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Periodic wave-guides revisited: Radiation
conditions, limiting absorption principles, and
the space of bounded solutions

A. Kirsch' and B. Schweizer?

Abstract: We study the Helmholtz equation with periodic coefficients in
a closed wave-guide. A functional analytic approach is used to formulate
and to solve the radiation problem in a self-contained exposition. In this
context, we simplify the non-degeneracy assumption on the frequency.
Limiting absorption principles (LAPs) are studied and the radiation
condition corresponding to the chosen LAP is derived; we include an
example to show different LAPs lead, in general, to different solutions of
the radiation problem. Finally, we characterize the set of all bounded
solutions to the homogeneous problem.

MSC: 35J05
1. INTRODUCTION

This paper is devoted to the study of equations modelling waves in a periodic
wave-guide. We consider

(1.1) ~Au—knu=f in Q:=RxS.

The domain is an unbounded cylinder with a cross-section S, we assume that S C
R is a bounded Lipschitz domain, d > 2 is the dimension of the wave-guide. The
wave-number k£ € C is prescribed and satisfies Imk > 0, the coefficient function
n : Q — R is assumed to be 27-periodic in 1, the right hand side f € L*(Q) is
assumed to have compact support or, more general, decay properties, see (1.3). We
treat the homogeneous Dirichlet boundary condition u = 0 on R x 0S. We are
interested in solutions u to (1.1) that satisfy, additionally, a radiation condition.

In this article, we show existence and uniqueness results for (1.1), we investigate
different Limiting Absorption Principles (LAPs), and we characterize function spaces
that are related to (1.1). Regarding the LAPs, we show that a vanishing absorption
can yield, indeed, a (radiating) solution to the original problem; we additionally
show that different damping mechanisms in the LAP can lead to different radiation
conditions and, hence, select different solutions to (1.1).

In this work, we treat only the case of a strictly periodic coefficient n = n(z).
Nonetheless, we mention that our work has implications for the case that the medium
is only periodic outside a compact set. Such a case is treated in [20] under a non-
degeneracy assumption on the frequency. It is one aim of the article at hand to
relate that non-degeneracy assumption to a more standard formulation.
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2 Periodic wave-guides revisited

We always use a weak solution concept. Solutions to (1.1) are functions u €
Hi () :={u: Q = Clu|(—rrxs € H'((—R, R) x S) for every R > 0}, and (1.1)
is interpreted in the weak sense: We demand that

(1.2) /Q{—anugovLVu-VgO}:/Qfgp

holds for all p € H}(Q), and u = 0 on R x 95 in the sense of traces. We assume
that the right hand side is in the space

(1.3) LXQ):={feQ|zr 1+ f(z) € L* ()}

with the corresponding norm.

In a first step, we construct solutions v € H'(Q2). For wave numbers k € C with
Imk > 0 the existence of such solutions follows for all f from the Lax-Milgram
theorem. We show that, for real values of k, the existence of H'(Q) solutions can
be obtained with the Floquet-Bloch transform for right hand sides f that satisfy
an orthogonality condition (we will write g instead of f for sources with this prop-
erty). This construction of solutions u € H'(§2) can be used to show existence and
uniqueness of a radiating solution u € H} () for a general right hand side f.

In Section 4 we turn to Limiting Absorption Principles. In a first result we
consider a real number £ > 0 and use the wave-number £ + in in the equation. We
find that, as 7 > 0 tends to zero, solutions u” tend to solutions of the limit problem
with n = 0. It is interesting to compare this result with other mechanisms of a small
absorption: We show that different absorption terms lead, in general, to different
limit solutions. We can characterize the radiation condition for different absorption
mechanisms.

The starting point for all these results is the Floquet-Bloch transform. It allows
to transform the original equation (1.1) to a family of problems on the bounded
domain W := (0,27) x S. The family of problems is parametrized by a parameter
a € [ :=]-1/2,1/2]. Equation (1.1) has then to be solved on W for all a € I,
demanding the a-quasi-periodicity of solutions on the lateral boundaries {0} x S
and {27} x S. To obtain an equivalent formulation of the problem, it is important
to impose, additionally, certain boundedness properties of solutions with respect to
the parameter a.

When a fixed parameter k € R is considered, we obtain a one-parameter family of
problems (« is the only parameter). For a wave number of the form k + in, we will
deal with a two-parameter family of problems, where 1 > 0 is a second parameter.

1.1. Known results and literature. The Helmholtz equation is an old and inten-
sively treated research subject. Classical contributions concern homogeneous media
and treat the appropriate radiation conditions in different (unbounded) geometries,
the development of appropriate numerical schemes and the field of inverse scattering.
Here, we refrain from citing any of the corresponding results.

The two simplest cases for heterogeneous media are (a) periodic media and (b)
compact perturbations of periodic media. The methods for the two cases are closely
related. In particular, in both cases, one can exploit the tool of the Floquet-Bloch
transform [17, 19]. Within this setting, the simplest geometry is that of a closed
wave-guide. An important contribution is [9], where the appropriate radiation con-
dition was specified and an existence and uniqueness proof was presented. A related
work is [12], where a limiting absorption principle for the periodic wave-guide was
shown. In [7], the focus is on equivalent descriptions with Dirichlet-to-Neumann
maps, which are useful also in numerical approaches. Such an approach was also
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used to study, e.g., wave-guides with different periodic geometries in the two direc-
tions. We refer to [10] for a typical result and further references.

All of the above articles are based on complex integrals to invert operators or
operator families. Another route to existence and uniqueness results was developed
with [15, 16] based on an idea taken from [5]. Essentially, after a Floquet-Bloch
transform of the equations, one has to deal with a family of operators that are,
except for a discrete set of exceptional points, invertible. With an application of the
implicit function theorem, one can construct bounded famlilies of solutions. These
provide solutions in periodic wave-guides without advanced operator theory. In the
paper at hand, we will use this method.

While all of the above approaches are based, in one way of the other, on the
Floquet-Bloch transform, [20] is not using it; an existence result is shown and, in a
more general geometry, a Fredholm alternative, the proofs use only energy methods.
The only assumption that is made in [20] is that of a non-degeneracy of w (which is
essentially k in the article at hand). With Section 6 we show that our quite classical
Assumption 3.5 implies the non-degeneracy that was assumed in [20]. We note that
similar ideas allow to introduce a different radiation condition, see [18] and, for a
numerical scheme, [6].

Let us close this overview by mentioning some results beyond closed wave-guides.
Perturbed periodic geometries in two dimensions are considered in [1, 2, 8, 11, 13, 14].
For open wave-guides, by which we mean here a domain that is unbounded in more
than one direction, one has to introduce radiation conditions also in the additional
direction; we refer to [3, 4] for formulations of such conditions.

The emphasis of the present work is the following: A further simplification of the
direct approach to the Helmholtz equation in periodic media. This comes with a
simplification of the non-degeneracy assumption on frequencies, see Assumption 3.5.
The non-degeneracy implies also a characterization of bounded solutions, ¥ = B;
essentially, every bounded homogeneous solution must be a linear combination of
a-periodic solutions, see Theorem 6.2. We derive limiting absorption principles
with a characterization of the resulting radiation conditions and show that different
solutions can emerge depending on the absorption mechanism.

2. FLOQUET-BLOCH TRANSFORM OF THE EQUATION

This section is devoted to the application of the Floquet-Bloch transform to (1.1).
We emphasize that, here, we only study coefficients that are x;-periodic in all of
2. Only homogeneous Dirichlet conditions are treated here, but we note that, e.g.,
homogeneous Neumann conditions can be treated with only notational changes in
the proofs. Also operators of the form u — —V - (aVu) — k*u with strictly positive
and 27-periodic a € L*>(2, R"*") can be treated with only notational changes.

2.1. The Floquet-Bloch transform. We perform the Floquet-Bloch transforma-
tion only in the z;-variable. We recall that the interval for the parameter « is
I =[—1/2,1/2] and that the periodicity cell is W = (0,27) x S. The transforma-
tion is a bounded linear map

(2.1) Frp 1 L*(Q) —» L*(W x I), UG,
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For smooth functions u with compact support, writing = (z1, Z) for the argument,
the transformation is defined by

(2.2) i((21,%),0) =Y u((zy + 2ml,F)) e ™

ez
for every z; € (0,27), & € S, @« € R. The map Fgp of (2.1) is defined as the
continuous extension of this map. Proofs regarding properties of the map Frp are
given in Appendix A.

We say that a function u € H'(W) is a-quasiperiodic when u(27, -) = e?™y(0, -)
holds in the sense of traces. We define the space HL(W) as the subspace of H'(W)
that consists a-quasiperiodic functions. From the definition of Fpp in (2.2) it is
clear that, for almost every «, the function (-, «) is a-quasiperiodic.

A direct consequence of definition (2.2) is that the transformation respects deriva-
tives in the sense that Frp(Oyu) = Op(Frpu) for u € H*¥(Q2) and k < n. This fact
implies that we can interpret Frp also as a map from H'({2) onto

u(-, ) is a-quasiperiodic
L7 (I’ H‘i(W)) = {u el? ([’ Hl(W)) fo<r ah>nost aclll ! ! } '
Two remarks should be made at this point. One regards a notational difficulty: The
target space H.(W) depends on the parameter a, hence L?((—1/2,1/2), HL(W)) is
not a Bochner-space. Nevertheless, it is a closed subspace of L*((—1/2,1/2), H*(W))
and carries the topology of that ambient space. Our second remark is that H (W)
does not include a boundary condition on R x 95, but a boundary condition can
and will be included later on.

With the above space, the transformation map Frg has a bounded inverse
(2.3) Frg  LA(I,HL(W)) — H'(Q).

The construction of Frg with its easy formula (A.4) is provided in Appendix A for
convenience of the reader. The method is quite standard, for generalized approaches
we refer to [17, 19].

2.2. A family of operators. We exploit the Floquet-Bloch transform to analyze
equation (1.1). In this subsection, the wave-number can also be complex, we treat
an arbitrary & € C. The right hand side is denoted by g € L?(Q2) and not by f; the
reason is that, in this first step, we construct H'(€2)-solutions u for right hand sides
g with a particular structure. Later on, we treat general right hand sides f € L3(1).
We consider, as in (1.1),

(2.4) ~Au—FKknu=g inQ=RxS,

with the weak form as in (1.2),

(2.5) /Q{—k2nug0—|—Vu~ch}:/Qg<p

for all o € H}(€). We always impose Dirichlet boundary conditions without further
mentioning: u(-) =0 on R x 95 for (2.4) and, later on, 4(-,«) = 0 on (0,27) X 9S
for almost every a € I.

