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N O TAT I O N

a, b, c, . . . scalar

a, b, c, . . . vector

A,B,C, . . . matrix or tensor

A,B, C, . . . set

a(1), a(2), a(3), . . . multiple elements from the same set

|A| cardinality of set A
Wi i-th row of matrix W

W· j j-th column of matrix W

Wij element of matrix W at i-th row and j-th column

xi i-th element of vector x

dx dimensionality of x

Id unit matrix of size d× d

X, Y random variables

P(X, Y) probability distribution over X and Y

p(x, y) density for x ∼ X and y ∼ Y

p(y | x) conditional probability

p̂(y | x) estimated conditional probability

Ep[X] expected value of X w.r.t. density p

θ vector of parameters

f (x), f (x) scalar function accepting scalar or vector inputs

f (x) vector function accepting vector inputs

f (x)i i-th element of the vector function output

f ′(x) derivative of f w.r.t. input argument x

f (x | w) function which requires w to be given

log(x) logarithm of x, if not specified otherwise uses base e

∥· ∥p Lp-norm

1{expr} indicator function being 1 if expr is true and 0 otherwise

∇θL gradient of L w.r.t. θ

f ∗ g convolution of two functions f and g

If a function f is only defined with a support of R, then applying this function to a
vector x implicates an element-wise application of f . Vectors with special meaning
might receive clarifying information in the exponent, e.g., yoh or θMAP. Additionally,
there might be multiples of a matrix, tensor or vector, designating similar things,
which will also be indicated by an index in the exponent, e.g., W 1 or ϕl . Scalars
may also be enumerated with a lower index, e.g., n1, n2 and n3.
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1
I N T R O D U C T I O N

Deep Neural Networks (DNNs) have achieved astonishing results in the last two
decades, fueled by ever larger datasets and the availability of high performance
compute hardware. This led to breakthroughs in many applications such as image
and speech recognition, natural language processing, autonomous driving, and
drug discovery. Despite their success, the understanding of internal workings and
the interpretability of predictions remains limited and DNNs are often treated as
“black boxes”.

Especially for safety-critical applications where the well-being of humans is at
risk, decisions based on predictions should consider associated uncertainties. Au-
tonomous vehicles, for example, operate in a highly complex environment with
potentially unpredictable situations that can lead to safety risks for pedestrians and
other road users. In medical applications, decision based on incorrect predictions
can have serious consequences for a patient’s health.

As a consequence, the topic of Uncertainty Quantification (UQ) has received increas-
ing attention in recent years. The goal of UQ is to assign uncertainties to predictions
in order to ensure the decision-making process is informed by potentially unreliable
predictions. In addition, other tasks such as identifying model weaknesses, collect-
ing additional data or detecting malicious attacks can be supported by uncertainty
estimates.

Unfortunately, UQ for DNNs is a particularly challenging task due to their high
complexity and nonlinearity. Uncertainties which can be derived from traditional
statistical models are often not directly applicable to DNNs. Therefore, the devel-
opment of new UQ techniques for DNNs is of paramount importance to ensure
safety-aware decision-making.

This thesis evaluates existing UQ methods and proposes improvements and novel
approaches which contribute to the reliability and trustworthiness of modern deep
learning methodology. A comprehensive and consistent evaluation of several UQ
tasks and a diverse selection of datasets provide insights into the strengths and
weaknesses of existing methods and the proposed approaches. The contributions of
this thesis and where they were previously published are summarized in Section 1.1,
after which an outline of the remainder of the thesis is given.
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2 introduction

1.1 contributions

Gradient Metrics for Detecting Out-of-Distribution Inputs

DNNs tend to have far more learnable parameters than samples in a common
training set, and are therefore susceptible to large amounts of model uncertainty
(more on that in Chapters 2 and 3). For practical applications it is thus of utmost
importance to be able to reliably model this source of uncertainty. While Bayesian
Neural Networks (BNNs) offer a theoretically grounded way to compute model
uncertainty, they also require a change in the learning procedure and add a signif-
icant amount of computational effort during inference, which often makes them
impractical. Gradient metrics belong to the external frequentist approaches and
therefore can be applied to pre-trained models without requiring any change in
the training procedure or architecture of the Neural Network (NN). They were first
proposed by Oberdiek, Rottmann, and Gottschalk [100] in the context of Out-of-
Distribution (OoD) and False Positive (FP) detection. Since then, gradient metrics
were adopted in the research community and applied to a variety of UQ problems.
In this thesis the gradient metrics are evaluated against a more diverse benchmark
and compared to recent advances in the field of UQ. The author’s contributions to
the original publication [100] are the choice of auxiliary loss, gradient aggregation
metrics, meta classification models for summarizing multiple gradient statistics,
experimental evaluation and writing of the manuscript with supporting reviews
from the co-authors.

Framework for Retrieval Based Exploration of Unknown Objects

Detecting unknown objects during inference is an important step towards applying
DNNs in safety critical applications. However, as the physical world is under
constant change, it is inevitable to also update our model continuously. UQ offers
a way to identify unknown object classes and augment the training dataset with
new examples. A periodic re-training on the updated dataset ensures that the NN
can keep up with this constant environmental changes. Oberdiek, Rottmann, and
Fink [99] proposed a retrieval based exploration of unknown objects in the context
of semantic segmentation of street scenes. By gathering segments with a high
predictive uncertainty and embedding them in a low-dimensional semantic space,
a user is able to search this space based on a Query by Example (QbE). In this work
([99]), the author contributed the general idea of an Out-of-Distribution retrieval
framework, exploration support based on clustering techniques, experimental
evaluation, and writing of the manuscript with supporting reviews from the co-
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authors. Additionally, the author of this thesis published an open source software
tool for applying the framework to arbitrary semantic segmentation applications.1

Generative Model for Complete Uncertainty Quantification

Besides the model uncertainty, aleatoric or data uncertainty is equally important
to quantify during the deployment phase of an NN. Reliable estimates of aleatoric
uncertainty can be used to detect ambiguous inputs and misclassifications, and the
distinction between different sources of uncertainty can be valuable information
for active learning applications and interpretability. Oberdiek, Fink, and Rottmann
[98] proposed a new One-versus-All (OvA) classification model which is integrated
into the training of a conditional Generative Adversarial Network (GAN). The
loss functions are combined in such a way that the generative model produces
examples that cover the boundary of the training distribution, therefore shielding
each class from the rest of the data space. Previous works exist that formulate
similar loss functions for generating boundary samples [79, 135] but generating
class-conditional Out-of-Class (OoC) examples is a novel contribution of [98]. This
approach fits exceptionally well with an OvA classifier and is able to distinguish
between aleatoric and epistemic uncertainty. In addition to outstanding results on
the task of OoD detection, outperforming many previous works in this field, the
generated data also improves the overall model accuracy. A mode collapse problem
of the generator, which was observed in previous works by other authors, was solved
by applying a low-dimensional regularizer based on the cosine-similarity. Although
related publications used regularization techniques within the input data space, the
application to a low-dimensional data representation in combination with the cosine-
similarity is novel and another contribution of this work. The contributions of the
author of this thesis to [98] are the evaluation of ideas in the direction of generative
model based OoD detection, building of the conditional generative learning pipeline
within a low-dimensional representation space, transferring previous works on
boundary generation with Jensen-Shannon (JS) GANs to a Wasserstein based loss
formulation, the low-dimensional regularization loss based on the cosine-similarity,
parts of the theory to the OvA classifier, an extensive qualitative and quantitative
evaluation, and writing of the manuscript with supporting reviews from the co-
authors. Additionally, the author published an open access and extensible code
base to evaluate the proposed frameworks as well as 8 related methods on a variety
of uncertainty tasks.2

1 https://github.com/RonMcKay/OODRetrieval

2 https://github.com/RonMcKay/UQGAN

https://github.com/RonMcKay/OODRetrieval
https://github.com/RonMcKay/UQGAN
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Evaluating Uncertainty Quantification Methods for Adversarial Example Detection

While there are publications analyzing the adversarial example detection perfor-
mance of uncertainty quantification approaches [44, 123] and methods specialized
on adversarial example detection [3], the evaluation is mostly limited to a few
approaches and only carried out on small datasets like MNIST and CIFAR10.
This thesis will additionally contribute a larger evaluation on 4 datasets (MNIST,
CIFAR10, CIFAR100 and Tiny ImageNet) and compare the detection performances
between 12 uncertainty quantification methods (including 4 approaches described
in this thesis). From each class of uncertainty quantification method (see Chapter 4),
there will be at least one competitor evaluated on 3 common adversarial attacks.
As all methods are reimplemented and applied to the same dataset splits, a fair
and consistent performance evaluation is guaranteed. In summary, the evaluation
in this thesis improves in two dimensions over previous works, the number of UQ
methods compared and the diversity of data selection.

1.2 outline

This thesis is split into 9 chapters, with the current chapter containing the introduc-
tion, contributions and outline. The remaining 8 chapters are summarized in this
section.

Chapter 2 - Uncertainty in Machine Learning
This chapter introduces the notion of uncertainty in the context of machine learning.
The basic concepts of statistical learning theory are explained in Section 2.1. In
the following Section 2.2 different sources and types of uncertainty are described.
Additionally, we understand how to measure uncertainties based on probability dis-
tributions and learn about model assumptions which separate uncertainty sources.
The chapter concludes by explaining a workflow for controlling shifts in learning
environments that uses uncertainty estimates.

Chapter 3 - Neural Networks
The theory of DNNs is introduced in this chapter. After a brief review of the
beginnings of NNs, the standard training algorithm is derived using a Multilayer
Perceptron (MLP). We gain insights into connections between Maximum Likelihood
Estimation (MLE) and the training of NNs, which aligns with the distribution
based uncertainty quantification described in Section 2.2. Following, the concept
of Convolutional Neural Networks (CNNs) and basic building blocks of modern
DNNs are introduced. In the last section, a short overview over the history of DNN
architectures and a more detailed description of the models used in the experiments
is given. While explaining the algorithms and architectural choices of NNs, there
will be comments and explanations whenever these are causing specific types of
uncertainties.
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Chapter 4 - Related Work
An overview of the literature landscape of UQ, adversarial examples and applica-
tion areas of uncertainties is given in this chapter. UQ methods are categorized into
4 main categories and the most relevant publications of each are reviewed. This is
followed by a summary of algorithms which can generate adversarial examples. Af-
terwards, there will be an overview of tasks which can utilize uncertainty estimates.
The chapter is concluded by summarizing advantages and disadvantages of the
reviewed UQ approaches.

Chapter 5 - Gradient Metrics
A computationally inexpensive and external approach for the quantification of
epistemic uncertainty, called Gradient Metrics is proposed in this chapter. The idea
behind the method as well as the theory is explained. This is followed by a review
of similar works which emerged in recent years.

Chapter 6 - Uncertainty Quantification GAN
Here, an approach for quantifying different types of uncertainty based on GANs is
proposed. In the beginning we will motivate different design choices and compare
them to existing generative models. Subsequently, the theory of an OvA classifi-
cation model is derived, and we learn how the model is able to separate different
types of uncertainties. The aforementioned OvA classifier is then embedded into a
generative learning framework for which the theory is explained in Section 6.2. A
low-dimensional regularizer is motivated and explained in the remainder of the
chapter.

Chapter 7 - Evaluating Uncertainty
In Chapter 7 different downstream tasks for evaluating the quality of uncertainty
estimates are described. Afterwards, common evaluation metrics for binary classifi-
cation models are defined and explained.

Chapter 8 - Experiments
The second-to-last chapter describes qualitative and quantitative results for a variety
of UQ methods and datasets. All related methods and the proposed approaches are
benchmarked on 4 tasks and each subsection concludes with the findings of the
quantitative evaluation.

Chapter 9 - Conclusion
The thesis is concluded with the main highlights and findings and discusses
potential future work.

After the main part of the thesis, additional quantitative results on the uncertainty
downstream tasks and a study of hyperparameters applicable to the proposed ap-
proaches are given. The bibliography and a list of acronyms complete the document.
All references with associated URLs were last checked for content and availability
on September 13, 2023.





2
U N C E RTA I N T Y I N M A C H I N E L E A R N I N G

This chapter is going to introduce the basic notion of uncertainty in the context
of machine learning. After the basic concepts of statistical learning theory are
explained in Section 2.1, different sources and types of uncertainties are intro-
duced in Section 2.2. Afterwards, we will understand how uncertainties can be
computed based on probability distribution and learn about model assumptions
which separate uncertainty sources.

2.1 statistical learning theory

The ideas and notation in this section are based on the work by Shalev-Shwartz and
Ben-David [119].

The goal of statistical learning theory is to mathematically describe the process
of automatic learning from existing data in order to gain knowledge and reason
about newly arising data. This is often called Machine Learning (ML) and modern
algorithms such as DNNs can also be classified under this term.

Let us start by defining our learning-setting. We define the domain from which we
are trying to learn as X . In the case of, e.g., gray scale images of size 32× 32, we
can say that X = {0, 1, . . . , 255}32×32. Although an element of X can have many
dimensions, we will refer to an element of X as a vector x to simplify notation.
This thesis is predominantly focusing on the problem of supervised learning, in
which the learner is supplied with samples (x, y) ∈ D = X × Y during training.
Data from X is collected and annotated, which results in the training dataset S =

{(x(1), y(1)), . . . , (x(N), y(N))} ⊆ D. The goal is then to learn a mapping h : X → Y ,
resembling the true underlying labeling function. We will, unless stated otherwise,
describe S as a set in contrast to Shalev-Shwartz and Ben-David [119], who describe
it as a sequence. The data points in S are usually assumed to be independent
and identically distributed (i.i.d.) according to some joint probability distribution
P(X, Y) on D with its corresponding probability mass function p(x, y). We also
call P(X, Y) the data generating distribution. As we are focusing on classification
problems in the rest of this thesis, let us define Y = {1, . . . , K}, meaning each data
point (x, y) ∈ S can be assigned to one of K classes. In the case of classifying gray
scale images of handwritten digits we would set Y = {0, 1, . . . , 9}. Lastly, we define
the set of all possible mappings h : X → Y that our learning algorithm can produce

7



8 uncertainty in machine learning

as our hypothesis space H. Analogously, a realization h of our learning algorithm is
called a hypothesis.

We measure the success of a hypothesis h with a loss function l : Y × Y → R by
computing the expected loss (also called risk) over D (see also [61])

R(h) :=
∫
D

l (h(x), y)dP(x, y) . (2.1)

One example for l is the 0/1-Loss defined as

l 0/1(h(x), y) = 1{h(x) ̸=y} . (2.2)

Equation (2.1) is infeasible to compute as D usually has an infinite number of
elements and the data generating distribution P(X, Y) is not known. This is why in
practice we compute the empirical risk over our training dataset S

Remp(h) :=
1
N ∑

(x,y)∈S
l (h(x), y) . (2.3)

We then find our hypothesis by

ĥ = arg min
h∈H

Remp(h) . (2.4)

In this case ĥ is called Empirical Risk Minimizer (ERM). If it holds that

Remp(h) −−−→
N→∞

R(h) , (2.5)

we can say that our learner is consistent. In practice however, our training dataset
S is of finite size and the ERM will always be only an approximation of the true
risk minimizer

h∗ := arg min
h∈H

R(h) . (2.6)

In real-world applications (e.g., image classification), considering h to be a deter-
ministic mapping is not a reasonable assumption. As D usually has an infinite
number of elements, we are always depending on our training dataset S for the
approximation of the true underlying sampling distribution. We are assuming that
S is representative of X and all examples (x(i), y(i)) are i.i.d., but this assump-
tion may be wrong due to, e.g., small sample size or domain shifts. If S is only
covering a subset of X , there remain examples that our learning algorithm has
never seen before. Fixing on a single ĥ ∈ H could lead to a hypothesis that gives
incorrect predictions for all (possibly infinitely many) examples of X which are not
covered by S . If we define the mapping X → Y as being non-deterministic, we
are not solving the problem of missing data, but we enable the model to express
uncertainty about a prediction. In this case our model covers a subset of H, which
results in the mapping h : X → [0, 1]|Y|, with ∑K

i=1 h(x)i = 1. Additionally, the
loss function needs to be defined as l : [0, 1]K × [0, 1]K → R and our label y can
be seen as a realization of a categorical distribution. An example for such a loss
function over distributions is the Kullback-Leibler Divergence (KLD) (more on that
in Section 3.3.1).
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Data Collection
• Error and Noise in Mea-

surement System
• Quantization
• Labeling Error

Preprocessing
• Normalization
• Filtering

Training
• Hyper Parameter Choice
• Approximation (Model)

Uncertainty

Model Selection
• Model Architecture
• Number of Parameters
• Weight Initialization

Inference
• Domain Shift
• Out-of-Distribution
• Outlier

Aleatoric Uncertainty Source

Epistemic Uncertainty Source

Figure 2.1: Flow diagram of a machine learning pipeline, summarizing different sources of
uncertainty.

2.2 sources of uncertainty

Malinin and Gales [89], Hüllermeier and Waegeman [61] and Gawlikowski et al.
[38, p. 3-4] describe different sources of uncertainty in the context of statistical
learning theory and machine learning. Generally, uncertainty can be distinguished
into aleatoric and epistemic uncertainty. The different types can be attributed to steps
in a machine learning pipeline as illustrated in Fig. 2.1.

The aleatoric uncertainty refers to the irreducible part of the total uncertainty,
resulting in a non-deterministic mapping between X and Y and producing a
distribution over possible outcomes

p(y | x) = p(x, y)
p(x)

. (2.7)

This means that even in the case of complete knowledge about the true underlying
sampling distribution p(x, y), there still remains uncertainty that can not be reduced.
This can be a result of noise in the data collection process (e.g., noise produced by
an image sensor), loss of information due to quantization of the data, labeling errors,
class overlap, or simply completely random effects inherent to the environment.
Consider, e.g., the problem of weather forecasting. In the best case we would have
information about every atomic particle in the universe and it’s interactions between
one another. Even in this hypothetical example, Heisenberg’s uncertainty principle
teaches us that we can not measure position and momentum of a particle with
arbitrary certainty. Which still leaves us with a portion of aleatoric uncertainty in our
predictions. This type is also called data uncertainty [28] because it is inherent to the
data itself. Figure 2.2 (a) illustrates this for two overlapping Gaussian distributions.
In this case it does not matter how many training examples of the underlying
Gaussian distributions we have, examples situated in the overlapping region can
not be unambiguously assigned to one of the two classes.

On the other hand, epistemic uncertainty refers to the uncertainty that can be
reduced by gathering more information. As a typical machine learning pipeline con-
tains many steps, equally many sources of epistemic uncertainty can be formulated
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Data Uncertainty

Class 1
Class 2

High Model
Uncertainty

Low Model
Uncertainty

Class 1
Class 2

Model 1
Model 2

Class 1
Class 2
Out-of-Distribution

(a) (b) (c)

Figure 2.2: Illustration of data (a), model (b), and distributional (c) uncertainty. This graphic
is based on Figure 1 from Gawlikowski et al. [38, p. 6].

(see Fig. 2.1). On a broader scale we can distinguish into model and distributional
uncertainty [89].

Model uncertainty summarizes our doubts about whether we specified our model
in an optimal way. One source for model uncertainty is the specification of the
hypothesis space H and whether the true risk minimizer h∗ is covered by it or
not. In statistical learning theory we often assume that h∗ ∈ H, which is called
the realizability assumption [119, p. 38]. As we will see in Chapter 3, this is actually
a realistic assumption for (Deep) Neural Networks. For other algorithms, this
uncertainty can be reduced by additional knowledge about the correct (or best)
model, which is why it is considered to be of an epistemic nature. Another source of
model uncertainty is the choice of model parameters. As mentioned in Section 2.1,
the ERM is only an approximation of the true risk minimizer. Depending on the
quality and amount of data, the error between h∗ and ĥ can be larger or smaller, only
vanishing in the limit N → ∞ if our learning algorithm is consistent. This results in
an approximation uncertainty [119, p. 64, 61, p. 7] and as it can be reduced by having
access to more training data, it can also be categorized as being of an epistemic
type. There are many more sources of model uncertainty, e.g., the selection of
hyperparameters, stochastic decisions like data shuffling, in the case of NNs the
model structure and number of parameters [38, pp. 3–4].

Distributional uncertainty is caused by a mismatch between the training distribution
and the one that can be observed during the deployment phase. As the world
around us is virtually infinite in variety, restricting the learning domain X as well
as the label set Y is inevitable in order to be able to collect a representative dataset.
However, this might result in situations where the model is asked to predict a label
for inputs that are not covered by the training set or which can not be mapped
to one of the known classes in a meaningful way. This is a problem that typically
arises in practical applications and such inputs are called Out-of-Distribution (OoD)
as they are outside the known training data distribution. We can expect that every
machine learning model in the wild is exposed to these examples, which is why
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distributional uncertainty always needs to be considered in real world applications.
OoD examples are an extreme case of a distribution shift. Often we can observe
smaller domain shifts, where the training distribution has a large overlap with the
real world data but does not match up completely. This can be self-inflicted, e.g.,
when the camera which is recording data is calibrated differently compared to
the camera that captured the training data, resulting in a shift in the overall color
spectrum. Also, it can be induced by external factors like, e.g., in the context of
autonomous driving, when the designs of cars change over time.

It is important to notice, which was also pointed out by Hüllermeier and Waegeman
[61] and Kiureghian and Ditlevsen [66], that aleatoric and epistemic uncertainty can
only be defined without ambiguity if the learning-setting (X ,Y ,H, P) is fixed.
Consider, e.g., the problem of brain tumor segmentation in Magnetic Resonance
Imaging (MRI) images. Due to a limit in MRI image resolution there always re-
mains uncertainty about the boundary of a possible tumor. Even if we would have
additional information in form of more scans, the resolution limit still applies,
resulting in aleatoric uncertainty at the boundary. Now assume that there is a new
medical imaging method that drastically increases the resolution of MRI images.
In this case we would be able to reduce the aleatoric uncertainty at the boundary,
transferring it to epistemic uncertainty as we now need more data to learn the
higher dimensional problem. So was the aleatoric uncertainty experienced with the
older imaging technique of epistemic nature in the first place?
In the example above our learning domain X changed and thus also our learning-
setting. Similar transitions between aleatoric and epistemic uncertainty can be
observed when allowing a change in the underlying sampling distribution, label or
hypothesis space, showing that in order to clearly define aleatoric and epistemic
uncertainty, the learning-setting has to be fixed.

If we enable our model to output a distribution over possible outcomes p̂(y | x),
like in Eq. (2.7) (we will see in Chapter 3 that the output of neural networks
for classification tasks is also a distribution over classes), we allow it to express
aleatoric uncertainty in its predictions. This uncertainty (or lack of knowledge as in
Hüllermeier and Waegeman [61, p. 15]) can be measured with the Shannon entropy
[120]. For a discrete random variable Y over possible events y ∈ Y with the density
p(Y = y) = py, the Shannon entropy is defined as

H(p) = −Ep [log p] = − ∑
y∈Y

py log(py) . (2.8)

Equation (2.8) reaches its minimum of 0 if a single y ∈ Y receives all probability
mass, and it’s maximum of log(|Y|) if the probability mass is spread uniformly
across all y. We will use the terms entropy and Shannon entropy interchangeably.

Intuitively the entropy measures a similarity to a uniform distribution over classes.
This view of the entropy can also be derived from the Kullback-Leibler Divergence
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(KLD) [71]. The KLD between two discrete distributions p(x) and q(x) is defined
as (cf. Bishop [8, p. 55])

KL(p ∥ q) = Ep

[
log
(

p(x)
q(x)

)]
= ∑

x

p(x) log
(

p(x)
q(x)

)
. (2.9)

Two important properties of the KLD are, that it is not symmetric, meaning KL(p ∥
q) ̸= KL(q ∥ p), and that it is non-negative KL(p ∥ q) ≥ 0 with KL(p ∥ q) = 0 if,
and only if p(x) = q(x) (see Bishop [8, pp. 55–57] for a proof). The latter results in
the KLD being similar to a distance measure between two distributions, although
strictly speaking it is not a distance metric because it is not symmetric. The KLD
can also be formulated with the cross-entropy and entropy as

KL(p ∥ q) = H(p, q)− H(p) , (2.10)

with H(p, q) = −∑x p(x) log(q(x)) being the cross-entropy between p and q.
When we now compute the KLD between a class distribution p(y) and the uniform
distribution over classes u(y) = 1

K , ∀y ∈ Y we get

KL(p ∥ u) = ∑
y∈Y

p(y) log

(
p(y)

1
K

)
(2.11)

= −H(p) + log(K) . (2.12)

This shows that the (Shannon) entropy is an affine transformation of the KLD with
respect to the uniform distribution.

Often the normalized entropy is being used, which results in a quantity similar to a
metric with a value range of [0, 1]

H̃(p) := − 1
log (K) ∑

y∈Y
py log

(
py
)
∈ [0, 1] . (2.13)

Here, H̃(p) = 0 if the probability mass lies on a single py and H̃(p) = 1 if the
probability mass is uniformly distributed, therefore py = 1

K , ∀y ∈ Y .

When learning point estimates of our model, as we are doing in Eq. (2.4) by only
taking the hypothesis which minimizes our empirical risk, we are no longer able to
quantify the predictive model uncertainty. Figure 2.2 (b) illustrates this, as we can
not determine the model uncertainty without having access to multiple hypothesis.
Bayesian theory offers a basis to describe this type of uncertainty by imposing
a probabilistic view on the world and describing the model parameters with a
distribution

p(θ | D) = p(D | θ)p(θ)
p(D) . (2.14)

Here, θ is a vector of parameters defining a hypothesis, p(θ | D) is the posterior,
p(θ) the prior, p(D | θ) the data-likelihood and p(D) =

∫
p(D | θ)p(θ)dθ the

evidence. Because the posterior is dependent on the data D, we can naturally
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express the notion of epistemic (model) uncertainty. Gathering more data allows
us to describe the true posterior more accurately. If we are able to compute the
posterior, we can form predictions by integrating over all parameter configurations

p(y | x,D) =
∫

p(y | x,θ)︸ ︷︷ ︸
Data

p(θ | D)︸ ︷︷ ︸
Model

dθ . (2.15)

Equation (2.15) can be extended by modeling distributional uncertainty as a distri-
bution over predictive categorical distributions p(µ | x,θ), where µ is a realization
of one such distribution [89]. The complete predictive model is then formalized as

p(y | x,D) =
∫ ∫

p(y | µ)︸ ︷︷ ︸
Data

p(µ | x,θ)︸ ︷︷ ︸
Distributional

p(θ | D)︸ ︷︷ ︸
Model

dµdθ . (2.16)

Even though we can model the distributional uncertainty as in Eq. (2.16), most
Bayesian approaches do not model it and include it indirectly into the data uncer-
tainty. Depeweg et al. [28] are proposing a way to separate aleatoric and epistemic
uncertainty in a Bayesian setup. Their intuition is to quantify the total amount
of uncertainty as well as the aleatoric uncertainty. The epistemic part is then the
difference between the two. In their work, the total uncertainty is quantified by the
entropy over the predictive posterior

H(p(y | x,D)) = −
K

∑
k=1

p(y = k | x,D) · log(p(y = k | x,D)) . (2.17)

This quantity is expected to contain the epistemic (model) as well as the aleatoric
(data) uncertainty, because due to the marginalization over the parameters the final
prediction does no longer depend on them. Similar to the maximum likelihood
point estimates, they argue that sampling a single weight configuration from the
posterior removes any epistemic uncertainty. The expected entropy over all the
parameter realizations should then only contain the aleatoric uncertainty

Ep(θ|D) [H(p(y | x,θ))] = −
∫

p(θ | D)
(

K

∑
k=1

p(y = k | x,θ)

· log(p(y = k | x,θ))

)
dθ .

(2.18)

Finally, the epistemic uncertainty is the difference between Eqs. (2.17) and (2.18)

I(y,θ) := H(p(y | x,D))−Ep(θ|D) [H(p(y | x,θ))] . (2.19)

As stated by Depeweg et al. [28], this equals the Mutual Information (MI) between
the distribution over classes y and model parameters θ.

A term which is conceptually very similar to uncertainty quantification and often
used synonymously throughout the literature is confidence estimation. Confidence es-
timation is the task of assigning a scalar value to the predictions of a neural network
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which should correspond to the network’s confidence in its prediction. As such it
should be lower for wrong predictions or unknown inputs and higher for known in-
puts that are correctly classified. Typically, the value range for a confidence estimate
is [0, 1], which makes it suitable to be interpreted as a prediction probability. The
main distinction point is that UQ focuses more on quantifying the different sources
of uncertainty (aleatoric and epistemic), while a confidence measure summarizes
them in a single scalar value. A more apparent difference is that a high confidence
should correspond to a correctly classified In-Distribution (ID) example, while the
total amount of uncertainty should be small in this case and vice versa. Although
confidence estimation is often mixed with uncertainty quantification, confidence
can be interpreted in conjunction with uncertainty. Consider, e.g., the problem of
weather forecasting, where a model can make a prediction like “It will rain tomorrow
with a probability of 80 %”, in which case our confidence is 80 %. However, it might
actually be the case that the current setting is not well represented in our training
dataset, imposing a high model and distributional uncertainty on the prediction.
As someone who is interpreting the prediction, we would expect a prediction with
80 % confidence to be correct most of the time. More specifically, we would expect
it to be correct in exactly 80 % of the cases, which corresponds to a good model
calibration. From a practical point of view the complement of the confidence of
a well calibrated model (1− confidence) is already quantifying an aggregation of
data and distributional uncertainty. Therefore, we will see confidence estimation as
a type of uncertainty quantification and are using the two terms interchangeably.

2.3 controlling shifts in learning-settings

Assuming our learning-setting (X ,Y ,H, P) to be fixed is helpful when arguing
about the exact type of uncertainty. However, when deploying machine learning
models in the real world, this assumption can not be considered fulfilled.

As an example, consider the problem of semantic segmentation of street scenes
for automated driving. Domain shifts on X can be caused by changes in location
(e.g., Asian vs. European cities or city vs. countryside), short time differences (e.g.,
day ↔ night or winter ↔ summer) or longer time differences (e.g., the designs
of cars change over durations of decades). Similarly, Y might change over time
due to, e.g., newly arising vehicle classes that were not present during the initial
recording of the training dataset. The frequency of pedestrians in these street
scenes might change due to an increasing population size, effectively changing the
underlying sampling distribution P(X, Y). Additionally, the visual world is very
high-dimensional, making it practically impossible to craft a dataset that is covering
everything, thus making it inevitable to enforce a restriction to a subspace for which
a representative dataset can be created.

The differentiation into aleatoric and epistemic uncertainty has a low relevance
for ad-hoc predictions. The exact source of the uncertainty in, for example, the
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Figure 2.3: Feedback loop added to Fig. 2.1. Unknown inputs and domain shifts should be
detected during inference and trigger the collection of additional data. Uncer-
tainty measures can trigger the loop as well as give advice on which data to
collect.

semantic segmentation map during driving is of secondary interest. Whether the
ML system can not make reliable predictions because it has never seen parts of
the scene or encountered an ambiguous input is irrelevant in this situation. In any
case, the driver should be requested to take over or the vehicle should be stopped
immediately. As a consequence, quantifying the total amount of uncertainty can be
sufficient in this case. However, the distinction becomes valuable when trying to
control shifts in the underlying learning-setting. Controlling these kinds of shifts
can only be accomplished by adding a loop into the ML development pipeline, as
can be seen in Fig. 2.3. Monitoring the level of aleatoric and epistemic uncertainty
during the deployment phase makes it possible to trigger the start of this loop.
Samples attributed to high aleatoric or epistemic uncertainty can be collected and,
depending on the uncertainty source, be fed to different tooling steps. Assuming
our training dataset is representative for the learning-setting, new classes, which
occur during the deployment phase, can be detected by monitoring the model’s
epistemic uncertainty. When the overall level of epistemic uncertainty is high for
many inputs, a human can decide to add some of these new classes to the model.
The detected instances can then be annotated (e.g., by using active learning) or used
in a semi-supervised learning framework and fed back into the training dataset.
Similarly, we can use the model’s aleatoric uncertainty to decide if better sensors
are needed or to detect errors in the data acquisition pipeline.

A framework to efficiently identify unknown samples was proposed by Oberdiek,
Rottmann, and Fink [99]. The workflow was demonstrated on the task of semantic
segmentation of street scenes. Segments with a low predicted Intersection over
Union (IoU) to the annotation, as produced by the MetaSeg [108] approach, are
collected and projected into a low dimensional feature representation using a pre-
trained CNN (see Section 3.5). Using distance metrics such as the cosine similarity
or Euclidean Norm, segments which are similar to a user defined example query, are
retrieved. Semantically similar objects are close to one another in the feature space,
enabling the user to identify groups of objects with a high occurrence frequency.
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Clustering techniques are used to support the identification of new object categories.
By utilizing such a retrieval based approach, many samples can be searched fast
for unknown classes. In further downstream tasks, the identified segments might
then be labeled and added to the training dataset. This decreases the epistemic
uncertainty caused by the respective objects for a model which is trained on the
extended dataset.



