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Introduction

Dunkl processes gained importance in physical mathematics in the last decades, [10, 80].

However, in the field of statistics, these processes remained invisible. Statistical inference

for Dunkl processes, that is, the estimation of the involved multiplicities or the dimension

of a Dunkl process, has not been investigated until now. The multiplicities of a Dunkl

process are of special interest since they determine the jump activity. If at least one

of the multiplicities is sufficiently small, the number of jumps on any finite interval is

almost surely infinite. As a first step to provide statistical inference, we consider different

variations of a Dunkl process and present estimators for these variations.

In the first chapter we start with a brief overview of the essential aspects of the Dunkl

theory relevant for this thesis and how a Dunkl process relates to well-known processes.

We introduce Dunkl operators, which are generalizations of the directional derivatives,

[27]. By using these operators to define a Dunkl process, this jump process can be viewed

as a generalization of the Brownian motion generated by the Laplacian, [74, 76]. The con-

tinuous part of this process is obtained by a projection. This is the so-called radial Dunkl

process, also known as the multivariate Bessel process. The Euclidean norm of a Dunkl

process behaves similarly to that of a Brownian motion, since in both cases we receive a

classical Bessel process. In this context, we also consider a type of polynomial processes

generalizing the classical Bessel process. Both of these processes admit a stationary mod-

ification whose appropriate power turns out to be a Cox-Ingersoll-Ross process. We also

discuss the relationship between the parameters of the Dunkl process and the resulting

transformations.

In Chapters 2 and 3, we focus on estimators for the multiplicities of a Dunkl process

and its dimension. We present well-established methods for inference when the likelihood

function is unknown or too complicated. Keeping in mind that observations of a Dunkl

process can be transformed into observations of other processes introduced in Chapter 1,

we can consider transformations of a Dunkl process and still receive estimators for the

parameters of the Dunkl process itself.

1



Introduction

In Chapter 2, we concentrate on martingale estimators at low frequency data for the

index parameter of a Bessel process and, as an extension, polynomial processes. Since

these processes are non-ergodic and most results for inference are developed for stationary

and ergodic diffusions, we transform them into processes with such properties by adding

a mean reverting term. First, we give an overview of the known results, see [11, 59, 78],

which we then apply to our modifications. We published and discussed the optimality of

the resulting martingale estimators based on one eigenfunction in the case of a modified

polynomial process and on up to two eigenfunctions for the modified Bessel process in

[44]. In addition, we will here study the martingale estimator for any finite number of

eigenfunctions and apply these results to our original Dunkl process.

Taking a closer look at the estimators from Chapter 2, we will recognize that they depend

only on a particular transformation of the data which is a realization of a Cox-Ingersoll-

Ross process. In Chapter 3 we hence focus on estimators for this process. A few settings

of parameter estimation for the Cox-Ingersoll-Ross process were already studied. For

when the process is observed continuously, the asymptotics of the maximum-likelihood

estimator was analyzed in [4, 5, 71]. Considering low frequency data, that is, the distance

between observations is fixed, local asymptotic normality was proved for moment-matching

type estimators in [72]. Despite the popularity of the process in applications, parameter

estimation for high-frequency observations has not been fully resolved and will be further

explored by us. We apply the Gaussian quasi-likelihood method, another alternative to the

maximum likelihood estimator when the density is unknown or too complicated. For this

purpose, the density is approximated by the Gaussian density. Even if the Cox-Ingersoll-

Ross process has a non-central chi-squared density which is far from being Gaussian, this

local approximation works well. We introduce a preliminary estimator that is already

considered in [72], then prove asymptotic normality for one-step improvements towards

the Gaussian quasi-maximum likelihood estimator. We show that all these estimators

are asymptotically equivalent to the Gaussian quasi-maximum likelihood estimator and

compare them in a simulation study. This chapter is partially incorporated in the paper

[21]. In the end, we contrast the estimators introduced in Chapter 3 and the martingale

estimators from Chapter 2.

A key difference of these estimators lies in their asymptotic behaviour. The martingale

estimators are consistent for every parameter value whereas the estimators introduced in

Chapter 3 require the almost sure positivity of the underlying process. Turning to a dif-

ferent subject, we examine in Chapter 4 the times when a multivariate Bessel process hits

the boundary of the Weyl chamber. In the one dimensional case, which is a classical Bessel
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Introduction

process, the Weyl chamber represents the origin. This conflicts the positivity assumption

above. Hence, we concentrate on the critical cases where the estimators of Chapter 3 do

not converge, that is, when the classical Bessel process hits the origin almost surely. Since

this process is already well studied, we gather known results from the literature on hitting

times and infer new formulas. Then, we focus on its return times to the origin. On the

one hand, this set of return times has Lebesgue measure zero almost surely, but on the

other hand, its cardinality is infinite almost surely. Therefore, Luqin Liu and Yimin Xiao

[61] considered the fractal Hausdorff dimension for the times when self similar processes

reach the origin. In particular, they cover a classical Bessel process hitting the origin. We

present these calculations and proofs pertaining to the classical Bessel process. In the end,

we transfer these calculations to the Hausdorff dimension of the times when a multivariate

Bessel process hits the Weyl chamber’s boundary. We published this extension in the

preprint [43].

We provide further introductory remarks on the various topics at the beginning of the

corresponding chapter. This includes motivation and illustrations based on the underlying

formulas and would therefore go beyond the scope of the introduction.
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1 Preliminaries and background

1.1 Dunkl process

We begin the preliminaries with an overview over one of the central objects in this thesis,

namely the Dunkl processes and then elaborate on different variations of these processes.

In this section our main reference is [75] and the references therein, for example [27, 28, 29,

74]. In the whole thesis, we denote by
(
Ω,F , (Ft)t≥0,P

)
the underlying filtered probability

space. Unless otherwise specified, we regard the canonical filtration with respect to the

corresponding process (Xt)t≥0: Ft := σ
(
Xs | s ≤ t

)
.

The name of the Dunkl processes is taken from the eponymous operator originated from the

field of harmonic analysis. Charles F. Dunkl has introduced Dunkl operators in his paper

[27] about 30 years ago. These operators are widely used for the generalization of analytic

structures. Dunkl operators play a role in various areas of mathematics and mathematical

physics, [10, 80]. The Dunkl processes themselves were not treated until almost ten years

later when Margit Rösler solved the heat equation with respect to the Dunkl operator,

[74]. Through this discovery these operators gained relevance in stochastics by Margit

Rösler and Michael Voit introducing the Dunkl processes, [76]. Since these processes find

their origin in the harmonic analysis, we start with a short analytical introduction of the

Dunkl operators, defining the main elements and explaining the core steps before moving

on to the stochastics.

An essential component of Dunkl operators are root systems. In this regard, we consider

the Euclidean space
(
RN , 〈., .〉

)
with the standard Euclidean inner product 〈x, y〉 = x1y1 +

· · ·+ xNyN and an orthogonal reflection operator for α ∈ R\{0} defined by

σα(x) := x− 2
〈α, x〉
〈α, α〉

α.

We occasionally omit the braces of the argument x in favour of a more concise notation.

Any finite set R ⊂ RN\{0} which is invariant under the orthogonal reflections along its
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1 Preliminaries and background

own elements, that is, σα(R) = R for all α ∈ R, is called root system. In particular, α ∈ R
implying σα(α) = −α ∈ R justifies the restriction to one half of the root system, denoted

by R+. In formulas, we decompose the root system into R = R+∪̇(−R+) separated by

a hyperplane 〈β〉⊥ with β 6∈ R and 〈α, β〉 6= 0 for all α ∈ R. The generated group

G = G(R) := 〈σα : α ∈ R〉 is called the reflection group associated with R. We use this

reflection group to define a parameterized modification of the usual (partial) derivatives

with respect to the standard basis vectors, e1, . . . , eN .

Definition 1.1: Let k : R → C be a multiplicity function, that is invariant under the

natural action of G on R, then the Dunkl operator TRi = TRi (k) is defined on C1
(
RN
)

by

TRi f(x) :=
∂

∂xi
f(x) +

∑
α∈R+

k(α)〈α, ei〉
f(x)− f(σαx)

〈α, x〉

for i = 1, . . . , N .

Obviously, we could specify the Dunkl operators in terms of partial derivatives with respect

to arbitrary basis vectors x ∈ RN instead of the standard basis vectors but we will only

consider e1, . . . , eN throughout this thesis. Upon closer inspection, we observe σcα(x) =

σα(x) for c ∈ R\{0}. Accordingly, different combinations (k,R) may result in the same

operator. In order to avoid redundancy, the assumption that R is a reduced root system,

that is, for all α ∈ R holds R ∩ Rα = {−α, α}, is hence reasonable. The Dunkl operator

satisfies many properties that also apply to the derivative, for more details see [75]. Thus,

this motivates the generalization of the well-known Laplacian ∆, the Dunkl Laplacian on

C2(RN ):

∆R
k : =

N∑
i=1

TRi ◦ TRi .

The explicit form

∆R
k f(x) = ∆f(x) +

∑
α∈R+

k(α)

[
2〈α,∇f(x)〉
〈α, x〉

+ ‖α‖2 f(σαx)− f(x)

〈α, x〉2

]
(1.1)

for f ∈ C2
(
RN
)

was proved in [27, 29]. Obviously, ∆R
0 = ∆ applies. From now on, we

assume non-negative real multiplicity functions, in formulas, k(α) ≥ 0 for every α ∈ R+.

In the upcoming examples of possible root systems, we note that we can still define the

Dunkl operators for complex multiplicities k : R → C, but do not pursue this for the
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1.1 Dunkl process

application in stochastics. Furthermore, the corresponding Dunkl operators and Dunkl

Laplacian also live on the same spaces of functions as above which means on C1(RN ) and

C2(RN ), respectively.

A Brownian motion is generated by ∆
2 . This important Feller process takes a key role

in financial mathematics, [13], and physics, [31]. Thus, it is evident to regard processes

generated by this generalization of the Laplacian. For this, the existence of a unique

solution of the heat equation for Dunkl operators, which is{
∆R
k u(t, x) = ∂

∂tu(t, x), (t, x) ∈ (0,∞)× RN

u(0, ·) = f

with initial value f ∈ Cb(RN ) and solution u with u(·, x) ∈ C1
(
(0,∞)

)
and u(t, ·) ∈

C2
(
RN
)
, is essential. For more details we refer the reader to [74]. The solution gener-

ates a contraction semigroup which provides a Markov process according to [76]. Hence,

Dunkl processes are the càdlàg (i.e., left-limited and right-continuous) Markov processes,

whose infinitesimal generator is
∆R
k

2 on the domain of all twice continuously differentiable

functions f with 〈α,∇f(x)〉 = 0 if 〈α, x〉 = 0. Due to the non-singularity we require

this reflection which means the probability that the generated process is at such points,

〈α, x〉 = 0, is zero. By observing the explicit formula (1.1), the behaviour of the associated

process can already be specified. Especially, ∆
2 generates an N dimensional Brownian mo-

tion and the expression containing ∇f generates a drift, cf. [32, Chapter 5.3 Stochastic

Integral Equations]. Analyzing the last term in (1.1), we contemplate jump processes as

in [32, Chapter 4.2 Markov Jump Processes and Feller Processes]. Here, E is a state space

with Borel σ−algebra B(E). Jump processes are generally provided by an operator of the

form

Af(x) = λ(x)

∫
E

(
f(y)− f(x)

)
µ(x,dy), (1.2)

where µ is a transition function on E × B(E) and λ a non negative function on E. For a

fixed x ∈ E, µ(x, ·) is a probability measure specifying the possible jumps from x. Further,

λ describes a function on E, which determines the probability of a jump from the state x.

In the case of a Dunkl process

µ(x, ·) =
∑
α∈R+

cαδσαx

7



1 Preliminaries and background

is a sum over point measures, meaning we randomly achieve an orthogonal reflection

along the roots. Moreover, the jump activity depends on the multiplicity function. This

relationship has already been analyzed in more detail: If k(α) > 1
2 applies for all α ∈ R+,

the number of jumps on any finite interval is almost surely finite, cf. [22, Proposition

3.5].

For the introduction of the transition density of the Dunkl process we first need the

Dunkl kernel Ek,R(x, y) for x, y ∈ RN , which is the unique solution f := Ek(·, y) of the

eigenfunction problem {
TRi f = yif, for i = 1, . . . , N,

f(0) = 1.

The existence was proved in [75, 2.27 Theorem], which in turn goes back to [70, Proposition

6.7]. Using this kernel, we specify the transition density

pk,R(t, x, y) :=
1

tκ+N
2 ck

e−
‖x‖2+‖y‖2

2t Ek,R

(
x√
t
,
y√
t

)
wk,R(y),

describing the probability of going from x to y ∈ RN after a time t > 0, with the sums of

multiplicities

κ = κ(k,R) :=
∑
α∈R+

k(α),

the weight function

wR(x) = wk,R(x) :=
∏
α∈R
|〈α, x〉|k(α)

and the normalizing constant

ck = ck(R) :=

∫
RN

e−
‖x‖2

2 wk,R(x) dx.

In this thesis, we first focus on the one dimensional case and proceed to the potentially

multivariate Dunkl processes of type AN−1 and BN . In the one dimensional case the root

system is R = {−1, 1} and the corresponding Dunkl operator with multiplicity parameter

k ≥ 0 is given by

Tf(x) = f ′(x) + k
f(x)− f(−x)

x
.

8



1.1 Dunkl process

Hence, we obtain the Dunkl Laplacian

∆kf(x) = f ′′(x) + 2k
f ′(x)

x
+ k

f(−x)− f(x)

x2
.

Accordingly, in (1.2) µ(x, ·) = δ−x is the point measure in −x and λ(x) = k
2x2 . In other

words, the only jumps of a one-dimensional Dunkl process are reflections and owing to

the behaviour of λ, the probability for a reflection of the values close to zero is large

and decreases with increasing distance to zero. Many explicit results are known for the

one-dimensional Dunkl process. Here, the transition density is

pk(t, x, y) =
1

tk+ 1
2 Γ(k + 1

2)
e−
‖x‖2+‖y‖2

2t Ek

(
x√
t
,
y√
t

)
|y|2k.

The Dunkl kernel has among others the integral representation

Ek(x, y) =
Γ(k + 1

2)

Γ(1
2)Γ(k)

1∫
−1

etxy(1− t)k−1(1 + t)k dt.

Since we can define Ek for k ∈ C as well, we remark that the condition k ≥ 0 is essential

for this expression to be valid. Furthermore, we contemplate the root system

AN−1 :=
{
± (ei − ej) | 1 ≤ i < j ≤ N

}
with the standard basis vectors e1, . . . , eN on RN and the corresponding reflections σij :=

σei−ej exchanging the components xi and xj of a vector x ∈ RN . Since the transpositions

(ij) generating the symmetric group SN act like σij on RN , we derive G(AN−1) = SN .

For a fixed multiplicity parameter k ≥ 0 the Dunkl operators are

T
AN−1

i f(x) =
∂

∂xi
f(x) + k

∑
1≤i<j≤N

f(x)− f(σijx)

xi − xj

and therefore the Dunkl Laplacian is

∆
AN−1

k f(x) = ∆f(x) + 2k
∑

1≤i<j≤N

[
1

xi − xj

(
∂

∂xi
− ∂

∂xj

)
f(x) +

f(σijx)− f(x)

(xi − xj)2

]
.

In particular, the jumps of a Dunkl process in the AN−1 case are exchanges of two com-

9



1 Preliminaries and background

ponents. The transition density is given via

pk,AN−1
(t, x, y) =

1

tk
N(N−1)

2
+N

2 ck
e−
‖x‖2+‖y‖2

2t Ek,AN−1

(
x√
t
,
y√
t

)
wAN−1

(y)

with

wAN−1
(y) =

∏
1≤i<j≤N

|yi − yj |2k.

The root system BN incorporates additionally the sign changes σi := σei of the i-th

component. Thus, to maintain a root system, the composition τij := σei+ej = σijσiσj

needs to be taken into account, which exchanges the ith and jth component and changes

their signs. The resulting root system is

BN :=
{
± ei | 1 ≤ i ≤ N

}
∪
{
± (ei ± ej) | 1 ≤ i < j ≤ N

}
.

The associated group is generated by σij (as in the case AN−1) and the sign changes σi,

which explains why we obtain |G(BN )| = 2NN !. We regard a fixed multiplicity parameter

of the form k = (k1, k2) ∈ [0,∞)2, where k1 and k2 correspond to the sign changes and

the σij or τij , respectively, and obtain the associated Dunkl operators

TBNi f(x) =
∂

∂xi
f(x) + k1

f(x)− f(σix)

xi
+ k2

∑
1≤i<j≤N

[
f(x)− f(σijx)

xi − xj
+
f(x)− f(τijx)

xi + xj

]
.

Consequently, we yield

∆BN
k f(x) = ∆f(x) + 2k1

N∑
i=1

1

xi

∂

∂xi
f(x) + 2k2

N∑
i,j=1
j 6=i

(
1

xi − xj
+

1

xi + xj

)
∂

∂xi
f(x)

+ k1

N∑
i=1

f(σix)− f(x)

x2
i

+ 2k2

∑
1≤i<j≤N

[
f(σijx)− f(x)

(xi − xj)2
+
f(τijx)− f(x)

(xi + xj)2

]
.

Here, the possible jumps are determined by σi, σij and τij . The transition density is

specified by

pk,BN (t, x, y) =
1

tk1N+k2N(N−1)+N
2 ck

e−
‖x‖2+‖y‖2

2t Ek,BN

(
x√
t
,
y√
t

)
wBN (y)

10



1.2 Multivariate Bessel process

with

wBN (y) =
N∏
i=1

|yi|2k1
∏

1≤i<j≤N
|yi − yj |2k2 |yi + yj |2k2

=

N∏
i=1

|yi|2k1
∏

1≤i<j≤N
|y2
i − y2

j |2k2 .

For later reference, we emphasize that the used sums of multiplicities are

κ(k,R) =


κ(k,AN−1) =

∑
1≤i<j≤N

k = kN(N−1)
2 ,

κ(k,BN ) =
N∑
i=1

k1 + 2
∑

1≤i<j≤N
k2 = k1N + k2N(N − 1)

in the special cases of the root systems AN−1 and BN .

1.2 Multivariate Bessel process

With the introduction of Dunkl processes the G-radial part of the Dunkl process, which is

also called multivariate Bessel process, immediately appears as well, [76]. This process is

a continuous version of the Dunkl process and is obtained by a projection of the Dunkl

process onto a proper quotient space called Weyl chamber. To explain this in more detail

we need a few definitions. We assume a reduced root system R and define a Weyl chamber

WR to be a fixed connected component of

RN
∖ ⋃
α∈R+

〈α〉⊥ =
{
x ∈ RN | ∀α ∈ R+ : 〈α, x〉 6= 0

}
.

The Weyl chamber is obviously not unique and the number of possible Weyl chambers

depends on the cardinality of R since the root system is reduced. For this purpose, we

briefly look at some root systems considered in this thesis. In Figure 1.1 we illustrate the

hyperplanes 〈α〉⊥ associated with the roots α in the case

A1 :=

{
±

(
1

−1

)}

11



1 Preliminaries and background

(left image) and

A2 :=

±
 1

−1

0

 ,±

 1

0

−1

 ,±

 0

1

−1




(right image). Each Weyl chamber here corresponds to an ordering of the components of

−2 −1 1 2

−2

−1

1

2

−1 −0.5 0
0.5 1−1

0

1
−1

0

1

Figure 1.1: Hyperplanes belonging to the roots of A1 (left) and A2 (right) and examples
of reflections along the roots.

vectors in RN . Since we incorporate the sign changes in the BN case as opposed to the

AN−1 case, already for N = 2 there exist 8 = |B2| possible Weyl chambers in the BN

case in contrast to 2 = |A1| in the AN−1 case. In general, since the root system R is

reduced the number of Weyl chambers is equal to |R|. In the BN case (see Figure 1.2) a

Weyl chamber corresponds to an ordering of the norm of the components as well as one

specific combination of their signs. Based on the reflections along the roots visualized in

the figures above, we consider on RN the following equivalence relation:

x ∼R y :⇔ ∃α ∈ G(R) : σα(x) = y.

The properties of an equivalence relation can be easily seen by using the group properties

of G(R). In Figures 1.1 and 1.2, we either connect points in the same equivalence class,

which we denote by [·]R, with dashed lines or use the same symbol in the case B1 which

equals the one dimensional case. In the case AN−1, the equivalence class of x ∈ RN

12



1.2 Multivariate Bessel process

0 −2 −1 1 2

−2

−1

1

2

Figure 1.2: Hyperplanes belonging to the roots of B1 (left) and B2 (right) and examples
of reflections along the roots.

contains arbitrary permutations of its components:

[x]AN−1
:=
{
y ∈ RN |x ∼AN−1

y
}

=
{
y ∈ RN | ∃τ ∈ SN : τ(x) = y

}
.

In particular, for A1 this means that we receive two elements in each of the equivalence

classes, see Figure 1.1. When N = 1, there exists only one reduced root system, except

for multiples of the roots, B1 = {−1, 1}. Hence, we get exactly two Weyl chambers, which

are separated by the origin, and so we have [x]1 = {−x, x} for any x > 0, left-hand side

in Figure 1.2. In the case B2 we already have more roots and hence hyperplanes along

which we reflect, right-hand side in Figure 1.2.

Ultimately, we immediately recognize that for the corresponding quotient space the iso-

morphism RN/G(R) ∼= WR holds. Now, starting with a Dunkl process
(
Ξt
)
t≥0

associated

with the reduced root system R with non-negative real multiplicity function k on R+ the

G-radial part of the Dunkl process or multivariate Bessel process is
(
Y R
t

)
t≥0

:=
(
π(Ξt)

)
t≥0

,

the canonical projection on RN/G(R). In particular, we fix one Weyl chamber WR and

choose the unique element π(x) ∈WR∩[x]R. By the insights of the previous section, jumps

of the Dunkl process are orthogonal reflections along its roots, so by fixing the Weyl cham-

ber we eliminate the process’s jumps and therefore its discontinuity points. Indeed, this

13



1 Preliminaries and background

projection of a Dunkl process is almost surely continuous and its generator is

LRf(x) =
1

2
∆f(x) +

∑
α∈R+

k(α)
〈α,∇f(x)〉
〈α, x〉

with f ∈ C2(WR) ∩ C0(WR) such that 〈α,∇f(x)〉 = 0 if 〈α, x〉 = 0, see [76, Theorem

4.10]. The last condition guarantees that the probability the generated process is at the

boundary equals zero. Due to the non-singular boundary, we require such a reflecting

boundary. Moreover, this is a Feller processes and as such it satisfies the strong Markov

property. This fact follows from [76, Proposition 4.5] and [74, Theorem 4.8]. We can also

specify the associated stochastic differential equation dY R
t = dBt +

∑
α∈R+

k(α) α
〈α,Y Rt 〉

dt,

Y R
0 = y0 ∈WR,

where (Bt)t≥0 is a standard multivariate Brownian motion. The singularity in the drift,

provided that at least one multiplicity k(α) is different from zero, raises the question

whether this stochastic differential equation has a unique strong solution. Therefore, it is

essential to rephrase this to

dY R
t = dBt +

∑
α∈R+

k(α)∇ log
(
〈α, Y R

t 〉
)

dt = dBt −∇Φ
(
Y R
t

)
dt

with

Φ(x) := −
∑
α∈R+

k(α)∇ log
(
〈α, x〉

)
.

According to [26, Theorem 1] by using [24] there exists indeed a unique strong solution.

In particular, this proof is an extension of [19, Theorem 3.1], where we find the proof of

the case AN−1, to arbitrary root systems.

Furthermore, the transition probability density

qk,R(t, x, y) :=
e−
‖x‖2+‖y‖2

2t

ckt
N
2

Jk,R

(
x√
t
,
y√
t

)
wk,R

(
y√
t

)
,

of starting in x and ending in y in the corresponding Weyl chamber after a time t > 0,

[25, Eq. (2)], is specialized for R ∈ {AN−1, BN} by choosing the corresponding forms for

14



1.2 Multivariate Bessel process

wk,R, the normalization constant ck introduced in Section 1.1 and the Dunkl-type Bessel

function associated with R and k defined by

Jk,R(x, y) :=
1

|G(R)|
∑

w∈G(R)

Ek(wx, y)

for x, y ∈ RN . Qk,R denotes the corresponding distribution. For a neater notation, we

omit R if the underlying root system is evident. A useful inequality

e−‖x‖·‖y‖ ≤ Jk,R(x, y) ≤ e‖x‖·‖y‖

arises immediately from [75, 2.31 Proposition].

Analogous to the Dunkl process, we gain a characterization when all multiplicities are

greater than 1
2 . In this case, the process almost surely never hits ∂WR :=

{
x ∈WR | ∃α ∈

R : 〈x, α〉 = 0
}

in finite time, [19, Proposition 4.1], whereas the first time the process fulfills

〈Y R, α〉 = 0 is almost surely finite for every α ∈ R+ with k(α) < 1
2 , [26, Proposition 1].

In the following, we choose the Weyl chamber

WR :=
{
x ∈ RN | ∀α ∈ R+ : 〈α, x〉 > 0

}
.

Now, we take a closer look at the special cases. The one-dimensional case is the well-

known classical Bessel process which justifies perceiving the G-radial part of the Dunkl

process as their multivariate extension. More details on this process will be given in the

next section.

As mentioned above, the unique strong solution of a multivariate Bessel process in the

case AN−1 was proved before introducing Dunkl processes and specifically the multivari-

ate Bessel processes for arbitrary root systems R. This particle system is furthermore

equivalent to the Dyson model, which is widely studied in mathematical physics, [30]. In

particular, the multivariate Bessel process of type AN−1 is described by its generator

LAN−1
f(x) =

∆

2
f(x) + k

∑
1≤i<j≤N

1

xi − xj

(
∂

∂xi
− ∂

∂xj

)
f(x)

=
∆

2
f(x) + k

N∑
j=1
j 6=i

1

xi − xj
∂

∂xi
f(x).

15



1 Preliminaries and background

We can also state the stochastic differential equation given via
dY A

t,i = dBt,i + k
N∑
j=1
j 6=i

1
Y At,i−Y At,j

dt,

Y A
0 = y ∈WAN−1

for i = 1, . . . , N , where (Bt)t≥0 is a standard multivariate Brownian motion. The process

lives on the closure of the Weyl chamber WAN−1
:= {x ∈ RN |x1 < · · · < xN}, which

means Y A
t ∈WAN−1

for all t.

The case B1 obviously equals the one-dimensional case, that is, a classical Bessel process.

Generally, the BN case is component-wise equivalent to the square root of the Wishart-

Laguerre process studied in mathematical physics, [17, 60]. Similarly, the multivariate

Bessel process of type BN lives on the closure of WBN := {x ∈ RN | 0 < x1 < · · · < xN}.
This process is defined by its generator

LBN f(x) =
∆

2
f(x) + k1

N∑
i=1

1

xi

∂

∂xi
f(x) + k2

N∑
i,j=1
j 6=i

(
1

xi − xj
+

1

xi + xj

)
∂

∂xi
f(x),

or equivalently via the stochastic differential equation
dY B

t,i = dBt,i + k1
1
Y Bt,i

dt+ k2

N∑
j=1
j 6=i

(
1

Y Bt,i−Y Bt,j
+ 1

Y Bt,i+Y
B
t,j

)
dt,

Y B
0 = y ∈WBN

for i = 1, . . . , N with a standard multivariate Brownian motion (Bt)t≥0.

1.3 Bessel process and polynomial processes

The origin of Brownian motion is in the field of botany, when Robert Brown observed

the irregular movement of pollen in water nearly two centuries ago, [16]. The relevance of

Brownian motion in mathematics began with the existence proof of Norbert Wiener almost

one century later, [84, 85]. In this context, it was Henry P. McKean jr. who introduced the

Bessel process almost 40 years later as the Euclidean norm of this process, [66]. The origin

of the name comes from the eponymous functions that appear in the transition density

and were named after Friedrich W. Bessel to acknowledge the groundwork, [77]. Recalling
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1.3 Bessel process and polynomial processes

that the Brownian motion is generated by ∆
2 and for our Dunkl Laplacian ∆0 = ∆ holds,

we could regard Dunkl processes as a generalization of the Brownian motion. The question

then arises naturally whether there exists a similar result for the Euclidean norm of an

arbitrary Dunkl process which was answered by Margit Rösler and Michael Voit in [76].

The classical Bessel process of index ϑ > −1
2 is the Markov process with generator

Lϑf(x) =
1

2
f ′′(x) +

(
ϑ+

1

2

)
1

x
f ′(x)

for f ∈ C2([0,∞)) with f(0) = 0. We can also specify the associated stochastic differential

equation, that is, {
dYt = dBt +

(
ϑ+ 1

2

)
1
Yt

dt,

Y0 = y0 > 0
(1.3)

for a one dimensional Brownian motion (Bt)t≥0. If (Ξt)t≥0 is a Dunkl process, then

(Yt)t≥0 := (‖Ξt‖)t≥0 represents a classical Bessel process of index ϑ = κ+ N
2 − 1 > −1

2 , cf.

[76, Theorem 4.11]. Sometimes the term classical Bessel process of dimension d is used

because the Euclidean norm of a d dimensional Brownian motion, case κ = 0 and N = d,

is a Bessel process with index ϑ = d
2 − 1 > −1

2 . We further observe that the projection

used to obtain a multivariate Bessel process is norm-preserving, therefore ‖π(Ξt)‖ = ‖Ξt‖
holds for every t ≥ 0 and hence the Euclidean norm of the multivariate Bessel process

is also a Bessel process with index ϑ = κ + N
2 − 1 > −1

2 . There exists a unique strong

solution of (1.3) based on [48, Example 8.3]. However, since in the one dimensional case

the discontinuities of a Dunkl process are reflections, its π projection is identical to the

Euclidean norm of the process and hence it is a classical Bessel process. Accordingly, we

have already explained the existence of a unique strong solution in the previous section.

The density with respect to the Lebesgue measure of the classical Bessel process is provided

by

qϑ(t, x, y) =
2

(2t)ϑΓ(ϑ+ 1)
jϑ

(
ixy

t

)
e−

x2+y2

2t y2ϑ+1
1(0,∞)

for every x, y, t > 0 where

jϑ(z) :=
Γ(ϑ+ 1)

Γ(ϑ+ 1
2)Γ(1

2)

1∫
−1

eisz(1− s2)ϑ−
1
2 ds

17



1 Preliminaries and background

is the spherical Bessel function of the first kind with index ϑ (see for instance [49]). Qϑ

denotes the corresponding distribution. We notice that (Yt)t≥0 is a Feller process [73, p.

252] and hence has the strong Markov property [73, p. 102 Theorem 3.1]. Thus, (Yt)t≥0 is

a time homogeneous strong Markov process on [0,∞), which is a well-known fact for the

Bessel process.

By supplementing another parameter p < 1 we obtain an intuitive generalization of the

Bessel process to a polynomial process given by the stochastic differential equation{
dYt,p = Y

p+1
2

t,p dBt +
(
ϑ+ 1

2

)
Y p
t,p dt,

Y0,p = y0 > 0
(1.4)

or equivalently through the generator

Lϑ,pf(x) =
1

2
xp+1f ′′(x) +

(
ϑ+

1

2

)
xpf ′(x)

for f ∈ C2([0,∞)) with f(0) = 0. For p = −1 we receive the Bessel process. There exist

other types of polynomial processes, but for our purposes we will just concentrate on these.

In order to discuss the existence of a unique strong solution we reformulate the stochastic

differential equation to

2

1− p
dY

1−p
2

t,p = Y
− p+1

2
t,p dYt,p −

1

2
· 1 + p

2
Y
− p+3

2
t,p d[Yt,p]

(1.4)
= dBt +

(
ϑ+

1

2

)
Y

p−1
2

t,p dt− 1 + p

4
Y
− p+3

2
t,p Y p+1

t,p dt

= dBt +

(
ϑ+

1− p
4

)
Y

p−1
2

t,p dt.

Hence, the process
(
Ỹt,p
)
t≥0

:=
(

2
1−pY

1−p
2

t,p

)
t≥0

fulfills the stochastic differential equation

dỸt,p = dBt +

(
ϑ+

1− p
4

)
2

1− p
dt

Ỹt,p

= dBt +

(
2ϑ

1− p
+

1

2

)
dt

Ỹt,p
,

which is as well a classical Bessel process with index 2ϑ
1−p > −

1
2 for every ϑ > p−1

4 . Thus, the

existence of a unique solution and the strong Markov property for a Feller process transfers

from the classical Bessel process to the polynomial process (Yt,p)t≥0. This polynomial
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1.4 Modified polynomial process

process can thus be seen as a natural generalization of the classical Bessel process, but

also as a simple transformation of it.

1.4 Modified polynomial process

Since polynomial processes and in particular a classical Bessel process are non-ergodic and

most results on parameter estimation for diffusions are developed for ergodic diffusions,

we introduce a modification of a polynomial process which is ergodic. We consider the

generator

Lϑ,α,pf(x) =
1

2
xp+1f ′′(x) +

[(
ϑ+

1

2

)
xp − αx

]
f ′(x)

for f ∈ C2([0,∞)) with f(0) = 0 and some fixed α > 0, p < 1 and the parameter ϑ > −1
2 .

We can also state the stochastic differential equation{
dXt,p = X

p+1
2

t,p dBt +
[(
ϑ+ 1

2

)
Xp
t,p − αXt,p

]
dt,

X0,p = x0 > 0
(1.5)

where again (Bt)t≥0 is a Brownian motion. The equation (1.5) is similar to the equation

defining a polynomial process except for the drift term −αXt,p dt, which we add to ensure

ergodicity and stationarity. Further details on ergodicity and stationarity are given below.

In particular, (Xt,0)t≥0 describes a Cox-Ingersoll-Ross process, more details on which

will be given in the next section. In this paragraph we examine the essential properties

of the process (Xt,p)t≥0 that we need for the analysis of our martingale estimators in

Chapter 2. We keep in mind that we derive all properties also for the special case p =

−1, the stationary version of the Bessel process. In order to accurately characterize the

relationship between polynomial processes and their modifications, we consider a space

time transformation

Yt,p := f(t)Xg(t),p (1.6)

with suitable functions f, g ∈ C1([0,∞)) such that (Yt,p)t≥0 is a polynomial process. In

particular, g shall increase monotonically with g(0) = 0. For reconstruction of (Xt)t≥0

from (Yt)t≥0 it is sufficient to claim f(t) 6= 0 for every t ≥ 0. Our aim is to choose f and
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1 Preliminaries and background

g such that the stochastic differential equation

dYt,p = Y
p+1

2
t,p dWt +

(
ϑ+

1

2

)
Y p
t,p dt

holds for some Brownian motion (Wt)t≥0. Using first product rule for Itô integrals leads

to

dYt,p
(1.6)
= d(f(t)Xg(t),p) = f(t) dXg(t),p +Xg(t),p df(t) + [f(·), Xg(·),p]t︸ ︷︷ ︸

=0

(1.5)
= f(t)

[
X

p+1
2

g(t),p dBg(t) +

(
ϑ+

1

2

)
Xp
g(t),p dg(t)− αXg(t),p dg(t)

]
+Xg(t)f

′(t) dt

= f(t)
√
g′(t)X

p+1
2

g(t),p dWt +

(
ϑ+

1

2

)
f(t)g′(t)Xp

g(t),p dt

+Xg(t),p

(
− αf(t)g′(t) + f ′(t)

)
dt

(1.6)
= f(t)1− p+1

2

√
g′(t)Y

p+1
2

t,p dWt +

(
ϑ+

1

2

)
f(t)1+pg′(t)Y p

t,p dt

+Xg(t),p

(
− αf(t)g′(t) + f ′(t)

)
dt

= f(t)
1−p

2

√
g′(t)Y

p+1
2

t,p dWt +

(
ϑ+

1

2

)
f(t)1+pg′(t)Y p

t,p dt

+Xg(t),p

(
− αf(t)g′(t) + f ′(t)

)
dt,

where [f(·), Xg(·),p]t is the covariation process of f(·) and Xg(·),p at time t. The validity

of the third equality was proved in [68, Theorem 8.5.7 (Time change formula for Itô

integrals)] whereas the covariation process [f(·), Xg(·),p]t is zero since f is of finite variation

as a continuously differentiable function. To this end, we use the mean value theorem to

immediately observe a zero quadratic variation

m∑
k=1

|f(tk)− f(tk−1)|2 ≤ max
k=1,...,m

{
|f(tk)− f(tk−1)|

} m∑
k=1

|f(tk)− f(tk−1)|

= max
k=1,...,m

{
|f ′(ξk)|(tk − tk−1)

} m∑
k=1

|f(tk)− f(tk−1)|
tk − tk−1

(tk − tk−1)

≤ max
s∈[0,t]

|f ′(s)| max
k=1,...,m

{
(tk − tk−1)

} m∑
k=1

|f(tk)− f(tk−1)|
tk − tk−1

(tk − tk−1)

→ 0 ·
t∫

0

|f ′(s)|ds = 0
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1.4 Modified polynomial process

for some partition of the interval [0, t] with mesh tending to zero and apply the inequality

[f(·), Xg(·),p]
2
t ≤ [f(·)]t ·[Xg(·),p]t, [54, 1.5.7 Problem (iii)] afterwards. Comparing the differ-

ential equation with our preliminary considerations, we receive the following conditions:
f1−p(t)g′(t) = 1,

−αf(t)g′(t) + f ′(t) = 0,

g(0) = 0.

With a few easy arithmetic steps we solve this differential equation by{
g(t) = log((1−p)αt+1)

(1−p)α ,

f(t) = 1−p
√

(1− p)αt+ 1.

By (1.6) we obtain

Xt,p =
1

f(g−1(t))
Yg−1(t),p

= exp(−αt)Y exp((1−p)αt)−1
(1−p)α ,p

.
(1.7)

In the following, we check that (Xt,p)t≥0 is indeed stationary and ergodic and determine

the invariant measure. We notice that, due to the singularity in the fraction of the drift

divided by the squared volatility, we initially have to consider some positive interior point

ξ.

Proposition 1.2: The density of the invariant probability measure with respect to the

Lebesgue measure on (0,∞) is provided by

µϑ,p(x) =
1− p

Γ
(

2ϑ+2
1−p

) ( 2α

1− p

) 2ϑ+2
1−p

x2ϑ+1e
− 2α

1−px
1−p

for p < 1. Therefore, (Xt,p)t≥0 is stationary which means if X0,p ∼ µϑ,p then Xt,p ∼ µϑ,p
for all t ≥ 0.

Proof: We use [42, 9.13 Proposition] for the proof. First, we calculate the measure for a

fixed ξ ∈ (0,∞):

s(x) := exp

(
−

x∫
ξ

(
ϑ+ 1

2

)
yp − 2αy

yp+1
dy

)
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= exp

(
−(2ϑ+ 1) log

(
x

ξ

)
+

2α

1− p
(
x1−p − ξ1−p))

=

(
x

ξ

)−(2ϑ+1)

exp

(
2α

1− p
(
x1−p − ξ1−p)).

We receive the invariant probability measure by normalizing the inverse of this measure s

with

∞∫
0

1

s(x)
dx = ξ−(2ϑ+1)e

2α
1−p ξ

2

∞∫
0

x2ϑ+1 exp

(
− 2α

1− p
x1−p

)
dx

= ξ−(2ϑ+1)e
2α

1−p ξ
2

∞∫
0

(
1− p
2α

y

) 2ϑ+1
1−p + p

1−p
e−y

dy

2α

=
ξ−(2ϑ+1)e

2α
1−p ξ

2

1− p

(
1− p
2α

) 2ϑ+p+1
1−p +1

Γ

(
2ϑ+ p+ 1

1− p
+ 1

)
=
ξ−(2ϑ+1)e

2α
1−p ξ

2

1− p

(
1− p
2α

) 2ϑ+2
1−p

Γ

(
2ϑ+ 2

1− p

)
.

In the case of a polynomial process, in formulas α = 0, the inverse of the scale measure

is not normable. In particular, there cannot exist an invariant probability measure and

accordingly the process is not stationary.

Definition 1.3: A stationary process (Xt)t≥0 is called ergodic if 1
T

T∫
0

Xt dt converges to

E (Xt) in squared mean as T →∞.

Corollary 1.4: The process (Xt,p)t≥0 is ergodic.

Proof: It suffices to show

ξ∫
0

s(x) dx =∞,
∞∫
ξ

s(x) dx =∞ and

∞∫
0

1

s(x)
dx <∞,
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1.4 Modified polynomial process

(cf. [78, Condition 3.1] and the remarks afterwards), which is partly already proved in

Proposition 1.2. We deduce

ξ∫
0

s(x) dx =

ξ∫
0

(
x

ξ

)−(2ϑ+1)

e
− 2α

1−px
1−p

dx

≥ e−
2α

1−p ξ
2

ξ∫
0

(
x

ξ

)−(2ϑ+1)

dx

=
e
− 2α

1−p ξ
2

ξ2ϑ+1

−2ϑ
x−2ϑ

∣∣∣∣∣
ξ

x=0

=∞,

∞∫
ξ

s(x) dx = ξ2ϑ+1

∞∫
ξ

x−(2ϑ+1)e
2α

1−p (x2−ξ2)
dx =∞.

Corollary 1.5: The (1− p)ηth moment of the invariant measure is

∞∫
0

x(1−p)ηµϑ,p(x) dx =
Γ
(
η + 2ϑ+2

1−p

)
Γ
(

2ϑ+2
1−p

) (
1− p
2α

)η
; η ∈ N.

Proof: By a short calculation, we obtain

∞∫
0

x(1−p)ηµϑ(x) dx
1.2
=

1− p

Γ
(

2ϑ+2
1−p

) ( 2α

1− p

) 2ϑ+2
1−p

∞∫
0

x(1−p)η+2ϑ+1e
− 2α

1−px
1−p

dx

=
1− p

Γ
(

2ϑ+2
1−p

) ( 2α

1− p

) 2ϑ+2
1−p

∞∫
0

(
1− p
2α

y

)η+ 2ϑ+1
1−p + p

1−p
e−y

dy

2α

=
Γ
(
η + 2ϑ+1+p

1−p + 1
)

Γ
(

2ϑ+2
1−p

) (
1− p
2α

)η+ 2ϑ+1+p
1−p +1− 2ϑ+2

1−p

=
Γ
(
η + 2ϑ+2

1−p

)
Γ
(

2ϑ+2
1−p

) (
1− p
2α

)η
.
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In particular, for a Bessel process, in formulas p = −1, Corollary 1.5 implies the even

moments are easily computable. In this case we additionally use the space-time trans-

formation to derive the distribution of (Xt)t≥0 = (Xt,−1)t≥0. By using the well-known

distribution of the Bessel process (Yt)t≥0 we yield

P(Xt ≤ z |X0 = x)
(1.7)
= P

(
Y exp(2αt)−1

2α

≤ exp(αt)z |Y0 = x
)

=
2

(2 exp(2αt)−1
2α )ϑΓ(ϑ+ 1)

exp(αt)z∫
0

jϑ

(
ixy

exp(2αt)−1
2α

)
·

exp

(
− x2 + y2

2 exp(2αt)−1
2α

)
y2ϑ+1 dy

=
2αϑ(exp(2αt))ϑ+1

Γ(ϑ+ 1)(exp(2αt)− 1)ϑ

z∫
0

jϑ

(
ixy

2α exp(αt)

exp(2αt)− 1

)
·

exp

(
−αx

2 + y2 exp(2αt)

exp(2αt)− 1

)
y2ϑ+1 dy

= Cϑ,α,t

z∫
0

jϑ

(
ixy

2α exp(αt)

exp(2αt)− 1

)
exp

(
−αx

2 + y2 exp(2αt)

exp(2αt)− 1

)
y2ϑ+1 dy

with

Cϑ,α,t :=
2αϑ(exp(2αt))ϑ+1

Γ(ϑ+ 1)(exp(2αt)− 1)ϑ
.

We denote the density of Xt with starting point x by pϑ(x, ·, t) and the distribution of Xt

by Pϑ. For simplicity we omit the index p = −1 in the case of a Bessel process.

1.5 Cox-Ingersoll-Ross process

Within financial mathematics, a Cox-Ingersoll-Ross process is commonly used to describe

interest rates. This model was introduced by the mathematicians John C. Cox, Jonathan

E. Ingersoll and Stephen A. Ross in 1985, cf. [23]. In the last section we have already men-

tioned that the stationary version of the polynomial process (Xt,p)t≥0 is a Cox-Ingersoll-

Ross process for p = 0. It will turn out that this process to the power 1 − p becomes a

Cox-Ingersoll-Ross process for arbitrary p. In particular, in the case of a classical Bessel

process the square of the corresponding stationary version is such a process.
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1.5 Cox-Ingersoll-Ross process

We assume a three dimensional parameter θ := (α, β, γ) ⊂ (0,∞)3, then the Cox-Ingersoll-

Ross process (Zt)t≥0 =
(
Zθt
)
t≥0

is the Markov process with generator on C2(R)

Lθf(x) =
γx

2
f ′′(x) + (α− βx)f ′(x)

or equivalently is the solution of the stochastic differential equation{
dZt = (α− βZt) dt+

√
γZt dBt,

Z0 = z0 > 0,
(1.8)

where (Bt)t≥0 is a Brownian motion, see among others [23] and [38]. It is known that (1.8)

admits a unique strong solution, cf. [48, Example 8.2]. Due to the comparison theorem

for one-dimensional diffusion processes in [73, Chapter IX. Theorem (3.7)] for α > 0 the

Cox-Ingersoll-Ross process is non-negative at any time t. Additionally, if 2α > γ holds,

(Zt)t≥0 stays positive almost surely, see [23]. Furthermore, the transition density with

respect to the Lebesgue measure on (0,∞) is well-known, cf. [23] and [6, Eq. (1.5)], which

is a noncentral chi-squared density given by

qCIR
θ (t, x, y) =

2β

γ(1− e−βt)

( y

xe−βt

) ν
2

exp

(
− 2β

γ
· x+ eβty

eβt − 1

)
Iν

(
2β
√
xy

γ sinh
(βt

2

)) (1.9)

for every x, y, t > 0 and ν = 2α
γ − 1 with

Iν(x) :=

∞∑
n=0

1

n!Γ(ν + n+ 1)

(x
2

)2n+ν
,

that is, the modified Bessel function of the first kind. We denote the distribution by QCIR
θ .

By an analogous calculation as in the previous section in Proposition 1.2, we receive the

density of the invariant probability measure with respect to the Lebesgue measure on

(0,∞),

πθ(x) =
1

Γ
(

2α
γ

)(2β

γ

) 2α
γ

x
2α
γ
−1
e
− 2β
γ
x
,

see also [55, p. 22], and hence we verify the stationarity and ergodicity similar to Corol-

lary 1.4, for which we assume Z0 ∼ πθ.
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Corollary 1.6: The qth moment of the invariant measure is

∞∫
0

xqπθ(x) dx =
Γ
(
q + 2α

γ

)
Γ
(

2α
γ

) (
γ

2β

)q
.

Proof: We can easily verify

∞∫
0

xqπθ(x) dx =
1

Γ
(

2α
γ

)(2β

γ

) 2α
γ

∞∫
0

x
q+ 2α

γ
−1
e
− 2β
γ
x

dx

=
1

Γ
(

2α
γ

)(2β

γ

) 2α
γ
(
γ

2β

)q+ 2α
γ
−1+1

∞∫
0

x
q+ 2α

γ
−1
e−x dx

=
Γ
(
q + 2α

γ

)
Γ
(

2α
γ

) (
γ

2β

)q
.

In particular, the qth moment is finite if q > −2α
γ .

Lemma 1.7: The conditional mean and conditional variance are

E (Zt |Zt0) = e−β(t−t0)Zt0 +
α

β

(
1− e−β(t−t0)

)
,

Var (Zt |Zt0) =
γ

β

(
1− e−β(t−t0)

)[
e−β(t−t0)Zt0 +

α

2β

(
1− e−β(t−t0)

)]
.

Proof: Applying Itô’s formula

d(eβtZt) = eβt dZt + Zt deβt +
[
eβ·, Z·

]
t︸ ︷︷ ︸

=0

(1.8)
= eβt

[
(α− βZt) dt+

√
γZt dBt

]
+ βeβtZt dt

= αeβt dt+ eβs
√
γZt dBt

yields

eβtZt − eβt0Zt0 = α

t∫
t0

eβs ds+

t∫
t0

√
γZs dBs
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1.5 Cox-Ingersoll-Ross process

=
α

β

(
eβt − eβt0

)
+

t∫
t0

eβs
√
γZs dBs. (1.10)

Hence, we deduce

E (Zt |Zt0) = e−β(t−t0)Zt0 +
α

β

(
1− e−β(t−t0)

)
+
√
γe−βt E

( t∫
t0

eβs
√
Zs dBs

∣∣∣Zt0)
= e−β(t−t0)Zt0 +

α

β

(
1− e−β(t−t0)

)
(1.11)

almost surely since

E
( t∫
t0

(
eβs
√
Zs
)2

ds
)

=

t∫
t0

e2βs E (Zs) ds

=

t∫
t0

e2βs ds

∞∫
0

xπθ(x) dx

=

(
2β
γ

) 2α
γ

Γ
(

2α
γ

) · e2βt − e2βt0

2β

∞∫
0

x
2α
γ e
− 2β
γ
x

dx

=

(
2β
γ

) 2α
γ

Γ
(

2α
γ

) · e2βt − e2βt0

2β

(
2β

γ

)− 2α
γ
−1

Γ

(
2α

γ
+ 1

)
=
α
(
e2βt − e2βt0

)
2β2

<∞,

cf. [68, Theorem 3.2.1 (iii)]. Furthermore, applying Itô isometry yields

E
((
Zt − E [Zt |Zt0 ]

)2 |Zt0) (1.10)
=

(1.11)
γe−2βt E

(( t∫
t0

eβs
√
Zs dBs

)2 ∣∣∣Zt0
)

= γe−2βt E

( t∫
t0

e2βsZs ds
∣∣∣Zt0

)

= γe−2βt

t∫
t0

e2βs E (Zs |Zt0) ds
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(1.11)
= γe−2βt

t∫
t0

e2βs

(
e−β(s−t0)Zt0 +

α

β

(
1− e−β(s−t0)

))
ds

= γe−2βt

t∫
t0

eβ(s+t0)Zt0 +
α

β

(
e2βs − eβ(s+t0)

)
ds

=
γ

β
e−2βt

[(
eβ(t+t0) − e2βt0

)
Zt0

+
α

2β

(
e2βt − e2βt0 − 2eβ(t+t0) + 2e2βt0

)]
=

γ

β

[(
e−β(t−t0) − e−2β(t−t0)

)
Zt0 +

α

2β

(
1− e−β(t−t0)

)2
]

=
γ

β

(
1− e−β(t−t0)

)[
e−β(t−t0)Zt0 +

α

2β

(
1− e−β(t−t0)

)]
.

