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Abstract. In this note, we consider the homogenization of the compressible Navier-Stokes equations in a periodically per-
forated domain in R

3. Assuming that the particle size scales like ε3, where ε > 0 is their mutual distance, and that the
Mach number decreases fast enough, we show that in the limit ε → 0, the velocity and density converge to a solution of
the incompressible Navier-Stokes equations with Brinkman term. We strongly follow the methods of Höfer, Kowalczyk and
Schwarzacher [https://doi.org/10.1142/S0218202521500391], where they proved convergence to Darcy’s law for the particle
size scaling like εα with α ∈ (1, 3).

1. Introduction

We consider a bounded smooth domain D ⊂ R
3 which for ε > 0 is perforated by tiny obstacles of

size ε3, and show that solutions to the compressible Navier-Stokes equations in this domain converge
as ε → 0 to a solution of the incompressible Navier-Stokes equations with Brinkman term. To the best
of our knowledge, this is the first result of homogenization of compressible fluids for a critically sized
perforation.

There is a vast of literature concerning the homogenization of fluid flows in perforated domains. We
will just cite a few. For incompressible fluids, Allaire found in [2] and [3] that, concerning the ratios of
particle size and distance, there are mainly three regimes of particle sizes εα, where α ≥ 1. Heuristically,
if the particles are large, the velocity will slow down and finally stop. This phenomenon occurs if (in
three dimensions) α ∈ [1, 3) and gives rise to Darcy’s law. When the particles are very small, i.e., α > 3,
they should not affect the fluid, yielding that in the limit, the fluid motion is still governed by the Stokes
or Navier-Stokes equations. The third regime is the so-called critical case α = 3, where the particles are
large enough to put some friction on the fluid, but not too large to stop the flow. For incompressible
fluids, the non-critical cases α ∈ (1, 3) and α > 3 were considered in [3], while [2] dealt with the critical
case α = 3. The case α = 1 was treated in [1]. In all the aforementioned literature, the proofs were given
by means of suitable oscillating test functions, first introduced by Tartar in [17] and later adopted by
Cioranescu and Murat in [5] for the Poisson equation.

In the critical case, the additional friction term is the main part of Brinkman’s law. Cioranescu and
Murat considered in [5] the Poisson equation in a perforated domain, where they found in the limit “a
strange term coming from nowhere”. This Brinkman term purely comes from the presence of holes in the
domain Dε. It physically represents the energy of boundary layers around each obstacle, as its columns
are proportional to the drag force around a single particle [2, Proposition 2.1.4 and Remark 2.1.5].

The assumptions on the distribution of the holes can also be generalized. For the critical case, Giunti,
Höfer, and Velázquez considered in [11] homogenization of the Poisson equation in a randomly perforated
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domain. They showed that the “strange term” also occurs in their setting. Hillairet considered in [12]
the Stokes equations and random obstacles with a hard sphere condition. This condition was removed by
Giunti and Höfer [10], where they showed that for incompressible fluids and randomly distributed holes
with random radii, the randomness does not affect the convergence to Brinkman’s law. More recently, for
large particles, Giunti showed in [9] a similar convergence result to Darcy’s law.

Unlike as for incompressible fluids, the homogenization theory for compressible fluids is rather sparse.
Masmoudi considered in [15] the case α = 1 of large particles, giving rise to Darcy’s law. For large
particles with α ∈ (1, 3), Darcy’s law was just recently treated in [13] for a low Mach number limit. The
case of small particles (α > 3) was treated in [6,7,14] for different growing conditions on the pressure.
Random perforations in the spirit of [10] for small particles were considered by the authors in [4], where
in the limit, the equations remain unchanged as in the periodic case.

We want to emphasize that the methods presented here are strongly related to those of [13]. As a
matter of fact, their techniques used in the case of large holes also apply in our case for holes having
critical size.

Notation: Throughout the whole paper, we denote the Frobenius scalar product of two matrices A,B ∈
R

3×3 by A : B :=
∑

1≤i,j≤3 AijBij . Further, we use the standard notation for Lebesgue and Sobolev
spaces, where we denote this spaces even for vector valued functions as in scalar case, e.g., Lp(D) instead
of Lp(D;R3). Moreover, C > 0 denotes a constant which is independent of ε and might change its value
whenever it occurs.