3
N E U R A L N E T W O R K S

This chapter will introduce the theory of DNNs. After a brief review of the begin-
nings of NNs, the backpropagation algorithm is derived using an MLP in Section 3.3.
In the same section we gain insights into connections between Maximum Likelihood
Estimation (MLE) and the training of NNs, which aligns with the computation of
uncertainty from probability distributions, as discussed in Chapter 2. Afterwards,
the concept of CNNs and basic building blocks of modern DNNs are introduced in
Section 3.5. Following this, a short overview of the history of DNN architectures
and a more detailed description of the models used in the experiments is given.
Additionally, there will be comments whenever an algorithm or architectural choice
of NNs is causing uncertainty.

3.1 perceptron

A Perceptron, as proposed by Rosenblatt [107], computes an affine transformation of
its inputs by multiplying each with a learnable weight and adding a bias term. It
was first invented by McCulloch and Pitts [90] who formulate it with binary inputs
and outputs exclusively. Rosenblatt [107] extended this theory by incorporating the
learnable weighting and the bias term. The bias added to the weighted sum of inputs
(also called activation) is then transformed by applying a non-linear activation
function. A simple illustration of this can be found in Fig. 3.1 (b). Mathematically a
Perceptron can be formulated as a function f : Rdx → R with weights w ∈ Rdx , a
bias term b ∈ R, a non-linear activation function ϕ : R→ R and an input x ∈ Rdx

f (x | w) = ϕ

((
n

∑
i=1

wixi

)
+ b

)
. (3.1)

In the original formulation of Rosenblatt [107], ϕ is chosen as a step function

ϕ(a) =

1 , if a > 0

0 , else
. (3.2)

This model then naturally allows performing binary classification without applying
further decision rules. In Perceptrons: An Introduction to Computational Geometry,
Minsky and Papert [92] showed limitations of the Perceptron, especially its inability
to solve non-linear problems, e.g., the XOR-Problem.

17
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Figure 3.1: Illustration of (a) a Multilayer Perceptron (MLP) with one hidden layer and (b)
a Perceptron.

3.2 multilayer perceptron

As mentioned in Section 3.1, Minsky and Papert [92] demonstrated the inability of
a single Perceptron to model the XOR-function. However, they also showed that
stacking multiple layers of Perceptrons can alleviate this limitation. This architec-
ture of stacked Perceptrons is today called a Multilayer Perceptron (MLP) or Feed
Forward Neural Network. The latter name originates from the fact that in this type of
architecture, neurons are only connected "forward" from the previous and to the
next layer, and thus the model can be viewed as a directed graph with no cycles. In
this section we will take a look at this very basic model of an NN.

We define a single layer in an MLP, having index l ∈ {1, . . . , L− 1}, as a nonlinear
function f l : Rnl → Rnl+1 with nl input neurons, nl+1 output neurons, a weight
matrix W ∈ Rnl×nl+1 , bias weights b ∈ Rnl+1 , non-linear activation functions ϕl and
an input z ∈ Rnl

f l(z |W ) = (f l(z |W )1, . . . ,f l(z |W )nl+1)
⊺ , (3.3)

f l(z |W )j = ϕl+1

((
nl

∑
i=1

Wijzi

)
+ bj

)
= ϕl+1

(
W ⊺
· jz + bj

)
, (3.4)

∀ j = 1, . . . , nl+1, l = 1, . . . , L− 1
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The complete MLP can then be defined by chaining together all individual layers,
with θ representing the vector of all model weights and x the input to the first layer

f (x | θ) = (f L−1 ◦ . . . ◦ f 1)(x | θ) . (3.5)

In order for an NN to be able to solve non-linear problems a non-linear activation
function is indispensable. If all ϕl were linear, the whole network would collapse to
a single affine transformation, making it impossible to even solve the XOR problem.
In the early days of NN research the sigmoid function was used as activation
function

σ(a) =
1

1 + e−a , a ∈ R . (3.6)

The nice property about this function is that it is differentiable everywhere with

σ′(a) = σ(x)(1− σ(a)) . (3.7)

This derivative reaches its maximum at a = 0 with σ(0) = 0.25 and tends towards
0 for a → ±∞. In Section 3.3 we will see implications of this value range on the
training process. In Fig. 3.1 you can find a simple illustration of an MLP with one
hidden layer.

It has been proven by Hornik, Stinchcombe, and White [56] that a 3-layer MLP
(input, output and one hidden-layer) has a universal approximation property, given
that the hidden layer has a sufficient number of neurons (approaching infinity).
Although the result could not yet be generalized to arbitrary NN architectures, it
makes the realizability assumption from Section 2.2 fairly realistic. This means that
the model uncertainty resulting from the (miss-) specification of the hypothesis
space H can be neglected to a large extent, when using DNNs.

3.3 training

NNs are usually trained in a supervised learning framework. As explained in
Section 2.1, our training dataset consists of N i.i.d. data points S = {(x(1), y(1)),
. . . , (x(N), y(N))}, having features x ∈ X and labels y ∈ Y = {1, . . . , K}, which
were drawn from the underlying joint sampling distribution p(x, y). Categorical
values as in Y are typically represented using a one-hot encoding

yoh
i = 1{i=y} . (3.8)

Similarly, we model the output layer of an NN with K output neurons, where each
neuron represents one of the classes in Y . On top of that, applying the softmax
activation function

ŷi := p̂(y = i | x,θ) =
ef (x|θ)i

∑K
j=1 ef (x|θ)j

, ∀i = 1, . . . , K ,

K

∑
i=1

ŷi = 1 ,

(3.9)
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induces a distribution over classes p̂(y | x,θ) ∈ [0, 1]K in the output of the neural
network. For brevity, we will sometimes leave out the θ and write p̂(y | x) for the
class distribution predicted by the NN. The outputs of the second to last layer (also
called logits) will be denoted by f (x | θ).

3.3.1 Loss Functions

Our goal is to adjust the weights θ of the NN in such a way, that we minimize a loss
function l (risk as in Section 2.1) between the network’s prediction ŷ = p̂(y | x,θ)
and the label y. The choice of l depends on the type of problem at hand. For now,
let us choose l as the squared L2 loss between ŷ and yoh, also commonly used in
least squares estimation for linear regression problems, and define L as the mean
squared loss

l (ŷ,yoh) = ∥ŷ − yoh∥2
2 , (3.10)

L(θ,S) = 1
|S| ∑

(x,y)∈S
l (ŷ,yoh) . (3.11)

By minimizing L w.r.t. θ we are obtaining a set of model parameters

θ̂ = arg min
θ

L(θ,S) . (3.12)

If p̂ is linear, as for linear regression problems, this choice of loss function results
in a convex optimization problem with a global minimum which can be found
analytically. For NNs however, p̂ is in general too complex, resulting in many
local minima in L. This makes it practically impossible to find a global minimum
analytically. Consequently, in order to train NNs, we will need to utilize a different
approach, which will be introduced later in this section.

In the following, we will see why it is important to choose the loss function in
relation to the problem to be solved. For this we consider the training of neural
networks in the context of Maximum Likelihood Estimation (MLE), which is a method
for computing point estimates of parameterized models. The intuitive idea behind
MLE is to find a set of parameters that maximizes the model likelihood of observing
the data points (x, y) ∈ S . A crucial assumption to be able to compute the likelihood
of our sample S is the independence of our data points, which is why we required
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our data points to be i.i.d., as previously discussed. The minimization of the mean
squared loss function can be rewritten as

θ̂ = arg min
θ

1
|S| ∑

(x,y)∈S
∥ŷ − yoh∥2

2 (3.13)

= arg min
θ

∑
(x,y)∈S

[
K
2

log(2π) +
1
2
∥ŷ − yoh∥2

2

]
(3.14)

= arg max
θ

∑
(x,y)∈S

log

(
1√

(2π)K
e−

1
2 (ŷ−yoh)⊺(ŷ−yoh)

)
(3.15)

= arg max
θ

∑
(x,y)∈S

log
(
NK(ŷ | yoh, IK)

)
(3.16)

= arg max
θ

∏
(x,y)∈S

NK(ŷ | yoh, IK) . (3.17)

In Eq. (3.14) we made a smart extension with the constant K
2 log(2π), which later

serves as the first factor in the Gaussian density. From Eq. (3.14) to Eq. (3.15) we
multiplied the equation by −1, which changed the optimization goal from arg min
to arg max. Afterwards, a log(exp(· ))) expansion on the quadratic L2-norm allowed
to merge the equation into a single logarithm. Equation (3.17) (without the arg maxθ)
is the likelihood of observing all (x, y) ∈ S when making a (multivariate) Gaussian
model assumption on the data, having unit covariance IK and the annotation yoh

as mean. In this assumption we are assuming a constant observation noise of 1 for
each class, effectively ignoring any uncertainty originating from the collected data.
This shows that the minimization of our mean squared loss function is actually
equivalent to MLE. Considering the Gaussian distributional assumption on the
target data, the mean squared loss function is a reasonable choice for problems
in which the data is following a Gaussian distribution. If we are trying to solve a
regression problem, this is a plausible choice, as the data points are real-valued
and not box-constrained like a categorical distribution. However, in the case of a
classification problem, considering the data to follow a normal distribution is no
longer reasonable as these are discrete assignment problems.

Therefore, it makes sense to model the data as a categorical distribution, which is
a generalization of the Bernoulli distribution to a categorical random variable, and
results in the data model assumption

p(y | x) = B(y, p1, . . . , pK) =
K

∏
i=1

p
1{y=i}
i . (3.18)
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This allows us to write the maximization of the likelihood as

θ∗ = arg max
θ

∏
(x,y)∈S

B(y, ŷ1, . . . , ŷK) (3.19)

= arg max
θ

∏
(x,y)∈S

K

∏
i=1

ŷ
yoh

i
i (3.20)

= arg max
θ

∏
(x,y)∈S

ŷy (3.21)

= arg max
θ

∑
(x,y)∈S

log(ŷy) (3.22)

= arg min
θ

1
|S| ∑

(x,y)∈S
− log(ŷy) . (3.23)

Equation (3.23) (without the arg minθ) is also called the Negative Log-Likelihood
Loss (NLLL) or Cross-Entropy-Loss and is the standard for classification problems.

To finally form a discrete prediction from the predicted class distribution p̂, a
common approach is to use the Maximum a Posteriori (MAP) or Bayes decision
rule

ŷMAP := arg max
i=1,...,K

ŷi . (3.24)

Because we are choosing a class based on the maximum posterior probability, we
are discarding any sense of aleatoric uncertainty that might be caused by other
classes. But as described in Section 2.2 we can measure the aleatoric uncertainty
before applying the MAP decision rule by computing the Shannon entropy over
the predicted class distribution

H̃(ŷ) = − 1
log (K)

K

∑
i=1

ŷi log (ŷi) . (3.25)

Another interesting observation is, that the cross-entropy loss function naturally
arises by computing the KLD between the annotation yoh and the predicted class
distribution ŷ

KL(yoh ∥ ŷ) =
K

∑
i=1

yoh
i log

(
yoh

i
ŷi

)
(3.26)

= − log
(
ŷy
)
+ H(yoh)︸ ︷︷ ︸

=0

. (3.27)

Here we set 0 · log(0) = 0, which is consistent with the limit. This also connects
the Shannon entropy in a principled way to the cross-entropy loss, as discussed in
Section 2.2.

3.3.2 Gradient Descent

As mentioned above, finding an analytic solution to Eq. (3.17) or Eq. (3.23) is
usually not possible as p̂ is too complex. However, if all involved functions in the
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computation of L are differentiable, we can use the gradient descent optimization
algorithm. By iteratively making steps in the direction of the steepest descent,
the algorithm is guaranteed to converge to a local minimum [22], assuming some
intelligent selection of the step size. If the function to optimize over is convex,
the algorithm will also converge to the global minimum. The update rule can be
defined as

θ ← θ− η · ∇θL . (3.28)

Here η ∈ R>0 is the learning rate which is a hyperparameter of the algorithm. From
a practical point of view, depending on the dataset size, computing the loss over
all samples can be very costly and results in a slow convergence speed. This is the
reason why the Stochastic Gradient Descent (SGD) [10] variant was developed. In
its extreme form there happens a weight update after each single sample drawn
from the training set S. This improves the convergence speed but also introduces a
lot of variance in the optimization process. Today, the batch stochastic gradient descent
is predominantly used for optimizing NNs. This variant uses a batch of data points
SB ⊆ S in each weight update, where usually |SB| ≪ |S|. Small batches have the
advantage of fast loss computation and, when uniformly randomly sampled from S,
approximate the loss over the whole dataset. Many extensions to and modifications
of the SGD exist today which try to improve the convergence speed (e.g., SGD
with momentum [127], AdaGrad [33], RMSProp [131], Adam [64]). Although batch
stochastic gradient descent is used in practice, we will stick to the entire training set
S in the theoretical derivations for ease of notation, unless otherwise noted.

Training NNs and especially DNNs has been a long-standing problem in the
field. The introduction of the backpropagation algorithm [110] was one of the key
advancements to enable efficient training of these models. The following section
will give an introduction to this algorithm with an application to MLPs. It can
however be extended to more complex architectures using, e.g., convolutions.

Generally speaking the algorithm consists of four steps:

1. Forward pass: An input x (or rather a whole batch of inputs as in the batch
stochastic gradient descent) is presented to the network, and its output alongside
with all intermediate neuron activations are computed.

2. Loss computation: Based on the output ŷ of the NN and the label y the
average error of the prediction is computed by using the loss function l .

3. Backward pass: Compute the gradients of the loss w.r.t. each weight by
backpropagating the error from layer to layer.

4. Weight adjustment: Update each weight according to Eq. (3.28) given the
gradient.



24 neural networks

The name backpropagation comes from the fact that the contribution to the loss
function of each neuron can be computed given the errors of the neurons in the
following layer. Thus, the error is propagated back from layer to layer, starting at
the output. As shown below, the formulas for the algorithm can be derived by
applying the chain rule for differentiation.

Consider an MLP as defined in Section 3.2. We define al
j as the activation of neuron

j in layer l, ol
j as the output of the neuron j in layer l, ϕl : R → R the activation

function for neurons in layer l, W l
ij the weight between neuron i in layer l and

neuron j in layer l + 1, bl
j the bias weight of neuron j in layer l and L as an arbitrary

differentiable loss computed on the training dataset S .

For 1 ≤ l ≤ L− 1 the gradients are computed as

∂L

∂W l
ij
=

∂L

∂ol+1
j

·
∂ol+1

j

∂al+1
j

·
∂al+1

j

∂W l
ij

(3.29)

=
∂L

∂ol+1
j

· ϕl+1′
(
al+1

j

)
︸ ︷︷ ︸

δl+1
j

·ol
i (3.30)

= δl+1
j · ol

i , ∀i = 1, . . . , nl , j = 1, . . . , nl+1 , (3.31)

L

∂bl
j
=

∂L

∂ol+1
j

·
∂ol+1

j

∂al+1
j

·
∂al+1

j

∂bl
j

(3.32)

=
∂L

∂ol+1
j

· ϕl+1′
(
al+1

j

)
︸ ︷︷ ︸

δl+1
j

(3.33)

= δl+1
j , ∀j = 1, . . . , nl+1 . (3.34)

(3.35)

Given the definition of δl
j from above, we can follow

δl
j = ϕl ′

(
al

j

)
· ∂L

∂ol
j

(3.36)

= ϕl ′
(
al

j

)
·

nl+1

∑
k=1

(
∂L

∂ol+1
k

· ∂ol+1
k

∂al+1
k

· ∂al+1
k

∂ol
j

)
(3.37)

= ϕl ′
(
al

j

)
·

nl+1

∑
k=1

(
∂L

∂ol+1
k

· ϕl+1′
(
al+1

k

)
︸ ︷︷ ︸

δl+1
k

·W l
jk

)
(3.38)

= ϕl ′
(
al

j

)
·

nl+1

∑
k=1

(
δl+1

k ·W l+1
jk

)
, ∀j = 1, . . . , nl . (3.39)

In Eq. (3.37) we rewrote the derivative w.r.t. ol
j as a sum of the derivatives w.r.t. the

output of the following layer by applying the chain-rule. As the last layer L does
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not have following layers from which the loss can be backpropagated we need to
define δl

j as

δl
j =


∂L
∂ol

j
· ϕl ′(al

j) , l = L

ϕl ′
(
al

j

)
·∑nl+1

k=1

(
δl+1

k ·W l
jk

)
, 1 ≤ l ≤ L− 1

. (3.40)

Considering the derivations from above, Eq. (3.28) for an MLP can be formulated
as

W l
ij ←W l

ij − η · ∂L

∂W l
ij
= W l

ij − η · δl+1
j · ol

i

i = 1, . . . , nl

j = 1, . . . , nl+1

l = 1, . . . , L− 1

, (3.41)

bl
j ←bl

j − η
∂L

∂bl
j
= bl

j − η · δl+1
j

j = 1, . . . , nl+1

l = 1, . . . , L− 1
. (3.42)

3.3.3 Uncertainty resulting from gradient descent optimization

Although the backpropagation algorithm is the main driver behind today’s advances
in neural network research, it also introduces a lot of model uncertainty. We saw
previously in this section that the realizability assumption can be considered fulfilled
for the class of DNNs. But as described in Section 2.1, another source of model
uncertainty results from the approximation ĥ of the true risk minimizer h∗. If our
sample size goes to infinity (|S| → ∞), we should be able to compute the true
risk minimizer. In practice however, multiple sources prevent us from reducing the
approximation uncertainty to zero. First, our dataset size will always be finite and
second, the (batch stochastic) gradient descent algorithm can not guarantee that we
reach the global minimum as the loss function used for training a neural network
is in general not convex. Thus, the learning will most likely converge to a local
minimum within the loss landscape. It has been demonstrated that changes in the
architecture of the neural network can make the optimization landscape smoother
[82] but in general the loss function has many local minima which also will change
depending on the setting of a multitude of different hyperparameters and random
effects during the training (see [38, p. 4]), such as

• Architecture of the neural network

• Weight initialization

• Random sampling of the data batches

• Batch size

• Learning rate
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In total, this results in a large portion of epistemic uncertainty in our predictions,
as we can never be sure that we found the true risk minimizer. Methods such as
ensembling [75] are making use of the fact that every training run of a neural
network will result in a different local minimum and build a group of diverse
experts. These ensembles of experts not only increase the final classification accuracy
but are also able to express confidence and uncertainty in a more calibrated way
(more on that in Section 4.3).

As an intermediate conclusion one can say that methods for quantifying the uncer-
tainty of DNN predictions should definitely be able to quantify model uncertainty
as this makes up a large part of the epistemic uncertainty.

3.3.4 Vanishing Gradients and Dead Neurons

As mentioned in Section 3.2, in the beginning of NN research the sigmoid activation
function was used for hidden layers, thus ϕl(x) = σ(x) , ∀l = 1, . . . , L− 1. Now
that we know how NNs are optimized we can also understand a problem with this
choice of activation function. Assume we have an MLP with one neuron in each
layer, thus nl = 1 , ∀l = 1, . . . , L, and the sigmoid activation function for hidden
layers. For simpler notation also assume, without loss of generality, that all weights
are set to 1. If we now compute the gradient w.r.t. W 1

11 we get

∂L

∂W 1
11

= o1
1 · δ2

1

= o1
1 · σ′

(
a2

1
)
· δ3

1

...

= o1
1

L

∏
l=2

σ′
(

al
1

)
≤ o1

1 · ( max
l=2,...,L

σ′(al
1))

L−1

= o1
1 · 0.25L−1

(3.43)

The inequality in Eq. (3.43) is especially harmful for DNNs (large L) as the gradient
tends towards zero, resulting in stagnant weight updates for weights which are
closer to the input layer. This problem is called vanishing gradient problem in the
literature [41, p. 290]. By choosing a different activation function called Rectified
Linear Unit (ReLU), we can circumvent the problem to a large extent

ReLU(x) =

x, x > 0

0, x ≤ 0
. (3.44)
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Strictly speaking, the ReLU activation function is not differentiable at x = 0. In a
practical scenario this is not a problem as one can define the derivative as

ReLU′(x) =

1, x > 0

0, x ≤ 0
. (3.45)

However, the ReLU can lead to another optimization problem, which is the one of
dead neurons [41, p. 238]. Dead neurons occur if the input to the neuron is negative,
resulting in a zero gradient. The problem is even worse if in some point of the
training process a large weight update happens, producing a negative weight and
bias. In this case, as outputs of previous layers are always positive with a ReLU,
the activation is always negative, preventing the update of the respective weights
for the rest of the training. To avoid this, a small modification to the ReLU suffices
which is then called Leaky Rectified Linear Unit (LeakyReLU)

LeakyReLU(x) =

x, x > 0

λx, x ≤ 0
, λ ∈ R>0 . (3.46)

Usually one chooses λ ∈ (0, 1) to allow a small gradient to pass through from
which the addition Leaky originates. Note that choosing λ = 1 should be avoided
as this results in collapse of the neural network to an affine transformation (see
Section 3.2). Glorot, Bordes, and Bengio [40] argue that sparse networks resulting
from individual dead neurons do not constitute a significant problem in the training
of neural networks. Although they show experimental results supporting this claim,
the authors only experiment with very shallow networks.

Analyzing the backpropagation algorithm, especially Eq. (3.40), we can see that
the gradient of a parameter is not only dependent on ϕ′ but also on the weights
to the subsequent layer. In the case of small weights, some parameters still might
only receive a small gradient. This is especially apparent when applying regulariza-
tion techniques such as L2 regularization (see Section 3.4), where the weights are
optimized towards a zero mean multivariate Gaussian.

3.3.5 Implications of piecewise affine activation functions

Piecewise affine activation functions such as ReLU or LeakyReLU are solving the
problems of vanishing gradients and dead neurons. They do however introduce other
difficulties with respect to UQ of NNs. As shown by Hein, Andriushchenko, and
Bitterwolf [51], NNs using this type of activation function produce predictions with
arbitrarily high confidence far from the training data. These NNs are representing
piecewise affine transformations, dividing the input space into a finite set of convex
polytopes. Figure 3.2 shows that the polytopes can extend to infinity, making
confidence values produced by NNs unsuitable as a measure of uncertainty. The
very same problem even transfers to methods which were targeted at detecting
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Figure 3.2: Input region within R2 of a two-hidden layer neural network decomposed into
a finite set of polytopes. Graphic is Figure 1 from Hein, Andriushchenko, and
Bitterwolf [51].

these OoD inputs, such as temperature rescaling [83] or classifiers with reject option
[21, 39]. In the light of this finding and the fact that most modern NNs are affected
by this, confidence based decision-making and uncertainty quantification is at
high risk. Fortunately, Hein, Andriushchenko, and Bitterwolf [51] mention that
there exist models such as Radial Basis Function (RBF) networks, that have the
ability to predict a uniform confidence in the OoD regime. They also show that
special training techniques, such as enforcing a uniform confidence on adversarial
examples, can counteract the overconfidence. Additionally, it might be possible to
learn generative models for either the In- or Out-of-Distribution (OoD) data.

3.4 regularization

We saw previously that NNs, due to their high capacity, have a universal ap-
proximation property. This makes them, however, susceptible to overfitting to the
training data and regularization is important in order to achieve generalization
when training NNs. Generally speaking, regularization can be seen as restricting
the hypothesis space H, or in the context of NNs, favoring specific regions within
the weight space. Usually there are no hard restrictions applied to the hypothesis
space (‘hard’ meaning something like “all weights need to lie in the interval of
[−1, 1]”) but rather certain values are given a higher weight than others. This can
be described more formally when revisiting the Maximum a Posteriori (MAP)
approach. We already viewed the training of NNs from the theory of MLE. In this
case we found a set of parameters by maximizing the likelihood of observing the
training data within our model

θMLE = arg max
θ

∏
(x,y)∈S

p̂(y | x,θ) . (3.47)

MAP however assumes there exists a prior distribution p(θ) over our model pa-
rameters and treats θ as a random variable. We can then find our optimal set of
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parameters by computing the mode of the posterior distribution over the model
parameters

θMAP = arg max
θ

∏
(x,y)∈S

p̂(θ | x, y) (3.48)

= arg max
θ

∏
(x,y)∈S

p̂(y | x,θ)p(θ)
p(y)

(3.49)

= arg max
θ

∏
(x,y)∈S

p̂(y | x,θ)p(θ) . (3.50)

Here, p(θ) expresses our prior knowledge about the model parameters, effectively
giving all parameter choices θ in our hypothesis space H a weight according to the
chosen prior. The denominator p(y) =

∫
θ

p(y | θ)p(θ)dθ in Eq. (3.49) is called the
marginal likelihood and can be neglected in the maximization as it does not depend
on θ.
When choosing

p(θ) = Ndθ (θ | 0, Idθ
1

2λ
) =

1√
(2π 1

2λ )
dθ

e−
1
2θ

⊺(Idθ
1

2λ )
−1θ = (

π

λ
)−

dθ
2 e−λθ⊺θ , (3.51)

and a categorical distribution on our target data as in Section 3.3, we get

θMAP = arg max
θ

∏
(x,y)∈S

p̂(y | x,θ)p(θ) (3.52)

= arg max
θ

∑
(x,y)∈S

[log ( p̂(y | x,θ)) + log (p(θ))] (3.53)

= arg min
θ

1
|S| ∑

(x,y)∈S

[
− log ( p̂(y | x,θ)) +

dθ
2

log
(π

λ

)
+ λθ⊺θ

]
(3.54)

= arg min
θ

1
|S| ∑

(x,y)∈S
− log ( p̂(y | x,θ))︸ ︷︷ ︸

(a)

+λ ∥θ∥2
2︸︷︷︸

(b)

(3.55)

Above, (a) is the average cross-entropy loss from Eq. (3.23) and (b) is commonly
known as weight decay [70], with a scaling factor of λ > 0 and dθ being the
dimensionality of θ. We can see that MAP and ML estimation are very closely
related and only differ by the specification of a prior distribution on the model
parameters.

As derived above, weight decay or also called L2 regularization, coincides with a
(multivariate) Gaussian prior on the weights. Another popular regularization term,
as a result of choosing an independent Laplace prior for each weight, is the L1

regularization

p(θi) = Laplace(θi | 0,
1
λ
) =

λ

2
e−λ|θi | , i = 1, . . . , dθ , (3.56)

p(θ) =
dθ

∏
i=1

Laplace(θi | 0,
1
λ
) =

(
λ

2

)dθ
e−λ∥θ∥1 . (3.57)
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Which leaves us with the following regularization term in the MAP setting

θMAP = arg max
θ

∏
(x,y)∈S

p̂(y | x,θ)p(θ) (3.58)

= arg min
θ

1
|S| ∑

(x,y)∈S
− log ( p̂(y | x,θ)) + λ∥θ∥1 . (3.59)

In general, L2 regularization produces small weights while L1 regularization en-
courages a sparse weight vector, similar to LASSO regression [130].

Another popular technique for regularization is dropout [125]. When using dropout,
each neuron output is set to zero with a certain probability during the forward
pass, effectively removing it from the computational graph. Intuitively this forces
the network to save its knowledge in a redundant way into the weights, so that
if one neuron vanishes, the others can compensate for the missing information.
From a theoretical perspective, Gal and Ghahramani [37] have shown that training
an NN with dropout is a Bayesian approximation of a Gaussian process with a
parameterized Bernoulli distribution in place of the intractable posterior. With this
we are able to sample from a distribution of weights and thus can also compute a
theoretically grounded model uncertainty.

In conclusion, regularization is inevitable in modern DNNs as the large number of
parameters carries the risk of overfitting to the training data. On the other hand,
restricting the hypothesis space H might increase the model uncertainty.

3.5 convolutional neural networks

3.5.1 Convolution Operation

The classic (image) pattern recognition pipeline comprises the preprocessing and
feature extraction part before a classification model like an MLP is trained on the
extracted features. For a long time these features were computed based on hand-
crafted heuristics (e.g., SIFT [85], HOG [23] and LBP [101]), which are extracting
local image descriptors. The big advantage of modern DNNs does not only come
from the universal approximation property but also from the fact that convolutional
architectures enable an end-to-end trainable model. They do not rely on handcrafted
features because the feature extraction and classification are jointly optimized
(see Fig. 3.5 for an illustration). When considering high dimensional data, such
as images, a downside of an MLP is its dense architecture. An image of size
256 × 256 given to an MLP layer with 2562 input neurons and only 10 output
neurons, requires already 655 370 weights. Another disadvantage is the sensitivity
to scaling and translation of the same input. Every neuron in an MLP is connected
to exactly one pixel in the input image, making its receptive field small. Changing
the input by translation or scaling should not change the class assignment, but
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an MLP is affected by these transformations because a single input neuron does
not have any contextual information. In contrast to this, the number of weights in
a convolutional layer is not dependent on the input’s spatial size (except for the
number of color channels), greatly reducing the number of parameters. Additionally,
the convolution operation makes the sensible assumption that pixels in an image
are locally dependent and that only the spatial relation between features (and
not the exact position within the image) is relevant to the final prediction. This
results in some useful properties of CNNs, such as an invariance to translations and
scaling [77]. With the availability of larger datasets and more compute power, end-
to-end architectures using convolutional layers greatly improved the performance
on image classification benchmarks [69, 77]. The following section will give a short
introduction to convolutional layers in DNNs as well as an overview of common
architectures.

Mathematically a convolution (depicted by ∗) is an operation on two functions [41,
pp. 327–329] h1 : R→ R and h2 : R→ R

(h1 ∗ h2)(i) =
∫ ∞

−∞
h1(τ) · h2(i− τ)dτ

=
∫ ∞

−∞
h1(i− τ) · h2(τ)dτ

= (h2 ∗ h1)(i) , i ∈ R .

(3.60)

If h1 : Z→ R and h2 : Z→ R are discrete functions the convolution is defined as

(h1 ∗ h2)(i) =
∞

∑
k=−∞

h1(k) · h2(i− k)

=
∞

∑
k=−∞

h1(i− k) · h2(k)

= (h2 ∗ h1)(i) , i ∈ Z .

(3.61)

Similarly, we can define a convolution for functions on two continuous or discrete
variables as

(h1 ∗ h2)(i, j) =
∫ ∞

−∞

∫ ∞

−∞
h1(τ1, τ2) · h2(i− τ1, j− τ2)dτ1dτ2

=
∫ ∞

−∞

∫ ∞

−∞
h1(i− τ1, j− τ2) · h2(τ1, τ2)dτ1dτ2

= (h2 ∗ h1)(i, j) , (i, j) ∈ R2 ,

(3.62)

and

(h1 ∗ h2)(i, j) =
∞

∑
k=−∞

∞

∑
l=−∞

h1(k, l) · h2(i− k, j− l)

=
∞

∑
k=−∞

∞

∑
l=−∞

h1(i− k, j− l) · h2(k, l)

= (h2 ∗ h1)(i, j) , (i, j) ∈ Z2 .

(3.63)

In the context of image data we have a two or three-dimensional input, depending
on whether we have a colored (RGB) or gray scale image. For example, for gray
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Figure 3.3: Convolution operation on a 4× 4 input with a 3× 3 kernel and a stride of 1.

scale images, Eq. (3.63) is applicable as we can represent the input image as a
function h1 : N2 → {0, 1, . . . , 255}, mapping pixel coordinates (i, j) to gray scale
values {0, 1, . . . , 255}. Intuitively speaking, a convolution slides a kernel with a
predefined size over the image, computing a weighted sum between the kernel
weights and the pixel values (see Fig. 3.3 for an illustration). The step size of the
convolution is also called stride and is a hyperparameter which has to be defined
in advance. Because the same kernel weights are applied at each valid position of
the input image, the weights are effectively shared, thus drastically reducing the
number of parameters. The convolution also makes the feature extraction invariant
to translation as the same filter is applied at each position of the image.

