
Stabilized discontinuous Galerkin methods for

solving hyperbolic conservation laws on grids with

embedded objects

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

Der Fakultät für Mathematik der

Technischen Universität Dortmund

vorgelegt von

Florian Streitbürger

im Mai 2023

Dissertation

Stabilized discontinuous Galerkin methods for solving hyperbolic conservation laws on grids

with embedded objects

Fakultät für Mathematik

Technische Universität Dortmund

Mitglieder der Prüfungskommission:

Erstgutachterin: Assoc. Prof. Dr. Sandra May

Zweitgutachter: Prof. Dr. Stefan Turek

Drittgutachter: Prof. Dr. Christian Engwer

Tag der mündlichen Prüfung: 28. August 2023

Abstract

This thesis covers a novel penalty stabilization for solving hyperbolic conservation laws
using discontinuous Galerkin methods on grids with embedded objects. We consider cut
cell grids, that are constructed by cutting the given object out of a Cartesian background
grid. The resulting cut cells require special treatments, e.g., adding stabilization terms. In
the context of hyperbolic conservation laws, one has to overcome the small cell problem:
standard explicit time stepping becomes unstable on small cut cells when the time step is
selected based on larger background cells.

This work will present the Domain of Dependence (DoD) stabilization in one and two
dimensions. By transferring additional information between the small cut cell and its neigh-
bors, the DoD stabilization restores the correct domains of dependence in the neighborhood
of the cut cell. The stabilization is added as penalty terms to the semi-discrete scheme.
When combined with a standard explicit time-stepping scheme, the stabilized scheme re-
mains stable for a time-step length based on the Cartesian background cells. Thus, the small
cell problem is solved.

In the first part of this work, we will consider one-dimensional hyperbolic conservation
laws. We will start by explaining the ideas of the stabilization for linear scalar problems
before moving to non-linear problems and systems of hyperbolic conservation laws. For
scalar problems, we will show that the scheme ensures monotonicity when using its first-
order version. Further, we will present an L2 stability result. We will conclude this part with
numerical results that confirm stability and good accuracy. These numerical results indicate
that for both, linear and non-linear problems, the convergence order in L• norm for smooth
tests is O(hp+1) when using polynomials of degree p.

In the second part, we will present first ideas for extending the DoD stabilization to two
dimensions. We will consider different simplified model problems that occur when using
two-dimensional cut cell meshes. An essential step for the extension to two dimensions
will be the construction of weighting factors that indicate how we couple the multiple cut
cell neighbors with each other. The monotonicity and L2-stability of the stabilized system
will be confirmed by transferring the ideas of the proof from one to two dimensions. We

v

vi ABSTRACT

will conclude by presenting numerical results for advection along a ramp, demonstrating
convergence orders of O(hp+1/2) to O(hp+1) for polynomials of degree p. Additionally, we
present preliminary results for the two-dimensional Burgers and Euler equations on model
meshes.

Acknowledgements

First and foremost, I express my deepest gratitude to my advisor, Professor Sandra May, for
the opportunity to participate in this project and for trusting me to be her first Ph.D. stu-
dent. Her guidance, attention to detail, and constructive feedback have been instrumental in
shaping my research and helping me overcome various challenges throughout my academic
journey. Sandra encouraged me and gave me the possibility to attend numerous conferences
and workshops, which allowed me to present and discuss my research in a scientific envi-
ronment, meet various interesting people, and grow professionally and personally. Above
all, I cannot thank Sandra enough for her mentorship and her continuous support.

I also sincerely thank Professor Christian Engwer for his invaluable contributions to my
scientific research and for collaborating with me over the past few years. His continuous
support and expertise with DUNE have been a great help and have allowed me to overcome
many challenges. Let me also express my gratitude to him for acting as a reviewer of this
thesis. Additionally, I would like to recognize his student Gunnar Birke for his important
contributions to this project.

Moreover, I would like to thank Professor Stefan Turek for not only laying the foundation
of my scientific education in the field of numerical methods for partial differential equa-
tions but also for creating a truly remarkable working atmosphere at the Institute of Applied
Mathematics at TU Dortmund University. I would also like to extend my appreciation to all
members of LSIII. Without them, this excellent working atmosphere would not have been
possible, and I feel genuinely privileged to have worked with such supportive colleagues.

A special thanks go to my office mates Hannes, Michael, Katharina, and Rida for all the
entertainment and emotional support. Thank you for not just being coworkers, but friends,
and for making the time in the office a memorable experience. Furthermore, I would like to
thank Dr. Christoph Lohmann for always offering his help and proofreading this thesis.

In addition, financial support by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 439956613 (Hypercut) is gratefully acknowledged.

vii

viii ACKNOWLEDGEMENTS

Finally, I would like to thank my friends, especially Linus and Fabian, and my family,
including my parents, Heike and Friedhelm, my two brothers, Bastian and Philipp, and my
grandmother Gisela. Thank you for celebrating my achievements and milestones with me
and for being a constant source of motivation and inspiration.

Lastly, I would like to thank Hanna for being my partner and best friend, for her endless
love, and for enriching my life in countless ways.

Dortmund, May 2023

Florian Streitbürger

Statement of Authorship

This thesis contains sections that were completed in collaboration and have been published
in journals. These include:

[25] C. Engwer, S. May, A. Nüßing, and F. Streitbürger. A stabilized dG cut cell method
for discretizing the linear transport equation. SIAM J. Sci. Comput., 42(6):A3677–
A3703, 2020

[62] S. May and F. Streitbürger. DoD stabilization for non-linear hyperbolic conservation
laws on cut cell meshes in one dimension. Appl. Math. Comput., 419, 2022

[76] F. Streitbürger, G. Birke, C. Engwer, and S. May. DoD stabilization for higher-order
advection in two dimensions. In Melenk et al. [63]

Chapter 3 is largely based on [62], while parts of Chapter 4 are based on [25] and [76].

ix

x STATEMENT OF AUTHORSHIP

LIST OF FIGURES

List of Figures

1.1 Cut cell grid for real-world application . 1
1.2 Example of cut cell grid for airfoil . 2

2.1 Linear advection equation and characteristics 15
2.2 Problematic characteristic setups . 16
2.3 [56] Domain of dependence and range of influence. 27
2.4 Discontinuous Galerkin ansatz functions 29
2.5 CFL time step restriction . 35
2.6 Unlimited and limited numerical solution 38
2.7 Construction of a cut cell mesh . 39
2.8 Model problem MP . 40
2.9 Characteristics for the model problem . 42
2.10 Numerical example for the small cell problem in 1D 43
2.11 Different setups of two-dimensional anisotropic grids 44

3.1 Model problem in 1D . 47
3.2 Parts of the domain of dependence of cell k2 50
3.3 Model problem in 1D for h-box stabilization 53
3.4 Sketch of the extension operator . 56
3.5 Sketch of the extended jump . 57
3.6 Eigenvalue distribution for different cut cell meshes 58
3.7 Modified model problem for numerical tests in 1D 62
3.8 Convergence results for advection in 1D 63
3.9 Eigenvalue distribution for different ansatz orders 65
3.10 Sketch of the extended jump in the non-linear case 68
3.11 Convergence results for Burgers equation in 1D 76
3.12 Stability test for Burgers equation in 1D 77
3.13 Convergence results for Euler equations in 1D 78

LIST OF FIGURES xi

xii LIST OF FIGURES

3.14 Sod shock tube test for piecewise constant polynomials 79
3.15 Sod shock tube test for piecewise linear polynomials 80

4.1 Examples of complex cut cell grids . 82
4.2 Three model problems in two dimensions 83
4.3 Model problem: Ramp geometry and zoom into triangular cut cell 86
4.4 Setup for Cartesian cells . 90
4.5 Convergence tests for ramp geometry . 94
4.6 Model problem: Artificial cut through a square 96
4.7 Triangular cut cell with two inflow neighbors 97
4.8 Triangular cut cell . 104
4.9 Smooth curve for convergence test of Burgers equation in 2D 107
4.10 Riemann problem for Burgers equation in 2D 109
4.11 Model problem: Anisotropic grid . 110
4.12 Example of small cell in anisotropic grid 110
4.13 2D setup of vortex advection . 112
4.14 Convergence tests for vortex advection . 113

LIST OF TABLES

List of Tables

1.1 Symbols regarding the physical domain 7
1.2 Symbols regarding the discretization of the problem 8
1.3 Sets and norms . 8
1.4 Symbols regarding the DoD stabilization 9

4.1 Convergence tests for Burgers equation in 2D 108

LIST OF TABLES xiii

xiv LIST OF TABLES

CONTENTS

Contents

Abstract v

Acknowledgements vii

Statement of Authorship ix

1 Introduction 1

2 Theoretical and numerical aspects of hyperbolic conservation laws 11

2.1 Theory of hyperbolic conservation laws 11
2.1.1 Scalar equations . 12
2.1.2 Systems of equations . 20

2.2 Numerical discretization of the problem 27
2.2.1 Discretization of the domain . 27
2.2.2 Discontinuous Galerkin method 29
2.2.3 Numerical flux function . 31
2.2.4 Time-stepping schemes . 32
2.2.5 Desirable theoretical properties 36
2.2.6 Limiter . 37

2.3 The cut cell approach . 39
2.3.1 Small cell problem in one dimension 40
2.3.2 Small cell problem in two dimensions 43

3 DoD Stabilization in one dimension 47

3.1 Formulation for linear scalar problems . 47
3.1.1 Piecewise constant polynomials 48
3.1.2 Higher-order polynomials . 55
3.1.3 Numerical results . 62

3.2 Extension to non-linear systems of conservation laws 65

CONTENTS xv

xvi CONTENTS

3.2.1 Piecewise constant polynomials 65
3.2.2 Higher-order polynomials . 68
3.2.3 Choice of parameters . 69
3.2.4 Numerical results . 74

4 DoD Stabilization in two dimensions 81

4.1 Preparations for the cut cell approach in two dimensions 82
4.1.1 Cut cells in 2D . 82
4.1.2 DUNE software package . 84

4.2 Formulation for linear scalar problems . 84
4.2.1 Ramp geometry . 85
4.2.2 Cut cells with multiple inflow and outflow edges 95

4.3 Extension to non-linear systems of conservation laws 101
4.3.1 Scalar case for artificial cut grid 101
4.3.2 Preliminary results for system case on an anisotropic grid 109

5 Conclusions and Outlook 115

1
Introduction

Motivation

In recent years, technology has advanced to the point where it is possible to simulate com-
plex real-world applications as shown in Figure 1.1. Such complex geometries can make
the meshing process a very challenging task. The standard way of constructing body-fitted
meshes for these problems is to use an unstructured triangularization. Although unstruc-
tured meshes can be more flexible than structured meshes, they also have some challenges
that must be considered. The construction of an unstructured mesh that matches the ge-

Figure 1.1: Left: Simulation of an SLS rocket from the NASA Artemis project. Right: Part
of corresponding cut cell mesh for the rocket generated using the Cart3D software.1

1Picture taken from Cart3D website https://www.nas.nasa.gov/publications/software/docs/cart3d/

1

https://www.nas.nasa.gov/publications/software/docs/cart3d/

CHAPTER 1. Introduction

ometry of the problem domain is a challenging task and can therefore be difficult and time-
consuming, especially for complex geometries. In addition, adapting the unstructured grid
to changes in the problem domain can be challenging, requiring advanced algorithms and
the manipulation of complex data structures.

Figure 1.2: Example of a cut cell grid for an airfoil in two dimensions. The cut cells are
highlighted in grey near the embedded boundary.2

An alternative way of constructing an accurate mesh for these complex problems is given
by so-called cut cell meshes or embedded boundary meshes. These approaches can be a
powerful tool to handle the complicated meshing process in numerical simulations. One of
its most significant benefits is that the construction of cut cell meshes is fairly straightfor-
ward and does not require advanced computational costs. The details of how the embedded
geometry is represented vary. We will focus on the following approach: We consider a
Cartesian background mesh and cut out the given geometry of the problem resulting in a cut
cell mesh, as illustrated in Figure 1.2. Where the object intersects the background cells, this
results in so-called cut cells, which accurately represent the boundary of the given problem
without requiring complicated meshing procedures. These cut cells are highlighted in gray
in Figure 1.2. Away from the cut boundary the resulting cut cell mesh consists of Cartesian
cells, which have valuable benefits. Cartesian grids usually improve accuracy due to the
cancellation of error terms. In addition, Cartesian grids are more efficient in grid generation
and more variable in the choice of applicable methods. We emphasize that Cartesian grids
are generally more memory-efficient than unstructured meshes, and their regular structure
makes them well-suited for parallel computing. Finally, the resulting meshes can easily be
combined with adaptive mesh refinement (AMR) compared to unstructured meshes.

2Coordinates of airfoil taken from https://m-selig.ae.illinois.edu

2

https://m-selig.ae.illinois.edu

1.0.

All the benefits mentioned above make cut cell grids an excellent choice when solving
complex problems in practice, but there are also some drawbacks that we want to address
here. The problems that arise when using cut cell grids are caused by the cells at the cut
boundary. The major downside about these approaches is that cut cells can become arbitrar-
ily small. In addition, they will have cell sizes that differ by several magnitudes and have
various shapes, resulting in stability issues that must be resolved. These stability issues typi-
cally differ depending on which equations are solved. As a result, different approaches have
been developed to handle these problems.

Cell merging

One approach that deals with small cut cells in general and independent of the given equation
are so-called cell agglomeration or cell merging methods [52, 66, 68, 71]. Cell merging
solves the issues induced by the small cut cells geometrically. It combines small cut cells
with adjacent cells to eliminate cells that are too small and their associated instabilities.
However, as these methods reintroduce complexity to the mesh generation process and can
become involved in higher spatial dimensions, they will not be considered here. We want to
keep the cut cell mesh unchanged and solve the stability issues algebraically.

Elliptic and parabolic problems

In the context of algebraic solutions, we must distinguish between the different types of
equations. When considering elliptic and parabolic partial differential equations (PDEs), the
main issue that one has to deal with are ill-conditioned systems. One of the most prominent
approaches in this setting is the ghost penalty stabilization [12, 13]. The idea is to add jump
penalty terms to the formulation to regain the coercivity of the method on small cut cells.
As a result, upper bounds for the condition number of the system can be found.

Small Cell Problem

This work will focus on hyperbolic PDEs, specifically time-dependent hyperbolic conserva-
tion laws. The arising problems differ compared to the ones for elliptic and parabolic PDEs.
The biggest problem here is the small cell problem. The cause of this problem is that we
want to use explicit time-stepping schemes for the temporal discretization. Implicit time-
stepping schemes can be computationally too expensive for non-linear equations, which is
why we avoid using them. To ensure stability, the time step size of the explicit time-stepping
schemes must be chosen based on the smallest cell (in flow direction). This would result in
an uncontrollable small time step size on a cut cell mesh. This is neither feasible nor what
we want. Instead, we choose the time step based on the cell size of the background mesh.
This requires to develop special schemes for small cut cells and their neighbors.

3

CHAPTER 1. Introduction

Hyperbolic approaches

Finite volume (FV) and discontinuous Galerkin (DG) methods are typically used to solve
hyperbolic conservation laws. While using DG methods on cut cell meshes to solve hyper-
bolic conservation laws is relatively new, there is a long history of FV methods on cut cell
meshes. In what follows, we give a summary of existing cut cell approaches that have been
developed in the past decades.

One of the first approaches to tackle the small cell problem is given by the flux redistri-
bution method [15, 18]. The idea is to redistribute the flux difference in the neighborhood
of the small cut cell in a conservative way. This approach has been implemented in two and
three dimensions for practical applications, but it is only first-order accurate on the stabilized
cut cells.

Berger, Helzel, and LeVeque introduced in the early 2000s the so-called h-box method
[7, 8, 42]. The idea of the method is that the fluxes at the edges of the small cut cells
are computed by using the values from an artificially constructed cell of length h, which
corresponds to the length of a Cartesian cell. As a result, the numerical method updates
every cell in a physically acceptable way, leading to stability and good accuracy even in the
presence of small cut cells.

Another approach is given by the mixed explicit-implicit method. Here, the Cartesian
cells are treated with an explicit method, while an implicit method is used on the cut cells
to guarantee better stability. An essential aspect of this method is the switch between the
explicit and implicit time-stepping methods. May and Berger provide the flux bounding
approach [61], which could be implemented in three dimensions.

More recently, novel and promising methods have been published. Berger and Giuliani
proposed a new method called the state redistribution (SRD) method [6, 32], which is a
post-processing technique that is applied after each time step to gain a stable scheme.

In another recent approach, Kerkmann and Helzel extended the active flux method to the
setting of cut cell meshes [43, 48]. In contrast to other cut cell methods, the stability of the
scheme is automatically achieved as the active flux method works with exact evolution by
using the method of characteristics. At the moment, this approach is only able to solve the
advection equation on cut cell meshes because it lacks an approximate evolution operator
for non-linear equations.

Finally, Klein et al. propose a dimensionally split flux stabilization [34, 49]. The stabi-
lization is obtained by using information of the local geometry and the wave speed.

While finite volume methods have been widely used in hyperbolic problems for decades,
recent advancements in discontinuous Galerkin methods have shown promise for improving
the accuracy and efficiency of simulations of hyperbolic conservation laws. In what follows,
we will discuss the list of cut cell DG methods, which mainly consist of relatively novel
approaches.

4

1.0.

In the context of DG methods, different approaches rely on extending the ghost penalty
stabilization from the elliptic to the hyperbolic setting [29, 30, 39, 74, 75]. Most of these
methods focus on the conditioning problem of the system matrix, as in the elliptic case. Only
Fu et al. [29, 30] extend the ghost penalty stabilization to address the small cell problem,
which makes this approach more related to our case.

In a recent approach [47], Kaur and Hicken investigate how effective DG Difference
(DGD) methods are on cut cell meshes, and they conclude that, unlike traditional methods,
DGD methods do not face the typical conditioning problem for steady hyperbolic problems
on cut cell meshes.

A very promising approach is extending the state redistribution method to the DG setting
[31]. Like the FV approach, the SRD method is applied as a post-processing step. The SRD
method in the context of DG works in two dimensions and shows good numerical results.

Goal of this thesis

In this work, we will present and discuss the so-called Domain of Dependence (DoD) stabi-
lization, which is a novel penalty stabilization technique that solves the small cell problem
and comes with valuable theoretical properties. Our approach to an algebraic solution is
to add a jump penalty term to the semi-discrete formulation. We start with a standard DG
discretization in space given by: Find u

h in a function space V p
h such that

⇣
dtu

h(t),wh
⌘

L2(W)
+ah

⇣
u

h(t),wh
⌘
= 0, 8 w

h 2V p
h . (1.1)

We then modify this formulation by adding a penalty term Jh(·, ·) to obtain the following
stabilized semi-discrete formulation: Find u

h 2V p
h such that

⇣
dtu

h(t),wh
⌘

L2(W)
+ah

⇣
u

h(t),wh
⌘
+ Jh

⇣
u

h(t),wh
⌘
= 0, 8 w

h 2V p
h . (1.2)

By using the new stabilized semi-discrete formulation together with an explicit time-
stepping scheme, we can choose a time step size based on regular-sized Cartesian cells
and avoid the small cell problem. Furthermore, we will show that the stabilized scheme
preserves several theoretical and numerical properties: For the first-order version, we ob-
tain a monotone scheme independent of the size of the small cut cell. Additionally, we can
show L2 stability in the semi-discrete setting for arbitrary polynomial degrees p, and our
numerical results demonstrate convergence orders of p+1 for smooth solutions and robust
behavior for problems involving shocks.

5

CHAPTER 1. Introduction

Structure of thesis

In Chapter 2, we will start with summarizing general theory regarding hyperbolic conser-
vation laws, which will be important throughout this work. Next, we will describe the
numerical discretization approach used to solve the given problem and discuss the essential
ingredients involved in the spatial and temporal approximation. At the end of this chapter,
we will discuss cut cell grids and examine the small cell problem more closely.

In Chapter 3, we will introduce the DoD stabilization for the one-dimensional case. First,
we will discuss the ideas of the DoD stabilization using the linear advection equation. Af-
ter that, we will extend these ideas in the one-dimensional case to non-linear equations and
systems of conservation laws, including the compressible Euler equations. We will con-
clude this chapter by investigating the stability and accuracy of the stabilized method with
numerical tests in one dimension.

Finally, we will adapt the ideas we developed in one dimension to the two-dimensional
case in Chapter 4. This involves some effort, as the cut cells differ significantly between one
dimension and higher spatial dimensions. Additional features provided by higher spatial
dimensions, e.g., an infinite number of propagation directions, need to be considered here.
We will present initial numerical results for this extension to assess stability and the potential
for high accuracy.

We conclude this thesis with an outlook and a discussion of potential areas for future
research.

6

Notation

Symbol Description

d Spatial dimension
m Number of equations
x Spatial variable in 1 dimension
x Spatial variable in d dimensions
t Temporal variable
T Final time
f Flux in 1d
f Flux in Rd⇥m

u Conserved variable
u Vector of conserved variables
b Velocity field
W Domain
∂W Boundary of domain
Gin Inflow boundary
n Normal vector of boundary
g Inflow boundary condition
s Source term
gx Characteristic curve
U Entropy function
F Entropy flux
(U,F) Entropy pair
A Jacobian matrix of flux f

li Eigenvalues of the Jacobian matrix and the hyperbolic problem
L Diagonal matrix consisting of eigenvalues li
ri Right eigenvectors of Jacobian matrix
R Matrix containing right eigenvectors
v Characterstic variables
n CFL constant

Table 1.1: Symbols regarding the physical domain

7

CHAPTER 1. Introduction

Symbol Description

E Cell
e Edge
ne Normal vector of edge e
Dt Time step size
tn nth time step
Gint

h Set of internal edges
Gext

h Set of boundary (external) edges
G Set of all edges
V p

h Finite-Element function space of piecewise polynomial functions
p Polynomial degree
wh Test function living in V p

h
J·Ke Jump on edge e
{{·}}e Average on edge e
H (ne, ·, ·) Numerical flux function on edge e
Mh Triangulation / Cut cell mesh
ah(·, ·) Standard semi-discrete operator
Sh(·, ·) Semi-discrete operator regarding source term s

Table 1.2: Symbols regarding the discretization of the problem

Symbol Description

C1(W) Space of continuously differentiable functions on W
C1

c (W) Space of C1(W) functions with compact support
Lp(W) Space of Lp Lebesgue-integrable functions on W
a ·b Scalar product of two vectors a,b 2 Rd

(·, ·)L2(W) Scalar product on the space L2(W)
k·kLp(W) Norm on the space Lp(W)

Table 1.3: Sets and norms

8

Symbol Description

Ek1 Small cut cell in 1D model problem
Ecut Small cut cell in 2D model problems
a Volume fraction of cut cell volume and Cartesian volume
aE Capacity of a cut cell E in 2D
h Cell length of Cartesian cell in 1D
Iequi Index set of all cells of length h in 1D
Iall Index set containing all cells in 1D
INeigh Index set containing small cut cell and its neighbors in 1D
Jh(·, ·) DoD Stabilization terms
J0

h(·, ·) DoD Stabilization edge terms
J1

h(·, ·) DoD Stabilization volume terms
Lext

E (·) Extension operator from cell E to whole domain
hk1 Stabilization parameter for cell k1
Ha(ne, ·, ·) Jacobian of numerical flux with respect to the first argument
Hb(ne, ·, ·) Jacobian of numerical flux with respect to the second argument
K,L,R Parameter matrices of DoD stabilization
I

m Identity matrix of size m⇥m
g Angle between cut and x-axis in 2D model problem
x0 Starting point of cut in 2D model problem
wi, j Weights coupling edge ei and edge e j in DoD stabilization term

Table 1.4: Symbols regarding the DoD stabilization

9

CHAPTER 1. Introduction

10

2
Theoretical and numerical aspects of hyperbolic

conservation laws

2.1. Theory of hyperbolic conservation laws

Time-dependent hyperbolic conservation laws are systems of partial differential equations
that describe processes in which physical quantities are neither created nor destroyed but
conserved. In practice, they are pretty versatile and are used in numerous scientific fields.
One of the most significant areas of application of conservation laws is aerodynamics or,
more generally computational fluid dynamics (CFD), where they are used to model and
predict the behavior of a fluid in complex geometries. In real-world applications, this can
be the flow around an object such as an aircraft or the blades of a turbine. The conserved
quantities in these settings are often the mass, the momentum, or the energy.

Another important application area of hyperbolic conservation laws is traffic modeling,
like road traffic or pedestrian flows. Traffic planning committees can use these models to
optimize the construction of roads and improve traffic light circuits. In addition, traffic
modeling can be used to predict the behavior of groups of pedestrians to improve safety at
large public events. For further information regarding the fields of application, we refer to
LeVeque [56, 57].

Following [44], we can derive the classical PDE for hyperbolic conservation laws in the
following way: We consider an arbitrary but fixed domain eW ⇢ W ⇢ Rd, d 2 {1,2} and a
conserved quantity Q which exists in W. This quantity Q at time t can be described with the
help of a density u as

Q(t) =
Z

eW
u(x, t)dx.

11

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

The total amount of Q in the fixed domain eW is conserved and can only be changed by
incoming or outgoing fluxes of Q across the boundary. This means that the rate of change of
the quantity Q is equal to the total flow of Q across the boundary. In a more mathematical
terminology using the flux function f, the temporal derivative ∂t and the unit outward normal
vector n, we can summarize this observation as:

∂t

Z

eW
u(x, t)dx =�

Z

∂eW
f(u) ·n ds. (2.1)

Here, a · b denotes the scalar product of a and b in Rd . We simplify equation (2.1) by
using the Gauss divergence theorem and by changing the order of integration in space and
differentiation in time to obtain:

Z

eW
(∂tu(x, t)+— · f(u))dx = 0.

Since the fixed domain eW is an arbitrary subset of W, we can neglect the integration to
receive the final equation (2.2) that holds true in W:

∂tu(x, t)+— · f(u) = 0. (2.2)

In general, one can classify hyperbolic conservation laws as linear or non-linear and
whether they are scalar equations or a system of equations. In what follows, we will first
introduce scalar conservation laws, which are often the first step when developing novel
numerical methods. We will discuss essential concepts such as the methods of character-
istics and different definitions of solutions. In the next section, we will cover systems of
hyperbolic conservation laws.

2.1.1. Scalar equations

Scalar hyperbolic conservation laws are given by

∂tu(x, t)+— · f(u(x, t)) = 0 in W⇥ (0,T) (2.3)

with a conserved variable u : Rd ⇥ (0,T)! R, d 2 {1,2} and a flux function f : R! Rd .
Furthermore, the spatial domain is given by W ⇢ Rd and the final time is denoted with
T 2 R+. At this point, we emphasize the notation that we will use in the course of this
work. From now on, we will use the non-bold notation for a variable z to indicate that this
variable is clearly a scalar. In contrast to this, we will use the bold notation for a variable z

that is a vector or for the case where the variable can be either a scalar or a vector.

12

We need to define initial data

u = u0 on W⇥{t = 0}

and boundary conditions at the inlet

u = g on Gin⇥ (0,T)

to complete the formulation. Here, we denote by n2Rd the outer unit normal vector on ∂W,
and by

Gin := {x 2 ∂W : ∂uf(u(x, t)) ·n(x)< 0} (2.4)

the inflow boundary of the domain.
For sufficiently smooth f and u we can rewrite equation (2.3) in the quasi-linear form

∂tu+
d

Â
i=1

∂u f i(u)∂xiu = 0 in W⇥ (0,T) (2.5)

with f i being the ith, i 2 {1, ...,d} component of f. Scalar equations are of significant
importance in the development of new numerical methods. Most of them have been studied
in the past extensively, and one can define exact solutions for them. Therefore, they can be
seen as an intermediate step for more advanced problems.

In what follows, we introduce two of the most common examples of scalar hyperbolic
conservation laws that we will use throughout this work.

Linear advection equation

The linear advection equation is one of the simplest examples of a linear scalar hyperbolic
conservation law. It is given by

∂tu+— · (bu) = 0 (2.6)

with the velocity field b = b(x, t). In all our cases, the velocity field must be solenoidal
— ·b = 0. In most cases, the velocity field will even be constant.

The linear advection equation is a good guide for developing new numerical methods.
The equation is easy to solve and theoretically well understood, but at the same time, it
shows essential properties of hyperbolic conservation laws. Therefore, the linear advection
equation provides a simple example for studying the mathematical properties of hyperbolic
conservation laws, such as the well-posedness and the stability of numerical methods.

In order to develop more complex models for practical applications, it is a convenient first
step to understand this simple example because it can offer insights into important physical
processes.

13

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

Burgers equation

The Burgers equation is a well-known non-linear scalar conservation law. The equation is
given by

∂tu+— ·
✓

1
2

u2
1

◆
= 0

with 1 = (1, ...,1)T 2 Rd . It is the fundamental model problem for non-linear hyperbolic
equations that is well understood. Nevertheless, it still shows key features of conservation
laws, like the generation of shocks and rarefaction waves, making it a valuable model for
studying fundamental phenomena when constructing new numerical methods.