With the interval I = [—1/2,1/2], the Floquet-Bloch transform can be applied to
€ L*(Q), it provides g := Frp(g) € L*(I, L*(W)). A solution u is transformed to
:= Frp(u). At least formally, the transformed equation reads

g
(2 —Au(-, a) = E*na(-,a) = §(-,a)

D
~—r
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for almost every a € I. We additionally demand (-, a) € H!(W) for almost every
a € I (and vanishing boundary conditions). A weak solution 4 is characterized by
the equality

(2.7) /W{ ¥n(z) iz, ) 9(z) + Vi(r,a) - V(1) dx:/wg(:c,a)de

for every ¢ € H:(W) that vanishes on (0,27) x 95, and for almost every a € I.
Indeed, the original problem (2.4) is equivalent to the Floquet-Bloch transformed
system (2.6) in the following sense.

Lemma 2.1 (Equivalent equation with Floquet-Bloch transform). (1) Let u €
H () be a weak solution of (2.4). Then the Floquet-Bloch transform i = Frgp(u) is
an element of L*(I, HL(W)), in particular a(-,«) € HL(W) for almost every o € 1.
The functions u(-, ) are weak solutions of (2.6).

(2) If u € L*(I, HL(W)) and 4(-, ) is a weak solution of (2.6) with homogeneous
Dz'm'chlet conditions for almost all o € I, then the inverse Floquet-Bloch transform
u = F = [, a(-,a) do is in Hi () and it is a weak solution of (2.4).

Proof. ( ) Let u € H&(Q) be a weak solution of (2.4). Our aim is to derive (2.7)
for 4 := Fpp(u). To this end, let ¢ € H:(W) be a test-function, we write ¢ in the
form ¢(z) = ¢(x)e’®* with a function ¢» € H*(WW) that is periodic with respect to
x1. Additionally, we choose a number m € Z.

We can now construct a test-function for u: We define ¢ € Hg () as the inverse
Floquet-Bloch transform of the function G(a, ) 1= ¢(z)e™**™ = 1(x)elZrm+ai),
By the unitarity of the Floquet-Bloch transform, see (A.2), in the integral equation
(2.5), the Q-integrals transform into I x W-integrals, and we obtain

(2.8) /1/ —kzn(a:) w(z, ) p(z, ) + Vi(z, ) - VW} dx do

// v, 0) 3. ) dz dor.

Substituting ¢(z, o) = 1 (x)e*E™+21) yields

/I{/w [—k*na(r, o) (x)eorr + Va(z, o) - V(i (z)eir)] dx} —izmma g,

— /{/ g(x,a)Wd4 o—i2mma g,
ILJw

Since m was arbitrary, all Fourier coefficients of the two terms in squared brackets
coincide. This implies that the squared brackets coincide for almost every o € I.
Because of ¢(x) = ¢ (x)e"*1, this is (2.7).

(2) Let @ € L*(I,HL(W)) be a solution of (2.7) for almost every @ € I. We
consider an arbitrary test-function ¢ € H(2). Using ¢ = ¢(-,«) in (2.7) and
integrating with respect to « yields (2.8). Again by the unitarity of the Floquet-
Bloch transform, this relation is equivalent to (2.5) for u. The unitarity also provides
u € HY(Q), see (2.3). O

For the further development of the theory, it is useful to have a target space that
is independent of parameters. We introduce

(29) X:=H. (W):={uecH(W)lu=0o0nR xS and uly,—o = u|s,—2r} -

per
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We denote the canonical inner product in X = H_ (W) by (-,-)x. Note that we

included the Dirichlet boundary condition into the space H;er(W). We exploit the
following equivalence for U € H'(WW):

(2.10) [z~ U(x)] a-periodic in 21 <= [z + U(z)e "] periodic in .

It allows to map H_(W)-functions to H,,.(W)-functions and vice versa. Replacing
@(x, ) by v(z, a)e®®t and ¢(x) by ¢(z)e’*”!, we can re-write the problem described
in (2.7) as a family of problems in the space X = H!_(W): We seek for v € L*(I, X)

per
such that

/ [—K*n(z) v(z, @) p(z) + V (v(z,0)e*™) - V(p(z)eior1)] da

(2.11) w

= / g(z,a) p(x)et dx for every ¢ € X |
w

for almost every a € I.

For fixed a € I, we can consider the right hand side of (2.11) as a function of ¢,
defining a functional on X. We can also, for fixed v, consider the left hand side of
(2.11) as a functional on X. By the Riesz representation theorem there exist y, € X
and L,v € X with

(2.12) (Lov,0)x = /W [—k‘Qn(x)v(I)W + V(v(z)e ™) - V(go(x)ei‘“l)} dw ,

(2.13) <ya,¢>X:/Wg(x7a) o(x)eior dy

for every ¢ € X. With these representations, using Lemma 2.1 (b), the original
problem (2.4) is solved when we find, for almost every o € I, a solution v(-, ) €

X = H (W) of

per
(2.14) Lov(,a) = Yo,
and if this family of solution satisfies v € L*(I, X).

It is not obvious how to solve (2.14). Indeed, structural assumptions on g will
be necessary in order to solve the equation. The reason for this restriction is that
we are looking for solutions u of the original problem in the space H'(), i.e., for
solutions with decay properties.

On the other hand, some structural properties of L, follow immediately from
the definition. For fixed «, the operator L, is a linear bounded operator from
X = H].(W) into itself. The form of L, shows that L, is self-adjoint and that we
can write L, = id + K, where K is a compact linear operator. Accordingly, every
operator L, is a Fredholm operator with index 0. Additionally, the definition of L,
extends, for € > 0, to the increased interval I, := (—=1/2—¢,1/2+¢). The operators

depend continuously differentiable and even analytically on «.

A remark on notation. When k is replaced by k 4 in with £ > 0 and n > 0 then
we write L] to indicate the dependence on the second parameter 7.

3. EXISTENCE AND UNIQUENESS

In this section, we consider the case of a real wave number £ > 0 and equation
(1.1) for arbitrary f € L2(f2), see (1.3) for the function space. Our approach will
be the following. In a first step we search for solutions u € H'(Q); we can find such
solutions only when the right hand side f = ¢ has certain orthogonality properties.
Roughly speaking, g must be orthogonal to the space of quasi-periodic solutions of
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the homogeneous equation. For such g, we will show the existence of a solution u by
a functional analytic singular perturbation theorem which we learned from [5]. In
a second step, we allow general f € L?(2), but we search for a solution in a larger
class of functions u satisfying a radiation condition.

3.1. Functional analysis for one-parameter families.

Definition 3.1 (C'-families of operators and regular C'-families). Let X be a Ba-
nach space and let I C R be the unit interval I := [—1/2,1/2]. We say that
(Lo)o is a C'-family of operators when there exists € > 0 and a C'-map I. :=
(=1/2 —¢€,1/24¢) > a v L, € L(X,X) such that, for every o € I, the operator
Ly is a Fredholm operator with index 0.

We say that (Ly)s is a regular C*'-family of operators when additionally the fol-
lowing two conditions are satisfied for every a € I for which L, is not invertible: (i)
The operator L, has Riesz number 1, i.e., N := ker(L,) = ker(L2). (ii) With the
range R := Lo(X) C X and the projection P onto N corresponding to X = N &R,
the operator

(3.1) M := 04,PLy|y: N = N
18 tnvertible.

Remarks. 1. We demand that every operator L, is a Fredholm operator with in-
dex 0. This implies that, for every a and L = L,, the subspace N := ker(L) has
finite dimension and the subspace R := L(X) is closed and has finite co-dimension;
the latter agrees with the dimension of A since the index is 0. Together with the
requirement ker(L) = ker(L?), we conclude that the space possesses the decomposi-
tion X = N @ R and corresponding continuous projections P : X — X onto N and
Q) = (id — P) onto R. We recall the easy argument why the intersection is trivial:
uw € NNR implies v = Lz and Lu = 0, hence L?xz = 0 and thus Lz = 0, we find
re€N and u= Lx = 0.

2. When X is a Hilbert space with inner product (-,-)x and L is self-adjoint, it
has Riesz number 1. Indeed, L?z = 0 implies (Lx, Lz)x = (L*z,z)x = 0 and thus
reN.

Theorem 3.2 (Functional analysis I). Let (L) be a reqular C-family of operators.
There holds:
(1) The set of critical numbers is finite: For a number J € N (we allow J =0
for an empty set A) and values {o;|j=1,...,J} C I holds
(3.2) A = {ael]|ker(L,) #{0}} = {a;]7=1,...,J}.
(2) Let I. 3 o — yqo be a C-family of right hand sides such that Yo, € La, (X)
holds for every j =1,...,J. Then the family of solutions
L\NA>a— uy = (L) (ya)

can be continued to a C°-family on I.. With C independent of the family
(Ya)a, there holds

(3.3) sup [[uallx < Csup[llyallx + lyallx]-

acl acl
Proof. Step 1: An equivalent form of the system. We start the proof by investigating
a point oy € I with ker(L,,) # {0}. It is no loss of generality to assume oy = 0. The
critical (non-invertible) operator is L := Lg. We use X = N x R with projections
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P and ). We emphasize that these subspaces and projections are chosen for L and
independent of « in the following. For « close to ag, we write the operator L, as

_ PLa‘N PLa|R .
(3.4) L, = [QLOJ/\/ QLa|R:| c NXR—->NXTR,

For a # ag = 0, the equation Ly, = Yo for u, = (v, ulf) € N x R is equivalent
to the following set of equations:

- LPLu|v EPLu|R] (u® Lpy
3.9 Loug = |59 a 9 %] = (2,7 .
( ) B |: QLa‘/\/’ QLa‘R U,g QYo
Relation (3.5) defines linear operators L, : X — X for a # 0.

We want to extend this family of operators to the point o = 0. With L' :=

(OaLa)|a=o and M = PL'|y of (3.1) we set, for arbitrary u = (uV, uff) € N xR = X,
- [IM PLIg| (uV
» o = [ 2] ().