3.5.2 Pooling

Pooling is another important building block in modern convolutional architectures.
The operation aggregates input values within a predefined window, and similar to
the case of a convolutional layer, this window slides over the input. The classical
aggregation function is the maximum which only considers the neuron with the
highest activation within the current window (see Fig. 3.4 for an illustration).
Pooling reduces the dimensionality of the input, lowering the number of computing
operations, and increases the size of the receptive field for subsequent neurons. The
receptive field are all input values that take part in computing the activation of a
neuron. As the pooling and convolution operation reduce the spatial size of the
input, neurons that are closer to the output of the network are influenced by a larger
part of the input, resulting in a larger receptive field. Besides increasing the receptive
field, pooling also makes the features robust in terms of translation. The exact
position of a feature inside the image does not matter, only the relative position to
other features is of interest for the final classification. As mentioned above, fully
convolutional architectures for image classification tasks often make use of a special
pooling type called Spatial Pyramid Pooling (SPP) [49]. SPP uses windows of variable
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Figure 3.4: Max-Pooling with a 2× 2 window size and a stride of 2.

size to be able to place a grid with a fixed number of cells over the input. Grids
of variable size will then be applied simultaneously to the input and the pooled
output will be concatenated. This allows the SPP layer to have an output of a fixed
size, enabling the NN to process inputs of arbitrary size.

3.6 common architectures

In the last decades a number of NN architectures made significant progress on
different tasks and application domains. Some components in these models have
become standard building blocks of modern NNs. Among them are, e.g., the LeNet
[77], AlexNet [69], VGG [122], ResNet [50], DenseNet [59] and Transformer [134].
This list is by no means complete, but it describes a cross-section of DNN research
over the last few decades. All aforementioned architectures proposed changes
which have significantly advanced the state-of-the-art in NN pattern recognition.
The LeNet architecture by Lecun et al. [77] was one of the first convolutional archi-
tectures that made a large improvement on the task of object classification. Although
it is very small with a total of 60 000 trainable parameters, the network showed a
remarkable classification accuracy in comparison to other common methods such
as nearest neighbors, polynomial classifiers, RBF networks, MLPs or Support Vector
Machines (SVMs). With the availability of the ImageNet dataset [27] and the uti-
lization of Graphics Processing Unit (GPU) accelerated training of DNNs, AlexNet
[69] received a lot of attention when it won the ILSVRC-2012 image classification
challenge with a relative improvement of 42 % over the second-best competitor.
This large improvement was achieved by a very deep CNN, which could only be
trained by splitting it in multiple parts in order to be able to train on multiple GPUs
in parallel. Simonyan and Zisserman [122] explored even deeper convolutional
architectures and won the ILSVRC-2014 image classification challenge with their
VGG model. Compared to LeNet (60 K) and AlexNet (60 M), the VGG-19 model has
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Figure 3.5: LeNet architecture by Lecun et al. [77]. The feature map sizes after each operation
are depicted under the respective blocks. Note that the activation functions are
omitted and should be applied after each layer. The network was designed to be
trained on 32× 32 sized input images.

144 M parameters. Contrary to the development of NNs with ever more weights,
He et al. [50] proposed Residual Neural Networks (ResNets) and won the ILSVRC-
2015 image classification challenge with only 1.7 M parameters. The results were
achieved by adding additional connections to subsequent layers, skipping multiple
of them in between (more on that in Section 3.6.2). Inspired by the findings of He
et al. [50], Huang et al. [59] proposed dense convolutional networks (DenseNets)
that take the idea of residual connections to the extreme, connecting each layer
to all previous layers. With DenseNet they were able to reduce the amount of
weights, while significantly decreasing the error rates on several image classification
benchmarks compared to ResNets. Recently, autoregressive language models such
as GPT-3 [13] or LaMDA [129] with up to 175 B parameters, have caught attention.
They can be trained unsupervised on large text corpora and fuel other methods
such as text-to-image synthesizers [104, 111]. Modern language models have in
common that they utilize the transformer architecture [134], which is specialized on
sequential data such as text. Although transformers were originally proposed for
sequential models, they have been successfully applied to vision problems, like in
the case of Vision Transformers (ViT) [31]. In the following sections, we will explore
some of the aforementioned architectures in more detail, as we will utilize them
later in the experiments.

3.6.1 LeNet

In the work by Lecun et al. [77], the network was evaluated on the MNIST dataset
of handwritten digits, which was published in the very same work and is still
used today for small experiments and proofs of concept. Figure 3.5 illustrates
the architecture. Built upon the most basic building blocks, the network consists
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x + ReLU

Convolution + ReLU Convolution

Figure 3.6: Residual Neural Network (ResNet) block as in He et al. [50] with a total of 3
convolutional layers.

of three convolutional layers with kernel sizes of 6 × 5 × 5, 6 × 16 × 5 × 5 and
16× 120× 5× 5, respectively. The first two convolutional layers are followed by
a sub-sampling layer with a window size of 2× 2 and a stride of 2, hence the
individual receptive fields are non-overlapping. According to Lecun et al. [77], “the
four inputs to a unit [. . .] are added, then multiplied by a trainable coefficient, and
then added to a trainable bias. The result is passed through a sigmoidal function”
[77, pp. 7–8]. When used on input images of size 32× 32, the feature map size after
the last convolution is 120× 1× 1, making it possible to directly feed the feature
map into an MLP. The final classification part has a hidden layer with 84 neurons
and 10 output neurons for the 10 digit classes in the MNIST dataset. As activation
function the authors use a scaled hyperbolic tangent

ϕ(a) = 1.7159 · tanh(
2a
3
) (3.64)

3.6.2 Residual Networks

As briefly mentioned above, ResNets achieve superior performance compared
to other DNN architectures, while reducing the number of parameters. This is
achieved by learning residual functions inside the network. Let B represent an
arbitrary number of subsequent layers inside the network (also called block) with
corresponding weights θB. The residual learning function can then be described as

o = ReLU(B(x | θB) + x) , (3.65)

with x and o the input and output of the block, respectively. An illustration of this
can be seen in Fig. 3.6. Note that in order to be able to compute the element-wise
summation, B(x | θB) and x need to have the same dimension. If this is not the
case, x can be linearly projected into the same space by learning a corresponding
projection matrix. The reasoning behind this residual formulation is the degradation
problem described by He et al. [50]. In their work, the authors showed that deeper



36 neural networks

Layer Name Output Size ResNet 18 ResNet 101

conv1 112× 112 7× 7, 64, stride 2

56× 56 3× 3 max pool, stride 2

conv2_x 56× 56

[
3× 3, 64

3× 3, 64

]
× 2


1× 1, 64

3× 3, 64

1× 1, 256

× 3

conv3_x 28× 28

[
3× 3, 128

3× 3, 128

]
× 2


1× 1, 128

3× 3, 128

1× 1, 512

× 4

conv4_x 14× 14

[
3× 3, 256

3× 3, 256

]
× 2


1× 1, 256

3× 3, 256

1× 1, 1024

× 23

conv5_x 7× 7

[
3× 3, 512

3× 3, 512

]
× 2


1× 1, 512

3× 3, 512

1× 1, 2048

× 3

1× 1 average pool, 1000-d fc, softmax

FLOPs 1.8× 109 7.6× 109

Table 3.1: Number of residual blocks of ResNet 18 and ResNet 101 architectures. This table
is a part of table 1 in He et al. [50, p. 5].

network architectures which were built sequentially, had a higher training and
testing error than their shallower counterparts. This is counterintuitive at first, since
more parameters should correspond to higher capacity and hence smaller training
error. In theory, the training error of deep networks should not be higher than
for the shallow networks as the extra layers could be added as identity mapping,
restoring the original model. The authors argue that this effect is unlikely to be
caused by a vanishing gradient, as they observed a typical size for the norm of
the gradient. As a conclusion they argue that the degradation is caused by other
unspecified optimization problems.

A complete ResNet architecture is formed by stacking multiple of these residual
blocks on top of each other. Table 3.1 shows two network configurations for the
ResNet 18 and ResNet 101. The former is built with blocks containing two convolu-
tional layers, while the latter has an additional convolution at the end of each block.
Also, the number of filters in each block differ significantly, which is also apparent
in the number of Floating Point Operations (FLOPs) needed for each model.
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R E L AT E D W O R K

This chapter gives an overview of related works in the field of Uncertainty Quan-
tification (UQ), adversarial examples as well as tasks which rely on uncertainty
estimates. Abdar et al. [1] and Gawlikowski et al. [38] mention the areas of Bayesian
and ensemble learning, while Gawlikowski et al. [38] additionally mention “Single
Network Deterministic Methods”. The following sections will give a compressed
overview of these fields while additionally including a section covering generative
methods, which emerged in recent years. Therefore, methodologies in the area of
UQ can be grouped into four main categories: Frequentist, Bayesian, Ensemble and
Generative approaches. We will additionally cover the topic of Adversarial Examples,
which is not directly related to the field of UQ, but which poses a threat on DNNs
during inference.

4.1 frequentist

Frequentist Approaches only need a single, or at most two, forward passes to
compute uncertainty estimates, which makes them especially interesting in resource
constraint applications. These methods can be further distinguished into external
and internal, which will be discussed in the following sections.

4.1.1 External Methods

External methods do not have an influence on the network architecture or training
process and can often be applied to existing models [20, 47, 52, 80, 83]. A widely
adopted baseline from the area of confidence estimation is the Maximum Class
Probability (MCP), proposed by Hendrycks and Gimpel [52]. As the name implies,
MCP takes the class probability of the predicted class as a measure of confidence.
MCP is easy to interpret and compute, however, Hendrycks and Gimpel [52] also
show that modern neural networks are often overconfident in their predictions,
assigning a high MCP to unknown or wrongly classified examples. They show in
their experiments that an image classifier trained on the MNIST dataset [77] had
an average MCP of 91 % on randomly sampled Gaussian noise. This demonstrates
that this confidence measure is in general incapable of detecting unknown data
points. The same holds true for misclassified examples, where an average MCP

37
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of 86 % could be observed. Besides the implications of piecewise linear activation
functions (see Section 3.3.5), the softmax activation function (Eq. (3.9)), which uses
an exponential scaling to form a smooth approximation of an indicator function,
also causes overconfidence. For this activation function, small changes to the input
can lead to large shifts in the resulting class distribution.

f (x | θ)1 = 97 ⇒ p̂(y = 1 | x) = e97

e97 + e100 ≈ 4.74 %

f (x | θ)2 = 100⇒ p̂(y = 2 | x) = e100

e97 + e100 ≈ 95.26 %
(4.1)

Equation (4.1) is demonstrating this in a simple scenario with two classes. We can
see that although the difference in the logits is small, applying the softmax function
on them results in more than 95 % confidence on class 2. In the above example both
logits are relatively large, which could be the result of examples with high data
uncertainty and features which match both classes. However, even in the case with
logits of f1(x | θ) = 2 and f2(x | θ) = 0, which is essentially an input that does not
match to any of the seen features, the first class is assigned a confidence of over
88 %. As a human this seems unreasonable, and we would expect the confidence to
be lower in both cases. Following works try to mitigate this problem by applying
different calibration techniques on the model output [47]. A popular approach is
temperature scaling, where the last layer outputs are scaled by a factor 1

T before the
softmax activation function is applied

(temperature scaling)
ef (x|θ)i/T

∑K
j=1 ef (x|θ)j/T

, ∀i = 1, . . . , K . (4.2)

Here, T is called the temperature coefficient. For T > 1 the output of the softmax
is smoothed out, which increases the overall entropy and reduces overconfident
predictions. The value of T is determined empirically on a validation set by mini-
mizing the Negative Log-Likelihood Loss (NLLL). It is important to note that this
technique reduces the calibration error (see Chapter 7) resulting from overconfident
predictions but does not improve the ability to separate In- from Out-of-Distribution
(or correctly from wrongly predicted) examples. Liang, Li, and Srikant [83] utilize
the same approach but additionally apply an adversarial preprocessing to the
inputs to increase their softmax score. Their experiments reveal that this prepro-
cessing has a greater impact on ID than on OoD inputs, improving the separability
between the two. They term this approach ODIN. The authors of [80] fit class-
conditional Gaussian distributions on the output of the penultimate layer. Their
confidence score is then derived by computing the Mahalanobis distance to the
nearest class-conditional Gaussian. They argue that computing a confidence score
on the penultimate layer alleviates the problem of overconfident predictions caused
by the softmax activation function.

An external model to estimate the prediction confidence is used in Corbière et
al. [20]. Their auxiliary network predicts the True Class Probability (TCP) of the
classification model. The TCP is the softmax output corresponding to the annotated
class. For correct predictions this is equivalent to the MCP but differs in the case of
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wrong classifications. Due to the fact that one does not know the true class during
inference, they are training their auxiliary model on the true class probabilities
gathered from the training or validation dataset. They evaluate their confidence
score on the task of FP detection and domain adaptation based on self-training. The
problem of OoD detection is not addressed as the TCP is not defined for unknown
object classes.

4.1.2 Internal Methods

Internal approaches are altering the network structure or training process of the
classification model. Depending on the architecture or application, some of these
methods might be incompatible.

A common approach is to extend the classification model with an additional class
for the OoD domain, which is also called classifier with reject option. This can either be
done by explicitly adding this class to the output of the model [21, 39] or implicitly
by optimizing a different loss for unknown examples on the already known classes
[51, 53]. For example, Hendrycks, Mazeika, and Dietterich [53] minimize the cross
entropy to a uniform distribution, which is equivalent to maximizing the entropy
on the OoD objects. This enables the model to reject the classification of an example
by assigning a higher entropy to it if it does not belong to the known classes. Some
works argue that using a confidence loss instead of a reject class is more suitable
[51, 53, 79] while others are arguing that using an explicit reject class is increasing
the generalization to unknown regions in the input space [136]. A problem that
arises in both of these settings is the choice of training data for the OoD domain.
Hendrycks, Mazeika, and Dietterich [53] use real world auxiliary datasets as a
proxy for the OoD domain while Hein, Andriushchenko, and Bitterwolf [51] use
augmented ID examples and Gaussian noise. Utilizing adversarial examples as a
placeholder for unknown inputs is also a common strategy [75, 80]. In practically
all learning settings, the OoD domain can be considered as an open set and thus
being infinitely diverse. Aside from the fact that we need to collect or generate
additional data, we will also never be able to cover the whole OoD domain, which
is a shortcoming of these approaches.

Closely related to the principle of a reject class is the work by DeVries and Taylor
[29]. They augment the model architecture by adding a second head which predicts
a confidence score. The confidence score is learned by allowing the network to
interpolate between its own prediction and the given annotation during the training
phase. The predicted confidence serves as the interpolation factor. During test time
the output of the second branch is used as the prediction confidence. Two output
heads are also used by Hsu et al. [57], where the authors propose a decomposed
confidence based on the rule of conditional probabilities. Their approach can be
seen as a generalization to ODIN [83], where the temperature scaling parameter
(see Eq. (4.2)) is learned by the second head of the network. Ren et al. [105] also
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approach the problem of confidence estimation by separating it into a ratio of
semantic and general background statistic. For estimating the two components they
employ two models. The first model is trained on the original ID data, while the
second one is receiving perturbed examples. The intuition with this approach is
that if the examples are sufficiently noisy, they lose the semantic information and
the model only learns the background statistics. During test time the logarithmic
ratio between these two probabilities serves as a confidence score. Although most
of the empirical results indicate an improvement over the commonly used baseline
by Hendrycks and Gimpel [52], the experimental settings – in terms of dataset
selection – remain limited in these works.

An OvA classifier is an approach which alters the training procedure of an NN but
not the architecture. In practice, OvA classifiers can be realized by an ensemble
of independent binary classifiers, or by applying the sigmoid instead of softmax
activation function to the output of a single neural network. The latter case has the
same network architecture as a softmax based NN but resembles K OvA classifiers
which are sharing the feature representations. Note that even in the first case,
where the OvA classifier is realized as an ensemble of K independent binary NNs,
these techniques do in general not belong to the class of ensemble uncertainty
quantification methods. Uncertainty quantification using ensembles requires the
individual ensemble members to solve the same task, which is not true for the OvA
model. Using OvA classifiers gives the advantage that a part of the training dataset
can be used for the "all" part, which then corresponds to an OoC score. A second
benefit is that the individual binary classifiers are not forced into a closed world
with a fixed label set, which has the potential to improve the over-confidence issue
with all-vs-all models. Padhy et al. [102] explore this possibility in the context of
distance-based logits, where instead of applying an affine transformation followed
by the softmax function on the last layer, the network is learning a class prototype
and encoding the logits as the distance to it. The mapping in the [0, 1] domain is
then performed by applying class-wise sigmoid activations. In experiments this
results in a more well-behaved prediction confidence and alleviates the pathological
overconfidence of softmax based all-vs-all classifiers. The loss formulation in this
setup could however lead to an imbalance in the case of many classes, as for
each binary classifier the loss corresponding to "all" is summed over all remaining
classes. A question that arises in One-versus-All (OvA) settings is about the way the
individual binary classifiers are aggregated to form a joint prediction. Padhy et al.
[102] use the winner-takes-it-all approach and choose the binary classifier with the
highest confidence. However, in the work by Franchi et al. [35], the aggregation is
performed by learning a weight for each OvA classifier. This is done by training an
all-vs-all classifier as well as K binary classifiers jointly, where the confidence of the
all-vs-all classifier is corresponding to the weight of the respective binary classifier
in the final model. The problem with the imbalanced OvA loss in Padhy et al. [102]
can also be circumvented by doing a hard negative mining on the negative cases.
This is exactly what Saito and Saenko [112] are proposing in their work. They term
it Hard Negative Classifier Sampling and use the resulting OvA classifiers to detect
unknown samples in a domain adaptation setting. In a setup where the target
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domain contains a number of unknown labels they improve the detection of these
unknown samples and thus increase the performance on the known targets.

The theory of evidence and subjective logic is another way of reformulating the
training of NNs without using a softmax activation function and was explored
under the topics of evidential deep learning [118] and posterior networks [18]. These
works describe the prediction of an NN as a sample of a Dirichlet distribution.
Instead of directly predicting class labels, the model estimates the evidence for a
particular class, which then translates to the concentration parameters of a Dirichlet
distribution. The Dirichlet distribution is the natural (conjugate) prior for a cate-
gorical distribution and allows to express both aleatoric and epistemic uncertainty
with a single forward pass. Given the concentration parameters α1, . . . ,αK for an
input x, the probability of x being of class y can be computed as in [118]

p̂(y = k | x,α) =
αk

E , (4.3)

E =
K

∑
k=1

αk . (4.4)

Following this, the aleatoric and epistemic uncertainties for the class prediction of
x is given by

(aleatoric) ua = H( p̂(y | x,α)) (4.5)

= −
K

∑
k=1

p̂(y = k | x,α) · log( p̂(y = k | x,α)) , (4.6)

(epistemic) ue =
K
E . (4.7)

Sensoy, Kaplan, and Kandemir [118] replace the softmax activation function with a
strictly positive one which enables the interpretation of the output as the evidence
for the respective classes. The concentration parameters are then computed as

αk = f (x | θ)k + 1, ∀k = 1, . . . , K . (4.8)

They train their NN with an L2 loss between class label and p̂ from Eq. (4.3) and ad-
ditionally add a regularization loss in form of the KLD between a uniform Dirichlet
(αk = 1, ∀k = 1, . . . , K) and the predicted one. Instead of directly predicting the
evidence with a neural network, Charpentier, Zügner, and Günnemann [18] train
an encoder network and a class conditional normalizing flow within the resulting
latent space. The normalizing flow predicts probability densities for each class,
which are multiplied by the number of examples in the training set to get the
evidence for the respective class. Similar to Sensoy, Kaplan, and Kandemir [118],
they apply a regularizer based on the KLD between the predicted and a uniform
Dirichlet distribution.
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4.2 bayesian

Recalling Section 2.2, Bayesian approaches have a probabilistic view on the world
and place a distribution on model parameters

p(θ | D) = p(D | θ)p(θ)
p(D) . (2.14)

The predictive posterior is computed by integrating over all model weights

p(y | x,D) =
∫

p(y | x,θ)p(θ | D)dθ . (2.15)

In practical applications this formulation has multiple problems. First, the com-
putation of this integral is intractable and needs to be approximated with, e.g.,
MC sampling. Second, the true posterior p(θ | D) is usually too complex to be
learned exactly. This is why in most of the BNN literature, these two problems
are addressed [9, 36, 37, 138]. Welling and Teh [138] use a stochastic gradient
Markow-Chain-Monte-Carlo (SG-MCMC) to approximate samples from the true
posterior distribution p(θ | D). This work solved a problem of Markow-Chain-
Monte-Carlo (MCMC) methods, which had to calculate the gradient over the entire
dataset, making training complex BNNs in large datasets computationally expensive.
Another way of approximating the potentially very complex posterior distribution
is by utilizing variational inference methods. Bayes-by-Backprop is such a method
proposed by Blundell et al. [9]. In variational inference the intractable posterior
distribution p(θ | D) is replaced by a family of parameterized distributions q(θ | ϑ).
This allows to optimize over the parameters of the variational distribution and
reduces the complexity. The training objective is then constructed by computing the
KLD between the true and variational posterior

ϑ∗ = arg min
ϑ

KL(q(θ | ϑ) ∥ p(θ | D)) (4.9)

= arg min
ϑ

∫
q(θ | ϑ) log

q(θ | ϑ)
p(θ)p(D | θ)dθ (4.10)

= arg min
ϑ

KL(q(θ | ϑ) ∥ p(θ))︸ ︷︷ ︸
(a)

−Eq(θ|ϑ) [log(p(D | θ))]︸ ︷︷ ︸
(b)

. (4.11)

Equation (4.11) is called the variational or Evidence Lower Bound (ELBO) [65],
which is composed of a data-dependent likelihood cost (b) and the complexity cost
(a) (cf. [9, p. 3]). The likelihood cost is responsible for fitting the distribution of NN
weights to our training data, while the complexity cost functions as a regularizer,
keeping the variational posterior close to a given prior p(θ). In most cases the
variational posterior is chosen from the exponential family, which has nice properties
and often allows computing closed form solutions of Eq. (4.11) (a) when choosing a
conjugate prior. When choosing a diagonal Gaussian distribution as the variational
posterior, training a BNN can be accomplished by first sampling a set of weights

ϑ = (µ, ρ) , (4.12)

ϵ ∼ N (0, I) , (4.13)

θ = µ+ log(1 + exp(ρ)) · ϵ . (4.14)
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Afterwards the ELBO can be approximated by using a number of Monte Carlo (MC)
samples. For a single sample as above, the ELBO can be computed as

L(θ,ϑ,D) = log(q(θ | ϑ))− log(p(θ))− log(p(D | θ)) , (4.15)

where − log(p(D | θ)) breaks down to the cross-entropy loss as described in
Section 3.3.1. When the prior is also chosen to be a diagonal Gaussian, then the
complexity cost can be computed in a closed form without requiring MC sampling.
Finally, we can do gradient descent on the parameters of the variational distribution
instead of the weights themselves

µ← µ− η
∂L(θ,ϑ,D)

∂µ
,

ρ← ρ− η
∂L(θ,ϑ,D)

∂ρ
.

(4.16)

Equations (4.12) to (4.14) are called a reparameterization trick [65, p. 4] and allows
the direct backpropagation to the distributional parameters.

Gal and Ghahramani [37] show that the widely used regularization technique
dropout [125] can be seen as an approximation of a Gaussian process. By applying
dropout before each weight layer – therefore using a Bernoulli distribution as the
variational distribution – we can approximate the weight posterior distribution.
Using dropout we do not have to make large architectural changes and still get the
benefits of Bayesian inference.

All these methods gather a set of T parameters {θt}T
t=1 from the posterior distribu-

tion and compute the empirical predictive posterior via Monte-Carlo integration

p(y | x,D) ≈ 1
T

T

∑
t=1

p(y | x,θt) . (4.17)

The same applies for the computation of the aleatoric and epistemic uncertainty
as proposed by Depeweg et al. [28] (see Section 2.2, Eqs. (2.17) to (2.19)). This very
same methodology can also be utilized to separate different uncertainties in the
case of ensembles, which will be discussed next.

4.3 ensemble

Ensemble Approaches make use of the highly non-linear loss landscapes of DNNs,
which have a diverse set of local minima. Random effects such as weight initializa-
tion, training data augmentation or batch sampling allows the model to converge
to different local extrema. Uncertainty is then computed by calculating the variance
in the individual predictions or the entropy over the ensemble, as described in
Section 2.2. Many ensemble schemes exist, such as bagging, boosting, or knowledge
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Figure 4.1: Visualization of the learned parameters by deterministic (frequentist), Bayesian
and ensembles of neural networks. This figure is based on Figure 7 from Gaw-
likowski et al. [38, p. 18].

distillation. Note that in order to compute uncertainties using ensembles, each
ensemble member needs to solve the same task. The respective ensemble members
can receive different training datasets but need to predict the same label set. This is
also why OvA classifiers, which can be realized as an ensemble of binary classifiers,
are not considered to be part of this category. In practice, these methods are straight
forward to apply, require no change in model architecture, and are often easy to
parallelize. However, the disadvantages are similar to Bayesian approaches, where
training and evaluating ensembles requires significantly more computation than
for a single network. Ensembles also consume a larger amount of memory, as
multiple network configurations need to be kept available during inference, making
them less suitable for resource constrained applications. Although ensembling is
conceptually similar to Bayesian model averaging, the resulting model is quite
different. As pointed out by Lakshminarayanan, Pritzel, and Blundell [75], even
when we can perform exact Bayesian inference, the final model can still suffer
from mis-specification. Illustrated in Fig. 4.1, Bayesian neural networks perform
model averaging around a local mode in the loss landscape, while ensembles are
able to be more diverse because of the combination of different local minima. This
makes them in turn more robust to domain-shifts between the training and infer-
ence phases. The theories for improving weak learners with ensemble techniques
such as, e.g., boosting [32, 115] or bagging [11] have been around for a long time.
One of the first works on predictive uncertainty quantification using ensembles of
neural networks was done by Lakshminarayanan, Pritzel, and Blundell [75]. Their
simple approach of averaging over multiple independently trained neural networks
showed improved performance in the overall accuracy and in detecting unknown
classes. The large amount of computational resources needed to train DNNs can be
a problem when trying to use ensemble techniques. This is why Huang et al. [58]
use a cyclic learning rate schedule to find multiple local minima during a single
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training run. By rapidly increasing and then decaying the learning rate using a
cosine function, the SGD algorithm can escape from local minima. The ensemble
is then built over previously visited minima, which is why they call this approach
Snapshot Ensembling. By using this method, the training time of the ensemble is
greatly reduced while still achieving the highest possible benefits. Izmailov et al.
[63] use a similar approach called Stochastic Weight Averaging (SWA) and average
weight configurations along the SGD optimization trajectory, which improves the
generalization without any additional computational overhead during test time.
Maddox et al. [87] connect ensemble techniques and Bayesian inference by esti-
mating second order moments during SWA, in order to approximate a Gaussian
Distribution over weights (SWA-Gaussian (SWAG)). Empirically the learned Gaus-
sian is approximating the real posterior distribution reasonably well. During test
time, several weight configurations are sampled from the Gaussian and averaged.
The prediction uncertainty can then be obtained from the output variability as
previously described.

4.4 generative

In recent years generative methods such as, e.g., autoencoders [54, 65] and GANs
[12, 146], have shown an astonishing performance on the representation learning
and data synthesis tasks. As these models are approximating the data distribution
and its density, they also became more interesting to the UQ community [67, 79, 116,
117, 124, 126, 136, 139] and set new state-of-the art in OoD and FP detection. Xia
et al. [139] use the reconstruction error of an autoencoder to detect outliers (OoD
objects) and they show empirically that the reconstruction error for OoD objects is
considerably higher than for ID ones. This makes the reconstruction error a suitable
confidence measure for the task of OoD detection. Schlegl et al. [116] are using a
GAN to detect anomalies during inference, which can be seen as a form of OoD
detection. First, the GAN is trained on clean data, which results in the generator
learning a mapping from a latent space to the image space given by the training data.
During inference, they try to find an embedding in the latent space of the generator,
for which the generated image is visually close to the given one. As generators are
usually not invertible the latent embedding is optimized by performing gradient
descent on a reconstruction loss between the generated and real image. If the
given image is an outlier and thus not following the training data distribution, the
generator is unlikely to be able to generate a similar image, resulting in a large
residual loss. This loss can then be used as a confidence measure for detecting
OoD examples. Kong and Ramanan [67] also utilize a GAN architecture for OoD
detection. Instead of using the generator, they use the resulting discriminator, which
is already trained to discriminate between training samples and artificial ones.
Because of the instable training of GANs they need to continuously validate the
discriminator’s OoD detection performance on a holdout OoD set in order to select
a checkpoint that performs well in the OoD detection task. Another direction using
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GANs was explored by Lee et al. [79], where a GAN was trained to generate data
for the OoD domain. The classification model is then trained to maximize the
prediction entropy on these generated samples. By integrating the classification
model into the GAN training and playing a min-max-min game between generator,
discriminator and classifier, the authors aim to generate samples on the boundary
of the training distribution. Sricharan and Srivastava [124] build upon the findings
of Lee et al. [79] and improve the OoD detection results by slightly tweaking the
GAN and classifier training objective. However, further analysis of Vernekar et al.
[136] showed that the entropy maximization is not sufficient to generalize to distant
regions in the OoD domain and that the GAN setup by Lee et al. [79] suffers from
mode collapse. They in turn propose in [135] to use a Variational Autoencoder (VAE)
in order to learn a low-dimensional Gaussian distribution which approximates the
training data. The VAE can then be used to generate two types of OoD data. Type I
samples are generated by applying a perturbation which is perpendicular to the
tangent of the VAE latent space. They are similar to adversarial examples and can be
used to harden the classification model against these. Type II samples are generated
on the contour line of the Gaussian learned by the VAE, which encompasses 95 %
of the training data. The contour line is defined by searching for the Mahalanobis
distance to the learned Gaussian distribution, satisfying the criteria of containing
95 % of the training data. The generated samples are then used to train a reject
classifier, from which the softmax output of the reject class is used as a confidence
measure for the task of OoD detection. A VAE is also utilized by Sensoy et al. [117],
where the authors train a GAN inside the latent space of the VAE. An advantage of
training in the latent space is the dimensionality reduction, which makes it easier
to approximate the boundary of the training distribution. Sensoy et al. [117] use
the mean predicted by the VAE and let a generator output a variance so that the
points sampled from the resulting Gaussian are close to the training data in the
latent space but still distinguishable from the real data in the image space. They
achieve this by using a similar GAN training setup as Lee et al. [79].