Organization of the paper: The paper is organized as follows:
In Sect. 2, we give a precise definition of the perforated domain Dε and state our main results for the
steady Navier-Stokes equations. In Sect. 3, we introduce oscillating test functions, which will be crucial
to show convergence of the velocity, density, and pressure. Sect. 4 is devoted to invoke the concept of
Bogovskĭı’s operator as an inverse of the divergence, which is used to give uniform bounds independent
of ε. In Sect. 5, we show how to pass to the limit ε → 0 and obtain the limiting equations.

2. Setting and Main Results

Consider a bounded domain D ⊂ R
3 with smooth boundary. Let ε > 0 and cover D with a regular mesh

of size 2ε. Set xε
i ∈ (2εZ)3 as the center of the cell with index i and P ε

i := xε
i + (−ε, ε)3. Further, let

T � B1(0) be a compact and simply connected set with smooth boundary and set T ε
i := xε

i + ε3T . We
now define the perforated domain as

Dε := D \
⋃

i∈Kε

T ε
i , Kε := {i : P ε

i ⊂ D}. (1)

By the periodic distribution of the holes, the number of holes inside Dε satisfy

|Kε| ≤ C
|D|
ε3

for some C > 0 independent of ε.

In Dε, we consider the steady compressible Navier-Stokes equations
⎧
⎪⎨

⎪⎩

div(�εuε ⊗ uε) − div S(∇uε) + 1
εβ ∇�γ

ε = �εf + g in Dε,

div(�εuε) = 0 in Dε,

uε = 0 on ∂Dε,

(2)

where �ε, uε are the fluids density and velocity, respectively, and S(∇uε) is the Newtonian viscous stress
tensor of the form

S(∇u) = μ

(

∇u + ∇Tu − 2
3

div(u)I
)

+ η div(u)I (3)
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with viscosity coefficients μ > 0, η ≥ 0. Further, we assume that γ ≥ 3, β > 3 (γ + 1), and f ,g ∈ L∞(D)
are given. Since the equations (2) are invariant under adding a constant to the pressure term ε−β�γ

ε , we
define

pε := ε−β(�γ
ε − 〈�γ

ε 〉ε), (4)

where 〈·〉ε denotes the mean value over Dε, given by

〈f〉ε =
1

|Dε|
∫

Dε

f dx.

We will show convergence of the velocity uε and the pressure pε to limiting functions u and p, respec-
tively, such that the couple (u, p) solves the incompressible steady Navier-Stokes-Brinkman equations

⎧
⎪⎨

⎪⎩

div(�0u ⊗ u) − μΔu + ∇p + μMu = �0f + g in D,

div(u) = 0 in D,

u = 0 on ∂D,

where the resistance matrix M is introduced in the next section, and the constant �0 is the strong limit
of �ε in L2γ(D), which is determined by the mass constraint on �ε as formulated in Definition 2.1 below.

Before stating our main result, we introduce the standard concept of finite energy weak solutions
to (2).

Definition 2.1. Let Dε be as in (1) and γ ≥ 3, m > 0 be fixed. We say a couple (�ε,uε) is a finite energy
weak solution to system (2) if

�ε ∈ L2γ(Dε), uε ∈ W 1,2
0 (Dε),

�ε ≥ 0 a.e. in Dε,

∫

Dε

�ε dx = m,

∫

Dε

�εuε · ∇ψ dx = 0,

∫

Dε

pε div ϕ + (�εuε ⊗ uε) : ∇ϕ − S(∇uε) : ∇ϕ + (�εf + g) · ϕ dx = 0

for all test functions ψ ∈ C∞
c (Dε) and all test functions ϕ ∈ C∞

c (Dε;R3), where pε is given in (4), and
the energy inequality

∫

Dε

S(∇uε) : ∇uε dx ≤
∫

Dε

(�εf + g) · uε dx (5)

holds.

Remark 2.2. Existence of finite energy weak solutions to system (2) is known for all values γ > 3/2; see,
for instance, [16, Theorem 4.3]. However, we need the assumption γ ≥ 3 to bound the convective term
div(�εuε ⊗ uε) in a proper way, see Sect. 4.

Let us denote the zero extension of a function f with Dε as its domain of definition by f̃ , that is,

f̃ = f in Dε, f̃ = 0 in R
3 \Dε.

