
∣∣2W (r) dr

+
� 1−δ

1−2δ
8
∣∣f(r)− 1

∣∣2∣∣χ′
δ(r)

∣∣2W (r) dr

≤
� 1

1−2δ
8
∣∣f ′(r)

∣∣2W (r) dr + 8δ
∣∣f(1− 2δ)− 1

∣∣2 · C
δ2W (1− 2δ).

In the first term we can transform r 7−→ q0(r), in the second we use 2W (1− 2δ) ≤ Cδ2

for 0 < δ < 1
2 . We get�

R

∣∣q′
δ − q′

0
∣∣2 dL1 ≤ 4

� ∞

q−1
0 (1−2δ)

∣∣q′
0(r)

∣∣2 dr + Cδ
∣∣f(1− 2δ)− 1

∣∣2 −→ 0 as δ → 0.

This follows from the continuity of f and q′ ∈ L2(R). For the second derivatives we have�
R

∣∣q′′
δ − q′′

0
∣∣2 dL1 =

�
R

∣∣G′′
δ (q0)−G′′(q0)

∣∣2|q′
0|2 dL1 = 2

� 1

0

∣∣G′′
δ −G′′∣∣2√2W dL1

= 2
� 1

0

∣∣∣∣f ′′
δ

√
2W + f ′

δW
′

√
2W
− f ′′√2W − f ′W ′

√
2W

∣∣∣∣2√2W dL1

= 2
� 1

0

∣∣∣2Wf ′′
δ + f ′

δW
′ − 2Wf ′′ − f ′W ′

∣∣∣2
√

2W
dL1.

We plug in (6.3.41)-(6.3.42) and afterwards (3) from Lemma 6.3.8 which results in�
R

∣∣q′′
δ − q′′

0
∣∣2 dL1

= 2
� 1

0

∣∣∣[χδ − 1]
[
2Wf ′′ + f ′W ′]+ 4χ′

δf
′W +

[
2χ′′

δW +W ′χ′
δ

]
[f − sgn]

∣∣∣2
√

2W
dL1

≤ 6
� 1

1−2δ

|1− χδ|2|f − Id |2 + 8|χ′
δG

′|2W + (4|χ′′
δW |2 + 2|W ′χ′

δ|2)|f − 1|2√
2W

dL1.

Now we use |G′| ≤ C, |χ′
δ| ≤

C
δ , |χ′′

δ | ≤
C
δ2 , W ′(r) = −4r

√
W (r), W (1− 2δ) ≤ Cδ2 and

get �
R

∣∣q′′
δ − q′′

0
∣∣2 dL1

≤ C(χ)
� 1

1−2δ

( |f(r)− r|2√
2W (r)

+ 1
δ2 · δ

2 +
( 1
δ4 δ

3 + r2δ · 1
δ2

)
|f(r)− 1|2

)
dr

≤ C(χ)
� 1

1−2δ

|f(r)− r|2√
2W (r)

dr + C(χ)
(
δ + 2|f(1− 2δ)− 1|2

)
.

Owing to the continuity of f the second term vanishes for δ → 0. It remains to prove
that the integral goes to 0 as well. We can do so by transforming the expressions back as
we did for the other integral as well. Since q′′

0 ∈ L2(R) we get� 1

1−2δ

|f(r)− r|2√
2W (r)

dr =
� ∞

q−1
0 (1−2δ)

∣∣q′′
0
∣∣2 dL1 −→ 0 as δ → 0.

From the H1(R)-convergence of q′
0 it follows that σδ → σ as δ → 0.
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Owing to the cut-off and the uniform convergence of Gδ we can consider f ′
δ(uε) instead of

f ′(uε). Similar to ϑε from Chapter 5 we introduce a modified diffuse area measure βε,δ.
Here the modification is achieved using Gδ instead of a PDE.

Definition 6.3.11 (Modified diffuse area measures).
Let uε ∈ L2(0, T ;H1(Ω)). We define for ε > 0, t ∈ (0, T ), and 0 < δ < 1

2

βt
ε,δ :=

(1
ε
|G′

δ(uε)|2 + ε
∣∣G′′

δ (uε)∇uε

∣∣2)Ln Ω and βε,δ := L1 ⊗ (βt
ε,δ)t∈(0,T ). (6.3.44)

We can extend the compactness properties of (µε)ε>0 and (µt
ε)ε>0 to (βε,δ)ε>0 and (βt

ε,δ)ε>0.

Lemma 6.3.12 (Compactness of the modified diffuse area measures).
Let uε ∈ L2(0, T ;H3(Ω)), 0 < δ < 1

2 , and t ∈ (0, T ) then there exists C(δ) > 0, such that
for all ε > 0 we have

βt
ε,δ(Ω) ≤ C(δ)µt

ε(Ω). (6.3.45)

Proof. Recall that G′
δ(uε) = f ′

δ(uε)
√

2W (uε) from Definition 6.3.9. Furthermore we have
∥f ′

δ∥C0(R), ∥G′′
δ∥C0(R) ≤ C(δ) by Lemma 6.3.10. It follows

βt
ε,δ(Ω) =

�
Ω

(1
ε
|G′

δ(uε(t, ·))|2 + ε
∣∣∇G′

δ(uε(t, ·))
∣∣2) dLn

=
�

Ω

(
2|f ′

δ(uε(t, ·))|2 1
ε
W (uε(t, ·)) + |G′′

δ (uε(t, ·))|2ε
∣∣∇uε(t, ·)

∣∣2) dLn

≤ C(δ)
�

Ω

(ε
2
∣∣∇uε(t, ·)

∣∣2 + 1
ε
W (uε(t, ·))

)
dLn = C(δ)µt

ε(Ω).

Next we want to calculate the weak∗-limit of βt
ε,δ. As in Chapter 5 we use a blow-up

argument. The result is essential for the existence proof of the generalized normal velocity.

Theorem 6.3.13 (Blow-up argument).
Let (uε)ε>0 in L2(0, T ;H3(Ω)), 0 < δ < 1

2 , t ∈ (0, T ), and any subsequence ε→ 0 (possibly
depending on t) such that (6.3.19), (6.3.25), and

lim sup
ε→0

κt
ε(Ω) <∞ (6.3.46)

are satisfied. Then for all 0 < δ < 1
2 and the whole subsequence ε→ 0 it holds

βt
ε,δ

w∗
−→ 1

σδ
µt in C0

c (Ω)′, (6.3.47)

with σδ > 0 from (6.3.40).

The proof for the first claim is done throughout Section 6.4.

This result enables us to prove convergence for (βε,δ)ε>0.

Proposition 6.3.14.
There exists a subsequence ε → 0 such that (6.3.19) and (6.3.25) hold for almost all
t ∈ (0, T ) and such that

βε,δ
w∗
−→ 1

σδ
µ in C0

c ([0, T )× Ω)′. (6.3.48)
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Proof. First we restrict ourselves to a subsequence ε→ 0 such that (6.3.19) and (6.3.25)
hold for almost all t ∈ (0, T ). For ε > 0, k ∈ N, we define the sets

Bε,k := {t ∈ (0, T ) | κt
ε(Ω) > k}. (6.3.49)

We then obtain from (6.3.13) that

Λ ≥
� T

0
κt

ε(Ω) dt ≥ L1(Bε,k)k. (6.3.50)

Next we define the Radon-measures βt
ε,δ,k by

βt
ε,δ,k :=

{
βt

ε,δ for t ∈ (0, T ) \ Bε,k,
1

σδ
µt for t ∈ Bε,k.

(6.3.51)

Theorem 6.3.13 yields for any subsequence εj → 0 (j →∞) with

lim sup
j→∞

κt
εj

(Ω) <∞

that

βt
εj ,δ

w∗
−→ 1

σδ
µt as j →∞ in C0

c (Ω)′. (6.3.52)

By (6.3.51), (6.3.52) we therefore obtain for any η ∈ C0
c ([0, T ) × Ω) with η ≥ 0, k ∈ N

and almost all t ∈ (0, T )

〈
η(t, ·), βt

ε,δ,k

〉
C0

c (Ω)′ −→
1
σδ

〈
η(t, ·), µt〉

C0
c (Ω)′ as ε→ 0. (6.3.53)

Furthermore, (6.3.45) yields

∣∣〈η(t, ·), βt
ε,δ,k⟩C0

c (Ω)′
∣∣ =

(
1− χBε,k

(t)
)〈
η(t, ·), |βt

ε,δ|
〉

C0
c (Ω)′ + 1

σδ
χBε,k

(t)
〈
η(t, ·), |µt|

〉
C0

c (Ω)′

≤ C(δ,Λ)∥η∥C0(ΩT ). (6.3.54)

The Dominated Convergence Theorem, (6.3.53), and (6.3.54) imply
� T

0

〈
η(t, ·), βt

ε,δ,k

〉
C0

c (Ω)′ dt −→ 1
σδ

� T

0

〈
η(t, ·), µt〉

C0
c (Ω)′ dt as ε→ 0. (6.3.55)

Further we obtain that∣∣∣∣∣
� T

0

〈
η(t, ·), βt

ε,δ

〉
C0

c (Ω)′ dt−
� T

0

〈
η(t, ·)βt

ε,δ,k

〉
C0

c (Ω)′ dt
∣∣∣∣∣ ≤

�
Bε,k

∣∣∣〈η(t, ·), βt
ε,δ −

1
σδ
µt
〉∣∣∣ dt

≤ C(δ)
�

Bε,k

〈
η(t, ·), µt

ε

〉
C0

c (Ω)′ dt.

(6.3.56)

For k ∈ N fixed we deduce from (6.3.13) (6.3.50), (6.3.56) that
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lim sup
ε→0

∣∣∣∣∣
� T

0

〈
η(t, ·), βt

ε,δ

〉
C0

c (Ω)′ dt− 1
σδ

� T

0

〈
η(t, ·), µt〉

C0
c (Ω)′ dt

∣∣∣∣∣
≤ lim

ε→0

∣∣∣∣∣
� T

0

〈
η(t, ·), βt

ε,δ,k

〉
C0

c (Ω)′ dt− 1
σδ

� T

0

〈
η(t, ·), µt〉

C0
c (Ω)′ dt

∣∣∣∣∣+ C(δ,Λ, η)
k

.

(6.3.57)

By (6.3.55) and since k ∈ N was arbitrary this proves the Proposition.

Similar to Lemma 5.5.1 we want to ignore certain terms from the product rule in the
limit ε→ 0. This is achieved in the following lemma.

Lemma 6.3.15.
Let (uε)ε>0 be a sequence in L2(0, T ;H3(Ω)), let ϕ ∈ C2

c ([0, T ) × Ω) and τ ∈ (0, T ]. If
either of the limits in the following identity exists, the other limit exists as well and we
have

lim
ε→0

�
Ωτ

(1
ε
|ϕGδ(uε)|2 + ε

∣∣∇[ϕG′
δ(uε)

]∣∣2) dLn+1 (6.3.58)

= lim
ε→0

�
Ωτ

|ϕ|2
(1
ε
|G′

δ(uε)|2 + ε
∣∣G′′

δ (uε)∇uε

∣∣2) dLn+1.

Proof. Since supp(ϕ) ⋐ ΩT we can find a bounded and open set with C1-boundary
between supp(ϕ) and ΩT such that we can do a partial integration. We calculate
�

Ωτ

(
ε
∣∣∇[ϕG′

δ(uε)
]∣∣2 + 1

ε
|ϕGδ(uε)|2

)
dLn+1

=
�

Ωτ

(
ε
∣∣G′

δ(uε)∇ϕ+ ϕG′′
δ (uε)∇uε

∣∣2 + 1
ε
|ϕG′

δ(uε)|2
)

dLn+1

=
�

Ωτ

(
ε
∣∣G′

δ(uε)∇ϕ
∣∣2 + ε

2∇[G′
δ(uε)2] · ∇[ϕ2] + ε

∣∣ϕG′′
δ (uε)∇uε

∣∣2 + 1
ε
|ϕG′

δ(uε)|2
)

dLn+1.

The claim is that the first and second term in ( · ) vanish as ε→ 0 in L1(Ωτ ). We estimate
with a partial integration and the boundedness of G′

δ∣∣∣∣∣
�

Ωτ

ε
(∣∣G′

δ(uε)∇ϕ
∣∣2 + 1

2∇[G′
δ(uε)2] · ∇[ϕ2]

)
dLn+1

∣∣∣∣∣
=
∣∣∣∣∣
�

Ωτ

ε|G′
δ(uε)|2

(∣∣∇ϕ∣∣2 − 1
2∆(ϕ2)

)
dLn+1

∣∣∣∣∣ ≤ εC(δ, ϕ,Ωτ ).

