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N O TAT I O N

a,b, c, . . . scalar

a, b, c, . . . vector; all vectors are column vectors.

A, B, C, . . . matrix or tensor

A,B,C, . . . univariate random variable

A,B,C, . . . multivariate random variable

A,B,C, . . . integer value for, e.g., counts, cardinalities or dimensionalities

A,B,C, . . . set

|A| the cardinality of set A

A(i) the i-th element in set A

Ā average value of the set A, i.e., 1
|A|

∑|A|
i=1A

(i)

aT the transpose of vector a

â, â estimate or prediction of a scalar or vector

ai the i-th element of vector a

ai,j the element of the matrix A at row i and column j

diag(A) the main diagonal of A

a
(j)
i the i-th element of the j-th vector in set S =

{
a(j)
}n
j=1

f(x), f(x) scalar function with scalar or vector argument;

for all functions that are only defined on scalars,

a vectorial argument indicates element-wise application of the function

f(x) vector function with vector argument
∂f(x)
∂xi

the partial derivative of f with respect to xi
E[X] the expected value of the univariate random variable X

〈a, b〉 inner product between the vectors a and b

[[P]] = 1 Probability of 1 when P using Iverson’s bracket notation

||·|| the Euclidean norm ||·||2
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{O} frame attached to point {O}
{O}

{J} aj (t) acceleration a of a point j located in frame attached to body {J}

with respect to an origin frame {O}
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1I N T R O D U C T I O N

Methods of Human Activity Recognition (HAR) have been developed for the purpose of
automatically classifying recordings of human movements into a set of activities. Captur-
ing, evaluating and analysing sequential data to accurately recognise human activities is
critical for many applications in pervasive and ubiquitous computing applications, e.g., in
applications such as mobile- or ambient-assisted living, smart-homes, Activities of Daily
Living (ADL), health support and rehabilitation, sports, automotive surveillance, and
industry 4.0 [CGD+

13, CFK13, BBS14, ZNY+
14, FPZ16, HHP16, LLSL16, OR16, CGS18,

HMSB18, HVL18, Rei21]. For example, HAR is of special interest for optimisation in those
industries where manual work remains dominant.

Human Activity Recognition (HAR) takes as inputs signals from videos [FPZ16, KY18]
or from multi-channel Time-Series (multi-channel Time-Series), e.g., human joint measure-
ments from marker-based Motion Capturing System (marker-based MoCap) [Rei21], and
inertial measurements from On-body Devices (OBDs) [ZNY+

14, RC15, YNS+
15, OR16].

This thesis focuses on HAR from multi-channel Time-Series, and will be addressed as
multi-channel time-series Human Activity Recognition (M-HAR). OBDs have become
relevant as they extend the potential of HAR beyond constrained or laboratory settings.

On-body Device (OBD) devices are suitable for M-HAR as activities can be tracked and
performed in a natural environment [HMS16, ZXZ+

17, HVL18]. Besides, these devices
are not affected by occlusion and do not show human identities easily [HMSB18]. OBDs
are low-power devices that are highly reliable, non-invasive and easy to use. They should
assist anywhere and anytime by observing activities egocentrically [BBS14, ZNY+

14,
MMD17, TDF+

18]. Additionally, OBD are relatively inexpensive in comparison with
marker-based MoCap scenarios, which comprise several cameras, motion capture suits
and expensive licensed software.

OBDs contain 3D inertial sensors, measuring derived physical quantities in three
dimensions. Examples of such sensors are accelerometers and gyroscopes. OBDs might
also contain sensors capturing environmental quantities such as magnetometers measuring
the magnetic field, or barometers for air pressure. Besides, these devices could also contain
human vital sensors such as temperature and heart rate monitors [RC15, OR16, HHP16,
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TDF+
18]. The latter are relevant for medical applications, e.g., in rehabilitation, preventing

accidents, and supporting the elderly [BBS14, HMSB18].
Multi-channel time-series Human Activity Recognition (M-HAR) is, in general, a

challenging classification task. Human activities and movements show a large variation.
Humans carry out in similar manner activities that are semantically very distinctive;
conversely, they carry out similar activities in many different ways. Furthermore, M-HAR
datasets suffer from the class imbalance problem, where there are more samples of certain
activities than others [FMHF16, OR16]. This problem strongly depends on the annotation;
e.g., at MotionMiners GmbH, walking and standing are usually ignored as they are not
crucial for application purposes. Moreover, there are non-standard definitions of human
activities for annotation [BBS14, ZNY+

14].
Based on the assumption that activities are a combination of body movements presenting

specific patterns, a M-HAR system seeks to use these patterns to classify body movements
with different techniques. A traditional M-HAR pipeline segments sequences, then
extracts relevant hand-crafted features from the segmented sequences, and finally trains a
classifier for assigning specific activity labels to the sequences [BBS14, FMHF16].

Methods based on Deep Neural Networks (DNNs) are prevalent for M-HAR. DNN
learn more discriminative features of human activities in contrast to statistical pattern-
recognition approaches [YNS+

15, ZNY+
14]. The advantage of DNNs is that they combine

the learning of feature extractors and classifiers in an end-to-end approach, minimis-
ing a common loss or cost function. Different configurations of such networks have
been introduced, e.g., Temporal Convolutional Neural Network (tCNN) [ZNY+

14, RC15,
YNS+

15, MSR+
17, CGS18, RRR18, YLSR18, CZY+

21] and Recurrent Neural Network
(RNN) [HHP16, OR16]. They also aggregate information from the entire sequence, e.g.,
transformers [Mah20, BV21, SK21]. Convolutional Neural Networks (CNNs) and RNNs
learn the non-linear and temporal relations of basic, complex and highly dynamic human
movements. They learn non-linear features directly from raw inertial data. These relations
are discriminative regarding human activities, and at the same time, they are invariant to
amplitude, and temporal distortions of the sensor measurements [HHP16].

The performance of DNN has not significantly increased as in other fields such as
image classification or segmentation. DNN present a low sample efficiency as they learn
the temporal structure from activities completely from data. Considering supervised
M-HAR, scarcity of annotated M-HAR data is the primary concern [KHC10, DPBR20].
Annotated data from human behaviour is scarce and costly to obtain. The annotation
process demands enormous resources. Additionally, annotation reliability varies, because
they can be subject to human errors or unclear and non-elaborated annotation protocols
[FMHF16, KHC10, Rei21].
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Transfer Learning (TL) has been used for coping with a limited amount of annotated
data, as well as, overfitting, zero-shot learning or classification of unseen human activities,
and the class-imbalance problem [OMR16, AR17, GY17, CZY+

21], e.g., object recognition
[KSH12], object detection [RHGS15], face recognition [PVZ15], and word spotting [GSF18,
WF22]. Transfer learning can alleviate the problem of scarcity of annotated data. Learnt
parameters and feature representations from a certain source domain are transferred to a
target domain. The target and source domains are related [PY10, GY17].

Fine-tuning is a common parameter transfer learning strategy for DNN. Filters from the
convolutional layers are trained on a large source dataset. Then, these filters are taken as
initialisation for an architecture to be adapted to a related target task. The Fully Connected
Layers (FCs) are the only ones trained from scratch [OMR16]. However, Transfer Learning
for Multi-channel Time-Series HAR (Transfer Learning for M-HAR) can be hindered by
the enormous variation of recording settings. Authors use different recording rates, sensor
resolutions, device positioning, or intrinsic device characteristics.

Sharing feature representations is a type of transfer learning method. Motivated by the
success of semantic attributes for representing classes in the context of image or scene
classification [LNH09] and document analysis [SF18, RRMF18], human activities can be
likewise represented by such a collection of semantic attributes. These attributes describe
semantically and coarsely human activities, e.g., “gait-cycle” and “grabbing with two
hands” represent the “pushing a cart” activity [ZJC17, Rei21]. Besides, they can share a
set of similar human activities, e.g., “walking” and “running” contain “gait-cycle” as a
common attribute. Moreover, attributes are suitable for recognition tasks where the data
is imbalanced, or training and testing sets are disjoint, e.g., zero-shot learning.

This thesis proposes a method for Transfer Learning for M-HAR using attribute repre-
sentations and parameter transfer. Firstly, it introduces the search and use of attribute
representation that favourably represent signal segments for recognising human activi-
ties; currently, M-HAR datasets composed of multi-channel Time-Series from OBDs and
marker-based MoCaps lack human-annotated attributes. Moreover, it presents a DNN for
predicting attributes, including temporal convolutions and an OBD-centred design.

In addition, a method for data-based Transfer Learning is proposed. The method takes
advantage of a large human-pose dataset as a source domain. DNNs are fine-tuned using
inertial measurements from OBDs. These networks will process sequences of movements
from the human limbs, either from poses or inertial measurements. Furthermore, synthetic-
inertial measurements will be derived from sequences of human poses either from
marker-based MoCap or video-based HAR and pose-based HAR datasets. The latter
will specifically use the annotations of pixel-coordinate of human poses as multi-channel
Time-Series data. All these synthetic measurements will then be deployed as a source
domain for transfer learning.
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1.1 contributions

The methods and findings presented in this thesis have partially been published at
scientific conferences in the activity recognition and pattern recognition communities. The
research has been carried out in the Pattern Recognition Group at TU Dortmund University
under the supervision of Prof. Dr.-Ing. Gernot A. Fink. This thesis was also supported by
Deutsche Forschungsgemeinschaft (DFG) in the context of the project Fi799/10-2 Transfer
Learning for Human Activity Recognition in Logistics. In the following, the contributions are
discussed in the context of these publications.

Temporal Convolutional Neural Networks for M-HAR

The contribution [MRGF+
18] presents an extensive evaluation of the IMU Temporal

Convolutional Neural Network (IMU-tCNN) architecture for M-HAR. Different configu-
rations concerning the network’s size, number of layers, number of units, maxout units,
and learning settings were presented. In addition, the network has been deployed on
two different benchmark datasets for M-HAR in ADL scenarios. The IMU-tCNN was
introduced in a joint work with the co-authors Dr. René Grzeszick, and Jan Marius Lenk
in [GLMR+

17] for M-HAR applied to the order-picking process, using a dataset provided
by the co-author Dr. Sascha Feldhorst in [FMHF16]. A new tCNN architecture was
introduced for predicting order-picking activities [FMHF16]. The IMU-tCNN processes
segments of multi-channel Time-Series from different OBDs, e.g., located on the hands
and chest. The architecture uses parallel computing blocks to process the sequences and
derive an intermediate feature representation per device. Feature representations from all
the devices are fused to compute a global representation. These parallel blocks introduce
an invariance with respect to human limbs, as human movements vary independently to
the human limbs.

In [MRF18], the usage of attribute representations was introduced for M-HAR. A
search for suitable attributes that represents signal segments is presented. As such
representations did not exist, only annotations concerning coarse human activities are
available. The authors presented a method for learning attributes that better represent
time-series segments for solving M-HAR problems. This method encodes attributes as
binary vectors. By using an evolutionary algorithm, it finds a representation that performs
well for classification. The evolutionary algorithm initially assigns a representation to
human activities, evaluates the representation using the performance on the validation
set as a fitness metric, and mutates the representations with the best fitness values.
The authors used three different deep architectures, a tCNN, a IMU-tCNN, Attribute
Temporal Convolutional Neural Network (Attr-tCNN) and Attribute IMU-Temporal

8



1.1 contributions

Convolutional Neural Network (Attr-IMU-tCNN), which contain a sigmoid layer for
predicting attributes. The Attr-IMU-tCNN from [GLMR+

17, MRGF+
18] using the learned

attribute-representation showed the state-of-the-art performance of M-HAR for these two
benchmark tasks and the order-picking dataset [FMHF16] when published.

Transfer Learning for M-HAR

The work in [MRF21] explores transfer learning for solving M-HAR among two different
data sources: human joint poses and inertial measurements. It proposes to create a
synthetic inertial measurements dataset, and to use it as a source for training a tCNN.
The synthetic measurements correspond to the derivatives of human poses along time.
The Logistic Activity Recognition Challenge (LARa) dataset, proposed in [NRMR+

20],
for M-HAR with human joint-poses is deployed as a source domain. Learned convolu-
tional layers were utilized for initializing architectures deployed on benchmarking OBDs
datasets, improving classification performance in three different benchmark datasets. The
classification accuracy improves for the activities that are shared among the datasets. This
approach can be considered as transfer learning across three target domains with different
physical, but related, measurements, different number of OBDs, and recording rates.

The work in [AMRF22] extends Transfer Learning for Human Activity Recognition
(Transfer Learning for HAR) using Synthetic On-body Device (SOBD) computed from
pixel coordinates of human joints of datasets intended for video-based Human Activity
Recognition (video-based HAR) in the wild. This transfer learning approach allows
exploiting large collection of existing data with a variate range of activities. Classification
performance improves when fine-tuning with a small amount of the target data.

Semi-Automatic Annotations for HAR

The author of this thesis collaborated strongly with the Lehrstuhl für Förder- und Lager-
wesen (FLW) from the TU Dortmund University in works regarding practical applications
of his research, summarised in the next paragraphs.

The joint contribution with Dr. Christopher Reining (FLW) in [RMRtF18] proposed a
framework to reduce the annotation effort for creating an OBD dataset using a marker-
based MoCap system as a reference for the order-picking process. The authors created a
dataset composed of synchronously-recorded OBD and marker-based MoCap measure-
ments in a laboratory scenario. In addition, it introduced proper annotation labels by
defining logistic process steps, human activities and basic human limb movements in
order-picking scenarios. The proposed dataset includes recordings from eight participants,
each performing eight coarse activities. Sequences from OBDs are labelled using the

9
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predictions from a IMU-tCNN, which has been trained using the marker-based MoCaps
dataset, as both datasets are synchronized.

Attribute-based representations have been deeply explored on Zero-Shot Multi-channel
Time-Series HAR (Zero-Shot M-HAR) in the joint contribution with Dr. Christopher
Reining (FLW) in [RSH+

18]. Particularly, in the manual order-picking process, attribute
representations were expected to be beneficial for dealing with the versatility of activities.
This contribution compared the performance of the Attr-tCNN and Attr-IMU-tCNN
trained using different attribute representations. It evaluated their quantitative perfor-
mance and quality from the practical application perspective. The marker-based MoCaps
dataset from [RMRtF18] has been extended further, having more activities and partic-
ipants. The dataset consisted of two parts—seen and unseen activities. The first part
was used for training a Attr-tCNN, while the latter was used for testing. The unseen
activities were described using attributes they shared with the seen activities. Despite
having fewer attributes, Human-Labeled Attribute (HLA) representations performed
better than a random one, created following the conclusions in [MRF18]. A semantic
relation between attributes and activities enhances M-HAR not only quantitatively with
regards to performance but also ensures a transfer of the attributes between activities
by domain experts. In this preliminary work, the mapping between activity classes and
attribute representations was one-to-one. Therefore, the deep architecture learned a multi-
class classification problem. However, this direct mapping is not unique to a warehouse
scenario.

The joint contributions in [RMRtF18, RSH+
18] only considered the order-picking sce-

nario. The performance of the classifiers based on annotated OBDs data was also not
tested. Furthermore, the performance on unseen activities showed rather poor results,
suggesting that the recorded dataset is class-imbalanced, not general and hardly discrimi-
native. Besides, no proper approach for deriving attribute representations was available.
Nonetheless, these contributions [RMRtF18, RSH+

18] constituted initial attempts for
creating OBDs data for M-HAR, i.e., the LARa dataset.

The manual annotation performance for creating a dataset for M-HAR is addressed
in the joint contribution with Dr. Christopher Reining and Friedrich Niemann (FLW)
in [RMRN+

20]. Specifically, it evaluates the manual annotation of the LARa dataset in
terms of expenditure of time for labelling and annotation consistency. A single domain
expert revises initial annotations to measure its effect on the overall between-individual
annotation consistency. Activity class labels and semantic attributes were annotated
using the marker-based MoCap skeleton visualization. Within- and Between-individual
annotation consistency based on the Cohen’s kappa coefficient showed that annotators
are moderately consistent when labelling recordings. Within-consistency is higher than
between-consistency as minor disagreements among annotators are present. After an
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annotation revision by a single-domain expert, the consistency for activity classes and
attributes improved. However, this improvement is relatively small in comparison to
the revision effort. This finding shows that more strict and clear guidelines for the
first annotation shall be considered. This contribution presents the first version of the
annotation tool for LARa dataset.

The joint contribution with Hülya Avsar, Erik Altermann, and Dr. Christopher Rein-
ing (FLW) in [AAR+

21] evaluates the semi-automated annotation method, proposed in
[RMRtF18], using the LARa dataset. The semi-automated approach uses a combination
of predictions from a Attr-tCNN and manual revision for annotating human activities
and their attribute representations. The contribution also compares the semi-automated
annotation with the manual annotation. It also explores some adaptations of the Attr-
tCNN, including training with recording samples of the testing subjects or using their
deep representations. This annotation approach reduces the annotation effort, keeping
quality similar to manual annotation [RMRN+

20].
In the contribution [AMRRF22], the Human Activity Retrieval (HARetr) is proposed as

a semi-automated annotation method for M-HAR. HARetr provides an ordered list of
segmented windows similar to an activity class query in attribute space. An annotator
provides the activity class query. It uses the attribute representation computed by a
Attr-tCNN. Then, the annotator accepts or rejects the proposed activity label and its
attributes. The HARetr allows annotating windows for a particular activity, reducing the
mental burden of the annotator. The annotator concentrates on a single activity. Likewise,
the revision process is guaranteed while annotating.

Along the aforementioned contributions, an annotation tool for M-HAR using marker-
based MoCap recordings by means of a skeleton visualization is presented. This tool
includes different annotation modi: a manual annotation modus used in [RMRN+

20],
where an annotator selects an activity class label and a set of attributes for a certain
window of the sequences as Figure 1.1.1a shows; a manual revision as Figure 1.1.1b shows;
a semi-automated modus used in [AAR+

21] deploying the Attr-tCNN from [MRF18];
finally, a HARetr used in [AMRRF22]. This annotation tool is provided by Erik Altermann
and the author of this thesis, and it is available in [MRA22].

Fine-grained Annotated Dataset for M-HAR

The joint contribution with Dr. Christopher Reining and Friedrich Niemann (FLW) in
[RNMR+

19] provides a systematic literature review of M-HAR for Production and Logis-
tics. The review focuses on M-HAR using a marker-based MoCap system and OBDs. It
provides an overview of M-HAR methods, i.e., statistical pattern recognition and DNNs.
The work follows a very structured three steps-revision method. It uses a selection process

11
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(a) Manual Annotation. (b) Manual Revision.

Figure 1.1.1: Annotation Tool for LARa dataset.

based on content criteria in the keywords, titles, abstract and full-text revision. Finally, a
list of 52 publications results from the selection process. The systematic review organises
the 52 resulting publications into different categorisations: Domain, Activity classes,
Attachment, Dataset, Data preparation, Statistical methods and Deep Learning (DL).

The joint contribution in [NRMR+
20] presents the LARa dataset for M-HAR in Produc-

tion and Logistics. The LARa dataset composes of measurements of humans performing
activities in logistics. Real-world warehousing scenarios are phisically recreated in a
laboratory environment, ensuring natural motion and resemblance to reality, as Fig-
ure 1.1.2 shows. The laboratory scenario is the Innovationlab Hybrid Services in Logistics
at the TU Dortmund University, and the Fraunhofer IML [RVBZH17]. The LARa dataset
contains measurements of marker-based MoCap and two sets of OBDs from 14 humans
performing eight activities from three scenarios in the intra-logistics. LARa contains
sample-based fine-grained annotations of activities and attributes, following the con-
clusions in [RMRN+

20]. The annotation process follows these steps: manual labelling
by twelve annotators, a consistency revision of the annotated attribute representations
comparing with expert-given semantic definition of the activities and its attributes, and a
manual revision by four annotators. The LARa dataset is labelled using the annotation
tool first presented in [RMRN+

20], and improved for this contribution, showing its po-
tential for annotating a large and demanding dataset. This dataset contains two versions:
version (1) includes recordings of 14 subjects and is available in [NRMR+

20]; version (2)
provides a revised annotation of LARa, recordings of two additional subjects, and a series
of its annotations from the manual to the second-round revision of the dataset, which is
available in [NRMR+

22].
In collaboration with MotionMiners GmbH, this thesis presents an additional dataset

for M-HAR in the intralogistics. This dataset contains OBD recordings of three subjects
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Standing Walking Moving Cart Handling (upwards) Handling (downwards)Handling (centered)

Figure 1.1.2: The LARa dataset includes recordings from marker-based MoCap and two sets of OBDs of 16
subjects performing activities in the intra-logistics.

from three real order-picking scenarios of warehousing. MotionMiners GmbH provided
manual annotation of activity classes using a video-based annotation tool, where OBD
and video recordings are synchronised using the camera’s flash of a smartphone. Subjects
wear three OBDs, one on each wrist and one on the torso. These OBDs are similar to one
of the OBD sets from LARa dataset. Thus, this dataset will be used as a testing scenario
for experimentation.

Knowledge-based and Data-driven M-HAR

The author of this thesis collaborated with the research group of Prof. Dr.-Ing. Thomas
Kirste from the Rostock University in works regarding combining knowledge-based and
data-driven M-HAR.

The joint work [MRLS+
19] proposes a hybrid M-HAR method that combines Compu-

tational State-Space Models (CSSMs) and neural networks. The CSSM encodes prior
knowledge about the high-level, causal structure of the task domain, and a tCNN acts as
observation model, relating the sensor data to CSSM states. This work shows the general
feasibility of such a hybrid method, although the proposed combination was simplistic
and ad-hoc.

Additionally, the joint work [LMRA+
21] investigates how information about high-level

process steps can be integrated into a data-driven M-HAR system to increase recognition
performance. Specifically, a Attr-tCNN computing an attribute representation from the
OBD data is combined with a shallow classifier that estimates activities from predicted
attributes and process step information.
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1.2 structure

The thesis is organized as follows: Chapter 2 revises the concepts of neural networks,
specifically, Multi-Layer Perceptron (MLP) and its training algorithm; then, focusing on
DNNs, i.e., CNN, and RNN. It also presents the concept of M-HAR describing a M-HAR
system starting from data recording to statistical pattern recognition. In addition, it
introduces the concept of Transfer Learning for M-HAR. Chapter 3 deepens into the
related works of DNN for HAR, video-based HAR, and pose-based Human Activity
Recognition (pose-based HAR). Approaches for video-based HAR and pose-based HAR
introduce the concept of synthetic data for pose-based HAR, which becomes the basis for
the synthetic data for M-HAR proposed in the method. Moreover, the chapter overviews
related works for Transfer Learning for HAR using CNNs. Chapter 4 introduces attribute
representation using DNN, giving an example on document analysis, where an attribute-
based CNN was first documented. Furthermore, it introduces attribute representation
for video-based HAR. Chapter 5 proposes the method of this thesis, namely, a Transfer
Learning for M-HAR system that uses an attribute-based DNN and SOBDs for improving
classification on target scenarios. Besides, it proposes a method for finding semantic
attributes in the target scenarios. Chapter 6 shows the experiments on different benchmark
OBD datasets for Transfer Learning for M-HAR. The chapter introduces the datasets and
explains the implementation details. Then, it presents the evaluation in four steps: first,
an evaluation of the proposed DNN architecture to be transferable to the benchmark
datasets; second, the SOBD datasets from a rich pose dataset and pose-based HAR
datasets; third, a search for semantic attributes using the proposed DNN, and an attribute
representation; finally, the Transfer Learning for HAR combining the learnt attributes,
the attributed-based DNN, and the SOBD under different transferability scenarios on the
target datasets. Furthermore, the results are discussed. Chapter 7 presents a practical
application for annotating OBD data for M-HAR using the proposed deep model and
attribute representation. It defines the concept of HARetr. Finally, Chapter 8 concludes
this work.
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2F U N D A M E N TA L S

HAR is the task of automatically giving particular activity labels to sensor recordings of
human movements. HAR processes signals from videos, marker-based Motion Capturing
System (marker-based MoCap), or multi-channel Time-Series, e.g., measurements from
On-body Devices. The latter ones are very important as they make HAR a potential
tool beyond constrained or laboratory settings. OBDs are not affected by occlusion, and
they do not portray human identities, as in the case of video-based HAR.1 OBDs are
low-cost devices that are highly reliable, non-invasive and easy to use. OBDs contain
tri-axial inertial sensors, which measure different types of derived physical quantities
along three dimensions, e.g., acceleration, angular velocities, and magnetic field strength.
Additionally, OBDs may contain vital human sensors, e.g., temperature and heart rate
monitors. They provide a view into the movement of the subject wearing the devices.
Ideally, they would assist anywhere and anytime by observing activities egocentrically.
This work refers to HAR using OBD recordings, as multi-channel time-series Human
Activity Recognition (M-HAR).

Methods of statistical pattern recognition were used for supervised-M-HAR. These
methods follow a standard pipeline: segmentation, extraction of handcrafted features,
primitives computation, dimensionality or feature reduction, and a training stage and
classification. Nowadays, Deep Learning (DL) methods are prevalent for M-HAR. They
combine feature extraction, feature or dimensionality reduction, and classification in
a holistic approach. This thesis concentrates on DNNs, in particular, on the Temporal
Convolutional Neural Network (tCNN) for solving M-HAR. The tCNNs are end-to-end
architectures that combine learnable temporal convolutional filters along the time axis
with non-linear operation functions, downsampling and classification.

As follows, this chapter first focuses on basic concepts of tCNN, starting from CNN
architectures. Second, it gives an overview of HAR with regards to the type of data,
preprocessing, annotation and statistical pattern recognition methods. Third, it presents
basic concepts of transfer learning, focusing on M-HAR. Finally, it introduces attribute
representations for classification as a concrete example for transfer learning.

1 OBD recordings contains also information regarding the subjects identities or their soft-biometrics
[NMRRF23].
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2.1 neural networks

Artificial Neural Networks (ANNs) are networks of primitive functions called artificial
neurons. Artificial neurons are vaguely inspired by neuroscience [Kon05, HM19]. An
artificial neuron is conceived as a simplistic model of a biological neuron, modelling
based on how brain cells store and process information. From biological neural networks,
neurons have input signals from previous neurons’ outputs, also called axons. These
input signals are transmitted to the neuron body via synapses or input connections
weighted by internal parameters or weights [Roj96, Kon05, HM19]. These weights are
learnable, influencing the behaviour of the neuron. This influence can be excitatory or
inhibitory with positive or negative weights, respectively [Roj96]. The weighted signals
are accumulated in the neuron body until reaching certain threshold, firing the neuron.

Nevertheless, an artificial neuron has gone far off from the neuroscientific insight
of a biological neuron. An artificial neuron or perceptron is a primitive function of
N parameters that produces a numerical output. This primitive function contains an
integration component, as a linear excitatory or inhibitory response, and an activation
function or non-linear component. Perceptrons become a basis for more complicated deep
learning models. Each input connection is associated with a weight wn. In the neuron
body, the weighted input signals are summed up. Finally, an arbitrary non-linear function
uses the summation as an argument for activating the perceptron. For example, if the
final summation is above a threshold value, the neuron will activate and send a signal
along its output. The connection of multiple artificial neurons results in an ANN.

2.1.1 Multi-Layer Perceptron (MLP)

A neuron or perceptron computes the scalar product between its input x ∈ RN and its
weights w ∈ RN, with N the number of inputs. It adds a bias b—considering it as a
negative threshold—, and thresholds the resulting value with zero as activation function
ϕ(·), computing an output y, as Equation 2.1.1:

y =

1 if wTx + b > 0

0 otherwise.
(2.1.1)

A Single-Layer Perceptron (SLP) separates the input space into two subspaces. Instead
of a comparison with a threshold value, an SLP utilizes a non-linearity function as the
activation function ϕ(·). A SLP has an extended-input vector x ∈ RN+1, and an extended-
weight vector w ∈ RN+1; where the bias is considered as a weight with a corresponding
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Figure 2.1.1: Single-Layer Perceptron (SLP) (left). Fully Connected Layer (FC) with M Single-Layer Perceptrons
(SLPs) (right), where all neurons are fully or dense connected to the input vector.

input xN+1 = 1. This ANN is the simplest feedforward neural network and can be
considered as a linear classifier. A SLP implements the function,

y = ϕ
(
wTx

)
. (2.1.2)

An ANN with M SLPs implements a set of M linear classifiers f = {fm}
M
m=0, producing

a M-dimensional vector y ∈ RM. This ANN is called Fully Connected Layer (FC), where
all the SLPs are connected to each element in the input, implementing Equation 2.1.3,

z = ϕ
(
WTx

)
, (2.1.3)

with x = [x1, · · · xN, 1]T, W = {wm}
M
m , and ϕ(·) as the activation function; see Fig-

ure 2.1.1.
SLPs are arranged in layers, connected to other perceptrons in neighbouring layers. A

MLP is an ANN with an input layer, an output layer and multiple in-between multiple FCs.
Their input is forwarded through the network layers to the output layer. The in-between
layers are called hidden layers, as they are not observable. MLPs are able to approximate
any continuous function, given enough SLPs in the hidden layers. Given a large set of
annotated data—input sequence with observed annotations—, MLPs can be trained by
changing their weights to approximate arbitrary functions or classify input data into any
set of predefined classes. Its layers are FCs since neurons are completely connected to
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Figure 2.1.2: MLP with two hidden FCs and an output layer.

neurons from the immediate previous layer. Figure 2.1.2 shows an example of a MLP
of three layers: an input layer with N+ 1 neurons with an input vector x ∈ RN+1, a
hidden layer with K neurons with parameters W(1) ∈ R[N+1×K], and an output layer
with M neurons with parameters W(2) ∈ R[K+1×M] computing the output vector y ∈ R2

[Roj96]—here, the vectors x and z and the weight matrices are extended for including
the bias. The MLP in Figure 2.1.2 represents a chain of function compositions, where the
output of the hidden layer becomes the input of the last layer. It implements the mapping
φ : RN → R2 as follows,

z = ϕ
(

WT
(1)x

)
(2.1.4)

y = ϕ
(

WT
(2)z

)
= ϕ

(
WT

(2)ϕ
(

WT
(1)x

))
, (2.1.5)

with x = [x1, x2, · · · xN, 1]T, z = [z1, z2, · · · zK, 1]i ntvarT , and y = [y1,y2, · · ·yM]T. The
output y is a function composition since its input is the output of hidden layer z.
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Activation Function

The perceptron in Equation 2.1.1 uses the step function as the non-linear activation
function ϕ(·). This activation function compares the sum of the weighted inputs with a
threshold in "0". However, this step function is discontinuous precisely at "0", being a
problem for the learning algorithm for adapting the weights. ANNs utilize differentiable
non-linear activation functions. These functions map their input values within a finite
range. In essence, these non-linear functions are continuous and differentiable, and they
are an important element in the optimisation algorithm [Roj96, GBC16]. The optimiza-
tion algorithm requires the computation of gradients. The most common non-linearity
functions and their derivatives are:

• Sigmoid Function (Sg): The Sg takes its argument and crushes it to the range of
[0, 1] with an interception with y-axis at x = 0.5, and horizontal asymptotes at y = 1

and y = 0 for large positive and negative input values, respectively.

ϕ(x) =
1

1+ e−x
ϕ ′(x) =

e−x

(1+ e−x)2
= ϕ(x) (1−ϕ(x)) (2.1.6)

• Tanh Function (tanh): The tanh is a scaled, translated and zero-centred Sg function,
mapping its input argument into the range [−1, 1].

ϕ(x) = tanh(x) = 2 · (Sg(x) − 1) = 1− e−x

1+ e−x
ϕ ′(x) = (tanh) ′ (x) =

(
1− tanh2(x)

)
(2.1.7)

The Sg and tanh saturate to high and low argument values. This saturation hinders
the learning process, as gradients approach to zero [GBC16].

• Rectified Linear Unit (ReLU) Function: The ReLU thresholds at zero,

ϕ(x) = max(0, x) ϕ
′
(x) =

0 if x < 0

1 x > 0
, (2.1.8)

being closer to step function of the perceptron in Equation 2.1.1 [GBB11, GBC16].

25



fundamentals

The Rectified Linear Unit (ReLU) performs better than the saturating functions
because it does not saturate for large argument values. Thus, the activation function
obtains sparse output representations [GBB11, KSH12]. Therefore, ReLU controls the
number of active neurons, causing a lesser burden in computation when optimising.
Active neurons become a path between the output and the input. Along this path,
the relation between the output of activated neurons and the input of the ANN is
linear. Moreover, this path helps the optimisation algorithm since gradients only
flow back on the path of activated neurons, and the remaining ones stay unchanged
[GBB11, GBC16]. This behaviour supports the conclusion in [KSH12], showing that
the ReLU is faster for training than the saturating non-linearity, e.g., Sg and tanh.
Moreover, ReLU allows for ANN compression, as their weights are sparse [MRGF17].
However, the risk of having many dead neurons increases with a deficient learning
algorithm, reducing generalisation.

• Leaky ReLU Function: The leaky ReLU includes a small slope α for negative values
instead of mapping to zero as ReLUs.

ϕ(x) =

αx if x < 0

x x > 0
ϕ
′
(x) =

α if x < 0

1 x > 0
(2.1.9)

Gradient Descent (GD)

The learning process seeks to find a set of weights for an ANN by minimizing an objective
function E(w) in weight-space when evaluated on a validation dataset [Roj96, GBC16].
The objective function E(w) computes the difference between an expected vector y and
the computed output vectors ŷ of an ANN. For minimising E(w), the learning process
uses an optimization algorithm, called Gradient Descent (GD). The GD finds a local
minimum of an objective function in terms of the weights. For an ANN, GD repeatedly
computes the gradient of an objective function E(w) with respect to the weights. Then,
it adapts its parameters proportionally to the negative gradient of the objective function
following,

wi+1 = wi − γ∆E(w), (2.1.10)
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with wi ∈ RK as the weights of an ANN in optimization step i, wi+1 ∈ RK the updated
weights, γ a fixed parameter, E(w) the objective function, and ∆E(w) is

∆E(w) =
∂E(w)

∂w
=

[
∂E(w)

∂w1
,
∂E(w)

∂w2
, · · · ∂E(w)

∂wK

]
. (2.1.11)

The parameter γ is the step length related to the proportion of the gradient for updating
the weights, called the learning rate [Roj96]. It is an important parameter since it directly
affects the convergence to the local minimum. Small steps to the expected direction lead to
slow convergence. In contrast, large steps lead to faster progress, but with the possibility
of overshooting the local minimum, producing bigger values of E(w). Besides, a larger γ
increases the number of dead neurons when using a ReLU activation function as ϕ(·).

The objective function E(w) is considered with respect to a training set D =
{
(x, y)(n)

}N
n

with N sample-observation tuples (x, y). There are three versions of GD depending on
the size and use of the training set D of sample-observation tuples: Batch Gradient
Descent (BGD), Stochastic Gradient Descent (SGD) and Stochastic Batch Gradient Descent
(SBGD). The BGD considers the entire set D as a large batch—the term batch does not
imply minibatch. SGD draws a sample-observation tuple randomly from D updating
the weights sample by sample. The SBGD or Stochastic Minibatch Gradient Descent
(SMGD) considers a minibatch or, common used simply batch, B with random selected
sample-observation tuples from D. SBGD updates the weights after feeding the batch to
the network [GBC16]. DL methods deploy SBGD, selecting a batch with a compromise
between training time and computation capability. SBGD with small batches need more
steps to reach an acceptable minimum. This limitation comes as the estimated gradient
variates strongly, resulting in selecting a lower learning rate. However, the SBGD has a
regularisation effect on the training process.

There are also other versions of the GD that add more hyper-parameters. Examples of
these GD approaches are:

• GD with momentum: The GD with momentum considers the previous change of
weights; see Equation 2.1.12. The momemtum helps to avoid oscillations of the
gradient direction. Moreover, it minimises the risk of getting trapped at a local
minimum [Kon05, Roj96].

νi+1 = γ1νi − γ2∆E(w)

wi+1 = wi + νi+1
, (2.1.12)
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with wi and wi+1 being the weights and updated weights of a ANN in iteration i,
νi and νi+1 the weight changes and updated weight changes in iteration i, γ1 the
momentum constant or rate, γ2 the learning rate, and E(w) the objective function.

• GD with momentum and weight decay: penalises the weight values by γ3, as

νi+1 = γ1νi − γ2∆E(w) − γ3γ2wi

wi+1 = wi + νi+1
, (2.1.13)

being γ3 weight decay.

• AdaGrad: adapts the learning rates of each of the weights inversely proportional
to the square root of the sum of the accumulated squared values of the gradient
[GBC16].

ηi+1 = ηi +∆E (w)2

wi+1 = wi −
γ1√
ηi+1

∆E (w) ,
(2.1.14)

with ηi+1 the accumulated gradient in iteration i. Here, the γ1√
ηi+1

is applied element-
wise.

• RMSProp: uses an exponentially weighted moving average for adapting the learning
rates. This approach converges faster when finding a convex area around a minimum
by discarding past accumulated squared gradients according to a decay rate α
[GBC16].

ηi+1 = αηi + (1−α)∆E (w)2

wi+1 = wi −
γ1√
ηi+1

∆E (w)
, (2.1.15)

with γ1√
ηi+1

is applied element-wise.

The AdaGrad and RMSProp are approaches that adapt the learning rates for each
weight, and they can be extended by including the momentum. The RMSProp with
momentum is used frequently in the networks focused on in this thesis.