Our main result for the stationary Navier-Stokes equations now reads as follows:

Theorem 2.3. Let D ⊂ R
3 be a bounded domain with smooth boundary, 0 < ε < 1, Dε be as in (1), γ ≥ 3,

m > 0 and f ,g ∈ L∞(D). Let β > 3 (γ + 1) and (�ε,uε) be a sequence of finite energy weak solutions to
problem (2). Then, with pε defined in (4), we can extract subsequences (not relabeled) such that

�̃ε → �0 strongly in L2γ(D),

p̃ε ⇀ p weakly in L2(D),

ũε ⇀ u weakly in W 1,2
0 (D),
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Fig. 1. Splitting of the cell P ε
i

where �0 = m/|D| is constant and (p,u) ∈ L2(D) × W 1,2
0 (D) with

∫
D

p = 0 is a weak solution to the
steady incompressible Navier-Stokes-Brinkman equations

⎧
⎪⎨

⎪⎩

div(�0u ⊗ u) + ∇p − μΔu + μMu = �0f + g in D,

div(u) = 0 in D,

u = 0 on ∂D,

(6)

where M will be defined in (11).

Remark 2.4. It it well known that the solution to system (6) is unique if f and g are “sufficiently small”,
see, e.g., [18, Chapter II, Theorem 1.3]. This smallness assumption can be dropped in the case of Stokes
equations, i.e., without the convective term div(�0u ⊗ u).

3. The Cell Problem and Oscillating Test Functions

In this section, we introduce oscillating test functions and define the resistance matrix M , following the
original work of Allaire [2]. We repeat here the definition of these functions as well as the estimates given
in [13].

Consider for a single particle T the solution (qk,wk) to the cell problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇qk − Δwk = 0 in R
3 \T,

div(wk) = 0 in R
3 \T,

wk = 0 on ∂T,

wk = ek at infinity,

(7)

where ek is the k-th unit basis vector of the canonical basis of R3. Note that the solution exists and is
unique, see, e.g., [8, Chapter V]. Let us further recall the definition of oscillating test functions as made
in [2] (see also [13]):

We set

wε
k = ek, qε

k = 0 in P ε
i ∩ D

for each P ε
i with P ε

i ∩ ∂D �= ∅. Now, we denote Br
i := Br(xε

i ) and split each cell P ε
i entirely included in

D into the following four parts:

P ε
i = T ε

i ∪ Cε
i ∪ Dε

i ∪ Kε
i ,

where Cε
i is the open ball centered at xε

i with radius ε/2 and perforated by the hole T ε
i , Dε

i = Bε
i \ B

ε/2
i

is the ball with radius ε perforated by the ball with radius ε/2, and Kε
i = P ε

i \ Bε
i are the remaining

corners, see Fig. 1.
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In these parts, we define
{
wε

k = ek

qε
k = 0

in Kε
i ,

{
∇qε

k − Δwε
k = 0

div(wε
k) = 0

in Dε
i ,

{
wε

k(x) = wk

(
x
ε3

)

qε
k(x) = 1

ε3 qk

(
x
ε3

) in Cε
i ,

{
wε

k = 0
qε
k = 0

in T ε
i ,

where we impose matching Dirichlet boundary conditions and (qk,wk) is the solution to the cell problem
(7). As shown in [13, Lemma 3.5], we have for the functions (qε

k,wε
k) and all p > 3

2 the estimates

‖∇wε
k‖Lp(D) + ‖qε

k‖Lp(D) ≤ Cε3
(

2
p −1

)

, (8)

‖∇qε
k‖Lp(∪iCε

i )
≤ Cε6

(
1
p −1

)

, (9)

‖∇wε
k‖

L2(∪iBε
i \B

ε/4
i )

+ ‖qε
k‖

L2(∪iBε
i \B

ε/4
i )

≤ Cε, (10)

where the constant C > 0 does not depend on ε. Moreover, we have the following Theorem due to Allaire:

Theorem 3.1 ([2, page 214, Proposition 1.1.2 and Lemma 2.3.6]). The functions (qε
k,wε

k) fulfill:
(H1) qε

k ∈ L2(D), wε
k ∈ W 1,2(D);

(H2) divwε
k = 0 in D and wε

k = 0 on the holes T ε
i ;

(H3) wε
k ⇀ ek in W 1,2(D), qε

k ⇀ 0 in L2(D)/R;
(H4) For any νε, ν ∈ W 1,2(D) with νε = 0 on the holes T ε

i and νε ⇀ ν, and any ϕ ∈ D(D), we have

〈∇qε
k − Δwε

k, ϕνε〉W −1,2(D),W 1,2
0 (D) → 〈Mek, ϕν〉W −1,2(D),W 1,2

0 (D),

where the resistance matrix M ∈ W−1,∞(D) is defined by its entries Mik via

〈Mik, ϕ〉D′(D),D(D) = lim
ε→0

∫

D

ϕ∇wε
i : ∇wε

k dx (11)

for any test function ϕ ∈ D(D).
Further, for any p ≥ 1,

‖wε
k − ek‖Lp(D) → 0.