To show that V from Lemma 6.3.7 is a De Giorgi type varifold solution for rescaled mean
curvature flow we mainly have to establish the existence of a generalized mean curvature
vector H⃗, the existence of a generalized normal velocity V and the motion law which
connects H⃗ with V. For the existence of a generalized mean curvature vector we can
use the results from Theorem 5.2.3. The following theorem proves the existence of a
generalized normal velocity.
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Theorem 6.3.16 (Existence of generalized normal velocity).
Let Assumptions 6.2.1 hold, we use the Notations from Lemma 6.3.7. Then there exists
V ∈ L2(0, T ;L2(Ω, µt)) such that for all ϕ ∈ C2

c ([0, T )× Ω) and a.e. τ ∈ (0, T )

c0
2

�
Ωτ

u∂tϕ dLn+1 −
�

Ωτ

Vϕ dµ = c0
2

�
Ω
u(τ, ·)ϕ(τ, ·) dLn − c0

2

�
Ω
u0ϕ(0, ·) dLn. (6.3.59)

For all τ ∈ (0, T ] the velocity V can be estimated by

1
σ

�
Ωτ

|V|2 dµ ≤ lim inf
ε→0

〈
εAε∂tuε, ∂tuε

〉
L2(0,τ ;H1(Ω))′

. (6.3.60)

In addition we have u ∈ BV (ΩT ) and ∂tu is a finite Radon measure on ΩT . We have for
all τ ∈ (0, T ] and all ϕ ∈ C2

c (Ωτ )

−c0
2

�
Ωτ

ϕ d∂tu =
�

Ωτ

Vϕ dµ. (6.3.61)

Proof. Let ϕ ∈ C2
c ([0, T )× Ω). First we prove that for a.e. τ ∈ (0, T ) we have

c0
2σ

�
Ωτ

u∂tϕ dLn+1 = c0
2σ

�
Ω
ϕ(τ, ·)u(τ, ·) dLn − c0

2σ

�
Ω
ϕ(0, ·)u0 dLn

− lim
δ→0

lim
ε→0

〈
ϕG′

δ(uε), ∂tuε
〉

L2(0,τ ;H1(Ω))′ . (6.3.62)

Let τ ∈ (0, T ). We start by using the auxiliary function G, u(t, ·) ∈ BV (Ω; {±1}) for
t ∈ (0, τ), c0

2σ = G(1), and that G is odd

c0
2σ

�
Ωτ

u∂tϕ dLn+1 =
�

Ωτ

G(u)∂tϕ dLn+1.

Next we use Gδ −→ G in C0
b (R) by Lemma 6.3.10 and get

�
Ωτ

G(u)∂tϕ dLn+1 = lim
δ→0

�
Ωτ

Gδ(u)∂tϕ dLn+1.

Applying that uε −→ u a.e. in ΩT , Gδ ∈ C0
b (R), and the Dominated Convergence

Theorem we obtain that

lim
δ→0

�
Ωτ

Gδ(u)∂tϕ dLn+1 = lim
δ→0

lim
ε→0

�
Ωτ

G(uε)∂tϕ dLn+1.

We have limt→0 uε(t, ·) = u0,ε a.e. in Ω by (6.3.16), Gδ ∈ C1
b (R) and thus

limt→0Gδ(uε(t, ·)) = Gδ(u0,ε) a.e. in Ω. Also uε ∈ H1(0, T ;H1(Ω)′) ∩ C0([0, T ];H1(Ω))
and Gδ ∈ C2

b (R) imply Gδ(uε) ∈ H1(0, T ;H1(Ω)′) ∩ C0([0, T ];L∞(Ω)) such that
�

Ωτ

Gδ(uε)∂tϕ dLn+1 =
�

Ω
ϕ(τ, ·)Gδ(uε(τ, ·)) dLn −

�
Ω
ϕ(0, ·)Gδ(u0,ε) dLn

−
〈
ϕ, ∂tGδ(uε)

〉
L2(0,τ ;H1(Ω))′

=
�

Ω
ϕ(τ, ·)Gδ(uε(τ, ·)) dLn −

�
Ω
ϕ(0, ·)Gδ(u0,ε) dLn

−
〈
ϕG′

δ(uε), ∂tuε
〉

L2(0,τ ;H1(Ω))′
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For the time-independent integrals we use (6.3.17), (6.3.18) and get for a.e. τ ∈ (0, T )

lim
δ→0

lim
ε→0

(�
Ω
ϕ(τ, ·)Gδ(uε(τ, ·)) dLn −

�
Ω
ϕ(0, ·)Gδ(u0,ε) dLn

)

= lim
δ→0

( �
Ω
ϕ(τ, ·)Gδ(u(τ, ·)) dLn −

�
Ω
ϕ(0, ·)Gδ(u0) dLn

)

=
�

Ω
ϕ(τ, ·)G(u(τ, ·)) dLn −

�
Ω
ϕ(0, ·)G(u0) dLn

= c0
2σ

�
Ω
ϕ(τ, ·)u(τ, ·) dLn − c0

2σ

�
Ω
ϕ(0, ·)u0 dLn.

We conclude (6.3.62). In the next step we estimate the double limit. Therefor we apply
Id = (−ε2∆ + Id)Aε and get〈
ϕG′

δ(uε), ∂tuε
〉

L2(0,τ ;H1(Ω))′ =
〈
Aε∂tuε, (−ε2∆ + Id)ϕG′

δ(uε)
〉

L2(0,τ ;H1(Ω))′

=
�

Ωτ

(
ε2∇Aε∂tuε · ∇

[
ϕG′

δ(uε)
]

+ ϕG′
δ(uε)Aε∂tuε

)
dLn+1.

We use the Cauchy-Schwarz estimate for the H1(Ω) scalar product. We get∣∣∣∣∣
�

Ωτ

(
ε2∇Aε∂tuε · ∇

[
ϕG′

δ(uε)
]

+ ϕG′
δ(uε)Aε∂tuε

)
dLn+1

∣∣∣∣∣
≤
[�

Ωτ

(1
ε
|ϕG′

δ(uε)|2 + ε
∣∣∇[ϕG′

δ(uε)
]∣∣2) dLn+1

·
�

Ωτ

ε
(
|Aε∂tuε|2 + ε2∣∣∇Aε∂tuε

∣∣2) dLn+1
] 1

2

=
[ �

Ωτ

(1
ε
|ϕG′

δ(uε)|2 + ε
∣∣∇[ϕG′

δ(uε)
]∣∣2) dLn+1〈εAε∂tuε, ∂tuε

〉
L2(0,τ ;H1(Ω))′

] 1
2

.

We show that the first factor on the right-hand side is convergent as ε→ 0. We get from
Lemma 6.3.15

lim
ε→0

�
Ωτ

(1
ε
|ϕG′

δ(uε)|2 + ε
∣∣∇[ϕG′

δ(uε)
]∣∣2) dLn+1

= lim
ε→0

�
Ωτ

|ϕ|2
(1
ε
|G′

δ(uε)|2 + ε
∣∣G′′

δ (uε)∇uε

∣∣2) dLn+1 = lim
ε→0

�
Ωτ

|ϕ|2 dβε,δ

where βε,δ is the Radon measure introduced in (6.3.44). In the next step we use the
compactness result for (βε,δ)ε>0. We have by Proposition 6.3.14

lim
ε→0

�
Ωτ

|ϕ|2 dβε,δ = 1
σδ

�
Ωτ

|ϕ|2 dµ.

Thus we get

lim
ε→0

�
Ωτ

(1
ε
|ϕG′

δ(uε)|2 + ε
∣∣∇[ϕG′

δ(uε)
]∣∣2) dLn+1 ≤ 1

σδ
∥ϕ∥L2(Ωτ ,µ).
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We conclude using σδ → σ as δ → 0∣∣∣∣∣ lim
δ→0

lim
ε→0

〈
ϕG′

δ(uε), ∂tuε
〉

L2(0,τ ;H1(Ω))′

∣∣∣∣∣ (6.3.63)

≤ ∥ϕ∥L2(Ωτ )

√
1
σ

lim inf
ε→0

〈
εAε∂tuε, ∂tuε

〉
L2(0,τ ;H1(Ω))′

The right-hand side is finite because of the PDE (6.1.1) and (6.3.13). By (6.3.63) the
linear mapping L̃ :

(
C2

c ([0, T )× Ω), ∥ · ∥L2(ΩT ,µ)
)
−→ R with

L̃(ϕ) := σ lim
δ→0

lim
ε→0

〈
ϕG′

δ(uε), ∂tuε
〉

L2(0,T ;H1(Ω))′ (6.3.64)

is bounded. Owing to the Hahn-Banach Theorem we can extend this mapping, i.e. there
exists L ∈ L2(ΩT , µ)′ such that

L : L2(ΩT , µ) −→ R with ∥L∥L2(ΩT )′ = ∥L̃∥ and L|C2
c ([0,T )×Ω) = L̃. (6.3.65)

By Riesz’s Representation Theorem for Hilbert spaces there exists a unique V ∈ L2(ΩT )
with ∥V∥L2(ΩT ,µ) = ∥L∥L2(Ω)′ such that for all v ∈ L2(ΩT ) we have

Lv =
�

ΩT

Vv dµ.

In particular we have for all ϕ ∈ C2
c ([0, T )× Ω) that

σ lim
δ→0

lim
ε→0

〈
ϕG′

δ(uε), ∂tuε
〉

L2(0,T ;H1(Ω))′ = L̃(ϕ) = L(ϕ) =
�

ΩT

Vϕ dµ. (6.3.66)

Combining this with (6.3.62) yields (6.3.68).

We have by (6.3.63)

∥V∥L2(ΩT ,µ) = ∥L̃∥ = sup
ϕ∈C2

c ([0,T )×Ω)
∥ϕ∥L2(ΩT )≤1

|L̃(ϕ)| ≤
√
σ lim inf

ε→0

〈
εAε∂tuε, ∂tuε

〉
L2(0,T ;H1(Ω))′ .

Squaring and rearranging yields (6.3.60).

By (6.3.62) and (6.3.63) we conclude that for all ϕ̂ ∈ C2
c (Ωτ ) (so no boundary integrals

at t = 0 or t = τ) we have∣∣∣∣∣
�

Ωτ

u∂tϕ̂ dLn+1
∣∣∣∣∣ ≤ C(Λ, τ, σ)∥ϕ̂∥C0(Ωτ ). (6.3.67)

Since we already knew u(t, ·) ∈ BV (Ω) from the Modica-Mortola Theorem 2.4.2 it
follows that u ∈ BV (Ωτ ). Now we also have this regularity with respect to time, and
∂tu is a finite Radon measure on Ωτ . The measure a priori depends on τ . But since
for all 0 < τ1 < τ2 < T we have C2

c ([0, τ1) × Ω) ↪→ C2
c ([0, τ2) × Ω) the Radon measure

∂tu ∈ C0
c (ΩT )′ is well-defined.

157



By Theorem 2.2.8 we deduce that for all ϕ ∈ C2
c ([0, T )× Ω)

c0
2

�
Ωτ

u∂tϕ dLn+1 + c0
2

�
Ω
ϕ(0, ·)u(0, ·) dLn − c0

2

�
Ω
ϕ(τ, ·)u(τ, ·) dLn = −c0

2

�
Ωτ

ϕ d∂tu.

(6.3.68)

Here the pointwise evaluations u(0, ·) and u(τ, ·) are traces in the sense of the Trace
Theorem. Combining this with (6.3.68) shows that the initial data u0 is attained in the
sense of the Trace Theorem and that for a.e. τ ∈ (0, T ) the function u ∈ BV (ΩT ) attains
the value u(τ, ·) in the sense of the Trace Theorem.

Considering test functions ϕ ∈ C2
c (Ωτ ) proves (6.3.61).

Note that in the very first step of the proof we can use Z instead of G and apply
c0
2 u = Z(u). While we would have to deal with the term

�
Ω ε|Z

′′(uε)∇uε|2 dLn+1 it might
work as well. Now the stage is set for the major theorem of this Chapter where we prove
that ⊕V is a De Giorgi type varifold solution for rescaled mean curvature flow as in
Definition 2.5.3.

Theorem 6.3.17 (De Giorgi type varifold solution for rescaled mean curvature flow).
Let the Assumptions 6.2.1 hold and assume ⊕V is the family of varifolds constructed in
Lemma 6.3.7. Then ⊕V is a De Giorgi type varifold solution for rescaled mean curvature
flow with initial data (V 0, u0). The rescaling parameter is given by σ > 0 from (6.3.40).

Proof. From Lemma 6.3.7 we already know that ⊕V = L1 ⊗ (⊕V t)t∈(0,T ) and that the
measurability condition from Definition 2.5.3 is satisfied for ⊕V ·. We show the conditions
(a)-(d) from Definition 2.5.3. Firstly (a) follows from Theorem 6.3.16.