There are different objective functions E(w) according to the problem, e.g., classi-
fication, segmentation and regression. For example, for a batch set B ∼ D with B
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sample-observation tuples B =
{
(x, y)(b)

}B
b=1

, and an output vector ŷ(b) ∈ RM for
batch b:

• Total Sum Squared Error (TSSE):

E(w) =
1

2B

∑
{
(X,y)(b)

}B
b=1
∈B

M∑
m=1

(
y(b)
m − ŷ(b)

m

)2
(2.1.16)

• Total Binary Cross-Entropy (TBCE):

E(w) =
1

BM

∑
{
(X,y)(b)

}B
b=1
∈B

M∏
m=1

ŷmlog (ym) + (1− ŷm)log (1− ym) (2.1.17)

• Total Categorical Cross-Entropy (TCCE)

E(w) =
1

B

∑
{
(X,y)(b)

}B
b=1
∈B

M∑
m=1

ŷmlog (ym) (2.1.18)

example Consider the GD from Equation 2.1.10, the SLP in Equation 2.1.2, with a
single output, i.e., with M = 1, and the TSSE, Equation 2.1.16, as the objective function
E(w), the ∆E(w) for a a batch B ∼ D from training set D of sample-observation tuples is

∂E(w)

∂w
=

∂

∂w

 ∑
{
(X,y)(b)

}B
b=1
∈B

1

2

(
y(b) −ϕ

(
wTx(b)

))2 , (2.1.19)

solving for ∂w using the chain rule

∂E(w)

∂w
= −

∑
{
(X,y)(b)

}B
b=1
∈B

(
y(b) −ϕ

(
wTx(b)

))
ϕ ′
(

wTx(b)
)

x(b). (2.1.20)
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∆E(w) depends on the derivative of the activation function ϕ ′ (·), i.e., the GD behaves
different for each of the non-linearity functions. On the assumption of using the sigmoid
as ϕ (·), Equation 2.1.6, the final gradient ∆E (w) is

∂E(w)

∂w
= −

∑
{
(X,y)(b)

}B
b=1
∈B

(
y(b) − ŷ(b)

)
ŷ(b)

(
1− ŷ(b)

)
x(b). (2.1.21)

Backpropagation

The previous example uses GD for a SLP where the input and output vectors are observed,
so the objective function E(w) can be computed. However, the hidden neurons are not
observable for a MLP. The backpropagation exploits the function composition of the
output of a MLP, Equation 2.1.5, the chain rule for differentiating, and the GD. The
backpropagation is divided into two phases: a forward step and a backward step. In the
forward step, sample-tuples (x, y) are fed to the MLP. Then, the backward step computes
the gradients with respect to the weights from the final layer to the initial layer—the
gradients are propagated backwards by using the chain rule successively—, and it updates
the weights as the GD.

example For better describing the backpropagation, the MLP in the Figure 2.1.2, the
TSSE (Equation 2.1.16) are considered as the objective function E (w), and SBGD with
a batch B ∼ D from training set D. First, the MLP processes an input sample x ∈ RN

computing a hidden vector z ∈ RK, using Equation 2.1.4, and an output vector ŷ ∈ RM

with Equation 2.1.5.—here, the vectors x and z and the weight matrices are extended
including the bias. Second, the backpropagation implements the backward step, i.e,
it computes the gradients for each layer from the output layer back to the input layer,
and it updates the weights following the updating rule of GD, Equation 2.1.10. The
weight-updates for the MLP are:

W(2)i+1 = W(2)i − γ
∂E(W1, W2)

∂W2
, (2.1.22)

W(1)i+1 = W(1)i − γ
∂E(W1, W2)

∂W1
, (2.1.23)

being W(1) ∈ R[N,K] and W(2) ∈ R[K,M].
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Each of the weight-updates considers the gradient of E (w) with respect to each of the
weights, in this case all the terms in the matrices W(1) and W(2). The objective function
E (w), Equation 2.1.16, in terms of W(1) and W(2) becomes:

E
(
W(1), W(2)

)
=

∑
{
(X,y)(b)

}B
b=1
∈B

1

2

M∑
m=1

(
y(b) −ϕ

(
WT

(2)z
(b)
))2

, (2.1.24)

and

E
(
W(1), W(2)

)
=

∑
{
(X,y)(b)

}B
b=1
∈B

1

2

M∑
m=1

(
y(b) −ϕ

(
WT

(2)ϕ
(

WT
(1)x

(b)
)))2

. (2.1.25)

The objective function E (w) with respect to W(1) and W(2) Equation 2.1.24 and Equa-
tion 2.1.24 is developed in Appendix (Section A.1), resulting in the equations (Equa-
tion A.1.5 and Equation A.1.7). These equations are described with respect to local
gradients as:

∂E
(
W(1), W(2)

)
∂W(2)

= −
∑

{
(X,y)(b)

}B
b=1
∈B

δ
(b)
y z(b) (2.1.26)

∂E(W(1), W(2))

∂W(1)
= −

∑
{
(X,y)(b)

}B
b=1
∈B

M∑
m=1

[
δ
y
(b)
m

W(2)m

]
ϕ ′
(

W(1) · x(b)
)

x(b)

= −
∑

{
(X,y)(b)

}B
b=1
∈B

δz(b)x
(b) (2.1.27)

with,

δŷ(b) =
(

y(b) − ŷ(b)
)
ϕ ′
(

WT
(2)z

(b)
)

(2.1.28)

δz(b) =

M∑
m=1

[
δ
y
(b)
m

WT
(2)m

]
ϕ ′
(

WT
(1)x

(b)
)

. (2.1.29)
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The local gradients Equation 2.1.28 and Equation 2.1.29 depend on the derivatives of
the activation functions. As these derivatives are expressed in terms of the layer outputs,
the local gradients depend on the outputs. The backpropagation first forwards the inputs
computing outputs of the neurons; second, it computes local gradients per layer and feeds
them backwards from the output to the input layers. In general, the backpropagation
sends backwards the local gradients from the output to the input layers—the gradient of
a hidden layer depends on the gradient of the next layer.

For a MLP with L layers with weight matrices Wl,l+1 for l = 1, 2..., L− 1, the TSSE as

objective function, B batch
{
(X, y)(b)

}B
b=1
∈ B ∼ D, and using the sigmoid as activation

function Equation 2.1.6, the local gradients become:

δl =

diag
(

ŷ(b)
(l)

) [
I[M,M] − diag(ŷ

(b)
(l) )
] [

y(b) − ŷ(b)
(l)

]T
l = L

diag
(

ŷ(b)
l

) [
Iklxkl − diag

(
z(b)l

)]
WT
l,l+1δl+1 l = 1, 2, ..., L− 1

(2.1.30)

and the weight-updates become

W(l)i+1 = W(l)i − γδ
(b)
l z(b)l l = 1, 2, ...L. (2.1.31)

2.1.2 Recurrent Neurons

A MLP assumes that all sample-tuples are mutually independent. Temporal relations from
the input data becomes relevant for an ANN to model a time series, e.g., for processing
inertial recordings for M-HAR. RNNs are neural networks specifically designed to process
sequential data. They use recurrent connections in every neuron [HS97, GMH13, OR16].
A unit-time delayed and weighted activation is fed back to the neuron, which provides the
neuron with a memory capability. This capability allows learning the temporal relations
of sequential data from past activations.

Given an input sequence X = (xt=1, · · · , xt=T) with T number of samples, a standard
recurrent neuron computes the hidden vector sequence H = (h1, · · · , hT) and an output
vector sequence Y = (yt=1, · · · , yt=T) by iterating the following equations from t = 1 to T

following,

ht = ϕ
(
W(xh)xt + W(hh)ht−1 + b(h)

)
yt = W(hy)ht + b(y),

(2.1.32)
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x1

x2

xN b(h)

w(xh)
Tx +w(hh)ht−1

Input xt ∈ RN

Weights w(xh) ∈ RN

w1

w2

wN

Output z

ϕ(·)
ht

z = w(hy) + b(y)

b(y)

why
z

Weight w(hh) ∈ R

1 1

[t− 1]

Figure 2.1.3: Recurrent neuron.

where W(xh) is the input-hidden weight matrix, W(hh) is the hidden-hidden weight
matrix, W(hy) is the hidden-output weight matrix, b(h) and b(y) are bias vectors, and ϕ(·)
is the hidden activation function.

Recurrent neurons, Equation 2.1.32, process sequential data from t = 1 to T, learning
temporal correlations from the past. However, a sequence can also be processed backwards;
in such case, a recurrent neuron will be able to learn temporal relations from the future, at
least from a sequence of length T. A bidirectional recurrent neuron computes the forward
hidden sequence

−→
h , the backward hidden sequence

←−
h and the output sequence Y by

iterating the backward layer from t = T to t = 1, the forward layer from t = 1 to t = T

and then updating the output layer:

←−
ht = ϕ

(
W(

x
←−
h
)xt + W(←−

h
←−
h
)←−h t−1 + b(←−

h
))

−→
ht = ϕ

(
W(

x
−→
h
)xt + W(−→

h
−→
h
)−→h t−1 + b(−→

h
)) (2.1.33)

yt = W(−→
h y
)−→ht + W(←−

h y
)←−ht + b(y). (2.1.34)

Long short-term Memory (LSTM)

Long short-term Memorys (LSTMs) extend RNNs with memory cells and a gating system
to learn temporal relationships of long-time sequences. The gating system uses component-
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wise multiplication of the input with different gates, namely, the input, output and forget
gates. Each of these gates represents a different operation for the recurrent cell. These
operations are write, read and reset for the input, output and forget gate. LSTM units
do not suffer from exploding or vanishing gradients during training [HS97]. The input
provided to an LSTM updates its cell state according to the activation of the gates. The
activation of the LSTM units is calculated similar to the RNNs, as in Equation 2.1.32. The
hidden value ht of an LSTM cell is updated at every time step t [GMH13]. A LSTM is
implemented in the following composite function,

it = ϕ
(
W(xi)xt + W(hi)ht−1 + W(ci)ct−1 + b(i)

)
ft = ϕ

(
W(xf)xt + W(hf)ht−1 + W(cf)ct−1 + b(f)

)
ct = ftct−1 + ittanh

(
W(xi)xt + W(hi)ht−1 + b(c)

)
ot = ϕ

(
W(xo)xt + W(ho)ht−1 + W(co)ct−1 + b(o)

)
ht = 0ttanh (ct) ,

(2.1.35)

where ϕ (·) is the Sg activation function, and i, f, o, and c are respectively the input
gate, forget gate, output gate, and cell activation vector, all of which are the same size as
the hidden vector h defining the hidden value. The matrices W(gate a,gate b) are weights
matrices with subscripts representing relationships from gate a to gate b. The vectors
b(gatea) represent the biases of gate (gate a).

BackPropagation Through Time (BPTT)

For training a RNN such as the LSTM network, the backpropagation algorithm is extended
to consider the sequential behaviour; this is called BackPropagation Through Time (BPTT).
For a RNN network, φrnn (·), with K number of recurrent neurons and that processes a
sequence from t = 1 to T. The network is unrolled in time to obtain a MLP φmlp (·) with
a number of layers T, i.e., the MLP is composed of T layers, one layer for each time step
t = [1, · · · ,T]. Besides, each neuron in φmlp (·) has an image from the corresponding
neuron in φrnn (·); this image includes the weights of the neuron. This conceptualization
regards the problem of training a RNN as training a feedforward network with certain

constraints imposed on its weights. The BPTT approach calculates the
∂E(W(l)

∂W(l)
in layer l

from φrnn(·) by simply computing the partial derivatives of ∂E
(
W(l)

)
with respect to

each of the t− T weights in φmlp(·) corresponding to the layer l = t and adds them
up. Hence, the problem of computing the gradient signals throughout the layers in the
recurrent network ∂E

(
W(l)

)
reduces to the backpropagation of a deep MLP φmlp(·).
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2.1.3 Convolutional Neural Networks

Figure 2.1.4: In image classification, pixels are assembled into hierarchical structures or features, i.e., edglets
→ motifs → parts → objects → scenes. This hierarchy suggests that recognition architectures for image
classification should have multiple trainable extractors of these structures stacked on top of each other. CNNs
respond to these needs. Image adapted from [RSA15], where a CNN classifies face images from [PVZ15].

CNNs2 are hierarchical structures that combine convolutional operations with learnable
filters and non-linear activation functions, downsampling operations, and classifiers. These
structures either map their input into a more compact representation, or classify their
input into a set of labels, depending on their objective function [LKF10, KSH12, PVZ15].
However, their structure is partially distinct compared to MLPs, i.e., their neurons are 3D
filters that activate depending on small regions or receptive fields of their inputs [Roj96].
These neurons are called convolutional neurons. They compute a convolution operation3

between the connected inputs and their internal parameters. Furthermore, they activate
depending on convolution output and a non-linearity function [FM82]. Conceptually,
the convolutional neurons are similar to a perceptron of an SLP, i.e., they compute a
summation of the weighted input and use a non-linearity; see Equation 2.1.2. DNN
became the standard approach in different fields, for example, in image classification
[KSH17], image segmentation, word spotting from historical documents [WF22], and even
in non-visual domains like acoustics.

The advantage of CNNs over ANNs with perceptrons is that they assume inputs are
images (width, height, channel) [LKF10]. They allow to encode certain properties of

2 CNNs were first proposed in [FM82] and later addressed by [LBBH98], introducing the well-known LeNet-5
for handwritten digit recognition [GBC16].

3 In image processing, a convolutional operation consists of multiplying the pixel’s and its neighbours’
intensities by a kernel or small matrix, which is slid through the entire image along the spatial dimensions.
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images into their architecture, i.e., their neurons activate when they "see" particular
features extracted at different locations in the image; they are also robust against shifts
in position, and feature distortions [FM82]. CNNs arrange neurons in layers with a 3D
shape, called convolutional layers. Each of the layers gets a 3D-input volume, called
a feature map, and transforms it into another through convolution and non-linearity
operations [LKF10]. By stacking layers and downsampling their outputs, CNNs extract
more complex and abstract feature maps, which, at the same time, are invariant to
distortions and translations. By stacking convolutional layers and down sampling feature
maps, filters in each layer will learn to give more weight and to activate to different
patterns: from simple pixels to edglets (oriented edges or blob of colours), edglets to
motifs, and eventually, from motifs to more complex patterns; such as parts of faces, or
parts of cars. Hence, the deepest neurons activate to a combination of features from feature
maps of previous convolutional layers. Since neurons are connected in a hierarchical
structure, the deepest neuron receptive fields cover bigger areas from the image input.
Consequently, the activation of deepest neurons is not affected by shift variations and
feature deformations in the image input. These layers compute final descriptions of the
input images, which can be considered global representations of images. The last part of
CNNs are standard FCs, usually, a 3-layered MLP; they classify the input images using
the extracted representation depending on an objective function.

Compared to a MLP that processes a 3D input volume, CNNs have less parameters—in
this case assuming that the MLP is connected to all the values in the 3D input. This
parameter reduction results from the convolutional operation since the layer slices the
same filter through the entire feature map input. Thus, CNNs are easier to train than
ANNs—at least for the same task—[KSH12]. The parameter reduction is an advantage of
CNNs because their generalisation performance is improved, i.e, a learned CNN will not
just model the training data, but in addition they will generalise new data more accurately
than ANNs, in other words, they avoid overfitting, and the learning speed is increased
[LDS89].

Architecture

A CNN is a feedforward network composed of layers, similar to an ANN that transform a
feature map input to final class scores by forwarding it layer by layer. All its layers are
not fully-connected, but they are generally of three types: a convolutional layer, pooling
layers and a fully-connected layer. The input and output of each layer are sets of tensors
called feature maps.
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input The input is a feature map of different dimensions depending on the problem
domain. The input for image processing are 3D feature maps of size [W,H,C], representing
pixel intensities arranged in a matrix of [W,H] for three channels, namely, red, green
and blue. For video processing, the input is a 4D feature map consisting [T,W,H,C] of
a sequence of 3D feature maps. Usually, there is a temporal aggregation of 3D feature
maps before feeding to the CNN; or 3D feature maps at different times t = 1, · · · ,T are
fed individually to a CNN, which performs a late fusion.4 For sequential data processing,
e.g., audio or inertial measurements, a feature map consists of 1D array of recordings per
sensor, i.e., a feature map of [W, S, 1].

convolutional layers They consists of C neurons arranged in a 3D volume. Neu-
rons are composed of learnable filters W ∈ R[Fw,Fh,C] and a bias b ∈ R that activate under
a specific type of feature at some spatial position in the feature map input Z(l−1) from
layer l− 1 producing a feature map of weighted summations Z(l). W size is determined
by a given receptive field F = [Fw,Fh] along the width and height, and the feature map
inputs depth C = C(l−1). Each of the neurons computes convolutions with small regions
in Z(l−1).

Z(l)

i,j,k(l) = ϕ

C
(l−1)∑
c=1

⌊
Fh
2

⌋∑
fh=−

⌊
Fh
2

⌋
b Fw2 c∑

fw=−b Fw2 c
Wk(l)

Fw
2 +fw, Fh2 +fh,c

·Z(l−1)
i−fw,j−fh,c + b

k(l)


∀k = 1, · · ·C(l), (2.1.36)

with ϕ(·) being the activation function.
The convolutional operation performs similar to the summation of SLPs, collecting

information coming from previous feature maps. A single convolutional layer l with C(l)

neurons or filters produces a 3D weighted feature map Z(l) by convolving each of its
filters along the spatial dimensions, width and height, of the feature map input Z(l−1)

and stacking the 2D weighted feature maps {Yc}
C(l)

c along the depth dimension C of the
layer [LDS89, Roj96]. As convolutional layers use a filter along the spatial dimensions
of the input, the filter parameters are shared along these dimensions, i.e., detecting
the same feature along the spatial dimensions—, what the authors in [LDS89] called
weight sharing. The size of the weighted feature map output [W(l),H(l),C(l)] depends on
three hyper-parameters of the layer: the depth C, stride S, and zero-padding P. The C

4 Late fusion refers to merging independent preprocessed sequences from different channels of the multi-
channel Time-Series data input.
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parameter represents the number of channels or neurons along the depth dimension of
the convolutional layer. The S parameter is the number of pixels that one slides each filter
along the width and height of a feature map input, and P is the number of zeros in the
border of a feature map input to fit neurons along spatial dimensions of the feature map.

W(l) =

(
W(l−1) − Fw + 2P

)
S

+ 1 H(l) =

(
W(l−1) − Fh + 2P

)
S

+ 1 C(l) = C(l−1)

(2.1.37)

temporal convolutional layers A tCNN uses temporal convolutions for pro-
cessing sequential data, e.g., from recordings of microphones for audio tasks or inertial
sensors for HAR. Having a N-dimensional sequence, from s sensors, a sliding window of
size W moves forwards with a frame-shift of F segmenting sequences. These sequences
are of size [W,N]. In tCNN, convolutional layers convolve their feature-map inputs with
C filters along the temporal axis. Having a feature map Z(l−1) ∈ R[W,N,C(l−1)] in layer l− 1,
and a set of C(l−1) filters W ∈ R[F,1,C(l−1)] and biases b(l−1) connecting layers l− 1 and l, a
temporal-convolution for each s = 1, · · · ,S sensor follows,

Z(l)

i,s,k(l) = ϕ

C(l−1)∑
c=1

b Fw2 c∑
fw=−b Fw2 c

Wk(l)
Fw
2 +fw, Fh2 +fh,c

·Z(l)
i−fw,s,c + b

k(l)

 ∀k = 1, · · · ,C(l), (2.1.38)

with ϕ(·) being the activation function.

pooling layers Pooling refers to dimensionality reduction that is usually used
in CNNs to encourage spatial invariance and capacity bottleneck. They are placed
among different convolutional layers to reduce the spatial size of the feature maps by
downsampling.

• Stride-based Pooling

It takes small squared regions of size [Fw,Fh] with a stride of Sp along the spatial
dimensions of the feature map input, and it performs a downsampling operation
per region. This operation can be the average over the regions, or the maximum
value in each region. The final size of the downsampled feature map is [Wp,Hp,Cp]
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for a feature map input yact. Max pooling shows good empirical performance for
object recognition [KSH12].

Wp
(l) =

(
W(l−1) − Fw

)
Sp

+1 Hp
(l) =

(
W(l−1) − Fh

)
Sp

+1 Cp
(l) = C(l−1) (2.1.39)

• Spectral Pooling

Figure 2.1.5: Comparison of max- and spectral pooling functions for different factors of dimensionality
reduction. Image taken from [RSA15].

However, stride-based pooling functions exhibit a poor preservation of information.
They imply a very sharp dimensionality reduction, e.g., by at least a factor of
four, whenever applied to two-dimensional inputs. Besides, the maximum value in
each window only reflects very local information and often does not represent the
window’s contents well [RSA15].

For a given feature map input Z(l−1) ∈ R[W,H,C] and some desired output [Wp,Hp,C],
the Discrete Fourier Transform (DFT) of the input Zfreq follows Equation 2.1.40.
For image classification, and under the assumption that the DC component has
been shifted to the centre of the transformed input, as Figure 2.1.5 shows, Zfreq is

cropped only in the [Wp,Hp]-size matrix. Finally, the Z[Wp,Hp]
freq is transformed back to

the spatial domain via the Inverse Discrete Fourier Transform (IDFT), resulting in
Z(l) ∈ R[Wp,Hp,C]. The spectral pooling retains more information than the stride-based
pooling functions. This pooling performs linear low-pass filtering, exploiting that
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images with spatial structure carry most of their information on lower frequencies.
Furthermore, spectral pooling allows to select any arbitrary output dimensionality.

Zfreq
(l−1) = F

(
Z(l−1)

)
(2.1.40)

Z(l) = F−1

(
crop
[Wp,Hp]

Zfreq
(l−1)

)
(2.1.41)

• Spatial Pyramid Pooling layer (SPP)

Figure 2.1.6: Spatial Pyramid Pooling (SPP) layer in a CNN. Image taken from [HZRS15].

The authors in [HZRS15] pointed out that convolutional layers do not need fixed-size
feature-map inputs since they perform a convolution operation and their filters are
not fully-connected to their inputs. However, the FCs need, fundamentally, fixed-size
feature-map inputs. The last convolutional layer is the only one that should generate
a fixed-size feature map as the first FC is connected to it. For example, the Alexnet
uses [224× 224× 3] cropped images for image recognition [KSH12]. For that reason,
the authors in [HZRS15] replaced the last max-pooling layer with a new layer to
eliminate the need for fixed-size input images for image recognition. This new layer
is called the Spatial Pyramid Pooling (SPP), whose idea comes from the spatial
pyramid matching used originally as an extension of Bag of Features Representation
(BagFR) [LSP06].
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The SPP layer divides an input from finer to coarser levels; it aggregates their
information, generating local outputs; and it concatenates these outputs into an
overall feature output; see Figure 2.1.6. Its advantage lies in the generation of fixed-
size outputs from multisized inputs, and it maintains spatial information. More
concretely in CNNs, a l-level SPP Layer (SPP Layer) layer divides a feature-map
input, whose depth is C, into C ·M spatial bins with M =

∑l
1 2

l, where the level l
denotes the number of divisions along the spatial dimensions of the feature-map
Figure 2.1.6. Then, the SPP layers concatenate the maximum or the average value
of each bin into a vector. This vector becomes the feature map of the first FC; see
Figure 2.1.6. By using a SPP layer, the CNN’s input can be of any scale.

• Temporal Pyramid Pooling (TPP)

In case of these sequential models, partitioning along the horizontal axis is important
when dealing with sequential data. The authors in [SF18] proposed the Temporal
Pyramid Pooling (TPP) for improving retrieval results in word-spotting. The TPP
splits the input along the horizontal axis, e.g., following the sequential writing,
or the time axis for M-HAR. An L-level TPP splits its input into 2l ∀ l = [1, ..., L]
non-overlapping horizontal cells. For a input layer Zfreq

(l−1) ∈ R[W,S], a cell is of
size

[
W
2l

,S
]
∀ l = [1, ..., L]. Each cell covers the entire vertical axis of the sequence.

The pooling is thus only done along the time axis, and each cell roughly represents
features from consecutive intervals of the input data, e.g., from a word image.
Stacking multiple of these pooling layers with different number of splits, along the
axis of writing, results in a pyramid representation. This representation encodes the
progression of sequence, hence the name Temporal Pyramid Pooling.

fully-connected layers These layers have the same topology as an MLP, or one
can see them as a convolutional layer, but their filters are fully-connected to a feature map
input. Those layers perform matrix multiplication with the feature map input, add a bias,
and use a non-linearity function to get activated.

2.2 human activity recognition

HAR attempts to automatically discern the activities a subject carries out in a certain
period of time. HAR processes signals from videos [FPZ16], marker-based MoCap, or
multi-channel Time-Series, e.g., measurements from OBDs [RC15]. The latter ones are very
important as they make HAR a potential tool beyond constrained or laboratory settings.
OBDs are not affected by occlusion, and they do not portray human identities—human
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identification is not possible by only regarding their multi-channel Time-Series data, as in
the case of videos.5

HAR is, in general, a classification task. However, this classification is a challenging
task due to large intra- and inter-class variations of human activities. Humans perform
similar tasks differently; even a single person carries out a task differently. For example,
in order picking, workers might change how they pick up a box depending on the box
size and texture or the worker fatigue. Furthermore, M-HAR datasets suffer from the
class imbalance problem, where there exist more samples of the frequent activities, e.g.,
walking or standing, than picking up an item [FMHF16, OR16]. This problem depends
strongly on the annotation, e.g., at MotionMiners, the walking and standing are usually
ignored as they are not crucial for application purposes.

A HAR system seeks to classify the activities of a subject based on the recording of
physical quantities related to the subject’s movement. The system consists of different
stages: data recording, data representation, preprocessing, and classification, either by
statistical feature recognition or by DNNs.

2.2.1 Data Recording

A HAR system acquires raw measurements of humans performing activities using dif-
ferent types of sensor systems. Advances in pervasive computing and sensors allowed
the development of a variety of sensor modalities for recording information of humans
performing activities. As a result, there exist different sensor modalities for HAR, either
placed in the environment, e.g., video cameras and ambient sensors, or placed on the
human body, e.g., OBDs.

Ambient Sensors

These devices are usually embedded in the subject’s environment, e.g., on objects that the
subject employs. They include a wide variety of sensors, such as motion detectors, door
sensors, object sensors, pressure sensors, and temperature sensors [CFK13, KEK08].

Video Sequences

Video cameras provide a dense feature space for HAR, which allows for detailed recogni-
tion of activities with regards to the scene and objects a human employs for an activity.

5 However, OBD recordings might contain identity information, given the inter-person variation of activities.
Besides, recording biases can provide enough information for identifying subjects, e.g., initialisation noise.
Additionally, soft-biometrics such as height or gender can still be obtained from these recordings [NMRRF23].
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2.2 human activity recognition

Spatio-temporal features are extracted from video sequences for representing activities
[KY18, SZ14]. The use of video cameras, however, raises privacy issues. This thesis
references HAR using video data as video-based HAR.

On-Body Devices

OBDs are very common for capturing activity-related information from subjects. Place-
ment of the devices on the body limbs strategically helps to capture important infor-
mation related to a particular movement of the body limbs. Their conjunction provides
insights into the overall activity performed by a subject. OBDs include 3D inertial
sensors, e.g., accelerometers, gyroscopes, magnetometers, or sensors embedded in smart-
phones; vital devices, e.g., heart rate devices; and radio frequency identification sen-
sors and tags [CFK13, TDF+

18]. Authors have deployed a different number of OBDs
on different parts of the human body, depending on the application. The authors in
[FMHF16, GLMR+

17] used three OBDs on the two wrists and on the torso. In contrast,
the authors in [CLCG18, LYA09, ZCS19] recorded acceleration measurements from only
one OBD on the waist. The positioning of sensors plays an important role in M-HAR, and
it is a limiting factor for many real applications. The sensors’ positioning is often largely
driven by user acceptance rather than optimality of M-HAR performance [TDF+

18].
OBD systems have a variety of recording configurations, e.g., sampling rate and am-

plitude of devices. For example, dataset authors have used recordings rates in the range
of 1 to 300 Hz, as [RNMR+

19]. Unfortunately, there is no consensus in the community
on what is the best choice for these configuration parameters given the different types of
activities or applications [TDF+

18]. There are cases where lower sampling frequencies
may be preferable for long experiments to reduce the energy consumption, but sacrificing
higher frequency aspects of human motions [TDF+

18].
Contrastively, authors pre-processed OBD recordings, creating a different data represen-

tation. The authors in [LYC17, LC11, MHB+
16] used the magnitude of the acceleration

from the three dimensional components [x, y, z]. Moreover, the authors in [TLLY18] pro-
posed using the logarithm magnitude of two-dimensional DFT of OBDs. They used this
magnitude as an input image for training a CNN.

Motion Capturing System

Other option for M-HAR is using multi-channel Time-Series from recordings of human
joint poses, e.g., from marker-based MoCap. A pose is a combination of position and ori-
entation information. Marker-based MoCap systems are for example the Kinect [CFK13],
or the Vicon system [NRMR+

20]. The authors in [DLGY12] represented marker-based
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MoCap data by using the 3D-joint poses specifying a posture. They divided the human
joints into five groups, according to the main human body parts, Left Arm (LA), Right
Arm (RA), Left Leg (LL), Right Leg (RL), Neck or Torso (NT). Similarly, the authors in
[KY18] divided the human joint pixel coordinates from video datasets into five groups for
video-based HAR; see Section 3.2.

The authors in [RSH+
18, NRMR+

20] interpreted the joint poses marker-based MoCap
as multi-channel Time-Series, where each component [x,y, z] of the spatial dimension
from the joint pose is considered individually. This approach is similar to how acceler-
ation data are handled in this thesis. The authors in [VFD+

17] used a geometrical and
parametric representation of the joint poses and their velocities and accelerations, i.e., the
quaternions and Euler angles representations of human poses, along with their velocities
and accelerations of human joints, as input data.

Domain and Task for HAR

Let define the term domain for HAR, following [CFK13, PY10].

Definition 1. Domain: For HAR, the domain D is defined by a multi-channel Time-Series
space X[W,S], which may represent the S-dimensional space with S the number of sensors in the
OBDs, measuring physical quantities within a given time window W and a marginal probability
distribution over all possible measurements p(X). A domain D is a tuple (X, p(X)), where
X =

{
X(n)

}N
n=0

∈ XS is a set of N recordings samples from multi-channel Time-Series space X.

2.2.2 Preprocessing

Pre-processing is necessary due to the different characteristics of sensors in OBDs, namely,
recording sampling rates, physical measurement units, random noise or malfunctioning.
For example, low- and high-pass filtering separates acceleration components from gravity,
the human body, and noise. The authors in [FK16, STBO17] used a median filter for
smoothing the input signal, e.g., an acceleration profile.

The authors in [KLLK10] used a third-order average filter for reducing random noise.
Low- and high-pass filters have been used to eliminate noise or separate the acceleration
into two components: one due to body movements and one due to gravity. The authors in
[LYA09, BPT14, WGWH18] argued that the low-frequency component of the acceleration
is due to gravity, and the high-frequency component to the dynamic motion of the human
body. The authors in [SR12, SSH13, AI15] computed the gravity component by averaging
the acceleration measurements. This average can be seen as taking the zero-frequency
component. Afterwards, the body acceleration was computed by subtracting the gravity
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component from acceleration measurements. The authors in [STBO17] separated these
two components with a low-pass filter. A low-pass Butterworth filter is used for such
separation in [NTJ18].

In contrast, a low-pass filter [AI15, KKB14], a third-order low-pass Butterworth filter
[FK16], and an average filter [GCBCJG14] are used for reducing noise. The authors in
[NTJ18] deployed noise filters before segmentation by sampling fix-sized windows, but
there was no explanation of the particular method. The authors in [DBLG14] used a
discrete low-pass filter scaling past samples and reducing noise.

The authors in [GW15, RC16] used a zero-mean and unit-variance normalisation, and
the authors in [GLMR+

17, MRGF+
18] used a max-min normalisation to the range of [0, 1],

as there are differences among the units and scales of the measurements from the OBDs.
The authors in [CX15] did not use any preprocessing and forwarded the raw data of a
single OBD to a CNN.

Time

En
er

gy

2s 2s

120s

Rec 1

Rec 4 Rec 30

Figure 2.2.1: The author of this thesis in [NRMR+
20][NRMR+

22] synchronised 120s-long OBDs and marker-
based MoCaps recordings using a synchronisation activity with an specific movement. The subject raises the
arms up and down, keeping a standing position. The profile shows the energy of the 3D linear and angular
acceleration channels from three OBDs, located on the right and left arm and on the belly. The authors shifted
the recordings according to the starting and ending of the synchronisation activity per OBD. In this way,
annotations based on marker-based MoCaps were used for annotating 30 recordings per subject in the LARa
dataset.
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The authors in [GD14, KKB14, OMR16, ZO18] normalised the extracted features before
the training stage. For example, the authors in [ZO18] normalised the extracted features
to the range of [0, 1], and in [DBLG14] to [−1, 1].

Synchronisation steps are required as sensors of OBDs are recorded asynchronously.
The authors in [FMHF16, GLMR+

17, NRMR+
20] included a synchronisation activity,

where the subject moves unstintingly with respect to the target activities. Annotators,
then, mark the starting time of the synchronisation activity per sensor or channel of OBDs,
as Figure 2.2.1 shows. Recordings are re-sampled according to a unique time using a
piece-wise spline interpolation. The authors in [ZO18] ignored differences in recording
sample times of devices, considering their target tasks, i.e., activities and durations. They
considered only the recordings according to the time of the sensor recordings with the
shortest ending time.

Typically, features are computed in each of the accelerometer directions independently,
although in some cases, features that combine the axes are also used [TDF+

18].

2.2.3 Statistical Pattern Recognition for HAR

Methods of statistical pattern recognition were used for supervised-HAR. These methods
follow a standard pipeline: segmentation, extraction of handcrafted features, primitives
computation or dimensionality of feature reduction, and classification. Usually, segmenta-
tion is carried out by employing a sliding-window approach on the sensor measurements
along the time axis. Handcrafted features are statistical features extracted from segmented
windows, either from the time or frequency domain. The handcrafted features should
capture the intrinsic characteristics of a certain human action. Next, a feature reduction
is deployed to reduce the dimensionality of the feature space, keeping the discriminant
properties of the features. These features are aggregated using Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), or Kernel Discriminant Analysis
(KDA) for dimensionality reduction and finally used for training a set of parameters of
a classifier. These features are used for training a classifier in which its parameters are
learnt. In the training stage, a classifier is trained by using the extracted features, or the
reduced ones, and the ground-truth activity labels. Finally, the trained classifier assigns
activity classes to unknown sequences from its extracted features. Examples of classifiers
are Naïve Bayes (NB), Support Vector Machines (SVMs), Random Forest (RF), Dynamic
Time Warping (DTW), and Hidden Markov Model (HMM) [FMHF16, OET+

14]. To that
end, annotated sensor measurements with specific activity class labels are necessary.
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Segmentation

Segmentation extracts a sequence of continuous measurements of the pre-processed data
that are likely to portray a human activity, rather than classifying every single data sample
[RNMR+

19, TDF+
18]. In M-HAR, the sliding-window approach is a prevalent method

for creating segments for being processed by a classifier. A window moves over the multi-
channel Time-Series data by a given step, extracting or cutting segments. The window size
directly controls the delay of the recognition system. The step size is selected according to
segmentation precision—considering that short activities can be skipped or omitted—,
computational effort and the number of training samples. The longer the window, the
more information is used for predicting an activity; however, short-duration activities
are skipped [TDF+

18]. Using a short window length enables fast inference of the user’s
current activity and ensures the detection can rapidly adapt to changes [TDF+

18]. The
authors [RNMR+

19] revised the commonly used recording rates, window sizes and steps.
Recording rates are of the range 1 to 300] Hz, window sizes in the range of 0.67 to 25 s. and
overlapping in the range of 5 to 75%. They noticed that the higher the sampling rate, the
smaller the window size can be used for having more fine-grained predictions, e.g., small
human limb movements. Publications using small sampling rates handle long-duration
activities that can be seen as compositions of short-duration activities. Differently, there
are approaches for segmenting sequences using additional measurements or events, e.g.,
eye movement, audio and speech [BBS14, CFP+

16].
The authors in [SZ14, KY18, LPT18] used a number of F consecutive RGB and optical

flow images for video-based HAR. The authors in [KY18] selected the F frames that follow
the last frame where human joint pixel coordinates are all visible.

Feature Extraction

The feature extraction is an important stage of statistical pattern recognition pipeline.
It allows representing data compactly being at the same time discriminative, which
helps with later classification stages. A set of D functions gd(·) : X→ Z calculates a set
Z =
{

z(d)
}D
d=0

with D feature vectors from a segmented sequence X ∈ X[W,S], with W as
the window size and S as the number of sensors, mapping the input to a feature space Z.
Typically, features are computed in each of the accelerometer directions independently,
although in some cases, features that combine the axes are also used [TDF+

18].
There exist two main groups, statistical and application-based features. Time-domain

features on the measurement profiles and frequency-domain features focus on the periodic
structure of the measurements [ZO18]. The DFT is applied to the raw- or preprocessed
signals to acquire the estimated spectral density of the time series. These features are, for
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example, the mean, variance, correlation, and the local slope of the sensor data fitted by
first-order linear regression for the time domain or the entropy, energy, and coherence
extracted from the Fourier Transform in the frequency domain [CGD+

13, BBS14, FMHF16,
TDF+

18]. Application-based features refer to features that were created for a particular
application or dataset. These features are based on geometric, structural and kinematic
relations. The surveys from [RNMR+

19, SAEM19] present a list of the most used statistical
and application-based features.

Feature Reduction

The higher the dimensionality of the feature space, the more training data is needed for
model parameter estimation and the more computationally intensive the classification
is. Feature reduction seeks to minimize memory, computational power, and bandwidth
requirements [BBS14], i.e., h(·) : ZR → ZQ | Q� R. The authors in [AB10, ABT10, GW15,
LYA09, VFD+

17] deployed PCA for reducing the dimensionality of their features. PCA
is a holistic method that considers its inputs as points in a high-dimensional feature
space and it finds a lower-dimensional space along the highest variance of the features,
where distance-based classification becomes easier—assuming that all the features in the
lower space are not mutually correlated. LDA is another holistic method that tries to
overcome that PCA does not consider the intra-class variation, i.e., any difference in classes.
LDA finds an optimal projection of the input data to a linear subspace with directions,
which maximise the ratio between the inter- and intra-class variations of a set of features.
Quadratic Discriminant Analysis (QDA) was deployed by [SR12], which is similar to
LDA assuming that the class-conditional densities are normally distributed, and the
covariance of all the classes is equal. The authors in [BBS14, KLLK10] used KDA, which
is a non-linear discriminating approach based on kernel techniques to find non-linear
discriminating features. The authors in [ZO18] followed the Recursive Feature Elimination
(RFE) for finding the best set of features. The RFE can be seen as a dense parameter search,
which iteratively selects or rejects a set of features after training and deploying a classifier.
The authors in [DLGY12] proposed a BagFR using k-means clustering. They used the k-
means clustering algorithm to partition the multi-channel Time-Series sequences of human
poses into M motion clusters. Additionally, the authors in [GW15, CPR11] utilized a
Random Projection (RP). The authors in [AB10, ZO18] used a Sequential Forward Feature
Selection (SFFS) and Sequential Backward Feature Selection (SBFS), which respectively
add or delete features, one at a time, evaluating the classification performance. The
authors in [TDF+

18, ZJC17] deployed dictionary learning or sparse coding for performing
feature selection. They learn a set of dictionary vectors such that a set of features Z can
be represented as a linear combination of these vectors, finding a basis similar to PCA.
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However, they introduce an additional sparsity constraint setting some of the parameters
of the basis to zero.

Classifiers

Let us define the term task for HAR, following [CFK13, PY10].

Definition 2. Task: For HAR, a task T is a tuple (Y, f(·)) with Y, a label space from a set of
Y activity classes for some give domain D, and an objective predictive function or conditional
probability distribution f(·) consisting of the probability of assigning a label yi ∈ Y given the
observed sample Xi ∈ X, i.e., p(Y|X). The function f(·) is not given, but can be learned from the
annotated training data, consisting of N tuples {(X,y)n}Nn=0 where Xn ∈ X, yn ∈ Y.

The classifier f(·) maps the extracted features ZR or the lower-dimensionality ones ZQ to
a class representation Y, i.e., f(·) : ZR → Y. Its parameters are trained using the extracted
features of an annotated dataset, with N annotated samples {(X,y)n}Nn=0 from a source
domain Dsource, minimizing the classification error. Finally, for new samples Xnew ∈ X,
classifiers can be classified into template matching techniques, generative approaches and
discriminative approaches.

Template matching techniques employ a K-Nearest Neighbour (KNN) classifier using a
Euclidean distance [AB10, ABT10, BBS14, GW15, GD14, KKB14, STBO17, SR12, ZO18] or
DTW [ABT10, MHB+

16]. A KNN classifier is a non-parametric classifier that matches the
activity class of the k nearest feature representation to the ones of the Xnew sample.

Generative probabilistic graphical models such as HMM model and dynamic Bayesian
have been used for modelling multi-channel Time-Series sequences and for smoothing
recognition results of an ensemble classifier. The authors in [LC11] trained an HMM for
each dimensional axis [x, y, z] of pre-processed acceleration measurements, fusing them
with a weighted sum. The authors in [KEK08, BBS14, FK16, GCBCJG14] also deployed
HMMs, and the authors in [WGT+

11] used coupled HMMs, where a two-chain coupled
HMM connects hidden states of two sequence observations from two subjects performing
an activity. The authors in [RC17] used hierarchical conditional HMMs. The authors
in [AB10, BBS14, CPR11, FMHF16, GW15, GD14, LPLP12] used Naïve Bayes (NB). NB
models activity samples using a Gaussian Mixture Model (GMM). The authors in [LYA09]
deployed a NB with a Probability Density Function (PDF) from 19 PCA-based reduced
features. The authors in [ZO18, VFD+

17] also used an NB, assuming that the features are
mutually independent.

Discriminative approaches including SVMs [AB10, BPT14, CPR11, CX15, FMHF16,
GW15, STBO17, ZO18] and Conditional Random Fields (CRFs) [GCBCJG14] have been
also effective for M-HAR. Discriminative approaches minimize the error by gradient
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descent. An SVM finds the hyperplane wTxi + b that maximizes the margin beween
the data points of different classes by optimizing the following Quadratic Programming
Problem (QPP), Equation 2.2.1.

f(x) = min
w,b

1

2
‖w‖2 +C

n∑
i=1

ξi, (2.2.1)

such that ai(wTxi + b) > 1− ξi and ξi > 0, ∀i, where xi and ai are the feature vector
and the attribute vector for the i-th training sample, respectively.