We claim that the new operator family (—¢,€) 3 a — L, € £(X, X) is continuous.
This is clear by definition in all points a € (—¢,¢) \ {0}. Regarding o = 0 we
note that the operators of (3.5) can be written as difference quotients: Because of
L|x = 0 there holds 2 PLo |y = £ P(Ly — L)| - Since we extended with PL'|yy = M
for a = 0, the resulting family is continuous in «. The same argument can be
performed for the second entry of the matrix: Because of PL|x = 0 we can write
LPLalr = 1 P(Lo — L)|%. The limit operator is given by the derivative that is used
in (3.6). Finally, regarding the third entry, we note that QL|y = 0 by the definition
of N. We obtain that the family L, is continuous in o.

We next observe that the operator Ly is invertible: The operator M : N' — N
is invertible by the definition of a regular family. The operator QL|g : R — R is
invertible by definition of R and Q. As a triagonal matrix, L is invertible.

Continuity of the family L, together with invertibility of Ly yields the invertibility
of L, € L(X,X) for a € (—¢,¢), upon possibly choosing a smaller € > 0.

Step 2: Assertion (1). Since I = [—1/2,1/2] C R is compact, it is sufficient to
show the following claim: For every o € I there exists € > 0 such that AN(a—e¢, a+e)
contains at most one point.

For o € A, the claim holds, since small perturbations of invertible operators are
invertible.

We consider now oy € A and investigate o in a neighborhood of «g. To simplify
notation and without loss of generality, we assume ap = 0. In Step 1 we obtained
that the equation L,u, = ¥y, has the equivalent form (3.5) and that L, is invertible
for every a € (—¢,¢). This yields that L, is invertible for every o € (—¢,¢) \ {0}.

Step 3: Assertion (2). We have to consider again the situation of Step 2, with
Uy solving Lyu, = Y, (or, equivalently, (3.5)) for a € (—¢,¢) \ {0}. Regarding the
right hand side y,, we have imposed the property 3., € Lo, (X) for all j. In the
local situation and with our assumption that the critical point is ag = 0, we have
Yo € L(X) =R. This implies Pyo = 0 and we can write the first entry of right hand
side of (3.5) as £ Py, = 1 P(ya— o), which can be extended continuously with Py’|o
for a = 0. 3

The fact that the family L, is a continuous family of invertible operators on
a € (—¢,¢€) together with the fact that the right hand sides of (3.5) can be extended
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continuously to (—¢, ) shows that the family w, can be extended continuously. The
proof also provides (3.3). O

Remark 3.3 (Functional analysis with two parameters). Definition 3.1 can be
adapted to define C'-families of operators L" depending on two parameters, a €
[—1/2,1/2] and n > 0. Regarding the definition of a reqular C*-family, requirement
(11) of Definition 3.1 has to be replaced by the requirement that, for every « for which
LY is not invertible and any direction vector 0 # & € R? with & > 0, the operator

(3.7) OPLY v N = N

is invertible; here ¢ PLY = £10, PLY 4 £,0,PLY denotes the directional derivative.

With these adaptions, the assertion of Theorem 3.2 holds in a slightly weaker
form: For some ¢ > 0, the family of solutions

(1o x [0,€)) \ (A x {0}) > (a,m) = g o= (L3) ™ (y2)

1s bounded.

To show this result, one considers, for fixed direction &, parameters along a semi-
ray: (a,n) = 7€ with T > 0. The arquments of Theorem 3.2 can be repeated upon
replacing the parameter o with the new parameter 7.

3.2. Regularity of the C''-family of operators L,. We now consider the one-
parameter family L, of (2.12). This family is a C''-family because of the smooth
dependence of L, on a. Using the equivalence (2.10), the kernel N, := ker(L,) C X
is given by N, = {e7 "1y |u € Y*} with

(3.8) Y = {uc HXW)|[(A+k*n)u=0in W and u =0 on R x 9S} .

Since each L, is a Fredholm operator, the kernel A, is finite dimensional and hence
also Y is finite dimensional. We are interested in the set of critical points

(3.9) A = {a€[-1/2,1/2]| ker(Ly) # {0}} .

Without further assumptions, the set A can be finite or infinite. Theorem 3.2 yields
that A is finite when we can show that L, is a regular C*-family. This is what we
will obtain under a certain assumption.

We define a sesqui-linear form FE by setting, for u,v € H'(W),

(3.10) E(u,v) := i/uaﬂ—'ﬁalu.
W

We emphasize that, typically, the arguments of E are a-periodic functions, but
not necessarily elements of X = H;er(W). We observe that E is hermitean, thus
E(u,u) € R for all u.

The form F is related to energy fluxes through sections of the form T’y := {t} xS C
Q for t € R. Indeed, when u and v are two solutions, (A + k*n)u = 0 = (A + k*n)v,
then an application of Green’s theorem in W, := (s,t) x S for arbitrary s < t yields

{udhv—vou} — / {udv—0vou} = / {wd,v —vd,u}
T, )

Iy Wt

- {u(A+kn)o—o(A+kn)ju} =0,

Wt
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where we denoted with 0, the normal derivatives into the exterior of Ws,. The
calculation shows that the flux quantity

(3.11) Fovt =1 [ {udo—0v0u}
Iy
is independent of ¢ € R. In particular, there holds E(u,v) = fozﬂ Fuvpidt = 21F,
for any s € R.
We obtain easily that, for different values of o € (—1/2,1/2], the spaces Y* are
orthogonal with respect to the above sesqui-linear form:

Lemma 3.4 (Orthogonality for different quasimoments). Let a, 8 € (—1/2,1/2]
with o £ B be two quasimoments and let u € Y and v € Y? be two solutions of the
homogeneous equation. Then E(u,v) = 0.

Proof. For quasiperiodic u and v as in the lemma, the expression of (3.11) satisfies,
by its definition, F, , 42, = €*™ e 2"PF, ;. On the other hand, as noted above,
F v+ 1s independent of t. Because of | — | < 1 we conclude F,,; = 0 and thus
E(u,v) =0. O

We can show that L, is a regular C'-family under the following assumption.

Assumption 3.5 (Non-degeneracy assumption). For every o € A, the sesqui-linear
form E is non-degenerate on Y in the following sense: For every 0 # ¢ € Y, the
map E(¢,-) : Y — C is a non-trivial form.

Lemma 3.6 (Regularity of the Floquet-Bloch transformed equation). Let L, be the
Cl-family of operators constructed in (2.12) and let Assumption 3.5 hold. Then L,
is a reqular C'-family of operators in the sense of Definition 3.1.

Proof. We fix a € A and consider the operator L := L, with kernel N := ker(L) and
derivative L' := 0,L,. We have to verify that M := PL'|xy : N' — N is invertible,
where P is the projection onto AV. In the subsequent calculation, the definition of L,
in (2.12) yields the first equality; we use here that e**1e~**1 = 1 is independent of
«. In the second equality we use that, when the derivatives are applied to u(z) "
and to ¢(z) €', but not on zy, the terms from the first term and from the second
term cancel.

<L/ua 90>X
i [ Tty o) V() ~ 9 ule) ) - 9 (] ) de

2/ u(z) €™ 0y (p(x)e ) — 0y (u(z) ™) p(x) et du
w
— E(U 62'&:01, © eiazl) )

From this calculation we can conclude that PL’|y is invertible. Indeed, let u € N/
satisfy PL'u = 0. Since L = L, is self-adjoint, N and R are orthogonal. In this
situation, PL'u = 0 implies that ¢ — (L'u, )y is the trivial form on N'. The above
calculation, together with the fact that E is non-degenerate, implies that this is
possible only for u e®t = (), and thus for u = 0. We obtain that the kernel of PL'|y
is trivial and hence that M of (3.1) is invertible. O

Corollary 3.7 (The spaces Y; and basis functions). We consider a Helmholtz equa-
tion for which Assumption 3.5 holds. In this situation, the family L, constructed in
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(2.12) is a regular C*-family of operators. There is a finite (possibly empty) set of
values A = {oj|j =1,...,J} such that

(3.12) Y, = {ue Hall](W) [(A+En)u=0in W andu=0 on R x S}
is non-trivial. Every space Y; has a finite dimension m; € N and the spaces Y; are
orthogonal with respect to E. We introduce the direct sum

(3.13) Y =Py, cH'W).

We choose, for every space Y, an inner product (-,-)y,, and solve the self-adjoint
eigenvalue problem

(3.14) E(g, ) = Mo, ¥)y, foradl ¢ €Y
for X € R and ¢ € Y;. This provides an orthogonal basis of Y; consisting of eigen-
functions ¢g;, £ = 1,...,m;. The value A = 0 is not an eigenvalue.

Proof. Lemma 3.6 provides that L, is a regular family. The functional analysis
Theorem 3.2 provides that the set of critical a-values is finite. Because of Lemma
3.4, the spaces Y; are also orthogonal to each other (with respect to E). Assumption
3.5 guarantees that A = 0 is not an eigenvalue. The other assertions repeat the
definitions and follow from the Fredholm assumption on the family of operators.
The solutions ¢ of (3.14) are orthogonal to each other in Y; by construction. ([l

3.3. H'(Q)-solutions. We turn to our first existence result for the Helmholtz equa-
tion. We characterize the right hand sides ¢ such that equation (2.4) has a solution
in H'(Q).

Theorem 3.8 (Existence of H'() solutions with Floquet-Bloch theory). We con-
sider the Helmholtz equation (2.4) with fized S (geometry), fizved k and n (coeffi-
cients), and fized g € L?(Q) C L*(Q). We demand that Assumption 3.5 is satisfied.

Existence: Let the Floquet-Bloch transform g(-, ) have the cell-wise orthogonality

property
(3.15) (9, 05), D) 2wy =0 forall je{l,...,J}, ¢ €Yj.
Then (2.4) has a solution u € H'(Q) with |u|| 1) < C|lg]
C=0C(S,k,n).

Uniqueness: When u € HY(Q) is a solution of (2.4), then the orthogonality (3.15)
holds. Furthermore, the solution u is uniquely defined.

r2() for some constant

Proof. Fxistence. Using the Floquet-Bloch transform, we have shown that equation
(2.4) is equivalent to the family of equations L,v(-, ) = y, of (2.14), o € I =
[—1/2,1/2]. In particular, it is sufficient to find a family v(-,«) of solutions to
(2.14) and to verify that v € L*(I, H),.(W)). By definition of the critical values
A = {a4]j = 1,...,J}, a unique solution v(-, ) exists for every o € I\ A. We
claim that this family of solutions extends continuously to all of I.