Method of characteristics

The method of characteristics is a powerful tool to find exact solutions to hyperbolic conser-
vation laws. In this process, the scalar partial differential equation is rewritten into a system
of ordinary differential equations. For simplicity and a better visual understanding, we will
explain the method of characteristics using a scalar conservation law in 1D

∂tu+∂x(f (u)) = ∂tu+∂u(f (u))∂xu = 0 in W⇥ (0,T) (2.7)

u(x,0) = u0(x) on W⇥{0}. (2.8)

The idea is to find the solution u(x, t) at a given point x 2 W and a time t using a specific
curve gx0 that connects (x, t) with a starting point (x0,0) for some x0 = x0(x, t) 2 W. These
curves gx0 : (0,T)!W are called characteristics if they satisfy the special property that

∂tgx0(t) = ∂u f (u(gx0(t), t)). (2.9)

This property will guarantee that the solution u of (2.7) is constant along the curve gx0 , as
we can easily see:

d
dt

u(gx0(t), t) = ∂xu(gx0(t), t)∂tgx0(t)+∂tu(gx0(t), t)

= ∂xu(gx0(t), t)∂u f (u(gx0(t), t))+∂tu(gx0(t), t)
(2.7)
= 0

This implies that if we know the solution at (x0,0) (which is given by the initial data u0(x0)),
we know the solution along the characteristic curve gx0 that starts at x0. For a point (x, t) that
is connected to (x0,0) through gx0 , there holds

u(x, t) = u(x0,0) = u0(x0). (2.10)

14

x

u0(x)
T u(x,T)

x

t
1
b

Figure 2.1: Left: Linear advection equation with discontinuous hat function as initial data
(black) and solution at time T (red). Right: Corresponding characteristics in an x-t-diagram
with slope 1

b .

In general, we can use equations (2.9) and (2.10) to derive the following identity

gx0(t) = ∂u f (u0(x0))t + x0. (2.11)

This gives us a general classical solution to a scalar conservation law using x = gx0(t)

u(x, t) = u0(x�∂u f (u0(x0))t) = u0(x0).

The method of characteristic is useful to compute the exact solution for the two exam-
ples of scalar equations we have already presented. The characteristic curve for the linear
advection equation

∂tu+b∂xu = 0

and a given point x0 2 R can be described through the following ODE

∂tgx0(t) = b, gx0(0) = x0,

which has the solution g(t) = bt + x0. Thus, the exact solution can be computed by

u(x, t) = u0(x�bt).

In Figure 2.1, we show an example of transported mass with a positive velocity b > 0.

Analogously, we can find characteristic curves that describe the behavior of the one-
dimensional Burgers equation, which is given in quasi-linear form by

∂tu+u∂xu = 0.

15

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

x

t

x

t

Figure 2.2: Problematic characteristic setups for the one-dimensional Riemann problem:
Crossing characteristics (left) and diverging characteristics (right).

Once again, we consider a given point x0 2 R. For this equation, the characteristic curve
gx0(t) satisfies the ODE

∂tgx0(t) = u(g(t), t), gx0(0) = x0.

This means that the characteristics are linear straight lines whose slope is determined by
the initial data u0. The fact that the initial data determine the slopes of the characteristics
can lead to problems because the characteristics might cross or diverge. In Figure 2.2, two
examples of Riemann problems with problematic characteristic setups are given. At these
points, the solution is no longer well-defined. In the next section, we will discuss this in
more detail.

When solving real-world problems, it might be challenging to define proper characteris-
tics that lead us to the solution u. Nevertheless, the method of characteristics helps define
exact solutions to toy problems and can help to design new schemes like, e.g., the Active
Flux Method [27, 43, 48]. For further details about the method of characteristics, we refer
to the works of Lax and Dafermos [20, 55].

Weak solutions

One special feature of non-linear hyperbolic conservation laws is that solutions can form
shock waves in finite time even though the initial values are smooth. This is because char-
acteristics may cross, resulting in faster waves overtaking slower ones. The solution u(x, t)
has an infinite slope at this so-called breakup point. After this breakup point, a classical
solution to the conservation law does not exist anymore; thus, a more general concept is
needed. Therefore, we introduce the concept of weak solutions. Weak solutions must be
defined so that the continuity requirements are much less restrictive. For this purpose, we
define the functional space

C1
c (Rd⇥R+) =

n
w 2C1(Rd⇥R+) | w has a compact support in Rd⇥R+

o
.

16

We multiply equation (2.3) by a test function w 2C1
c (Rd⇥R+) and integrate in space and

time: Z •

0

Z

Rd
[∂tu+— · f(u)]wdxdt = 0 (2.12)

Furthermore, shifting the derivatives from the solution u and the flux function f to the test
function w using integration by parts, results in

Z •

0

Z

Rd
[u∂tw+ f(u) ·—w]dxdt =�

Z

Rd
u0(x)w(x,0)dx. (2.13)

Here, we used the given initial data u0 and the fact that w has compact support, and thus the
boundary terms vanish. Next, we can define the term weak solution.

Definition 1 (Weak solution). [33, Definition 2.1] A function u2 L1\L•(Rd⇥R+) is called
a weak solution of (2.3) if equation (2.13) holds for all test functions w 2C1

c (Rd⇥R+).

Weak solutions offer a more general perspective on the concept of solutions than classical
solutions that fulfill equation (2.3). This is because, for the existence of weak solutions,
the flux function f and the solution u itself do not need to be differentiable in the classical
sense. The downside of weak solutions is that they are not necessarily unique, and therefore
we need to define additional requirements to obtain the concept of a unique and physical
solution.

Entropy solutions

In this part, we roughly follow the book of Godlewski and Raviart [33].
The concept of additional diffusion is one way to address the problem of forming discon-

tinuities and crossing characteristics. We introduce the viscous regularization of the scalar
conservation law (2.3), which is given by the following PDE

∂tu+— · f(u) = eDu in Rd⇥R+,

u(x,0) = u0(x) in Rd
(2.14)

for a positive constant e > 0. As stated by Dafermos [20], it can be shown that problem
(2.14) is well-posed for a sufficiently regular flux function f and initial value u0. Conse-
quently, a smooth solution ue exists for every e > 0. If this sequence of smooth solutions
{ue}e>0 converges with lime!0 ue = u, we define u as the vanishing viscosity solution. One
can show [33, Theorem 3.3] that the vanishing viscosity solution is a weak solution of the
scalar conservation law

∂tu+— · f(u) = 0

u(x,0) = u0(x)

17

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

in the sense of Definition 1.

Next, let us consider a strictly convex function U = U(u). Additionally, we define the
following function

F(u) =
Z u

0
U 0(s)f0(s)ds (2.15)

for which we can show that F
0(u) = U 0(u)f0(u). These definitions provide the so-called

entropy pair (U,F) consisting of the entropy function U and the entropy flux F. Furthermore,
the expression U 0(u) is often referred to as the entropy variable. We take the entropy variable
U 0(u) and multiply it with equation (2.14)

U 0(u)∂tu+U 0(u)— · f(u) = eU 0(u)Du.

We use the regularity of the solution u and the flux function f and obtain

U 0(u)∂tu+U 0(u)
d

Â
i=1

∂u f i(u)∂xiu = eU 0(u)Du

which can be rewritten as

∂t(U(u))+
d

Â
i=1

∂uFi(u)∂xiu = eU 0(u)Du

, ∂t(U(u))+— ·F(u) = eU 0(u)Du.

Using
DU(u) =U 0(u)Du+U 00(u)|—u|2

we obtain
∂t(U(u))+— ·F(u) = eDU(u)� eU 00(u)|—u|2.

Next, we build the integral over an arbitrary finite domain eW ⇢ Rd and apply the Gauss
divergence theorem to obtain

Z

eW
∂t(U(u))+— ·F(u)dx =

Z

∂eW
eU 0(u)—u ·nds�

Z

eW
eU 00(u)|—u|2dx. (2.16)

For the limit e! 0 one can show that the first term on the right hand side in (2.16) vanishes.
The second term is a bit more tricky, since it does not necessarily converge to zero for a
discontinuous solution u as e! 0. In this case we can use the assumption that U is a convex
function, which means that U 00 > 0. This gives us in summary

Z

eW
∂t(U(u))+— ·F(u)dx 0. (2.17)

18

Since equation (2.17) holds for an arbitrary eW, we obtain the final entropy inequality

∂t(U(u))+— ·F(u) 0. (2.18)

We can use these observations to define the concept of an entropy solution.

Definition 2 (Entropy solution). [33, Definition 3.2] A function u is an entropy solution of
(2.3) for a given initial data u0 2 L1\L•(Rd) if

1. u 2 L1\L•(Rd⇥R+)

2. u is a weak solution in the sense of Definition 1

3. for all test functions f 2C1
c (Rd⇥R+)) with f� 0 and for all entropy pairs (U,F), u

satisfies Z

Rd⇥R+

(U(u)∂tf+F(u) ·—f)dxdt � 0. (2.19)

Note that inequality (2.19) must hold for every entropy pair. This can become an involved
task since, for scalar conservation laws, every convex function is an entropy function. As a
result, more convenient concepts have been developed to show the existence of an entropy
solution like the Kruzkov entropy pairs [53].

For entropy solutions, one can prove several valuable properties. First of all, one can
show that the entropy solution of a conservation law is unique [44]. Furthermore, we can
use the entropy inequality to derive bounds on the entropy solution: We integrate the entropy
inequality (2.18) over Rd⇥ (0, t) and assume compact support of the solution to obtain:

d
dt

Z t

0

Z

Rd
U(u)dxdt 0.

The fundamental theorem of calculus gives
Z

Rd
U(u(x, t))dx

Z

Rd
U(u0(x))dx. (2.20)

For the particular choice of U(u) = 1
2u2, we can derive from (2.20) an L2 stability estimate

for the entropy solution u.

Finally, one can show that the vanishing viscosity solution u = lime!0 ue from above is
not only a weak solution but also an entropy solution [33].

19

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

2.1.2. Systems of equations

Although scalar equations are of great help when developing new methods, the goal of
this work is to solve time-dependent systems of conservation laws in one and two space
dimensions. These are given by

∂tu+
d

Â
i=1

∂xif
i(u) = 0 in W⇥ (0,T). (2.21)

Here, u : Rd ⇥ (0,T)! Rm,d 2 {1,2},m 2 N is a vector of m conserved quantities and
f
i : Rm ! Rm, i 2 {1, ...,d}, are the flux functions. To complete the formulation, we need

to define the initial data

u = u0 on W⇥{t = 0}

and boundary conditions at the inlet boundary Gin

u = g on Gin⇥ (0,T).

Compared to the scalar case (2.4), it is more difficult to define the inlet boundary and the
boundary conditions in general for systems of hyperbolic conservation laws. According to
Dolejšı́ and Feistauer [22], the theory of well-posed boundary conditions in multidimen-
sional problems is still an open problem and current research. In this work, we discuss the
choice of boundary conditions in the corresponding chapters of the numerical results.

For each flux function f
i, i 2 {1, ...,d}, we can define the m⇥m Jacobian matrix

A
i(u) =

0

BB@

∂u1 f i
1(u) · · · ∂um f i

1(u)
...

∂u1 f i
m(u) · · · ∂um f i

m(u)

1

CCA . (2.22)

Under the assumption that u and f are differentiable, we can rewrite equation (2.21) by
applying the chain rule to receive the quasi-linear form

∂tu+
d

Â
i=1

A
i(u)∂xiu = 0. (2.23)

We use the quasi-linear form (2.23) to define the concept of hyperbolicity.

Definition 3 (Hyperbolicity). [57, Definition 18.1.] We call the system (2.23) hyperbolic if
for all n1, . . . ,nd 2 R the matrix A(u) = Âd

i=1 niA
i(u) is diagonizable with only real eigen-

values l j(u), j 2 {1, ...,m}.

20

In this work, we will consider the Euler equations as a well-known example of a system
of hyperbolic equations. As a first step towards the Euler equations, we will start with a
discussion of linear systems of conservation laws.

Linear system

A linear system is the simplest form of a system of conservation laws. It is given by

∂tu+
d

Â
i=1

A
i∂xiu = 0,

with A
i being constant matrices. Let us take a closer look at the one-dimensional problem

which is given by (neglecting the index i = 1)

∂tu+A∂xu = 0. (2.24)

Since we are considering hyperbolic problems, we know that there exist m real eigenvalues
l1, ...,lm with corresponding eigenvectors r1, ...,rm. Without loss of generality in this work,
we will assume that l1  ...  lm. Moreover, we define the diagonal matrix L, which
diagonal elements are the eigenvalues of A, and the matrix R, which columns are the right
eigenvectors of A, as

L =

2

664

l1
. . .

lm

3

775 and R =
h
r1|...|rm

i
. (2.25)

Thus, this gives us the following relation

AR = RL. (2.26)

This relation leads to the decomposition of the Jacobian matrix

A = RLR
�1, (2.27)

which can be used to rewrite the given problem (2.24) (using that R is a constant matrix)
into

∂tu+A∂xu = 0

, ∂tu+RLR
�1∂xu = 0

, ∂t(R
�1

u)+L∂x(R
�1

u) = 0.

21

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

Introducing the characteristic variables v = R
�1

u we can reformulate the linear system
(2.24) in the characteristic form:

∂tv+L∂xv = 0. (2.28)

This representation can be interpreted as a decoupled system of m scalar advection equations
with different wave speeds li. These linear advection equations can then be solved indepen-
dently from each other. We solve these linear advection equations by using the method of
characteristics. For the corresponding initial values, we can do the transformation

v0(x) = R
�1

u0(x).

Then the solutions of (2.28) are given by

vi(x, t) = vi,0(x�lit), i = 1, ...,m. (2.29)

If we use once again the definition of the characteristic variables, we specify the analytical
solution of the initial problem (2.24):

u(x, t) =
m

Â
j=1

v j(x, t)r j =
m

Â
j=1

v j,0(x�l jt)r j. (2.30)

Therefore the final solution is a linear combination of m waves traveling at the characteristic
speeds l1, ...,lm.

Next, let us try to extend the above ideas to the two-dimensional case of a linear system,
which can be formulated as

∂tu+A∂xu+B∂yu = 0. (2.31)

Note that we use the notation A
1 = A and A

2 = B. In this setting, the equations can only be
decoupled for the particular case of commutative matrices AB = BA, in which the matrices
A and B share a common eigenvector basis R. Then, we can decompose the two matrices

A = RLxR
�1 and B = RLyR

�1 (2.32)

with the two corresponding diagonal matrices Lx and Ly consisting of the eigenvalues of A

and B. We can once again define the characteristic variables as v = R
�1

u and rewrite the
linear system (2.31) into the decoupled system

∂tv+Lx∂xv+Ly∂yv = 0. (2.33)

This system can be solved analogously to the one-dimensional case to obtain an analytical
solution for the two-dimensional linear system.

22

Let us now consider the general case of non-commutating matrices AB 6= BA. Then the
matrices A and B are not simultaneously diagonalizable, and we are only able to diagonalize
them separately into

A = RxLxR
�1
x and B = RyLyR

�1
y . (2.34)

Consequently, it is impossible to decouple these systems in the above way. The multidimen-
sional acoustics equation is a well-known example of a system where the matrices A and B

are not simultaneously diagonalizable. This leads to waves that can propagate information
in infinitely many possible directions, which results in a significantly more complex solution
process.

Compressible Euler equations

The Euler equations combine the conservation laws of mass, momentum, and energy. We
will first look at the one-dimensional Euler equations and discuss their basic structure before
getting to the two-dimensional case.

The one-dimensional Euler equations can be written as

∂tu+∂xf(u) = 0 (2.35)

with the vector of conserved variables u and the flux function f given by

u =

2

64
u1

u2

u3

3

75=

2

64
r

ru
E

3

75 , f(u) =

2

64
ru

ru2 + p
u(E + p)

3

75 . (2.36)

Here, r is the density, u is the velocity, E is the energy, and p is the pressure. To complete
the system of Euler equations, we need to introduce the equation of state, which is given for
an ideal gas by

E =
p

g�1
+

1
2

ru2 (2.37)

with the adiabatic gas constant g. In this work, we choose g = 1.4. We can rewrite equation
(2.37) to obtain a formula for the pressure

p = (g�1)
✓

E� 1
2

ru2
◆
. (2.38)

Furthermore, we introduce the speed of sound a as

a =

r
gp
r

(2.39)

23

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

and the total specific enthalpy as

H =
E + p

r
. (2.40)

We can now rewrite the Euler equations in the quasi-linear form

∂tu+A(u)∂xu = 0 (2.41)

with the Jacobian matrix

A(u) =

2

6664

0 1 0
1
2(g�3)

⇣
u2
u1

⌘2
(3� g)

⇣
u2
u1

⌘
g�1

� gu2u3
u2

1
(g�1)

⇣
u2
u1

⌘3 gu3
u1
� 3

2(g�1)
⇣

u2
u1

⌘2
g
⇣

u2
u1

⌘

3

7775
. (2.42)

The Jacobian matrix may be written in the more convenient form expressed in terms of the
total specific enthalpy H and the particle velocity u

A(u) =

2

64
0 1 0

1
2(g�3)u2 (3� g)u g�1

1
2(g�1)u3�uH H� (g�1)u2 gu

3

75 . (2.43)

We emphasize that matrix A(u) now depends explicitly on the solution u. Using basic
calculus, one can show the following proposition.

Proposition 1. [78, Proposition 3.5] The Jacobian matrix has real eigenvalues

l1 = u�a, l2 = u, l3 = u+a (2.44)

with the corresponding right eigenvectors

r1 =

2

64
1

u�a
H�ua

3

75 , r2 =

2

64
1
u

1
2u2

3

75 , r3 =

2

64
1

u+a
H +ua

3

75 . (2.45)

In addition to the conservative representation of the Euler equations given by (2.35) and
(2.36), there are also non-conservative representations. We emphasize that the conservative
and non-conservative formulations are equivalent for a smooth solution, whereas they are
not for a solution containing shock waves. If the solution contains discontinuous shock
waves, the non-conservative formulation returns incorrect solutions. Nevertheless, there are
good reasons also to pay attention to the non-conservative schemes as they have advantages
in some cases over their conservative counterpart.

24

By using the equation of state (2.37), we rewrite the Euler equations in its primitive form

∂tv+A(v)∂xv = 0, (2.46)

with

v =

2

64
r
u
p

3

75 , A(v) =

2

64
u r 0
0 u 1

r
0 ra2 u

3

75 . (2.47)

The primitive variables density r, velocity u, and pressure p are intuitively more informative.
Thus, the numerical results of Euler equations are often presented in primitive variables,
although the calculation was made initially in conservative variables. In some cases, the
primitive formulation can provide a better insight into the theory of Euler equations, e.g.,
in analyzing the different waves of the solution of the Riemann problem [78]. Finally,
there are situations where the numerical solution of a non-conservative scheme yields better
results than its conservative counterpart [46]. In addition to the conservative and primitive
variables, there are other approaches to represent the Euler equations, which can be found
in Toro [78].

Next, we turn to the two-dimensional system of Euler equations that are given in the
conservative form by

∂tu+∂xf
1(u)+∂yf

2(u) = 0 (2.48)

with

u =

2

66664

r
ru
rv
E

3

77775
, f

1(u) =

2

66664

ru
ru2 + p

ruv
u(E + p)

3

77775
, f

2(u) =

2

66664

rv
ruv

rv2 + p
v(E + p)

3

77775
. (2.49)

The equation of state in the two-dimensional case is given by

E =
p

g�1
+

1
2

r(u2 + v2). (2.50)

One crucial property of the two-dimensional Euler equations is its rotational invariance. To
further explain this attribute, we need to express the unit outward vector n = (n1,n2)> of
a two-dimensional surface S using the angle q that is formed by the x-axis and the normal
vector itself. In other words

n = (cos(q),sin(q))>. (2.51)

Proposition 2. [78, Proposition 3.15] For all angles q 2 [0,2p] and all vectors u 2 R4 one
can show

cos(q)f1(u)+ sin(q)f2(u) = T
�1

f
1(Tu) (2.52)

25

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

using the rotation matrix T = T(q) which is given by

T =

2

66664

1 0 0 0
0 cos(q) sin(q) 0
0 �sin(q) cos(q) 0
0 0 0 1

3

77775
. (2.53)

For the proof, we refer to Toro [78]. Note that the term on the left side of equation (2.52)
can be interpreted as the integrand of the surface integral

Z

S

(f1, f2)T ·n ds =
Z

S

cos(q)f1(u)+ sin(q)f2(u) ds.

The rotational invariance can be helpful for computational purposes to deal with domains
that are not aligned with the x-axis or y-axis. Furthermore, it is sufficient to only check
the Jacobian matrix in x-direction regarding the hyperbolicity of the system. The Jacobian
matrix A

1(u) = A(u) for the corresponding flux in x-direction f
1(u) is given by

A(u) =

2

66664

0 1 0 0
(g�1)1

2V
2�u2 (3� g)u �(g�1)v g�1

�uv v u 0
u
�
(g�1) 1

2V
2�H

�
H� (g�1)u2 �(g�1)uv gu

3

77775
(2.54)

with the specific kinetic energy 1
2V

2 = 1
2
�
u2 + v2�.

Once again, one can show that the Euler equations in two dimensions are hyperbolic by
computing the eigenvalues and eigenvectors.

Proposition 3. [78, Proposition 3.14] The Jacobian matrix A(u) has the real eigenvalues

l1 = u�a, l2 = l3 = u, l4 = u+a (2.55)

with the corresponding eigenvectors

r1 =

2

66664

1
u�a

v
H�ua

3

77775
, r2 =

2

66664

1
u
v

1
2V

2

3

77775
, r3 =

2

66664

0
0
1
v

3

77775
, r3 =

2

66664

1
u+a

v
H +ua

3

77775
. (2.56)

For further information regarding the Euler equations, we refer to Toro [78]. We conclude
our theoretical discussion of hyperbolic conservation laws by introducing the concept of the
domain of dependence (DoD) and range of influence (RoI).

26

x = x+lmax tx =
x�

lmax
t
(x, t)

D(x, t)
x0

Figure 2.3: [56] Domain of dependence and range of influence.

Domain of dependence and range of influence

Following Leveque [57], we can use the method of characteristics to introduce two important
concepts: the domain of dependence and the range of influence. Thanks to the method of
characteristics, we know that the solution at a given point (x̄, t̄) is determined by the data
in some finite set D ⇢ Rd around the point x̄. This set can be bounded by the maximum
eigenvalue that denotes the maximum wave speed lmax, through D ⇢ {x : |x� x̄| lmaxt̄}.
We emphasize that the size of the set increases with progressive time. This set D is called
the domain of dependence. Analogously we can define the range of influence for a point
x0 as the set of points whose domains of dependence overlap with x0 [57]. See Figure 2.3
for an illustration. These definitions allow us to conclude that for hyperbolic equations, the
maximum speed of propagating information is bounded by lmax and, therefore, finite.

We note that this work can only treat the tip of the iceberg with respect to the theory
of hyperbolic conservation laws. For a good overview and a deeper insight into the basic
principles regarding hyperbolic conservation laws, we refer to [20, 56, 57, 78].

2.2. Numerical discretization of the problem

In what follows, we will introduce aspects of the discretization for numerically solving the
given problem

∂tu+
d

Â
i=1

∂xif
i(u) = 0 in W⇥ (0,T). (2.57)

In this scope, we will discuss both the spatial and temporal discretization in one and two
dimensions. If a distinction between the one-dimensional and the two-dimensional case is
necessary, we will highlight this explicitly.

2.2.1. Discretization of the domain

In this section, we will introduce the notation for the discretization of a domain in the case
of a general unstructured grid. This is consistent with our plan to use cut cell grids later
since cut cell grids can be interpreted as a special case of unstructured grids.

27

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

We consider an open, connected, polygonal domain W⇢ Rd with d 2 {1,2}. For numer-
ical computations, we need to discretize the domain W by using a triangulation Mh. This
triangulation is given by a (possibly unstructured) grid consisting of cells E 2Mh.

One-dimensional case

In one dimension, we assume without loss of generality that the domain is given by W =

(0,1). We divide W in N cells E j = [x j� 1
2
,x j+ 1

2
], j 2 {1, ...,N} with cell lengths Dx j =

x j+ 1
2
� x j� 1

2
. For a more convenient and consistent setup between one and two dimensions,

we define edges between two cells as

e j+ 1
2
= eE j,E j+1 = E j\E j+1 = x j+ 1

2
.

Furthermore, we define the set of internal and external edges as

Gint
h =

n
e j+ 1

2
j 2 {1, ...,N�1}

o
, (2.58)

Gext
h =

�
e 1

2
,eN+ 1

2

= {0,1} . (2.59)

We note that the elements of the set of external edges are defined by the intersection of a
cell E 2 Mh with the boundary ∂W. We introduce this unusual and overkill notation for
one-dimensional edges to allow later a common spatial and temporal discretization of the
given problem for one and two dimensions. However, in 1D, we will use the more natural
notation in numerical methods and refer to ‘cell j’ and associate faces with the coordinate
‘x j±1/2’ instead of using ‘cell E’ or ‘cell E j’ or faces ‘e j±1/2’. Despite the initial lack of
clarity regarding the definition of an outer normal nE j in 1D, we still define it here. The
outer normal vector in 1D is a scalar. At the left edge xk� 1

2
it has the value n = �1, and at

the right edge xk+ 1
2

the value n = 1.

Two-dimensional case

In the two-dimensional case, there is no natural order of cells, which means that we drop the
index j here. The mesh cells E have different polygonal shapes, e.g. they are triangular or
quadrilateral. We define the edge between two elements E and E 0 as

eE,E 0 = E \E 0. (2.60)

The internal and external skeletons of the partitioning are given by

Gint
h =

�
eE1,E2

�� E1,E2 2Mh and E1 6= E2 and |eE1,E2 |> 0

, (2.61)

Gext
h =

�
eE = ∂E \∂W

�� E 2Mh and |eE |> 0

, (2.62)

28

with |e| denoting the length of an edge e. In addition, we define the set of all edges

G = Gint
h [Gext

h . (2.63)

Finally, we define the unit outward vector pointing from cell E to cell E 0 as nE,E 0 .

2.2.2. Discontinuous Galerkin method

We discretize the system of equations (2.57) using a Runge-Kutta discontinuous Galerkin
(RKDG) approach. An RKDG method is based on the method of lines approach. This means
that we first discretize in space using the discontinuous Galerkin methodology. Afterwards,
we will apply a suitable explicit Runge-Kutta time-stepping scheme to solve the resulting
system of ODEs. We start with the space discretization:

The idea of the DG approach is the same as for a classical Finite-Element-Method (FEM)
approach: The numerical solution uh of the equation is represented on different cells E as
a linear combination of functions from a particular function space Vh. As the name already
suggests, the functions do not have to fulfill continuity requirements between individual
cells; see Figure 2.4 for a one-dimensional and a two-dimensional example.

E j�1 E j E j+1

double valued

(a) Discontinuous Galerkin in 1D (b) Discontinuous Galerkin in 2D

Figure 2.4: Samples of discontinuous Galerkin ansatz functions in different spatial dimen-
sions.

This leads us to the definition of the function space for the DG approach:

Definition 4 (Discrete Function Space). We define the discrete space V p
h ⇢ (L2(W))m by

V p
h =

n
w

h 2 (L2(W))m |wh
l |E 2 Pp(E) for each component l = 1, ...,m, 8E 2Mh

o
,

where Pp(E) denotes the space of all polynomials of degree p on cell E.

The evaluation of functions w
h 2 V p

h are not well-defined on cell edges. The lack of
continuity requirements between cells leads to different limits w

h
E and w

h
E 0 on an edge

eE,E 0 . Therefore, we define the jump in one and two dimensions according to DiPietro
and Ern [21].

29

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

Definition 5 (Jump & Average). The jump in normal direction nE1,E2 over a face eE1,E2 =

∂E1\∂E2 between two elements E1 and E2 is defined by

r
uh

z

eE1,E2

(x) := uh|E1
(x)�uh|E2

(x). (2.64)

The (scalar-valued) average on a face is defined by

nn
uh
oo

eE1,E2

(x) :=
1
2
(uh|E1

(x)+uh|E2
(x)).

Remark 6. [21, Remark 1.19] The jump and average can also be defined for boundary
faces e 2 Gext

h . We set for e 2 Gext
h with e = ∂E \∂W :

r
uh

z

e
(x) =

nn
uh
oo

e
(x) = uh|E(x)

When considering a vector-valued function u
h, the jump and the average are applied to

every component of the function. From now on, we will drop the subscript eE1,E2 and the
variable x, if it is clear from the context. Note that the jump and the average might vary over
the face for V p

h , p > 0 in two dimensions.

In order to obtain the semi-discrete DG scheme, we follow DiPietro and Ern [21] and test
equation (2.57) on a cell E with some test function w

h 2 V p
h . Note that, generally, one can

choose different function spaces for the functions that represent the numerical solution and
the test functions. In this work, we will choose the same function space for both. After
testing equation (2.57), we do integration by parts in space and obtain

Z

W
∂tu ·whdx�

Z

W
f(u) ·—w

hdx+ Â
e2G

Z

e
fne(u) ·

r
w

h
z

ds = 0, (2.65)

with the products being interpreted as the corresponding scalar product and the definition of
the normal flux function, which is given by

fne =
d

Â
i=1

f
ine,i (2.66)

with ne,i being the ith component of the unit normal vector ne.