The authors in [CSG+
13] have trained a SVM classifier per attribute a ∈ A; see Sec-

tion 2.4 for more details about attribute representation. The authors in [AI15] used an
SVM-based binary decision tree classifier. Anguita et al. [AGO+

12] proposed a hardware-
friendly SVM that is meant to be deployed on smartphone devices. The authors in
[VFD+

17] used a Dynamic Bayesian Mixture Model (DBMM) for combining conditional
probability outputs from different base classifiers, namely, an NB, anSVM, and an MLP.
A weight is assigned to each base classifier, according to the learning process, using
an uncertainty measure as a confidence level. An MLP, Section 2.1,was deployed by
[AB10, ABT10, BPT14, CPR11, KLLK10, KWM11, LPLP12, SSH13].

Additionally, other classifiers, methods or approaches were used: Random Forest
(RF) [BPT14, CPR11, FMHF16, TDF+

18], Decision Tree (DT) [GW15, KWM11, LPLP12,
SSH13, ZO18], Logistic Regression (LR) [BPT14, KWM11, SSH13, TDF+

18], Least Squares
Method (LSM) [AB10], GMM [KKB14], Template Maching (TM) [MHB+

16], Correlation
[MHB+

16], KNN with Euclidean Distance (ED) [MHB+
16].

In addition, the authors in [BPT14] combined single classifiers by averaging the activity
probability predictions and majority voting. Joint Boosting (JB) [ZSMP15], Bagging
[ZSMP15, LPLP12] and Stacking [ZSMP15] were also deployed.

2.3 transfer learning for har

A unique M-HAR framework does not apply to many real-world scenarios. Frameworks
adapt baseline M-HAR methods to new scenarios [CFK13, KSR+

21b]. Traditional M-HAR
methods make strong assumptions that the training and testing data are drawn from the
same distribution; data is in the same space, e.g., very specific sensor types. Real-world
applications do not follow this assumption. Supervised M-HAR methods, e.g., deep
learning methods, need large annotated and curated datasets for performing decently in a
testing scenario in a variety of circumstances. In the case of OBD data, data is scarce, as the
annotation process is expensive, time-consuming, tedious, and requires domain expertise,
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see Chapter 7. The lack of annotated datasets raises the need to create alternatives for
using, re-using and making the most of the existing annotated datasets, finding relations
among datasets or performing Transfer Learning for HAR [CFK13]. Adapting experience
is the capability of humans to identify deep, subtle connections in data; this experience
adaptation is called transfer learning. Frameworks that adapt experience from different
sources are required to improve performance on new tasks without data creation or with
a minimal fraction of it [CFK13]. Transfer learning is the ability to extend the experience
gained from a domain to new domains [CFK13, GY17, KSR+

21b].
Transfer Learning for HAR has helped cope with the limited amount of annotated data,

overfitting, and the class-imbalance problem, as classes are not normally distributed. A
TL method for HAR should work under different scenarios. It should be able to re-use
annotated data from a source scenario into a target scenario, with the same number and
type of sensors. The target scenario has a different layout and different subjects and sensor
locations, e.g., different logistic scenarios using the same devices for capturing activities
of workers or intelligent houses using similar devices for elderly care. Nevertheless, a
method of Transfer Learning for HAR shall also transfer information for different physical
settings, sensor locations, sensor types, subjects—cultural changes, age-related differences,
and gender—and activities. Besides, the amount of annotated data is also a factor to
consider. Transfer Learning for HAR shall consider the representation of the experience or
knowledge to be transferred [CFK13]. The authors in [CFK13] analysed Transfer Learning
for HAR from four dimensions: sensor modalities, source and target domain differences,
amount of annotated data in the source and target datasets, and the representation or the
type of information being utilised.

Following the definition of a M-HAR domain in Subsection 2.2.1, and of a M-HAR
task in Subsection 2.2.3, and [PY10, CFK13], let us define the term Transfer Learning for
M-HAR.

Definition 3. Transfer Learning for M-HAR: given a set of Q number of source domains{
D

(q)
source

}Q
q=0

, e.g., different logistics scenarios with different OBD settings, a set of Q number of

source tasks
{
T
(q)
source

}Q
q=0

where T(q)
source corresponds with D

(q)
source; a target domain Dtarget,

e.g., a new logistic scenario, with a corresponding target task Ttarget transfer learning helps
improving the learning of the target predictive function ftarget(·) in Ttarget, where the multi-
channel Time-Series spaces χtarget 6= χsource and the label spaces Ytarget 6= Ysource differ.

This definition of transfer learning serves to describe many different transfer learning
scenarios. These scenarios appear according on the differences between the source and the
target domains in an specific application of M-HAR, e.g., for example the close-to-reality,
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laboratory LARa dataset [NRMR+
20] compared to the real MotionMiners datasets for

intralogistics. These transfer learning scenarios can be defined:

• Source and Target sensor spaces differ:

– Q number of source domains and a target domain have different multi-channel

Time-Series spaces, Xtarget 6=
{
X
(q)
sources

}Q
q=0

, e.g., under different OBDs,

sensor modalities or physical space.

– a different underlying marginal probability distribution in the feature space

p(Xtarget) 6=
{

p(X(q)
source)

}Q
q=0

, when Xsource = Xtarget, e.g., under different

recordings settings with varying time, subjects, or sampling rates.

• Source and Target tasks differ under:

– a different label space Ytarget 6=
{
Y
(q)
source

}q
q=0

.

– a different predictive function for labels ftarget(·) 6=
{

fsource(·)(q)
}q
q=0

under
the same label space Y, e.g., differences due to time, subjects, devices, sampling
rates, activities, or labels.

• Source and Target domains differ, i.e., Dsource 6= Dtarget.

Nevertheless, transfer learning assumes some relationship between the source and
target tasks, which allows for the successful transfer of knowledge. The transferability
becomes more challenging as the number or type of differences between the source and
the target domains increase. In this case, transferability is much more difficult.

Transfer learning can also be distinguished depending on the availability of annotated
data, either for the source and target domains, following [CFK13, PY10]. Informed
Supervised Transfer Learning (IS Transfer Learning) implies that N annotated samples
{X,y}Nn=0 from the source domain Dsource and M annotated samples {X,y}Mm=0 from the
target domain Dtarget are available. Uninformed Supervised Transfer Learning (US
Transfer Learning) implies that N annotated samples are available only in the source
domain Dsource. Informed Unsupervised Transfer Learning (IU Transfer Learning)
implies that only M annotated samples {X,y}Mm=0 from the target domain Dtarget are
available. Uninformed Unsupervised Transfer Learning (UU Transfer Learning) implies
that no annotated data is available for either the source or target domains [CFK13].

Considering that Inductive learning refers to learning techniques to learn the objective
predictive function f(·); Inductive Transfer Learning (ITL) seeks to learn f(·)target using
data from a source domain, Dsource. It requires annotated data from the target domain
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Dtarget, even for few samples, without considering annotations of the source, Dsource.
Here, the source and target domains are equal Dsource = Dtarget, but their tasks
differ Tsource 6= Ttarget. Furthermore, considering that Transductive Learning refers
to the situation where all test data are required to be seen at training time, and the
learned model cannot be reused for future data. For deployment, the classifier cluster
the entire training and testing data. Transductive Transfer Learning (TTL) techniques
try to learn f(·)target via the relationship between samples Xsource ∈ Dsource and
Xtarget ∈ Dtarget. Here, the source and tasks are the same Tsource = Ttarget, but the
domains differ, Dsource 6= Dtarget. This transfer approach does not require annotated
data in the target domain, however, target data shall be available at training [CFK13, PY10].

Inductive Learning Transfer Learning for HAR can be classified into four types, namely,
instance transfer, feature-representation transfer, parameter transfer, and relational-
knowledge transfer, according to [PY10], as explained below.

2.3.1 Instance Transfer

Instance transfer reuses the source data {(X,y)n}Nn=0 to train the target classifier. Usually,
instance transfer weights the source samples based upon a given metric. It assumes
that certain parts of the data in the source domain can be reused for learning the target
domain by reweighting. It works well when the source and target domains are the same
Dsource = Dtarget, i.e., equal number and types of OBDs and the locations on the human
body, for example, the different logistic scenarios using the same set of OBDs.

The authors in [ZHY09] used an instance-based approach to weight source instances
based upon the similarity between the activity classes of the source and target data. With
this, they transferred the labels from samples in the source domain to samples in the target
domain using web knowledge—they used web search to extract related web pages for the
activities and then applied information retrieval techniques to process the extracted web
pages, computing the cosine similarity among word-vectors of activity classes—the cosine
similarity results from the angle between two vectors, being 0 for orthogonal vectors and
1 otherwise; see Equation 4.1.1. Such similarities will be used later to propagate labels for
domain transfer to relate the two domains. They are referred to as cross-domain transfer
learning; however, this is for the case when domains of source and target are the same,
having the same set of sensors, but their tasks differ Ysource 6= Ytarget, e.g., zero-shot
learning.

The authors in [HSU12] developed an importance weighted least-squares probabilistic
classification approach to handle Transfer Learning for M-HAR when p(Xsource) 6=
p(Xtarget) and fsource(·) 6= ftarget(·), i.e., the marginal distributions of the source and
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target domains differ but their conditional distribution over the label space Y remains
unchanged. They formulated this problem as a covariate shift problem. They focused on
the sampled reweighting approach and proposed a new probabilistic classification method
that is computationally very efficient. This approach combines a probabilistic classification
method called least-squares probabilistic classifier with the sample reweighting approach.

2.3.2 Feature-Representation Transfer

Feature-representation transfer reduces the differences between the source Zsource and
target Ztarget feature representations. The basic idea is to learn a low-dimensional
representation that is shared across related tasks, finding a good representation for the
target domain [PY10]. The knowledge used for transfer across domains is encoded into
the learned feature representation. It maps the source feature space to the target feature
space, such as kf(·) : Zsource → Ztarget, the target feature space to the source feature
space, such as kg(·) : Ztarget → Zsource, and the source and target feature spaces to
a common feature space such as kk(·) : Ztarget → Z and kk(·) : Zsource → Z. This
mapping can be computed manually [KEK08] mixing recordings from devices in similar
places or for different purposes—this is for HAR using ambient sensors—or learned as
part of the transfer learning algorithm [HY11]. This transfer approach works well when a
lot of annotated data in the source domain is available, where supervised learning can be
used to construct a feature representation.

The authors in [HY11] projected samples of the target set {X,y}target to pseudo-classes
corresponding to the source task Tsource. They assigned a pseudo-class Ysource from the
most frequent source activity classes in a set of K recordings

{
Xk
}K
k=1
∈ Xsource similar

to the target one. The K recordings are computed based on the DTW score between the
source recordings and the target recordings. The authors map these pseudo-classes to the
target activity classes measuring the distance between the source and the target activities
using the Google Similarity Distance. This distance relates two activity classes based on
the frequency of appearance of both activities on a given number of web pages.

Instance transfer, Subsection 2.3.1, might also be applied after mapping the feature
representations from source, and target datasets to a common representation [CFK13].

2.3.3 Relational-knowledge Transfer

Relational-knowledge transfer requires that there exist certain relationships in the data,
which can be learned and transferred across subjects. Data for activity recognition have
the potential to contain such transferable relationships indicating that this may be an
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important technique to pursue. Furthermore, relational-knowledge transfer applies to
problems in which the data is not Independent and Identically Distributed (i.i.d.) as
is traditionally assumed but can be represented through multiple relationships. The
works of [ZHY09, HY11] related activity classes based on the semantic definition of the
classes, the cosine similarity of word-vectors of two activity classes, and the Google
Similarity Distance measuring the frequency of appearance in a given number of web
pages. Subsection 3.4.2 presents a relational-knowledge method for M-HAR.

2.3.4 Parameter Transfer

Learned parameters are shared among the source Dsource and target domains Dtarget.
For example, a common parameter transfer is learning a prior distribution shared between
the source and target datasets. In another example, one technique models the source
and target tasks using a GMM, which share a prior distribution. The work in [KEK08]
proposed a method to learn the parameters of an HMM using labelled data from the
source domain and unlabeled data from the target domain. In addition, the authors
in [KEK10] extended [KEK08] learning hyperparameter priors for the HMM instead of
learning the parameters directly. Differently, the authors in [DXTL10] learned a target
classifier by merging a set of pre-trained classifiers from two source domains prior to
learning a robust target classifier with a portion of annotated data from the target domain.

Another approach for transferring knowledge among domains is Zero-shot learning.
Zero-shot learning is a classification task where the source and target tasks are disjoint,
Tsource 6= Ttarget, but have equal input space Dsource = Dtarget, i.e., the target tasks are
not directly learned. It addresses problems where the task space is large, i.e., comprising
hundreds to thousands of classes, or samples of the target tasks are hard to obtain
[AGFV14, LNH14, XLSA19]. A particular approach for Zero-short learning is the usage
of attribute representations6, and it is specially focused in this work for addressing HAR.
Henceforth, Section 2.4 presents in more detail attribute representations for Zero-shot
learning. Then, Chapter 4 deepens on attribute representations along with deep learning
and finally links it for M-HAR. Finally, Subsection 3.4.1 presents parameter transfer
methods using DNNs for HAR.

2.4 attribute representation for classification

Attribute representations have helped to solve transfer learning in cases where the
source and target tasks differ, e.g., for zero-shot learning; here, the source and target

6 Attribute Representation can be sorted as Feature-Representation Transfer, Subsection 2.3.2.
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domains usually are equivalent. For example, zero-shot learning for object recognition
[LNH09, LNH14], scene recognition and word spotting [SF18], where the domain is RGB
images. Besides, using attribute representations helps in cases where annotations are hard
to obtain [CGD+

13], where data is highly imbalanced, and its class space is large, e.g.,
words of a language; see Chapter 7 for more details. High-level attribute representations
are semantic descriptions that have been deployed for describing categories in object and
scene recognition [LNH14, ZJC17] and in document analysis [AGFV14, SF18].

Objects are identified based on high-level descriptions, called visual semantic attributes,
e.g., objects’ colour or shape. Generally, visual attributes are mid-level semantic properties
of categories, which are shared among categories. For example, visual attributes can be
furry, yellow, or four-legged for object recognition [LNH09, LNH14], or word characters
for handwritten word spotting [SF18]. They provide an effective way of solving the
zero-shot classification problem [SFLP17].

Classifiers, e.g., DNNs, demand a large amount of annotated samples per class in order
to provide robust predictions for new samples. However, annotating samples for all the
wanted categories demands a lot of effort and resources, especially for the infrequent
classes, such as specific dog breeds, car models, or articles in stores. Besides, it is not
an easy task to classify classes that are not present in the training set, e.g., zero-shot
classification as mentioned in Subsection 2.3.4.

There are categorisation tasks for which few samples are available. For example, for
object recognition, the world contains thousands of different object classes, and image
collections contain only a few of those classes [LNH14]; for handwritten word spotting or
word recognition, it is unfeasible to collect training samples for every word.

Attributes transcend a specific learning task; an attribute classifier can be pre-learned
independently from a source dataset unrelated to the current task. That means transfer
learning via attribute representations allows for classifying new classes without the need
for a new training phase.

Given an arbitrary domain D, and two corresponding tasks Tsource with (Y, f(·))source
and Ttarget with (Y, g(·))source, having Ysource and Ytarget the source and target class
spaces, and both tasks are disjoint Tsource 6= Ttarget. The idea is to learn the objective
predictive function g(·) : X → Ytarget, which maps samples X ∈ X to Ytarget by using
annotated samples of the source dataset {(X,y)n}Nn=0 even if Tsource 6= Ttarget. There is a
coupling between classes in Ysource and Ytarget to classify unseen classes, or classes for
which no annotated data is available. This falls into our definition of transfer learning.

We assume that there is no-annotated data for the unseen dataset. The coupling cannot
be learnt from samples, so it has to be inserted by humans. Ideally, the amount of human
effort to specify new classes should be small; otherwise, collecting and labelling training
samples might be a more straightforward solution.
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The authors in [LNH14] proposed a solution of learning with disjoint training and
testing classes for object recognition by introducing a small set of high-level semantic
attributes that can be specified either on a per-class or on a per-image level. An attribute is
a property of an object for which a human can decide whether the property is present or
not for a certain object. The work from [LNH14] considered only binary-valued attributes,
i.e., present or not. In contrast, image features are computable, but humans cannot
interpret them.

Attributes will be denoted as a ∈ A and binary attributes as A ⊂ B. They are
distinguishable and nameable properties, e.g., the colour of an object. The authors in
[LNH14] also considered properties that are not necessarily visible but are contextually
related to visual information of the object or class, e.g., an animal's natural habitat.

Attributes can be assigned to every image sample or to every object class. Assigning
the attributes directly to classes is particularly helpful for annotating the attributes with
minimal effort. In addition, coupling data via only common knowledge is preferable over
specialised expert knowledge, because the latter is often difficult and expensive to obtain.
The authors [LNH14] proposed the attribute-based object classification.

Having the transfer learning scenario of learning with disjoint training and testing
classes in Section 2.3, if for each class in Ysource and Ytarget and attribute representation
a ∈ AM is available, then a non-trivial classifier g(·) : X → Ytarget can be learned by
transferring information between Ysource and Ytarget through A. The [LNH09, LNH14]
proposed two attribute-based predictions approaches, namely, Direct Attribute Prediction
(DAP), Indirect Attribute Prediction (IAP). They propose a probabilistic model that
reflects the attribute representation classification, as Figure 2.4.1 shows. They assumed
the attributes as being binary A ∈ B. The attribute representation is a(y) = (a

(y)
m , ...,a(y)M )

for any training class y are M-fixed-length binary vectors.

2.4.1 Direct Attribute Prediction (DAP)

The authors in [LNH09, LNH14] proposed the Direct Attribute Prediction (DAP) for object
classification. The DAP uses an intermediate layer of variables to decouple the image
samples from the classes. These variables are related to semantic information or attributes
from the classes, i.e., there is a deterministic relation from class labels to attributes.
Having this relation, a supervised learning method can be used for learning per-attribute
parameters, e.g., the parameters of a network for computing attribute representation. At
testing, these allow the prediction of attribute values for each test sample, from which the
test class label is inferred. Note that the classes during testing can differ from the classes
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Figure 2.4.1: Graphical representation of the Direct Attribute Prediction (DAP) and Indirect Attribute
Prediction (IAP) for object classification. The flat multi-class classification cannot be generalized for computing
the target activities yt ∈ Ytarget. For the DAP, the parameters of an attribute classifier W are learned
using the annotated source dataset {(X,y)n}Nn=0. The target activities yt ∈ Ytarget are inferred using
the predicted attribute representation a using Equation 2.4.4. For the IAP, the parameters of an activity
classifier W are learned using the annotated source dataset {(X,y)n}Nn=0. The attributes a are determined
deterministically, p(a|ys) = [[a = a(y

s)]]. The target activities yt ∈ Ytarget are inferred using the predicted
attribute representation a using Equation 2.4.5. Image adapted from [LNH09, LNH14].

used for training, as long as the coupling attribute layer is determined in a way that does
not require a training phase.

For DAP, the authors learn probabilistic classifiers for each attribute am. They use
all images from all training classes as training samples with their class determined by
the entry in an attribute representation matrix. This matrix relates an attribute with
a corresponding class, i.e., a sample of class y is assigned the binary label aym. An
attribute predictor model provides the estimates p(am|X). A model for the complete
image-attribute layer provides p(a|X) =

∏M
m=1 p(am|X).

On the testing scenario, every class yt ∈ Ytarget induces its attribute vector a(y
t) in a

deterministic way, i.e., p(a|yt) = [[a = a(y
t)]]7. Applying Bayes’s rule, the relation between

7 Iverson´s braket notation [[P]] = 1, if the condition P is true or [[P]] = 0 otherwise.
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the yt and the attribute vector a is obtained as p(yt|a) = p(yt)

p(a(yt))
[[a = a(y

t)]], known as
the attribute-class layer.

p(yt|X) =
∑

a∈BM

p
(
yt|a

)
p(a|X) (2.4.1)

p(yt|X) =
∑

a∈BM

p(z|a)p(a|X) =
p(z)

p(a(yt))

M∏
m=1

p
(
a
(yt)
m |X

)
(2.4.2)

p(a(y
t)|X) =

M∏
m=1

p(a
(yt)
m |X), (2.4.3)

with X being an input image sample, and a(y
t) the binary attribute vector of class yt.

Besides, the factor p((yt)) is ignored assuming identical class priors. For the factor p(a),
[LNH14] assume a factorial distribution p(a) =

∏M
m=1 p(am), using the empirical means

p(am) = 1
K

∑K=Ysource
k=1 a

yk
m over the Ysource training source classes as attribute priors—

the prior p(a) is not crucial to the procedure in practice, and setting p(am) = 1
2 yields

comparable results. As decision rule g : X → Ytarget that assigns the best output class
from all L = Ytarget target classes z1, ..., zL to a test sample X, they use MAP prediction:

g(x) = argmax
l=1,...,L

M∏
m=1

p(azlm|X)
p(azlm)

(2.4.4)

2.4.2 Indirect Attribute Prediction (IAP)

The Indirect Attribute Prediction (IAP) uses attributes to transfer knowledge between
classes but uses an attribute layer from a connecting layer between two layers of activity
classes, the source and the target tasks. The training phase of IAP is a standard multi-
class classification. At testing, the predictions for all target classes induce an attribute
representation, from which predictions over the target classes can be inferred.

In order to implement IAP, they only modify the image-attribute stage: as first step,
they learn a probabilistic multi-class classifier estimating p(ys|x) for all training source
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classes ys ∈ Ysource. Again assuming a deterministic dependence between attributes and
classes, they set p(am|y) = [[am = a

(y)
m ]]. The combination of both steps yields,

p(am|X) =
K=Ysource∑
k=1

p(am|ysk)p(yk|X) (2.4.5)

Thus, inferring the attribute posterior probabilities p(am|X) requires only a matrix-
vector multiplication with expert given p(am|ysk). After computing p(am|X), the activity
class is inferred using Equation 2.4.4, in the same way as in for DAP.

The authors in [LNH09, LNH14] evaluated the DAP and IAP for classification of animal
images, introducing the Animals with Attributes (AwA) dataset. They deployed non-linear
SVM for each attribute am. Here, the attributes are given per class and not per sample.

This chapter presents the essential aspects of a M-HAR system. Besides, it covers the
fundamentals of DL, starting from the perceptron, MLP, activation functions, and training
procedure, and the relevant elements of DNNs. Finally, the chapter focuses on Transfer
Learning for HAR, driving into the concept of attribute representations.

Following, Chapter 3 further looks into methods of HAR using DL approaches. Besides,
it will present parameter transfer and relational transfer approaches using DL. Further-
more, Chapter 4 will regard related works combining attribute representations CNNs and
applied on HAR.
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3D E E P L E A R N I N G F O R H U M A N
A C T I V I T Y R E C O G N I T I O N

DNN have been used successfully for solving M-HAR problems. In comparison to
standard statistical M-HAR, presented in Subsection 2.2.3, DNNs conveniently combine
the feature extraction and classification in an end-to-end approach. This chapter revises
related works concerning M-HAR, video-based HAR and pose-based HAR using DNNs;
specifically, CNNs and tCNNs, RNNs, and transformers.

The performance of M-HAR on OBDs using DNN, however, has not shown a significant
increase in performance as in other HAR fields, such as video-based HAR. Considering
M-HAR as a supervised problem, scarcity of annotated M-HAR data is the primary
concern [KHC10, DPBR20]. Supervised DNN require a large amount of annotated data.
Transfer learning, introduced in Section 2.3, can alleviate the problem of scarcity of
annotated data. Nonetheless, it can be hindered by the enormous variation of recording
settings, e.g., different recording rates, sensor resolutions, device position, or intrinsic
device characteristics.

This chapter deepens into transfer learning specifically for M-HAR. For that, the
chapter presents the concept of synthetic data generation, which was introduced in
video-based HAR and pose-based HAR methods concerning human pose estimation in
Section 3.2. This is relevant for discussing a transfer learning alternative for OBD. Further,
it develops the parameter- and relational-knowledge transfer learning approaches for
M-HAR, presented in Subsection 2.3.4 and Subsection 2.3.3, respectively.

3.1 deep neural networks for m-har

DL methods are prevalent for HAR in the context of M-HAR for the applications of gesture
recognition and ADLs. Compared to the statistical pattern recognition methods, DL meth-
ods combine the feature extraction, feature or dimensionality reduction, and classification
in a holistic approach [ZNY+

14, RC15, YNS+
15, HHP16, OR16, MSR+

17, YLSR18]. Their
features are directly learned from data, being mode discriminative. Besides, they over-
come some problems regarding the computation and adaptability of handcrafted features.
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TCNNs are end-to-end architectures that combine learnable temporal convolutional filters
along the time axis with non-linear operation functions, downsampling and classification.
A temporal convolution is computed following Equation 2.1.38. These architectures map
a sequence segment of multi-channel Time-Series recordings into a class representation.
These architectures learn the non-linear and temporal relations of basic, complex and
highly dynamic human movements. By stacking convolutional layers, and downsampling
their outputs, tCNNs extract more complex and abstract features and are task-dependent,
being invariant to distortions and time translations [LKF10]. tCNNs extract hierarchi-
cal human body movements, i.e., from basic and simple movements to complex ones.
Moreover, they learn the temporal dependencies among different movements. They learn
non-linear transformations directly from raw inertial data. These transformations are more
discriminative with respect to the activity classes than the handcrafted features. These
features are also invariant to distortions and temporal translations [HHP16]. Different
configurations of such networks have been introduced, as Figure 3.1.1 shows.

Input Layer

[F× 1]
Conv

[Fx1xC]
Conv Pool. Pool.

[Fx1xC]
Conv

[Fx1xC]
Conv

W1 W2 W3W

S

W4 W5
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DenseDense
SoftmaxLayer Layer

Fuse
Feature Extraction ClassifierLayers

Figure 3.1.1: Different configurations of tCNNs in the literature are mainly divided into four parts: an input
layer, a feature extractor block, fusion layers, and a classifier. Authors in the literature have investigated
different numbers of convolutional and max-pooling layers, the number of filters per layer C, the size of the
convolutional filter F, and fuse layers. The latter consists of either FC or LSTM layers.

For M-HAR, the inputs consist of a stack of N segmented sequences X ∈ R[W,S] from S

sensors, for a certain temporal duration W. These windows are extracted, for example,
using a sliding-window approach with window size W and stride Str, as Subsection 2.2.3
shows. These sequence inputs are of size [W,S]. Using a small Str, multiple windows
representing the same activity are extracted. Although the information in these is highly
redundant, the small stride allows to generate a large number of samples, which is
important for training a tCNN [GLMR+

17, YNS+
15].

Networks for M-HAR are relatively small—in comparison to networks for image
classification or document analysis—with a maximum of four convolutional layers and
three pooling layers. Classification is usually performed using a softmax layer. The authors
in [RC15, YNS+

15, ZNY+
14] introduced tCNNs containing convolution and pooling
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operations, which are carried out along the time axis. As local temporal neighbourhoods
are likely to be correlated independent of the sensors, these architectures share small
convolutional filters among all the sensors. Convolutional filters extract temporal relations
from their local neighbourhood at different temporal locations from the input sequences
per channel. Temporal filters are shared among all the channels. These temporal relations
are likely to be correlated independent of the type of sensor. This assumption is also valid
if the measurements per channel are normalized. Ronao and Cho [RC15] investigated
a tCNN for temporal filter sizes F =

[
{Ft}

15
Ft=1

× 1
]
, number of filters C = [10, 20, ..., 200]

and up to three blocks of convolutional and max-pooling layers. In [YNS+
15], Yang

et al. evaluated a three-layered tCNN choosing the convolution filters such that the
output of the last convolution is one, i.e., [W3 = 1,S]. In [ZNY+

14], the 3D components
of the acceleration recordings [x, y, z] are separated and processed by a shallow 1 layer-
tCNN independently. Then, the extracted features are fused by a FC layer.1 The authors
in [DBLG14] deployed a five-layered tCNN with alternating average and max-pooling
operations.

Ordóñez et al. [OR16] introduced an architecture that combines temporal convolutions
and RNNs. To be precise, they used LSTM units as fuse layers; see Figure 3.1.1. They
combined [F = [5× 1],C = 64]-temporal convolutions and C = 128-LSTMs layers, denoting
the architecture as Deep Convolutional LSTM (DeepConvLSTM). This DeepConvLSTM
consists of four convolutional layers and three LSTM layers. Convolution layers do not
include a pooling operation. The authors observed that the DeepConvLSTM offers better
performance when identifying the start and end of activities. Also, DeepConvLSTM
improved the classification performance when compared to results reported by [YNS+

15],
using a four-layered tCNN. LSTM cells capture longer temporal dynamics within the
data sequence compared to a tCNN. The authors in [HHP16] utilized a shallow RNN;
namely, a three-layered LSTM network and one-layered Bidirectional-LSTM (B-LSTM). B-
LSTMs process segmented sequences following their inputs in both forward and backward
directions. Although the B-LSTM architecture performs better, the tCNNs are more robust
against hyperparameter changes.

Authors in [XHF+
18] proposed to use dilated temporal DeepConvLSTMs. The ar-

chitecture consists of one initial convolutional layer followed by three dilated temporal
convolutional layers with different dilated factors. The feature maps of the last dilated
temporal convolutional layer is fed to a two-layered LSTMs followed by a softmax. Chen
et al. [CLCG18] proposed a combination of LSTMs with raw-data input, an MLP with
handcrafted-feature inputs and late fusion. In contrast, Zhu et al. [ZCS19] used a LSTM
network with statistical features, Subsection 2.2.3, as input.

1 In general, these networks implement a late fusion of the sensors’ features.
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Figure 3.1.2: CNN with 2D convolutions, temporal max-pooling and a Fully Convolutional Layer (FCN) for
dense predictions of M-HAR. Image taken from [YLSR18].

Differently, Yao et al. [YLSR18] proposed a CNN with 2D filters, temporal max-pooling
and FCNs for predicting sample-wise M-HAR; hence, each sample is mapped to an
activity class rather than a window of samples. FCNs perform convolutions considering
only the depth of the input feature map, with filters of size [C× 1] and stride of [1× 1] with
C the dimension of the input feature. Their 2D convolutions and temporal max-pooling
are carried out with padding to compensate for the kernel size and ensure the temporal
size of the output as in the input. Their architecture contains six blocks of 2D convolutions
with ReLU, and temporal pooling operations; a single FCN and a dense softmax classifier.
The dense softmax imposes a softmax classification for the predictions of all the samples;
this is different from the existing methods, which apply the conventional softmax loss
layer to predict a single window.

The authors in [CVN+
20] evaluated the tCNN for different number of convolutional

layers, their depth, and filter sizes. Münzner et al. [MSR+
17] investigated different

sensor-fusion strategies. They utilized filters combining the data channels in the first-
convolutional layer or among sensor types. Furthermore, they utilized temporal convolu-
tions and late fusion as in [GLMR+

17]. They also proposed a sort of tCNN with branches
for each channel. Moreover, the authors evaluated the effect of three normalization strate-
gies: zero-mean and unit standard deviation, batch normalization, and a pressure-mean
subtraction. Using a normalization strategy improves the architecture’s performance.

The authors of [TLLY18] used spectograms of inertial signals as image inputs for CNNs.
They also concatenated recordings from Surface Electromyography Sensors (sEMG),
corresponding to muscles activation levels, to the output of the first FC and input it to a
Softmax layer.

Shavit and Klein [SK21] proposed a transformer architecture, merging OBD data and
position data for M-HAR. The architecture is an attention-based encoder architecture.
The authors argue that LSTMs do not perform a holistic temporal aggregation as tCNNs
do—transformers aggregate information from the entire sequence. Nevertheless, the

64



3.2 video- and pose-based har

authors only deployed the encoder and an MLP for M-HAR. Besides, it uses the convo-
lutional layers of a pretrained tCNN on the same target dataset for feature extraction.
Conformer architectures comprise two parallel branches of convolutional layers and at-
tention layers [KCKL22]. By including bridge connections at different stages of the two
branches, conformers seek to learn attention heads and feature extractors parallelly. They
combine the feature extraction efficiency of the CNNs with the holistic attention power of
transformers in an end-to-end approach. Attention mechanisms have also been explored
in [Mah20, BV21, DLKP22] in the context of M-HAR.

3.2 video- and pose-based har

Deep methods for video-based HAR and pose-based HAR process video inputs in different
stages to compute activity predictions. They generally consider the input as individual
image frames, where intermediate representations of the frames are computed, e.g., visual,
motion, or joint pose representations. Visual representation is a constant for all of the
methods. Datasets intended for image and object classification are used for pre-training.
The motion representation relies on pre-computing optical flow representation of the video
frames. Pose-based HAR consider a representation of the joint poses. Interestingly, this
representation is also an embedded result of the overall HAR method. The joint poses are
somehow embedded in the methods. The different stages of these methods handle each
input type in parallel, being trained individually, or using multi-task learning strategies.
As different parallel architectures handle RGB and optical flow images and eventually
pose estimations, fusion strategies are considered in different levels, e.g., early fusion
either—at the input or in the early layers—, middle and late fusion—mainly combining
activity predictions.

Simonyan and Zisserman [SZ14] proposed an architecture for video-based HAR on the
UCF101 and HMDB51 [KJG+

11] datasets. This architecture is comprised of two individual
networks: an RGB CNN and an optical-flow CNN. The RGB CNN classifies single RGB
frames from a video to an activity class, similar to a CNN for object recognition. The au-
thors pre-trained the RGB CNN on a large static image dataset to human actions on static
images, e.g., ImageNet dataset [RDS+

15], transferring visual features. Simultaneously,
the optical-flow CNN processes L consecutive flow images extracted from a video.2 The
authors did not pretrain this temporal network since large datasets are unavailable. The
authors evaluated the length of consecutive optical flow frames L of an RGB frame to pass
into the flow network; finally, setting L = 10. They found that subtracting the mean flow
image from every flow frame significantly improved the overall accuracy. They argued

2 Optical flow images are computed between consequent frames.
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that such subtraction reduces the camera motion, similar to the homography approach.
The RGB CNN and an optical-flow CNN have almost the same architecture, consisting
of five convolutional and two FC layers, followed by a softmax layer. Both classification
outputs are fed to a multiclass linear SVM, which conclusively outputs the final action
prediction.

To train their model, Simonyan and Zisserman [SZ14] utilized multi-task learning. First,
they combined two datasets for training, the UCF101 and the HMDB51. The overall
architecture has two softmax classifiers, one per dataset, as their tasks T differ, i.e., their
label space differs. The authors found that training in such a way has a regularisation
effect, reducing the risk of overfitting on any of the two datasets. They use the OpenCV
library’s algorithm for computing optical flow images. The authors in [FPZ16] proposed
different fusion strategies for the RGB CNN and an optical-flow CNN feature maps; this
is different to the late fusion or output fusion in [SZ14].

Video-based HAR can also be performed using human pose estimates. Choutas et
al. [CWRS18] introduced a representation of videos for video-based HAR, combining
joint pose estimation and a temporal aggregation of weighted poses to encode the motion
of joints over a video. This representation is called PoTion. The PoTion representation
aggregates joint movements along the video frames, encoding how much time a joint
remains in a pose in pixel coordinates. Joint poses are represented by 2D heatmaps per
frame, which are computed by a two-branch CNN trained on the MS COCO dataset.
This CNN computes heatmaps of 19 joints, and their respective Part Affinity Field (PAF)3

[CSWS17]. The authors extended the joints heatmaps encoding the joint movements
along the time axis of the video. They assigned a colour value to the joint heat-maps of
the first and end frames of the video, and interpolated the in-between joint heat-maps.
The PoTion representation is the aggregated colourised joint heat-maps along time or
frames—normalised with respect to the number of pixels and frames. Finally, a 6-layered
CNN with average pooling and a softmax layer classifies a video processing its PoTion
representation of a video.

Khalid and Yu [KY18] expanded the two-streams CNN in [SZ14] using pose information
as a third stream. They merged human-pose estimations, RGB frames from videos, and
their optical flow images for video-based HAR with deep architectures. They proposed
a special fixed order of the human joints based on a tree-like structure. Besides, they
deployed early, middle and late fusion of the streams. They estimated the poses for each
frame using the joint heatmaps4 proposed in [CWRS18]. The authors argue that missing

3 PAFs are vectors connecting joints to their two adjacent ones, which are found by a search of uniformly-spaced
orientation vectors of all possible vectors connecting detected joints [CSWS17].

4 An argmax function is used as postprocessing step to compute the joint pixel coordinates of the highest peak
of the heatmap.
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joints need to be interpolated, leading to higher accuracy on the benchmark datasets.
They propose two different interpolation strategies: temporal interpolation and spatial
interpolation. Temporal interpolation is used whenever a joint is not visible for a few
frames. Let Fl be the frame where the last joint was last visible. This frame is then
followed by N frames, where the joint is not visible, followed by Fk, which becomes visible
again. Then, the authors linearly interpolate the position of the missing joint for each
frame Fl+1, ..., Fl+N using the positions in Fl and Fk. However, they do not specify what
constitutes a small number of frames, i.e., how small N has to be for this approach to
lead to good results. Spatial interpolation is used for long-term occlusion, i.e., large N.
Khalid and Yu argue that this is necessary since temporal interpolation leads to worse
results the bigger N gets. They divide the joints into five groups for spatial interpolation,
as Figure 3.2.1 shows. The groups are iterated, starting with the group where the missing
joint belongs. Supposing the other joints in a group are present, in that case, they vote on
the position of the missing joints based on a statistical model of relative joint positions
computed on training data beforehand. The average vote assumes that the missing joints
are highly correlated for certain joints. As an example, they mention the correlation
between head and neck positions.

Figure 3.2.1: The authors divide the
joints into five groups in order to esti-
mate relative positions of joints to each
other. Image taken from [KY18].

Once the joint position is estimated per frame, Khalid and Yu propose a pose tensor by
ordering the joint positions, keeping the neighbourhood relationship between joints. They
argue that this leads to higher accuracy since the relationship of the joints is a helpful
feature, but they do not compare it to other approaches for joint ordering. By traversing
the tree in such a way, some nodes are visited multiple times and are thus present multiple
times in the pose tensor. That way, the authors argue, neighbourhood relationships are
expressed more directly than simply starting at joint "1", see [KY18], and concatenating
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the x and y positions. The pose tensor then contains the pixel coordinates, x and y, for
each frame in a row. The authors process the video clips in chunks so that the pose tensor
always has identical dimensions. Also, the tensor’s second and third dimensions contain
the joint position coordinates’ first and second-order derivatives via finite differences.
Finally, the joint positions are normalized with regards to the middle point between the
neck and belly joint and the torso length.

Khalid et Yu [KY18] propose a shallow CNN for classification. The network comprises
two convolutional layers with ReLU activation function, followed by a max-pooling
layer and a FC layer. Finally, a layer with the softmax activation function is used for
classification. Since the network is relatively small, the authors do not pre-train it. Instead,
for the two-stream architecture, they fuse their pose network into the existing two-stream
approach by equally weighting all three components.

In [LPT18], Luvizon et al. combined human pose estimations from images and se-
quences of RGB frames to create an end-to-end architecture for video-based HAR. To
be precise, they merged an architecture for estimating human poses from videos and an
architecture for HAR using the human poses to an end-to-end framework. Furthermore,
they deployed a differentiable Soft-argmax function for computing human-joint pixel
coordinates from the feature map activations. Then, these coordinates are fed to the video-
based HAR architecture. The proposed differentiable Soft-argmax for estimating joint pixel
coordinates, which makes the network completely differentiable, thus, allowing for using
certain pretrained parts, like the pose estimator, and end-to-end fine-tuning the network.
The authors claim that the combination of a pose estimator and activity recognition is
novel as pose estimators were not fully differentiable—many pose estimators output a
heatmap for each joint position. So, an argmax function is required compute the joint pixel
coordinates, as in [CWRS18, KY18]. Hence, the authors propose the Soft-argmax function
as a differentiable alternative to the regular argmax function. In addition, they propose
methods to use both 3D and 2D pose datasets while training their network. Figure 3.2.2
presents the overall architecture.

Their architecture can be divided into several four stages: a feature extraction, a pose
estimation, a pose-based HAR, an appereance-based HAR, and an over-all video-based HAR.
The feature extraction extracts visual features Z from each input video frame separately.
These features are used to predict the joint heatmaps in the pose estimation block. Besides,
they serve as input to the appereance-based HAR. The authors based their feature extraction
network on the Inception v4 network [SIVA17]. The last convolutional layer of the
Inception v4 network was replaced by a depthwise separable convolutional layer.