For later reference, we state a few basic tools for the Cox-Ingersoll-Ross process.

Lemma 1.8: We assume 2α > γ, which means that the origin is non-attracting, and

consider equidistant times tj = jhn for j = 0, . . . , n with hn > 0, hn → 0 and nhn →∞
as n→∞.

(i) For every p < 2α
γ , we get

sup
t∈[0,∞)

E
(
Z−pt

)
<∞.

(ii) For every p ≥ 1, there exists a constant Cp > 0 such that

sup
s,t∈[0,∞): 0<|t−s|<1

E
(
|Zt − Zs|p

)
≤ Cp|t− s|

p
2 .

(iii) For every p < 1
2

(
2α
γ − 1

)
, we get

lim
n→∞

1

n

n∑
j=1

Z−ptj−1
=

∞∫
0

z−pπθ(z) dz =

(
2β

γ

)pΓ
(

2α
γ − p

)
Γ
(

2α
γ

)
in probability.
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1.5 Cox-Ingersoll-Ross process

(iv) For every p < 2α
γ and any εn > 0 with lim

n→∞
εn = 0, we receive

lim
n→∞

εn
n

n∑
j=1

Z−ptj−1
= 0

in probability.

(v) We have

lim
n→∞

1

n

n∑
j=1

f
(
Ztj−1

)
=

∞∫
0

f(z)πθ0(z) dz

in probability for each C1([0,∞))-function with f and f ′ being of at most polynomial

growth for x→∞.

In [5] we find statement (i) as Proposition 3 and (ii) as a combination of Propositions

4 and 5. Statements (iii) and (iv) can be found in [6, Lemmas 3.1 and 3.2]. The last

statement is then a conclusion in conjunction with the ergodic theorem since (Zt)t≥0 is

(exponentially) strong-mixing by [35, Corollary 2.1].

Example 1.9: If we go back to the stationary modification of a polynomial process as in

Section 1.4, which was introduced as the solution of

dXt,p = X
p+1

2
t,p dBt +

[(
ϑ+

1

2

)
Xp
t,p − αXt,p

]
dt,

we can easily show that
(
X1−p
t,p

)
t≥0

is a Cox-Ingersoll-Ross process. By using Itô’s formula,

we derive

dX1−p
t,p = (1− p)X−pt,p dXt,p +

(1− p)(−p)
2

X−p−1
t,p d[X·,p]t

= (1− p)X−pt,p
[(
ϑ+

1

2

)
Xp
t,p − αXt,p

]
dt+ (1− p)X

p+1
2
−p

t,p dBt

+
(1− p)(−p)

2
X−p−1
t,p Xp+1

t,p dt

=
[1− p

2
(2ϑ+ 1− p)− α(1− p)X1−p

t,p

]
dt+ (1− p)X

1−p
2

t,p dBt.

Therefore,
(
X1−p
t,p

)
t≥0

is a Cox-Ingersoll-Ross process with parameter

θ =

(
1− p

2
(2ϑ+ 1− p), α(1− p), (1− p)2

)
.
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In particular, we can apply Lemma 1.7 to achieve

E
(
X1−p
t,p |Xt0,p

)
= e−α(1−p)(t−t0)X1−p

t0,p
+

1−p
2 (2ϑ+ 1− p)
α(1− p)

(
1− e−α(1−p)(t−t0)

)
= e−α(1−p)(t−t0)X1−p

t0,p
+

2ϑ+ 1− p
2α

(
1− e−α(1−p)(t−t0)

)
and

Var (X1−p
t,p |Xt0,p) =

(1− p)2

α(1− p)

(
1− e−α(1−p)(t−t0)

)
·[

e−α(1−p)(t−t0)X1−p
t0,p

+
1−p

2 (2ϑ+ 1− p)
2α(1− p)

(
1− e−α(1−p)(t−t0)

)]

=
(1− p)
α

(
1− e−α(1−p)(t−t0)

)
·[

e−α(1−p)(t−t0)X1−p
t0,p

+
2ϑ+ 1− p

4α

(
1− e−α(1−p)(t−t0)

)]
.

In the case of the stationary version of a Bessel process p = −1, these formulas simplify

to

E (X2
t |Xt0) = e−2α(t−t0)X2

t0 +
ϑ+ 1

α

(
1− e−2α(t−t0)

)
,

Var (X2
t |Xt0) =

2

α

(
1− e−2α(t−t0)

)[
e−2α(t−t0)X2

t0 +
ϑ+ 1

2α

(
1− e−2α(t−t0)

)]
.

Since we require the formula of the conditional expected value for X4
t0 later in Chapter 2

as well, we calculate

E
(
X4
t |Xt0

)
= Var

(
X2
t |Xt0

)
+ E

(
X2
t |Xt0

)2
=

2

α

(
1− e−2α(t−t0)

)[
e−2α(t−t0)X2

t0 +
ϑ+ 1

2α

(
1− e−2α(t−t0)

)]
+

(
e−2α(t−t0)X2

t0 +
ϑ+ 1

α

(
1− e−2α(t−t0)

))2

= e−4α(t−t0)X4
t0 +

1

α

(
1− e−2α(t−t0)

)[
(2ϑ+ 4)e−2α(t−t0)X2

t0

+
(ϑ+ 1)(ϑ+ 2)

2α

(
1− e−2α(t−t0)

)]
.
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2 Martingale estimation functions for the

Bessel process

The content of this chapter is partially incorporated in the article

Martingale estimation functions for Bessel processes

Statistical Inference for Stochastic Processes 25, 337–353 (2022).

Nicole Hufnagel, Jeannette H. C. Woerner.

2.1 Existing results on ergodic diffusions

In this section, we introduce the theory of martingale estimation functions studied by

Michael Sørensen [78]. An estimation function

Gn(ϑ) = Gn(ϑ,Xt0 , . . . , Xtn)

depends on the parameter of interest ϑ and observations of a process (Xt)t≥0 at discrete

time points t0, . . . , tn. If the function Gn is additionally a martingale, we speak of a

martingale estimation function. Our estimator itself is a solution of the equation

Gn(ϑ) = 0.

We will discuss the existence and uniqueness of this solution later. Martingale estimation

functions provide a well-established method for inference in discretely observed diffusion

processes, when the likelihood function is unknown or too complicated. The idea behind

martingale estimation functions is to provide a simple approximation of the true likeli-

hood, which forms a martingale and hence under suitable regularity assumptions leads to

consistent and asymptotically normal estimators. We will focus on two examples approx-

imating the likelihood function. One way is by Taylor expansion leading to linear and
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2 Martingale estimation functions for the Bessel process

quadratic martingale estimation functions, cf. Bo M. Bibby and Michael Sørensen [11].

Another possibility is to use the eigenfunctions of the associated diffusion operator, cf.

Mathieu Kessler and Michael Sørensen [59].

The general setting, which we present below, is based on [78, 1.3 Martingale estimating

functions]. We consider low frequency data, so in particular equidistant time observations

X∆, . . . , Xn∆ with a fixed ∆ > 0, of a one dimensional diffusion process defined through

the stochastic differential equation

dXt = a(Xt, ϑ) dt+ b(Xt, ϑ) dBt, (2.1)

where (Bt)t≥0 is a Brownian motion and ϑ ∈ Θ ⊂ R. The functions a and b are given

such that a weak solution exists and are assumed to be smooth enough sucht that its

distribution Pϑ is unique. The state space is I ⊂ R, a not necessarily finite interval. We

assume a positive transition density on I with respect to the Lebesgue measure denoted

by pϑ(t, x, ·) for the density after time t conditioned on the starting point x. Furthermore,

we presume X0 ∼ µϑ so that the process is ergodic with invariant probability density

µϑ with respect to the Lebesgue measure and hence the distribution of two consecutive

observations is determined by

Qϑ∆( dx, dy) = µϑ(x)pϑ(∆, x, y) dx dy. (2.2)

In both cases that we examine, the martingale estimation function can be written in the

following form:

Gn(ϑ) =
n∑
i=1

g(X(i−1)∆, Xi∆, ϑ), (2.3)

with a suitable function g, which will be specified later. Let the true value ϑ0 be in

the interior of Θ. For the function g we require a few conditions, which we combine

from [78, Condition 1.1 and Eq. (1.17)] adapted to our setting and receive the following

properties.

Condition 2.1: (i) The function g(·, ·, ϑ) is integrable with respect to Qϑ∆ for all ϑ ∈ Θ

and its integral with respect to Qϑ∆ is equal to zero.

(ii) The function g(x, y, ·) is continuously differentiable on Θ for all x, y ∈ I.
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(iii) The function
∣∣ ∂
∂ϑg(·, ·, ϑ)

∣∣ is dominated for all ϑ ∈ Θ by a function which is integrable

with respect to Qϑ∆.

(iv) The integral f(ϑ0) :=
∫
I

∫
I

∂
∂ϑ0

g(x, y, ϑ0)Qϑ0
∆ ( dx, dy) has a value different from zero.

(v) The integral v(ϑ0) :=
∫
I

∫
I

g2(x, y, ϑ0)Qϑ0
∆ ( dx, dy) is finite.

In particular, due to the Markov property the first condition ensures that Gn is a mar-

tingale, while the last guarantees the applicability of the law of large numbers. These

conditions enable us to state the existence of an estimator which is consistent and asymp-

totically normal. For more details and the proof of the following theorem, see [78, Theorem

1.5].

Theorem 2.2: Under Condition 2.1 there exists a solution of

Gn(ϑ̂n) = 0

with a probability tending to one as n→∞ under Pϑ0 such that

(i) lim
n→∞

ϑ̂n = ϑ0 in probability,

(ii) lim
n→∞

√
n(ϑ̂n − ϑ0) = N

(
0, v(ϑ0)

f2(ϑ0)

)
in distribution

under Pϑ0 .

As mentioned, martingale estimation functions grant simple approximations of the true

likelihood function. We take a closer look at the maximum likelihood estimator itself, see

[78, 1.3.2 Likelihood inference]. We assume that the transition density is differentiable

with respect to ϑ. In our case, the diffusion process (Xt)t≥0 is a Markov process and

therefore the corresponding log likelihood function is denoted as

ln(ϑ) :=

n∑
i=1

log pϑ(∆, X(i−1)∆, Xi∆)

and the estimation function, in this case called score function, is

sn(ϑ) :=
∂

∂ϑ
ln(ϑ)
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=
n∑
i=1

∂
∂ϑpϑ(∆, X(i−1)∆, Xi∆)

pϑ(∆, X(i−1)∆, Xi∆)
.

The maximum likelihood estimator is a solution of sn(ϑ) = 0. Now, we want to establish

a connection to martingale estimators and for this we calculate

E ϑ

(
∂
∂ϑpϑ(∆, X(i−1)∆, Xi∆)

pϑ(∆, X(i−1)∆, Xi∆)

∣∣F(i−1)∆

)
=

∫
I

∂
∂ϑpϑ(∆, X(i−1)∆, y)

pϑ(∆, X(i−1)∆, y)
pϑ(∆, X(i−1)∆, y) dy

=
∂

∂ϑ

∫
I

pϑ(∆, X(i−1)∆, y) dy = 0.

Eϑ indicates the expectation with respect to Pϑ and F(i−1)∆ := σ(X∆, . . . , X(i−1)∆) in-

dicates the canonical sigma algebra of the process. In this chapter we write the index

ϑ attached to the expectation to emphasize the dependence on the parameter. This is

especially significant when we calculate derivatives with respect to ϑ.

Hence, the score function sn is itself a martingale with respect to (Fi∆)i∈N when the inte-

gral and derivative are interchangeable. Furthermore, the maximum likelihood estimator

as a solution of sn(ϑ) = 0 is in fact already a martingale estimator and fulfills the state-

ment in Theorem 2.2. Nevertheless, we intend to simplify the estimator by now using

approximations, especially as we consider Bessel processes in Sections 2.2 and 2.4 and

thus a Bessel function is contained in the density.

In the following, we introduce an estimation function based on [11] and a concise summary

of the derivation. For this, we discretize the continuous-time score function and optimize

it. First, we derive the likelihood function by finding an equivalent probability measure.

We apply Girsanov’s theorem and for this purpose we define

Zτ := exp

(
−

τ∫
0

a(Xs, ϑ)

b(Xs, ϑ)
dBs −

1

2

τ∫
0

a2(Xs, ϑ)

b2(Xs, ϑ)
ds

)

on the interval τ ∈ [0, t] with a given constant 0 < t ≤ ∞ and

dQt := Zt dPϑ

on Ft. Assuming (Zτ )τ∈[0,t] is a martingale with respect to (Fτ )τ∈[0,t] and Pϑ, then,

according to Girsanov’s theorem [68, Theorem 8.6.4], Qt is a probability measure on Ft.
Hereafter, the likelihood function is obtained with respect to the probability measure Qt,
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which enables us to derive:

Lt(ϑ) :=
dPϑ
dQt

= Z−1
t

= exp

( t∫
0

a(Xs, ϑ)

b(Xs, ϑ)
dBs +

1

2

t∫
0

a2(Xs, ϑ)

b2(Xs, ϑ)
ds

)

(2.1)
= exp

( t∫
0

a(Xs, ϑ)

b(Xs, ϑ)

[
dXs

b(Xs, ϑ)
− a(Xs, ϑ)

b(Xs, ϑ)
ds

]
+

1

2

t∫
0

a2(Xs, ϑ)

b2(Xs, ϑ)
ds

)

= exp

( t∫
0

a(Xs, ϑ)

b2(Xs, ϑ)
dXs −

1

2

t∫
0

a2(Xs, ϑ)

b2(Xs, ϑ)
ds

)
.

From here on, we use the same simplifications and approximations as in [11] to obtain an

intuitive linear martingale estimator. First, using an Itô and Riemann sum we approxi-

mate

L̃n(ϑ) = exp

(
n∑
i=1

a(X(i−1)∆, ϑ)

b2(X(i−1)∆, ϑ)
(Xi∆ −X(i−1)∆)− ∆

2

n∑
i=1

a2(X(i−1)∆, ϑ)

b2(X(i−1)∆, ϑ)

)
.

In particular, assuming b to be independent of ϑ facilitates the derivative of the approxi-

mated log likelihood function, the approximated score function:

∂

∂ϑ
log(L̃n(ϑ)) =

n∑
i=1

∂
∂ϑa(X(i−1)∆, ϑ)

b2(X(i−1)∆)
(Xi∆ −X(i−1)∆)

−∆

n∑
i=1

a(X(i−1)∆, ϑ) ∂
∂ϑa(X(i−1)∆, ϑ)

b2(X(i−1)∆)
.

For simplicity, we use the same estimation function in the case of dependence on ϑ,

Sn(ϑ) :=

n∑
i=1

∂
∂ϑa(X(i−1)∆, ϑ)

b2(X(i−1)∆, ϑ)

(
Xi∆ −X(i−1)∆

)
−∆

n∑
i=1

a(X(i−1)∆, ϑ) ∂
∂ϑa(X(i−1)∆, ϑ)

b2(X(i−1)∆, ϑ)
.

To ensure a martingale with respect to
(
Fn∆

)
n∈N0

, we subtract the compensator, that

is,

n∑
i=1

E ϑ

(
Si(ϑ)− Si−1(ϑ) | F(i−1)∆

)
=

n∑
i=1

∂
∂ϑa(X(i−1)∆, ϑ)

b2(X(i−1)∆, ϑ)

(
E ϑ(Xi∆ | F(i−1)∆)−X(i−1)∆

)
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2 Martingale estimation functions for the Bessel process

−∆
n∑
i=1

a(X(i−1)∆, ϑ) ∂
∂ϑa(X(i−1)∆, ϑ)

b2(X(i−1)∆, ϑ)

and maintain

Sn −
n∑
i=1

E ϑ

(
Si(ϑ)− Si−1(ϑ) | F(i−1)∆

)
=

n∑
i=1

∂
∂ϑa(X(i−1)∆, ϑ)

b2(X(i−1)∆, ϑ)

(
E ϑ(Xi∆ |X(i−1)∆)−X(i−1)∆

)
.

In order to avoid being limited by this specific weight, we consider

Σn(ϑ) =

n∑
i=1

ω(X(i−1)∆, ϑ)
(
E ϑ(Xi∆ |X(i−1)∆)−X(i−1)∆

)
with an Fi−1−measurable arbitrary weight ω(X(i−1)∆, ·) which is continuously differen-

tiable with respect to ϑ. By construction, the function Σn is a martingale estimation

function. The optimal estimation function of this form in the sense of Vidyadhar P. Go-

dambe and Christopher C. Heyde [37, 41], which means having the smallest asymptotic

confidence interval around the true value ϑ0 and an estimator with the smallest asymptotic

dispersion, is given by

ω(X(i−1)∆, ϑ) :=
∂
∂ϑ E ϑ(Xi∆ |X(i−1)∆)

Var ϑ(Xi∆ |X(i−1)∆)
, (2.4)

see [11, Eq. (2.10)]. Similar to the mean, Var ϑ represents the variance with respect to

Pϑ. For small ∆ the fraction in (2.4) is an approximation of
∂
∂ϑ
a(X(i−1)∆,ϑ)

b2(X(i−1)∆,ϑ)
, see for more

details [11, Eq. (2.11) and (2.12)].

In the case of the estimation function Σn, we can simplify Condition 2.1. As Σn is a

martingale, (i) is already satisfied. The differentiability in (ii) can be inferred from ω and

the conditional expectation E ϑ

(
X∆ |X0 = x

)
. Furthermore, by short calculations,

f(ϑ) =

∫
I

∫
I

∂

∂ϑ

(
ω(x, ϑ)

(
y − E ϑ(X∆ |X0 = x)

))
Qϑ0

∆ ( dx, dy)

=

∫
I

∫
I

(
∂

∂ϑ
ω(x, ϑ)

(
y − E ϑ(X∆ |X0 = x)

)
− ω(x, ϑ)

∂

∂ϑ
E ϑ(X∆ |X0 = x)

)
Qϑ0

∆ ( dx, dy)
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2.1 Existing results on ergodic diffusions

(2.2)
=

∫
I

∂

∂ϑ
ω(x, ϑ)

∫
I

(
y − E ϑ(X∆ |X0 = x)

)
pϑ(∆, x, y) dy

︸ ︷︷ ︸
=0

µϑ(x) dx

−
∫
I

∫
I

pϑ(∆, x, y) dy

︸ ︷︷ ︸
=1

ω(x, ϑ)
∂

∂ϑ
E ϑ(X∆ |X0 = x)µϑ(x) dx

= −
∫
I

ω(x, ϑ)
∂

∂ϑ
E ϑ(X∆ |X0 = x)µϑ(x) dx

and

v(ϑ) =

∫
I

∫
I

ω2(x, ϑ)
(
y − E ϑ(X∆ |X0 = x)

)2
Qϑ0

∆ ( dx, dy)

(2.2)
=

∫
I

ω2(x, ϑ)

∫
I

(
y − E ϑ(X∆ |X0 = x)

)2
pϑ(∆, x, y) dy µϑ(x) dx

=

∫
I

ω2(x, ϑ)Var ϑ(X∆ |X0 = x)µϑ(x) dx,

we receive the desired properties such that Theorem 2.2 holds.1 This specific case can be

found in [11, Theorem 3.2].

Condition 2.3: (i) For all x ∈ I and ϑ ∈ Θ, ω(x, ϑ) and E ϑ(X∆ |X0 = x) are continu-

ously differentiable with respect to ϑ.

(ii) The function

∂

∂ϑ
ω(x, ϑ)

(
y − E ϑ(X∆ |X0 = x)

)
− ω(x, ϑ)

∂

∂ϑ
E ϑ(X∆ |X0 = x)

is dominated in x, y ∈ I for all ϑ ∈ Θ by a function which is integrable with respect

to Qϑ∆( dx, dy).

(iii) The integral

f(ϑ) = −
∫
I

ω(x, ϑ)
∂

∂ϑ
E ϑ(X∆ |X0 = x)µϑ(x) dx

does not vanish at ϑ0.

1The derivative always refers only to the following function otherwise the term to which the derivative
refers is enclosed in brackets.
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2 Martingale estimation functions for the Bessel process

(iv) The integral

v(ϑ) =

∫
I

ω2(x, ϑ)Var ϑ(X∆ |X0 = x)µϑ(x) dx

is finite at ϑ0.

In the case of the discussed optimal weight (2.4), the formulas

f(ϑ) = −
∫
I

ω(x, ϑ)
∂

∂ϑ
E ϑ(X∆ |X0 = x)µϑ(x) dx

= −
∫
I

∂
∂ϑ E ϑ(X∆ |X0 = x)

Var ϑ(X∆ |X0 = x)
· ∂
∂ϑ

E ϑ(X∆ |X0 = x)µϑ(x) dx

= −
∫
I

(
∂
∂ϑ E ϑ(X∆ |X0 = x)

)2
Var ϑ(X∆ |X0 = x)

µϑ(x) dx

and

v(ϑ) =

∫
I

ω2(x, ϑ)Var ϑ(X∆ |X0 = x)µϑ0(x) dx

=

∫
I

(
∂
∂ϑ E ϑ(X∆ |X0 = x)

Var ϑ(X∆ |X0 = x)

)2

Var ϑ(X∆ |X0 = x)µϑ0(x) dx

= −f(ϑ)

simplify the reciprocal of the asymptotic variance

1

σ2(ϑ)
=
f2(ϑ)

v(ϑ)
=

∫
I

(
∂
∂ϑ E ϑ(X∆ |X0 = x)

)2
Var ϑ(X∆ |X0 = x)

µϑ(x) dx

=

∫
I

ω(x, ϑ)
∂

∂ϑ
E ϑ(X∆ |X0 = x)µϑ(x) dx. (2.5)

Now, we present an estimator based on eigenfunctions, cf. [59]. For this, we consider the

corresponding generator of the diffusion

La,bf(x) = a(x, ϑ)f ′(x) +
1

2
b2(x, ϑ)f ′′(x) (2.6)
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2.1 Existing results on ergodic diffusions

and search for eigenfunctions ϕη(·, ϑ) ∈ C2(R) of La,b with eigenvalues2 λη(ϑ) given via

La,bϕη(x, ϑ) = −λη(ϑ)ϕη(x, ϑ).

For the construction of a martingale estimator, the following lemma is fundamental, cf.

[59, Chapter 5. Eigenfunctions and martingales] and [78, Theorem 1.16].

Lemma 2.4: If the integral∫
R

(
∂

∂x
ϕη(x, ϑ)

)2

b2(x, ϑ)µϑ(x) dx

is finite, then

eληtϕη(Xt, ϑ)

is a martingale or, equivalently, in formulas

E ϑ

(
ϕη(Xt, ϑ) |Xs

)
= e−λη(t−s)ϕη(Xs, ϑ).

Proof: Using Itô’s formula leads to

d
(
eληtϕη(Xt, ϑ)

)
= ληe

λtϕη(Xt, ϑ) dt+ eληt
∂

∂x
ϕη(Xt, ϑ) dXt +

1

2
eληt

∂2

∂x2
ϕη(Xt, ϑ) d[X]t

(2.6)
= eληt

(
ληϕη(Xt, ϑ) + a(Xt, ϑ)

∂

∂x
ϕη(Xt, ϑ)

)
dt

+ eληtb(Xt, ϑ)
∂

∂x
ϕη(Xt, ϑ) dBt +

1

2
eληtb2(Xt, ϑ)

∂2

∂x2
ϕη(Xt, ϑ) dt

= eληt
(
λϕη(Xt, ϑ) + La,bϕη(Xt, ϑ)

)︸ ︷︷ ︸
=0

dt+ eληtb(Xt, ϑ)
∂

∂x
ϕη(Xt, ϑ) dBt

= eληtb(Xt, ϑ)
∂

∂x
ϕη(Xt, ϑ) dBt.

Hence, this process is a local martingale. Then, the conclusion that this is a true martingale

follows immediately by first using Burkholder inequality and Hölder inequality afterwards

[
E
(

sup
s∈[0,t]

∣∣∣∣
s∫

0

eληξb(Xξ, ϑ)
∂

∂x
ϕη(Xξ, ϑ) dBξ

∣∣∣∣)]2

2Technically, the eigenvalue is −λη(ϑ), but we omit the sign to simplify the following calculations.
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2 Martingale estimation functions for the Bessel process

≤ C
[
E
( t∫

0

e2ληξb2(Xξ, ϑ)

(
∂

∂x
ϕη(Xξ, ϑ)

)2

dξ

) 1
2
]2

≤ C E
( t∫

0

e2ληξb2(Xξ, ϑ)

(
∂

∂x
ϕη(Xξ, ϑ)

)2

dξ

)

= C

t∫
0

e2ληξ dξ

∫
R

b2(x, ϑ)

(
∂

∂x
ϕη(x, ϑ)

)2

µϑ(x) dx

= C
e2ληt

2λη

∫
R

b2(x, ϑ)

(
∂

∂x
ϕη(x, ϑ)

)2

µϑ(x) dx.

Since this expectation is finite due to the assumption, the martingale property holds by

the dominated convergence theorem.

For the construction of the estimation function, we assume m eigenfunctions ϕj ordered

with respect to increasing eigenvalues λj satisfying Lemma 2.4. Therefore,

g(x, y, ϑ) :=

m∑
j=1

gj(x, y, ϑ)

:=
m∑
j=1

ωj(x, ϑ)
(
ϕj(y, ϑ)− E ϑ

(
ϕj(X∆, ϑ) |X0 = x

))
=

m∑
j=1

ωj(x, ϑ)
(
ϕj(y, ϑ)− e−λj(ϑ)∆ϕj(x, ϑ)

)
leads to a martingale estimation function of the form (2.3) with arbitrary weight functions

ωj . We choose an increasing order since most information is gathered through the eigen-

functions belonging to the smallest eigenvalues. Under the assumption of Lemma 2.4 g has

the desired martingale property (i) in Condition 2.1 and hence the function f simplifies

to

f(ϑ) :=

∫
I

∫
I

∂

∂ϑ
g(x, y, ϑ)Qϑ∆( dx, dy)

=
m∑
j=1

∫
I

∫
I

∂

∂ϑ
gj(x, y, ϑ)Qϑ∆( dx, dy)
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2.1 Existing results on ergodic diffusions

=
m∑
j=1

∫
I

∫
I

∂

∂ϑ

(
ωj(x, ϑ)

(
ϕj(y, ϑ)

)
− e−λj∆ϕj(x, ϑ)

)
Qϑ∆( dx, dy)

(2.2)
=

m∑
j=1

(∫
I

∂

∂ϑ
ωj(x, ϑ)

∫
I

(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
pϑ(∆, x, y) dy

︸ ︷︷ ︸
=0

µϑ(x) dx

+

∫
I

∫
I

ωj(x, ϑ)
∂

∂ϑ

(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
Qϑ∆( dx, dy)

)

=
m∑
j=1

∫
I

∫
I

ωj(x, ϑ)
∂

∂ϑ

(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
Qϑ∆( dx, dy).

Additionally, we compute

v(ϑ) =

∫
I

∫
I

g2(x, y, ϑ)Qϑ∆( dx, dy)

=

∫
I

∫
I

 m∑
j=1

ωj(x, ϑ)
(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)2

Qϑ∆( dx, dy)

=
m∑
i=1

m∑
j=1

∫
I

∫
I

ωi(x, ϑ)
(
ϕi(y, ϑ)− e−λi∆ϕi(x, ϑ)

)
·

ωj(x, ϑ)
(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
Qϑ∆( dx, dy)

(2.2)
=

m∑
i=1

m∑
j=1

∫
I

ωj(x, ϑ)ωi(x, ϑ)·

∫
I

(
ϕi(y, ϑ)− e−λi∆ϕi(x, ϑ)

)(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
pϑ(∆, x, y) dy

︸ ︷︷ ︸
=:ωij(x,ϑ)

µϑ(x) dx

=

m∑
i=1

m∑
j=1

∫
I

ωj(x, ϑ)ωi(x, ϑ)ωij(x, ϑ)µϑ(x) dx

and summarize the conditions such that Theorem 2.2 is valid for this estimator besides

the requirement from Lemma 2.4. We collect the corresponding conditions, which can be

found in [59, Condition 4.2], see also [59, Theorem 4.3] for the respective theorem in the

case of eigenfunctions.

Condition 2.5: (i) The function gj(x, y, ·) is continuously differentiable on Θ for every
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2 Martingale estimation functions for the Bessel process

x, y ∈ I.

(ii) The function
∣∣ ∂
∂ϑg(·, ·, ϑ)

∣∣ is dominated for all ϑ ∈ Θ by a function which is integrable

with respect to Qϑ∆.

(iii) The integral

f(ϑ) =
m∑
j=1

∫
I

∫
I

ωj(x, ϑ)
∂

∂ϑ

(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
Qϑ∆( dx, dy)

does not vanish at ϑ0.

(iv) The integral

v(ϑ) =

m∑
i=1

m∑
j=1

∫
I

ωj(x, ϑ)ωi(x, ϑ)ωij(x, ϑ)µϑ(x) dx

with

ωij(x, ϑ) :=

∫
I

(
ϕi(y, ϑ)− e−λi∆ϕi(x, ϑ)

)(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
pϑ(∆, x, y) dy

is finite at ϑ0.

In the case of a single eigenfunction the notation

v(ϑ) =

∞∫
0

∞∫
0

g2(x, y, ϑ)Qϑ∆( dx, dy)

is more concise. We intend to discuss optimality in this case likewise. Toward this goal,

we examine weights that depend on the previous observation and the true parameter,

n∑
i=1

m∑
j=1

ω?j (X(i−1)∆, ϑ)
(
ϕj(Xi∆, ϑ)− e−λj∆ϕj(x, ϑ)

)
.

The optimal weights ω?j in the sense of Vidyadhar P. Godambe and Christopher C. Heyde
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2.2 Martingale estimating functions based on eigenfunctions

[37] are given in [59, p. 305], which are specified by the equation
u11 · · · u1m

...
. . .

...

u1m · · · umm



ω?1
...

ω?m

 =


v1

...

vm

 (2.7)

involving

uij(x, ϑ) := E ϑ

((
ϕi(X∆, ϑ)− e−λi∆ϕi(x, ϑ)

)(
ϕj(X∆, ϑ)− e−λj∆ϕj(x, ϑ)

) ∣∣X0 = x
)

for 1 ≤ i < j ≤ m and

vj(x, ϑ) := −E ϑ

( ∂
∂ϑ

(
ϕj(X∆, ϑ)− e−λj∆ϕj(x, ϑ)

) ∣∣X0 = x
)

for j = 1, . . . ,m.

2.2 Martingale estimating functions based on eigenfunctions

We present in this section a light entry-level example of a non-ergodic process on which

we apply the results from the previous section. Our aim is to estimate the dimensionality

or index parameter ϑ ∈ Θ ⊂ (−1
2 ,∞) of a classical Bessel process specified in Section 1.3

via the stochastic differential equation{
dYt = dBt +

(
ϑ+ 1

2

)
1
Yt

dt,

Y0 = y0 > 0,

where (Bt)t≥0 is a Brownian motion. We proceed similarly to [11] and [59], introduced

in Section 2.1, to construct martingale estimation functions for our parameter of interest

ϑ. Since a Bessel process is non-ergodic, we transform it into a stationary and ergodic

process by adding a mean reverting term with speed of mean reversion α > 0 in the drift,

that is, {
dXt = dBt +

[(
ϑ+ 1

2

)
1
Xt
− αXt

]
dt,

X0 = y0 > 0.

We call this process a modified Bessel process, for more details see Section 1.4. We assume

X0 ∼ µϑ and observe the modified Bessel process at discrete times, that is, X∆, . . . , Xn∆.
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2 Martingale estimation functions for the Bessel process

Lemma 2.6: The eigenfunctions of the generator

Lϑ,αf(x) =
1

2
f ′′(x) +

[(
ϑ+

1

2

)
1

x
− αx

]
f ′(x),

which are the solutions of Lϑ,αϕη = −ληϕη are given by

λη = 2αη, ϕη(x, ϑ) =

η∑
l=0

(−η)l
(ϑ+ 1)ll!

(αx2)l, η ∈ N,

with the Pochhammer symbols (x)0 := 1 and (x)l := Γ(x+l)
Γ(x) = x(x+ 1) . . . (x+ l − 1) for

l ∈ N.

Proof: First, we calculate the image of the monomials

Lϑ,α1 = 0,

Lϑ,αx =

(
ϑ+

1

2

)
1

x
− αx,

Lϑ,αxl =
1

2
l(l − 1)xl−2 + l

[(
ϑ+

1

2

)
1

x
− αx

]
xl−1

=
l(l + 2ϑ)

2
xl−2 − αlxl

for l ≥ 2. Due to the last line, we require the eigenfunctions to be the sum of at least

two monomials with difference two in the degree. Furthermore, we observe in the second

line that the coefficient belonging to x shall be zero. In combination with the previous

condition, the eigenfunctions thus consist of the sum of even monomials. We assume

ϕη(x) :=

η∑
l=0

clx
2l

with c0 = 1 and compute

Lϑ,αϕη(x) =

η∑
l=1

cl

(
2l(2l + 2η)

2
x2l−2 − 2αlx2l

)

=

η∑
l=0

2(l + 1)(l + 1 + ϑ)cl+1x
2l −

η∑
l=1

2αlclx
2l

= c1(2ϑ+ 2) +

η∑
l=1

(
2(l + 1)(l + 1 + ϑ)cl+1 − 2αlcl

)
x2l − 2αηcηx

2η

44



2.2 Martingale estimating functions based on eigenfunctions

!
= −λη

η∑
l=0

clx
2l.

Equating the coefficients of x0 and x2η directly yields

c1(2ϑ+ 2) = −λη,

2αη = λη,

or c1 = − αη
ϑ+1 , respectively, while for the coefficient of x2l ensues

2(l + 1)(l + 1 + ϑ)cl+1 − 2αlcl = −ληcl
= −2αηcl

for all l = 1, . . . , η−1. The result follows from solving the equation by cl+1 and successive

substitution

cl+1 = cl
α(−η + l)

(l + 1)(ϑ+ 1 + l)
= · · · = αl+1(−η)l+1

(l + 1)!(ϑ+ 1)l+1
.

Remark: The eigenfunctions of this Lemma coincide with the even eigenfunctions of

a modified Dunkl process of dimension one. We consider the following eigenfunction

problem

∆̃kψν :=

(
∆k

2
−

d∑
i=1

xi
∂

∂xi

)
ψν = −λνψν .

We call the process generated by ∆̃k a modified Dunkl process. This equation is solved

by

λν,k = |ν|, ψν = Hk
ν ,

cf. [75, 2.58 Corollary (i)], for ν ∈ Nd and the generalized Hermite polynomials Hk
ν . For

more detailed information on these polynomials the reader is referred to [81]. The extent

to which these two results are related can be seen if we examine the one-dimensional
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2 Martingale estimation functions for the Bessel process

Dunkl process. In this case, there exist simple explicit formulas Hk
2η(x) = (−1)η22ηη!L

k− 1
2

η (x2),

Hk
2η+1(x) = (−1)η22η+1η!L

k+ 1
2

η (x2)

for η ∈ N with the generalized Laguerre polynomials

Lpη(x) =
1

η!
x−pex

∂η

∂xη
(
xη+pe−x

)
for p > 0. From the Laguerre polynomials

Lp0(x) = 1,

Lp1(x) = −x+ p+ 1,

Lp2(x) =
1

2

[
x2 − 2(p+ 2)x+ (p+ 1)(p+ 2)

]
,

we thus derive the first Hermite polynomials

Hk
0 (x) = L

k− 1
2

0 (x2) = 1,

Hk
1 (x) = 2xL

k+ 1
2

0 (x2) = 2x,

Hk
2 (x) = −1 · 22 · 1!L

k− 1
2

1 (x2) = −4

[
−x2 + k +

1

2

]
= 4

[
x2 − k − 1

2

]
,

Hk
3 (x) = −1 · 23 · 2!xL

k+ 1
2

1 (x2) = 8

[
x3 −

(
k +

3

2

)
x

]
,

Hk
4 (x) = 24 · 2!L

k− 1
2

2 (x2) =
32

2

[
x4 − 2

(
k +

3

2

)
x2 +

(
k +

1

2

)(
k +

3

2

)]
.

We compare now this result with the eigenfunctions of the modified Bessel process by

setting α = 1,

ϕ1(x, ϑ) = 1− x2

ϑ+ 1
= − 1

ϑ+ 1

[
x2 − (ϑ+ 1)

]
= − 1

4(ϑ+ 1)
H
ϑ+ 1

2
2 (x),

ϕ2(x, ϑ) = 1− 2
x2

ϑ+ 1
+

x4

(ϑ+ 1)(ϑ+ 2)
(x)
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2.2 Martingale estimating functions based on eigenfunctions

=
1

16(ϑ+ 1)(ϑ+ 2)

[
x4 − (2ϑ+ 4)x2 + (ϑ+ 1)(ϑ+ 2)

]
=

1

(ϑ+ 1)(ϑ+ 2)
H
ϑ+ 1

2
4 (x)

and the corresponding eigenvalues λ1 = λ2,ϑ+ 1
2

= 2 and λ2 = λ4,ϑ+ 1
2

= 4. This connection

is not surprising, since the Euclidean norm of a Dunkl process equals a classical Bessel

process. In the case of a modified Dunkl process, we preserve as eigenfunctions not only

the sum of even monomials. Omitting the jumps produces a loss of information, thus

we presumably can obtain a better estimator for the Dunkl process by examining the

Hermite polynomials instead of ϕη.

We return to the modified Bessel process. According to Lemma 2.4, the property

∞∫
0

(
∂

∂x
ϕη(x, ϑ)

)2

µϑ( dx) =
2αϑ+1

Γ(ϑ+ 1)

∞∫
0

(
∂

∂x
ϕη(x, ϑ)

)2

x2ϑ+1e−αx
2

dx <∞

for the polynomials ϕη is sufficient to deduce

Eϑ
(
ϕη(Xi∆, ϑ)|X(i−1)∆

)
= e−λη∆ϕη(X(i−1)∆, ϑ).

Consequently, we may use the general theory on estimators based on eigenfunctions in-

troduced in Section 2.1. However, in our case we will calculate the involved quantities

and obtain explicit results. For the first eigenfunction ϕ1(x, ϑ) = 1− αx2

ϑ+1 we consider the

estimator based on the martingale estimation function

Gn(ϑ) =

n∑
i=1

(
ϕ1(Xi∆, ϑ)− e−λ1∆ϕ1(X(i−1)∆, ϑ)

)
=

n∑
i=1

(
1−

αX2
i∆

ϑ+ 1
− e−2α∆

(
1−

αX2
(i−1)∆

ϑ+ 1

))

= n(1− e−2α∆)− α

ϑ+ 1

n∑
i=1

(
X2
i∆ − e−2α∆X2

(i−1)∆

)
.

The unique solution of Gn
(
ϑ̂n
)

= 0 is

ϑ̂n =

α
n∑
i=1

(
X2
i∆ − e−2α∆X2

(i−1)∆

)
n(1− e−2α∆)

− 1. (2.8)
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2 Martingale estimation functions for the Bessel process

Now, we may deduce consistency and asymptotic normality along the same lines as for

general martingale estimation functions.

Theorem 2.7: For every true value ϑ0 ∈ Θ ⊂ (−1
2 ,∞), we have

(i) lim
n→∞

ϑ̂n = ϑ0 in probability and

(ii) lim
n→∞

√
n
(
ϑ̂n − ϑ0

)
= N

(
0, σ2(ϑ0)

)
in distribution

under Pϑ0 with σ2(ϑ0) := (ϑ0 + 1)1+e−2α∆

1−e−2α∆ .

Proof: The proof is straightforward. We first validate the assumptions in Condition 2.5.

For the calculation of the asymptotic variance we will need the symmetric distribution Qϑ∆
of two consecutive observations X(i−1)∆ and Xi∆ on (0,∞)2. It is given by

Qϑ∆( dx, dy) = µϑ(x)pϑ(∆, x, y) dx dy

= Cϑjϑ

(
ixy

2α exp(α∆)

exp(2α∆)− 1

)
exp

(
− α exp(2α∆)

exp(2α∆)− 1
(x2 + y2)

)
(xy)2ϑ+1 dy dx

with

Cϑ :=
4α2ϑ(exp(2α∆))ϑ+1

Γ(ϑ+ 1)2(exp(2α∆)− 1)ϑ
.

We define

g(x, y, ϑ) := ϕ1(y, ϑ)− e−λ1∆ϕ1(x, ϑ)

= 1− αy2

ϑ+ 1
− e−2α∆

(
1− αx2

ϑ+ 1

)
a continuously differentiable function with respect to ϑ. The absolute value of the deriva-

tive

∂

∂ϑ
g(x, y, ϑ) =

α

(ϑ+ 1)2
(y2 − e−2α∆x2)

is dominated by 4α(y2 + e−2α∆x2), which is independent of ϑ and square integrable with

respect to Qϑ0
∆ . Moreover, the symmetry in x and y of the density of Qϑ0

∆ implies

f(ϑ0) :=

∞∫
0

∞∫
0

∂

∂ϑ
g(x, y, ϑ0)Qϑ0

∆ ( dx, dy)
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2.2 Martingale estimating functions based on eigenfunctions

=
α

(ϑ0 + 1)2
(1− e−2α∆)︸ ︷︷ ︸
>0

∞∫
0

∞∫
0

x2Qϑ0
∆ ( dx, dy)

︸ ︷︷ ︸
>0

6= 0.

Owing to the exponential function in Qϑ∆ and g(·, ·, ϑ) being a polynomial, the integral

v(ϑ0) :=

∞∫
0

∞∫
0

g2(x, y, ϑ0)Qϑ0
∆ ( dx, dy)

is finite, which completes the proof of (i) and (ii) according to Theorem 2.2 and Condi-

tion 2.5. Therefore, we are left with the task of computing σ2(ϑ0). Due to Theorem 2.2,

the asymptotic variance is given by σ2(ϑ0) = v(ϑ0)
f2(ϑ0)

. Because of

g2(x, y, ϑ) =

((
1− e−2α∆

)
− α

ϑ+ 1
y2 +

α

ϑ+ 1
e−2α∆x2

)2

= (1− e−2α∆)2 +
α2

(ϑ+ 1)2
y4 +

α2e−4α∆

(ϑ+ 1)2
x4 − (1− e−2α∆)

2α

ϑ+ 1
y2

+ (1− e−2α∆)
2αe−2α∆

ϑ+ 1
x2 − 2α2e−2α∆

(ϑ+ 1)2
x2y2

= (1− e−2α∆)2 − (1− e−2α∆)
2α

ϑ+ 1

(
y2 − e−2α∆x2

)
+

α2

(ϑ+ 1)2

(
y4 + e−4α∆x4

)
− 2α2e−2α∆

(ϑ+ 1)2
x2y2

and the symmetry of Qϑ0
∆ , we get

v(ϑ0) = (1− e−2α∆)2

(
1− 2α

ϑ0 + 1

∞∫
0

∞∫
0

x2Qϑ0
∆ ( dx, dy)

)

+
α2(1 + e−4α∆)

(ϑ0 + 1)2

∞∫
0

∞∫
0

x4Qϑ0
∆ ( dx, dy)

− 2α2e−2α∆

(ϑ0 + 1)2

∞∫
0

∞∫
0

x2y2Qϑ0
∆ ( dx, dy).
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2 Martingale estimation functions for the Bessel process

Furthermore, we derived in Corollary 1.5

∞∫
0

∞∫
0

x2ηQϑ0
∆ ( dx, dy) =

∞∫
0

∞∫
0

x2ηµϑ0(x)pϑ(∆, x, y) dx dy

=

∞∫
0

x2η

∞∫
0

pϑ(∆, x, y) dy

︸ ︷︷ ︸
=1

µϑ0(x) dx

=

∞∫
0

x2ηµϑ0(x) dx
1.5
=

Γ(η + ϑ0 + 1)

αηΓ(ϑ0 + 1)

=
(ϑ0 + 1)η

αη
.

Additionally using the explicit formula of E ϑ0(X2
i∆ |X(i−1)∆ = x) in Example 1.9, we

conclude

∞∫
0

∞∫
0

x2y2Qϑ0
∆ ( dx, dy) =

∞∫
0

∞∫
0

x2y2µϑ0(x)pϑ(∆, x, y) dy dx

=

∞∫
0

x2

∞∫
0

y2pϑ(∆, x, y) dy µϑ0(x) dx

=

∞∫
0

x2 E ϑ0(X2
i∆ |X(i−1)∆ = x)µϑ0(x) dx

1.9
=

∞∫
0

x2

(
x2e−2α∆ − ϑ0 + 1

α
(e−2α∆ − 1)

)
µϑ0(x) dx

=
(ϑ0 + 1)(ϑ0 + 2)

α2
e−2α∆ − (ϑ0 + 1)2

α2
(e−2α∆ − 1)

=
(ϑ0 + 1)2

α2
+ e−2α∆ϑ0 + 1

α2
.

Applying these formulas, we establish

f(ϑ0) =
α

(ϑ0 + 1)2
(1− e−2α∆)

∞∫
0

∞∫
0

x2Qϑ0
∆ ( dx, dy)

=
1− e−2α∆

ϑ0 + 1
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2.2 Martingale estimating functions based on eigenfunctions

and

v(ϑ0) =
(
1− e−2α∆

)2(
1− 2α

ϑ0 + 1
· ϑ0 + 1

α

)
+
α2(1 + e−4α∆)

(ϑ0 + 1)2
· (ϑ0 + 1)(ϑ0 + 2)

α2

− 2α2e−2α∆

(ϑ0 + 1)2

(
(ϑ0 + 1)2

α2
+ e−2α∆ϑ0 + 1

α2

)
= −

(
1− e−2α∆

)2
+
ϑ0 + 2

ϑ0 + 1

(
1 + e−4α∆

)
− 2e−2α∆ − e−4α∆ 2

ϑ0 + 1

=
(
−1 +���

�
2e−2α∆ − e−4α∆

)
+
ϑ0 + 2

ϑ0 + 1
+

ϑ0

ϑ0 + 1
e−4α∆ −����2e−2α∆

=
1− e−4α∆

ϑ0 + 1
=

(1− e−2α∆)(1 + e−2α∆)

ϑ0 + 1
.

Hence, we infer

σ2(ϑ0) =
v(ϑ0)

f2(ϑ0)
= (ϑ0 + 1)

1 + e−2α∆

1− e−2α∆
.

Let us discuss the results. Looking at the asymptotic variance, we see that it decreases

when α∆ is increasing. This seems surprising at first glance, since it implies that the

asymptotic variance decreases when the distance between observations increases, as we

keep the mean reverting parameter α fixed. Notice, that we have the observation scheme

X∆, · · · , Xn∆, hence n → ∞ and ∆ → 0 such that n∆ → ∞ would correspond to con-

tinuous observations. However, keeping in mind that equidistant observations for the

stationary version of the Bessel process (Xt)t≥0 mean that the distance between two ob-

servations of the underlying Bessel process (Yt)t≥0 is exponentially growing

Xt = e−αtY e2αt−1
2α

,

which leads to a fast growing observation interval. This might capture the non-stationary

behaviour of the original Bessel process. Furthermore, we see that the asymptotic variance

tends to infinity as the mean reverting parameter tends to zero.

Having a closer look at the estimator, we see that it only depends on the square of the

observations, hence we could reformulate our problem and consider the squared process

Zt := X2
t . As explained in Example 1.9, this results in

dZt = 2
√
Zt dBt + (2ϑ+ 2− 2αZt) dt,
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2 Martingale estimation functions for the Bessel process

an equation describing a Cox-Ingersoll-Ross process. We consider now the canonical linear

martingale estimation function

Σn(ϑ) :=

n∑
i=1

(
Zi∆ − E(Zi∆|Z(i−1)∆)

)
=

n∑
i=1

(
Zi∆ − Z(i−1)∆e

−2α∆ +
ϑ+ 1

α
(e−2α∆ − 1)

)
= −ϑ+ 1

α
Gn(ϑ).

For ϑ > −1
2 , the unique solution of Σn

(
ϑ̂n
)

= 0 is again

ϑ̂n =

α
n∑
i=1

(
X2
i∆ −X2

(i−1)∆e
−2α∆

)
n(1− e−2α∆)

− 1.

Hence, we see that the two estimators coincide. In Theorem 2.7 we have already established

the consistency and asymptotic normality of ϑ̂n.

The next step is to increase the flexibility of Σn by adding the weight ω depending on the

parameter of interest and the previous observation

n∑
i=1

ω(ϑ,X(i−1)∆)

(
X2
i∆ −X2

(i−1)∆e
−2α∆ +

ϑ+ 1

α

(
e−2α∆ − 1

))
,

where ω(·, X(i−1)∆) is σ(X∆, . . . , X(i−1)∆)−measurable to keep the martingale property

and continuously differentiable to apply our method. Using the same technique, we search

for the optimal estimator with the smallest asymptotic variance. Considering this second

approach via linear martingale estimation functions for the squared process allows us to

easily determine this optimal estimator. By (2.4) the optimal weight is given by

ω(ϑ,X(i−1)∆) :=
∂
∂ϑ E ϑ(X2

i∆ |X(i−1)∆)

Var ϑ(X2
i∆ |X(i−1)∆)

1.9
=

1−e−2α∆

α
2
α (1− e−2α∆)

(
X2
i∆ + ϑ+1

2α (1− e−2α∆)
)

=
1

2X2
(i−1)∆e

−2α∆ + ϑ+1
α (1− e−2α∆)

.
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2.2 Martingale estimating functions based on eigenfunctions

Unfortunately, the equation defining the optimal estimator

n∑
i=1

1

2X2
(i−1)∆e

−2α∆ + ϑ+1
α (1− e−2α∆)

·(
X2
i∆ −X2

(i−1)∆e
−2α∆ +

ϑ+ 1

α
(e−2α∆ − 1)

)
= 0

is not explicitly solvable with respect to ϑ. However, we can nevertheless determine the

improvement in the asymptotic variance. Therefore, we have to establish the finiteness

of

∞∫
0

ω(ϑ0, X(i−1)∆)
∂

∂ϑ0
E ϑ0(X2

i∆ |X(i−1)∆)µϑ0(x) dx

=

∞∫
0

1

2X2
(i−1)∆e

−2α∆ + ϑ0+1
α (1− e−2α∆)

· 1− e−2α∆

α
µϑ0(x) dx

=

∞∫
0

1
2αe−2α∆

1−e−2α∆X
2
(i−1)∆ + ϑ0 + 1

µϑ0(x) dx

<

∞∫
0

1

ϑ0 + 1
µϑ0(x) dx =

1

ϑ0 + 1
,

the reciprocal of the asymptotic variance, that is, the asymptotic information, cf. (2.5).