4.5 adversarial examples

Adversarial examples are perturbed examples such that a classifier assigns the
perturbed example to a different class than the original one. They can be further
categorized into Black-box/White-box and targeted/untargeted attacks [144]. Black-box
methods do not assume access to the trained weights of the model and only need
the model output and confidence. White-box approaches on the other hand, require
access to the model weights, architecture and gradients. Using targeted attacks, the
user can specify a class into which the model should be fooled, while untargeted
attacks only require the model to predict a different class for the adversarial example
than for the original input. The perturbations are often not recognizable by humans
and can lead to misclassifications with high confidences. This type of phenomenon
is not directly related to the topic of uncertainty quantification but still poses a
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large risk in safety critical applications. Adversarial examples are exploiting a
weakness in machine learning applications and especially deep neural networks
due to their large number of parameters and their decision boundaries extending
to infinity [51], hence opening up a lot of attack vectors. Still, certain methods
for uncertainty quantification might be able to detect these attacks and therefore
make the real-world application of NNs more safe. Szegedy et al. [128] were the
first to discover adversarial examples and formulated the problem of generating
adversarial examples as a box-constrained optimization problem

min
η

∥η∥2

s.t. arg max
k=1,...,K

p̂(y = k | x+ η) = y′

arg max
k=1,...,K

p̂(y = k | x) = y†

y† ̸= y′

x+ η ∈ [0, 1]d

. (4.18)

To be able to approximate solutions for Eq. (4.18), Szegedy et al. [128] reformulate
it in

min
η

c∥η∥2 + Jθ(x, y′)

s.t. x+ η ∈ [0, 1]d
. (4.19)

Here, Jθ(x, y′) is an error function (in the case of classification this could be, e.g., the
cross-entropy loss), x the input, and y′ the target label. They then apply a Limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)1 algorithm to approximate
solutions for Eq. (4.19). The hyperparameter c > 0 is determined by performing
line-search, which is what makes this approach slow in practice. Goodfellow,
Shlens, and Szegedy [43] substitute the slow optimization of Eq. (4.19) by using
backpropagation to perform a gradient update

η = ϵ · sign
(
∇x Jθ(x, y′)

)
, (4.20)

which they call Fast Gradient Sign Method (FGSM). A single gradient update is
enough, which makes this method suitable to generate adversarial examples on the
fly to perform adversarial training, which can improve a DNN’s ability to detect
such attacks [88, 128]. Following publications further worked on the improvement
of the FGSM method, e.g., by considering the raw gradient instead of the sign [109],
adding a momentum term [30], or additional randomness [133]. Iterative variants
have been explored in multiple works (e.g., [73, 88]) and proved to provide higher
success rates with less perturbation. Kurakin, Goodfellow, and Bengio [73] use a
smaller step size and clip the adversarial image in each iteration so that it is in an
Lp ball around the original image, which they call Basic Iterative Method (BIM).
Additionally, they show that it is also possible to generate adversarial examples

1 This is a quasi-Newton algorithm for unconstrained non-linear optimization problems, approximating
the original algorithm by Broyden, Fletcher, Goldfarb and Shanno with a limited amount of memory
[84].
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that fool the classification model to a specific class. In their setup they use the least
likely class

yLL = arg min
k=1,...,K

p̂(y = k | x) , (4.21)

which they call Iterative Least Likely Class (ILLC) method. Empirically the ILLC has
a higher impact on the target’s classification accuracy in a white-box setup. Besides
this, they also demonstrate that it is possible to craft physical adversarial examples
by printing them on a piece of paper. Even though the process of printing and
capturing introduces a transformation that reduces the effectiveness of adversarial
examples, these attacks also work in a black-box scenario, which causes a large
threat for real-world applications. Madry et al. [88] do not apply clipping onto the
adversarial image but rather project it onto the ϵ ball around the original image
after each iteration. This method is called Projected Gradient Descent (PGD) and
Madry et al. [88] use it to train their model to be resistant to these type of attacks.
In their work they also claim that PGD might be a “universal” adversary in the
class of all adversaries using first-order derivatives. Other iterative approaches
include DeepFool [93] and the Carlini and Wagner Attack [15]. The DeepFool
approach by Moosavi-Dezfooli, Fawzi, and Frossard [93] linearizes the classification
model around an example x and tries to find the closest decision boundary, given
the linearized gradient at x. By approximating the closest decision boundary,
the DeepFool attack generates smaller perturbations than the L-BFGS and FGSM
methods but still has a higher runtime than the FGSM. Carlini and Wagner [15]
explored different formulations of Eq. (4.18) by considering other loss functions
Jθ(x). In their work, they formulate the optimization problem as

min
η

∥η∥p + c · Jθ(x+ η)

s.t. x+ η ∈ [0, 1]d
, (4.22)

and conclude empirically that

Jθ(x) = max
(

max
y′∈Y\{yMAP}

(
f (x | θ)y′

)
− f (x | θ)yMAP , 0

)
, (4.23)

works best. Here, f (x | θ) are the logits of the classification model as used in
Chapter 3 and yMAP = arg maxk=1,...,K p̂(y = k | x) is the predicted class of the
original input x. Carlini and Wagner [15] circumvented the box-constraint x+ η ∈
[0, 1]d by a reparameterization of η into

η =
1
2
(tanh(ω) + 1)− x . (4.24)

This forces the resulting adversary to be in the interval [0, 1] and can be seen
as a smooth approximation of a clipping operation [15]. Due to the fact that
Eq. (4.24) is differentiable, Carlini and Wagner [15] used the Adam optimizer [64]
to minimize the objective in Eq. (4.22). Similar to Szegedy et al. [128], the constant
c is chosen by performing a binary search until they find a minimal c which
satisfies Jθ(x+ η∗) ≤ 0, with η∗ being the final solution of an optimization run.
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The possibility of physical adversarial examples has also been explored by Sharif
et al. [121]. In their work they craft adversarial examples for face detection models,
demonstrating that it is possible to impersonate any person the model knows by
wearing adversarially crafted glasses. To achieve this, they incorporate additional
auxiliary loss functions to improve the smoothness and printability of the resulting
adversarial examples. In total, the optimization problem for impersonating a person
yt is defined as

min
η
− log ( p̂(y = yt | x+ η)) + λ1 · TV(η) + λ2 ·NPS(η) . (4.25)

With TV(η) and NPS(η) being the total variation and non-printability score, respec-
tively, which are defined as

TV(η) = ∑
i,j

(
(ηi,j − ηi+1,j)

2 + (ηi,j − ηi,j+1)
2) 1

2 , (4.26)

NPS(η) = ∑
i,j

∏̃
p∈P
∥ p̃− ηi,j∥1 . (4.27)

Here, ηi,j is the pixel of the perturbation at position (i, j) and P ⊂ [0, 1]3 is a
set of RGB colors that are printable with the printer at hand (also called gamut).
Minimizing the total variation results in adversarial examples that have a smooth
transition between pixel values, as typically found in natural images. The non-
printability score ensures that optimizing Eq. (4.25) results in a perturbation that
is realizable by the printer. Equation (4.25) was optimized iteratively by using
the gradient descent algorithm. In contrast to Eqs. (4.19) and (4.22), a loss on the
intensity of η is not required, as the goal is to successfully defeat an automatic face
detection model and not to make the attack unrecognizable by humans.

4.6 uncertainty applications and related tasks

Uncertainty Quantification (UQ) methods are especially important in safety critical
applications such as medical diagnosis, autonomous driving or financial fraud
detection. Additionally, there are a number of ML research topics that directly
depend on good uncertainty estimates. This section gives an overview of these
related tasks.

Novelty and anomaly detection [53, 96, 116] are from an application perspective
directly related to UQ. Novel objects can be seen as a synonym for OoD objects
and can be detected by classic UQ methods. On the other hand, anomalies are
considered to be ID but reside in low density areas of the input space. As such,
they are located at the boundary of the training distribution and similar to OoD
objects. These might be a result of a labeling error or faulty sensor measurements
and can harm the performance of the classification model during inference.

Active learning is the task of selecting unlabeled data points for labeling, such that
the knowledge that the classification model gains from this sample is maximized.
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DNNs require a large dataset which can be very expensive to label, and the ability
to reduce annotation costs is of great interest in many real-world applications. Espe-
cially in situations where only a few experts are able to label the data points reliably,
e.g., medical images or satellite images from other planets, selecting examples
which contain the most information is crucial. Choosing data points for which the
classification model has a high predictive uncertainty (termed uncertainty sampling
[81]) is an intuitive procedure and several works show the effectiveness of the ap-
proach (e.g., [17, 81, 97]). Therein, epistemic uncertainty sampling showed superior
performance compared to total or aleatoric uncertainty sampling, underlining the
importance of being able to separate different sources of uncertainty [97].

Domain adaptation is the task of transferring the knowledge of a classification model
from one domain (source) to another one (target). Source and target domain do not
necessarily share the same label set and the data distributions in the two domains
may be shifted in relation to each other. As an example, we might be interested
in transferring a semantic segmentation model trained on urban street scenes to
rural areas. In this case, the environment looks different, the frequency of certain
car models may change, and even new classes may emerge, e.g., cows. A first
step is to detect if a domain shift is present or not. Many works on the task of
domain adaptation build evaluation setups where it is actually clear that the target
domain is shifted. In practical applications this might not always be apparent,
as a distribution shift can be caused by various factors. UQ can help to detect
domain shifts by observing the overall level of aleatoric and epistemic uncertainty.
Distinguishing between aleatoric and epistemic uncertainty in a situation where
a shifted domain as well as OoD objects may appear is unlikely to perform well
and in this case monitoring of the total amount of uncertainty should be pursued.
Besides for the detection of domain shifts, uncertainties have also been used in
numerous ways for the task of domain adaptation (e.g., [45, 114, 140]).

Explainability is an important research area for black-box predictors such as DNNs.
Works on this topic supply methods to complement the predictions of a classification
model with human-understandable reasons that led to its final prediction. In order
to be able to understand what a classification model has learned during training,
looking solely at the outputs of the model is not sufficient. Application areas such
as medical image analysis may require a human as a final decision maker and
to better incorporate DNNs into the final decision, additional information about
prediction uncertainties can be of high value. The distinction between aleatoric and
epistemic uncertainty and thus knowing if the model considers the current sample
as a hard case (high aleatoric uncertainty) or as an unknown case (high epistemic
uncertainty) is helpful information in many practical applications. While current
works on explainability try to find regions in the input image which are influencing
the classification decision the most (e.g., [5, 6]), prediction uncertainties should be
considered as additional knowledge for the decision-making process.

Adversarial example detection aims at detecting the attacks described in Section 4.5.
As there could be malicious attempts to attack NNs in practical applications,
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especially the detection during the testing phase is of interest. Targeted attacks
are trying to maximize the softmax output for a different class than the originally
predicted one. As a result, this reduces the overall entropy and might lead to
overconfident predictions. External methods which are only analyzing the predicted
class distribution of an NN (like entropy or MCP) are likely to fail in this detection
task, which was also pointed out by Smith and Gal [123]. In the very same work,
the authors also argue that an epistemic uncertainty measure is likely to be a
good choice for detecting adversarial examples. This conclusion is based on the
hypothesis that adversarial examples are lying outside the manifold of natural
images, where an NN is largely unconstrained. A similar explanation for the
effectiveness of adversarial examples was brought up by Szegedy et al. [128], who
argue that these examples might be rarely seen ones from low density regions of
the image space (corresponding to high epistemic uncertainty). Although many
countermeasures against adversarial examples were proposed [144, p. 13], there
still exist attacks such as the Carlini & Wagner attack [15] that are resistant to most
of them.

4.7 summary

Deep Neural Networks (DNNs) have become an important part in many real
world applications, some of which are safety-critical. This led to the development
and research of methods for monitoring DNNs and their predictions. Table 4.1
summarizes the most important advantages and disadvantages of the methods
presented in the previous sections. Frequentist approaches are especially suitable for
resource-constrained applications but are usually not able to distinguish between
aleatoric and epistemic uncertainty. Bayesian methods are theoretically grounded
and can distinguish between different sources of uncertainty. However, they require
a large amount of computational resources, restrict the model space and are less
suitable for deep network architectures. The class of ensemble techniques brings
benefits similar to those of Bayesian methods and typically increases overall model
accuracy. On the other hand, they require additional memory during the inference
phase. The recently emerged field of generative approaches delivers state-of-the-art
OoD detection performance without the need for additional auxiliary data. The
downside is that training these models requires more computational resources and
the network architectures and learning frameworks are complex.

Despite the progress of recent years, there is still a lot of room for improvement.
Giving theoretical guarantees on the model performance and confidence in the
presence of domain shifts and unknown objects remains an open problem. Many
of the aforementioned methods have only been evaluated on relatively easy and
low-dimensional benchmarks and struggle when used for higher dimensional
data.
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Method Advantages Disadvantages

Frequentists

• Efficient computation of confidence
measures during inference

• Internal methods require changing
the network architecture or training
scheme

• External approaches can be used
with existing models

• Confidence measures are usually not
able to distinguish between aleatoric
and epistemic uncertainties

• OvA approaches bring a number of
benefits

• OvA approaches require more spe-
cial handling for the loss function and
the final aggregation

• Often require auxiliary data repre-
sentative for the OoD domain

Bayesian

• Theoretically grounded uncertainty
• Training takes a large amount of
computational resources

• Separation into aleatoric and epis-
temic uncertainty is possible

• Inference takes considerably more
computational resources

• Restricted model space and unclear
which prior to choose

Ensembles

• Separation into aleatoric and epis-
temic uncertainty is possible

• Large memory footprint

• Ensembling usually increases the
overall model accuracy

• Additional inference cost scales lin-
ear with the ensemble size

• Training can be done in parallel

Generative

• State-of-the-Art performance in OoD
detection

• Complex architecture

• No auxiliary data required
• Increased computation cost during
training

Table 4.1: Summary of advantages and disadvantages of different Uncertainty Quantifica-
tion (UQ) methods.
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As DNNs have many parameters and are high dimensional, one of the largest
sources of uncertainty in this type of learning algorithm is the model uncertainty.
The model uncertainty is contributing to the overall epistemic uncertainty, as
described in Section 2.2. Bayesian approaches offer a theoretical way of quantifying
model uncertainty, as parameters are represented by distributions. However, a
major downside of these methods is their increased computational cost during
inference as well as the restriction of the hypothesis space caused by some selected
approximation techniques. Being the largest contributor to the epistemic uncertainty,
it is highly desirable to better quantify the predictive model uncertainty without
increasing the inference cost. Moreover, it would be beneficial if this would not
require a change in the network architecture or training procedure. One way of
solving these deficiencies is by measuring the sensitivity of a model using weight
gradients. During the training phase we use SGD to find local minima in the
loss landscape formed by our model and the training data. Although we are only
approximating the loss over the whole dataset, in the large limit we are converging
to a local minimum within the parameter space. Figure 5.1 illustrates two local
minima (dashed red lines), which might be the convergence points of our training
algorithm. In the deployment phase of the model we can encounter unknown (OoD)
inputs, which are not represented in the training dataset. A loss on these unknown
examples is likely to be different from the one on the training set, resulting in a
different optimization landscape and therefore also other local minima. Computing
the slope of the shifted loss (caused by the OoD object) w.r.t. the model parameters
(Fig. 5.1, (θ3)), will most likely result in a larger gradient than for ID examples
(Fig. 5.1, (θ1)).

5.1 cross-entropy gradients with map targets

In a test environment we do not have access to the real labels of the inputs, and it
therefore remains to be defined how we can compute a loss in this setting. Given an
input x and the trained model p̂ with parameters θ, we can use the MAP decision
rule from Eq. (3.24) to predict a label ŷMAP = arg maxk=1,...,K p̂(y = k | x,θ). This
prediction can be used as a pseudo label to compute the gradient of the cross-
entropy loss as

∇ce
θ (x) := −∇θ log

(
p̂(y = ŷMAP | x,θ)

)
. (5.1)

53
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Figure 5.1: Illustration of gradient metrics. If an input is similar to the training data, it can
be expected that the loss is similar to the one encountered during training. This
results in a relatively small gradient (θ1). On the other hand, if the input is
unknown, it is likely that the loss will be greater and produces a larger gradient
(θ3). This graphic is inspired by Figure 7 of Gawlikowski et al. [38, p. 18].

As ∇ce
θ (x) is a high dimensional gradient, we need to extract summarization statis-

tics in order to get a scalar confidence value describing the epistemic uncertainty
originating from the model parameters. This can be accomplished by applying
different metrics such as

(Lp-norm) ∥∇ce
θ (x)∥p , (5.2)

(Minimum) min
i

∇ce
θ (x)i , (5.3)

(Maximum) max
i

∇ce
θ (x)i , (5.4)

(Mean) ∇ce
θ (x) =

1
dθ

dθ

∑
i=1

∇ce
θ (x)i , (5.5)

(
Standard
Deviation

) √√√√ 1
dθ

dθ

∑
i=1

(∇ce
θ (x)i −∇ce

θ (x))
2 . (5.6)

(5.7)

As OoD objects are going to still contain familiar features from the ID classes, not
all parameters will produce a large gradient for these inputs. However, we can
expect that unknown inputs contain underrepresented feature constellations, which
will result in larger gradients for some parameters. This means that summarization
metrics which are able to preserve magnitudes (Lp-norm, Minimum, Maximum) are
likely to perform better as a confidence measure for detecting OoD inputs. Using
this kind of epistemic uncertainty quantification for detecting OoD inputs was first
proposed by Oberdiek, Rottmann, and Gottschalk [100], which the authors termed
gradient metrics.
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In Eq. (5.1) we compute the gradient over all network parameters. We can speed
up the computation of gradient metrics significantly by only selecting a subset
of weights. It has been shown in previous works that the early layers of a neural
network learn low level features such as edges, while layers which are closer to the
output learn more complex high level features [142, 145]. Low level features can be
matched to many inputs regardless of the class, which is one of the reasons why
pre-training, even on unrelated inputs, can be beneficial. On the other hand, high
level features are representative for the training dataset and might not trigger for
OoD inputs, which makes these layers suitable for distinguishing between ID and
OoD examples. This also connects well to the backpropagation algorithm, which
first propagates loss values to the final layers, making the computation of gradient
metrics on these even more efficient.

While the gradient metrics can be used on their own as a measure for model un-
certainty, combining multiple such metrics into a single score holds the possibility
that the combined score might be a more informative uncertainty measure. Unfor-
tunately, the aggregation of multiple metrics is not straight forward as they have
different value ranges and interpretations regarding ID and OoD inputs. Training a
meta classifier to do so offers the most direct approach. A meta classifier receives
various gradient metrics as input and predicts a probability that the given input
is ID. The model of the meta classifier can be any machine learning algorithm
that is able to perform binary classification, such as SVMs, random forests, logistic
regression or NNs. However, choosing suitable training data remains a problem
for all these methods. As our goal is to quantify epistemic (model) uncertainty, we
need representatives for both the ID and OoD domain. Choosing the right type
of data for the OoD domain is not trivial and seems to be impossible considering
that it is basically infinite. If we still want to attempt to collect an OoD dataset,
we could gather a large set of samples which do not share any classes with the
ID data (so-called auxiliary data [53]). This approach usually improves the overall
OoD detection performance but comes at the cost of having to collect additional
samples. Using Gaussian- and uniform noise provides a way of gathering free
data as a proxy for OoD objects. On the other hand, this auxiliary data does not
contain much variability and is far away from the training distribution, reducing its
effectiveness.

Gradient metrics belong to the class of external frequentist approaches (see Sec-
tion 4.1). This makes them suitable for resource constrained applications, and they
can be applied to already trained models without altering the network architecture
or requiring a re-training.

5.2 similar works

Until now, gradient metrics have been employed in a number of similar works
(e.g., [55, 60, 78]). The L2-norm as a summarization statistic is also used by Huang,
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Geng, and Li [60] and Lee and AlRegib [78]. Lee and AlRegib [78] use confounding
labels instead of the predicted class as a pseudo label to compute the gradients.
Confounding labels differ from a classic one-hot encoding in that they can have
multiple classes active. For a classification model with K classes, they define a
confounding label ycl as a vector of length K with c 1’s and c ∈ {0, . . . , K} \ {1}. In
their experiments they choose c = K, thus creating a pseudo label where each ID
class is active and compute the binary cross entropy between the prediction and
the pseudo label

∇cl
θ (x) : = ∇θ

[
1
K

K

∑
i=1

(ycl
i · log(ŷi) + (1− ycl

i ) · log(1− ŷi))

]

= ∇θ

[
1
K

K

∑
i=1

log(ŷi)

]
= −∇θH(u, ŷ) .

(5.8)

As can be seen in Eq. (5.8), this is equivalent to computing the negative cross-entropy
loss between the prediction and a uniform class distribution.

The same approach is taken by Huang, Geng, and Li [60], where the authors
compute the gradient on the KLD between a uniform class distribution and the
model prediction

∇KL
θ (x) :=∇θKL(u ∥ ŷ) (5.9)

=∇θ [H(u, ŷ)− H(u)] (5.10)

=∇θH(u, ŷ) (5.11)

Both approaches by Huang, Geng, and Li [60] and Lee and AlRegib [78] result in
an average cross-entropy loss over all classes, which might gather more information
compared to the cross-entropy only on the predicted class. Huang, Geng, and
Li [60] also experiment with different summarization statistics but settle on the
L1-norm. They also find that computing the norm on the weights of the last layer is
sufficient, speeding up the computation drastically. In addition to Lee and AlRegib
[78], the authors of [60] additionally apply temperature scaling [47] to reduce the
overconfidence of the network.

Hornauer and Belagiannis [55] use gradient metrics to quantify uncertainties on the
task of monocular depth estimation. To achieve this, they compute depth maps on
two instances of the same image, where one is augmented by horizontal flipping.
On the resulting depth maps they compute an auxiliary loss from which they can
gather gradients. They only consider gradients on a single intermediate feature
representation and upsample these to the original image size. The major difference
to Huang, Geng, and Li [60], Lee and AlRegib [78], and Oberdiek, Rottmann, and
Gottschalk [100] is the application to a regression problem instead of classification.
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In Chapter 5 we discussed a way to quantify model uncertainty based on the
magnitude of parameter gradients. However, this method is only capturing model
uncertainty and no data uncertainty, which is another major contributor to the
epistemic uncertainty, as described in Section 2.2. Data uncertainty is a result of
unknown input data, which is not covered by our training dataset. Because it
is unknown, it is particularly difficult to describe this region as it is essentially
the complement of our training dataset. The fact that the decision boundaries of
neural networks can extend to infinity and can lead to arbitrarily high confidence
values (see Fig. 3.2) also makes it impossible for many methods to describe data
uncertainty.

Let us assume that we are able to train a reject classifier in such a way that we
are forcing the DNN to place the rejection decision boundary at the boundary of
our training dataset. Then we would be able to classify unknown inputs into the
OoD domain and use the prediction confidence of the reject class as our proxy for
epistemic uncertainty. A stepping stone on the way to this goal is the ability to
gather data which "shields" or wraps around our training dataset and acts as a
proxy for the OoD domain. Generative methods can be utilized to generate auxiliary
data and in the works by Lee et al. [79], Ngo et al. [96], and Sensoy et al. [117]
attempts were made to generate boundary samples. Covering the boundary of a
distribution is not an easy task, especially in higher dimensional problems as, e.g.,
in the case of image data. To this end, analysis by Vernekar et al. [136] has shown
that the approach by Lee et al. [79] is prone to mode collapse and does not generate
boundary samples. While the method by Sensoy et al. [117] seems to not suffer
from mode collapse, their toy examples show that the generator distribution is
similar to the training samples with higher variance. In this case, the higher density
within the training set is likely to superimpose the generator distribution, putting
more emphasis on the generated OoD samples. This seems to be beneficial for the
detection of OoD inputs but is still not equal to generating boundary samples. Ngo
et al. [96] also proposed, independently of Lee et al. [79], to generate boundary
samples using a modified GAN setup. The mentioned mode collapse is addressed
by additionally including a dispersion loss, which penalizes the generator to place
all samples on a single point in the boundary.

The GAN approach for boundary samples has a lot of potential, as shown by the
previously cited works. There still remains a lot of room for improvement, which
we will address by the following architectural and theoretical changes

57
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1. Dimensionality Reduction
In high dimensions, the space becomes sparse, given the same number of
samples. In very high dimensions distance metrics and the notion of nearest
neighbors becomes meaningless [2]. Because of the curse of dimensionality,
learning to generate boundary samples becomes extremely difficult in high
dimensions. We can counteract this to a certain degree by training the GAN
within a lower-dimensional latent space. To transform the input samples into
a low-dimensional space we use an Autoencoder (AE), which is a powerful
representation learning tool.

2. Class Conditioning
Another way of reducing the complexity of the boundary is by conditioning
on the classes. Assuming class regions in the low-dimensional space to be
somewhat compact, covering the boundary of a single class might be easier
to achieve than for the whole training distribution. Additionally, the class
conditioning can be utilized by an OvA classifier. This can be combined with
a conditional Autoencoder (cAE) to also introduce the class-conditioning into
the latent space and to be able to decode latent embeddings given a class label.
The generator is then producing Out-of-Class (OoC) auxiliary data instead of
Out-of-Distribution (OoD).

3. One-versus-All (OvA) Classifier
When generating OoC data, it might happen that we are generating ID data
for other classes, as we can not guarantee that OoC data will also be OoD. We
can not handle this problem with a standard all-vs-all softmax classifier, as it
does not have the notion of "does not belong to this class" and "not belonging
to any known class". In fact, this problem can be an advantage if we choose
an OvA classifier. Using this model, we are obtaining free auxiliary OoC data,
as all other classes also belong to the OoC domain. By combining the training
data with the generated auxiliary data, we can achieve a better boundary
coverage.

4. Low-Dimensional Regularization
Ngo et al. [96] are employing a dispersion loss to fight the mode collapse
of the generator. They define their dispersion loss by computing an L2 loss
within the original learning domain X . The curse of dimensionality greatly
affects many distance metrics as the density becomes less, increasing the
overall distances between points [2]. This makes it hard to balance the loss
with other loss components during training, and hyperparameters might not
be generally applicable across different datasets. Instead, it is a good idea to
define such a regularizer on our low-dimensional latent space. By utilizing
other distance measures we can also avoid the value range shift for different
number of dimensions.

In the following sections we will discuss in more detail how the proposed changes
from above can be implemented.
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6.1 one-vs-all classifier

The Uncertainty Quantification GAN (UQGAN) framework utilizes an OvA classi-
fier to form class predictions and associated uncertainty measures. Given a training
dataset S ⊆ X × Y with relative class frequencies p̂(y) = |{y′=y|(x,y′)∈S}|

|S| , we
define C(i | x, y) as the probability of sample (x, y) ∈ X × Y being ID and
C(o | x, y) = 1− C(i | x, y) as the one of being OoD, respectively. The classifiers
can be modeled with an ensemble of independent NNs but the preferred way
is to construct them as a single NN with K ≥ 2 sigmoid outputs, modeling all
C(i | · , y), y ∈ Y . This way the number of parameters is reduced by a factor of K
and the learned features can be shared across classes, lowering the risk of overfitting.
Note that this setup does not differ from a classic softmax based NN architecture,
only the softmax activation is replaced by sigmoid activations. During training,
samples corresponding to a class y are serving as in-class data and all others as
OoC data. A benefit with this model is that we are already obtaining free auxiliary
data for the OoC part. The training objective of the OvA classifier is then given by
a weighted empirical cross entropy, similar to the multi-class setup

min
C

1
|S| ∑

(x,y)∈S

− log(C(i | x, y))− 1
K− 1 ∑

y′∈Y\{y}

p̂(y)
p̂(y′)

log(C(o | x, y′))

 (6.1)

Note that instead of writing minθC and C(i | x, y,θC) we are leaving out the
dependence on the parameter set θC and write minC for brevity. In Eq. (6.1) the
factor 1

K−1 is balancing the in-class and the OoC loss. Suppose all classes are equally
frequent in S, meaning p̂(y) = 1

K , ∀y ∈ Y . Then, for each class y, there are K− 1
times more data samples belonging to the OoC than the in-class regime. This
imbalance needs to be accounted for to avoid overfitting to the OoC data and also
assures that our learned classifier is converging to the desired quantity, as can
be seen later. Now, assume the frequency of class samples in S is not uniform.
This case also poses the risk of overfitting to the most frequent class. This is
accounted for using the class dependent weighting of p̂(y)

p̂(y′) in Eq. (6.1). Assume,
without loss of generality, that we have a constant in-class loss over all classes, thus
− log (C(i | x, y)) = 1, ∀y ∈ Y . A single class y ∈ Y contributes a portion of p̂(y)
to its own in-class loss. We can then scale the individual in-class losses of each class
by a factor of 1

p̂(y) to ensure a balanced loss contribution of each class. The same
factor applies for the OoC loss part for the respective class, which leaves us with

min
C

1
|S| ∑

(x,y)∈S

− 1
p̂(y)

log(C(i | x, y))− 1
K− 1 ∑

y′∈Y\{y}

1
p̂(y′)

log(C(o | x, y′))


(6.2)

As the individual classifiers C(i | · , y) do not depend on other classes, we can
multiply by a factor of p̂(y) to arrive at Eq. (6.1). To be able to perform multi-class
predictions, we are aiming to find an estimator p̂(y | x) which converges to the
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true distribution p(y | x) for |S| → ∞. This can be achieved by applying the
transformation

C̃(i | x, y) =
1
K C(i | x, y)

1
K C(i | x, y) + K−1

K C(o | x, y)
, (6.3)

and finally aggregating the individual ID probabilities as in the following

p̂(y | x) = C̃(i | x, y) p̂(y)
∑y′∈Y C̃(i | x, y′) p̂(y′)

. (6.4)

Consider the following typical assumptions of statistical learning theory (see Sec-
tion 2.1)

Assumption 1. We make the following assumptions for our OvA classifiers C

1. We sample S ∼ p(x, y) i.i.d. and there is no GAN-generated data involved.

2. We assume, there exists a C∗ ∈ H such that p̂(y | x) = p(y | x), i.e., p(y|x) is
realizable. This is a realistic assumption for DNNs (see Section 2.1).

3. We can compute an empirical risk minimizer, i.e., we can determine a CS ∈ H which
minimizes Eq. (6.1) for a given sample S .

Then we can state the following

Lemma 1 (Class Posterior). Under Assumption 1 and training C on Eq. (6.1) it holds
that

p̂(y | x) = C̃(i | x, y) p̂(y)
∑y′∈Y C̃(i | x, y′) p̂(y′)

|S|→∞−−−−→ p(y | x)

Proof. Without loss of generality, consider a single OvA classifier C(i | x, y∗) with
y∗ ∈ Y fixed and define a counter-part class ȳ∗ (class “not y∗”), which contains all
classes in Y \ {y∗}. If we subsample our training dataset S as Sy∗ ∼ p̃y∗(x, y) =
p(x | y) p̃y∗(y), with p̃y∗(y∗) = 1

2 and p̃y∗(y) = 1
2(K−1) , ∀y ∈ Y \ {y∗}, we are weight-

ing y∗ and ȳ∗ equally, because ∑y′∈Y\{y∗} p̃y∗(y′) = 1
2 = p̃y∗(y∗). The contribution

of the single OvA classifier C(i | x, y∗) within Eq. (6.1) can then be summarized as

1
|Sy∗ | ∑

(x,y)∈Sy∗

[
−1{y=y∗} log(C(i | x, y∗))− 1

K− 1
1{y ̸=y∗}

1
2
1

2(K−1)

log(C(o | x, y∗))

]
(6.5)

=
1
|Sy∗ | ∑

(x,y)∈Sy∗

[
−1{y=y∗} log(C(i | x, y∗))− 1{y ̸=y∗} log(C(o | x, y∗))

]
, (6.6)

which is the binary cross entropy loss for equal class weights of y∗ and ȳ∗ (see
Eq. (3.23) when choosing a Bernoulli distribution as data model assumption). As
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we have shown that Eq. (6.1) is yielding a balanced OvA classifier, we can follow
that for |S| → ∞ we obtain

C(i | x, y) −→ p(y | x) = p(x | y)pU(y)
p(x | y)pU(y) + p(x | ȳ)pU(ȳ)

(6.7)

=
p(x | y)

p(x | y) + p(x | ȳ)
, ∀y ∈ Y , (6.8)

in the sub-sampled OvA scenario. Let

pU(x, y) = p(x | y)pU(y) (6.9)

be defined as the joint distribution of x and y w.r.t. a uniform class distribution
pU(y) = 1

K , ∀y ∈ Y . By re-weighting the OvA classifier with Eq. (6.3) we obtain

C̃(i | x, y) =
1
K C(i | x, y)

1
K C(i | x, y) + K−1

K C(o | x, y)
(6.10)

−→
1
K p(x|y)

p(x|y)+p(x|ȳ)
1
K p(x|y)+ K−1

K p(x|ȳ)
p(x|y)+p(x|ȳ)

(6.11)

=
1
K p(x | y)

1
K p(x | y) + K−1

K p(x | ȳ)
(6.12)

=
p(x | y)pU(y)

p(x | y)pU(y) + p(x | ȳ)pU(ȳ)
(6.13)

=
p(x | y)pU(y)

pU(x)
(6.14)

= pU(y | x) . (6.15)

Finally, knowing the convergence to Eq. (6.15), we can conclude for |S| → ∞ and
the re-weighted classifier C̃

C̃(i | x, y) p̂(y)
∑y′ C̃(i | x, y′) p̂(y′)

−→ pU(y | x)p(y)
∑y′ pU(y′ | x)p(y′)

(6.16)

=

pU(x|y)pU(y)p(y)
pU(x)

∑y′
pU(x|y′)pU(y′)p(y′)

pU(x)

(6.17)

=
p(x | y)p(y)

∑y′ p(x | y′)p(y′)
(6.18)

= p(y | x) . (6.19)
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Figure 6.1: 2-simplexes over p̂(y) of entropy (H̃( p̂(y | x))) and OoD probability (C̃(o | x))
values. Top row: entropy, Bottom row: OoD probability. Green corresponds to
low values and red to high ones. Columns are showing different combinations
of predicted conditional ID probability. The black dot is showing the center of a
simplex (point of uniform class frequency).