The depthwise separable convolutional layer consists of two consecutive layers, namely, a
depthwise convolutional layer and a pointwise convolutional layer. The depthwise convolutional
layer processes a feature map input Z ∈ R[W×H×Csep] with Csep = C number of filters
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Figure 3.2.2: The multitask method for pose esti-
mation and HAR on videos. High level visual-
ization of the network. The images features and
poses are computed frame-by-frame. The out-
put is then passed to the appearance and pose
recognition subnetworks, where they are jointly
processed to predict the action of the video clip.
Image taken from [LPT18].

W ∈ R[F×F×1], one per channel of the feature map input. The resulting feature map is
fed to the pointwise convolutional layer, which is a FCN with Cpoint number of filters W ∈
R[1×1×Csep]. The depthwise separable convolutional layer reduces the number of parameters
and matrix multiplications needed for convolutional layers with many channels.

The visual features Z are used to estimate joint poses and for action recognition. The
pose estimator is constructed from K prediction blocks, which built upon the work by
[NYD16]. Like the stacked hourglass architecture, each prediction block computes joint
heatmaps on different input scales by utilizing max-pooling and upsampling layers. In
particular, the authors use separable residual blocks instead of regular convolutions to
extract these scale-dependent features. A separable residual block is defined as a depthwise
separable convolutional layer whose input is added to the output using a residual connection.
The Kth joint heatmaps ZK are used to compute joint x and y coordinates using the
Soft-argmax function.

The authors propose the Soft-argmax for computing the pixel coordinates from a joint
heatmap. This Soft-argmax function computes the x and y image coordinates by

Ψ[x,y]
(
ZK
)
=

W∑
i=1

H∑
j=1

Wi,j,[x,y]ϕ
(
ZK
i,j
)

, (3.2.1)

with Wi,j,[x,y] =
[

i
W , j

H

]
being a fixed weight matrix for a convolutional layer, [W,H]

refer to the width and height of the heatmap, [i, j] are the pixel coordinates for each
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element in the joint heatmaps ZK, ϕ(ZK
i,j) the softmax on the heatmap Zi,j for indices i, j,

and Ψ[x,y] ∈ [0, 1]. The coordinates Ψ[x,y] represent the highest peak in the probability
map computed using the softmax. This is achieved by computing the expectation in x
and y direction on the probability map.

The authors argue that such a method for regressing x and y coordinates is more
accurate, and it requires fewer model weights than directly regressing them using, e.g., a
FC layer. The authors observe that their approach consistently outperforms regression
approaches.

Luvizon et al. [LPT18] propose encoding the visual features Z, the joint heatmaps ZK

and the joint predictions Ψ[x,y] into two tensors, pose cube and an appearance cube. These
tensors are used for two HAR models, namely the pose-based HAR using the pose cube and
appearance-based HAR using the appearance cube. The pose cube aggregates the predicted x
and y coordinates of joints for each input video frame into a 3D matrix representation of
size [J× F×D], where F refers to the number of frames of the input clip, J is the number
of joints, and D refers to the spatial dimensions, in this case, D = 2 for x and y coordinates.
To ensure that the pose cube keeps a fixed size, regardless of the original input video length,
the authors decide to subdivide the video into chunks of F = 16 frames, resulting in a
total dimensionality of [16× 16× 2].

The appearance cube consists of the concatenation the visual features Z ∈ R[Wz×Hz×Fz]

weighted by each joint heatmap ZK ∈ R[Wz×Hz×J], resulting in a tensor of size R[Wz×Hz×J×F]

and collapsed or summed up along the spatial dimensions [Wz ×Hz] per frame. A single
appearance cube entry is a tensor of [J× F], resulting when summing the activations of a
weighted visual features.

Next, two FC neural networks processes the pose cube and the appearance cube computing
two activity predictions. Each FC neural network contains a feature extractor and K

activity prediction blocks, each with a [4× 4]-MaxPlusMin pooling Equation 3.2.2 and a
softmax layer. However, the authors do not explain the benefit of such a pooling operation
over a regular max-pooling layer. Each activity prediction block computes an intermediate
activity prediction. The Kth prediction is considered as the activity prediction.

MaxMinPooling(x) =MaxPool(x) −MaxPool(−x) (3.2.2)

A final MLP combines the the pose-based and the appearance-based activity predictions
producing the overall-prediction.

In [JMA22], the authors deployed a tCNN processing temporal feature representations
of optical flow images of a video. They deployed a pre-trained CNN to extract spatial
feature maps from optical-flow images. These feature maps are then reduced by PCA.
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The dimensions of the aggregated feature maps are time-wise concatenated. A tCNN
further processes the temporal representation. A 1D-CNN is used to extract temporal
information from these flow-feature maps. This tCNN is the only one to be trained. Their
proposal seeks to reduce the number of trainable parts of a video-based HAR, combining
well-known space feature maps computation, time encoded in optical flow and a tCNN.
The authors suggest that tCNN contains significantly lesser parameters than CNNs, which
helps in situations where one uses smaller datasets.

3.3 synthetic data for human pose

Figure 3.3.1: Example of a triangulated mesh representing a human from recordings of marker-based MoCap.
Image taken from [LMB14].

Synthetic data is considered for pose estimation from including measurements of inertial
data using deep architectures. Computing human poses from inertial measurements is an
under-constrained problem. Synthetic data helps for learning priors temporal features,
which improve human pose estimation.

Loper et al. [LMB14] computed the 3D body-model and captured its non-rigid motion
of soft tissue using the raw marker-based MoCap data with 67 markers. They estimated
3D body shape and pose in terms of a triangulated mesh representing the human body,
using the recordings of the 67 makers and deploying a parametric model of the human
body; see Figure 3.3.1. The authors showed that marker-based MoCap captures detailed
sequential human motion data, even for producing lifelike, non-rigid animations. The
authors in [LMR+

15] adapted a triangulated mesh of the human body, using recordings
of six OBDs and a kinematics chain with 24 joints. They used the Skinned Multi-Person
Linear Model (SMPL) as a body model, having 6890 vertices. As they used sparse OBDs,
the authors proposed a consistency loss among human body models for a set of frames.
An extension of this work is presented in [MRBPM17]. The authors computed the 3D
human pose from a small set of OBDs.
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Figure 3.3.2: Example of the SMPL using a scarce set of OBDs. Image taken from [LMR+
15].

The authors in [HKA+
18] predict human poses, in terms of SMPL models, using sparse

OBDs using a RNN, called Deep Inertial Poser (DIP). They trained a B-LSTM network
processing sequences of OBD recordings and predicted the parameters of a SMPL model in
the next time steps. As OBD data is scarce, especially with synchronised pose annotations,
they proposed training their model using synthetic data. They created SOBDs, called by
the authors virtual sensors, generated from a large raw marker-based MoCap dataset.
They placed SOBDs on a SMPL model [LMR+

15]. Lastly, they computed their synthetic
poses, positions and orientations through forward kinematics, and their respective linear
accelerations via finite differences, as Equation 3.3.1. The authors trained their B-LSTM in
two steps: first, they trained solely on the SOBDs; second, they fine-tuned their model
using recordings from six OBDs.

a(J)t =
p(J)
t−1 + p(J)

t+1 − 2p
(J)
t

dt2
, (3.3.1)

where a(J)t is the linear acceleration of joint J with 3D position p(J)
t at time t [HKA+

18].
Their RNN computes synthetic measurements from six SOBDs. The authors used one

of the SOBD located on the subject’s lower back as a root SOBD. They normalised the
remaining sensors with respect to the root SOBD. An input is a sequence of duration W

with the orientations and the linear accelerations from the five SOBDs, a X ∈ R[W,60]. The
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Figure 3.3.3: DIP that predicts parameters of a SMPL model using a B-LSTM processing recordings from six
OBDs. The B-LSTM was trained on SOBDs located on a SMPL model, which is computed from marker-based
MoCap. Image taken from [HKA+

18].

orientations are given in terms of rotational matrices R ∈ R[3,3] in the SMPL model, and
the linear accelerations as a vector in [x,y, z], a ∈ R[3]. The network consists of four layers:
a dense layer with 512 neurons, two B-LSTM layers with 512 neurons, and two parallel
regressor layers. Each layer comprises a dense layer with 512 neurons and an output layer.
The two regressors output the mean, µsmpl ∈ R135, and standard deviation, σsmpl ∈
R135 of the SMPL model, and the mean, µa ∈ R15, and standard deviation, σa ∈ R15,
of the linear accelerations of the SOBDs, respectively. They proposed reconstructing the
acceleration input for propagating the acceleration information throughout the network,
as networks only predicting the orientation of the SMPL model tended to discard the
acceleration input.

For training, the authors normalised the input vector using zero-mean unit variance, as
Subsection 2.2.2 describes for M-HAR. The network’s output is a vector with the mean
and standard deviation of the orientation of the SMPL model and linear accelerations of
the OBDs. They trained their network using the following losses,

log (p(y)) =
W∑
t=1

log
(
N
(
yt|µsmpl,σsmplI

))
, (3.3.2)

and

log (p(a)) =
W∑
t=1

log (N (at|µa,σaI)) , (3.3.3)

with y the target poses of the SMPL model, a the measurements of the OBDs, I the
identity matrix, and N(·) a Gaussian distribution, for a time t of a sequence length W.
Noteworthy, they utilized a dropout layer after the input layer for regularisation.
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Finally, the authors fine-tuned their model with six real OBDs measurements. For
that, the orientation part of the input is computed from the real OBDs using forward
kinematics, starting from an idle pose of the subject in a calibration phase.

The authors showed that human pose could be computed from sparse OBDs using a
RNN model. Moreover, they carried out a baseline model using synchronised recordings
of OBDs and marker-based MoCap, comparing against the models trained with SOBDs.
They demonstrated the feasibility of training of a model with synthetic data generated
from a large marker-based MoCap dataset.

3.4 transfer learning using dnns for har

In transfer learning, learnt features from a particular domain, called source, are used on a
related one, called target. In the context of deep networks, transfer learning has been used
for coping with the limited amount of data in challenging problems, e.g., object detection
[RHGS15], face recognition [PVZ15], and word spotting [GSF18]. Transfer Learning for
HAR gives an alternative to the problem of scarcity of annotated data, considering that
DL approaches demand a large amount of annotated data [OMR16]. Besides, it is of use
when facing overfitting and the class-imbalance problems. As a result, Transfer Learning
for HAR allows spending less time learning new tasks and requires lesser human experts’
work, and more HAR scenarios can be handled effectively. Section 3.3 has already shown
an example of transfer learning, where parameters of an RNN are pre-trained with SOBD
for human pose estimation.

3.4.1 Parameter Transfer

In the case of deep learning, transfer learning uses a deep architecture trained on a
source task to initialise a network on a related target one. In the context of DL for image
classification and segmentation, so-called fine-tuning is a common and straightforward
strategy for parameter transfer among similar tasks. Parameters from the convolutional
layers trained on a large source dataset are taken for initialising networks to adapt to the
target task. The FCs are the only ones that are trained from scratch.

Ordóñez Morales and Roggen in [OMR16] characterised the feasibility, benefits, and
drawbacks of performing transfer learning in three M-HAR scenarios. For each scenario,
they define the source Dsource and target Dtarget domains. These scenarios are across
subjects within a dataset X ∈ D with Dsource = Dtarget; across datasets from D different
domains

{
D(d)

}D
d=0

, i.e., Dsource 6= Dtarget; and a more challenging one across datasets,
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OBD locations on the human body, and sensor type, i.e., Dsource 6= Dtarget. Moreover,
they examined the effect of the number of transferred layers.

(a) TCNN-LSTM (b) Feature-based transfer learning

Figure 3.4.1: The parameter-based transfer learning using tCNNs for M-HAR. The tCNN contains three
convolutional layers, alternated with max-pooling layers, an LSTM layer and a final softmax layer. Besides,
the number of parameters are given for each layer, with the example of a softmax layer for the Opportunity
Challenge Dataset (Opp). Image taken from [OMR16].

The authors deployed a tCNN-LSTM with three convolutional layers with ReLU activa-
tion function, alternated with max-pooling layers, followed by an LSTM and a softmax
layer, as Figure 3.4.1 shows.

They limit the scenarios such that the recordings of the source and target sets remain of
the same size. Following this constraint, the tCNN-LSTM networks for the source and the
target are structurally the same, except for the softmax layer. Hence, the parameters can be
seamlessly copied. The transferred layers are fine-tuned with a proportion [%] of the target
dataset and evaluated on a test subset of the target dataset. The non-transferred layers are
initialised randomly. The transferred layers are frozen—transferred layer parameters do
not change.

The authors evaluated Transfer Learning for HAR on two benchmark datasets, the Op-
portunity Challenge Dataset (Opp), see Subsection 6.1.1, and the Skoda Mini Checkpoint.
Both datasets are composed of multi-channel Time-Series on multiple locations on the
human body, and they contain activities of similar time scales, recording a sampling rate
of 30Hz. In both cases, sensor data were pre-processed to fill in missing values using
linear interpolation; an L2 normalisation per channel was performed. The authors used
five OBDs for the Opp dataset. The Skoda Mini Checkpoint comprises recordings of one
subject performing control gestures in a car production plant. Measurements of the OBDs
are treated as individual channels.
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The authors trained their models using SGD with Nesterov momentum, minimising the
TCCE loss function. They trained their models for 300 epochs on the source datasets and
fine-tuned them for 100 epochs on the target datasets. Training is repeated on average
five times for all models to account for variations from run to run as the models are
randomly initialised, reporting the mean and Standard Deviation (SD) of performance.
The non-overlapping input segments are composed of 322 samples (9.7 seconds), which
is, on average, long enough to learn temporal dependencies for the activities included
in both datasets. This truncated input is a practical computational optimisation in the
LSTM learning process. The authors always adapted their pre-trained model to the target
dataset for deployment (fine-tuning). However, they considered segments of 9.7 sec. for
training the long-dependencies of the LSTMs.

In the first case, transferring across subjects within the same domain, they consider the
case when the target samples are drawn from the source domain Dsource for different
subjects; thus, the Xsource = Xtarget and Ysource = Ytarget. They evaluated this scenario
on the Opp dataset, which contains recordings from four subjects. The {(X,Y)}target and
{(X,Y)}source are created using the leave-one-user-out approach, i.e., three subjects were
used for the source dataset and the remaining one for the target. The authors concluded
that the filters of the lower layers are more generic and user-independent and, thus,
transferable—these filters learn, for example, mannerisms—compared to deeper layers.
Performance decreases when transferring more than three layers. Moreover, training time
on the target datasets reduces around 17% without performance loss. Besides, increasing
the proportion of the target dataset for fine-tuning increases performance.

In the second case, transferring across tasks of different domains, Ordóñez Morales and
Roggen considered the case when the domains are different Ysource 6= Ytarget. This case
helps to know whether it is possible to have generic filters for human activities. They
deployed only measurements from a single accelerometer located on the same human
limb from the two domains, simplifying the transfer problem. Hence, the samples for
the source and target datasets were assumed to be drawn from the same multi-channel
time-series Space (multi-channel time-series Space) Dsource ≈ Dtarget, and the OBDs are
located in the same position on the subject. However, the activities from the two domains
differ Ysource 6= Ytarget. They deployed the Opp dataset as the source and the Skoda as
the target dataset. They restricted the experiments to a single accelerometer located on
the subject’s right hand. Furthermore, they deployed 80% of the Skoda dataset for fine-
tuning. The authors inferred that performance varies when the source and target datasets
are different in the second case. Performance decreases as more layers are transferred.
They speculate that deeper layers learn more scenario-specific features, yielding a worse
transferability in case of Opp to Skoda and Skoda to Opp, regardless of the amount of
data for fine-tuning. They conclude that even the generic layers are task-related; hence,
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non-transferable. These findings suggest that the choice of source datasets is important.
In the case of Opp, the filters are better than the ones from Skoda, i.e., the movements in
Opp are more naturalistic. However, the type of activities in the source domain negatively
affects the transfer learning performance.

Finally, transferring between domains, OBD locations on the body, and tasks, they
considered the case when the domains are different Dsource 6= Dtarget, and Ysource 6=
Ytarget. They created a target dataset with a single sensor from all the four subjects,
the accelerometer located on the right hand from the Opp dataset. The source dataset
contains recordings from the Skoda dataset located on the right hand, from the Opp
dataset on the left hand and right arm or different sensor types from gyroscopes located
in the right hand from the Opp dataset. Here, 100% of the target dataset was used for
fine-tuning. There was significant degradation in performance when transferring between
modalities and locations irrespective of the number of transferred layers. The generic
layers are domain- and task-specific for transferability. The best performance is obtained
when transferring from a different location within the same domain. Source models from
different domains and tasks show the worst performance.

In general, for the first two scenarios, they created subsets of the datasets such that
the source and target datasets contained similar sensor settings and positions, Dsource ≈
Dtarget. In the third scenario, the target domain consisted only of recordings from a
single sensor on the right hand; the source contained recordings of a similar sensor from
the source dataset located on the right hand, of a similar sensor from the target domain
on the left hand, of different sensor types from the target domain, worn on the right
hand. The authors found that transfer learning was only possible within the same dataset,
sensor type and position, independently of the number of transferred layers.

Chikhaoui et al. [CGS18] investigated the transfer learning performance on three
scenarios focusing on: across subjects of different ages and biological sex using the
same OBDs on the same location, i.e., on a similar domain D; different positions of
OBDs on the human body; and different sampling rates, sensor types, different domain
Dsource 6= Dtarget. and different tasks Ysource 6= Ytarget. The authors used a tCNN
with several blocks of two temporal convolutional layers, max-pooling operations, and
a subsequent fusing part with a fully-connected layer and a softmax classifier. They
do not fine-tune the transferred layers, but the remaining randomly initialised layers.
Similar to [OMR16], they deployed very large non-overlapping windows, i.e., of 4 s, for
segmenting the sequences. In case of transferring across subjects of different ages, among
two datasets of different domains, the authors simplified the transfer task using only
a single accelerometer on the forearm sensor placement, i.e., Dsource ≈ Dtarget. With
this constraint, recordings from source and target datasets are equally shaped, so the
architectures remain of same structure. This limitation is also seen in [OMR16]. They

77



deep learning for human activity recognition

found that transferring from a source dataset with subjects of a wide range of ages is
practical. In the case of transferring under different locations of the OBDs from two
different datasets, similarly, they simplify the transfer among a single accelerometer
between the source and the target. The authors inferred that transfer learning between any
accelerometer location on the human body is possible. Besides, fine-tuning performed well
across datasets with devices in generic and common locations on the human body. Lastly,
they transfer among datasets with different sampling rates and sensor types, finding
that lower layers capture generic features independent of the sampling rate. In general,
they found that transferring on early layers enhances the architecture’s performance on
the target domain, e.g., in their experiments, up to four convolutional layers improve
performance.

In brief, the work of [OMR16, CGS18] simplifies the transfer using only accelerometers.
They found that transferability among datasets of different domains with different ac-
celerometers and sampling rates is only possible with the first generic layers. However,
they depend on fine-tuning a large proportion of the target domain.

Another approach for transferring the knowledge of a certain domain to other ones
is zero-shot learning. Zero-shot learning is a classification task where the source and
target tasks are disjoint, Tsource 6= Ttarget, but having equal domain Dsource = Dtarget
[LNH14, XLSA19]. Chapter 4 presents in more detail zero-shot learning for M-HAR.

3.4.2 Relational-knowledge Transfer

The authors in [KSR+
21b] proposed an interpretable Transfer Learning for HAR method

connecting the activity classes from source and target datasets through a set of manual
or learnable rules from the semantic definition of the activities. They exploited the
Probabilistic Rule Stacking Learner (pRSL) from [KSR+

21a], finding logic rules in a
probabilistic framework combining weak classifiers for HAR. The authors created a set of
hierarchical logic rules for deriving activity classes of the target dataset using predictions
of a tCNN, which is trained on source datasets, whose MoCap recordings and OBDs are
similar to the target ones. Recordings of the source dataset of devices of different types
and on different locations from the target dataset are discarded, Dsource → Dtarget. The
authors provided manual interpretable rules that link the source datasets’ activity classes
to those of the target dataset for being used to a pRSL, as Figure 3.4.2 shows. They also
trained a pRSL to find rules between the source and the target activity classes using a
proportion of the target dataset, as Figure 3.4.2 shows. The interpretable Transfer Learning
for HAR method requires the activity labels of the target dataset for deriving the semantic
logic rules to the source dataset.

78



3.5 discussion

(a) Direct Transfer (b) Indirect Transfer via Latent Labels

Figure 3.4.2: Connection of target activity labels to target labels via rules. a) shows the manual direct transfer,
where domains are similar. b) shows the indirect transfer where domains differ, source activity labels are
abstracted to limb movements labels and then connected to the target labels. Image taken from [KSR+

21b].

3.5 discussion

Although Transfer Learning for HAR has progressed significantly in the last few years,
there are still many open challenges. HAR remains a challenging task due to the large
intra- and inter-class variability of human movements, i.e., humans carry out similar tasks
differently. Additionally, there is a broad range of human activities or movements, and
there is neither a standard definition nor structure for formulating an apparent problem
of HAR [BBS14, ZNY+

14, OR16]. There are more than 400 different activities that people
do in their daily lives; without considering activities related to the diversity of people
and cultures, the actual number of activities is likely even larger [CSG+

13]. Transfer
learning has been only carried out across the same domain, i.e., measurements from
similar sensors from OBDs on specific locations of the human body [PY10, AR17, GY17].
Transfer learning across multi-channel time-series Space, e.g., sensor modalities, and
across different tasks remain challenging. TL is limited by datasets with an equal number
and type of sensor devices and localization on the human body. Besides, the source
dataset should ideally be large, comprising recordings from several subjects and OBDs
[OMR16].
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Transfer learning has been carried out among datasets from OBDs. These datasets
remain, however, scarce or limited in size. Moreover, annotated data is limited. Recording
settings vary enormously. Authors use different recording rates, sensor resolutions, and
device positioning, as summarised by the author of this thesis in [RNMR+

19]. These
variate settings might hinder the transfer learning among different scenarios for coping
with the limited or lack of annotated datasets and for classifying unseen human actions
[AR17]. Furthermore, datasets contain annotations of task-related activities.

Therefore, exploiting other data sources might be interesting for transferring purposes in
M-HAR. Performing Transfer Learning for HAR for non-labelled source data has received
little attention in current research. In other areas apart from HAR, researchers have
leveraged the unlabeled source data to improve transfer in the target domain, but such
techniques are yet to be applied to M-HAR. For example, most transfer learning works
in video-based HAR have focused on parameter-based Informed Supervised Transfer
Learning (IS Transfer Learning). Additionally, transferring across different activity classes
is a much less studied problem in Transfer Learning for HAR. Finally, parameter-based
transfer learning is also less studied for the ambient sensor modality. The current direction
of most Transfer Learning for HAR is to push the limits on how different the source and
target domains and tasks can be.

80



4AT T R I B U T E R E P R E S E N TAT I O N F O R
D E E P N E U R A L N E T W O R K S

High-level attribute representations are semantic descriptions of categories, and they are
relevant as a method for transfer learning in Zero-shot learning problems or content-based
image retrieval. For example, attributes can be the shape, colour, texture, size of objects,
or even geographic information [LNH09, LNH14] for object recognition in object and
scene recognition [LNH14, ZJC17], and characters or strokes of words in visual document
analysis [AGFV14, SF18]. For example, in HAR, a collection of verbs and objects represent
human actions in images and videos [ZJC17]. Besides, attribute representations help in
cases where data are highly imbalanced and datasets with a large number of classes, e.g.,
words of a language. Moreover, they become practical where annotations are hard to
obtain [CGD+

13]; see Chapter 7 for more details regarding annotation for M-HAR.
Having introduced DNNs for M-HAR in Chapter 3, this chapter firstly revises related

works of attribute-based CNN in Section 4.1. An attribute-based CNN was first introduced
for handwritten word spotting. Secondly, Section 4.2 presents an example of synthetic
data generation for improving the performance of the CNN for word spotting, exploiting
attribute representations. Furthermore, this chapter presents works of attribute-based
classification for video-based HAR in Section 4.3 and for M-HAR with a standard statistical
HAR pipeline in Section 4.4.

4.1 attribute-based cnn

Attribute representations in document analysis are related to the character-based appear-
ance in word images. These attributes are advantageous as words are composed of a
sequential combination of characters, i.e., from the alphabet. The alphabet becomes a
common representation for words in a certain language. An attribute vector represents a
string embedding of words. Attributes are, for example, word characters. A document
analysis system uses attributes for learning a transformation of word images or snippets to
the attribute representation space. The usual method is to consider these transformation
as multi-label classification [LNH14].

81



attribute representation for deep neural networks

Figure 4.1.1: Pyramidal Histogram of Characters Network (PHOCNet) for handwritten word spotting,
predicting a Pyramidal Histogram of Characters (PHOC) representation of a word image. Image taken from
[SF16, SF18].

The authors in [SF16, SF18] presented a method for handwritten word spotting using
attribute representations. They introduced the PHOCNet computing an attribute repre-
sentation of word images. This representation is the PHOC, proposed by Almazán et
al. [AGFV14], which encodes the presence of characters in a word. Besides, it considers
spatial information of the character’s presence in a pyramid fashion. The PHOC is a
concatenation of the characters’ splits per level of a word. The PHOCNet is based on
the VGG16 network, which is CNN for object classification and face recognition; see
Figure 4.1.1. The PHOCNet uses filters of [3× 3] filters. As word images are of different
sizes, the authors in [SF16] proposed a SPP layer and in [SF18] the TPP prior to the
MLP. These pooling layers allow for computation of a fix-sized deep representation,
independent of the input size; see Equation 2.1.3 for a revision of these two polling layers.
A word spotting task seeks to retrieve samples of a dataset similar to a query. The authors
ranked the samples based on the distance between the PHOC attribute representation of
the word samples and the one from the query. The query can be selected as an image
sample, query-by-example from the word string, or query-by-string. The cosine distance,
Equation 4.1.1, has been deployed for ranking the samples. The cosine similarity results
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from the angle between two vectors and evaluates to 0 for orthogonal vectors and 1

otherwise, considering only positive attribute values. The cosine similarity is defined as:

dcos (a, b) = 1−
aTb

‖a‖2 · ‖b‖2
, (4.1.1)

having the vectors a and b denote the user-defined query and PHOCNet-predicted
attributes.

Figure 4.1.2: Probabilistic Retrieval Model (PRM) for handwritten word spotting using an attribute rep-
resentation. The adapted PHOC predicts a PHOC representation of a word image. Image taken from
[RRMF18, RSMF21].

Rusakov et al. [RRMF18] proposed the PRM for handwritten word-spotting and
cuneiform spotting [RSMF21]. The PRM, Equation 4.1.2, interprets the attributes com-
puted by the PHOCNet as probabilities. Considering each attribute as a binary random
variable am ∈ aM, and conditional independence among attributes, their behaviour can
be described by a Bernoulli distribution.

dPRM(a, b) =
M∏
m=1

bamm · (1− bm)(1−am) (4.1.2)

The model now computes an estimate âm = p(am = 1|X) for the probability of the
m-th attribute being present in the input X. Due to the assumption of conditional
independence, the PRM evaluates predicted attributes individually. In contrast, all the
attributes holistically contribute to the cosine distance.
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Furthermore, Rusakov et al. [RSMF21] concatenated parallel SPP and TPP outputs,
Equation 2.1.3, fusing them into a deep representation of the input images, as Figure 4.1.2
shows.

4.2 synthetic data for learning deep representation for word spotting

Figure 4.2.1: Random samples (top), along with samples of the same word with different fonts (bottom) of
the machine-generated printed text, HW-SYNTH dataset. Image taken from [GSF18].

The authors [GSF18] improved the performance of the PHOCNet for handwritten word
spotting under scarce annotated datasets, proposing the usage of synthetic generated
data and exploiting the PHOC representation. They deployed machine-generated printed
texts, using 100 different fonts. They addressed the variability of handwritten texts. The
dataset is rendered by varying the inter-character space, the stroke width, and the main
foreground and background pixel distributions.

The authors transfer the PHOCNet trained on the synthetic data to three real target
datasets for performing word spotting. These datasets consist of word images from
a historical collection from a single writer, a historical collection of different writers,
and a contemporary collection from multiple writers, i.e., the input spaces from the
generated source dataset and the target ones differ. Besides, they evaluated fine-tuning
on the target dataset under different proportions. They showed that fine-tuning the
pre-trained PHOCNet with only 100 samples of the target datasets performs similarly to
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the unsupervised method; around 10% of the target datasets are needed for surpassing
the performance of an attribute-based SVM; only 100 word images for achieving similar
performance as a Triplet-CNN. For context, the target datasets, namely, historical single
writer, historical different writers, and contemporary multiple writers, contain 4.860,
130.480, and 115.320 word images.

4.3 attribute representation for video-based har

In [ZJC17], human-annotated attributes and data-driven attributes are combined for
solving video-based HAR in sports videos. They selected a subset from both attribute
groups, maximising attributes’ discrimination capability for distinguishing different sets
of activity classes. The authors addressed visual classes through a collection of human-
annotated attributes. For example, the activity class long-jump in Olympic Sports Dataset
is associated with either motion attributes jump forward, motion in the air, or with scene
attributes, e.g., outdoor and track.

Given a video sample X ∈ X[W,H,3], the classifier fa : X → B predicts the confidence
score of the presence of an attribute am in an image or video. The classifier fa is learned
using the training samples of all classes, which have this attribute as positive and the rest
as negative. Given a set of M attribute classifiers {fam(X)}

M
m=0, an instance X is mapped

to the semantic attribute space A ∈ BM:
To extract data-driven attributes, Zheng et al. [ZJC17] proposed to compute a larger

set of data-driven attributes using a dictionary learning method. Low-level hand-crafted
features of N training samples are denoted as X = {xn}

N
n=0 ∈ Rq×N, with q the dimensions

of the extracted features. Having K classes, the features of training samples are X(k) ∈
Rq×Nk , where Nk denotes samples from class k. For each class k, they first learn a class-
specific dictionary AMk using the K-SVD algorithm of [AEB06]. The K-SVD is an algorithm
for finding a transformation with an iterative method, generalising the K-means algorithm.
This transformation is a dictionary matrix A that leads to the best possible representations
for each member in this set with strict sparsity constraints. Using an over-complete
dictionary matrix, a sort of transformation, A ∈ Rq×M, for M prototype attributes, or
signal-atoms, a feature sample x ∈ Rq can be represented as a sparse linear combination of
these attributes. The representation of x might be x = A · z or x ≈ A · z, with z ∈ RM being
the representation coefficients of the feature representation x. Zheng [ZJC17] initialised
a dictionary A using these class-specific dictionaries as A = [a1, a2, ..., aK] and learned
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it by minimising the reconstruction error of all the training samples. The class-specific
dictionary Ak is learned by solving the following problem:

argmin
A(k),Z(k)

∥∥∥X(k) − A(k)Z(k)
∥∥∥2 , (4.3.1)

∀i, ‖zki‖0 6 T , where A(k) = [a(k)1 , a(k)2 , ..., a(k)Mk
] ∈ Rq×Mk , Z(k) = [z(k)1 , z(k)2 , ..., z(k)Nk ] ∈

RMk×Nk are the sparse codes of X(k). The sparsity constraint ‖zi‖0 6 T specifies that the
sample xi has fewer than T dictionary atoms from A in its decomposition. It means that
each vector zi is sparse and has fewer than T non-zero entries.

After they have computed the class-specific dictionaries, they concatenated them to
initialize a total dictionary A = [A(1), A(2), ..., A(k)]M, with M =

∑K
k=1Mk. The value of

the jth entry zij in the coefficients zi indicates whether the dictionary atom dj is used for
the decomposition of sample xi. Thus, each dictionary atom dj is treated as a data-driven
attribute, and zi is treated as M-dimensional attribute score vector.

The authors used the Olympic Sports Dataset containing 783 YouTube video samples of
subjects practising different sports, containing K = 16 sports activity classes. They used
human-annotated attributes. First, they computed Spatio-Temporal Interest Points (STIP)
features. Then, they applied a 2D Gaussian smoothing filter to the video along the spatial
dimension, followed by a pair of 1D temporal Gabor filters. Afterwards, they detect up
to 200 interest points at the local maximum response from each action video. Next, they
extract spatio-temporal volumes around the interest points and obtain 100-dimensional
gradient-based descriptors via PCA. Finally, these descriptors based on interest points
are quantized into 2000 visual words by K-means clustering, and a 2000 dimensional
histogram represents each action video.

Three attribute-based representations are constructed, having Human-Labeled Attribute
(HLA), Data-Driven Attribute (DDA) and mixed set (HLA and DDA) attribute. For classi-
fying each HLA, they trained a binary SVM with a histogram intersection kernel. They
concatenate the confidence scores from all these attribute classifiers into a 40-dimensional
vector to represent a video. For the DDA, they learned a dictionary of size 457 from all
video features using KSVD and each video is represented by a 457-dimensional sparse
coefficient vector. For the mixed set, the attribute set is obtained by combining HLA and
DDA sets.

They compared the performance of features based on selected attributes with those
based on the initial attribute set. For all the attribute-based features, they used an SVM
with a Gaussian kernel for classification. Compared with the initial attribute set, the
selected attributes have greatly improved the classification accuracy, demonstrating the
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proposed method’s effectiveness for selecting a subset of discriminative attributes. They
show that DDA are complementary to HLA, and together they offer a better description
of actions. They showed the benefits of selecting discriminative attributes and removing
noisy and redundant attributes.

4.4 attribute representation for multi-channel time-series har

Attributes are human-readable terms that describe an activity’s inherent characteristics.
For example, collections of verbs and objects—similar to elements of a sentence—represent
human actions from images and videos. In the context of M-HAR, datasets are highly
imbalanced, especially towards the "NULL" class—this class covers all the human actions
that are not relevant for the task, sometimes involving more than 75% of the recorded
data. An attribute representation is beneficial for solving this case, where sequences
of the "NULL" or "BACKGROUND" class provide good material for learning shared
attributes contained in less frequent classes. Activity classes with more frequent samples
can provide attributes to lesser frequent classes.

Datasets do not possess annotated attribute representations in the context of M-HAR,
and having introduced the attribute representation and the attribute-based deep networks,
let define the term attribute representation for HAR.

Postulate 1. Attribute Representation for HAR: Consider for M-HAR, an annotated task
from a domain D with N tuples {(X,y)n}

N
n=0 of N segmented sequences X ∈ X[W,S] from an

arbitrary multi-channel Time-Series space X (according to Subsection 2.2.1) and y ∈ Y their
respective label space from a set of Y number of classes. The idea is to learn the objective predictive
function f(·) : X → Y., introducing an additional mapping, an attribute representation A, i.e.,
f(·) : X→ A→ Y.

Cheng et al. [CGD+
13] presented a Zero-Shot Human Activity Recognition (Zero-

Shot HAR) method for multi-channel Time-Series data. Zero-shot learning for M-HAR
can be thought of as having users provide a one-time description of an unseen activity
using semantic attributes. They extended previous work by proposing a framework for
multi-channel Time-Series data using a Conditional Random Field and comparing it
to supervised learning with limited training data. Their method is the first based on
attribute representations to recognise human activities, even in the case of non-existing
training samples—addressing the problem when annotated data is hard to obtain. The
authors proposed two categories of labels, high-level activities Y, and mid-level semantic
attributes a ∈ BM. Moreover, Cheng et al. provided a mapping among the activities and
attributes through an attribute representation A[Y,M], what they called Activity-Attribute
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Matrix. The matrix A[Y,M] is an auxiliary input that is substituted for annotated sensor
data by encoding the correlation between the attributes and the seen/unseen activities.
This matrix is manually defined by common-sense knowledge and domain knowledge
as an initial attempt toward zero-shot learning. They hypothesise that a user can create
a new attribute representation for a new activity class by simply describing it using its
semantic attributes, thus, just adding a new row into the matrix. Their validation scheme
recognises unseen activity classes with no training samples.

The authors combined a probability distribution of an attribute a given an input
sequence, the temporal dependency of neighbouring attributes predictions, and the
correlation between an activity class and an attribute presentation. Thus, their model
exploits the strong temporal dependency of sequential data and their semantic information,
and it learns the relationship between input sequences and activities through a semantic
attribute layer. Besides, this model enables the re-use and generalisation of learned
attribute models for recognising unseen new activities. Furthermore, they addressed
transfer learning among domains, reducing the need for annotated training material.

They proposed a Leave-Two-Class-Out Cross Validation (LTCOV) for evaluating their
method. From Y activity classes, they train their system with data containing [Y − 2]

activity classes and test on the remaining activity classes, which are “unseen” to their
model. They also consider the case when a small fraction of the Y-remaining classes is
used for training, denoted by Y-shot learning. This method assumes samples from the
same multi-channel time-series Space, i.e., Xtarget = Xsource.

The authors in [CSG+
13] extended the work of [CGD+

13] proposing a two-layered
zero-shot learning method and an active learning algorithm for M-HAR, using attribute
representations. As many human activities share the same underlying semantic attributes,
the statistical model of an attribute can be transferred among classes. They hypothesise
that it is better to use a nameable attribute that allows humans to describe a context type
even without sensor-data recording and annotation. M-HAR has not seen advantages of
attribute representations until then—only for video-based HAR. It has not been shown
which representations or attributes are useful for recognizing human activities from
sensor data. They designed a new representation of human activities by decomposing
high-level activities into combinations of semantic attributes where each of them is a
readable term that describes a basic element or an intrinsic characteristic of an activity.
These attributes are computed based on low-level temporal features, which capture the
dynamic relationships in data. They extended their previous work in active learning by
designing an outlier aware, active learning algorithm and a hybrid stream- and pool-based
sampling scheme suitable for M-HAR scenarios. Their method is called NuActiv. It is
designed for scenarios independent of OBD types. They focused on activities in sports
because their activities are well-defined, repeatable, and of lower variation among different
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subjects. They computed statistical features: mean, Standard Deviation (SD) per channel,
pairwise correlation among channels, local slope—using the first- and second-order finite
derivative linear regression—, and the zero-crossing rate in all three axes; additionally,
the time of the day. The authors proposed active learning, where users are asked to give
feedback or annotate when highly uncertain predictions. New annotations are then used
for re-training and updating the models for attribute detection and M-HAR. Their system
is divided into three parts: feature extraction, Attribute-based Multi-channel Time-Series
HAR (Attr-based M-HAR), and active learning. The Attr-based M-HAR is divided into
two parts: attribute prediction—mapping the segmented sequence input X to an attribute
vector a— and HAR—mapping the attribute vector a to an activity class y, even to unseen
classes. In the active learning part, they estimate the uncertainty of predictions. For
uncertain predictions, annotators are asked to provide the activity class label. The labels
are then used for re-training and updating models for attribute prediction and HAR.

The attribute representation A[K,M] encodes the human knowledge of the relationship
between an activity class K and its associated set of semantic attributes a. For K activities
and M attributes, the activity-attribute matrix A is of size [K×M], where the value of each
element ak,m represents the level of association between activity k and attribute m, with
binary values indicating whether such an association exist or not.

The authors considered attributes not only as sub-activities themselves but also descrip-
tions, characteristics, or consequences of activities. For a given feature vector z—extracted
features—, they infer the presence of an attribute a; that is, p(a|z). They divided their
training data into positive and negative samples for each attribute. To learn an attribute
predictor, they re-use the existing training data by merging the annotated data of all
activity classes that are associated with the attribute as the positive set. With this training
data, a binary classifier is trained for each attribute. After the training phase, there is
an attribute predictor per attribute am. They use a SVM classifier; see Equation 2.2.1.
The authors have trained an SVM classifier per attribute specified in the activity-attribute
matrix.