For (b) let η ∈ C0
c (Ω;Rn) and ψ ∈ C0

c [0, T ). We consider (6.3.37) for η, multiply by ψ
and integrate in time. We obtain

�
⊕Gn−1(ΩT )

ψ(t)Dη(x) : (Id−s⊗ s) d⊕V (t, x, s) =
� T

0
ψ
〈
η, δṼ t〉dt = −

�
ΩT

ψη · H⃗ dµ.

Since C0
c [0, T )⊗ C0

c (Ω;Rn) is dense in C0
c ([0, T )× Ω;Rn) (b) follows.

For (c) we use that (6.3.15) holds for a.e. τ ∈ (0, T ) and let η ∈ C0
c (Ω) such that 0 ≤ η ≤ 1.

We estimate as a preparation

lim inf
ε→0

µτ
ε(Ω) ≥ lim inf

ε→0
⟨η, µτ

ε⟩ = ⟨η, µτ ⟩.

We take the supremum over all η ∈ C0
c (Ω) with 0 ≤ η ≤ 1 and obtain

lim inf
ε→0

µτ
ε(Ω) ≥ µτ (Ω). (6.3.69)

For κε we estimate with Fatou’s Lemma

lim inf
ε→0

κε(Ωτ ) = lim inf
ε→0

� τ

0
κt

ε(Ω) dt ≥
� τ

0
lim inf

ε→0
κt

ε(Ω) dt. (6.3.70)
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Let t ∈ (0, T ) such that (6.3.14), (6.3.19), and (6.3.29) hold up to a possibly t-dependent
subsequence, which is true for a.e. t ∈ (0, T ). Then we can apply Corollary 5.2.6 and get
that

lim inf
ε→0

κt
ε(Ω) ≥ σ

�
Ω

∣∣H⃗t

∣∣2 dµt.

We conclude that

lim inf
ε→0

κε(Ωτ ) ≥ σ
�

Ωτ

∣∣H⃗t

∣∣2 dµ. (6.3.71)

With these results we can prove (c). We rewrite (6.1.6)

µτ
ε(Ω) + 1

2κε(Ωτ ) + 1
2
〈
εAε∂tuε, ∂tuε

〉
L2(0,τ ;H1(Ω))′ = µ0

ε(Ω).

We apply the limes inferior to both sides and apply (6.3.69), (6.3.71), (6.3.60), and (6.2.2).
It follows that

µτ (Ω) + σ

2

�
Ωτ

∣∣H⃗∣∣2 dµ+ 1
2σ

�
Ωτ

|V|2 dµ ≤ µ0(Ω).

This proves (c).

For (d) we use that as ε → 0 we have Z(uε(t, ·)) −→ Z(u(t, ·)) for a.e. t ∈ (0, T ) as in
Lemma 6.2.6. In the following we use in addition (6.3.18), (6.3.34), and (6.3.24). Let
η ∈ C1(Ω;Rn) and ψ ∈ C1

c (0, T ), we calculate

c0
2

� T

0
ψ

�
Ω
η · d∇u(t, ·) dt = −

�
ΩT

c0
2 ψu∇ · η dLn+1 = −

�
ΩT

ψZ(u)∇ · η dLn+1

= − lim
ε→0

�
ΩT

ψZ(uε)∇ · η dLn+1.

We apply Theorem 8.3.7 and get

− lim
ε→0

�
ΩT

ψZ(uε)∇ · η dLn+1 = lim
ε→0

�
ΩT

ψη · ∇uε

√
2W (uε) dLn+1

= lim
ε→0

�
ΩT

ψη · νε

∣∣∇uε

∣∣√2W (uε) dLn+1.

We have ∣∣∇uε

∣∣√2W (uε) = ε

2
∣∣∇uε

∣∣2 + 1
ε
W (uε)

−
(√

ε

2
∣∣∇uε

∣∣−√1
ε
W (uε)

)2
.

This yields
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c0
2

� T

0

�
Ω
ψη · d∇u(t, ·) dt = lim

ε→0

[�
ΩT

ψη · νε dµε

−
�

ΩT

ψη · νε

(√
ε

2
∣∣∇uε

∣∣−√1
ε
W (uε)

)2
dLn+1

]
.

In the next step we show

lim
ε→0

�
ΩT

ψη · νε

(√
ε

2
∣∣∇uε

∣∣−√1
ε
W (uε)

)2
dLn+1 = 0.

As an auxiliary identity we calculate for a, b > 0 that

(a− b)2 = |a− b||a− b| ≤ |a− b||a+ b| = |a2 − b2|.

We apply this with a =
√

ε
2 |∇uε|, b =

√
2W (uε)

ε and estimate

∣∣∣∣∣
�

ΩT

ψη · νε

(√
ε

2
∣∣∇uε

∣∣−√1
ε
W (uε)

)2
dLn+1

∣∣∣∣∣
≤
�

ΩT

|ψη|
∣∣∣∣√ε

2
∣∣∇uε

∣∣−√1
ε
W (uε)

∣∣∣∣2dLn+1

≤ ∥ψη∥C0(Ω)

�
ΩT

∣∣∣∣ε2 ∣∣∇uε

∣∣2 − 1
ε
W (uε)

∣∣∣∣ dLn+1

= ∥ψη∥C0(ΩT ) |ξε|(ΩT ) −→ 0.

So far we have proven that

c0
2

� T

0
ψ

�
Ω
η · d∇u(t, ·) dt = lim

ε→0

�
ΩT

ψη · νε dµε.

We can rewrite the first integral in terms of the oriented varifold ⊕V t
ε and get

c0
2

� T

0
ψ

�
Ω
η · d∇u(t, ·) dt = lim

ε→0

�
⊕Gn−1(ΩT )

ψη · s d⊕Vε(·, ·, s)

=
�

⊕Gn−1(ΩT )

ψη · s d⊕V (·, ·, s)

=
� T

0
ψ

�
⊕Gn−1(Ω)

η · s d⊕Ṽ t(·, s).

We localize in time and conclude (d).
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6.4 Proof of Theorem 6.3.13

By (6.3.19), (6.3.45), and Theorem 2.2.2 it follows that (βt
ε,δ)ε>0 has a weak∗-cluster

point in C0
c (Ω)′. However we want to prove weak∗-convergence of the entire sequence

for which the assumptions of Theorem 6.3.13 are satisfied. Assume that there exists a
subsequence which violates (6.3.47). Since the subsequence still satisfies (6.3.19) and
(6.3.45) we conclude by Theorem 2.2.2 that there exist a subsequence of the subsequence
(ε→ 0) and βt

δ ∈ C0
c (Ω)′ such that

βt
ε,δ

w∗
−→ βt

δ in C0
c (Ω)′. (6.4.1)

In the following we consider this subsequence and prove βt
δ = 1

σδ
µt which is a contradiction.

First we introduce the notations for the proof and reduce the claims without loss of
generality. As in Section 5.4 we use the concept of Lebesgue points and proceed similarly
with a blow-up.

Lemma 6.4.1 (Good points).
Assume (uε)ε>0 is a sequence in L2(0, T ;H3(Ω)) let Definition 6.3.1 hold. Let 0 < δ < 1

2
and assume that for t ∈ (0, T ) there exists a possibly t-dependent subsequence ε→ 0 such
that the conditions (6.3.15), (6.3.19), (6.3.26)-(6.3.29), (6.3.34), and (6.4.1) hold. Then
we have for µt-a.e. x ∈ Ω (the exception set possibly depends on t, δ)

• B2ρ0(x) ⋐ Ω for some ρ0 = ρ0(x) > 0,

• x is a µt-Lebesgue point of Dµtβt
δ,

• lim sup
ρ→0

ρ1−nµt(Bρ(x)) <∞,

• κt({x}) = 0,

• the approximate tangent space TxΓt exists,

• there exist θt(x) ∈ N and St,x ∈ G(n, n− 1) such that Txµ
t = c0θt(x)St,x.

Proof. Since Ω is open there exists ρ0 : Ω −→ (0,∞) with B2ρ0(x)(x) ⋐ Ω. We know from
from Lemma 6.3.12 and the Radon-Nikodym Theorem 8.2.5 that Dµβ

t
δ ∈ L1(Ω, µt) and

βt
δ = Dµtβt

δµ
t. In particular µt-a.e. x ∈ Ω is a µt-Lebesgue point of Dµtβt

δ by Theorem
8.3.5. Furthermore, we get from Corollary 6.3.4 that lim supρ→0 ρ

1−nµt(Bρ(x)) <∞ for
all x ∈ Ω.

The fourth condition is true for a cocountable subset of Ω because κt is a finite Radon
measure on Ω. It follows that κt can at most have a countable set of atoms.

By (6.3.15) the claims from Corollary 6.3.4 hold. Thus the fifth condition is satisfied by
µt-a.e. x ∈ Ω because V t is a rectifiable (n − 1)-varifold and µt = c0θtHn−1 Γt. The
last point stems from the fact that 1

c0
V t is integral; see Theorem 6.3.7.

In the following we fix a good point x ∈ supp(µt) and ρ0 > 0 such that the properties in
Lemma 6.4.1 hold. Set θ := θt(x). In the following we consider the function ζx,ρ(y) = y−x

ρ
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for ρ > 0 and y ∈ Rn. Recall also ζ#
ρ,x and ζρ,x,# from Definition 2.2.19.

Without loss of generality we can assume x = 0 and S := S0,x = Rn−1 × {0} for the
proof of Theorem 6.3.13. In fact this is possible because ζ shifts x to 0 anyways. The
assumption x = 0 translates into the simpler notation ζρ,0,#µ

t instead of ζρ,x,#µ
t. We

write ζρ,#µ
t := ζρ,0,#µ

t. We can assume S = Rn−1 × {0} without loss of generality by
using an orthogonal coordinate transformation. We write θ := θt(x).

Lemma 6.4.2.
Assume (uε)ε>0 is a sequence in L2(0, T ;H3(Ω)). Let 0 < δ < 1

2 and assume that for
t ∈ (0, T ) the conditions (6.3.15), (6.3.19), (6.3.26)-(6.3.29), (6.3.34), and (6.4.1) hold.
Then there exist sequences (ρj)j∈N and (εj)j∈N with 0 < ρj < ρ0 for all j ∈ N such that
as j →∞ we have for all 0 < δ < 1

2

εj → 0, ρj → 0, (6.4.2)
εj

ρj
→ 0,

ε2
j

ρn+1
j

→ 0, (6.4.3)

ρ1−n
j ζρj ,#µ

t
εj

w∗
−→ c0θHn−1 S in C0

c (B16(0))′, (6.4.4)

ρ1−n
j ζρj ,#β

t
εj ,δ

w∗
−→ Dµtβt

δ(0)c0θHn−1 S in C0
c (B16(0))′, (6.4.5)

and for all j ∈ N : κt
εj

(Bρ(0)) ≤ κt(B2ρ(0)) + ρn−2
j for ρj ≤ ρ ≤ ρ0. (6.4.6)

Proof. Let (ρj)j∈N be a decreasing sequence with ρ1 < ρ0 and ρj → 0 as j →∞. By the
definition of the approximate tangent space we have

ρ1−n
j ζρj ,#µ

t w∗
−→ c0θHn−1 S in C0

c (B16(0))′.

Since 0 is a µt-Lebesgue point of Dµtβt
δ we get by Lemma 8.2.7 that

ρ1−n
j ζρj ,#β

t
δ = ρ1−n

j ζρj ,#Dµtβt
δµ

t w∗
−→ Dµtβt

δ(0)c0θHn−1 S in C0
c (B16(0))′.

Using that the weak∗-topology on bounded subsets of C0
c (B16(0))′ is metrizable, (6.3.19),

(6.4.1), and

ρ1−n
j ζρj ,#µ

t
ε = ρ1−n

j ζρj ,#
(
µt

ε − µt)+ ρ1−n
j ζρj ,#µ

t

ρ1−n
j ζρj ,#β

t
ε,δ = ρ1−n

j ζρj ,#
(
βt

ε,δ − βt
δ

)
+ ρ1−n

j ζρj ,#β
t
δ

we can choose a subsequence (εj)j∈N dependent on (ρj)j∈N such that (6.4.2)-(6.4.5) hold.

Finally by possibly lowering the value of εj , we obtain for all l ∈ N0 with 2−lρ0 > ρj

κt
εj

(B2−lρ0(0)) ≤ κt(B2−lρ0(0)) + ρn−2
j ≤ κt(B2−l+1ρ0(0)) + ρn−2

j .

We deduce for any ρj ≤ ρ ≤ ρ0 and l ∈ N0 such that ρ ∈ (2−l−1ρ0, 2−lρ0)

κt
εj

(Bρ(0)) ≤ κt
εj

(B2−lρ0(0)) ≤ κt(B2−lρ0(0)) + ρn−2
j ≤ κt(B2ρ(0)) + ρn−2

j .