Remark 3.2. This definition of M yields that the matrix is symmetric and positive definite in the sense
that for all test functions ϕi ∈ D(D) and Φ = (ϕi)1≤i≤3,

〈MΦ,Φ〉D′(D),D(D) = lim
ε→0

∫

D

∣
∣
∣
∣

3∑

i=1

ϕi∇wε
i

∣
∣
∣
∣

2

dx ≥ 0,

thus implying that there exists at least one solution to system (6).

4. Bogovskĭı’s Operator and Uniform Bounds for the Navier-Stokes Equations

As in [6], we have the following result for the inverse of the divergence operator:

Theorem 4.1 ([6, Theorem 2.3]). Let 1 < q < ∞ and Dε be defined as in (1). There exists a bounded
linear operator

Bε :
{

f ∈ Lq(Dε) :
∫

Dε

f dx = 0
}

→ W 1,q
0 (Dε)

such that for any f ∈ Lq(Dε) with
∫

Dε
f dx = 0,

div Bε(f) = f in Dε, ‖Bε(f)‖W 1,q
0 (Dε)

≤ C

(

1 + ε3
(

2
q −1

))

‖f‖Lq(Dε),
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where the constant C > 0 does not depend on ε.

We will use this result to bound the pressure pε by the density �ε. Since the main ideas how to get
uniform bounds on uε, �ε, and pε are given in [13], we just sketch the proof in our case. First, by Korn’s
inequality and (5), we find

μ‖∇uε‖2L2(Dε)
≤ ‖�ε‖

L
6
5 (Dε)

‖uε‖L6(Dε)‖f‖L∞(D) + ‖g‖L∞(D)‖uε‖L1(Dε).

Together with Sobolev embedding, we obtain

‖uε‖L6(Dε) ≤ C‖∇uε‖L2(Dε),

which yields

‖uε‖L6(Dε) + ‖∇uε‖L2(Dε) ≤ C(‖�ε‖
L

6
5 (Dε)

+ 1). (12)

To get uniform bounds on the velocity, we first have to estimate the density. To this end, let Bε be as
in Theorem 4.1. Testing the first equation in (2) with Bε(pε) ∈ W 1,2

0 (Dε) yields

‖pε‖2L2(Dε)
=

∫

Dε

pε div Bε(pε) dx

=
∫

Dε

S(∇uε) : ∇Bε(pε) − (�εuε ⊗ uε) : ∇Bε(pε) − (�εf + g) · Bε(pε) dx.

Recalling �ε ∈ L2γ(Dε) and γ ≥ 3, this leads to

‖pε‖2L2(Dε)
≤ C(‖∇uε‖L2(Dε) + ‖�ε‖L6(Dε)‖uε‖2L6(Dε)

)‖∇Bε(pε)‖L2(Dε)

+ C
(‖f‖L∞(Dε)‖�ε‖L2γ(Dε) + ‖g‖L∞(Dε)

)‖Bε(pε)‖L2(Dε)

(12)
≤ C(‖�ε‖

L
6
5 (Dε)

+ 1 + ‖�ε‖L6(Dε)(‖�ε‖2
L

6
5 (Dε)

+ 1))‖∇Bε(pε)‖L2(Dε)

+ C(‖�ε‖L2γ(Dε) + 1)‖Bε(pε)‖L2(Dε)

≤ C(‖�ε‖L2γ(Dε) + ‖�ε‖L6(Dε)‖�ε‖2
L

6
5 (Dε)

+ 1)‖Bε(pε)‖W 1,2
0 (Dε)

≤ C(‖�ε‖L2γ(Dε) + ‖�ε‖3L2γ(Dε)
+ 1)‖Bε(pε)‖W 1,2

0 (Dε)