The authors deploy a Nearest Neighbour Approximation (NNA) to recognize the high-
level activity class given an attribute vector generated from the attribute SVM-based
predictors. Specifically, the activity recognizer takes an attribute vector a as input and
returns the closest high-level activity ŷ, represented in the attribute representation A—the
attribute representation A essentially provides the information of p(y|a), as specified in
Subsection 2.4.1. Following this, their idea is to keep the advantages of both feature-
based HAR; precisely, by classifying a sample belonging to the seen training dataset,
one can directly apply a feature-based classifier to recognize the activity. On the other
hand, for samples that belong to unseen classes, one applies Attr-based M-HAR reusing
known attributes from seen classes. They consider this approach as an anomaly detection
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problem. Samples from unseen activity classes are like an anomaly because they were
not seen before by the system. They train an unseen class detector using the one-class
SVM classifier, where only the positive samples, i.e., all samples that belong to the seen
classes, are given to the classifier. This SVM estimates whether a segmented sequence
is part of the seen activity class set. They deploy a feature-based HAR for a sample of
the seen activity set. For a sample of the unseen activity, they deploy the attribute-based
classifier, following the DAP, see Subsection 2.4.1.

The authors used their system to include user feedback, using the idea of uncertainty
sampling in the field of active learning. The system asks a user for activity class annota-
tions only when it is highly uncertain about its recognition results. The system selects
a pool of uncertain windows according to: the least confident predictions, thresholding
between distances to top-2 activity class predictions, maximum entropy, and borders of
activity regions in feature space.

The authors in [AR17] created a hierarchical representation of human activities based on
semantic descriptions for smart-home applications. However, there is no explicit definition
of manual activities which is adaptable or transferable to represent the level of diversity
that characterises human labour in warehousing. They investigated the challenges of
improving the recognition of Zero-Shot HAR in a smart-home environment by better
exploiting the hierarchical taxonomy of complex daily activities. They develop a hierarchy
of classifiers that incorporates a cluster tree built on the domain knowledge from training
samples.

They hypothesised that clustering activities into a hierarchical activity taxonomy could
facilitate the analysis of activity patterns from multiple similar data sources, and such
taxonomy can also be used to scale activity recognition. Therefore, they first determined
the specific positions of the activity labels in the hierarchy using a few annotated samples,
which were then combined with annotated samples of similar activities to initiate the
taxonomy of learning for the new activity model.

They made the following contributions. First, they designed and represented human
activities using semantic attributes. Second, they postulated a data-driven approach
that calculates the similarity of predefined and unseen activities and helps generate
complex activity taxonomy by creating a hierarchical cluster of activity labels generated
from available datasets. Third, they employed this postulated hierarchical complex
activity taxonomy, built a hierarchical classification tree and proposed an uncertainty
metric to distinguish unseen activities from previously seen ones. Finally, employing the
uncertainty metric, they augment transfer learning and activity learning to minimise the
user intervention and maximise the activity recognition performance gain.
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4.5 discussion

Semantic attribute representations have been exploited in different classification and
spotting tasks. Different levels of attributes have been proposed. For example, the M-
HAR scenarios addressed by Cheng et al. [CGD+

13, CSG+
13] consider problems where

recordings belong to the same domain, i.e., multi-channel time-series Space. Besides, the
mapping of attribute representations to the activity classes is fixed; that is, there is no
attribute annotation per sample level. This drawback is a limitation as humans will hardly
repeat the same short movements representing an activity. Thus, a different set of attributes
might represent the same activity. Moreover, the authors claimed that an attribute
representation could be manually given. However, this is valid under the assumption of
having the same multi-channel time-series Space and a detailed description of the recorded
activity. This limitation is addressed, for example, in the word spotting community, as
words’ characters and their occurrence in horizontal spatial regions represent all the
images of specific words.
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Figure 5.0.1: Attribute-based Transfer Learning for Multi-channel Time-Series HAR (Attr-based Transfer
Learning for M-HAR) under different domains, DSource 6= DTarget; it uses an attribute-based transfer
learning and a DNN for parameter transfer. The DNN is adapted for processing human recordings from a
variate amount of OBDs for full-transferability.

The multi-channel time-series Human Activity Recognition (M-HAR) task classifies
human movements recorded by sequential data from multiple channels, for example, from
sensors integrated in OBD.1 M-HAR can be solved following the standard pattern recog-
nition pipeline: data recording, preprocessing, feature extraction, feature-dimensionality
reduction and classification, as Subsection 2.2.3 presents. Besides, M-HAR can be solved
using DNNs that combines the last three steps in an end-to-end approach. DNNs are cur-
rently the state-of-the-art method for M-HAR, as Section 3.1 shows. However, the models

1 Here, M-HAR generalises Sensor-based Human Activity Recognition (Sensor-based HAR), as multi-channel
Time-Series are recorded from different technologies, e.g., OBD or marker-based MoCap.
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require a substantial amount of annotated data. Annotating data for M-HAR demands a
huge amount of resources, i.e., human effort, time and economic expenses—Chapter 7

will discuss the annotation process of M-HAR. Transfer learning allows to re-use, squeeze
and extend the usability of annotated data from source domains and trained models
to related problems, i.e., target domains, as Section 2.3 shows. However, there is still
an open problem of predicting activities under different domains DSource 6= DTarget,
i.e., different multi-channel time-series Spaces XSource 6= XTarget and different tasks,
TSource 6= TTarget, without the need for annotated data from the target domain, follow-
ing Def. 3, in Section 2.3. This problem can be referred to as Zero-Shot M-HAR under
different domains.

For example, consider the problem of performing M-HAR for different logistics scenar-
ios. Using a trained method for M-HAR is not directly possible, as these scenarios might
vary, with different subjects,2 number of OBDs and their locations on the human body,
and recording settings, i.e., DScenarioA 6= DScenarioB. For a new target scenario, the
standard M-HAR system might be directly followed, as described in Section 2.2, starting
from a dataset creation; that is, carrying out different recordings and subsequently a man-
ual annotation and revision process. Semi-automated annotation methods might speed up
the annotation process. However, a pre-trained method from the target domain DTarget
is necessary. Chapter 7 presents a practical example of a semi-automated annotation
process.

This new M-HAR system might use a known M-HAR system adapting its annotated
data material and its pre-trained M-HAR model. This adaptation is a type of Transfer
Learning for M-HAR. It has to consider the differences in recording settings of the two
or more scenarios, e.g., number and type of sensors, sampling rate, preprocessing, and
M-HAR method. Following the definitions in Section 2.3, one defines a set of TSource
source tasks from a source domain DSource, a TTarget target task from a target domain
DTarget, where DSource 6= DTarget and TSource 6= TTarget. One seeks to predict the
activity classes of TTarget by means of learning the objective predictive function fTarget(·)
transferring experience from a source task TSource with a minimal portion of or without
the usage of annotated data from TTarget.

This thesis proposes Attribute-based Transfer Learning for Multi-channel Time-Series
HAR (Attr-based Transfer Learning for M-HAR) under different domains. This transfer
learning method uses a semantic attribute representation A and a DNN suitable for M-
HAR under different domains. To be precise, it develops a method for transfer learning for
any target M-HAR domain, DTarget, independent of their activities and sensor settings.
It proposes an attribute-based classification considering multiple attribute representations

2 Subjects have a wide range of physical characteristics.
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5.1 attribute-based multi-channel time-series har

per activity class. This Attr-based M-HAR uses a DNN architecture and an attribute
representation for processing and classifying recordings of segmented multi-channel
Time-Series of humans performing activities. The indicated architecture adapts to data
of different multi-channel time-series Spaces, mapping input sequences to a semantic
attribute representation. The DNN and the semantic attribute representations allow
transferability to target domains. It copes with the different number of devices, duration
variations and disjoint activity classes. Additionally, an algorithm is proposed for learning
the attribute representation that is better suitable for solving M-HAR. Figure 5.0.1 presents
the overall method.

Furthermore, the Attr-based Transfer Learning for M-HAR approach takes advantage
of a large dataset composed of OBDs and human pose recordings and fine-grained
annotations of semantic attributes. The DNN will process sequences of movements from
the human limbs, either from poses or inertial measurements. In addition, synthetic data
for initialising a deep model is proposed. Synthetic On-body Device (SOBD) data will
be derived from sequences of human poses. This derivation takes advantage of large
human-pose datasets as source domains. Specifically, these datasets consist of recordings
from marker-based MoCap or datasets intended for video-based HAR and human pose
estimation—the annotations of pixel coordinates as sequences of human joints. In the
following, each of the parts of the Attr-based Transfer Learning for M-HAR is presented.

5.1 attribute-based multi-channel time-series har

Considering the usage of a DNN for M-HAR, a question arises whether there is a DNN
that can be directly applied to new segmented sequences data from different target
domains to obtain some initial classification. This initial classification should not be
that far from a classification using a supervised method, trained with annotated data
from the target scenario. This classification method can be regarded as a sort-of generic
transfer learning for M-HAR method. An initial classification is of use, for example, to
a semi-automated annotation approach for M-HAR, reducing annotation effort without
sacrificing consistency; see Chapter 7.

This transfer learning problem follows the Def. 3, in Section 2.3, and belongs to a
Uninformed Supervised Transfer Learning (US Transfer Learning) problem. This generic
method is divided into two parts of the transferable knowledge: first, the parameter-
transfer via a DNN, following Subsection 2.3.4, and second, the feature-representation
transfer by means of a semantic attribute representation, following Subsection 2.3.4.
These two transferable parts are contained in a DNN. This DNN is capable of creating
a representation from recordings of humans performing an activity, independent of the
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Figure 5.1.1: Attr-based M-HAR: a DNN processes a segmented multi-channel Time-Series sequence creating
a fixed size temporal representation of the sequence that copes under the case of different domains of the
input sequence and computing a semantic attribute vector representing the input sequence. Classification is
carried out using Generalized Direct Attribute Prediction (GDAP) with the cosine or PRM similarity metrics
in the attribute space.

recording settings. This representation is interpretable as a sort of semantics that describe
the performed activity. The Attr-based M-HAR deploys the DNN and these semantics
on a TTarget. Classification is carried out by the Generalized Direct Attribute Prediction
(GDAP), extending DAP from [LNH14].

Usually, parameter transfer of DNN means transferring the convolutional filters from the
feature extractor, as Section 3.4 presents. One transfers a different number of layers, where
the first layers contain general filters, and the deeper layers become more task-oriented.
However, the fusion layers—usually a MLP and the classifier—are not transferable due
to differences between the source and target domains. A source task consists of a set
segmented sequences XS ∈ XSource ⊂ R[WSource,NSource] of a source domain DSource, and
XT ∈ XTarget ⊂ R[WTarget,NTarget] of a target domain DTarget.

These layers are usually trained from scratch, and the convolutional layers are fine-
tuned. The fusion layer and classifier change according to the M-HAR task, i.e., different
human activities YSource 6= YTarget, and to the different multi-channel time-series Spaces,
as these vary due to number of OBDs, or the window length, XSource 6= XTarget.

The proposed DNN architecture responds to these transfer limitations. This architecture
is called Attr-IMU-tCNN. The Attr-IMU-tCNN adapts to the human body instead of the
amount of OBDs. The architecture copes with the different number of OBDs, sequence
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5.1 attribute-based multi-channel time-series har

lengths, and disjoint activity classes. The architecture is composed of parallel branches
that process segmented multi-channel Time-Series sequences from OBDs per human
limb. The fusion layer creates a fixed-size representation, which contains temporal
relevant information from the activity. These branches compute a representation per
limb, independently of the amount of OBDs, creating a temporal fixed-size representation.
Finally, the DNN predicts a semantic attribute vector. The classification is based on a
similarity between attribute vector predictions and a given attribute representation A from
the dataset. The Attr-based M-HAR is then divided into four parts: the feature extractor,
the fusion layer, the attribute prediction and the classification, as Figure 5.1.1 illustrates.
In the following, the Attr-IMU-tCNN and the GDAP are presented in detail.

5.1.1 Attribute-based IMU-Temporal Convolutional Neural Network (Attr-based IMU-tCNN)

The Attr-IMU-tCNN architecture processes multi-channel Time-Series sequences of human
movements, and maps them into an attribute representation. The architecture is built
based on a sensor set-up where an individual wears multiple devices. Figure 5.1.1
presents the Attr-IMU-tCNN as the function g (·). The Attr-IMU-tCNN is based on
the tCNN [HHP16, OR16, YNS+

15], and it has been partially presented by the author
of this thesis in [GLMR+

17, MRGF+
18, MRF18, MRF21]. It uses temporal-convolution

layers for finding temporal-local features in the input data and fully-connected layers
for connecting all of these local features, creating a label representation of the data.
However, this architecture contains multiple parallel processing branches, following the
idea of wider rather than deeper networks. This architecture is called Attr-IMU-tCNN.
It processes segments of multi-channel Time-Series from different OBDs located on
the human limbs separately. The architecture proposes parallel computing blocks for
processing the sequences and for deriving an intermediate temporal feature-representation
of OBDs per human limb. Dividing the OBDs recordings according to human limbs has
been explored in [DLGY12, KY18]. The architecture concentrates on five human limbs:
the arms, legs, and torso. The temporal feature representations from the human limbs
are fused to compute a global representation of a segmented sequence X. In M-HAR, the
input of tCNNs consists of segmented sequences X ∈ X[W,S] from S different sensors, or
channels, for a certain temporal duration W. The parallel blocks introduce an invariance
relative to human limbs, as human movements vary independently from them.

The Attr-IMU-tCNN is divided into the feature extractors, the fusion layers, and the
attribute predictor. The feature extractor contains temporal convolutional and spectral
pooling operations, in contrast to [GLMR+

17, OR16, YNS+
15] where max-pooling op-

erations were used. The spectral pooling follows the conclusions in [MRF18] showing
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that stride-based pooling operations negatively affect M-HAR performance. Figure 5.1.1
explains the spectral pooling. Temporal convolutional filters extract relations from their
local neighbourhood from the segmented sequences per channel at different temporal
locations. Temporal filters are shared among all the channels, or sensors per OBD. These
temporal relations are likely to be correlated independent to the type of sensor. This
assumption is valid if the measurements per channel are normalized. By stacking convolu-
tional layers, and downsampling their outputs, tCNNs extract more complex and abstract
features and are task-dependent, being invariant to distortions and time translations
[LKF10, MRGF+

18, YNS+
15]. tCNNs extract hierarchical human body movements, i.e.,

from basic and simple movements to complex ones. Besides, they learn the temporal
dependencies among different movements. Figure 5.1.2 shows the Attr-IMU-tCNN.
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Figure 5.1.2: The Attr-IMU-tCNN comprises five parallel branches, corresponding to recordings of all of the
OBDs located on the LA, LL, RA, RL, and NT. Branches are composed of two blocks, each with two [5× 1]
temporal convolutions followed by a spectral pooling and a final L-TPP layer, computing an intermediate
temporal feature-representation of the OBDs per human limb. The outputs of the blocks are concatenated
and forwarded to a FC layer. The output architecture is the sigmoid function computing an attribute
representation A from the input sequence.

The Attr-IMU-tCNN allows to transfer the experience of a source domain DSource to
recordings of a different domain, DTarget. The architecture is meant to be used for solving
a task TTarget from DTarget with no fine-tuning—or fine-tuned with a proportion of
the target dataset. This architecture should cope with different multi-channel time-series
Spaces of the source and target datasets, XSource 6= XTarget, and different data label
spaces YSource 6= YTarget. For that, the architecture computes a feature representation of
the sequence segments, and maps them to a fixed-size descriptor.
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5.1 attribute-based multi-channel time-series har

Feature Extractor

The Attr-IMU-tCNN is composed of parallel temporal convolutional blocks, a fusion
layer, and an attribute predictor layer. The temporal convolutional blocks comprise
temporal convolutional layers, spectral pooling operations, and a TPP layer. These blocks
process sequences from a set of OBDs per human limb, creating an intermediate and
temporal fixed-size descriptor per human limb—the fixed-size descriptor is computed
independently of the number of channels or sensors of the input segmented sequence, with
X ∈ X[W,S]. Each parallel branch has a logical meaning as it represents the data of a set of
OBDs from a human limb. This structure should allow for more robustness against the
OBDs being sightly asynchronous or having different characteristics. Besides, the structure
allows for transferability to datasets of other domains. As these OBDs are located in
different parts of the body, temporal blocks process only signals that come from individual
parts, increasing the descriptiveness. Furthermore, the fixed-size temporal representation
is vital for subsequent transferability. The Attr-IMU-tCNN creates a representation per
human limb. Specifically, each temporal block of the Attr-IMU-tCNN architecture contains
four [5× 1] temporal convolution layers with ReLU activation functions and two spectral
pooling layers, organised in two blocks. Each block contains two temporal convolutional
layers followed by spectral pooling operations.

In general, the Attr-IMU-tCNN has five temporal-convolutional branches for specifically
Left Arm (LA), Left Leg (LL), Right Arm (RA), Right Leg (RL), and Neck or Torso (NT).
Each branch has two blocks of a pair of convolutional layers followed by a spectral pooling,
and a TPP layer. Temporal convolutional layers contain C = 64 filters of size [5× 1]. In the
following, the spectral pooling and the TPP will be introduced for Transfer Learning for
HAR.

Temporal Spectral Pooling

As discussed in Subsection 2.1.3, stride-based pooling functions like max-pooling encour-
age a spatial invariance and a capacity bottleneck. They have shown a relatively good
empirical performance for object recognition using CNNs, especially, for inputs with
spatial structure. Nevertheless, they imply a very sharp dimensionality reduction, e.g., by
at least a factor of four, when applied to two-dimensional inputs. Moreover, the maximum
value of each window only reflects very local information and does not often represent
the window’s contents well [RSA15]. Following the empirical findings from the author
of this thesis in [MRGF+

18], stride-based pooling operations affect negatively M-HAR
performance. They retain information near zero frequencies in local neighbourhoods of
the input, which are related to the gravity component of the inertial measurements of
the human recordings [AI15, BPT14, KLLK10, LYA09, NTJ18, SSH13, SR12, WGWH18].
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Figure 5.1.3: DFT from a input sequence X, after a spectral pooling ZSP and max-pooling Zmax operations.
Spectral pooling crops the DFT representation of the input Xfreq at Hx, e.g., at half of the frequencies as e)
shows; b) compares the time reconstruction after spectral pooling ZSP , shown in �, vs. the original input
sequence, shown in X, �, where the amplitude of the high frequencies after Hx are zeroed out. Max pooling
affects the DFT representation of the input, adding high frequency components into the lower ones, as
presented in f) with ZSPfreq, represented in �, and Zmaxfreq , shown in �; c) compares the time reconstruction
after max-pooling Zmax, shown in �, vs. ZSP , given in �.

Moreover, they increase the influence of the high frequency components on the low
frequencies, i.e., an aliasing effect.

A temporal spectral pooling carries out the DFT, cropping and inverse DFT per channel,
i.e., along the temporal dimension, see Algorithm 1. This temporal spectral pooling is
proposed for M-HAR. This pooling concentrates in the low frequencies of the feature maps,
following that human motions lie in the a range of low frequencies. Furthermore, this
layer removes high frequency components. This pooling follows the body movements and
noise components separation based on frequency from [LYA09, KLLK10, SR12, SSH13,
BPT14, AI15, NTJ18, WGWH18], but without falling in a sharp separation by stride-
based poolings, and avoiding alising. The temporal spectral pooling operation allows for
dimensionality reduction without sacrificing performance.
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Algorithm 1 Temporal Spectral Pooling
// Feature map Input Z: Output width Wp

1: procedure SpectralPooling(Z[Wx ,Hx]
int ,Wp)

// Channel-wise DFT, i.e., along the time axis
2: for h = 1 : Hx do
3: Z[Wx ,h]

freq ← F
(

Z[Wx ,h]
int

)
// Cropping along the time axis

4: Z[Wp ,Hx]
freq ← crop

(
Z[Wx ,Hx]
freq ,Wp

)
// Channel-wise inverse DFT, i.e., along the time axis

5: for h = 1 : Hx do
6: Z[Wp ,h]

int ← F[−1]
(

Z[Wxph]
freq

)
7: return Z[Wp ,Wp]

int

Temporal Pyramid Pooling (TPP)

Finally, each branch merges the extracted temporal features using an additional TPP
layer. This TPP layer creates a fixed-size representation of the limb, keeping temporal
relations. He et al. [HZRS15] pointed out that convolutional layers do not need fixed-size
feature-map inputs since they perform a convolution operation and their filters are not
fully-connected to their inputs. However, in the usual tCNN, the FC layers necessarily
need fixed-size feature-map inputs. The last convolutional layer is the only one that
should generate a fixed-size feature map because the first FC layer is connected to it. For
that reason, He et al. [HZRS15] replaced the last pooling with a SPP layer to eliminate
the need for the fixed-size input images for object classification. In the case of these
sequential models, Sudholt and Fink [SF18] introduced the TPP for improving retrieval
results in word-spotting with word images. In this specific example, the feature maps
of word images are partitioned along the horizontal axis, being important following the
sequential writing. Therefore, the vertical axis is not partitioned. See Section 4.1 for more
details.

For M-HAR, the TPP divides an input from finer to coarser levels; it aggregates their
information generating local outputs, and it concatenates these outputs into an overall
feature output, see Figure 5.1.1. The TPP splits the input along the horizontal axis, for
M-HAR, along the time axis. An L-level TPP splits its feature representation input into
2l non-overlapping horizontal cells per level l. For a feature map input, Z[W,S], a cell
of level l is of size

[
W
2l

,S
]
. Each cell covers the entire vertical axis, channel, or sensor

axis of the feature-map sequence. The layer TPP pools the maximum value from all
the cells. The pooling is thus along the time axis, and each cell roughly represents
features from consecutive intervals of the activity sequence. A pyramid representation
results when stacking multiple of these poolings per cell along the time axis. The Attr-
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IMU-tCNN uses a L = 5-level TPP layer with max-pooling, where each level indicates
the number of pooling bins along the horizontal axis. The size of the TPP output is
Ctpp = Ci−l ·

∑
l=0,1,...,L 2

l, where Ci−l is the number of filters, or depth, of the previous
i− th feature map input. For example, with the last convolution layer having C = 64

filters, the output size of the TPP layer size evaluates Ctpp = 1984. This layer differs from
the IMU-tCNN from [GLMR+

17, MRGF+
18, MRF21], whose FC layer sequence changes

according to the dataset.
Instead of scaling the network deeper, these layers are processed in parallel for all of the

OBDs per human limb, increasing the network’s descriptiveness. Despite the TPP layer
being a very destructive layer due to the max-pooling function, the parallel branches allow
learning TPP-representations per limb. This layer gives a sort of activation of individual
limbs, taking care of temporal changes of a limb. The more prominent activations of the
whole body do not delete the prominent activations per limb. This effect appears when
using a tCNN [OR16, YNS+

15], which is a IMU-tCNN with only a single branch for all
of the sensors, as reported by the author of this thesis in [GLMR+

17, MRGF+
18].

Multi-Layer Perceptron (MLP)

The TPP-representation of the limbs are concatenated, creating a global representation of
the body. This representation is of size Ctpp times the number of limbs, e.g., considering
five limbs and 5-level TPP layer, Cconcat. = 5 · C5L−TPP = 9920. The Attr-IMU-tCNN
then combines this global descriptor into an attribute representation. The Attr-IMU-tCNN
uses an MLP with a sigmoid layer for predicting an attribute representation A. The
proposed network will compute an attribute representation of an input sequence rather
than classifying it using a softmax function [GLMR+

17, OR16, YNS+
15]. The sigmoid

activation function is applied to each element of the output layer. Its output corresponds to
pseudo-probabilities for each attribute am present in the segmented sequence, following
the architecture described in the context of word spotting [SF18]; see Section 4.1.

5.1.2 Generalized Direct Attribute Prediction (GDAP)

For M-HAR, it might be helpful to create a common representation of actions in different
scenarios with different domains; this representation will be the semantic attributes.
Transfer learning boosts M-HAR performance from different scenarios using attributes, as
the classifier does not need to be trained from scratch using a small target dataset but
instead profits from a trained model on a large dataset. This additional mapping serves
as an intermediate layer that allows sharing high-level concepts among activity classes in
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YSource and YTarget; here, the training and testing tasks are disjointed, and the source
and target domains might differ.

Following the Postulate 1, in Section 4.4, assuming for Attr-based M-HAR an an-
notated dataset or task T from an arbitrary domain D with N tuples {(X,y)}Nn with
X = [X1, X2, ..., XN] segmented sequences from an arbitrary multi-channel time-series
Space X[W,S] with W the length of the sequence and S the number of sensors, and
Y = [y1,y2, ...,yN] their corresponding classes from label space Y. M-HAR seeks to
learn the objective prediction function f(·) : X→ Y, introducing an additional mapping,
specifically an attribute representation A, i.e., f(·) : X→ A→ Y.

Postulate 2. Attribute Representation for Transfer Learning for HAR: Consider a set of
L segmented sequences XTarget from a target dataset or task TTarget, being L the number of
samples from arbitrary target domain DTarget, and a set of corresponding labels YTarget ∈
YTarget number of classes. The task of Transfer Learning for HAR is to construct a classifier
f(·) : XTarget → YTarget by using the attribute representation A and the objective prediction
function f(·) from a source task TSource, even when the labels spaces YSource ∩YTarget = ∅ and
the multi-channel time-series Spaces XSource 6= XTarget differ. For classifying the set XTarget,
as classes do not have annotated data, a function r(·) that maps the attribute representation A to
the activity classes YTarget is needed.

Assuming an attribute predictor g (·), e.g., the Attr-IMU-tCNN as the function, the
output can be interpreted as a probability for each attribute being present or not in the
input sequence. More formally, the attribute predictor represents a function g (·) : X→ A,
where X ∈ X[W,S] is a sequence segment sample, and g(X) are the attribute estimates.
The probability distribution, over the binary attribute vector a = (a1, ...,aM) ∈ A ⊂ BM,
pg(a|X), is given by a product of Bernoulli distributions:

pg(a|X) =
M∏
m=1

p(am|X) =
M∏
m=1

g(X)amm (1− g(X)m)1−am (5.1.1)

Following the Postulate 1, in Section 4.4, the attribute representation becomes a layer
for computing a human activity y ∈ Y. In general, the maximum-likelihood estimate ŷ of
the activity class is given by,

p(ŷ|X) = argmax
y=1,...,Y

p(y|X) (5.1.2)
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The activity class y ∈ Y and the sensor segment sequence X are conditionally indepen-
dent, given the attribute vector a, the activity class posterior can be written as,

p(y|X) =
∑
a∈A

p(y|a)pg(a|X) (5.1.3)

The DNN model g(·) computes directly pg(a|X). An estimate of the activity class ŷ
for a given data segment X is obtained by, first, computing a via an attribute predictor
g : a = g(X), e.g., a DNN for attributes, and second, computing ŷ.

In the following, two options for modelling p(y|a) are presented; specifically, the DAP,
presented in Subsection 2.4.1, for HAR, and the GDAP. Finally, a novel idea is described
that does not explicitly use the probabilistic model above, but uses a classifier to model
the dependency between the attribute predictor outputs a and activity classes y.

Recapping from Subsection 2.4.1, the DAP model assumes that each class y ∈ Y has
an associated unique attribute representation a(y). There is a deterministic relationship
h(y) = a(y) so that p(a|y) = [[a = a(y)]]. From Bayes’ theorem, one can rewrite p(y|a) =
p(y)
p(a) p(a|y). So, for a segmented sequence X, Equation 5.1.3 becomes

p(y|X) =
∑
a∈A

p(y)

p(a)
p(a|y)pg(a|X). (5.1.4)

The normalization factor p(a) is constant w.r.t. the activity class. Furthermore, Lampert
et al. [LNH09, LNH14] propose to use a uniform class prior p(y). Thus, the factor p(y)p(a)

can be ignored for classification, hence the expression simplifies to:

p(y|a) ∝
∑
a∈A

[[a = a(y)]]pg(a|X) (5.1.5)

= pg(a(y)|X), (5.1.6)

where a(y) = h(y) is the unique attribute representation of class y.
Unfortunately, in M-HAR, activity classes do not typically have a unique attribute

representation. For example, the activity class take can involve the attribute left hand
and/or right hand. There exists, however, a deterministic relationship in the opposite
direction in M-HAR, i.e., each attribute vector a corresponds to exactly one activity class y;
for example, in case of the LARa dataset, see Subsection 6.1.1. This mapping r(a) = y
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can either be defined in advance from prior domain knowledge, or estimated from
training data. The distribution becomes p(y|a) = [[y = r(a)]], which can be inserted into
Equation 5.1.2 and Equation 5.1.3. This case is referred to as GDAP, and the maximum-
likelihood estimate is computed as

ŷ = argmax
y=1,...,Y

∑
a∈A|r(a)=y

pg(a|X). (5.1.7)

The maximum-likelihood in Equation 5.1.7 can be further approximated to

ŷ = r (â) , (5.1.8)

here, â is computed as

â = argmax
a∈A

pg(a|X). (5.1.9)

Besides, â can be computed by means of a Nearest Neighbour Approximation (NNA).
More precisely, the authors in [MRF18] do not compute Equation 5.1.9 but,

â = argmin
a∈A

d(a − g(X)), (5.1.10)

with d(·) dEuc = {‖·‖2},—after normalizing a and g(X)— d(·) = dcos, see Equation 4.1.1,
and d(·) = dPRM, see Equation 4.1.2. The dEuc and dcos assume that the sum in
Equation 5.1.9 is dominated by its largest terms.

5.2 learning attribute representations for m-har

Only annotations exist concerning coarse human activities, e.g., walking, jumping, and
running, commonly for long-duration activities. However, there do not exist annotations
of small and granulate activities—lesser than a second—that could describe a coarse
activity. Thus, attribute representations do not exist for common M-HAR datasets—as an
exception, the LARa dataset, Subsection 6.1.1, with sample-based attribute annotations.
Furthermore, humans can not provide annotations easily by only observing the data; for
example, when they observe activities on images or videos—see Chapter 7 for details of
the annotations process. A search for suitable attributes that represents signal segments is
presented.
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Considering the literature on random subspace projection and random indexing for
representing words, phrases and documents, a set of different sequence segments could
be projected to or described by a random representation. This random representation
should be adequate, such that one can differentiate the activities. However, as unknown
attributes span this random space, it might not be suitable. Therefore, one must search
for the best possible representation that adequately describes sequence segments. An
evolutionary algorithm can perform this search, where attribute representations are seen
as genotypes of the classes. A genotype is a code or vector that represents an individual,
e.g., the human genome. Here, a binary vector represents an activity class. A proper
representation of the classes can be learned by evaluating, selecting, and mutating those
genotypes.

Algorithm 2 Evolutionary algorithm for finding r(·)
// Input niter: number of iterations, noffsprings: number of offsprings, K: number of classes, M: number of attributes,
TrainSet: training set, ValSet: validation set

1: procedure Evolution(niter,noffsprings,K,M,TrainSet,ValSet)
// Draw initial generation of attribute representations Aparent1,Aparent2 ⊂ B[K,M]

2: A
parent1
1−gen ← random(K)

3: A
parent2
1−gen ← random(K)

4: Fbest1 ← 0.0
// Evaluate attribute representation generations

5: for n = 1 : niter do
6: {A

(os)
n−gen}

noffsprings
os=0 ←mutate

(
breed

(
A
parent1
n−gen ,Aparent2n−gen

))
// Evaluate each offspring

7: for i = 1 :noffsprings do

8: network← trainCNN
(
TrainSet,A(i)

gen

)
// Compute the A(i)

gen’s fitness

9: {Fi1}← testCNN
(
network,ValSet,A(i)

n−gen

)
10: Sorted_Offpsrings← argsort

i=1,...,noffsprings
{Fi1}

// Selecting the top 2 offsprings for next generation
11: if Top2 (Sorted_Offpsrings) > Fbest1 then
12: A

parent1
n−gen ←A

(Top1)
n−gen

13: A
parent2
n−gen ←A

(Top2)
n−gen

14: Fbest1 ← F(Top2)
1

// Best attribute parent
15: return Aparent1n−gen

Algorithm 2 shows the Evolutionary Algorithm (EA) that finds the best attribute
representation of a certain dataset. The EA seeks a representation that performs well
for M-HAR. The EA initially assigns a representation to human activities, evaluates the
representation using the performance on the validation set as a fitness metric, and mutates
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the representations with the best fitness values. The algorithm evaluates the fitness of an
attribute representation by training and validating a DNN. The validation F1w serves as
the performance metric; Section 6.2 presents the metric in detail. First, the NNA classifies
all the segmented windows comparing predictions of the Attr-IMU-tCNN and the attribute
representation Agen. The NNA uses the cosine distance, Equation 4.1.1, between the
computed attributes g(x)—with g(·) being the DNN and X an input sequence—and
the target attributes a ∈ Agen, finding class predictions. Second, the EA computes the
precision and recall of the validation predictions. Finally, the EA mutates Agen. The
algorithm mutates and evaluates Agen until selecting the best attribute representation for
a certain number of iterations starting from a random representation. A global mutation in
BM is selected to change the attribute representation, i.e., the attribute ai for i = 1, · · · ,N
of a single target attribute representation A flips with probability pi ∈ (0, 1).

5.3 synthetic data for m-har

Following [GSF18] for word-spotting and [HKA+
18] for human pose estimation, using

synthetic data for enlarging limited datasets or for pretraining DNN is beneficial for
classification and regression. Inertial measurements are computed by using the derivative
of sequences of joint poses of a human, e.g., from marker-based MoCap. These derivatives
will act as a sort of Synthetic On-body Device (SOBD), which are located on the human.
The SOBDs will provide linear acceleration a and angular velocity ω of the human joints.

From Equation A.2.6, the linear acceleration is computed given by a combination of the
linear acceleration and the angular rotation of the joint with respect to a global or given
origin frame {{O}}3 [Cra05].

{O}

{J} aj (t) =
{O}

{J} a (t) +{O}

{J} ω (t)×
(
{O}

{J}ω (t)×{O} pj (t)
)
+

{O}

{J} ω̇ (t)×{O} pj (t) , (5.3.1)

with {O}

{J} a (t) the linear acceleration of frame attached to the joint {J} with respect to a

given origin frame; {O}

{J}ω (t) and {O}

{J} ω̇ (t) the angular velocity and acceleration of the frame
attached to to the joint {J} with respect to a given origin frame; and pj the vector from
joint {J} to the given origin frame [Cra05]. Equation 5.3.1 is obtained from Equation A.2.6
with {B}v̇Q = 0 Section A.2 presents, in more detail, the linear acceleration and angular
velocity of a point with respect to different frames.

The second derivative of a smooth spline approximation of degree three on a small
time-interval from a sequence of joint-pose estimations is deployed for computing {O}

{J} a (t).

3 The origin frame {O} depends on the specifications of a marker-based MoCap system.
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Figure 5.3.1: Example of the linear acceleration of a Synthetic On-body Device (SOBD) from marker-based
MoCap from two consequetive poses of the joint {J} located on left wrist of the LARa-MoCap (LARa-M)
dataset. A frame attached to joint {J} is represented by the unitarian vectors towards (X, Y,Z), specified by
�, �, �. The linear acceleration O

{J}aj (t) on origin frame is presented in �. The vector from pose p{J} (t− 1)

to pose p{J} (t) is given in �. The linear acceleration of the joint {J} given in origin frame O and frame {J},
including the gravity {J}aj (t) is shown in �. The gravity vector g is given in �.

Similarly, the first and second derivative of a cubic spline interpolation from a sequence of
joint rotations is used for computing {O}

{J}ω (t) and {O}

{J} ω̇ (t). This approach differs from the
SOBDs using finite differences for human pose estimation; see Section 3.3. This assumes
that local temporal-neighborhoods are likely to be correlated. Specifically, a SOBDs dataset
is created from the derivatives of overlapping sequences of human-joint recordings.

Finally, the sum of {O}

{J} aj (t) and gravity in the direction of Z is rotated to its correspond-
ing joint frame. Gravity is considered as the OBDs will be used as source for real and
non-preprocessed OBD. Figure 5.3.1 shows an example of a SOBD located on left wrist of
the LARa-M dataset.

{J}aj (t) =
{J}
{O}

R (t) ·
(
{O}

{J} aj (t) + g
)

. (5.3.2)
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with {J}
{O}

R (t) = Rz (t)Ry (t)Rx (t) the rotation to the joint frame {J}, and g =

 0

0

−9.8m/s

.

Additionally, sequences of human poses from data of different purposes are considered
as source for SOBDs. The Annotations of pixel-coordinate sequences of human joints from
video data intended for video pose estimation are used. These datasets contain annotated
recordings from different scenarios with a broad range of human activities in the wild.
Thus, this approach seeks to squeeze the usability of these datasets for M-HAR. These
human-pose annotations from videos can be considered multi-channel Time-Series of
human movements. This proposal relates to hybrid approaches of human-pose estimation
and video-based HAR [LPT18, KY18], where different input types are considered for the
classification task. Figure 6.3.3 shows an example of SOBDs from a video-based HAR
dataset.

Algorithm 3 Online Augmentation algorithm
// Input X ∈ R[Wseg ,S]: input sequence, βa: variance for random noise, βj: variance jitter, W: wanted window
length

1: procedure Augmentation (X,βa,βj,W)
// First, randomly cropping and warping it to the desired window length.

2: X← RandomCroppingTimeWarping(X, W)
// Second, adding random jitter to each channel.

3: X← Jitter(X, βj)
// Third, adding Gaussian noise to the sequence before feed-forward to the network.

4: X← RandomNoise(X, βa)

5: function RandomNoise(X, βa)
// Drawing random noise from a Gaussian Distribution.

6: R←∼ N (0,βa)

7: X← X + R
8: return X
9: function Jitter(X (t), βj)

// Drawing random noise from a Gaussian Distribution
10: trnd←∼ N

(
0,βj

)
11: t← t+ trnd

// Evaluating the piece-wise approximation of X per sensor at time-shifted points
12: X← X (t)

13: return X
14: function RandomCroppingTimeWarping(X, W)

// Drawing from uniform distribution
15: Wrnd←∼ {Wmin, · · · ,Wmax}

16: X[Wrnd ,S]← crop
(

X[Wseg ,S],Wrnd

)
// 1D interp. for W monotonically increasing points per sensor

17: X[W,S]← interpolate
(

X[Wrnd ,S],W
)

18: return X
19: return X
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Furthermore, a data augmentation strategy for M-HAR is proposed. A random cropping
plus time warping of segmented sequences of different lengths is deployed. Random
cropping has been useful as online data augmentation for object and face recognition
using CNNs [PVZ15]. Here, random cropping is proposed along the time dimension.
Window-based segmentation is carried out with a slightly larger window size Wseg than
the expected at deploying W,4 generating X ∈ R[Wseg,S]. Windows of random sizes Wrnd
drawn from a discrete random distribution from set {Wmin, · · · ,Wmax} are cropped
from X, where Wmin < W < Wmax and Wmax < Wseg. Random cropping generates
sequences that are shorter or larger than the expected W, i.e., X ∈ R[Wrnd,S]. Then, a 1D
piece-wise interpolation per sensor is carried out, evaluated at W monotonically increasing
discrete points. This interpolation warps the sequence X ∈ R[Wrnd,S] into a sequence
X ∈ R[W,S]. This cropping plus warping simulates activities of slightly different durations.

Furthermore, jitter noise are added to the warped sequences. A piece-wise approxima-
tion of the input sequence X ∈ R[W] per sensor is evaluated at time-shifted points. Finally,
random noise is added to the sequence. These augmentations take place at training.
Algorithm 3 summarises these data augmentations.

5.4 transfer learning for m-har

Figure 5.4.1 summarises in detail the Attr-based Transfer Learning for M-HAR, given in
the introduction of this chapter, Figure 5.0.1. Sequences from different source domains
will be used for Transfer Learning for M-HAR. Specifically, a fine-grained class-wise and
attribute-wise annotated dataset will be deployed. This dataset contains recordings from
OBDs and human joint-pose measurements from a marker-based MoCap. Human poses
are represented by the position and angular rotation of human joints when carrying out
an activity. In addition, SOBDs are proposed as alternative source datasets, extending
the usability of the human-joint pose datasets. These synthetic devices are computed
from recordings of human poses or pixel coordinates annotations of video datasets for
video-based HAR. These datasets allows creating a synthetic dataset for initialising DL
models for M-HAR.