Thus (6.4.6) holds as well.
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The blow-up method will be applied only to the space variable while the time variable
remains the fixed t which we chose at the start of the proof. We drop the time variable in
the notation.

Proposition 6.4.3 (Properties of the rescaled functions and measures).
Let the assumptions from Theorem 6.3.13 hold. We use the notations from the Lemmata
6.4.1 and 6.4.2. We set ε̃j := εj

ρj
and define for x ∈ B ρ0

ρj

(0)

ũε̃j (x) := uεj (t, ρjx), H̃ε̃j (x) := ρjHεj (t, ρjx),

and ν̃ε̃j (x) :=
∇ũε̃j (x)∣∣∇ũε̃j (x)

∣∣ for ∇ũε̃j (x) ̸= 0 and ν̃ε̃j (x) := e1 else.

Moreover we set

µ̃t
ε̃j

:=
(
ε̃j

2
∣∣∇ũε̃j (t, ·)

∣∣2 + 1
ε̃j
W (ũε̃j (t, ·))

)
Ln B ρ0

ρj

(0), (6.4.7)

ξ̃t
ε̃j

:=
(
ε̃j

2
∣∣∇ũε̃j (t, ·)

∣∣2 − 1
ε̃j
W (ũε̃j (t, ·))

)
Ln B ρ0

ρj

(0), (6.4.8)

α̃t
ε̃j

:= 1
ε̃j
H̃2

ε̃j
Ln B ρ0

ρj

(0), (6.4.9)

β̃t
ε̃j ,δ :=

( 1
ε̃j
|G′

δ(ũε̃j )|2 + ε̃j

∣∣∇G′
δ(ũε̃j )

∣∣2)Ln B ρ0
ρj

(0), (6.4.10)

κ̃t
ε̃j

:=
( 1
ε̃j

∣∣H̃ε̃j

∣∣2 + ε̃j

∣∣∇H̃ε̃j

∣∣2)Ln B ρ0
ρj

(0), (6.4.11)

and Ṽ t
ε̃j

:= µ̃t
ε̃j
⊗ ν̃⊥

ε̃j
∈ Vn−1

(
B ρ0

ρj

(0)
)
. (6.4.12)

Then it holds

ε̃j → 0 as j →∞, (6.4.13)

−ε̃j∆ũε̃j + 1
ε̃j
W ′(ũε̃j ) = H̃ε̃j in B ρ0

ρj

(0), (6.4.14)

and with j →∞ we have

ρ1−n
j ζρj ,#µ

t
εj

= µ̃t
ε̃j

w∗
−→ c0θHn−1 S, (6.4.15)

ρ1−n
j ζρj ,#β

t
εj ,δ = β̃t

ε̃j ,δ
w∗
−→ c0θDµtβt

δ(0)Hn−1 S, (6.4.16)

α̃t
ε̃j

w∗
−→ 0, and κ̃t

ε̃j

w∗
−→ 0 (6.4.17)

in C0
c (B16(0))′. Furthermore, there exist Ṽ t ∈ Vn−1(B15(0)) such that up to a subsequence

we have as j →∞

Ṽ t
ε̃j

w∗
−→ Ṽ t in Vn−1(B15(0)). (6.4.18)

Proof. The claims (6.4.13), (6.4.14), (6.4.15), and (6.4.17) have analogous proofs in the
proof of Proposition 6.4.3. For (6.4.16) we use (6.4.5) and calculate for any η ∈ C0

c (B16(0))
that

163



ρ1−n
j

〈
η, ζρj ,#β

t
εj ,δ

〉
C0

c (B16(0))′

= ρ1−n
j

〈
ζ#

ρj
η, βt

εj ,δ

〉
C0

c (Ω)′ = ρ1−n
j

�

Ω

η ◦ ζρj dβt
εj ,δ

=
�

B16ρj
(0)

ρ1−n
j η

( x
ρj

)( 1
εj
|G′

δ(uεj (t, x))|2 + εj

∣∣∇G′
δ(uεj (t, x))

∣∣2) dx

=
�

B16(0)

ρjη(x)
( 1
εj
|G′

δ(uεj (t, ρjx))|2 + εj

∣∣∇G′
δ(uεj (t, ρjx))

∣∣2) dx

=
�

B16(0)

η(x)
( 1

εj

ρj

|G′
δ(uεj (t, ρjx))|2 + εj

ρj

∣∣ρj∇G′
δ(uεj (t, ρjx))

∣∣2) dx

=
�

B16(0)

η(x)
( 1
ε̃j
|G′

δ(ũε̃j )|2 + ε̃j

∣∣∇G′
δ(ũε̃j )

∣∣2) dx = ⟨η, β̃t
ε̃j ,δ⟩C0

c (B16(0))′ .

The claim (6.4.18) follows from

∥Ṽ t
ε̃j
∥(B15(0)) = µ̃t

ε̃j
(B15(0)) ≤ C for all j ∈ N

because (µ̃t
ε̃j

)j∈N is weakly∗-convergent in C0
c (B16(0))′ and Theorem 2.2.2.

In order to prove Theorem 6.3.13 it is therefore sufficient to prove the following statement
and apply it with Ω, (uεj )j∈N replaced with B8(0), (ũε̃j )j∈N (the rescaled functions and
measures also satisfy the assumptions of Theorem 6.3.13).

Proposition 6.4.4.
Let (uε)ε>0 as in Theorem 6.3.13 with B4(0) ⋐ Ω. Consider Radon measures
µt

ε, ξ
t
ε, α

t
ε, κ

t
ε, β

t
ε,δ ∈ C0

c (Ω)′ with (6.3.2)-(6.3.5) and (6.3.44). Consider additionally vari-
folds V t

ε ∈ Vn−1(Ω) with (6.3.10), a subsequence ε→ 0, limit measures µt, αt, κt, βt
δ, and

a limit varifold V t such that (6.3.19), (6.3.26), (6.3.27), (6.3.29), (6.3.34), and (6.4.1)
hold on B4(0). In addition, assume that

µt = c0θHn−1 S for some θ ∈ N, S ∈ G(n, n− 1), and αt = 0 = κt.

Then

βt
δ = 1

σδ
µt

holds.

We prepare the proof of Proposition 6.4.4 with the following generalization of Proposition
5.5 in [RS06].

Proposition 6.4.5.
For all τ, γ, δ ∈ (0, 1) and Λ > 0 there exist ω = ω(δ, τ, γ,Λ) > 0 and L = L(γ, τ, δ) > 1
such that the following holds: Let the assumptions from Proposition 6.4.4 be satisfied with
Ω = B4Lε(0) and further assume

|uε(0)| ≤ 1− τ, (6.4.19)
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|ξt
ε|(B4Lε(0)) +

�
B4Lε(0)

ε|∇uε|2
√

1− |νε,n|2 dLn ≤ ω(4Lε)n−1, (6.4.20)

with νε,n := en · νε and

µt
ε(B4Lε(0)) ≤ Λ(4Lε)n−1, (6.4.21)
κt

ε(B4Lε(0)) ≤ Λ(4Lε)n−3. (6.4.22)

Then we also have, writing (0, s) ∈ Rn−1 × R

|uε(0, s)| ≥ 1− τ

2 for all Lε ≤ |s| ≤ 3Lε, (6.4.23)∣∣∣∣∣ 1
ωn−1(Lε)n−1µ

t
ε(BLε(0))− c0

∣∣∣∣∣ ≤ γ, (6.4.24)
∣∣∣∣∣
� Lε

−Lε

1
ε
W (uε(0, s)) ds− c0

2

∣∣∣∣∣ ≤ γ, (6.4.25)
∣∣∣∣∣
� Lε

−Lε

((1
ε
|G′

δ(uε)|2 + ε
∣∣∇G′

δ(uε)
∣∣2)− 2

εσδ
W (uε)

)
(0, s) ds

∣∣∣∣∣ ≤ γ. (6.4.26)

Here ωm is defined by Lm(B1(0)) = ωm for m ∈ N.

Proof. We follow the proof of Proposition 5.5 in [RS06]. From it follows the existence of
ω,L satisfying (6.4.23)-(6.4.25). In the following we possibly lower the value of ω and
increase the value of L, which maintains (6.4.23)-(6.4.25).

We prove in the following that we can assume ε = 1 without loss of generality. In fact
since ε is fixed, by rescaling x 7−→ εx and defining u(x) := uε(εx) for x ∈ BL(0) we prove
the statements independent of ε. For the claims (6.4.23)-(6.4.25) this has already been
done in [RS06], we prove it for the remaining expression in (6.4.26)

� Lε

−Lε

((1
ε
|G′

δ(uε)|2 + ε
∣∣G′′

δ (uε)∇uε

∣∣2)− 2
εσδ

W (uε)
)

(0, s) ds

=
� L

−L

((1
ε
|G′

δ(uε)|2 + 1
ε

∣∣G′′
δ (uε)∇uε

∣∣2 − 2
εσδ

W (uε)
))

(0, εs)ε ds

=
� L

−L

((
|G′

δ(u)|2 +
∣∣G′′

δ (u)∇u
∣∣2)− 2

σδ
W (u)

)
(0, s) ds.

We recall that by Lemma 4.1.2 and the definitions of c0, σ in Assumptions 4.1.1 we have

• |q0| < 1 and q′
0 > 0,

• lim
z→±∞

q0(z) = ±1,

•
�
R

1
2 |q

′
0|2 dL1 =

�
R
W (q0) dL1 = c0

2 ,

•
�
R

(
|G′

δ(q0)|2 + |G′′
δ (q0)q′

0|2
)

dL1 = c0
σδ

.
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For a given a ∈ R we define

qa(s) := q(s+ a) and Qa(x) := qa(xn) for s ∈ R, x ∈ Rn

and claim that we can choose L(τ, δ) sufficiently large such that: If

|q0(a)| ≤ 1− τ,

then

|Qa(0, s)| ≥ 1− τ

3 for all L ≤ |s| ≤ 3L, (6.4.27)∣∣∣∣∣ 1
ωn−1Ln−1

�
BL(0)

(1
2 |∇Qa|2 +W (Qa)

)
dLn − c0

∣∣∣∣∣ ≤ γ

2 , (6.4.28)
∣∣∣∣∣
� L

−L
W (Qa(0, s)) ds− c0

2

∣∣∣∣∣ ≤ γσδ

8 , (6.4.29)
∣∣∣∣∣
� L

−L

(
|G′

δ(qa)|2 + |G′′
δ (qa)q′

a|2
)

dL1 − c0
σδ

∣∣∣∣∣ ≤ γ

4 . (6.4.30)

The first three properties are guaranteed by [RS06]. For the fourth identity we use
|q0(a)| ≤ 1− τ , thus |a| ≤ q−1

0 (1− τ) and conclude
� L

−L

(
|G′

δ(qa)|2 + |G′′
δ (qa)q′

a|2
)

dL1 =
� L−a

−L−a

(
|G′

δ(q0)|2 + |G′′
δ (q0)q′

0|2
)

dL1 −→ c0
σδ
.

Since we have a uniform bound on |a| only dependent on τ we can choose L(τ, δ) > 1
independent from a such that (6.4.30) holds.

Since H is bounded in H1(B4L(0)) by (6.4.22) we conclude by inner elliptic regularity
theory similar as in [RS06]

∥u∥H3(B 7L
2

(0)) ≤ C(Λ, L). (6.4.31)

We proceed by a contradiction argument, adapting [RS06]. Assume that the claim is
wrong, then there exists a sequence (uk)k∈N with ωk → 0 as k →∞ and for any k ∈ N
there exist functions uk, uk, Hk satisfying the assumptions of Proposition 6.4.4 with ε = 1,
Ω = B4L(0) and satisfying the properties (6.4.19)-(6.4.22) but violating (6.4.26).