≤ C(‖�ε‖L2γ(Dε) + ‖�ε‖3L2γ(Dε)
+ 1)‖pε‖L2(Dε),

that is,

‖pε‖L2(Dε) ≤ C(‖�ε‖L2γ(Dε) + ‖�ε‖3L2γ(Dε)
+ 1). (13)

Further, we have

〈�ε〉ε =
1

|Dε|
∫

Dε

�ε dx =
m

|Dε|
and

1
εβ

‖�γ
ε − 〈�ε〉γ

ε‖L2(Dε) ≤ C

εβ
‖�γ

ε − 〈�γ
ε 〉ε‖L2(Dε)

(4)
= C‖pε‖L2(Dε),

see [13, Section 3.3 and inequality (4.7)]. This yields
1
εβ

‖�γ
ε − 〈�ε〉γ

ε‖L2(Dε) ≤ C‖pε‖L2(Dε) ≤ C(‖�ε‖L2γ(Dε) + ‖�ε‖3L2γ(Dε)
+ 1)

≤ C

(

‖�γ
ε − 〈�ε〉γ

ε‖
1
γ

L2(Dε)
+

m

|Dε|1−1/(2γ)
+ ‖�γ

ε − 〈�ε〉γ
ε‖

3
γ

L2(Dε)
+

m3

|Dε|3−3/(2γ)
+ 1

)

.

Together with

ab
1
p ≤ b + ap′ ∀a, b > 0,

1
p

+
1
p′ = 1,
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which is a consequence of Young’s inequality, we obtain, using γ ≥ 3 and the fact that we may assume
ε ≤ 1 small enough,

1
εβ

‖�γ
ε − 〈�ε〉γ

ε‖L2(Dε) ≤ 1
4εβ

‖�γ
ε − 〈�ε〉γ

ε‖L2(Dε) + C +
1

4εβ
‖�γ

ε − 〈�ε〉γ
ε‖L2(Dε) + C ′

=
1

2εβ
‖�γ

ε − 〈�ε〉γ
ε‖L2(Dε) + C.

Using that |�ε −〈�ε〉ε|γ ≤ |�γ
ε −〈�ε〉γ

ε |, which is a consequence of the triangle inequality for the metric
d(a, b) = |a − b| 1

γ for γ ≥ 1, we conclude
1
εβ

‖�ε − 〈�ε〉ε‖γ
L2γ(Dε)

≤ 1
εβ

‖�γ
ε − 〈�ε〉γ

ε‖L2(Dε) ≤ C,

which further gives rise to

‖�ε‖L2γ(Dε) ≤ ‖�ε − 〈�ε〉ε‖L2γ(Dε) + C〈�ε〉ε ≤ C.

In view of (12) and (13), we finally establish

‖uε‖W 1,2
0 (Dε)

≤ C,

‖�ε‖L2γ(Dε) ≤ C,

‖pε‖L2(Dε) ≤ C,

‖�ε − 〈�ε〉ε‖L2γ(Dε) ≤ Cε
β
γ

(14)

for some constant C > 0 independent of ε.

5. Convergence Proof

The proof of convergence we give here is essentially the same as in [13]. We thus just sketch the steps
done there while highlighting the differences.

Proof of Theorem 2.3. Step 1: Recall that, for a function f defined on Dε, we denote by f̃ its zero
prolongation to R

3. By the uniform estimates (14), we can extract subsequences (not relabeled) such that

ũε ⇀ u weakly in W 1,2
0 (D),

p̃ε ⇀ p weakly in L2(D),

�̃ε → �0 strongly in L2γ(D),

where �0 = m/|D| > 0 is constant. The strong convergence of the density is obtained by

‖�̃ε − �0‖L2γ(D) ≤ ‖�0‖L2γ(D\Dε) + ‖�ε − 〈�ε〉ε‖L2γ(Dε) + ‖〈�ε〉ε − �0‖L2γ(Dε)

≤ �0|D \ Dε| 1
2γ + Cε

β
γ + m|Dε| 1

2γ

(
1

|Dε| − 1
|D|

)

→ 0,

since |Dε| → |D|. Due to Rellich’s theorem, we further have

ũε → u strongly in Lq(D) for all 1 ≤ q < 6.

Step 2: We begin by proving that the limiting velocity u is solenoidal. To this end, let ϕ ∈ D(R3). By
the second equation of (2), we have

0 =
∫

R3
�̃εũε · ∇ϕ dx → �0

∫

D

u · ∇ϕ dx.