Furthermore, a transferable tCNN is proposed, which handles input sequences from
different domains, either different multi-channel time-series Spaces or label spaces, ex-
ploiting attribute representations. This tCNN creates a representation of recordings from
the human limbs. Following, the attribute-based tCNN is evaluated for Transfer Learn-

4 The window size influences the speed of M-HAR and memory consumption at deployment and is usually a
hyperparameter that remains free for tuning when deployment. For example, at MotionMiners Dataset (MM),
predictions of 1s are used as a compromise of acceptable classification performance and prediction time.
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Target Domain
DTarget

HAR in Testing Task
TTestSource

HAR in Target Task
TTestTarget

Semantic Attr-based
mHAR

Adapting Attr-based
IMU-tCNN

Source Domain
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Transfer of IMU-tCNN

Adapted DNN

Attributes

Searching Attributes

Attr-based
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MutationBetter Fitness?
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Figure 5.4.1: Attribute-based Transfer Learning for Multi-channel Time-Series HAR (Attr-based Transfer
Learning for M-HAR) under different domains, DSource 6= DTarget; it uses an attribute-based transfer and
a Attr-IMU-tCNN for parameter transfer. The Attr-IMU-tCNN is adapted for processing human recordings
and for full-transferability; An evolutionary algorithm searches for a suitable attribute representation.

ing for M-HAR. Moreover, the impact of enlarging a dataset or transferring learning
for M-HAR is evaluated; that is, transferring from a large dataset or from a synthetic
dataset using sequences from human poses and inertial measurements to target datasets.
The attribute-based tCNN is also evaluated for boosting dataset annotation for M-HAR.
Human Activity Retrieval (HARetr) is proposed as part of a semi-automated annotation
approach. This approach uses attribute representation of windows for providing an
ordered list of window candidates given an activity query.
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Attr-based Transfer Learning for M-HAR is a feature-representation and parameter
transfer method. It seeks to address different transfer learning scenarios for performing
M-HAR. These transfer learning scenarios handle situations where the source and target
multi-channel time-series Space, tasks, and domains differ, as Section 2.3 discusses.
Attr-based Transfer Learning for M-HAR considers different levels of transferability to
solve M-HAR on benchmark target datasets: first, an architecture that handles different
dataset configurations; it creates fixed-size representations of OBD recordings that are
representative of the human limbs; second, semantic activity representations of activities
that are found in target datasets DTarget; and third, data from a variety of source datasets.

The Attr-based Transfer Learning for M-HAR is built upon a composite of functions,
namely r (h (g (·))) as proposed in Section 5.1. The evaluation of the Attr-based Transfer
Learning for M-HAR is carried out addressing each of the functions: the feature extractor
g (·), the fusion and attribute predictor h (·), and classification r (·), following these four
steps.

1. Different configurations of deep architectures are evaluated on the source and
benchmarking target datasets. This evaluation sets the baseline for this thesis, setting
a starting point for comparison. Besides, this evaluation seeks to collect the M-
HAR performance for different network configurations explored in the related work
and by the author of this thesis. These configurations are discussed in the related
work and presented in Subsection 5.1.1. Experiments consider two major network
architectures, the TCNN and IMU-TCNN, and four fusion strategies (FC, LSTM,
FCN, TPP), two MLPs using softmax and Sigmoid, and three pooling strategies (no
pooling, max-pooling and spectral pooling). The composite function h (g (·)) is given
by the IMU-TCNN with a TPP layer per parallel branch and an attribute predictor,
as Figure 5.1.1 shows. Pooling layers are added after every two convolutional layers,
also noted by the number of pooling layers.

2. The Attr-IMU-tCNN is subsequently evaluated on attribute-wise annotated LARa.
Besides, M-HAR is carried out on Synthetic On-body Device (SOBD) datasets. These
datasets are created following Section 5.3 exploiting human poses of a marker-based
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MoCap and pixel coordinates from datasets intended for video-based HAR. The
idea is to evaluate the potential of SOBD datasets from a kinematic perspective for
improving real-world M-HAR problems.

3. The attribute representation function r (·), Equation 5.1.8, is derived on target
datasets DTarget using the EA presented in Section 5.2. The Attr-IMU-tCNN from
step two trained from an attribute-wise annotated dataset allows for such search,
allowing to find interpretable attribute representations in benchmarking datasets.
Learnt attributes are then deployed for M-HAR.

4. Attr-based Transfer Learning for M-HAR is experimented upon considering the
proposed composite function r (h (g (·))), Adaptable Attr-IMU-tCNN, proposed in
Subsection 5.1.1 and the learnt attribute representation. The Attr-based Transfer
Learning for M-HAR proposed in this thesis seeks to transfer the attribute represen-
tation and the parameters or weights of a deep architecture. The Attr-IMU-tCNN
trained on source datasets, including the SOBDs, along with the learnt attributes,
are transferred to benchmark datasets. Attr-based Transfer Learning for M-HAR
seeks to combine the Attr-IMU-tCNN architecture and the semantic attributes from
the source datasets, LARa, to the target datasets. Here, the impact of this transfer
learning under cases where the target data is limited is evaluated.

Architectures are pretrained using source datasets Dsource. The convolutional
layers of the pre-trained networks TCNNDSource

and IMU-tCNNDSource
are trans-

ferred to a TCNN to be trained on the DTarget, denoted by for example IMU-
TCNNattributefuse ↑DTarget

DSource
. The number of transferred convolutional layers (Nconv)

and the [%] of DTarget for fine-tuning is investigated. The non-transferred layers,
e.g., FC, are trained from scratch. Depending on the architecture, layers, to a certain
extent, are transferred models deployed on the target datasets DTarget, presented
in Table 6.1.1. The Attr-IMU-tCNN with the learnt attributes are completely trans-
ferable. Here, the LARa becomes important as it provides annotation of attribute
representation sample-wise.

The target datasets consist of OBD recordings of limited size, which are common in
the literature. Two types of source datasets are used: a large multi-channel Time-Series
dataset composed of recordings from marker-based MoCap and OBDs; and the here
proposed SOBD. Section 6.1 presents in details the datasets. This chapter presents the
datasets, considering their recording, annotations, and properties that made them suitable
for evaluating the method presented in this thesis.

A summary of the most relevant evaluations is shown below. Appendix A shows a
detailed evaluation of the datasets, presenting the evaluation per dataset, considering
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the baseline networks, the fusion strategies, the MLPs, and TL varying the number of
transferred layers and training set proportions—a set of hyperparameters that are usual
when training deep architectures are investigated.

6.1 datasets

Table 6.1.1: Source DSource and target DTarget datasets for experimentation.

Type Datasets

DSource

OBD LARa-Mb

marker-based MoCap LARa-M

SOBD from pose-based HAR J-HMDB CAD-60 NTU RGB+D

DTarget OBD LARa-Mb LARa-MM Opp Pamap2 OPD MM

For the validation of the Attr-based Transfer Learning for M-HAR, five multi-channel
Time-Series datasets are selected, namely, the LARa [NRMR+

20], Opp [RCR+
10, CSC+

13b],
the Physical Activity Monitoring Data Set (Pamap2) [RS12a, RS12b], the Order-Picking
Dataset (OPD) [FMHF16], and the MM dataset. Besides, SOBD are computed from
marker-based MoCap dataset, concretely a subset of the LARa dataset, LARa-M; human
poses from pixel-based annotations of video-based HAR datasets. The LARa dataset is
considered as it contains synchronised recordings from marker-based MoCap, two sets
of OBDs, and sample-wise attribute annotations. The Joints Human Motion DataBase
(J-HMDB), CAD-60, NTU RGB+D video-based HAR datasets are selected as they contain
pixel coordinates annotations from the human joints. The OPD and MM are dataset
recordings from real M-HAR scenarios, with no restrictions on the subjects performing the
activities. These datasets are very challenging as they are highly unbalanced, making them
suitable for validating the method, the TL for M-HAR. The LARa-Mbientlab (LARa-Mb)
and LARa-MotionMiners (LARa-MM) will also be used as a target domain, i.e., from
human pose to inertial measurements.

These datasets are explained below.

6.1.1 Multi-Channel Time Series Datasets

LARa Dataset

The LARa Dataset is chosen as a source of marker-based MoCap from joint poses and
OBDs [NRMR+

20]. The dataset is made by recreating three warehousing scenarios in a
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(a) (b)

Figure 6.1.1: The LARa dataset contains measurements from a marker-based MoCap System and
two sets of OBDs. Subjects perform activities in three intralogistics scenatios. Image taken from
[NRMR+

20].

constrained environment, ensuring natural motion and resemblance to reality [Rei21]. The
constrained scenario is the Innovationlab Hybrid Services in Logistics at the TU Dortmund
University, and the Fraunhofer IML [RVBZH17].

The LARa dataset consists of an extensive collection of synchronized recordings from a
marker-based MoCap system, called LARa-M, and two sets of OBDs, called LARa-Mb
and LARa-MM respectively [NRMR+

20]. It contains recordings of 14 subjects performing
activities in the intralogistics. Each subject performs activities in R = 30 independent
recordings of 120s. Data is recorded in three distinct warehousing scenarios. A Business
Process Model (BPM) describes the process of each scenario. This BPM gives the relevant
information to the subjects to carry out a process, but it does not script the subject’s
movement. Furthermore, LARa provides sample-wise annotations of Y = 8 activity classes
and M = 19 semantic attributes. These dense annotations make LARa dataset suitable for
evaluating Attr-based Transfer Learning for M-HAR.

The LARa dataset considers activities that are common in intralogistics, as Table 6.1.2
lists. Synchronization is employed for synchronizing the joint poses and the inertial
measurements, as Figure 2.2.1 shows. Besides, LARa provides attribute annotations of the
activities [NRMR+

20, pp. 15–17]. Table 7.5.4 lists the attributes labels. Each activity class
is represented by a set binary attribute-vectors a ∈ BM=19, where M is the number of
attributes defined in the LARa dataset. Attributes were annotated alongside the activities.
As a result, there are different attribute representations per class. LARa provides a set
of J tuples of an activity class and attribute vector A =

{
(y, a)(j)

}J
j
, with the attribute

matrix a ∈ B[M=19] and a corresponding class vector y ∈ Y. Each vector aj ∈ A[J,M] has a
corresponding class yj ∈ Y. This way, the attribute representation A maps the J = 304

attribute vectors to the Y = 8 activity classes.

116



6.1 datasets

LARa-M consists of recordings from 3D poses of 22 human joints with a recording
rate of 200 Hz. A pose is a vector representation with a joint’s position and rotation
coordinates. These are all centred with respect to the lower back of a subject. LARa-Mb
and LARa-MM provide recordings from five and three OBDs respectively. Each OBD
records 3D linear acceleration and angular velocity with 100 Hz. As the recordings are
carried out in a controlled environment, LARa-Mb does not consider measurements from
magnetometers. LARa-M contains recordings from 14 subjects. However, LARa-Mb
contains recordings from 8 subjects. In general, LARa provides 714 min of annotated
recordings, being a large annotated dataset for M-HAR.

For M-HAR using human poses, each of the 3D poses of the 21 joints from the LARa-M,
excluding the reference joint, is considered as a separate channel along each axis. There
are in total S = 126 channels. This setting differs from the tree-like structure of human
poses in [KY18]; see Section 3.2. For the LARa-Mb, there are in total S = 30 channels
considering the five OBDs with 3D linear and angular accelerations. For LARa-MM, there
are S = 27 sensor channels with 3D linear and angular accelerations and magnetometer
measurements.

Figure 6.1.1 shows an example of LARa in the intralogistics, the marker-based MoCap
suit and OBDs on a subject, and the recorded human pose. The dataset is highly
unbalanced, where 50% of the recordings contain the Handling (centred) activity, given that
the warehousing scenarios are related to order-picking activities, as Table 6.1.2 shows.

Following [RS12b, CSC+
13b], the datasets are split into non-overlapping training,

validation and testing sets. For marker-based MoCap, the validation and testing sets
contain recordings from subjects [5, 11, 12] and [6, 13, 14], respectively. The training set
contains recordings from the other eight subjects of marker-based MoCap. Similarly, for
LARa-Mb and LARa-MM, the training set contains recordings from subjects [7, 8, 9, 10],
the validation from subjects [11, 12], and testing from subjects [13, 14].

Table 6.1.2: Proportion [%] of activity classes in LARa-M dataset.
Standing Walking Cart Handling (upward) Handling (centered) Handling (downward) Synchronization None

10.29 10.35 8.26 7.71 50.56 5.44 2.16 5.24

Opportunity Dataset

The Opportunity Challenge Dataset (Opp) dataset [RCR+
10] is a large dataset containing

recordings of 12 subjects performing ADL in a sensor-rich environment. The dataset
consists of recordings from 12OBDs, providing recordings from 72 sensors of 10modalities
in 15 wireless and wired networked sensor systems in the environment, in objects, and
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(a) Recording room of the Opportunity dataset. Im-
age taken from [RCR+

10].
(b) Sensor configuration on a subject in the
Opportunity Challenge Dataset (Opp). Image
shows the five XSense OBDs and the two Iner-
tiCube3 in�, and the 12 Triaxial accelerometers
in �. Image taken from [RCR+

10].

Figure 6.1.2: Opportunity Challenge Dataset (Opp) Dataset setup.

on the subjets’ body. In total, the dataset contains 25 hours of sensor measurements. The
rich environment simulates a studio flat with a kitchen, deckchair, and outdoor access, as
Figure 6.1.2a. The authors sought to record ADLs as much as realistic as possible.

A subject performs five times a scripted ADL run without a certain execution pattern.
The ADL run consists of processes common in daily living. A process, in this context,
means a structured series of activities towards a defined goal, e.g., preparing a sandwich.
The subject performs the following processes: get up, coffee, sandwich, clean, break. Addition-
ally, they carries out one drill run. In the drill run, the subject repeats 20 times a sequence
of 17 activities. There were no restrictions on performing the activities. Table A.4.8 in the
appendix presents the activities.

The Opportunity Challenge

The Opp [CSC+
13b] is a subset of the Opportunity dataset, publicly available in [CSC+

13a].
It comprises recordings of OBDs from four subjects performing ADLs, only addressing
the gestures, Oppges, and locomotion, Opploc, settings of the Opportunity dataset. In the
gestures setting (Oppges), the goal is to classify Y = 18 right-arm gestures, e.g., activi-
ties like opening and closing doors or drawers and drinking coffee. In the locomotion
setting (Opploc), Y = 5 classes of movements and postures of the body are recognized—
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specifically, the tasks are walking, standing, sitting, and lying. Both settings contain the Null
class as the fifth class—this class covers all the human actions that are irrelevant to the
task. Table A.4.11 and Table A.4.12 show the activity classes from both tasks.

The Opp includes recordings from: five XSense OBDs (accelerometer, gyroscope,
and magnetometers) mounted on a custom-made motion jacket, 12 Bluetooth 3-axis
acceleration sensors on the limbs and commercial InertiCube3 inertial sensors located on
each foot, as Figure 6.1.2b shows. Each sensor axis is treated separately, thus, yielding a
multi-channel Time-Series space of S = 113 channels. The authors recorded Opp with a
sample rate of 30 Hz.

The sessions, called ADL3 of subject2 and subject3, are used as the validation set, and
the sessions ADL4 and ADL5 of subject2 and subject3 are used as the testing set, and the
rest of the sessions for training, following [CSC+

13b], and the works in [RC15, OR16]. A
sliding window approach is used for segmenting the sequences, with a window size of
720 ms or W = 24 and a step size of 360 ms or Str = 12.

Physical Activity Monitoring (Pamap2) Dataset

The Pamap2 dataset [RS12a, RS12b], publicly available in [Rei12], consists of recordings
from nine participants carrying out locomotion activities. According to the dataset’s
protocol, the dataset contains Y = 12 action classes, as Table A.4.19 lists. Pamap2 provides
recordings from four OBDs, placed on the hand, chest and ankle. Besides, the usual
accelerometers, gyroscope, magnetometer, Pamap2’s OBDs include temperature sensors,
a heart-rate monitor. Overall, the dataset is defined by a multi-channel Time-Series space
of S = 40 sensors from four OBDs. Pamap2 dataset uses a recording rate of 100 Hz.

Following [HHP16, OR16], recordings from subject5 and subject6 are used as validation
and testing sets respectively. A sliding window approach with a window size of 3 s
or W = 100 and step size of 660 ms or Str = 22 is used for segmenting the sequences.
The window size is smaller than the one in [HHP16] for generating a larger number of
segments. The step size allows a 78% overlapping as in [RS12b, HHP16]. In general, the
size of the input sequences is [W,H,C] = [100, 40, 1].

Order Picking Dataset

The OPD [FMHF16] consists of recordings from three subjects performing order picking
activities in two logistic scenarios, denoted as OPDA and OPDB. This is the only dataset
for production and logistic that solely uses real-life data. The dataset contains 10 min
and 23.30 min long recordings for OPDA and OPDB respectively. The subjects wear three
OBDs on the wrists and torso. This setup was suggested by logistics experts to ensure the
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sensors do not interfere with the actual work. Each OBD captures 3D accelerometer, a
gyroscope and magnetometer measurements with a sample rate of 100 Hz. Thus, there
are, in total, S = 27 sensor channels.

There are seven action classes in the dataset, as Table 6.1.3 shows. The dataset includes
two background classes unknown and a sensor flip. These activities help for synchronization
and marking the beginning and end of an order line. Following [FMHF16], the Null class is
not considered, as this class represents non-annotated material, e.g., faulty measurements.
Besides, activities in both warehouses are disjoint, i.e., not all action classes are used in
both warehouses. Subjects in OPDA use a paper list as guidance, annotated as info activity.
They also acknowledge each picking by manually signing the list. In OPDB, subjects use
a handheld device as guidance, and the info action represents the interaction with the
handheld device. Instead of the acknowledging activity, subjects use the handheld device
for scanning an article.

Table 6.1.3 presents an overview of the activities and their proportions in the dataset.
The OBD is highly unbalanced, having that the walking and picking are the action classes
with the highest number of samples, similar to LARa. A sliding-window approach with a
window size of 1 s or W = 100 with a step size of 10 ms or Str = 1 is used for segmenting
the sequences. Thus, all possible windows are extracted from the sequences; as a result,
multiple windows represent the same activity for each event in a sequence.

Table 6.1.3: Overview of the Order-Picking Dataset (OPD) and number of frames for each of the activity
classes in the different parts of the dataset. [GLMR+

17].

Warehouse Walk. Search. Pick. Scan. Info. Carry. Ack. Unknown Flip

OPDA 21465 344 9776 0 4156 1984 5792 1388 1900

OPDB 32904 1776 33359 6473 19602 0 0 264 2933

MotionMiners Dataset

The MM1 consists of recordings from three subjects performing order picking activities
in two warehouses. Similarly to OPD, the subjects wear three OBDs on the wrists and
torso. This set-up is the current deployed at MotionMiners GmbH. Each OBD records
3D accelerometer, gyroscope, and magnetometer measurements with a sampling rate of
100 Hz. Thus, there are S = 27 sensor channels.

There are seven action classes in the dataset, concretely Null, Ignore, Walk, Stand, Handle,
Drive and Sit. The Ignore labels refers to recording material that are not considered due to

1 This dataset is provided by MotionMiners GmbH, https://www.motionminers.com.
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faulty measurements or sensors not placed on the subject, and it is not used at training,
following MotionMiners. Handle refers to handling or picking items. Finally, the Null is
reserved for activities that are not relevant for a logistic task.

Similar to the Opp, OPD, and following the experimental results provided by Motion-
Miners GmbH, a sliding-window approach with window size of 1 s or W = 100 with a
step size of 10 ms or Str = 1 is used for segmenting the sequences.

The author of this thesis assigned manually an attribute representation from the
LARa to the activity classes of MM. They used the semantic definition of the activity
classes provided by MotionMiners GmbH. This attribute annotation does not utilize video-
based annotation, but mainly the semantic description of the activities and the granular
annotation from MotionMiners GmbH.

6.1.2 Video-based Datasets

J-HMDB Dataset

J-HMDB [JGZ+
13] contains 928 video clips of different human actions in the wild. The

J-HMDB is a subset of the Human Motion DataBase (HMDB) [KJG+
11], with human

joint annotations. The dataset comprises 21 activities. The person performing the activity
in each frame is manually annotated with their 2D joint positions, scale, viewpoint,
segmentation, puppet mask and puppet flow (not relevant for this thesis). Every activity
class contains 36 to 55 video clips, and each clip contains 15 to 40 frames. The video clips
are recorded at a rate of 25 Hz. The duration of activities ranges from 0.5 to 2 seconds.
The J-HMDB is a small dataset with a total duration of all video clips of around 20 min.

CAD-60 Dataset

Cornell Activity Dataset (CAD-60) [SKSS14] contains RGB-D video sequences of human
activities, which are recorded using the Microsoft Kinect v1 [Zha12]. The dataset contains
[320× 240] sized RGB-D motion sequences and human joint poses acquired at 30 Hz. The
human joint poses are composed of 15 3D-joint positions per subject; here, the z-axis
or depth is measured by the Microsoft Kinect v1. The activities are performed by four
subjects in five different constrained environments: office, kitchen, bedroom, bathroom,
and living room. The subjects carry out 12 activities. The total recorded time for all the
activities is approximately 47 min.
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NTU RGB+D Dataset

A large Scale RGB+Depth Dataset for 3D HAR from the Nanyang Technological University
(NTU RGB+D) [SLNW16] contains 60 activity classes and 56880 video samples. The
dataset contains RGB videos, depth map sequences, 3D joint poses, and infrared (IR)
videos for each sample. Videos are captured from 40 different human subjects, using the
Microsoft Kinect v2 at 30 Hz. Human joint poses consists of 3D coordinates of 25 major
body joints for detected and tracked human bodies.

The actions are performed in different constrained environments: 40 ADLs, e.g., drink-
ing, eating, and reading; 9 health-related actions, e.g., sneezing, staggering, and falling
down, and 11 mutual actions, e.g., punching, kicking, and hugging.

6.2 evaluation metrics

Following the revision in [RNMR+
19], the literature evaluates the M-HAR methods using

the accuracy (Acc), Precision (Pr), Recall (Rec), weighted F1 (wF1), and mean F1 (mF1).
The most used metric is the accuracy.2 For the overall performance across all activity
classes, the accuracy is computed as the number of correctly recognized samples divided
by the number of all samples N in the test set. Nevertheless, the Acc does not consider
the unbalance problem3 of the M-HAR datasets. F1 metrics could give a more impartial
conclusion of the performance for M-HAR [CSG+

13, OR16]. F1 metrics consider the
correct classification of each class equally. They compute the mean and weighted average
of the precision and recall, Equation 6.2.1, and the proportion of class in the dataset.

For each activity class, the precision and recall are,

Pr =
TP

TP+ FP
Rec =

TP

TP+ FN
, (6.2.1)

with True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).
These metrics show different aspects of the performance of an HAR system. Pr indicates
the percentage of times that a recognition result is correct. Rec means the percentage of
times that an activity is detected by the HAR system.

2 Generally, reported performances in the publications show relative good results, approaching 100% accuracy.
Nevertheless, these performances must be revised, as suggested in [RNMR+

19].
3 Some activity classes contain more samples than other classes.
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Being y ∈ Y an activity class of a set of activities of a dataset, n(y) the number of
samples of the activity class y, and N the total number of samples in the dataset, the mean
F1 (mF1) is calculated as,

mF1 =

Y∑
y

2× Pr
(y) × Rec(y)

Pr(y) + Rec(y)
, (6.2.2)

and the weighted F1 (wF1) is calculated as,

wF1 =

Y∑
y

2× n
(y)

N
× Pr

(y) × Rec(y)

Pr(y) + Rec(y)
. (6.2.3)

The results presented in this work are the mean and SD (µ± σ) from five runs on the
testing and validation sets under the similar training hyperparameters and controlling
the source of the randomness of Python and PyTorch with a fixed random seed, similar to
[OMR16], as seen in Subsection 3.4.1; this due to time constraints considering the large
amount of experiments, including datasets and network hyperparameters.

A permutation test is performed to evaluate the performance changes, stating whether
a certain performance is significant or not. The testing accuracy will be considered
for this permutation test.4 The randomization tests are carried out comparing the clas-
sification testing accuracies between the proposed method and the baseline and the
state of the art [OG09].

The values in bold in all the tables in Appendix A have the corresponding testing
accuracy significantly higher than the baseline, based on a permutation test.

6.3 results

6.3.1 Baseline for Multi-Channel Time Series Datasets

To compare with the proposed Adaptable Attribute IMU-Temporal Convolutional Neural
Network (Adaptable Attr-IMU-tCNN), a tCNN baseline is evaluated following the archi-
tecture designs present in [HHP16, OR16]. The tCNN has temporal convolutions over all
OBDs recordings. It is as a simpler IMU-tCNN with a single temporal branch for all of
the OBDs sequences. This thesis also compares using three different fusion alternatives,

4 A performance improvement is considered significant if the ρ-value is less than 5.0× 10−2 and highly
significant if the ρ-value is less than 1.0× 10−2.
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namely, using LSTM layers following [HHP16, OR16], FCN layers following [YLSR18] and
FC layers. The architectures with an LSTM layer are similar to the DeepConvLSTM from
[HHP16, OR16]. The DeepConvLSTM also contains four temporal convolutional layers of
128 units with ReLU activation functions, but it uses two LSTM layers instead of the FC
layers. The LSTMs capture the global temporal dynamics of the input data. Additionally,
the architecture using the FCN as the fusion layer before the classifier layer is similar to
the one proposed in [YLSR18]. The FCN layers contain [1, 1,C] convolutions connecting
the entire input along the deep dimension to the output in a fully-way fashion. This
convolution layer is very efficient, keeping temporal relations. Architectures containing
[2, 1] max-pooling layers with a stride of 1 are also considered; see Section 3.1 for details
of these architectures.

For all architectures, each of the convolutional layers has C = 64 filters of size [5, 1]
performing convolutions only on the time axis. Both the FC and the LSTMs layers contain
128 units. Max pooling with a filter size of [2, 1] with a stride of 1 is used.

A nomenclature will denote the networks following Network-Poolingactlayerfusion , e.g.,
the here proposed limb oriented tCNN with a TPP fusion layer is denoted as, IMU-
TCNNsigmoidTPP , or the DeepConvLSTM proposed in [HHP16, OR16] is denoted as TCNN-
[1-2]MaxPoolsoftmaxLSTM , and the the tCNN with FCN in [YLSR18] is denoted as TCNN-[1-
2]MaxPoolsoftmaxFCN .

Figure 6.3.1 shows a summary of the evaluation presented in Appendix: Section A.4 for
all the datasets. It presents the testing performance in terms of wF1[%]5 using the IMU-
TCNNsoftmaxfuse . The IMU-TCNN is robust performance compared to TCNN, as Table 6.3.1
shows for the LARa datasets.

The outcomes result from a detailed tuning of different training hyperparameters
commonly evaluated using deep architectures. Here, the performance of the architectures
with respect to the learning rate is relevant. Channel-wise normalisation of the recordings,
bringing the sequences of a range of [0, 1] allows not only the temporal architectures
to learn, as early layers do not saturate in dead regions following [LBOM12, IS15], and
filters are shared among sensors with different amplitudes or scales; but also to deploy
similar training hyperparameters, and thus for a fair comparison under similar training
and experimental scenarios. Figure 6.3.1 shows the performance of the architectures with
respect to different learning rates. The lr = 10−3 suits all the datasets.

In general, FCN as fuser layer deteriorates performance. This outcome is constant
for all datasets. This result is because the FCN considers dense connections to the deep
dimension of the feature map, and it depends on the receptive field of the filters with

5 The acc and mF1 show similar outcomes, so they are not shown.
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Figure 6.3.1: Best testing performances in terms of wF1 [%] on the OBD datasets for different configurations
of the IMU-TCNN.

respect to the input. Thus, the architecture with an FCN has a partial view of the input,
just performing a final aggregation of the entire sample predictions before the classifier.

The LSTM does not improve M-HAR performance for a dataset with no restrictions
or scripts posed to the subjects when performing an activity, e.g., the LARa dataset; that
is, all subjects carry out the activities freely following a specific goal given by the BPM,
but not a script. This outcome is different for the laboratory setups, Opp and Pamap2,
where the subjects repetitively follow a script. This is because the architectures with an
FC layer as an aggregator are over-parametrised compared to LSTM and FCN layers.
This over-parametrisation is damaging when dealing with a low quantity of data, e.g.,
Pamap2, but shows advantages for a large dataset, e.g., LARa-M dataset. This outcome
can also be seen comparing the performance on the LARa-M with respect to LARa-Mb and
LARa-MM, which contain a lesser amount of channels and subjects. This layer increases
the descriptiveness when data contains significant variation.

One of the reasons networks with LSTM and FCN layers were used is their relatively
lesser amount of parameters compared to FC layers, providing similar performance,
as shown in [JK19]. The parameter reduction does not limit LSTM networks’ usage
for long-temporal abstract relations from previous predictions, which are handy for

125



evaluation

structured activity sequences, where possible actions can strongly depend on previous
actions when actions have precondition-effect relations [HHP16, OR16]. However, this is
different for short and not repetitive temporal relations directly from sensor measurements,
where the FC shows an advantage. Besides, they provide sample-wise predictions—
in this case, computation becomes very demanding. Un-segmenting the predictions
considering the window size and step and computing the mode of the overlapping
windows predictions for all the samples from the networks with FC and TPP is enough
to boost performance. Un-segmenting avoids the memory-demanding networks using
FCN and LSTM at deploying, as they can carry out sample-wise predictions rather than
a single prediction per window. These non-dense predictions are also advantageous
when considering attribute representations. For example, on the LARa-Mb, the IMU-
TCNNLSTM shows a wF1 of 73.77± 0.58[%] for window-based predictions, and wF1 of
74.64± 0.54[%] for sample-wise predictions; the IMU-TCNNFC a wF1 of 74.59± 0.96[%]

for window-based predictions and wF1 of 75.55± 1.03[%] sample-wise predictions after
un-segmenting.

The TPP initially shows a negative influence on performance. Considering that TPP is a
pooling method, relevant features from not necessarily the strongest movements in the
non-active limb might get lost. However, The TPP pools relevant features per limb when
considering the IMU-TCNN with late FC fusion. This advantage is particularly clear when
using a TPP layer. The limb-oriented structure of the IMU-TCNN shows an advantage
with respect to the TCNN. Besides, it shows a more stable performance when repeating
the experiments. This outcome is pronounced for the OPDB dataset.

In general, for the performances on the Opploc, Oppges and Pamap2 datasets and
contrary to [RSA15], CNNs benefit from max-pooling operations, even when sequences
are short. The Spectral Pooling reduce the number of parameters by ≈ 56% and ≈ 80%
respectively, without sacrificing performance. The Spectral Polling improves performance
on the LARa-Mb, Pamap2, and MM. The spectral pooling does not negatively affect the
networks’ performance on the LARa-MM.

IMU-TCNNTPP will be very relevant for finding semantic attributes on the target
datasets and for allowing to a certain extent TL for M-HAR.

6.3.2 Synthetic On-Body Devices (SOBDs)

SOBDs from LARa

Following Section 5.3, M-HAR is addressed considering a SOBD located on a given joint.
The total acceleration considering the linear and angular changes of the joint poses along
time is computed. These SOBDs will be used as source domains for parameter-based
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Figure 6.3.2: The figure presents an example of the LARa-SOBD for the Synchronisation activity class. The
linear acceleration vector of the left arm is shown in � on the skeleton. It shows the 3D linear acceleration for
[X] axis in �, [Y] axis in �, and [Z] axis in �, from the second order derivative, and the LARa-SOBD following
the method, of the left arm. Besides, it shows linear acceleration measured by OBD located on the right arm
from the LARa-Mb set.

Transfer Learning for HAR. The LARa-M is deployed for creating the subset LARa-
Synthetic OBD (LARa-SOBD). Figure 6.3.2 presents an example of the LARa-SOBD for the
Synchronisation activity class.6 It shows the measurements per axis [X, Y,Z] from the left

6 The subject keeps a standing position while moving the arms upwards and downwards synchronously.

127



evaluation

wrist pose, its second-order derivatives along time, ∂
2

∂t2
pj, and the corresponding linear

acceleration of the LARa-SOBD considering a kinematics perspective, {J}aj (t). Besides,
it shows measurements of each axis [X, Y,Z] from an LARa-Mb located on the left wrist
as a comparison. The LARa-SOBD is sampled at 200 Hz while the LARa-Mb at 100 Hz.
The similarities of the SOBDs to the OBD are noticeable. For example, the left arm SOBD
presents the highest acceleration magnitudes when the arm velocity changes its direction
from upwards to forward or from the torso to the sides and back to the torso.

Table 6.3.1: The testing wF1 [%] computed from solving M-HAR using the TCNN and the IMU-TCNN on the
LARa-Ms, LARa-Mbs, and LARa-SOBDs. The mean and SD from the wF1 [%] are given as training method is
repeated five times. Values in bold are significant with respect to the architectures.

Dataset
Baseline

LARa-Mb100 LARa-Mb30 LARa-SOBD100 LARa-SOBD30
LARa-M100 LARa-M30

TCNN 75.80± 0.15 75.41± 0.35 73.80± 0.4 74.59± 0.88
∂2

∂t2
pj = 55.46± 0.6 ∂2

∂t2
pj = 56.16± 0.3

{J}aj (t) = 63.87± 0.51 {J}aj (t) = 62.26± 0.14

IMU-TCNN 76.27± 0.16 76.16± 0.14 74.59± 0.96 74.09± 0.30
∂2

∂t2
pj = 60.06± 0.3 ∂2

∂t2
pj = 56.10± 0.4

{J}aj (t) = 64.42± 0.13 {J}aj (t) = 56.20± 0.65

Table 6.3.1 compares the classification performance, in terms of the testing wF1 [%],
on the testing set from the two LARa-SOBD sets, the second-order derivatives from the
LARa-M, ∂

2

∂t2
pj, and the acceleration considering a kinematics perspective {J}aj (t). Since

the target domains in Subsection 6.1.1 have different recording rates, two subsets are
created from LARa-SOBD. These subsets are sub-sampled from 200Hz to 100Hz and 30Hz.
The subset will be denoted with the sampling rate. Table A.4.5 presents performance with
regards to the architectures with pooling and a TPP layer. The performances using the
LARa-M and LARa-Mb sets are higher with respect to the LARa-SOBD; this is a result of
the loss of information with finite derivations. However, the SOBD, including components
from linear and angular acceleration, shows a better performance than the second-order
derivative suggested by [HKA+

18, KY18, MRF21]. Including kinematics preprocessing for
SOBDs improves classification. This outcome is explained as the acceleration by OBDs is
measured with respect to a point located on themselves and not a global frame, capturing
a resultant acceleration at the point. This resultant acceleration is due to all the dynamics
of the human body. The LARa-M captures a fraction of all these dynamics on the body;
thus, SOBD from the LARa-M are limited. Human poses given in 3D coordinates with
respect to a global frame, or even with respect to a frame attached to the human body,
have to be processed considering rotation and linear rotation of as many as possible points
on the human body. Even though SOBDs are approximations of OBD, they become a
source for TL, as will be shown.
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SOBDs from Video-based Datasets

Figure 6.3.3: Example of the linear acceleration of a Synthetic On-body Device (SOBD) from J-HMDB from
two consequetive poses of the joint {J} located on left wrist of the J-HMDB dataset. A frame attached to joint
{J} is represented by the unitarian vectors towards (X, Y), specified by �, �. The linear acceleration O

{J}aj (t)
on origin frame is presented in �. The vector from pose p{J} (t− 1) to pose p{J} (t) is given in �. The linear
acceleration of the joint {J} given in origin frame O and frame {J}, including the gravity {J}aj (t) is shown in �.
The gravity vector g is considered vertical and with direction downwards.

Transfer Learning for HAR will consider transfer learning from ground-truth pixel
annotations of joint poses from video-based HAR datasets to real OBD data. Similarly to
the LARa-M and their SOBD, the sequences of joint-pose annotations in pixel coordinates
are considered as multi-channel Time-Series data for M-HAR, and not tree-like tensors,
usually seen in the literature; see Section 3.2. Besides, SOBD are computed from these
multi-channel Time-Series, following Section 5.3, and deployed as a source for M-HAR.
Considering the joint-pose annotations as M-HAR defers from the video-based HAR
approaches intended for DSource. This consideration takes the advantage that the IMU-
TCNN and TCNN process sequences per channel with late fusion and local temporal-
neighbourhoods of sequences are likely correlated.

The J-HMDB, CAD-60, and NTU RGB+D will be used as DSource. Figure 6.3.3 shows
an example of these multi-channel Time-Series data from the J-HMDB. J-HMDB provides
only 2D pixel coordinates of the human joints, as Figure 6.3.3 shows. These coordinates are
normalised with respect to the subjects’ size. For the SOBD, the orientation of each joint
will be fixed with respect to the body and will be given by the angle between neighbouring
joints, e.g., vector in colour � in Figure 6.3.3. The CAD-60 and NTU RGB+D provide 3D
joint coordinates. The orientation of a joint is fixed in the direction of the vector from
two neighbouring joints. Figure 6.3.4 presents the [X, Y] sequence of the SOBD located on
the left arm of the subject while performing a Handling Downwards activity. It shows the
measurements per axis [X, Y] from the left wrist pose, its second-order derivatives along
time, ∂2

∂t2
pj, and the corresponding linear acceleration of the LARa-SOBD considering
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Figure 6.3.4: Figure presents the an example of the SOBD for the J-HMDB dataset, Pick activity class. The
linear acceleration vector of the left arm is shown in �. It shows the 2D linear acceleration for [X] axis in �,
[Y] axis in �, from the second order derivative, and the LARa-SOBD following the method, of the left arm.

a kinematics perspective, {J}aj (t). Compared to previous work [AMRF22], following
[HKA+

18, KY18], the SOBD retains previous changes of the acceleration that remain
while performing the activity along a fix position of the SOBD on the human joint.

Table 6.3.2 shows the classification performance in terms of wF1[%] on the testing sets
from the J-HMDB, CAD-60, and NTU RGB+D and their SOBDs. The wF1[%] on the J-
HMDBSOBD and CAD-60SOBD, the SOBD decreases when compared to pose data. These
results are due to the approximations involved in the derivations when creating synthetic
data. The M-HAR performance increases when up-sampling for J-HMDBSOBD from
30 Hz to 100 Hz. M-HAR is approached using joint poses differently from the approaches
in [CWRS18, KY18, JMA22] focusing on video-based HAR, using RGB frames, Optical
Flow and Pose; see Section 3.2 for details. Interestingly, for J-HMDBsynth. upsampled to
100 Hz, the mean classification accuracy is of 90.53%, which is significantly higher than
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the one reported by [CWRS18] (85.5%), [KY18] (83.1%), and [JMA22] (77.54%). These
classification performances are denoted only for giving a sort of proportion about the
activity classification. However, these works consider video-based HAR. The predictions
were unsegmented, and a majority voting was deployed before computing the wF1[%] so
that a comparison would be fair.

Table 6.3.2: The wF1[%] for M-HAR on the three DSource: J-HMDB, CAD-60, and NTU RGB+D. The predictions on
test set were unsegmented before computing the wF1[%]. Multiple experiments were performed varying the stride Str
for each DSource. J-HMDB is not up-sampled for J-HMDBsynth30.

Dataset Poses
SOBD SOBD

[30Hz] [100Hz]

J-HMDB [25Hz] 50.90± 0.05 26.58± 0.06 85.68± 0.81

CAD-60 [30Hz] 75.75± 0.02 50.11± 0.06 57.16± 0.06

NTU RGB+D [30z] 30.07± 0.15 6.70± 1.35 36.59± 0.49

The SOBDs from the poses recorded by a marker-based MoCap and given by the pixel
coordinates from videos will be considered for Transfer Learning for HAR.

6.3.3 Attribute-based M-HAR

The Algorithm 2 in Section 5.2 finds the function r(·), Equation 5.1.8, which is the best
suitable binary attribute representation for a given dataset. The r(·) is represented by
a binary attribute representation matrix Abest ∈ B[Y,M] with Y the number of activity
classes and M the number of attributes, called Activity-Attribute Matrix in Section 4.4. Two
EA approaches following Algorithm 2 find an attribute representation r(a) = y or Abest
suitable for each dataset by: EA-TCNNattributeFC iteratively training and validating a tCNN
using attribute configurations, which mutate starting from random; EA-Attr-IMU-tCNN
iteratively validating the Attr-IMU-tCNN trained on the LARa and mutating the attribute
representation.