The numerical solution u
h is represented as a combination of functions from V p

h and,
therefore, discontinuous at the edges e 2 Gint

h . Consequently, the evaluation of the numerical
solution on an edge eE,E 0 is no longer unique since it has two different limits u

h
E and u

h
E 0 .

Thus, we replace the non-linear flux function fne(·) with a numerical flux function H (ne, ·, ·)
that depends on the two values at the corresponding point on the edge.

30

We obtain the final formulation of the semi-discrete problem: Find u
h 2V p

h such that

⇣
dtu

h(t),wh
⌘

L2(W)
+ah

⇣
u

h(t),wh
⌘
= 0 8w

h 2V p
h , (2.67)

with

ah(u
h,wh) =� Â

E2Mh

Z

E
f(uh) ·—w

hdx+ Â
e2Gint

h

Z

e
H (ne,uE ,uE 0) ·

r
w

h
z

ds

+ Â
e2Gext

h

Z

e
H (ne,uE ,eu) ·whds.

Here, (·, ·)L2(W) denotes the standard scalar product in (L2(W))m. Furthermore, we incorpo-
rate boundary conditions by suitably defining the external Riemann data eu in H (ne,uE ,eu)
for every e 2 Gext

h . Later in this work, we will provide particular choices for eu in the numer-
ical results part of each section.

2.2.3. Numerical flux function

The choice of the numerical flux function H (ne, ·, ·) is essential for developing numerical
methods for hyperbolic conservation laws. In particular, if we are interested in proving
theoretical results in the context of a scalar equation, we must assume some standard prop-
erties for this case. Therefore we follow Cockburn and Shu [16] and demand the following
properties.

Prerequisite 2.2.1. We consider the case of a scalar conservation law. Then, we request the
numerical flux H (ne, ·, ·) to satisfy the following properties:

1. Consistency: H (ne,u,u) = fne(u).

2. Conservation: H (ne,u�,u+) =�H (�ne,u+,u�)

3. Continuity: H (ne,u�,u+) is at least Lipschitz continuous with respect to both argu-
ments u� and u+.

4. Monotonicity: H (ne,u�,u+)

• is a non-decreasing function of its first argument u�,

• is a non-increasing function of its second argument u+.

Then, the flux has the so-called E-flux property which was defined by Osher [67]: For all
u with u = (tu�+(1� t)u+) ,t 2 [0,1] there holds

(H (ne,u�,u+)� fne(u))(u
+�u�) 0. (2.68)

31

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

Throughout this work, we will use different numerical fluxes for the problems we con-
sider. For the linear advection equation (2.6) with the velocity b, we will consider the
classical upwind flux, which can be written as

H (ne,u�,u+) =

8
<

:
bu+, if b ·ne � 0

bu�, else.
(2.69)

For the Burgers equation in one dimension, we work with the exact Gudonov flux, which is
given by

H (ne,u�,u+) =

8
<

:
minu�uu+ fne(u), if u�  u+,

minu+uu� fne(u), if u+  u�.
(2.70)

Additionally, we will consider the approximate Roe Riemann solver for the Euler equations
in one dimension. The details regarding this numerical flux function can be found in [78].

For the two-dimensional tests, we will consider the local Lax-Friedrichs flux, which is
given by

H (ne,u
�,u+) =

1
2
�
fne(u

�)+ fne(u
+)�lne

�
u
�,u+�(u+�u

�)
�

(2.71)

with lne (u
�,u+) being the largest absolute eigenvalue of ∂ufne(u

�) and ∂ufne(u
+). We

emphasize that the local Lax-Friedrichs flux and the upwind flux are the same for the linear
advection equation.

As a next step, we will combine the semi-discrete problem (2.67) with a suitable time-
stepping scheme. This will result in a fully discrete problem that we can then solve later by
iterating over the time steps.

2.2.4. Time-stepping schemes

For the full discretization of the system of the ordinary differential equations (ODEs), which
is given by the semi-discrete problem (2.67), we use strong stability preserving Runge-
Kutta (SSP-RK) time-stepping schemes, also formerly known as Total Variation Diminish-
ing (TVD) RK time-stepping schemes. Later in this section, we will define and explain the
concept of TVD schemes in more detail.

We consider a general ODE of the form

dty = L(y), (2.72)

discretize the time horizon (0,T) in time intervals (tn, tn+1) using a time step size Dt, and
define tn = nDt. The numerical approximation of the solution vector y at a certain time tn

will be abbreviated as yn ⇡ y(tn). The idea of SSP-RK schemes is as follows: We start with

32

a semi-discrete method-of-lines approach that guarantees strong stability in a certain norm
if combined with the explicit Euler time-stepping scheme

��yn+1��= kyn +DtEL(yn)k  kynk (2.73)

under some time step restriction DtE � 0. Then the goal is to find a higher-order time
discretization that preserves the strong stability of the explicit Euler scheme by constructing
the new scheme as a convex combination of explicit Euler steps.

The key to finding such higher-order s-stage SSP Runge-Kutta methods is by writing them
in the following form:

y(0) = yn,

y(i) =
i�1

Â
j=0

(ai, jy(j) +Dtbi, jL(y(j))), i = 1, ...,s

yn+1 = y(s)

(2.74)

This is the so-called Shu-Osher representation of a Runge-Kutta scheme [73]. For con-
sistency we need that Âi�1

j=0 ai, j = 1. It can be shown that the Shu-Osher representation is
equivalent to the traditional way of writing Runge-Kutta methods, which are normally given
by a Butcher-Tableau. By writing the Runge-Kutta scheme in the Shu-Osher representation,
it is easy to see that each stage is a convex combination of yn and explicit Euler updates with
Dt being scaled by bi, j

ai, j

���y(i)
���=

�����

i�1

Â
j=0

(ai, jy(j) +Dtbi, jL(y(j)))

�����=

�����

i�1

Â
j=0

(ai, j

✓
y(j) +Dt

bi, j

ai, j
L(y(j))

◆����� ky
nk .

(2.75)
Here, the last inequality is a direct consequence of the strong stability given by the explicit
Euler scheme (2.73) under some modified time step restriction

Dt min
i, j

ai, j

bi, j
DtE . (2.76)

Note that the coefficients ai, j and bi, j must be non-negative. Furthermore, the ai, j may only
be zero if the corresponding bi, j are zero. The manipulations in (2.75) show a vital property
to ensure that the given time-stepping schemes are strong stability preserving, which we will
now summarize in the following Lemma.

33

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

Lemma 7 (SSP). [73] Let the explicit Euler update be strongly stable in the sense of (2.73)
under the time step restriction Dt DtE for some DtE � 0. Then the RK time-stepping scheme
(2.74) is strong stability preserving

��yn+1�� kynk

if the coefficients ai, j,bi, j � 0 and the time step restriction (2.76) is fulfilled.

Very popular SSP RK methods are given by

• The first-order explicit Euler scheme

yn+1 = yn +DtL(yn). (2.77)

• The second-order Heun’s method

y(1) = yn +DtL(yn),

yn+1 =
1
2

yn +
1
2

y(1) +
1
2

DtL(y(1)).
(2.78)

• The third-order Shu-Osher scheme

y(1) = yn +DtL(yn),

y(2) =
3
4

yn +
1
4

y(1) +
1
4

DtL(y(1)),

yn+1 =
1
3

yn +
2
3

y(2) +
2
3

DtL(y(2)).

(2.79)

In this work, we will use SSP-RK schemes up to order four. The corresponding coefficients
for the Shu-Osher form and more information regarding SSP RK schemes can be found in
the contributions [35–37, 51, 73].

CFL number

In the previous part, we have already seen that we are restricted in our choice of the time
step size Dt. Especially when the ODE is given by the semi-discrete scheme of a hyperbolic
PDE, the spatial discretization plays an important role in the upper bound of our time step.
This can be summarized for the one-dimensional case in the following mathematical relation

Dt  n
2p+1

Dx
lmax

. (2.80)

Here, Dx denotes the cell size, lmax is the fastest wave speed, and n 2 (0,1] is a parameter
called the CFL number. The factor 1

2p+1 depends on the polynomial degree p of the function

34

tn

tn +Dt1

tn +Dt2

lmaxDt1lmaxDt2
Dx

Figure 2.5: [56] Illustration of the CFL time step restriction: For the larger time step Dt2, the
physical domain of dependence (red) is not included in the numerical domain of dependence
(yellow), whereas for the smaller time step Dt1 (blue) this is the case. The CFL condition
ensures that the physical domain of dependence is fully contained within the numerical one.

space V p
h and will be discussed below. This connection between the size of the temporal and

spatial discretization was discovered by Richard Courant, Kurt Friedrichs and Hans Lewy
in [19], which is why it is called the CFL number.

The motivation for the CFL number can be easily seen if we consider the case of piece-
wise constant polynomials p = 0 and look at the domain of dependence for a given point
concerning one time step. In Figure 2.5, we show the physical DoD for two different time
step lengths Dt1 (blue) and Dt2 (red). Moreover, the numerical DoD of a classical RKDG
scheme is marked in yellow on the lowest line. In order to obtain stability, the numerical
DoD must enclose the physical DoD. In the first case (red) of Figure 2.5, the physical DoD
is not included in the numerical DoD resulting in an unstable update since some impor-
tant information is missing. In the second case (blue), the physical DoD is included in the
numerical DoD, which gives us a stable solution update.

For higher-order RKDG methods with p > 0, one needs to decrease the time step size
according to equation (2.80) by a factor of 1

2p+1 . This scaling is mandatory to ensure L2

stability [17], but it should be understood more in the sense of a rule of thumb. Nevertheless,
one could show that with the scaling, the time step restrictions are only  5% smaller than
many numerically-obtained time step restrictions.

When considering the two-dimensional case, an optimal choice for the time step size
is more difficult to define, especially on unstructured grids. There is an approach [14] that
works on robust CFL conditions for hyperbolic conservation laws on triangular meshes. The
idea is to replace the cell size Dx with the minimal cell width along the characteristic flow
direction. However, in this work, we will choose the time step in two dimensions according
to equation (2.80) and replace the cell size Dx with the inscribed radii of the Cartesian mesh
cells.

35

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

2.2.5. Desirable theoretical properties

In this work, we will develop new numerical methods. To evaluate the quality of these
methods, we require specific criteria. Therefore, we will be presenting a set of desirable
theoretical properties that we aim to validate for these novel methods in the following sec-
tion. For most of these theoretical properties, we rely on solving scalar equations using
piecewise constant polynomials from V 0

h . If not other stated, we always consider the one-
dimensional setup. For this case, the degrees of freedom are un

j which denotes the mean
value of the solution on cell E j at time tn.

We start by introducing monotonicity. Monotonicity is an essential property of a first-
order scheme for hyperbolic conservation laws as it guarantees that under- and overshoots
cannot occur. We recall the definition of monotonicity according to [78].

Definition 8 (Monotonicity). A method un+1
i = H(un

i� jL ,u
n
i� jL+1, ...,u

n
i+ jR) is called mono-

tone, if 8i there holds for every l with � jL  l  jR

∂H
∂ui+l

(ui� jL , ...,ui+ jR)� 0. (2.81)

Although it seems necessary to use a monotone scheme to ensure that the solution stays
inside the physical admissible bounds, one can show that monotone schemes are at most
first-order accurate [41, 56]. Thus, it will not be possible to maintain monotonicity when
developing higher-order methods. Nevertheless, we want our schemes to be the best of both
approaches: we want to have a high-order method that provides excellent accuracy, but at
the same time, the solution should not develop an unphysical behavior and stay within the
correct bounds. In the next section, we will introduce how to achieve this by using so-called
limiting techniques.

For now, we continue with the definition of the total variation followed by the definition
of a total variation diminishing method.

Definition 9 (Total variation (TV)). The total variation of a discrete solution un is defined
as

TV (un) = Â
i

��un
i+1�un

i
�� . (2.82)

Definition 10 (Total variation diminishing (TVD)). We call a method total variation dimin-
ishing if there holds

TV (un+1) TV (un) (2.83)

for all times tn, n 2 N.

The standard way to verify that a scheme is TVD is to apply Harten’s Lemma [40]. This
Lemma provides an easy way to show TVD stability but relies on an equidistant grid. There-
fore, we will not be able to use it in this work and will have to work with the definition itself.

36

If we are considering higher-order solutions that have been computed using V p
h with p> 0,

we want to study something similar to TVD stability. Therefore we introduce the definition
of total variation diminishing in the means (TVDM).

Definition 11 ([17]). A DG scheme is called total variation diminishing in the means
(TVDM) if for all n 2 N

TV(un+1) TV(un) with TV(un) = Â
i
|un

i+1�un
i |. (2.84)

Here, un
i denotes the mean of u on cell i at time tn.

For piecewise constant polynomials, the means un
i correspond to the unknowns un

i , and
TVDM coincides with the TVD property of Definition 10.

2.2.6. Limiter

Higher-order methods provide much better accuracy on smooth solutions than first-order
methods but are also more sensitive to unphysical oscillations near discontinuities. In con-
trast, the advantage of using first-order methods is that they usually guarantee some kind
of stability, e.g., monotonicity or TVD stability. In particular, when solving systems of
hyperbolic equations like the Euler equations, the given scheme should guarantee that the
quantities of interest remain within the range of physically acceptable values. This is es-
sential since the numerical method will collapse while calculating the numerical flux if the
pressure becomes negative.

The idea of a limiter is now to combine the best features of both worlds: when the nu-
merical solution is smooth, we want to have the highest possible accuracy that is provided
by the higher-order methods, but at the same time, we need the stability of the first-order
method. This combination will result in a scheme that guarantees stability in the presence
of shocks and a higher accuracy than the first-order method in smooth regions. There are
various approaches of different limiters, all of which have advantages and disadvantages.

In Figure 2.6, we can see the results of two simulations using higher-order polynomials.
The initial value of the simulation consists of two parts: a discontinuous hat function and
a smooth bell curve. No limiter was used during the simulation in the left figure, whereas
one was used in the right figure. The results in Figure 2.6 show precisely the behavior
we explained above. In the unlimited case on the left side, we see that the smooth part
is approximated accurately, while the discontinuous parts show unphysical oscillations and
problematic under- and overshoots. In the limited case on the right side of Figure 2.6, there
are no oscillations, and the physical bounds are preserved. When we take a closer look at
the smooth part of the right figure, we notice a diffusive behavior at the peak induced by the
limiter. This phenomenon is known as peak clipping.

37

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

Figure 2.6: Comparison of the numerical solution of an advected discontinuous and a con-
tinuous initial profile with an unlimited and a limited numerical solution.

In one dimension, we will use the total variation diminishing in the means (TVDM) gener-
alized slope limiter developed by Cockburn and Shu [16]. The standard scheme for limiting
the discrete solution u j on a cell E j, (of a non-uniform mesh) can be summarized as follows:

1. Compute the limited extrapolated values ulim
j (x j� 1

2
) and ulim

j (x j+ 1
2
):

ulim
j (x j� 1

2
) = u j� m̃(u j�u j(x j� 1

2
),u j�u j�1,u j+1�u j)

ulim
j (x j+ 1

2
) = u j + m̃(u j(x j+ 1

2
)�u j,u j�u j�1,u j+1�u j)

with u j denoting the mass average of u j over cell E j and m̃ being the minmod function
given by

m̃(a1, . . . ,an) =

8
<

:
s ·min1in |ai| if sign(a1) = . . .= sign(an) = s,

0 otherwise.

2. If the limited values ulim
j (x j� 1

2
) and ulim

j (x j+ 1
2
) are equal to the unlimited values

u j(x j� 1
2
) and u j(x j+ 1

2
), set ulim

j = u j. Otherwise, reduce u j to P1 by setting higher-
order coefficients to zero. Then, limit the linear polynomial such that the edge evalua-
tions of the limited polynomial do not exceed ulim

j (x j� 1
2
) and ulim

j (x j+ 1
2
), respectively.

Use the result as ulim
j .

These steps are applied as a postprocessing step to each intermediate solution of the stages
in the SSP RK time-stepping scheme.

In two dimensions, we have run first numerical tests [25] using a Barth-Jespersen type
limiter [1] that has been extended to the DG setting by exploiting the structure of the local
Taylor basis [54]. This limits the gradient in such a way that the local solution of a cell E
evaluated at each neighboring centroid does not exceed the maximum/minimum taken over

38

fMh

\

W

!

Mh

Figure 2.7: [25] Construction of a cut cell mesh Mh: The Cartesian background mesh fMh
of a larger domain eW is intersected with the computational domain W, leading to cut cells
E = eE \W, where eE 2 fMh is an element of the background mesh.

the cell’s E average value and the average values of all of cell’s E face neighbors. In this
work, we will not show two-dimensional numerical results, that use a limiter.

We are now prepared and have the theoretical and numerical foundations for solving hy-
perbolic conservation equations. As a next step, we will dive into the topic of cut cell
methods. We start with our approach for the construction of cut cell grids for a given do-
main W. Afterwards, we will continue with a deeper analysis of the small cell problem in
one and two dimensions. In the remaining part of this work, we will present our approach
to stabilize numerical methods for solving hyperbolic conservation laws on cut cell meshes.

2.3. The cut cell approach

Following [25], the construction of a cut cell grid Mh for a given open, connected do-
main W⇢ Rd is a trivial task. We start with a Cartesian background mesh fMh consisting of
equidistant sized cells eE (i.e., hi = h, i2 {1, ...,d}), which can be interpreted as a discretiza-
tion of a larger domain eW with W⇢ eW. Intersecting W and the background mesh induces the
cut cell mesh

Mh :=
n

E := eE \W
��� eE 2 fMh

o
.

Note that Mh is a partition of W consisting of structured (Cartesian) cells and cut cells. The
cut cells created at the intersected boundary have irregular shapes and can become arbitrarily
small, leading to problems in the numerical simulation. Hyperbolic conservation laws can
be particularly sensitive to arbitrarily small cut cells since they are typically discretized in
time by explicit time-stepping schemes. The stability of these explicit schemes depends on
the chosen time step size, which is directly correlated to the cell sizes. In what follows,
we will first discuss the small cell problem and later present our approach to solving this
problem. In order to gain a deeper insight into the small cell problem, we will study several
examples in one and two dimensions. These examples will help us to better understand the
small cell problem and show us key elements to consider when looking for a solution.

39

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

x

Ek�2 Ek�1 Ek Ek+1 Ek+2

Ek1 Ek2

h h ah (1�a)h h h

x
k� 5

2
x

k� 3
2

x
k�1

2
x

k+1
2

x
k+3

2
x

k+5
2

xcut

Figure 2.8: [25] Model problem MP: equidistant mesh with cell Ek split into two cells of
lengths ah and (1�a)h with a 2 (0, 1

2].

2.3.1. Small cell problem in one dimension

We consider the linear advection equation in 1D. Without loss of generality, we consider the
interval W = (0,1) and assume that the velocity b > 0 is constant. The PDE is given by

ut(x, t)+bux(x, t) = 0 in W⇥ (0,T), u(0, t) = g(t) for t 2 (0,T), (2.85)

with initial data u(x,0) = u0(x).
In the 1D case, there are no true cut cell grids, but we can mimic the small cell problem.

For this purpose, we introduce the model problem MP shown in Figure 2.8: we discretize
the interval W in N cells E j = [x j� 1

2
,x j+ 1

2
] of equidistant length Dx = h. Then we split one

cell, the cell Ek, in two cells of lengths ah (referred to as cell Ek1) and (1�a)h (referred to
as cell Ek2) with a 2 (0, 1

2].

Definition 12. For the model problem Mh, we define the following index sets

Iequi = {1 j  N| j 6= k}, Iall = Iequi[{k1,k2}, INeigh = {k�1,k1,k2}. (2.86)

Here, Iequi contains the indices of all cells of length h, and INeigh contains the indices of
the small cut cell Ek1 and its left and right neighbor.

The standard unstabilized fully-discrete update formula for a cell E j using piecewise con-
stant polynomials from V 0

h and the explicit Euler method is given by:

un+1
j = un

j �
Dt

Dx j

�
H (un

j ,u
n
j+1)�H (un

j�1,u
n
j)
�
. (2.87)

Inserting the upwind flux (2.69), the given cell lengths, and the time step size according to
the Cartesian cells Dt = nh

b , the update in the neighborhood of the small cut cell reads as:

un+1
k�1 = un

k�1�n
�
un

k�1�un
k�2
�
,

un+1
k1

= un
k1
� n

a
�
un

k1
�un

k�1
�
,

un+1
k2

= un
k2
� n

(1�a)
�
un

k2
�un

k1

�
.

(2.88)

40

These updates unveil the different issues that lead to the small cell problem. We follow [59]
and discuss these issues in more detail:

Issue 1: Unstable update on small cut cell

First, we focus on the update of the small cut cell Ek1 . The standard update when using an
RKDG approach with piecewise constant polynomials is given on all cells in the same form:
Take the value of the old time step and modify it with a flux difference that is scaled by a
fraction of the time step size and the grid size. When we focus on the update of the small
cut cell Ek1 , we notice that the fraction in front of the flux difference is of size O(1

a). In
our case, we are mainly interested in how the update formula behaves when a tends to zero,
which means that the cut cell becomes extremely small compared to a Cartesian cell.

Consequently, the fraction in front of the flux difference tends to infinity for a! 0. If this
behavior holds for the whole update formula (2.88) of the small cut cell Ek1 , this implies
that the update is unstable. This can be avoided if the flux difference is O(ah). In order
to check this, we assume that the physical solution u is smooth. The numerical solution is
computed using piecewise constant polynomials. Therefore, the constant value on each cell
corresponds to the mean value of the solution on that cell. Combining this knowledge with
the smoothness of the solution gives us the following behavior for the flux difference

un
k1
�un

k�1 = O
✓
(1+a)h

2

◆
.

Multiplying the flux difference with the fraction results in

n
a
�
un

k1
�un

k�1
�
= O

✓
1
a

◆
·O
✓
(1+a)h

2

◆

| {z }
=O(h)

= O
✓

h
a

◆
.

Finally, we see that the update on the small cut cell Ek1 is unstable and expect a large under-
or overshoot on Ek1 for a small value of a.

Issue 2: Missing information on outflow neighbor

We continue with the update of the direct neighbors of the small cut cell Ek1 . In the setting of
our model problem MP and a positive velocity b > 0, the inflow neighbor is cell Ek�1, and
the outflow neighbor is cell Ek2 . At this point, we emphasize that it is sufficient to focus on
the outflow neighbor Ek2 . This is because the propagation of information is in the direction
of the velocity. As a result, the inflow neighbor Ek�1 only sees a Cartesian grid and will not
receive any information from its small outflow neighbor.

41

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

Ek�2 Ek�1 Ek+1 Ek+2Ek1 Ek2

tn+1

tn

xcut

4!

Figure 2.9: Characteristics of a constant advection on the mesh of the model problem MP

between two time steps. The physical domain of dependence of the large outflow neighbor
of the small cut cell is not included in the numerical domain of dependence of a standard
update formula.

In Figure 2.9, we can see the grid of the model problem MP at two different time steps
tn and tn+1. These time steps are connected through the characteristics shown by arrows.
Moreover, the characteristics give us the domain of dependence for every cell. If we ex-
amine these DoDs more closely, we observe a mismatch between the physical DoD and the
numerical standard update formula of cell Ek2 . The physical DoD of cell Ek2 (marked by the
red interval and the danger sign in Figure 2.9) reaches back into cell Ek�1. This is a prob-
lem because cell Ek�1 is not a direct neighbor of cell Ek2 , but the standard update formula
(2.87) only includes information from direct neighbors. As a result, the outflow neighbors of
small cut cells are missing important information, which needs to be addressed by solution
approaches to achieve stability and high accuracy.

Numerical example of small cell problem

Next, we discuss a numerical example, which shows what happens if we do not fix the small
cell problem. We consider the model problem MP and place the cell Ek in the middle of the
domain such that xk� 1

2
= 0.5. In addition, we choose the initial data

u0(x) = sin(2px), (2.89)

with the exact solution
u(x, t) = sin(2p(x� t)). (2.90)

We discretize the interval W = [0,1] in N = 40 cells and choose the velocity as b = 1 and
the time step as Dt = 0.4h with h = 1

N .
In Figure 2.10, we show the numerical solution after one time step for different values of

a = 10�i, i 2 {1,2,3}. We use the unstabilized scheme for piecewise constant polynomials
in combination with the explicit Euler method in time. For a = 10�1, we observe a value
of approximately uk1 ⇡ 0.33 on the small cut cell, leading to unphysical oscillations in the

42

Figure 2.10: Numerical example for the small cell problem in one dimension: Solution of
the unstabilized scheme after one time step for different values of a = 10�i, i 2 {1,2,3}.
The value of the solution on the small cut cell is illustrated with a green marker (‘⇥’).

numerical solution. As we decrease to a = 10�2, a noticeable overshoot occurs on the small
cut cell, approximately uk1 ⇡ 3.16, which exceeds the physical bounds [�1,1] of the exact
solution. Further reducing a to a = 10�3 results in a substantial increase in the overshoot on
the small cut cell to approximately uk1 ⇡ 31.38. These results underline the influence of a
on the solution update of the small cut cell k1, as predicted in the discussion of the first issue
above. As the value of a decreases, the solution on the small cut cell deteriorates, which is
evident from the increasing magnitude of the overshoot. This overshoot causes the update
of the neighboring outflow cells to become unstable and oscillatory in the progress of the
simulation, which can further amplify the error in the solution. Consequently, this can lead
to numerical instabilities and uncontrollable inaccuracies in the simulation. Therefore, it is
essential to develop special schemes to ensure a stable and accurate update.

2.3.2. Small cell problem in two dimensions

As a next step, let us take a closer look at the two-dimensional case. In two dimensions, not
every small cut cell is a cell that needs to be stabilized. Here, it is more important in which
direction the cut cell is small. This can be observed well in the two test cases of Figure 2.11.
In this setup, we have a constant advection in x-direction through a velocity field b and two
different grid cases. Both grids consist primarily of equidistant square cells of size h2 with
an additional layer of small cells of sizes ah2, a⌧ 1, which are marked in red. In the first
case, the additional layer of small cells is added as a column, whereas in the second case,
this layer is added as a row.

Let us examine the case of the first grid more closely. The length of the small cell in the
direction of the advection is ah. Just like in the one-dimensional case, we can look at the

43

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

b

Figure 2.11: Different setups of two-dimensional anisotropic grids: For the left grid the
anisotropy (red cells) is vertical to the velocity field b, whereas for the right grid the
anisotropy is parallel to the velocity field.

update formula of a small cell using piecewise constant polynomials. In this case, the update
formula for the two-dimensional advection equation is given by

un+1
i, j = un

i, j�
Dt

ah2

✓Z

∂Ei, j
H(n,u�,u+)ds

◆

= un
i, j�

Dt
ah2

h

b ·
"

1
0

#!
un

i�1, j�h

b ·
"

1
0

#!
un

i, j

!

= un
i, j�

n
a
(un

i�1, j�un
i, j).

(2.91)

We see once again that the fraction in front of the flux difference is of size O(1
a). This

fraction can not be compensated with the flux difference, leading to an unstable update of
these small cells. One can also trace back characteristics to get more insight into the stability
of the scheme. These characteristics travel parallel to the direction of the velocity b. As a
result, the outflow neighbors of the small cells miss information again. We now switch to
the second case, which is given by the grid on the right side in Figure 2.11 and the same
velocity field b in x-direction. We can check the update formula for a small cell in this case
as well:

un+1
i, j = un

i, j�
Dt

ah2

✓Z

∂Ei, j
H(n,u�,u+)ds

◆

= un
i, j�

Dt
ah2

ah

b ·
"

1
0

#!
un

i�1, j�ah

b ·
"

1
0

#!
un

i, j

!

= un
i, j�n(un

i�1, j�un
i, j).

(2.92)

44

In this case, the fluxes are integrated over the short edges of lengths ah, which gives us an
additional factor a in the update formula. Therefore, the a-dependency cancels out in the
update, and consequently, the update on the small cell is stable for this setup. The same
holds true when looking at the characteristics of each cell and the thereby given Domain of
Dependencies. For each cell, the physical Domain of Dependence is now included in the
numerical Domain of Dependence.

Another way of interpreting this behavior is when we look at an arbitrary one-dimensional
hypersurface along the velocity field b for both grids. For the first grid on the left side of
Figure 2.11, we will obtain a one-dimensional grid with one small cell of size ah. Therefore
this grid is comparable to our one-dimensional model problem MP and comes with stability
issues. The hypersurface for the right grid in Figure 2.11 is given as a one-dimensional
equidistant grid without any small cells.

45

CHAPTER 2. Theoretical and numerical aspects of hyperbolic conservation laws

46

3
DoD Stabilization in one dimension

3.1. Formulation for linear scalar problems

In this section, we will consider the linear advection equation in one spatial dimension,
which is given by

ut(x, t)+bux(x, t) = 0 in W⇥ (0,T), u(0, t) = g(t) for t 2 (0,T), (3.1)

with initial data u(x,0) = u0(x). Without loss of generality, we will assume in this section
that the velocity b is positive, and therefore the information propagates from left to right.
We emphasize that in the event of a negative velocity b < 0, everything that follows will
work similarly with a few minor adjustments. The details of negative velocity cases will
become clear in the extension to a general non-linear conservation law.