This together with the compactness of the trace operator yields
{

divu = 0 in D,

u = 0 on ∂D.
(15)
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Step 3: To prove convergence of the momentum equation, let ϕ ∈ D(D) and use ϕwε
k as test function

in the first equation of (2). This yields
∫

D

S(∇ũε) : ∇(ϕwε
k)dx =

∫

D

(�̃εũε ⊗ ũε) : ∇(ϕwε
k)dx +

∫

D

p̃ε div(ϕwε
k)dx +

∫

D

(�̃εf + g) · (ϕwε
k)dx.

Using the definition of S in (3) and the fact that div(wε
k) = 0 by (H2) of Theorem 3.1, we rewrite the

left hand side as
∫

D

S(∇ũε) : ∇(ϕwε
k) dx = μ

∫

D

∇ũε : ∇(ϕwε
k) dx +

(
μ

3
+ η

)∫

D

div(ũε) div(ϕwε
k) dx

= μ

∫

D

∇wε
k : ∇(ϕũε) + ∇ũε : (wε

k ⊗ ∇ϕ) − ∇wε
k : (ũε ⊗ ∇ϕ) dx +

(
μ

3
+ η

)∫

D

div(ũε)wε
k · ∇ϕ dx

and add the term − ∫
D

qε
k div(ϕũε) dx to both sides to obtain

μ

∫

D

∇wε
k : ∇(ϕũε) − qε

k div(ϕũε) dx

︸ ︷︷ ︸
I1

+ μ

∫

D

∇ũε : (wε
k ⊗ ∇ϕ) − ∇wε

k : (ũε ⊗ ∇ϕ) dx

︸ ︷︷ ︸
I2

+
(

μ

3
+ η

)∫

D

div(ũε)wε
k · ∇ϕ dx

︸ ︷︷ ︸
I3

=
∫

D

(�̃εũε ⊗ ũε) : ∇(ϕwε
k) dx

︸ ︷︷ ︸
I4

+
∫

D

p̃εwε
k · ∇ϕ + (�̃εf + g) · (ϕwε

k) dx

︸ ︷︷ ︸
I5

−
∫

D

qε
k div(ϕũε) dx

︸ ︷︷ ︸
I6

.

Since νε := ũε and ν := u fulfill hypothesis (H4) of Theorem 3.1, we have

I1 → μ 〈Mek, ϕu〉,
where 〈·, ·〉 denotes the dual product of W−1,2(D) and W 1,2

0 (D). Further, by ũε → u strongly in L2(D)
and ∇wε

k ⇀ 0 by hypothesis (H3),

I2 → μ

∫

D

∇u : (ek ⊗ ∇ϕ) dx.

Because of wε
k → ek strongly in L2(D) and (15), we deduce

I3 → 0, I5 →
∫

D

p ek · ∇ϕ + (�0f + g) · (ϕek) dx.

Step 4: To show convergence of I4, we proceed as follows. First, since uε = 0 on ∂Dε and ũε ⇀ u in
W 1,2(D), we have ∇̃uε = ∇ũε ⇀ ∇u in L2(D). Second, as shown above for γ ≥ 3, �̃ε → �0 strongly
in L2γ(D) and ũε → u strongly in Lq(D) for any 1 ≤ q < 6, in particular in L4(D). Together with the
strong convergence of wε

k in any Lp(D) (see Theorem 3.1), in particular in L12(D), we get

�̃εũε ⊗ wε
k → �0u ⊗ ek strongly in L2(D).

This together with div(�εuε) = 0 yields

I4 =
∫

Dε

(�εuε ⊗ uε) : ∇(ϕwε
k) dx = −

∫

Dε

�εuε · ∇uε · ϕwε
k dx = −

∫

Dε

ϕ∇uε : (�εuε ⊗ wε
k) dx

= −
∫

D

ϕ∇ũε : (�̃εũε ⊗ wε
k) dx → −

∫

D

ϕ∇u : (�0u ⊗ ek) dx =
∫

D

(�0u ⊗ u) : ∇(ϕek) dx.