Because of (6.4.31) there exists u ∈ H3(B3L(0)) such that up to a subsequence we have
as k →∞

uk
w−→ u in H3(B3L(0)). (6.4.32)

By the compact Sobolev embedding H3(B3L(0)) c
↪→ C1(B3L(0)) as n ≤ 3 hence

uk −→ u and ∇uk −→ ∇u uniformly in B3L(0). (6.4.33)

As in the proof of Proposition 5.5 in [RS06], writing x = (y, s) ∈ Rn−1 × R we get

u(y, s) = u0(s) for all (y, s) ∈ B3L(0),
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where u0 = ±qs0 with s0 determined by u(0). Since a reflection (y, xn) 7→ (y,−xn) does
neither affect the assumptions nor the conclusions of the proposition we can assume
u0 = +qs0 without loss of generality. By uniform convergence we have |u(0)| ≤ 1 − τ
which implies that (6.4.30) is satisfied. We use that to prove (6.4.26) for large k; in fact
we have∣∣∣∣∣
� L

−L

((
|G′

δ(uk)|2 +
∣∣∇G′

δ(uk)
∣∣2)− 2

σδ
W (uk)

)
(0, s) ds

∣∣∣∣∣
≤
∣∣∣∣∣
� L

−L

(
|G′

δ(uk)|2 +
∣∣∇G′

δ(uk)
∣∣2)(0, s) ds− c0

σδ

∣∣∣∣∣+
∣∣∣∣∣ c0
σδ
−
� L

−L

2
σδ
W (uk)(0, s) ds

∣∣∣∣∣
≤
∣∣∣∣∣
� L

−L

(
|G′

δ(uk)|2 +
∣∣∇G′

δ(uk)
∣∣2)(0, s) ds−

� L

−L

(
|G′

δ(u)|2 +
∣∣∇G′

δ(u)
∣∣2)(0, s) ds

∣∣∣∣∣
+
∣∣∣∣∣
� L

−L

(
|G′

δ(u)|2 +
∣∣∇G′

δ(u)
∣∣2)(0, s) ds− c0

σδ

∣∣∣∣∣+
∣∣∣∣∣ c0
σδ
−
� L

−L

2
σδ
W (u)(0, s) ds

∣∣∣∣∣
+
∣∣∣∣∣
� L

−L

2
σδ
W (u)(0, s) ds−

� L

−L

2
σδ
W (uk)(0, s) ds

∣∣∣∣∣. (6.4.34)

The second term on the right-hand side is estimated by (6.4.30), the third term by (6.4.29).
For the first term we use that Gδ ∈ C3

b (R) which implies |G′
δ|2, |G′′

δ |2 ∈ C1
b (R) and thus

we can apply the Mean-Value Theorem and assuming ∥uk − u∥C0(B3L(0)) ≤ 1 we get that∣∣∣∣∣
� L

−L

(
|G′

δ(uk)|2 − |G′
δ(u)|2 +

∣∣G′′
δ (uk)∇uk

∣∣2 − ∣∣G′′
δ (u)∇u

∣∣2)(0, s) ds
∣∣∣∣∣

=
∣∣∣∣∣
� L

−L

(
|G′

δ(uk)|2 − |G′
δ(u)|2 +

∣∣G′′
δ (uk)∇uk

∣∣2 − ∣∣G′′
δ (u)∇uk

∣∣2
+
∣∣G′′

δ (u)∇uk

∣∣2 − ∣∣G′′
δ (u)∇u

∣∣2)(0, s) ds
∣∣∣∣∣

≤ 4L∥uk − u∥C1(B3L(0))
(
∥G′

δG
′′
δ∥C0(R) + ∥uk∥C1(B3L(0))∥G′′

δG
′′′
δ ∥C0(R) + ∥G′′

δ∥2C0(R)

)
Since uk −→ u in C1(B3L(0)) there exists R > 0 such that ∥uk∥C1(B3L(0)) ≤ R for all
k ∈ N. We choose k0 ∈ N such that for all k ≥ k0 we have

∥uk − u∥C1(R) ≤
γ

16L
(
∥G′

δG
′′
δ∥C0(R) +R∥G′′

δG
′′′
δ ∥C0(R) + ∥G′′

δ∥2C0(R)

)
+ γ

.

We estimate the last term on the right-hand side of (6.4.34) by∣∣∣∣∣
� L

−L

2
σδ
W (u)(0, s) ds−

� L

−L

2
σδ
W (uk)(0, s) ds

∣∣∣∣∣ ≤ 4L
σδ
∥W ′∥C1[−R,R]∥uk − u∥C0(B3L(0)).

Then we choose N ∋ k1 ≥ k0 such that it holds for all k ≥ k1 that

∥uk − u∥C0(B3L(0)) ≤
γσδ

16L∥W ′∥C1[−R,R]
.
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By applying these estimates into (6.4.34) we get for all k ≥ k1 that∣∣∣∣∣
� L

−L

((
|G′

δ(uk)|2 +
∣∣∇G′

δ(uk)
∣∣2)− 2

σδ
W (uk)

)
(0, s) ds

∣∣∣∣∣ ≤ γ

4 + γ

4 + 2
σδ
· γσδ

8 + γ

4 = γ.

Thus for k ≥ k1 (6.4.26) holds, a contradiction to our assumption.

In the following we prove 6.4.4 by proceeding similarly to the proof of Proposition 5.4.5.

Proof of Proposition 6.4.4. We assume that x = 0 is a good point in the sense of Lemma
6.4.1 and S = Rn−1 × {0}. Let Π : Rn −→ S be the orthogonal projection. We use the
representation x = (y, s) ∈ Rn−1 × R and denote by ∇′ = ∇y the horizontal gradient. By
Theorem 5.2.3 the limit of V t of V t

ε is given by V t = c0θHn−1 S ⊗ δS . Convergence as
varifolds yields in particular

lim
ε→0

�
B4(0)

ε
∣∣∇uε(t, ·)

∣∣2√1− νε,n(t, ·)2 dLn = 0.

By the proof of Proposition 5.2 in [RS06] for any γ > 0 there exist ω0, ε0, τ0 > 0, all
depending on γ, δ, t such that for any 0 < ω < ω0, any 0 < τ < τ0, and any 0 < ε < ε0
the following two properties hold:

(1)
�

{|uε(t,·)|≥1−τ}∩B4(0)

1
ε
W ′(uε(t, ·))2 dLn ≤ γ and µt

ε

(
{|uε(t, ·)| ≥ 1− τ} ∩B4(0)

)
≤ 3γ.

(6.4.35)

(2) For the set

Aε :=
{
x ∈ B1(0)

∣∣∣ |uε(t, x)| ≤ 1− τ,

∀ε ≤ ρ ≤ 3 : |ξt
ε|(Bρ(x)) +

�

Bρ(x)

ε|∇uε(t, ·)|2
√

1− νε,n(t, ·)2 ≤ ωρn−1,

and αt
ε(Bρ(x)) ≤ ωρ

1
2
}

we have
µt

ε

(
B1(0) \Aε

)
≤ 4γ. (6.4.36)

We now define a subset of Aε with additional “good properties”,

A′
ε := Aε ∩

{
x ∈ B1(0)

∣∣ ∀ρ ∈ [ε, 3] : κt
ε(Bρ(x)) ≤ ωρ

1
2
}
.

We show that Aε \ A′
ε is “small”in a suitable sense. For all x ∈ Aε \ A′

ε there exists
ρx ∈

(
0, 1

2
)

such that B2ρx(x) ⊆ B1(0). It follows that

Aε \A′
ε ⊆

⋃
x∈Aε\A′

ε

Bρx(x).

168



By Besicovitch’s covering Theorem there exist N ∈ N only dependent on the dimension n
and sets D1, . . . , DN ⊆ B1(0) such that for all k ∈ {1, . . . , N} the collection{

Bρx(x)
∣∣ x ∈ Dk

}
is disjoint and

Aε \A′
ε ⊆

N⋃
k=1

·
⋃

x∈Dk

Bρx(x).

Since for all k ∈ {1, . . . , N} the union ⋃x∈Dk
Bρx(x) ⊆ B1(0) is disjoint it follows that

ωn

∑
x∈Dk

ρn
x =

∑
x∈Dk

Ln
(
Bρx(x)

)
= Ln

(
·
⋃

x∈Dk

Bρx(x)
)
≤ Ln(B1(0)) = ωn <∞.

The sum is convergent and thus Dk has to be at most countable. We conclude

Aε \A′
ε ⊆

N⋃
k=1

·
⋃
j∈N

Bρk,j
(xk,j). (6.4.37)

Since xk,j ∈ Aε \A′
ε we have for all k, j that there exists ε ≤ ρk,j ≤ 3 such that

κt
ε(Bρk,j

(xk,j)) > ωρ
1
2
k,j .

Since xk,j ∈ Aε we can use αt
ε(Bρ(xk,j)) ≤ ωρ 1

2 for all ε ≤ ρ ≤ 3 and (6.4.35). We deduce
from Proposition 4.7 in [RS06] that

µt
ε(Bρk,j

(xk,j)) ≤ Cρn−1
k,j .

We then obtain by (6.4.37) that

µε(Aε \A′
ε) ≤ C

N∑
k=1

∑
j∈N

ρn−1
k,j

≤ Cω2(1−n)κt
ε(B4(0))2(n−1)−1

N∑
k=1

∑
j∈N

κt
ε(Bρk,j

(xk,j)).

For ε sufficiently small we conclude by using n ∈ {2, 3} and κt
ε

w∗
−→ 0 in C0

c (Ω)′ with
B4(0) ⋐ Ω that

µε(Aε \A′
ε) ≤ ω2(1−n)Nκt

ε(B4(0))2(n−1) ≤ γ. (6.4.38)

By the definition of Aε for all x ∈ A′
ε we can apply Proposition 5.4 from [RS06] with

N = 1 and deduce (6.4.21) (with 0 replaced by x). Together with the definition of A′
ε we

obtain that we can apply Proposition 6.4.5 for all x ∈ A′
ε. By page 713 in [RS06] this

yields that for all y ∈ S ∩B1(0) there exist N ∋ K = K(y) ≤ θ and s1(y), . . . , sK(y) ∈ R
with

Aε ∩Π−1(y) ⊆ {y} ×
K(y)⋃
l=1

(sl(y)− Lε, sl(y) + Lε).
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We now fix an arbitrary η ∈ C1
c (B1(0)) and deduce from ξt

ε
w∗
−→ 0, (6.4.36) and (6.3.45)

lim sup
ε→0

∣∣∣∣∣
�

B1(0)
η dβt

ε,δ −
1
σδ

�
B1(0)

η dµt
ε

∣∣∣∣∣
≤ lim sup

ε→0

∣∣∣∣∣
�

A′
ε

η dβt
ε,δ −

�
A′

ε

2
σδε

ηW (uε(t, ·)) dLn

∣∣∣∣∣+ Cγ∥η∥
C0(B1(0))

(6.4.39)

for some C > 0. Furthermore we obtain∣∣∣∣∣
�

A′
ε

η dβt
ε,δ −

�
A′

ε

2
σδε

ηW (uε(t, ·)) dLn

∣∣∣∣∣
=
∣∣∣∣∣
�

Π(A′
ε)

K(y)∑
l=1

� sl(y)+Lε

sl(y)−Lε
η(y, s)

(1
ε
|G′

δ(uε)|2 + ε
∣∣∇G′

δ(uε)
∣∣2 − 2

σδε
W (uε)

)
(t, y, s) ds dy

∣∣∣∣∣
≤
�

Π(A′
ε)

K(y)∑
l=1
|η(y, sj)|

� sl(y)+Lε

sl(y)−Lε

(1
ε
|G′

δ(uε)|2 + ε
∣∣∇G′

δ(uε)
∣∣2 − 2

σδε
W (uε)

)
(t, y, s) dsdy

+ C sup
(y,s),(y,r)∈B1(0)

|r−s|<Lε

|η(y, r)− η(y, s)|
(
βt

ε,δ(B1(0)) + µt
ε(B1(0))

)

For the first term we apply (6.4.26). For the second term we use that η ∈ C1
c (B1(0)) is

uniformly continuous, thus for ε sufficiently small we have for all s, r with |r − s| < Lε
that |η(y, r)− η(y, s)| < γ. We conclude that∣∣∣∣∣

�
A′

ε

η dβt
ε,δ −

�
A′

ε

2
σδε

ηW (uε(t, ·)) dLn

∣∣∣∣∣ ≤ ∥η∥C0(B1(0))

�
Π(A′

ε)
θγ dy + γC(Λ).

Hence, we conclude with (6.4.39) that

lim sup
ε→0

∣∣∣∣∣
�

B1(0)
η dβt

ε,δ −
1
σδ

�
B1(0)

η dµt
ε

∣∣∣∣∣ ≤ C(Λ, η, θ)γ.

Since γ > 0 and η ∈ C1
c (B1(0)) were arbitrary we deduce that

βt
δ = lim

ε→0
βt

ε,δ = lim
ε→0

1
σδ
µt

ε = 1
σδ
µt.

6.5 Brakke’s formulation

Owing to the results from Section 6.3 (V t)t∈[0,T ) satisfies Assumptions 2.5.1. Thus to
prove that (V t)t∈[0,T ) evolves by mean curvature flow in the sense of Brakke’s formulation
it is sufficient to prove (2.5.1).

Theorem 6.5.1 (Partial result for convergence towards mean curvature flow in the sense
of Brakke in the KK model).
Let Assumptions 6.2.1 hold and assume additionally that |uε| ≤ 1. Then there exists
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H⃗∗ ∈ L2(ΩT , µ;Rn) such that for all non-negative test functions ψ ∈ C1
c [0, T ), η ∈ C2

c (Ω)
and for all 0 ≤ t1 < t2 < T

ψ(t)
�

Ω
η dµt

∣∣∣∣t2

t1

≤ −σ
� t2

t1

ψ

�
Ω
η
∣∣H⃗t

∣∣2 dµt dt+
� t2

t1

ψ

�
Ω
∇η ·

(
H⃗∗ + H⃗t

)
dµt dt

+
� t2

t1

ψ′
�

Ω
η dµt dt.