6.1.1 One-vs-All Uncertainties

After we defined the theoretical framework for our OvA classifier it remains to
be defined how we can compute uncertainties. By using this type of classification
model we can naturally encode the idea of “not belonging to this class”, which
includes OoD inputs. This is not possible with a softmax based classifier, which
is trained with a closed-world assumption. As Lemma 1 provides us with the
proof that p̂(y | x) is approximating the underlying class posterior p(y | x),
we can compute the aleatoric uncertainty associated with a prediction using the
(normalized) entropy (see Eq. (2.13))

H̃ ( p̂(y | x)) = − 1
log(K)

K

∑
k=1

p̂(y = k | x) log( p̂(y = k | x)) . (6.20)

For the epistemic uncertainty we conveniently get in-class probabilities for each
class via C(i | · , y) and OoC probabilities as C(o | · , y) = 1− C(i | · , y). However,
we need a way to combine the ensemble of binary classifiers into a single one to
form a final epistemic uncertainty score. Usually, this is done by taking a maximum
confidence approach C(i | x) = maxy∈Y C(i | x, y), which is commonly used
for multi-class SVMs [8, pp. 338–339]. However, this has the problem that the
confidence levels of the individual ensemble members might not be equal due
to imbalanced data settings or easier to distinguish samples, which introduces a
bias into this decision rule. By using the result from Lemma 1 we can compute
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Figure 6.2: Entropy and OoD probability for different predicted in-class probabilities and
fixed class frequencies. Top row: entropy, Bottom row: OoD probability. Green
corresponds to low values and red to high ones. First column is showing a
uniform class frequency while the second column displays a class imbalance.

a theoretically grounded fusion of all individual in-class probabilities to form a
global ID probability

C̃(i | x) =
K

∑
k=1

C̃(i | x, k) p̂(y = k | x) (6.4)
=

K

∑
k=1

C̃(i | x, k)2 p̂(k)

∑K
k′=1 C̃(i | x, k′) p̂(k′)

, (6.21)

C̃(o | x) = 1− C̃(i | x) . (6.22)

In Eq. (6.21) we weight each C̃(i | x, k) by its class posterior p̂(y = k | x). This
is similar to the work of Franchi et al. [35] but instead of training an additional
all-vs-all classifier, the weighting is integrated into the ensemble of binary classifiers.
It is interesting to observe, that in the case of uniform in-class probability, thus
C̃(i | x, k) = c , ∀k = 1, . . . , K , c ∈ [0, 1], we get

C̃(i | x) =
K

∑
k=1

c2 p̂(y)

∑K
k′=1 cp̂(y′)

= c ·
K

∑
k=1

p̂(k)

∑K
k′=1 p̂(k′)

= c . (6.23)

Which means, that the overall ID probability is no longer depending on the class-
frequency but only on the level of in-class confidence. This can also be observed
in Fig. 6.1 (second row, first column). In contrast to this, the aleatoric uncertainty
quantified by the (normalized) entropy over Eq. (6.4) is highly dependent on the
class frequency, which can also be seen in Fig. 6.1 (top row). The first column
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corresponds to a prediction of a uniform in-class probability for each class, resulting
in high entropy values, only reducing in a setting with a major imbalance to a
single class in the data. When a single OvA classifier is predicting a high in-class
probability, we only get a high entropy if the same class has a very low frequency
relative to the other two. In the last column, which shows a high in-class probability
for two of the three classes, we can see a similar setting to the first column but
slightly shifted, only expressing low entropy for an extreme imbalance in the
data, decaying faster for the two classes with a high in-class confidence. Similar
observations can be made in Fig. 6.2, which also shows entropy and OoD probability,
but keeps the class frequency fixed while varying the in-class probabilities. The two-
class setting shows that for a balanced class frequency we get a linear relationship
between C(i | x, 1) and C(i | x, 2) when considering maximum entropy (as derived
above).

Note that when implementing the class posterior from Eq. (6.4), an 0 < ϵ ≪ 1
needs to be added to each C̃(i | x, y) in order to avoid a division by zero and still
receive a valid class posterior. For data far away from the training distribution we
can expect that all C̃(i | x, y) are zero, resulting in C̃(i | x) = ϵ, as derived above. If
the classifier is forced to predict a class label for such an input, the class with the
highest frequency in the training dataset will be chosen. To take the class with the
highest occurrence frequency sounds reasonable for an input on which we have no
prior knowledge. At the same time, the model has a prediction entropy of

H̃( p̂(y | x)) = 1
log(K) ∑

y′∈Y
p̂(y′) log( p̂(y′)) . (6.24)

This means that the entropy of the class posterior on OoD data is equal to the
entropy of the class distribution in the training dataset, which is 1 in the case
of uniform class frequency. Although the input is far away from the training
data, we have a large aleatoric uncertainty for the prediction. Having a high data
uncertainty for such inputs is counter-intuitive, and to solve these situations we
need to consider epistemic and aleatoric uncertainty jointly in this framework. We
first need to detect OoD inputs based on the level of epistemic uncertainty before we
can consider the aleatoric uncertainty. In a practical scenario this makes sense, as we
can not interpret classification results on OoD data in a meaningful way. Also, this
procedure is supported by the Bayesian predictive model assumption in Eq. (2.16),
which formulates a chain of dependencies, where model uncertainty is influencing
distribution uncertainty and this in turn is influencing data uncertainty.

The current OvA theoretical framework is able to separate aleatoric and epistemic
uncertainty. However, since we are still learning based on maximum likelihood,
resulting in a single weight configuration, the model uncertainty is not included.
As model uncertainty is in the case of DNNs especially important to consider,
we can apply Monte Carlo-Dropout (MCD) to our OvA classifier. MCD does not
require a change in the model architecture or training procedure and is thus a
good candidate to improve the quality of epistemic uncertainty estimates. Besides
that, we are also able to improve the quantification of aleatoric uncertainty and
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the prediction accuracy as the data uncertainty is also influenced by the model
uncertainty (see Section 2.2). This comes at the cost of additional computational
effort, however. When given a set of T model weights {θt}T

t=1, we include model
uncertainty by computing

p̂T(y | x) = 1
T

T

∑
t=1

p̂(y | x,θt) , (6.25)

C̃T(i | x) = 1
T

T

∑
t=1

C̃(i | x,θt) . (6.26)

Aleatoric uncertainty is then given by the normalized entropy over p̂T(y | x) and
epistemic uncertainty as usual by C̃T(o | x) = 1− C̃T(i | x). We will reference the
model without MCD as UQGAN and with it as Uncertainty Quantification GAN -
Monte Carlo Dropout (UQGAN-MCD).

6.2 conditional generative adversarial network

In the preceding section 6.1 we derived the theory of our OvA classifier. This section
will describe how to integrate the classification model into a conditional Generative
Adversarial Network (cGAN) architecture to be able to generate class-conditional
boundary samples. As described in the introduction to this chapter, we want to
reduce the dimensionality of the learning problem by training a cAE on our input
data X . For this we will utilize an autoencoder which receives the class information
to each example as an additional input to the encoder as well as the decoder part.
Notation wise we will call A(x, y) as the complete cAE pipeline, Aenc(x, y) will be
the encoder part, and Adec(z, y) the decoder part with z being a latent vector. The
cAE is trained with a pixel-wise binary cross-entropy as the reconstruction error,
thus the total optimization objective is

min
A

1
|S| ∑

(x,y)∈S

[
1

Nx

Nx

∑
i=1

[xi · log(x̂i) + (1− xi) · log(1− x̂i)]

]
. (6.27)

Therein, Nx is the number of pixels in x, xi is the i-th pixel of x, x̂ = Adec(z, y)
is the decoded image, and z = Aenc(x, y) is the encoded latent representation of
x. Note that the pixel values are expected to be normalized in xi ∈ [0, 1], and we
define 0 · log(0) = 0. After training, we freeze the weights and can use the cAE to
transform our training data into a low-dimensional latent space. Within the latent
space we will now define our cGAN training objective as

min
G

max
D

1
|S| ∑

(x,y)∈S


(a)︷ ︸︸ ︷

D(z | y)− D(z̃ | y) + λgp · lgp(z)

(b)︷ ︸︸ ︷
−λcl · log (1− C(i | x̃, y))


+ λRLR , (6.28)

= min
G

max
D

LGD
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Figure 6.3: Overview of the unified training architecture of cAE, GAN and OvA classifier.
Before the GAN and OvA classifier are trained, the cAE is pre-trained on the
training data and the frozen weights are used for the rest of the training.

with D and G the critic and generator, z̃ = G(e, y) the latent encoding produced by
the generator from a sample e ∼ U(0, 1) of a uniform distribution, x̃ = Adec(z̃, y)
the decoding of the latent code by the generator, LR our low-dimensional regularizer
with hyperparameter weight λR, and lgp(z) the gradient penalty from Gulrajani
et al. [46] with the corresponding hyperparameter λgp, defined as

lgp(z) =
(
∥∇z′D(z′)∥2 − 1

)2 ,

z′ = e · z + (1− e) · z̃ ,

e ∼ U(0, 1) .

(6.29)

We call D a critic as in Arjovsky, Chintala, and Bottou [4] and Gulrajani et al. [46]
instead of discriminator as in the original GAN by Goodfellow et al. [42], because
instead of using the JS divergence as a training objective, we use a Wasserstein GAN,
for which the value function is defined over the Kantorovich-Rubinstein duality [137,
pp. 51–]. Wasserstein GANs have some theoretical properties, which makes their
optimization more stable. For example, JS GANs suffer from vanishing gradients
due to a saturating discriminator, whereas the Wasserstein alternative exhibits
linear gradients [4]. The theory of Wasserstein GANs requires the critic to be a
1-Lipschitz function. This constraint was originally enforced by weight clipping
[4] but Gulrajani et al. [46] showed, that a gradient penalty behaves more stable
during the optimization process. In Eq. (6.28), (a) is the original Wasserstein loss
by Gulrajani et al. [46], while (b) is introducing our classification model C into the
GAN objective. Intuitively, Eq. (6.28) can be explained as the following:

• The critic D is trained to predict large values for real latent codes (D(z | y))
and small values for generated ones (D(z̃ | y))

• The generator G is trained to minimize C(i | x̃, y) and to maximize D(z̃ | y),
which forces the generator to produce latent codes z̃, which can not be
distinguished from real ones by the critic but for which the reconstructions
x̃ are assigned to a low ID probability by the OvA classifier. This interplay
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between D and C forces the generator to place z̃ at the boundary of the
training distribution.

In addition to Eq. (6.28), we need an objective for our classification model C, which
is similar to Eq. (6.1) but incorporates the generated boundary samples x̃. This can
be defined as

min
C

1
|S| ∑

(x,y)∈S

− log(C(i | x, y))− λreal

n− 1

 ∑
y′∈Y\{y}

p̂(y)
p̂(y′)

log(1− C(i | x, y′))


(6.30)

− (1− λreal) · log(1− C(i | x̃, y))


= min

C
LC

With the above training objective the classifier for class y learns to predict high
in-class values for real inputs (x, y) and low in-class values for other classes (x, y′)
and generated OoC examples (x̃, y). The hyperparameter λreal can be used to tune
the weight on real and generated examples. During the training phase we alternate
between the optimization of G and D (Eq. (6.28)), as well as C (Eq. (6.30)). The
complete model is visualized in Fig. 6.3.

Note that one of the assumptions for Lemma 1 (Assumption 1) is that we do not
include any generated data into the training objective of the OvA classifiers. We
will see in Chapter 8 if this violation has a significant impact on the performance or
ability to quantify uncertainties.

6.3 low-dimensional regularization

When leaving out the regularization loss LR in Eq. (6.28), the generator suffers from
mode collapse as shown by Ngo et al. [96] and Vernekar et al. [136]. In this case,
the points are very close together and sometimes not even on the boundary, which
makes them not suitable for class-shielding in all directions. To prevent this from
happening, we can penalize the generator to place the points very close to one
another. There are many ways to formulate a regularizer which meets the above
criteria. Ngo et al. [96] call their regularizer dispersion loss, which they define as

DL =
|S|

∑|S|i=1∥G(ei)−µ∥2

,

µ =
1
|S|

|S|
∑
i=1

G(ei) ,

ei ∼ U(0, 1) , i = 1, . . . , |S| .

(6.31)

The generator can minimize the dispersion loss by increasing the average L2 dis-
tance for a set of generated examples to their center of mass. Equation (6.31) is
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defined on the original learning domain X . It has been shown in other works, that
many distance metrics perform poorly in high dimensions [2] and the distance to
the nearest neighbor approaches the distance to the farthest neighbor [7] under
some very broad assumptions. This is one reason why the effectiveness of this
dispersion loss is diminished on high dimensional problems (32× 32 RGB images
have already 3072 dimensions). Additionally, the value range of the L2 metric is
[0, ∞], and it is generally higher when the number of dimensions increases. Finding
a suitable hyperparameter weight to balance the dispersion loss against the other
loss components will therefore not be stable across a variety of datasets/dimensions
and needs to be retuned on a validation set each time. The usage of the L2-norm
also encourages another undesirable collapse of the generator, where the generated
points are pushed to infinity to minimize the dispersion loss.

A good alternative is the cosine similarity, which is defined as

dcos(z
(1), z(2)) =

z(1)⊺z(2)

∥z(1)∥2 · ∥z(2)∥2
=

∑d
i=1 z

(1)
i · z

(2)
i√

∑d
i=1(z

(1)
i )2 ·

√
∑d

i=1(z
(2)
i )2

, (6.32)

for two vectors z(1), z(2) ∈ Rd. We can then transform this into an angular distance,
which is normalized to [0, 1]

dA(z
(1), z(2)) :=

1
π
· arccos

(
z(1)⊺z(2)

∥z(1)∥2 · ∥z(2)∥2

)
︸ ︷︷ ︸

α

. (6.33)

This metric will still suffer from very high dimensions, as it also utilizes a dot
product and the L2 metric for normalization, but the value range will be bounded
to [0, 1], which makes tuning λR much easier. Similar to the cAE and cGAN,
we will also compute the regularization loss class-wise. As we want to spread
the generated samples around our real data, we need to compute the angular
distance with respect to an origin inside the class region. For this, let us define
Z(z, y) := {z̃ − z | z̃ = G(e, y) , e ∼ U(0, 1)} = {z̄(1), . . . , z̄(Nz

y )} as the set of
generated latent codes of class y, which have been normalized to the origin z.
Our goal is to maximize the average angular distance between all unique pairs of
Z(z, y), which is equivalent to the minimization of

lR(z, y) =
2

Nz
y · (Nz

y − 1)
· ∑
z̄(i),z̄(j)∈Z(z,y)

i<j

− log(dA(z̄
(i), z̄(j))) . (6.34)

We additionally included the logarithm into this regularizer in order to explicitly
target very small angular distances, which often occur in a mode collapse scenario.
An illustration of the components in lR can be found in Fig. 6.4. Finally, averaging
over all examples in S , results in the low-dimensional regularization loss in Eq. (6.28)

LR =
1
|S| ∑

y∈Y

 1
Ny

∑
(x,y)∈S

lR(Aenc(x, y), y)

 . (6.35)
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z

z̄(i)

z̄(j)

α

Figure 6.4: Illustration of the low-dimensional regularizer lR for a single class and a single
example. Green crosses correspond to in-class examples and red triangles to
OoC examples. The angle α is computed as in Eq. (6.33).

The value range of LR is [0, 1], making it easier to find hyperparameters which are
suitable across different datasets, as we will see later.





7
E VA L UAT I N G U N C E RTA I N T Y

This chapter will introduce the tasks of OoD and FP detection, which are com-
monly used as downstream tasks to evaluate the quality of uncertainty estimates.
Afterwards, a summary of binary evaluation metrics which are frequently used in
related literature are described and explained.

7.1 downstream tasks

Evaluating the quality of prediction uncertainty is a very difficult task as it is
influenced by many factors. Obtaining annotations for prediction uncertainty is
virtually impossible as it largely depends on the model and its specific weight
configuration. In most cases the quality of uncertainty estimates is measured by
utilizing them in downstream tasks like OoD/FP detection, adversarial example
detection, semi-supervised or active learning. Another problem, which makes
comparing the results between methods difficult, is the lack of a unified evaluation
protocol. Recently, there have been efforts to propose specialized benchmark datasets
to better understand DNN failure modes [62], OoD detection methods [16, 147] as
well as anomaly detection methods [48].

Out-of-Distribution Detection

For evaluating the quality of epistemic uncertainty estimates, the task of OoD
detection offers a way of comparing different approaches based on their detection
performance. For the task of image classification, the term Out-of-Distribution (OoD)
means examples that can not be categorized in a meaningful way into the existing
class labels or reside in very low density areas of the input space. As an example,
consider the task of classifying images of cats and dogs. An image of a car can
not be categorized as being a cat or a dog, which is why we consider this to be
an OoD input. Similarly, the image of a lion fits semantically into the cat class but
when the model has only seen ordinary house cats the lion image is located in
a very low density area of the input space. The description “from a low density
area” is somewhat blurry. How close can we be to the ID data to still consider it
as being OoD? This question is not easy to answer and highlights the difficulty in
building dataset benchmarks for this task. It is quite easy to construct an evaluation
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setup for the task of OoD detection by choosing a training dataset and a number
of other datasets which are sufficiently different from it. However, if the chosen
OoD datasets are conceptually too different from the ID ones, they can be detected
easily and the expressiveness of the results becomes questionable. An effective way
to build an evaluation setup with OoD examples which are close to the training
distribution, is to split a dataset class-wise. Classes that have been left out during
training can serve as particularly difficult OoD cases in the testing phase. This can
be combined with other datasets, which are more distinct from the ID data, in
order to form a diverse evaluation setup (also used in, e.g., [117, 135]). Outside
the training distribution the behavior of a classification model is unpredictable.
This is not a specific problem of NNs but rather a principal issue with many types
of classification models. Without access to training data for the OoD domain, a
model cannot make meaningful predictions. This can also be observed in Fig. 2.2 (b)
and (c), where the model outside the training distribution can result in completely
different decision boundaries with the same ID performance. Consequently, the
decision on this binary classification task is usually made by thresholding the
epistemic uncertainty estimates. As the detection accuracy largely depends on the
threshold, specialized threshold free evaluation metrics are employed, which will
be discussed in Section 7.2.

False Positive Detection

Aleatoric uncertainty quantifies the ambiguity inherent to the ID data (see Fig. 2.2
(a)). Examples which are located in overlapping class regions are very likely to be
misclassified. Therefore, aleatoric uncertainty can be used to detect misclassifications
(also called False Positives (FPs)). Similar to the case of OoD detection, FPs can be
detected by applying a threshold on the aleatoric uncertainty and the same binary
evaluation metrics as for the task of OoD detection can be used. Depending on the
model and dataset, there is usually a large imbalance in the amount of correct and
wrong predictions, which should be taken into account by the evaluation metrics.
When reviewing results from this task we should also keep in mind that the larger
the classification accuracy, the more difficult it becomes to detect the remaining
misclassifications. Comparisons between different models are therefore to be taken
with caution.

Adversarial Example Detection

Adversarial examples are perturbed input examples such that the classification
model makes a wrong classification. If the image which should be perturbed, is
already close to a decision boundary of the classifier, a very small perturbation
suffices, and the image remains within the training dataset. However, for decision
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boundaries which are more distant to the original image (which is more likely for
targeted attacks), the perturbations need to be larger. As discussed for the task of
OoD detection, model uncertainty is especially high for input space regions with no
available data. There, decision boundaries can vary a lot and might be closer to an
image than the one within the training data. This is a very likely scenario as DNNs
have many parameters which can produce unpredictable decision boundaries. In
this case the adversarial examples might leave the subspace covered by the training
data in order to keep the overall magnitude of perturbation small. As a reason,
there is probably no single uncertainty type that is best for the task of adversarial
example detection. We will conduct experiments on this idea in Chapter 8 and try
to answer whether uncertainty metrics are at all capable of detecting such attacks.
Similar to the two tasks above, we are faced with a binary classification task on a
given uncertainty metric and can therefore use the same evaluation metrics. These
metrics will be discussed in the upcoming Section 7.2.

7.2 evaluation metrics

7.2.1 Measuring Accuracy and Calibration

To measure the influence of UQ methods on the model performance we will
measure the standard classification accuracy. In our multi-class setup with K classes,
the accuracy of our prediction model p̂(y | x) can be defined as

(Accuracy) Acc(S , p̂) =
∑(x,y)∈S 1{y=ŷMAP}

|S| (7.1)

This quantity is often called top-1 accuracy in the literature and is basically the
fraction of correctly classified examples.

Another important factor for a classification model is whether the confidence of
the model is well calibrated. As shortly described in the beginning of Chapter 4,
a model is said to be perfectly-calibrated if its accuracy among all samples with
a confidence of c ∈ [0, 1] is exactly c [26]. The example given there was for a
binary classifier, predicting whether it is going to rain. To make the calibration
quantifiable in this case, we can compute the calibration error [72, 94]. Formally,
for our classification model p̂(x) ∈ [0, 1] and X, Y random variables for the input
and the (binary) class label respectively with a joint distribution of P(X, Y), the
calibration error is defined as

CEp( p̂) = (EP [| p̂(X)−EP [Y | p̂(X)] |p])
1
p . (7.2)

While p = 2 is the most used formula for the calibration error, p = 1 is often referred
to as the Expected Calibration Error (ECE) and p = ∞ as the Maximum Calibration
Error (MCE) [72]. Computing the CEp on a finite dataset S requires estimating
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Figure 7.1: Illustration of calibration curves for over- and underconfident predictors. The
bars correspond to the bins over which the calibration error is estimated. Grey
bars are accuracy values among the bins, while red bars illustrate the calibration
error in the bin compared to a perfectly calibrated model (dashed line). Graphic
is based on Figure 1 from Guo et al. [47].

the expectations. This is usually done by binning the predictions into a number of
NB equally spaced bins Bi = {(x, y) ∈ S | bi−1 < p̂(x) ≤ bi}, i = 1, . . . , NB, with
0 = b0 < b1 < . . . < bNB = 1 and aggregating them within these bins

p̄i =
1
|Bi| ∑

(x,y)∈Bi

p̂(x) ,

ȳi =
1
|Bi| ∑

(x,y)∈Bi

y ,

P(Bi) =
|Bi|
|S| ,

i = 1, . . . , NB . (7.3)

Here, p̄i is the average confidence, ȳi the frequency of positive labels, and P(Bi) the
relative amount of samples in bin i. The calibration error can then be estimated as

CEp( p̂) ≈

∑NB
i=1 P(Bi) ∗ ∥p̄i − ȳi∥p p ̸= ∞

maxi=1,...,NB |p̄i − ȳi| p = ∞
. (7.4)

Figure 7.1 depicts calibration curves of an overconfident (left) as well as an un-
derconfident (right) model. The ECE (Eq. (7.4) with p = 1 and NB = 10) within
each bin is visualized with red bars. In a multi-class setup, Y can be defined as the
random variable depicting if the prediction of the model is correct or not (e.g., by
using the MAP decision rule). Then, ȳi corresponds to the accuracy of the classifier
among all examples in bin Bi.

There are more ways to define calibration in a multi-class setting. We want the win-
ning class probability to be calibrated like in the binary setting but in some settings
it is also desirable that the other class probabilities are also calibrated. Kumar, Liang,
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and Ma [72] give the example of a medical diagnosis system, predicting a patients’
tumor to be 50 % benign, 10 % aggressive, and 40 % not a tumor. Different classes
can have different levels of risk, e.g., diagnosing a patient with no tumor, although
he has an aggressive one, has serious consequences for the life and well-being of
the patient. This is why in some cases a multi-class model should be calibrated for
every class and not only the winning one. Kumar, Liang, and Ma [72] define the
marginal calibration error for this purpose. Given a multi-class model p̂(y | x) and X
and Y being similar random variables as above, for the input and class label and
with a joint distribution of P(X, Y), the marginal calibration error is defined as

MCEp( p̂) =

(
K

∑
k=1

wkEP [( p̂(y = k | X)− P(Y = k | p̂(y = k | X)))p]

) 1
p

. (7.5)

Here, wk ∈ [0, 1] is a weight for each class, which makes it possible to increase the
importance of one class in comparison to the others. For equally important classes
we just set wk = 1

K . Given a finite dataset S , MCEp is estimated similarly as in
Eq. (7.4) and summed over all classes.

The most frequently used evaluation metric throughout the UQ literature is the
ECE, which we will also utilize in our experimental evaluation.

7.2.2 Evaluating Binary Classifiers

Using epistemic and aleatoric uncertainty estimates to tackle the problem of OoD
and FP detection is a common way to measure the uncertainty quality. By applying
a threshold on the uncertainty we are essentially solving a binary classification
problem. For the task of OoD detection we use a dataset Sx = Sx, in ∪ Sx, out

consisting of ID and OoD data. Given a threshold τ as well as a function which
quantifies epistemic prediction uncertainty u(x) (we use a generic placeholder
because uncertainties can be computed in many ways), we can define standard
binary classification metrics

(True Positives) TP = |{x ∈ Sx, in | u(x) ≤ τ}| (7.6)

(True Negatives) TN = |{x ∈ Sx, out | u(x) > τ}| (7.7)

(False Positives) FP = |{x ∈ Sx, out | u(x) ≤ τ}| (7.8)

(False Negatives) FN = |{x ∈ Sx, in | u(x) > τ}| (7.9)

Note that in the above definition the ID class took the part of the positive class.
Based on these quantities we can compute metrics like

(Precision) Prec(S , u) =
TP

TP + FP
, (7.10)

(Recall) Rec(S , u) =
TP

TP + FN
, (7.11)

(False Positive Rate) FPR(S , u) =
FP

FP + TN
. (7.12)
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Figure 7.2: Receiver Operating Characteristic (ROC) Curve (a) and Precision Recall (PR)
Curve (b) for two binary classification models. The dashed line in (a) is repre-
senting a random classifier.

Recall is also called sensitivity while 1− FPR is often called specificity. The problem
with these metrics is that they heavily depend on the choice of the threshold τ. If
we vary the threshold τ ∈ {u(x) | x ∈ S} and compute the above metrics for each
choice, we can get a better intuition on the performance of the binary classifier. The
Receiver Operating Characteristic (ROC) Curve does exactly that and plots the False
Positive Rate (FPR) against the recall for varying threshold levels. By increasing the
threshold, we can trade a higher recall against a higher FPR. In Fig. 7.2 (a) we can
see that “Classifier 1” has clearly a better ROC curve than “Classifier 2”, as it has
a consistently higher recall at every level of FPR. Another plot that reveals more
performance insights of a binary classifier is the Precision Recall (PR) Curve, which
plots the recall against the precision.

Figure 7.2 (b) shows an exemplary plot of such a precision recall curve. In the given
example we can not clearly say which classification model is performing better. A
qualitative review of ROC and PR curves is always good practice, but we need a way
to quantitatively summarize them in order to better compare different classification
models. To achieve this we can compute the areas under the respective curves. We
will call them the Area under Receiver Operating Characteristic (AUROC) and Area
under Precision Recall (AUPR). As both curves are confined in a unit square, the
area will always be in the interval [0, 1]. Theoretically a classification model can
not have an AUROC lower than 0.5 (random guessing). If a classifier is indeed
consistently worse than random guessing, therefore having a ROC below the dashed
line in Fig. 7.2 (a), we can invert the decision function and end up with an area
under the ROC curve of greater than 0.5. However, for the application to FP, OoD
and adversarial example detection based on UQ metrics, it is possible to achieve
an AUROC of lower than 0.5. In this case we have a special meaning attached to
the interpretation of uncertainties. Inverting the decision function and defining ID
examples to have a high uncertainty makes no sense semantically. In case of the PR
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Figure 7.3: Illustration of the binary classification metric FPR@95%TPR. Green and red curve
are frequencies of in- and out-of-distribution examples, respectively. Abscissa
and ordinate are depicting uncertainty and frequency, respectively. Dashed line
is representing the applied threshold at which at least 95 % of ID samples are
below.

curve, the lower bound of the area depends on the amount of positive and negative
samples [113]. Taking the ID samples as our positive class, the lower bound can be
computed as

AUPR ≥ |Sx, in|
|S| . (7.13)

Davis and Goadrich [25] show that in case of highly imbalanced datasets, the PR
curve is a more suitable metric. Because of the sensitivity to class imbalance, it
is advisable to compute the AUPR twice, where each of the two classes serves as
the positive class once [52]. The AUROC and AUPR are beneficial if the goal is to
summarize an average model performance into a single scalar value. However, it is
far away from a practical application, where one has to settle for a single threshold
in order to perform the actual binary classification. From this point of view, we
either need auxiliary OoD datasets to determine a suitable value for the threshold,
or choose it solely on the ID data. The former would require additional auxiliary
datasets, which can not be assumed to be readily available. In the latter case, a
suitable choice is to set the threshold in such a way that a given quantile of ID data
points is classified as true positive

min
x∈Sx,in

u(x)

s.t.
|{x ∈ Sx, in | u(x) ≤ τ}|

|Sx, in|
· 100 ≥ q

q ∈ (0, 100)

. (7.14)

Equation (7.14) can be solved by performing a line-search along all ID examples
sorted with respect to their predicted uncertainty. The resulting threshold τq can
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then be used in practical applications. A measure of quality for τq is then the FPR
on the OoD datasets we evaluate our uncertainty metric on. This metric is called
FPR@q%TPR in related literature (e.g., [83]), where usually q = 95. Figure 7.3 illus-
trates this in an idealized example, where the fraction of OoD examples classified as
being ID results in the FPR@95%TPR. In the following we will also call this metric
FPR95 for brevity.



8
E X P E R I M E N T S

The results of a thorough qualitative and quantitative evaluation will be discussed
in this chapter. A collection of related methods and the proposed approaches from
Chapters 5 and 6 will be benchmarked on 4 tasks and a variety of datasets. Each
section concludes with the findings of the respective quantitative results.

8.1 datasets

This section introduces the datasets which will be used for qualitative and quantita-
tive analysis of the proposed methods discussed in Chapters 5 and 6. The datasets
are sorted chronologically and in increasing order of complexity. A summary of all
datasets and their characteristics can also be found in Table 8.1.

MNIST

The Modified NIST (MNIST) dataset was published by Lecun et al. [77] in 1998.
It consists of handwritten digits (0-9) from a total of 500 different writers which
were normalized in size to fit a 20× 20 pixel area in the center of a 28× 28 image
(Fig. 8.1 (a)). The original images were binary but due to the interpolation during the
normalization, intermediate gray levels were introduced. Due to the classification
accuracy surpassing 99.5 % with modern DNNs, the classification problem on the
MNIST dataset can be considered to be solved. Nevertheless, the dataset is still
often used for studying new methods and theoretical results, as the small size
and exact problem definition are ideal for qualitative analyses. In total the dataset
consists of 60 000 training and 10 000 testing images.

EMNIST-Letters

The Extended MNIST (EMNIST) dataset by Cohen et al. [19] utilizes the parts of
the NIST database that were not used by Lecun et al. [77] and contains samples
of handwritten digits and letters. In the EMNIST-Letters subset, only the letters
were used and preprocessed in the same manner as in the MNIST dataset (a-z, A-Z,
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(a)
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Figure 8.1: Examples of all used datasets. MNIST (a) [77], Fashion-MNIST (b) [141], EMNIST-
Letters (c) [19], Omniglot (d) [74], SVHN (e) [95], CIFAR10 (f) [68], CIFAR100
(g) [68], Tiny ImageNet (h) [76] and LSUN (i) [143]. Note that for the Omniglot,
CIFAR100 as well as Tiny ImageNet datasets only a subset of the available
classes (1− 50) are displayed.
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Fig. 8.1 (b)). For training, there are 124 800 samples and for testing 20 800. When
using the MNIST dataset as our ID set, the EMNIST-Letters are a good candidate
for an OoD set, as the methodology of capturing and preprocessing is the same
and letters are semantically close to digits.

Omniglot

The Omniglot dataset by Lake, Salakhutdinov, and Tenenbaum [74] contains stroke
data for 1623 characters out of 50 alphabets and written by 20 different people
(Fig. 8.1 (c)). Lake, Salakhutdinov, and Tenenbaum [74] split the dataset into a
training set of 30 alphabets and an evaluation set of 20 alphabets containing 19 280
and 13 180 samples, respectively. For our purpose only the evaluation set is used,
and the pixel values are inverted to match the “white on black” samples of the
MNIST dataset. Similar to the EMNIST-Letters dataset, Omniglot samples are
semantically similar to handwritten digits but still distinguishable from them,
making them suitable for evaluation as an OoD dataset.

Fashion-MNIST

The Fashion-MNIST dataset by Xiao, Rasul, and Vollgraf [141] was collected by
scraping 70 000 fashion product pictures from the Zalando online shop. After
scraping, the images which were originally in RGB format, where transformed into
28× 28 gray-scale images similar to the MNIST dataset (Fig. 8.1 (d)). The training
and testing sets contain 60 000 and 10 000 samples, respectively. Again, we will
only utilize the test set for evaluation purposes. In contrast to the EMNIST-Letters
and Omniglot datasets, Fashion-MNIST samples are clearly different from MNIST
samples but are still within the same gray-scale image space. Even though these
are easy to detect as OoD for humans, some UQ methods might struggle with this,
which is why we include them as a representative for the OoD domain.

Street View House Numbers (SVHN)

The Street View House Numbers (SVHN) dataset by Netzer et al. [95] consists of
house numbers collected from over 600 000 Google Street View images. Amazon
Mechanical Turk (AMT) together with a sliding window house-numbers detector
was used to extract and label the house numbers. In total, the dataset contains
630 420 examples, which are split across 73 257 training and 26 032 testing. The
remaining 531 131 examples constitute an additional subset which are easier to
classify. Besides the full image of the house numbers there is also a cropped format,
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centering the individual digits of each house number in a 32 × 32 MNIST-like
format (Fig. 8.1 (e)). To be compatible with the MNIST dataset, we use the testing
set with the cropped format and transform the images from RGB to gray-scale.
Samples from the SVHN dataset are semantically similar to handwritten digits
from the MNIST dataset but are extracted from natural scenes, making the SVHN
set an interesting candidate for the OoD domain w.r.t. MNIST.