If not stated otherwise, in this section, we will focus on the model problem MP, which is
given by a mostly Cartesian grid including two cut cells of sizes ah and (1�a)h as shown
in Figure 3.1.

x
Ek�2 Ek�1 Ek+1 Ek+2Ek1 Ek2

h h ah (1�a)h h h

Figure 3.1: One-dimensional model problem MP consisting of two cut cells.

For numerical tests, we will use a modified version of the model problem MP. In this
modified version, instead of having only one pair of cut cells, we will split every cell within
a certain interval into a pair of two cut cells. Consequently, we will have multiple consec-

47

CHAPTER 3. DoD Stabilization in one dimension

utive cut cell pairs, with one small cut cell and one larger cut cell. We believe that this
modification is an excellent choice for a model problem in our numerical tests as it closely
mimics cut cell grids observed in two dimensions: Small cut cells are often surrounded by
larger cut cells. By incorporating this characteristic into our modified model problem, we
can better capture the difficulties of the two-dimensional scenario.

In what follows, we will start with the case of piecewise constant polynomials, which
was first discussed in the master’s thesis [77] and later published in the collaboration [25].
We will then proceed to extend the stabilization to higher-order polynomials based on the
collaborations [25, 62].

3.1.1. Piecewise constant polynomials

The general idea of the DoD stabilization is to add certain penalty terms, summarized in
Jh(·, ·), to the semi-discrete formulation. The resulting DoD stabilized scheme for piecewise
constant polynomials is then given by: Find uh 2V 0

h such that

(dtuh(t),wh)L2(W) +ah(uh(t),wh)+ Jh(uh(t),wh) = 0, 8wh 2V 0
h . (3.2)

There exist numerous penalty stabilizations for general grids in the form of adding suitable
jump terms on edges to the standard DG discretization for elliptic problems. Well-known
examples are the symmetric interior penalty Galerkin (SIPG) method [23, 82] and the non-
symmetric interior penalty Galerkin (NIPG) [69] method. These stabilizations impose a
weak continuity of the numerical solution. One can prove valuable properties for the sta-
bilized methods, such as the existence and uniqueness of a solution and error estimates in
different norms. Another example of a penalty stabilization for elliptic problems, which is
more important in the area of cut cell methods, is the ghost penalty method [12, 13]. This
penalty stabilization regains the coercivity of the method on small cut cells. All of the meth-
ods mentioned above have in common that the jumps in the penalty terms are evaluated on
the same edge e, i.e., the stabilization terms are given in the form J(uh,wh)⇠

q
uhy

e

q
why

e.

When working on hyperbolic conservation laws, there is a natural direction in which
information flows, which can be seen in the method of characteristics. Therefore it might
be a good idea to consider this when developing new stabilization methods for hyperbolic
conservation laws. In the previous chapter, we found out that the outflow neighbor of the
small cut cell lacks essential information for a physically correct update. In consequence,
we propose a stabilization term that is given in the following form:

Jk1
h (uh,wh) = bhk1

r
uh

z

k� 1
2

r
wh

z

kcut
(3.3)

48

This stabilization term is given as a product of the jump J·K of the numerical solution uh

and the test function wh. The expression
q

why
kcut

denotes the jump at the cut edge xkcut (see
Figure 2.8), i.e.

q
why

kcut
= wh|k1(xkcut)�wh|k2(xkcut). In addition, the stabilization term is

scaled by the advection velocity b and a stabilization parameter hk1 2 [0,1), which we will
discuss in detail soon. We emphasize the asymmetrical form of the stabilization, which is
because we evaluate the jump of the solution uh at the inflow face k� 1

2 and the jump of the
test function wh at the outflow face kcut of the small cut cell Ek1 . Through this asymmetric
construction, we take the natural direction into account in which information flows.

As a first step, we return to the issues we identified in the last chapter and look at the
effect of the stabilization. The stabilization is added to the update of the small cut cell and
its outflow neighbor and does not influence the inflow neighbor. This is because the jump of
the test function is evaluated at the outflow edge. Thus, the stabilized update formulas for
using the explicit Euler method in time are given by

un+1
k�1 = un

k�1�
Dt
h

b
�
un

k�1�un
k�2
�
,

un+1
k1

= un
k1
� Dt

ah
b
�
un

k1
�un

k�1
�
� Dt

ah
bhk1

�
un

k�1�un
k1

�
,

un+1
k2

= un
k2
� Dt

(1�a)h
b
�
un

k2
�un

k1

�
+

Dt
(1�a)h

bhk1

�
un

k�1�un
k1

�
.

(3.4)

Issue 1: Unstable update on small cut cell

We recall that the first issue is an unstable update on the small cut cell, which is induced by
an O

� 1
a
�

dependency in the unstabilized update formula

un+1
k1

= un
k1
� n

a
�
un

k1
�un

k�1
�
. (3.5)

We compare this to the stabilized update formula given by (3.4). We simplify this to get

un+1
k1

= un
k1
� n

a
(1�hk1)

�
un

k1
�un

k�1
�
. (3.6)

Therefore, when analyzing the two update formulas, we notice that the only but essential
difference is the additional scaling term 1� hk1 . A suitable choice for the stabilization
parameter hk1 is hk1 ⇠ 1�a. This results in 1�hk1 ⇠ a and therefore removes the O

� 1
a
�

dependency in the update formula. Consequently, the stabilized update formula is stable
independent of the choice of a.

Issue 2: Missing information on outflow neighbor

The second issue, which arises when we study the physical and numerical domain of de-
pendence of the outflow neighbor Ek2 , will be addressed next. When using the unstabilized

49

CHAPTER 3. DoD Stabilization in one dimension

Ek�1 Ek1 Ek2

tn+1

tn

xcut

IIIIII

|I|= (n�a)h
|II|= ah
|III|= (1�a�n)h

Figure 3.2: The size of the different subintervals of the domain of dependence of cell Ek2 .

update formula, we notice that the outflow neighbor of the small cut cell is missing important
information. The stabilized update formula of Ek2 is given by

un+1
k2

= un
k2
� n

1�a
�
un

k2
� (1�hk1)u

n
k1
�hk1un

k�1
�
. (3.7)

We notice that the stabilized update formula of cell Ek2 now contains information from cell
Ek�1. We assume once again for the stabilization parameter that hk1 ⇠ 1�a. Then, the
influence of the small cut cell value uk1 is scaled down by a factor 1�hk1 ⇠ a, and this
information is replaced by the physical admissible values from uk�1.

In conclusion, the proposed stabilization term provides the right tools to tackle the two
issues of the small cell problem. It remains to choose a suitable value for the stabilization
parameter hk1 , which we will discuss in the next section.

Theoretical properties

Choice of hk1

For the choice of the stabilization parameter hk1 , we once again look at the domain of
dependence of the outflow neighbor Ek2 , see Figure 3.2. By tracing back the characteristics,
we can figure out how the solution at the new time tn+1 is composed of the given solutions
at time tn. This gives us the following physically exact update for the outflow neighbor of
the small cell when starting with piecewise constant values at tn

un+1
k2

=
1

|Ek2 |
�
|I|un

k�1 + |II|un
k1
+ |III|un

k2

�

=
n�a
1�a

un
k�1 +

a
1�a

un
k1
+

1�a�n
1�a

un
k2
.

(3.8)

50

We compare the stabilized update formula in (3.7) with the composition mentioned in (3.8).
Therefore, we reformulate (3.7) and sort it by the different cell averages

un+1
k2

= un
k2
� n

1�a
�
un

k2
� (1�hk1)u

n
k1
�hk1un

k�1
�

=
nhk1

1�a
un

k�1 +
n(1�hk1)

1�a
un

k1
+

1�a�n
1�a

un
k2
.

(3.9)

The comparison of equations (3.8) and (3.9) reveals that the stabilized scheme is exact for
piecewise constant data at tn, if the stabilization parameter hk1 is chosen as

hk1 = 1� a
n
. (3.10)

Furthermore, this choice of the stabilization parameter satisfies the condition hk1 ⇠ 1�a,
which is mandatory to fix the first issue of an unstable update on cell Ek1 .

Finally, the stabilization term should vanish in the special case when the time step is
small enough such that the characteristics of the cell Ek2 only reach back into its direct
inflow neighbor Ek1 . This is the case for a > n and, hence, motivates the final definition of
the stabilization parameter as

hk1 = 1�min
⇣a

n
,1
⌘
. (3.11)

There is limited flexibility in the choice of the stabilization parameter to fix the two issues
of the small cell problem. In the next section, we will define a range of suitable values based
on theoretical foundations.

In what follows, we will discuss various properties of the DoD stabilization, which were
presented first in other works [25, 62]. We will label the corresponding results adequately.

Monotonicity

One desirable property for a first-order scheme is to be monotone when solving hyperbolic
conservation laws. This monotonicity implies a maximum principle for the numerical solu-
tion, which guarantees that unphysical overshoots and undershoots cannot occur. The major
drawback of monotone schemes is that they are at most first-order accurate.

In the next steps, we study the monotonicity and TVD properties of the DoD stabilized
scheme.

Theorem 13. [77, Theorem 10] Consider the model problem MP 2.8 discretized in time by
the explicit Euler scheme. Let the time step be given by Dt = nh

|b| for 0 < a < n < 1�a .
Then, the method is monotone in the sense of Definition 8.

Proof. The proof of this statement was originally presented in the master’s thesis [77, The-
orem 10], but for an updated version, we refer to [25].In addition, the monotonicity of the

51

CHAPTER 3. DoD Stabilization in one dimension

method is shown for the more general case of a non-linear scalar equation in Theorem 21
below.

TVD stability

Next, we show that the stabilized scheme discretized in time using the explicit Euler scheme
is TVD stable for the model problem 2.8 under a CFL condition, that is independent of the
value of a.

Lemma 14. [25, Lemma 4.8] Consider the model problem MP discretized in time using the
explicit Euler scheme. Then, the stabilized scheme is TVD stable for n < 1�a.

Proof. We decompose

TV (un+1) = Â
j
|un+1

j �un+1
j�1|= Â

jk�1
|un+1

j �un+1
j�1|

| {z }
T1

+ |un+1
k1
�un+1

k�1|| {z }
T2

+ |un+1
k2
�un+1

k1
|

| {z }
T3

+ |un+1
k+1�un+1

k2
|

| {z }
T4

+ Â
j�k+2

|un+1
j �un+1

j�1|
| {z }

T5

.

For the unstabilized parts of the scheme, we obtain

T1  Â
jk�2

|un
j �un

j�1|+(1�n)|un
k�1�un

k�2|, T5  Â
j�k+2

|un
j �un

j�1|+n|un
k+1�un

k2
|.

Using the stabilized update formulas in (3.4), the direct substitution of the formulae results
in

T2  n|un
k�1�un

k�2|.

For T3 and T4, we reorder the terms resulting from the formulas (3.4) to get

T3 
✓

1� n
1�a

◆
|un

k2
�un

k1
|+
✓

1� n�a
1�a

◆
|un

k1
�un

k�1|,

T4  (1�n) |un
k+1�un

k2
|+ n

1�a
|un

k2
�un

k1
|+ n�a

1�a
|un

k1
�un

k�1|.

We emphasize that all terms are positive due to the assumptions made. Summing up the
estimates for T1, . . . ,T5 implies the claim.

This TVD stability guarantees that the DoD-stabilized scheme does not develop any spuri-
ous oscillations. Next, we compare the DoD stabilization to the well-known h-box method.
This part is based on the work in [25].

52

x
Ek�2 Ek�1 Ek Ek+1 Ek+2

x
k�5

2
x

k+3
2

Figure 3.3: [25] One-dimensional FV model mesh and boxes used for the h-box stabiliza-
tion.

Comparison to the h-box method

The idea behind the proposed stabilization is similar to that of the h-box method [7, 8,
42]. In this approach, one creates boxes of length h at the cut cell edges to reconstruct the
appropriate domains of dependence for small cut cells and their outflow neighbors. These
boxes are then used for the flux computation on cut cell edges.

We compare the FV-based h-box method to our DG stabilization for piecewise constant
polynomials and explicit Euler method in time. We consider a 1D mesh (which is often used
as a cut model for FV schemes) consisting of elements with mesh size h with one small cell
of length ah, a 2 (0,1], referred to as cell Ek in the interior of the domain (see Figure 3.3).
We solve the advection equation (2.85) with b = 1 using upwind fluxes. Then, for both
methods, the update formulae on cells i k�1 and i� k+2 correspond to the unstabilized
upwind scheme.

The h-box method on the cut cell k results in the update formula

un+1
k = un

k�
Dt
ah

✓
un,L

k+ 1
2
�un,L

k� 1
2

◆
(3.12)

with upwind fluxes

un,L
k� 1

2
= un

k�1 and un,L
k+ 1

2
= ĥun

k +(1� ĥ)un
k�1.

Here, un,L
k+ 1

2
is constructed using linear interpolation with a parameter ĥ. This results in

un+1
k = un

k�
Dt
ah

ĥ
�
un

k�un
k�1
�
. (3.13)

The DoD stabilization (3.3) for this setting is given by

un+1
k = un

k�
Dt
ah

(1�h)
�
un

k�un
k�1
�
. (3.14)

Substituting ĥ = 1�h, equations (3.13) and (3.14) are identical. The same can be shown
for the update of the cell k + 1 and, thus, both methods coincide up to the choice of the
stabilization parameter.

53

CHAPTER 3. DoD Stabilization in one dimension

In [8] the following two values for h are proposed:

h1 = 1�a and h2 = 1� 2a
1+a

(3.15)

The choice h1 is based on cell averaging, and the choice h2 on optimizing the one-step
error: it is the only choice that leads to a second-order one-step error (compared to first-
order otherwise). We propose hk = 1� a

n . The choice hk results in the exact advection of a
piecewise constant solution in the situation above.

The apparent benefit of h2 regarding the one-step error does not impact the accuracy at
time T . This phenomenon, where the global error behaves better than expected based on
the local error, is called supraconvergence. For h1, [8] shows global first-order convergence
and a variant of the proof can be shown for our suggestion hk = 1� a

n .

Proposition 4. [25, Proposition 4.9] We consider the above mentioned situation (mesh
shown in Figure 3.3, upwind scheme on all cells and stabilized by the DoD stabilization
on cell Ek), which can be summarized as

un+1
j = un

j �
Dt
h
�
un

j �un
j�1
�
, j 2 {1, ...,N}/{k,k+1},

un+1
k = un

k�
Dt
ah

(1�h)
�
un

k�un
k�1
�
,

un+1
k+1 = un

k+1�
Dt
h
�
un

k+1� (1�h)un
k�hun

k�1
�
.

Then, using h = hk, the scheme is of first-order for sufficiently smooth solutions.

Proof. The proof is based on the ideas of Wendroff and White [80, 81] and is highly influ-
enced by the proof of Berger et al. [8, Proposition 1]. The basic idea is to find an appropriate
grid function r, which is a first-order approximation of the grid function of the exact solu-
tion u. At the same time, this grid function r needs to be chosen such that the truncation
error for the grid of the model problem is of first-order. We define the grid function r with a
parameter z as

rn
i = un

i +zihux(xi, tn). (3.16)

On the Cartesian part of the grid away from the small cut cell, we choose the parameter
zi = 0, i 6= k because the truncation error is already of first-order here. In the neighborhood

54

of the small cut cell, the parameter zk must still be chosen. The truncation error of the update
formula (3.14) is given by

Lr =
rn+1

k � rn
k

Dt
+

1�h
a

rn
k � rn

k�1
h

=
un+1

k +zkhux(xk, tn+1)�un
k�zkhux(xk, tn)

Dt

+
1�h

a
·

un
k + ĥkhux(xk, tn)�un

k�1
h

+O(Dt,h)

=
un

k +Dtut(xk, tn)+zkhux(xk, tn)�un
k�zkhux(xk, tn)

Dt

+
1�h

a
·

un
k +zkhux(xk, tn)�un

k +
1
2(1+a)hux(xk, tn)

h
+O(Dt,h)

=ut(xk, tn)+
(1�h)(zk +

1
2(1+a))

a
ux(xk, tn)+O(Dt,h).

For the truncation error to be of first-order, we need to choose the parameter zk such that the
prefactor of ux(xk, tn) is equal to 1. This gives us the following condition

1 !
=

(1�h)(zk +
1
2(1+a))

a
, zk =

a
1�h

� 1
2
(1+a)

For our choice of the stabilization parameter hk = 1� a
n we obtain the grid function

rn
k = un

k +

✓
n� 1

2
(1+a)

◆
hux(xk, tn).

Since the truncation error of rn
k is of order O(Dt,h) and there holds r = u+O(h), this com-

pletes the proof.

Remark 15. The result of Proposition 4 can also be proven for the model mesh shown in
Figure 2.8, using the additional modification of the grid functions on cells Ek1 and Ek2:

rn
k1
= un

k1
+

✓
n� 1

2
(1+a)

◆
hux(xk1 , t

n),

rn
k2
= un

k2
� a

2
hux(xk2 , t

n).

3.1.2. Higher-order polynomials

We now consider the extension of the stabilization to higher-order polynomials. The prin-
ciples outlined in this section were initially introduced for piecewise linear polynomials in
[25] and was later extended to higher-order polynomials in [62]. We keep the general idea

55

CHAPTER 3. DoD Stabilization in one dimension

E j

u j

Lext(u j)

Figure 3.4: Sketch of the extended version Lext(u j) (purple dashed) of a piecewise polyno-
mial solution u j on cell E j (black line).

that the DoD stabilization should transfer mass from the inflow neighbor directly to the out-
flow neighbor to ensure a proper mass distribution among the cut cell and its neighbors.
Again we achieve this by adding an additional flux at the outflow edge of the small cut cell.
Unlike in the case of piecewise constant functions, we must now carefully choose at which
point we evaluate the functions. The stabilization is based on extending the influence of the
polynomial solutions on cells Ek�1 and Ek2 to the small cut cell Ek1 . We do this by means
of an extension operator Lext.

Definition 16 (Extension operator). We introduce an extension operator Lext
E 0 that extends a

function uh 2V k
h from a cell E 0 2Mh to the whole domain W:

Lext
E 0 : V k

h (Mh)|E 0 ! Pk(W) s.t. Lext
E 0 (u

h) 2 Pk(W) and Lext
E 0 (u

h)|E 0 = uh|E 0 .

This extension is trivial as uh|E 0 2 Pk(E 0) and polynomials can be evaluated outside of their
original support.

In this work, we will use a simpler notation for an extended function as described in what
follows.

Notation 17. We will drop the extension operator Lext
E j

and use the notation

uE j(x), x 2W,

to indicate that the discrete polynomial function uE j from cell E j is evaluated at a point x,
possibly outside of E j. See Figure 3.4 for an illustration of the extension operator.

The DoD stabilization for higher-order polynomials is given by two terms J0,k1
h (·, ·) and

J1,k1
h (·, ·). The first stabilization term J0,k1

h (·, ·) is given by:

J0,k1
h (uh,wh) = bhk1 [uk�1(xcut)�uk1(xcut)]

r
wh

z

cut
. (3.17)

56

Ek�1 Ek1 Ek2

xcut

uk1(xcut)

uk�1(xcut)

uk�1(xcut)�uk1(xcut)

Figure 3.5: Sketch of the extended jump term between uk�1 and uk1 that is evaluated at xcut.

Note that we use the extended solution of the inflow neighbor to determine the size of the
correction at the outflow edge. See Figure 3.5 for a visualization of the extended jump term.

After restoring a more physical mass distribution in the neighborhood of the small cut cell,
we need to restore control over the gradients. Therefore we introduce a second stabilization
term J1,k1

h (·, ·) that is given in the form of a penalty term, which is evaluated on cell volumes.
It controls the mass distribution primarily within the small cut cell Ek1 and secondarily within
its neighborhood. The stabilization accounts for how much mass has been moved into and
out of the small cut cell Ek1 from and to its left and right neighbors through ah(·, ·) and
J0,k1

h (·, ·). The second stabilization term J1,k1
h (·, ·) is given by:

J1
h(u

h,wh) = bhk1

Z

k1
[uk�1(x)�uk1(x)] [∂xwk�1(x)�∂xwk1(x)]dx. (3.18)

We apply the extension operator to both the discrete solution and the test function of the in-
flow neighbor Ek�1. The stabilization term J1,k1

h (·, ·) was initially introduced in a simplified
version in [25] and subsequently expanded to its current form (3.18) in [62].

Finally, the full stabilization Jh(·, ·) for cell k1 is then given by

Jk1
h (uh,wh) = J0,k1

h (uh,wh)+ J1,k1
h (uh,wh). (3.19)

Theoretical properties

Next, we will present theoretical properties for piecewise polynomials of higher-order. We
will start with a symbolic eigenvalue analysis for a small one-dimensional cut cell problem.
This will illustrate, that the given method is absolute stable independent of the size of the
volume fraction a. After that, we will examine TVDM stability and L2 stability for the
stabilized method.

57

CHAPTER 3. DoD Stabilization in one dimension

Figure 3.6: Eigenvalues of (3.22): The stability re-
gion of the second-order Heun’s method is shown in
blue. The colors refer to the different eigenvalues
and show their evolution for decreasing a (a = 2�i,
i 2 [1, . . . ,10]).

Choice of hk1

We now illustrate the stability of our stabilized scheme in combination with the second-order
explicit RK scheme (2.78) by means of an eigenvalue analysis using symbolic computations
with sympy[64]. This part is based on the collaborated work [25]. We consider the model
problem MP for the special case of N = 5, i.e., we start with four equidistant cells of length
h and split the third cell into two cells of length ah and length (1�a)h. We use Dirichlet
boundary conditions and without loss of generality set b = 1.

We consider the stabilized scheme

(dtuh(t),wh)L2(W) +ah(uh(t),wh)+ Jh(uh(t),wh) = 0, (3.20)

with the stabilization term Jh(·, ·) given by (3.19). For the construction of the stabilization
term Jh(·, ·), we have made several design choices, e.g., the choice of hk1 and the general
structure of the terms. We rewrite the variational formulation (3.20) as a system of ODEs

d
dt

u(t) =�M�1(A+ J)u(t) (3.21)

with u(t) being the coefficient vector of the discrete solution uh(t), M being the mass matrix,
A being the stiffness matrix incorporating ah(·, ·), and J incorporating the corresponding
parts of Jh(·, ·). We then symbolically set up the scaled operator

R =�DtM�1(A+ J), (3.22)

which is the stability function used in the ODE stability analysis.
Following [58], for the analysis of the stability of a scalar ordinary differential equation,

we consider the simple test equation

d
dt

y(t) = ly(t) (3.23)

58

with l2C being a complex number. Applying the second-order Heun’s method to the scalar
problem (3.23) gives

yn+1 =
�
1+Dtl+ 1

2(Dtl)2�yn. (3.24)

The weight w(Dtl)= 1+Dtl+ 1
2(Dtl)2 is called amplification factor and we say the method

is absolute table when |w(Dtl)|  1; otherwise it is unstable. We then define the stability
region (SR) of the method, which is given by the following set

SR =
�

z 2 C with
��1+ z+ 1

2z2�� 1

.

Consequently, we obtain the stability of the method, if we choose Dt such that Dtl 2 SR.

In the setting of systems of ordinary differential equations as given by (3.21) we can
extend the ideas of the scalar case. Similar to the scalar case, we define the amplification
matrix w(R)= I+R+ 1

2R2 as the weight associated with the numerical method. The stability
of the method is achieved when |w(R)|  1, indicating that the amplification matrix for all
eigenvalues of R remains within the desirable range. Conversely, if |w(R)| > 1 for any
eigenvalue, the method is considered unstable.

Next, we check the distribution of the eigenvalues for our stabilized scheme. As a  1
2 ,

a lower bound for the size of the unstabilized cut cell Ek2 is h
2 . The limiting CFL number n

for piecewise linear polynomials is then n = 1
2 . We therefore choose Dt = h

6 to compute the
eigenvalues of R. For the limit a! 0, we find the following complex eigenvalues:

l1,2 =�
2±

p
2i

3
,

l3,4,5,6 =�
2+

p
2i

6
,

l7,8,9,10 =�
2�

p
2i

6
.

For a sequence of decreasing a, we visualize the eigenvalues of R and observe that for Dt = h
6

all eigenvalues stay within the stability region of the explicit second-order SSP RK scheme
(2.78) (Figure 3.6), indicating the stability of the explicit time-stepping scheme.

TVDM stability

Next, we will continue with the natural extension of TVD stability to higher-order polyno-
mials: TVDM stability. In general, we can only expect to obtain a TVDM stability result for
higher-order polynomials if we apply a limiter. In Section 2.2.6, we discussed the TVDM
generalized slope limiter [16], which we will use for the 1D examples. For the proof of the
TVDM property, we need to modify the limiting process on the stabilized cells.

59

CHAPTER 3. DoD Stabilization in one dimension

In the penalty term Jh(·, ·), we evaluate the solutions of cell Ek�1 outside of its original
support. We, therefore, extend the limiting on this cell by additionally enforcing

min
�
un

k�1,u
n
k1
,un

k2

�
 uh,k�1(xcut)max

�
un

k�1,u
n
k1
,un

k2

�
. (3.25)

As for the standard cells, we first check whether or not it is necessary to change the high-
order polynomial (see Step 1) and only adjust the solution if needed.

Lemma 18. [25, Lemma 4.10.] Consider the model problem MP discretized with the explicit
Euler method in time. Assume that the limiter has been modified on cell Ek�1 to additionally
enforce (3.25). Then the scheme is TVDM stable for n < 1

4 .

Proof. The result can be shown similarly to the proof of Lemma 14 and can be found in [25]
for a slightly different choice of the stabilization parameter hk1 .

Corollary 19. [25, Corollary 4.11.] Consider MP discretized with the second-order SSP
RK scheme (2.78) in time. Assume that the limiter has been modified on cell Ek�1 to enforce
(3.25). Then the scheme is TVDM stable for n < 1

4 .

Proof. The result follows directly from the fact that SSP RK schemes are constructed to be
convex combinations of explicit Euler steps [36].

L2 stability

Next, we will discuss the L2 stability of the semi-discrete scheme (3.20). We consider the
semi-discrete problem for the linear advection equation in 1D, which is given by

⇣
dtuh(t),wh

⌘

L2(W)
+ah

⇣
uh(t),wh

⌘
+ Jh(uh(t),wh) = 0 (3.26)

using the bilinear form

ah(uh,wh) =� Â
j2Iall

Z

j
buh∂xwhdx+

N

Â
j=0

buh(x�j+1/2)
r

wh
z

j+1/2
+buh(x�cut)

r
wh

z

cut

(3.27)

and the stabilization term

Jh(uh(t),wh) = bhk1 [uk�1(xcut)�uk1(xcut)] [wk1(xcut)�wk2(xcut)]cut

+bhk1

Z

k1
[uk�1(x)�uk1(x)] [∂xwk�1(x)�∂xwk1(x)]dx.

(3.28)

For this scheme, we obtain the following result.

60

Theorem 20. Let uh(t), with uh(t) 2V p
h for any fixed t, be the solution to the semi-discrete

problem (3.26) for the linear advection equation (2.3) with periodic boundary conditions.
Furthermore, let the evaluation of the volume integrals in ah(·, ·) and Jh(·, ·) be exact. Then,
the solution satisfies for all t 2 (0,T)

���uh(t)
���

L2(W)

���uh(0)

���
L2(W)

.

Proof. Choosing wh = uh(t) in (3.26) results in

⇣
dtuh(t),uh(t)

⌘

L2(W)
+ah

⇣
uh(t),uh(t)

⌘
+ Jh(uh(t),uh(t)) = 0. (3.29)

We integrate in time to achieve

Z t

0

⇣
dtuh(t),uh(t)

⌘
dt =

Z t

0

d
dt

1
2

���uh(t)
���

2

L2(W)
dt = 1

2

���uh(t)
���

2

L2(W)
� 1

2

���uh(0)
���

2

L2(W)
.

Therefore, it remains to show that for any fixed t

ah

⇣
uh(t),uh(t)

⌘
+ Jh(uh(t),uh(t))� 0. (3.30)

From now on, we will omit the explicit time dependence for brevity. We first start with the
unstabilized case and consider only the bilinear form ah(·, ·). Using direct calculations and
reordering terms, equation (3.27) can be written as

ah(uh,uh) = Â
j2Iequi

1
2

b
r

uh
z2

j� 1
2

+
1
2

b
r

uh
z2

k� 1
2

+
1
2

b
r

uh
z2

cut
(3.31)

due to the periodic boundary conditions. Note that we have used the periodic boundary
conditions here. For obvious reasons, all terms in equation (3.31) are non-negative.

For the stabilization term, we find that

Jh(uh,uh) =bhk1 [uk�1(xcut)�uk1(xcut)] [uk1(xcut)�uk2(xcut)]cut

+bhk1

Z

k1
[uk�1(x)�uk1(x)] [∂xuk�1(x)�∂xuk1(x)]dx

=bhk1

⇣
uk�1(xcut)uk1(xcut)�uk�1(xcut)uk2(xcut)

�u2
k1
(xcut)+uk1(xcut)uk2(xcut)

+(uk�1�uk1)
2(xcut)� (uk�1�uk1)

2(xk� 1
2
)
⌘

=
1
2

bhk1

⇣
�

r
uh

z2

k� 1
2

�
r

uh
z2

cut
+[uk2(xcut)�uk�1(xcut)]

2
⌘
,

(3.32)

61

CHAPTER 3. DoD Stabilization in one dimension

· · · · · · · · ·

0 0.1 0.9 1

Figure 3.7: Modified model problem MP for numerical tests in one dimension: We consider
the interval [0,1] and between x = 0.1 and x = 0.9 we split every cell into a pair of two cut
cells, which are marked in green and blue.

where the first two terms in the last line of equation (3.32) are non-positive and, hence,
might lead to problems. Fortunately, when considering the sum ah(uh,uh)+ Jh(uh,uh), we
observe that the stabilization has the effect of replacing a specific amount, identified by hk1 ,
of the ‘standard’ jumps at both edges xk� 1

2
and xcut of the small cut cell Ek1 by an ‘extended’

jump between the inflow neighbor Ek�1 and the outflow neighbor Ek2 , evaluated at xcut. This
finishes the proof.