In the case γ > 3, one can also proceed by seeing that

�̃εũε ⊗ ũε → �0u ⊗ u strongly in L2(D),

where we used that ũε → u strongly in Lq(D) for q = 4γ/(γ − 1) < 6.
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Step 5: It remains to show convergence of I6. First, recall Br
i = Br(xε

i ). We follow the idea of [13] and
introduce a further splitting of the integral:

Let ψ ∈ C∞
c (B1/2(0)) be a cut-off function with ψ = 1 on B1/4(0), define for x ∈ B

ε/2
i the function

ψi
ε(x) := ψ((x−xε

i )/ε), and extend ψi
ε by zero to the whole of D. Set finally ψε(x) :=

∑

i:P ε
i ⊂D

ψi
ε(x), where

P ε
i is the cell of size 2ε with center xε

i ∈ (2εZ)3. Then we have ψε ∈ C∞
c (

⋃
i B

ε/2
i ) and

ψε = 1 in
⋃

i

B
ε/4
i , |∇ψε| ≤ Cε−1. (16)

With this at hand, we write

〈�ε〉ε · I6 = 〈�ε〉ε

∫

Dε

qε
kψε div(ϕuε) dx + 〈�ε〉ε

∫

Dε

qε
k(1 − ψε)ϕ div(uε) dx

+ 〈�ε〉ε

∫

Dε

qε
k(1 − ψε)uε · ∇ϕ dx

=: I1 + I2 + I3.

Observe that since supp ψε ⊂ ∪iB
ε/2
i , the term I1 covers the behavior of qε

k “near” the holes, whereas
I2 and I3 cover the behavior “far away”. Since qε

k and ψε are (2ε)-periodic functions and qε
kψε ∈ L2(D),

we have qε
kψε ⇀ 0 in L2(D)/R. This together with ũε → u strongly in L2(D) yields

|I3| → 0.

For I2, we use the definition of qε
k and (10) to find

|I2| ≤ C

∫

D\∪iB
ε/4
i

|qε
k| |div(uε)|dx

(14)
≤ C‖qε

k‖
L2(D\∪iB

ε/4
i )

= C‖qε
k‖

L2(∪iBε
i \B

ε/4
i )

≤ Cε → 0.

To prove I1 → 0, we write, using div(�εuε) = 0,

I1 =
∫

Dε

∇(qε
kψεϕ) · (�εuε) dx −

∫

Dε

∇(qε
kψεϕ) · (〈�ε〉εuε) dx + 〈�ε〉ε

∫

Dε

qε
kψεuε · ∇ϕ dx

=
∫

Dε

∇(qε
kψεϕ)(�ε − 〈�ε〉ε) · uε dx + o(1).

Here, we used again the periodicity of qε
k and ψε to conclude qε

kψε ⇀ 0 in L2(D)/R. This and the
strong convergence of ũε to u in L2(D) shows that the last term vanishes in the limit ε → 0. For the
remaining integral, we find, recalling supp ψε ⊂ ∪iB

ε/2
i and Cε

i = B
ε/2
i \ T ε

i ,

|I1| ≤ ‖∇(qε
kψεϕ)‖

L
2γ

γ−1 (∪iCε
i )

‖�ε − 〈�ε〉ε‖L2γ(Dε)‖uε‖L2(Dε) + o(1)

≤ Cε
β
γ ‖∇(qε

kψεϕ)‖
L

2γ
γ−1 (∪iCε

i )
+ o(1).

Since |∇ψε| ≤ Cε−1, we have

|∇(qε
kψεϕ)| ≤ C

(

|∇qε
k| +

1
ε
|qε

k|
)

,

thus

|I1| ≤ Cε
β
γ

(

‖∇qε
k‖

L
2γ

γ−1 (∪iCε
i )

+
1
ε
‖qε

k‖
L

2γ
γ−1 (∪iCε

i )

)

+ o(1).

Together with (8) and (9) for p = 2γ/(γ − 1) > 3/2, we establish

|I1| ≤ Cε
β
γ

(

ε−3− 3
γ + ε−1− 3

γ

)

+ o(1) ≤ Cε−3+ β−3
γ + o(1) → 0,
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provided

β > 3 (γ + 1).

To summarize, we have in the limit ε → 0 for all functions ϕ ∈ D(D)

μ 〈Mek, ϕu〉 − μ 〈Δu, ϕek〉 = −〈div(�0u ⊗ u), ϕek〉 + 〈�0f + g − ∇p, ϕek〉.
Since M is symmetric, this is

∇p + �0u · ∇u − μΔu + μMu = �0f + g in D′(D),

which is the first equation of (6). This finishes the proof.
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