Consequently, we can deduce that a lower bound of the optimal variance is given by ϑ0 +1.

Figure 2.1 shows the asymptotic information of the 10.000 simulated optimal estimator

(triangles) and ϑ̂n (dots) for n = 1.000. The solid line corresponds to the calculated

asymptotic information of ϑ̂n in Theorem 2.7. The dotted line represents our computed

bound above. As the lines nearly touch around ∆ = 3, the improvement of the optimal

estimator quickly tends to zero. Starting from the value ∆ = 1, the simulated asymptotic

information is almost the same for both estimators. Beforehand, the improvement is

clearly visible but we do not want to maintain such a high variance as we can choose the

value of α∆ so that the asymptotic variance is close to the lower bound.

We take a closer look at the asymptotic variance of ϑ̂n from Theorem 2.7, which decreases

53
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Figure 2.1: The asymptotic behaviour for α = 1, x0 = 0.1, ϑ0 = 3.

monotonously in α∆:

lim
α∆→∞

(ϑ0 + 1)
1 + e−2α∆

1− e−2α∆
= ϑ0 + 1.

Due to the fast convergence to the lower bound ϑ0 + 1, we can for practical purposes

restrict ourselves to the estimator ϑ̂n and hence have an explicit estimator.

We can transfer this result to the Dunkl process. Previously, we established that the

eigenfunctions ϕi coincide with those of a modified version of the one-dimensional Dunkl

process. Now, we consider a potentially multidimensional Dunkl process (Ξt)t≥0. Since its

Euclidean norm is a classical Bessel process of index ϑ = κ+N
2 −1 we can give an estimator

of κ ∈ K ⊂ [0,∞), that is, the sum of the multiplicities, assuming the dimension N is

known. For this reason, we know that
(
e−αt

∥∥Ξ exp(2αt)
2α

∥∥)
t≥0

is the corresponding stationary
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2.2 Martingale estimating functions based on eigenfunctions

version of the classical Bessel process, see (1.7). We define

κ̂n :=

α
n∑
i=1

(
e−2αi∆

∥∥Ξ exp(2αi∆)
2α

∥∥2 − e−2α(i−1)∆
∥∥Ξ exp(2α(i−1)∆)

2α

∥∥2
e−2α∆

)
n(1− e−2α∆)

− N

2

=

α
n∑
i=1

(
e−2αi∆

∥∥Ξ exp(2αi∆)
2α

∥∥2 − e−2α(i+1)∆
∥∥Ξ exp(2α(i−1)∆)

2α

∥∥2
)

n(1− e−2α∆)
− N

2

analogously to (2.8) and obtain the following corollary from Theorem 2.7.

Corollary 2.8: For every true value κ0 ∈ K ⊂ [0,∞), we have

(i) lim
n→∞

κ̂n = κ0 in probability and

(ii) lim
n→∞

√
n
(
κ̂n − κ0

)
= N

(
0, σ2(κ0)

)
in distribution

under Pk0,R with σ2(κ0) :=
(
κ0 + N

2

)
1+e−2α∆

1−e−2α∆ where k0 denotes the corresponding true

multiplicity function.

The asymptotic variance increases with the dimension of the Dunkl process so that the

estimate becomes less accurate. We analyze this corollary for specific root systems. First

of all, in the one dimensional case κ is equal to the multiplicity k, which we then estimate

directly. In the AN−1 case, κ(k,AN−1) = kN(N−1)
2 holds and hence 2κ̂n

N(N−1) estimates the

multiplicity.

In the BN case we have two multiplicities which means we cannot say anything about the

specific values since κ(k,BN ) = k1N + k2N(N − 1) holds.

Conversely, if we assume κ to be known, we can estimate N by considering the estimator:

N̂n :=

2α
n∑
i=1

(
e−2αi∆

∥∥Ξ exp(2αi∆)
2α

∥∥2 − e−2α(i+1)∆
∥∥Ξ exp(2α(i−1)∆)

2α

∥∥2
)

n(1− e−2α∆)
− 2κ.

As before, the parameter N is obtained via an affine linear transformation of ϑ and hence

the asymptotic behaviour of N̂n is inherited from ϑ̂n.

Corollary 2.9: For every true value N0 ∈ N, we have

(i) lim
n→∞

N̂n = N0 in probability and
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2 Martingale estimation functions for the Bessel process

(ii) lim
n→∞

√
n
(
N̂n −N0

)
= N

(
0, σ2(N0)

)
in distribution

under Pk,R with σ2(N0) := 4
(
κ+ N0

2

)
1+e−2α∆

1−e−2α∆ .

2.3 An extension to some polynomial processes

In the previous section, we introduced an idea of performing a martingale estimating

function while using an ergodic transformation of a non-ergodic process, the Bessel process.

In particular, this seems like a straightforward method to deal with non-ergodic processes.

The question arises whether this can find applications for other processes. We aim to

extend the developed technique to some larger class of processes. We consider some non-

ergodic polynomial processes solving the stochastic differential equation{
dYt,p = Y

p+1
2

t,p dBt +
(
ϑ+ 1

2

)
Y p
t,p dt,

Y0,p = x0 > 0
(2.9)

for a Brownian motion (Bt)t≥0, the parameter of interest ϑ ∈ Θ ⊂ (−1
2 ,∞) and the

additional parameter p < 1. Note that for p = −1, we get the Bessel process back.

We briefly analyze a martingale estimator based on the first eigenfunction with the same

technique as before. Using the space-time transformation

Xt,p := e−αtY e(1−p)αt−1
(1−p)α ,p

for some α > 0, we receive by Itô’s formula an ergodic and stationary version{
dXt,p = X

p+1
2

t,p dBt +
[(
ϑ+ 1

2

)
Xp
t,p − αXt,p

]
dt,

X0,p = x0 > 0,
(2.10)

for more details see Section 1.4. The corresponding generator can be stated as

Lϑ,α,pf(x) =
1

2
xp+1f ′′(x) +

[(
ϑ+

1

2

)
xp − αx

]
f ′(x).

The first eigenfunction arises after a brief calculation. We suppose a monomial of degree

at least two

Lϑ,α,pxη =
η(η − 1)

2
xp+1+η−2 +

[(
ϑ+

1

2

)
xp − αx

]
nxη−1
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=

(
η(η − 1)

2
+ ϑ+

1

2

)
xη+p−1 − αηxη

and immediately see by choosing η = 1− p that the formula

Lϑ,α,px1−p =
(1− p)(−p)

2
+ ϑ+

1

2
− α(1− p)x1−p

= −α(1− p)
(
x1−p − 2ϑ+ 1− p

2α

)
can be used to read the first eigenfunction

ϕ1,p = x1−p − 2ϑ+ 1− p
2α

with eigenvalue λ1,p = (1 − p)α. We assume (Xt,p)t≥0 to be stationary, that is, X0,p ∼
µϑ,p, and assume X∆,p, . . . , Xn∆,p to be discrete observations of (2.10). We consider the

estimator based on the martingale estimation function

Gn,p(ϑ) =

n∑
i=1

(
ϕ1,p(Xi∆,p, ϑ)− e−λ1,p∆ϕ1,p(X(i−1)∆,p, ϑ)

)
=

n∑
i=1

(
X1−p
i∆ − e−(1−p)αX1−p

(i−1)∆

)
− 2ϑ+ 1− p

2α
n
(
1− e−(1−p)α∆

)
.

The unique solution of Gn,p(ϑ̂n,p) = 0 is

ϑ̂n,p =
α
∑n

i=1

(
X1−p
i∆,p −X

1−p
(i−1)∆,pe

−(1−p)α∆
)

n
(
1− e−(1−p)α∆

) − 1− p
2

. (2.11)

Next, we review how this process is related to a linear martingale estimation function. In

particular,
(
X1−p
t,p

)
t≥0

is again a Cox-Ingersoll-Ross process due to Example 1.9, where we

as well calculated the conditional mean

E ϑ

(
X1−p
i∆,p |X(i−1)∆,p

)
= e−α(1−p)∆X1−p

(i−1)∆,p +
2ϑ+ 1− p

2α

(
1− e−α(1−p)∆).

Thus, we receive the linear martingale estimation function

Σn,p(ϑ) :=

n∑
i=1

(
X1−p
i∆,p − E ϑ

(
X1−p
i∆,p|X(i−1)∆,p

))
=

n∑
i=1

(
X1−p
i∆,p −X

1−p
(i−1)∆,pe

−(1−p)α∆ +
2ϑ+ 1− p

2α
(e−(1−p)α∆ − 1)

)
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2 Martingale estimation functions for the Bessel process

= Gn,p(ϑ)

and see that the unique solution of Σn,p(ϑn,p) = 0 is again (2.11).

Theorem 2.10: For every true value ϑ0 ∈ Θ ⊂ (−1
2 ,∞), we have

(i) ϑ̂n,p → ϑ0 in probability and

(ii)
√
n(ϑ̂n,p − ϑ0)→ N

(
0, σ2(ϑ0)

)
in distribution

under Pϑ0 with σ2(ϑ0) := (1−p)(ϑ0+1)e−(1−p)α∆

1−e−(1−p)α∆ + (2ϑ0+1−p)(1−p)
4 .

Proof: Obviously, (1) and (2) from Condition 2.3 are satisfied. As σ2(ϑ0) ∈ (0,∞) applies,

the convergences (i) and (ii) are given if the equation

σ2(ϑ0) =
v(ϑ0)

f(ϑ0)2

holds, where

f(ϑ) := −
∞∫

0

∂

∂ϑ
E ϑ

(
X1−p

∆,p |X0,p = x
)
µϑ,p(x) dx

= −
∞∫

0

1

α

(
1− e−(1−p)α∆

)
µϑ,p(x) dx

=
e−(1−p)α∆ − 1

α
,

v(ϑ) :=

∞∫
0

Var ϑ(X1−p
∆,p |X0,p = x)µϑ,p(x) dx.

We have already performed the main calculation in Chapter 1. The conditional variance

of X1−p
∆,p given X0,p is determined by

Var ϑ(X1−p
t,p |Xt0,p) =

(1− p)
α

(
1− e−α(1−p)(t−t0)

)
·[

e−(1−p)α(t−t0)X1−p
t0,p

+
2ϑ+ 1− p

4α

(
1− e−(1−p)α(t−t0)

)]
,
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2.3 An extension to some polynomial processes

see Example 1.9. Combined with

∞∫
0

x1−pµϑ,p(x) dx
1.5
=

Γ
(

1 + 2ϑ+2
1−p

)
Γ
(

2ϑ+2
1−p

) · 1− p
2α

=
2ϑ+ 2

1− p
· 1− p

2α
=
ϑ+ 1

α

we establish

v(ϑ) =

∞∫
0

Var ϑ(X1−p
∆,p |X0,p = x)µϑ,p(x) dx

=
(1− p)
α

(
1− e−α(1−p)∆

)
·

∞∫
0

[
e−(1−p)α∆x1−p +

2ϑ+ 1− p
4α

(
1− e−(1−p)α∆

)]
µϑ,p(x) dx

=
(1− p)
α

(
1− e−α(1−p)∆

)
·
[
e−(1−p)α∆ϑ+ 1

α
+

2ϑ+ 1− p
4α

(
1− e−(1−p)α∆

)]

and hence the equation σ2(ϑ0) = v(ϑ0)
f(ϑ0)2 is valid.

We want to increase the flexibility of Σn,p using the same scheme as for Σn = Σn,−1 and

once more obtain the optimal weight

ω(ϑ,X(i−1)∆,p) :=
∂
∂ϑ E ϑ

(
X1−p
i∆,p |X(i−1)∆,p

)
Var ϑ

(
Xi∆,p |X(i−1)∆,p

)
=

1
(2ϑ+1−p)(1−p)

4α (1− e−(1−p)α∆) + (1− p)X1−p
(i−1)∆,pe

−(1−p)α∆

for the estimation function

n∑
i=1

ω(ϑ,X(i−1)∆,p)

(
X1−p
i∆,p −X

1−p
(i−1)∆,pe

−(1−p)α∆ +
2ϑ+ 1− p

2α
(e−(1−p)α∆ − 1)

)
,

cf. (2.4). As before, we cannot explicitly derive the estimator as a solution of

n∑
i=1

1
(2ϑ+1−p)(1−p)

4α (1− e−(1−p)α∆) + (1− p)X1−p
(i−1)∆,pe

−(1−p)α∆
·
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2 Martingale estimation functions for the Bessel process

(
X1−p
i∆,p −X

1−p
(i−1)∆,pe

−(1−p)α∆ +
2ϑ+ 1− p

2α
(e−(1−p)α∆ − 1)

)
= 0,

but we can analyze the improvement with respect to the estimator ϑ̂n,p. Using the formula

(2.4), we have to establish the finiteness of

∞∫
0

(
ω(ϑ0, X(i−1)∆,p)

∂

∂ϑ
E ϑ

(
X1−p
i∆,p |X(i−1)∆,p

))
µϑ0(x) dx

=

∞∫
0

1
(2ϑ0+1−p)(1−p)

4 + (1−p)e−(1−p)α∆

α(1−e−(1−p)α∆)
X1−p

(i−1)∆,p

µϑ0(x) dx

<
4

(2ϑ0 + 1− p)(1− p)
,

the reciprocal of the asymptotic variance, to achieve consistency and asymptotic normality.

Comparing this result to the limit

lim
α∆→∞

σ2(ϑ0) = lim
α∆→∞

(1− p)(ϑ0 + 1)e−(1−p)α∆

1− e−(1−p)α∆
+

(2ϑ0 + 1− p)(1− p)
4

=
(2ϑ0 + 1− p)(1− p)

4
,

we recognize a fast convergence to the asymptotic variance’s lower bound of the optimal

estimator. This result resembling the case of the Bessel process justifies the restriction to

the explicit estimator ϑ̂n,p from a practical point of view.

2.4 Estimator based on two and more eigenfunctions

Now, we turn back to the modified Bessel process and try to improve the asymptotic vari-

ance further by considering martingale estimation functions based on two eigenfunctions.

Yet, this approach suffers from the drawback that we do not get explicit results for the

estimators anymore, but we do for the asymptotic variance at least for weights depending

only on the unknown parameter.

As in the previous sections we start with a class of martingale estimation functions with
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2.4 Estimator based on two and more eigenfunctions

weight depending on the unknown parameter only. We consider

Gn,2(ϑ) :=
n∑
i=1

2∑
j=1

ωj(ϑ)
(
ϕj(Xi∆,ϑ)− e−λj(ϑ)∆ϕj(X(i−1)∆, ϑ)

)
,

where ω1 and ω2 are continuously differentiable functions only depending on ϑ.3 Under

suitable conditions on the interaction between the weights ωi and the eigenfunctions, we

can easily achieve a consistent and asymptotically normal estimator.

Theorem 2.11: If for every ϑ ∈ Θ

f(ω1, ω2, ϑ) := ω1(ϑ)
1− e−2α∆

ϑ+ 1
+ ω2(ϑ)

1− e−4α∆

(ϑ+ 1)(ϑ+ 2)
6= 0

is satisfied, then there exists a solution of Gn,2(ϑ̂n,2) = 0 with a probability tending to

one as n→∞ under Pϑ0 . Furthermore, for every true value ϑ0 ∈ Θ ⊂ (−1
2 ,∞) we have

(i) lim
n→∞

ϑ̂n,2 = ϑ0 in probability and

(ii) lim
n→∞

√
n(ϑ̂n,2 − ϑ0) = N

(
0, v(ω1,ω2,ϑ0)

f2(ω1,ω2,ϑ0)

)
in distribution

under Pϑ0 with

v(ω1, ω2, ϑ0) := ω2
1(ϑ0)

1− e−4α∆

ϑ0 + 1
+ ω2

2(ϑ0)
2− 2e−8α∆

(ϑ0 + 1)(ϑ0 + 2)
.

Proof: As by the assumption f(·, ·, ϑ) 6= 0 for every ϑ ∈ Θ, we conclude ω1(ϑ) 6= 0 or

ω2(ϑ) 6= 0 and consequently v(·, ·, ϑ) 6= 0 for every ϑ ∈ Θ. Using again Theorem 2.2, we

only have to establish the formulas of f and v given in Condition 2.5. In our calculations

below we need the following straightforward properties

(a) Qϑ∆ symmetric,

(b)
∞∫
0

ϕ1(x, ϑ)ϕ2(x, ϑ)µϑ(x) dx = 0,

(c)
∞∫
0

ϕj(x, ϑ)µϑ(x) dx = 0 for j = 1, 2,

3In the last section, we considered Gn,p. Here, Gn,2 is not meant to be the special case p = 2. To
distinguish these two estimators, we could alternatively writeGn,1,p to emphasize that one eigenfunction

is considered and accordingly name the estimator ϑ̂n,1,p. Since we are examining these estimators in
different sections, we leave it this way to simplify the notations.
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2 Martingale estimation functions for the Bessel process

(d)
∞∫
0

x2ηµϑ(x) dx =
(ϑ+1)η
αη for η ∈ N.

Statement (d) was proved in Corollary 1.5. Furthermore, we verify

∞∫
0

ϕ1(x, ϑ)µϑ(x) dx =

∞∫
0

(
1− αx2

ϑ+ 1

)
µϑ(x) dx

(d)
= 1− α

ϑ+ 1
· ϑ+ 1

α
= 0,

∞∫
0

ϕ2(x, ϑ)µϑ(x) dx =

∞∫
0

(
1− 2

αx2

ϑ+ 1
+

α2x4

(ϑ+ 1)(ϑ+ 2)

)
µϑ(x) dx

(d)
= 1− 2 + 1 = 0

and

∞∫
0

ϕ1(x, ϑ)ϕ2(x, ϑ)µϑ(x) dx =

∞∫
0

ϕ2(x, ϑ)µϑ(x) dx−
∞∫

0

αx2

ϑ+ 1
ϕ2(x, ϑ)µϑ(x) dx

(c)
=

∫ ∞
0

(
− αx2

ϑ+ 1
+ 2

α2x4

(ϑ+ 1)2
− α3x6

(ϑ+ 1)2(ϑ+ 2)

)
µϑ(x) dx

(d)
= −1 +

2(ϑ+ 2)

ϑ+ 1
− ϑ+ 3

ϑ+ 1
= 0.

Step 1: We separate the proof into two steps. Looking at the definition

f(ω1, ω2, ϑ) :=
2∑
i=1

∞∫
0

∞∫
0

ωi(ϑ)
∂

∂ϑ

(
ϕi(x, ϑ)− e−2α∆ϕi(y, ϑ)

)
Qϑ∆( dx, dy)

in Condition 2.5, the first step is to obtain the explicit expression given in Theorem 2.11.

We can easily calculate the two summands

∞∫
0

∞∫
0

ω1(ϑ)
∂

∂ϑ

(
ϕ1(x, ϑ)− e−2α∆ϕ1(y, ϑ)

)
Qϑ∆( dx, dy)

(a)
= ω1(ϑ)

(
1− e−2α∆

) ∞∫
0

∞∫
0

∂

∂ϑ
ϕ1(x, ϑ)Qϑ∆( dx, dy)

(2.2)
= ω1(ϑ)

(
1− e−2α∆

) ∞∫
0

∞∫
0

αx2

(ϑ+ 1)2
pϑ(∆, x, y)µϑ(x) dx dy
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2.4 Estimator based on two and more eigenfunctions

= ω1(ϑ)
(
1− e−2α∆

) ∞∫
0

∞∫
0

pϑ(∆, x, y) dy

︸ ︷︷ ︸
=1

αx2

(ϑ+ 1)2
µϑ(x) dx

= ω1(ϑ)
(
1− e−2α∆

) ∞∫
0

αx2

(ϑ+ 1)2
µϑ(x) dx

(d)
= ω1(ϑ)

1− e−2α∆

ϑ+ 1

and similarly

∞∫
0

∞∫
0

ω2(ϑ)
∂

∂ϑ

(
ϕ2(x, ϑ)− e−4α∆ϕ2(y, ϑ)

)
Qϑ∆( dx, dy)

(a)
= ω2(ϑ)

(
1− e−4α∆

) ∞∫
0

∂

∂ϑ
ϕ2(x, ϑ)µϑ(x) dx

= ω2(ϑ)
(
1− e−4α∆

) ∞∫
0

∂

∂ϑ

(
1− 2

αx2

ϑ+ 1
+

α2x4

(ϑ+ 1)(ϑ+ 2)

)
µϑ(x) dx

= ω2(ϑ)
(
1− e−4α∆

) ∞∫
0

(
2α

(ϑ+ 1)2
x2 − (2ϑ+ 3)α2

(ϑ+ 1)2(ϑ+ 2)2
x4

)
µϑ(x) dx

(d)
= ω2(ϑ)

(
1− e−4α∆

)( 2

ϑ+ 1
− 2ϑ+ 3

(ϑ+ 1)(ϑ+ 2)

)
= ω2(ϑ)

1− e−4α∆

(ϑ+ 1)(ϑ+ 2)
.

Step 2: According to Condition 2.5, we receive

v(ϑ) =
2∑

i,j=1

ωi(ϑ)ωj(ϑ)ωij(ϑ)

with

ωij(ϑ) :=

∞∫
0

∞∫
0

(
ϕi(y, ϑ)− e−λi∆ϕi(x, ϑ)

)
·
(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
Q∆( dx, dy).

In the following, we explicitly compute these integrals, starting with ω11. If we take a look
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2 Martingale estimation functions for the Bessel process

at the proof of Theorem 2.7, we recognize the already calculated value

ω11(ϑ) =

∞∫
0

∞∫
0

(
1− αy2

ϑ+ 1
− e−2α∆

(
1− αx2

ϑ+ 1

))2

Q∆( dx, dy) =
1− e−4α∆

ϑ+ 1
.

For the next term ω12(ϑ) = ω21(ϑ), it holds

∞∫
0

∞∫
0

(
ϕ1(y, ϑ)− e−2α∆ϕ1(x, ϑ)

)
·
(
ϕ2(y, ϑ)− e−4α∆ϕ2(x, ϑ)

)
Q∆( dx, dy)

(a)
=
(
1 + e−6α∆

) ∞∫
0

ϕ1(x, ϑ)ϕ2(x, ϑ)µϑ(x) dx

− (e−2α∆ + e−4α∆)

∞∫
0

∞∫
0

ϕ1(y, ϑ)ϕ2(x, ϑ)Q∆( dx, dy)

(b)
= −(e−2α∆ + e−4α∆)

∞∫
0

∞∫
0

ϕ1(y, ϑ)ϕ2(x, ϑ)Q∆( dx, dy)

= −(e−2α∆ + e−4α∆)

∞∫
0

∞∫
0

(
1− αy2

ϑ+ 1

)
pϑ(∆, x, y) dyϕ2(x, ϑ)µϑ(x) dx

(c)
= (e−2α∆ + e−4α∆)

∞∫
0

α

ϑ+ 1
E ϑ(X2

∆ |X0 = x)ϕ2(x, ϑ)µϑ(x) dx

1.9
= (e−2α∆ + e−4α∆)

∞∫
0

(
α

ϑ+ 1
x2e−2α∆ + 1− e−2α∆

)
ϕ2(x, ϑ)µϑ(x) dx

(c)
=
α(e−4α∆ + e−6α∆)

ϑ+ 1

∞∫
0

x2ϕ2(x, ϑ)µϑ(x) dx

=
α(e−4α∆ + e−6α∆)

ϑ+ 1

∞∫
0

(
x2 − 2αx4

ϑ+ 1
+

α2x6

(ϑ+ 1)(ϑ+ 2)

)
µϑ(x) dx

(d)
=
e−4α∆ + e−6α∆

ϑ+ 1

[
ϑ+ 1− 2(ϑ+ 2) + ϑ+ 3

]
= 0
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2.4 Estimator based on two and more eigenfunctions

and similarly we obtain for ω22(ϑ)

∞∫
0

∞∫
0

(
ϕ2(y, ϑ)− e−4α∆ϕ2(x, ϑ)

)2
Q∆( dx, dy)

(a)
= (1 + e−8α∆)

∞∫
0

ϕ2
2(x, ϑ)µϑ(x) dx− 2e−4α∆

∞∫
0

∞∫
0

ϕ2(x, ϑ)ϕ2(y, ϑ)Q∆( dx, dy)

!
=

2− 2e−8α∆

(ϑ+ 1)(ϑ+ 2)
.

For the last equation we verify the two integrals separately

∞∫
0

∞∫
0

ϕ2(x, ϑ)ϕ2(y, ϑ)Q∆( dx, dy)

=

∞∫
0

(
1− 2α

ϑ+ 1
x2 +

α2

(ϑ+ 1)(ϑ+ 2)
x4

)
ϕ2(x, ϑ)pϑ(∆, x, y)µϑ(x) dy dx

(c)
= − 2α

ϑ+ 1

∞∫
0

E ϑ(X2
∆ |X0 = x)ϕ2(x, ϑ)µϑ(x) dx

+
α2

(ϑ+ 1)(ϑ+ 2)

∞∫
0

E ϑ(X4
∆ |X0 = x)ϕ2(x, ϑ)µϑ(x) dx. (2.12)

We contemplate

∞∫
0

E ϑ(X2
∆ |X0 = x)ϕ2(x, ϑ)µϑ(x) dx

1.9
=

∞∫
0

(
x2e−2α∆ − ϑ+ 1

α
(e−2α∆ − 1)

)
ϕ2(x, ϑ)µϑ(x) dx

(c)
= e−2α∆

∞∫
0

x2ϕ2(x, ϑ)µϑ(x) dx
s.a.
= 0

and if we directly omit in the integral (2.12) the summand of

E ϑ

(
X4

∆ |X0 = x
)

= e−4α∆x4 +
1

α

(
1− e−2α∆

) [
(2ϑ+ 4)e−2α∆x2
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+
(ϑ+ 1)(ϑ+ 2)

2α

(
1− e−2α(t−t0)

)]
,

which is independent of x, cf. Example 1.9, we obtain

∞∫
0

E ϑ(X4
∆ |X0 = x)ϕ2(x, ϑ)µϑ(x) dx

(c)
=

2ϑ+ 4

α

(
e−2α∆ − e−4α∆

) ∞∫
0

x2ϕ2(x, ϑ)µϑ(x) dx+ e−4α∆

∞∫
0

x4ϕ2(x, ϑ)µϑ(x) dx

s.a.
= e−4α∆

∞∫
0

x4ϕ2(x, ϑ)µϑ(x) dx

= e−4α∆

∞∫
0

x4

(
1− 2αx2

ϑ+ 1
+

α2x4

(ϑ+ 1)(ϑ+ 2)

)
µϑ(x) dx

(d)
=
e−4α∆

α2

[
(ϑ+ 1)(ϑ+ 2)− 2(ϑ+ �2)(ϑ+ 3) + (ϑ+ 3)(ϑ+ �4)

]
=
e−4α∆

α2

[
ϑ2 + 3ϑ+ 2− ϑ(ϑ+ 3)

]
=

2e−4α∆

α2
.

Consequently, we have

∞∫
0

∞∫
0

ϕ2(x, ϑ)ϕ2(y, ϑ)Q∆( dx, dy) = − 2α

ϑ+ 1
· 0 +

α2

(ϑ+ 1)(ϑ+ 2)
· 2e−4α∆

α2

=
2e−4α∆

(ϑ+ 1)(ϑ+ 2)
.

Therefore, we are left with the task of calculating

∞∫
0

ϕ2
2(x, ϑ)µϑ(x) dx =

∞∫
0

ϕ2(x)
(
2ϕ1(x)− 2ϕ1(x) + ϕ2(x)

)
µϑ(x) dx

(b)
=

∞∫
0

ϕ2(x)
(
− 2ϕ1(x) + ϕ2(x)

)
µϑ(x) dx

=

∞∫
0

ϕ2(x)

(
−1 +

α2x4

(ϑ+ 1)(ϑ+ 2)

)
µϑ(x) dx
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(c)
=

α2

(ϑ+ 1)(ϑ+ 2)

∞∫
0

x4ϕ2(x)µϑ(x) dx

s.a.
=

α2

(ϑ+ 1)(ϑ+ 2)
· 2

α2
=

2

(ϑ+ 1)(ϑ+ 2)
.

Ultimately, we receive

ω22(ϑ) =
(
1 + e−8α∆

) 2

(ϑ+ 1)(ϑ+ 2)
− 2e−4α∆ 2e−4α∆

(ϑ+ 1)(ϑ+ 2)

=
1− 2e−8α∆

(ϑ+ 1)(ϑ+ 2)
.

Our aim is now to find the ωi’s which lead to the smallest asymptotic variance as α∆→∞.

Therefore, we define for fixed ϑ ∈ Θ the approximating functions

ṽ(ω1, ω2) :=
ω2

1(ϑ)

ϑ+ 1
+

2ω2
2(ϑ)

(ϑ+ 1)(ϑ+ 2)
,

f̃(ω1, ω2) :=
ω1(ϑ)

ϑ+ 1
+

ω2(ϑ)

(ϑ+ 1)(ϑ+ 2)
,

for which

lim
α∆→∞

∣∣∣∣∣ v(ϑ)

f2(ϑ)
− ṽ(ϑ)

f̃2(ϑ)

∣∣∣∣∣ = 0

holds. This property justifies the search for the global minimum of

(ω1, ω2) 7→ ṽ(ω1, ω2)

f̃2(ω1, ω2)
.

To establish the minimum we first simplify the function

ṽ(ω1, ω2)

f̃2(ω1, ω2)
=

ω2
1

ϑ+1 +
2ω2

2
(ϑ+1)(ϑ+2)(

ω1
ϑ+1 + ω2

(ϑ+1)(ϑ+2)

)2

= (ϑ+ 1)(ϑ+ 2)
(ϑ+ 2)ω2

1 + 2ω2
2(

(ϑ+ 2)ω1 + ω2

)2
=: (ϑ+ 1)(ϑ+ 2)

v̄(ω1, ω2)

f̄2(ω1, ω2)
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2 Martingale estimation functions for the Bessel process

and determine the first derivatives

∂

∂ω1

ṽ(ω1, ω2)

f̃2(ω1, ω2)
= (ϑ+ 1)(ϑ+ 2) ·

(
∂
∂ω1

v̄(ω1, ω2)
)
f̄(ω1, ω2)− 2v̄(ω1, ω2)

(
∂
∂ω1

f̄(ω1, ω2)
)

f̄3(ω1, ω2)

= (ϑ+ 1)(ϑ+ 2)·
2(ϑ+ 2)ω1 ·

(
���

��(ϑ+ 2)ω1 + ω2

)
−
(
���

��(ϑ+ 2)ω2
1 + 2ω2

2

)
· 2(ϑ+ 2)(

(ϑ+ 2)ω1 + ω2

)3
= 2(ϑ+ 1)(ϑ+ 2)2 ω1ω2 − 2ω2

2(
(ϑ+ 2)ω1 + ω2

)3 ,
∂

∂ω2

ṽ(ω1, ω2)

f̃2(ω1, ω2)
= (ϑ+ 1)(ϑ+ 2)

4ω2

(
(ϑ+ 2)ω1 +��ω2

)
− 2
(
(ϑ+ 2)ω2

1 +�
�2ω2
2

)
· 1(

(ϑ+ 2)ω1 + ω2

)3
= 2(ϑ+ 1)(ϑ+ 2)2 2ω1ω2 − ω2

1(
(ϑ+ 2)ω1 + ω2

)3 .
Taking into account the properties of the ωi’s in Theorem 2.11, we get as possible minima

ω1 = 2ω2 6= 0 with value

ṽ(2ω2, ω2)

f̃2(2ω2, ω2)
=

2(ϑ+ 1)(ϑ+ 2)

2ϑ+ 5
.

In order to check if we indeed have minima, we consider ω1 6= 2ω2 and see

ṽ(ω1, ω2)

f̃2(ω1, ω2)
− 2(ϑ+ 1)(ϑ+ 2)

2ϑ+ 5
= (ϑ+ 1)(ϑ+ 2)

(
(2ϑ+ 5)(ϑ+ 2)ω2

1 + 2(2ϑ+ 5)ω2
2

(2ϑ+ 5)
(
(ϑ+ 2)ω1 + ω2

)2
−2(ϑ+ 2)2ω2

1 + 4(ϑ+ 2)ω1ω2 + 2ω2
2

(2ϑ+ 5)
(
(ϑ+ 2)ω1 + ω2

)2
)

= (ϑ+ 1)(ϑ+ 2)
(ϑ+ 2)ω2

1 − 4(ϑ+ 2)ω1ω2 + 2(2ϑ+ 4)ω2
2

(2ϑ+ 5)
(
(ϑ+ 2)ω1 + ω2

)2
= (ϑ+ 1)(ϑ+ 2)2 ω2

1 − 4ω1ω2 + 4ω2
2

(2ϑ+ 5)
(
(ϑ+ 2)ω1 + ω2

)2
= (ϑ+ 1)(ϑ+ 2)2 (ω1 − 2ω2)2

(2ϑ+ 5)
(
(ϑ+ 2)ω1 + ω2

)2 > 0.

Hence, these critical points are global minima. Finally, we may specify the improvement

of the asymptotic variance

ϑ+ 1− 2(ϑ+ 1)(ϑ+ 2)

2ϑ+ 5
= (ϑ+ 1)

2ϑ+ 5− 2(ϑ+ 2)

2ϑ+ 5
=

ϑ+ 1

2ϑ+ 5
> 0
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2.4 Estimator based on two and more eigenfunctions

if we consider the asymptotic behaviour α∆ → ∞. Hence, we see that the relative im-

provement in comparison to ϑ + 1, the bound of the asymptotic variance in the case of

only one eigenfunction, is 1
2ϑ+5 and decreases as ϑ increases. However, for the boundary

case ϑ = −1
2 , we get an improvement of 25%. Recalling that the Euclidean norm of a

Dunkl process equals a Bessel process, we still preserve an improvement of 20% in case

ϑ = 0, which for a Dunkl process separates between finite and infinite jump activity.

In Figure 2.2, the asymptotic information, the reciprocal of the asymptotic variance, is

visualized for various ϑ. We can distinctly see that especially for α∆ ≥ 1 not only the

absolute, but also the relative improvement decreases significantly with increasing ϑ.
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0.5
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Figure 2.2: Comparison of the asymptotic information from Theorem 2.7 (solid line) to
the one from Theorem 2.11 (dashed line) for ω1 = 2 and ω2 = 1.

As a second step we may consider weights which also depend on the observations. Note that

though we may determine the optimal weights as solutions to a system of linear equations

with coefficients depending on higher order conditional moments, which is theoretically

feasible, we cannot provide an explicit result for the optimal asymptotic variance. Hence,

we are not able to quantify the improvement compared to the simpler weights before.

If we take into account weights ω?j that additionally depend on the trajectories, that is if
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2 Martingale estimation functions for the Bessel process

we consider estimation functions

n∑
i=1

2∑
j=1

ω?j (X(i−1)∆, ϑ)
(
φj(Xi∆, ϑ)− e−λj∆φj(x, ϑ)

)
,

the optimal weights are specified in (2.7) by an equation(
u11 u12

u12 u22

)(
ω?1
ω?2

)
=

(
v1

v2

)
.

Now, we evaluate the elements of this matrix. By means of the calculations from Sec-

tion 2.2, we recognize

ϕ1(y, ϑ)− e−2α∆ϕ1(x, ϑ) = − α

ϑ+ 1

(
y2 − E ϑ

(
X2

∆ |X0 = x
))
,

which implies

u11(x, ϑ) = E ϑ

((
ϕ1(X∆, ϑ)− e−2α∆ϕ1(x, ϑ)

)2 |X0 = x
)

=
α2

(ϑ+ 1)2
E ϑ

((
X2

∆ − E ϑ(X2
∆ |x = x)

)2 |X0 = x
)

=
α2

(ϑ+ 1)2
Var ϑ

(
X2

∆ |X0 = x
)

1.9
=

(1− e−2α∆)2

ϑ+ 1
+

2αx2

(ϑ+ 1)2

(
e−2α∆ − e−4α∆

)
.

Using Lemma 2.4, we evaluate

u22(x, ϑ) = E ϑ

((
ϕ2(X∆, ϑ)− e−4α∆ϕ2(x, ϑ)

)2 |X0 = x
)

2.4
= E ϑ

((
ϕ2(X∆, ϑ)− E ϑ(ϕ2(X∆, ϑ) |X0 = x)

)2 |X0 = x
)

= E ϑ

([
α2

(ϑ+ 1)(ϑ+ 2)

(
X4

∆ − E ϑ(X4
∆ |X0 = x)

)
− 2α

ϑ+ 1

(
X2

∆ − E ϑ(X2
∆ |X0 = x)

)]2 ∣∣∣X0 = x

)
=

α4

(ϑ+ 1)2(ϑ+ 2)2
Var ϑ

(
X4

∆ |X0 = x
)

+
4α2

(ϑ+ 1)2
Var ϑ

(
X2

∆ |X0 = x
)

− 4α3

(ϑ+ 1)2(ϑ+ 2)

(
E ϑ

(
X6

∆ |X0 = x
)
− E ϑ

(
X4

∆ |X0 = x
)
E ϑ

(
X2

∆ |X0 = x
))
.
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2.4 Estimator based on two and more eigenfunctions

and similarly

u12(x, ϑ) = E ϑ

((
ϕ1(X∆, ϑ)− e−2α∆ϕ1(x, ϑ)

)(
ϕ2(X∆, ϑ)− e−4α∆ϕ2(x, ϑ)

)
|X0 = x

)
2.4
= − α3

(ϑ+ 1)2(ϑ+ 2)
E ϑ

((
X2

∆ − E ϑ(X2
∆ |X0 = x)

)(
X4

∆ − E ϑ(X4
∆ |X0 = x)

)
|X0 = x

)
+

2α2

(ϑ+ 1)2
E ϑ

((
X2

∆ − E ϑ(X2
∆ |X0 = x)

)2 |X0 = x
)

= − α3

(ϑ+ 1)2(ϑ+ 2)

(
E ϑ(X6

∆ |X0 = x)− E ϑ(X2
∆ |X0 = x)E ϑ(X4

∆ |X0 = x)
)

+
2α2

(ϑ+ 1)2
Var ϑ(X2

∆ |X0 = x).

All these conditional expectations within the matrix can be calculated but this notation

is more concise. We can easily work out

v1(x, ϑ) = −E ϑ

(
∂

∂ϑ

[
ϕ1(X∆, ϑ)− e−2α∆ϕ1(x, ϑ)

] ∣∣∣X0 = x

)
= −E ϑ

(
∂

∂ϑ

[
1− α

ϑ+ 1
X2

∆ − e−2α∆
(

1− α

ϑ+ 1
x2
)] ∣∣∣X0 = x

)
= − α

(ϑ+ 1)
E ϑ

(
X2

∆ − e−2α∆x2
∣∣X0 = x

)
= − α

(ϑ+ 1)2

(
E ϑ

(
X2

∆ |X0 = x
)
− e−2α∆x2

)
1.9
= − α

ϑ+ 1

(
x2e−2α∆ − ϑ+ 1

α

(
e−2α∆ − 1

)
− e−2α∆x2

)
= −1− e−2α∆

ϑ+ 1

and

v2(x, ϑ) = −E ϑ

(
∂

∂ϑ

[
ϕ2(X∆, ϑ)− e−4α∆ϕ2(x, ϑ)

] ∣∣∣X0 = x

)
= −E ϑ

(
∂

∂ϑ

[
1− 2α

ϑ+ 1
X2

∆ +
1

(ϑ+ 1)(ϑ+ 2)
X4

∆

− e−4α∆
(

1− 2α

ϑ+ 1
x2 +

α2

(ϑ+ 1)(ϑ+ 2)
x4
)] ∣∣∣X0 = x

)
= − 2α

(ϑ+ 1)2

(
E ϑ(X2

∆ |X0 = x)− e−4α∆x2
)
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2 Martingale estimation functions for the Bessel process

+
(2ϑ+ 3)α2

(ϑ+ 1)2(ϑ+ 2)2

(
E ϑ(X4

∆ |X0 = x)− e−4α∆x4
)

1.9
= − 2α

(ϑ+ 1)2

(
e−2α∆x2 − e−4α∆x2 +

ϑ+ 1

α

(
1− e−2α∆

))
+

(2ϑ+ 3)α2

(ϑ+ 1)2(ϑ+ 2)2
·
(
1− e−2α∆

)
α

(
2(ϑ+ 2)e−2α∆x2 +

(ϑ+ 1)(ϑ+ 2)

2α

(
1− e−2α∆

))
=

2α

(ϑ+ 1)2

(
e−2α∆ − e−4α∆

)
x2
(
− 1 +

2ϑ+ 3

ϑ+ 2

)
− 1− e−2α∆

ϑ+ 1

(
2− 2ϑ+ 3

2(ϑ+ 2)

(
1− e−2α∆

))
=
e−2α∆ − e−4α∆

(ϑ+ 1)(ϑ+ 2)

(
2αx2 − 2ϑ+ 3

2

)
− 1− e−2α∆

2(ϑ+ 1)(ϑ+ 2)

(
2ϑ+ 5

)
.

From these formulas, we can determine the optimal weights, which we omit for the sake

of simplicity.

Finally, we examine the martingale estimation function that incorporates m eigenfunctions

ϕj and weights ωj depending on the parameter of interest:

Gn,m(ϑ) :=

n∑
i=1

m∑
j=1

ωj(ϑ)
(
ϕj(Xi∆,ϑ)− e−λj(ϑ)∆ϕj(X(i−1)∆, ϑ)

)
.

With the consideration of up to two eigenfunctions, we could simply determine the values

of the asymptotic variance when the weights ωj are independent of the trajectories. In

the following, we notice that we can still calculate the associated asymptotic variance for

all m, but this requires computing E
(
X2η

∆ |X0 = x
)

for all η = 1, ...,m.

Theorem 2.12: Assuming that the weights ωj are bounded and continuously differen-

tiable with bounded derivative for every j = 1, . . . ,m such that

fm(ω1, . . . , ωm, ϑ) :=
m∑
l=1

( l∑
j=1

ωj(ϑ)
(
1− e−λj∆

)
(−j)l

) ∂
∂ϑ(ϑ+ 1)l

l!(ϑ+ 1)l

does not vanish at ϑ0, there exists a solution of

Gn,m(ϑ̂n,m) = 0

with a probability tending to one as n→∞ under Pϑ0 such that

(i) lim
n→∞

ϑ̂n,m = ϑ0 in probability,
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2.4 Estimator based on two and more eigenfunctions

(ii) lim
n→∞

√
n(ϑ̂n,m − ϑ0) = N

(
0, vm(ω1,...,ωm,ϑ0)

f2
m(ω1,...,ωm,ϑ0)

)
in distribution

under Pϑ0 with

vm(ω1, . . . , ωm, ϑ) :=
m∑
i=1

m∑
j=1

ωj(ϑ)ωi(ϑ)νij(ϑ)

and

νjj(ϑ) :=
(
1 + e−2λj∆

) ∞∫
0

(
ϕj(x, ϑ))2µϑ(x) dx

− 2e−λj∆
j∑
l=0

(−j)lαl

(ϑ+ 1)ll!

∞∫
0

ϕj(x, ϑ)E ϑ

(
X2l

∆ |X0 = x
)
µϑ(x) dx,

νij(ϑ) :=−
(
e−λi∆ + e−λj∆

) j∑
l=0

(−j)lαl

(ϑ+ 1)ll!

∞∫
0

ϕi(x, ϑ)E ϑ

(
X2l

∆ |X0 = x
)
µϑ(x) dx

for 1 ≤ i 6= j ≤ m.

Remark: Due to the symmetry νij = νji it is enough to calculate νij for i < j.

Proof: We again verify (i) to (iv) of Condition 2.5. For the notation we recall Section 2.1:

g(x, y, ϑ) :=
m∑
j=1

gj(x, y, ϑ)

:=
m∑
j=1

ωj(ϑ)
(
ϕj(y, ϑ)− e−λj(ϑ)∆ϕj(x, ϑ)

)
.

First, gj(x, y, ·) is obviously continuously differentiable on Θ for every x, y ≥ 0 as the

sum of products of a polynomial and a continuously differentiable function which ensures

Condition 2.5 (i). Next, we need the boundedness with respect to ϑ of ∂
∂ϑg(x, y, ϑ). For

this purpose, we take a closer look at the eigenfunctions

ϕj(x, ϑ) =

j∑
l=0

(−j)l
(ϑ+ 1)ll!

(αx2)l.
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2 Martingale estimation functions for the Bessel process

The parameter ϑ appears here only in the term 1
(ϑ+1)l

. Owing to the condition on the

weights, we confine the boundedness of ∂
∂ϑg(x, y, ϑ) to showing that ∂

∂ϑ
1

(ϑ+1)l
is bounded,

which we prove by induction.

The initial case l = 1

∂

∂ϑ

1

ϑ+ 1
=

1

(ϑ+ 1)2
<

1(
1
2

)2 = 4

is trivial and thus we can assume there exists an l ∈ N such that∣∣∣∣ ∂∂ϑ 1

(ϑ+ 1)l

∣∣∣∣ ≤ Cl
holds. The induction step follows immediately:∣∣∣∣ ∂∂ϑ 1

(ϑ+ 1)l+1

∣∣∣∣ =

∣∣∣∣ ∂∂ϑ 1

(ϑ+ 1)l(ϑ+ l + 1)

∣∣∣∣
=

∣∣∣∣( ∂

∂ϑ

1

(ϑ+ 1)l

)
· 1

ϑ+ l + 1
+

1

(ϑ+ 1)l
· ∂
∂ϑ

1

ϑ+ l + 1

∣∣∣∣
=

∣∣∣∣( ∂

∂ϑ

1

(ϑ+ 1)l

)
· 1

ϑ+ l + 1
− 1

(ϑ+ 1)l(ϑ+ l + 1)2

∣∣∣∣
≤ Cl

l + 1
2

+
1(

1
2

)
l

(
l + 1

2

)2 =: Cl+1.

For the above inequality, note that (ϑ + 1)l is a polynomial in ϑ + 1 > 1
2 with positive

coefficients and thus monotonically increasing which means

0 <
1

(ϑ+ 1)l
<

1(
1
2

)
l

for every ϑ > −1
2 and l ∈ N.

For the verification of Condition 2.5 (iii) we check

fm(ω1, . . . , ωm, ϑ)
!

=

m∑
j=1

∞∫
0

∞∫
0

ωj(ϑ)
∂

∂ϑ

(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
Qϑ∆( dx, dy).
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2.4 Estimator based on two and more eigenfunctions

By using the symmetry of Qϑ∆ and straight forward calculations we derive

m∑
j=1

∞∫
0

∞∫
0

ωj(ϑ)
∂

∂ϑ

(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
Qϑ∆( dx, dy)

=
m∑
j=1

ωj(ϑ)
(
1− e−λj∆

) ∞∫
0

∞∫
0

(
∂

∂ϑ
ϕj(x, ϑ)

)
Qϑ∆( dx, dy)

(2.2)
=

m∑
j=1

ωj(ϑ)
(
1− e−λj∆

) ∞∫
0

∞∫
0

pϑ(∆, x, y) dy

︸ ︷︷ ︸
=1

(
∂

∂ϑ
ϕj(x, ϑ)

)
µϑ(x) dx

=
m∑
j=1

ωj(ϑ)
(
1− e−λj∆

) ∞∫
0

(
∂

∂ϑ
ϕj(x, ϑ)

)
µϑ(x) dx

2.6
=

m∑
j=1

ωj(ϑ)
(
1− e−λj∆

) ∞∫
0

j∑
l=0

(
∂

∂ϑ

(−j)l
(ϑ+ 1)ll!

)
(αx2)lµϑ(x) dx

=

m∑
j=1

ωj(ϑ)
(
1− e−λj∆

) j∑
l=0

(
∂

∂ϑ

(−j)l
(ϑ+ 1)ll!

) ∞∫
0

(αx2)lµϑ(x) dx

1.5
=

m∑
j=1

ωj(ϑ)
(
1− e−λj∆

) j∑
l=0

(
∂

∂ϑ

(−j)l
(ϑ+ 1)ll!

)
(ϑ+ 1)l

=
m∑
j=1

ωj(ϑ)
(
1− e−λj∆

) j∑
l=0

(−j)l
∂
∂ϑ(ϑ+ 1)l

(ϑ+ 1)ll!

=
m∑
l=1

( l∑
j=1

ωj(ϑ)
(
1− e−λj∆

)
(−j)l

) ∂
∂ϑ(ϑ+ 1)l

l!(ϑ+ 1)l
= fm(ω1, . . . , ωm, ϑ).

Finally, Condition 2.5 (iv) is obviously true, that is, the finiteness of vm(ω1, . . . , ωm, ϑ0).

We are left with the task of verifying the formula

νij(ϑ)
!

=

∞∫
0

∞∫
0

(
ϕi(y, ϑ)− e−λi∆ϕi(x, ϑ)

)(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
Qϑ∆( dx, dy).

Using the symmetry of Qϑ∆ and that pϑ(∆, x, ·) is a probability measure leads to

∞∫
0

∞∫
0

(
ϕi(y, ϑ)− e−λi∆ϕi(x, ϑ)

)(
ϕj(y, ϑ)− e−λj∆ϕj(x, ϑ)

)
Qϑ∆( dx, dy)
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2 Martingale estimation functions for the Bessel process

=
(
1 + e−(λi+λj)∆

) ∞∫
0

ϕi(x, ϑ)ϕj(x, ϑ)µϑ(x) dx

−
(
e−λi∆ + e−λj∆

) ∞∫
0

∞∫
0

ϕi(x, ϑ)ϕj(y, ϑ)Qϑ∆( dx, dy).

The integral

∞∫
0

ϕi(x, ϑ)ϕj(x, ϑ)µϑ(x) dx

vanishes for i 6= j, cf. [55, 15.13 The Spectral Representation of the Transition Density

for a Diffusion. Eq. (13.9)]. Next, we derive

∞∫
0

∞∫
0

ϕi(x, ϑ)ϕj(y, ϑ)Qϑ∆( dx, dy) =

∞∫
0

∞∫
0

ϕi(x, ϑ)

j∑
l=0

(−j)l
(ϑ+ 1)ll!