3.1.3. Numerical results

For the numerical results in one dimension, we consider a modified version of the model
problem MP: We take the closed interval W = [0,1] and split every cell Ek between x = 0.1
and x = 0.9 in cut cell pairs (Ek1 ,Ek2) of lengths akh and (1�ak)h, where ak 2 (0, 1

2] may
vary for different k. Figure 3.7 illustrates this setup.

Afterwards, we distinguish between two cases:

• Case 1 (‘a = 10�⇤’): The cut cell fraction ak is the same for all cut cell pairs, i.e.
ak ⌘ a.

• Case 2 (‘rand a’): The cut cell fraction ak varies and is computed randomly as ak =

10�2Xk with Xk being a uniformly distributed random number in (0,1).

For the convergence tests, we compare additionally a reference solution on a uniform mesh
called (‘equi’). On these uniform mesh the stabilization vanishes.

The DoD stabilization for a general cut cell mesh and, in particular, the modified model
problem is given by

Jh(uh,wh) = Â
k2I

J0,k
h (uh,wh)+ J1,k

h (uh,wh). (3.33)

The set I contains all cells that need to be stabilized. In our numerical tests, we use the
following definition

I = {Ek | hk > 0}

62

Figure 3.8: Convergence test for a smooth solution for the linear advection equation: Error
in the L1 and L• norm.

with the stabilization parameter hk defined according to equation (3.11). Note that we define
the stabilization parameter on all cells by setting the volume fraction a = 1 on Cartesian
cells.

Convergence tests

We consider the linear advection equation (2.85) using the constant velocity b = 1. The
smooth initial data u0(x) = sin(2px), and periodic boundary conditions, so that the smooth
solution reads u(x, t) = sin(2p(x� t)) in combination with periodic boundary conditions.

We consider three different cut cell setups: we test moderately large values of the cut cell
fraction with constant a = 10�1, but also relatively small values with a = 10�5. In addition,
we test the case of random cut cell fractions and compare them to the results on a uniform
mesh.

In Figure 3.8, we show the L1 error and the L• error at time T = 1. The L1 error and the
L• error norm are defined as

���u(·,T)�uh(·,T)
���

L1(W)
=

Z

W

���u(x,T)�uh(x,T)
���dx

and

���u(·,T)�uh(·,T)
���

L•(W)
= max

x2W

���u(x,T)�uh(x,T)
��� .

For both error norms, we observe in all test scenarios convergence orders p+1 for poly-
nomials of order p no matter whether or not cut cells are part of the mesh.

63

CHAPTER 3. DoD Stabilization in one dimension

Stability tests

In Section 3.1.2, we presented the eigenvalue distribution for different choices of a and in
the limit a ! 0 using a grid of N = 5 cells and piecewise linear functions for the semi-
discrete stabilized scheme. We continue the eigenvalue analysis for our stabilized method
numerically for a larger number of grid cells and different polynomial degrees. Instead of
the semi-discrete stabilized scheme, we now consider the fully discretized scheme. Since
we are considering a linear test problem at the moment, we can rewrite our fully discretized
scheme for every polynomial degree p in the matrix-vector form

U
n+1 = AU

n,

where A is the global system matrix and U
n is the vector of all degrees of freedom at time

tn. The eigenvalues li of this matrix A have important consequences for the stability and
convergence of the numerical solution. This is because the eigenvalues of the global system
matrix determine the behavior of the numerical solution over time [79]:

• |li|> 1: In general, if the magnitude of an eigenvalue li is greater than 1, the corre-
sponding mode of the numerical solution will grow exponentially in time, leading to
instability and divergence of the solution.

• |li|< 1: Conversely, if the eigenvalue magnitude is less than 1, the mode will decay
exponentially over time, leading to stability and convergence of the solution.

• |li|= 1: For the special case that the magnitude of the eigenvalue is equal to 1, the
mode will oscillate without changing amplitude, leading to neutral stability.

By requiring that the eigenvalues of the global system matrix lie within the unit circle, i.e.,
|li| 1 8i, we ensure that all modes of the numerical solution will either decay or oscillate
and will not grow in time. This will ensure that the numerical solution is stable. In practice,
this condition is often used as a diagnostic tool to assess the stability and convergence of
numerical methods for solving PDEs and to identify any sources of instability that may need
to be addressed to obtain a stable and accurate numerical solution.

We consider the linear advection equation (2.85) with the velocity b = 1 for arbitrary
initial data with periodic boundary conditions. In Figure 3.9, we show the eigenvalues for
the different cut cell grids under investigation and polynomial degrees p = 0, ...,3. For all
setups, we observe that the eigenvalues stay inside the unit circle, which means that we see
numerically |l| 1 and the stability of the given method numerically.

64

Figure 3.9: Eigenvalue distribution for different ansatz orders p 2 {0,1,2,3} and the differ-
ent cut cell grids.

3.2. Extension to non-linear systems of conservation laws

The following part is based on [62]. As a next step, we extend the concept of the DoD
stabilization to non-linear scalar equations and systems of hyperbolic conservation laws.
These are given by the equations

∂tu+∂xf(u) = 0

where u : R⇥ (0,T)! Rm is the vector of conserved variables and f : Rm ! Rm is the
possibly non-linear flux function. Furthermore, the integer m � 1 denotes the number of
equations under investigation. Note that the scalar case m = 1 is included in all considera-
tions even though we sometimes use bold typesetting.

3.2.1. Piecewise constant polynomials

The stabilization for non-linear conservation laws in the setting of piecewise constant poly-
nomials for the model problem MP is given by

Jh(u
h,wh) = J0,k1

h (uh,wh)

with

J0,k1
h (uh,wh) =hk1

h
H (uk�1,uk2)(xk� 1

2
)�H (uk�1,uk1)(xk� 1

2
)
i
·
r

w
h
z

k� 1
2

+hk1 [H (uk�1,uk2)(xcut)�H (uk1 ,uk2)(xcut)] ·
r

w
h
z

cut
.

(3.34)

Although it is not important at which locations the piecewise constant functions are eval-
uated, we include them here to emphasize the symmetric structure of the two terms in

65

CHAPTER 3. DoD Stabilization in one dimension

J0,k1
h (·, ·). We add jump terms at both edges of Ek1 , accounting for the two possible flow

directions in the non-linear case. Note that we make use of the extension operator here
when uk�1 and uk2 are evaluated at xcut and xk� 1

2
, respectively. We emphasize that the

proposed stabilization (3.34) reduces to the already known stabilization (3.17) when consid-
ering a linear problem. Once again, we look at the issues induced by the small cut cell and
discuss the effect of the stabilization. The stabilized update formulas in the non-linear case
are given by

u
n+1
k�1 =u

n
k�1�

Dt
h
{(1�hk1)H (un

k�1,u
n
k1
)�H (un

k�2,u
n
k�1)+hk1H (un

k�1,u
n
k2
)},

u
n+1
k1

=u
n
k1
� Dt

ah
(1�hk1){H (un

k1
,un

k2
)�H (un

k�1,u
n
k1
)}, (3.35)

u
n+1
k2

=u
n
k2
� Dt

(1�a)h
{H (un

k2
,un

k+1)� (1�hk1)H (un
k1
,un

k2
)�hk1H (un

k�1,u
n
k2
)}.

Issue 1: Unstable update on small cut cell

The unstabilized update formula for the small cut cell in the non-linear case reads

u
n+1
k1

= u
n
k1
� Dt

ah
{H (un

k1
,un

k2
)�H (un

k�1,u
n
k1
)}. (3.36)

In the unstabilized case, there is again an O(1
a) dependency when updating the small cut

cell Ek1 . This leads to an unstable update on the small cut cell for a decreasing a ! 0.
When comparing the unstabilized with the stabilized update formula, we see that they again
only differ by the factor (1�hk1). Therefore, the stabilization parameter hk1 can be chosen
in such a way that the O(1

a) dependency cancels out, and the update on the small cut cell
becomes stable again. In summary, the stabilization has a similar effect on the first issue as
in the linear case above.

Issue 2: Missing information on outflow neighbor

Next, we will look at the second issue, which is caused by the requirement for correct physi-
cal information on the outflow neighbors of small cut cells. When considering the stabilized
update formulas in the neighborhood of the small cut cell, we notice that both neighbors
have been modified. This modification is constructed such that we scale down the flux be-
tween the small cut cell and its neighbor and add a greater amount of an additional flux
between the two neighbors of the small cut cell. This allows cell Ek�1 to obtain information
from cell Ek2 and vice versa.

66

Monotonicity

As a next step, we extend the monotonicity statement that we have proved for the case of
solving a linear scalar equation using piecewise constant polynomials. For this, we will
again work with Definition 8. Furthermore, we use the definition Ha(u�,u+) 2 Rm⇥m to
denote the Jacobian of the numerical flux H (u�,u+) with respect to the first argument,
i.e., (Ha(u�,u+))m

i, j=1 :=
⇣

∂
∂(u�) j

H (u�,u+)i

⌘m

i, j=1
. Analogously, Hb(u�,u+) denotes the

Jacobian concerning the second argument u
+.

Theorem 21. [62, Theorem 5] Consider the stabilized scheme (3.35) using elements of V 0
h

for the model problem MP with explicit Euler in time, applied to a scalar conservation law.
Let the time step be given by Dt = nh

lmax
for 0 < a < n < 1�a . Let the numerical flux H

satisfy Prerequisite 2.2.1. In addition, we assume that

��Ha(u,v)
��+
��Hb(w,u)

�� nh
Dt

8u,v,w (3.37)

is satisfied. Then, the stabilized scheme is monotone.

Remark 22. Condition (3.37) is a common condition for monotonicity on regular meshes,
see [65].

Proof. Away from the two cut cells, we use a standard first-order DG scheme on a uniform
mesh, which is monotone under the given assumptions. Therefore, it suffices to show prop-
erty (2.81) for the three cells E j, j 2 INeigh, that are affected by our stabilization. The update
formulas are given by (3.35). Due to the fact that 0 < hk1 < 1, the non-negativity of ∂

∂un
i
un+1

j

for i 6= j follows directly from the monotonicity of the fluxes. It remains to investigate the
sign of ∂

∂un
j
un+1

j for j 2 INeigh. We start with cell Ek�1:

∂
∂un

k�1
un+1

k�1 =1� Dt
h

n
(1�hk1)Ha(un

k�1,u
n
k1
)+hk1Ha(un

k�1,u
n
k2
)

� (1�hk1)Hb(un
k�2,u

n
k�1)�hk1Hb(un

k�2,u
n
k�1)

o

�1� Dt
h

⇢
(1�hk1)

nh
Dt

+hk1

nh
Dt

�
� 0.

For the small cut cell Ek1 and hk1 = 1� a
n , we have

∂
∂un

k1

un+1
k1

=1� Dt
ah

(1�hk1){Ha(un
k1
,un

k2
)�Hb(un

k�1,u
n
k1
)}

�1� Dt
ah

a
n

nh
Dt
� 0.

67

CHAPTER 3. DoD Stabilization in one dimension

Ek�1 Ek1 Ek2
xk� 1

2

H (uk�1,uk2)(xk� 1
2
)

H (uk�1,uk1)(xk� 1
2
)

Ek�1 Ek1 Ek2

xcut

H (uk1 ,uk2)(xcut)

H (uk�1,uk2)(xcut)

Figure 3.10: [62] Sketch of the different jump terms that are evaluated for the stabilization
term J0,k1

h .

Finally, for cell Ek2 we obtain

∂
∂un

k2

un+1
k2

=1� Dt
(1�a)h

n
(1�hk1)Ha(un

k2
,un

k+1)+hk1Ha(un
k2
,un

k+1)

� (1�hk1)Hb(un
k1
,un

k2
)�hk1Hb(un

k�1,u
n
k2
)
o

�1� Dt
(1�a)h

nh
Dt
� 0.

This concludes the proof.

3.2.2. Higher-order polynomials

In this section, we will discuss the extension to higher-order polynomials for systems of
non-linear conservation laws. We have already seen in the previous chapter that the DoD
stabilization for higher-order polynomials and linear equations consists of two parts with
different tasks:

Jh(u
h,wh) = J0,k1

h (uh,wh)+ J1,k1
h (uh,wh).

The first term J0,k1
h (·, ·) was already defined in the previous section by

J0,k1
h (uh,wh) =hk1

h
H (uk�1,uk2)(xk� 1

2
)�H (uk�1,uk1)(xk� 1

2
)
i
·
r

w
h
z

k� 1
2

+hk1 [H (uk�1,uk2)(xcut)�H (uk1 ,uk2)(xcut)] ·
r

w
h
z

cut
.

Once again, we emphasize the fact that we use the extension operator to evaluate uk�1 and
uk2 outside of their original domain, see Figure 3.10 for a visualization of the symmetrized
non-linear term.

The stabilization term J1,k1
h (·, ·) is given in the form of a penalty term that is evaluated on

cell volumes. It controls the mass distribution primarily within the small cut cell Ek1 and sec-

68

ondarily within its neighbors Ek�1 and Ek2 . The stabilization accounts for how much mass
has been moved into and out of the small cut cell Ek1 from and to its left and right neighbors
using ah(·, ·) and J0,k1

h (·, ·). The terms are derived from the proof of the L2 stability, see
Theorem 23 below. This part is based on the findings in [62].

Analogously to the ansatz functions, we also extrapolate the test functions to be used
within their direct neighbor but outside of their original support. The stabilization term
J1,k1

h (·, ·) is given by

J1,k1
h (uh,wh) =hk1 Â

j2INeigh

K(j)
Z

k1

�
H (uk�1,uk2)� f(u j)

�
·∂xw j dx

+hk1 Â
j2INeigh

K(j)
Z

k1

�
Ha(uk�1,uk2)u j

�
·∂xwk�1 dx

+hk1 Â
j2INeigh

K(j)
Z

k1

�
Hb(uk�1,uk2)u j

�
·∂xwk2 dx.

(3.38)

Here, the matrices K(j) 2 Rm⇥m, j 2 INeigh, incorporate information about the flow direc-
tions. They are defined using positive semi-definite matrices Lk1 ,Rk1 2 Rm⇥m and the iden-
tity matrix I

m 2 Rm⇥m. We set

K(k�1) = Lk1 , K(k1) =�I
m, and K(k2) = Rk1 .

The choices of the matrices Lk1 and Rk1 will be discussed in the next paragraph based on
the findings presented in [62].

3.2.3. Choice of parameters

The matrices Lk1 and Rk1 incorporate information about the flow direction.

We knew that for the linear advection equation (2.85) with positive velocity b > 0, we
need to set Lk1 = 1 and Rk1 = 0, whereas for negative velocity b < 0, Lk1 = 0 and Rk1 = 1 is
required. In other words: Lk1 and Rk1 contain information about the flow direction (but not
about the amplitude of the flow, i.e., only the sign of b is important).

We use this knowledge to find proper parameter matrices for the case of a non-linear
system of equations. As a first step, we consider the linear system

∂tu+A∂xu = 0 (3.39)

and decompose the matrix A to get the flow information of interest. Thanks to the assump-
tion of hyperbolicity, A is diagonalizable with real eigenvalues li, i = 1, . . . ,m. Therefore,
we can rewrite A = QLQ

�1, where the columns of Q contain the right eigenvectors of A

and L is a diagonal matrix containing the eigenvalues (li)i. One can reinterpret the resulting

69

CHAPTER 3. DoD Stabilization in one dimension

linear system as m independent linear advection equations with velocities li = Lii. Based
on the sign of li, we can now determine the flow directions and define the diagonal entries
of matrices L+,L� 2 Rm⇥m as follows:

L+
ii =

8
>>><

>>>:

1 if Lii > 0,
1
2 if Lii = 0,

0 if Lii < 0,

and L�ii =

8
>>><

>>>:

0 if Lii > 0,
1
2 if Lii = 0,

1 if Lii < 0.

Then, we define Lk1 and Rk1 by transforming the diagonal matrices back using the matrices
Q and Q

�1:
Lk1 = QL+

Q
�1 and Rk1 = QL�Q

�1. (3.40)

Note that Lk1 and Rk1 are positive semi-definite matrices and satisfy Lk1 +Rk1 = I
m.

We can now transfer the linear system case to non-linear problems. For this we use
the same approach but replace A by the (non-linear) Jacobian matrix fu(u), evaluated at a
suitable average û of uk�1(xk1) and uk2(xk1), with xk1 denoting the cell centroid of cell Ek1 .
For scalar problems, i.e., m = 1, we simply use the arithmetic average û = (uk�1(xk1) +

uk2(xk1))/2 and set

Lk1 = I+ =

8
>>><

>>>:

1 if ∂u f (û)> 0,
1
2 if ∂u f (û) = 0,

0 if ∂u f (û)< 0,

and Rk1 = I� =

8
>>><

>>>:

0 if ∂u f (û)> 0,
1
2 if ∂u f (û) = 0,

1 if ∂u f (û)< 0.

For solving the compressible Euler equations, we use the Roe average [70]

û(uk�1,uk2) =
1
2

0

B@

prk�1 +
prk2prk�1vk�1 +
prk2vk2prk�1Hk�1 +
prk2Hk2

1

CA

with H = E+p
r , which are evaluated at xk1 , and with dropping the evaluation point xk1 for

brevity. Then, we decompose fu(û) into QLQ
�1 and use again definition (3.40).

L2 stability

In this section, we prove for non-linear scalar equations that the stabilized semi-discrete
scheme

(dtuh(t),wh)L2(W) +ah(uh(t),wh)+ Jh(uh(t),wh) = 0 (3.41)

70

is L2 stable for arbitrary polynomial degrees p and the model problem MP. This section is
based on the work [62]. We note that the unstabilized semi-discrete scheme

(dtuh(t),wh)L2(W) +ah(uh(t),wh) = 0 (3.42)

is also L2 stable in this setting, as shown in the proof below. However, when combined with
an explicit time-stepping scheme, one would need to take tiny time steps to ensure stability
for the fully discrete scheme. This is not the case for our stabilized scheme. The difficulty
in designing the stabilization term Jh(·, ·) is to find a formulation that is both L2 stable for
the semi-discrete setting and solves the small cell problem for the fully discrete setting in a
monotone way.

Theorem 23. [62, Theorem 6] Let uh(t), with uh(t) 2 V p
h for any fixed t, be the solution

to the semi-discrete problem (3.41) for the scalar equation (2.3) with periodic boundary
conditions. Let the numerical flux function H (·, ·) satisfy Prerequisite 2.2.1. Further, let the
evaluation of the volume terms in ah(·, ·) and Jh(·, ·) be exact. Then, the solution satisfies
for all t 2 (0,T) ���uh(t)

���
L2(W)


���uh(0)

���
L2(W)

.

Proof. We choose wh = uh(t) in (3.41) to get

(dtuh(t),uh(t))L2(W) +ah(uh(t),uh(t))+ Jh(uh(t),uh(t)) = 0.

Integration in time for the first term results in

Z t

0
(dtuh(t),uh(t))L2(W) dt =

Z t

0

d
dt

1
2

���uh(t)
���

2

L2(W)
dt = 1

2

���uh(t)
���

2

L2(W)
� 1

2

���uh(0)
���

2

L2(W)
.

It remains to show that for any fixed t

ah(uh(t),uh(t))+ Jh(uh(t),uh(t))� 0.

For the remainder of the proof, we will omit the explicit time dependence of uh(t) for brevity.

Unstabilized case: We first prove L2 stability for the unstabilized case, i.e., we show
ah(uh,uh) � 0. Here, we follow Jiang and Shu [45] for the particular case of the square
entropy function. We define

g(u) =
Z u

f (û)dû.

This implies g0(u) = f (u). By the E-flux property (2.68) and the mean value theorem, we
have

H (u�,u+)(u��u+)� (g(u�)�g(u+))� 0. (3.43)

71

CHAPTER 3. DoD Stabilization in one dimension

Further, there holds for an arbitrary cell Ei and an arbitrary u j

Z

Ei
f (u j)∂xu jdx = g(u j(xi+ 1

2
))�g(u j(xi� 1

2
)).

We define the flux

Fi+ 1
2
(uh) = H (ui,ui+1)(xi+ 1

2
) ui(xi+ 1

2
)�g(ui(xi+ 1

2
)).

Then we can rewrite the contribution of the bilinear form ah(·, ·) for a single, arbitrary cell
Ei as

�
Z

Ei
f (ui(x))∂xui(x)dx+H (ui,ui+1)(xi+ 1

2
)ui(xi+ 1

2
)�H (ui�1,ui)(xi� 1

2
)ui(xi� 1

2
)

=�g(ui(xi+ 1
2
))+g(ui(xi� 1

2
))+H (ui,ui+1)(xi+ 1

2
)ui(xi+ 1

2
)�H (ui�1,ui)(xi� 1

2
)ui(xi� 1

2
)

=Fi+ 1
2
(u)+g(ui(xi� 1

2
))�H (ui�1,ui)(xi� 1

2
)ui(xi� 1

2
)

=Fi+ 1
2
(u)�Fi� 1

2
(u)�g(ui�1(xi� 1

2
))+g(ui(xi� 1

2
))+H (ui�1,ui)(xi� 1

2
)
r

uh
z

i� 1
2

.

Using the notation Jg(u)Ki+ 1
2
= g(ui(xi+ 1

2
))�g(ui+1(xi+ 1

2
)), we can summarize

ah(uh,uh) = Â
j2Iequi

✓
Fj+ 1

2
(uh)�Fj� 1

2
(uh)+H (u j�1,u j)(x j� 1

2
)
r

uh
z

j� 1
2

� Jg(u)K j� 1
2

◆

+

✓
Fcut(uh)�Fk� 1

2
(uh)+H (uk�1,uk1)(xk� 1

2
)
r

uh
z

k� 1
2

� Jg(u)Kk� 1
2

◆

+
⇣

Fk+ 1
2
(uh)�Fcut(uh)+H (uk1 ,uk2)(xcut)

r
uh

z

cut
� Jg(u)Kcut

⌘
.

Due to the fluxes F building a telescoping sum and the use of periodic boundary conditions,
this implies

ah(uh,uh) = T1 +T2

where

T1 = Â
j2Iequi

✓
H (u j�1,u j)(x j� 1

2
)
r

uh
z

j� 1
2

� Jg(u)K j� 1
2

◆
,

T2 =H (uk�1,uk1)(xk� 1
2
)
r

uh
z

k� 1
2

� Jg(u)Kk� 1
2
+H (uk1 ,uk2)(xcut)

r
uh

z

cut
� Jg(u)Kcut .

are non-negative due to (3.43).

72

Contribution of stabilization: Now we consider the stabilization and show ah(uh,uh)+

Jh(uh,uh)� 0 instead of Jh(uh,uh)� 0. For the edge stabilization, we achieve

1
hk1

J0,k1
h (uh,uh) =

h
H (uk�1,uk2)(xk� 1

2
)�H (uk�1,uk1)(xk� 1

2
)
ir

uh
z

k� 1
2

+[H (uk�1,uk2)(xcut)�H (uk1 ,uk2)(xcut)]
r

uh
z

cut

=�T2 +T3

with

T3 = H (uk�1,uk2)(xk� 1
2
)
r

uh
z

k� 1
2

� Jg(u)Kk� 1
2
+H (uk�1,uk2)(xcut)

r
uh

z

cut
� Jg(u)Kcut .

Since hk1 2 (0,1), we can later take care of the negative term�hk1T2 by adding the function
ah(·, ·) to get

ah(uh,uh)�hk1T2 = T1 +(1�hk1)T2 � 0.

It remains to examine T3 and the volume stabilization term J1,k1
h . Here, we make use of the

assumption of the flux H being differentiable, a.e. to write

d
dx

H (uk�1,uk2) = Ha(uk�1,uk2)∂xuk�1 +Hb(uk�1,uk2)∂xuk2 .

This implies

1
hk1

J1,k1
h (uh,uh) = Â

j2INeigh

K(j)
Z

k1

�
H (uk�1,uk2)� f (u j)

�
∂xu jdx

+ Â
j2INeigh

K(j)
Z

k1
Ha(uk�1,uk2)u j ∂xuk�1dx+ Â

j2INeigh

K(j)
Z

k1
Hb(uk�1,uk2)u j ∂xuk2dx

= Â
j2INeigh

K(j)
Z

k1
H (uk�1,uk2)∂xu jdx� Â

j2INeigh

K(j)
⇣

g(u j(xcut))�g(u j(xk� 1
2
))
⌘

+ Â
j2INeigh

K(j)
Z

k1

✓
d
dx

H (uk�1,uk2)

◆
u j dx.

Using d
dx
�
H (uk�1,uk2)u j

�
= H (uk�1,uk2)∂xu j +

d
dxH (uk�1,uk2)u j, this results in

1
hk1

J1,k1
h (uh,uh) = Â

j2INeigh

K(j)
⇥�

H (uk�1,uk2)u j
�
(xcut)�

�
H (uk�1,uk2)u j

�
(xk� 1

2
)

�g(u j(xcut))+g(u j(xk� 1
2
))
⇤
.

Recall that
K(k�1) = Lk1 , K(k1) =�1, K(k2) = Rk1

73

CHAPTER 3. DoD Stabilization in one dimension

with Lk1 ,Rk1 2 [0,1] and Lk1 + Rk1 = 1. Then, skipping some tedious computations for
brevity, we obtain

1
hk1

J1,k1
h (uh,uh)+T3 =H (uk�1,uk2)(xk� 1

2
)uk�1(xk� 1

2
)�H (uk�1,uk2)(xcut)uk2(xcut)

�g(uk�1(xk� 1
2
))+g(uk2(xcut))

+Lk1

h
H (uk�1,uk2)(xcut)uk�1(xcut)�H (uk�1,uk2)(xk� 1

2
)uk�1(xk� 1

2
)

�g(uk�1(xcut))+g(uk�1(xk� 1
2
))
i

+Rk1

h
H (uk�1,uk2)(xcut)uk2(xcut)�H (uk�1,uk2)(xk� 1

2
)uk2(xk� 1

2
)

�g(uk2(xcut))+g(uk2(xk� 1
2
))
i

=T4 +T5

with

T4 = Lk1 [H (uk�1,uk2)(xcut)(uk�1(xcut)�uk2(xcut))�g(uk�1(xcut))+g(uk2(xcut))]

T5 = Rk1

h
H (uk�1,uk2)(xk� 1

2
)
⇣

uk�1(xk� 1
2
)�uk2(xk� 1

2
)
⌘
�g(uk�1(xk� 1

2
))+g(uk2(xk� 1

2
))
i
.

Note that we used Lk1 +Rk1 = 1 here. Again, T4,T5 � 0 due to (3.43). In total, the stabi-
lization reads as

J0,k1
h (uh,uh)+ J1,k1

h (uh,uh) =�hk1T2 +hk1T4 +hk1T5.

Together with the bilinear form ah, this gives

ah(uh,uh)+ Jh(uh,uh) = T1 +(1�hk1)T2 +hk1T4 +hk1T5.

As T1,T2,T4,T5 � 0 and all prefactors are non-negative due to 0 < hk1 < 1, this concludes
the proof.

3.2.4. Numerical results

In this section, we present numerical results for non-linear scalar conservation laws and
non-linear systems of conservation laws. We will show results for piecewise constant poly-
nomials in space as well as for higher-order polynomials to illustrate accuracy and stability
of the proposed scheme.

For this purpose, we again use the modified model problem shown in Figure 3.7, which is
given by the interval W = [0,1] with cut cell pairs between x = 0.1 and x = 0.9. These cut
cell pairs might have different cut cell fractions ak.

74

First of all, we test convergence properties for smooth solutions, which are non-trivial
to construct, e.g. for the compressible Euler equations. Therefore, we use the concept of
manufactured solutions for this purpose: We define a smooth function u(x, t) acting as the
solution of our system. Then we insert u(x, t) in the corresponding equations of the system
and compute the right-hand side s in such a way that the PDE is satisfied. This typically
results in a non-zero source term s and instead of solving

ut + f(u)x = 0 in W⇥ (0,T), (3.44)

we now solve the system
ut + f(u)x = s in W⇥ (0,T). (3.45)

The semi-discrete problem is then given by: Find u
h 2V p

h such that

⇣
dtu

h(t),wh
⌘

L2(W)
+ah

⇣
u

h(t),wh
⌘
+ Jh

⇣
u

h(t),wh
⌘
= Sh

⇣
s,wh

⌘
8w

h 2V p
h ,

where
Sh(s,w

h) = Â
j2Iall

Z

j
s ·whdx.