Where (µ, H⃗∗) is characterized as(
µε + ξε,

∇HεW
′(uε)

2
εW (uε)

)
w−→ (µ, H⃗∗)

in the sense of weak measure-function pair convergence; see Definition 2.2.13.

If H⃗∗ + H⃗t = σH⃗t then the family of varifolds (V t)t∈[0,T ) constructed in Lemma 6.3.7
evolves by mean curvature flow in the sense of Brakke.

Proof. We begin by calculating a diffuse version of (2.5.1). Some calculations are similar
to those from the proof of Lemma 6.2.7. Let η ∈ C2

c (Ω), ψ ∈ C1
c [0, T ) be non-negative

and 0 ≤ t1 < t2 < T be arbitrary.

ψ(t)⟨η, µt
ε⟩C0

c (Ω)′

∣∣∣∣t2

t1

=
� t2

t1

∂t
[
ψ⟨η, µt

ε⟩C0
c (Ω)′

]
dt =

� t2

t1

ψ′⟨η, µt
ε⟩C0

c (Ω)′ dL1

+
� t2

t1

ψ
(〈
εη∇uε,∇∂tuε

〉
H2(Ω;Rn)′

+
〈1
ε
ηW ′(uε), ∂tuε

〉
H1(Ω)′

)
dL1

=
� t2

t1

ψ′⟨η, µt
ε⟩C0

c (Ω)′ dL1 +
� t2

t1

ψ
〈
ηHε − ε∇η · ∇uε, ∂tuε

〉
H1(Ω)′

dL1.

Now we apply in the PDE (6.1.1) on the last term on the right-hand side.
� t2

t1

ψ
〈
ηHε − ε∇η · ∇uε, ∂tuε

〉
H1(Ω)′

dL1

=
� t2

t1

ψ
〈
− 1
ε
ηHε +∇η · ∇uε, (−ε2∆ + Id)Hε

〉
H1(Ω)′

dL1.

Next we apply the weak definition of ∆ and get a diffuse version of Brakke’s inequality.

ψ(t)⟨η, µt
ε⟩C0

c (Ω)′

∣∣∣∣t2

t1

=
� t2

t1

ψ′⟨η, µt
ε⟩C0

c (Ω)′ dL1 −
� t2

t1

ψ(t)⟨η, κt
ε⟩C0

c (Ω)′ dt (6.5.1)

−
� t2

t1

ψ

�
Ω
ε∇η · ∇HεHε dLn dL1 +

� t2

t1

ψ

�
Ω
∇η · ∇uεHε dLn dL1

(6.5.2)

−
� t2

t1

ε2ψ
〈
∇η · ∇uε,∆Hε

〉
H1(Ω)′ dL1 (6.5.3)

We examine each of the terms separately. For the term on the left-hand side of (6.5.1) we
have µt

ε
w∗
−→ µt for all t ∈ [0, T ) by (6.3.19) and thus

lim
ε→0

ψ(t)⟨η, µt
ε⟩C0

c (Ω)′

∣∣∣∣t2

t1

= ψ(t)⟨η, µt⟩C0
c (Ω)′

∣∣∣∣t2

t1

. (6.5.4)
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Furthermore, from (6.3.14) we have the bound |ψ′⟨η, µt
ε⟩C0

c (Ω)′ | ≤ ∥ψ∥C1[0,T )∥η∥C0(Ω)Λ.
So we can apply the Dominated Convergence Theorem on the first term on the right-hand
side of (6.5.1) and get

lim
ε→0

� t2

t1

ψ′⟨η, µt
ε⟩C0

c (Ω)′ dt =
� t2

t1

ψ′
�

Ω
η dµt dt. (6.5.5)

For the second term on the right-hand side of (6.5.1) we use Fatou’s Lemma, (6.3.27),
and σ

∣∣H⃗t

∣∣2µt ≤ κt from Corollary 6.3.4, which yield that

lim sup
ε→0

[
−
� t2

t1

ψ⟨η, κt
ε⟩C0

c (Ω)′ dt
]

= − lim inf
ε→0

� t2

t1

ψ⟨η, κt
ε⟩C0

c (Ω)′ dt

≤ −
� t2

t1

ψ lim inf
ε→0

⟨η, κt
ε⟩C0

c (Ω)′ dt

= −
� t2

t1

ψ⟨η, κt⟩C0
c (Ω)′ dt

≤ −σ
� T

0
ψ

�
Ω
η
∣∣H⃗t|2 dµt dt. (6.5.6)

In (6.2.23) we already estimated the first term on the right-hand side in (6.5.2) it vanishes
as ε→ 0, i.e.

lim
ε→0

� t2

t1

ψ

�
Ω
ε∇η · ∇HεHε dLn dL1 = 0 (6.5.7)

We use (6.3.32) on the second term on the right-hand side of (6.5.2) and get

lim
ε→0

� t2

t1

ψ

�
Ω
Hε∇η · ∇uε dLn dL1 =

� t2

t1

ψ

�
Ω
H⃗t · ∇η dµt dL1. (6.5.8)

For the remaining term in (6.5.3) we use the calculations from (6.2.24). As in (6.2.25) we
conclude that

ε2
� t2

t1

〈
∇η · ∇uε,∆Hε

〉
H1(Ω)′ dL1

= ε2
� t2

t1

�
Ω

(
∇uε · ∇Hε∆η −∇η · ∇Hε∆uε − 2∇uε ·D2η∇Hε

)
dLn dL1.

Since |ψ| ≤ ∥ψ∥C0(0,T ) the error estimate from (6.2.26) holds for
� t2

t1

ψ

�
Ω
ε2∇Hε ·D2η∇uε dLn dL1 and

� t2

t1

ψ

�
Ω
ε2∇uε · ∇Hε∆η dLn dL1.

Thus we have

− lim
ε→0

� t2

t1

ψ
〈
ε2∇η · ∇uε,∆Hε

〉
H1(Ω)′ dL1 = lim

ε→0

� t2

t1

ψ

�
Ω
ε2∇η · ∇Hε∆uε dLn dL1.

We calculate further� t2

t1

ψ

�
Ω
ε2∇η · ∇Hε∆uε dLn dL1
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= −
� t2

t1

ψ

�
Ω
ε∇η · ∇Hε

(
Hε −

1
ε
W ′(uε)

)
dLn dL1

= −
� t2

t1

ψ

�
Ω
ε∇η · ∇HεHε +

� t2

t1

ψ

�
Ω
∇η · ∇HεW

′(uε) dLn dL1.

The first term on the right-hand side vanishes as ε→ 0 because of (6.2.23). Thus we have

− lim
ε→0

� t2

t1

ψ
〈
ε2∇η · ∇uε,∆Hε

〉
H1(Ω)′ dL1 = lim

ε→0

�
ΩT

ψ∇η · ∇HεW
′(uε) dLn+1.

To deal with this term we write
�

ΩT

ψ∇η · ∇HεW
′(uε) dLn+1 =

�
ΩT

ψ∇η · ∇HεW
′(uε)

2
εW (uε)

2
ε
W (uε) dLn+1.

This is well-defined because of W ′(uε) = 0 whenever W (uε) = 0. We use the theory of
measure-function pairs by Hutchinson to show the convergence of this term. We have

2
ε
W (uε)Ln+1 ΩT = µε − ξε

w∗
−→ µ as ε→ 0 in C0

c (ΩT )′.

Furthermore we estimate with the assumption |uε| ≤ 1 and W ′(r)2 = 16r2W (r) for r ∈ R
that

�
ΩT

∣∣∣∣∇HεW
′(uε)

2
εW (uε)

∣∣∣∣2 2
ε
W (uε) dLn+1 =

�
ΩT

8ε
∣∣∇Hε

∣∣2u2
ε dLn+1 ≤ 8Λ.

By Theorem 2.2.14 there exists H⃗∗ ∈ L2(ΩT , µ;Rn) such that for all ϕ ∈ C0
c (ΩT ;Rn) we

have �
ΩT

ϕ · ∇HεW
′(uε) dLn+1 −→

�
ΩT

ϕ · H⃗∗ dµ.

This holds in particular for ϕ = ψ∇η and thus we get

− lim
ε→0

� t2

t1

ψ
〈
ε2∇η · ∇uε,∆Hε

〉
H1(Ω)′ dL1 =

�
ΩT

ψ∇η · H⃗∗ dµ. (6.5.9)

Now we dealt with each of the terms from (6.5.1)-(6.5.3). We apply the limes superior onto
the identity and apply (6.5.4)-(6.5.9). Since the lim sup is subadditive we can estimate
each of the terms separately and obtain that

ψ(t)⟨η, µt⟩C0
c (Ω)′

∣∣∣∣t2

t1

≤ −σ
� T

0
ψ

�
Ω
η
∣∣H⃗t|2 dµt dt+

� t2

t1

ψ

�
Ω
∇η ·

(
H⃗t + H⃗∗

)
dµt dL1

+
� t2

t1

ψ′
�

Ω
η dµt dt.
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7 Summary and Outlook

We analyzed two new diffuse curvature models and modified the techniques and results
from the standard diffuse curvature model such that the could be applied to the new
models. In Chapter 3 we considered a gradient-free approximation of the Willmore energy
in the Amstutz-Van Goethem model and proved the Γ–lim sup property by developing
techniques based on those presented in [BP93]. The biggest hurdle here was to prove that
an asymptotic expansion of uε leads to a similar expansion for uε = (−ε2∆ + Id)−1uε.
We considered function classes with a suitable exponential control for that proof.
Unfortunately the Γ–lim inf estimate remains open, we could not identify an ansatz for
an approximation in the sense of varifolds with suitable properties like it was done in
[RS06]. To prove the full Γ–convergence would be of high mathematical interest. We
also proved convergence of the gradient flow of the diffuse perimeter in the Amstutz-Van
Goethem model towards the mean curvature flow and of the diffuse Willmore energy
towards the Willmore flow respectively by asymptotic methods under strict assumptions.
For the proof we adapted methods from [LM00] and [Wan08].

We also considered a higher order approximation of the Willmore energy in the
Karali-Katsoulakis model. We proved Γ–convergence towards a multiple of the
Willmore energy in smooth points and small dimensions. At first glance it seems
surprising that the higher order term contributes on the same scale as the standard
terms. However this makes sense as it is a consequence from the distribution as a
quasi one dimensional profile in the lim sup–construction. For the construction of the
recovery sequence in Chapter 4 we proceeded similarly as in the construction of the
recovery sequence in the AG model. The proof of the lim inf–estimate in Chapter 5
however was much more difficult. The proof builds on the results from [RS06]. We
introduced a modified diffuse area measure and the central part of our proof is to
identify its weak∗-limit. Here we apply and adapt the blow up method from [HT00, RS06].

We also considered the convergence of the gradient flow of the standard diffuse perimeter
with respect to the inner product induced by (−ε2∆ + Id)−1 towards a rescaled mean
curvature flow. In Chapter 4 we proved this in the asymptotic setting with strict
assumptions using similar strategies as in Chapter 3. The same is true for the convergence
of the gradient flow of the diffuse Willmore energy in the Karali-Katsoulakis model, we
proved convergence towards a rescaled Willmore flow under strict assumptions with the
methods from Chapter 3.

In Chapter 6 we firstly constructed weak solutions for the gradient flow of the
diffuse perimeter with respect to the metric induced by (−ε2∆ + Id)−1, which was
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the original equation considered in [KK07]. We gave suitable compactness results
and proved that there exists a limit varifold which satisfies the conditions for a
De Giorgi type solution for rescaled mean curvature flow. This is a new type of
varifold solutions introduced in [HL21]. We made use of another blowup in the
process. The proof has a similar structure as the blow up in Chapter 5 but there
are also differences as there is an additional parameter and all of the functions and
measures are time dependent. It remains open to prove that the limit varifold is a
Brakke solution to mean curvature flow. The challenge is to identify the limit of the
drift term, a partial result is given. This remains open and is a question for future research.

It would be interesting to generalize the different diffuse approximations of the perimeter
and the Willmore energy, as many of the techniques repeat themselves from the standard
approximation to the gradient-free approximations and the higher order approximation.
Examples for reoccurring patterns are the reduction to quasi-one dimensional functions
in the construction of the recovery sequences, the appearing of a Fredholm operator with
one dimensional kernel and the need for exponential decay of the profile functions.
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8 Appendix

8.1 Basic terms of differential geometry

We follow [Jos17] for the entire section.