(αy2)lQϑ∆( dx, dy)

(2.2)
=

j∑
l=0

(−j)lαl

(ϑ+ 1)ll!

∞∫
0

ϕi(x, ϑ)

∞∫
0

y2lpϑ(∆, x, y) dy

︸ ︷︷ ︸
=E ϑ(X2l

∆ |X0=x)

µϑ(x) dx

=

j∑
l=0

(−j)lαl

(ϑ+ 1)ll!

∞∫
0

ϕi(x, ϑ)E ϑ

(
X2l

∆ |X0 = x
)
µϑ(x) dx,

which completes the proof.

Considering a Dunkl process (Ξt)t≥0, we can transfer this result as well to estimate the sum

of multiplicities κ. For this purpose we set (Xt)t≥0 :=
(
e−αt

∥∥Ξ exp(2αt)
2α

∥∥)
t≥0

to receive a

modified Bessel process with index ϑ = κ+ N
2 − 1. Under the conditions of Theorem 2.12

and for the corresponding observations of the Dunkl process there exists the estimator

ϑ̂n,m with a probability tending to one as n→∞ under Pk0 . We can define

κ̂n,m := ϑ̂n,m −
N

2
+ 1

for which we have

(i) lim
n→∞

κ̂n,m = κ0 in probability,
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2.4 Estimator based on two and more eigenfunctions

(ii) lim
n→∞

√
n(κ̂n,m − κ0) = N

(
0,

vm
(
ω1,...,ωm,κ0+N

2
−1
)

f2
m

(
ω1,...,ωm,κ0+N

2
−1
)) in distribution

under Pk0,R, with the functions and conditions specified as in Theorem 2.12. Analogous

to Section 2.2, similar results hold for

N̂n,m := 2ϑ̂n,m − 2κ+ 2.

In each of these results concerning the Dunkl process, the process can be replaced by the

corresponding multivariate Bessel process since these processes have the same Euclidean

norm.
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2 Martingale estimation functions for the Bessel process
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3 Estimation of the Cox-Ingersoll-Ross

process under high-frequency sampling

In Chapter 2 we investigated martingale estimation functions for a stationary version of

the classical Bessel process. These estimators depend only on the square of this process,

a Cox-Ingersoll-Ross process with parameter θ = (2ϑ + 2, 2α, 4), see Example 1.9. We

already estimated the first parameter at low frequency data. Furthermore, we presented

a martingale estimator for a modified polynomial process as well, whose (1 − p)th power

is a Cox-Ingersoll-Ross process. Accordingly, in the specific case p = 0, the modified

polynomial process is itself a Cox-Ingersoll-Ross process. We now focus immediately on

the Cox-Ingersoll-Ross process and estimate all three parameters at high-frequency data.

The content of this chapter is partially incorporated in the paper

Estimation of ergodic square-root diffusion under high-frequency sampling

Econometrics and Statistics Article Number: 346 (2022)

Yuzhong Cheng, Nicole Hufnagel, Hiroki Masuda.

Yuzhong Cheng wrote his master’s thesis based on this cooperation, [20]. The simulations

are available through the yuima package in R, cf. [45, 46].

3.1 Gaussian quasi-likelihood function and existing results for

the Cox-Ingersoll-Ross process

In this section we present a classical method from statistics applied to stochastic processes:

the Gaussian quasi-likelihood method. This method is another alternative to the maximum

likelihood estimator, such as in the previous chapter, when the density is unknown or too

complicated.
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3 Estimation of the Cox-Ingersoll-Ross process under high-frequency sampling

We consider observations Zt0 , . . . , Ztn of a stochastic process (Zt)t≥0 depending on a pa-

rameter of interest θ ∈ Θ ⊂ Rd. For a Gaussian approximation, we assume that the

conditional mean as well as the conditional variance are known, that is,

µj−1(θ) := E (Ztj |Ztj−1),

σ2
j−1(θ) := Var (Ztj |Ztj−1) := E

(
(Ztj − µj−1(θ))2 |Ztj−1

)
.

(3.1)

The Gaussian quasi-likelihood function (GQLF) is then defined by

Hn(θ) :=

n∑
j=1

log
(
φ
(
Ztj , µj−1(θ), σ2

j−1(θ)
) )
.

This estimation function looks similar to the log likelihood function. The only difference

is that we approximate the density function by the Gaussian density φ(·, µ,Σ) with mean

vector µ and covariance matrix Σ. The Gaussian quasi-maximum likelihood estimator

(GQMLE) is any

θ̂n ∈ argmax
Θ

Hn.

The existence and properties will be discussed later in our specific setting. It is well-known

that the GQLF works effectively for uniformly elliptic diffusions with coefficients smooth

enough, see [58, 88]. Even when the diffusion coefficients are not uniformly elliptic, it is

quite often assumed that the inverse of the diffusion coefficients can be bounded above

by a constant multiple of the function 1 + |x|C for some C > 0. In the following, we will

deal with a process that does not satisfy any of these properties but nevertheless receive

asymptotic efficiency using the GQMLE.

We now recall the diffusion introduced in Section 1.5, that is, the Cox-Ingersoll-Ross

process satisfying the stochastic differential equation{
dZt = (α− βZt) dt+

√
γZt dBt,

Z0 = z0 > 0,
(3.2)

where (Bt)t≥0 is a Brownian motion. The parameter of interest is

θ := (α, β, γ) ∈ Θ ⊂ (0,∞)3.

Through this chapter, we assume the process to be stationary, in formulas Z0 ∼ πθ,

where πθ is the invariant measure specified in Section 1.5. For simplicity, we regard only
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3.1 Gaussian quasi-likelihood function and existing results for the Cox-Ingersoll-Ross process

equidistant times tj = jh and consider high frequency data, in formulas h = hn → 0 and

Tn := nh → ∞ when n → ∞. As mentioned in Section 1.5, the origin is non-attracting

for 2α > γ. Here, we assume an even stronger property that the parameter space Θ is a

bounded convex domain satisfying

Θ ⊂
{

(α, β, γ) ∈ (0,∞)3 : 2α > 5γ
}
. (3.3)

This choice of the parameters is important for the application of Lemma 1.8 within our

proofs later. We then have 2 < 1
2

(
2α
γ − 1

)
, hence in particular Lemma 1.8 (iii) holds for

p = 1, 2, respectively Lemma 1.8 (iv) works for every p ≤ 5.

Recalling the parameters of the modified polynomial process in Chapter 2, we recognize

that its (1− p)th power is a Cox-Ingersoll-Ross process with parameter

θ =

(
1− p

2
(2ϑ+ 1− p), α(1− p), (1− p)2

)
,

where the condition on the right-hand side of (3.3) is fulfilled if additionally ϑ > 2(1− p)
holds. Especially, we can apply the following results in this chapter on the modified

polynomial process and in particular on the modified Bessel process, case p = −1.

Next, we specify the GQLF for the Cox-Ingersoll-Ross model. Therefore, we recall the

conditional mean and the conditional variance from Lemma 1.7:

µj−1(α, β) = e−βhZtj−1 +
α

β

(
1− e−βh

)
, (3.4)

σ2
j−1(θ) =

γ

β

(
1− e−βh

)[
e−βhZtj−1 +

α

2β

(
1− e−βh

)]
. (3.5)

In particular, the conditional mean is independent of the diffusion parameter γ. Using

these expressions we receive as GQLF:

Hn(θ) =
n∑
j=1

log
(
φ
(
Ztj , µj−1(α, β), σ2

j−1(θ)
) )

= −n log
(√

2π
)
− 1

2

n∑
j=1

(
log σ2

j−1(θ) +
1

σ2
j−1(θ)

(
Ztj − µj−1(α, β)

)2)

= −n log
(√

2π
)
− 1

2

n∑
j=1

log

(
γ

β

(
1− e−βh

)[
e−βhZtj−1 +

α

2β

(
1− e−βh

)])
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3 Estimation of the Cox-Ingersoll-Ross process under high-frequency sampling

− 1

2

n∑
j=1

(
Ztj − e−βhZtj−1 − α

β

(
1− e−βh

))2

γ
β (1− e−βh)

[
e−βhZtj−1 + α

2β

(
1− e−βh

)] . (3.6)

Then, the GQMLE

θ̂n =
(
α̂n, β̂n, γ̂n

)
∈ argmax

Θ

Hn (3.7)

exists obviously since Θ is compact and Hn is continuous. As we lack the uniform ellipticity

condition for the present model (3.2), we need to take care of the irregularity of the diffusion

coefficient when proving moment bounds and basic limit theorems. The GQMLE θ̂n cannot

be given in a closed form because of its nonlinearity in the parameters. It is well-known,

see Section 1.5, that the Cox-Ingersoll-Ross process has a noncentral chi-squared transition

density and hence is far from being Gaussian. Nevertheless, this local approximation seems

natural since the driving noise is Gaussian.

However, as in [72, Section 3], we will first introduce the explicit initial estimator θ̂0,n =(
α̂0,n, β̂0,n, γ̂0,n

)
, defined below, since it is easily derivable. Its asymptotics are rather

similar [72], even though we need to take care of some moment bounds in the present

high-frequency setup.

First, we look at the drift parameter (α, β). We introduce the conditional least-squares

estimator (α̂0,n, β̂0,n) defined to be a maximizer of

H1,n(α, β) := −
n∑
j=1

(
Ztj − µj−1(α, β)

)2
= −

n∑
j=1

(
Ztj − e−βhZtj−1 −

α

β

(
1− e−βh

))2
,

which uses only the conditional mean µj−1 so that we receive an estimation function

independent of γ.

Lemma 3.1: The least-squares estimator is given by

α̂0,n :=
Zn − e−β̂0,nhZ

′
n

1− e−β̂0,nh
β̂0,n,

β̂0,n := −1

h
log


n∑
j=1

(
Ztj−1 − Z

′
n

)(
Ztj − Zn

)
n∑
j=1

(
Ztj−1 − Z

′
n

)2

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3.1 Gaussian quasi-likelihood function and existing results for the Cox-Ingersoll-Ross process

with Zn := 1
n

n∑
j=1

Ztj and Z
′
n := 1

n

n∑
j=1

Ztj−1 .

Proof: Initially, we identify all critical points by calculating

∂

∂α
H1,n(α, β) =

2
(
1− e−βh

)
β

n∑
j=1

(
Ztj − e−βhZtj−1 −

α

β

(
1− e−βh

))
which is zero only for

α0(β) =
β

1− e−βh
· 1

n

n∑
j=1

(
Ztj − e−βhZtj−1

)
=
Zn − e−βhZ

′
n

1− e−βh
β. (3.8)

Due to the definitions we directly see

n∑
j=1

(
Ztj − Zn

)
= 0,

n∑
j=1

(
Ztj−1 − Z

′
n

)
= 0,

(3.9)

which we will often use in the following to specify the value of β such that

∇H1,n

(
α0(β), β

)
= 0 holds.4 Therefore, we derive

∂

∂β
H1,n(α, β)

∣∣∣
α=α0(β)

= −2
n∑
j=1

(
Ztj − e−βhZtj−1 −

α0(β)

β

(
1− e−βh

))
·
(
he−βhZtj−1 − α0(β)

e−βh
(
βh+ 1− e−βh

)
β2

)
(3.8)
= −2

n∑
j=1

(
Ztj − e−βhZtj−1 −

(
Zn − e−βhZ

′
n

))
·
(
he−βhZtj−1 − α0(β)

e−βh
(
βh+ 1− e−βh

)
β2

)
(3.9)
= −2he−βh

n∑
j=1

(
Ztj − Zn − e−βh

(
Ztj−1 − Z

′
n

))
Ztj−1 .

4In this chapter we use the notation 0 for the multidimensional origin.
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3 Estimation of the Cox-Ingersoll-Ross process under high-frequency sampling

Since the factor 2he−βh is positive, the term is zero only if

e−βh =

n∑
j=1

Ztj−1

(
Ztj − Zn

)
n∑
j=1

Ztj−1

(
Ztj−1 − Z

′
n

)
(3.9)
=

n∑
j=1

(
Ztj−1 − Z

′
n

)(
Ztj − Zn

)
n∑
j=1

(
Ztj−1 − Z

′
n

)2
leading to the closed forms of α̂0,n and β̂0,n specified in the statement. Now, we verify

that the Hessian matrix is negative-definite:

∂2

∂α2
H1,n

(
α̂0,n, β̂0,n

)
= −2n

(
1− e−β̂0,nh

)2
β̂2

0,n

< 0.

Furthermore, we require

∂2

∂α∂β
H1,n

(
α̂0,n, β̂0,n

)
=

∂

∂β

(
∂

∂α
H1,n

(
α̂0,n, β̂0,n

))
=

∂

∂β

(
2
(
1− e−βh

)
β

n∑
j=1

(
Ztj − e−βhZtj−1 −

α

β

(
1− e−βh

)))∣∣∣∣∣
(α,β)=(α̂0,n,β̂0,n)

=

(
∂

∂β

1− e−βh

β

)∣∣∣∣∣
β=β̂0,n

· β̂0,n

1− e−β̂0,nh

∂

∂α
H1,n

(
α̂0,n, β̂0,n

)
︸ ︷︷ ︸

=0

+
2
(
1− e−β̂0,nh

)
β̂0,n

n∑
j=1

(
he−β̂0,nhZtj−1 − α̂0,n

e−β̂0,nh
(
β̂0,nh+ 1− e−β̂0,nh

)
β̂2

0,n

)

=
2n
(
1− e−β̂0,nh

)
β̂0,n

e−β̂0,nh

(
hZ
′
n −

α̂0,n

(
β̂0,nh+ 1− e−β̂0,nh

)
β̂2

0,n

)

and

∂2

∂β2
H1,n

(
α̂0,n, β̂0,n

)
= −2

∂

∂β

( n∑
j=1

(
Ztj − e−βhZtj−1 −

α̂0,n

β

(
1− e−βh

))
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3.1 Gaussian quasi-likelihood function and existing results for the Cox-Ingersoll-Ross process

·
(
he−βhZtj−1 − α̂0,n

e−βh
(
βh+ 1− e−βh

)
β2

))∣∣∣∣
(α,β)=(α̂0,n,β̂0,n)

= −2

n∑
j=1

(
he−β̂0,nhZtj−1 − α̂0,n

e−β̂0,nh
(
β̂0,nh+ 1− e−β̂0,nh

)
β̂2

0,n

)2

− 2
n∑
j=1

(
Ztj − e−β̂0,nhZtj−1 −

α̂0,n

β̂0,n

(
1− e−β̂0,nh

))2

·
(
− h2e−β̂0,nhZtj−1 − α̂0,n

e−β̂0,nh
(
− β̂0,nh

2 − 2β̂0,nh+ 2eβ̂0,nh − 2
)

β̂3
0,n

)

= −2e−2β̂0,nh
n∑
j=1

(
hZtj−1 − α̂0,n

β̂0,nh+ 1− e−β̂0,nh

β̂2
0,n

)2

= −2e−2β̂0,nh

( n∑
j=1

h2Z2
tj−1
− 2nα̂0,n

β̂0,nh+ 1− e−β̂0,nh

β̂2
0,n

hZ
′
n

+ nα̂2
0,n

(
β̂0,nh+ 1− e−β̂0,nh

)2
β̂4

0,n

)
.

The second-last equality is valid since ∇H1,n

(
α̂0,n, β̂0,n

)
= 0. To obtain the determinant

of the Hessian matrix we calculate(
∂2

∂α∂β
H1,n

(
α̂0,n, β̂0,n

))2

=
4n2
(
1− e−β̂0,nh

)2
β̂2

0,n

e−2β̂0,nh

(
hZ
′
n −

α̂0,n

(
β̂0,nh+ 1− e−β̂0,nh

)
β̂2

0,n

)2

=
4n2
(
1− e−β̂0,nh

)2
β̂2

0,n

e−2β̂0,nh

(
h2
(
Z
′
n

)2 − 2α̂0,n
β̂0,nh+ 1− e−β̂0,nh

β̂2
0,n

hX
′
n

+ α̂2
0,n

(
β̂0,nh+ 1− e−β̂0,nh

)2
β̂4

0,n

)

and conclude with the Cauchy-Schwarz inequality:(
∂2

∂α2
H1,n

(
α̂0,n, β̂0,n

))( ∂2

∂β2
H1,n

(
α̂0,n, β̂0,n

))
−
(

∂2

∂α∂β
H1,n

(
α̂0,n, β̂0,n

))2

= 4h2

(
1− e−β̂0,nh

)2
β̂2

0,n

e−2β̂0,nh

(
n

n∑
j=1

Z2
tj−1
−
(
Z
′
n

)2)
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= 4h2

(
1− e−β̂0,nh

)2
β̂2

0,n

e−2β̂0,nh

[
n

n∑
j=1

Z2
tj−1
−
( n∑
j=1

Ztj−1

)2]

≥ 4h2

(
1− e−β̂0,nh

)2
β̂2

0,n

e−2β̂0,nh(n− 1)
n∑
j=1

Z2
tj−1

> 0.

Hence, the Hessian matrix is negative definite and we indeed have a local maximum. Since

the function Hn is continuously differentiable on R2 and we have just this critical point, it

is indeed a global maximum. Otherwise, if there exists another point where the function

has a greater value we would get a saddle point using mountain pass theorem, see [7] and

[9, Theorem 5]. This would be a contradiction since we do not have a saddle point.

For the estimation of the diffusion parameter γ, we substitute (α̂0,n, β̂0,n) into (α, β) in

the GQLF (3.6) and denote the resulting function by H2,n(γ):

H2,n(γ) := Hn

(
α̂0,n, β̂0,n, γ

)
=

n∑
j=1

log φ
(
Ztj , µj−1(α̂0,n, β̂0,n), σ2

j−1(α̂0,n, β̂0,n, γ)
)

= −n log
(√

2π
)
− 1

2

n∑
j=1

(
log σ2

j−1(α̂0,n, β̂0,n, γ)

+
1

σ2
j−1(α̂0,n, β̂0,n, γ)

(
Ztj − µj−1(α̂0,n, β̂0,n)

)2)
.

We are looking for a maximizer here as well. Via the representation of σ2
j−1, see (3.5), we

immediately recognize

∂
∂γσ

2
j−1(α, β, γ)

σ2
j−1(α, β, γ)

=
1

γ

and deduce

∂

∂γ
H2,n(γ) = − n

2γ
+

1

2γ

n∑
j=1

1

σ2
j−1(α̂0,n, β̂0,n, γ)

(
Ztj − µj−1(α̂0,n, β̂0,n)

)2
,

which is zero only for

γ̂0,n :=
1

n

n∑
j=1

(
Ztj − µj−1(α̂0,n, β̂0,n)

)2
1

β̂0,n

(
1− e−β̂0,nh

) (
e−β̂0,nhZtj−1 +

α̂0,n

2β̂0,n

(
1− e−β̂0,nh

)) . (3.10)
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Moreover, we derive

∂2

∂γ2
H2,n(γ̂0,n) =

n

2γ̂2
0,n

− 1

γ̂2
0,n

n∑
j=1

1

σ2
j−1(α̂0,n, β̂0,n, γ̂0,n)

(
Ztj − µj−1(α̂0,n, β̂0,n)

)2
=

n

2γ̂2
0,n

− 2

γ̂0,n

(
∂

∂γ
H2,n(γ̂0,n) +

n

2γ̂0,n

)
=

n

2γ̂2
0,n

− n

γ̂2
0,n

= − n

2γ̂2
0,n

< 0,

so that (3.10) is a local maximum of H2,n. Additionally, lim
γ→∞

H2,n(γ) = −∞ due to

lim
γ→∞

σ2
j−1(α, β, γ) = ∞ and similarly lim

γ→0
H2,n(γ) = −∞ leads to a global maximum of

H2,n.

Raymond J. Carroll and David Ruppert call this a pseudo-likelihood method, see [18,

3.2 Pseudo-likelihood estimation of variance functions]. Next, we examine the asymptotic

behaviour of the estimator θ̂0,n = (α̂0,n, β̂0,n, γ̂0,n). In [72], although this estimator is

introduced, asymptotic normality is shown only for the preliminary estimator (α̂0,n, β̂0,n).

We do not show asymptotic normality below since we do not need this for our results,

which overall leads to a different proof than one finds therein. For the asymptotic proof

we will apply the delta method, [86, p. 73].

Theorem 3.2: Given random variables (Xn)n∈N and X with values in R2, a function

g : R2 → R2 differentiable in a and a real sequence (cn)n∈N satisfying lim
n→∞

cn =∞, then

from

lim
n→∞

cn(Xn − a) = X

in distribution follows

lim
n→∞

cn
(
g(Xn)− g(a)

)
=
(
Dg(a)

)>
X

in distribution, where D denotes the total differential.

For the following proof, we introduce some Landau symbols for a random variable ζn. We

write ζn = Op(rn) for some positive sequence rn > 0 if lim sup
n→∞

|r−1
n ζn| <∞ in distribution

and ζn = op(rn) if lim
n→∞

r−1
n ζn(θ) = 0 in distribution, respectively. In case of a vector or

matrix the notation should be understood component-wise. Furthermore, we define the
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rate of convergence

Dn : = diag
(√

Tn,
√
Tn,
√
n
)

= diag
(√
nh,
√
nh,
√
n
)
.

(3.11)

Lemma 3.3: For every true parameter θ0 ∈ Θ the asymptotic

Dn
(
θ̂0,n − θ0

)
= Op(1)

holds.

Proof: Step 1: We initially verify
√
nh
(
β̂0,n − β0, α̂0,n − α0

)
= Op(1). We specify ρ :=

(α, β) ∈ Θρ ⊂ (0,∞)2 with Θρ denoting the parameter space of ρ and ρ̂0,n := (α̂0,n, β̂0,n).

First, we want to rewrite the function H1,n in a compact way. Therefore, we define a few

objects:

V (ρ) = V (α, β) :=

(
e−βh

α
β

(
1− e−βh

)) , zj−1 :=
(
Ztj−1 , 1

)
such that

zj−1V (ρ) = µj−1(ρ)

holds and by setting zn := (z0, . . . , zn−1)> and yn := (Zt1 , . . . , Ztn)> we receive

H1,n(ρ) = −‖yn − znV (ρ)‖2.

The corresponding estimating equation ∇H1,n = 0 is equivalent to

0 = ∇VH1,n = ∇V
(
− ‖yn‖2 + 2〈yn, znV 〉 − ‖znV ‖2

)
= ∇V

(
− ‖yn‖2 + 2

〈
z>n yn, V

〉
− V >z>n znV

)
= 2
(
z>n yn

)> − 2V >z>n zn

= 2
(
z>n yn

)> − 2
(
z>n znV

)>
.

The known solution V̂n := V (ρ̂0,n), see Lemma 3.1, is due to this new expression also given
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by V (ρ̂0,n) = (z>n zn)−1z>n yn. Using Lemma 1.8 (iii) we notice

lim
n→∞

1

n
z>n zn = lim

n→∞


1
n

n∑
j=1

Z2
tj

1
n

n∑
j=1

Ztj

1
n

n∑
j=1

Ztj 1

 =


∞∫
0

z2πθ0(z) dz
∞∫
0

zπθ0(z) dz

∞∫
0

zπθ0(z) dz 1


1.6
=

(
α0(2α0+γ0)

2β2
0

α0
β0

α0
β0

1

)
. (3.12)

In particular, the determinant of this matrix is

α0(2α0 + γ0)

2β2
0

− α2
0

β2
0

=
α0γ0

2β2
0

> 0.

By (1.10), we have

yn = znV (ρ0) +Mn, (3.13)

where Mn =
(
Mn,1, . . . ,Mn,n

)>
is defined by

Mn,j := γ0

tj∫
tj−1

e−(tj−s)β0
√
Zs dBs

and fulfills

sup
n∈N

sup
1≤j≤n

E
(∣∣∣h− 1

2Mn,j

∣∣∣q) ≤ sup
n∈N

sup
1≤j≤n

E
(∣∣∣h−1

[
Mn,j

]∣∣∣ q2)

= sup
n∈N

sup
1≤j≤n

E

((
h−1γ2

0

tj∫
tj−1

e−2(tj−s)β0Zs ds

) q
2

)

= sup
n∈N

sup
1≤j≤n

∞∫
0

(
h−1γ2

0

tj∫
tj−1

e−2(tj−s)β0z ds

) q
2

πθ0(z) dz

= sup
n∈N

sup
1≤j≤n

(
γ2

0

1− e−2hβ0

2hβ0

) q
2
∞∫

0

z
q
2πθ0(z) dz

1.6
= sup

n∈N
sup

1≤j≤n

(
γ2

0

1− e−2hβ0

2hβ0

) q
2 Γ
(

1
2 + 2α

γ

)
Γ
(

2α
γ

) √
γ

2β
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≤ γq0
Γ
(

1
2 + 2α

γ

)
Γ
(

2α
γ

) √
γ

2β
<∞

for every q > 0 due to Burkholder inequality in the first line and mean value theo-

rem in the last line, which implies e−x−e−y
y−x ≤ 1 for every 0 ≤ x < y. By an analo-

gous calculation, we again receive the finiteness by replacing Mn,j with Mn,jZtj−1 . Since{(
h−

1
2Mn,jzj−1,Ftj

)}
1≤j≤n forms a martingale-difference array satisfying

sup
n∈N

sup
1≤j≤n

E
(∣∣∣h− 1

2Mn,jzj−1

∣∣∣q) ≤ sup
n∈N

sup
1≤j≤n

bqc∑
k=0

(
q

k

)
E
(∣∣∣h− 1

2Mn,j

∣∣∣q +
∣∣∣h− 1

2Mn,jZtj−1

∣∣∣q)
<∞

for every q > 0 due to the triangle inequality and the binomial theorem, we conclude√
n

h

(
V (ρ̂0,n)− V (ρ0)

)
=

√
n

h

(
(z>n zn)−1z>n yn − V (ρ0)

)
(3.13)

=

√
n

h

(
(z>n zn)−1z>n

(
znV (ρ0) +Mn

)
− V (ρ0)

)
=

(
1

n
z>n zn

)−1 1√
n

n∑
j=1

h−
1
2Mn,jzj−1

(3.12)
= Op(1).

We apply the delta method, Theorem 3.2, on the function (x, y) 7→ (log x, y), reminding

V (ρ) =
(
e−βh, αβ

(
1− e−βh

))>
, to obtain

√
n

h

(
(−β̂0,nh)− (−β0h),

α̂0,nh

β̂0,nh
(1− e−β̂0,nh)− α0h

β0h
(1− e−β0h)

)
= Op(1).

Another application of the delta method with the function (x, y) 7→ ( xy
ex−1 ,−x) yields

Op(1) =

√
n

h

(
−β̂0,nh

α̂0,n

β̂0,n

· 1− e−β̂0,nh

e−β̂0,nh − 1
+ β0h

α0

β0
· 1− e−β0h

e−β0h − 1
, β̂0,nh− β0h

)

=

√
n

h

(
α̂0,nh− α0h, β̂0,nh− β0h

)
=
√
nh
(
α̂0,n − α0, β̂0,n − β0

)
.

Step 2: Next, we verify
√
n(γ̂0,n − γ0) = Op(1). Before proceeding to the proof, we make
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3.1 Gaussian quasi-likelihood function and existing results for the Cox-Ingersoll-Ross process

a few remarks on the notation. To emphasize the independence of γ, we introduce

c(z, ρ) = γ−1σ2(z, θ), (3.14)

where σ2(z, θ) is defined by (3.5), replacing Ztj−1 by z and µ(z, ρ) by (3.4) accordingly.

In what follows, we use µj−1(ρ) := µ(Ztj−1 , ρ), σ2
j−1(ρ) := σ2(Ztj−1 , θ) and cj−1(ρ) :=

c(Ztj−1 , ρ) for a shorter notation. We recall

√
n(γ̂0,n − γ0)

(3.5)
=

(3.10)

1√
n

n∑
j=1

((
Ztj − µj−1(ρ̂0,n)

)2
cj−1(ρ̂0,n)

− γ0

)

and split this expression in four summands which we will analyze separately:

G1,n(ρ) :=
1√
n

n∑
j=1

2
µj−1(ρ0)− µj−1(ρ)

cj−1(ρ)

(
Ztj − µj−1(ρ0)

)
,

G2,n(ρ) :=
1√
n

n∑
j=1

(
Ztj − µj−1(ρ0)

)2 − γcj−1(ρ0)

cj−1(ρ)
,

G3,n :=
1√
n

n∑
j=1

(
µj−1(ρ0)− µj−1(ρ̂0,n)

)2
cj−1(ρ̂0,n)

,

G4,n :=
1√
n

n∑
j=1

γ0

(
cj−1(ρ0)− cj−1(ρ̂0,n)

)
cj−1(ρ̂0,n)

=
1√
n

n∑
j=1

γ0

(
cj−1(ρ0)

cj−1(ρ̂0,n)
− 1

)
.

We can easily see

G2,n(ρ̂0,n) +G4,n =
1√
n

n∑
j=1

((
Ztj − µj−1(ρ0)

)2
cj−1(ρ̂0,n)

− γ0

)

and for the sum over the numerators with common denominator cj−1(ρ̂0,n) we observe

(
Ztj − µj−1(ρ0)

)2︸ ︷︷ ︸
from G2,n(ρ̂0,n)+G4,n

+ 2
(
Ztj − µj−1(ρ0)

)
·
(
µj−1(ρ0)− µj−1(ρ̂0,n)

)︸ ︷︷ ︸
from G1,n(ρ̂0,n)

+
(
µj−1(ρ0)− µj−1(ρ̂0,n)

)2︸ ︷︷ ︸
from G3,n

=
(
Z2
tj−1
−
���

���2µj−1(ρ)Ztj +���
��µ2

j−1(ρ0)
)

+
(
((((

(((2Ztjµj−1(ρ0)− 2Ztjµj−1(ρ̂0,n)−���
��2µ2

j−1(ρ0)

+
((((

(((
(((

2µj−1(ρ̂0,n)µj−1(ρ0)
)

+
(
���

��µ2
j−1(ρ0)−

((((
(((

(((
2µj−1(ρ0)µj−1(ρ̂0,n) + µ2

j−1(ρ̂0,n)
)

=
(
Ztj − µj−1(ρ̂0,n)

)2
,
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which implies

√
n(γ̂0,n − γ0) =

1√
n

n∑
j=1

((
Ztj − µj−1(ρ̂0,n)

)2
cj−1(ρ̂0,n)

− γ0

)
= G1,n(ρ̂0,n) +G2,n(ρ̂0,n) +G3,n +G4,n.

In the following, we use the notation an . bn if sup
{
an
bn
|n ∈ N

}
is almost surely bounded

by some universal constant. We start to bound G3,n and G4,n. For both we notice that

0 ≤ h

cj−1(ρ̂0,n)

(3.5)
=

β̂0,nh(
1− e−β̂0,nh

)[
e−β̂0,nhZtj−1 +

α̂0,n

2β̂0,n

(
1− e−β̂0,nh

)]
≤ β̂0,nh(

e−β̂0,nh − e−2β̂0,nh
)
Ztj−1

=
1

e−ξn,hZtj−1

for some ξn,h ∈ (β̂0,nh, 2β̂0,nh) ⊂ (0,∞) due to the mean value theorem. In particular,

ξn,h → 0 almost surely for nh→∞ while h→ 0 and hence

sup
n∈N

∣∣∣∣ h

cj−1(ρ̂0,n)

∣∣∣∣ . Z−1
tj−1

. (3.15)

Therefore, we conclude

|G3,n| ≤
1√
n

n∑
j=1

∣∣∣∣ h

cj−1(ρ̂0,n)

∣∣∣∣
(
µj−1(ρ0)− µj−1(ρ̂0,n)

)2
h

.
2√
n

n∑
j=1

Z−1
tj−1

(
Z2
tj−1

(
e−β0h − e−β̂0,nh

)2
h

+
1

h

(α0

β0

(
1− e−β0h

)
− α̂0,n

β̂0,n

(
1− e−β̂0,nh

))2
)
.

The last inequality is valid since (a − b)2 ≤ 2a2 + 2b2 for every a, b ∈ R and by virtue of

(3.4). Now, we analyze the two summands separately. By the mean value theorem and

the first step, we can easily see(
e−β0h − e−β̂0,nh

)2
h

≤
(

sup
x∈(0,∞)

e−x
)2
(
β̂0,nh− β0h

)2
h
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≤ h
(
β̂0,n − β0

)2
= n−1

(√
nh(β̂0,n − β0)

)2
= n−1Op(1)

and analogously

1

h

(α0

β0

(
1− e−β0h

)
− α̂0,n

β̂0,n

(
1− e−β̂0,nh

))2

≤ 2

h

(α0

β0

(
1− e−β0h

)
− α̂0,n

β0

(
1− e−β0h

))2
+

2

h

(
α̂0,n

β0

(
1− e−β0h

)
− α̂0,n

β̂0,n

(
1− e−β̂0,nh

))2

= 2h
(
α̂0,n − α0

)2(1− e−β0h

β0h

)2

+ 2hα̂2
0,n

(
1− e−β0h

β0h
− 1− e−β̂0,nh

β̂0,n

)2

≤ 2h
(
α̂0,n − α0

)2
+ 2hα̂2

0,n sup
x∈(0,∞)

(
d

dx

1− e−x

x

)2(
β0h− β̂0,nh

)2
= 2h

(
α̂0,n − α0

)2
+ 2hα̂2

0,n

(
β0h− β̂0,nh

)2
= 2n−1

(√
nh
(
α̂0,n − α0

))2
+ 2h2n−1α̂2

0,n

(√
nh
(
β̂0,n − β0

))2

= n−1Op(1) + n−1op(1) = n−1Op(1).

In particular, the last line in the calculations follows directly by the first step whereas

the third and fourth line are again valid due to the mean value theorem. Combining the

calculations implies

∣∣G3,n

∣∣ . 1√
n

[
1

n

n∑
j=1

Ztj−1 +
1

n

n∑
j=1

Z−1
tj−1

]
Op(1)

and the terms in the brackets are Op(1) by the law of large numbers, Lemma 1.8 (iii).

Likewise, by (3.5) and the mean value theorem we derive

|G4,n|
(3.15)

.
1√
n

n∑
j=1

Z−1
tj−1

γ0

(∣∣∣∣e−β0h − e−2β0h

β0h
− e−β̂0,nh − e−2β̂0,nh

β̂0,nh

∣∣∣∣Ztj−1

+

∣∣∣∣α0

2
·
(
1− e−β0h

)2
β2

0h
− α̂0,n

2
·
(
1− e−β̂0,nh

)2
β̂2

0,nh

∣∣∣∣)

=
1√
n

n∑
j=1

Z−1
tj−1

γ0

(∣∣f ′(χn,h)
∣∣ · ∣∣β̂0,nh− β0h

∣∣Ztj−1
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+
∣∣〈∇g(ξn,h, ζn,h), h(ρ̂0,n − ρ0

)〉∣∣)

for the functions f(x) := e−x−e−2x

x and g(x, y) := x
2 ·

(1−e−y)2

y2 and some interior points χn,h

and ξn,h. Since
(
α̂0,n, β̂0,n

)
→
(
α0, β0

)
we immediately observe χn,h → 0 and

(
ξn,h, ζn,h

)
→(

0, 0
)

for n→∞. Therefore, the calculations

f ′(χn,h) =
e−2χn,h

(
2χn,h − eχn,h(χn,h + 1) + 1

)
χ2
n,h

→ 3

2
,

∇g
(
ξn,h ζn,h

)
=

 (1−e−ζn,h )
2ζ2
n,h

ξn,h
e
−2ζn,h (e

ζn,h−1)(−ζn,h+e
ζn,h−1)

ζ3
n,h

→ (
1

0

)

result in

|G4,n| .
1√
n

n∑
j=1

(
h
(
1 + Z−1

tj−1

)∣∣β̂0,n − β0

∣∣+ hZ−1
tj−1

∣∣α̂0,n − α0

∣∣)

=
√
h

(
1 +

1

n

n∑
j=1

Z−1
tj−1

)√
nh
∣∣β̂0,n − β0

∣∣+
√
h

(
1

n

n∑
j=1

Z−1
tj−1

)√
nh
∣∣α̂0,n − α0

∣∣,
which is in Op(

√
h) due to the first step and the law of large numbers, Lemma 1.8 (iii).

It remains to deduce that both Gi,n(ρ̂0,n) = Op(1) for i = 1, 2. We regard Gi,n(ρ) as

stochastic processes in C(Θρ). Since Burkholder’s inequality ensures that Gi,n(ρ) = Op(1)

for each ρ ∈ Θρ, it suffices to verify the tightness of Gi,n in C(Θρ). In view of the

Kolmogorov tightness criterion [47], it is in turn sufficient to show the moment bound

∃δ, q, C > 0 ∀ρ, ρ′ ∈ Θρ : sup
n∈N

E
(∣∣Gi,n(ρ)−Gi,n(ρ′)

∣∣q) ≤ C|ρ− ρ′|2+δ. (3.16)

We perform this calculation only for i = 1, since it is similar in the other case. We can

easily derive

sup
ρ∈Θρ

∣∣∣∇gj−1(ρ)
∣∣∣ . 1 + Z−1

tj−1
+ Z−2

tj−1
(3.17)

for the function

gj−1(ρ) = 2
µj−1(ρ0)− µj−1(ρ)

cj−1(ρ)
.
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Therefore, we simplify

µj−1(ρ)

cj−1(ρ)
=

β

1− e−βh
+

α
2β

(
1− e−βh

)
1−e−βh

β

[
e−βhZtj−1 + α

2β (1− e−βh)
]

=
β

1− e−βh
+

α

2e−βhZtj−1 + α
β (1− e−βh)

and then calculate∣∣∣∣ ∂∂α µj−1(ρ)

cj−1(ρ)

∣∣∣∣ =

∣∣∣∣1 ·
[
2e−βhZtj−1 + α

β (1− e−βh)
]
− α · 1

β (1− e−βh)(
2e−βhZtj−1 + α

β (1− e−βh)
)2 ∣∣∣∣

=
2e−βhZtj−1(

2e−βhZtj−1 + α
β (1− e−βh)

)2
≤

2e−βhZtj−1(
2e−βhZtj−1

)2
. Z−1

tj−1

and

∣∣∣∣ ∂∂β µj−1(ρ)

cj−1(ρ)

∣∣∣∣ =

∣∣∣∣− e−βh(βh+ 1)− 1

β2
−
α
[
− 2he−βhZtj−1 + α · e

−βh(βh+1)−1
β2

](
2e−βhZtj−1 + α

β (1− e−βh)
)2 ∣∣∣∣

. 1 +
2αhe−βhZtj−1(
2e−βhZtj−1

)2 +

∣∣∣∣αe−βh(βh+ 1)− 1

β2
(
2e−βhZtj−1

)2 ∣∣∣∣
. 1 + Z−1

tj−1
+ Z−2

tj−1
,

which completes the proof of (3.17). We remark here that the boundedness of Θρ is

essential. Furthermore, we derive

E
(
|Ztj − µj−1(ρ0)|q |Ztj−1

)
. E

(
|Ztj |q + |µj−1(ρ0)|q |Ztj−1

)
= E

(
|Ztj |q |Ztj−1

)
+ |µj−1(ρ0)|q

.
((

1 + Zqtj−1

)
+
(
1 + Ztj−1

)q)
.
(
1 + Ztj−1

)q
for every q > 1. In particular, the inequality of the conditional expectation in the second-

last line was proved in [6, Lemma 4.2] whereas 1 + xq ≤ (1 + x)q is valid for every x ≥ 0

due to the binomial theorem. By means of Burkholder’s and Jensen’s inequalities, we see

95



3 Estimation of the Cox-Ingersoll-Ross process under high-frequency sampling

that

sup
n∈N

E
(∣∣G1,n(ρ)−G1,n(ρ′)

∣∣q)
= sup

n∈N
E
(∣∣∣∣ 1√

n

n∑
j=1

(
gj−1(ρ)− gj−1(ρ′)

) (
Ztj − µj−1(ρ0)

)∣∣∣∣q)

. sup
n∈N

E
(∣∣∣∣ 1n

n∑
j=1

(
gj−1(ρ)− gj−1(ρ′)

)2 (
Ztj − µj−1(ρ0)

)2∣∣∣∣ q2)

. sup
n∈N

1

n
q
2

n∑
j=1

E
( ∣∣gj−1(ρ)− gj−1(ρ′)

∣∣q E (|Ztj − µj−1(ρ0)|q |Ztj−1

))

. sup
n∈N

1

n
q
2

n∑
j=1

E

(
sup
ρ∈Θρ

∣∣∣∇gj−1(ρ)
∣∣∣q(1 + Ztj−1)q

)
|ρ− ρ′|q

. sup
n∈N

1

n
q
2

n∑
j=1

E
((

1 + Z−1
tj−1

+ Z−2
tj−1

)(
1 + Ztj−1

)q) |ρ− ρ′|q
=

1

n
q
2
−1

∞∫
0

(
1 + x−1 + x−2

)(
1 + x

)q
πθ0(x) dx · |ρ− ρ′|q

. |ρ− ρ′|q.

Similarly, we can deduce (3.16) for G2,n by using

sup
ρ∈Θρ

∣∣∣∣∇ρ 1

cj−1(ρ)

∣∣∣∣ . Z−1
tj−1

+ Z−2
tj−1

,

which completes the proof of
√
n(γ̂0,n − γ0) = Op(1).

We use the preliminary estimator θ̂0,n in our following section. There, we show the asymp-

totic behavior of the GQMLE and consider one step improvements of our preliminary

estimator, which are asymptotically equivalent to the GQMLE.
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3.2 Gaussian quasi-likelihood for the Cox-Ingersoll-Ross

process

3.2.1 Asymptotics for joint Gaussian quasi-maximum likelihood estimator

The objective now is to deduce the asymptotic normality of the GQMLE θ̂n, (3.7). In

this section we use the notation ζn = O∗p(rn) if sup
θ∈Θ
|ζn(θ)| = Op(rn) and ζn = o∗p(rn),

respectively, for some positive sequence rn > 0 and a random function ζn on Θ. We omit

p if ζn is non-random.

For the proof of the asymptotic normality, we first turn to the consistency, which can be

derived similarly to [58], through applying the argmax theorem twice, see [65, Lemma 6.6].

In particular, we will often use the following argument, [34, Lemma 9].

Lemma 3.4: For a series of Gj,n := σ
(
Zs : s ≤ tj

)
-measurable random variables χj,n for

n ∈ N and j = 1, . . . , n with a random variable χ satisfying

lim
n→∞

n∑
j=1

E (χj,n | Gj−1,n) = χ,

lim
n→∞

n∑
j=1

E
(
(χj,n)2 | Gj−1,n

)
= 0

in probability we have

lim
n→∞

n∑
j=1

χj,n = χ

in probability.

Lemma 3.5: For every true value θ0 ∈ Θ

lim
n→∞

θ̂n = θ0

holds in probability.
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Proof: At first stage we define

Y1,n(γ) :=
1

n

(
Hn(ρ̂n, γ)−Hn(ρ̂n, γ0)

)
,

Y2,n(ρ) :=
1

Tn

(
Hn(ρ, γ̂n)−Hn(ρ0, γ̂n)

)
to rewrite

Hn(θ)−Hn(θ0) = nY1,n(γ) + TnY2,n(ρ).

Using the argmax theorem [65, Lemma 6.6], the consistency follows immediately if we can

find a suitable non-random function Y1,0 such that

lim
n→∞

sup
γ∈Θγ

∣∣Y1,n(γ)− Y1,0(γ)
∣∣ = 0 in probability,

argmax Y1,0 = γ0

and respectively some Y2,0 with

lim
n→∞

sup
ρ∈Θρ

∣∣Y2,n(ρ)− Y2,0(ρ)
∣∣ = 0 in probability,

argmax Y2,0 = ρ0.

Again Θρ and Θγ denote the parameter spaces of ρ and γ, respectively, so that Θ =

Θρ×Θγ . In the following, we keep the notation of the proof ofLemma 3.3 for µj−1(ρ) and

σ2
j−1(θ).

Case Y1,n: We start by rewriting:

Y1,n(γ)
(3.6)
= − 1

2n

n∑
j=1

(
log

(
σ2
j−1(ρ0, γ)

σ2
j−1(θ0)

)
+

(
Ztj − µj−1(ρ0)

)2
σ2
j−1(ρ0, γ)− σ2

j−1(θ0)

)
(3.5)
= − 1

2n

n∑
j=1

(
log

(
γ

γ0

)
+

(
1

γ
− 1

γ0

)(
Ztj − µj−1(ρ0)

)2
γ−1

0 σ2
j−1(θ0)

)

= −1

2
log

(
γ

γ0

)
− 1

2

(
γ0

γ
− 1

)
1

n

n∑
j=1

(
Ztj − µj−1(ρ0)

)2
σ2
j−1(θ0)

.
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3.2 Gaussian quasi-likelihood for the Cox-Ingersoll-Ross process

We can easily compute:

1

n

n∑
j=1

E
((

Ztj − µj−1(ρ0)
)2

σ2
j−1(θ0)

∣∣∣Ztj−1

)
= 1,

0 ≤ 1

n2

n∑
j=1

E
((

Ztj − µj−1(ρ0)
)4

σ4
j−1(θ0)

∣∣∣Ztj−1

)

=
1

n2

n∑
j=1

E
((
Ztj − µj−1(ρ0)

)4 |Ztj−1

)
γ2

0

β2
0

(
1− e−β0h

)2[
e−β0hZtj−1 + α0

2β0

(
1− e−β0h

)]2
≤ 1

n2

n∑
j=1

E
((
Ztj − µj−1(ρ0)

)4 |Ztj−1

)
γ2

0

β2
0

(
1− e−β0h

)2
e−2β0hZ2

tj−1

.

Since E
((
Ztj − µj−1(ρ0)

)4 |Ztj−1

)
is a polynomial5 in Ztj−1 , we conclude

lim
n→∞

1

n2

n∑
j=1

E
((

Ztj − µj−1(ρ0)
)4

σ4
j−1(θ0)

∣∣∣Ztj−1

)
= 0

in probability according to Lemma 1.8 (iv). Therefore, using Lemma 3.4 results in

lim
n→∞

1

n

n∑
j=1

(
Ztj − µj−1(ρ0)

)2
σ2
j−1(θ0)

= 1

in probability. By defining

Y1,0(γ) := −1

2

(
log

γ

γ0
+
γ0

γ
− 1

)
we achieve

lim
n→∞

∣∣Y1,n(γ)− Y1,0(γ)
∣∣ = 0

in probability while the function Y1,0 is maximized locally at γ0 due to

∂

∂γ
Y1,0(γ) = −1

2

(1

γ
− γ0

γ2

)
!

= 0 ⇔ γ = γ0,

∂2

∂γ2
Y1,0(γ0) = −1

2

(
− 1

γ2
+ 2

γ0

γ3

)∣∣∣
γ=γ0

= − 1

2γ2
0

< 0,

5This can be derived by solving a feasible differential equation.
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3 Estimation of the Cox-Ingersoll-Ross process under high-frequency sampling

whereas the global maximum is justified by

lim
γ→0

Y1,0(γ) = −∞,

lim
γ→∞

Y1,0(γ) = −∞.

Now, we focus on the uniform convergence of Y1,n and like in (3.16) we verify the tightness

of Y1,n. Therefore, we calculate the derivative

∣∣∣∣ ∂∂γY1,n(γ)

∣∣∣∣ =

∣∣∣∣− 1

2γ
− γ0

2γ2n

n∑
j=1

(
Ztj − µj−1(ρ0)

)2
σ2
j−1(θ0)

∣∣∣∣
=

1

2γ
+

1

2γ2n

n∑
j=1

(
Ztj − e−β0hZtj−1 + α0

β0
(1− e−β0h)

)2
1−e−β0h

β0

[
e−β0hZtj−1 + α0

2β0
(1− e−β0h)

]
≤ 1

2γ
+

1

γ2n

n∑
j=1

Z2
tj +

(
e−β0hZtj−1 − α0

β0
(1− e−β0h)

)2
α0

2β2
0
(1− e−β0h)2

.
1

2γ
+

1

γ2
· 1

n

n∑
j=1

(
Z2
tj + Z2

tj−1
+ Ztj−1 + 1

)
.

The last term has a common bound independent of γ and n ∈ N due to the parameter

assumptions (3.3) and the law of large numbers, Lemma 1.8 (iii). Thus, we obtain the

analogous formula from (3.16) using the mean value theorem.6

Case Y2,n: For the consistency of ρ̂n = (α̂n, β̂n), we introduce

Y2,n(ρ) :=
1

Tn

(
Hn(ρ, γ̂n)−Hn(ρ0, γ̂n)

)
,

Y2,0(ρ) := − 1

2γ0
(ρ− ρ0)>

∫
R

(
z−1 −1

−1 z

)
πθ0(z) dz(ρ− ρ0)

1.6
= − 1

2γ0
(ρ− ρ0)>

(
2β0

2α0−γ0
−1

−1 α0
β0

)
(ρ− ρ0).

First, we validate argmax Y2,0 = ρ0. We compute its gradient

∇Y2,0(ρ) = − 1

γ0

(
2β0

2α0−γ0
−1

−1 α0
β0

)
(ρ− ρ0)

6In the formula of (3.16) we need to replace ρ by γ and the exponent 2 + δ by 1 + δ due to a one
dimensional parameter γ.

100
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and its Hessian matrix

HY2,0(ρ) = − 1

γ0

(
2β0

2α0−γ0
−1

−1 α0
β0

)
,

which is negative definite at ρ0:

(
HY2,0(ρ0)

)
11

= − 1

γ0
· 2β0

2α0 − γ0
< 0,

det
(
HY2,0(ρ0)

)
=

1

γ2
0

( 2α0

2α0 − γ0
− 1
)
>

1

γ2
0

(2α0

2α0
− 1
)

= 0.

Hence, we get argmax Y2,0 = ρ0 since additionally Y2,n(ρ) ≤ 0 and Y2,n(ρ0) = 0 hold.