Remark 24 (Limiter revisited). As in case of the linear stabilization, we need to evaluate
the solution on the cells in the neighborhood of the small cut cell outside of their origi-
nal support. For the one-dimensional model problem, this includes the cells Ek�1 and Ek2 .
Therefore, the solution has to satisfy the following local maximum principle in the neigh-
borhood of the small cut cell:

min
�
un

k�1,u
n
k1
,un

k2

�
 uk�1(xcut)max

�
un

k�1,u
n
k1
,un

k2

�
,

min
�
un

k�1,u
n
k1
,un

k2

�
 uk2(xk� 1

2
)max

�
un

k�1,u
n
k1
,un

k2

�
.

The validity of these inequality constraints is enforced using the limiting technique as men-
tioned in Section 2.2.6. We note that these changes in the limiter induce additional diffusion
to a limited solution. However, this work focuses on the development of the stability term
Jh(·, ·) and not on the limiting technique, which is a very challenging task in this setting.
It combines the problems of not limiting higher-order polynomials at smooth extrema and
difficulties caused by the cut cell geometry [60]. Finally, this additional restriction on the
solution in the neighborhood of Ek1 scales with a and is, therefore, negligible for small cut
cells.

75

CHAPTER 3. DoD Stabilization in one dimension

Burgers equation

We start with two tests for the inviscid Burgers equation. In both cases, the initial solution is
given by a sine curve. While the solution stays smooth in the first test by adding a suitable
source term, shock and rarefaction waves develop in the second test,

Convergence test

We consider the manufactured solution

u(x, t) = sin(4p(x� t))

with periodic boundary conditions and the source term

s(x, t) = 4pcos(4p(x� t))(sin(4p(x� t))�1) .

In Figure 3.11, we show the error, measured in the L1 and in the L• norm, for different

Figure 3.11: [62] Convergence test for manufactured solution for Burgers equation: Error
in the L1 and L• norm.

values of the volume fractions ak and different polynomial degrees at the final time T = 1.
We test the same setups as for the linear advection equation in the previous chapter, including
large cut cells (‘a = 10�1’), small cut cells (‘a = 10�5’) and random cut cell sizes (‘rand
a’). Finally, we compare it to the case of a Cartesian grid (‘equi’).

As expected, we observe convergence of order p+1 for polynomial degree p for both the
L1 and the L• norm. We also note that the error sizes for the different test cases involving
varying values of ak are close to the case without any cut cells.

76

Stability test

In the next step, we test the stability of the numerical solution on cut cells. In this investi-
gation, we pay special attention to shock and rarefaction waves passing through a small cut
cell. Therefore, we consider a non-smooth problem and choose the initial data

u0(x) = sin(4p(x+0.5))

with periodic boundary conditions and set the source term s = 0. As it is well-known, these
initial data result in the development of shock waves in regions where the derivative of u0 is
negative.

Figure 3.12 shows the solution at the final time T = 0.1 for different polynomial degrees
and ak being chosen randomly as specified above. The cut cell mesh was created from a
mesh with N = 100 equidistant cells, and hence, contains 180 cells. For piecewise constant
polynomials, the computed solution does not create overshoot, according to the monotonic-
ity result in Theorem 21. We also show the solution for V 3

h , with and without the use of the
limiter. Without the limiter, the solution produces an overshoot near the shock. Neverthe-
less, the numerical tests are stable as in the case of a regular mesh and do not break, despite
using small cut cells. With a limiter, the overshoot disappears.

Figure 3.12: [62] Stability test for Burgers equation: Solution at the final time for piecewise
constant polynomials (left) and piecewise cubic polynomials with and without a limiter
(right).

Euler equations

For the Euler equations, we consider two tests: a test with a smooth manufactured solution
and the Sod shock tube test.

77

CHAPTER 3. DoD Stabilization in one dimension

Figure 3.13: [62] Convergence test for manufactured solutions for Euler equations: Error in
the L1 and L• norm.

Convergence test

We define the solution (in terms of primitive variables) by

0

B@
r
v
p

1

CA=

0

B@
2+ sin(2p(x� t))

sin(2p(x� t))
2+ cos(2p(x� t))

1

CA

together with periodic boundary conditions. The source term s(x, t) can be calculated by
inserting the vector of conserved variables u(x, t) into equation (3.45) (but it is not given
here due to its length).

In Figure 3.13, we show the L1 and the L• error for the same test cases as in the scalar
setting at time T = 1. In the general case of a system of m partial differential equations, we
compute the L1 and L• error as

ku(·,T)k1 =
m

Â
l=1
kul(·,T)kL1(W) , ku(·,T)k• = max

1lm
kul(·,T)kL•(W) .

Again, we see the optimal order of convergence in the L1 and the L• norm for the different
polynomial degrees.

Stability test

We conclude the numerical results with the well-known Sod shock tube test [78]. The
following Riemann problem gives the initial data

(r,rv,E) =

8
<

:
(1,0,2.5) if x < 0,

(0.125,0,0.25) else.

78

We choose W= (�1,1) for this test and use transmissive boundary conditions. We discretize
W with N = 100 equidistant cells and split every cell in [�0.9,0.9] into a pair of two cut cells
with the volume fraction ak chosen randomly as described above. We set T = 0.4.

In Figure 3.14, we show the solution for the density and the velocity at the final time
using piecewise constant polynomials. As expected for V 0

h , the solution is stable but is quite
diffusive. Especially within the rarefaction wave for the velocity v, one can see that the
solution values on small cut cells lie nicely between the values of their larger neighbors.
(We have chosen a thick line width to make the solution visible; as a result, the small cut
cells seem larger than they are.) Figure 3.15 shows the solution for piecewise linear, limited
polynomials. We applied the limiter described in the section above to the components of
the conserved variables and added a check to ensure that the pressure remains positive.
Compared to the results for V 0

h , the results are significantly less diffusive and mostly free of
oscillations.

Figure 3.14: [62] Sod shock tube test: Numerical solution for density r and velocity v at
final time using piecewise constant polynomials.

79

CHAPTER 3. DoD Stabilization in one dimension

Figure 3.15: [62] Sod shock tube test: Numerical solution for density r and velocity v at
the final time using piecewise linear polynomials with a limiter.

80

4
DoD Stabilization in two dimensions

In the previous chapter, we introduced the DoD stabilization in one dimension. We now
extend the concept from one dimension to a two-dimensional setting, keeping the main idea
behind the stabilization the same. We add a penalty stabilization to the semi-discrete scheme
and obtain: Find u

h(t) 2V p
h such that

⇣
dtu

h(t),wh
⌘

L2
+ah

⇣
u

h(t),wh
⌘
+ Jh

⇣
u

h(t),wh
⌘
= 0, 8w

h 2V p
h . (4.1)

The stabilization term Jh(·, ·) keeps its general structure and is given by the two terms

Jh(u
h,wh) = J0

h(u
h,wh)+ J1

h(u
h,wh) = Â

E2I

⇣
J0,E

h (uh,wh)+ J1,E
h (uh,wh)

⌘
. (4.2)

The set I denotes the set of small cut cells that require stabilization and will be described
later in the numerical results.

In general, the two terms J0
h(·, ·) and J1

h(·, ·) shall perform the same tasks as in the one-
dimensional case:

• J0
h(·, ·) is designed to ensure proper mass distribution among small cut cells and their

neighbors. This is realized by means of terms that are evaluated at cell interfaces.

• J1
h(·, ·) consists of volume terms that correct the mass distribution within cells in the

neighborhood of small cut cells.

In what follows, we will discuss the particular definitions of J0
h(·, ·) and J1

h(·, ·) in more
detail. We start with a short introduction regarding cut cells in two dimensions and the model
problems we consider. Further, we will give an overview of the software that we will use in
two dimensions. Afterwards, we will present the stabilization terms for different setups. We

81

CHAPTER 4. DoD Stabilization in two dimensions

(a) Three-dimensional cut cell grid of an air-
plane.3

(b) Cut cell grid for an airfoil4 consisting of
curved and split cut cells.

Figure 4.1: Examples of complex cut cell configurations in different spatial dimensions.

will first start with the linear case and focus on the linear advection equation. After that, we
will extend the stabilization to the case of non-linear systems in two dimensions. We will
prove valuable theoretical properties in each section and show numerical results to support
our findings.

4.1. Preparations for the cut cell approach in two dimen-

sions

Two-dimensional cut cell grids differ significantly from those we discussed in one dimen-
sion. We start with general preparations for the DoD stabilization in two dimensions and
discuss cut cell model problems and the software that we will use for our numerical tests.

4.1.1. Cut cells in 2D

Embedded boundary meshes for complex geometries in higher spatial dimensions consist
of different types of cut cells. Depending on how the given geometry intersects with the
Cartesian grid, there can occur, e.g., curved and split cut cells, see Figure 4.1 for examples.
Curved cut cells are created when a cut cell mesh is used to represent a curved boundary in a
computational domain. Split cut cells emerge when the geometry intersects a Cartesian cell,
such that the cell is split into multiple cut cells. These different cut cell types can become
challenging to handle even without the need to stabilize them and will be analyzed in more
detail in the future.

In this work, we focus on the development of new methods. Therefore, we take a step back
and consider different model problems defined on the unit square W = [0,1]2. These model

3Picture taken from Cart3D website https://www.nas.nasa.gov/publications/software/docs/cart3d/
4Coordinates of airfoil taken from https://m-selig.ae.illinois.edu

82

https://www.nas.nasa.gov/publications/software/docs/cart3d/
https://m-selig.ae.illinois.edu

(a) Ramp geometry (b) Cut through square

(c) Anisotropic grid

Figure 4.2: Three model problems in two dimensions, that we will discuss in this work.

problems are simpler than real-world applications. Nevertheless, they can cover various
situations that occur when using cut-cell meshes for real-world applications.

The first model problem is the ramp geometry as illustrated in Figure 4.2a. Here, the linear
advection parallel to the ramp is discussed for this geometry. This setup is a helpful initial
step from the one-dimensional to the two-dimensional case. The reason is that for advection
along the ramp, we can show that it is sufficient to stabilize triangular cells, which only have
one inflow and one outflow neighbor. We will discuss this in more detail later.

For the second model problem, we consider a unit square geometry meshed with a Carte-
sian grid. Then, we construct cut cells by introducing a straight line that cuts through the
domain. See Figure 4.2b for an illustration. This model problem differs from the first grid
as we are now in the setting where we need to stabilize cells with possibly more than one
inflow neighbor and outflow neighbor.

Finally, an anisotropic grid defines the third model problem. This model problem is a
modified version of the anisotropic grid in the h-box paper [8]. The grid consists of one
narrow column and one shallow row. We will use this model problem later to take a first step
towards systems of non-linear conservation laws in two dimensions and to show preliminary
results for the two-dimensional Euler equations.

83

CHAPTER 4. DoD Stabilization in two dimensions

4.1.2. DUNE software package

For the numerical simulations in the two-dimensional case, we use the Distributed and Uni-
fied Numerics Environment (DUNE) toolbox [2, 3]. DUNE is an open-source software
framework that provides a modular and flexible platform for solving partial differential
equations using finite elements, finite volumes, and finite differences. It is written in C++
and provides many data structures and algorithms for building and solving complex numer-
ical simulations. Furthermore, its modular structure allows users to use only the modules
needed for their specific applications. DUNE is widely used in the scientific and engineer-
ing communities for various applications, including fluid dynamics, solid mechanics, and
electromagnetics.

Besides the set of DUNE core modules, which are used by most other DUNE packages,
we rely for the cut cell simulations on the dune-pdelab [5], dune-udg [4, 24], and the TPMC
[26] library. The module dune-pdelab provides an abstract interface for assembling and
solving linear and non-linear systems of equations, arising from the discretization of PDEs.
The dune-udg module allows easy implementation of unfitted discontinuous Galerkin (udg)
methods on cut-cell grids. In addition, it offers a straightforward integration with dune-
pdelab. The topology-preserving marching cubes (TPMC) method in the form of the dune-
tpmc library will create cut cells and their corresponding quadrature rules.

4.2. Formulation for linear scalar problems

In this section, we consider the two-dimensional linear advection equation, which is given
by

∂tu+— · (bu) = 0 in W⇥ (0,T),

u = g on Gin⇥ (0,T), (4.3)

u = u0 on W⇥{t = 0}.

Here, u : W⇥ [0,T]! R is a scalar conserved variable, and b : R2 ! R2 is the velocity
field, which we assume to be incompressible. The inflow boundary is defined as Gin := {x 2
∂W : (b(x) ·n(x)) < 0}, with n 2 R2 is the outer unit normal vector on ∂W. We start with
the unstabilized semi-discrete problem, which we have already introduced in Section 2.2.2.
We refer to Section 2.2 for the basic definitions regarding the two-dimensional setting. The
unstabilized semi-discrete problem is given by: Find uh(t) 2V p

h such that

⇣
dtuh(t),wh

⌘

L2(W)
+ah

⇣
uh(t),wh

⌘
= 0, 8wh 2V p

h . (4.4)

84

For the bilinear form ah(·, ·), we will use the upwind flux, which can be formulated in the
two-dimensional case as

H (ne,a,b) = (b ·ne)
1
2
(a+b)� 1

2
|b ·ne|(b�a)

= (b ·ne)
� a� (b ·ne)

 b.
(4.5)

The negative and positive components of a quantity y 2 R are defined as y := |y|�y
2 and

y� := |y|+y
2 . Note that y ,y� � 0.

The bilinear form is then given by

ah(uh,wh) =� Â
E2Mh

Z

E
uh(b ·—wh)dx

+ Â
e2Gint

h

Z

e

✓
(b ·ne)

nn
uh
oor

wh
z
+

1
2
|b ·ne|

r
uh

zr
wh

z◆
ds

+ Â
e2Gext

h

Z

e

⇣
(b ·ne)

�uh� (b ·ne)
 g
⌘

whds

with Gint
h and Gext

h being the sets of internal and external edges, respectively. We now discuss
different stabilization aspects using the model problems we defined above. We start with
the ramp geometry (see Figure 4.2a above and 4.3 below) and consider advection along the
ramp. The following section is mainly based on the findings in [25] and [76].

4.2.1. Ramp geometry

As we will see in the course of this section, advection along the ramp is an excellent first
step when extending the DoD stabilization from one to two dimensions. The ramp geometry
is entirely defined by the starting point (x0,0) and the angle g relative to the x-axis, as shown
in Figure 4.3. Note that the starting point (x0,0) does not need to align with the background
mesh. After cutting out the ramp object, we obtain 3-sided, 4-sided, and 5-sided cut cells at
the boundary, depending on the choice of x0 and g. We have already discussed in Section 2.3
that only some cut cells in two dimensions need stabilization. Whether or not a cut cell has
to be stabilized depends on its size in the flow direction and the chosen time step Dt. Thus,
we define the capacity of a cell in two dimensions.

Definition 25 (Capacity). The capacity of a cut cell E for the linear advection equation with
a velocity field b 2 R2 is given by

aE := min
✓

1
2p+1

|E|
Dt

R
∂E(b ·nE) ds

,1
◆

(4.6)

85

CHAPTER 4. DoD Stabilization in two dimensions

with |E| being the volume of cell E. The capacity measures the fraction of the inflow, that is
allowed to flow into the cut cell E without producing an overshoot.

In order to ensure that large cut cells, that are almost the size of Cartesian cells, do not
require stabilization, we choose the time step Dt  n h

kbk with a slightly reduced CFL constant
n 2 (0, 1

2]. Here, we define h as the edge length of the Cartesian cells. When considering
advection along the ramp, one can show, that for this choice of Dt, only triangular cut cells
require stabilization [25].

b g
(x0,0)

Ein

Eout

Ecutein
ebdy

eout

Figure 4.3: Left: Ramp geometry is entirely defined by the starting point (x0,0) and the
angle g. Right: Zoom into a triangular cut cell.

This observation is helpful because triangular cut cells are unique in the ramp setting. For
triangular cut cells, every edge of the cell has a different boundary condition. By definition
of the model problem, the advection direction is parallel to the ramp. Without loss of gener-
ality, we assume that it is directed from the lower left corner to the upper right as indicated in
Figure 4.3. For the zoomed-in triangular cut cell Ecut in Figure 4.3, we obtain the following
boundary conditions:

• A no-flow boundary condition is imposed on the boundary edge ebdy due to the flow
being parallel to the ramp.

• One of the two remaining edges is identified as the inflow edge ein, which is charac-
terized by (b ·nEcut)< 0.

• The other remaining edge is defined as the outflow edge eout, which is characterized
by (b ·nEcut)� 0.

In our framework, the assumption of a penetration-free boundary condition at the intersec-
tion is a natural constraint to consider. The fact that we can uniquely define one inflow and
one outflow edge for Ecut helps us transfer the one-dimensional ideas to the two-dimensional
setting. In one dimension, every cell has two edges, which can be uniquely defined as an
inflow or an outflow edge for the linear advection equation. As a result, we are now in a

86

similar situation when comparing 1D and 2D. Thus, we copy the ideas from one dimension
and transfer them to the two-dimensional setup.

In one dimension, the DoD stabilization for a cut cell Ecut is given as a sum of two stabi-
lization terms:

JEcut
h (uh,wh) = J0,Ecut

h (uh,wh)+ J1,Ecut
h (uh,wh) (4.7)

The idea of the first stabilization term J0,Ecut
h (·, ·) is to guarantee a proper mass distribution

among the cut cell and its neighbors. This is achieved in 1D by adding an additional flux
on the outflow edge, which directly transfers mass from the inflow neighbor to the out-
flow neighbor. The stabilization term J0,Ecut

h (·, ·) for the one-dimensional linear advection
equation is defined in (3.17). By taking this idea and transferring it to the two-dimensional
setting, we obtain the first stabilization term

J0,Ecut
h (uh,wh) = hEcut

Z

eout
(Lext

Ein
(uh)�uE)(b ·n)

r
wh

z
ds. (4.8)

Just as in 1D, we use the extension operator Lext
Ein

(·), see Definition 16, to evaluate the solu-
tion of the inflow neighbor uEin at the outflow edge eout. Again, we scale this extended jump
by a stabilization parameter hEcut . The choice of hEcut offers again some flexibility, as we
will see in the next section. We choose the stabilization parameter as

hEcut = 1�aEcut (4.9)

with the capacity aEcut = min
⇣

1
2p+1

|Ecut|
Dt

R
∂Ecut(b·nEcut)

 ds ,1
⌘

according to Definition 25. In the
context of the linear advection equation, one can show that the stabilization parameter in 1D
is the one-dimensional equivalent of equation (4.9) [25].

The second stabilization term J1,Ecut
h (·, ·) is given in one dimension as a volume term, see

equation (3.18). The idea of this second term is to redistribute the mass within the cells in
the neighborhood of the small cut cell Ecut. Once again, we take the ideas of 1D and create
the two-dimensional version of J1,Ecut

h (·, ·) by replacing the one-dimensional terms with their
corresponding counterparts in 2D. Thus, we obtain

J1,E
h (uh,wh) = hE

Z

E
(Lext

Ein
(uh)�uE)

⇣
b ·
⇣

Lext
Ein

(—wh)�—wE

⌘⌘
dx. (4.10)

Here, we apply the extension operator Lext
Ein

(·, ·) to both the discrete solution and the test
function of the inflow neighbor Ein. Comparing the stabilization in one and two dimensions
reveals the resemblance of the terms and shows that the underlying ideas remain unchanged,

87

CHAPTER 4. DoD Stabilization in two dimensions

despite the difference in dimensionality. The final DoD stabilized semi-discrete scheme is
then given by: Find uh(t) 2V p

h such that

⇣
dtuh(t),wh

⌘

L2
+ah

⇣
uh(t),wh

⌘
+ Jh

⇣
uh(t),wh

⌘
= 0, 8wh 2V p

h , (4.11)

with the stabilization term

Jh(uh,wh) = J0
h(u

h,wh)+ J1
h(u

h,wh) = Â
E2I

⇣
J0,E

h (uh,wh)+ J1,E
h (uh,wh)

⌘
.

It is worth noting that the formulation of the stabilization terms becomes more advanced
when dealing with cells with multiple in- or outflow edges. We will discuss this case later
and focus now on theoretical and numerical results for the ramp geometry.

Theoretical results

The similarity between the stabilization in different spatial dimensions allows us to transfer
theoretical results from one dimension into higher spatial dimensions.

Theorem 26 (Monotonicity). Consider the stabilized scheme for the ramp geometry using
the functional space V 0

h in space and explicit Euler in time applied to the linear advection
equation (4.3). Additionally, choose the time step Dt  n h

kbk with 0 < n  0.5. Then, the
stabilized update on a small cut cell Ecut is monotone for hEcut 2 [1�aEcut ,1].

Proof. We consider a triangular cut cell from the ramp geometry with the notation of Fig-
ure 4.3. The unstabilized update is given by

un+1
Ecut

= un
Ecut�

Dt
|Ecut|

✓Z

ein
�(b ·nein)

 uEinds+
Z

eout
(b ·neout)

�uEcutds
◆
. (4.12)

We emphasize that the update formula is missing a flux on edge ebdy, because a no-flow
boundary condition is imposed there. Adding J0,Ecut

h (·, ·) given by (4.8) to the update formula
(4.12), we obtain

un+1
Ecut

= un
Ecut�

Dt
|Ecut|

✓Z

ein
�(b ·nein)

 uEinds+
Z

eout
(b ·neout)

�uEcutds
◆

� Dt
|Ecut|

hEcut

Z

eout
(b ·neout)

�(uEin�uEcut)ds.

88

Using that — ·b = 0, we have

0 =
Z

Ecut
(— ·b)dx =

Z

∂Ecut
(b ·n)ds

=
Z

eout
(b ·neout)

�ds�
Z

ein
(b ·nein)

 ds (4.13)

)
Z

eout
(b ·neout)

�ds =
Z

ein
(b ·nein)

 ds.

Since uEin is constant, the stabilized update on the cut cell reads as

un+1
Ecut

= un
Ecut�

Dt
|Ecut|

(1�hEcut)

✓Z

ein
�(b ·nein)

 uEinds+
Z

eout
(b ·neout)

�uEcutds
◆
.

Next, we will check the partial derivatives of the update formula according to Definition 8.
For the partial derivative with respect to the inflow neighbor, we obtain

∂
∂uEin

un+1
Ecut

=� Dt
|Ecut|

(1�hEcut)
Z

ein
�(b ·nein)

 ds� 0.

Finally, for the partial derivative with respect to uEcut , the following condition holds:

∂
∂uEcut

un+1
Ecut

= 1� Dt
|Ecut|

(1�hEcut)
Z

eout
(b ·neout)

�ds
!
� 0

, 1� |Ecut|
Dt

R
eout

(b ·neout)
�ds

= 1�aEcut  hEcut

Note that the equality in the last line holds due to the calculation in (4.13). This concludes
the proof.

Next, we prove L2 stability for the stabilized semi-discrete scheme for an arbitrary polyno-
mial degree p. In general, L2 stability is affected by the inflow and outflow through ∂Win and
∂Wout during (0,T), but in the ramp setup only Cartesian faces are in ∂Win[∂Wout. Our aim
is to show L2 stability for the stabilized scheme with cut cells, not to analyze inflow/outflow
influence on L2 stability. To simplify, we assume the solution has compact support inside W
during (0,T) and does not intersect the Cartesian boundary (supp(u)\ (∂Win[∂Wout) = /0).

Theorem 27. [63, Theorem 1] Consider the advection equation (4.3) for the setup of a ramp
with incompressible velocity field b = (b1,b2)T parallel to the ramp. Let the solution u have
compact support for t 2 (0,T) and supp(u)\(Gin[Gout) = /0. Let uh(t)2V p

h be the solution
to the stabilized semi-discrete problem (4.11). Under the assumption of exact integration,
the semi-discrete solution then satisfies

���uh(t)
���

L2(W)

���uh(0)

���
L2(W)

8t 2 (0,T).

89

CHAPTER 4. DoD Stabilization in two dimensions

E1 E2e1

e2

e3

e4

Figure 4.4: [76] Setup for Cartesian cells.

Proof. Setting wh = uh(t) in (4.11) and ignoring boundary contributions with respect to Gin,
we achieve

⇣
dtuh(t),uh(t)

⌘

L2(W)
+ah

⇣
uh(t),uh(t)

⌘
+ Jh

⇣
uh(t),uh(t)

⌘
= 0.

Integration of the first term in time yields

Z t

0

⇣
dtuh(t),uh(t)

⌘

L2(W)
dt =

Z t

0

d
dt

1
2

���uh(t)
���

2

L2(W)
dt

=
1
2

���uh(t)
���

2

L2(W)
� 1

2

���uh(0)
���

2

L2(W)
,

and it remains to show that for any fixed t

ah(uh(t),uh(t))+ Jh(uh(t),uh(t))� 0.

We will first discuss ah(·, ·) and then Jh(·, ·). (We omit the explicit time dependence from
now on for brevity.)

By definition of ah(·, ·) and ignoring outflow across Gout, the bilinear form satisfies

ah(uh,uh) =� Â
E2Mh

Z

E
uh
⇣

b ·—uh
⌘

dx

+ Â
e2Gint

h

Z

e

✓
(b ·ne)

nn
uh
oor

uh
z
+

1
2
|(b ·ne)|

r
uh

z2
◆

ds.

For the integral term, we rewrite (exploiting — ·b = 0)

�
Z

E
uh
⇣

b ·—uh
⌘

dx =�
Z

E
— ·
✓

1
2

b(uh)2
◆

dx =�
Z

∂E

✓
1
2

b(uh)2
◆
·n ds.

Let us first consider a standard Cartesian cell E1 with edges as shown in Figure 4.4. Then,

90

for b = (b1,b2)T and assuming without loss of generality that b1,b2 � 0, we have

�
Z

E1
uh

⇣
b ·—uh

⌘
dx =�

Z

e1

1
2

b1(uh)2 ds�
Z

e2

1
2

b2(uh)2 ds

+
Z

e3

1
2

b1(uh)2 ds+
Z

e4

1
2

b2(uh)2 ds.

For the edge terms in ah(·, ·), let us consider an internal edge e1 connecting E1 and E2. Then,
(using from now on the notation uE 0 to indicate that we evaluate the discrete solution from
cell E 0, potentially outside of its original support)

Z

e1

✓
(b ·ne1)

nn
uh
oor

uh
z
+

1
2
|(b ·ne1)|

r
uh

z2
◆

ds

=
Z

e1

✓
1
2

b1(uE1 +uE2)(uE1�uE2)+
1
2

b1(uE1�uE2)
2
◆

ds

=
Z

e1
b1
�
(uE1)

2�uE1uE2

�
ds.

Combining this with the corresponding contributions for edge e1 from the volume terms
from cells E1 and E2, we get

�
Z

e1

1
2

b1(uE1)
2 ds+

Z

e1

1
2

b1(uE2)
2 ds

+
Z

e1

✓
(b ·ne1)

nn
uh
oor

uh
z
+

1
2
|(b ·ne1)|

r
uh

z2
◆

ds

=
Z

e1

✓
1
2

b1(uE1)
2�b1uE1uE2 +

1
2

b1(uE2)
2
◆

ds

=
Z

e1

1
2

b1 (uE1�uE2)
2 ds.

Let us now add the cut cells. For the small triangular cut cell Ecut with the notation from
Figure 4.3, we obtain with b = (b1,b1)T and assuming that b1,b2 � 0

�
Z

Ecut
uh (b ·—uh)dx =�

Z

∂Ecut

✓
1
2

b(uh)2
◆
·n ds =�

Z

eout

1
2

b2(uh)2 ds+
Z

ein

1
2

b1(uh)2 ds.

91

CHAPTER 4. DoD Stabilization in two dimensions

Therefore, taking the boundary term in ah(·, ·) into account as well as the contribution from
the volume term of cell Ein, we get for the edge ein

�
Z

ein

1
2

b1(uEin)
2 ds+

Z

ein

1
2

b1(uEcut)
2 ds

+
Z

ein

✓
(b ·nein)

nn
uh
oor

uh
z
+

1
2
|(b ·nein)|

r
uh

z2
◆

ds

=
Z

ein

✓
1
2

b1(uEin)
2�b1uEinuEcut +

1
2

b1(uEcut)
2
◆

ds

=
Z

ein

1
2

b1 (uEin�uEcut)
2 ds.

We obtain a similar term for edge eout, involving solutions from cells Ecut and Eout. Thus,
ignoring boundary contributions across ∂Win[∂Wout due to the assumption of compact sup-
port, there holds

ah(uh,uh) = Â
e2Gint

h

1
2

Z

e
|(b ·ne)|

r
uh

z2
ds. (4.14)

Finally, without the stabilization term Jh(·, ·), there holds L2 stability.

Let us now add the stabilization term

Jh(uh,uh) = Â
E2I

J0,E
h (uh,uh)+ J1,E

h (uh,uh).

We only stabilize small triangular cells of type Ecut. There holds

J0,Ecut
h (uh,uh) = hEcut

Z

eout
(uEin�uEcut)(b ·neout)

r
uh

z
ds

= hEcut

Z

eout
b2(uEin�uEcut)(uEcut�uEout)ds

= hEcut

Z

eout
b2
�
uEinuEcut�uEinuEout� (uEcut)

2 +uEcutuEout

�
ds.

We now consider J1,Ecut
h (·, ·) given by

J1,Ecut
h (uh,uh) = hEcut

Z

Ecut
(uEin�uEcut)(b · (—uEin�—uEcut))dx.