We consider one of the critical values, a = «a; € A, and a small interval I =
[a; — €, + €] that contains no other critical value. We want to use the functional
analysis result of Theorem 3.2. We use the space X of (2.9), the family of operators
L, of (2.12), and the family of right hand sides y, of (2.13).

We have to check the assumptions of Theorem 3.2. The operators L, depend
smoothly on « and they are invertible for all o € T \ A. We turn to the condition
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Yo, € R = Lqo,(X). For an arbitrary element ¢ € N := ker(L,,) C X, we note that
there holds ¢(x) := @(x)e'™ €Y}, and, by definition of y,,

(316)  {yo.@)x = /W 3z, ag) e o) die = /W §(0)d = 0

by the orthogonality assumption (3.15). This shows that y,, is orthogonal to N.
Since Lo, is self-adjoint, the subspaces N and R are orthogonal. Since L,, is also
Fredholm with index 0, the space X is the orthogonal direct sum N & R. Since we
have shown that y,; is orthogonal to N, we have found Yo; €R.

Lemma 3.6 provides that L, is a regular family of operators in the sense of Defi-
nition 3.1, hence Theorem 3.2 can be applied. We find that I 5 a — v(-, ) is con-
tinuous, hence, in particular, v € L*(I, H},.(W)). This provides a H;(£2)-solution
of (2.4).

We turn to the estimate for the solution. The right hand side is an element
g € L3(Q2). With the functions g, : W — C, gi(z1,2) = g(x1 + 27(, %), we can
estimate the corresponding norm as ||g||%z(9) = > ez Jow 19e(2) P14+ (21 +270)? P >
¢ pen(1+ )N gell 22y~ This allows to calculate, for arbitrary m < M, the norm
of a finite sum, which is related to the derivative d,9(-, @) of the Floquet-Bloch
transform of ¢ with respect to «, compare (2.2):

> lLgla +2ml @) e < > 10 lgel 2wy

1
< Y —— 1+ gl 2wy
m<|e|<M 1+

1
< > a2 ORI < Cowllglze
m<[0 <M m<|0|<M
where C,, ys is independent of g and tends to zero as m — oco. The Cauchy argu-
ment shows that 0,§(-, ) is well-defined in L*(W) and is bounded by C/|\g||r2q)
for some C' > 0. We conclude that, for some C' > 0, there holds ||g(-, )| 2wy +
109(-; )| 2wy < Cllgllz2() for all a. Theorem 3.2 provides estimate (3.3) for
solutions, which is a bound for 4 € C°(I, H'(W)), hence, in particular, for 4 €
L*(I, H'(W)). This yields the bound for u € H'(Q), namely [|u|| g1y < Cllglr2()-

Uniqueness. In order to show unique solvability of (2.4), it is sufficient to show
the unique solvability of (2.6) for almost every a. For every o ¢ A, equation (2.6)
can be solved uniquely by definition of the critical a-values. This already shows the
uniqueness of the solution.

Let u € H'(Q) be a solution of (2.4). We have to show that the orthogonality
(3.15) holds. We use equation (2.7), which is a consequence of (2.4):

(o) O zony = [ {=Kn(o) (o, 0) 3] + Vi, 0) - V@) do
= —<?l(', aj)7 (A + kzn)¢>L2(W) =0 ,

where we exploited that, for every «, integration by parts holds without bound-
ary terms for two functions in the space HL(W). This concludes the proof of the
theorem. 0
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Lemma 3.9 (Orthogonality criterion). The orthogonality condition (3.15) is for-
mulated in terms of the Floquet-Bloch transform of g. With the original function g
and the space Y of (3.13), an equivalent condition is

(3.17) /Qg(x)Md:U =0 forallpeY.

Proof. We fix j € {1,...,J}, set  := «; and choose a function ¢ in Y;. We identify
¢ with its a-quasiperiodic extension, which satisfies ¢(x + 27le;) = ¢(x)e?™ with
the unit vector e; in x;-direction. We calculate for ¢ = Fgp(g)

<g(7 Oz), ¢>L2(W) = <Z g(' + 277—661) 6_M27ra ) ¢>
L2(W)

LEZ

= <Z g(- + 2mley), B(- + 27€el)>L2(W) = /Qg(x)de.

LeZ

We note that the series in the definition of the Floquet-Bloch transform is well-
defined because of g € L2(1). O

3.4. The radiation problem. In the previous subsection, we have obtained a so-

lution w to (2.4) where g satisfies the orthogonality condition (3.17). This is not

the kind of solution that is typically observed. In the physical problem, we have

to consider the equation with a general right hand side f and obtain solutions that

are, approximately, far away from the origin, linear combinations of outgoing waves.

Such solutions are not in the space H'(€2). We recall that we impose f € L2().
In order to define the radiation condition, we use two cut-off functions.

Definition 3.10 (Cut-off functions p.). We say that po,p— € C*(R,R) are admis-
sible cut-off functions when they satisfy p+(xq1) € [0,1] for every x; € R and when
the limiting behavior is given by py(x1) — 3 £ 3 for 1 — 0o and pi(zy) = 5 F &
for x; — —oo. We additionally demand, for some C' > 0, the decay properties
1 — pi(z1) < Cf|ze] and p_(z1) < C/|xq| for 1 > 1, and py(z1) < C/|x1| and
1 —p_(z1) < C/|xq]| for zy < —1.

Remark on cut-off functions. Formally, the radiation condition formulated below
depends on the choice of p.. But we will show later on that the solution u of the
radiation problem does not depend on the choice of p..

The requirement p+ € C?*(R,R) can be replaced by p+ € C%(R,R), i.e., Lipschitz
continuity of the cut-off functions (we keep the property of the rate of decay). One
can argue as follows: The existence result below is performed for cut-off functions of
class C?. Remark 2 after Theorem 3.12 can provide that the constructed solutions
are also solutions for arbitrary cut-off functions of class C%!. Formally, our proof
does not cover this case since we demand g € L?(2) in the uniqueness statement
below and therefore need w € H?(Q). In order to resolve this obstacle, one has
to use weak solution concepts in all equations to conclude that pi € C*Y(R,R) is
sufficient.

From now on, we use the spaces Y; and the basis functions ¢,; as chosen in
Corollary 3.7. We slightly change notation at this point: We now collect all basis
functions ¢y ; as a new family with only one index and write (¢¢)y, where now
1<i <L := Z}]=1 m;. We recall that we have orthogonality with respect to the
hermitean sesqui-linear form FE, that is: E(¢g, pw) = 0000 E(e, ¢p) for all £, 0.
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Definition 3.11 (Propagating part and radiation condition). We fix admissible
cut-off functions p+ as in Definition 3.10. For every ¢ < L the mode ¢, is called
right-going when E(¢py, ¢g) > 0, it is called left-going when E(¢py, ¢p) < 0. Note that,
when E is non-degenerate, these are the only possible cases. For every £ such that ¢,
15 right-going, we set py := p4., for every £ for which ¢y is left-going, we set py := p_.

(i) Propagating part. For complex coefficients (as)1<i<r, we say that

L

(318) w = Zagpgqf)g

(=1

is the propagating wave function corresponding to a € C.

(ii) Radiation condition. We say that a solution uw € HL_(Q) of (1.1) satisfies
the radiation condition, when there exists a € Cl such that, with the corresponding
propagating wave function w, there holds

(3.19) vi=u—we H(Q).

Definition 3.11 allows to show an existence result with our previously developed
methods: We solve the radiation problem (1.1) by constructing v = u—w € Hj(Q)
with Theorem 3.8. We can write the equation for v as

(3.20) —Av — E’nv = g = f + (Aw + k*nw) .

We note that the expression Aw + k?nw has bounded support. This implies g €
L?(Q2). The function g depends on the vector of coefficients a € CF. We will
construct a € C* such that (3.20) has a solution v € H} ().

We note that, by definition of the radiation condition in Definition 3.11, there is
an equivalence of the solution concepts. Existence: When we find a € C* such that
(3.20) has a solution v € H}(2), then u = w + v € HL () is a solution of (1.1)
with radiation condition. Uniqueness: When u € H._(Q) is a nontrivial solution of
(1.1) with radiation condition, then there exists a € CL and a solution v € HZ(Q)

of (3.20) such that a or v are non-trivial.

Theorem 3.12 (Existence of radiating solutions). Let S, k, n, and f be as above
and let p+ be fivred. We demand that Assumption 3.5 is satisfied. Then (1.1) has
a unique solution u € H _(Q) satisfying the radiation condition. With w, v, and a
from the radiation condition, there holds

(3.21) ol + lwlmwy < Clf]
with C = C(S, k,n, p+). The coefficients a, for £ € {1,..., L} are given by

L2(9)

o
(3.22) ag = WM(fﬁDL?(Q)-

Proof. Erxistence. We want to determine a € C* in the definition of w such that g
of (3.20) satisfies the orthogonality condition (3.17). Using a basis function ¢y € Y;
for some j and extending this basis function to an o -quasiperiodic function on €2,
we can calculate, using (3.17) in the first equality,

L

(3.23) —(f, b0 )1200) = (A + E*n)w, o) r2) = Y  ae (A + E*n)(pe de), dor) 12 -
=1
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We evaluate
(A +k°n)(pe ¢0) = pe(A + k*n)de + Vo - Ve + V - (60 Vo)
= py 010 + O (e ) -

The scalar product can therefore be evaluated with an integration by parts,

<(A + k2n) (/04 Qbﬁ)a ¢€’>L2(Q) = <IO,€ alqbe + O (ngp}), ¢Z'>L2(Q)
= / Go Py 01000 — D10 Py b0 = Z/ Pe(t) Fyy 0 dt
Q R

with the flux quantity Fy, s, of (3.11). The flux is independent of ¢ and coincides
with %E(@, ) = %E(@, ¢¢) 60 We evaluate the right hand side for a right-
going wave ¢y, i.e., for p, with py(—o0) = 0 and py(4+o00) = 1:

) 7
Z/P/e(t) Fo 6t dt = 2—E(¢£,¢4) Qe -
R s

For a left-going wave ¢y, ps(+00) — ps(—0o0) = —1 introduces a negative pre-factor.
We find that the orthogonality condition (3.23) is

—(f ¢ 12 = ar i |E (¢, d0)] -

This condition is identical to (3.22).