CIFAR10 / CIFAR100

The CIFAR10 and CIFAR100 datasets by Krizhevsky [68] are based on the 80 million
tiny images dataset [132] which was crawled from the web based on the WordNet
database of English nouns [91]. CIFAR10 and CIFAR100 differ in the number of
classes, where CIFAR10 contains 10 classes (e.g., airplane, automobile and bird) and
CIFAR100 contains 100 classes (e.g., apple, aquarium fish and baby). For the CIFAR10
dataset each of the 10 classes has 6000 annotated samples, while the CIFAR100
dataset only has 600 samples per class. This amounts to 60 000 samples for each
of the two datasets, where the classes of the CIFAR100 dataset are disjoint from
the ones in the CIFAR10 dataset. In both variants the 60 000 samples are split into
50 000 for training and 10 000 for testing. All Images have a size of 32× 32 and 3
color channels (RGB) (Fig. 8.1 (f)(g)).

Tiny ImageNet

The Tiny ImageNet dataset by Le and Yang [76] is a subset of the large ImageNet
database [27] and was originally published in conjunction to a visual recognition
challenge in 2015 [76] (Fig. 8.1 (h)). There are a total of 120 000 images, split across
training, evaluation and testing sets with 100 000, 10 000 and 10 000 examples each,
respectively. For training, there are 200 annotated object classes, with annotation
for the training and evaluation sets. Because of the fact, that the annotations for the
testing set are not publicly available, we will use the official evaluation set as our
test set. All images have a size of 64× 64 with RGB color channels and are thus 4
times larger in dimension than the datasets previously described.

LSUN

The LSUN dataset [143] is a large collection of 10 scenes and 20 object categories
containing a total of approximately 69 million images. Scene categories refer to a
complete scene rather than a single object (e.g., bedroom, bridge and kitchen) while
object categories refer to single items (e.g., bike, car and plant). Yu et al. [143] use an
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Dataset Year Image Format Training Evaluation Test

MNIST [77] 1998 28× 28, grayscale 48 000 12 000 10 000

EMNIST-Letters [19] 2017 28× 28, grayscale 99 200 24 800 20 800

Omniglot [74] 2015 105× 105, binary 15 424 3856 13 180

Fashion-MNIST [141] 2017 28× 28, grayscale 48 000 12 000 10 000

SVHN [95] 2011 32× 32, RGB 58 606 14 651 26 032

CIFAR10 [68] 2009 32× 32, RGB 40 000 10 000 10 000

CIFAR100 [68] 2009 32× 32, RGB 40 000 10 000 10 000

Tiny ImageNet [76] 2015 64× 64, RGB 80 000 20 000 10 000

LSUN [143] 2015 ≥ 256× 256, RGB 7 916 299 1 979 074 3000

Table 8.1: Summary of training, evaluation and testing datasets and their characteristics.
Subsets which are used in the experiments are marked in bold.

ID Out-of-Distribution

MNIST 0-4 MNIST 5-9, CIFAR10, EMNIST-Letters, Omniglot, Fashion-MNIST, SVHN

CIFAR10 0-4 CIFAR10 5-9, LSUN, SVHN, Fashion-MNIST, MNIST

CIFAR100 0-49 CIFAR100 50-99, LSUN, SVHN, Fashion-MNIST, MNIST

Tiny ImageNet 0-99 Tiny ImageNet 100-199, SVHN, Fashion-MNIST, MNIST

Table 8.2: ID and OoD datasets used for the quantitative evaluation of OoD and FP detec-
tion.

active learning framework within Amazon Mechanical Turk (AMT) to efficiently
annotate such a large dataset. The images have different sizes in RGB format, which
will be converted to an appropriate size depending on the ID dataset. For our
purposes we will only utilize the evaluation set of scene samples, which contains a
total of 3000 images with 300 per class (Fig. 8.1 (i)).

8.2 training and evaluation protocols

In the experiments we will evaluate the proposed gradient metrics, UQGAN and
UQGAN-MCD against numerous established baselines (see Section 8.5.1) on the
four tasks Classification Accuracy and Calibration, False Positive Detection, Out-of-
Distribution Detection and Adversarial Example Detection (see Section 7.1). From all
the datasets mentioned in Section 8.1 we will build a number of diverse evaluation
protocols for the task of OoD detection. These datasets will then also provide the
evaluation setting for the other three tasks. As briefly mentioned in Chapter 7,
we will follow other works [117, 135] and split our ID datasets class-wise in two
equally sized and non-overlapping subsets. The first subset will be used as an ID
training set, while the other half will be utilized as particularly difficult OoD cases.
For the training of our classification models, we will utilize the MNIST, CIFAR10,
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CIFAR100 and Tiny ImageNet datasets. All these datasets do not have a dedicated
evaluation set, which is why we additionally split the training data randomly into
80 % for training and 20 % for evaluation. The evaluation sets will then be used for
hyperparameter exploration and model selection based on the highest classification
accuracy. Depending on the ID dataset, we will assemble a number of OoD datasets
for the task of OoD detection. A summary of the respective ID and OoD datasets
can be seen in Table 8.2.

We will use different architectures to adapt to the complexity of the data and
not to risk overfitting. For MNIST 0-4 the LeNet model [77] (see Section 3.6.1)
is a good fit in terms of capacity, while for the CIFAR10, CIFAR100 and Tiny
ImageNet datasets we will train a ResNet 18 [50] (see Section 3.6.2). Choosing a
single ResNet architecture for all the last three mentioned datasets allows better
comparison between the performance and uncertainty estimates. There are definitely
models which will achieve higher classification accuracy on any of the chosen ID
datasets but as this work is more about UQ rather than maximizing classification
performance, we will stick to these commonly used architectures. However, we
still need to make sure that we achieve comparable classification performance with
respect to a common baseline in order to detect any detrimental effects of UQ
methods on the model performance. Our general baseline will be the respective
architecture trained with the standard cross-entropy loss for multi-class problems,
while we use its Maximum Class Probability (MCP) as the uncertainty measure.
This is in line with the work by Hendrycks and Gimpel [52]. The UQGAN will
also be build with different combinations of cAE models. While using a very
small convolutional architecture on the MNIST dataset, a small cAE based on the
ResNet model is built for the CIFAR10, CIFAR100 and Tiny ImageNet datasets.
An advantage of the UQGAN architecture is that the GAN is learned within the
low-dimensional latent space of the cAE. This makes it possible to keep the size
of the GAN architecture very small. Both, the generator and critic will be an MLP,
with the generator consisting of 3 hidden layers of 1024, 512 and 256 neurons each.
The critic is also built with 3 hidden layers but containing 512 neurons each.

The task of Classification Accuracy and Calibration will be evaluated using the standard
accuracy performance metric, while the calibration is measured using the ECE with
15 bins. Additionally, we will also have a look at calibration curves to infer if a
model is over- or underconfident.

False Positive Detection is a binary classification task based on the aleatoric uncer-
tainty and as such will be evaluated with the AUROC, which we then call AUROC
S/F (success/failure).

Out-of-Distribution Detection is also a binary classification task and additionally to
the AUROC, we will report results with the AUPR-In and FPR95 evaluation metrics.
The addition “-In” means that we are considering the ID data as the positive class.
As discussed in Chapter 7, the lower bound of the AUPR is the fraction of positive
examples of the complete dataset (including ID and OoD data). In our evaluation
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setup the number of OoD examples is much higher than the ID examples. To have
as much expressiveness (or value range) of the performance measure as possible,
we need to choose the ID data as the positive class. The FPR95 evaluation metric is
important for practical applications as it indicates the false positive error rate when
guaranteeing a fixed true positive rate of 95 %, which is set based on the ID data.
OoD inputs are increasing the distribution uncertainty, which is part of the total
epistemic uncertainty. Therefore, we will use the epistemic prediction uncertainty
from models separating into different types of uncertainty. Otherwise, if the model
does not explicitly differentiate between uncertainty types, we take the defined
uncertainty/confidence measure.

Finally, Adversarial Example Detection is just another binary classification task which
we will evaluate with the AUROC and FPR95 evaluation metrics for different levels
of perturbation strength. We will additionally report the success rate of the attacks
(percentage of adversarial examples that result in a different predicted class than the
original image) for some experiments. To keep the computational effort manageable,
we will sample a random subset of 1000 images of each ID test set and generate
another 1000 adversarial examples such that we have a balanced dataset for testing.
The ID examples will be the positive class in this case. For generating the adversarial
examples we will use the FGSM [43], PGD [88] and PGD applied to an objective
targeting the least likely class, as proposed by Kurakin, Goodfellow, and Bengio
[73]. All three approaches will be used in a white-box setting, where the methods
have full access to the network which is attacked.

For all results that are summarized in a single performance measure, experiments
will be repeated 5 times with different seeds for the random number generator (and
therefore different weight initialization). The standard deviation will be reported
alongside, indicating the robustness of the evaluated methods. All approaches are
implemented and evaluated in Python using PyTorch [103] to model the NNs.

8.3 summary of hyperparameter studies

8.3.1 Metric and Layer Choice for Gradient Metrics

In Chapter 5 we discussed several ways of summarizing the high dimensional gra-
dient vector over all model parameters. It remains open which of these metrics to
summarize gradients works best when measured on the tasks of FP and OoD detec-
tion. Additionally, we discussed that it can be beneficial in terms of computational
cost to compute the gradient metrics only for a subset of layers. To take advantage
of the backpropagation algorithm, the cost can be reduced the most if gradients
are computed for layers as close to the output as possible. Appendix B.1 contains a
parameter study for the choice of gradient metric and the layers the gradients are
computed over. Therein, Fig. B.2 summarizes the results for the different gradient



86 experiments

metrics on all ID evaluation datasets. Applied to the cross-entropy loss with MAP
target (see Chapter 5), we observe for the Lp-norms that higher values of p (i.e.,
more similar to the supremum norm) tend to perform better in terms of AUROC,
FPR95 and AUPR-In on the task of OoD detection. This is in contrast to the results
of Huang, Geng, and Li [60], who compute Lp metrics on a KLD loss to a uniform
class prediction (see Section 5.2). However, the KLD between the prediction and a
uniform class distribution needs to be interpreted opposite to the cross-entropy over
a MAP target. A high gradient on this loss is expected to be found on ID examples,
while the gradient on the cross-entropy should have a low magnitude on ID inputs.
This difference in the loss formulation is also explaining the contradicting results.
Except for the MNIST evaluation setting, higher values of p tend to perform better
in terms of AUROC, FPR95 and AUPR-In. On the Tiny ImageNet 0-99 dataset, the
absolute difference between L1 and L∞ is 14.21 %, 8.12 %, 5.09 % for AUROC, FPR95
and AUPR-In, respectively. Similar trends can be observed on the other datasets,
however the results with regard to the AUPR-In evaluation metric are not always
consistent to this result. In general the max and min metrics are performing best,
while the average gradient is a very poor statistic on the analyzed tasks. Between
max and min, the minimum gradient entry is performing slightly better, especially
on the higher dimensional Tiny ImageNet 0-99 dataset, where it achieves a 6.2 %
relative improvement in AUROC over the max metric. The fact that maximum and
minimum are overall better statistics than L∞ suggests that the direction of the
gradient plays a role in distinguishing unknown inputs from ID examples.

In terms of the layer choice, Fig. B.1 summarizes an ablation study over the Tiny
ImageNet 0-99 evaluation set and a ResNet 18. There, two settings were evaluated.
In the first setting, each layer of the ResNet 18 is evaluated individually. In the
second setting, multiple layers are considered in a cumulative fashion, starting from
the output of the network. Therefore, Layer 5 corresponds to the last layer, Layer 4-5
corresponds to the two last layers and so on. The second setting was chosen in this
cumulative way in order to gain maximum benefits from the computational cost
reduction of the backpropagation algorithm. On both settings the differences are
marginal, and the results suggest that considering only layers close to the output is
sufficient for this approach. When analyzing the FPR95 results, layers which are
close to the output do indeed achieve slightly better results, as contemplated in
Chapter 5. However, for both the AUROC and FPR95 evaluation metrics, results
have an absolute difference of 0.38 % and 1.13 %, respectively. As the standard
deviation is comparatively high, these results cannot be considered significant. We
can conclude that the choice of layers on which we compute gradient metrics is
largely irrelevant for the detection performance of OoD inputs. This result is also
in line with the observations of Huang, Geng, and Li [60].

Going onwards, we will choose the minimum metric and compute the gradient
over all model parameters whenever numerical results are given.
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8.3.2 UQGAN Hyperparameters

The UQGAN method as described in Chapter 6 has 4 hyperparameters which
are inherent to the methodology (λR, λcl, λreal and the cAE latent dimension).
Appendix B.2 contains results of a study over all 4 hyperparameters on MNIST
0-4 and CIFAR10 0-4. For λcl, which controls the impact of the classification model
on the generator (see Eq. (6.28)), we can see that for λcl ∈ [1, 4] we achieve the
best results. Noticeably, larger values impact the AUPR-In and FPR95 negatively.
Although λcl = 0 has a similar effect on the two performance measures, it is not as
notable as for high values. This is due to the low-dimensional regularizer forcing
the generator to spread the generated samples apart with respect to the class centers.
If λR = 0 = λcl, then Eq. (6.28) would recover the standard Wasserstein loss for
GANs and the generator would learn to replicate the training distribution, which
would destroy the classifier training objective (Eq. (6.1)). Analyzing the results
for λreal (Fig. B.4), we can see that for λreal ∈ {0, 1} there is a clear loss in all
measured evaluation metrics. On the one hand, this means that 100 % generated
data is detrimental for the classification model but on the other hand, 100 % real
data is nearly equally detrimental. This indicates that the generated data has a
significant positive effect on the classification accuracy, FP and OoD detection. For
λreal ∈ [0.1, 0.9] the results are quite stable. Overall the best results are achieved
with λreal ∈ [0.5, 0.6]. In case of λR, the influence of different values is mostly
apparent on the low-dimensional MNIST 0-4 dataset. There, larger values of λR are
increasing the results continuously, up until a regularizer weight of 32. On CIFAR10
0-4 this effect stops at λR = 4, with worse performance for larger weights on the
regularizer. Combined we can see that the low-dimensional regularizer is indeed
improving the class shielding by the generated OoC examples. The influence of the
last hyperparameter, the latent dimension of the cAE, is visualized in Fig. B.6. For
both datasets we can see clear local maxima/minima on the performance metrics.
On MNIST 0-4 this is for d = 32 and for CIFAR10 0-4 it is d = 128. Both extremes,
increasing and decreasing the number of dimensions, reduce the performance.
Although the accuracy is also influenced, it is to note that mostly evaluation metrics
measuring the OoD detection performance vary. In general, we can say that the
latent dimension should be chosen to allow the cAE to reconstruct the inputs with
sufficient visual quality. A higher number of dimensions has a negative effect on
the effectiveness of the regularizer and the class-shielding.

As a summary we can say that the hyperparameters of the UQGAN approach are
mostly stable and that reasonable hyperparameter choices yield good results.
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Figure 8.2: Two toy datasets within a two-dimensional space. (a) two Gaussians and (b) two
interleaving half circles (also called “two moons” [14]).

8.4 qualitative results

8.4.1 Toy Datasets

Two-dimensional toy datasets can give valuable insights into methods and highlight
certain strengths and pitfalls, as uncertainties can be visualized easily. Figure 8.2
shows simple toy datasets of two Gaussian distributions (Fig. 8.2 (a)) and two
interleaving half-circles (Fig. 8.2 (b)), which is also called “two-moons” in the
literature [14]. The two Gaussian distributions offer the most basic classification
problem and can be constructed so that it is solvable by linear classifiers. On the
other hand, the two-moons dataset is more complicated as it requires a non-linear
decision boundary to solve the classification problem. We will analyze the gradient
metrics as well as the UQGAN on these two datasets and compare the resulting
uncertainties to the MCP baseline by Hendrycks and Gimpel [52]. For this we will
train a small MLP with 3 hidden layers of size 512 each and LeakyReLU activation
function with a negative side slope of 0.01 on each of the toy datasets. The UQGAN
will be trained via Eqs. (6.1) and (6.28) which we derived in Sections 6.1 and 6.2
and the MCP baseline will use the standard cross-entropy loss. Gradient metrics
are then computed on the same network as for the MCP baseline with the min
aggregation metric and on the cross-entropy with MAP target.

Figure 8.3 shows an overview of the resulting uncertainties. As can be seen in the
first row, the MCP baseline follows the decision boundary with homogeneously low
confidence along the path. In contrast to that, the minimum gradient is producing
smaller uncertainties where the two classes overlap. This is mostly apparent in the
Gaussian example but can also be observed to a certain degree on the two-moons
dataset. As discussed in Chapter 5, gradient metrics quantify model uncertainty,
which is part of the epistemic uncertainty. The examples in Fig. 8.3 show that indeed,
gradient metrics are able to quantify epistemic uncertainty without including too
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Figure 8.3: Uncertainty heatmaps for the inverse maximum class probability (first row,
Section 4.1.1), minimum gradient (second row, Eq. (5.3)), UQGAN aleatoric
uncertainty (third row, Eq. (6.20)) and UQGAN epistemic uncertainty (last row,
Eq. (6.22)). You can see the results on the Gaussian (left column) and two-moons
(right column) toy datasets. White corresponds to low and orange to high
uncertainty. In the UQGAN plots you can also see the generated OoC data with
triangular marks and the respective class color.
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much of the aleatoric part. However, both, MCP and gradient metrics, predict low
uncertainties far away from the decision boundary, making them unsuitable to
detect OoD inputs. Focusing on the aleatoric uncertainty predicted by the UQGAN
approach (Fig. 8.3 third row), we can see that in both cases the region of the class
overlaps produces high aleatoric uncertainty. It is also very noticeable that far away
from the ID data the model predicts high aleatoric uncertainty. This is a result
of the ϵ term added in the computation of p̂(y | x), as discussed at the end of
Section 6.1.1. We can however mask out this region by considering the epistemic
uncertainty, which is visualized in the last row of Fig. 8.3. There we can also observe
that the aleatoric and epistemic uncertainty are mostly complementary, predicting
a low epistemic uncertainty in the overlapping class regions. In contrast to the
MCP and minimum gradient, UQGAN is able to predict high epistemic uncertainty
for the complete OoD regime. This is only possible because of the generated OoC
examples, which are visualized as triangles and in the same color as the respective
class. Covering the whole boundary and being still close to the ID data, the OoC
examples enable the OvA classifier to predict meaningful aleatoric and epistemic
uncertainties.

Note that contrary to the architecture of the UQGAN described in Fig. 6.3, we do
not need a cAE on the toy examples as these are already in a low-dimensional
space. Thus, we can consider the encoder and decoder parts in Fig. 6.3 to be an
identity mapping in this case.

8.4.2 UQGAN Out-of-Class examples

One of the advantages that is setting the UQGAN apart from other methods is the
ability to generate its own auxiliary OoC data. In this section we will take a look at
what these samples actually look like and if we can spot some patterns. As listed
in Table 8.2, we have 4 different ID datasets. On each of these datasets we train a
UQGAN model and use the cAE and generator to sample OoC data. For the used
models please consult Section 8.2.

Starting with the results on the MNIST 0-4 dataset (Fig. 8.4 (a)), we can see that
most of the generated examples are semantically similar to their respective class.
However, clear distortions and other artifacts can be observed. For the class 0 the
generator mostly produces samples where the zero circle is not closed, or individual
strokes are disconnected. Similar artifacts can be observed for the other classes such
as 2, where some samples look similar to the digits 7 and 3. Some generated OoC
examples look realistic. Despite these visual similarities, distinguishing between
real and generated data is still possible.

Switching to CIFAR10 0-4 (Fig. 8.4 (b)), the interpretation of the OoC examples
becomes increasingly difficult. As the CIFAR10 dataset contains natural images in
RGB format, the diversity is much higher than for the MNIST dataset. The displayed
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Figure 8.4: Out-of-Class examples generated by UQGAN trained on MNIST 0-4 (a),
CIFAR10 0-4 (b), CIFAR100 0-49 (c) and Tiny ImageNet 0-99 (d) datasets. For
the CIFAR100 0-49 and Tiny ImageNet 0-99 only the first 5 classes are displayed.
Out-of-Class examples for λR = 32 (e) and λR = 0 (f) are displayed for the digits
0 and 1. Rows contain different classes and columns are multiple examples of
the same class.

classes are airplane, automobile, bird, cat and deer (from top to bottom). Having this
information at hand allows spotting superficial semantics. In the top row we can
see a lot of blue and white colors which are usually seen in the background of
airplane images. Although it is not easy to recognize objects on images of the size
32× 32, the second row contains some parts which look similar to car engine hoods
and tires.

It becomes even more difficult to interpret the OoC data for CIFAR100 0-49 and Tiny
ImageNet 0-99 due to the larger number of classes. For CIFAR100 0-49 the classes
apple, aquarium fish, baby, bear and beaver are shown (Fig. 8.4 (c)), while Egyptian cat,
reel, volleyball, rocking chair and lemon are displayed for Tiny ImageNet 0-99 (Fig. 8.4
(d)). Images in the top row of Fig. 8.4 (c) look quite similar to an apple while the
ones in the bottom row of (d) resemble the same colors as a lemon.

The influence of the low-dimensional regularizer on the generated OoC examples
can be observed in Fig. 8.4, for λR = 32 in (e) and λR = 0 in (f). There, we can notice
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Method Abbreviation Category

Proposed Approaches

Gradient Metrics (Chapter 5) GCE Frequentist (External)

UQGAN (Chapter 6) UQGAN Generative

UQGAN with MCD (Chapter 6) UQGAN-MCD Generative

Other Methods

Maximum Class Probability [52] MCP Frequentist (External)

Prediction Entropy (Eq. (2.13)) H̃ Frequentist (External)

Gradient Norm on KLD [60] GKLD Frequentist (External)

One-versus-All (Section 6.1) OvA Frequentist (Internal)

Monte Carlo-Dropout [37] MCD Bayesian

Bayes-by-Backprop [9] BBB Bayesian

Deep Ensembles [75] DE Ensemble

Confident Classifier GAN [79] CCGAN Generative

Evidence GAN [117] EGAN Generative

Prediction Entropy Oracle (Eq. (2.13)) H̃-O Oracle

One-versus-All Oracle (Section 6.1) Ova-O Oracle

Table 8.3: Related methods used as benchmarks in the quantitative evaluation. All methods
were discussed in Chapter 4. Abbreviations will be used in tables and figures.

that the visual diversity with the regularizer (λR = 32) is much higher compared to
the examples without it (λR = 0). Particularly for the digit 1, there is a noticeable
difference, where in some cases the generated examples for λR = 32 look similar to
the digits 3 and 2. Similar observations can be made for the same digit with λR = 0,
but much less pronounced.

8.5 quantitative evaluation

8.5.1 Benchmarking Methods

We will compare the performance of the proposed gradient metrics and UQGAN
methods to a variety of related approaches. In Chapter 4 we grouped UQ ap-
proaches into four categories: Frequentist (Internal/External), Bayesian, Ensemble
and Generative. To have a diverse benchmarking suite, every aforementioned cate-
gory should be included for comparison. Table 8.3 shows an overview of methods
which we will compare against.
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From the category of Frequentist methods we will include the MCP by Hendrycks
and Gimpel [52] and the entropy over the predictive class distribution. Both ap-
proaches act as a baseline, with the entropy being often slightly better than MCP
since the entire predicted distribution is considered instead of only the class of the
highest confidence. Additionally, the L1-norm of the gradient with respect to the
KLD between the predicted and a uniform class distribution, as proposed by Huang,
Geng, and Li [60], is considered as a comparison to the gradient metrics discussed
in Chapter 5. Since the above three methods are all external approaches, we will
also include the OvA approach discussed in Section 6.1, but without generated
OoC data. This will give us insights about the influence of the generated samples
on the model performance.

MCD by Gal and Ghahramani [37] and Bayes-by-Backprop (BBB) by Blundell et al.
[9] will be chosen as representatives for Bayesian methods. Both deliver theoretically
grounded uncertainties and as we are also integrating MCD into the UQGAN model,
the pure MCD approach on an NN trained on the cross-entropy is an important
baseline to identify the performance gain by the UQGAN architecture.

The Deep Ensemble (DE) method by Lakshminarayanan, Pritzel, and Blundell [75]
is competing for the class of ensemble methods. Although the cost of training
ensembles is usually higher compared to, e.g., MCD, DEs usually achieve better
performance on several tasks.

Two methods utilizing GANs to generate auxiliary data are included to identify
advantages in generation capabilities of our UQGAN architecture. Lee et al. [79]
train a softmax based classifier and maximize the predictive entropy on the gen-
erated OoD examples. Sensoy et al. [117] on the other hand, employ the theory of
evidence and combine this with a similar architecture as the UQGAN, learning the
GAN inside a low-dimensional latent space. The differences of the approaches to
the proposed UQGAN are discussed in the beginning of Chapter 6.

As an upper bound on the OoD detection performance, we will also include two
networks which will have access to data from the datasets which are part of the
OoD domain, as summarized in Table 8.2. In practical applications, access to this
data is usually not given, which is why these variants are called “oracles”. One
of them is trained with a softmax output and cross-entropy on the ID data, while
maximizing entropy on the given OoD data (similar to [79]). The second one is
similarly trained as the classifier of the UQGAN but instead of receiving OoC
examples from the GAN, the given OoD data is presented to the classifier. Both will
give a reference for what is achievable if we have perfect knowledge about the OoD
data. Additionally, the OvA oracle is giving insights on how well our generated
OoC data shields the ID from the real OoD data and whether generated data might
be even better for generalization than real OoD examples.
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Figure 8.5: Calibration plots for all methods from Table 8.3. Note that MCP, H̃, GCE and
GKLD are external methods which all operate on a softmax based classifier
trained with the cross-entropy on the same dataset. Therefore, this network is
only shown once in the figure (Softmax). Methods from this work are marked
with a solid line.

MCP, predictive entropy, GKLD, MCD, DEs, CCGAN, entropy oracle and the
gradient metrics from Chapter 5 all use a classifier with softmax output which is
trained on the cross-entropy loss.

In the following sections we will use the abbreviations of the related methods for
brevity, as specified in Table 8.3.

8.5.2 Classification Accuracy and Calibration

This section will analyze the effects of the approaches from Table 8.3 on the calibra-
tion and classification accuracy.

Starting with the calibration, Fig. 8.5 shows calibration curves on the CIFAR100
0-49 and Tiny ImageNet 0-99 datasets, while Table 8.4 shows the ECE on the two
mentioned datasets. What is most noticeable in the graphic is the under-confidence
of the EGAN method, which has a classification accuracy of 100 % from a confidence
of 40 % upwards on the CIFAR100 0-49 dataset. For the Tiny ImageNet 0-99 dataset
EGAN has a lot of empty bins and the calibration curve is only populated in the
[0 %, 30 %] confidence interval. This is also captured by the ECE, where the EGAN
has the highest and third highest Expected Calibration Error on the CIFAR100 0-49
and Tiny ImageNet 0-99 datasets, respectively. On the other end of the calibration
curves we have the UQGAN, CCGAN and softmax baseline as the methods with the
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Method
CIFAR100 0-49 Tiny ImageNet 0-99

Accuracy ↑ AUROC
S/F

↑ ECE ↓ Accuracy ↑ AUROC
S/F

↑ ECE ↓

GCE 56.12 (0.60) 79.17 (0.28) 19.10 (3.23) 36.06 (0.30) 76.18 (0.88) 26.01 (7.25)

UQGAN 56.60 (0.73) 73.61 (0.33) 34.32 (0.42) 34.28 (0.37) 71.90 (0.47) 48.94 (0.66)

UQGAN-MCD 64.53 (0.47) 80.38 (0.40) 10.92 (0.24) 45.60 (0.43) 79.18 (0.42) 5.92 (0.38)

MCP 56.12 (0.60) 80.68 (0.29) 19.10 (3.23) 36.06 (0.30) 78.56 (0.68) 26.01 (7.25)

H̃ 56.12 (0.60) 81.16 (0.26) 19.10 (3.23) 36.06 (0.30) 79.39 (0.74) 26.01 (7.25)

GKLD 56.12 (0.60) 72.69 (1.16) 19.10 (3.23) 36.06 (0.30) 77.96 (0.72) 26.01 (7.25)

OvA 50.90 (0.83) 76.21 (0.91) 23.89 (2.16) 35.18 (0.26) 76.23 (0.43) 11.59 (4.41)

MCD 59.88 (0.81) 82.57 (0.60) 21.94 (0.58) 43.48 (0.53) 80.63 (0.30) 2.79 (0.35)

BBB 56.02 (0.50) 81.90 (0.55) 14.71 (0.31) 32.31 (0.43) 78.44 (0.91) 19.39 (0.62)

DE 62.36 (0.43) 82.77 (0.47) 2.72 (0.37) 42.48 (0.22) 81.29 (0.38) 16.50 (6.94)

CCGAN 54.16 (0.13) 81.07 (0.44) 27.19 (5.45) 36.07 (0.53) 78.66 (0.67) 35.48 (2.13)

EGAN 51.16 (0.26) 77.83 (0.80) 41.26 (2.05) 30.54 (0.84) 73.40 (0.91) 28.79 (0.79)

H̃-O 53.66 (0.39) 81.39 (0.69) 19.82 (0.34) 37.18 (0.50) 79.50 (0.63) 17.05 (2.82)

OvA-O 51.82 (1.81) 76.43 (0.83) 15.26 (4.27) 34.92 (0.56) 75.10 (0.92) 20.61 (3.50)

Table 8.4: Accuracy, AUROC and ECE for the CIFAR100 0-49 and Tiny ImageNet 0-99
datasets. AUROC is computed on the task of FP detection (success/failure). For
each evaluation metric the best result is highlighted in bold green and the worst
in bold red. Please have a look at Table A.1 for the results on the MNIST 0-4 and
CIFAR10 0-4 datasets.

most over-confidence. We can see that the OvA classifier is considerably closer to the
perfect calibration line than the UQGAN, which suggests that the generated OoC
data has a negative effect on the calibration of the model. Additionally, the OvA
oracle has also a lower ECE than the standard UQGAN, putting more weight on the
hypothesis that the generated data increases the calibration error. When analyzing
the results for the UQGAN-MCD, we can see a considerable improvement over the
standard UQGAN. Not only is the ECE consistent within the top-2 of all methods,
but on the CIFAR100 0-49 dataset the error shifted from an over- to an under-
confidence. Generally, DE and MCD are performing well over both datasets, with
DE being slightly under-confident and MCD over-confident. The ECE results on
the MNIST 0-4 and CIFAR10 0-4 datasets can be found in Appendix A (Table A.1).
There, the conclusions are similar to the ones described above.

Switching our focus to the classification accuracy in Table 8.4, we can see that
the UQGAN-MCD is clearly outperforming other methods. On CIFAR100 0-49
a classification accuracy of 64.53 % is only a relative improvement of 3.5 % over
the second-best competitor (DE) but comparing with closely related methods like
CCGAN and EGAN, we achieve a relative improvement of 26.1 %. The gap becomes
larger when evaluating on Tiny ImageNet 0-99, where UQGAN-MCD is relatively
improving by 4.9 % and 49.3 % over MCD (second-best) and EGAN (worst). This
also shows that the class shielding with OoC data can also improve the classification
accuracy, which is only possible due to the OvA framework. When comparing the
standard UQGAN architecture, we only achieve mid-tier results compared to the
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(a)

(b)

Figure 8.6: Top 20 samples from the MNIST 0-4 test set with the highest aleatoric (a) and
epistemic (b) uncertainty predicted by a UQGAN. Numbers over each digit
correspond to prediction/annotation.

related works, being surpassed by DE and MCD on CIFAR100 0-49 and only
improving over BBB and EGAN on Tiny ImageNet 0-99. Again, similar results can
be observed on the MNIST 0-4 and CIFAR10 0-4 datasets, which can be found in
Appendix A (Table A.1). For quantitative evaluations, MNIST is difficult to interpret
as all methods achieve classification accuracies of greater than 99 %, similarly for
the ECE. On CIFAR10 0-4 we again achieve relative improvements of 5.2 % and
9.5 % over MCD (second-best) and MCP (worst) when considering accuracy. For
the ECE, UQGAN is again producing mid-tier results while UQGAN-MCD is
best on CIFAR10 0-4. What is interesting to observe is that UQGAN as well as
UQGAN-MCD have a higher classification accuracy than OvA-O. This means that
GAN generated OoC data can help improve generalization (in terms of classification
accuracy), while real OoD data might be too far away from the ID. Gradient metrics
will not be covered in this section as the approach is external and does not influence
the training of the classification model.