For a shorter notation we write µj−1 := µj−1(ρ0) in the following to decompose:

Y2,n(ρ)
(3.6)
= − 1

2Tn

n∑
j=1

[
log

(
σ2
j−1(ρ, γ̂n)

σ2
j−1(ρ0, γ̂n)

)
+

(
Ztj − µj−1(ρ)

)2
σ2
j−1(ρ, γ̂n)

−
(
Ztj − µj−1

)2
σ2
j−1(ρ0, γ̂n)

]

=: Y(1)
2,n(ρ)− 1

2Tn

n∑
j=1

([
σ−2
j−1(ρ, γ̂n)− σ−2

j−1(ρ0, γ̂n)
](
Ztj − µj−1

)2
+

(
Ztj − µj−1(ρ)

)2 − (Ztj − µj−1

)2
σ2
j−1(ρ, γ̂n)

)

=: Y(1)
2,n(ρ) + Y(2)

2,n(ρ)− 1

2Tn

n∑
j=1

�
�Z2
tj − 2µj−1(ρ)Ztj + µ2

j−1(ρ)−
�
�Z2
tj + 2µj−1Ztj − µ2

j−1

σ2
j−1(ρ, γ̂n)

= Y(1)
2,n(ρ) + Y(2)

2,n(ρ) +
1

Tn

n∑
j=1

µj−1(ρ)− µj−1

σ2
j−1(ρ, γ̂n)

Ztj −
1

2Tn

n∑
j=1

µ2
j−1(ρ)− µ2

j−1

σ2
j−1(ρ, γ̂n)

= Y(1)
2,n(ρ) + Y(2)

2,n(ρ) +
1

Tn

n∑
j=1

µj−1(ρ)− µj−1

σ2
j−1(ρ, γ̂n)

(
Ztj − µj−1

)
− 1

2Tn

n∑
j=1

µ2
j−1(ρ)− 2µj−1(ρ)µj−1 + µ2

j−1

σ2
j−1(ρ, γ̂n)

= Y(1)
2,n(ρ) + Y(2)

2,n(ρ) + Y(3)
2,n(ρ) + Y(4)

2,n(ρ)

with

Y(1)
2,n(ρ) := − 1

2Tn

n∑
j=1

log

(
σ2
j−1(ρ, γ̂n)

σ2
j−1(ρ0, γ̂n)

)
,
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Y(2)
2,n(ρ) := − 1

2Tn

n∑
j=1

(
σ−2
j−1(ρ, γ̂n)− σ−2

j−1(ρ0, γ̂n)
)(
Ztj − µj−1

)2
,

Y(3)
2,n(ρ) :=

1

Tn

n∑
j=1

µj−1(ρ)− µj−1

σ2
j−1(ρ, γ̂n)

(
Ztj − µj−1

)
,

Y(4)
2,n(ρ) := − 1

2Tn

n∑
j=1

(
µj−1(ρ)− µj−1

)2
σ2
j−1(ρ, γ̂n)

.

Now, we examine these terms separately. Using Taylor expansion in h around zero leads

to useful formulas:

γ−1σ2
j−1(θ) =

(
1− e−βh

)
β

[
e−βhZtj−1 +

α

2β

(
1− e−βh

)]
= hZtj−1 +

h2

2

(
α− 3βZtj−1

)
+ h3R1(ρ, Ztj−1),

(3.18)

(
γ−1σ2

j−1(θ)

h

)−1

=
1

(1−e−βh)
βh

[
e−βhZtj−1 + α

2β (1− e−βh)
]

= Z−1
tj−1

+ h

(
3β

2
Z−1
tj−1
− α

2
Z−2
tj−1

)
+ h2R2(ρ, Ztj−1).

(3.19)

In particular, the remainder R1 is a polynomial in Ztj−1 of degree one and the remainder

R2 a polynomial in Z−1
tj−1

, which are important for the application of Lemma 1.8 (iii). For

Y(1)
2,n, we combine taylor expansion of the logarithm and Lemma 1.8 (iii) to achieve

−2Y(1)
2,n(ρ) =

1

Tn

n∑
j=1

log

(
σ2
j−1(ρ, γ̂n)

σ2
j−1(ρ0, γ̂n)

)
(3.18)

=
1

Tn

n∑
j=1

log

(
hZtj−1 + h2

2

(
α− 3βZtj−1

)
+ h3R1(ρ, Ztj−1)

hZtj−1 + h2

2

(
α0 − 3β0Ztj−1

)
+ h3R1(ρ0, Ztj−1)

)

=
1

Tn

[ n∑
j=1

log

(
1 + h

(α
2
Z−1
tj−1
− 3β

2

)
+ h2Z−1

tj−1
R1(ρ, Ztj−1)

)

−
n∑
j=1

log

(
1 + h

(α0

2
Z−1
tj−1
− 3β0

2

)
+ h2Z−1

tj−1
R1(ρ0, Ztj−1)

)]

=
1

Tn

[ n∑
j=1

(
h
(α

2
Z−1
tj−1
− 3β

2

)
+ h2R̃1(ρ, Ztj−1)

)
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−
n∑
j=1

(
h
(α0

2
Z−1
tj−1
− 3β0

2

)
+ h2R̃1(ρ0, Ztj−1)

)]

=
1

n

n∑
j=1

((α
2
Z−1
tj−1
− 3β

2

)
−
(α0

2
Z−1
tj−1
− 3β0

2

))
+O∗p(h)

n→∞→
∞∫

0

(
α

2
z−1 − 3β

2

)
−
(
α0

2
z−1 − 3β0

2

)
πθ0(z) dz

in probability. For Y(2)
2,n we derive

1

Tn

n∑
j=1

E
((
γ̂−1
n σ−2

j−1(ρ, γ̂n)− γ̂−1
n σ−2

j−1(ρ0, γ̂n)
)(
Ztj − µj−1

)2 ∣∣Ztj−1

)
=

1

Tn

n∑
j=1

(
γ̂−1
n σ−2

j−1(ρ, γ̂n)− γ̂−1
n σ−2

j−1(ρ0, γ̂n)
)
E
((
Ztj − µj−1

)2 ∣∣Ztj−1

)
=

1

Tn

n∑
j=1

(
γ̂−1
n σ−2

j−1(ρ, γ̂n)− γ̂−1
n σ−2

j−1(ρ0, γ̂n)
)
σ2
j−1(σ0)

(3.18)
=

γ0

Tn

n∑
j=1

(
hγ̂−1

n σ−2
j−1(ρ, γ̂n)− hγ̂−1

n σ−2
j−1(ρ0, γ̂n)

)(
Ztj−1 + hR̃1(ρ0, Ztj−1)

)
(3.19)

=
γ0

Tn

n∑
j=1

[
h

(
3β

2
Z−1
tj−1
− α

2
Z−2
tj−1

)
− h
(3β0

2
Z−1
tj−1
− α0

2
Z−2
tj−1

)]
Ztj−1 +O∗p(h)

=
γ0

n

n∑
j=1

[(
3β

2
− α

2
Z−1
tj−1

)
−
(

3β0

2
− α0

2
Z−1
tj−1

)]
+O∗p(h)

n→∞→
∞∫

0

γ0

(
3β

2
− α

2
z−1

)
− γ0

(
3β0

2
− α0

2
z−1

)
πθ0(z) dz

in probability, where the last line is valid by virtue of Lemma 1.8 (iii) and by a similar

argument we conclude

lim
n→∞

1

T 2
n

n∑
j=1

E
((
γ̂−1
n σ−2

j−1(ρ, γ̂n)− γ̂−1
n σ−2

j−1(ρ0, γ̂n)
)2(

Ztj − µj−1

)4 ∣∣∣Ztj−1

)
= 0

in probability. Combining lim
n→∞

γ̂n = γ0 with Lemma 3.4 we conclude

lim
n→∞

(
Y(1)

2,n(ρ) + Y(2)
2,n(ρ)

)
= 0
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in probability. By using again Lemma 3.4 we can easily derive lim
n→∞

Y(3)
2,n(ρ) = 0 in proba-

bility. For this purpose, we specify

1

Tn

n∑
j=1

E
(
µj−1(ρ)− µj−1

σ2
j−1(ρ, γ̂n)

(
Ztj − µj−1

) ∣∣∣Ztj−1

)
= 0

and

1

T 2
n

n∑
j=1

E
((

µj−1(ρ)− µj−1

)2
σ4
j−1(ρ, γ̂n)

(
Ztj − µj−1

)2 ∣∣∣Ztj−1

)

=
1

T 2
n

n∑
j=1

(
µj−1(ρ)− µj−1

)2
σ2
j−1(ρ, γ̂n)

·
σ2
j−1(θ0)

σ2
j−1(ρ, γ̂n)

(3.5)
=

(3.19)

1

T 2
n

n∑
j=1

(
µj−1(ρ)− µj−1

)2 1

hγ̂n
Ztj−1 ·

γ0

γ̂n
+O∗p(h)

=
1

T 2
n

n∑
j=1

((
α− βZtj−1

)
h−

(
α0 − β0Ztj−1

)
h
)2 1

hγ̂n
Z−1
tj−1

γ0

γ̂n
+O∗p(h)

=
γ0

γ̂2
n

1

nTn

n∑
j=1

((
α− βZtj−1

)
−
(
α0 − β0Ztj−1

))2
Z−1
tj−1

+O∗p(h)
n→∞→ 0

in probability. The last line is justified by Lemma 1.8 (iv) with εn := T−1
n , whereas in the

second-last line we applied Taylor expansion on µj−1 in h around zero. Similarly, for Y(4)
2,n

we calculate

Y(4)
2,n(ρ) = − 1

2Tn

n∑
j=1

(
µj−1(ρ)− µj−1

)2
σ2
j−1(ρ, γ̂n)

= − 1

2nγ̂n

n∑
j=1

((
α− βZtj−1

)
−
(
α0 − β0Ztj−1

))2
Z−1
tj−1

+O∗p(h)

n→∞→ − 1

2γ0

∞∫
0

((
α− α0

)
−
(
β − β0

)
z
)2
z−1πθ0(z) dx

= − 1

2γ0
(ρ− ρ0)>

∫
R

(
z−1 −1

−1 z

)
πθ0(z) dz(ρ− ρ0)

=: Y2,0(ρ)

in probability. The uniform convergence is verified through the tightness argument as for
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Y1,n and in (3.16). Finally, we have proved Y2,n(ρ) = Y2,0(ρ) + o∗p(1), which completes

the consistency.

To now prove the asymptotic normality we additionally specify the Fisher information

matrix in case of uniformly elliptic diffusions [36]

I(θ) :=


1
γ

∞∫
0

z−1πθ(z) dz − 1
γ 0

− 1
γ

1
γ

∞∫
0

zπθ(z) dx 0

0 0 1
2γ2

 1.6
=


1
γ ·

2β
2α−γ − 1

γ 0

− 1
γ

1
γ ·

α
β 0

0 0 1
2γ2

 . (3.20)

We notice that I(θ) is invertible for θ ∈ Θ, in formulas,

I(θ)−1 =


α(2α−γ)

β 2α− γ 0

2α− γ 2β 0

0 0 2γ2

 .

Lemma 3.6: For every true value θ0 ∈ Θ we have

lim
n→∞

Dn(θ̂n − θ0) = N
(
0, I(θ0)−1

)
in distribution and

lim
n→∞

I(θ̂n)
1
2Dn(θ̂n − θ0) = N

(
0, I3

)
in distribution, where I3 denotes the 3-dimensional identity matrix.

Proof: The proof proceeds similar to the proof for the classical uniformly-elliptic diffusion

model as in [58] though we have to take care of tightness and integrability issues caused

by the diffusion-coefficient form.

We look at the third-order Taylor expansion of ∇Hn(θ̂n) around θ0 ∈ Θ. That is, we focus

on the event
{
∇Hn(θ̂n) = 0

}
, on which

0 = D−1
n ∇Hn(θ0) +

(
−

1∫
0

D−1
n HHn

(
θ0 + s(θ̂n − θ0)

)
D−1
n ds

)[
Dn
(
θ̂n − θ0

)]
holds. Hence, having proved the consistency it suffices to verify the following statements:
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(AN1) For ∆n(θ0) := D−1
n ∇Hn(θ0) we have

lim
n→∞

∆n(θ0) = N3 (0, I(θ0))

in distribution.

(AN2) For In(θ0) := −D−1
n

(
HHn(θ0)

)
D−1
n we have

lim
n→∞

In(θ0) = I(θ0)

in probability.

(AN3) For any (non-random) positive sequence lim
n→∞

δn = 0 we have

lim
n→∞

sup
θ: |θ−θ0|≤δn

|In(θ)− I(θ0)| = 0

in probability.

Proof of (AN1): The main tool here is a Lemma, [51, Lemmas 3.5 and 3.6], which we

simplify in the following to fit our case:

For some d-dimensional Markov process
(
ζnj
)
j=1,...,n

satisfying for n ∈ N

E
(
ζnj | ζnj−1

)
= 0,

lim
n→∞

n∑
j=1

E
(
(ζnj )k(ζ

n
j )l | ζnj−1

)
= Σkl,

lim
n→∞

n∑
j=1

E
(
‖ζnj ‖4 | ζnj−1

)
= 0

in probability for every k, l = 1, . . . , d, where Σ :=
(
Σkl

)
1≤k,l≤d is deterministic,

n∑
j=1

ζnj

converges in distribution to N (0,Σ).

Certainly, the aim is the application to ∆n and hence we first determine the derivatives

of Hn. We recall (3.6) and compute

∂

∂γ
Hn(θ) = −1

2

n∑
j=1

(
1

γ
−
(
Ztj − µj−1(ρ)

)2
γσ2

j−1(θ)

)
=:

n∑
j=1

ζγ,j(θ)
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with

−1

2
E
(
ζγ,j(θ0) |Ztj−1

)
= E

(
1

γ0
−
(
Ztj − µj−1(ρ0)

)2
γ0σ2

j−1(θ0)

∣∣∣Ztj−1

)
= 0.

Next, we calculate

∂

∂α
Hn(θ) = −1

2

n∑
j=1

[
∂
∂ασ

2
j−1(θ)

σ2
j−1(θ)

−
(
Ztj − µj−1(ρ)

)2 ∂
∂ασ

2
j−1(θ)

σ4
j−1(θ)

−
2
(
Ztj − µj−1(ρ)

)
∂
∂αµj−1(ρ)

σ2
j−1(θ)

]

=:
n∑
j=1

ζα,j(θ),

for which obviously

E
(
ζα,j(θ0) |Ztj−1

)
= 0

is valid and respectively

∂

∂β
Hn(θ) = −1

2

n∑
j=1

[
∂
∂βσ

2
j−1(θ)

σ2
j−1(θ)

−
(
Ztj − µj−1(ρ)

)2 ∂
∂βσ

2
j−1(θ)

σ4
j−1(θ)

−
2
(
Ztj − µj−1(ρ)

)
∂
∂βµj−1(ρ)

σ2
j−1(θ)

]

=:
n∑
j=1

ζβ,j(θ)

with

E
(
ζβ,j(θ0) |Ztj−1

)
= 0.

With these considerations, the first property immediately follows

E
(
D−1
n ζj(θ0) |Ztj−1

)
= 0

107



3 Estimation of the Cox-Ingersoll-Ross process under high-frequency sampling

by defining

ζj(θ) :=

ζα,j(θ)ζβ,j(θ)

ζγ,j(θ)

 .

In particular, we note that the condition in the expectation naturally carries over to Ztj−1 .

Furthermore, by the asymptotics in [58, Lemma 7] we conclude

1

n

n∑
j=1

E
(
ζ2
γ,j(θ0) |Ztj−1

)
=

1

4n

n∑
j=1

[
1

γ2
0

+ E
((

Ztj − µj−1(ρ0)
)4

γ2
0σ

4
j−1(θ0)

∣∣∣Ztj−1

)]

=
1

4n

n∑
j=1

[
1

γ2
0

+
1

γ2
0

(
1 +Op(h)

)]
n→∞→ 1

4γ2
0

+
1

4γ2
0

=
1

2γ2
0

in probability. Analogously, as in the proof of the consistency, we can show by a feasible

calculation

lim
n→∞

n∑
j=1

E
(

1

nh
ζ2
α,j(θ0)

∣∣∣Ztj−1

)
=

1

γ0

∞∫
0

z−1πθ0(z) dz,

lim
n→∞

n∑
j=1

E
(

1

nh
ζ2
β,j(θ0)

∣∣∣Ztj−1

)
=

1

γ0

∞∫
0

zπθ0(z) dz,

lim
n→∞

n∑
j=1

E
(

1

nh
ζα,j(θ0)ζβ,j(θ0)

∣∣∣Ztj−1

)
= − 1

γ0

lim
n→∞

n∑
j=1

E
(

1

n
√
h
ζα,j(θ0)ζγ,j(θ0)

∣∣∣Ztj−1

)
= 0,

lim
n→∞

n∑
j=1

E
(

1

n
√
h
ζβ,j(θ0)ζγ,j(θ0)

∣∣∣Ztj−1

)
= 0,

lim
n→∞

n∑
j=1

E
(∣∣D−1

n ζj(θ0)
∣∣4 |Ztj−1

)
= 0

in probability.

Proof of (AN2): In this proof we always use Lemma 3.4 without mentioning it. First, we
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compute the second derivatives. We start with the simplest derivatives where at least one

is with respect to γ:

∂2

∂α∂γ
Hn(θ) = −1

2

n∑
j=1

((
Ztj − µj−1(ρ)

)
∂
∂αµj−1(ρ)

γσ2
j−1(θ)

+

(
Ztj − µj−1(ρ)

)
∂
∂ασ

2
j−1(θ)

γσ4
j−1(θ)

)

=:

n∑
j=1

ζαγ,j(θ),

∂2

∂β∂γ
Hn(θ) = −1

2

n∑
j=1

((
Ztj − µj−1(ρ)

)
∂
∂βµj−1(ρ)

γσ2
j−1(θ)

+

(
Ztj − µj−1(ρ)

)
∂
∂βσ

2
j−1(θ)

γσ4
j−1(θ)

)

=:
n∑
j=1

ζβγ,j(θ),

∂2

∂γ2
Hn(θ) = −1

2

n∑
j=1

(
− 1

γ2
+ 2

(
Ztj − µj−1(ρ)

)2
γ2σ2

j−1(θ)

)
.

For the convergence we rewrite the last term to

1

n

∂2

∂γ2
Hn(θ) = − 1

2n

n∑
j=1

(
− 1

γ2
+ 2

(
Ztj − µj−1(ρ)

)2
γ2σ2

j−1(θ)

)

=
1

2γ2
− 1

γ2

1

n

n∑
j=1

(
Ztj − µj−1(ρ)

)2
σ2
j−1(θ)

.

Recalling

1

n

n∑
j=1

E

((
Ztj − µj−1(ρ0)

)2
σ2
j−1(θ0)

∣∣∣∣Ztj−1

)
= 1,

lim
n→∞

1

n2

n∑
j=1

E

((
Ztj − µj−1(ρ0)

)4
σ4
j−1(θ0)

∣∣∣∣Ztj−1

)
= 0,

we receive

lim
n→∞

1

n

∂2

∂γ2
Hn(θ0) = − 1

2γ2
0

in probability. For the next terms, we immediately notice

E
(
ζαγ,j(θ) |Ztj−1

)
= 0
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and observe by the mean value theorem

0 ≤ ∂

∂α
µj−1(ρ) =

1− e−βh

β
= h

1− e−βh

βh
≤ h,

0 ≤ ∂

∂α
σ2
j−1(θ) =

γ

β

(
1− e−βh

)2
2β

≤ γh2.

(3.21)

Therefore, we conclude

1

n2h

n∑
j=1

E
(
ζ2
αγ,j(θ0) |Ztj−1

)
=

1

n2h

n∑
j=1


(
∂
∂αµj−1(ρ0)

)2

γ2
0σ

2
j−1(θ0)

+ 2
∂
∂αµj−1(ρ0) ∂

∂ασ
2
j−1(θ0)

γ2σ4
j−1(θ0)

+

(
∂
∂ασj−1(θ0)

)2

γ2
0σ

6
j−1(θ0)


(3.21)

≤ 1

n2h

n∑
j=1

[
h2

γ2
0σ

2
j−1(θ0)

+ 2
h3

γ0σ4
j−1(θ0)

+
h4

σ6
j−1(θ0)

]
(3.19)

≤ 1

n2h

n∑
j=1

h

γ3
0

(
Z−1
tj−1

+ hR(θ0, Z
−1
tj−1

)
)

=
1

n2

n∑
j=1

1

γ3
0

(
Z−1
tj−1

+ hR(θ0, Z
−1
tj−1

)
)

n→∞→ 0

in probability. We note that the remainder R is a polynomial of Z−1
tj−1

and Z−2
tj−1

such that

Lemma 1.8 (iv) is applicable. Consequently, we achieve

lim
n→∞

1

n
√
h

n∑
j=1

ζαγ,j(θ0) = 0

in probability and by similar arguments

lim
n→∞

1

n
√
h

n∑
j=1

ζβγ,j(θ0) = 0
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in probability as well. With analogous, feasible calculations we can show

lim
n→∞

∂2

∂α2
Hn(θ0) = − 1

γ0

∞∫
0

z−1πθ0(z) dz,

lim
n→∞

∂2

∂β2
Hn(θ0) = − 1

γ0

∞∫
0

zπθ(z) dz,

lim
n→∞

∂2

∂α∂β
Hn(θ0) =

1

γ0

in probability which completes the proof of (AN2). In particular, we use the asymptotics

found in [58, Lemma 7].

Proof of (AN3): If we take a closer look at the second order derivatives of Hn(θ) and

remind us again that all moments with order p ≥ −2 are finite due to our parameter

assumptions (3.3) and Lemma 1.8 (iii), we directly observe

sup
θ∈Θ

∣∣∣∣ ∂∂ν In(θ)

∣∣∣∣ = Op(1)

for ν ∈ {α, β, γ}. We note here that our parameter space Θ is bounded. Then, using the

triangle inequality and mean value theorem leads to

sup
θ: |θ−θ0|≤δn

|In(θ)− I(θ0)| ≤ |In(θ)− In(θ0)|+ |In(θ0)− I(θ0)|

. δn max
ν∈{α,β,γ}

sup
θ∈Θ

∣∣∣∣ ∂∂αIn(θ)

∣∣∣∣+ |In(θ0)− I(θ0)|

(AN2)
= Op(δn) + op(1) = op(1)

for any positive (non-random) sequence (δn)n∈N satisfying lim
n→∞

δn = 0.

3.2.2 One-step improvement

In Section 3.1 we first introduced a Dn-consistent initial estimator θ̂0,n = (α̂0,n, β̂0,n, γ̂0,n)

given in a closed form as in [72]. Using these results we now construct the Newton-Raphson

one-step improvement

θ̂(1,1)
n = θ̂0,n −

(
HHn(θ̂0,n)

)−1
∇Hn(θ̂0,n) (3.22)
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and the Fisher scoring one-step improvement

θ̂(1,2)
n = θ̂0,n + D−1

n

(
I
(
θ̂0,n

))−1
D−1
n ∇Hn(θ̂0,n) (3.23)

towards the Gaussian quasi-maximum likelihood estimator. We occasionally refer to them

as one-step estimators. It is well-known that the Newton-Raphson method is used to

successively obtain a better approximation of the zeros of a real-valued function. Our

corresponding function here is ∇Hn. This method works better if we start close to a zero,

c.f. [8, 2.3 Newton’s method]. Therefore, it makes sense to use as the so-called initial

guess an estimator of the true parameter. Replacing the Hessian matrix −HHn by the

Fisher information matrix leads to the Fisher scoring method, see [52, 62]. We now prove

that the GQMLE θ̂n and the one-step estimators θ̂
(1,1)
n and θ̂

(1,2)
n are all asymptotically

equivalent at rate Dn.

Theorem 3.7: We have

Dn
(
θ̂(1,i)
n − θ̂n

)
= op(1)

for i = 1, 2 or equivalently

lim
n→∞

Dn
(
θ̂(1,i)
n − θ0

)
= N

(
0, I(θ0)−1

)
in distribution for i = 1, 2.

Proof: First of all, to achieve asymptotic efficiency as well the asymptotic normality of

the one-step estimators, we need to show the asymptotic equivalence between the one-

step estimators θ̂
(1,i)
n and the joint GQMLE θ̂n. The arguments for both estimators are

similar, so here we give the proof for θ̂
(1,1)
n . We recall the setting and definitions from

the asymptotic normality proof of θ̂n. We again focus on the event, where ∇Hn

(
θ̂n
)

= 0

holds, and use the object In(θ) = −D−1
n

(
HHn(θ)

)
D−1
n . Then, we derive

Dn
(
θ̂(1,1)
n − θ̂n

)
= Dn

(
θ̂(1,1)
n − θ̂0,n

)
+ Dn

(
θ̂0,n − θ̂n

)
and in particular

Dn
(
θ̂(1,1)
n − θ̂0,n

)
= −Dn

(
HHn(θ̂0,n)

)−1
∇θHn(θ̂0,n)

=
(
In
(
θ̂0,n

))−1
D−1
n ∇Hn

(
θ̂0,n

)
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=
(
In
(
θ̂0,n

))−1(
D−1
n ∇Hn

(
θ̂0,n

)
− D−1

n ∇Hn

(
θ̂n
))

=
(
In
(
θ̂0,n

))−1
D−1
n HHn

(
θn
)
·
(
θ̂0,n − θ̂n

)
= −

(
In
(
θ̂0,n

))−1
In
(
θn
)
Dn
(
θ̂0,n − θ̂n

)
.

We applied ∇Hn

(
θ̂n
)

= 0 in the third line and the mean value theorem in the fourth line,

where we have θn = θ̂0,n + u(θ̂n− θ̂0,n) for some u ∈ [0, 1] with lim
n→∞

θn = θ0 in probability

due to the consistency of θ̂0,n and θ̂n. Combining these thoughts, we receive

Dn
(
θ̂(1,1)
n − θ̂n

)
= −

(
In
(
θ̂0,n

))−1
In
(
θn
)
Dn
(
θ̂0,n − θ̂n

)
+ Dn

(
θ̂0,n − θ̂n

)
=
(
I3 −

(
In
(
θ̂0,n

))−1
In
(
θn
))

Dn
(
θ̂0,n − θ̂n

)
=
(
I3 −

(
In
(
θ̂0,n

))−1
In
(
θn
))
·
(
Dn
(
θ̂0,n − θ0

)
+ Dn

(
θ0 − θ̂n

))
= op(1) ·

(
Op(1) +Op(1)

)
= op(1).

The last line holds due to the asymptotic normality of θ̂0,n and θ̂n as well as (AN3) in the

proof of Lemma 3.6.

We can also conclude the asymptotic normality for the so-called standardized estimators,

that is,

lim
n→∞

I(θ̂n)
1
2Dn(θ̂(1,i)

n − θ0) = N
(
0, I3

)
in distribution for i = 1, 2.

3.3 Numerical experiments

In this section, we compare simulation results of the preliminary estimator Lemma 3.1,

(3.10) with the one step estimators based on the Newton-Raphson (3.22) and the Fisher

scoring method (3.23). We use an exact Cox-Ingersoll-Ross simulator for (Xtj )j=1,...,n

through non-central chi-squares [63]. The 1000 simulated estimators are performed for

n = 5000, 10000, 20000 and T = Tn = 500, 1000, 2000. So that the condition 2α
γ > 5 is

fulfilled, we choose as true value θ0 = (α0, β0, γ0) = (3, 1, 1). Table 3.1 summarizes the

mean and standard deviation (sd) of these estimators. As a comparison for the behaviour

at smaller T and n, we contrast boxplots for T = 500, n = 5000 and T = 50, n = 200
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(Figures 3.3 to 3.5). Additionally, the corresponding histograms are given in Figure 3.1

and 3.2.

Table 3.1 shows that the performance of the three estimators behaves quite similarly.

Upon closer inspection, we recognize the smallest improvement in the estimates of γ0.

The two estimators γ̂0,n and γ̂2,n have even the same values on four decimal points except

for two deviations of 10−4. Comparing the estimators for α0 and β0, we detect, with one

exception (Newton-Raphson method for T = 1000 and n = 20000), a small improvement

in the one-step estimators compared to the preliminary estimator. Besides, the Fisher

scoring method performs slightly better than the Newton-Raphson method.

Overall, the performances of the three estimators seem to be quite similar. This leads

to the assumption that the preliminary estimator is already asymptotically optimal. The

almost undetectable difference of the estimates of γ0 is due to the faster convergence rate
√
n instead of

√
Tn =

√
T .

Since we choose especially large values for n and T in Table 3.1, we can assume that the

differences become more pronounced for smaller values. Therefore, comparing the boxplots

for T = 50, n = 200 in Figures 3.3 to 3.5 the differences between the estimators are

vanishingly small. This suggests that the preliminary estimator is already effective. The

performance improvements become visually apparent when compared with the boxplots

for T = 500, n = 5000.

If we take a closer look at the proofs, one essential aspect is that the moments with order

at least −2 converge. To guarantee this, we choose 2α > 5γ as our parameter assumption,

see Lemma 1.8. However, we would expect a similar behaviour of the estimators for

all positive true values when the origin is non attracting, that is, when 2α > γ. For this

purpose, we consider the boundary case when 2α = γ holds and hence choose θ0 = (1, 1, 2)

as the true value when using the same combinations of T and n as before. The boxplots

presented in Figures 3.6 to 3.8 suggest that the presented estimators can converge in this

case as well even if our proofs do not work here.
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Table 3.1: The mean and the standard deviation (sd) of the estimators with true value

(α0, β0, γ0) = (3, 1, 1).

n = 5000 T = 500 T = 1000 T = 2000

preliminary α̂0,n β̂0,n γ̂0,n α̂0,n β̂0,n γ̂0,n α̂0,n β̂0,n γ̂0,n

mean 3.0188 1.0079 0.9998 3.0200 1.0072 1.0023 3.0037 1.0015 1.0006

sd 0.2111 0.0752 0.0211 0.1570 0.0552 0.0235 0.1216 0.0421 0.0254

Newton α̂1,n β̂1,n γ̂1,n α̂1,n β̂1,n γ̂1,n α̂1,n β̂1,n γ̂1,n

mean 3.0141 1.0064 1.0001 3.0197 1.0071 1.0025 3.0027 1.0012 1.0010

sd 0.1872 0.0681 0.0220 0.1435 0.0515 0.0248 0.1156 0.0403 0.0270

scoring α̂2,n β̂2,n γ̂2,n α̂2,n β̂2,n γ̂2,n α̂2,n β̂2,n γ̂2,n

mean 3.0105 1.0052 0.9998 3.0182 1.0066 1.0023 3.0017 1.0008 1.0006

sd 0.1877 0.0682 0.0211 0.1434 0.0514 0.0235 0.1152 0.0400 0.0255

n = 10000

preliminary α̂0,n β̂0,n γ̂0,n α̂0,n β̂0,n γ̂0,n α̂0,n β̂0,n γ̂0,n

mean 3.0351 1.0129 1.0001 3.0152 1.0060 1.0003 3.0097 1.0026 1.0012

sd 0.2143 0.0741 0.0145 0.1519 0.0541 0.0150 0.1135 0.0404 0.0167

Newton α̂1,n β̂1,n γ̂1,n α̂1,n β̂1,n γ̂1,n α̂1,n β̂1,n γ̂1,n

mean 3.0257 1.0099 1.0004 3.0121 1.0050 1.0005 3.0097 1.0026 1.0013

sd 0.1849 0.0654 0.0150 0.1319 0.0476 0.0156 0.1030 0.0372 0.0175

scoring α̂2,n β̂2,n γ̂2,n α̂2,n β̂2,n γ̂2,n α̂2,n β̂2,n γ̂2,n

mean 3.0219 1.0085 1.0001 3.0101 1.0043 1.0003 3.0089 1.0023 1.0012

sd 0.1849 0.0654 0.0145 0.1320 0.0475 0.0150 0.1028 0.0371 0.0167

n = 20000

preliminary α̂0,n β̂0,n γ̂0,n α̂0,n β̂0,n γ̂0,n α̂0,n β̂0,n γ̂0,n

mean 3.0394 1.0140 1.0008 3.0102 1.0039 0.9996 3.0060 1.0023 1.0001

sd 0.2010 0.0717 0.0105 0.1464 0.0518 0.0104 0.1071 0.0374 0.0109

Newton α̂1,n β̂1,n γ̂1,n α̂1,n β̂1,n γ̂1,n α̂1,n β̂1,n γ̂1,n

mean 3.0263 1.0097 1.0010 3.0120 1.0045 0.9996 3.0043 1.0018 1.0002

sd 0.1756 0.0635 0.0106 0.1269 0.0460 0.0106 0.0946 0.0334 0.0112

scoring α̂2,n β̂2,n γ̂2,n α̂2,n β̂2,n γ̂2,n α̂2,n β̂2,n γ̂2,n

mean 3.0223 1.0083 1.0008 3.0101 1.0038 0.9996 3.0034 1.0015 1.0002

sd 0.1759 0.0636 0.0105 0.1270 0.0460 0.0104 0.0946 0.0333 0.0109
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Figure 3.1: Histograms of the standardized estimators for T = 50, n = 200 with true value

θ0 = (3, 1, 1): (i) preliminary estimator, (ii) Newton-Raphson method, (iii)

Fisher scoring method. The red curve indicates the density of the standard

normal distribution.116
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Figure 3.2: Histograms of the standardized estimators for T = 500, n = 5000 with true

value θ0 = (3, 1, 1): (i) preliminary estimator, (ii) Newton-Raphson method,

(iii) Fisher scoring method. The red curve indicates the density of the standard

normal distribution. 117
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Figure 3.3: Results of estimating α0 for T = 50, n = 200 (left) and T = 500, n = 5000

(right) with true value θ0 = (3, 1, 1): (i) preliminary estimator, (ii) Newton-

Raphson method, (iii) Fisher scoring method. The red line indicates the true

value.
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Figure 3.4: Results of estimating β0 for T = 50, n = 200 (left) and T = 500, n = 5000

(right) with true value θ0 = (3, 1, 1): (i) preliminary estimator, (ii) Newton-

Raphson method, (iii) Fisher scoring method. The red line indicates the true

value.
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Figure 3.5: Results of estimating γ0 for T = 50, n = 200 (left) and T = 500, n = 5000

(right) with true value θ0 = (3, 1, 1): (i) preliminary estimator, (ii) Newton-

Raphson method, (iii) Fisher scoring method. The red line indicates the true

value.
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Figure 3.6: Results of estimating α0 for T = 50, n = 200 (left) and T = 500, n = 5000

(right) with true value θ0 = (1, 1, 2): (i) preliminary estimator, (ii) Newton-

Raphson method, (iii) Fisher scoring method. The red line indicates the true

value.
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Figure 3.7: Results of estimating β0 for T = 50, n = 200 (left) and T = 500, n = 5000

(right) with true value θ0 = (1, 1, 2): (i) preliminary estimator, (ii) Newton-

Raphson method, (iii) Fisher scoring method. The red line indicates the true

value.
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Figure 3.8: Results of estimating γ0 for T = 50, n = 200 (left) and T = 500, n = 5000

(right) with true value θ0 = (1, 1, 2): (i) preliminary estimator, (ii) Newton-

Raphson method, (iii) Fisher scoring method. The red line indicates the true

value.
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3.4 Concluding remarks

We now return to our original problem of estimating the index parameter ϑ > −1
2 of a

classical Bessel process. For this we considered a space-time transformation in Chapter 2

so that the process becomes stationary. There, we noticed that our estimators depend

only on the square of this modified process, which in turn is a Cox-Ingersoll-Ross process

with parameter θ =
(
2ϑ + 2, 2α, 4

)
. That is, we can now apply our estimators presented

in this chapter to the problem as well. Analogous to Chapter 2, we can also apply all

estimators to the Dunkl process and multidimensional Bessel process.

Comparing the estimators we should first consider the essential aspects. Primarily, we

focus on low-frequency observations for the martingale estimators, whereas high-frequency

observations are relevant here. This point on its own can affect the performance of the

estimators significantly. Depending on the given situation, this may influence the choice

of the estimator. The martingale estimators converge for each ϑ > −1
2 , although we

additionally demand ϑ > 4 and the boundedness of the parameter space for the estimators

here in this situation. The most critical case arises when the origin is attracting for the

Cox-Ingersoll-Ross process, that is, the origin is almost surely reached in finite time. In

this case, our estimators presented in this chapter do not converge.

For further comparison, we now choose a value for ϑ such that all considered estimators

converge. In Figure 3.9 we compare the Fisher information to the explicitly calculated

asymptotic information, that is, the reciprocal of the asymptotic variance, of the previous

chapter for ϑ = 5. Here, the colored lines represent the asymptotic information for various

∆ when considering one eigenfunction (solid line) respectively two eigenfunctions (dashed

line) given the weights (ω1, ω2) = (2, 1). The black solid line corresponds to the Fisher

information where no ∆ appears due to high frequency observations, that is, ∆→ 0. The

dashdotted lines represents the Fisher Information when including ∆. Here, the black solid

line also represents the case ∆ = 1. We recall that the asymptotic information from the

martingale estimators converge monotonically increasing for α∆→∞, which can readily

be seen in the figure. Depending on the value of ∆, we rapidly get infinitesimally close

to the limit. In formulas, for one eigenfunction the limit is 1
ϑ+1 and in this specific case

for two eigenfunctions the limit is 2ϑ+5
2(ϑ+1)(ϑ+2) , which in turn is greater than 1

ϑ+1 . Looking

at the shape of the Fisher information matrix (3.20), the asymptotic information when

estimating ϑ is α
ϑ(ϑ+1) . In particular the qualitative behaviour in terms of ϑ is the same

for all three estimators, in that the asymptotic information increases as ϑ becomes smaller

and vice versa. Moreover, the estimators improve in terms of asymptotic information with
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Figure 3.9: Comparison of the asymptotic information from Theorem 2.7 (colored solid
line), the one from Theorem 2.11 (colored dashed line) for ω1 = 2 and ω2 = 1
to the Fisher information (black solid line and colored dashdotted line) for
ϑ = 5.

increasing α. This improvement is faster noticeable but limited for the martingale estima-

tors, whereas it continues to grow linearly for the Fisher information. As the asymptotic

information are symmetric in α and ∆, we observe a slower convergence in Figure 3.9 for

small values of ∆. For this reason, the preliminary and one-step estimators perform better

for small ∆ values, that is, small distances between observations, whereas the martingale

estimators perform better for large values of ∆, e.g., greater than 1. We can recognize this

behaviour significantly in comparison to the dashdotted lines. For the latter, the value of

alpha seems to be decisive. Above a value of α = 5, the Fisher information has the largest

value even in the case ∆ = 1. Note that the corresponding estimators do not behave well

for large values of ∆ since they are based on high-frequency observations.

As mentioned above, it is particularly interesting that the martingale estimators converge

for all values ϑ > −1
2 , which is not the case for the estimators discussed in this chapter.

Here, the distinction whether the origin is attractive was essential. In the next chapter,

we will study this phenomenon for the classical and multivariate Bessel process.
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process

The content of this chapter is partially incorporated in the preprint

Hausdorff dimension of collision times in one-dimensional log-gases

arXiv:2109.08707 (2021)

Nicole Hufnagel, Sergio Andraus

and contains some additional thoughts which arose during this collaboration.

4.1 Setting and stopping times related to the Bessel process

In this chapter we deal with the multivariate Bessel process and both its hitting and

return times. We can perform our initial considerations for the classical Bessel process

which turns out to coincide with the case A1. Since this process is already well studied,

we gather known results from the literature on hitting times and infer new formulas. In

this section we first refresh the most important aspects of the multivariate Bessel process

(Yt)t≥0 of type AN−1 given via
dYt,i = dBt,i + k

N∑
j=1
j 6=i

1
Yt,i−Yt,j dt,

Y0 = y ∈WAN−1

for i = 1, . . . , N , where (Bt)t≥0 is a standard multivariate Brownian motion, for more

details see Section 1.2. From a physical point of view, the dimension represents N particles,

while k > 0, the inverse of the temperature, regulates the interaction. The process lives

on the closure of the Weyl chamber WAN−1
= {x ∈ RN |x1 ≤ · · · ≤ xN}, which means

the particles are ordered. Due to [19, Proposition 4.1], if k > 1
2 no collisions with the

boundary ∂WAN−1
:=
{
x ∈ WAN−1

| ∃i ∈ {1, . . . , N − 1} : xi = xi+1

}
almost surely will
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4 Return times for the multivariate Bessel process

occur, despite when k < 1
2 the first collision time of two particles is almost surely finite

[26, Proposition 1]. From now on, we will consider the case k < 1
2 , high temperature,

where we still have a unique strong solution, [26, Theorem 1]. As a starting point, we take

a closer look at the case N = 2

dYt,1 = dBt,1 + k
dt

Yt,1 − Yt,2
,

dYt,2 = dBt,2 + k
dt

Yt,2 − Yt,1
.

The closure of the Weyl chamber simplifies to WA1 = {(x1, x2) ∈ R2 |x1 ≤ x2}. Here, we

can decompose the process into a classical Bessel process

d

(
1√
2

(
Yt,2 − Yt,1

))
=

1√
2

(
dBt,2 − dBt,1 + k

dt

Yt,2 − Yt,1
− k dt

Yt,1 − Yt,2

)
=: dB̃t,1 + k

√
2

Yt,2 − Yt,1
dt

and a Brownian motion

d

(
1√
2

(
Yt,1 + Yt,2

))
=

1√
2

(
dBt,1 + dBt,2 + k

dt

Yt,1 − Yt,2
+ k

dt

Yt,2 − Yt,1

)
=:

1√
2

(
dBt,1 + dBt,2

)
= dB̃t,2

by looking at the sum and difference of the two particles. Hitting the boundary of the

Weyl chamber implies the two particles have the same value. Consequently, we analyze

when the Bessel process
(
Xt := 1√

2
(Yt,2 − Yt,1)

)
t≥0

with index k − 1
2 hits the origin. For

a significantly shorter notation, we use ϑ := k − 1
2 in the following. As we are interested

in the times when the classical Bessel process hits the origin, one intuition is to look at

the first hitting time while starting in z > 0. We denote the corresponding probability

measure by Pz. Therefore, we define

τx := inf
{
t > 0 : Xt = x

}
for every x ≥ 0, which is obviously a stopping time. As mentioned, it is well-known

that, given enough time, Bessel processes hit the origin with probability one, in formulas

Pz(τ0 < ∞) = 1, whenever −1
2 < ϑ < 0, [56, Theorem 1.1 (iv)]. This situation points

to the intuition that for small parameter ϑ the repulsion from the origin, indicated by

the drift, is not large enough to keep the process from returning to it, which makes this
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parameter region interesting. Whenever the starting point z is positive, the density with

respect to the Lebesgue measure of τ0 under Pz is known to be

fτ0(t) =
1

tΓ (−ϑ)

(
z2

2t

)−ϑ
e−

z2

2t 1(0,∞).

This expression was derived in [38, 2.1. First hitting times of Bessel processes, Eq. (15)].

For the sake of completeness, we can calculate the density of the elapsed time for the

process to go from the state 0 ≤ y < x up to state x,

τy,x := inf
{
t > τy : Xt = x

}
− τy.

Owing to the Markov property, τy,x has the same density under every Pz for z ≥ 0. Based

on [57] we are going to first determine the density of τy,x for y > 0 and then derive the

density of τ0,x. Due to [57, Theorem 3.1] the Laplace transform of τy,x is

φτy,x(s) =

(
x

y

)ϑ Iϑ(√2sy
)

Iϑ
(√

2sx
) (4.1)

for s > 0, where Iϑ is the modified Bessel function of the first kind defined as

Iϑ(x) =
(x

2

)ϑ ∞∑
n=0

(
x
2

)2n
n!Γ(n+ ϑ+ 1)

.

We denote the corresponding density by fτy,x and consequently for s > 0 the relation

φτy,x(s) =

∞∫
0

e−stfτy,x(t) dt

applies, see [15, Eq. (15.5)]. We recognize that the domain of fτy,x is (0,∞), whereas the

Laplace transform φτy,x is always a function with complex argument s. In order to get the

distribution of τy,x we use the inverse Laplace transform [15, Eq. (15.8)]

fτy,x(t) =
1

2πi

ζ+i∞∮
ζ−i∞

estφτy,x(s) ds
(4.1)
=

1

2πi

ζ+i∞∮
ζ−i∞

est
(
x

y

)ϑ Iϑ(√2sy
)

Iϑ
(√

2sx
) ds, (4.2)

where ζ is a positive real number. The condition ζ > 0 guarantees the applicability of the

inverse Laplace transform, since the singularities i.e. zeros of Iν are purely complex. In
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particular, this means that the real part of all singularities is zero, which is smaller than

ζ. The zeros of Iν are considered in more detail below. We deal with this integral by using

the Residue theorem [3, 5.1. The Residue Theorem], hence we first determine the poles

of the integrand. Several properties are known for the zeros of the Bessel function of the

first kind Jϑ. For this purpose, we need the relation formula

Iϑ(z) = e∓
ϑπi
2 Jϑ

(
ze±

πi
2

)
, (4.3)

cf. [69, Eq. 10.27.6]. In [83, 15.21 The non-repetition of zeros of cylinder functions] it was

shown that all zeros of Jϑ are simple with the origin as a possible exception. Additionally,

in the case ϑ > −1 all zeros are real, [82, 19. Der Fourier’sche Lehrsatz], and positive. We

suppose jϑ,η to be the ordered zeros

0 < jϑ,1 < jϑ,2 < · · · .

Accordingly, if we substitute

Jϑ(z) =

(
z
2

)ϑ
Γ(ϑ+ 1)

∞∏
η=1

(
1− z2

j2
ϑ,η

)
, (4.4)

cf. [40, p. 130 Eq. (8.)], into (4.3), we derive

Iϑ(z) = e∓
ϑπi
2 Jϑ

(
ze±

πi
2

)
=

e∓
ϑπi
2

Γ(ϑ+ 1)

(
ze±

πi
2

2

)ϑ ∞∏
η=1

(
1−

(
ze±

πi
2

)2

j2
ϑ,η

)

=

(
z
2

)ϑ
Γ(ϑ+ 1)

∞∏
η=1

(
1 +

z2

j2
ϑ,η

)

and hence receive ±ijϑ,η as zeros of Iϑ, which have no real part. As the zeros are pairwise

disjoint, we just get simple poles in (4.2). By plugging in the calculated formula of Iϑ we

conclude

fτy,x(t)
(4.2)
=

1

2πi

ζ+i∞∮
ζ−i∞

est
(
x

y

)ϑ Iϑ(
√

2sy)

Iϑ(
√

2sx)
ds
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=
1

2πi

ζ+i∞∮
ζ−i∞

est
∞∏
η=1

1 + 2sy2

j2ϑ,η

1 + 2sx2

j2ϑ,η

 ds

=
1

2πi

ζ+i∞∮
ζ−i∞

est
∞∏
η=1

1

2x2

j2
ϑ,η + 2sy2

j2ϑ,η
2x2 + s


︸ ︷︷ ︸

=:g(s)

ds.

By the Residue theorem and because g has only simple poles, we can calculate the integral

as the following sum of residues

fτy,x(t) =
∞∑
l=1

lim

z→−
j2
ϑ,l

2x2

(
z +

j2
ϑ,l

2x2

)
g(z)

=
∞∑
l=1

lim

z→−
j2
ϑ,l

2x2

ezt

2x2
·

∞∏
η=1

(
j2
ϑ,η + 2y2z

)
∞∏
η=1
η 6=l

(
j2
ϑ,η + 2x2z

)

=

∞∑
l=1

e−t
j2ϑ,l

2x2

2x2
·

∞∏
η=1

(
j2
ϑ,η −

y2

x2 j
2
ϑ,l

)
∞∏
η=1
η 6=l

(
j2
ϑ,η − j2

ϑ,l

) .

Now, we reformulate the last line by using some basic calculations and simplify the formula

of the density:

fτy,x(t) =

∞∑
l=1

e−t
j2ϑ,l

2x2

2x2
·

∞∏
η=1

(
j2
ϑ,η −

y2

x2 j
2
ϑ,l

)
∞∏
η=1
η 6=l

(
j2
ϑ,η − j2

ϑ,l

)

=
∞∑
l=1

e−t
j2ϑ,l

2x2

2x2
·

∞∏
η=1

(
j2ϑ,η
j2ϑ,η
− y2j2ϑ,l

x2j2ϑ,η

)
1
j2ϑ,l

∞∏
η=1
η 6=l

(
j2ϑ,η
j2ϑ,η
− j2ϑ,l

j2ϑ,η

)
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=
∞∑
l=1

j2
ϑ,l

2x2
e−t

j2ϑ,l

2x2 ·

∞∏
η=1

(
1− y2j2ϑ,l

x2j2ϑ,η

)
∞∏
η=1
η 6=l

(
1− j2ϑ,l

j2ϑ,η

) .

We can rewrite the product in the numerator as

∞∏
η=1

(
1−

y2j2
ϑ,l

x2j2
ϑ,η

)
(4.4)
=

Γ(ϑ+ 1)( y
2xjϑ,l

)ϑJϑ (yxjϑ,l) .
The next step is to find a method of expressing the denominator in a similar way. For this

purpose, we derive

∂

∂s

∞∏
η=1

(
1− s

j2
ϑ,η

)∣∣∣∣∣∣
s=j2ϑ,l

= −
∞∑
m=1

1

j2
ϑ,m

∞∏
η=1
η 6=m

(
1− s

j2
ϑ,η

)∣∣∣∣∣∣∣∣
s=j2ϑ,l

= − 1

j2
ϑ,l

∞∏
η=1
η 6=l

(
1−

jϑ,l
j2
ϑ,η

)

to obtain the denominator. Secondly, we are looking for a way to display the product on

the left-hand side differently and also differentiate this new representation. In this case,

we also use the relation

∞∏
η=1

(
1− s

j2
ϑ,η

)
(4.4)
=

Γ(ϑ+ 1)(√
s

2

)ϑ Jϑ(
√
s)

via the Bessel function Jϑ. For the differentiation of this Bessel function there exists a

simple formula,

∂

∂z
z−ϑJϑ(z) = −z−ϑJϑ+1(z),

see [69, Eq. 10.29.4], which we can apply

∂

∂s

Γ(ϑ+ 1)(√
s

2

)ϑ Jϑ(
√
s)

∣∣∣∣∣
s=j2ϑ,l

= 2ϑΓ(ϑ+ 1)
∂

∂s
(
√
s)−ϑJϑ(

√
s)

∣∣∣∣
s=j2ϑ,l
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= −2ϑΓ(ϑ+ 1)
(
√
s)−ϑJϑ+1(

√
s)

2
√
s

∣∣∣∣
s=j2ϑ,l

= −2ϑ−1Γ(ϑ+ 1)j−ϑ−1
ϑ,l Jϑ+1(jϑ,l).