A Nearest Neighbour Approximation (NNA) was used for predicting the class y by
measuring the Binary Cross-Entropy (BCE) distance from the attribute vector prediction
from the TCNNattributeFC and Attr-IMU-tCNN predictions g(X) to the set a ∈ Aparent1n−gen ,
following Subsection 5.1.2. The parent 1 is used as the representation for each generation.
The validation wF1 [%] is used as the fitness metric.

For the EA-TCNNattributeFC , different numbers M of attributes ∈ B[M] for representing a
class y are evaluated depending on the number of total classes Y per dataset. Based on
training and validating the TCNN on random attributes for different M = [16, 32, 64, 128],
a set M = [10, 32, 24, 19, 19] number of attributes is finally set for the Opploc, Oppges, and
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Figure 6.3.5: The validation wF1 [%] of the two EA algorithms, EA-TCNNattributeFC and EA-Attr-IMU-tCNN,
on the OBD datasets: LARa-Mb in �, Opploc in �, Oppges in �, Pamap2 in �, OPDA in �, OPDB in �,
and MM in �.

Pamap2, OPD, and MM datasets. An attribute representation is also found for the LARa,
using the LARa-Mb set. The TCNNattributeFC is trained from scratch for a fixed number of
epochs in each EA iteration.

Figure 6.3.5 shows the validation wF1 [%] evolution vs. the EA iterations for the two EA
approaches on the OBD datasets.

The EA-TCNNattributeFC adapts the network parameters according to the attribute rep-
resentation generation. The TCNNattributeFC is able to perform classification starting from
a random attribute representation. Here, the initial attribute representation generations
A
parent1
1−gen and Aparent21−gen already restrict the representation, such that the activities do not

share the same representation among themselves.
The wF1 [%] on the Pamap2 presents the biggest improvements of 8.08% between the

first and the last attribute generation at niter = 8592 iterations. The wF1 [%] on the
Oppges and Opploc shows wF1 [%] improvements of 2.08 [%] and 4.73 [%] respectively.
It is noticeable that mostly the performance of the networks presents a relatively good
performance despite the randomness of the initial attribute generations. This outcome
could be explained as the Oppges and Opploc datasets are strongly unbalanced towards
the NULL class, and they predict sequence segments correctly with that label. However,
as the attributes evolve, the correct predictions increase, showing the potential of the
attribute search. Moreover, common attributes among classes are found, which helps
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share strength between the more and the less frequent classes. In addition, there is a
substantial dimensionality reduction.

Table 6.3.3 shows the learned attribute representation for EA-TCNNattributeFC on the
Opploc dataset after 2443 iterations. There is a sort of semantic relation for the attribute
shared among action classes. For example, the Stand class shares 4 and 5 attributes with
classes Sit and Lie. These three action classes share less with the Walk class with 3 and 2
shared attributes. One advantage of this attribute sharing is that the Null class attributes
become a source for learning attributes shared with infrequent classes. There is no specific
definition of each attribute, but the sort of basic movements or states in each action class
keeps a certain relation. One uses these relations to learn a better representation of the
actions. The EA-TCNNattributeFC also controls the number of attributes. For example, the
attributes a4 and a9 can be removed from the representation.

The learned attribute representation for Oppges dataset shows multiple relations. The
activities’ attributes are mixed because the dataset contains mainly the opening and
closing of doors, fridges, dishwashers, and drawers. These labels also partly explain the
relatively good performance of the initial random representation on this dataset. However,
after the attribute evolution, classes involving either merely closing or exclusively opening
movements display a strong attribute sharing with 20 to 22 common attributes.

The learned attribute representation presents different relations for the Pamap2 dataset.
This dataset has different activities, including moving and static ones, but without the
Null class. The classes are more diverse, having more distinctive action classes. So, the
shared attribute is also more diverse, e.g., it keeps relations among classes Rope Jumping,
Lying, Cycling, and Ironing.

Table 6.3.3: Attribute representation A ∈ B10 of the Opploc dataset found using the EA-TCNNattributeFC .

Activity
Attributes

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Null 1 0 0 0 0 1 0 0 1 1

Stand 0 1 1 0 1 1 1 1 1 1

Walk 0 1 0 0 0 0 0 0 1 1

Sit 0 0 0 0 1 1 0 0 1 1

Lie 1 1 1 0 1 0 0 1 1 0

The attribute representation size remains fixed for the EA-Attr-IMU-tCNN. This EA uses
the IMU-TCNNTPP, evaluated in Subsection 6.3.1 using a softmax classifier, trained on
the LARa, and considering the LARa attribute representation. The IMU-TCNNattributeTPP

is transferable to different target datasets. It computes fixed size representations per
limb with late fusion independently of the number of OBDs. The EA-Attr-IMU-tCNN
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finds the mapping r(·), such as the IMU-TCNNattributeTPP trained on LARa becomes fully
transferable. In addition, the EA finds semantically interpretable representations based
on the LARa annotations.

On the one hand, the attributes found with the EA-TCNNattributeFC adapt well to
the datasets, where the classification performance is rather high; on the other hand,
they are not interpretable. The EA-Attr-IMU-tCNN finds semantic attributes using the
representation from the LARa. Table 6.3.4 shows the attributes found for the Opploc
dataset. Activities not belonging to the LARa dataset obtain attribute representations that
are somehow semantically different from what is expected. However, the EA finds the
attribute Error that was intended for activities that are not considered in the annotation
process of the LARa dataset, e.g., Sit and Lie activities. The Attr-IMU-tCNN does not
contain filters that activate the non-expected activities; however, it is able to provide an
attribute that classifies the activities as strange. The activity Stand obtains the attributes
Standing Still and Step that were conceived by the LARa authors when the subject is not
changing its position considerably. Similarities can be found for the other target datasets.
Activities considering Walking, Running, and Cycling can be represented with attributes
Gait Cycle and Step from the LARa dataset. Activities, where the subject keeps a bending
torso pose, are described with the Upwards or Downwards.7 The EA also controls the size
M of the representation, as attributes get discarded.

Worth mentioning, the large computing time difference between the EA-TCNNattributeFC

and EA-Attr-IMU-tCNN. While the EA-TCNNattributeFC has to train for a fixed number
of epochs the TCNN for computing the fitness, the EA-Attr-IMU-tCNN only computes
the validation performance as the fitness without any training, directly using the IMU-
TCNNattributeTPP ↑LARa. For example, the EA-TCNNattributeFC on Opploc takes ≈ 90 days
for carrying out an evolution with niter = 10000 iterations or generations, where each
generation contains 10 offsprings, contrastively, the EA-Attr-IMU-tCNN takes 3 days.

6.3.4 Transfer Learning for Attribute-based M-HAR

Attr-based Transfer Learning for M-HAR seeks to combine the Attr-IMU-tCNN archi-
tecture and the semantic attributes to transfer learning from an attribute-based source
dataset, LARa, to different target benchmark datasets. Attr-based Transfer Learning for
M-HAR handles challenging TL scenarios, where the source and target datasets multi-
channel time-series Space and tasks differ; so, the number of sensors, devices and activities
are different. However, these datasets contain overlapping activity classes with LARa,

7 Attribute representations of the other target datasets can be found in Appendix A.
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Table 6.3.4: Attribute representation A ∈ B19 of the Opploc dataset found using the EA-Attr-IMU-
tCNNLARa−M.
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Null 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Stand 0 1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0

Walk 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0

Sit 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1

Lie 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1

i.e., Standing, Walking, and Handling tasks. Here, the impact of this transfer learning is
evaluated under cases where the target data is limited.

Figure 6.3.6 summarizes the testing performance of the Attr-based Transfer Learning
for M-HAR on the target datasets and compares it against their baseline when considering
different proportions of the training set. Attr-based Transfer Learning for M-HAR allows
transferring not only the parameters of a network trained on the LARa but also its
representation. Besides, it allows performing HAR when no fine-tuning of the architecture
is required with material from the target datasets—here, considering the validation set
for finding the attributes—, but even when manually assigning the attributes, in such
cases with [0%] of the training material. Attr-based Transfer Learning for M-HAR predicts
semantic attributes related to the activities to be computed. Predictions are enough to
further post-process the predictions with more global temporal methods, as, for example,
the [LMRA+

21], or to improve considerably the annotation process, as Chapter 7 will
show; this considering that the Attr-IMU-tCNNLARa can be used out of the shelf.

In general, architectures’ performances improved for all five target datasets, most
prominent when deploying a proportion of the data for training—simulating cases under
the assumption that only a fraction of the annotated data is available for training. These
findings suggest that the here presented method of Attr-based Transfer Learning for
M-HAR is able to learn features and high-level descriptors that are somewhat general
as they learn local temporal relations of short-lasting human movements, which are
independent of the number of OBDs and their type. Besides, the learnt filters and
descriptors are activity-class dependent. As a result, the classification performance
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Figure 6.3.6: Testing wF1[%] of the Attr-based Transfer Learning for M-HAR on the Pamap2, and Opploc,
Oppges, OPD and MM datasets under different proportions of training sets. Dotted lines represent the
performance baseline.

improves on the activities that are shared among the datasets. Moreover, this outcome is
valid for predictions from relatively short segments of movements.

Furthermore, Attr-based Transfer Learning for M-HAR with LARa as source signif-
icantly impacts the performance on the MM, which are conceived for intralogistics
purposes. The LARa also was designed with the perspective of transferability to real
scenarios. Subjects carry out activities using materials and tools that are found in real
scenarios. The impact of a well-designed dataset for TL from the application’s perspective
is discussed deeply in [Rei21].

Figure 6.3.7 summarizes the findings when performing parameter transfer learning us-
ing pose annotations from video datasets as an input stream for improving M-HAR. Three
different datasets comprising ground truth pose estimation from videos are deployed
as the DSource. The learned temporal convolutional layers of the IMU-TCNNsoftmaxfc

are used to initialize architectures on three benchmark datasets for M-HAR. The IMU-
TCNNattributesfc were not providing good performance on the DSource. These datasets’
sampling rates are 25 and 30 Hz, and they do not contain enough information for pre-
dicting short-duration movements, which are represented by attributes. Besides, the
sequences of pixel coordinates of human joints are considered as simplifications of pose
estimations.
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Figure 6.3.7: Summary of the testing wF1[%] of the parameter-based Transfer Learning for HAR on the
Pamap2, and Opploc, Oppges, OPD and MM datasets under different proportions of training sets using the
IMU-TCNNsoftmaxfc and the pixel-based video-based HAR datasets. Dotted lines represent the performance
baseline.

Experiments regarding the number of transferred layers, the two versions of the
DSource, poses and SOBDs, and a proportion of the DTarget are carried out. This
parameter-based TL considers only the feature extractors of the neural network, so it
does not consider a semantic representation of the sequences. Nevertheless, when trans-
ferring only the first convolutional layer, the performance positively influenced the task,
regardless of the data source. Parameter Transfer Learning helps when a small proportion
of the training target set is available. Besides, source and target datasets with shared
activities showed some improvements. These findings suggest that simple local temporal
relations are rather generic and thus transferable. On the other hand, the more complex
and task-related filters are not transferable when considering pixel-coordinates of poses
as DSource.

6.4 discussion and comparison with state of the art

Attr-based Transfer Learning for M-HAR is a combination of a descriptor extractor and
a semantic attribute representation exploiting a fine-grained annotated source dataset
for solving different TL scenarios. These scenarios handle situations when the source
and target domains differ, specifically the multi-channel time-series Space, and the tasks,
as Section 2.3 discusses. The Attr-based Transfer Learning for M-HAR is a composite
of functions, namely r (h (g (·))), following the proposed method shown in Figure 5.1.1.
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This composite was built upon evaluating each of these functions in four parts shown in
Section 6.3, as follow:

1. The composite function h (g (·)) is given by the feature extractor and the fuser
TPP layer of the proposed limb-oriented tCNN, namely the IMU-TCNNTPP. An
evaluation of the IMU-TCNNTPP is carried out on the source and target OBD
datasets.

2. The IMU-TCNNatrtibuteTPP is subsequently evaluated on attribute-wise annotated
LARa. This IMU-TCNNatrtibuteTPP is called Attr-IMU-tCNN. Additionally, Synthetic
On-body Device (SOBD) exploiting LARa is also considered. SOBD from unconven-
tional sources for M-HAR are also evaluted.

3. The function r (·) or attribute representation, which is derived on target datasets
DTarget using the EA-Attr-IMU-tCNN.

4. The composite function r (h (g (·))), Adaptable Attr-IMU-tCNN, is evaluated on
different target datasets.

Table 6.4.1 presents a comparison of the best testing wF1 [%] from the overall method
of this thesis on the target benchmark datasets with the state-of-the-art performance
using very similar architectures. It shows either values taken from the literature or
replicated by the author of this thesis following the training procedure given by the
literature. Experiments within this work are carried out following the training procedure
given in Section A.3 using Pytorch and an NVIDIA Geforce RTX 3090, repeating the
experiments 5× under the similar training hyperparameters and controlling the source
of the randomness of Python and Pytorch. This is for ensuring an evaluation with as
controlled hyperparameters as possible, measuring the influence of the proposed four
steps for evaluating the method, and ensuring repeatability.

TL in M-HAR was showing limited outcomes in the literature, mainly because the
source and the target domains differ, e.g., the parameter TL in [OMR16] from the Skoda
dataset to the Oppges, explained in Section 3.4; results shown in Table 6.4.2. The Attr-
based Transfer Learning for M-HAR addresses TL via not only by parameter transfer
but also via representation. Attr-based Transfer Learning for M-HAR allows improving
M-HAR, even with a fraction of the training material, obtaining performance near similar

8 Experiments on Oppges were carried out using an TCNN-LSTM with a one 128-LSTM layer after feature
extraction and with a sliding window of 0.5 s with an overlap of 50%.

9 This performance is provided by MotionMiners GmbH, which is computed using a TCNN trained with their
own company large dataset material.
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Table 6.4.1: The wF1% of the best Attr-based Transfer Learning for M-HAR on the target datasets compared to similar
related works using similar architectures. Results obtained within this thesis are given with the mean and SD from the
wF1 [%] from carrying out 5× the experiments. These results are either replicating the related work’s architectures, and
deploying the proposed method, and are shown with colour �. The reported results by the related work are shown in
colour �. Values marked with the symbol N, N, and N refer to Transfer Learning for HAR using [LARa-M, LARa-Mb,
LARa-SOBD] as the DSource, respectively. Values from OPDA and OPDB are computed from a 3-fold validation. DT

stands for DTarget.

Networks LARa-MM Pamap2 Opploc Oppges MM OPDA OPDB

B-LSTM
- 87.2[HHP16] -

90.8[HHP16]
- - -

84.2[TDF+
18]

89.5[OMR16] 91.5[OMR16]

51.0[BHMVL21]8TCNN-LSTM 66.89± 1.12 86.91± 0.44
86.52± 0.24

89.14± 0.33

82.87± 0.63 65.10± 4.5 73.72± 7.25

TCNN

71.88± 0.34 74.0[TDF+
18]

86.5[YNS+
15] 93.9[YNS+

15] 82.89± 0.58 66.47± 4.73 74.60± 5.79
87.8[OMR16] 85.1[OMR16]

65.71± 0.01
[AMRF22] 88.43± 1.52

86.52± 0.24 89.23± 0.18
84.00 [Rei21] Acc =

69.2± 1.8
[GLMR+

17]

Acc =
73.9± 4.6

[GLMR+
17]

83.109

IMU-TCNNattr 73.04± 0.97 86.95± 0.50 83.54± 0.68 88.22± 0.30 84.76± 0.34 65.07± 4.58 74.28± 6.70

Proposed Method

[100%]DT 73.26± 0.41 N 92.21± 0.31 N 89.09± 0.04 N 90.28± 0.17 N 86.22± 0.50 N
70.56± 4.14 N 75.52± 7.66 N

Acc =
72.05± 1.97

Acc =
76.09± 7.20

methods using the entire training material. Following the results in Figure 6.3.6 and
summarised in Table 6.4.2, Attr-based Transfer Learning for M-HAR on the LARa datasets
improves the performance for all target datasets in all the scenarios where the proportion
of the training material is limited, considering [10, 20, 40, 60, 80]% of the training material
from the target datasets. Furthermore, it considers when the amount of OBDs is different,
e.g., TL between LARa-Mb with five OBDs to LARa-MM with three OBDs within the
same domain and task, to OPD with three OBDs within the different domain and similar
tasks, to Pamap2 with four OBDs within the different domain and tasks. These outcomes
show that the temporal relations and the representation extracted from the LARa can be
used for improving classification on datasets with different class activities.

The MM dataset recorded from real and challenging intralogistics scenarios profits
enormously from the Attr-based Transfer Learning for M-HAR and the LARa dataset. The
LARa dataset is a laboratory dataset created to address intralogistics M-HAR problems
involving recording densely sampled human poses and inertial measurements. The
IMU-TCNNattr trained with the LARa can be used for predicting activities of the MM
dataset. A function r(·) for the MM in terms of the attribute representation of the LARa
can be manually given10, as these datasets belong to the same application. The IMU-

10 The author of this thesis gives this mapping following a coarse description of the MM activities provided by
MotionMiners GmbH.
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Table 6.4.2: The wF1% of the best Attr-based Transfer Learning for M-HAR using the IMU-TCNNattr on the different
proportions of the target datasets, shown in colour �. Results obtained within this thesis are given with the mean, and
SD from the wF1 [%] from carrying out 5× the experiments. The reported results by the related work are shown in
colour �. Values marked with the symbol N, N, and N refer to Transfer Learning for HAR using [LARa-M, LARa-Mb,
LARa-SOBD] as the DSource respectively, where the symbol attached to each of the classification performance wF1%
shows the best performance out of the three the source datasets, DSource. Experiments for all the DSource are found
in the Appendix Section A.4. Values from OPDA and OPDB are computed from a 3-fold validation. DT stands for
DTarget.

Proportions LARa-MM Pamap2 MM Opploc Oppges Oppges[OMR16]

[100%]DT 73.26± 0.41 N 92.21± 0.31 N 86.22± 0.50 N 89.09± 0.04 N 90.28± 0.17 N
≈41.0[100%]DT

≈30.0[100%]DT

Skoda

[80%]DT 70.39± 1.18
[75%]DT

N 90.91± 1.17 N 85.51± 0.68 N 81.62± 0.62 N 87.37± 0.17 N ≈30.0[75%]DT

Skoda
[60%]DT 91.21± 0.47 N 85.86± 0.66 N 77.58± 1.18 N 84.35± 0.17 N

[40%]DT

68.42± 0.62
[50%]DT

N
90.95± 0.60 N 84.19± 0.81 N 73.56± 2.66 N 81.85± 0.35 N

≈26.0[50%]DT

Skoda

[20%]DT 64.22± 1.15
[25%]DT

N 57.94± 1.81 N 83.61± 0.70 N 67.77± 0.87 N 81.07± 0.09 N

[10%]DT 60.78± 1.47 N 82.92± 1.12 N 56.40± 2.69 N 77.54± 0.77 N

TCNN ↑MMLARa using this manually given mapping performs M-HAR with awF1 = 80.80[%]

of performance. Here, the architecture is directly deployed with [0]% training material,
with only a coarse description of the activities, enough to relate the LARa attributes. This
outcome shows the feasibility of transferring not only the temporal relations per limb
but also a late fusion strategy of the limb temporal features and a compact descriptor
representative of the activities, along with an activity representation within the application
domain.

In comparison to the state-of-the-art architectures, it is noticeable the boost in the
performance for the Pamap2 and Opp datasets. The TCNN ↑DTarget

DSource
pretrained with

DSource = [LARa-SOBD,LARa-M,LARa-Mb] on the Pamap2 show the best performances,
even when using [60%] of the training material. The LARa-SOBD becomes the best source
under the case of [10, 20, 40, 60, 80]% of the Pamap2 training material. This outcome
shows the potential of the SOBD; hereafter, these SOBD are another way of exploiting the
human poses measured with a high sampling rate from the marker-based MoCap. On the
Oppges dataset, Attr-based Transfer Learning for M-HAR makes transferability possible
when having [10, 20, 40, 60, 80]% of the training material as compared to [OMR16] using
[50, 75, 100]%. The performance on the Opp is significant compared to the same replicated
baseline of the literature.

Furthermore, not only the SOBDs from marker-based MoCap improves performance,
but also SOBDs from human pose annotations of video-based HAR can serve as source
material for improving classification under the case of having a scarce amount of data,
following Figure 6.3.7. This parameter TL scenario provides samples of ADL. However,
sequences of human poses as pixels depend strongly on the video sampling rate, which
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limits the usage of these SOBD for computing short human movements like attributes, as
this thesis considers. In that case, the SOBDs from LARa and a marker-based MoCap show
an advantage. Nevertheless, SOBD from human pose annotations of video-based HAR
improve performance on shared activities between the source and the target datasets. They
become handy as usually video-based HAR datasets contain a wider range of activities.

The EA allows finding semantic attributes in the target dataset within the representation
from the LARa dataset. The EA uses a pretrained network that handles the input of
different multi-channel time-series Space and is trained on the LARa for finding the
attributes on the target sets efficiently. This is because the EA does not need to train
its network. However, fine-tuning the architecture on the target dataset is required for
adjusting to the new task.

The Attr-IMU-tCNNLARa is anyhow limited to M = 19 semantic attributes that are
related to intralogistics activities; yet, these attributes are still enough to be transferable.
In summary, the learnt attribute representations of the target datasets are semantically
plausible to the activities. This learnt representation allows direct deployment of the
somehow general Attr-IMU-tCNNLARa to a new scenario. The Attr-IMU-tCNN can
serve as an out-of-the-shelf classifier that provides semantic attributes of the activities
of a target dataset. These attribute predictions might become helpful at first glance over
a target scenario where no training material is available. Besides, they become handy
for facilitating the annotation process of multi-channel Time-Series data for M-HAR, as
Section 7.2 will present.
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7P R A C T I C A L A P P L I C AT I O N - H U M A N
A C T I V I T Y R E T R I E VA L F O R
A N N O TAT I N G H A R D ATA

M-HAR classifies sequential data of humans performing a task. Irrespective of M-HAR
methods, annotated datasets remain of limited size. The recording and annotation
process of measurements from OBDs is very time-demanding, monotonous, and labour
demanding [YPS+

18, AAR+
21]. Due to the large intra- and inter-class variability of

human motion, a high quantity of observations with motion repetitions from the same or
different persons is necessary [OR16]. However, data collections for a M-HAR system face
challenges regarding environment settings, number of participants, number of devices,
and configurations [BBS14, TDF+

18]. For example, OBDs may be configured with different
sampling rates and resolutions. Besides, the number of devices and their position on the
human body may vary [RFCT13].

Mainly, the activity labels from a large number of observations have to be manually
annotated. Nonetheless, raw inertial measurements from OBDs are visually hard to inter-
pret, i.e., the activity is not apparent only by regarding sequences of sensor measurements.
Therefore, additional video streams are necessary to make an activity distinguishable by
the manual annotator. This alternative involves synchronising the OBD measurements
with the video stream to observe the human action for setting the corresponding label.
This form of annotation becomes a problem in real scenarios where video streams might
not be allowed [BBS14, FAt16, Rei21]. Besides, simultaneous recordings and careful
synchronisation is of need. Furthermore, they also increase the computational require-
ments. For example, the authors in [FAt16] took 26 min per 1 min of annotated sequence
using synchronized videos and OBD data. Fine-grained annotations or including seman-
tic information additionally increase the manual effort; for example, the annotators in
[RMRN+

20, AAR+
21] respectively took 42.5 and 35.3 min per 1 min annotating attribute

representations of very short-term windows.
Nevertheless, manual annotations are still prone to inconsistencies [NDCT17]. These

inconsistencies are mainly because of the variability of human movements and the lack
of a standard definition of human actions. Furthermore, dataset authors rarely mention
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or document the annotation protocol, effort and consistency [RNMR+
19]. Therefore, the

data collection and annotation for M-HAR require much manual effort, clear instructions
or training, and a practical annotation tool.

Exploiting that a considerable amount of data is available, but annotations are missing,
supervised, and unsupervised methods automatically predict pseudo-labels for a given
set of data [EH20]. However, the automatically produced labels need to be revised as
the models tend to estimate wrong predictions with high confidence [APH+

21, AAR+
21].

For example, the authors in [AAR+
21] take 18.16 min per 1 min of annotated sequence

when manually revising activity predictions of a tCNN. This annotation effort is roughly
halved when comparing to entirely manual.

Semantic attributes can represent human activities helping in Zero-Shot HAR and
Transfer Learning for HAR. Their advantage is that classification tasks can be carried
out without much annotation effort, or in cases where data are highly unbalanced, the
quantity of samples is large, and the testing set contains unseen object classes, as Chapter 5

and Chapter 6 presented. They are also helpful for searching tasks, e.g., word spotting, as
Chapter 4 presents.

This chapter proposes HARetr for annotating multi-channel Time-Series data for M-
HAR. This retrieval ranks segmented windows of data. It exploits predictions of attributes
predictions from the Attr-IMU-tCNN of segmented marker-based MoCap data and ranks
them according to some similarity to a query. A simple manual annotation then consists
of accepting or rejecting the ranked segments. This revision further decreases the burden
of an annotator compared to semi-automated annotation, where revision happens along
the entire recording.

This chapter first presents a related work of semi-automated annotation for M-HAR.
Second, it proposes Human Activity Retrieval as semi-automated annotation method,
introducing along two retrieval metrics. Then, it explores two similarity measurements. It
finally compares the performance of the retrieval against manual annotations.

7.1 semi-automated annotations for har

Apart from the burden of gathering data, recording in real scenarios is prone to be
disturbed by external factors. Controlled environments are appealing for gathering data,
as sensor measurements are lesser affected by noise [VEA+

15, DTR18], and recording
sessions can be conducted and repeated under different settings. Marker-based MoCap
systems are currently used for conducting measurements in controlled environments. For
example, Dalmazzo et al. [DTR18] have used marker-based MoCap and OBD datasets for

144



7.1 semi-automated annotations for har

Formal description of human activity

Real-world logistics scenario

Laboratory environment as a reference field

IMU time series (real-world)

− manually annotated

− basis for evaluation 

Replica and data recording

− MMC and IMU recordings

− realistic motion patterns

Semi-automatic Annotation

− reference classifier

− manual validation

IM
U

-b
ase

d
 A

ctivity recogn
itio

n in
 re

al syste
m

s

-
train

in
g w

ith
 lab

o
rato

ry 
d

ataset
-

testin
g

w
ith

 real-w
o

rld
 

d
ata

Documentation of system design

− material handling technology

− information technology

− organisation and processes

Generic description

− 19 attributes

− 8 classes

− attribute-class-matrix

− annotation guidelines

Manual annotation and revision

− documentation of effort

− ensuring consistency  

activity 1 activity 2 activity 1 activity 3

activity 2 activity 1 activity 3

CNNc1Standing

c2 Walking 

c3 Cart

…

Figure 7.1.1: Semi-automated annotation method for logistics scenarios. Recording and annotating large
amount of data is tackled by: training a CNN with data recorded from a controlled environmend closed to
reality. Image taken from [Rei21].

predicting violin bow activities. They concluded that natural human movements could be
achieved in such controlled scenarios.

Dr. Reining [Rei21] proposed gathering high-quality data from a controlled environment
or laboratory scenario for intralogistics. This data is close to reality and has proven useful
for real-cases scenarios. He proposed a semi-automated annotation of multi-channel
Time-Series data. They created laboratory setups of three scenarios in the intralogistics.
Domain experts set up these laboratory scenarios as much as near to reality with regards
to the characteristics of human activities. OBD recordings were annotated based on
annotations of simultaneously-recorded marker-based MoCap recordings.

Subjects carried out activities of three manual processes happening in the intralogistics.
In the first scenario, subjects pick up items from boxes at three different heights, recreating
picking from shelves. Afterwards, they put the items in boxes on a cart. Once the cart
is full, subjects carry the cart to a conveyor-like area, where boxes are unloaded. In the
second scenario, subjects pick up items from shelves at different heights and place them
on a flow-through cart. Here, the items are scanned first before picking. Finally, in the
third scenario, the subjects pick up items from the loaded flow-through cart and place
them on a packing table. Subjects locate the item inside an empty box and fill the box
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with wrapper plastic. Once a carton box is full, the subject closes and taps it. In the end,
subjects pick up the packed box on a conveyor-like table. Subjects were neither instructed
how to pick the item or boxes, nor how to wrap or tap the filled boxes. They were only
provided with the task, and they performed it in a way they felt comfortable with to
ensure natural motion behaviour.

Dr. Reining [Rei21] proposed deploying marker-based MoCap recordings for annotating
OBD recordings. The annotations consist of activities and semantic attributes for short-
duration window sequences—with a minimal activity duration of 100 ms. The authors
compare manual annotation vs. semi-automated annotation, collecting the results in
[AAR+

21]. A semi-automated approach is proposed using predictions of a IMU-tCNN
from marker-based MoCap segments. Following this, a human revises the annotations,
and they corrects the activity and its attributes mislabeling. The authors reduced the
annotation time by half compared to manual annotation but kept annotation consistency.

Annotators correct the predicted activities and attributes of the segmented windows
by observing the entire recording in an orderly manner. However, this revision also
represents a burden for the annotators, who must observe and concentrate on the revision.
This thesis proposes to use retrieval instead of the classification step in the semi-automated
annotation.

7.2 human activity retrieval

In contrast to classification tasks, retrieval returns a list of candidates ranked by a certain
similarity score considering a user-defined query. There exist a variety of different retrieval
scenarios depending on the query type. For example, in content-based image retrieval
[ZLT17, CLW+

21], one of the most prominent scenarios is to use an example image as
query, referred to as Query-by-Example (QbE). In that case, a user first selects a sample
from the data as the query.

The QbE was successfully applied in document analysis and exhibited a shortcoming
[SF18]. However, the user first needs to browse through the data to perform retrieval,
searching for a sample. This search can be highly time-consuming and tedious for rare
examples. Furthermore, if the user cannot find an example, this might solve the QbE task.
Therefore, redefining the query type is an appropriate approach to overcome the need for
an example. Instead of retrieving candidates given an example-based query, a retrieval
system sorts the candidates with respect to semantic information.

This retrieval is based on encoding semantics as binary attributes, sometimes called
visual attributes [LNH14]. The retrieval system then has to learn a mapping from the
data input to the attribute representation. It seeks to project the query class and the data
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input into the attribute space in which the retrieval task boils down to a nearest neighbour
search [SF18]. This semantic-based retrieval was successfully demonstrated for keyword
spotting [SF18] and cuneiform spotting [RRMF18] were it is referred to as Query-by-String
(QbS) and Query-by-eXpression (QbX), respectively, as Section 4.1 presents.

Some retrieval approaches use an attribute representation of data inputs and rank
them according to a similarity metric to a query in attribute space. In [FEHF09, LNH09],
attribute-based representations are introduced to the field of computer vision. Based on
the idea of representing classes with binary attributes, Lampert et al. [LNH14] leverage
these attributes to deal with disjoint training and testing sets, also known as zero-shot
learning; see Section 2.4 for details.

7.3 attribute-based human activity retrieval

Figure 7.3.1: Human Activity Retrieval (HARetr) for annotating multi-channel Time-Series recordings for M-
HAR. First, a recording of a human is segmented and forwarded through the Attr-IMU-tCNN. The resulting
attribute vectors are compared against the attribute representation of a class using a similarity metric. The
similarity of a segment is the similarity to the nearest neighbour of the queries attribute representation. The
retrieval list is then sorted in descending order by the score value. The numbers on the highlighted bars show
the order in which they would be presented to the Annotator.

The viability of retrieval for annotating multi-channel Time-Series data for M-HAR
tasks is evaluated. The retrieval is based on works in word spotting [SF18, RRMF18] and
will be here considered as an alternative method of obtaining automated annotations for
the semi-automated annotation pipeline [Rei21], given in Section 7.1. HARetr replaces
the automatic annotation but involves the annotator in the process. With retrieval, the
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annotation process might be more straightforward as the human annotator or reviser can
focus on one activity class at a time and they accepts or rejects samples of that activity
class instead of having to switch mentally between classes within a complete recording.

In word spotting, there are usually two types of queries useful to search for a word:
QbS and QbE. Here, the focus will be on three equivalents of QbS in M-HAR. There are
three possible retrieval methods: Query-by-Class (QbC), Query-by-Attribute (QbA), and
Query-by-Attribute Representation (QbAR).

Figure 7.3.1 presents the retrieval-based annotation method. HARetr provides a list of
results sorted by relevance with respect to a given query. A Attr-IMU-tCNN computes a
set Â =

{
â(n)
}N
n

of attribute representations from N segmented windows
{

X(n)
}N
n

out of a
marker-based MoCap recording. Recap from Subsection 5.1.2, there is a mapping r(a) = y,
where each attribute a corresponds to exactly one activity class y, i.e., p(y|a) = [[y = r(a)]].
Instead of predicting a single class ŷ using the Equation 5.1.10 and Equation 5.1.8, HARetr
sorts the segmented windows according to a similarity of a query class yq and its attributes
{ayq} ⊂ A.

SWq = argsort

{X(n)}
N

n

d({ayq}− g(X)), (7.3.1)

with d(·) being either the cosine similarity or the PRM Equation 4.1.2 [RRMF18], pre-
sented in Section 4.1, and g(·) the Attr-IMU-tCNN, predicting an attribute representation
from a segmented window.

QbC sorts segments based on a Nearest Neighbour (NN) using Equation 7.3.1. In the
case of QbAR, the query is a single attribute representation aq, so segments are sorted
considering the similarity of the network outputs g(·) and aq. For QbA, the only relevant
network output is the one corresponding to the queried attribute, which can be used to
sort out all segments. All other attributes can be ignored.

7.4 annotation tool

The author of this thesis in collaboration with Mr. Erik Altermann presented a tool, with a
Git repository in [MRA22], for manual and semi-automated annotation of human activities
based on sequences of skeletons and OBD data, detailed in [AAR+

21, RMRN+
20] with

annotation results summarised in [Rei21]. An annotator visualises skeleton sequences
from a human performing an activity for a given marker-based MoCap recording r ⊂ R
with R recordings from a dataset. The annotator segments the recording r in windows. For
each window, the annotator manually sets the start and end of an activity and provides
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7.4 annotation tool

Figure 7.4.1: Annotation Tool with a retrieval annotation modus.

its activity class y ∈ Y and its semantic attribute vector aM. Among the attributes, there is
an error attribute that supports manual revision. The annotation tool highlights windows
with set error attribute for revision, using a manually crafted rule set for viable attribute
combinations.

In [AAR+
21], the annotation tool is extended to include predictions of DNNs. A

pre-trained deep network predicts the activity classes and the corresponding attribute
representation vector of non-overlapping windows of size W, i.e., it classifies all the seg-
mented windows. Besides, annotators are liberated from manually setting the starting and
ending of the activities. The annotators then revise the activity and attribute predictions.

This thesis further extends the tool with a retrieval mode. The annotation tool can
be found in [MRA22]. The tool uses the Attr-IMU-tCNN to predict the attributes of a
segment. First, the annotator chooses an activity class for QbC. Then, the segments get
sorted using the pipeline shown in Figure 7.3.1. Finally, the annotator can accept or reject
any segment based on whether that segment is relevant to the queried class.
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7.5 annotation experiments

Two experiments are conducted to evaluate the retrieval-based annotations for M-HAR.
First, HARetr is evaluated on the LARa dataset for M-HAR, measuring its global per-
formance. Second, the annotation tool with a HARetr mode is used for an annotation
task. Then, the effort of annotating recordings of a dataset is evaluated in terms of
annotation time and consistency, following the same procedure from [AAR+

21, Rei21] for
comparison.

7.5.1 Retrieval Evaluation

Retrieval tasks can be globally measured for a dataset. A retrieval metric allows to
quantify the performance of retrieval without carrying on an specific retrieval experiment.

Retrieval Metrics

The interpolated Average Precision (AP) is used as performance metric for retrieval tasks
[BYRN11]. AP combines precision and recall for evaluating ranked lists. The idea is that
the most relevant result to any given query should be at the start of the list. Precision
is the percentage of retrieved relevant results over the retrieved results. Recall is the
percentage of retrieved relevant results out of all relevant results.

The AP is computed for every single query as follows:

AP(q) =
1

T

N∑
n=1

P(n) · rel(n), (7.5.1)

where P(n) denotes the precision for a cut-off at position n in the retrieval list. The
indicator function rel(n) evaluates to 1 if the n-th position in the list is relevant with
respect to the query and 0 otherwise. The total amount of relevant elements is represented
by T, and the length of the retrieval list is represented by N. In LARa scenario, the length
of the retrieval list, N, is defined by the number of windows within one single recording
r ∈ R.

Equation 7.5.2 calculates the performance for each recording r by computing the mean
overall average precisions for Q queries from a single recording, r.

mAPr =
1

Q

Q∑
q=1

APr(q), (7.5.2)
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where Q denotes the total amount of queries and APr(q) the average precision for query
q in a record r. Afterwards, Equation 7.5.3 computes the overall retrieval performance by
calculating the mean over all mAPs from a set or R recordings.

mAP =
1

R

R∑
r=1

mAPr (7.5.3)

This mAPs shows the viability of the method for the entire dataset and gives insights
on how well it works on larger datasets.

Query-by-Attribute Representation (QbAR) and Query-by-Class (QbC)

Retrieval is evaluated for different sequence lengths W, and two similarities, the cosine
and PRM. Multiple Attr-IMU-tCNN networks have been trained on LARaMoCap for
W = [50, 100, 150, 200, 400], following Section A.3. The sequence segments are extracted
following a sliding-window approach with window size of W, step size of s = W

4 , i.e.,
75.0% overlapping. To compare, the average class length in the LARa dataset is 4.12s; that
is approx. 800 frames at 200Hz.

Table 7.5.1 shows mAP vs. different W. For QbC, Attr-IMU-tCNN W200 outper-
formed every other network. For QbA, the Attr-IMU-tCNN W400 outperforms the
Attr-IMU-tCNN W200 when using the cosine similarity. For the PRM similarity, the
Attr-IMU-tCNN W200 outperforms the Attr-IMU-tCNN W400. As the Annotation Tool, in
Section 7.4, uses QbC all further experiments will be done using the Attr-IMU-tCNN W200.

Table 7.5.1: mAP metric for QbAR and QbC using the Attr-IMU-tCNN on different window sizes W, and
similarities on the LARaTest dataset.

Network
QbAR QbC

COS PRM COS PRM

Attr-IMU-tCNN W50 0.350 0.360 0.609 0.619

Attr-IMU-tCNN W100 0.382 0.396 0.629 0.635

Attr-IMU-tCNN W150 0.414 0.426 0.647 0.658

Attr-IMU-tCNN W200 0.433 0.445 0.651 0.661

Attr-IMU-tCNN W400 0.439 0.441 0.616 0.622
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Query-by-Attribute (QbA)

Table 7.5.4 shows the mAP, column in colour �, for each attribute. The attributes in the
first three groups have high mAP values, meaning retrieval is viable for M-HAR. Since
the mAP values for Attributes in group IV are all rather low, the annotator should pay
special attention to these attributes to ensure that everything is correctly annotated.

7.5.2 Annotation Evaluation

A set of annotations for the LARaTest
15,16 was carried out, evaluating the feasibility of retrieval

on an existing semi-automated annotation framework. Four annotators—two experts
and two beginners—annotated eight recordings from LARa15,16 using the annotation
tool described in Section 7.4. The tool uses the Attr IMU-tCNN W200. This annotation
follows the same annotation procedure in [AAR+

21, Rei21]. Here, the semi-automated
annotation [AAR+

21, Rei21] are benchmarked and compared against semi-automated
annotation using retrieval mode. Furthermore, semi-automated annotation with retrieval
is compared vs. manual+revision annotation process [Rei21].