92

With b = (b1,b2)T and — ·b = 0, there holds

J1,Ecut
h (uh,uh) = hEcut

Z

Ecut
— ·
✓

1
2

b(uEin�uEcut)
2
◆

dx

= hEcut

Z

∂Ecut

✓
1
2

b(uEin�uEcut)
2
◆
·n ds

= hEcut

Z

eout

✓
1
2

b2(uEin�uEcut)
2
◆

ds�hEcut

Z

ein

✓
1
2

b1(uEin�uEcut)
2
◆

ds.

As 0 hEcut  1, the negative term over the edge ein can be compensated with the edge term
R

ein
b1
�1

2(uEin�uEcut)
2� ds from ah(·, ·) in (4.14). For the edge eout, we collect all terms

from J0,Ecut
h (·, ·) and J1,Ecut

h (·, ·) leading to

hEcut

Z

eout
b2

✓
uEinuEcut�uEinuEout� (uEcut)

2 +uEcutuEout +
1
2
(uEin�uEcut)

2
◆

ds

= hEcut

Z

eout
b2

✓
1
2
(uEin)

2� 1
2
(uEcut)

2�uEinuEout +uEcutuEout

◆
ds

= hEcut

Z

eout

1
2

b2(uEin�uEout)
2 ds�hEcut

Z

eout

1
2

b2(uEcut�uEout)
2 ds.

The right term in the last line involves the standard jump over edge eout and (same as for edge
ein) can be compensated with its positive counterpart in the sum in (4.14). The first term in
the last line consists of a new extended jump involving the difference of the solution of cell
Ein and the solution of cell Eout, both evaluated on the outflow edge eout. This concludes the
proof.

Numerical results

In this subsection, we present numerical results for the linear advection equation in 2D using
higher-order polynomials for the ramp setup. For the definition of the initial data, we will
use a rotated and shifted coordinate system (x̂, ŷ), which is defined in such a way that the x̂-
direction is parallel and the ŷ-direction is orthogonal to the ramp. The introduced coordinate
system can be derived from the standard Cartesian coordinate system (x,y) using the angle
g and the starting point of the ramp (x0,0). We obtain the shifted and rotated coordinate
system by the following formula

x̂
ŷ

!
=

cosg sing
�sing cosg

!
·

x� x0

y

!
. (4.15)

Using this coordinate system, we consider the following test setup [25, 76]: We start the

93

CHAPTER 4. DoD Stabilization in two dimensions

Figure 4.5: [76] Convergence orders in L1 and L• norm for the error at time T = 0.3 for a
ramp geometry with g = 25� (top) and g = 45� (bottom) and different polynomial degrees
p = 1,2,3.

ramp at x0 = 0.2001 and run convergence tests for different angles g. The velocity field
b 2 R2 is given by

b(x̂, ŷ) = (2� ŷ)

1
0

!
.

The solenoidal velocity field b is parallel to the ramp, while its magnitude decreases for an
increasing distance to the ramp. We choose the smooth initial data

u0(x̂, ŷ) = sin

 p
2px̂

1�0.2001

!
,

94

which has the exact solution

u(x̂, ŷ, t) = u0(x̂� tb1, ŷ� tb2).

We derive the inflow conditions on Gin from the exact solution. In addition, we compute the
discrete solution at time T = 0.3 using piecewise polynomials of degrees p = 1,2,3. In time
we use an SSP RK scheme of the same order as the space discretization. The time step size
Dt is given by

Dt  0.4
1

2p+1
h
kbk

with h being the edge length of the Cartesian cells. We choose the set of stabilized cells
I = {E E is triangle and |E|< 0.4h2}.

The convergence results for ramp angles of g= 25� and g= 45� are presented in Figure 4.5
for both L1 and L• norms. The convergence orders observed for polynomials of degree p in
the L1 norm are approximately p+1 for both angles. In the L• norm, the results are between
p+ 1

2 and p+1. It is common to observe a phenomenon of reduced convergence order of the
L• error at the cut boundary. Other cut cell approaches observed and reported this behavior
in the past [6–8, 31, 43, 48]. Achieving full order of accuracy in the L• norm on cut cell
meshes in higher spatial dimensions is generally challenging. One possible explanation for
this behavior is that the one-step error on cut cell meshes is typically one order lower than
that on structured meshes. While in one dimension, it is often observed that these additional
error sources do not accumulate, compare Proposition 4, the error accumulation in two
dimensions is not studied well and needs to be investigated in more detail in the future.

4.2.2. Cut cells with multiple inflow and outflow edges

Next, we will discuss the case of multiple inflow and outflow edges for the linear advection
equation. This causes more interactions between the neighbors of small cut cells that need
to be considered. Due to the additional complexity, we will focus on the function space V 0

h ,
which consists of piecewise constant polynomials. We consider the second model problem
shown in Figure 4.2b. The computational domain consists of an equidistantly meshed unit
square W = [0,1]2 with one artificial cut through the domain. The Cartesian cells divided by
that cut can then be reinterpreted as two cut cells. In contrast to the case of advection along
the ramp, as shown in Figure 4.3 above, we will now consider a velocity field, which is not
necessarily parallel to any of the cut cells’ edges.

The content of this section is partly based on the collaboration in [10]. In addition, certain
ideas that will be presented in the following have previously been published in the master’s
thesis of G. Birke [9]. During our collaboration, we worked simultaneously on the linear
advection equation for multiple inflow and outflow edges but with different goals: While the

95

CHAPTER 4. DoD Stabilization in two dimensions

b
g

(x0,0)

E2

E1

Ecut

E3

Figure 4.6: Second model problem given by an artificial cut through a square with a zoom
into an example of cut cell Ecut.

work in [9] focuses on extending the stabilization to linear systems (in particular the acoustic
equation), we aim to extend to non-linear problems. The formulation that we will present in
the following for the linear advection, which is suitable for extension to Burgers equation,
is different than the formulation in [9], but it can be shown, using algebraic manipulations,
that they coincide for linear advection.

The fundamental idea of the DoD stabilization is to redistribute mass between inflow and
outflow neighbors of small cut cells. For the new set of cells with multiple inflow or outflow
neighbors, we have several pairwise interactions to consider. Since we will focus on the case
of piecewise constant polynomials, the stabilization term Jh(·, ·) only consists of the edge
stabilization term J0

h(·, ·)

Jh(uh,wh) = J0
h(u

h,wh) = Â
E2I

J0,E
h (uh,wh).

We consider the example of the cut cell Ecut, shown in Figures 4.6 and 4.7. For this par-
ticular cell and the given velocity field b we have b · ne1  0, b · ne2  0 and b · ne3 � 0.
Consequently, the cells E1 and E2 are inflow neighbors, and E3 is an outflow neighbor. In
this setting, the DoD stabilization should move mass from E1 and E2 directly to cell E3.
This will extend the domain of dependence of cell E3 to include cells E1 and E2. Thus, the
stabilization should add an additional flux on the outflow edge e3 containing extended jumps
from the two inflow edges e1 and e2. Consequently, we suggest the following stabilization
term for the particular cell Ecut:

J0,Ecut
h (uh,wh) = hEcut

Z

e3

⇣
w1,3Lext

E1
(uh)+w2,3Lext

E2
(uh)�uEcut

⌘
(b ·ne3)

r
wh

z
ds (4.16)

96

b
E2

E1

E3

ne2

ne1

n e 3

Figure 4.7: Example of triangular cut cell with two inflow neighbors E1 and E2 and one
outflow neighbor E3.

Here, we introduce weights w1,3,w2,3 2 [0,1] that provide information about the relation
between the inflow cells Ei, i2 {1,2}, and the outflow cell E3. In order to obtain a consistent
stabilized method, we demand that the weights build a convex combination

w1,3 +w2,3 = 1. (4.17)

Therefore, we can rewrite equation (4.16) to obtain

J0,Ecut
h (uh,wh) =hEcut

Z

e3

⇣
w1,3

⇣
Lext

E1
(uh)�uEcut

⌘

+w2,3

⇣
Lext

E2
(uh)�uEcut

⌘⌘
(b ·ne3)

r
wh

z
ds.

Next, we explain how we compute the weights for the case of linear advection in two dimen-
sions. In general, the weights specify the direction in which stabilization is applied, while
the difference of the extended fluxes determines the amount of the stabilization. We define
the weights wi, j such that they measure the proportion of the inflow coming through edge ei

to the total inflow of cell Ecut for a constant solution uc. For the computation of the weights,
we introduce the following set containing all edges of a cell E:

FE
h = {e 2 Gint

h [Gext
h | e⇢ ∂E}

Since we apply the stabilization for linear advection with an upwind flux only on outflow
edges, we set

wi, j = 0, 8 j with (b ·ne j) 0. (4.18)

97

CHAPTER 4. DoD Stabilization in two dimensions

For the final formulation of the weights, we use the Jacobians of the upwind flux function,
which is given by

H (ne,a,b) = (b ·ne)
� a� (b ·ne)

 b. (4.19)

The Jacobians of the numerical flux then read as

Ha(ne,a,b) = (b ·ne)
� and Hb(ne,a,b) =�(b ·ne)

 . (4.20)

Finally, we suggest the following formula for the weights using an arbitrary constant value
uc 2 R+

wi, j =

R
ei

Hb(nei ,uc,uc)ds
Âek2FE

h

R
ek

Hb(nek ,uc,uc)ds
c+

j =

R
ei
(b ·nei)

 ds
Âek2FE

h

R
ek
(b ·nek)

 ds
c+

j . (4.21)

The factor c+
j is an indicator that should enforce the requirement (4.18). Thus, we choose

c+
j =

8
<

:
1, if (b ·ne j)> 0,

0, else.
(4.22)

We note that we use the Jacobians Hb(ne,a,b) with respect to the second argument b in for-
mula (4.21). This is because we want to track the inflow coming through edge e. According
to our definition, the normal ne is pointing from a to b; see Figure 4.7. Thus, the Jacobian
Hb(ne,a,b) with respect to b represents the inflow part on edge e. In addition, in formula
(4.21), we divide by the total sum of the Jacobians to maintain the consistency of the scheme
and fulfill a more general version of (4.17): For every outflow edge e j, we obtain

Â
ei2FE

h

wi, j = 1. (4.23)

Furthermore, we emphasize that the Jacobians Hb(ne,a,b) are evaluated using an arbitrary
constant solution a = b = uc. In the linear case, the choice of values to evaluate the Jacobian
of the numerical flux function is not important, as it is constant in both arguments. However,
we introduce the notation here to establish consistency with the non-linear formulation and
to provide better comparability between the two formulations.

Finally, the stabilization term on a general cut cell E for the linear advection equation
reads as

J0,E
h (uh,wh) = hE Â

e j2FE
h

Z

e j
Â

ei2FE
h

wi, j(Lext
Ei (u

h)�uE)
�
b ·ne j

�r
wh

z
ds. (4.24)

98

Next, we check if the general stabilization term given by equation (4.24) is consistent with
the stabilization term, that we presented for the ramp geometry.

Remark 28. We consider a small triangular cut cell of the ramp geometry for the case of
advection along the ramp. We have one inflow edge (e1), one no-flow edge (e2) and one
outflow edge (e3), which results in the final weights

w1,1 = 0 w1,2 = 0 w1,3 = 1

w2,1 = 0 w2,2 = 0 w2,3 = 0

w3,1 = 0 w3,2 = 0 w3,3 = 0.

Thus, the stabilization term is given by

J0,Ecut
h (uh,wh) = hEcut

Z

e3
(Lext

E1
(uh)�uEcut)(b ·n)

r
wh

z
ds,

which is consistent with the formulation we presented in the previous chapter.

Next, we will discuss the particular choice of weights for two examples with multiple
inflow or outflow edges.

Example 1. We start with the case of a triangular cell, which has one inflow (e1) and two
outflow (e2,e3) edges. According to the prerequisite we made in equation (4.18), we know
that wi,1 = 0, for i= 1,2,3. Since e2 and e3 are outflow edges, we know that (b ·ne2/e3)

 = 0.
Subsequently, following equation (4.21) we obtain the weights

w1,1 = 0 w1,2 = 1 w1,3 = 1

w2,1 = 0 w2,2 = 0 w2,3 = 0

w3,1 = 0 w3,2 = 0 w3,3 = 0.

Example 2. Next, we consider the case of a triangular cell with two inflow (e1,e2) and one
outflow edge (e3), as shown in Figure 4.7. The velocity field is given by b = (b1,b2)T with
b1,b2 � 0. Furthermore, we assume that |e1| = ah, |e2| = dh and |e3| =

p
a2 +d2h. The

inflow portion from edges e1, e2 are given by
R

e1
(b ·ne1) = ahb2 and

R
e2
(b ·ne2) = dhb1.

Once again, equation (4.18) results in wi,1/2 = 0 for i2 {1,2,3}. The final weights are given
by

w1,1 = 0 w1,2 = 0 w1,3 =
ab2

ab2 +db1

w2,1 = 0 w2,2 = 0 w2,3 =
db1

ab2 +db1

w3,1 = 0 w3,2 = 0 w3,3 = 0.

99

CHAPTER 4. DoD Stabilization in two dimensions

Theoretical results

For the artificial cut model problem and the proposed stabilization, there exist theoretical
results for using piecewise constant polynomials.

Theorem 29 (Monotonicity). Consider the stabilized scheme for the artificial cut geometry
using piecewise constant polynomials and explicit Euler in time for the linear advection
equation 4.3. Additionally, choose the time step Dt  n h

kbk with 0 < n  0.5. Then, the
stabilized update on a small cut cell Ecut is monotone for hEcut 2 [1�acut,1].

Proof. The idea of this proof is comparable to the idea of the proof for the two-dimensional
Burgers equation. Since the setting is similar as we consider the second model problem in
both cases, we will skip the proof here and refer to the proof of Theorem 31 later in this
work.

Besides monotonicity, we can also show L2 stability.

Theorem 30. [10, Theorem 3.1] Consider (4.3) with homogeneous boundary conditions.
Assume that the discrete solution uh(t) vanishes on the boundary ∂W for all t 2 (0,T). Let
uh(t)2V 0

h be the solution to the semi-discrete problem (4.11). Then the solution is L2 stable
and satisfies

||uh(t)||L2(W)  ||uh(0)||L2(W) 8 t 2 (0,T).

Proof. The idea of the proof is similar to the one of Theorem 27 and can be found in detail
in the collaborated work [10]. The proof in [10] is based on the fact that the weights wi, j

fulfill the two conditions

Â
ei2FE

h

wi, j = 1 (4.25)

and

Â
e j2FE

h

Z

e j
wi, j(b ·ne)

�ds =
Z

ei
(b ·ne)

 ds. (4.26)

While the first condition (4.25) is given by construction, the second condition (4.26) is a
direct consequence of the divergence-free velocity field:

0 =
Z

E
— ·bdx =

Z

∂E
n ·bds = Â

eiFE
h

Z

ei
(nei ·b)�� (nei ·b) ds

100

Thus, we obtain

Â
e j2FE

h

Z

e j
wi, j(b ·ne)

�ds = Â
e j2FE

h

Z

e j

R
ei
(b ·nei)

 ds
Âek2FE

h

R
ek
(b ·nek)

 ds
c+

j (b ·ne)
�ds

=
Z

ei
(b ·nei)

 ds
Âe j2FE

h

R
e j
(b ·ne)�ds

Âek2FE
h

R
ek
(b ·nek)

 ds

=
Z

ei
(b ·nei)

 ds.

Since we can show the two conditions for the choice of our weights, the remaining part of
the proof is equivalent to that in [10].

4.3. Extension to non-linear systems of conservation laws

In this section, we present the first step towards extending the DoD stabilization to non-
linear systems of conservation laws. First, we focus on Burgers equation for the artificial
cut geometry, followed by preliminary results for the two-dimensional Euler equations on
an anisotropic grid.

4.3.1. Scalar case for artificial cut grid

In the scalar case, we will show how to extend the DoD stabilization for the example of the
inviscid, isotropic Burgers equation in two dimensions. Once again, we will consider the
function space of piecewise constant polynomials V 0

h and discuss the choice of the weights
using the second model problem, which is given by an equidistant meshed unit square with
one artificial cut through the domain. The model problem is shown in Figure 4.2b and for
the case of linear advection in Figures 4.6 and 4.7. The inviscid, isotropic Burgers equation
is given by

∂tu+— ·
✓

1u2

2

◆
= 0 in W⇥ (0,T),

u = g on Gin⇥ (0,T), (4.27)

u = u0 on W⇥{t = 0},

with 1 = (1,1)> 2 R2. The flux function is of the following form:

f(u) =
✓

1
2

u2,
1
2

u2
◆>

101

CHAPTER 4. DoD Stabilization in two dimensions

For a smooth solution u, we can rewrite equation (4.27) as

∂tu+u∂xu+u∂yu = 0. (4.28)

The stabilized semi-discrete form is given by: Find uh 2V 0
h (W) such that

⇣
dtuh(t),wh

⌘

L2(W)
+ah

⇣
uh(t),wh

⌘
+ Jh

⇣
uh(t),wh

⌘
= 0 8wh 2V 0

h (W) (4.29)

with

ah

⇣
uh,wh

⌘
=� Â

E2Mh

Z

E
f(uh) ·whdx+ Â

e2Gint
h

H (ne,uE ,uE 0)
r

wh
z

ds

+ Â
e2Gext

h

Z

e
H (ne,uE ,eu)whds.

For internal edges e 2 Gint
h , connecting cells E and E 0, the unit normal vector ne is pointing

from cell E to cell E 0. On a boundary edge e 2 Gext
h that belongs to cell E 2Mh, we define

the boundary value eu as

eu(x) =

8
<

:
g(x) 8 x 2 Gin,

uE(x) else.

The numerical flux will be computed using the local Lax-Friedrichs flux, which is given by

H (ne,a,b) =
1
2
(1 ·ne)

✓
1
2

a2 +
1
2

b2
◆
� 1

2
|1 ·ne|lmax(b�a) (4.30)

and which can be rewritten as

H (ne,a,b) =
1
2
�
(1 ·ne)

�� (1 ·ne)
 �
✓

1
2

a2 +
1
2

b2
◆

� 1
2
�
(1 ·ne)

�+(1 ·ne)
 �lmax(b�a)

(4.31)

with lmax = max(|a|, |b|) and the negative and positive components as defined above.

Once again, since we consider piecewise constant polynomials, the stabilization term is
given by Jh(·, ·) = J0

h(·, ·) = ÂE2I J0,E
h (·, ·). We choose the edge stabilization J0,E

h (·, ·) for a
cell E as follows:

J0,E
h (uh,wh) = hE Â

e j2FE
h

Z

e j
Â

ei2FE
h

wi, j

⇣
H (ne j ,Lext

Ei (u
h),uE j)�H (ne j ,uE ,uE j)

⌘r
wh

z
ds

(4.32)

102

The stabilization parameter hE for the Burgers equation is chosen as

hE = 1�min
✓

1
2p+1

|E|
nhÂ∂E (1 ·nE)

 ds
,1
◆

(4.33)

with n being the CFL parameter and h being the length of a Cartesian cell.

Next, we want to define the weights for stabilization similar to the linear advection equa-
tion. Since we will use an arbitrary but constant solution uc for the computation of the
weights, we have made the following simplification: Instead of the exact Jacobians, we
will use approximated Jacobians of the numerical flux, which are built assuming a constant
maximum wave speed lmax. Thus, the approximated Jacobians are given by

eHa(ne,a,b) =
1
2
�
(1 ·ne)

�� (1 ·ne)
 �a+

1
2
�
(1 ·ne)

�+(1 ·ne)
 �lmax (4.34)

and

eHb(ne,a,b) =
1
2
�
(1 ·ne)

�� (1 ·ne)
 �b� 1

2
�
(1 ·ne)

�+(1 ·ne)
 �lmax. (4.35)

In the setting of non-linear scalar equations, we suggest the following formula for the
weights with uc 2 R+ being again an arbitrary but constant value:

wi, j =

R
ei
eHa(nei ,uc,uc)ds

Âek2FE
h

R
ek
eHa(nek ,uc,uc)ds

c�j +
R

ei
eHb(nei ,uc,uc)ds

Âek2FE
h

R
ek
eHb(nek ,uc,uc)ds

c+
j (4.36)

The two indicator functions for the case of the two-dimensional Burgers equation are defined
by

c+
j =

8
<

:
1, if (1 ·ne j)> 0

0, else,
and c�j =

8
<

:
1, if (1 ·ne j)< 0

0, else.
(4.37)

For an arbitrary constant value uc 2 R+ the Jacobians reduce to

eHa(ne,uc,uc) = (1 ·ne)
�uc and eHb(ne,uc,uc) =�(1 ·ne)

 uc. (4.38)

Thus, we rewrite (4.36) as

wi, j =
|ei|(1 ·nei)

�

Âek2FE
h
|ek|(1 ·nek)

�
c�j +

|ei|(1 ·nei)

Âek2FE
h
|ek|(1 ·nek)

c+

j . (4.39)

We note that the weights given by (4.39) do not depend on the constant value uc. This is
because the constant value appears in both the numerator and denominator and can thus be

103

CHAPTER 4. DoD Stabilization in two dimensions

factored out and eliminated. As we intended, this results in weights that only consider the
direction of the fluxes and do not additionally scale the stabilization.

Comparing the weights for the Burgers equation (4.39) with the weights for the linear ad-
vection equation (4.21) reveals that for the Burgers equation, we now include all edges. This
is because we do not know a priori which edge is an inflow or outflow edge. The decision
regarding the edges depends on the solution and is decided at each time step. Furthermore,
we are now considering the Lax-Friedrichs flux, which is a central flux. As a result, the
numerical flux might consist of a part that flows in the upwind direction and another part
that flows in the downwind direction. Thus, similar to one dimension, we need to intro-
duce a more general formulation for the stabilization in the non-linear case. We propose
a symmetric structure that considers all edges for the formula of the weights. This leads
to adding a second term in equation (4.39), which measures the proportion of the outflow
coming through edge ei to the total outflow of cell E.

Finally, because of — ·1 = 0, we have

0 =
Z

E
— ·1 dx =

Z

∂E
1 ·n ds =

Z

∂E
(1 ·n)�� (1 ·n) ds = Â

i
|ei|
⇥
(1 ·nei)

�� (1 ·nei)
 ⇤ .

Thus, we can define W = Âi |ei|(1 ·nei)
� = Âi |ei|(1 ·nei)

 and rewrite the formula of the
weights into

wi, j =
|ei|(1 ·nei)

 c+
j + |ei|(1 ·nei)

�c�j
W . (4.40)

E2

E1

E3

ne2

ne1

n e 3

Ecut

Figure 4.8: Example of a triangular cut cell for the artificial cut geometry.

Theorem 31 (Monotonicity). We consider the artificial cut geometry given in Figure 4.2b
for the two-dimensional Burgers equation using piecewise constant polynomials V 0

h . In ad-
dition, we consider the stabilized update using the DoD stabilization (4.32) with the explicit
Euler method in time. As the numerical flux function, we use the local Lax-Friedrichs flux

104

given by (4.31) and choose the time step according to Dt  n h
lmax

with 0< n 0.5. Then, the

stabilized update on a small triangular cut cell Ecut is monotone for hEcut 2
h
1� |Ecut|

nhÂi |ei| ,1
i

with ei being the edges of Ecut.

Proof. The unstabilized update for a triangular cut cell Ecut with the notation of Figure 4.8
is given by

un+1
Ecut

= un
Ecut�

Dt
|Ecut|

✓Z

e1
H (ne1 ,uEcut ,uE1)ds+

Z

e2
H (n2,uEcut ,uE2)ds

+
Z

e3
H (n3,uEcut ,uE3)ds

◆
. (4.41)

By adding the stabilization term J0,Ecut
h (·, ·) given by (4.32), we obtain the following stabi-

lized update formula

un+1
Ecut

= un
Ecut�

Dt
|Ecut|

(1�hEcut)

✓Z

e1
H (ne1 ,uEcut ,uE1)ds

+
Z

e2
H (n2,uEcut ,uE2)ds+

Z

e3
H (n3,uEcut ,uE3)ds

◆
+Q

(4.42)

with

Q =� Dt
|Ecut|

hEcut

✓Z

e1
w2,1H (ne1 ,uE2 ,uE1)+w3,1H (ne1 ,uE3 ,uE1)ds

+
Z

e2
w1,2H (ne2 ,uE1 ,uE2)+w3,2H (ne2 ,uE3 ,uE2)ds

+
Z

e3
w1,3H (ne3 ,uE1 ,uE3)+w2,3H (ne3 ,uE2 ,uE3)ds

◆
.

(4.43)

In equation (4.42), we have used that Âei2FEcut
h

wi, j = 1, 8e j 2 ∂Ecut. Next, we show that Q
vanishes for our choice of weights. For two neighbors of the cut cell Ei and E j, there holds
wi, j = w j,i = 0 if (1 · nei) and (1 · ne j) have the same sign. If they have mixed signs and
we assume without loss of generality that (1 ·nei) > 0 and (1 ·ne j) < 0, we can show the
following identity

Z

e j
wi, jH (ne j ,uEi ,uE j)ds

= |e j|
|ei|(1 ·nei)

�

W
1
2
(1 ·ne j)

✓
�
✓

1
2
(uEi)

2 +
1
2
(uE j)

2
◆
�lmax(uE j �uEi)

◆

=�|ei|
|e j|(1 ·ne j)

W
1
2
(1 ·nei)

�
✓✓

1
2
(uEi)

2 +
1
2
(uE j)

2
◆
�lmax(uEi�uE j)

◆

=�
Z

ei
w j,iH (nei ,uE j ,uEi)ds.

(4.44)

105

CHAPTER 4. DoD Stabilization in two dimensions

As a result, the weights in equation (4.43) are either zero or chosen such that the terms
cancel out. Consequently, we have Q = 0, and the stabilized update formula is given by the
standard update with a scaled flux difference

un+1
Ecut

= un
Ecut�

Dt
|Ecut|

(1�hEcut)

✓Z

e1
H (ne1 ,uEcut ,uE1)ds

+
Z

e2
H (ne2 ,uEcut ,uE2)ds+

Z

e3
H (ne3 ,uEcut ,uE3)ds

◆
.

(4.45)

Finally, we will check the partial derivatives of the update formula according to Definition 8.
For the partial derivatives, that depend on the neighbors, we obtain

∂
∂uEi

un+1
Ecut

=� Dt
|Ecut|

(1�hEcut)
Z

ei
Hb(nei ,uEcut ,uEi)ds� 0,

due to the fact that H (nei , ·, ·) is a non-increasing function of its second argument. For the
partial derivative with respect to uEcut , there holds

∂
∂uEcut

un+1
Ecut

= 1� Dt
|Ecut|

(1�hEcut)Â
i

Z

ei
Ha(nei ,uEcut ,uEi)ds

� 1� Dt
|Ecut|

(1�hEcut)Â
i
|ei|lmax

� 0.

The last inequality holds due to the choice of the stabilization parameter hEcut .

Numerical results

In this section, we perform numerical tests for the isotropic Burgers equation in two dimen-
sions, given by (4.27). We present a convergence test for a smooth function and a stability
test for a two-dimensional Riemann problem. For both tests, we consider the second model
problem (Figure 4.2b) and use piecewise constant polynomials in space in combination with
the explicit Euler scheme in time.

Convergence test

For the convergence test, we consider a smooth Gaussian curve, with the initial data being
given by

u0(x,y) = exp(�20((x� xc)
2 +(y� yc)

2)). (4.46)

As stated above, the computational domain is W = [0,1]2. At the boundary, we choose
transmissive boundary conditions. Similar to the one-dimensional sine test case for the
Burgers equation, we find that the Gaussian curve undergoes the process of wave breaking

106

Figure 4.9: Setup of the smooth Gaussian curve used for the convergence test at the initial
time T = 0 (left) and the final time T = 0.1 (right). The black line highlights the artificial
cut, and the white circles indicate isolines of the numerical solution.

and shock formation. As time evolves, steep gradients form and, finally, a discontinuity
in the form of a shock occurs. Since we are interested in the convergence behavior of the
stabilized method, we compare the numerical solution with the exact solution when the
curve is still smooth. For this particular test case, we choose the final time T = 0.1, which
we estimated experimentally. In the resulting time interval [0,T], we use Newton’s method
to numerically solve the non-linear equation u = u0(x� ut,y� ut) to examine the exact
solution u. In Figure 4.9, we show the initial data and the numerical solution at the final
time T = 0.1 for a grid consisting of 200⇥ 200 cells. The artificial cut is defined by the
angle g = 135� and the starting point x0 = 0.9999. We choose the time step according to
Dt  n h

lmax
with h being the length of a Cartesian cell and n = 0.4. Here, we define the set

of stabilized cells as I = {E |E| < 0.4h2}. We note that the gradient at the final time is
much steeper in the upper right part of the domain, compared to the gradient of the initial
data. However, the numerical solution is smooth and no shock is formed so far.

The convergence study for the Gaussian curve is shown in Table 4.1. We show the L1

and L• errors for different setups of the artificial cut. These different setups result in both
cut cells with multiple inflow edges and cut cells with multiple outflow edges. We choose
the starting point x0 and the angle g such that the artificial cuts lie in the region of the steep
gradient (g = 125�) and in the region of the moderate gradient (g = 145�). A third setup
(g = 135�) is chosen such that the peak of the Gaussian curve passes through the cut. For all
cases, we see optimal convergence in both error norms.