Finally, by comparing both approaches we accomplish

1

j2
ϑ,l

∞∏
η=1
η 6=l

(
1−

j2
ϑ,l

j2
ϑ,η

)
= 2ϑ−1Γ(ϑ+ 1)j−ϑ−1

ϑ,l Jϑ+1(jϑ,l)

and infer

fτy,x(t) =
∞∑
l=1

j2
ϑ,l

2x2
e−t

j2ϑ,l

2x2 ·

∞∏
η=1

(
1− y2j2ϑ,l

x2j2ϑ,η

)
∞∏
η=1
η 6=l

(
1− j2ϑ,l

j2ϑ,η

)

=

∞∑
l=1

j2
ϑ,l

2x2
e−t

j2ϑ,l

2x2

Γ(ϑ+ 1)
(

2x
yjϑ,l

)ϑ
Jϑ

(
y
xjϑ,l

)
2ϑ−1Γ(ϑ+ 1)j−ϑ+1

ϑ,l Jϑ+1(jϑ,l)

=

∞∑
l=1

jϑ,l
xϑ−2

yϑ
·
Jϑ

(
y
xjϑ,l

)
Jϑ+1(jϑ,l)

· e−t
j2ϑ,l

2x2 .

This expression is well-defined as for different parameters the zeros are disjoint and hence

Jϑ+1(jϑ,η) 6= 0 for all η ∈ N, see [69, Section 10.21 Zeros]. Therefore, we proved the

following statement.

Corollary 4.1: The density with respect to the Lebesgue measure of

τy,x := inf
{
t > τy : Xt = x

}
− τy

with τy := inf
{
t > 0 : Xt = y

}
, that is, the time that passes while a classical Bessel

process with index −1
2 < ϑ < 0 proceeds from state y to state x with 0 < y < x, is given

via

fτy,x(t) =

∞∑
l=1

jϑ,l
xϑ−2

yϑ
·
Jϑ

(
y
xjϑ,l

)
Jϑ+1(jϑ,l)

· e−t
j2ϑ,l

2x2 1(0,∞)(t).

Corollary 4.2: The density with respect to the Lebesgue measure of τ0,x for x > 0 and
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4 Return times for the multivariate Bessel process

−1
2 < ϑ < 0 is determined by

fτ0,x(t) =

∞∑
l=1

e−t
j2ϑ,l

2x2 ·
jϑ+1
ϑ,l

2ϑx2Γ(ϑ+ 1)Jϑ+1(jϑ,l)
1(0,∞)(t).

Proof: We separate the proof in two steps.

Step 1: First of all, we show the validity of

lim
y→0

fτy,x(t) =
∞∑
l=1

e−t
j2ϑ,l

2x2 ·
jϑ+1
ϑ,l

2ϑx2Γ(ϑ+ 1)Jϑ+1(jϑ,l)

for t > 0. For this, we use the explicit formula [69, Eq. 10.2.2] of the Bessel function

lim
y→0

(
x

y

)ϑ
Jϑ

(y
x
jϑ,l

)
= lim

y→0

(
x

y

)ϑ ( y
2x
jϑ,l

)ϑ ∞∑
n=0

(−1)n

(
y
2xjϑ,l

)2n

n!Γ(n+ ϑ+ 1)

= lim
y→0

(
jϑ,l
2

)ϑ ∞∑
n=0

(−1)n

(
y
2xjϑ,l

)2n

n!Γ(n+ ϑ+ 1)

=

(
jϑ,l
2

)ϑ ∞∑
n=0

(−1)n
02n

n!Γ(n+ ϑ+ 1)

=

(
jϑ,l
2

)ϑ 1

Γ(ϑ+ 1)
.

The third line is valid due to the dominated convergence theorem which is applicable since

the ratio test

lim
n→∞

(n+ 1)!Γ(n+ ϑ+ 2)

n!Γ(n+ ϑ+ 1)
= lim

n→∞

(n+ 1)(n+ ϑ+ 1)Γ(n+ ϑ+ 1)

Γ(n+ ϑ+ 1)

= lim
n→∞

(n+ 1)(n+ ϑ+ 1) =∞

ensures that the power series

∞∑
n=0

(
jϑ,l
2

)2n 1

n!Γ(n+ ϑ+ 1)

has convergence radius infinity. This indeed justifies the calculation above as 0 < y
x < 1.
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4.1 Setting and stopping times related to the Bessel process

If we can now interchange the following limit and the series, we complete the first step

lim
y→0

fτy,x(t) = lim
y→0

∞∑
l=1

jϑ,l
xϑ−2

yϑ
·
Jϑ

(
y
xjϑ,l

)
Jϑ+1(jϑ,l)

· e−t
j2ϑ,l

2x2

=
∞∑
l=1

e−t
j2ϑ,l

2x2
jϑ+1
ϑ,l

2ϑx2Γ(ϑ+ 1)Jϑ+1(jϑ,l)
.

Thus, we are left with the task of finding an upper bound for(
x

y

)ϑ
Jϑ

(y
x
jϑ,l

)
= a−ϑJϑ

(
ajϑ,l

)
independent of a := y

x ∈ (0, 1) which justifies the exchange of limits by means of the

dominated convergence theorem. By using the integral representation of Jϑ, see [69, Eq.

10.9.4], we calculate

∣∣∣a−ϑJϑ(ajϑ,l)
∣∣∣ = a−ϑ

(
ajϑ,l

2

)ϑ 2

Γ
(
ϑ+ 1

2

)
Γ(1

2)

∣∣∣∣∣∣
1∫

0

cos(ajϑ,lt)(1− t2)ϑ−
1
2 dt

∣∣∣∣∣∣
≤
(
jϑ,l
2

)ϑ 2

Γ
(
ϑ+ 1

2

)
Γ(1

2)

1∫
0

(1− t2)ϑ−
1
2 dt

=

(
jϑ,l
2

)ϑ 1

Γ
(
ϑ+ 1

2

)
Γ(1

2)

1∫
0

(1− s)ϑ−
1
2 s

1
2 ds

=

(
jϑ,l
2

)ϑ 1

Γ
(
ϑ+ 1

2

)
Γ(1

2)
·

Γ
(
ϑ+ 1

2

)
Γ(1

2)

Γ(ϑ+ 1)

=

(
jϑ,l
2

)ϑ 1

Γ(ϑ+ 1)

and conclude

∣∣fτy,x(t)
∣∣ =

∣∣∣∣∣
∞∑
l=1

e−t
j2ϑ,l

2x2 jϑ,l
xϑ−2

yϑ
·
Jϑ
( y
xjϑ,l

)
Jϑ+1(jϑ,l)

∣∣∣∣∣
≤
∞∑
l=1

e−t
j2ϑ,l

2x2
jϑ,l
x2

(
jϑ,l
2

)ϑ 1

Γ(ϑ+ 1)|Jϑ+1(jϑ,l)|
.

The right-hand side is now independent of y, leaving us merely to argue the convergence

of the series. Therefore, we take a closer look at the asymptotic behaviour of the zeros
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4 Return times for the multivariate Bessel process

jϑ,l and the Bessel function Jϑ. In [50, p. 174] the asymptotic

Jϑ(z) =

√
2

πz

[
cos

(
z − ϑπ

2
− π

4

)
+O

(
z−1
)]

(4.5)

for z →∞ is shown, from which Mc Mahon’s formula [1, Eq. 9.5.12]

jϑ,l =

(
l +

ϑ

2
− 1

4

)
π +O

(
l−1
)

(4.6)

arises for l →∞. In particular, we observe from (4.6) that the zeros converge to infinity.

This justifies the use of formula (4.5) when considering

1

|Jϑ+1(jϑ,l)|
=
√
πjϑ,l ·

1∣∣∣√2 cos
(
jϑ,l − (ϑ+1)π

2 − π
4

)
+O

(
j−1
ϑ,l

)∣∣∣ .
The behaviour of the fraction depends on the values of the cosine

cos

(
jϑ,l −

ϑπ

2
− π

4

)
(4.6)
= cos

((
l +

ϑ

2
− 1

4
− ϑ+ 1

2
− 1

4

)
π +O(l−1)

)
= cos

(
π(l − 1) +O

(
l−1
))

=: fl.

Due to |fl| → 1 and O(l−1) → 0 when l → ∞, there exists an N ∈ N such that 1 <∣∣√2fl +O
(
l−1
)∣∣ for all l ≥ N . If we now combine all these calculations we achieve

∣∣fτy,x(t)
∣∣ ≤ ∞∑

l=1

e−t
j2ϑ,l

2x2
jϑ,l
x2

(
jϑ,l
2

)ϑ 1

Γ(ϑ+ 1)|Jϑ+1(jϑ,l)|

=
1

x22ϑΓ(ϑ+ 1)

(
N−1∑
l=1

e−t
j2ϑ,l

2x2
jϑ+1
ϑ,l

|Jϑ+1(jϑ,l)|

+
√
π
∞∑
l=N

e−t
j2ϑ,l

2x2
j
ϑ+ 3

2
ϑ,l∣∣∣√2 cos

(
jϑ,l − (ϑ+1)π

2 − π
4

)
+O

(
j−1
ϑ,l

)∣∣∣
)

≤ 1

x22ϑΓ(ϑ+ 1)

(
N−1∑
l=1

e−t
j2ϑ,l

2x2
jϑ+1
ϑ,l

|Jϑ+1(jϑ,l)|
+
√
π
∞∑
l=N

e−t
j2ϑ,l

2x2 j
ϑ+ 3

2
ϑ,l

)
(4.6)
< ∞

and ultimately proved the first step

lim
y→0

fτy,xf (t) =

∞∑
l=1

e−t
j2ϑ,l

2x2
jϑ+1
ϑ,l

2ϑx2Γ(ϑ+ 1)Jϑ+1(jϑ,l)
.
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4.2 Existing results on return times of a classical Bessel process

Step 2: Obviously,
{
τ 1
n+1

,x ≤ t
}
⊂
{
τ 1
n
,x ≤ t

}
for all t, x > 0 follows from the definition

of the stopping time and the Markov property, so with the continuity from above of

probability measures we receive

P(τ0,x < t) = P
( ⋂
n∈N

{
τ 1
n
,x ≤ t

})
= lim

n→∞
P
(
τ 1
n
,x ≤ t

)

= lim
n→∞

t∫
0

fτ 1
n ,x

(s) ds =

t∫
0

lim
n→∞

fτ 1
n ,x

(s) ds

=

t∫
0

fτ0,x(s) ds

that fτ0,x is the density of τ0,x since the right-hand side is everywhere continuous. We can

exchange the limit and integral by using the same bound for
∣∣fτ 1

n ,x

∣∣ as in the first step.

In this section we dealt with hitting times and their densities. In the following section, we

want to analyze the times when we hit the origin in more detail.

4.2 Existing results on return times of a classical Bessel

process

ϑ−1
2 0

disordered phase ordered phase

Figure 4.1: Phase transition

In physics, it is of interest to consider phase transitions, which occur when a system

changes its behaviour noticeably at particular parameter values. The change in behaviour

is usually represented by a so-called ”order parameter”, a quantity that changes from zero
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4 Return times for the multivariate Bessel process

to non-zero at the point of transition. Here, ϑ+ 1
2 represents the inverse temperature and

we have seen that as long as ϑ > 0 the Bessel process almost surely never hits the origin,

while such collisions occur when ϑ < 0. This observation suggests that the order parameter

could be related to the occurence of collisions and that the transition distinguishes between

a non-colliding (or ordered) phase at low temperature and a colliding (or disordered) phase

at high temperature. This leads to the decision to consider ϑ as an order parameter. There

are several types of phase transitions depending on the behaviour of the order parameter at

the critical point. In Figure 4.1 we present three plausible classifications for this transition:

discontinuous (red), continuous but not differentiable (black) and differentiable (blue).

Here, we still focus on a classical Bessel process and its return times to the origin. On

the one hand, this set of return times has Lebesgue measure zero almost surely, but on

the other hand, its cardinality is infinite almost surely. Of course, there are famous sets

fulfilling both these properties, for example the Cantor set, but we want to measure this.

This is why Luqin Liu and Yimin Xiao [61] considered the fractal Hausdorff dimension,

defined below, for the times when self similar processes reach the origin. In particular, they

cover a classical Bessel process hitting the origin. We will now present these calculations

and proofs pertaining to the classical Bessel process. We reproduce the proof from Luqin

Liu and Yimin Xiao but elaborate it in significantly more detail.

We will begin with a short introduction to the Hausdorff dimension and its properties,

which we later apply to the Bessel process. We denote by B(x,R) := {y ∈ Rd : ‖y− x‖ ≤
R} the closed d-dimensional ball centered at x with radius R.

Definition 4.3: For the monotonically increasing (on [0,∞)) monomial of power α ≥ 0

the Hausdorff measure of E ⊂ Rd is defined as

mα(E) := lim
ε→0

inf

{ ∞∑
i=1

(2ri)
α : E ⊂

∞⋃
i=1

B(xi, ri) for some xi ∈ Rd and 0 ≤ ri < ε

}

for E ⊂ Rd.The radius ri may be equal to zero and hence the covering can be a finite

union.

The Hausdorff dimension is specified by the following lemma, [2, 8.1 Hausdorff dimen-

sion].
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4.2 Existing results on return times of a classical Bessel process

Lemma 4.4: For any set E ⊂ Rd there exists a unique number α?, called the Hausdorff

dimension of E, for which

α < α? ⇒ mα(E) =∞, α > α? ⇒ mα(E) = 0.

This number is denoted by dim(E) and satisfies

α? = dim(E) = sup{α > 0 : mα(E) =∞} = inf{α > 0 : mα(E) = 0}.

In particular, if mα(E) is finite we can conclude dim(E) ≤ α. The Hausdorff dimension

generalizes the well-known dimension concept. This means that familiar geometric objects

such as straight lines and hyperplanes keep the same dimension. The Hausdorff dimen-

sion offers a finer distinction, since it admits not only natural numbers. The two main

properties we are frequently using can be found in [33, 2.2 Hausdorff dimension].

Lemma 4.5: Countable stability: If we consider a sequence of sets (Fi)i∈N ⊂ Rd then the

Hausdorff dimension of the union is

dim
( ∞⋃
i=1

Fi

)
= sup

i∈N
dim(Fi).

Monotonicity: If E ⊂ F ⊂ Rd holds then dim(E) ≤ dim(F ) ensues.

Especially, we conclude dim(E) ∈ [0, d] for any set E ⊂ Rd from the monotonicity property.

An often used tool to find a lower bound is the following capacity argument, [53, p. 133].

Lemma 4.6: For a compact set E ⊂ Rd, we suppose there exists a positive measure µ

concentrated on E , in formulas µ
(
Rd
)

= µ(E), and some 0 < α < d such that the energy

integrals

‖µ‖2β,E :=

∫
E

∫
E

µ( dx)µ( dy)

‖x− y‖β

are finite for all 0 < β < α, then dim(A) ≥ α is valid.

In the following, we give an extension of a lemma proved in [79]. This is a tool to find a

measure with finite β-energy such that we can easily apply the capacity argument. The
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4 Return times for the multivariate Bessel process

extension given here covers the case t1 > 0 where the Lemma proven in [79] demands

t1 = 0. Therefore, we defineM+
β as the space of all non-negative measures on [0,∞) with

finite β-energy. Due to [2, p. 207],
(
M+

β , ‖ · ‖β,[0,∞)

)
is a complete metric space for every

β > 0. Here, ‖ · ‖β,[0,∞) defines a norm and we use the induced metric.

Lemma 4.7: We consider (µn)n∈N to be a sequence of random measures on [0,∞) con-

centrated on the compact set [t1, t2] ⊂ [0,∞).7 If there exist finite constants K1,K2 > 0

such that

E x
(
‖µn‖

)
≥ K1, E x

(
‖µn‖2

)
≤ K2, E x

(
‖µn‖2β,[t1,t2]

)
<∞

hold for β > 0 and ‖µn‖ := µn
(
[t1, t2], ·

)
, then there exists a subsequence

(
µnk
)
k∈N such

that

lim
k→∞

µnk = µ

weakly in M+
β and µ is strictly positive with Px−probability at least

K2
1

2K2
.

Proof: We use the Paley-Zygmund inequality [89, p. 216 Lemma 8.26]: If X is a non-

negative random variable with finite second moment then

Px
(
X > θE (X)

)
≥
(
1− θ2

)(E (X)
)2

E (X2)

holds for every θ ∈ [0, 1]. Setting θ = 0 we observe

Px
(
‖µn‖ > 0

)
≥ K2

1

K2
> 0.

By choosing a constant M large enough and a small ε > 0, we immediately receive

Px
(
ε < ‖µn‖ ≤M

)
≥ K2

1

2K2
> 0

which implies

Px(ε < ‖µn‖ ≤M infinitely often) = Px
( ∞⋂
i=1

∞⋃
i=n

{ε < ‖µn‖ ≤M}
)

= lim
n→∞

Px
( ∞⋃
i=n

{ε < ‖µn‖ ≤M}
)

7This means µn(·, ω) is a measure on [0,∞) for every ω ∈ Ω with µn([0,∞), ω) = µn([t1, t2], ω).
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≥ Px
(
{ε < ‖µn‖ ≤M}

)
≥ K2

1

2K2
.

On the event Ω0 :=
{
ω : ε < ‖µn‖ ≤ M infinitely often} there exists a sequence of

measures (µnk)k∈N which is bounded and hence tight due to the compact set [t1, t2].

Therefore, by Prohorov’s theorem [12, Chapter 1.5. Prohorov’s theorem], there is a further

subsequence
(
µnkl

)
l∈N that converges weakly to a measure µ with

Px(‖µ‖ > 0) ≥ K2
1

2K2
.

The ε > 0 ensures the positivity of µ. Next, we show that µ has finite β-energy. For any

fixed m > 0 we have

t2∫
t1

t2∫
t1

min

{
m,

1

|x− y|β

}
µnkl ( dx, ·)µnkl ( dy, ·)→

t2∫
t1

t2∫
t1

min

{
m,

1

|x− y|β

}
µ( dx, ·)µ( dy, ·)

Px-almost surely as l→∞ due to the weak convergence. So for all ω ∈ Ω0 we have

t2∫
t1

t2∫
t1

min

{
m,

1

|x− y|β

}
µ( dx, ω)µ( dy, ω) ≤ C(ω) <∞

since E x
(
‖µn‖2β,[t1,t2]

)
<∞. We let m↗∞ and conclude

t2∫
t1

t2∫
t1

1

|x− y|β
µ( dx)µ( dy) <∞

by the monotone convergence theorem which implies µ(·, ω) ∈M+
β for every ω ∈ Ω0.

In the main proof for the classical Bessel process this lemma would be enough for any

finite, closed interval starting in zero. However, this extension will be important in the

multivariate case. The proof in [79] covers only t1 = 0.

Returning to the classical Bessel process (Xt)t≥0 with index −1
2 < ϑ < 0, we require some

properties for its distribution

Qϑ(t, x,A) =
2

(2t)ϑΓ(ϑ+ 1)

∫
A

jϑ

(
ixy

t

)
e−

x2+y2

t y2ϑ+1
1(0,∞) dy.

137



4 Return times for the multivariate Bessel process

In this case the Bessel process will almost surely hit the origin in finite time, cf. [56,

Theorem 1.1 (iv)]. First of all, we need the 1
2 -self similarity of (Xt)t≥0, which means for

every a > 0,

Qϑ(t, x,A) = Qϑ
(
at, a

1
2x, a

1
2A
)

(4.7)

is true with t > 0, x ≥ 0 and A ∈ B([0,∞)). This can easily be derived from the form of

the density.

For a closer examination of the Hausdorff dimension we derive several inequalities. The

following one is a requirement in Luqin Liu and Yimin Xiao [61]. They derive the Hausdorff

dimension of S−1(0) = {t ≥ 0 |St = 0} for self-similar Markov processes (St)t≥0 satisfying

Lemma 4.8 with a corresponding power of r. In particular, they mention strictly stable

Lévy processes and the classical Bessel process obey this property. We additionally verify

this condition pertaining to the classical Bessel process.

Lemma 4.8: There exist some C1 = C1(ϑ) > 0 and C2 = C2(ϑ) > 0 such that for every

r ≥ 0 and 0 ≤ x ≤ r the inequality

C1 min
{

1, r2ϑ+2
}
≤ Qϑ

(
1, x,B(0, r)

)
≤ C2 min

{
1, r2ϑ+2

}
is satisfied.

Proof: In order to evaluate

Qϑ
(
1, x,B(0, r)

)
=

2

2ϑΓ(ϑ+ 1)

r∫
0

jϑ(ixy)e−
x2+y2

2 y2ϑ+1 dy

we have a closer look at the spherical Bessel function

jϑ(ixy) =
Γ(ϑ+ 1)

Γ(ϑ+ 1
2)Γ(1

2)

1∫
−1

e−sxy
(
1− s2

)ϑ− 1
2 ds.

The inequalities,

1, s ≤ 0,

e−xy, s ≥ 0.

}
≤ e−sxy ≤

{
exy, s ≤ 0,

1, s ≥ 0.
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for x, y ∈ [0,∞) imply

1

2

(
e−xy + 1

)
≤ jϑ(ixy) ≤ 1

2

(
exy + 1

)
. (4.8)

Upper bound: By (4.8) we simplify the probability and derive

Qϑ
(
1, x,B(0, r)

)
≤ 1

2ϑ−1Γ(ϑ+ 1)

r∫
0

1

2

(
exy + 1

)
e−

x2+y2

2 y2ϑ+1 dy

=
1

2ϑ−1Γ(ϑ+ 1)

r∫
0

1

2

(
e−

(x−y)2

2 + e−
x2+y2

2

)
y2ϑ+1 dy

≤ 1

2ϑ−1Γ(ϑ+ 1)

r∫
0

y2ϑ+1 dy

=
1

2ϑ−1Γ(ϑ+ 1)(2ϑ+ 2)
r2ϑ+2.

We define C2(ϑ) := max
{

1
2ϑ−1Γ(ϑ+1)(2ϑ+2)

, 1
}

. If r < 1, our calculations above show the

upper bound. If r ≥ 1, we deduce

Qϑ
(
1, x,B(0, r)

)
≤ 1 ≤ C2(ϑ) = C2(ϑ) min

{
1, r2ϑ+2

}
.

Lower bound: We first consider r < 1 and deduce

Qϑ
(
1, x,B(0, r)

) (4.8)

≥ 1

2ϑΓ(ϑ+ 1)

r∫
0

(
e−xy + 1

)
e−

x2+y2

2 y2ϑ+1 dy

≥ 1

2ϑΓ(ϑ+ 1)

r∫
0

e−
x2+y2

2 y2ϑ+1 dy

≥ e−r
2

2ϑΓ(ϑ+ 1)

r∫
0

y2ϑ+1 dy

≥ e−1

2ϑΓ(ϑ+ 1)

r∫
0

y2ϑ+1 dy

=
e−1

2ϑΓ(ϑ+ 1)
· r

2ϑ+2

2ϑ+ 2

=
e−1

2ϑ+1Γ(ϑ+ 2)
r2ϑ+2.
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The third line holds as x and y are bounded by r, which itself is less than one justifying

the fourth line. In the case r > 1, we assume x > 1. Otherwise, the inequality is trivial

and works similar as in the case r < 1,

Qϑ
(
1, x,B(0, r)

)
≥ 1

2ϑΓ(ϑ+ 1)

r∫
0

e−
x2+y2

2 y2ϑ+1 dy

≥ 1

2ϑΓ(ϑ+ 1)

1∫
0

e−
x2+y2

2 y2ϑ+1 dy

≥ e−1

2ϑΓ(ϑ+ 1)

1∫
0

y2ϑ+1 dy

=
e−1

2ϑ+1Γ(ϑ+ 2)
.

For x > 1 we attempt to get rid of the dependence on x and r by other means. For this

purpose, we reduce the event whose probability we determine

Qϑ
(
1, x,B(0, r)

)
≥ Qϑ

(
1, x,B(0, x)

)
=

1

2ϑ−1Γ(ϑ+ 1)

x∫
0

jϑ(ixy)e−
x2+y2

2 y2ϑ+1 dy

≥ 1

2ϑ−1Γ(ϑ+ 1)

x∫
x−1

jϑ(ixy)e−
x2+y2

2 y2ϑ+1 dy.

In the first line, we use x ≤ r and hence B(0, r) ⊃ B(0, x), whereas x > 1 justifies the last

line. We next attempt to find a suitable lower bound for the spherical Bessel function and

rewrite it accordingly,

jϑ(ixy) =
Γ(ϑ+ 1)

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

) 1∫
−1

e−sxy(1− s2)ϑ−
1
2 ds

= exy
Γ(ϑ+ 1)

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

) 1∫
−1

e−(s+1)xy(1− s2)ϑ−
1
2 ds.
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The substitution t = (s+ 1)xy simplifies the integral

jϑ(ixy) = exy
Γ(ϑ+ 1)

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

) 2xy∫
0

e−t
(

1−
( t

xy
− 1
)2
)ϑ− 1

2

dt

=
Γ(ϑ+ 1)

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

) · exy
xy

2xy∫
0

e−t
(
�1−

( t2

(xy)2
− 2t

xy
+ �1
))ϑ− 1

2

dt

=
Γ(ϑ+ 1)

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

) · exy2ϑ− 1
2

(xy)ϑ+ 1
2

2xy∫
0

e−ttϑ−
1
2

(
1− t

2xy

)ϑ− 1
2

dt.

Using the binomial theorem and that the coefficient(
ϑ− 1

2

)
. . .
(
ϑ− 1

2
−m+ 1

)
(−1)m =

(1

2
− ϑ

)
. . .
(1

2
− ϑ+m− 1

)
=
(1

2
− ϑ

)
m

is positive for every m ∈ N since ϑ < 0, we obtain

jϑ(ixy) =
Γ(ϑ+ 1)

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

) · exy2ϑ− 1
2

(xy)ϑ+ 1
2

∞∑
m=0

2xy∫
0

e−ttϑ−
1
2

(
1
2 − ϑ

)
m

m!

(
t

2xy

)m
dt

≥ Γ(ϑ+ 1)

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

) · exy2ϑ− 1
2

(xy)ϑ+ 1
2

2xy∫
0

e−ttϑ−
1
2 dt.

Combining these calculations, we derive

Qϑ
(
1, x,B(0, r)

)
≥ 1

2ϑ−1Γ(ϑ+ 1)

x∫
x−1

jϑ(ixy)e−
x2+y2

2 y2ϑ+1 dy

≥ 1

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

) x∫
x−1

e−
x2+y2

2 y2ϑ+1 exy

(xy)ϑ+ 1
2

2xy∫
0

e−ttϑ−
1
2 dt dy

≥ 1

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

) x∫
x−1

e−
(x−y)2

2

(y
x

)ϑ+ 1
2

dy

2x(x−1)∫
0

e−ttϑ−
1
2 dt

≥ 1

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

)e− 1
2

(
x− 1

x

)ϑ+ 1
2

2x(x−1)∫
0

e−ttϑ−
1
2 dt
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=
1

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

)e− 1
2

(
1− 1

x

)ϑ+ 1
2

2x(x−1)∫
0

e−ttϑ−
1
2 dt.

The third line is valid due to y ≥ x−1. In the fourth line we used additionally x−y ∈ [0, 1]

and ϑ + 1
2 > 0. Now, we argue the function on the right-hand side has a positive lower

bound that depends only on the parameter ϑ. Therefore, we regard

lim
x→∞

g(x) := lim
x→∞

(
1

Γ
(
ϑ+ 1

2

)
Γ
(

1
2

)e− 1
2

(
1− 1

x

)ϑ+ 1
2

2x(x−1)∫
0

e−ttϑ−
1
2 dt

)

=
e−

1
2

Γ
(

1
2

) =
e−

1
2

√
π
> 0.

Thus, we achieve

lim
x→∞

g(x) = C > 0,

which means equivalently for every ε > 0 there exists an x̃ > 0 such that for every x ≥ x̃

|g(x)− C| < ε

is valid. We choose ε = C
2 to receive

−C
2
< g(x)− C <

C

2

and especially infer

g(x) >
C

2
> 0

for all x ∈ [x̃,∞). Furthermore, g is continuous and hence takes its positive minimum on

the compact interval [0, x̃], where the function is positive. This means in particular we

established

Qϑ
(
1, x,B(0, r)

)
≥ g(x)

≥ min

{
C

2
, min
x∈[0,x̃]

g(x)

}
.
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The assertion ensues by setting

C1(ϑ) := min
{ e−1

2ϑ+1Γ(ϑ+ 2)
,
C

2
, min
x∈[0,x̃]

g(x)
}

= min
{ e−1

2ϑ+1Γ(ϑ+ 2)
,
e−

1
2

2
√
π
, min
x∈[0,x̃]

g(x)
}
.

Next, we provide a bound for the probability that, if we start in the origin, we will be back

near the origin at some point within the time interval [t1, t2]. Using the strong Markov

property of the Bessel process, we proceed to first obtain the following result, cf. [87,

Proposition 2.1].

Lemma 4.9: For every t2 > t1 > 0, x ≥ 0 and r > 0 we have

Px
(
∃s ∈ [t1, t2] : |Xs| ≤ r

)
≤

2t2−t1∫
t1

Qϑ
(
s, x,B(0, r)

)
ds

inf
|y|≤r

t2−t1∫
0

Qϑ
(
s, y,B(0, r)

)
ds

.

Proof: According to [87, Proposition 2.1] we define the stopping time

T := inf
{
s ≥ t1 : |Xs| ≤ r

}
to reformulate the probability on the left-hand side

Px(T ≤ t2) = Px
(
∃s ∈ [t1, t2] : |Xs| ≤ r

)
.

We can also rewrite the term by using Fubini’s theorem, which always holds for integrals

over positive functions,

2t2−t1∫
t1

Qϑ
(
s, x,B(0, r)

)
ds =

2t2−t1∫
t1

Px
(
Xs ∈ B(0, r)

)
ds

=

2t2−t1∫
t1

E x
(
1{|Xs|≤r}

)
ds
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= E x

( 2t2−t1∫
t1

1{|Xs|≤r} ds

)

to consequently reduce the proof to verifying

E x

( 2t2−t1∫
t1

1{|Xs|≤r} ds

)
≥ Px(T ≤ t2) inf

|y|≤r

t2−t1∫
0

Qϑ
(
s, y,B(0, r)

)
ds.

Based on the definition of the stopping time we recognize T ≥ t1. From this, we derive

E x

( 2t2−t1∫
t1

1{|Xs|≤r} ds

)
≥ E x

( 2t2−t1∫
T

1{|Xs|≤r} ds

)

≥ E x

(
1{T≤t2}

2t2−t1∫
T

1{|Xs|≤r} ds

)

= E x

(
1{T≤t2} E

XT

[ 2t2−t1∫
T

1{|Xs−T |≤r} ds

])

= E x

(
1{T≤t2} E

XT

[ 2t2−t1−T∫
0

1{|Xs|≤r} ds

])
.

The second-last equation is valid because of the strong Markov property. Finally, we use

the bound T ≤ t2 and Fubini’s theorem:

E x

( 2t2−t1∫
t1

1{|Xs|≤r} ds

)
≥ E x

(
1{T≤t2} E

XT

[ 2t2−t1−T∫
0

1{|Xs|≤r} ds

])

≥ E x

(
1{T≤t2} E

XT

[ 2t2−t1−t2∫
0

1{|Xs|≤r} ds

])

≥ E x
(
1{T≤t2}

)
inf
|y|≤r

E y

( t2−t1∫
0

1{|Xs|≤r} ds

)

= Px(T ≤ t2) inf
|y|≤r

t2−t1∫
0

E y
(
1{|Xs|≤r}

)
ds
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= Px(T ≤ t2) inf
|y|≤r

t2−t1∫
0

Qϑ
(
s, y,B(0, r)

)
ds.

Now, we combine Lemma 4.8 and Lemma 4.9 to receive the following bound, which will

later give us the maximal possible Hausdorff dimension. This is only one part from [61,

Lemma 4.2], but we specify further what values r can take instead of saying r has to be

small.

Lemma 4.10: For every ε > 0 there exists a constant C3 = C3(ϑ, ε) > 0 such that

P0
(
∃s ∈ [t1, t2] : |Xs| ≤ r

)
≤ C3(t2 − t1)ϑ

is valid for every t2 > t1 ≥ ε and 0 < r ≤
√
t2 − t1.

Proof: We use the inequality of Lemma 4.9 to search for an upper bound:

P0
(
∃s ∈ [t1, t2] : |Xs| ≤ r

)
≤

2t2−t1∫
t1

Qϑ
(
s, 0, B(0, r)

)
ds

inf
|y|≤r

t2−t1∫
0

Qϑ
(
s, y,B(0, r)

)
ds

.

The denominator easily simplifies to

t2−t1∫
0

Qϑ
(
s, y,B(0, r)

)
ds

(4.7)
=

t2−t1∫
0

Qϑ

(
1,

y√
s
,B
(

0,
r√
s

))
ds

4.8
≥ C1(ϑ)

t2−t1∫
0

min

{
1,

(
r√
s

)2ϑ+2
}

ds

≥ C1(ϑ)

t2−t1∫
0

min

{
1,

(
r2

t2 − t1

)ϑ+1
}

ds

= C1(ϑ)
r2ϑ+2

(t2 − t1)ϑ+1
(t2 − t1)

= C1(ϑ)r2ϑ+2(t2 − t1)−ϑ,
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which indeed is independent of y. The second-last line holds since r2 ≤ t2 − t1. For the

numerator we start with the same calculations

2t2−t1∫
t1

Qϑ
(
s, 0, B(0, r)

)
ds

(4.7)
=

2t2−t1∫
t1

Qϑ

(
1, 0, B

(
0,

r√
s

))
ds

4.8
≤ C2(ϑ)

2t2−t1∫
t1

min

{
1,
r2ϑ+2

sϑ+1

}
ds

≤ C2(ϑ)r2ϑ+2

2t2−t1∫
t1

s−ϑ−1 ds

=
C2(ϑ)

−ϑ
r2ϑ+2

[
(2t2 − t1)−ϑ − t−ϑ1

]
.

By using Bernoulli’s inequality [67, 2.4 Bernoulli’s Inequality and its Generalizations], we

conclude

(2t2 − t1)−ϑ − t−ϑ1 =
(
2(t2 − t1) + t1

)−ϑ − t−ϑ1 = t−ϑ1

(
2(t2 − t1)

t1
+ 1

)−ϑ
− t−ϑ1

≤ t−ϑ1

(
1 + (−2ϑ)

t2 − t1
t1

)
− t−ϑ1 = −2ϑ(t2 − t1)t−ϑ−1

1

≤ −2ϑ

εϑ+1
(t2 − t1).

Combining all calculations results in the desired bound

P0(∃s ∈ [t1, t2] : |Xs| ≤ r) ≤

2t2−t1∫
t1

Qϑ
(
s, 0, B(0, r)

)
ds

inf
|y|≤r

t2−t1∫
0

Qϑ
(
s, y,B(0, r)

)
ds

≤
C2(ϑ)
−ϑ r2ϑ+2

C1(ϑ)r2ϑ+2(t2 − t1)−ϑ

[
(2t2 − t1)−ϑ − t−ϑ1

]
=

C2(ϑ)

−ϑC1(ϑ)(t2 − t1)−ϑ

[
(2t2 − t1)−ϑ − t−ϑ1

]
≤ C2(ϑ)

−ϑC1(ϑ)(t2 − t1)−ϑ
· −2ϑ

εϑ+1
(t2 − t1)

=
2C2(ϑ)

εϑ+1C1(ϑ)
(t2 − t1)ϑ+1.

146



4.2 Existing results on return times of a classical Bessel process

Finally, we analyze the set of times X−1(0) := {t ≥ 0 : Xt = 0} ⊂ [0,∞) when the process

hits the origin. Obviously, we observe dim
(
X−1(0)

)
∈ [0, 1]. Using Lemmas 4.8 and 4.10,

we proceed to calculate the Hausdorff dimension of this set, cf. [61, Theorem 4.1 and

4.2].

Theorem 4.11: For every −1
2 < ϑ < 0 the equality

dim
(
X−1(0)

)
= −ϑ

is P0- almost surely valid.

Proof: Upper bound: To begin with, we intend to prove the upper bound. Therefore, we

prove

dim
(
X−1(0) ∩ [t1, t2]

)
≤ −ϑ

for every interval [t1, t2] ⊂ (0,∞) P0-almost surely. If we recall the definition of the

Hausdorff dimension, we observe that the balls B(x, r) in the covering are intervals in the

one-dimensional case whose length converges to zero. Thus, for n ∈ N we divide [t1, t2]

into n subintervals In,i :=
[
t1 + (i− 1) t2−t1n , t1 + i t2−t1n

]
. Thereby, it is essential that the

length of In,i converges to zero for n→∞ and In,1∪ . . .∪In,n = [t1, t2] provides a covering

for X−1(0) ∩ [t1, t2]. We conclude

E 0
(
m−ϑ(X−1(0) ∩ [t1, t2])

)
≤ lim

n→∞

n∑
i=1

(
t2 − t1
n

)−ϑ
P0
(
∃t ∈ In,i : Xt = 0

)
≤ lim

n→∞

n∑
i=1

(
t2 − t1
n

)−ϑ
P0
(
∃t ∈ In,i : |Xt| ≤ rn

)
4.10
≤ C3(ϑ, t1) lim

n→∞

(
t2 − t1
n

)−ϑ( t2 − t1
n

)ϑ+1

n

= C3(ϑ, t1)(t2 − t1) <∞

for some 0 < rn ≤
√

t2−t1
n . The first inequality holds since we are considering one

particular covering instead of the optimal cover. Consequently, we deduce

dim
(
X−1(0) ∩ [t1, t2]

)
≤ −ϑ
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as m−ϑ(E) < ∞ implies dim(E) ≤ −ϑ for E ⊂ Rd. Hence, with dim
(
{0}
)

= 0 and the

countable stability the upper bound immediately succeeds

dim
(
X−1(0)

)
= dim

(
{0}∪̇

(
X−1(0) ∩ (0,∞)

))
= dim

(
{0}∪̇

∞⋃
n=1

(
X−1(0) ∩

[ 1

n
, n
]))

4.5
= sup

n∈N
dim

(
X−1(0) ∩

[ 1

n
, n
])
≤ −ϑ.

Lower bound: For the lower bound we initially verify dim
(
X−1(0) ∩ [0, t]

)
≥ −ϑ for

every t > 0 with a positive P0−probability since we need a compact set for the capacity

argument, Lemma 4.6. Therefore, we construct for every possible smaller dimension 0 <

β < −ϑ a positive measure µ concentrated on X−1(0) ∩ [0, t] such that ‖µ‖β,[0,t] < ∞,
which implies dim

(
X−1(0) ∩ [0, t]

)
> β on {µ > 0} due to the capacity argument. We

define a sequence of random positive measures on B([0,∞)) by

µn(B,ω) := n2ϑ+2

∫
[0,t]∩B

1{
|Xs(ω)|≤ 1

n

} ds.

To apply Lemma 4.7 we search for constants K1 = K1(ϑ, t) > 0 and K2 = K2(ϑ, t) > 0

satisfying

E 0(‖µn‖) ≥ K1, E 0(‖µn‖2) ≤ K2, E 0(‖µn‖2β,[0,t]) <∞. (4.9)

According to Lemma 4.7, we then receive a suitable µ as a limit of a subsequence. Since

the Bessel process (Xt)t≥0 has continuous sample paths, such limit µ would be supported

on X−1(0) ∩ [0, t], see [64, p. 282]. Thus, our task is to prove (4.9). By using the 1
2−self

similarity of the Bessel process (4.7) and Lemma 4.8 we obtain

E 0(‖µn‖) = E 0

(
n2ϑ+2

t∫
0

1{
|Xs|≤ 1

n

} ds

)
= n2ϑ+2

t∫
0

P0

(
|Xs| ≤

1

n

)
ds

= n2ϑ+2

t∫
0

Qϑ

(
s, 0, B

(
0,

1

n

))
ds

(4.7)
= n2ϑ+2

t∫
0

Qϑ

(
1, 0, B

(
0,

1√
sn

))
ds

≥ n2ϑ+2

t∫
n−2

Qϑ

(
1, 0, B

(
0,

1√
sn

))
ds

4.8
≥ C1(ϑ)n2ϑ+2n−2ϑ−2

t∫
n−2

s−ϑ−1 ds
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=
C1(ϑ)

−ϑ

[
t−ϑ − n2ϑ

]
≥ C1(ϑ)

−ϑ

[
t−ϑ −

(
n0(t)

)2ϑ]
=: K1(ϑ, t) > 0

for every n ≥ n0(t) := bt−1c+ 1. By means of analogous calculations, we receive

E 0(‖µn‖2) = n4ϑ+4

t∫
0

t∫
0

P0

(
Xs1 ≤

1

n
,Xs2 ≤

1

n

)
ds1 ds2

= 2n4ϑ+4

t∫
0

s2∫
0

∫
B(0,n−1)

Qϑ

(
s2 − s1, u,B

(
0, n−1

))
Qϑ
(
s1, 0, du

)
ds1 ds2

(4.7)

≤
4.8

2C2
2 (ϑ)n4ϑ+4

t∫
0

t∫
s1

min
{

1, (s2 − s1)−ϑ−1n−2ϑ−2
}

min
{

1, s−ϑ−1
1 n−2ϑ−2

}
ds2 ds1

≤ 2C2
2 (ϑ)n4ϑ+4

t∫
0

t∫
s1

(s2 − s1)−ϑ−1n−2ϑ−2s−ϑ−1
1 n−2ϑ−2 ds2 ds1

= 2C2
2 (ϑ)

t∫
0

(t− s1)−ϑ

−ϑ
s−ϑ−1

1 ds1 ≤ 2C2
2 (ϑ)

t−ϑ

−ϑ
· t
−ϑ

−ϑ

= 2C2
2 (ϑ)

t−2ϑ

ϑ2
=: K2(ϑ, t) <∞.

In the second-last line we applied (t− s1)−ϑ ≤ t−ϑ since −ϑ > 0. Similarly, we calculate

E 0(‖µn‖2β,[0,t]) = E 0

 t∫
0

t∫
0

µn( ds1, ·)µn( ds2, ·)
|s2 − s1|β


= 2n4ϑ+4

t∫
0

t∫
s1

P0
(
Xs1 ≤ 1

n , Xs2 ≤ 1
n

)
(s2 − s1)β

ds2 ds1

= 2n4ϑ+4

t∫
0

t∫
s1

∫
B(0, 1

n
)

Qϑ
(
s2 − s1, u,B(0, 1

n)
)
Qϑ
(
s1, 0, du

)
(s2 − s1)β

ds2 ds1

(4.7)

≤
4.8

2C2
2 (ϑ)

t∫
0

t∫
s1

(s2 − s1)−ϑ−β−1s−ϑ−1
1 ds2 ds1
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=
2C2

2 (ϑ)

−ϑ− β

t∫
0

(t− s1)−ϑ−βs−ϑ−1
1 ds1

≤ 2C2
2 (ϑ)t−ϑ−β

−ϑ− β

t∫
0

s−ϑ−1
1 ds1 =

2C2
2 (ϑ)t−ϑ−β

ϑ(ϑ+ β)
t−ϑ <∞

for 0 < β < −ϑ. The inequality in the last line is valid since −ϑ− β > 0. Hence, we have

proved

P0
(

dim
(
X−1(0) ∩ [0, t]

)
≥ −ϑ

)
≥ K2

1 (ϑ, t)

2K2(ϑ, t)
(4.10)

for every t > 0. Next, we define a subset for the hitting times of the origin as a sequence

of well defined stopping times τn as τ0 := 0 and

τn := inf
{
t ≥ τn−1 + 1 : Xt = 0

}
. (4.11)

By the strong Markov property, Xτn = 0 and (4.10) we deduce

P0
(

dim
(
X−1(0) ∩ [0, τn+1]

)
≥ −ϑ

∣∣∣Fτn) ≥ P0
(

dim
(
X−1(0) ∩ [τn, τn+1]

)
≥ −ϑ

∣∣∣Fτn)
= PXτn

(
dim

(
X−1(0) ∩ [0, τn+1 − τn]

)
≥ −ϑ

)
≥ P0

(
dim

(
X−1(0) ∩ [0, 1]

)
≥ −ϑ

)
≥ K2

1 (ϑ, t)

2K2(ϑ, t)
.

The sequence An :=
{

dim
(
X−1(0) ∩ [0, τn]

)
≥ −ϑ

}
∈ Fτn fulfills

∑
n∈N

P0(An | Fτn−1) ≥
∑
n∈N

K2
1 (ϑ, t)

2K2(ϑ, t)
=∞

almost surely and hence by the conditional Borel-Cantelli lemma [14, Corollary 13.3.38]{∑
n∈N

P0(An | Fτn−1) =∞

}
≡

{∑
n∈N

1An =∞

}
,

we conclude that

P0
(

dim
(
X−1(0) ∩ [0, τn]

)
≥ −ϑ for infinitely many n

)
= 1.
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4.2 Existing results on return times of a classical Bessel process

The property sup{t : Xt = 0} = ∞ Px−almost surely, Lemma 4.12, completes the proof

due to [0, τn] ⊂ [0, τn+1].

We are left with the task of proving the following statement for the classical Bessel pro-

cess.

Lemma 4.12: For every classical Bessel process with index −1
2 < ϑ < 0

Px
(

sup{t : Xt = 0} =∞
)

= 1

is valid.

Proof: We use the stopping time τn defined in the proof of Theorem 4.11, see (4.11), and

deduce

Px
(
τn+1 <∞

)
= Ex(1{τn+1<∞})

= Ex
(
E
(
1{τn+1<∞} | Fτn+1

))
= Ex

(
E
(
1{inf{t≥0 |Xt+τn+1=0}<∞}

∣∣Fτn+1

))
= Ex

(
EXτn+1

(
1{inf{t≥0 |Xt=0}<∞}

))
= Ex

(
1{inf{t≥0 |Xt=0}<∞}

)
= Px

(
inf{t ≥ 0 |Xt = 0} <∞

)
= 1.

The fourth line is valid due to the strong Markov property and the last line was proved

in [56, Theorem 1.1 (iv)]. Consequently, using the continuity from above we derive

Px
(
∀n ∈ N : τn <∞

)
= Px

( ⋂
n∈N
{τn <∞}

)
= lim

n→∞
Px(τn <∞) = 1.

We consider ω ∈ {sup{t : Xt = 0} < ∞
}

and define t0 := sup{t : Xt(ω) = 0}. Hence,

τ[t0]+1(ω) =∞ yields

{
sup{t : Xt = 0} =∞

}c ⊂ {∀n ∈ N : τn <∞
}c

151



4 Return times for the multivariate Bessel process

and thus

Px
(

sup{t : Xt = 0} =∞
)
≥ Px

(
∀n ∈ N : τn <∞

)
= 1.

ϑ−1
2

1
2

0

disordered phase ordered phase

Figure 4.2: Behaviour of dim
(
X−1{0}

)
.

Since the first hitting time of the origin is almost surely finite, Theorem 4.11 can be ex-

tended to arbitrary starting points x > 0 by using the countable stability of the Hausdorff

dimension.

We give a schematic representation of the phase transition of the Hausdorff dimension

in Figure 4.2. As every countable set has a Hausdorff dimension of zero, there exists a

time interval in which the process hits the origin almost surely uncountably often when

−1
2 < ϑ < 0.

4.3 Hausdorff dimension for the multivariate Bessel process

In this section we deal with the Hausdorff dimension of the times a multivariate Bessel

process hits the Weyl chamber’s boundary. The formulas here are slightly different than

those presented in Section 4.2 as it was not successful proving the conditions in the multi-

variate case. Nevertheless, the proofs still work with a few modifications in the conditions.

First of all, we state the basic facts: A multivariate Bessel process with positive multi-

plicity function k on the root system R hits ∂WR almost surely if there exists an α ∈ R
such that k(α) < 1

2 holds, [26, Proposition 1], whereas it never hits ∂WR if k(α) > 1
2 for

every α ∈ R. We will focus on the AN−1 and BN case, but nevertheless we hypothesize
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4.3 Hausdorff dimension for the multivariate Bessel process

the following analogous result to the classical Bessel process for any multivariate Bessel

process.

Conjecture 4.13: For every multivariate Bessel process (Yt)t≥0 starting in x ∈WR with

multiplicity function k : R→ (0,∞) the equality

dim
(
Y −1

(
∂WR

))
=

1

2
−min

{
1

2
,min
α∈R

k(α)

}
is Px-almost surely valid.

We have already pointed out that we cover the case A1 with the help of Section 4.2. For

arbitrary dimensions we want to investigate this for the case AN−1 as well as BN , which

are quite similar models. In what follows, we cover the proofs for the AN−1 case. As

things stand, we have not (yet) been able to give the complete proof for the BN case. In

Appendix A, we address the problems that arose by listing and proving the lemmas and

the theorem which still work in this case, and explain the missing desired bound to finish

the proof of Conjecture 4.13.

In the one-dimensional case, a key point for determining the Hausdorff dimension was

finding bounds of the probability that the process is close to the origin. Therefore, we

used the ball B(0, r). Analogously, we define the edge set

ErAN−1
:=
{
x ∈WAN−1

| ∃ i ∈ {1, . . . , N − 1} : 0 ≤ xi+1 − xi ≤ r
}

of thickness r ≥ 0 which helps in later calculations of the hitting times with ∂WAN−1
=

E0
AN−1

. Even if we focus on the AN−1 case we always suppress the Weyl chamber in

the notation whenever the calculations work for every multivariate Bessel process. The

following lemma is a basic property of our set ErAN−1
, which we regularly apply on the

integration domain after a variable substitution without mentioning it.

Lemma 4.14: For any r, c > 0 the equality cErAN−1
= EcrAN−1

holds.

Proof: For the case AN−1 we derive immediately

cErAN−1
=

{
cx ∈ cWAN−1

∣∣ ∃ i ∈ {1, . . . , N − 1} : 0 ≤ xi+1 − xi ≤ r
}

=

{
cx ∈WAN−1

∣∣ ∃ i ∈ {1, . . . , N − 1} : 0 ≤ c
(
xi+1 − xi

)
≤ cr

}
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4 Return times for the multivariate Bessel process

=

{
y ∈WAN−1

∣∣∃ i ∈ {1, . . . , N − 1} : 0 ≤ yi+1 − yi ≤ cr
}

= EcrAN−1

by using the invariance under multiplication of the closed Weyl chamber in the second

line.