The results for the UQGAN variants in this section in comparison to the related
work can be summarized as the following:

• UQGAN achieves mid-tier results in classification accuracy and low-tier re-
sults on the calibration error

• UQGAN-MCD improves considerably and achieves top-2 results on ECE
while being best with regard to classification accuracy

• Generated OoC examples have a negative influence on the ECE of both models

• In comparison to closely related methods (CCGAN, EGAN) we considerably
better results with large margins to the second-best competitor
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8.5.3 False Positive Detection

In this section we will quantify the ability of UQ methods to detect misclassifica-
tions, which are also called False Positives (FPs), when considering the predicted
class as the positive class. Figure 8.6 shows the top-20 MNIST 0-4 test set examples
with respect to the highest aleatoric uncertainty (a) and highest epistemic uncer-
tainty (b) predicted by a UQGAN. As we can see, among the examples with high
aleatoric uncertainty we have 9 misclassified digits. Considering that in this case
the classification accuracy of the model was 99.68 % and that the MNIST 0-4 test
set has 5000 samples, the 20 displayed digits already contain 56.25 % percent of all
misclassified test examples. Comparing the epistemic uncertainty against that, we
only find 3 misclassifications. This is a meaningful observation, as FPs usually arise
in overlapping class regions with high data uncertainty, which is part of the aleatoric
uncertainty. Following this reasoning, we will consider the aleatoric uncertainty for
approaches that are able to distinguish between the different types. For methods
which are not able to distinguish, we will use the uncertainty/confidence measure
defined by the method.

In Table 8.4 in the AUROC S/F columns you can see the results on the task of
FP detection for the CIFAR100 0-49 and Tiny ImageNet 0-99 datasets. Note that
the same table for MNIST 0-4 and CIFAR10 0-4 can be found in Appendix A.
Bayesian (BBB, MCD) and ensemble methods perform best on this task, with
DE mostly being the best performing one. This underlines the importance of
Bayesian/sampling approaches for ID reliability. The UQGAN is only achieving
low to mid-tier results, while the UQGAN-MCD is considerably better but still not
among the best, except for CIFAR10 0-4 where both are obtaining comparatively
high AUROC S/F results. Comparing the two gradient metric approaches GCE
and GKLD, GCE is usually better (except for the Tiny ImageNet 0-99 dataset). It is
noteworthy that GKLD has especially low AUROC S/F values on datasets with a
high classification accuracy such as MNIST 0-4 and CIFAR10 0-4 (see Table A.1).
This could be explained by the fact that with a high accuracy the classification model
becomes more confident, also increasing the confidence on unknown inputs. As the
GKLD is using the KLD between the prediction and a uniform class distribution, the
loss increases exponentially the more confident the prediction is, which is amplified
by considering the whole predictive distribution. This makes it especially difficult
to distinguish ID from Out-of-Distribution inputs. Both approaches are inferior to
many of the related methods, which is expected on this task as they are aimed
at quantifying the model uncertainty. The close to the UQGAN related methods
CCGAN and EGAN are on most of the four datasets ranking between UQGAN and
UQGAN-MCD. An important aspect is that the difficulty of the FP detection task
increases with classification accuracy. Since the UQGAN-MCD has a much higher
accuracy for most datasets, the comparisons for the FP detection task should be
treated with caution.
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Method
CIFAR100 0-49 Tiny ImageNet 0-99

AUROC ↑ AUPR-In ↑ FPR95 ↓ AUROC ↑ AUPR-In ↑ FPR95 ↓

GCE 65.11 (0.68) 18.83 (0.53) 88.99 (1.11) 65.81 (2.68) 22.10 (1.69) 83.85 (3.30)

UQGAN 80.11 (1.40) 28.81 (1.32) 55.23 (3.20) 79.25 (1.61) 26.35 (2.25) 47.22 (1.85)

UQGAN-MCD 80.75 (1.19) 31.75 (1.53) 58.10 (2.11) 94.96 (0.13) 59.76 (0.64) 13.72 (0.30)

MCP 67.68 (1.56) 23.03 (1.71) 88.42 (1.42) 61.53 (1.04) 21.07 (0.98) 92.51 (0.87)

H̃ 69.43 (1.71) 23.75 (1.85) 87.08 (1.74) 62.44 (1.31) 21.90 (0.86) 93.79 (1.28)

GKLD 69.82 (1.29) 15.74 (1.33) 82.82 (1.85) 66.01 (2.38) 21.23 (3.03) 91.56 (2.16)

OvA 62.99 (1.59) 15.69 (2.69) 92.44 (0.76) 55.19 (2.29) 17.97 (2.41) 97.32 (0.62)

MCD 67.75 (1.15) 22.31 (1.14) 89.38 (1.30) 63.35 (4.23) 27.11 (2.29) 95.86 (1.28)

BBB 69.74 (0.76) 24.60 (1.25) 87.01 (0.75) 68.05 (2.29) 21.24 (2.14) 81.70 (3.53)

DE 74.29 (0.50) 29.38 (0.67) 83.37 (1.41) 67.76 (0.27) 30.85 (0.42) 93.79 (0.23)

CCGAN 68.66 (0.48) 22.51 (0.20) 86.17 (0.55) 59.99 (1.84) 20.58 (1.61) 94.49 (0.51)

EGAN 77.43 (2.58) 26.12 (2.41) 61.48 (4.33) 84.65 (5.42) 36.86 (8.25) 39.67 (12.50)

H̃ −O 86.16 (0.41) 38.63 (0.58) 44.67 (1.46) 85.43 (1.90) 41.95 (2.31) 48.74 (6.63)

OvA-O 92.91 (0.28) 47.68 (1.37) 22.35 (0.71) 95.75 (0.09) 59.69 (0.50) 10.30 (0.46)

Table 8.5: Results on the task of OoD detection measured with the AUROC, AUPR-In
and FPR95 evaluation metrics. For CIFAR100 0-49 the OoD set is constructed
using {CIFAR100 50-99, LSUN, SVHN, Fashion-MNIST, MNIST} and for Tiny
ImageNet 0-99 we take {Tiny ImageNet 100-199, SVHN, Fashion-MNIST, MNIST},
as described in Table 8.2. For each evaluatino metric and dataset the best result
is highlighted in bold green and the worst in bold red. Please have a look
at Table A.2 for the results on the MNIST 0-4 and CIFAR10 0-4 datasets and
Tables A.3 to A.6 for a breakdown of the results between individual datasets.

The main takeaways from this section are

• Bayesian and ensemble methods are best-in-class for the task of FP detection

• UQGAN is ranking in a low-tier compared to other approaches

• UQGAN-MCD achieves considerable higher FP detection rates but is still
surpassed by Bayesian methods

• GCE is outperforming GKLD on three of the four datasets

8.5.4 Out-of-Distribution Detection

Out-of-Distribution detection is the task of identifying inputs which do not stem
from the same distribution as the training data. Due to a large variability in the real
world and the high number of parameters in DNNs (causing model uncertainty),
OoD examples are a common phenomenon and a large threat to NNs in the wild.
In this section we will analyze the ability of different UQ methods to detect such
inputs based on their defined uncertainty/confidence score.
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Figure 8.7: AUROC for the task of OoD detection and accuracy as a function of the number
of classes on the Tiny ImageNet dataset. Number of classes corresponds to the
ID set, while the complement of classes is part of the OoD set alongside the
datasets mentioned in Table 8.2. Note that in the accuracy plot only the MCP
baseline is displayed as the GCE, GKLD and H̃ are external methods and use
the same weights. Methods from this work are marked with a solid line.

Table 8.5 summarizes the results on the CIFAR100 0-49 and Tiny ImageNet 0-99
datasets. The results on MNIST 0-4 and CIFAR10 0-4 can be found in Appendix A
(Table A.2). Most noticeable is that the UQGAN-MCD approach is outperforming
other methods on all four datasets, especially when considering the FPR95 met-
ric. On CIFAR100 0-49 UQGAN-MCD achieves a relative improvement of 3.9 %,
8.1 % and 5.5 % in AUROC, AUPR-In and FPR95, respectively, to the second-best
competitor. This increases on the Tiny ImageNet 0-99 dataset to 10.3 %, 62.1 % and
65.4 % relative improvement in the three aforementioned performance metrics. Sim-
ilar large margins can be observed on the MNIST 0-4 and CIFAR10 0-4 datasets.
Interestingly, one can observe two groups when considering the FPR95 evaluation
metric. The first group, containing UQGAN, UQGAN-MCD and EGAN, achieves
results with very large margins to the second group, containing all other methods.
This suggests that utilizing GAN generated auxiliary data in a low-dimensional
space is crucial for the FPR95 performance measure, which is highly important for
practical applications. The importance of GAN generated data is also enforced by
the inferior results of the OvA baseline, which does not receive any additional data.
GAN generated data alone does not improve the results considerably, as can be
observed with the CCGAN method. Another factor which distinguishes the first
group from the second are the OoD detection results for different number of classes.
Figure 8.7 visualizes the influence of the number of classes on the Tiny ImageNet
dataset. For this, an increasingly large subset of the dataset is used as ID, while
the complement serves as the usual OoD data. All models and hyperparameters
were kept fixed for this experiment. The most apparent result is that the accuracy
decreases with the number of classes. This is a reasonable result as we kept the
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classification model fixed to a ResNet 18. More interesting is the fact that both
UQGAN models and the EGAN approach have a higher AUROC for a higher num-
ber of classes. As all other methods have a constant or degenerating performance,
this can again be attributed to the low-dimensional GAN training and the usage
of an AE for dimensionality reduction. One hypothesis for this could be that the
AE is learning more diverse feature embeddings when the number of classes, and
thus also the number of training examples, increases. More gains could be realized
with advanced training of the AE, e.g., in terms of pre-training on large scale
datasets. Comparing the results of the UQGAN to the other generative methods we
can see that both, CCGAN and EGAN, are outperformed by UQGAN as well as
UQGAN-MCD on almost all datasets. Only on Tiny ImageNet 0-99 the UQGAN
is surpassed by EGAN with UQGAN-MCD still being best with a large margin.
Tables A.3 to A.6 are breaking down the results from Tables 8.5 and A.2 between
the respective ID sets and all individual OoD datasets. Evaluating the results for the
UQGAN approaches it becomes evident that UQGAN-MCD is particularly good on
hard OoD examples (the second half of the ID class-wise split) over all four datasets.
While not always best with respect to all dataset configurations, UQGAN-MCD is
surpassing all other approaches on the higher dimensional Tiny ImageNet 0-99
dataset. On the same dataset, the gap between UQGAN and UQGAN-MCD is espe-
cially large when considering FMNIST and MNIST as OoD datasets. Although we
would consider these two datasets to be easily differentiable from Tiny ImageNet
images, this seems to be not the case as the other competitors are also struggling
on this task. Only the proposed UQGAN-MCD is achieving overall good results,
outperforming the entropy oracle on all Tiny ImageNet comparisons. This result
indicates that both model uncertainty based on a sampling approach and generative
auxiliary data play an important role in OoD detection. The UQGAN variant is
most of the time ranking mid- to top-tier in the comparisons on the individual
datasets. When analyzing the results of the oracles in relation to the UQGAN two
things become apparent. First, there often remains a lot of room for improvement,
especially with respect to the FPR95 evaluation metric. Second, the entropy oracle
is far weaker than the OvA oracle on the higher dimensional CIFAR100 0-49 and
Tiny ImageNet 0-99 datasets, even being surpassed by the UQGAN-MCD on Tiny
ImageNet 0-99. An implication of this is that the entropy maximization, as done in
[53, 79], is not sufficient for generalization to new unknown data, an observation
which was also made by Vernekar et al. [136]. The authors of [136] are suggesting
to use a reject classifier instead (a classifier including a K + 1-st class which can be
used to reject inputs). For the OvA approach, as used in the other oracle as well
as both UQGAN models, each class learns its own reject classifier. The final reject
decision is then build by aggregating the individual reject classifiers with Eq. (6.21).
The fact that the OvA oracle does perform considerably better compared to the
entropy maximization oracle strongly suggests that the assumption of Vernekar
et al. [136] could be true.

Switching our attention to the gradient metrics, we can see that GKLD is slightly
better than GCE in terms of AUROC, but the results of AUPR-In and FPR95 are
not as clear. On CIFAR100 0-49 GKLD has a 6.9 % relative improvement in FPR95
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over GCE, while on Tiny ImageNet 0-99 GCE is relatively improving by 8.4 %. For
MNIST 0-4 and CIFAR10 0-4 we have a similar situation as in Section 8.5.3, where
GKLD is achieving very poor results. Again, this can be attributed to the generally
higher confidence levels on less complex tasks. Compared to the other methods,
gradient metrics can only compete on the higher dimensional problems CIFAR100
0-49 and Tiny ImageNet 0-99. With regard to MNIST 0-4 and CIFAR10 0-4 both,
GCE and GKLD, are marginally worse than the baselines MCP and H̃. Considering
the comparisons between individual datasets in Tables A.3 to A.6, we can observe
that GKLD is almost always worse than GCE with respect to the difficult OoD
examples (the second half of the ID class-wise split). For the more distinct OoD
inputs, GKLD is generally obtaining better results than GCE (except for MNIST
0-4). This result fits into the previous observations that GKLD suffers from high
confidence predictions, which are more likely to occur on data which is very close
to the ID and less likely for more distinct OoD examples. Overall, GCE ranks mid-
to low-tier on most dataset specific benchmarks.

Summarizing the insights of this section we can say that

• UQGAN as well as UQGAN-MCD are achieving state-of-the-art results in
comparison to previous works on GAN based OoD detection as well as in
comparison to methods from other categories

• On the FPR95 evaluation metric, which is especially important for practical
applications, UQGAN-MCD is outperforming others methods with large
margins

• Entropy maximization is not sufficient for generalization to unknown OoD
data

• There is no clear evidence as to which of the gradient approaches, GCE or
GKLD, is better suited for OoD detection

• Gradient metrics only have an advantage on higher dimensional problems
while being surpassed by the baselines on the very small MNIST 0-4 and
CIFAR10 0-4 datasets

8.5.5 Adversarial Example Detection

Adversarial Examples can be a large threat for DNNs when applied in real world
scenarios. Neural Networks might be victims of malicious attacks in, e.g., au-
tonomous driving, surveillance or malware and financial fraud detection. Figure 8.8
shows examples for the FGSM and PGD Least-Likely attacks on an image from the
Tiny ImageNet 0-99 dataset for various levels of perturbation strength. For small
values of ϵ the perturbation is nearly imperceptible, while adversarial examples
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Figure 8.8: FGSM [43] (top) and PGD [88] Least-Likely (bottom) attacks for varying levels
of perturbation strength ϵ from 0 (left) to 1 (right). All attacks were made on
a UQGAN which was trained on the Tiny ImageNet 0-99 dataset. The image
shown is a test sample from the aforementioned dataset.

with larger perturbation strengths can clearly be distinguished from real images.
A noticeable difference is that FGSM produces much stronger perturbations than
PGD, showing the advantage of iterative approaches. While humans can easily
identify adversarial examples with extreme perturbations, the same does not gen-
erally hold for DNNs. This is especially important in situations where the actual
content analyzed by the NN can be altered freely as is the case for images1. For
someone with a malicious intent, a targeted attack would be the methodology of
choice. An attack, for example in the context of automated driving, could be carried
out by placing a sticker on a stop sign, which fools the network to detect a speed
limit sign [34].

In this section we will analyze to which extent UQ methods are capable of detecting
such attacks. If possible, adversarial examples could be filtered out together with
FPs and OoD examples.

Choice of Uncertainty Type

One of the first questions that comes up when trying to perform adversarial
example detection based on uncertainties is the type of uncertainty which should be
used. Smith and Gal [123] argue that adversarial examples lie off the natural image
manifold and therefore can be detected using epistemic uncertainty estimates. Other
works (e.g., [24, 44]) show results in favor of the aleatoric uncertainty or a mixture
of epistemic and aleatoric. To gain some insights into the choice of uncertainty
types, we evaluate the UQGAN and UQGAN-MCD using the three aforementioned
attacks and different uncertainties. Figure 8.9 shows the results for different amounts
of perturbation strength on the Tiny ImageNet 0-99 dataset, measured with the
AUROC (for adversarial example detection) and success rate (fraction of samples
which have a different predicted label after the attack). First, it is noticeable that the
PGD approach achieves higher success rates over a wider range of ϵ values than
FGSM. Regarding the detection, aleatoric uncertainty is obtaining higher AUROC
results for the untargeted attacks (FGSM and PGD). This is especially apparent
for the PGD approach, where aleatoric uncertainty and epistemic uncertainty have

1 In the case of, e.g., malware applications, which are altering their code in order to represent an
adversarial example, the content of the source code needs to be preserved in order to maintain
functionality. In this case large values of perturbation strength are likely not possible.
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Figure 8.9: Success and detection rates on the UQGAN and UQGAN-MCD models trained
on the Tiny ImageNet 0-99 dataset. Adversarial examples are generated by the
FGSM [43] (left), PGD [88] (middle) and PGD Least-Likely (right) with a white-
box attack. For each model the aleatoric as well as the epistemic uncertainties
are considered for adversarial example detection. For the results on the MNIST
0-4, CIFAR10 0-4 and CIFAR100 0-49 datasets please see Fig. A.1.

an absolute gap of approximately 80 %. For PGD Least-Likely, which targets the
least likely class, the epistemic uncertainty is achieving better results compared
to the aleatoric uncertainty. An explanation for this could be the fact that in the
case of targeted attacks the decision boundary of the target class might be far
away compared to other classes, which forces the attacked image to leave the ID
domain. In contrast to this, untargeted attacks can generate perturbations which
move the adversarial example to the closest decision boundary, as these require
less perturbation. The resulting adversarial examples are located in ID regions with
high data uncertainty, explaining the large advantage of aleatoric uncertainty in
this setting. It suggests that in practice a combination of aleatoric and epistemic
uncertainty is required to detect all kinds of attacks, which is in line with the
findings of Grosse et al. [44]. This result also supports the two-stage approach of
the UQGAN method, where in practice, aleatoric and epistemic uncertainty need to
be considered jointly. Results on the MNIST 0-4, CIFAR10 0-4 and CIFAR100 0-49
datasets can be found in Appendix A (Fig. A.1). On these datasets, the results are
coherent with the ones on the Tiny ImageNet 0-99 dataset, with aleatoric uncertainty
being better for detecting untargeted attacks and epistemic uncertainty for targeted
attacks. Therefore, in the following we will evaluate the aleatoric uncertainty on
untargeted attacks and the epistemic uncertainty on targeted adversarial examples.
Methods which do not distinguish into different sources of uncertainty, will use
their defined confidence/uncertainty measure for both attack types.
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Figure 8.10: Detection rates of adversarial examples generated by the FGSM [43] (top), PGD
[88] (middle) and PGD Least-Likely (bottom) with a white-box attack on the
Tiny ImageNet 0-99 dataset. Evaluation metrics are AUROC (left) and FPR95
(right) and are computed on the aleatoric uncertainty for the non-targeted
attacks (FGSM and PGD) and on the epistemic uncertainty for the targeted
PGD attack. Methods from this work are marked with a solid line. Please see
Figs. A.2 to A.4 for the graphics on the MNIST 0-4, CIFAR10 0-4 and CIFAR100
0-49 datasets.
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Detecting White-Box Attacks

Following our previous findings, we will now evaluate all UQ methods from
Table 8.3 on the task of adversarial example detection. Figure 8.10 summarizes the
results on the higher dimensional Tiny ImageNet 0-99 dataset.

Starting with the FGSM attack, we can see that the GKLD and UQGAN approaches
are the only ones which have an AUROC which is consistently above 50 % for
all perturbation strengths. While GKLD has an advantage for larger values of
ϵ, UQGAN, UQGAN-MCD, EGAN and DE are stronger for small perturbations.
Interestingly, GCE cannot compete with GKLD and most of the other methods on
this task, which suggests that in order to detect adversarial examples using gradient
metrics, information from all class predictions need to be taken into account.
This is a reasonable result as adversarial examples are shifting the prediction
probabilities from one class to another. In terms of AUROC, UQGAN-MCD and
the OvA baseline are among the best when ignoring GKLD and UQGAN. EGAN
has the highest AUROC and lowest FPR95 for small perturbations but is impacted
strongly by larger ones.

Switching our attention to the results for the PGD attack, the most striking result is
the superior performance of the UQGAN and UQGAN-MCD methods. While the
AUROC for most approaches quickly vanishes to about 0 % - 5 %, the two UQGAN
variants achieve an AUROC of above 80 % for small perturbations. Second, the
OvA baseline, although below 50 % AUROC, achieves considerably better results
than other methods and achieves AUROC values of around 40 % over all ϵ values.
Ranking behind OvA is the GKLD approach at approximately 20 % AUROC for
different perturbation strengths. For the FPR95 evaluation metric results are less
diversified, as all methods except the UQGAN variants have an FPR95 of close to
100 %. UQGAN as well as UQGAN-MCD again achieve superior performance on
this attack type, with increasing FPR95 for larger perturbation strengths, however.

On the targeted PGD Least-Likely, DE is standing out from the rest with a high
AUROC and comparatively low FPR95. For low perturbation strengths of less
than 0.3, the two UQGAN variants are second with the UQGAN-MCD being
slightly better than UQGAN. With larger ϵ values, the AUROC of both UQGANs
drops continuously and the OvA baseline and MCD are taking the second and
third place starting from a perturbation strength of 0.5. The results for the FPR95
performance metric are a bit different. DE is still achieving the lowest FPR95 but
the standard UQGAN is now consistently on the second place over all values of ϵ.
For perturbation strengths larger than 0.5, UQGAN, EGAN and OvA baseline are
obtaining the same FPR95 at around 90 %.

The results on MNIST 0-4, CIFAR10 0-4 and CIFAR100 0-49 can be found in Ap-
pendix A (Figs. A.2 to A.4). In general UQGAN is stronger than UQGAN-MCD
on the PGD attack and in terms of FPR95 on the PGD Least-Likely, while the
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UQGAN-MCD is better in terms of overall AUROC on PGD Least-Likely adversar-
ial examples. For the FGSM attack, results are not always as clear between the two
variants, and we cannot settle on a single best approach there. It remains however
consistent over the other datasets that both UQGANs are clearly outperforming
all other methods on the untargeted PGD attack. Interestingly the OvA baseline
from Section 6.1 is often among the best when considering untargeted attacks.
Although the results are not great, it hints on naturally higher results on the task of
adversarial example detection. On the MNIST 0-4 dataset we are again observing
similar results for GKLD as in the other evaluated tasks. In this case, AUROC and
FPR95 values are over nearly the whole range of perturbation strength very poor.
EGAN is also underperforming on MNIST 0-4, with a noticeable drop for an ϵ

above 0.4. Madry et al. [88] claimed the hypothesis that PGD adversarial examples
might be “universal” among first-order attacks, meaning a resistance to the PGD
examples would imply a resistance to all other attacks which are utilizing first-order
derivatives. As UQGAN and UQGAN-MCD have astonishing results on this type
of adversarial example but are not on all datasets among the best w.r.t. the FGSM
attack, this claim does not fully hold, at least when considering the task of detecting
adversarial examples.

Summarizing the task of adversarial example detection, we can conclude

• There is no uncertainty type which is universally applicable for the detection
of all adversarial example attacks

• GKLD is good for detecting FGSM attacks with large perturbation, GCE can
not compete on any attack

• UQGAN and UQGAN-MCD achieve superior results on the untargeted PGD
attack

• The OvA approach from Section 6.1 has a naturally higher detection rate of
untargeted adversarial examples compared to other methods

• DEs are obtaining good results on the targeted PGD Least-Likely, followed by
UQGAN, EGAN and OvA baseline in terms of FPR95
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C O N C L U S I O N

9.1 summary

This thesis proposed two approaches for the quantification of DNN uncertainties.
Both constitute a significant contribution to the UQ community and partially achieve
outstanding results.

Gradient Metrics offer a relatively inexpensive way (in terms of computational cost)
to quantify model uncertainty. They do not require architectural changes and can be
applied to already trained models. The quantitative results were compared against a
number of other approaches and especially against a related publication (GKLD by
Huang, Geng, and Li [60]) which uses a different objective to compute the gradients.
On the task of FP detection the GKLD method was surpassed by GCE (proposed in
Chapter 5) on three of the four datasets which were used for evaluation. Especially
on the benchmarks with less complexity (MNIST 0-4, CIFAR10 0-4), GKLD was
surpassed by GCE with large margins, which can be explained by the choice of loss
function and the increased overall confidence of the classification models on these
datasets. Compared to the other approaches, GCE ranks in a mid-tier, surpassing
the baselines and some related methods on MNIST 0-4 and CIFAR10 0-4, but being
inferior to most approaches on the higher dimensional CIFAR100 0-49 and Tiny
ImageNet 0-99 datasets. For the task of OoD detection, results compared to other
methods are reversed w.r.t. FP detection. Here, gradient metrics achieve better
results on higher dimensional problems like CIFAR100 0-49 and Tiny ImageNet
0-99, while not being able to compete against many techniques on the MNIST 0-4
and CIFAR10 0-4 datasets. Between the two gradient metric methods GCE and
GKLD, there is no clear evidence onto which of them is better suited for the task
of OoD detection. However, it is to note that GCE has a significant advantage over
GKLD on the highest dimensional Tiny ImageNet 0-99 benchmark in terms of
FPR95, which is a highly important evaluation metric for practical applications. On
the last downstream task, the adversarial example detection, GCE is surpassed by
nearly every other method. In the experiments we argued that this is most likely
due to the fact that the objective of GCE is only based on the MAP target, which
is exactly the place where adversarial attacks are aiming at. In contrast to this
finding, GKLD works surprisingly well for detecting untargeted attacks, especially
from the FGSM method, outperforming all other approaches for large perturbation
strengths. As a conclusion, gradient metrics are a suitable technique for resource
constrained applications which aim to detect OoD inputs. Here, gradient metrics
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are outperforming other baselines and can provide a gain for practical applications
in terms of FPR95.

The second proposed method, Uncertainty Quantification GAN (UQGAN), is able to
separate aleatoric and epistemic uncertainty in a principled way. Based on a novel
way to generate OoC data, combined with an integration of a theoretically grounded
OvA classification model, UQGAN(-MCD) is able to shield each class separately
from the OoC domain. This increases not only the ability to detect unknown inputs
but also increases the classification accuracy on all evaluated datasets. Particularly
with the integration of Monte Carlo-Dropout (MCD) into the UQGAN framework,
large improvements on all datasets and evaluation metrics could be achieved. Re-
garding classification accuracy the UQGAN-MCD is consistently improving by
∼ 5 % over the second-best competitor and even achieves relative improvements of
up to 50 % compared to closely related approaches. However, we also noticed that
the generated OoC data has a negative impact on the calibration of the classifier.
When measuring the ECE, UQGAN achieves low-tier results which can only be im-
proved by applying the MCD technique. Similar results can be observed for the task
of FP detection, which might actually be a result of the poor calibration. UQGAN
obtains relatively low results while UQGAN-MCD achieves average results and is
still surpassed by some other methods. The biggest advantage of this approach
is the outstanding performance on the task of OoD detection. On all evaluated
datasets, UQGAN-MCD is achieving top-1 results with often large margins of up
to 65 % relative improvement over the second-best method. Both variants are sur-
passing related works, especially in terms of FPR95, which constitutes a significant
advantage in practical applications. On the highest dimensional Tiny ImageNet 0-99
benchmark, UQGAN-MCD is even overtaking one of the oracles, which is a clear
indication of better OoD generalization when utilizing OoC data for class shielding.
Lastly, the ability to separate aleatoric and epistemic uncertainty gave us interesting
insights into the task of adversarial example detection. We found out that there
is no uncertainty type which is universally applicable for the detection of such
attacks. Interestingly, both UQGAN variants are achieving superior results on the
detection of untargeted PGD attacks, with absolute margins of up to 95 % for some
perturbation strengths and with respect to the FPR95 evaluation metric. For the
other attack types, UQGAN also achieves comparatively good results with an often
increased detection rate for smaller amounts of perturbation. Another observation
was that on this task, none of the two variants has an advantage over the other.

9.2 future work

With the increased use of DNNs in real-world applications, the area of UQ has
received increased interest in the research community. As a consequence, there
has been considerable progress in this field in the last years. However, as could be
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seen by the results in Chapter 8, there remains plenty of room for improvement in
comparison to the oracle results.

Besides GANs, there are other generative models that are capable of approximating
training distributions and therefore could potentially be good candidates for gener-
ating samples on the boundary of it. Especially in higher dimensional problems
there remain potentially large gains if the boundary of the training distribution can
be better approximated. New approaches in this area can also have a significant
effect on other tasks as has been shown by the increased classification accuracy of
the UQGAN-MCD approach in Chapter 8.

With respect to transferability, many UQ approaches are often not directly applicable
to other machine learning tasks, e.g., object detection, semantic segmentation or
regression. The task of object detection is especially difficult as these models are
trained to ignore objects which are not part of the training set. Which means, besides
having to identify unknown inputs to the classification part, an uncertainty measure
has to cover the situation of false negatives, from which there are potentially many.
Gradient metrics could very recently be transferred to the tasks of object detection
[106], semantic segmentation [86] and regression in the case of depth estimation
[55]. However, transferring a generative model to these tasks is not straight forward.
What should a generated example for the task of object detection look like? How
can we ensure proper bounding boxes for the generated objects? How can we
incorporate the fact that normally an object detector is trained to ignore these
inputs? Similar problems occur in the case of semantic segmentation and regression.
How is an OoD or OoC example defined for a regression task? There are no
categories that we can condition the model on. As most of these problems require
considerable changes in the architecture and/or the theory of currently existing
methods, they should be addressed in future research.