The above calculation also shows that, choosing (as), according to (3.22), the or-
thogonality condition (3.15) is satisfied for g. We can therefore solve for v with The-
orem 3.8. With C' depending on ps, we have the estimate ||v|| ;1) < Cllgllr2(0) <
C(l llzioy + (A + K2n)wllieey) < CUI Lz + lales) < ClLflizcey. This implies
(3.21).

Uniqueness. Let u be a solution of the radiation problem with f = 0. Our
goal is to show that u vanishes. Theorem 3.8 implies that the right hand side
g = —(A + k?n)w of the equation for v satisfies the orthogonality condition (3.17).
The existence part of the proof implies that the coefficients a € C* for which the
orthogonality condition is satisfied, are uniquely determined, hence, by f = 0, we
conclude a = 0. Together with the uniqueness statement of Theorem 3.8, we find
a =0 and v = 0. This shows that u vanishes. 0

Remarks. 1. We note that the decomposition of the propagating modes ¢, into
left-going and right-going modes is not needed from the mathematical point of
view. Indeed, the proof works also for the case that we decompose {1,..., L} into
{1,...,L} = LT U L~ for disjoint sets L* and set p, = p, for £ € LT and p, = p_
for 0 € L.

A particular choice would be to use £* := {1,...,L} and £~ := (. With this
choice, we impose that no propagating modes (neither left-going nor right-going)
can be used on the right, but all propagating modes (not only outgoing / left-going)
can be used on the left.

2. Above, we have constructed, for given p., solutions © = v + w. In order to in-
vestigate well-posedness of the radiation condition, let us consider the consequences
of choosing another set of admissible cut-off functions, we denote them as p..

We denote the corresponding solutions as u = v + w and u = v + w. We write

u—u = v—0 + Zdz(Pé—ﬁ4)¢z + Z(ae—@e)ﬂedﬁe-
¢ ¢
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We observe that v — o + Y., as (pe — pe) ¢ is in H'(2). We emphasize that, at
this point, we exploited the decay rate of the cut-off functions that was demanded
in Definition 3.10. Therefore, u — @ satisfies not only the homogeneous Helmholtz
equation, but also the radiation condition with coefficients (a;—ay),. The uniqueness
result of Theorem 3.12 implies that v = u and a, = a, for all /. In this sense, the
choice of the cut-off functions has no influence on the solution.

3. The radiation condition depends on the choice of the inner product chosen in
Y. Regarding this point, it is very illustrative to study a simple example.

Example 3.13 (The standard example). In the two-dimensional case, d = 2, we use
the cross-section S = (0,7), and the coefficient n = 1, considered as a 27-periodic
function with respect to x1. Since we are interested in eigenspaces with dimension
larger than 1, we choose a specific wave number k in the following.

For a € I =[—1/2,1/2] chosen below we consider

P1(z) == e sin(225)  and  Po(x) = @I gin g, .

The two functions satisfy Ady+(a?+4)¢1 = 0 and Mg+ ((a—2)* +1)¢o = 0. It is
possible to choose o such that the two factors coincide, o> +4 = (a—2)?+1, namely
o = 1/4. Accordingly, we define the wave number to be k = /a2 + 4 = \/65/4. With
these choices, we have found two linearly independent, a-quasiperiodic solutions of
A¢+ k*p = 0. Indeed, for a = 1/4, there holds Y = span(¢y, ¢3).

The fluzes of ¢1 and ¢ are

E(¢1, 1) = i/w $1 0101 — @1 011 = i(—ir)2 /W sin?(2x,) do = 2a71® > 0,

B, 69) = i(—i(a — 2))2 /W in?(zy) dz = 2(a — 2)72 < 0.

We have therefore found a right-going wave ¢, and a left-going wave ¢o.

Regarding orthogonality and normalization, we observe E(¢y, ¢2) =0, ||¢;j|| 2wy =
7, and (¢, ¢2) 2wy = 0. Therefore, ¢1/\/7 and ¢2/+/m are the normalized eigen-
functions of the two-dimensional eigenvalue problem (3.14) with \; = 2arn® and
Ao = 2(av — 2)7® when (-, -) 2wy is chosen as the inner product in Y. However, if
one chooses a different inner product in Y (for which ¢, and ¢o are not orthogonal)
then one gets a different basis ¢1, ¢o. This changes the radiation condition.

We will continue the above analysis in Example 5.1 where we show that, indeed,
different absorption mechanisms can lead to different inner products, hence to dif-
ferent basis functions, and hence to different radiation conditions.

4. LIMITING ABSORPTION PRINCIPLES

4.1. The operator family in the case with absorption. In the classical Limit-
ing Absorption Principle one replaces the real wave-number k£ > 0 by the complex
number k, := k +n with n > 0 and studies the equation

(4.1) —Au" — (k+in)*nu" = f in Q.

The boundary condition u”7 = 0 on 0f) remains unchanged. It is well known that
this equation is uniquely solvable in H!(Q) for every n > 0. This can be shown
with an application of the Lax-Milgram theorem, the positivity of 77 implies that the
bilinear form corresponding to (4.1) is coercive.

The re-writing of the equation with the Floquet-Bloch transform can be performed
with only minimal notational changes: Because of f € L?(Q) and u" € H(f2), the
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Floquet-Bloch transformed functions 47 = Fpp(u?) € L*((—1/2,1/2), HL(W)) and
f=Fre(f) € L*((—1/2,1/2), L*(W)) are well-defined and satisfy, for n > 0,

(4.2) —AW (-, a) = (k+m)*nd"(,0) = f(,a) inW,

with boundary condition 4"(-, ) = 0 on (0,27) x 05S.
We use again the space X = H! (W) of (2.9) and the equivalence (2.10); the

per

operator L € L(X, X) and the element y, € X are defined by

(4.3) (Low, @) mw) = (k+i77)2/ nue +/ V (u(z)e™™) - V(p(x)e) da
W

(44) (Yo, 0)mw / fx,a) p(z)eon da

for u,o € X. Then (4.2) is equivalent to L7u! = y, for ul(z) = 4"(z,a)e 1,
We note that the operators L are invertible from X =H! (W) onto itself for all

per
(a,n) € (I x[0,6)\ {(a;,0) [ j = L,.... J}.
Since the operators L depend on two parameters, we need the partial derivatives
with respect to both parameters. The a-derivative is calculated as in the case n = 0:

(()a <LZ'LL, S0>H1(W)

=i [ V{u@me) -V ERE) - V(@) -V (Ene) do

= 2/ u(z)e ™ Oy (p(z)eier) — Oy (u(x)e'™™) p(x)eion
w
— E(u ezaz1’ 90 eza:rl)

Taking the derivative of (4.3) with respect to 7 provides

On(L2u, ) rowy = —2i(l<:+in)/ nu@dr.
w

We introduce two operators, essentially given by the two derivatives of L. For
a given a; € A we consider the kernel N = ker(Ly ) = {¢pe " |¢ € Yj}, the
operator M, :=iPd,Ly v : N — N and the operator M, := POuLg |y : N — N.

We note that, by the above formulas, M,, is selfadjoint and positive definite (it can
be identified with a multiplication with 2kn) and M, := Paang |w is self-adjoint
and one-to-one provided £ is non-degenerate on Y;.

4.2. Functional analysis for two-parameter families. Our aim is now to extend
the one-parameter theory of the last section to a theory for two-parameter families.

Definition 4.1 (Two-parameter family of operators). We consider a Banach space
X and the unit interval I = [—1/2,1/2] C R. We say that (L) is a two-parameter
family of Fredholm operators when there exists € > 0 and a C*-map

(4.5) (—1/2—¢,1/24¢) x [0,¢) > (a,m) — LT € L(X, X),

such that every operator L! is a Fredholm operator with index 0 and, for every
a € I for which L is not invertible, the operator L := LY has Riesz number 1,

ker(L) = ker(L?).
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Remarks. 1. We actually need less than the C? property of the operator family.
The proof works when in £(X, X) the following approximation property holds:

| L2 — [LP + (o — ) Da L + (n —m0) O, L0 ||| < (e — )® + (1 —m0)?].

Here, the norm is the operator norm in £(X, X).

2. An illustrative example is X = C and L? = a — in (this will actually be, for
a; = 0, the essential action of L” on the kernel of L{). For the family of right hand
sides y/] = 1, we find the solutions

1
a—in’

(4.6) ug = (L)™' (ya) =

We observe that u!! has a singularity in («,n) = (0,0). This singular behavior was
somehow to be expected, since y! is not vanishing in (c, ) = (0,0). Let us therefore
look at a right hand side that vanishes in the singular point, we investigate y! = a
with y3 = 0. The solution for this right hand side is

4.7 D= (L) Nyl = :
(47) = (L)) =
We observe that the solution is bounded. On the other hand: The solution family
is not continuous at (0,0). Indeed, along the two coordinate axes, we find: u? = 1
for all v and g = 0 for all .

The following theorem considers the local situation with only one critical value
a. Once more, without loss of generality, we choose the critical point to be a = 0.

Theorem 4.2 (Functional analysis IT). Let X be a Hilbert space and L? be a two-
parameter family of Fredholm operators in the sense of Definition 4.1. Let [ > o —
Yo € X be a family of right hand sides that depends Lipschitz continuously on o € 1.
Let the following properties be satisfied:

(a) L : X — X is invertible for all (a,n) € ((—e,e) x [0,¢€)) \ (0,0).
(b) With N := ker(L}) and R := LY(X) and P € L(N,N) the projection
onto N corresponding to X = N + R, the operator M, = i PO,L|y €
LN, N) is selfadjoint and positive definite and M, = PO, LS| € LIN,N)
15 selfadjoint and invertible.
Let ul) € X be the unique solution of Llul =y, for all (a,n) € ((—e,€) x [0,¢)) \
(0,0). Then there ezists €1 € (0,¢) such that ull has the form

48) =+ SO G for o) € ((—eu) x 0.20)\ (0,0).

In this representation, ||v!||x is uniformly bounded with respect to (c,n). The family
{¢g |6 =1,... ,m}, m = dim N, is an orthonormal eigensystem with eigenvalues

{)\g [0=1,... ,m} of the following generalized eigenvalue problem in the finite di-
mensional space N :

(49) Magf)g = )\[ Mn¢g ZTLN with normalization <Mn¢€7¢f’>X = (5&(/

for 0,0 =1,...,m.
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Remark. The difference to Theorem 3.2 is — except of the appearance of the second
parameter 7 — that we do not assume yo € R. This gives the singular behavior of
the solution u! when («,n) tends to (0, 0).