If we define the corresponding edge set

ErR :=
{
x ∈WR

∣∣∃α ∈ R : 0 ≤ 〈α, x〉 ≤ r
}

of thickness r > 0, we preserve also the property of the previous lemma while

∂WR = E0
R ⊂ ErR ⊂WR

holds. The main result of this section is the proof of Conjecture 4.13 for R = AN−1.

Theorem 4.15 (Case AN−1): The Hausdorff dimension of collision times for the mul-

tivariate Bessel process of type AN−1 starting in x ∈WAN−1
is given by

dim
(
Y −1(∂WAN−1

)
)

=
1

2
−min

{
1

2
, k

}
Px-almost surely.

We perform the proof for x ∈ ∂WAN−1
. Having a finite hitting time of ∂WAN−1

in case

k < 1
2 and the countable stability of the Hausdorff dimension, we can easily transfer this

to starting points x ∈WAN−1
. Furthermore, we ignore the case k > 1

2 since the dimension

is obviously almost surely zero when no particles collide. As the proof is more involved,

we split it into two parts, first proving the upper bound and then the lower bound for

x ∈ ∂WAN−1
.

4.3.1 Upper bound

The main work for the upper bound of the Hausdorff dimension lies in the proof of the

following lemma, dealing with the probability of the process being in the edge set at time

t = 1. The key point will be a useful inequality of Piotr Graczyk and Patrice Sawyer,

[39].
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4.3 Hausdorff dimension for the multivariate Bessel process

Lemma 4.16 (Case AN−1): For every k > 0, r > 0 and % > 0 there exist constants

C1 = C1(k,N) > 0 and C2 = C2(k,N, %) > 0 such that

C1 min
{

1, r2k+1
}
≤ Qk

(
1, x, ErAN−1

)
≤ C2 min

{
1, r2k+1

}
holds for all x ∈ ErAN−1

∩B(0, %).

Remark: The main difference to the classical Bessel process, apart from the more com-

plicated set ErAN−1
, is that C2 depends on the bound of the starting point x. This will

not change the proof of the upper bound of the Hausdorff dimension but it does for the

lower bound of the Hausdorff dimension considerably.

Proof: Lower bound: In this proof we use the behaviour of the density from [39, Theorem

3.1], which means there exists a constant C = C(N, k) > 0 with

Px(Y1 ∈ ErAN−1
) ≥ C(N, k)

∫
ErAN−1

e−
‖x−y‖2

2 wAN−1
(y)∏

1≤l<m≤N

(
1
2 + (xm − xl)(ym − yl)

)k dy.

First, we consider the case 0 < r ≤ 1. We can bound this further by choosing

i ∈ arg min
j=1,...,N−1

(xj+1 − xj)

and defining the set

Er,iAN−1
:=
{
y ∈WAN−1

: 0 ≤ yi+1 − yi ≤ r
}

in order to write

Px(Y1 ∈ ErAN−1
) ≥ C(N, k)

∫
Er,iAN−1

e−
‖x−y‖2

2 wAN−1
(y)∏

1≤l<m≤N

(
1
2 + (xm − xl)(ym − yl)

)k dy.
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4 Return times for the multivariate Bessel process

Next, we consider a variable substitution centered around x:

yj = zj + xj , j 6∈ {i, i+ 1},

yi =
zi − zi+1√

2
+
xi + xi+1

2
,

yi+1 =
zi + zi+1√

2
+
xi + xi+1

2

(4.12)

or equivalently

zj = yj − xj , j 6∈ {i, i+ 1},

zi =
yi + yi+1√

2
− xi + xi+1√

2
,

zi+1 =
yi+1 − yi√

2
≥ 0.

Subsequently, we examine the new integration domain and make it independent of x by

decreasing its size. In particular, for the following inequalities, we always begin by using

the fact that y is ordered. Hereafter, we consider the upper bounds of the components

of z separately. Owing to the ordering of y we automatically obtain the lower bounds as

well. For j 6∈ {i− 1, i, i+ 1} we get

zj + xj ≤ zj+1 + xj+1

and hence

zj ≤ zj+1 + (xj+1 − xj). (4.13)

Since x is ordered as well, less combinations of (zj , zj+1) satisfy the inequality

zj ≤ zj+1

than (4.13). For j = i− 1, we similarly obtain

zi−1 + xi−1 ≤
zi − zi+1√

2
+
xi + xi+1

2
,

and reformulate

zi−1 ≤
zi − zi+1√

2
+

(xi − xi−1) + (xi+1 − xi−1)

2
.
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4.3 Hausdorff dimension for the multivariate Bessel process

Coming from this upper bound we can make the integration domain smaller due to

zi − zi+1√
2

+
(xi − xi−1) + (xi+1 − xi−1)

2
≥ zi − zi+1√

2
≥ zi√

2
− 1

2
,

where we additionally use 0 ≤ zi+1 = yi+1−yi√
2
≤ r√

2
≤ 1√

2
. In the end, the more restrictive

integration upper bound for zi−1 is specified by

zi−1 ≤
zi√
2
− 1

2
.

For j = i, yi+1 ≤ yi+2 provides

zi√
2
≤ zi+2 + xi+2 −

(
zi+1√

2
+
xi + xi+1

2

)
= zi+2 −

zi+1√
2

+
(xi+2 − xi) + (xi+2 − xi+1)

2
,

so we get as new upper bound for the integration limit

zi+2 −
zi+1√

2
+

(xi+2 − xi) + (xi+2 − xi+1)

2
≥ zi+2 −

1

2
.

For j = i+ 1, we have already observed

0 ≤ zi+1 ≤
r√
2
.

Finally, we get as new integration limits

zj ≤ zj+1, j 6∈ {i− 1, i, i+ 1},

zi−1 ≤
zi√
2
− 1

2
≤ zi+2 − 1,

0 ≤ zi+1 ≤
r√
2
.

(4.14)

We now want to define a new integration domain imposing additionally a bound on

N∑
j=1
j 6=i+1

z2
j
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4 Return times for the multivariate Bessel process

for later calculations. For this, every vector z within[
0,

1

2

]
× · · · ×

[ i− 2

2
,
i− 1

2

]
︸ ︷︷ ︸

3(z1,...,zi−1)

×
[ i√

2
,
i+ 1√

2

]
×
[
0,

r√
2

]
×
[ i+ 2

2
, i+ 2

]

×
[
i+ 2, i+ 3

]
× · · · ×

[
N − 1, N

]
︸ ︷︷ ︸

3(zi+3,...,zN )

fulfills (4.14) and in addition

N∑
j=1
j 6=i+1

z2
j ≤

i−1∑
j=1

j2

4
+

(i+ 1)2

2
+

N∑
j=i+2

j2

≤
N∑
j=1

j2 =
N(N + 1)(2N + 1)

6

≤ (N + 1)3.

We use these considerations to define

Λi,N :=
{
z ∈ RN :

N∑
j=1
j 6=i+1

z2
j ≤ (N + 1)3, zj ≤ zj+1 j 6∈ {i− 1, i, i+ 1},

zi−1 ≤
zi√
2
− 1

2
≤ zi+2 − 1

} (4.15)

so that the new integration domain is Λi,N ∩
{

0 ≤ zi+1 ≤ r√
2

}
since we observed in the

calculations above that Az+b ∈ Er,iAN−1
for every z ∈ Λi,N∩

{
0 ≤ zi+1 ≤ r√

2

}
, where A and

b defines the transformation given by the equations (4.12). Since A maps all except of two

components onto itself while the remaining ones are rotated, we note that | det(A)| = 1.

In particular, we conclude

λN−1
(
pi+1(Λi,N )

)
≥ 1

2i−1
· 1√

2
· i+ 2

2
· 1N−i−2 ≥ 1

2N

with the projection

pi+1 : (ξ1, . . . , ξN ) 7→ (ξ1, . . . , ξi, ξi+2, . . . , ξN )

which is important for the later calculations. Additionally,
[
− (N + 1)

3
2 , (N + 1)

3
2

]
⊃
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4.3 Hausdorff dimension for the multivariate Bessel process

pi+1(Λi,N ) implies λN−1
(
pi+1(Λi,N )

)
≤ 2N−1(N + 1)

3(N−1)
2 . The bound on the sum in

(4.15) may be chosen smaller so that 0 < λN−1
(
pi+1(Λi,N )

)
<∞ but we are not interested

in the sharpest bound. We now examine each term of the integral separately to find an

x-independent lower bound:

‖x− y‖2 =
N∑
j=1

j 6=i,i+1

(yj − xj)2 + (yi − xi)2 + (yi+1 − xi+1)2

=
N∑
j=1

j 6=i,i+1

z2
j +

(zi − zi+1√
2

+
xi + xi+1

2
− xi

)2
+
(zi + zi+1√

2
+
xi + xi+1

2
− xi+1

)2

=
N∑
j=1

j 6=i,i+1

z2
j +

(zi − zi+1√
2

+
xi+1 − xi

2

)2
+
(zi + zi+1√

2
− xi+1 − xi

2

)2

= ‖z‖2 +
(xi+1 − xi)2

2
+ (xi+1 − xi)

zi − zi+1√
2

− (xi+1 − xi)
zi + zi+1√

2

= ‖z‖2 +
(xi+1 − xi)2

2
−
√

2(xi+1 − xi)zi+1

≤ ‖z‖2 +
(xi+1 − xi)2

2

≤ (N + 1)3 + z2
i+1 +

(xi+1 − xi)2

2

≤ (N + 1)3 +
r2

2
+
r2

2
≤ (N + 1)3 + 1.

The first and third inequality are valid since 0 ≤ xi+1 − xi ≤ r and 0 ≤ zi+1 ≤ r√
2

for

r < 1, respectively, whereas we used the imposed bound on the sum in the second-last

line. The remaining terms of the integral are given by the product

∏
1≤l<m≤N

(ym − yl)2

1
2 + (xm − xl)(ym − yl)

to the power k. To express this product in terms of z, we must consider six separate cases.

The simplest case is that where l = i, m = i+ 1:

(yi+1 − yi)2

1
2 + (xi+1 − xi)(yi+1 − yi)

=
(
√

2zi+1)2

1
2 +
√

2zi+1(xi+1 − xi)
≥ 4

3
z2
i+1.

Here, we have used the fact that both
√

2zi+1 and xi+1 − xi are less than or equal to r,
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4 Return times for the multivariate Bessel process

which in turn is bounded above by 1. Next, we look at the case l,m /∈ {i, i + 1}, where

we get

(ym − yl)2

1
2 + (ym − yl)(xm − xl)

=
(zm − zl + xm − xl)2

1
2 + (zm − zl + xm − xl)(xm − xl)

≥ (zm − zl + xm − xl)2

1
2 + (zm − zl + xm − xl)2

since z ∈ Λi,N implies zm − zl ≥ 0. Observing that the function

ξ 7→ ξ2

1
2 + ξ2

(4.16)

is increasing in ξ > 0, we conclude that

(ym − yl)2

1
2 + (ym − yl)(xm − xl)

≥ (zm − zl)2

1
2 + (zm − zl)2

as x ∈ WAN−1
means xm − xl ≥ 0. In the other cases we proceed in the same way. First,

we add a positive term in the numerator and then use the increasing behaviour of (4.16).

For the second step we will use xi+1−xi ≤ 1, 0 ≤ zi+1 ≤ 1√
2

and the ordering of x without

further mentioning. The following case is l = i, m > i+ 1, where we have

(ym − yi)2

1
2 + (ym − yi)(xm − xi)

=

(
zm + xm − zi−zi+1√

2
− xi+xi+1

2

)2

1
2 +

(
zm + xm − zi−zi+1√

2
− xi+xi+1

2

)
(xm − xi)

=

(
zm − zi−zi+1√

2
− xi+1−xi

2 + xm − xi
)2

1
2 +

(
zm − zi−zi+1√

2
− xi+1−xi

2 + xm − xi
)

(xm − xi)

≥

(
zm − zi−zi+1√

2
− xi+1−xi

2 + xm − xi
)2

1
2 +

(
zm − zi−zi+1√

2
− xi+1−xi

2 + xm − xi
)2

≥

(
zm − zi√

2
− 1

2

)2

1
2 +

(
zm − zi√

2
− 1

2

)2 .
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In particular, we used for the first inequality

zm −
zi − zi+1√

2
− xi+1 − xi

2
≥ zi+1 −

zi − zi+1√
2

− xi+1 − xi
2︸ ︷︷ ︸
≤ 1

2

≥ zi√
2

+
1

2
− zi − zi+1√

2
− 1

2

=
zi+1√

2
≥ 0

while reminding the form of Λi,N . Similarly, when l = i+ 1 and m > i+ 1 we have

(ym − yi+1)2

1
2 + (ym − yi+1)(xm − xi+1)

=

(
zm + xm − zi+zi+1√

2
− xi+xi+1

2

)2

1
2 +

(
zm + xm − zi+zi+1√

2
− xi+xi+1

2

)
(xm − xi+1)

=

(
zm − zi+zi+1√

2
+ xi+1−xi

2 + xm − xi+1

)2

1
2 +

(
zm − zi+zi+1√

2
+ xi+1−xi

2 + xm − xi+1

)
(xm − xi+1)

≥

(
zm − zi+zi+1√

2
+ xi+1−xi

2 + xm − xi+1

)2

1
2 +

(
zm − zi+zi+1√

2
+ xi+1−xi

2 + xm − xi+1

)2

≥

(
zm − zi√

2
− 1

2

)2

1
2 +

(
zm − zi√

2
− 1

2

)2

since

zm −
zi + zi+1√

2
+
xi+1 − xi

2
≥ zi+2 −

zi + zi+1√
2

+
xi+1 − xi

2︸ ︷︷ ︸
≥0

≥ zi√
2

+
1

2
− zi + zi+1√

2

=
1

2
− zi+1√

2

≥ 1

2
− r

2
> 0.
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The last two cases are those for which l < i and m = i or i+ 1. For the first one we derive

(yi − yl)2

1
2 + (yi − yl)(xi − xl)

=

(
zi−zi+1√

2
+ xi+xi+1

2 − zl − xl
)2

1
2 +

(
zi−zi+1√

2
+ xi+xi+1

2 − zl − xl
)

(xi − xl)

=

(
zi−zi+1√

2
− zl + xi+1−xi

2 + xi − xl
)2

1
2 +

(
zi−zi+1√

2
− zl + xi+1−xi

2 + xi − xl
)

(xi − xl)

≥

(
zi−zi+1√

2
− zl + xi+1−xi

2 + xi − xl
)2

1
2 +

(
zi−zi+1√

2
− zl + xi+1−xi

2 + xi − xl
)2

≥

(
zi√

2
− 1

2 − zl
)2

1
2 +

(
zi√

2
− 1

2 − zl
)2

since

zi − zi+1√
2

− zl +
xi+1 − xi

2
≥ zi − zi+1√

2
− zi−1 +

xi+1 − xi
2︸ ︷︷ ︸
≥0

≥ zi − zi+1√
2

− zi√
2

+
1

2

=
1

2
− zi+1√

2

≥ 1

2
− r

2
> 0.

In the same way, we get

(yi+1 − yl)2

1
2 + (yi+1 − yl)(xi+1 − xl)

=

(
zi+zi+1√

2
+ xi+xi+1

2 − zl − xl
)2

1
2 +

(
zi+zi+1√

2
+ xi+xi+1

2 − zl − xl
)

(xi+1 − xl)

=

(
zi+zi+1√

2
− zl − xi+1−xi

2 + xi+1 − xl
)2

1
2 +

(
zi+zi+1√

2
− zl − xi+1−xi

2 + xi+1 − xl
)

(xi+1 − xl)

≥

(
zi+zi+1√

2
− zl − xi+1−xi

2 + xi+1 − xl
)2

1
2 +

(
zi+zi+1√

2
− zl − xi+1−xi

2 + xi+1 − xl
)2
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≥

(
zi√

2
− zl − 1

2

)2

1
2 +

(
zi√

2
− zl − 1

2

)2

for m = i+ 1 and l < i since

zi + zi+1√
2

− zl −
xi+1 − xi

2
≥ zi + zi+1√

2
− zi−1 −

xi+1 − xi
2︸ ︷︷ ︸
≤ 1

2

≥ zi + zi+1√
2

− zi√
2

+
1

2
− 1

2

=
zi+1√

2
≥ 0.

For a more concise notation we define

z∗i+1 := pi+1(z) =
(
z1, . . . , zi, zi+2, . . . , zN

)
(4.17)

to finally obtain with all of these relations:

Px
(
X1 ∈ ErAN−1

)
≥ C(N, k)

∫
pi+1(Λi,N )

r√
2∫

0

e−
(N+1)3+1

2
4k

3k
z2k
i+1Π

(1)
N,k,i(z

∗
i+1)Π

(2)
k,i (z

∗
i+1)Π

(3)
N,k,i(z

∗
i+1) dzi+1 dz∗i+1

= C(N, k)
e−

(N+1)3+1
2 2k√

2(2k + 1)3k
r2k+1

∫
pi+1(Λi,N )

Π
(1)
N,k,i(z

∗
i+1)Π

(2)
k,i (z

∗
i )Π

(3)
N,k,i(z

∗
i+1) dz∗i+1,

where the products are given by

Π
(1)
N,k,i(z

∗
i+1) :=

∏
1≤l<m≤N
l,m6=i,i+1

(zm − zl)2k(
1
2 + (zm − zl)2

)k ,

Π
(2)
k,i (z

∗
i+1) :=

∏
1≤l<i

(
zi√

2
− zl − 1

2

)4k

[
1
2 +

(
zi√

2
− zl − 1

2

)2 ]2k
,

Π
(3)
N,k,i(z

∗
i+1) :=

∏
i+1<m≤N

(
zm − zi√

2
− 1

2

)4k

[
1
2 +

(
zm − zi√

2
− 1

2

)2 ]2k
.
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4 Return times for the multivariate Bessel process

We notice that the cases l = i+ 1 and l = i respectively m = i+ 1 and m = i lead to the

same bound. Setting

C1(N, k) := C(N, k)
e−

(N+1)3+1
2 2k√

2(2k + 1)3k
·

min
i=1,...,N−1

∫
pi+1(Λi,N,R)

Π
(1)
N,k,i(z

∗
i+1)Π

(2)
k,i (z

∗
i+1)Π

(3)
N,k,i(z

∗
i+1) dz∗i+1

and noting that all factors in the integrand are positive in the interior of Λi,N , which has

a non-zero finite Lebesgue measure, we conclude that C1(N, k) > 0 with

Px(Y1 ∈ Er) ≥ C1(N, k)r2k+1.

In the case r > 1 we again start from the same point:

Px
(
Y1 ∈ ErAN−1

)
≥ C(N, k)

∫
ErAN−1

e−
‖x−y‖2

2 wAN−1
(y)∏

1≤l<m≤N

(
1
2 + (xm − xl)(ym − yl)

)k dy.

If x ∈ E1
AN−1

, then we use the same arguments as in the the case r ≤ 1 by making use of

Px
(
Y1 ∈ ErAN−1

)
≥ Px

(
Y1 ∈ E1

AN−1

)
.

By this observation, we can apply the calculations for the case r ≤ 1 specialized to r = 1.

Otherwise, x ∈ ErAN−1
\E1

AN−1
which means that after choosing

i = arg min
j=1,...,N−1

(xj+1 − xj)

we have

xi+1 − xi ≥ 1.

We consider the simple transformation y = z+x with integration domain z ∈ B(0, 1
2)∩{z :

zi+1 − zi ≤ 0}. To ensure this leads to a smaller integration domain we need to verify

that z+ x ∈ ErAN−1
for any such z. Therefore, we examine bounds for zm− zl for any two
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4.3 Hausdorff dimension for the multivariate Bessel process

distinct m, l ∈ {1, . . . , N} under the restriction

N∑
j=1

z2
j ≤

1

4
.

In particular, for all l 6= m the simple condition

z2
m + z2

l ≤
1

4

holds, which implies

−
√

1

4
− z2

l ≤ zm ≤
√

1

4
− z2

l

or equivalently

−
√

1

4
− z2

l − zl ≤ zm − zl ≤
√

1

4
− z2

l − zl

for zl ∈
[
− 1

2 ,
1
2

]
. When maximizing the right-hand side, we calculate

∂

∂zl

(√
1

4
− z2

l − zl
)

= − zl√
1
4 − z

2
l

− 1

which is zero for

zl = −
√

1

4
− z2

l .

By squaring we receive as the only possible solution

zl = − 1√
8

= − 1

2
√

2
∈
[
− 1

2
,
1

2

]
.

Comparing with the value at ±1
2 , that is,√

1

4
−
(
± 1

2

)2
∓ 1

2
= ∓1

2

≤ 1√
2

=

√
1

4
−
(
− 1√

8

)2
+

1

2
√

2
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4 Return times for the multivariate Bessel process

we obtain 1
2
√

2
as the global maximum value. By an analogous calculation we get

− 1√
2
≤ zm − zl ≤

1√
2
. (4.18)

Having these observations in mind, we receive

0 < − 1√
2

+ 1 ≤ − 1√
2

+ xi+1 − xi

≤ zi+1 − zi + xi+1 − xi
= yi+1 − yi
≤ 0 + r = r.

due to 1 ≤ xi+1 − xi ≤ r and zi+1 − zi ≥ 0. For the rest of the pairs j 6= i, we get

yj+1 − yj = zj+1 − zj + xj+1 − xj

≥ − 1√
2

+ xi+1 − xi

≥ − 1√
2

+ 1 > 0.

Therefore, the components of y are still ordered and in ErAN−1
. Consequently, by choosing

a smaller integration domain we conclude

Px(Y1 ∈ ErAN−1
)

≥ C(N, k)

∫
B
(

0, 1
2

)
∩{zi+1−zi≤0}

e−
‖z‖2

2 wk(z + x)∏
1≤l<m≤N

(
1
2 + (xm − xl)(zm − zl + xm − xl)

)k dz

≥ C(N, k)

∫
B
(

0, 1
2

)
∩{zi+1−zi≤0}

e−
1
8wk(z + x)∏

1≤l<m≤N

(
1
2 + (xm − xl)(zm − zl + xm − xl)

)k dz.

We take a look at each term in the product separately:

(zm − zl + xm − xl)2

1
2 + (zm − zl + xm − xl)(xm − xl)

≥

(
xm − xl − 1√

2

)2
1
2 +

(
xm − xl + 1√

2

)
(xm − xl)

≥

(
1− 1√

2

)2
1
2 +

(
1 + 1√

2

)
· 1
.
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4.3 Hausdorff dimension for the multivariate Bessel process

First, we used the known bounds from (4.18) of zm−zl and then applied that the function

ξ 7→

(
ξ − 1√

2

)2
1
2 +

(
ξ + 1√

2

)
ξ

is increasing for ξ ≥ 1 while xm − xl ≥ min
j=1,...,N−1

(xj+1 − xj) = xi+1 − xi ≥ 1. Therefore,

we can write

Px(Y1 ∈ Er) ≥ C(N, k)

(1− 1√
2

)2
3
2 + 1√

2


kN(N−1)

2

e−
1
8λN

(
B
(

0,
1

2

)
∩ {z : zi+1 − zi ≤ 0}

)

= C(N, k)

(1− 1√
2

)2
3
2 + 1√

2


kN(N−1)

2

e−
1
8

λN
(
B
(

0, 1
2

))
2

= C(N, k)

(1− 1√
2

)2
3
2 + 1√

2


kN(N−1)

2

π
N
2 e−

1
8

Γ
(
N
2 + 1

)
2N+1

.

Since the Lebesgue measure is independent of i, we obtain the desired lower bound.

Upper bound: The proof for the upper bound is significantly shorter, allowing the con-

stant to depend on %, the bound of the starting point x. This additional condition ensures

that we have the necessary property

0 ≤ xm − xl ≤
√

2% (4.19)

for every 1 ≤ l < m ≤ N since x ∈ ErAN−1
∩B(0, %). This follows by making an analogous

calculation as for the ball B
(
0, 1

2

)
, see (4.18). First, if we choose the constant C2 ≥ 1 the

inequality is trivial in the case r > 1 due to

Px
(
Y1 ∈ ErAN−1

)
≤ 1 ≤ C2 = C2 min

{
1, r2k+1

}
.

Hence, we assume r ≤ 1 and using again [39, Theorem 3.1] we obtain

Px
(
Y1 ∈ ErAN−1

)
≤ C(N, k)

∫
ErAN−1

e−
‖x−y‖2

2 wk(y)∏
1≤l<m≤N

(
1
2 + (xm − xl)(ym − yl)

)k dy
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4 Return times for the multivariate Bessel process

≤ C(N, k)
N−1∑
i=1

∫
Er,iAN−1

e−
‖x−y‖2

2 wk(y)∏
1≤l<m≤N

(
1
2 + (xm − xl)(ym − yl)

)k dy.

Here, it is evident that

ErAN−1
=

N−1⋃
i=1

Er,iAN−1
=

N−1⋃
i=1

{
y ∈WAN−1

: 0 ≤ yi+1 − yi ≤ r
}

and we use the variable transformation (4.12). In particular, the constant C(N, k) > 0

differs from the one in the lower bound case but for simplicity we use the same term.

Therefore, we again receive

‖x− y‖2 = ‖z‖2 +
(xi+1 − xi)2

2
−
√

2(xi+1 − xi)zi+1

≥ ‖z‖2 − (xi+1 − xi)r

≥ ‖z‖2 − (xi+1 − xi)

≥
N∑
j=1
j 6=i+1

z2
j −
√

2%.

since
√

2zi+1 ≤ r ≤ 1. The rest of the terms come from the product

∏
1≤l<m≤N

(
(ym − yl)2

1
2 + (xm − xl)(ym − yl)

)k
≤ 2

kN(N−1)
2

∏
1≤l<m≤N

(ym − yl)2k.

We have taken away the term (xm − xl)(ym − yl) ≥ 0 in the denominator. The simplest

term is (l,m) = (i, i+ 1):

0 ≤ yi+1 − yi =
√

2zi+1 ≤ r

which ensures the order r2k+1 of the probability. Now, we bound the other terms in which

zi+1 occurs. In the following cases, we always use 0 ≤ zi+1√
2
≤ r

2 ≤
1
2 and (4.19). We bound

the terms with l,m 6∈ {i, i+ 1} by

0 ≤ ym − yl = zm − zl + xm − xl ≤ zm − zl +
√

2%.
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4.3 Hausdorff dimension for the multivariate Bessel process

For l = i and m > i+ 1, we obtain

0 ≤ ym − yi = zm + xm −
zi − zi+1√

2
− xi+1 + xi

2

= zm −
zi√
2

+
zi+1√

2
+
xm − xi+1

2
+
xm − xi

2

≤ zm −
zi√
2

+
1

2
+
√

2%

and similarly, if l = i+ 1 and m > i+ 1,

0 ≤ ym − yi+1 = zm + xm −
zi + zi+1√

2
− xi+1 + xi

2

= zm −
zi√
2
− zi+1√

2
+
xm − xi+1

2
+
xm − xi

2

≤ zm −
zi√
2

+
√

2%.

When m = i+ 1 and l < i, we derive

0 ≤ yi+1 − yl ≤
zi + zi+1√

2
+
xi+1 + xi

2
− zl − xl

=
zi√
2
− zl +

zi+1√
2

+
xi+1 − xl

2
+
xi − xl

2

≤ zi√
2
− zl +

1

2
+
√

2%.

The last case we must examine is that where m = i and l < i:

0 ≤ yi − yl =
zi − zi+1√

2
+
xi+1 + xi

2
− zl − xl

=
zi√
2
− zl −

zi+1√
2

+
xi+1 − xl

2
+
xi − xl

2

≤ zi√
2
− zl +

√
2%.

Next, we recall the integration domain. Since y ∈WAN−1
the components of z must satisfy

zj + xj ≤ zj+1 + xj+1, j 6∈ {i− 1, i, i+ 1},

zi−1 + xi−1 ≤
zi − zi+1√

2
+
xi+1 + xi

2
,

zi + zi+1√
2

+
xi+1 + xi

2
≤ zi+2 + xi+2,

0 ≤
√

2zi+1 ≤ r.
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In particular, these should now become independent of zi+1 and r except for the component

zi+1 itself. Because of zi+1 ≥ 0, there exist more possible z that satisfy the following

conditions:

zj + xj ≤ zj+1 + xj+1, j 6∈ {i− 1, i, i+ 1},

zi−1 + xi−1 ≤
zi√
2

+
xi+1 + xi

2
,

zi√
2

+
xi+1 + xi

2
≤ zi+2 + xi+2,

0 ≤
√

2zi+1 ≤ r.

Furthermore, to get rid of the dependence of x we reformulate

zj ≤ zj+1 + (xj+1 − xj), j 6∈ {i− 1, i, i+ 1},

zi−1 ≤
zi√
2

+
xi+1 − xi−1

2
+
xi − xi−1

2
zi√
2

+ ≤ zi+2 +
xi+2 − xi+1

2
+
xi+2 − xi

2

0 ≤
√

2zi+1 ≤ r.

(4.20)

and then enlarge the integration domain given by (4.20) due to (4.19). In summary, we

define the set

Mi,%,N :=

{
z ∈ RN : zj ≤ zj+1 +

√
2% for j 6∈ {i− 1, i, i+ 1},

zi−1 −
√

2% ≤ zi√
2
≤ zi+2 +

√
2%

}
in order to obtain the new, greater integration domain

Mi,%,N ∩
{

0 ≤ zi+1 ≤
r√
2

}
.

With these definitions and inequalities, we obtain

Px
(
Y1 ∈ ErAN−1

)
≤ C(N, k)

N−1∑
i=1

∫
Er,iAN−1

e−
‖x−y‖2

2 wk(y)∏
1≤l<m≤N

(
1
2 + (xm − xl)(ym − yl)

)k dy
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≤ C(N, k)

N−1∑
i=1

∫
Er,iAN−1

2
kN(N−1)

2 e−
‖x−y‖2

2 wk(y) dy

≤ C(N, k)
N−1∑
i=1

∫
pi+1(Mi,%,N )

r√
2∫

0

2
kN(N−1)

2 e
−
‖z∗i+1‖

2

2
+ %√

2 ·

2kz2k
i+1Π̃

(1)
N,k,i,%(z

∗
i+1)Π̃

(2)
N,k,i,%(z

∗
i+1)Π̃

(3)
k,i,%(z

∗
i+1) dz∗i+1

= C(N, k)
2
kN(N−1)

2
+kr2k+1

2k + 1

N−1∑
i=1

∫
pi+1(Mi,%,N )

e
−
‖z∗i+1‖

2

2
+ %√

2 ·

Π̃
(1)
N,k,i,%(z

∗
i+1)Π̃

(2)
N,k,i,%(z

∗
i+1)Π̃

(3)
k,i,%(z

∗
i+1) dz∗i+1

=: C2(N, k, %)r2k+1

with

Π̃
(1)
N,k,i,%(z

∗
i+1) :=

∏
1≤l<m≤N
l,m6=i,i+1

(zm − zl +
√

2%)2k,

Π̃
(2)
N,k,i,%(z

∗
i+1) :=

∏
i+1<m≤N

[(
zm −

zi√
2

+
1

2
+
√

2%

)(
zm −

zi√
2

+
√

2%

)]2k

,

Π̃
(3)
k,i,%(z

∗
i+1) :=

∏
1≤l<i

[(
zi√
2
− zl +

1

2
+
√

2%

)(
zi√
2
− zl +

√
2%

)]2k

,

which are all quantities independent of r and zi+1.

The previous lemma allows us to find the following bound.

Lemma 4.17 (Case AN−1): For every ε > 0 and x ∈ ∂WAN−1
there exists a constant

C3 = C3(N, x, k, ε) > 0 such that

Px
(
∃s ∈ [t1, t2] : Ys ∈ ErAN−1

)
≤ C3(t2 − t1)k+ 1

2

for every t2 > t1 ≥ ε with 0 < r ≤
√
t2 − t1.

Proof: Since we have already carried out the proof in detail for the classical Bessel process

in the previous section, see Lemmas 4.9 and 4.10, we now abbreviate it significantly. The

171



4 Return times for the multivariate Bessel process

main difference is the more complicated set Er, therefore we define the stopping time

alternatively as follows

T := inf
{
s ≥ t1 : Yt ∈ Er

}
so that

Px
(
T ≤ t2

)
= Px

(
∃s ∈ [t1, t2] : Ys ∈ Er

)
.

The further calculations are analogous. We can easily derive

Px
(
∃s ∈ [t1, t2] : Ys ∈ Er

)
≤

2t2−t1∫
t1

Px
(
Ys ∈ Er

)
ds

inf
y∈Er

t2−t1∫
0

Py
(
Yu ∈ Er

)
du

(4.21)

and then use the 1
2 -semi stability to apply Lemma 4.16 with % := ‖x‖√

ε
≥ ‖x‖√

t1
≥ ‖x‖√

s
. The

additional dependence on % or, in particular on x, in the upper bound of Lemma 4.16

does not cause any problems since we only take an infimum in the denominator. In case

of a dependence only on the starting point x, the constant becomes dependent on x√
s

and

we cannot take it out of the integral. Here, we immediately see the importance of the

additional constant % and that it enables more applications, seeing that we can always set

% := ‖x‖.

Remark: In particular, (4.21) is true for every multivariate Bessel process for any set

Er ⊂ WR, e.g. ErR, since we just need the strong Markov property. The main work

lies in Lemma 4.17. Thus, to prove this upper bound of the Hausdorff dimension for a

different root system, we need an analogous lemma with a suitable edge set ErR ⊂ WR

such that ∂WR ⊂ ErR holds while the power of r in the lemma determines the upper

bound. The easiest solution for later calculations, especially for the lower bound of the

Hausdorff dimension, is if the constants are independent of the starting point x, however

it is sufficient if only C1 is independent of x and C2 depends on % additionally.

By means of Lemma 4.17, the proof of the upper bound is analogous to the one for the

classical Bessel process, see Theorem 4.11.
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Theorem 4.18 (Case AN−1): For every 0 < k < 1
2 and x ∈ ∂WAN−1

the inequality

dim
(
Y −1

(
∂WAN−1

))
≤ 1

2
− k

is Px-almost surely valid.

4.3.2 Lower bound

In this subsection, we focus on proving the following statement, which completes the proof

of Theorem 4.15.

Theorem 4.19 (Case AN−1): For every 0 < k < 1
2 and x ∈ ∂WAN−1

the inequality

dim
(
Y −1

(
∂WAN−1

))
≥ 1

2
− k

is Px-almost surely valid.

If we could manage the proof of Lemma 4.16 so that C2 is independent of x and its norm’s

bound %, we would not have to do any further work. In that case, the proof would proceed

in the same way as for the classical Bessel process. This small detail causes that we have

to determine one more bound. We first derive the following auxiliary bound.

Lemma 4.20: For 0 < ε ≤ s1 < s2 and n ∈ N we have

Px
(
Ys1 ∈ E

1
n , Ys2 ∈ E

1
n
)
≤ c−2

k

(
s2 − s1

s2

)N
2

+κ

∫
E

√
s2

n2s1(s2−s1)

∫
E

1
n
√
s2−s1

e
− ‖u‖

2

2
− ‖v‖

2

2
+‖u‖

(
‖x‖√
ε

+‖v‖
)
w(v)w(u) dv du,

where in particular κ is the sum of multiplicities as defined in Section 1.1.

Proof: We start from

Px
(
Ys1 ∈ E

1
n , Ys2 ∈ E

1
n

)
=

∫
E

1
n

Qk

(
s2 − s1, y, E

1
n

)
Qk
(
s1, x, dy

)
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and first rewrite this term

Px
(
Ys1 ∈ E

1
n , Ys2 ∈ E

1
n
)

= c−2
k

∫
E

1
n

∫
E

1
n

e
− ‖y‖

2+‖z‖2
2(s2−s1)

(s2 − s1)
N
2

Jk

(
y√

s2 − s1
,

z√
s2 − s1

)
w

(
z√

s2 − s1

)
dz

· e
− ‖x‖

2+‖y‖2
2s1

s
N
2

1

Jk

(
x
√
s1
,
y
√
s1

)
w

(
y
√
s1

)
dy

= c−2
k

∫
E

1
n

∫
E

1
n
√
s2−s1

e
− ‖y‖2

2(s2−s1)
− ‖v‖

2

2 Jk

(
y√

s2 − s1
, v

)
w (v) dv

· e
− ‖x‖

2+‖y‖2
2s1

s
N
2

1

Jk

(
x
√
s1
,
y
√
s1

)
w

(
y
√
s1

)
dy.

In the last step, we performed the substitution z =
√
s2 − s1v. Using Jk(x, y) ≤ e‖x‖‖y‖

yields

Px
(
Ys1 ∈ E

1
n , Ys2 ∈ E

1
n
)

≤ 1

c2
ks

N
2

1

∫
E

1
n

∫
E

1
n
√
s2−s1

e
− ‖y‖2

2(s2−s1)
− ‖v‖

2

2
+
‖v‖‖y‖√
s2−s1 e

− ‖x‖
2+‖y‖2
2s1

+
‖x‖‖y‖
s1

· w (v)w

(
y
√
s1

)
dv dy

=
e
− ‖x‖

2

2s1

c2
ks

N
2

1

∫
E

1
n

∫
E

1
n
√
s2−s1

e
− ‖y‖

2

2
· s2
s1(s2−s1)

− ‖v‖
2

2
+‖y‖

(
‖x‖
s1

+
‖v‖√
s2−s1

)

· w (v)w

(
y
√
s1

)
dv dy

≤ 1

c2
ks

N
2

1

∫
E

1
n

∫
E

1
n
√
s2−s1

e
− ‖y‖

2

2
· s2
s1(s2−s1)

− ‖v‖
2

2
+‖y‖

(
‖x‖
s1

+
‖v‖√
s2−s1

)

· w (v)w

(
y
√
s1

)
dv dy.
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Next, we substitute y =
√

s1(s2−s1)
s2

u to obtain

Px
(
Ys1 ∈ E

1
n , Ys2 ∈ E

1
n
)

≤ c−2
k

(
s2 − s1

s2

)N
2

∫
E

√
s2

n2s1(s2−s1)

∫
E

1
n
√
s2−s1

e
− ‖u‖

2

2
− ‖v‖

2

2
+

√
s1(s2−s1)

s2
‖u‖
(
‖x‖
s1

+
‖v‖√
s2−s1

)

· w(v)w

(√
s2 − s1

s2
u

)
dv du

= c−2
k

(
s2 − s1

s2

)N
2

+κ

∫
E

√
s2

n2s1(s2−s1)

∫
E

1
n
√
s2−s1

e
− ‖u‖

2

2
− ‖v‖

2

2
+‖u‖

(√
s2−s1
s1s2

‖x‖+
√
s1
s2
‖v‖
)

· w(v)w(u) dv du

≤ c−2
k

(
s2 − s1

s2

)N
2

+κ

∫
E

√
s2

n2s1(s2−s1)

∫
E

1
n
√
s2−s1

e
− ‖u‖

2

2
− ‖v‖

2

2
+‖u‖

(
‖x‖√
ε

+‖v‖
)
w(v)w(u) dv du.

The equality holds due to w(cy) = c2κw(y) for any constant c > 0. In the last line we

used ε ≤ s1 < s2.

Besides, Lemma 4.20 holds for every multivariate Bessel processes meaning that this can

be helpful when dealing with Conjecture 4.13 for arbitary root systems R in more detail.

Now, we specify this bound further for the AN−1 case. For the BN case, we elaborate on

this in Appendix A.

Lemma 4.21 (Case AN−1): For 0 < ε ≤ s1 < s2 and n ∈ N there exists a constant

C(x, ε,N, k) > 0 such that

Px
(
Ys1 ∈ E

1
n
AN−1

, Ys2 ∈ E
1
n
AN−1

)
≤ C(x, ε,N, k)

n4k+2(s2 − s1)k+ 1
2 s
k+ 1

2
1
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is valid.

Proof: We start the proof with the bound for this probability given in Lemma 4.20. For

r > 0 we recall

ErAN−1
=

N−1⋃
i=1

Er,iAN−1
=

N−1⋃
i=1

{
y ∈WAN−1

: 0 ≤ yi+1 − yi ≤ r
}

so the inner integral over v from Lemma 4.20 is bounded above by the sum over i ∈
{1, . . . , N − 1} of ∫

E

1
n
√
s2−s1

,i

AN−1

e
− ‖u‖

2

2
− ‖v‖

2

2
+‖u‖

(
‖x‖√
ε

+‖v‖
)
wAN−1

(v) dv. (4.22)

For the moment, we disregard the term wAN−1
(u) since it is not important for bounding

the integral over v. For each i we perform the substitution

zj = vj for j 6∈ {i, i+ 1},
zi = vi+1+vi√

2
,

zi+1 = vi+1−vi√
2

,

a simple rotation to preserve norms and receive the distance between the corresponding

particles that are about to collide. In particular, observing

zi − zi+1 =
√

2vi,

zi + zi+1 =
√

2vi+1,√
2zi+1 = vi+1 − vi,

we rewrite and bound the weight function in terms of z:

wAN−1
(v) =

∏
1≤l<m≤N

(vm − vl)2k

= 2kz2k
i+1

∏
1≤l<m≤N
m,l 6=i,i+1

(zm − zl)2k
i−1∏
l=1

(
zi − zi+1√

2
− zl

)2k(zi + zi+1√
2

− zl
)2k

N∏
m=i+2

(
zm −

zi − zi+1√
2

)2k(
zm −

zi + zi+1√
2

)2k
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= 2kz2k
i+1

∏
1≤l<m≤N
m,l 6=i,i+1

(zm − zl)2k
i−1∏
l=1

((
zi√
2
− zl

)2

−
z2
i+1

2

)2k

N∏
m=i+2

((
zm −

zi√
2

)2

−
z2
i+1

2

)2k

≤ 2kz2k
i+1

∏
1≤l<m≤N
m,l 6=i,i+1

(zm − zl)2k
i−1∏
l=1

(
zi√
2
− zl

)4k N∏
m=i+2

(
zm −

zi√
2

)4k

=: 2kz2k
i+1ΠN,k,i(z

∗
i+1).

Next, we focus on the integration domain. Especially, we observe how the ordering of v

transfers to z:

zj ≤ zj+1, for j 6∈ {i− 1, i, i+ 1},

zi−1 = vi−1 ≤ vi =
zi − zi+1√

2
,

zi + zi+1√
2

= vi+1 ≤ vi+2 = zi+2,

which imposes the definition

Λi,N :=

{
z ∈ RN : zj ≤ zj+1 j 6∈ {i− 1, i, i+ 1}, zi−1 +

zi+1√
2
≤ zi√

2
≤ zi+2 −

zi+1√
2

}
.

The additional condition v ∈ E
1

n
√
s2−s1

,i

AN−1
indicates

0 ≤ zi+1 ≤
1

n
√

2(s2 − s1)
.

Now, we want to have the terms in the exponential function in (4.22) be independent of

zi+1. For this purpose, we recall z∗i+1, (4.17), and introduce the vector ψ(z∗i+1), which

differs just in the (i+1)th component of z, by
(
ψ(z∗i+1)

)
i+1

:= zi−
√

2zi−1. The inequality

‖z∗i+1‖ ≤ ‖z‖ ≤ ‖ψ(z∗i+1)‖

holds for every z within the new integration domain

Λi,N ∩
{

0 ≤ zi+1 ≤
1

n
√

2(s2 − s1)

}
.
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Since the variable substitution v → z is a rotation, norms are preserved and thus we can

proceed to bound the integral as follows:∫
E

1
n
√
s2−s1

,i

AN−1

e
− ‖u‖

2

2
− ‖v‖

2

2
+‖u‖

(
‖x‖√
ε

+‖v‖
)
wAN−1

(v) dv

≤
∫

Λi,N∩
{

0≤zi+1≤ 1

n
√

2(s2−s1)

}e
− ‖u‖

2

2
−
‖z∗i+1‖

2

2
+‖u‖

(
‖x‖√
ε

+‖ψ(z∗i+1)‖
)
2kz2k

i+1ΠN,k,i(z
∗
i+1) d(z∗i+1, zi+1).

In a next step, we make the constraints in Λi,N independent of zi+1. Due to the positivity

of zi+1 we receive

zi−1 ≤ zi−1 +
zi+1√

2
≤ zi√

2
≤ zi+2 −

zi+1√
2
≤ zi+2

and hence the set

Λ̃i,N :=
{
z ∈ RN : zj ≤ zj+1 j 6∈ {i− 1, i, i+ 1}, zi−1 ≤

zi√
2
≤ zi+2

}
fulfills

Λ̃i,N ∩ {0 ≤ zi+1} ⊃ Λi,N ∩ {0 ≤ zi+1}.

Moreover, we can immediately derive as upper bound of (4.22):

1
√

2n2k+1(s2 − s1)k+ 1
2

∫
pi+1(Λ̃i,N )

e
− ‖u‖

2

2
−
‖z∗i+1‖

2

2
+‖u‖

(
‖x‖√
ε

+‖ψ(z∗i+1)‖
)
ΠN,k,i(z

∗
i+1) dz∗i+1.

We note that this expression depends on the index i = 1, . . . , N − 1. Having successfully

dealt with the inner integral over v, we can now analogously derive a bound and decom-

position of the integral over u, this time using the index j = 1, . . . , N − 1. We denote this

resulting integral, depending on i and j, by Cij . Hence, we receive

Cij(x, ε,N, k)
√

2n2k+1(s2 − s1)k+ 1
2

· s
k+ 1

2
2

√
2n2k+1s

k+ 1
2

1 (s2 − s1)k+ 1
2
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=
Cij(x, ε,N, k)s

k+ 1
2

2

2n4k+2s
k+ 1

2
1 (s2 − s1)2k+1

.

To obtain a bound on the whole integral, it suffices to sum over both i and j and finally

adding the prefactor from Lemma 4.20 we yield

Px
(
Ys1 ∈ E

1
n
AN−1

, Ys2 ∈ E
1
n
AN−1

)
≤

N−1∑
i,j=1

Cij(x, ε,N, k)
1

2c2
k

(
s2 − s1

s2

) (kN+1)(N−1)
2

−k

︸ ︷︷ ︸
≤1

1

n4k+2(s2 − s1)k+ 1
2 s
k+ 1

2
1

≤
N−1∑
i,j=1

Cij(x, ε,N, k)
1

2c2
k

· 1

n4k+2(s2 − s1)k+ 1
2 s
k+ 1

2
1

=: C(x, ε,N, k)
1

n4k+2(s2 − s1)k+ 1
2 s
k+ 1

2
1

with ε ≤ s1 < s2. The dominant negative term in the exponential function of the integrand

ensures that the constants Cij are finite and thus the same applies to C.

Finally, we can give the proof for the Hausdorff dimension’s lower bound, Theorem 4.19,

which completes Theorem 4.18.

Proof of Theorem 4.19: The idea of the proof remains precisely as for the classical Bessel

process. The main differences are the additional calculations in the previous Lemmas 4.20

and 4.21, we found necessary for the following. This is a substitute for the upper bound

from Lemma 4.16 since the constant depends on the starting point. Before starting with

the calculations, we repeat the setting within the proof of Theorem 4.11. Therefore, we

consider an interval [t1, t2] ⊂ (0,∞) for verifying

dim
(
Y −1(∂WAN−1

) ∩ [t1, t2]
)
≥ 1

2
− k.

The proof relies on Lemma 4.7. As Lemma 4.21 can not be applied in the case t1 = 0,

we required Lemma 4.7 to extend to t1 > 0, which is a key difference to the proof for

the classical Bessel process, Theorem 4.11. Similarly, we construct for every possible

smaller dimension 0 < β < 1
2 − k a positive measure µ on Y −1

(
∂WAN−1

)
∩ [t1, t2] such

that ‖µ‖β,[t1,t2] is finite, which implies dim
(
Y −1(∂W ) ∩ [t1, t2]

)
> β on {µ > 0} due to
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the capacity argument, Lemma 4.6. We define an analogous sequence of random positive

measures on B([0,∞)) by

µn(B,ω) := n2k+1

∫
[t1,t2]∩B

1{
Ys(ω)∈E

1
n

} ds

and are again searching for constants K1 > 0 and K2 > 0 such that Lemma 4.7 is appli-

cable. By using the 1
2 -semi stability of the multivariate Bessel process and Lemma 4.14

we obtain

E x(‖µn‖) = n2k+1

t2∫
t1

Px
(
Ys ∈ E

1
n
)

ds

= n2k+1

t2∫
t1

Qk
(
s, x,E

1
n
)

ds

= n2k+1

t2∫
t1

Qk

(
1,

x√
s
, E

1
n
√
s

)
ds

4.16
≥ C1(k,N)n2k+1n−2k−1

t2∫
t1

s−k−
1
2 ds

=
C1(k,N)

1
2 − k

(
t

1
2
−k

2 − t
1
2
−k

1

)
=: K1(t1, t2, N, k) > 0.

Furthermore, we calculate the following expressions from Lemma 4.21:

E x
(
‖µn‖2

)
= n4k+2

t2∫
t1

t2∫
t1

Px
(
Ys1 ∈ E

1
n , Ys2 ∈ E

1
n

)
ds2 ds1

≤ 2n4k+2

t2∫
t1

t2∫
s1

C(x, t1, N, k)

n4k+2(s2 − s1)k+ 1
2 s
k+ 1

2
1

ds2 ds1

= 2C(x, t1, N, k)

t2∫
t1

t2∫
s1

(s2 − s1)−k−
1
2 s
−k− 1

2
1 ds2 ds1

=
2C(x, t1, N, k)

1
2 − k

t2∫
t1

(t− s1)
1
2
−ks
−k− 1

2
1 ds1
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≤ 2C(x, t1, N, k)
1
2 − k

t
1
2
−k

2

t2∫
0

s
−k− 1

2
1 ds1

=
2C(x, t1, N, k)(

1
2 − k

)2 t1−2k
2 =: K2(x, t1, t2, N, k).

This object is clearly positive and finite for t1 > 0 and 0 < k < 1
2 . Now, we turn to the

β-capacity for 0 < β < 1
2 − k and we again make use of Lemma 4.21:

E x
(
‖µn‖β,[t1,t2]

)
= Ex

( t2∫
t1

t2∫
t1

µ( ds1)µ( ds2)

|s2 − s1|β

)

= 2n4k+2

t2∫
t1

t2∫
s1

Px
(
Ys1 ∈ E

1
n , Ys2 ∈ E

1
n

)
(s2 − s1)β

ds2 ds1

≤ 2C(x, t1, N, k)

t2∫
t1

t2∫
s1

(s2 − s1)−k−β−
1
2 s
−k− 1

2
1 ds2 ds1

=
2C(x, t1, N, k)

1
2 − k − β

t2∫
t1

(t− s1)
1
2
−k−βs

−k− 1
2

1 ds1

≤ 2C(x, t1, N, k)t
1
2
−k−β

2
1
2 − k − β

t2∫
t1

s
−k− 1

2
1 ds1

=
2C(x, t1, N, k)t

1
2
−k−β

2(
1
2 − k − β

)(
1
2 − k

) (t 1
2
−k

2 − t
1
2
−k

1

)
≤ 2C(x, t1, N, k)t1−2k−β

2(
1
2 − k − β

)(
1
2 − k

) <∞.