Definition 8.1.1 (Hypersurface).
A topological space (Γ, T ) with Γ ⊆ Rn is called hypersurface, or (n − 1)-dimensional
submanifold, if it is a connected and compact Hausdorff space for which every point p ∈ Γ
has a neighborhood U = Up that is homeomorphic to an open subset Σ of Rn−1. Such a
homeomorphism x = xp : U −→ Σ is called a (coordinate) chart. An atlas is a family
{Up, xp}p∈Γ.

Remark.

• A point q ∈ Up is determined by its image xp(q), hence they are often identified.
Often the index p is omitted and the components of x(q) ∈ Rn−1 are called local
coordinates of q.

• It is customary to write the Euclidean coordinates x = (x1, . . . , xn−1) and these then
are considered as local coordinates on Γ when x : U −→ Σ is a chart.

Definition 8.1.2 (Cm-regularity of hypersurfaces and functions).
An atlas on a hypersurface is called Cm-differentiable, Cm-regular or just Cm-atlas for
m ∈ N ∪ {+∞} if all chart transitions

xp ◦ x−1
q : xq(Uq ∩ Up) −→ xp(Uq ∩ Up)

have Cm regularity for Uq ∩Up ̸= ∅. A Cm-hypersurface is a hypersurface with a maximal
Cm-atlas. The chart transitions are diffeomorphisms.

Let Γ be a Cm-hypersurface. For k ∈ N with k ≤ m a function f : Γ −→ R is called
k-times continuously differentiable on Γ or f ∈ Ck(Γ) if for all charts x : U −→ Σ the
function f ◦ x : U −→ Σ is differentiable in the classical sense, i.e., f ◦ x ∈ Ck(U ; Σ).

Definition 8.1.3 (Orientation of hypersurfaces).
An atlas for a Cm-hypersurface is called oriented if all chart transitions have positive
functional determinant. A Cm-hypersurface is called orientable if it possesses an oriented
atlas. For an oriented hypersurface there exists a continuous normal, i.e., there exists
ν ∈ C0(Γ;Sn−1).
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Definition 8.1.4 (Tangent space).
Let Γ be Cm-hypersurface and p ∈ Γ. We define

TpΓ :=
{
v ∈ Rn

∣∣ ∃ε > 0 and c : (−ε, ε) −→ Γ with c(0) = 0 and c′(0) = v
}
.

This is well-defined and in addition we get

TpΓ = span
([
∂1x

−1](x(p)), . . . ,
[
∂n−1x

−1](x(p))
)

(8.1.1)

for each chart x of p. As usual we will denote X = ∑
j Xjej for a vector X ∈ TpΓ with

components Xj and a vector basis {ej}j of TpX.

Definition 8.1.5 (Riemannian metric and Riemannian surface).
Let Γ be a hypersurface. A Riemannian metric is a function g which maps p ∈ Γ smoothly
onto a scalar product gp(·, ·) on TpΓ. We write g = (gp)p∈Γ for the Riemannian metric.
(Γ, g) is called a Riemannian surface.

In local coordinates we can express the scalar product on TpΓ with a positive definite and
symmetric matrix gjk(x) with coefficients that depend smoothly on x. This property is
independent from the choice of coordinates. Often the dependency on p is omitted in the
notation of g. Let v, w ∈ TpΓ with coordinates v = ∑n−1

j=1 vjej and w = ∑n−1
j=1 wjej then

we have

⟨v|w⟩TpΓ :=
n−1∑

j,k=1
vjgjkwk and ⟨ej |ek⟩TpΓ = gjk.

It is standard to denote the coefficients of the inverse matrix of g as upper indices

gjk := (g−1)jk.

As usual we define the induced norm for v ∈ TpΓ

∥v∥TpΓ :=
√
⟨v|v⟩TpΓ.

The standard surface measure on Γ is defined by

µΓ := √gHn−1 Γ,

where √g :=
√

det(g) and Hn−1 is the (n− 1)-dimensional Hausdorff measure.

Lemma 8.1.6 (Dircetional derivative).
Let Γ be a C2-hypersurface, p ∈ Γ, U a neighborhood of p, and let X,Y ∈ C1(U ;Rn).
Then the directional derivative

DXY (p) := lim
r→0

Y (p+ rX(p))− Y (p)
r

exists and is only dependent on the values of X,Y at p. In fact we have for any ε > 0
and any C1-curve γ : (−ε, ε) −→ Rn with γ(0) = p and γ′(0) = X(p)

DXY (p) = lim
r→0

Y (γ(s))− Y (γ(r))
r

.
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8.2 Radon measures

We follow [AFP00] until other sources are cited.

Definition 8.2.1 (Borel and Radon measure).
Let Ω be a locally compact and separable metric space. We denote by B(Ω) its Borel
σ-algebra. A positive measure on (Ω,B(Ω)) is called Borel measure. If a Borel measure has
the property that each compact set has finite measure, it is called a positive Radon measure.

Let m ∈ N and assume that for every K ⋐ Ω there exists a Rm-valued measure µK on
(K,B(K)) such that if K1,K2 ⋐ Ω and A ∈ B(K1) ∩ B(K2) it holds µK1(A) = µK2(A).
Then the family (µK)K⋐Ω is called a (Rm-valued) Radon measure on Ω and is denoted by µ.

If µ : B(Ω) −→ Rm is a Rm-valued measure then µ is called a finite (Rm-valued) Radon
measure on (Ω,B(Ω)). Often it is referred to as a Radon measure on Ω.

Note that if m = 1 the R-valued measure is not necessarily non-negative. Also note that
real-valued positive Radon measures are Borel measures and that every finite Radon
measure is a Radon measure. Usually Ω will be an open set of Rn.

Borel measures are regular as described by the next proposition.

Proposition 8.2.2 (Inner and Outer regularity of Borel measures).
Let Ω be a locally compact and separable metric space, µ a Borel measure on Ω, and let
E ⊆ Ω be µ-measurable.

• If µ is σ-finite then

µ(E) = sup{µ(K) | K ⋐ E}.

• Assume that a sequence (Ωj)j∈N of open sets in Ω exists such that µ(Ωj) <∞ for
all j ∈ N and Ω = ⋃

j∈N Ωj; then

µ(E) = inf{µ(A) | E ⊆ A and A is open in Ω}.

If Ω ⊆ Rn and µ is a Radon measure then both of the additional conditions are satisfied.

For every measure there exists the total variation measure, which counts every volume
non-negatively. We denote disjoint unions by ·∪.

Definition 8.2.3 (Total variation measure).
Let Ω be a locally compact and separable metric space and µ a Rm-valued measure on Ω.
Then we define for all E ∈ B(Ω)

|µ|(E) := sup
{∑

j∈N
|µ(Ej)| : E = ·

⋃
j∈N

Ej

}
.

If µ is a finite Rm-valued Radon measure on Ω then it holds for all open sets A ⊆ Ω

|µ|(A) = sup
{�

Ω
η · dµ

∣∣∣∣ η ∈ C0
c (A;Rm) and ∥η∥C0(A;Rm) ≤ 1

}
.
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The space of Radon measures can be represented as a dual space. Let Ω be a locally
compact and separable metric space and Y a normed vector space, then we consider the
function spaces

C0
c (Ω;Y ) :=

{
f : Ω −→ Y | f is continuous and supp(f) ⋐ Ω

}
.

If Y = R we simply write C0
c (Ω) := C0

c (Ω;R). Endowed with the supremum norm
∥ · ∥C0(Ω;Y ) the space C0

c (Ω;Y ) is a normed vector space and we define

C0
0 (Ω;Y ) := C0

c (Ω;Y )∥ · ∥C0(Ω;Y ) in C0(Ω;Y ),

which is a representation of the completion of
(
C0

c (Ω;Y ), ∥ · ∥C0(Ω;Y )
)
. Again we write

C0
c (Ω) := C0

c (Ω;R). We will consider the space of Y -valued Radon measures and finite
Y -valued Radon measure as the dual spaces of C0

c (Ω;Y ) and C0
0 (Ω;Y ) however therefore

we need to endow these spaces with suitable topologies. We consider C0
0 (Ω;Y ) with the

standard norm of uniform convergence ∥ · ∥C0(Ω;Y )). For C0
c (Ω;Y )′ we need a topology

which acknowledges the structure of the functions with compact support. For all K ⋐ Ω
we define the seminorm

pK : C0
c (Ω;Y ) −→ Y, pK(f) := ∥f∥C0(K;Y ).

Then we endow C0
c (Ω;Y ) with topology induced by the family of seminorms {pK}K⋐Ω,

we refer to it as the natural topology on C0
c (Ω;Y ). If not specified otherwise we will always

consider C0
c (Ω;Y ) with the natural topology, in particular the dual space C0

c (Ω;Y )′ is the
space of all linear functionals on C0

c (Ω;Y ) that are continuous with respect to the natural
topology. This can be characterized by the following criterion: let L : C0

c (Ω;Y ) −→ R be
linear, then L ∈ C0

c (Ω;Y )′ if and only if for all K ⋐ Ω

sup
{
L(η) | η ∈ C0(K;Y ) and ∥η∥C0(K;Y ) ≤ 1

}
<∞.

Definition 8.2.4 (Absolute continuity of measures).
Let Ω ⊆ Rn be open and µ, ν Borel measures on Ω. We say that ν is absolute continuous
with respect to µ, i.e. ν ≪ µ if for all Borel sets A ⊆ Ω we have µ(A) = 0 =⇒ ν(A) = 0.
The following result can be found as Theorem 1.30 in Section 1.6 of [EG15].
Theorem 8.2.5 (Radon-Nikodym).
Let µ, ν ∈ C0

c (Rn)′ with ν ≪ µ. Then there exists f ∈ L1(Rn;µ) such that

ν = fµ.

We call Dµν := f the measure derivative.
The theorem remains true if µ, ν ∈ C0

c (Ω)′ for some open set Ω ⊆ Rn. We get this by
defining µ̃ ∈ C0

c (Rn)′ with µ̃(A) := µ(Ω ∩ A) for all Borel sets A ⊆ Rn, same for ν. If
ν ≪ µ then we get ν̃ ≪ µ̃ and thus ν̃ = fµ̃ as Radon measures on Rn by Theorem 8.2.5.
It follows ν = fµ as Radon measures on Ω and thus Dµν = Dµ̃ν̃.
Lemma 8.2.6 (Absolute continuity of measures).
Let Ω0 ⊆ Rn be open and bounded, let µ, ϑ be Radon measures on Ω0 with the property:
For all ϕ ∈ C∞

c (Ω0) with ϕ ≥ 0 we have�
Ω0

ϕ dϑ ≤
�

Ω0

ϕ dµ.

Then we get ϑ(U) ≤ µ(U) for all Borel-measurable U ⊆ Ω0, in particular ϑ≪ µ.
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Proof. Assume there is a Borel-measurable set U ⊆ Ω0 with µ(U) < ϑ(U). Owing to the
inner regularity of Radon measures we find a compact set K ⊆M such that

µ(K) < ϑ(K).

We choose a test function ψ ∈ C∞
c (B1(0)) with 0 ≤ ψ ≤ 1 and

�
B1(0) ψ dϑ = 1. Define for

β > 0 and x ∈ Rn

ϕβ(x) :=
�
Rn

β−nψ

(
x− y
β

)
χK(y) dϑ(y). (8.2.1)

ϕβ has the properties 0 ≤ ϕβ ≤ 1 and ϕβ(x) −→ 0 as β → 0 if x /∈ K. Hence we get for
all x ∈ Ω0

lim sup
β→0

ϕβ(x) ≤ χK(x)

For β < dist(K, ∂Ω) we get ϕβ ∈ C∞
c (Ω0),

�
Ω0
ϕβ dϑ =

�
Ω0
χK dϑ and thus

µ(K) < ϑ(K) =
�

Ω0

ϕβ dϑ ≤
�

Ω0

ϕβ dµ β→0−→ µ(K),

by dominated convergence which is a contradiction. Hence ϑ ≤ µ and ϑ≪ µ.

In the following we consider the function ζρ,x : Rn −→ Rn for ρ > 0 and x ∈ Rn with

ζρ,x(y) := y − x
ρ

and the push-forward measure introduced in Definition 2.2.18.

Lemma 8.2.7.
Let Ω ⊆ Rn be open, µ a Radon measure on Ω, and f ∈ L1(Ω, µ). Let x ∈ Ω be a µ-
Lebesgue point of f such that that there exists C > 0 with lim supρ→0 ρ

1−nµ
(
Bρ(x)

)
≤ C.