Proof. We obtain the singular part of the solution as the highest order approxima-
tion. Considering only the kernel A/ and the Taylor expansion PL?|y ~ aM, —
inM,,, we solve

(4.10) (@M —inMy)w(a,n) = Pyo

in A/. The right hand side can be expanded with the orthonormal basis, we write
Pyo = > " (Pyo, ¢¢) x ¢¢. The unique solution w(w,n) is given by

(411) wiayy) = 3 FWddx

— Apv — 1)

as can be checked by inserting into (4.10).

Similar to the proof of Theorem 3.2, we write u! in the form u! = w(a,n) +
u (e, n) + uf'(a,n), where vV (a,n) € N and uf'(a,n) € R for every n and a. The
equation L7u! =y, is then equivalent to

PLy PLUR] (wlon) +u¥(@n)\ _ (Pu) .
(412) [QLZ\Q/ @Lmﬂ( u(a, ) )_ (%) N xR

The second line can be written as

(413) QLZUR(&, 77) = —QLZU)(O[, 77) - QLZU'N(CV7 77) + an .

The operator QL]|z is an isomorphism from R onto itself. This implies that, for
sufficiently small n and |a/|, the inverse operators [QL7|]™! exist and are bounded
from R onto itself. Furthermore, they depend twice continuously differentiable on

n and « for sufficiently small 7 and |a|. We claim that the first term on the right
hand side of (4.13) is bounded. Indeed, using w(«,n) € N we have

QLY w(a,n) = QLY — Lolw(a,n) = O(|(er, n)]) w(a, )| = O(1)

by the differentiability of L and the fact that |Jw(a,n)| = O(|(a,n)|™'). This
implies that (4.13) can be solved with u®(a, n) of the form

(4.14) ua,n) = —[QLY|r] T QLA™ (a,n) + ug'(a,n),

with a bounded family uf(a,n) € R, which depends only on gy and y,.
Substituting u® into the first equation of (4.12) yields

(4.15)  (PLY — PLYQLA|R]T'QLY) u™(a,n)
= Pyo — PLZU)(O[,’/]) - PLZU{E(OQU)
= Pya — Pyo — O(|(,n)*) lw(e, )| = O(|(e,m)]) = O(|(c,m)]).

In the second equality we used PL! — (PL§ + aM, — inM,) = O(|(a,n)|*) and the
construction of w(a, n). Furthermore, for the last term, we exploited PL = 0 from
the definition of P, and the differentiability of the family L.

Equation (4.15) has the form L7u"(a,n) = §7 with an operator L? from N
into itself, with L) = 0 and §J = 0. We claim that the partial derivative 9L is
invertible for every 0 # ¢ € R? with & > 0. Indeed, differentiating the second part
of Eg with the chain rule gives three terms. Differentiating the first or second factor
leaves the third factor @ L3 unchanged, and this third factor is the trivial map on N.
Differentiating the third factor leaves the first two factors PLS[QLJ|z] ™! unchanged,
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but this operator vanishes because of PLY = 0. Therefore, there remains only the
derivative of the first term: 9¢L) = 0: PLY = & M,, — i&,M,), which is invertible (as
seen already in (4.11)).

A theorem like Theorem 3.2 with two parameters (see Remark 3.3) implies that
the solution family u” (c,n) is bounded. We note that it cannot be expected that
the solution family is continuous, see the example in (4.7). O

4.3. Application of the functional analysis result. We want to apply Theorem
4.2 to equation (4.2), which we write again in the form L'u" = y, for u!(zx) =
0" (z,a)e 1. We consider a fixed parameter o; € I for some j € {1,...,J} and
recall that ker(ng) = {pe ™" | ¢ € Y;} where Y; has been defined in (3.12).
Shifting the critical value o = 0 in Theorem 4.2 to o = «; yields the following
decomposition.

Proposition 4.3 (Representation of solutions in Floquet-Bloch space). Let As-
sumption 3.5 hold, let j € {1,...,J} be fized and let f € L%(Q) be given. Then
there exists €1 € (0,¢) such that forn € (0,£1) and |a — a;| < &1 the unique solution
(-, a) € HY(W) of (4.2) has a decomposition in the form

X L (f (), o ) L2 (W) oo
4.16 Wz, ) = vl(z,a) + hde I\ () eitomag)Tn
116 ) = e ¢ 3 I o

for almost every x € W. Here, ||v](-, a)||mw) is uniformly bounded with respect to
(o, m), and {gzﬁg,j |0=1,... ,mj}, m; = dimYj, is an orthonormal eigensystem with
eigenvalues {)\g’j [0=1,... ,mj} of the following generalized eigenvalue problem in
the finite dimensional space Y;:

(4.17) E(6uss0) = g2k [ néu b for allv e,
w

with normalization 2k [, 1 ¢p; dpj = 0ppr.

Proof. In the end of Subsection 4.1 we have obtained characterizations for M, and
M,;; they show that the abstract eigenvalue problem (4.9) reduces to the problem
to determine )\, and ¢, € ker(ng) with E(¢g e, pe) = X\ 2k [, ndy @ for
all p € ker(ng) which coincides with (4.17) when replacing ¢, e*** and ¢ e"**! by
¢ej € Y and ¢ € Y}, respectively.

Formula (4.8) of Theorem 4.2 (for singularity at o instead of 0) yields the repre-
sentation
mj (Y, » o€ "™ ) i w)

'z, a)e” ™ = u'(z) = v!(x) + ,
(z, ) () () Nslo—a) =

Qbf,j (.T) efiajml

(=1

for # € W. The identity (ya,,deje " ) grw) = <f<',aj),¢g’j>L2(W) follows from
the definition of y, for p(z) = ¢ ;(x) e, 0

The inverse Floquet-Bloch transform. With (4.16) we have found an expression
for the Floquet-Bloch transform 4" of the solution u”. Using the inverse transform
yields an expression for u".

For the subsequent theorem, let p4. be two admissible cut-off functions as described
in Definition 3.10
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Theorem 4.4 (Limiting Absorption Principle). We consider solutions u" € H}(£2)
of (4.1) for a right hand side f € L?(2). Let Assumption 3.5 be satisfied. We
use the eigenvalues and eigenfunctions \g; and ¢, of Proposition 4.5. Then, asn
tends to zero, u" € HY(Q) converge to a solution u € H (Q) of (4.1) with n = 0.
Denoting cut-off functions as py; = Psign(re.;)s the limit u can be written as

J my j
(4.18) u(x) = v(x) + Z Z Qg.j Pe,j (.1'1) (bf,j (l') with Qp; = 271'2’%
j=1 t=1 !

and v € HY(Q). The convergence u" — u 1is a local convergence: For every R > 0
and Qr = {x € Q||z1| < R}, the restricted functions converge strongly in H'(Qg).

Remark. We will derive the result for a specific pair of cut-off functions, namely,
for some suitably chosen € > 0,
1 [ sint
. / UL
0

1
(4.19) pe(z) = 5 £ ~ ;

We note that the integral term behaves like [* 2 dt = £2 + O(1/|21]) as £, —
oo. This implies that the two functions p4 have the required properties of cut-off
functions of Definition 3.10.

By Remark 2 after Theorem 3.12, the solution u is independent of the choice of
the cut-off functions. This implies the following: When we verify that the limit
solution u satisfies (4.18) with the cut-off functions of (4.19), then u satisfies (4.18)
for every choice of admissible cut-off functions.

Proof. The solution u" is the inverse Floquet-Bloch transform of 4", hence it is given
by an integral over the interval I = [—1/2,1/2], see (A.4).

We decompose the interval I in the form I = U}]:1(O‘j —¢&,a; +¢) UU where
U:=1\ U;.Izl(ozj —¢,a; + ¢) and where ¢ > 0 is chosen such that the intervals
(aj — €, 5+ €) do not intersect each other and allow the representation (4.16). We

have for x € Q

1/2 J aj+te
ul(x) = / "z, a)da = /ﬁ”(az,a)da + Z/ Wz, o) do

J aj+e
= /ﬂ"(m,a) da + Z/ v?(x,oz) da
S e b [ (@
+ f‘;a‘;ﬁﬁz,'mw/ — do gy ().
pian g J1LA(W) oy Mo — aj) —in J

We now consider n — 0 in the different terms.

On U we have convergence in the space C°(U, H(W)) of 4" to some function
w € CO(U,H'(W)). Therefore, [, a"(z,a)do converges to w(z) = [, w(z, ) do
in H'(Q2) by the boundedness of the inverse Floquet-Bloch transform. In particular,
w e HY(Q).

For fixed j € {1,...,J}, we next treat the integral f;;]_f v} (z, ) do. The inte-
grand v tends to v9 in L?((oy — ¢, o +¢), H'(W)) by Lebesgue’s theorem of domi-
nated convergence because v} (-, a) tends to v)(-, ) in H'(W) for every o # a; and
is uniformly bounded with respect to a and n. Again, the boundedness of the inverse
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Floquet-Bloch transform yields convergence of f ite S v](z,a)dato [ af; v)(z, ) da
Qj
in H'(Q).
Finally, we consider the integral in the last term for fixed j and ¢. With a param-
eter transformation, we write the integral as

ajte ei(afaj):rl € eiaxl
(4.20) / _da = / .
oj—¢ Aé,j (O[ - Oé]) —1m —€ /\f,ja —m

In the appendix, see (B.1), we show that, for p1 from (4.19), this integral converges
to % Psign(xe ;) (1), uniformly with respect to |x;| < R for every R > 0. Altogether,
3] >

we have shown the local convergence of v to

J my

u(z) = v(z) + 27TZZZ |/\£¢e,; L (W)pg’j(xl)qbg’j(x)

7j=1 ¢=1

for some v € H'(Q). It remains to note that <']E(',Oéj),¢g’j>L2(W) = (f, b0 )2
which was stated and shown in the proof of Lemma 3.9, exploiting the quasi-
periodicity of ¢y ;. U

5. ALTERNATIVE DAMPING APPROACHES

With equation (4.1), we have analyzed the LAP for a specific absorption term:
k was replaced by k + in. Other damping mechanisms are also physically relevant,
e.g., non-homogeneous damping in the k-part or damping in the elliptic-part. We
investigate here the LAP for these alternative damping mechanisms.