Hence, we have proved for every 0 < t1 < t2 <∞ that

Px
(

dim
(
Y −1(∂WAN−1

) ∩ [t1, t2]
)
≥ 1

2
− k
)
≥ K2

1 (t1, t2, N, k)

2K2
2 (x, t1, t2, N, k)

. (4.23)

We define the stopping time τn

τn := inf
{
t ≥ τn−1 + 1 : Yt ∈ ∂WAN−1

}
with τ0 := 0. By the strong Markov property, Yτn ∈ ∂WAN−1

almost surely and by (4.23)
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we determine

Px
(

dim
(
Y −1(∂WAN−1

) ∩ [0, τn+1]
)
≥ 1

2
− k

∣∣∣Fτn)
≥ Px

(
dim

(
Y −1(∂WAN−1

) ∩ [τn + ε, τn+1]
)
≥ 1

2
− k

∣∣∣Fτn)
= PYτn

(
dim

(
Y −1(∂WAN−1

) ∩ [ε, τn+1 − τn]
)
≥ 1

2
− k
)

≥ PYτn
(

dim
(
Y −1(∂W ) ∩ [ε, 1]

)
≥ 1

2
− k
)
≥ K2

1 (t1, t2, N, k)

2K2(x, t1, t2, N, k)

for some 0 < ε < 1, which we need to add in the multivariate case, due to the positivity of

t1 in the calculations above. From here, we omit the rest of the proof since it works exactly

as in the classical case with small modifications as well as the proof of the analogous result

to Lemma 4.12.

Looking at the results of the first hitting time, we observe that for any α ∈ R with k(α) < 1
2

the time such that 〈α, Y 〉 = 0 holds is almost surely finite, [26, Proposition 1]. This result

transfers in the AN−1 case to the sets

∂W i
AN−1

:=
{
x ∈ ∂WAN−1

|xi+1 = xi
}
.

On closer inspection, we find that we have performed all the proofs on the sets Er,iAN−1
⊂

∂W i
AN−1

. In particular, we have already proved all the corresponding lemmas to derive

the following corollary.

Corollary 4.22: The Hausdorff dimension of collision times for the multivariate Bessel

process of type AN−1 starting in x ∈WAN−1
is given by

dim
(
Y −1(∂W i

AN−1
)
)

=
1

2
−min

{1

2
, k
}

Px-almost surely.

If we would have proved Conjecture 4.13, we suppose that likewise the following ensues.

Conjecture 4.23: For every multivariate Bessel process (Yt)t≥0 starting in x ∈WR with

multiplicity function k : R→ (0,∞) the equality

dim
(
Y −1

(
∂Wα

R

))
=

1

2
−min

{
1

2
, k(α)

}
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with

∂Wα
R :=

{
y ∈ ∂WR | 〈α, Y 〉 = 0

}
is Px-almost surely valid for every α ∈ R.
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184



A Hausdorff dimension of the multivariate

Bessel process of type BN

We could not fully prove Conjecture 4.13 for case BN by now. Therefore, we now elaborate

on the results so far and the problems that have arisen. In Section 4.3 we have proven

this result for the AN−1 case, which is a quite similar model. The main differences are

that the process of type BN lives in the positive half-line and there exists an additional

repulsion from the origin with a different strength, hence this process is indexed by a two

dimensional parameter k = (k1, k2) ∈ (0,∞)2 given by
dY B

t,i = dBt,i + k1
1
Y Bt,i

dt+ k2

N∑
j=1
j 6=i

(
1

Y Bt,i−Y Bt,j
+ 1

Y Bt,i+Y
B
t,j

)
dt,

Y B
0 = y ∈WBN

for i = 1, . . . , N with a standard multivariate Brownian motion (Bt)t≥0 living on the

closure of the Weyl chamber WBN := {x ∈ RN | 0 < x1 < · · · < xN}. We assume N ≥ 2

for the calculations, seeing that N = 1 is a classical Bessel process. As an auxiliary tool

we define here, analogously to the AN−1 case, the edge set

ErBN :=
{
x ∈WBN | ∃ i ∈ {1, . . . , N − 1} : 0 ≤ xi+1 − xi ≤ r

}
∪
{
x ∈WBN | 0 ≤ x1 ≤ r

}
of thickness r ≥ 0 such that ∂WBN = E0

BN
⊂ ErBN . After a simple calculation it is easily

seen that ErcBN = cErBN still works for each r, c > 0.

Lemma A.1 (Case BN): For every k = (k1, k2) ∈ (0,∞)2 and % > r > 0 there exist

constants C1 = C1(k,N, %) and C2 = C2(k,N, %) > 0 such that

C1r
2 min{k1,k2}+1 ≤ Qk

(
1, x, ErBN

)
≤ C2 min

{
1, r2 min{k1,k2}+1

}
holds for all x ∈ ErBN ∩B(0, %).
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Proof: Upper bound: First of all, the case r ≥ 1 is trivial when choosing C2 ≥ 1. There-

fore, we focus on the case r < 1. For this case we consider the variable transformation

z0 = y1, zi = yi+1 − yi

or equivalently

y1 = z0, yi =
i∑

j=0

zj

for i = 1, . . . , N−1. Therefore, this simple transformation leads to a classification: z ∈ ErBN
implies there exists an i ∈ {1, . . . , N} such that 0 ≤ zi ≤ r. The corresponding Jacobian

is 1 and the weight function becomes

wBN (y) =

N∏
m=1

y2k1
m

∏
1≤m<n≤N

(
yn − ym

)2k2
∏

1≤m<n≤N

(
yn + ym

)2k2

=

N−1∏
m=0

( m∑
l=0

zl

)2k1 ∏
0≤m<n≤N−1

( n∑
l=m+1

zl

)2k2

∏
1≤m<n≤N

( m∑
l=1

zl +

n∑
l=1

zl

)

= z2k1
0

N−1∏
m=1

( m∑
l=0

zm

)2k1 N∏
m=1

z2k2
m

∏
1≤m<n≤N−1

( n∑
l=m

zl

)2k2

∏
1≤m<n≤N

(
2

m∑
l=1

zl +

n∑
l=m+1

zl

)

=: ΠN,k(z)z
2k1
0

N∏
m=1

z2k2
m .

We later will use the inequalities

ΠN,k(z)
∣∣∣
zi=0
≤ ΠN,k(z) ≤ ΠN,k(z)

∣∣∣
zi=%

for all i = 0, . . . , N − 1 to bound the weight function. The norm of y is rewritten as

‖y‖2 =

N−1∑
m=0

( m∑
n=0

zn

)2

.

186



Now, we proceed to derive

Qk(1, x, E
r
BN

) = c−1
k

∫
ErBN

e−
‖x‖2+‖y‖2

2 Jk(x, y)wBN (y) dy

≤ c−1
k

∫
ErBN

e−
‖y‖2

2
+‖x‖‖y‖wBN (y) dy

≤ c−1
k

∫
ErBN

e−
‖y‖2

2
+%‖y‖wBN (y) dy

since the relation Jk(x, y) ≤ e‖x‖‖y‖ holds while x ∈ B(0, %). Making use of the transfor-

mation and noting

ErBN =

N−1⋃
i=1

{
y ∈WBN : 0 ≤ yi+1 − yi ≤ r

}
∪
{
y ∈WBN : 0 ≤ y1 ≤ r

}
=:

N−1⋃
i=0

Er,iBN ,

(A.1)

we find that the integral on the right-hand side is bounded above by the sum over i ∈
{0, . . . , N − 1} of

r∫
0

∞∫
0

· · ·
∞∫

0

exp

(
− 1

2

N−1∑
m=0

( m∑
n=0

zn

)2∣∣∣∣
zi=0

+%

√√√√N−1∑
m=0

( m∑
n=0

zm

)2∣∣∣∣
zi=%

)

·
(

ΠN,k(z)
)∣∣∣
zi=%

(
z2k1

0

N−1∏
j=1

z2k2
j

)∣∣∣∣
zi=r

N−1∏
j=0
j 6=i

dzj dzi.

In the case i = 0, this integral is equal to K0(N, %, k)r2k1+1, while for i > 0 we get

Ki(N, %, k)r2k2+1. Obviously, the constants Ki are finite since the second order terms in

the exponential have negative coefficients. We now write

Qk(1, x, E
r
BN

) ≤ c−1
k

(
K0r

2k1+1 +

N−1∑
i=1

Kir
2k2+1

)

≤ c−1
k

(
K0r

2 min{k1,k2}+1 +
N−1∑
i=1

Kir
2 min{k1,k2}+1

)
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= c−1
k

(
K0 +

N−1∑
i=1

Ki

)
r2 min{k1,k2}+1.

Lower bound: The lower bound is derived similarly. Using the lower bound Jk(x, y) ≥
e−‖x‖‖y‖ as well as x ∈ B(0, %), we rewrite

Qk(1, x, E
r
BN

) = c−1
k

∫
ErBN

e−
‖x‖2+‖y‖2

2 Jk(x, y)wBN (y) dy

≥ c−1
k

∫
ErBN

e−
(‖y‖+%)2

2 wBN (y) dy.

Using the same transformation, the integral is bounded below by the sum over i ∈
{0, . . . , N − 1} of

r∫
0

∞∫
%

· · ·
∞∫
%

exp

(
− 1

2

(√√√√N−1∑
m=0

( m∑
n=0

zn

)2∣∣∣
zi=%

+ %

)2)

·
(

ΠN,k(z)
)∣∣∣
zi=0

(
z2k1

0

N∏
m=1

z2k2
m

)N−1∏
j=0
j 6=i

dzj dzi.

Since % > r > 0 we ensure by starting the integrals at % that either only two particles are

close to each other or y1 is close to the origin. The integral over zi gives a factor of r2k1+1

2k1+1

for i = 0 and r2k2+1

2k2+1 for i > 0, while the rest of the integrals give constants that depend

only on N, % and k. In other words, the multiple integral is equal to K̃0r
2k1+1 for i = 0

and K̃ir
2k2+1 for i ∈ {1, . . . , N − 1}. Again, all the K̃i’s are positive and finite, hence we

receive

Qk
(
1, x, ErBN

)
≥ c−1

k

(
K̃0r

2k1+1 +
N−1∑
i=1

K̃ir
2k2+1

)

≥ c−1
k

N−1∑
i=1

K̃ir
2k2+1

for k1 ≥ k2 > 0 and

Qk
(
1, x, ErBN

)
≥ 1

ck
K̃0r

2k1+1

for 0 < k1 < k2. Finally, we can write C1r
2 min(k1,k2)+1 ≤ Qk(1, x, ErBN ) with C1 depending
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on N, % and k as claimed.

Even this more restrictive condition on the upper bound would not produce additional

problems within the proofs for the Hausdorff dimension even though C1 needs to be inde-

pendent of % and x. In the BN case, it was not possible to make the constant dependent

on x but independent of r without introducing %. Here, the cornerstone is % > r. To

preserve all the essential statements for the proof of the upper bound in Conjecture 4.13

for R = BN , we are only missing either the inequality

Qk
(
1, x, ErBN

)
≤ C1r

2 min{k1,k2}+1

or

Qk
(
1, x, ErBN

)
≤ C1 min

{
1, r2 min{k1,k2}+1

}
for every k = (k1, k2) ∈ (0,∞)2 and x ∈ ErBN with C1 = C1(k,N) > 0. In the proof of the

lower bound in Conjecture 4.13, the proved statement, Lemma A.1, is enough even if we

are (just) using the lower bound of the previous lemma.

Lemma A.2 (Case BN): For 0 < ε ≤ s1 < s2 and n ∈ N, there exists a constant

C(x, ε,N, k) > 0 such that

Px
(
Xs1 ∈ E

1
n , Xs2 ∈ E

1
n
)
≤ C(x, ε,N, k)

n4 min{k1,k2}+2

·
(
(s2 − s1)2k2 + 2(s2 − s1)k1+k2 + (s2 − s1)2k1

)
is valid.

Proof: We proceed as before, starting from the integral∫
E

√
s2

n2s1(s2−s1)

∫
E

1
n
√
s2−s1

e
− ‖u‖

2

2
− ‖v‖

2

2
+‖u‖

(
‖x‖√
ε

+‖v‖
)
wBN (v)wBN (u) dv du. (A.2)
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Here, recalling the relationship (A.1) we can see that (A.2) is bounded above by

N−1∑
i=0

∫
E

√
s2

n2s1(s2−s1)

∫
E

1
n
√
s2−s1

,i

BN

e
− ‖u‖

2

2
− ‖v‖

2

2
+‖u‖

(
‖x‖√
ε

+‖v‖
)
wBN (v)wBN (u) dv du.

We first focus on the integrals for i ∈ {1, . . . , N − 1}. After performing the same rotation

as in the proof of Lemma 4.21

zj = vj , for j 6= i, i+ 1,

zi = vi+1+vi√
2

,

zi+1 = vi+1−vi√
2

,

we recall the relation

zi − zi+1 =
√

2vi,

zi + zi+1 =
√

2vi+1,√
2zi+1 = vi+1 − vi

(A.3)

and derive from it

vivi+1 =
z2
i − z2

i+1

2
,

v2
i+1 − v2

i =
(zi + zi+1)2

2
− (zi − zi+1)2

2

=
z2
i + 2zizi+1 + z2

i+1 − z2
i + 2zizi+1 − z2

i+1

2

= 2zizi+1.

Hence, we conclude

wBN (v) =

N∏
l=1

v2k1
l

∏
1≤l<m≤N

(v2
m − v2

l )
2k2

=
(
2zizi+1

)2k2
(z2
i − z2

i+1)2k1

22k1

N∏
l=1:

l 6=i,i+1

z2k1
l

∏
1≤l<m≤N :
l,m6=i,i+1

(z2
m − z2

l )2k2

i−1∏
l=1

(
(zi − zi+1)2

2
− z2

l

)2k2
(

(zi + zi+1)2

2
− z2

l

)2k2
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N∏
m=i+2

(
z2
m −

(zi − zi+1)2

2

)2k2
(
z2
m −

(zi + zi+1)2

2

)2k2

.

Obviously, v ∈WBN ⊂ [0,∞)N guarantees that all terms in the products are positive and

thus we can bound every term separately. We further summarize parts of this via

wBN (v) =
(
2zizi+1

)2k2

(
z2
i − z2

i+1

)2k1

22k1

N∏
l=1:

l 6=i,i+1

z2k1
l

∏
1≤l<m≤N :
l,m6=i,i+1

(
z2
m − z2

l

)2k2

i−1∏
l=1

((
z2
i − z2

i+1

2

)2

− z2
l

(
z2
i + z2

i+1

)
+ z4

l

)2k2

N∏
m=i+2

(
z4
m − z2

m

(
z2
i + z2

i+1

)
+

(
z2
i − z2

i+1

2

)2 )2k2

and combining (A.3) with the ordering of the vector v ∈WBN

0 ≤ zl = vl ≤
zi − zi+1√

2
= vi+1 ≤ vm = zm,

0 ≤ zl = vl ≤
zi + zi+1√

2
= vi ≤ vm = zm

for l = 1, . . . , i− 1 and m = i+ 2, . . . , N as well as

0 ≤ vivi+1 =
z2
i − z2

i+1

2
≤ z2

i

2
,

we bound the weight function

wBN (v) ≤ 22(k2−k1)z
2(2k1+k2)
i z2k2

i+1

N∏
l=1:

l 6=i,i+1

z2k1
l

∏
1≤l<m≤N :
l,m6=i,i+1

(
z2
m − z2

l

)2k2

i−1∏
l=1

(
z4
i

4
− z2

l z
2
i + z4

l

)2k2 N∏
m=i+2

(
z4
m − z2

mz
2
i +

z4
i

4

)2k2

= 22(k2−k1)z
2(2k1+k2)
i z2k2

i+1

N∏
l=1:

l 6=i,i+1

z2k1
l

∏
1≤m<n≤N :
m,n 6=i,i+1

(
z2
n − z2

m

)2k2

i−1∏
l=1

(
z2
i

2
− z2

l

)4k2 N∏
m=i+2

(
z2
m −

z2
i

2

)4k2
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=: z2k2
i+1ΠN,k,i(z

∗
i+1).

Once more, we obtain an integral of greater value by changing the integration domain

similar as in the AN−1 case in Lemma 4.21. Therefore, we define

Λi,N :=

{
z ∈ [0,∞)N : zj ≤ zj+1 j 6∈ {i− 1, i, i+ 1}, zi−1 +

zi+1√
2
≤ zi√

2
≤ zi+2 −

zi+1√
2

}
and the larger set

Λ̃i,N :=
{
z ∈ [0,∞)N : zj ≤ zj+1 j 6∈ {i− 1, i, i+ 1}, zi−1 ≤

zi√
2
≤ zi+2

}
to achieve as new integration domains

Λi,N ∩
{

0 ≤ zi+1 ≤
1

n
√

2(s2 − s1)

}
⊂ Λ̃i,N ∩

{
0 ≤ zi+1 ≤

1

n
√

2(s2 − s1)

}
.

We define ψ(z∗i+1) in the same manner as in the AN−1 case to find that the inner integral

is bounded by∫
Λi,N∩

{
0≤zi+1≤ 1

n
√

2(s2−s1)

} e−
‖u‖2

2
−
‖z∗i+1‖

2

2
+‖u‖

(
‖x‖√
ε

+‖ψ(z∗i+1)‖
)
z2k2
i+1ΠN,k,i(z

∗
i+1) dz

≤
∫

Λ̃i,N∩
{

0≤zi+1≤ 1

n
√

2(s2−s1)

} e−
‖u‖2

2
−
‖z∗i+1‖

2

2
+‖u‖

(
‖x‖√
ε

+‖ψ(z∗i+1)‖
)
z2k2
i+1ΠN,k,i(z

∗
i+1) dz

=

∫
pi+1(Λ̃i,N )

e
− ‖u‖

2

2
−
‖z∗i+1‖

2

2
+‖u‖

(
‖x‖√
ε

+‖ψ(z∗i+1)‖
)
ΠN,k,i(z

∗
i+1) dz∗i+1

1

n
√

2(s2−s1)∫
0

z2k2
i+1 dzi+1

=
1

n2k2+12k2+ 1
2 (s2 − s1)k2+ 1

2

∫
pi+1(Λ̃i,N )

e
− ‖u‖

2

2
−
‖z∗i+1‖

2

2
+‖u‖

(
‖x‖√
ε

+‖ψ(z∗i+1)‖
)
ΠN,k,i(z

∗
i+1) dz∗i+1.

The case when v1 is close to zero is treated more simply. The weight function can be

bounded above by noting that

wBN (v) =

N∏
l=1

v2k1
l

∏
1≤l<m≤N

(v2
m − v2

l )
2k2
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≤ v2k1
1

N∏
l=2

v
2(k1+2k2)
l

∏
2≤l<m≤N

(v2
m − v2

l )
2k2

=: v2k1
1 Π′N,k(v

∗
1),

accordingly we recognize that the inner integral for i = 0 is bounded above by

1

n
√
s2−s1∫
0

∞∫
v1

· · ·
∞∫

vN−1

e
− ‖u‖

2

2
− ‖v‖

2

2
+‖u‖

(
‖x‖√
ε

+‖v‖
)
v2k1

1 Π′N,k(v
∗
1) dvN · · · dv2 dv1

≤
∫

WBN−1

e
− ‖u‖

2

2
− ‖v

∗
1‖

2

2
+‖u‖

(
‖x‖√
ε

+‖φ(v∗1)‖
)

1

n2k1+1(s2 − s1)k1+ 1
2

Π′N,k(v
∗
1) dv∗1

by using the integration limit of v1 and starting the integration over v2 in zero instead of

v1, which guarantees WBN−1
as new integration domain. Additionally, we define φ(v∗1) :=

(v2, v2, v3, . . . , vN ). Now, we employ a similar strategy to bound the integral over u with a

sum of integrals over sets of the form given in (A.1). The summation index is here denoted

by j. Then, we must distinguish four different cases depending on the type of integral for

u and v: whether i = j = 0, both i and j are positive or if they are mixed. The result is

Px
(
Xs1 ∈ E

1
n , Xs2 ∈ E

1
n
)
≤ c−2

k

(
s2 − s1

s2

)N
2

+k1N+k2N(N−1)
(

C00(x, ε,N, k)s
k1+ 1

2
2

n4k1+2s
k1+ 1

2
1 (s2 − s1)2k1+1

+
N−1∑
j=1

C0j(x, ε,N, k)s
k2+ 1

2
2

n2(k1+k2)+2s
k2+ 1

2
1 (s2 − s1)k1+k2+1

+
N−1∑
i=1

Ci0(x, ε,N, k)s
k1+ 1

2
2

n2(k1+k2)+2s
k1+ 1

2
1 (s2 − s1)k1+k2+1

+
N−1∑
i,j=1

Cij(x, ε,N, k)s
k2+ 1

2
2

n4k2+2s
k2+ 1

2
1 (s2 − s1)2k2+1

)
.

If i = j = 0, repeating the calculation that led to the previous expression yields an upper

bound given by the first term on the right hand side here. The single sums over i and

j come from the cases j > 0, i = 0 and vice versa. The last term occurs from the case

i, j > 0. Since Cij > 0 we can write

C(x, ε,N, k) := c−2
k

(
C00(x, ε,N, k) +

N−1∑
i,j=1

Cij(x, ε,N, k)
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+

N−1∑
i=1

(
Ci0(x, ε,N, k) + C0i(x, ε,N, k)

))

and finally simplify to

Px
(
Xs1 ∈ E

1
n , Xs2 ∈ E

1
n
)
≤ C(x, ε,N, k)

(
s2 − s1

s2

)N
2

+k1N+k2N(N−1)

·

(
s
k1+ 1

2
2

n4k1+2s
k1+ 1

2
1 (s2 − s1)2k1+1

+
s
k2+ 1

2
2

n2k1+2k2+2s
k2+ 1

2
1 (s2 − s1)k1+k2+1

+
s
k1+ 1

2
2

n2k1+2k2+2s
k1+ 1

2
1 (s2 − s1)k1+k2+1

+
s
k2+ 1

2
2

n4k2+2s
k2+ 1

2
1 (s2 − s1)2k2+1

)

≤ C(x, ε,N, k)

n4 min{k1,k2}+2

(
s2 − s1

s2

)N
2

+k1N+k2N(N−1)

·

(
s
k1+ 1

2
2

s
k1+ 1

2
1 (s2 − s1)2k1+1

+
s
k2+ 1

2
2

s
k2+ 1

2
1 (s2 − s1)k1+k2+1

+
s
k1+ 1

2
2

s
k1+ 1

2
1 (s2 − s1)k1+k2+1

+
s
k2+ 1

2
2

s
k2+ 1

2
1 (s2 − s1)2k2+1

)

=
C(x, ε,N, k)

n4 min{k1,k2}+2[(
s2 − s1

s2︸ ︷︷ ︸
≤1

)N−1
2

+k1(N−1)+k2N(N−1)
(

1

s
k1+ 1

2
1 (s2 − s1)k1+ 1

2

+
1

s
k1+ 1

2
1 (s2 − s1)k2+ 1

2

)

+

(
s2 − s1

s2︸ ︷︷ ︸
≤1

)N−1
2

+k1N+k2N(N−1)−k2
(

1

s
k2+ 1

2
1 (s2 − s1)k1+ 1

2

+
1

s
k2+ 1

2
1 (s2 − s1)k2+ 1

2

)]
.

Since n ≥ 1 we can bound k1 and k2 by min
{
k1, k2

}
in the exponents of n whereas s2−s1

s2
is

less then 1 so we can choose the smallest possible exponent, which is obtained for N = 2,

to complete the proof

Px
(
Xs1 ∈ E

1
n , Xs2 ∈ E

1
n
)
≤ C(x, ε,N, k)

n4 min{k1,k2}+2[(
s2 − s1

s2

) 2−1
2

+k1(2−1)+k22(2−1)
(

1

s
k1+ 1

2
1 (s2 − s1)k1+ 1

2

+
1

s
k1+ 1

2
1 (s2 − s1)k2+ 1

2

)
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+

(
s2 − s1

s2

) 2−1
2

+k12+k22(2−1)−k2
(

1

s
k2+ 1

2
1 (s2 − s1)k1+ 1

2

+
1

s
k2+ 1

2
1 (s2 − s1)k2+ 1

2

)]

=
C(x, ε,N, k)

n4 min{k1,k2}+2(
(s2 − s1)2k2

s
k1+ 1

2
1 s

k1+2k2+ 1
2

2

+
(s2 − s1)k1+k2

s
k1+ 1

2
1 s

k1+2k2+ 1
2

2

+
(s2 − s1)k1+k2

s
k2+ 1

2
1 s

2k1+k2+ 1
2

2

+
(s2 − s1)2k1

s
k2+ 1

2
1 s

2k1+k2+ 1
2

2

)

≤ C(x, ε,N, k)

n4 min{k1,k2}+2(
(s2 − s1)2k2

εk1+ 1
2 εk1+2k2+ 1

2

+
(s2 − s1)k1+k2

εk1+ 1
2 εk1+2k2+ 1

2

+
(s2 − s1)k1+k2

εk2+ 1
2 ε2k1+k2+ 1

2

+
(s2 − s1)2k1

εk2+ 1
2 ε2k1+k2+ 1

2

)

=
C(x, ε,N, k)

n4 min{k1,k2}+2
· (s2 − s1)2k2 + 2(s2 − s1)k1+k2 + (s2 − s1)2k1

ε2k1+2k2+1
.

Owing to this lemma and the lower bound from Lemma A.1, the lower bound is valid in

Conjecture 4.13 for R = BN by an analogous calculation as in the AN−1 case, see the proof

of Theorem 4.19. We have already discussed which kind of bound is lacking to achieve the

upper bound of Conjecture 4.13.
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List of symbols

General

N natural numbers: {1, 2, . . . }
N0 N ∪ {0}
Q rational numbers

R real numbers

C complex numbers

〈·, ·〉 standard Euclidean inner product

‖ · ‖ ‖x‖ := 〈x, x〉 =
√
x2

1 + · · ·+ x2
d

〈·〉⊥ hyperplane 〈x〉⊥ := {y ∈ Rd | 〈x, y〉 = 0}
SN symmetric group

λd(A) d-dimensional Lebesgue measure of A ⊂ Rd

∂A boundary of the set A ⊂ Rd

A closure of the set A ⊂ Rd

Stochastic(
Ω,F , (Ft)t≥0,P

)
underlying filtered probability space with Ft := σ

(
Xs | s ≤ t

)
E (Xt |Xs) conditional mean

Var (Xt |Xs) conditional variance

[X]t quadratic variation of the process X

[X,Y ]t covariation process of X and Y

N (µ,Σ) normal distribution with mean vector µ and covariance matrix Σ

φ(·, µ,Σ) corresponding Gaussian density of N (µ,Σ)

X ∼ µ X has distribution µ

δ· Dirac measure

an . bn sup
{
an
bn
|n ∈ N

}
≤ c almost surely

Spaces of functions

C1(A) set of continuous differentiable functions on A ⊂ Rd

C2(A) set of two times continuous differentiable functions on A ⊂ Rd
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List of symbols

Special functions

Γ Gamma function

Iν modified Bessel function of the first kind

Jν Bessel function of the first kind

jν spherical Bessel function of the first kind

b·c floor function bCc := inf{n ∈ N |n ≤ C < n+ 1} for some C ∈ R
1 indicator function

In n dimensional identity matrix

diag(· · · ) diagonal matrix

Derivatives

∆ Laplacian

∇ gradient

∇x gradient with respect to x
∂
∂x derivative with respect to x

D total differential

Hf Hessian matrix of the function f

Symbols belonging to the Dunkl theory

The page belongs to the definition of the symbol.

AN−1, BN Weyl chambers, pages 9 and 10

wAN−1
weight function belonging to AN−1, page 10

wBN weight function belonging to BN , page 10

κ(k,R) sum of multiplicities, pages 8 and 11

Jk,R Dunkl Bessel function, page 14

qk,R, Qk,R density and distribution of the multivariate Bessel process, page 14

Landau symbols

We consider a positive function rn > 0 and a random function ζn on Θ ⊂ Rd.

ζn = Op(rn) If lim sup
n→∞

|r−1
n ζn| <∞ in distribution.

ζn = O∗p(rn) If sup
θ∈Θ
|ζn(θ)| = Op(rn).

ζn = O∗(rn) If ζn(θ) = O∗p(rn) and ζn is non-random.

ζn = op(rn) If lim
n→∞

r−1
n ζn = 0 in distribution.

ζn = o∗p(rn) If sup
θ∈Θ
|ζn(θ)| = op(rn).

ζn = o∗(rn) If ζn = o∗p(rn) and ζn is non-random.
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Martingale estimator based on one eigenfunction
This code uses the Euler Maruyama method to simulate the modified Bessel process.
These simulations belongs to the estimator (2.8) and the corresponding optimal estimator
on page 51.

# approximation of a Brownian motion on [lower,upper]=[0,1] with

length.out=100 equidistant observations

get_Wiener <- function(mu=0, sigma=1, lower=0, upper=1, length.out=100){

l <- length.out-1

c(0, cumsum(rnorm(l, mean=mu*(upper-lower)/length.out,

sd=sqrt(sigma*(upper-lower)/length.out))))

}

# alpha, theta specified by the stochastic differential equation defining the

modified Bessel process.

# generates data on the interval [lower,upper] with n observations and

starting point x_0

get_modified_Bessel <- function(alpha,theta,x_0,lower,upper,n){

Z <- x_0 # starting point

is_viable <- FALSE

broken_process <- FALSE

length.out <- n*upper/10

length.out_temp <- n*upper/10 # Using more time points to generate the

process than we actually use for the estimator

while( !is_viable ) {

B <- get_Wiener(lower=lower,upper=upper,length.out=length.out_temp+1)

for(i in 1 : length.out_temp){

Z[i+1] <- Z[i]+B[i+1]-B[i]+((theta+0.5)/Z[i]-alpha*Z[i])*resolution

if (Z[i+1] <= 0 ) break

}

if(tail(Z,1)>0&&length(Z)==length.out_temp+1){

is_viable = TRUE

}

else {

length.out_temp <- 2*length.out_temp # if the distance between the

observations is too small, we enlarge the number of observations

for the simulation of the Brownian motion

199



R Source Code

resolution <- resolution / 2

Z <- x_0

if (log2(length.out_temp/length.out)>10){

is_viable = TRUE

broken_process = TRUE

}

}

}

if(broken_process) {

return(NA)

} else {

Y <- numeric(n+1)

Y[1] <- x_0

for (i in 1:n){

# save the desired observations

Y[i+1] <- Z[upper/10*2^log2(l.out_temp/length.out)*i+1]

return(Y)

}}

}

estimator_one_eigenfunction <- function(alpha,theta,x_0=0.1,delta,n){

Y <- get_modified_Bessel(alpha=alpha, theta=theta, x_0=x_0, lower=0,

upper=delta*n, n=n)

return((alpha*(sum(Y[-1]^2)-exp(-2*alpha*delta)*sum(Y[-n-1]^2)))/

(n*(1-exp(-2*alpha*delta)))-1)

}

optimal_estimator_one_eigenfunction <- function(alpha,theta,x_0=0.1,delta,n){

Y <- get_modified_Bessel(alpha=alpha, theta=theta, x_0=x_0, lower=0,

upper=delta*n, n=n)

estimator <- function(vartheta){

sum(1/((vartheta+1)/alpha*(1-exp(-2*alpha*delta))+2*exp(-2*alpha*delta)*

Y[-n-1]^2)*(Y[-1]^2-Y[-n-1]^2*exp(-2*alpha*delta)-(vartheta+1)/alpha*

(1-exp(-2*alpha*delta))))^2

}

# this function searches for the value theta such that estimator(theta)=0

return(optim(par=theta, fn=estimator, method="L-BFGS-B", lower=theta-5,

upper=theta+5)$par)

}

Simulating a Cox-Ingersoll-Ross process
This code is available as simCIR through the yuima package in R, cf. [45, 46], and
generates a Cox-Ingersoll-Ross process.

## Simulate Cox-Ingersoll-Ross process with parameters alpha, beta and gamma

at times specified via time.points

simCIR <- function(time.points,n,h,alpha,beta,gamma,equi.dist=FALSE){

# generate an equidistant time vector of length n+1 and distant h between
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observations

if(equi.dist==TRUE){time.points <- 0:n*h}

# must start in t=0, otherwise t_vec is adjusted

if(time.points[1]!=0){time.points <- c(0,time.points)}

# define auxiliary variables, following notation of (1.9)

nu <- 4*beta*alpha/(beta*gamma) # degrees of freedom

# auxiliary vector for the computation of the non-centrality parameter in

each step

eta_vec <- 4*beta*exp(-beta*diff(time.points))/

(gamma*(1-exp(-beta*diff(time.points))))

# sample X_0 from stationary distribution

X <- rgamma(1,scale=gamma/(2*beta),shape=2*alpha/gamma)

# compute X_t iteratively, using Proposition 1 of Malham and Wiese

for(i in seq_along(eta_vec)){

# non-centrality parameter of the conditional distribution

lambda <- tail(X,1)*eta_vec[i]

# calculate next step of the CIR

X <- c(X,rchisq(1,df=nu,ncp=lambda)*exp(-beta*diff(time.points)[i])/

eta_vec[i])

}

# return data; first row: time points, second row: CIR at time point

return(rbind(t=time.points,X=X))

}

Simulations for the preliminary estimator and one-step
improvements

This code is available through the yuima package as fitCIR in R, cf. [45, 46], and is the
code to simulate the preliminary estimator, cf. Lemma 3.1 and (3.10), and the one-step
improvements based on the Newton-Raphson (3.22) and the Fisher scoring method (3.23)
using the function simCIR above.

## function to provide the preliminary explicit estimator

get_preliminaryEstimators <- function(data){

# use data returned from calling simCIR()

n <- dim(data)[2]-1 # we have observations at t_j for j=0,...,n, this

equals n+1 observations in total

# -> therefore, n is the number of observations minus 1

h <- as.numeric(data[1,2]) # as the vector containing the t always starts

with 0, this equals diff(data[1,])[1]

# and thus gives h if the t_j are chosen to be equidistant

X_major <- data[2,-1] # the observations of the CIR process starting at

t_1=h.

X_minor <- head(data[2,],-1) # the observations of the CIR process

discarding j=n.

X_mean_major <- mean(X_major) # mean of all observations without j=0.

X_mean_minor <- mean(X_minor) # mean of all observations without j=n.

# calculate estimate for beta from Lemma 3.1

beta_0n <- -1/h*log(sum((X_minor-X_mean_minor)*(X_major - X_mean_major))/
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sum((X_minor-X_mean_minor)^2))

# calculate estimate for alpha from Lemma 3.1

alpha_0n <- (X_mean_major-exp(-beta_0n*h)* X_mean_minor)*beta_0n/

(1-exp(-beta_0n*h))

# calculate estimate for gamma from Eq. (3.10), where first the numerator

and denominator are computed separately.

to_gamma_numerator <- (X_major-exp(-beta_0n*h)*X_minor-alpha_0n/beta_0n*

(1-exp(-beta_0n*h)))^2

to_gamma_denominator <-

(1-exp(-beta_0n*h))/beta_0n*(exp(-beta_0n*h)*X_minor+

alpha_0n*(1-exp(-beta_0n*h))/(2*beta_0n))

gamma_0n <- 1/n*sum(to_gamma_numerator/to_gamma_denominator)

# return the estimated parameter vector

return(as.matrix(c(alpha_0n,beta_0n,gamma_0n)))

}

### ONE STEP IMPROVEMENT

# first we need a few auxiliary functions

# the mean of the CIR with parameter (alpha,beta,gamma) conditioned on X_h=x,

Eq. (3.1)

mu<- function(alpha,beta,gamma,x,h){

return(exp(-beta*h)*x+alpha/beta*(1-exp(-beta*h)))

}

# derivatives of the mean of CIR with parameter (alpha,beta,gamma)

conditioned on X_h=x

mu_alpha <-function(alpha,beta,gamma,x,h)

{

return((1-exp(-beta*h))/beta)

}

mu_alpha_alpha<-function(alpha,beta,gamma,x,h)

{

return(0)

}

mu_alpha_beta <- function(alpha,beta,gamma,x,h)

{

return((exp(-beta*h)*(beta*h+1)-1)/beta^2)

}

mu_alpha_gamma <- function(alpha,beta,gamma,x,h)

{

return(0)

}

mu_beta <- function(alpha,beta,gamma,x,h)
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{

return(-h*exp(-beta*h)*x+alpha*(exp(-beta*h)*(beta*h+1)-1)/beta^2)

}

mu_beta_beta <- function(alpha,beta,gamma,x,h)

{

return(h^2*exp(-beta*h)*x+alpha*(exp(-beta*h)*(-beta^2*h^2-2*beta*h-2)+2)/beta^3)

}

mu_beta_gamma <- function(alpha,beta,gamma,x,h)

{

return(0)

}

mu_gamma <- function(alpha,beta,gamma,x,h)

{

return(0)

}

mu_gamma_gamma <- function(alpha,beta,gamma,x,h)

{

return(0)

}

# the variance of CIR with parameter (alpha,beta,gamma) conditioned on X_h=x,

Eq. (3.1)

sigma_mod <- function(alpha,beta,gamma,x,h){

return(gamma/beta*(1-exp(-beta*h))*(exp(-beta*h)*x+alpha/(2*beta)*

(1-exp(-beta*h))))

}

# derivatives of the variance of CIR with parameter (alpha,beta,gamma)

conditioned on X_h=x

sigma_alpha <- function(alpha,beta,gamma,x,h)

{

return(gamma*(1-exp(-beta*h))^2/(2*beta^2))

}

sigma_alpha_alpha <- function(alpha,beta,gamma,x,h)

{

return(0)

}

sigma_alpha_beta <- function(alpha,beta,gamma,x,h)

{

return(-gamma*exp(-2*beta*h)*(exp(beta*h)-1)*(-beta*h+exp(beta*h)-1)/

beta^3)
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}

sigma_alpha_gamma <- function(alpha,beta,gamma,x,h)

{

return((1-exp(-beta*h))^2/(2*beta^2))

}

sigma_beta <- function(alpha,beta,gamma,x,h)

{

exp(-2*h*beta)/beta^3*(x*beta*(2*h*beta-exp(h*beta)*(h*beta+1)+1)-

alpha*(exp(beta*h)-1)*(-h*beta+exp(h*beta)-1))

}

sigma_beta_beta <- function(alpha,beta,gamma,x,h)

{

exp(-2*beta*h)/(beta^4)*(alpha*(2*h*beta*(h*beta+2)+3*exp(2*beta*h)-

exp(h*beta)*(h*beta*(h*beta+4)+6)+3)+x*beta*(exp(beta*h)*

(h^2*beta^2+2*h*beta+2)-2*(2*h^2*beta^2+2*h*beta+1)))

}

sigma_beta_gamma <- function(alpha,beta,gamma,x,h)

{

return(h*exp(-beta*h)*(exp(-beta*h)*x/beta+alpha*(1-exp(-beta*h))/(2*beta^2))+

(1-exp(-beta*h))*(-exp(-beta*h)*(beta*h+1)/beta^2*x+

alpha*exp(-beta*h)* (beta*h-2*exp(beta*h)+2)/(2*beta^3)))

}

sigma_gamma <- function(alpha,beta,gamma,x,h)

{

return((1-exp(-beta*h))*(exp(-beta*h)*x+alpha/(2*beta)*(1-exp(-beta*h)))/beta)

}

sigma_gamma_gamma <- function(alpha,beta,gamma,x,h)

{

return(0)

}

# the inverse of the Hessian matrix of H_n

H_n_Hessian <- function(alpha,beta,gamma,x,h)

{

mu <- mu(alpha,beta,gamma,x,h)

mu_1 <- mu_alpha(alpha,beta,gamma,x,h)

mu_2 <- mu_beta(alpha,beta,gamma,x,h)

mu_3 <- mu_gamma(alpha,beta,gamma,x,h)

mu_11 <- mu_alpha_alpha(alpha,beta,gamma,x,h)

mu_12 <- mu_alpha_beta(alpha,beta,gamma,x,h)

mu_13 <- mu_alpha_gamma(alpha,beta,gamma,x,h)
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mu_22 <- mu_beta_beta(alpha,beta,gamma,x,h)

mu_23 <- mu_beta_gamma(alpha,beta,gamma,x,h)

mu_33 <- mu_gamma_gamma(alpha,beta,gamma,x,h)

sigma <- sigma_mod(alpha,beta,gamma,x,h)

sigma_1 <- sigma_alpha(alpha,beta,gamma,x,h)

sigma_2 <- sigma_beta(alpha,beta,gamma,x,h)

sigma_3 <- sigma_gamma(alpha,beta,gamma,x,h)

sigma_11 <- sigma_alpha_alpha(alpha,beta,gamma,x,h)

sigma_12 <- sigma_alpha_beta(alpha,beta,gamma,x,h)

sigma_13 <- sigma_alpha_gamma(alpha,beta,gamma,x,h)

sigma_22 <- sigma_beta_beta(alpha,beta,gamma,x,h)

sigma_23 <- sigma_beta_gamma(alpha,beta,gamma,x,h)

sigma_33 <- sigma_gamma_gamma(alpha,beta,gamma,x,h)

H_11 <- -0.5*sum((sigma_11*sigma-sigma_1*sigma_1)/sigma^2-

(sigma_11*sigma-2*sigma_1*sigma_1)/sigma^3*(x-mu)^2+

2*sigma_1/sigma^2*(x-mu)*mu_1-

2*(mu_11*sigma-mu_1*sigma_1)*(x-mu)/sigma^2+2*mu_1*mu_1/sigma)

H_22 <- -0.5*sum((sigma_22*sigma-sigma_2*sigma_2)/sigma^2-

(sigma_22*sigma-2*sigma_2*sigma_2)/sigma^3*(x-mu)^2+

2*sigma_2/sigma^2*(x-mu)*mu_2-

2*(mu_22*sigma-mu_2*sigma_2)*(x-mu)/sigma^2+ 2*mu_2*mu_2/sigma)

H_33 <- -0.5*sum((sigma_33*sigma-sigma_3*sigma_3)/sigma^2-

(sigma_33*sigma-2*sigma_3*sigma_3)/sigma^3*(x-mu)^2+

2*sigma_3/sigma^2*(x-mu)*mu_3-

2*(mu_33*sigma-mu_3*sigma_3)*(x-mu)/sigma^2+2*mu_3*mu_3/sigma)

H_12 <- -0.5*sum((sigma_12*sigma-sigma_1*sigma_2)/sigma^2-

(sigma_12*sigma-2*sigma_1*sigma_2)/sigma^2*(x-mu)^2+

2*sigma_1/sigma^2*(x-mu)*mu_2-

2*(mu_12*sigma-mu_1*sigma_2)*(x-mu)/sigma^2+2*mu_1*mu_2/sigma)

H_13 <- -0.5*sum((sigma_13*sigma-sigma_1*sigma_3)/sigma^2-

(sigma_13*sigma-2*sigma_1*sigma_3)/sigma^3*(x-mu)^2+

2*sigma_1/sigma^2*(x-mu)*mu_3-

2*(mu_13*sigma-mu_1*sigma_3)*(x-mu)/sigma^2+2*mu_1*mu_3/sigma)

H_23 <- -0.5*sum((sigma_23*sigma-sigma_2*sigma_3)/sigma^2-

(sigma_23*sigma-2*sigma_2*sigma_3)/sigma^3*(x-mu)^2+

2*sigma_2/sigma^2*(x-mu)*mu_3-

2*(mu_23*sigma-mu_2*sigma_3)*(x-mu)/sigma^2+ 2*mu_2*mu_3/sigma)
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H_det <- H_11*H_22*H_33+H_12*H_23*H_13+H_13*H_12*H_23-

H_13*H_22*H_13-H_11*H_23*H_23-H_12*H_12*H_33

return(matrix(1/H_det*c(H_22*H_33-H_23^2,H_13*H_23-H_12*H_33,

H_12*H_23-H_13*H_22,H_13*H_23-H_12*H_33,H_11*H_33-H_13^2,

H_13*H_12-H_11*H_23,H_12*H_23-H_13*H_22,H_13*H_12-H_11*H_23,

H_11*H_22-H_12^2),nrow=3))

}

# derivatives of the function H_n(theta)

H_n_alpha <- function(alpha,beta,gamma,x,h){

x_minor <- head(x,-1)

x_major <- x[-1]

sigma_deriv <- sigma_alpha(alpha,beta,gamma,x_minor,h)

sigma <- sigma_mod(alpha,beta,gamma,x_minor,h)

mu <- mu(alpha,beta,gamma,x_minor,h)

mu_deriv <- mu_alpha(alpha,beta,gamma,x_minor,h)

return(sum(-0.5*(sigma_deriv/sigma-sigma_deriv/sigma^2*(x_major-mu)^2-

2/sigma*(x_major-mu)*mu_deriv)))

}

H_n_beta <- function(alpha,beta,gamma,x,h){

x_minor <- head(x, -1)

x_major <- x[-1]

sigma_deriv <- sigma_beta(alpha,beta,gamma,x_minor,h)

sigma <- sigma_mod(alpha,beta,gamma,x_minor,h)

mu <- mu(alpha,beta,gamma,x_minor,h)

mu_deriv <- mu_beta(alpha,beta,gamma,x_minor,h)

return(sum(-0.5*(sigma_deriv/sigma-sigma_deriv/sigma^2*(x_major-mu)^2-

2/sigma*(x_major-mu)*mu_deriv)))

}

H_n_gamma <- function(alpha,beta,gamma,x,h){

x_minor <- head(x,-1)

x_major <- x[-1]

sigma_deriv <- sigma_gamma(alpha,beta,gamma,x_minor,h)

sigma <- sigma_mod(alpha,beta,gamma,x_minor,h)

mu <- mu(alpha,beta,gamma,x_minor,h)

return (sum(-0.5*(sigma_deriv/sigma-sigma_deriv/sigma^2*(x_major-mu)^2)))

}

# The level-a confidence intervals for the one-step improvements calculated

from the estimated asymptotic covariance:

get_confidenceIntervals <- function(alpha,beta,gamma,a,n,T){

z<- qnorm(1-a/2)

alpha_lower <- alpha-z*sqrt(alpha*(2*alpha-gamma)/(T*beta))
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alpha_upper <- alpha+z*sqrt( alpha*(2*alpha-gamma)/(T*beta))

beta_lower <- beta-z*sqrt(2*beta/T)

beta_upper <- beta+z*sqrt(2*beta/T)

gamma_lower <- gamma-z*sqrt(2*gamma^2/n)

gamma_upper <- gamma+z*sqrt(2*gamma^2/n)

return(matrix(c(alpha_lower,beta_lower,gamma_lower,

alpha_upper,beta_upper,gamma_upper),3,2,

dimnames=list(c("alpha","beta","gamma"),c("lower","upper"))))

}

get_finalEstimators_scoring <- function(data,a) {

# We need the preliminary estimator for the one step improvement, Eq.

(3.23)

prelim_estim <- get_preliminaryEstimators(data)

alpha <- prelim_estim[1]

beta <- prelim_estim[2]

gamma <- prelim_estim[3]

T <- tail(data[1,],1) # T is the time of the last observation n*h

n<- length(data[1,])-1 # number of observations minus 1

x<-data[2,-1]

h<-data[1,2]

H_n<-c(H_n_alpha(alpha,beta,gamma,x,h),H_n_beta(alpha,beta,gamma,x,h),

H_n_gamma(alpha,beta,gamma,x,h)) #calculate estimate from Eq.

finalEstimators_scoring <- c(alpha,beta,gamma)+diag(c(1/T,1/T,1/n))%*%

matrix(c(alpha*(2*alpha-gamma)/beta,2*alpha-gamma,0,

2*alpha-gamma,2*beta,0,0,0,2*gamma^2),nrow=3,byrow=TRUE)%*%H_n

confidenceIntervals <- get_confidenceIntervals(finalEstimators_scoring[1],

finalEstimators_scoring[2],finalEstimators_scoring[3],a,n,T)

return(list(estimation=finalEstimators_scoring,

confidence=confidenceIntervals))

}

# Newton-Raphson Eq. (3.22)

get_finalEstimators_newton <- function(data,a) {

prelim_estim <- get_preliminaryEstimators(data)

alpha <- prelim_estim[1]

beta <- prelim_estim[2]

gamma <- prelim_estim[3]

T <- tail(data[1,],1)

n<- length(data[1,])-1

x<-data[2,-1]

h<-data[1,2]

H_n<-c(H_n_alpha(alpha,beta,gamma,x,h),H_n_beta(alpha,beta,gamma,x,h),

H_n_gamma(alpha,beta,gamma,x,h))

finalEstimators_newton <- c(alpha,beta,gamma)-

H_n_Hessian(alpha,beta,gamma,x,h)%*%H_n

confidenceIntervals <- get_confidenceIntervals(finalEstimators_newton[1],
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finalEstimators_newton[2],finalEstimators_newton[3],a,n,T)

return(list(estimation=finalEstimators_newton,

confidence=confidenceIntervals))

}

fitCIR<- function(data,a=0.05){

if((max(diff(data[1,]))/min(diff(data[1,]))-1)>1e-10) stop(’Please use

equidistant sampling points’)

if(a>1) stop(’Please set the number a less than 1’)

newtonEstimators <- get_finalEstimators_newton(data,a)

return(list(preliminary=get_preliminaryEstimators(data),

NewtonRaphson=get_finalEstimators_newton(data,a),

scoring=get_finalEstimators_scoring(data,a)))

}

# ### Examples of usage

# ## If the sampling points are not equidistant, there will be an

corresponding output.

# data <- simCIR(alpha=3,beta=1,gamma=1,time.points = c(0,0.1,0.2,0.25,0.3))

# fitCIR(data)

# ## Otherwise it calculates the three estimators

# data <- simCIR(alpha=3,beta=1,gamma=1,n=1000,h=0.1,equi.dist=TRUE)

# fitCIR(data)
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