Then we have

lim
ρ→0

ρ1−nζx,ρ,#(fµ) = f(x) lim
ρ→0

ρ1−nζx,ρ,#µ in C0
c (B1(0))′. (8.2.2)

Proof. Let x ∈ Ω be a µ-Lebesgue point of f , we can assume x = 0 because ζx,ρ would
shift x to 0 anyways. Take η ∈ C0

c (Ω) with η(0) ̸= 0, we can assume η(0) = 1, otherwise
we can rescale η. For R > 0 large enough we get supp(η) ⊆ BR(0), we can assume R = 1,
because if not we could scale the variable ρ by the factor of R which does not affect ρ→ 0.
Testing the measures gives

ρ1−n⟨η, ζρ,#(fµ)⟩C0
c (B1(0))′

= ρ1−n

�
B1(0)

η dζρ,#(fµ) = ρ1−n

�
Bρ(0)

η ◦ ζρ · f dµ

= ρ1−n

�
Bρ(0)

η

(
y

ρ

)
f(y) dµ(y)

= ρ1−n

�
Bρ(0)

η

(
y

ρ

)
f(0) dµ(y) + ρ1−n

�
Bρ(0)

η

(
y

ρ

)
(f(y)− f(0)) dµ(y)
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= f(0)ρ1−n

�
B1(0)

η dζρ,#µ+ ρ1−n

�
Bρ(0)

η

(
y

ρ

)
(f(y)− f(0)) dµ(y)

= ρ1−n⟨η, f(0)ζρ,#µ⟩C0
c (B1(0))′ + ρ1−n

�
Bρ(0)

η

(
y

ρ

)
(f(y)− f(0)) dµ(y).

This yields the desired result if we can show that the second term vanishes as ρ→ 0. This
is true because of∣∣∣∣∣

�
Bρ(0)

ρ1−nη

(
y

ρ

)
(f(y)− f(0)) dµ(y)

∣∣∣∣∣ ≤ ∥η∥C0(Ω)ρ
1−n

�
Bρ(0)

|f(y)− f(0)|dµ(y)

≤ ∥η∥C0(Ω) ρ
1−nµ(Bρ(0))︸ ︷︷ ︸

≤C

 

Bρ(0)

|f(y)− f(0)| dµ(y) −→ 0

because 0 is a µ-Lebesgue point of f .

We used the notation
�

Ω f dµ := 1
µ(Ω)

�
Ω f dµ.

8.3 Some results from analysis

Lemma 8.3.1 (Standard Aubin-Lions-Dubinskii Lemma).
Let X,Y, Z be Banach spaces with X,Z reflexive and

X
c
↪→ Y ↪→ Z.

The the embedding

L2(0, T ;X) ∩H1(0, T ;Z) ↪→ L2(0, T ;Y )

is compact, meaning that if a sequence is bounded in both spaces on the left-hand side it
has a convergent subsequence in the space on the right-hand side.

Based on the standard result we can prove a specialized version.

Lemma 8.3.2 (Aubin-Lions-Dubinskii type embedding).
Let Ω ⊆ Rn be open and bounded with C1-boundary. For s ∈ [1, 3/2) the embedding

L2(0, T ;W 1,1(Ω)) ∩H1(0, T ;H2(Ω)′) ↪→ L2(0, T ;Ls(Ω))

is compact.

Proof. Given s ∈ [1, 3/2) we can choose γ, η > 0 small such that

W 1,1(Ω) ↪→W 1−γ,1+η(Ω) c
↪→ Ls(Ω) ↪→ H2(Ω)′.

W 1−γ,1+η(Ω) has the advantage of being reflexive whereas W 1,1(Ω) is not. This also
makes the Bochner-space reflexive. After this setup it is sufficient to consider

L2(0, T ;W 1−γ,1+η(Ω)) ∩H1(0, T ;H2(Ω)′) ↪→ L2(0, T ;Ls(Ω)).

This embedding is compact owing to Lemma 8.3.1.
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Remark. More versions of the Aubin-Lions-Dubinskii works [Aub63, Dub65] can be found
in [Sim87, CJL14, Mou16]. For the comfort of the reader we gave a proof based on a
standard version of the lemma.

Lemma 8.3.3 (Continuation of monotone functions).
Let D ⊆ R be dense and F̃ : D −→ R decreasing. Then the function

F : R −→ R, F (x) := sup{F̃ (y) | y ∈ D ∩ [x,∞)}

is well-defined, decreasing, right-continuous with limits to the left and F |D = F̃ .

Proof. We start by showing, that F (x) is well-defined for x ∈ R. Since D ⊆ R is dense
we can find ξ ∈ D ∩ [x− 1, x). Since F̃ is decreasing we have

∀y ∈ D ∩ (x,∞) : F̃ (y) ≤ F̃ (ξ) ∈ R.

So the supremum exists and is finite. Next we prove F = F̃ on D. Take any x ∈ D and
z ∈ D ∩ [x,∞) then we have

F (x) = sup{F̃ (y) | y ∈ D ∩ [x,∞)} ≥ F̃ (x) ≥ F̃ (z).

Now we take the supremum over z ∈ D ∩ [x,∞) and get

F (x) ≥ F̃ (x) ≥ sup{F̃ (z) | z ∈ D ∩ [x,∞)} = F (x).

Thus F (x) = F̃ (x). For the monotonicity take any x, y ∈ R with x < y. Then we can
find z ∈ D ∩ (x, y). Thus we get

F (x) = sup{F̃ (a) | a ∈ D ∩ [x,∞)} F̃ ↘= sup{F̃ (a) | a ∈ D ∩ [x, z)} ≥ F̃ (z) ≥ F̃ (b)

for all b ∈ D ∩ [z,∞), in particular for all b ∈ D ∩ [y,∞). Taking the supremum over
b ∈ D ∩ [y,∞) we get

F (x) ≥ F̃ (z) ≥ sup{F̃ (b) | b ∈ D ∩ [z,∞)} = F (z),

so F is decreasing as well. We proceed to the right-continuity. Let x ∈ R be arbitrary
and (xj)j∈N a sequence in (x,∞) with xj −→ x as j →∞. For a given k ∈ N we can find
yk ∈ D ∩ (x,∞) such that

F (x) ≥ F̃ (yk) > F (x)− 1
k

owing to the properties of the supremum. Since xj −→ x we find jk ∈ N with

x ≤ xjk
≤ yk.

Since F is decreasing we get

F (x) ≥ F (xjk
) ≥ F (yk) = F̃ (yk) > F (x)− 1

k
.

Thus we get

lim
k→∞

F (xjk
) = F (x).
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If (xj)j∈N is decreasing then (F (xj))j∈N is decreasing and has a convergent subsequence,
forcing limj→∞ F (xj) = F (x).
Assume not F (x) = limj→∞ F (xj). Then there is τ > 0 and a subsequence (F (xjm))m∈N
such that

|F (x)− F (xjm)| ≥ τ for all m ∈ N.

We choose a decreasing subsequence (xjmq
)q∈N thus F (xjmq

) is convergent towards F (x)
by the previous argument, which is a contradiction. This shows that F is right continuous.
The last step is to show that at every point x ∈ R the limit limy↗x F (y) exists. Let
(zj)j∈N be a sequence in (−∞, x) with zj −→ x as j →∞. Owing to the last argument
from the right-continuity proof it is sufficient to consider an increasing sequence. From
this we get

F (x) ≤ F (zj+1) ≤ F (xj) for all j ∈ N.

So (F (zj))j∈N is convergent. We still need to prove that the limit is independant from the
sequence (zj)j∈N. Let (wn)n∈N be another increasing sequence in (−∞, x) with wn −→ x.
Because of wn ↗ x we can find nj ∈ N such that zj ≤ wnj and we find jn ∈ N with
wn ≤ zjn . Since F is decreasing we get

lim
j→∞

F (zj) ≥ lim
j→∞

F (wnj ) = lim
n→∞

F (wn) ≥ lim
n→∞

F (zjn) = lim
j→∞

F (zj).

Thus the limit are the same and is independant from the chosen sequence.

Definition 8.3.4 (Lebesgue point).
Let Ω ⊆ Rn be open, µ a Borel measure on Ω and f ∈ L1(Ω, µ). x ∈ Ω is called a
µ-Lebesgue point of f if

lim
r→0

 
Br(x)

f dµ = f(x).

In the following we state the main result on Lebesgue points, which can be found as
Theorem 5.16 in [Mag12].

Theorem 8.3.5 (On Lebesgue points).
Let µ be a Radon measure on Rn, p ∈ [1,∞), and f ∈ Lp

loc(Rn, µ). Then µ-a.e. x ∈ Ω is
a µ-Lebesgue point of f .

Theorem 8.3.6 (Gauß’ Divergence Theorem).
Let Ω ⊆ Rn be open and bounded with C1-boundary and f ∈ C1(Ω;Rn). Then we have

�
Ω
∇ · u dLn =

�
∂Ω
u · ν dHn−1

where ν denotes the outer normal of ∂Ω.

Theorem 8.3.7 (Theorem of Partial Integration).
Let Ω ⊆ Rn be open.
(i) Let Ω be bounded with C1-boundary and let u, v ∈ C1(Ω). Then we have for all
j ∈ {1, . . . , n}

�
Ω
u∂jv dLn =

�
∂Ω
uvνj dHn−1 −

�
Ω
v∂ju dLn
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where ν denotes the outer normal of ∂Ω.

(ii) Let u, ϕ ∈ C1(Ω) and let supp(ϕ) ⋐ Ω. Then we have for all j ∈ {1, . . . , n}
�

Ω
u∂jϕ dLn = −

�
Ω
ϕ∂ju dLn.

The second claim follows from the first because we can find an open and bounded set U
with C1-boundary such that supp(ϕ) ⋐ U ⊆ Ω.

Calculation of constants for the Amstutz-Van Goethem model

We consider W (x) := 1
4(1 − x2)2 for x ∈ R. We can calculate the constants for the

approximations and flow equations.

∥q′
0∥2L2(R) =

�

R

q′
0

√
W∗(q0) dL1 =

�

(−1,1)

√
W∗ dL1 =

�

(−1,1)

√
W ◦ f−1 + 1

4
(
W ′ ◦ f−1)2 dL1

=
�

(−1,1)

f ′
√
W + 1

4
(
W ′)2 dL1 =

�

(−1,1)

(
1 + 1

2W
′′
)√

W + 1
4
(
W ′)2 dL1.

Now we need to plug in the concrete double-well potential and substitute x = sinh(θ)
with a := Arsinh(1) = log(1 +

√
2)

∥q′
0∥2L2(R) = 1

2

�
(0,1)

(3x2 + 1)(1− x2)
√

1 + x2 dx

= 1
2

�
(0,a)

(3 sinh2(θ) + 1)(1− sinh4(θ)) dθ

= 1
128

(
4a+ 19 sinh(2a) + 7 sinh(4a)− sinh(6a)

)
= 1

32
(
13
√

2 + log(1 +
√

2)
)
.

Next we have

∥q′
0∥2L2(R) =

�
R

∣∣∣∣ q′
0

f ′(f−1(q0))

∣∣∣∣2 dL1

=
�

(−1,1)

√
W∗(

f ′ ◦ f−1)2 dL1 =
�

(−1,1)

√
W + 1

4
(
W ′)2

1 + 1
2W

′′ dL1.

Now we need to plug in the concrete double-well potential and substitute x = sinh(θ)

∥q′
0∥2L2(R) =

�
(0,1)

2(1− x2)
√

1 + x2

3x2 + 1 dx =
�

(0,a)

2(1− sinh2(θ))(1 + sinh2(θ))
3 sinh2(θ) + 1

dθ.

We shorten the fraction by a factor of sinh6(θ) and apply (coth2(x)− 1) sinh2(x) = 1
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∥q′
0∥2L2(R) =

�
(0,a)

2
(

1
sinh2(θ) − 1

) (
1

sinh2(θ) + 1
)

1
sinh2(θ)

3
sinh4(θ) + 1

sinh6(θ)
dθ

=
�

(0,a)

2 coth2(x)(coth2(x)− 2) 1
sinh2(θ)

coth6(θ)− 3 coth2(θ) + 2
dθ.

Having prepared the substitution we can now transform w = coth(θ)

∥q′
0∥2L2(R) =

�

(
√

2,∞)

2w2(w2 − 2)
w6 − 3w2 + 2 dw =

�

(
√

2,∞)

2w2(w2 − 2)
(w − 1)2(w + 1)2(w2 + 2) dw

=
�

(
√

2,∞)

( 16
9(w2 + 2) + 5

18(w − 1) −
5

18(w + 1) −
1

6(w + 1)2 −
1

6(w − 1)2

)
dw

=
[

8
√

2
9 arctan

(
w√
2

)
+ 5

18 log
∣∣∣∣w − 1
w + 1

∣∣∣∣+ w

3(w2 − 1)

]∞

√
2

= 1
9
(
2
√

2π − 5 log(
√

2− 1)− 3
√

2
)
.
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“‘Day 31: I finally succeeded in my time reversal experiment!
‘Day 30: I might have a problem here.‘
—Journal of the Prime Izmagnus”1

1quoted from the Magic: The Gathering card Inspiration from the set Return to Ravnica created by
Wizards of the Coast.
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