107

CHAPTER 4. DoD Stabilization in two dimensions

Setup x0 / g Background grid L1 error order L• error order
0.9999 / 125� 40⇥40 9.31e-03 – 1.75e-01 –

80⇥80 4.64e-03 1.00 8.96e-02 0.96
160⇥160 2.33e-03 0.99 4.69e-02 0.93
320⇥320 1.16e-03 1.00 2.36e-02 0.98
640⇥640 5.84e-04 0.99 1.19e-02 0.98

0.9999 / 135� 40⇥40 9.37e-03 – 1.74e-01 –
80⇥80 4.66e-03 1.00 8.98e-02 0.96

160⇥160 2.33e-03 0.99 4.70e-02 0.93
320⇥320 1.16e-03 1.00 2.37e-02 0.98
640⇥640 5.84e-04 0.99 1.19e-02 0.98

0.9999 / 145� 40⇥40 9.34e-03 – 1.74e-01 –
80⇥80 4.65e-03 1.00 8.94e-02 0.95

160⇥160 2.33e-03 0.99 4.70e-02 0.92
320⇥320 1.16e-03 1.00 2.36e-02 0.98
640⇥640 5.84e-04 0.99 1.19e-02 0.98

Table 4.1: Convergence tests for different cut setups

Stability test

For the stability test, we use the following two-dimensional Riemann problem [38] as initial
data:

u0(x,y) =

8
>>>>>><

>>>>>>:

0.5, if x < 0.5 and y < 0.5,

0.8, if x > 0.5 and y < 0.5,

�0.2, if x < 0.5 and y > 0.5,

�1, if x > 0.5 and y > 0.5

(4.47)

The values at the boundary are defined using the exact solution to this Riemann problem,
which can be found in [38].

In Figure 4.10, we show the solution on a 200⇥200 grid at the final time T = 0.5 for two
different cut setups. The artificial cut in the left plot is defined by the angle g = 135� and
the starting point x0 = 0.9999, which results in a cut from the lower right to the upper left
corner. The resulting cut cells that need to be stabilized in this setup are all of the same sizes
and have a volume fraction of Volcut

Volcart
⇠ 2 ·10�4 when compared to the Cartesian cells.

In the right plot of Figure 4.10, the artificial cut is constructed via the angle g = 155� and
the starting point x0 = 0.9999. In this setup, the cut is less steep, and we observe a range of
different cut cells that need to be stabilized. The cell volumes in this test vary strongly and
are in the interval |E| 2 [4.89 ·10�12,2.5 ·10�5].

108

Figure 4.10: Stability test: Two-dimensional Riemann problem at final time T = 0.5 for
different cut setups. The black line highlights the artificial cut.

In all our numerical tests, we observe stable behavior and have never detected over- or
undershoots, even in the presence of shock waves. These results support our theoretical
findings.

4.3.2. Preliminary results for system case on an anisotropic grid

Finally, we are interested in extending the DoD stabilization to non-linear systems of hy-
perbolic conservation laws in two dimensions. In this section, we will consider the two-
dimensional Euler equations given by

∂tu+∂xf
1(u)+∂yf

2(u) = 0 (4.48)

with

u =

2

66664

r
ru
rv
E

3

77775
, f

1(u) =

2

66664

ru
ru2 + p

ruv
u(E + p)

3

77775
, f

2(u) =

2

66664

rv
ruv

rv2 + p
v(E + p)

3

77775
. (4.49)

For further details regarding the Euler equations, see section 2.1.2.

We consider the third model problem, which is given by the anisotropic grid shown in
Figure 4.11. For systems of hyperbolic conservation laws, the search for adequate weights
wi, j is more advanced compared to the scalar case. In a recent work [9, 11], the weights for
two-dimensional linear systems were presented. In contrast to the scalar case, the weights
for systems of equations are m⇥m matrices, with m being the number of equations. The
definition of adequate weights for the two-dimensional Euler equations is an active field of
research and has not been solved yet.

109

CHAPTER 4. DoD Stabilization in two dimensions

ah

dh

Figure 4.11: Left: Third model problem given by an anisotropic grid. Right: Zoom into
small cell.

e1

e2

e3

e4Ecut

ah

h

Figure 4.12: Zoom into example of small cell Ecut which is of size ah⇥h.

For the given model problem, the edges of each cell are parallel either to the x-axis or
the y-axis. We exploit this geometry and apply the DoD stabilization using a dimensionally
splitting approach. For each dimension, we use a variant of the one-dimensional stabiliza-
tion. The resulting scheme only couples edges in x-direction with edges in x-direction and
edges in y-direction with edges in y-direction, respectively. In other words, we couple edges
that are parallel to each other. In addition, we only couple edges if the distance between
these edges is smaller than a certain threshold. For the anisotropic grid, this implies that
small cells of the column with a length of ah are stabilized only in x-direction, while cells
of the row with height dh are stabilized only in y-direction. The only exception is the small
cut cell in the center of the grid, which is small in both directions and hence is stabilized in
both directions separately.

For the definition of the stabilization terms, we focus on one particular example, which is
part of the small column and is shown in Figure 4.12. The anisotropic cell Ecut in Figure 4.12

110

is of size ah⇥h. Thus, we apply the stabilization in x-direction and couple the edges e2 and
e4, but do not stabilize in y-direction. For this particular setup, the stabilization is given by

JEcut
h (uh,wh) = J0,Ecut

h (uh,wh)+ J1,Ecut
h (uh,wh)

with the edge stabilization

J0,Ecut
h (uh,wh) = hEcut

Z

e4

⇣
H (nx,Lext

E2
(uh),uE4)�H (nx,uEcut ,uE4)

⌘
·
r

w
h
z

ds

+hEcut

Z

e2

⇣
H (�nx,Lext

E4
(uh),uE2)�H (�nx,uEcut ,uE2)

⌘
·
r

w
h
z

ds

and the volume stabilization using the normal vector nx = (1,0)T

J1,Ecut
h =hEcut Â

j2{2,cut,4}
K(j)

Z

Ecut

⇣
H (nx,Lext

E2
(uh),Lext

E4
(uh))� f(Lext

E j (u
h))
⌘
·Lext

E j (—w
h)dx

+hEcut Â
j2{2,cut,4}

K(j)
Z

Ecut

⇣
Ha(nx,Lext

E2
(uh),Lext

E4
(uh))Lext

E j (u
h)
⌘
·Lext

E2
(—w

h)dx

+hEcut Â
j2{2,cut,4}

K(j)
Z

Ecut

⇣
Hb(nx,Lext

E2
(uh),Lext

E4
(uh))Lext

E j (u
h)
⌘
·Lext

E4
(—w

h)dx.

We emphasize that the stabilization terms J0,Ecut
h and J1,Ecut

h are the straightforward two-
dimensional extensions of the one-dimensional stabilization terms defined in (3.34) and
(3.38). Thus, we use here the one-dimensional stabilization parameter hEcut = 1� a

n . Fur-
thermore, we refer to Subsection 3.2.3 for the one-dimensional definitions of the matrices
K(·). The two-dimensional equivalents of K(·) can be calculated in a straightforward way
using a suitable average of Lext

E2
(uh) and Lext

E4
(uh). The formulation for the DoD stabiliza-

tion presented in this case is explicitly given for the case of a small cell in the x-direction.
However, it is important to note that this formulation can be extended analogously to the
case of a small cell in the y-direction. In addition, the rotational invariance of the Euler
equations (see 2.52) allows for the use of the same stabilization formulation regardless of
the orientation of the small cell.

The presented approach runs stable during the simulation and shows promising results
for the current geometry. To demonstrate the effectiveness of this method, we present some
preliminary numerical results in the following section.

Numerical results

We present a convergence study for a smooth vortex for the two-dimensional Euler equa-
tions, which will be rotated and advected diagonally in x- and y-directions [28, 72]. We
consider the computational domain W = [0,10]2 with Dirichlet boundary conditions. The

111

CHAPTER 4. DoD Stabilization in two dimensions

Figure 4.13: Setup of two-dimensional Euler equations for the vortex advection problem on
an anisotropic grid. Solution of the density r at the initial time T = 0 (left) and the final
time T = 1 (right). The black lines highlight the anisotropic row and column and the white
circles indicate isolines of the numerical solution

center of the initial vortex is given by (xc,yc) = (4.5,4.5), and the radius is set to rc = 1.
The initial condition is defined as

u = 1� (y� yc)f(r), v = 1+(x� xc)f(r), q = 1� g�1
2g

f(r)2, s = 0, (4.50)

where r =
p

(x� xc)2 +(y� yc)2, f(r) = eexp
✓

a
✓

1�
⇣

r
rc

⌘2
◆◆

, e = 5
2p , a = 12, q = p

r

and s = log(p)� g log(r). The exact solution is known in this setup and can be explicitly
computed by

u(x,y, t) = u(x� t,y� t,0) = u0(x� t,y� t). (4.51)

In Figure 4.13, we show the initial data and the numerical solution at the final time T = 1
using piecewise quadratic polynomials. The computational domain in Figure 4.13 is given
by a 100⇥ 100 grid with one column of width ah and one row of height dh. We choose
a = 10�2 and d = 10�2, which results in volume fractions Volcut

Volcart
between 10�2 and 10�4.

In Figure 4.14, we present the convergence results for the given setup in both L1 and
L• norms for the function space V p

h , p = 0,1,2,3. In both error norms, we observe for
polynomials of degree p convergence orders close to p+1.

The numerical results presented here are only preliminary and should be interpreted with
caution. While they provide initial insights into the stabilization and look promising, further
research is needed to investigate these findings in more detail. We have also run tests for
smaller values of a and d and noted convergence issues. Although the tests ran stable
and we solved the small cell problem, we observed that the convergence results did not
improve beyond a certain point for smaller values of a and d. We currently believe that

112

Figure 4.14: Convergence orders in L1 and L• norm for the error at time T = 1.0 for the
anisotropic grid and different polynomial degrees p = 0,1,2,3.

this is due to certain implementation choices, but this must be further investigated. Our
initial investigations suggest that these issues may be caused by round-off errors. Therefore,
these results should be considered as a starting point for future studies rather than definitive
conclusions.

113

CHAPTER 4. DoD Stabilization in two dimensions

114

5
Conclusions and Outlook

In this work, we have presented a novel penalty stabilization technique to solve hyperbolic
conservation laws numerically on grids with embedded objects. The Domain of Depen-
dence (DoD) stabilization is added to the semi-discrete scheme in the neighborhood of small
cut cells. If combined with an explicit time-stepping scheme, the resulting method allows
choosing the time step based on the size of the Cartesian background cells.

After introducing the mathematical basics for the discretization of hyperbolic conserva-
tion laws, we analyzed in Chapter 2 the small cell problem in more detail. We have seen that
the unstabilized scheme on small cut cells leads to an uncontrollable update of the physi-
cal quantity, and the outflow neighbors of small cut cells lack information on their update.
Based on these observations, we presented an algebraic solution to the small cell problem
in the following chapters.

In Chapter 3, we presented the DoD stabilization for the one-dimensional case. We started
with linear problems for the case of piecewise constant polynomials. The DoD stabilization
redistributes the mass in the neighborhood of small cut cells in a monotone way. We com-
pared the stabilization to the well-known h-box method and noticed that the two methods
coincide in the case of piecewise constant polynomials in one dimension. Consequently, we
could adopt a result from the h-box method showing that the method is first-order accurate
for piecewise constant polynomials.

We extended the DoD stabilization to higher-order polynomials and non-linear systems of
hyperbolic conservation laws. For the extension to higher-order polynomials, we introduced
a volume stabilization term and an extension operator that evaluates functions from the
function space V p

h outside of their original domain. For the extension to non-linear problems,
we needed to consider changing flow directions. Thus, we made use of Riemann solvers in
the formulation of the stabilization terms. The semi-discrete stabilized formulation is L2

115

CHAPTER 5. Conclusions and Outlook

stable for arbitrary polynomial degrees p. Furthermore, our numerical results show the
same order of accuracy as standard RKDG schemes on equidistant meshes and are robust in
the presence of shocks if a limiter is added.

In Chapter 4, we extended the DoD stabilization to the two-dimensional setting for differ-
ent model problems. We started with the case of advection along a ramp and presented the
DoD stabilization for arbitrary polynomial degrees. The ideas behind the stabilization for
this case are quite comparable to the one-dimensional case. In consequence, we were able
to extend the theoretical results regarding monotonicity and L2 stability to two dimensions
as well.

For the more general setting of a cut cell with multiple in- and outflow edges, we in-
troduced weights to physically match in- and outflow edges. Furthermore, we presented
weights for an example of a non-linear scalar equation, the two-dimensional Burgers equa-
tion. Both methods result in provable monotone updates on the small cut cells, and we
showed stable numerical results and convergence studies. Finally, we presented preliminary
results for the two-dimensional Euler equations on an anisotropic grid using a dimensionally
splitting approach.

There are several interesting topics to consider for future research work. While the one-
dimensional case has been thoroughly studied, there are still many open questions in two
dimensions.

The first step will be the definition of weights for solving linear problems on general cut
cells with multiple in- and outflow edges using higher-order polynomials. The L2 stability
proof will serve again as a helpful guideline in finding these weights.

Another goal for future work will be the search for suitable weights for the two-
dimensional Euler equations on general cut cell grids. This task will be challenging, but
we are confident that an essential first step has been taken by finding weights for the acous-
tic wave equation. Furthermore, it would be interesting to show that the DoD stabilization
leads not only to an L2 stable scheme but also to an entropy stable scheme in the presence
of cut cells, particularly for the Euler equations. However, entropy stability has yet to be
investigated in the context of cut cells. An excellent blueprint to show this could first deal
with the one-dimensional case and subsequently address higher dimensions.

The development of an accurate limiter for higher-order polynomials on cut cell meshes
remains an active research topic and an open problem. For the development of an effective
limiting method on complex geometries using cut cell grids, it is necessary to address the
challenge of limiting higher-order polynomials on irregularly shaped cut cells.

116

Bibliography

[1] T. J. Barth and D. Jespersen. The design and application of upwind schemes on un-
structured meshes. AIAA, 1989.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn , M. Ohlberger, and O. Sander.
A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract
framework. Computing, 82(2–3):103–119, 2008.

[3] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn , R. Kornhuber, M. Ohlberger,
and O. Sander. A generic grid interface for parallel and adaptive scientific computing.
Part II: Implementation and tests in DUNE. Computing, 82(2–3):121–138, 2008.

[4] P. Bastian and C. Engwer. An unfitted finite element method using discontinuous
Galerkin. Internat. J. Numer. Methods Engrg., 79:1557–1576, 2009.

[5] P. Bastian, F. Heimann, and S. Marnach. Generic implementation of finite element
methods in the distributed and unified numerics environment (DUNE). Kybernetika,
46(2):294–315, 2010.

[6] M. Berger and A. Giuliani. A state redistribution algorithm for finite volume schemes
on cut cell meshes. J. Comput. Phys., 428, March 2021.

[7] M. Berger and C. Helzel. A simplified h-box method for embedded boundary grids.
SIAM J. Sci. Comput., 34(2):A861–A888, 2012.

[8] M. Berger, C. Helzel, and R. J. LeVeque. H-Box method for the approximation of
hyperbolic conservation laws on irregular grids. SIAM J. Numer. Anal., 41(3):893–
918, 2003.

[9] G. Birke. Stabilization of hyperbolic transport and acoustic equations on general cut-
cell meshes. Master’s thesis, University of Münster, 2023.

117

Bibliography

[10] G. Birke, C. Engwer, S. May, and F. Streitbürger. DoD stabilization of linear hyper-
bolic pdes on general cut-cell meshes. In Ch. Böhm, K. Mang, B. Markert, S. Reese,
M. Schmidtchen, J. Waimann, and M. Kaliske, editors, Special Issue: 92nd An-
nual Meeting of the International Association of Applied Mathematics and Mechanics
(GAMM). Wiley-VCH, 2023.

[11] G. Birke, C. Engwer, S. May, and F. Streitbürger. Domain of Dependence stabilization
for the acoustic wave equation on 2D cut-cell meshes. arXiv:2304.04323, 2023.

[12] E. Burman. Ghost penalty. C. R. Math., 348(21):1217 – 1220, 2010.

[13] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. CutFEM: Discretiz-
ing geometry and partial differential equations. Intern. J. Numer. Methods Engrg.,
104:472–501, 2015.

[14] N. Chalmers and L. Krivodonova. A robust CFL condition for the discontinuous
Galerkin method on triangular meshes. J. Comput. Phys., 403:109095, 2020.

[15] I.-L. Chern and P. Colella. A conservative front tracking method for hyperbolic conser-
vation laws. Technical report, Lawrence Livermore National Laboratory, Livermore,
CA, 1987. Preprint UCRL-97200.

[16] B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws II: General framework. Math.
Comp., 52(186):411–435, 1989.

[17] B. Cockburn and C.-W. Shu. Runge–Kutta discontinuous Galerkin methods for
convection-dominated problems. SIAM J. Sci. Comput., 16(3):173–261, 2001.

[18] P. Colella, D. T. Graves, B. J. Keen, and D. Modiano. A Cartesian grid embedded
boundary method for hyperbolic conservation laws. J. Comput. Phys., 211(1):347–
366, 2006.

[19] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen
der mathematischen Physik. Math. Ann., 100(1):32–74, 1928.

[20] C. M. Dafermos. Hyperbolic conservation laws in continuum physics. Springer, Hei-
delberg; New York, 2010.

[21] D. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous Galerkin Methods.
Springer New York, 2012.

[22] V. Dolejšı́ and M. Feistauer. Discontinuous Galerkin Method. Springer Cham, 2015.

118

Bibliography

[23] J. Douglas and T. Dupont. Interior penalty procedures for elliptic and parabolic
Galerkin methods. In R. Glowinski and J. L. Lions, editors, Computing Methods in
Applied Sciences, pages 207–216, Berlin, Heidelberg, 1976. Springer Berlin Heidel-
berg.

[24] C. Engwer and F. Heimann. Dune-udg: a cut-cell framework for unfitted discontinuous
Galerkin methods. In Advances in DUNE, pages 89–100. Springer, 2012.

[25] C. Engwer, S. May, A. Nüßing, and F. Streitbürger. A stabilized dG cut cell method for
discretizing the linear transport equation. SIAM J. Sci. Comput., 42(6):A3677–A3703,
2020.

[26] C. Engwer and A. Nüßing. Geometric reconstruction of implicitly defined surfaces and
domains with topological guarantees. ACM Trans. Math. Software (TOMS), 44(2):14,
2017.

[27] T. Eymann and P. Roe. Active flux schemes. In 49th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition. AIAA, 2011.

[28] U. S. Fjordholm, S. Mishra, and E. Tadmor. Arbitrarily high-order accurate entropy
stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J.
Numer. Anal., 50(2):544–573, 2012.

[29] P. Fu, T. Frachon, G. Kreiss, and S. Zahedi. High order discontinuous cut finite element
methods for linear hyperbolic conservation laws with an interface. J. Sci. Comput.,
90(3):84, 2022.

[30] P. Fu and G. Kreiss. High order cut discontinuous Galerkin methods for hy-
perbolic conservation laws in one space dimension. SIAM J. Sci. Comput.,
43(4):A2404–A2424, 2021.

[31] A. Giuliani. A two-dimensional stabilized discontinuous Galerkin method on curvilin-
ear embedded boundary grids. SIAM J. Sci. Comput., 44(1):A389–A415, 2022.

[32] A. Giuliani, A. S. Almgren, J. B. Bell, M. Berger, M. T. Henry de Frahan, and D. Ran-
garajan. A weighted state redistribution algorithm for embedded boundary grids. J.
Comput. Phys., 464:111305, 2022.

[33] E. Godlewski and P. A. Raviart. Numerical Approximation of Hyperbolic Systems of
Conservation Laws. Number Nr. 118 in Appl. Math. Sci. Springer, 1996.

[34] N. Gokhale, N. Nikiforakis, and R. Klein. A dimensionally split Cartesian cut cell
method for hyperbolic conservation laws. J. Comput. Phys., 364:186–208, 2018.

119

Bibliography

[35] S. Gottlieb, D. Ketcheson, and C.-W. Shu. Strong Stability Preserving Runge-Kutta
and Multistep Time Discretizations. World Scientific Publishing, 2011.

[36] S. Gottlieb and C.-W. Shu. Total-variation-diminishing Runge-Kutta schemes. Math.
Comp., 67:73–85, 1998.

[37] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order time
discretization methods. SIAM Rev., 43(1):89–112, 2001.

[38] J.-L. Guermond and M. Nazarov. A maximum-principle preserving C0 finite element
method for scalar conservation equations. Comput. Methods Appl. Mech. Engrg.,
272:198–213, 2014.

[39] C. Gürkan, S. Sticko, and A. Massing. Stabilized cut discontinuous Galerkin methods
for advection-reaction problems. SIAM J. Sci. Comput., 42(5):A2620–A2654, 2020.

[40] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput.
Phys., 49(3):357–393, 1983.

[41] A. Harten, J. M. Hyman, and P. D. Lax. On finite-difference approximations and
entropy conditions for shocks. Comm. Pure Appl. Math., 29:297–319, May 1976.

[42] C. Helzel, M. Berger, and R. J. LeVeque. A high-resolution rotated grid method for
conservation laws with embedded geometries. SIAM J. Sci. Comput., 26(3):785–809,
2005.

[43] C. Helzel and D. Kerkmann. An active flux method for cut cell grids. In Klöfkorn
et al. [50], pages 507–515.

[44] H. Holden and N. H. Risebro. Front Tracking for Hyperbolic Conservation Laws.
Springer New York, 2002.

[45] G. Jiang and C.-W. Shu. On a cell entropy inequality for discontinuous Galerkin meth-
ods. Math. Comp., 62(206):531–538, 1994.

[46] S. Karni. Multicomponent flow calculations by a consistent primitive algorithm. J.
Comput. Phys., 112(1):31–43, 1994.

[47] S. Kaur and J. E. Hicken. High-order discontinuous Galerkin Difference cut-cell dis-
cretization. In AIAA Scitech 2021 Forum, 2021.

[48] D. Kerkmann. Active Flux Methods for Conservation Laws on Complex Geometries.
PhD thesis, Heinrich Heine University Düsseldorf, 2021.

120

Bibliography

[49] R. Klein, K. R. Nordin-Bates, and N. Nikiforakis. Well-balanced compressible cut-cell
simulation of atmospheric flow. Philos. Trans. Roy. Soc. A, 367:4559–4575, 2009.

[50] R. Klöfkorn, E. Keilegavlen, A.F. Radu, and J. Fuhrmann, editors. Springer Interna-
tional Publishing, 2020.

[51] J. Kraaijevanger. Contractivity of Runge-Kutta methods. BIT, 31:482–528, 1991.

[52] L. Krivodonova and R. Qin. A discontinuous Galerkin method for solutions of the
Euler equations on Cartesian grids with embedded geometries. J. Comput. Sci., 4(1–
2):24–35, 2013.

[53] S. N. Kruzkov. First order quasilinear equations in several independent variables. Mat.
Sb., 10:217–243, 1970.

[54] D. Kuzmin. A vertex-based hierarchical slope limiter for p-adaptive discontinuous
Galerkin methods. J. Comput. Appl. Math., 233(12):3077–3085, 2010.

[55] P. D. Lax. Hyperbolic Partial Differential Equations. Courant Lect. Notes Math.
Courant Institute of Mathematical Sciences, 2006.

[56] R. J. LeVeque. Numerical Methods for Conservation Laws. EMS Ser. Lect. Math.
Zürich. Springer Basel AG, 1992.

[57] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts
Appl. Math. Cambridge University Press, 2002.

[58] R.J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems. Other Titles in Applied Mathe-
matics. Society for Industrial and Applied Mathematics SIAM, 2007.

[59] S. May. Time-dependent conservation laws on cut cell meshes and the small cell
problem. In Klöfkorn et al. [50].

[60] S. May and M. Berger. Two-dimensional slope limiters for finite volume schemes on
non-coordinate-aligned meshes. SIAM J. Sci. Comput., 35(5):A2163–A2187, 2013.

[61] S. May and M. J. Berger. An explicit implicit scheme for cut cells in embedded bound-
ary meshes. J. Sci. Comput., 71:919–943, 2017.

[62] S. May and F. Streitbürger. DoD stabilization for non-linear hyperbolic conservation
laws on cut cell meshes in one dimension. Appl. Math. Comput., 419, 2022.

121

Bibliography

[63] J. M. Melenk, I. Perugia, J. Schöberl, and C. Schwab, editors. Spectral and High Or-
der Methods for Partial Differential Equations ICOSAHOM 2020+1. Springer Cham,
2021.

[64] A. Meurer et. al. Sympy: symbolic computing in python. PeerJ Computer Science,
3:e103, 2017.

[65] S. Mishra, U. Fjordholm, and R. Abgrall. Numerical methods for conservation laws
and related equations, February 2019. lecture notes.

[66] B. Müller, S. Krämer-Eis, F. Kummer, and M. Oberlack. A high-order discontinuous
Galerkin method for compressible flows with immersed boundaries. Internat. J. Numer.
Methods Engrg., 110(1):3–30, 2016.

[67] S. Osher. Riemann solvers, the entropy condition, and difference approximations.
SIAM J. Numer. Anal., 21(2):217–235, 1984.

[68] J. J. Quirk. An alternative to unstructured grids for computing gas dynamic flows
around arbitrarily complex two-dimensional bodies. Comput. & Fluids, 23(1):125–
142, 1994.

[69] B. Rivière, M. F. Wheeler, and V. Girault. A priori error estimates for finite element
methods based on discontinuous approximation spaces for elliptic problems. SIAM J.
Numer. Anal., 39(3):902–931, 2002.

[70] Philip Roe. Approximate riemann solvers, parameter vector, and difference schemes.
J. Comput. Phys., 43:357–372, 10 1981.

[71] S. Schoeder, S. Sticko, G. Kreiss, and M. Kronbichler. High-order cut discontinuous
Galerkin methods with local time stepping for acoustics. Internat. J. Numer. Methods
Engrg., 121(13):2979–3003, 2020.

[72] C.-W. Shu. High order eno and weno schemes for computational fluid dynamics. In
Timothy J. Barth and Herman Deconinck, editors, High-Order Methods for Computa-
tional Physics, pages 439–582, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[73] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys., 77(2):439–471, 1988.

[74] S. Sticko and G. Kreiss. Higher order cut finite elements for the wave equation. J. Sci.
Comput., 80(3):1867–1887, 2019.

[75] S. Sticko, G. Ludvigsson, and G. Kreiss. High-order cut finite elements for the elastic
wave equation. Adv. Comput. Math., 46(45), 2020.

122

Bibliography

[76] F. Streitbürger, G. Birke, C. Engwer, and S. May. DoD stabilization for higher-order
advection in two dimensions. In Melenk et al. [63].

[77] F. Streitbürger. Stabilisierungstechniken für DG-Verfahren zur Lösung von hyperbolis-
chen Erhaltungsgleichungen auf Gittern mit eingebetteten Objekten. Master’s thesis,
TU Dortmund University, 2018.

[78] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer,
3rd edition, 2009.

[79] L. N. Trefethen and M. Embree. Spectra and Pseudospectra. Princeton Univ. Press,
Princeton, 2005.

[80] B. Wendroff and A. B. White. Some supraconvergent schemes for hyperbolic equations
on irregular grids. In Josef Ballmann and Rolf Jeltsch, editors, Nonlinear Hyperbolic
Equations — Theory, Computation Methods, and Applications: Proceedings of the
Second International Conference on Nonlinear Hyperbolic Problems, Aachen, FRG,
March 14 to 18, 1988, pages 671–677. Vieweg+Teubner Verlag, Wiesbaden, 1989.

[81] B. Wendroff and A. B. White. A supraconvergent scheme for nonlinear hyperbolic
systems. Comput. Math Appl., 18(8):761 – 767, 1989.

[82] M. F. Wheeler. An elliptic collocation-finite element method with interior penalties.
SIAM J. Numer. Anal., 15(1):152–161, 1978.

123

Bibliography

124

	Abstract
	Acknowledgements
	Statement of Authorship
	Introduction
	Theoretical and numerical aspects of hyperbolic conservation laws
	Theory of hyperbolic conservation laws
	Scalar equations
	Systems of equations

	Numerical discretization of the problem
	Discretization of the domain
	Discontinuous Galerkin method
	Numerical flux function
	Time-stepping schemes
	Desirable theoretical properties
	Limiter

	The cut cell approach
	Small cell problem in one dimension
	Small cell problem in two dimensions

	DoD Stabilization in one dimension
	Formulation for linear scalar problems
	Piecewise constant polynomials
	Higher-order polynomials
	Numerical results

	Extension to non-linear systems of conservation laws
	Piecewise constant polynomials
	Higher-order polynomials
	Choice of parameters
	Numerical results

	DoD Stabilization in two dimensions
	Preparations for the cut cell approach in two dimensions
	Cut cells in 2D
	DUNE software package

	Formulation for linear scalar problems
	Ramp geometry
	Cut cells with multiple inflow and outflow edges

	Extension to non-linear systems of conservation laws
	Scalar case for artificial cut grid
	Preliminary results for system case on an anisotropic grid

	Conclusions and Outlook