Another important point in terms of real-world applicability is the efficiency and
runtime of UQ methods. For applications like, e.g., autonomous driving, it is highly
critical that the uncertainty can be gathered in real-time in order to enable the
car to react to unforeseen and sudden events. Additionally, available compute
resources are also constrained in these systems, further restricting the space of
techniques which can be applied. We observed in the experiments that approaches
which require more computation time and/or hardware resources (e.g., DEs, MCD,
BNNs, UQGAN-MCD) are achieving generally better results than methods that
only require a single forward pass or a gradient computation (e.g., MCP, Entropy,
UQGAN, EGAN). Model uncertainty is a large contributor to the overall uncertainty
of an NN and quantifying it without having access to multiple model hypothesis
will be very challenging. Also, many approaches are not transferable to very high
dimensional tasks, e.g., high resolution images, dense prediction tasks or large
models with many parameters. Future research should focus on closing the gap
between sampling and deterministic approaches in order to be able to apply them
in practical applications.
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Until now, very few publications could give theoretical guarantees on predictions
and uncertainty estimates. Especially for safety-critical applications that affect
public areas, there could be demands from the legislator for guarantees about the
functioning of such systems. Without proper theoretical results this task is very
difficult to accomplish and future research in this area is of high interest to many
practitioners.
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A D D I T I O N A L Q UA N T I TAT I V E R E S U LT S

a.1 false positive detection

Method
MNIST 0-4 CIFAR10 0-4

Accuracy ↑ AUROC
S/F

↑ ECE ↓ Accuracy ↑ AUROC
S/F

↑ ECE ↓

GCE 99.87 (0.02) 99.68 (0.09) 0.11 (0.02) 82.42 (0.31) 83.90 (0.82) 11.34 (0.83)

UQGAN 99.74 (0.05) 99.35 (0.31) 0.15 (0.05) 87.26 (0.29) 84.71 (0.52) 10.35 (0.20)

UQGAN-MCD 99.80 (0.04) 99.42 (0.11) 1.38 (0.11) 90.26 (0.22) 89.19 (0.13) 2.34 (0.33)

MCP 99.87 (0.02) 99.68 (0.13) 0.11 (0.02) 82.42 (0.31) 83.29 (0.89) 11.34 (0.83)

H̃ 99.87 (0.02) 99.66 (0.14) 0.11 (0.02) 82.42 (0.31) 83.41 (0.88) 11.34 (0.83)

GKLD 99.87 (0.02) 60.42 (6.46) 0.11 (0.02) 82.42 (0.31) 66.39 (2.40) 11.34 (0.83)

OvA 99.84 (0.06) 99.84 (0.06) 0.12 (0.04) 82.82 (0.62) 82.19 (0.81) 8.62 (4.55)

MCD 99.91 (0.02) 99.62 (0.12) 0.83 (0.10) 85.08 (0.56) 83.91 (0.49) 9.90 (0.42)

BBB 99.67 (0.02) 99.50 (0.06) 0.78 (0.05) 84.05 (0.33) 85.22 (0.40) 9.17 (0.41)

DE 99.89 (0.03) 99.74 (0.08) 0.15 (0.01) 85.43 (0.22) 85.29 (0.57) 3.10 (0.29)

CCGAN 99.82 (0.02) 99.62 (0.15) 0.16 (0.01) 83.58 (0.11) 85.08 (0.18) 9.31 (0.80)

EGAN 99.70 (0.03) 98.13 (0.45) 1.98 (0.85) 82.46 (0.35) 82.88 (0.49) 6.71 (1.81)

H̃-O 99.79 (0.06) 98.93 (0.68) 0.82 (0.06) 83.41 (0.58) 80.73 (0.54) 7.53 (0.27)

OvA-O 99.77 (0.03) 99.47 (0.16) 0.14 (0.02) 83.70 (0.50) 81.27 (1.03) 8.85 (0.49)

Table A.1: Results for MNIST 0-4 as ID vs {MNIST 5-9, EMNIST-Letters, Omniglot, Fashion-
MNIST, SVHN, CIFAR10} as OoD datasets. For each performance metric the best
result is highlighted in bold green and the worst in bold red.
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a.2 out-of-distribution detection

a.2.1 Aggregated Results

Method
MNIST 0-4 CIFAR10 0-4

AUROC ↑ AUPR-In ↑ FPR95 ↓ AUROC ↑ AUPR-In ↑ FPR95 ↓

GCE 97.03 (0.17) 69.19 (1.19) 9.44 (0.37) 71.75 (1.73) 29.91 (3.30) 89.48 (1.60)

UQGAN 98.03 (0.28) 80.05 (2.65) 8.73 (1.47) 86.49 (0.63) 49.08 (1.05) 45.78 (2.90)

UQGAN-MCD 98.58 (0.25) 83.71 (2.40) 5.60 (0.77) 89.64 (0.23) 53.15 (0.27) 43.54 (1.56)

MCP 97.07 (0.12) 69.00 (1.65) 9.71 (0.37) 72.52 (0.51) 30.52 (0.97) 87.68 (0.43)

H̃ 97.13 (0.12) 68.76 (1.94) 9.65 (0.39) 72.85 (0.49) 30.43 (0.87) 85.41 (0.89)

GKLD 78.04 (2.71) 11.43 (0.95) 43.21 (7.30) 71.62 (1.10) 18.61 (1.69) 81.05 (0.96)

OvA 97.12 (0.17) 66.68 (1.93) 9.45 (0.56) 72.52 (2.16) 32.24 (2.14) 88.74 (1.86)

MCD 97.69 (0.16) 72.82 (2.55) 8.28 (0.39) 77.56 (1.27) 38.75 (1.40) 82.35 (1.08)

BBB 95.46 (0.26) 67.09 (2.70) 17.33 (1.06) 74.23 (0.96) 29.91 (1.61) 83.97 (1.47)

DE 97.70 (0.03) 73.09 (0.62) 7.81 (0.21) 74.24 (0.73) 32.81 (1.50) 85.07 (0.81)

CCGAN 98.15 (0.13) 78.31 (2.01) 7.65 (0.46) 73.33 (0.53) 32.32 (1.09) 85.04 (1.09)

EGAN 97.78 (0.70) 69.77 (10.20) 8.98 (1.90) 86.01 (1.60) 42.32 (2.81) 45.39 (3.26)

H̃-O 99.90 (0.02) 98.66 (0.28) 0.43 (0.10) 95.44 (0.28) 68.51 (0.57) 17.27 (1.44)

OvA-O 99.90 (0.01) 98.50 (0.12) 0.40 (0.03) 91.38 (0.74) 53.75 (1.49) 35.94 (3.79)

Table A.2: Results for MNIST 0-4 as ID vs. {MNIST 5-9, CIFAR10, EMNIST-Letters, Om-
niglot, Fashion-MNIST, SVHN} as OoD datasets and for CIFAR10 0-4 as ID vs.
{CIFAR10 5-9, LSUN, SVHN, Fashion-MNIST, MNIST} as OoD datasets. For each
performance metric the best result is highlighted in bold green and the worst in
bold red.
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a.2.2 Results between Individual Datasets

Method AUROC ↑ AUPR-In ↑ FPR95 ↓ AUROC ↑ AUPR-In ↑ FPR95 ↓

MNIST 0-4 vs. MNIST 5-9 MNIST 0-4 vs. EMNIST-Letters

GCE 92.75 (0.89) 91.30 (1.16) 19.99 (1.43) 91.81 (0.34) 74.01 (0.96) 28.55 (0.78)

UQGAN 92.34 (2.31) 93.17 (2.78) 38.68 (7.09) 96.44 (0.76) 86.32 (2.69) 13.80 (3.06)

UQGAN-MCD 95.50 (0.53) 96.22 (0.59) 24.46 (2.20) 96.71 (0.55) 86.99 (2.49) 12.49 (1.63)

MCP 92.77 (0.55) 91.46 (1.05) 22.17 (1.04) 91.63 (0.28) 73.52 (1.02) 29.31 (0.88)

H̃ 92.80 (0.54) 91.20 (1.27) 22.11 (1.04) 91.68 (0.27) 73.51 (1.14) 29.23 (0.91)

GKLD 39.16 (0.94) 41.88 (0.39) 87.51 (2.38) 48.08 (2.28) 17.48 (0.79) 86.33 (2.73)

OvA 93.65 (0.97) 92.32 (1.36) 20.06 (2.98) 91.32 (0.31) 70.45 (1.43) 29.30 (1.12)

MCD 94.32 (1.10) 93.05 (1.79) 17.27 (1.60) 92.80 (0.37) 76.85 (1.53) 26.72 (1.00)

BBB 93.73 (0.99) 92.74 (1.58) 22.17 (1.40) 90.59 (0.80) 71.60 (2.22) 34.28 (1.54)

DE 94.20 (0.24) 92.82 (0.18) 16.89 (1.09) 93.08 (0.10) 77.32 (0.73) 24.65 (0.37)

CCGAN 95.33 (0.74) 95.43 (1.00) 19.74 (1.46) 94.60 (0.41) 81.71 (1.56) 22.28 (1.87)

EGAN 88.91 (2.64) 86.09 (4.55) 40.49 (5.53) 99.27 (0.30) 97.05 (1.22) 3.61 (1.48)

H̃-O 99.76 (0.04) 99.77 (0.03) 0.93 (0.12) 99.84 (0.04) 99.43 (0.12) 0.73 (0.21)

OvA-O 99.65 (0.04) 99.66 (0.03) 1.21 (0.13) 99.87 (0.01) 99.49 (0.05) 0.59 (0.10)

MNIST 0-4 vs. Omniglot MNIST 0-4 vs. Fashion-MNIST

GCE 98.29 (0.25) 96.54 (0.59) 6.20 (0.89) 99.30 (0.13) 99.14 (0.19) 1.16 (0.65)

UQGAN 96.70 (0.52) 94.25 (1.07) 18.00 (3.26) 99.36 (0.19) 99.04 (0.32) 2.19 (1.36)

UQGAN-MCD 98.45 (0.24) 96.94 (0.37) 5.95 (1.08) 99.65 (0.26) 99.52 (0.35) 0.68 (0.98)

MCP 98.54 (0.06) 97.10 (0.24) 5.52 (0.50) 99.29 (0.23) 99.03 (0.36) 1.79 (1.34)

H̃ 98.59 (0.06) 97.15 (0.24) 5.36 (0.50) 99.35 (0.22) 99.06 (0.36) 1.74 (1.31)

GKLD 79.02 (3.05) 57.04 (4.14) 57.40 (5.72) 90.02 (5.66) 79.32 (0.49) 29.63 (13.42)

OvA 98.75 (0.11) 97.60 (0.22) 4.75 (0.74) 99.39 (0.12) 99.15 (0.16) 1.60 (0.53)

MCD 98.96 (0.09) 97.56 (0.27) 3.85 (0.43) 99.69 (0.05) 99.52 (0.08) 0.75 (0.21)

BBB 96.82 (0.16) 95.22 (0.30) 14.86 (0.56) 97.93 (0.18) 97.64 (0.24) 8.02 (1.30)

DE 98.93 (0.04) 97.77 (0.07) 3.76 (0.20) 99.59 (0.09) 99.38 (0.15) 1.01 (0.63)

CCGAN 98.35 (0.29) 96.22 (0.83) 6.78 (1.06) 99.95 (0.01) 99.91 (0.03) 0.06 (0.02)

EGAN 91.03 (3.53) 78.34 (9.87) 36.96 (9.71) 99.92 (0.02) 99.84 (0.04) 0.23 (0.11)

H̃-O 99.68 (0.09) 99.25 (0.21) 1.26 (0.35) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)

OvA-O 99.68 (0.05) 99.18 (0.13) 1.22 (0.17) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)

MNIST 0-4 vs. SVHN MNIST 0-4 vs. CIFAR10

GCE 99.54 (0.09) 99.02 (0.27) 0.43 (0.20) 99.47 (0.10) 99.37 (0.15) 0.56 (0.29)

UQGAN 99.83 (0.09) 99.50 (0.21) 0.17 (0.06) 99.84 (0.08) 99.76 (0.11) 0.21 (0.12)

UQGAN-MCD 99.80 (0.22) 99.47 (0.53) 0.32 (0.40) 99.84 (0.19) 99.78 (0.26) 0.28 (0.47)

MCP 99.68 (0.12) 99.14 (0.24) 0.39 (0.12) 99.54 (0.13) 99.39 (0.17) 0.59 (0.30)

H̃ 99.75 (0.11) 99.22 (0.23) 0.37 (0.11) 99.61 (0.13) 99.45 (0.17) 0.56 (0.29)

GKLD 97.43 (2.68) 86.72 (11.38) 8.79 (8.98) 95.49 (4.38) 90.98 (8.31) 16.45 (14.50)

OvA 99.76 (0.07) 99.30 (0.17) 0.36 (0.12) 99.55 (0.16) 99.39 (0.21) 0.75 (0.45)

MCD 99.94 (0.01) 99.75 (0.05) 0.15 (0.03) 99.92 (0.03) 99.87 (0.05) 0.09 (0.05)

BBB 97.20 (0.32) 95.75 (0.34) 11.46 (3.55) 97.52 (0.40) 97.48 (0.35) 7.44 (2.13)

DE 99.89 (0.01) 99.55 (0.05) 0.25 (0.06) 99.82 (0.05) 99.73 (0.07) 0.20 (0.09)

CCGAN 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)

EGAN 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.01) 0.01 (0.01)

H̃-O 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)

OvA-O 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)

Table A.3: An OoD dataset-wise breakdown of the MNIST 0-4 results given in Table A.2. In
each column of each dataset comparison, the best value is marked in bold green
and the worst one in bold red.
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Method AUROC ↑ AUPR-In ↑ FPR95 ↓ AUROC ↑ AUPR-In ↑ FPR95 ↓

CIFAR10 0-4 vs. CIFAR10 5-9 CIFAR10 0-4 vs. LSUN

GCE 65.25 (0.90) 67.09 (1.01) 91.32 (0.87) 72.98 (1.04) 64.64 (1.26) 88.50 (1.44)

UQGAN 65.94 (0.29) 72.26 (0.30) 86.94 (1.12) 76.45 (0.52) 69.35 (0.56) 80.50 (1.31)

UQGAN-MCD 71.31 (0.49) 71.98 (0.35) 84.07 (0.76) 82.52 (0.72) 76.03 (0.80) 72.93 (1.14)

MCP 64.45 (0.55) 65.94 (0.80) 90.73 (0.33) 72.84 (0.59) 63.69 (0.93) 87.11 (0.56)

H̃ 64.64 (0.53) 65.82 (0.69) 89.50 (0.69) 73.33 (0.51) 63.95 (0.90) 83.58 (0.56)

GKLD 54.55 (1.51) 53.84 (1.00) 91.51 (0.79) 61.68 (2.18) 43.81 (2.63) 86.42 (0.73)

OvA 65.31 (0.67) 66.28 (0.76) 88.15 (0.52) 74.94 (0.79) 66.33 (1.06) 82.50 (1.03)

MCD 63.52 (0.33) 64.11 (0.38) 90.01 (0.39) 77.04 (0.22) 70.27 (0.41) 81.53 (0.59)

BBB 66.78 (0.34) 67.16 (1.07) 88.50 (0.62) 75.31 (0.65) 66.79 (1.13) 82.64 (1.16)

DE 66.85 (0.38) 67.64 (0.57) 87.59 (0.42) 78.03 (0.24) 69.56 (0.47) 77.07 (0.66)

CCGAN 65.58 (0.13) 66.94 (0.18) 88.46 (0.64) 75.25 (0.33) 67.26 (0.41) 81.66 (0.99)

EGAN 65.56 (0.50) 66.67 (0.51) 89.09 (1.17) 75.82 (1.22) 67.74 (1.65) 83.19 (1.91)

H̃-O 73.21 (0.52) 75.00 (0.41) 81.41 (0.88) 98.27 (0.09) 96.81 (0.14) 7.91 (0.45)

OvA-O 69.45 (0.73) 69.58 (0.66) 84.92 (0.92) 95.92 (0.38) 92.38 (0.65) 19.36 (2.03)

CIFAR10 0-4 vs. SVHN CIFAR10 0-4 vs. Fashion-MNIST

GCE 70.64 (2.80) 42.29 (5.25) 85.95 (1.89) 72.16 (1.72) 65.53 (1.83) 92.24 (1.97)

UQGAN 98.50 (0.26) 92.05 (1.07) 5.99 (1.27) 78.78 (0.88) 72.41 (0.85) 81.09 (2.84)

UQGAN-MCD 98.93 (0.12) 94.40 (0.62) 5.09 (0.44) 84.75 (1.32) 80.48 (1.45) 76.11 (5.07)

MCP 70.96 (1.87) 44.63 (2.22) 88.76 (1.38) 73.90 (1.18) 67.14 (1.35) 88.48 (0.82)

H̃ 71.23 (1.94) 44.81 (2.17) 87.04 (2.22) 73.93 (1.26) 67.18 (1.38) 88.47 (1.71)

GKLD 69.03 (1.41) 34.75 (3.38) 85.19 (1.75) 81.11 (1.47) 74.12 (2.02) 76.69 (2.73)

OvA 70.07 (4.23) 45.76 (4.99) 91.83 (3.14) 73.94 (1.31) 68.28 (1.45) 89.25 (1.33)

MCD 76.73 (2.77) 58.97 (4.10) 84.98 (1.87) 81.85 (0.75) 77.62 (0.79) 80.75 (1.85)

BBB 76.21 (0.58) 50.10 (1.76) 80.85 (1.42) 74.51 (1.34) 68.52 (1.75) 88.11 (1.87)

DE 72.02 (1.11) 45.95 (2.24) 88.13 (0.61) 72.82 (1.20) 66.38 (2.02) 89.97 (0.84)

CCGAN 73.60 (0.61) 48.68 (1.08) 85.45 (1.08) 74.47 (0.52) 68.40 (0.77) 87.47 (0.60)

EGAN 98.43 (0.42) 91.36 (1.82) 5.62 (1.68) 72.44 (3.94) 66.54 (4.86) 89.38 (2.57)

H̃-O 96.85 (0.62) 88.28 (1.42) 14.26 (2.88) 97.89 (0.16) 96.65 (0.28) 9.50 (0.61)

OvA-O 89.47 (1.47) 70.44 (2.54) 48.76 (7.42) 96.63 (0.40) 94.34 (0.71) 17.37 (2.48)

CIFAR10 0-4 vs. MNIST

GCE 76.23 (0.64) 73.21 (0.58) 95.87 (1.34)

UQGAN 83.24 (3.79) 75.49 (4.07) 58.75 (13.88)

UQGAN-MCD 86.64 (1.18) 82.03 (1.28) 61.32 (5.75)

MCP 78.89 (1.79) 74.29 (2.40) 83.07 (2.10)

H̃ 79.59 (1.81) 74.66 (2.38) 77.57 (3.12)

GKLD 87.37 (1.61) 84.61 (2.51) 64.02 (2.07)

OvA 78.65 (0.75) 75.69 (0.57) 86.70 (2.27)

MCD 82.98 (1.21) 79.05 (1.68) 73.99 (1.97)

BBB 71.46 (4.50) 62.19 (6.23) 87.01 (3.35)

DE 81.33 (1.54) 76.97 (1.67) 78.85 (3.47)

CCGAN 73.41 (2.43) 64.90 (4.16) 83.21 (2.58)

EGAN 87.63 (3.97) 80.69 (5.53) 45.16 (11.84)

H̃-O 97.59 (0.26) 97.10 (0.30) 10.16 (2.03)

OvA-O 97.56 (0.20) 96.52 (0.40) 13.25 (1.95)

Table A.4: An OoD dataset-wise breakdown of the CIFAR10 0-4 results given in Table A.2.
In each column of each dataset comparison, the best value is marked in bold
green and the worst one in bold red.
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Method AUROC ↑ AUPR-In ↑ FPR95 ↓ AUROC ↑ AUPR-In ↑ FPR95 ↓

CIFAR100 0-49 vs. CIFAR100 50-99 CIFAR100 0-49 vs. LSUN

GCE 50.00 (0.00) 50.10 (0.03) 94.98 (0.00) 63.75 (0.38) 52.72 (0.39) 92.68 (0.49)

UQGAN 64.52 (0.17) 65.00 (0.35) 89.57 (0.47) 65.30 (0.56) 52.94 (0.30) 90.36 (0.61)

UQGAN-MCD 66.97 (0.30) 65.14 (0.37) 87.74 (0.48) 68.60 (0.62) 56.80 (0.81) 88.77 (0.65)

MCP 62.43 (0.72) 62.87 (1.41) 90.92 (0.48) 65.21 (1.34) 53.47 (1.45) 89.96 (1.00)

H̃ 63.53 (0.62) 63.45 (1.36) 90.23 (0.76) 66.62 (1.51) 54.37 (1.65) 88.76 (1.16)

GKLD 50.00 (0.00) 50.01 (0.00) 94.99 (0.01) 60.62 (0.39) 42.17 (0.83) 90.51 (0.52)

OvA 61.62 (0.31) 61.30 (0.42) 91.49 (0.37) 64.09 (1.09) 51.10 (1.14) 90.81 (0.92)

MCD 62.97 (0.22) 62.21 (0.41) 90.34 (0.37) 67.19 (1.00) 56.12 (0.89) 87.38 (1.22)

BBB 64.16 (0.36) 64.56 (0.61) 90.44 (0.47) 67.02 (0.84) 55.60 (1.09) 90.05 (0.57)

DE 66.95 (0.20) 65.94 (0.39) 87.90 (0.47) 71.34 (0.64) 59.76 (0.85) 84.60 (1.38)

CCGAN 62.39 (0.67) 62.31 (0.12) 90.10 (0.54) 64.24 (0.83) 51.61 (0.74) 89.53 (0.94)

EGAN 62.66 (0.40) 61.82 (0.50) 89.89 (0.69) 62.59 (1.01) 51.97 (0.51) 93.96 (1.29)

H̃-O 64.42 (0.31) 65.50 (0.31) 89.87 (0.86) 70.00 (0.33) 58.01 (0.24) 85.32 (0.88)

OvA-O 67.55 (1.07) 66.49 (1.24) 86.70 (0.53) 78.10 (0.99) 64.04 (1.12) 70.25 (2.55)

CIFAR100 0-49 vs. SVHN CIFAR100 0-49 vs. Fashion-MNIST

GCE 70.97 (1.28) 41.46 (2.44) 80.27 (1.78) 61.01 (1.61) 53.51 (1.76) 95.26 (1.90)

UQGAN 96.47 (1.26) 81.59 (5.55) 11.95 (3.93) 62.98 (1.71) 51.89 (2.88) 92.37 (1.04)

UQGAN-MCD 95.63 (1.27) 80.03 (4.04) 15.47 (4.21) 64.68 (2.02) 57.46 (1.99) 91.50 (1.15)

MCP 66.32 (2.15) 37.61 (3.13) 89.73 (1.60) 68.46 (0.56) 60.24 (0.85) 89.36 (0.46)

H̃ 68.09 (2.54) 38.90 (3.51) 89.65 (1.44) 68.95 (0.48) 60.59 (0.68) 87.66 (0.75)

GKLD 66.38 (2.56) 28.83 (4.07) 88.44 (2.42) 78.17 (1.17) 72.80 (1.32) 82.50 (2.15)

OvA 60.63 (3.90) 26.37 (6.04) 93.11 (1.92) 59.80 (2.67) 51.35 (3.14) 95.13 (0.65)

MCD 65.65 (2.51) 35.78 (3.03) 91.07 (1.95) 70.50 (1.49) 63.75 (1.52) 88.43 (2.58)

BBB 72.62 (1.07) 42.79 (1.62) 81.59 (2.61) 66.22 (2.02) 57.55 (3.02) 91.91 (1.20)

DE 75.01 (1.06) 49.77 (2.19) 87.10 (1.26) 67.42 (1.14) 60.17 (1.35) 85.46 (1.12)

CCGAN 68.73 (0.49) 39.41 (0.95) 87.73 (0.71) 67.04 (0.89) 56.88 (0.96) 86.27 (1.46)

EGAN 92.83 (2.72) 71.54 (8.20) 23.57 (7.35) 59.12 (6.18) 49.44 (5.14) 94.58 (3.06)

H̃-O 86.97 (0.75) 63.53 (1.22) 50.09 (2.55) 97.47 (0.45) 94.63 (0.85) 10.94 (1.96)

OvA-O 98.17 (0.22) 90.82 (0.89) 8.11 (0.98) 99.62 (0.05) 99.13 (0.12) 1.65 (0.23)

CIFAR100 0-49 vs. MNIST

GCE 62.85 (1.49) 60.16 (2.08) 98.71 (1.45)

UQGAN 77.28 (5.81) 70.28 (6.06) 78.32 (10.93)

UQGAN-MCD 77.13 (3.87) 73.64 (4.41) 90.07 (2.55)

MCP 75.57 (4.00) 68.72 (4.65) 81.22 (5.60)

H̃ 79.14 (4.38) 72.10 (5.53) 76.56 (8.39)

GKLD 89.52 (1.53) 86.48 (1.87) 54.69 (5.59)

OvA 71.94 (3.24) 64.45 (3.29) 90.07 (2.67)

MCD 73.41 (1.90) 66.48 (3.12) 87.39 (2.49)

BBB 71.27 (2.11) 63.84 (3.33) 91.43 (1.92)

DE 85.92 (1.62) 82.02 (1.88) 68.03 (5.45)

CCGAN 77.66 (1.41) 69.86 (1.33) 76.68 (1.55)

EGAN 77.88 (6.84) 71.93 (7.67) 80.26 (14.55)

H̃-O 99.79 (0.06) 99.56 (0.12) 1.02 (0.28)

OvA-O 99.99 (0.01) 99.97 (0.01) 0.03 (0.03)

Table A.5: An OoD dataset-wise breakdown of the CIFAR100 0-49 results given in Table 8.5.
In each column of each dataset comparison, the best value is marked in bold
green and the worst one in bold red.
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Method AUROC ↑ AUPR-In ↑ FPR95 ↓ AUROC ↑ AUPR-In ↑ FPR95 ↓

Tiny ImageNet 0-99 vs.
Tiny ImageNet 100-199

Tiny ImageNet 0-99 vs. SVHN

GCE 57.51 (0.40) 60.56 (0.60) 93.66 (0.50) 76.14 (2.28) 42.26 (2.33) 72.46 (5.69)

UQGAN 59.16 (0.52) 61.14 (0.44) 93.10 (0.35) 98.98 (0.44) 93.46 (2.87) 3.49 (1.31)

UQGAN-MCD 62.01 (0.22) 64.70 (0.27) 91.97 (0.40) 99.39 (0.41) 96.18 (2.67) 2.19 (1.36)

MCP 58.16 (0.25) 60.98 (0.30) 93.22 (0.52) 63.33 (1.39) 32.44 (2.05) 90.93 (1.05)

H̃ 58.69 (0.30) 61.42 (0.31) 93.30 (0.27) 65.35 (1.48) 34.25 (1.80) 91.90 (1.66)

GKLD 57.44 (0.44) 57.92 (0.62) 93.05 (0.72) 62.91 (2.57) 30.05 (4.20) 95.10 (2.05)

OvA 58.53 (0.45) 60.28 (0.33) 93.29 (0.27) 59.65 (4.57) 32.66 (4.11) 97.02 (0.95)

MCD 61.12 (0.40) 64.16 (0.39) 93.11 (0.62) 63.54 (4.81) 37.05 (3.30) 95.33 (1.73)

BBB 57.99 (0.47) 60.44 (0.42) 93.18 (0.60) 74.18 (1.78) 38.32 (1.70) 73.54 (5.25)

DE 60.70 (0.23) 64.15 (0.23) 93.16 (0.34) 73.51 (0.81) 48.67 (1.31) 90.76 (1.18)

CCGAN 58.45 (0.23) 61.26 (0.31) 93.22 (0.53) 61.86 (1.66) 31.25 (1.56) 92.79 (0.76)

EGAN 56.32 (0.80) 58.82 (0.48) 94.07 (0.60) 91.40 (6.55) 71.24 (16.70) 24.80 (15.25)

H̃-O 58.57 (0.73) 61.46 (0.75) 93.23 (0.68) 84.04 (2.72) 57.38 (4.13) 57.04 (8.27)

OvA-O 60.16 (0.31) 61.23 (0.23) 91.92 (0.57) 99.39 (0.19) 95.80 (1.31) 2.25 (0.70)

Tiny ImageNet 0-99 vs. Fashion-MNIST Tiny ImageNet 0-99 vs. MNIST

GCE 58.74 (5.77) 47.83 (4.52) 94.31 (3.37) 50.16 (4.73) 43.98 (3.78) 98.11 (2.08)

UQGAN 55.53 (4.69) 42.81 (4.04) 93.93 (3.42) 61.69 (3.34) 49.40 (3.00) 91.39 (3.62)

UQGAN-MCD 95.06 (1.45) 89.18 (2.88) 17.29 (4.71) 99.78 (0.18) 99.52 (0.39) 1.04 (0.94)

MCP 61.16 (2.40) 51.69 (2.62) 94.55 (1.42) 58.91 (2.05) 48.66 (2.13) 94.19 (1.70)

H̃ 60.40 (2.88) 52.07 (2.77) 97.10 (1.16) 58.77 (2.97) 49.18 (2.26) 95.64 (2.23)

GKLD 65.97 (4.36) 59.63 (3.65) 94.10 (2.68) 78.40 (2.26) 72.64 (2.37) 78.92 (4.49)

OvA 45.63 (4.00) 41.60 (3.30) 99.70 (0.21) 51.48 (10.97) 45.52 (10.95) 97.71 (2.51)

MCD 56.34 (6.24) 53.15 (4.84) 98.79 (0.84) 71.00 (3.85) 66.16 (4.66) 95.63 (2.55)

BBB 61.83 (2.86) 50.29 (2.99) 91.78 (2.26) 63.37 (5.57) 48.91 (6.19) 87.10 (5.19)

DE 58.77 (1.34) 55.05 (2.29) 99.35 (0.25) 65.32 (1.95) 59.31 (1.74) 96.40 (1.83)

CCGAN 58.59 (2.13) 49.75 (1.96) 97.04 (0.84) 57.31 (5.67) 49.00 (5.73) 96.97 (1.45)

EGAN 72.10 (11.72) 60.00 (14.00) 67.91 (17.06) 93.78 (4.14) 87.74 (6.11) 22.91 (18.67)

H̃-O 91.63 (2.01) 85.61 (3.03) 35.67 (8.17) 96.29 (1.14) 93.32 (2.04) 17.98 (5.19)

OvA-O 99.81 (0.11) 99.50 (0.27) 0.74 (0.43) 100 (0.00) 100 (0.00) 0.00 (0.00)

Table A.6: An OoD dataset-wise breakdown of the Tiny ImageNet 0-99 results given in
Table 8.5. In each column of each dataset comparison, the best value is marked
in bold green and the worst one in bold red.
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a.3 adversarial example detection
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Figure A.1: Success and detection rates on the UQGAN and UQGAN-MCD models trained
on the MNIST 0-4 (top row), CIFAR10 0-4 (middle row) and CIFAR100 0-49
(bottom row) datasets. Adversarial examples are generated by the FGSM [43]
(left column), PGD [88] (middle column) and PGD Least-Likely (right column)
with a white-box attack. For each model the aleatoric as well as the epistemic
uncertainties are considered for the task of adversarial example detection
measured with the AUROC
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Figure A.2: Detection rates of adversarial examples generated by the FGSM [43] (top), PGD
[88] (middle) and PGD Least-Likely (bottom) with a white-box attack on the
MNIST 0-4 dataset. Evaluation metrics are AUROC (left) and FPR95 (right)
and are computed on the aleatoric uncertainty for the non-targeted attacks
(FGSM and PGD) and on the epistemic uncertainty for the targeted PGD attack.
Methods from this work are marked with a solid line.
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Figure A.3: Detection rates of adversarial examples generated by the FGSM [43] (top), PGD
[88] (middle) and PGD Least-Likely (bottom) with a white-box attack on the
CIFAR10 0-4 dataset. Evaluation metrics are AUROC (left) and FPR95 (right)
and are computed on the aleatoric uncertainty for the non-targeted attacks
(FGSM and PGD) and on the epistemic uncertainty for the targeted PGD attack.
Methods from this work are marked with a solid line.
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Figure A.4: Detection rates of adversarial examples generated by the FGSM [43] (top), PGD
[88] (middle) and PGD Least-Likely (bottom) with a white-box attack on the
CIFAR100 0-49 dataset. Evaluation metrics are AUROC (left) and FPR95 (right)
and are computed on the aleatoric uncertainty for the non-targeted attacks
(FGSM and PGD) and on the epistemic uncertainty for the targeted PGD attack.
Methods from this work are marked with a solid line.
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b.1 gradient metrics and layer choice
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Figure B.1: AUROC and FPR95 for the min gradient metric on different layers. Left: Gradi-
ent metric from individual layers, with layer 5 being the closest to the output
and layer 1 being the closest to the input of the NN. Right: Gradient metric
for multiple layers, starting from the closest to the output, successively adding
more layers. Layer 1-5 is the same as over the whole network.
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Figure B.2: AUROC, FPR95 and AUPR-In for 10 different gradient metrics on the MNIST
0-4, CIFAR10 0-4, CIFAR100 0-49 and Tiny ImageNet 0-99 evaluation sets.
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Figure B.3: Hyperparameter evaluation for λcl from Eq. (6.28). All training runs were
performed on the respective training dataset and evaluated on the evaluation
sets. A fixed seed was used in order to ensure equal conditions for all parameter
combinations. For MNIST 0-4 the other hyperparameters were fixed at λR = 14,
λreal = 0.5, latent dimension = 16, while for CIFAR10 0-4 they were fixed at
λR = 0, λreal = 0.6 and latent dimension = 128. The OoD detection results were
computed on the evaluation sets of the respective OoD datasets from Table 8.2.
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Figure B.4: Hyperparameter evaluation for λreal from Eq. (6.30). All training runs were
performed on the respective training dataset and evaluated on the evaluation
sets. A fixed seed was used in order to ensure equal conditions for all parameter
combinations. For MNIST 0-4 the other hyperparameters were fixed at λR = 32,
λcl = 1, latent dimension = 16, while for CIFAR10 0-4 they were fixed at λR = 0,
λcl = 2 and latent dimension = 128. The OoD detection results were computed
on the evaluation sets of the respective OoD datasets from Table 8.2.
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Figure B.5: Hyperparameter evaluation for λR from Eq. (6.28). All training runs were
performed on the respective training dataset and evaluated on the evaluation
sets. A fixed seed was used in order to ensure equal conditions for all parameter
combinations. For MNIST 0-4 the other hyperparameters were fixed at λR = 32,
λcl = 1, λreal = 0.5, while for CIFAR10 0-4 they were fixed at λR = 0, λcl = 4
and λreal = 0.6. The OoD detection results were computed on the evaluation
sets of the respective OoD datasets from Table 8.2.
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Figure B.6: Hyperparameter evaluation for the latent dimension of the cAE in Eq. (6.27). All
training runs were performed on the respective training dataset and evaluated
on the evaluation sets. A fixed seed was used in order to ensure equal conditions
for all parameter combinations. For MNIST 0-4 the other hyperparameters were
fixed at λcl = 1, λreal = 0.5 and latent dimension=16, while for CIFAR10 0-4
they were fixed at λcl = 4 and λreal = 0.6 and latent dimension=128. The OoD
detection results were computed on the evaluation sets of the respective OoD
datasets from Table 8.2.
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