Non-homogeneous damping in the k-part. We choose a non-negative real val-
ued function p € L*>°(Q) that is 2m-periodic with respect to x; and with a positive
lower bound, p > pg > 0 on 2. We consider

(5.1) —Au" — E*(n +inp)u" = fin Q

with the usual boundary condition u”7 = 0 on 9f2. This is a modification of the
homogeneous damping of (4.1). Once more, an application of the Lax-Milgram
theorem yields that the equation is uniquely solvable in H*(2) for every n > 0.
The variational form of the Floquet-Bloch transformed equation is equivalent to
L'l =y, for ul(z) = 4"(z,a)e” " where y, is given by (4.4) and L" by (4.3),
with k + in replaced by k and with the refractive index n replaced by n + inp.

The operator M, is given by a partial derivative of L] with respect to n. We
calculate it to be

(Myu, ) = i0,(L7u, Q) iy = K2 / pug.
w

Therefore, the eigenvalue problem (4.17) has to be replaced by
(52) E(qbg,j, ID) = )\gJ / p¢g] Q/J for all ¢ € Y

Non-homogeneous damping in the elliptic part. As a second form of damping
we consider, for p € L>(2) as above,

(5.3) —V- (1 —inp)Vu") — k*nu" = f in Q,
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with the usual boundary condition u” = 0 on 0§2. The variational form is to find
u" € H}(Q) with

/(1 —inp) Vu" - VP — KPnu'@ = / fp forall p € Hy(Q).
Q w

The theorem by Lax-Milgram yields existence and uniqueness. The periodic form
u'(x) = 0"(x,a)e”"* of the Floquet-Bloch transform satisfies L7u" = y,, where
Yo is again given by (4.4) and L! by

(LI, o) mwy = —k2/

nup +/ (1 —inp) V (u(z)e’™™) - V(p(z)eior) dx
w W

for u,p € H!,.(W). The operator M, is now

per
(54)  (Myu, @) == i0,(Llu, o) mwy = / pV(u(x)ew‘“) -V(g&(a:)ei‘“l) dz .
w
Therefore, the eigenvalue problem (4.17) has to be replaced by
(5.5) E(0n0) = Ny | pV0u,- T forallvey;.
w

Example 5.1 (The standard example, continued). We continue Example 3.13,
where we have found two linearly independent eigenfunctions ¢1 and ¢o spanning
Y for a« = 1/4. The wave ¢y is right-going and the wave ¢o is left-going.

We now investigate different eigenvalue problems that are generated by different
limiting absorption principles. The abstract eigenvalue problem is stated in (4.9), it
uses the positive definite operator M, = i PO, LS|y : N — N, and the selfadjoint
operator My, := PO, L)y : N — N

For the standard absorption mechanism of (4.1), M, and M, are given, loosely
speaking, by a multiplication operator (factor 2kn) and by the form E, respectively.
The eigenvalue problem was calculated to be (4.17). For our concrete example, ¢y
and ¢o are indeed eigenfunctions for this problem. The eigenvalues are

(5.6) )\jzw, hence)\1:%>0and)\2:ak2
illzz
For a solution uw = v+w of the radiation problem, the propagating function w has
the form w = aypyé1 + asp—¢o. In particular, when p'. has support in (=L, L), the
function w coincides with a multiple of ¢, for 1 > L and with a multiple of ¢o for
I S —L.

Let us now choose a different absorption principle. Referring to (5.2), we consider
(u,v), = k* [, puvdx with some positive function p € L>(W). The eigenvalue
problem (3.14) takes the form E(QNS, ®;) = 5\<gz~5,(bj>p for 7 =1,2. Making the ansatz
& = a101 + as¢y leads to the generalized eigenvalue problem

E(¢1, ¢1) 0 } (al) — 3 |:<¢17¢1>p <¢1a¢2>p:| <a1> .
0 E(¢a, ¢2)| \a2 (P2, P1)p (P2, P2)p| \ a2
Two normalized orthogonal solutions to this problem are given by two complex vectors
(a1,a2) and (by,by). Accordingly, we find new eigenfunctions ¢1 = a1¢1 + aspo and

@2 = bip1 + baps. This means that the wave that is outgoing to the right is, e.g.,

O1 = a1 + aspo. This function is, for a generic coefficient p, neither a multiple of
01, nor a multiple of ¢o. The limiting absorption process then provides a radiating

<0.
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solution of the limit problem that uses on the right the function py (a1¢1 + axps). It
is hence different from the previously obtained limit solution.

We obtain that the radiation condition indeed depends on the choice of the inner
product or, in other words, on the damping mechanism.

6. TWO SPACES OF HOMOGENEOUS SOLUTIONS

Let us recall the spaces that were used in the above constructions: The space Y
of (3.12) consists of aj-quasiperiodic homogeneous solutions,

Y, = Y% = {uEHij(Q)‘(A—l—an)u:OinQ,u:OonRxé’S}.

We recall that {a;|j =1,...,J} C [-1/2,1/2] are the quasi-moments that corre-
spond to nontrivial spaces Y“. In the above formula, we identified H, é](W) with

Héj(Q); the canonical identification is given by the «aj-quasiperiodic extension of
a function in H éJ(W) (and, vice versa, the restriction to a function on W). We
furthermore introduced in (3.13) the space

J
(6.1) Y = @Y, CH'(W), identified with Y C H;,(Q).
j=1

It has a basis {¢y | ¢ = 1,..., L} with orthogonality E(¢y, ¢p) =0 for ¢ # 0.

Let us consider another space, the space B of bounded solutions. That space was
extensively used in [20] (where it was named X). In order to impose a boundedness
property, we introduce the norm ||Ul|sz := supyey ||U|w,||22(w,) for functions U €
L2 .(Q), where W, := (2n(,2nl + 27) x S. The space of bounded homogeneous

loc
solutions is defined as

(6.2)
B = {UeHIIOC(Q)‘(A—i—k%)U:Oin Q, U=00onR x9S, |U];, < oo} .

It is clear that every quasiperiodic homogeneous solutions is a bounded homogeneous
solution, hence ¥ C B. Our aim is to show that the spaces Y and B actually
coincide.

Before we formulate the corresponding result, we note that an equivalent norm is
obtained when we measure the H'-norm in every cell.

Lemma 6.1 (Equivalent norms). There exists a constant C > 0 such that
(6.3) sup [|Ulw, |z ow,) < C|\U||se = Csup ||U|w,||z2w,y  for allU € B.
Lez LeZ
Proof. The lemma follows from Caccioppoli’s inequality for solutions of elliptic prob-
lems. U
We can now give the characterization of B.

Theorem 6.2 (Every bounded homogeneous solution is a linear combination of
quasiperiodic homogeneous solutions). When Assumption 3.5 holds, then the spaces
Y of (6.1) and B of (6.2) coincide,

(6.4) Y = B.

The proof is given in the next subsection. We provide the proof in a more abstract
setting such that it covers, e.g., compact perturbations of periodic media. If the
reader wants to see the proof of Theorem 6.2 immediately: It is possible to jump to
the proof of Theorem 6.5 and to read it as a proof of Theorem 6.2.



A. Kirsch and B. Schweizer 25

6.1. A generalized setting. We write A for the underlying selfadjoint differential
operator of second order, defined on some domain Q@ C R? = R x R%!. In the
main part of this text, we treat A = —A — k?n. By contrast, the next result holds
also for compact perturbations of this operator, for example A = —A — k*(n + q)
where ¢ has bounded support, or A = —V - ((I + Q)V) — k% where I is the identity
and () has bounded support. We always assume that the operator is everywhere
uniformly elliptic. The domain €2 is assumed to be cylindrical outside a compact
set: For some bounded set S C R?! and some M > 0 there holds Q N {x | |x;| >
M} = (R x S)n{z||zi| > M}. We always assume that the coefficients are 27-
periodic in z; in the cylindrical parts, more precisely: We assume that there exists
a selfadjoint operator A of second order in R x S with 27-periodic coefficients (in
x1) which coincides with A in QN {z||z1| > M}. The space in which we look for
solutions is HL _(Q).

We consider the space B corresponding to the elliptic operator A, here defined
with the norm ||U||sz = supez [|U|| g1 w,):

B = {ueHﬁm(Q)’Au:OinQ, u =0 on 09, ||u||sH<oo}.

We emphasize that, due to the equivalence of norms of Lemma 6.1, in the setting of
the last subsection, the definition of B was not changed with respect to (6.2).

In the following, we assume that cut-off functions p+ € C?*(R) with pi(z;) = 1
for +21 > 1 and pi(x1) = 0 for 27 < —1 are chosen. Let {¢,|¢ = 1,...,L} be
quasiperiodic homogeneous solutions to the unperturbed operator Ain R x S with
homogeneous Dirichlet conditions on R x 9S. For two disjoint sets £ and £~ with
LYrUL ={1,....,L}, weset pp=py for £ € LT and p, = p_ for { € L.

Assumption 6.3 (An abstract existence and uniqueness result). We assume the
following on the operator A. For every right hand side f € L2(Q), there exist
uniquely determined functions v € H}(Q) and w = Zle peag Gy such that u =
v+w € HL (Q) satisfies Au= f. The map L2(Q) > f > (as)k_, € C* is linear and
continuous.

We note that Assumption 6.3 is verified in the standard setting of this contribu-
tion: For A = —A — k?n on the domain 2 = R x S with S € R! a bounded
Lipschitz domain, Assumption 3.5 implies Assumption 6.3. This is shown in Theo-
rem 3.12.

For cylindrical domains and periodic coefficients, the space Y is defined in (3.13).
When we treat compact perturbations of this setting (as described above), we have
to define the space Y in a different way. We construct as follows: Let 6 € C?*(R)
be any function with 6(z,) = 1 for |x;] > M + 1 and 6(z;) = 0 for |z,| < M. For
fixed £ € {1,..., L}, we define the incident field u'"*(x) := 0(z;)¢p¢(x) and seek for
a solution ¢} (total field) of A¢} = 0 in the form ¢} = u™ + ¢¢; here ¢ is the
scattered field, which has to satisfy the radiation condition. Assumption 6.3 allows

to solve for u = ¢f, since Ap; = f := —A(A¢,) has compact support. Performing
the construction of ¢} for every ¢, we can define
(6.5) Y :=span{¢;|{=1,...,L}.

The following lemma provides that the dimension of Y is L.

Lemma 6.4 (Dimension of Y in compactly perturbed setting). The total fields
(¢h)1<e<r are linearly independent, there holds dimY = L.
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Proof. Let >, ¢, ¢f = 0 be a linear combination of the trivial function. We can
consider the incident field v := >, ¢, 0 ¢y and solve for the corresponding total
field u": By linearity of the equation, we find u' := 3", ¢; ¢} = 0 with the scattered
field u® := >", ¢, ¢} satisfying 0 = v = u™ + u®.

On this basis, the principle argument is simple: Up to a Hj(Q2)-function vy, each
function ¢ is a linear combination of the outgoing fields, ¢f = ve + >, ar e pr dv,
hence also u® is essentially a linear combination of the outgoing fields. On the other
hand, u™ = >, ¢, 0 ¢, contains each field with a factor ¢,. Let us study £ € £~ and
a large (positive) position z;: In the left hand side of —u™® = u*, the pre-factor of
¢y is ¢y, in the right hand side, it is vanishing. This shows ¢, = 0. Similarly, one
argues for ¢ € LT by considering positions x; < 0.

We formalize this argument as follows: With v := )", cpvy, we calculate

—2059@ = —u" = = Zcﬁﬁ = v + cheaz,@pw@'
¢ ¢ ¢ v
= v+ Z{ZCN”'] prow = v + Y depidr,
v Ly ¢

where dy := )", apscp. For z = (2, %) € Q and sufficiently large m € N we have
21 + 2mm > M + 1. Therefore, using the quasi-periodicity of ¢, and the evaluation
point z = (21 + 27m, Z), we have

- Z ce €™M py(2) = v(z +2mm, ) + Z dy €™M By (2) .
¢

leLt

For a subsequence m — oo, the factors e*™™¢ converge to some e, and v(z; +
27m, Z) converges to zero. Therefore,

- Z coe gy — Z eV Py = Z de e ¢y .

leLt beL— leLt

Since the ¢, are linearly independent, we obtain » | ver— Ce e ¢, = 0 and hence ¢, = 0
for £ € £~. Analogously, for m — —oo we conclude that ¢, = 0 for £ € LT. O

The subsequent theorem provides, in particular, Theorem 6.2.

Theorem 6.5 (Y = B in the abstract setting). When the ezistence and uniqueness
property of Assumption 6.3 holds, then' Y = B.

Proof. The inclusion Y C B is clear. We know that Y has dimension dimY = L.
In order to show B C Y, it suffices to show dim B < L.

In this proof we use, for arbitrary R > M, the piecewise affine cut-off function
Vg : R — [0,1] with dg(s) = 1 for every s € [—R, R|, Ur(s) = 0 for |s| > R+ 1,
affine on [-R — 1, —R] and on [R, R + 1]. We interpret Jx also as a function on
by setting Vg(x) := Vr(21).

Step 1: A representation for the coefficients ay,. Since every coefficient map

L*(Q) > f — a; € C is linear and continuous, we can represent this map by an
element & € L2(Q2). We find a family (&)1<¢<z such that, for every f € L%(Q),

(6.6) ar=(f, &)z = (f(@), &)1+ |21]*)*) 120 -

Step 2: A scalar product with U € B. We consider an arbitrary element U € B.
We want to calculate, for arbitrary f € L2(€), the inner product (f,U) 2. With
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L (Q) of Au = f in Q, see Assumption 6.3
(or, in the concrete setting of Theorem 6.2, Theorem 3.12). We write, for R — oo,

(f,U) 2 < (f,UVR)120) = (Au, UVR) 12(0) = (Av, UVR) 12(0) + (Aw, UVR) 120y »
and evaluate the terms separately. By the selfadjointness of A,

(6.7) <AU,U193>L2(Q) = (v,A(UﬂR»LQ(Q) —0

this aim, we use the solution v = v+w € H}

as R — oo. The convergence follows from AU = 0, the boundedness of VU in the
cells Wy, and the decay property of v. The function w = Zle ag pe ¢y satisfies, for
U € B and R sufficiently large:

(6.8) (Aw, UbR) 1) = Zam with co = (A(pede), U) p2(q) -
We therefore obtain

(6.9) (f,U)r20 Zcz a .

Step 3: Conclusion. It remains to insert the representation (6.6) of a, into (6.9).
We find

L
(6.10) (f,U)r2) = Z co(f 5 &) (1 + [21%)%) 2e) -
=1
Since f was arbitrary, we find
L
(6.11) Ul) = crbelz) (1+|z]*)’
=1

for all x € Q2. We have therefore represented an arbitrary element U € B with the
L functions &(z) (1 + |x1|*)?. This implies dim B < L and hence the theorem. O

6.2. Finite dimension of B in other settings. We return here to the geometry
of the main part of this paper, 2 = R x S with S bounded. We note that the
space B can be defined for any (positive) refractive index n € L*(€2) without the
assumption of periodicity. We ask: Does B have a finite dimension? We do not
know the answer in the general case.

One particular case can be treated with the above methods. When n € L>(2)
coincides with a periodic function n™ for z; > M and with another periodic function
n~ for zy < —M (for some M > 0), then B can be characterization much as in
the previous subsection: B is spanned by the solutions of scattering problems with
incident fields ¢ (the right-going modes for index n~) and ¢ (the left-going modes
for index n*). In particular, in this case, B is finite dimensional.

Another case that allows to show finite dimensionality of B is the following: Let
n € L>®(Q) be of the form n(z,Z) = ni(z1) + no(Z) for 2y € R and T € S.
In this case, we can use separation of variables techniques. Let A\; € R and ¢; €
H?(S) be the eigenvalues and eigenfunctions, respectively, of the selfadjoint operator
—A — k%n,, that is,

—A¢;(F) = Kna(%) ;(T) = Xj¢;(F) in S, ¢;(F)=0o0nds.
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Let U € B be an arbitrary element. For every z; € R, the function U(x1,-) can be

expanded as
fL’l, E U’j x (b]

with some coefficients u;(z1). Inserting thls expansion in the differential equation
AU + E*n U + k*nyU = 0 yields
uj(ry) + (K*ni(z1) = Aj) uj(z1) = 0 for 21 € R.

We know that \; — oo as j — oo. Therefore, there exists jo € N such that
k*ny(z1) — A\; < —1 for all j > jo. Since the equation u”(z1) — a(z;) u(x) = 0 does
not allow any bounded solutions if a > 0, we conclude that only a finite sum appears
in the expansion of U, there holds U € span{u;(z1) ¢;(Z)|j =1,...,jo}. Since the
ansatz functions are independent of U, we conclude that B has finite dimension.

APPENDIX A. FORMULAS FOR THE FLOQUET-BLOCH TRANSFORM

We treat here only the one-dimensional Floquet-Bloch transform and write x € R
for the variable. With W = (0,27) and I = [—1/2,1/2], the transformation Fpp :
L*(R) — L*(W x I), u — 1, was defined in (2.2) as the continuous extension of

(A1) ir,) == 3 u(w + 2ml) e,

LeZ

for x € W and a € I. An elementary calculation shows that Fgg is an unitary
transformation to its image:

/(a( a), (-, @) 2w da_//wzuxmwe)m ie=h2me gy doy

LkeZ
/ DY ke ulw + 2wl v(w + 27k) dar
W ter ker
(A.2)
= / Zu(x +21l) v(x + 27l) dx = / U = (U, V) L2() -
W R

LeZ

This also shows that Frp is well-defined on L?*(R).
Vice-versa, for 4 € L>(W x I), we define, for z € W and k € Z,

(A.3) u(x + 27k) = /ﬁ(sc, B) e** B qp .
I

We claim that this operation defines an inverse Fppg : @ — u. We start by showing
Frp o Frp = id. Let u € L?(R) be arbitrary and let @ be defined by (A.1). Then,
for every k € Z,

/’LAL(ZE zk27rﬂ dﬂ Z (fL’ + 27T€) 6—1'42776 6ik27r5 d/B
=
= Ope u(x + 27l) = u(x + 2k)
LEZ
hence the transformation of (A.3) indeed recovers the original function.
It remains to show that Fpg of (A.3) also defines a right inverse, Fypp o Fry = id.
To this end we consider an arbitrary function @ € L2(W x I). We fix a point x € W
and denote the ¢-th Fourier coefficient of @(x,-) by ¢, € C such that, for almost
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every x, there holds 4(z, o) = },, coe ™. We consider such a point z € W and
evaluate Frp(u) for u given by (A.3),

Zu(x + 27_[[) 6—i€27roz _ Z/a(l,’B) 6i€27r6 dﬁ 6—i€27roz
ez ez /1
= Z cre P = (2, a) .
ez
This shows, in particular, that Frg : L?(R) — L*(W x I) is surjective. We conclude
that Fpp is an isometry and that the inverse is given by (A.3).

We close this section with a simplified formula for Fr. When (-, 3) is interpreted
as a [-quasiperiodic function on R, there holds @(x + 27k, 3) = a(z, 8)e**™8 for
every k € Z. With this extension of u(-, 5), formula (A.3) for the inverse yields, for
arbitrary y =  + 27k € R,

(A4) u(y) = / iy, B)dB

APPENDIX B. EVALUATION OF A COMPLEX INTEGRAL

This appendix deals with an integral that appears in an inverse Floquet-Bloch
transformation, see (4.20). For the following calculations, £ > 0 is an arbitrary
number. We calculate

/€ ei‘ml. oy — /5 [cos(aury) + i sin(axy)][Aa + in] o
2202 + 2
€ € :
iy [ L0m) o oy [Cnlon)
o A’ +n 0o Aaf+7
where we used that the integral over odd integrands vanishes. Let us start with an
analysis of the first term, using the substitution oo = ¢t n/|A|,

. [ cos(axy) 2in? (TN cos(tnay /| N)) 2 (=M cos(tnay /| )
2 52 & 2 P T 22z =T 2
o Mo+ Al Jo ?n® +n Al Jo 1+t
In the limit n — 0, we therefore find, for this term,
° cos(axy) 2i [~ 1 i
20 —da - — t=—.
], s Ao T+25 7
The convergence is uniform in x; on compact subsets of R. The second integral
satisfies, as n — 0,

—&

dt .

20\/5%@5% 2i [* sin(ar;) dov — 2 [ Smtdt.
0o Aaf+n A Jo a Xt
We obtain, as n — 0,

° elem 2w [ 1 1 [ sint
B.1 do — — | = ign(A) — —dt| .
> /EM_“? Y [2+51gn()7r/0 '

The convergence is uniform with respect to |z;] < R for every R > 0.
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