Annotation Time

Figure 7.5.1 shows the annotation times of the retrieval-based annotation using the cosine
and PRM similarities. Besides, it compares with the manual annotations of [AAR+

21].
Annotations were faster using the retrieval-based annotations for both similarities vs. the
manual annotations. A learning process by the annotators is seen as the variation in the
annotation time decreases with more recorded units. Different from semi-automated
annotations from [AAR+

21], a revision is integrated into the retrieval process, as an-
notators get suggestions based on the ranked segments, which have to be accepted or
rejected. The annotation tool also brings the option to change the attribute representation
before accepting manually. Following a ranked order based on QbC, the expert annotators
reported accepting the annotations and straight correcting the attribute representation as
less mentally demanding. Beginners annotators experienced a comfortable annotation
process for Walking, Standing and Handling without the attribute Utility/Auxiliary.

Class-wise Consistency

Cohen’s Kappa (κ) is a widely-used consistency metric. Cohen’s κ emphasizes agreement,
and it does not consider one annotation as the ground truth, contrary to performance
metrics such as accuracy or the F1-measure.
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Figure 7.5.1: Annotation-time of retrieval-based and manual annotation [AAR+
21, Rei21] procedures for each

of the eight recordings considered from the LARaTest
15,16. Retrieval-based approaches use cosine and PRM

similarities.

The Cohen’s κ is defined as

κAa,Ab =
Pr(a)Aa,Ab − Pr(e)Aa,Ab

1− Pr(e)Aa,Ab
, (7.5.4)

where Pr(a) represents the actual observed agreement among two annotation runs
A by the same or two different individuals; here, considered the case of two different
individuals. Pr(a) refers to the number of samples that both annotators agree on, divided
by the total number of samples, also known as the accuracy. Pr(e) is the expected chance
agreement, and it considers that the two annotators may have guessed the same label by
chance. It is defined as

Pr(e)Aa,Ab =
1

M2

C∑
c=C

AcaA
c
b, (7.5.5)

being M the number of samples, C the activity class or attribute, and Aca the number of
times annotator a predicted class c [RMRN+

20].
The semi-automated approach using retrieval is compared against the manual+revised

annotation procedure from [AAR+
21]. The later ones will be considered the ground truth.

Table 7.5.2 presents the comparison of the annotations from the four annotators vs the
ground truth of the LARaTest

15,16. It shows different metrics, classification metrics (Acc, wF1
and mF1), and consistency ones κ—here, manual annotations are not considered ground
truth. In general, the κ values lie within a small interval and hint towards a substantial
agreement, i.e., 0.61 < κ 6 0.8.
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Table 7.5.2: Consistency metrics: Acc. [%], wF1 [%],
mF1 [%], and between-annotator consistency κ of ac-
tivity class annotation of LARaTest

15,16 by 4 annotators.

Metric
Cosine PRM

A1 A2 A3 A4 A1 A2 A3 A4

Acc 86.75 84.87 85.42 83.45 85.14 82.08 83.32 83.12

wF1 87.51 86.64 87.52 85.43 86.45 85.35 85.69 81.86

mF1 61.88 58.33 56.87 56.78 59.90 53.32 55.65 57.88

kappa 79.61 76.47 78.01 74.44 77.11 71.78 75.02 74.41

Table 7.5.3: Between-annotator consistency κ of activ-
ity class annotation of 8 recordings (960s) from two
subjects by 4 annotators. �: consistency among an-
notators using the cosine similarity. �: consistency
among annotators using the PRM similarity.

Procedure
Annotator

A1 A2 A3 A4

Annotator

A1 - 0.7955 0.7704 0.7658

A2 0.7652 - 0.7859 0.7960

A3 0.7926 0.7414 - 0.7867

A4 0.7623 0.7548 0.7725 -

Table 7.5.4: Semantic Attributes in LARa Dataset.
In � gray: mAP for QbA using the Attr-IMU-
tCNN W200 on the LARaTest

15,16 dataset. Each at-
tribute’s mAP was calculated independently. In white:
and average between-annotator consistency κ of the
four annotators following the retrieval-based approach
on the LARaTest

15,16. Manual annotations ∗ are taken
from [AAR+

21].

Attributes Manual*
Cohen’s κ

mAP COS PRM

I-A Gait Cycle 0.833 0.91 0.67 0.66

I-B Step 0.744 0.85 0.36 0.30

I-C Standing Still 0.887 0.87 0.69 0.64

II-A Upwards 0.888 0.98 0.83 0.81

II-B Centred 0.828 0.91 0.82 0.80

II-C Downwards 0.561 0.99 0.83 0.84

II-D No Int. Motion 0.838 0.92 0.81 0.80

II-E Torso Rotation 0.080 - - -

III-A Right Hand 0.941 0.92 0.67 0.74

III-B Left Hand 0.838 0.93 0.73 0.75

III-C No Hands 0.647 0.98 0.84 0.87

IV-A Bulky Unit 0.441 0.95 0.79 0.75

IV-B Handy Unit 0.560 0.87 0.55 0.63

IV-C Utility/Auxiliary 0.310 0.92 0.58 0.59

IV-D Cart 0.568 1.00 1.00 -

IV-E Computer 0.287 1.00 1.00 1.00

IV-F No Item 0.784 0.98 0.87 0.89

V-A None 0.072 - - -

VI-A Error 0.000 - - -

All Attributes 0.743 - - -

Attribute-wise consistency

Table 7.5.4 presents the between-annotator consistency in terms of κ among the four
annotators and the two similarities for each attribute. After the semi-automated annotation,
the between-annotator consistency for the attributes remains substantial. Even though
the Attr-IMU-tCNN network performs poorly for attributes in the IV group, annotators
correct the predictions—except on the Handy Unit. The attributes Torso Rotation, None, and
Error were not selected by the annotators.
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8C O N C L U S I O N

This thesis proposes an approach for Transfer Learning for Human Activity Recognition
to improve automatic multi-channel time-series Human Activity Recognition (M-HAR).
M-HAR task classifies human movements from sequential data recorded by from multiple
On-body Devices (OBDs). Transfer learning allows the extend of the usability of usually
large annotated data from source domains and trained models to related problems.

This thesis proposes a parameter- and feature-representation transfer learning method
that uses a semantic attribute representation and a DNN suitable for M-HAR under
different domains. This method is called Attr-based Transfer Learning for M-HAR. It
seeks to address different transfer learning scenarios, such as the number of sensors on
the subjects and different tasks or activities, without needing a large amount of annotated
data from the target domain. These transfer learning scenarios handle situations where
the source and target domains differ, i.e., multi-channel time-series Space and tasks.

Attr-based Transfer Learning for M-HAR considers different levels of transferability to
solve M-HAR on benchmark target datasets: first, an architecture that handles different
dataset configurations; it creates fixed-size representations of OBD recordings that are
representative of the human limbs; second, semantic activity representations of activities
that are found in target datasets; and third, data from a variety of source datasets.

Attr-based Transfer Learning for M-HAR proposes:

1. an architecture to compute a fixed-sized deep representation from sequence seg-
ments considering the subjects’ limbs and a temporal pooling strategy. This architec-
ture is referred to as IMU-tCNN. The IMU-tCNN is thought to allow transferability
among datasets with different sensor setups. An evaluation of the IMU-tCNN is
carried out on the different benchmark datasets. Relevant to be mentioned is the
LARa dataset. This dataset comprises a large collection of subjects performing in-
tralogistics activities. The dataset contains synchronised annotated recordings from
three different sensor setups, namely, a human-joint poses recorded by a marker-
based MoCap, inertial measurements from five human limbs by 5-set commercial
OBDs, and inertial measurements from the torso and hands, recorded by a 3-set
OBDs. Besides, LARa is densely annotated, with semantic attributes per sample.
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Therefore, the LARa dataset and its attributes become the primary source dataset to
be transferred.

• In addition, synthetic data for initialising a deep model is proposed. Synthetic
On-body Device (SOBD) data is derived from sequences of human poses. This
derivation takes advantage of the LARa-M and three datasets intended for
video-based HAR and human pose estimation. The later ones concretely refer
to the annotations of pixel coordinates as sequences of human joints. The
sequences of pixel coordinates of human joints are considered simplifications
of pose estimations. It considers the sequences of poses and pixel coordinates
as individual channels.

2. an attribute-based classification of activities, considering multiple attribute represen-
tations per activity class. This Attr-IMU-tCNN is trained for predicting attributes.
The attribute-based IMU-TCNN maps input sequences to a semantic attribute repre-
sentation.

3. a search of semantic attributes on target datasets using the Attr-IMU-tCNN trained
with the LARa and its attribute representation. An Evolutionary Algorithm (EA)
algorithm is proposed to learn the attribute representation better suited for solving
M-HAR. The EA randomly combines and mutates two parents’ attribute repre-
sentations, creating a set of offspring. These offsprings are evaluated using the
Attr-IMU-tCNN from LARa. The EA selects the best offspring for the next gener-
ation using the validation performance as fitness. After several generations, the
EA can find attribute representations of the target datasets in terms of the LARa
attributes. Furthermore, these learnt attribute representations in terms of LARa are
deployed for transfer learning. An additional EA finds attributes that better suit
the target attributes by also training the Attr-IMU-tCNN. These attributes are better
than target datasets, compared to the ones in terms of the LARa, as there is an
additional degree of freedom with respect to the network. However, the attributes
do not hold any semantic meaning, and the EA takes 30× longer.

4. Adaptable Attribute IMU-Temporal Convolutional Neural Network (Adaptable Attr-
IMU-tCNN). The Adaptable Attr-IMU-tCNN combines the limb-oriented Attr-IMU-
tCNN and the learnt attributes. The Adaptable Attr-IMU-tCNN and the semantic
attribute representations allow transferability across target domains with different
domains and tasks. Transfer Learning for HAR is not only approached by parameter-
based transfer via fine-tuning using the Attr-IMU-tCNN from LARa but also utilising
a semantic attribute representation in terms of a known attribute representation.
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Besides, it exploits physical but related measurements for transferability through the
SOBDs. It handles situations with different numbers of devices, duration variations
and disjoint activity classes. Furthermore, the Adaptable Attr-IMU-tCNN takes
advantage of the LARa dataset, a large dataset composed of OBDs and human
pose recordings and fine-grained annotations of semantic attributes. The Adaptable
Attr-IMU-tCNN is evaluated on different target datasets. Experiments are carried
out regarding the number of transferred layers, the OBD and SOBD of the source
datasets, and a proportion of the target dataset.

In general, the performances of all architectures improved for all the target datasets,
and most evidently when deploying a proportion of their training material. This out-
come suggests that the temporal convolutional filters are rather general as they learn
local temporal relations of human movements related to the semantic attributes,
independent of the number of devices and their type. Adaptable Attribute IMU-
Temporal Convolutional Neural Network (Adaptable Attr-IMU-tCNN) deploys the
learnt attributes from the EA but also uses a manually given attribute representation
given by the description of the target set. The target dataset, in this case, is domain
related to the source dataset; thus, the manually annotated representation is still
usable without the need to perform a search via a EA. Besides, the learnt convolu-
tional filters are activity-class dependent. Hence, the classification performance on
the activities that are shared among the datasets improves.

The proposed Adaptable Attr-IMU-tCNN closes the research gap of employing Transfer
Learning for improving M-HAR as it gives an approach for addressing the large, broad
range of human activities via semantic attributes, allowing sharing knowledge of move-
ments rather than considering mutually exclusive activity classes; it addresses not only
parameter based but also feature representation transfer learning; it extends Transfer
Learning beyond the formulated solutions across the same domain, i.e., measurements
from similar sensors from OBDs on specific locations of the human body; it addresses
cases under different sensor setups, i.e., number and type of sensors, sampling rate to an
extent, preprocessing, and target activities; it gives an alternative to address M-HAR from
the definitions and semantics of activities; it exploits sources from physically related quan-
tities of OBDs for transferability to M-HAR. In general, this Adaptable Attr-IMU-tCNN
uses a known M-HAR system adapting its annotated data material and its pre-trained
M-HAR model.

The Attr-based Transfer Learning for M-HAR also answers an open question formulated
in [Rei21] regarding the problem of performing M-HAR for different logistics scenarios.
The Adaptable Attr-IMU-tCNN trained with LARa can be directly used to a certain extent
even when the different subjects, number of OBDs and their locations on the human body,
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and recording settings vary in the new logistic scenario; shown with the real dataset
provided by MotionMiners GmbH.

This thesis empirically shows a practical application of the attributes and the Attr-
IMU-tCNN pretrained on LARa for improving the annotation process of multi-channel
Time-Series data in the context of M-HAR. It proposes a semi-automated annotation
method, exploiting the usage of attributes. This method is called Human Activity
Retrieval (HARetr). It uses the Attr-IMU-tCNN pretrained on LARa to speed up the
annotation process. HARetr ranks segmented windows of a recording according to its
similitude in attribute space to a query. As a result, annotation time reduces by half
without affecting the between-annotator consistency of the activity classes and attributes
remains substantial.

Future work

The proposed method does not model temporal or causal relations between segmented
sequences. Each multi-channel Time-Series segment is handled as an independent sam-
ple. Combining overlapping predictions of window-wise predictions via majority vote
considers context to a certain extent, as used in this thesis. However, past predictions
from a long sequence of continuous samples do not influence current predictions, which
is a drawback for structured activity sequences—possible activity predictions strongly
depend on previous activities when activities have precondition-effect relations, e.g., an
intralogistics process.

RNNs, transformers, and conformers are special for modelling such temporal and
causal relations. RNNs are used in combination with tCNN layers for feature extraction
for M-HAR, as shortly evaluated in this thesis and [HHP16, OR16]. Similarly, transformers
and conformers rely on the feature extractors from CNNs, and tCNNs [SK21, DLKP22,
KCKL22]. Preliminary experiments on the LARa dataset for classification using the
transformer from [SK21] show no improvement compared with the architectures that this
thesis deployed. Nevertheless, all these architectures carry on with the limitations of the
CNNs regarding the causal relations of samples, because they replace the MLP part of the
architecture and do not exploit causal relations and dynamics among segment samples.
Thus, they are not necessarily efficient for learning temporal relations of not scripted and
repetitive activities of short duration, especially as they are learnt purely from data. This
limitation can make RNNs, transformers and conformers sample-inefficient, specifically
for the relatively small M-HAR datasets, if no additional structural and causal information
is not considered.

Future work can integrate temporal and causal information through prior knowledge.
For example, in cooking, prior knowledge concerns a recipe and ingredients; in intralogis-
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tics, prior knowledge concerns possible orders of activities through preconditions and
effects of activities involving objects and other context factors, like locations of workers.
Business Process Models (BPMs) from warehouse processes in the intralogistics provide
such prior knowledge and the dynamics of states and activity. Context information can be
integrated systematically into a DNN-based M-HAR system, as [LMRA+

21] preliminary
demonstrated with a hybrid architecture that combines an attribute-based tCNN with
shallow classifier. The shallow classifier predicts activity classes from the estimated
attributes and context information provided by the BPM and the currently executed
process step. This system allows integrating additional context information directly
without re-training the DNN. This M-HAR system is suggested to be combined with the
off-the-shelf Attr-IMU-tCNN presented in this thesis for Transfer Learning for HAR, for a
more realistic case where the process step is estimated from external sources, as well as
on additional M-HAR datasets.

Symbolic HAR methods specify existing prior domain knowledge in symbolic for-
malisms to predict activities, e.g., Markov Logic Networks (a relational logic) [CSR+

21],
ProbLog (a probabilistic programming language) [SCS18], the Planning Domain Definition
Language (PDDL), typically used for specifying classical planning problems [KNY+

14],
or multiset rewriting systems [LSB+

18]. A first attempt to combine symbolic models
of dynamic systems and neural networks has been made by the author of this thesis
[MRLS+

19], using a pre-trained tCNN as the observation model of a CSSM. The results
show the general feasibility of this approach. As future work, the author of this thesis
suggests to develop a hybrid model, using the Attr-IMU-tCNN as the observation model,
and the system dynamics is represented by a symbolic model constructed from domain
knowledge and from attribute representations. It is suggested to consider not only the
attribute representation but also high-level, symbolic domain knowledge as an embedding
for representing sequences. These embeddings with the Attr-based Transfer Learning
for M-HAR proposed in this thesis could be used to transfer across more challenging
scenarios, considering structural and causal relations of activities and a fully transferable
architecture. Furthermore, tighter integration of symbolic knowledge into a neural net-
work might be worth investigating, e.g., an end-to-end-trainable architecture for activity
and context recognition.

Questions regarding Transfer Learning for HAR remain open—for example, transfer-
ability among different populations and cultures. Besides, the physical characteristics of
humans might also be considered, for example, as part of an attribute representation or
an embedding along with symbolic information. Finding sequential profiles of human
characteristics from the sequences might be worth investigating. With these, an unbiased
dataset could be created where subjects’ intrinsic movement patterns are removed from
the inertial profiles. Besides, a complete dataset with window-wise and sample-wise
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annotations of processes, activities, and attributes of various durations, considering hu-
man poses, different recording sessions, OBD locations on the subjects, human physical
characteristics, and global context, could be considered for future work. This dataset
might be more suitable for transferability than, for example, LARa, and for facilitating
research not just towards Human Activity Recognition, but inclusive of shareable and
virtual data.
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AA P P E N D I X

a.1 backpropagation

a.1.1 Example MLP

For better describing the back propagation, one takes the MLP in the Figure 2.1.2, the
TSSE (Equation 2.1.16) as the objective function E (w) and a training set D. First, the MLP
processes samples X computing a K-dimensional hidden vector z, and a M-dimensional
output vector ŷ. The relations among the three vectors are described in Equation 2.1.5 and
Equation 2.1.5. Second, the backpropagation implements the backward step; that is, it
computes the gradients for each layer, and it updates the weights following the updating
rule of GD, Equation 2.1.10. The weight-updates for the MLP are:

W(2)i+1 = W(2)i − γ
δE(W1, W2)

δW2
, (A.1.1)

W(1)i+1 = W(1)i − γ
δE(W1, W2)

δW1
, (A.1.2)

being W(1) ∈ R[N,K] and W(2) ∈ R[K,M].
Each of the weight-update rules has a gradient of the objective function with respect to

each of the weights, in this case all the terms in the matrices W(1) and W(2). Rewriting
the objective function E (w) (see Equation 2.1.16) in terms of W(1) and W(2), one has:

E
(
W(1), W(2)

)
=

∑
(x,y)(n)Nn∈D

1

2

M∑
m=1

(
y(n) −ϕ

(
WT

(2)z
(n)
))2

(A.1.3)

E
(
W(1), W(2)

)
=

∑
(x,y)(n)Nn∈D

1

2

M∑
m=1

(
y(n) −ϕ

(
WT

(2)ϕ
(

WT
(1)x

(n)
)))2

(A.1.4)

163



appendix

Based on that, one can see that each of the final neurons adds its quadratic deviation
to the objective function E

(
W(1), W(2)

)
. If we consider each of the quadratic deviations

separately, the gradient of the objective function Equation A.1.3 with respect to each of
the weights in the matrix W(2) will be:

∂E
(
W(1), W(2)

)
∂W(2)

= −
∑

(x,y)(n)Nn∈D

(
y(n) − ŷ(n)

)
ϕ ′
(

WT
(2)z

(n)
)

z(n) (A.1.5)

And the gradient of the Equation A.1.4 with respect to W(1) is:

∂E
(
W(1), W(2)

)
∂W(1)

= −
∑

(x,y)(n)Nn∈D

M∑
m=1

[(
y(n) − ŷ(n)

)
ϕ ′
(

WT
(2)z

(n)
)

WT
(2)ϕ

′
(

WT
(1)x

(n)
)

x(n)
]
m

(A.1.6)

Rewriting the Equation A.1.6 to Equation A.1.7, one notice that the factors multiplying
the vector z(n) in the Equation A.1.5 are also present in Equation A.1.7. This factors are
called local gradients or error signals of layer inputs with respect to layers outputs. For
example, the local gradient of the output-layer is δy.

∂E
(
W(1), W(2)

)
∂W(1)

= −
∑

(x,y)(n)Nn∈D

M∑
m=1

(y(n) − ŷ(n)
)
ϕ ′
(

WT
(2)z

(n)
)

︸ ︷︷ ︸
δ
y(n)

WT
(2)ϕ

′
(

WT
(1)x

(n)
)

x(n)


m

(A.1.7)

The equations (A.1.5 and A.1.7) are described with respect to local gradients:

∂E
(
W(1), W(2)

)
∂W(2)

= −
∑

(x,y)(n)Nn∈D

δ
(n)
y z(n) (A.1.8)

∂E(W(1), W(2))

∂W(1)
= −

∑
(x,y)(n)Nn∈D

M∑
m=1

[
δ
y
(n)
m

W(2)m

]
ϕ ′
(

W(1) · x(n)
)

x(n) = −
∑

(x,y)(n)Nn∈D

δz(n)x
(n)
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(A.1.9)

with,

δŷ(n) =
(

y(n) − ŷ(n)
)
ϕ ′
(

WT
(2)z

(n)
)

(A.1.10)

δz(n) =

M∑
m=1

[
δ
y
(n)
m

WT
(2)m

]
ϕ ′
(

WT
(1)x

(n)
)

(A.1.11)

The local gradients are computed by using the derivatives of the activation functions
(see Equation 2.1.1). Since the derivatives of the activation functions are expressed in
terms of their outputs (the neurons outputs), the local gradients are also expressed in
terms of the neurons outputs. Thus, the order of the Backpropagation is relevant: First,
the neurons outputs are computed, and then the gradients. In fact, the Backpropagation
propagates backwards the local gradients or error signals—The gradient of a hidden layer
depends on the gradient of the next layer.

a.1.2 Example local gradients with Sigmoid

If one uses the sigmoid as an activation function (Equation 2.1.6), one will have the same
expression as Equation 2.1.21 for each of the neurons. By organizing the expressions in
matrices, the local gradients will become [Roj96]:

δŷ(n) = diag
(

ŷ(n)
) [
I[M,M] − diag

(
ŷ(n)

)](
y(n) − ŷ(n)

)T
(A.1.12)

δẑ(n) = diag
(

z(n)
) [
I[K,K] − diag

(
z(n)

)]
W(2)δŷ(n) (A.1.13)

with,

diag(a) =


a1

. . .

aN

 (A.1.14)
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And the weight-updates

W(2)i+1 =W(2)i − γδŷ(n)z(n) (A.1.15)

W(1)i+1 =W(1)i − γδz(n)x
(n) (A.1.16)

a.2 linear and angular velocity and acceleration of a point

A frame is a coordinate system attached to a body or point in space and describes a
coordinate system relative to another. It contains the orientation and position information
of the body or point in space. The orientation of the unit vectors defining the principal
axes of the coordinate system is given by a [3× 3] rotation matrix {O}

{J} R ∈ R, and its position
with respect to an origin frame is given by a vector pBORG ∈ R [Cra05]. Figure A.2.1
presents three frames {U}, {A}, {B} and {C}, where {A} and {A} are described relative to
frame {A} or origin, and {A} is given relative to frame {A}.

Figure A.2.1: Example of three frames, {U}, {A}, {B} and {C}. Image taken from [Cra05].

For a point Q, as Figure A.2.2a shows, the velocity of a point Q with respect to the
frame {B} is given by

BvQ =
d
dt
Bq = lim

∆t→0

Bq (t+∆t) − Bq (t)

∆t
. (A.2.1)
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The velocity vector BvQ can be represented in terms of a reference frame {A} by

AvQ ={A} v{B}ORG +
{A}
{B}R

BvQ, (A.2.2)

with {A}v{B}ORG being the velocity of the frame {B}.
The angular velocity is computed by derivating the rotation matrix R, following

Ṙ = lim
∆t→0

R (t+∆t) − R (t)

∆t
. (A.2.3)

There linear velocity of the point Q with respect to {A} is

{A}vQ ={A} v{B}ORG +
{A}
{B}R

{B}vQ + {A}Ω{B} ×
{A}
{B}R

{B}q, (A.2.4)

with {A}
{B}R

{B}vQ the linear velocity of the point Q in frame {B} with respect to {A},
{A}Ω{B} ×

{A}
{B}R

{B}q being the linear velocity due to the angular velocity, and × the cross
product.

(a) Point Q and frame {B} with respect to {A}. Image
taken from [Cra05].

(b) Point Q fixed in frame {B} rotating with re-
spect to {A} with an angular velocity ABΩ. Image
taken from [Cra05].
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Derivating the linear velocity Equation A.2.4 with respect to time and considering not
coincident frames A and B, the linear acceleration of the point Q with respect to {A} is

{A}v̇Q =
d
dt

(
{A}v{B}ORG

)
+

d
dt

(
{A}
{B}R

{B}vQ

)
+ {A}Ω̇{B}×

{A}
{B}R

{B}q+ {A}Ω{B}×
d
dt

(
{A}
{B}R

{B}q
)

,

(A.2.5)

obtaining,

{A}v̇Q = {A}v̇{B}ORG +
{A}
{B}R

{B}v̇Q + 2{A}Ω{B} ×
{A}
{B}R

{B}vQ + {A}Ω̇{B} ×
{A}
{B}R

{B}q+

{A}Ω{B} ×
(
{A}Ω{B} ×

{A}
{B}R

{B}q
)

, (A.2.6)

with {A}v̇{B}ORG, {A}Ω{B} and {A}Ω̇{B} the linear velocity, angular velocity, and angular
acceleration of {B} with respect to {A}.

a.3 training procedure

The network parameters are updated by minimizing the TCCE, Equation 2.1.18 when
performing classification using the Softmax activation function, e.g., TCNNsoftmaxfuse ; or
minimising the TBCE when predicting attributes using the Sg activation function, e.g.,
TCNNattributefuse . Besides, the training approach uses the SBGD with the RMSProp update
rule, Equation 2.1.15, as in [OR16]. A sliding window approach extracts sequence
segments that are fed to the network. These segments are assigned the most frequent
activity label1. We used the following hyperparameters: RMS decay of 0.95, base learning
rates of γ = [10−2, 10−3, 10−410−510−6], and a batch size of B. Dropout is applied to all
the fuse layers, e.g., FC layers, except to the classification layer. Networks are trained from
scratch for a fixed number of epochs. Orthonormal initialization is utilized, following
[MRGF+

18]. A validation set is used for parameter search and early stopping.
As a preprocessing step, input sequences are normalized per channel to the range

[0.1], following the Opportunity challenge [CSC+
13b]. This normalization considers that

the convolutional filters are shared among channels. Additionally, a Gaussian noise of
zero-mean and of 0.01 standard deviation is added, following Algorithm 3.

1 This considers an annotation per sample.
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SOBD from V-HAR Datasets

The joint poses sequences of DSource are either up-sampled or down-sampled to match the
frequency of the DTarget. The J-HMDB, CAD-60, and NTU RGB+D are up-sampled by fac-
tors of [4, 3, 2] for DTarget=Pamap2 as target, and by factors of [1, 1, 0.5] for DTarget=Opp,
respectively.

A sliding window approach with 1sec., W depending on the sampling rate, and a
stride of Str is used for segmenting sequences of human poses; specifically, the following
parameters were used: a window size of (W = 25) and a stride of Str = 12 for J-HMDBpose,
a window size of (W = 30) and a stride of Str = 12 for the CAD-60pose, and a window
size of (W = 30) and a stride of Str = 3 for the NTUpose.

Pose channels and SOBDs are normalized to zero-mean and unit deviation. Following
the pre-processing protocol from LARa-M Subsection 6.1.1, we normalize the joint-poses
with respect to the torso for J-HMDB and CAD-60, and middle of the spine for NTU
RGB+D.
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a.4 results per dataset

a.4.1 LARa

Following Subsection 5.1.1, M-HAR is addressed on all the three subsets of the LARa
dataset: LARa-M, LARa-Mb, and LARa-MM. LARa-M and LARa-Mb will be used as
a source domain for transfer learning, i.e., from human pose to inertial measurements.
LARa-M will be used as target domains for Transfer Learning for HAR. This takes
advantage of the TCNN and IMU-TCNN, as they process sequences per channel with late
fusion, the zero-mean and unit-deviation normalization of the channels, and the semantic
attribute representation.

Considering that the target domains in Subsection 6.1.1 have different recording rates,
two additional subsets are created from LARa-M, LARa-Mb and LARa-MM. LARa-M is
sub-sampled from 200Hz to 100Hz and 30Hz, and LARa-M and LARa-MM is sub-sampled
from 100Hz to 30Hz. Subsets will be denoted with the sampling rate.

A sliding-window approach is used for segmenting sequences with the following
parameters: window size of W = 200 (1sec.) and step size of Str = 25 samples (87.5%
overlapping) for LARa-M, W = 100 (1sec.) and step size of Str = 12 samples (88%
overlapping) for LARa-M100, and W = 24(720ms) and step size of Str = 12 samples (48%
LARa-M30—this window size is selected according to the Opp in Subsection 6.1.1. In
general, the size of the input sequences [W,H,C] is [200, 126, 1] for LARa-M, [100, 126, 1]
for LARa-M100 and [25, 126, 1] for LARa-M30. Similarly, the size of the input sequences
is [100, 30, 1] for LARa-Mb and [25, 30, 1] for LARa-Mb30. Similarly, the size of the input
sequences is [100, 27, 1] for LARa-MM and [25, 27, 1] for LARa-MM30. The Attr-IMU-tCNN
and the networks in Subsection 6.3.1 are trained for each of the datasets for B = 64 epochs
with a training batch of 200 samples.

A similar segmentation window approach to the LARa-SOBD is deployed. In addition,
a sliding-window approach segments sequences with the following parameters: window
size of W = 200 (1sec.) and step size of Str = 25 samples (87.5% overlapping) for
LARa-SOBD, W = 100 (1sec.) and step size of Str = 12 samples (88% overlapping)
for LARa-SOBD100, and W = 24(720ms) and step size of Str = 12 samples (48% LARa-
SOBD30—this window size is selected according to the Opp in Subsection 6.1.1. In general,
the size of the input sequences [W,H,C] is [200, 126, 1] for LARa-SOBD, [100, 126, 1] for
LARa-SOBD100 and [25, 126, 1] for LARa-SOBD30.
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Baseline

Table A.4.2 shows the classification performance, in terms of the wF1 [%], on the testing
set from the LARa datasets: LARa-M, LARa-M30, LARa-Mb, LARa-Mb30 and LARa-MM.
The number of channels S from the sets affects the M-HAR performance. LARa-Mb
includes recordings from the legs compared to the LARa-MM. Activities directly related
to walking are negatively affected. The less quantity of measurements also affects the
IMU-TCNNsoftmaxLSTM and IMU-TCNNsoftmaxFCN .

Subjects in the LARa dataset do not have instructions on how to perform the activities,
so there is no script with a sequence of movements that the subjects carry to complete
a task. The fuser layers LSTM and FCN present significantly lesser performance than
the FC. LSTMs in M-HAR are good at learning distinctive temporal relations in the
sequence, especially for cases with relatively ordered and repetitive movements in se-
quences. However, when movements are not following a particular order or script, i.e.,
movement variation is high, they cannot cope with this variation. The FCN computes a
deep representation and produces a classification per sample; however, it does not observe
the global representation of the sequence. The FCN depends on a large receptive field of
the convolutional filters.

From Table A.4.3, the [1]SpectralPool and [1-2]SpectralPool reduce the number of
parameters by 55.78% and 79.51% respectively. The spectral polling improves performance
on the LARa-Mb. The spectral pooling does not affect the performance of the networks
on the LARa-MM negatively.

Table A.4.1 shows the learnt attributes using the EA-TCNNattributeFC on the LARa-MM.
The a12 is shared among all the activities so that this attribute can be removed for final
usage. The EA also controls the size of the representation. The activities Standing and
Walking share more attributes than with respect to the other activities.

There are sample-wise attribute annotations of the LARa-MM. Table A.4.4 presents
the performance of the IMU-TCNNattributeLSTM and IMU-TCNNattributeFCN on the LARa sets.
The attribute representations improve classification on the OBD datasets, especially when
using TPP fuse layers.

Table A.4.5 shows the performance of the LARa-SOBD and the set LARa-SOBD30. The
TPP fuser affects negatively the performance.

Transfer Learning for LARa

For observing the effects of TL, three additional versions of the LARa-MM are created.
These versions contain different proportions of the datasets. Specifically, LARa-MM25,
LARa-MM50 and LARa-MM75 are created, respectively, with % = [20, 50, 75] of the
subjects from the training set; respectively—the validation and testing sets remain equal.
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Table A.4.1: Attribute representation A ∈ B19 of the LARa-MM dataset found using the EA-TCNNattributeFC .
Attributes

Activity a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

Standing 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1

Walking 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1

Moving Cart 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0

Handling Upwards 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1

Handling Centred 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1

Handling Downwards 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1

Synchronisation 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1

Table A.4.6 presents the performances on the three versions of the LARa-MMs using
pretrained architectures with LARa-M, LARa-MM and LARa-SOBD. In general, the
performance improves according to the proportion of the dataset. Learnt features from
human poses and their derivatives can be deployed on inertial data. This suggests that
filters learnt short temporal-relations from the sequence inputs per channel independently
of the rather related domain; this considering that time sequences of human poses and
inertial measurements are physically related; that the number of channels differ; and that
source and target are belonging to the same problem, i.e., activity classes.

Table A.4.7 shows the performance of the transfer learning on the LARa-Mb as the
target scenario. In this case, the performance of the three networks tCNNLARa−MbJHMDB ,
tCNNLARa−MbCAD60 , and tCNNLARa−MbNTU for both data sources, pose annotations and SOBD,
and different transferable layers remains similar to the tCNNLARa−Mb. The activities in
the LARa-Mb dataset are performed in a warehouse environment, whereas the source
datasets consider ADLs. The performance improves when considering the 75%, 50%, 30%
or 10% of the LARa-Mb.
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Table A.4.2: The best testing wF1 [%] from solving M-HAR using the TCNN and the IMU-TCNN on the LARa-M, LARa-M30, LARa-Mb,
LARa-Mb30, LARa-MM. The mean and SD from the wF1 [%] are given as training procedure is repeated 5×. Values in bold are not
statistically significant to the highest; hence, they represent the best performance. The comparison are carried out with respect to the
same dataset and fuse layer.

TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

LARa-M100 75.80± 0.15 74.92± 0.33 74.99± 0.20 68.88± 0.55 69.45± 0.74 68.75± 0.20 39.51± 0.27 40.09± 0.62 44.30± 0.69 55.93± 0.62 53.19± 1.62 52.77± 1.10
LARa-M30 75.41± 0.35 75.68± 0.33 75.73± 0.22 74.13± 0.70 74.40± 0.55 74.11± 0.18 37.94± 0.09 38.23± 0.11 38.09± 0.17 53.74± 0.76 54.34± 0.50 54.01± 0.43
LARa-Mb 73.80± 0.73 74.26± 0.68 74.89± 0.48 74.86± 0.57 74.47± 0.44 74.80± 0.42 42.46± 0.86 45.22± 0.65 44.78± 0.92 61.38± 0.62 60.00± 0.91 57.66± 1.83
LARa-Mb30 74.59± 0.88 74.33± 0.71 74.42± 0.76 74.50± 0.98 74.11± 0.20 74.71± 0.62 48.46± 0.12 49.98± 0.68 49.95± 0.28 65.13± 0.97 66.29± 0.72 65.76± 0.57

LARa-MM 71.88± 0.34 70.75± 0.50 72.29± 0.67 65.99± 0.90 66.89± 1.12 66.08± 2.09 41.71± 0.04 44.78± 1.56 47.17± 1.00 62.53± 0.27 56.72± 0.91 57.57± 3.06

IMU-TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

LARa-M100 76.27± 0.16 76.05± 0.22 76.13± 0.19 70.43± 1.03 68.64± 0.69 69.23± 0.76 47.84± 1.43 51.83± 1.60 50.56± 1.41 63.41± 0.24 60.46± 1.23 60.10± 0.52
LARa-M30 76.16± 0.14 76.50± 0.64 76.41± 0.25 75.09± 0.47 75.26± 0.71 75.15± 0.33 44.33± 0.55 43.95± 1.09 45.43± 1.47 58.71± 0.74 58.61± 0.90 58.79± 0.78

LARa-Mb 74.59± 0.96 75.27± 0.55 75.12± 0.37 73.77± 0.58 74.34± 0.55 74.93± 0.89 57.51± 0.51 58.74± 0.99 58.76± 0.37 69.66± 1.05 70.70± 0.73 71.29± 0.25

LARa-Mb30 74.09± 0.30 75.23± 0.50 75.36± 0.12 74.88± 0.43 74.09± 0.69 74.44± 0.87 68.04± 0.23 68.62± 0.38 68.84± 0.49 72.63± 0.49 73.10± 0.29 72.31± 0.26

LARa-MM 71.21± 0.58 71.98± 0.36 71.83± 0.31 66.84± 1.44 65.03± 1.86 65.38± 1.26 51.82± 3.19 55.68± 0.45 56.12± 0.47 68.89± 0.13 68.11± 0.96 67.45± 0.64

Table A.4.3: The testing wF1 [%] computed from solving M-HAR using the TCNN-[1-2]SpectralPoolsoftmaxfuse and the IMU-TCNN-[1-
2]SpectralPoolsoftmaxfuse on the OBD datasets. The mean and SD from the wF1 are given as training procedure is repeated 5×. Values in
bold are not statistically significant to the highest; hence, they represent the best performance. The comparison are carried out with
respect to the same pooling layer.

Dataset
TCNNsoftmaxFC TCNNsoftmaxTPP IMU-TCNNsoftmaxFC IMU-TCNNsoftmaxTPP

[0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool

LARa-M100 75.80± 0.15 75.19± 0.42 75.15± 0.25 53.43± 2.07 54.92± 0.69 51.81± 2.95 76.27± 0.16 75.84± 0.37 76.05± 0.24 59.59± 1.06 61.04± 0.63 59.54± 0.36
LARa-Mb 73.80± 0.73 74.81± 0.65 74.85± 0.77 55.82± 1.36 58.80± 1.22 57.28± 0.86 74.59± 0.96 75.45± 0.63 75.25± 0.36 69.66± 1.05 70.99± 0.85 70.99± 0.88

LARa-MM 71.88± 0.34 71.97± 0.30 71.68± 0.38 60.61± 0.88 56.70± 0.94 56.15± 1.15 71.21± 0.58 71.73± 0.18 71.13± 0.68 67.23± 0.71 67.54± 0.84 66.85± 0.44
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Table A.4.4: The wF1 [%] computed from solving M-HAR using the TCNN and the IMU-TCNN on the LARa-MM datasets. The mean
and SD from the wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest;
hence, they represent the best performance. The comparison are carried out with respect to classifier.

Dataset
TCNNsoftmaxfuse TCNNattributefuse IMU-TCNNsoftmaxfuse IMU-TCNNattributefuse

FC TPP FC TPP FC TPP FC TPP

LARa-M100 75.80±0.15 53.43± 2.07 74.13± 0.90 53.41± 0.34 76.27±0.16 59.59± 1.06 75.70± 0.39 61.00± 0.07

LARa-M30 75.41±0.35 53.74± 0.76 75.03±0.24 53.73± 0.27 76.16±0.14 58.71± 0.74 76.06±0.22 61.22± 0.04

LARa-Mb 73.80± 0.73 55.82± 1.36 75.49±0.40 60.75± 0.73 74.59± 0.96 69.66± 1.05 76.11±0.15 71.67± 0.27

LARa-Mb30 74.59± 0.88 65.13± 0.97 75.66±0.53 65.45± 0.72 74.09± 0.30 72.63± 0.49 75.22±0.22 72.83± 0.13

LARa-MM 71.88±0.34 60.61± 0.88 72.39±1.01 63.16± 0.55 71.21± 0.58 67.23± 0.71 73.04±0.97 68.80± 0.55

Table A.4.5: The wF1 [%] computed from solving M-HAR using the TCNN and the IMU-TCNN on the LARa-SOBD. The mean and SD
from the wF1 are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they
represent the best performance. The comparison are carried out with respect to the same fuse layer.

Dataset
TCNN IMU-TCNN

FC TPP FC TPP

[0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

LARa-SOBD100 63.87± 0.51 64.32± 0.48 64.05± 0.11 45.88± 1.43 47.33± 1.23 47.96± 0.56 64.42± 0.42 64.89± 0.23 64.90± 0.33 54.81± 0.39 55.17± 1.42 55.47± 1.32

LARa-SOBD30 62.26± 0.14 61.43± 1.20 62.69± 0.34 42.99± 0.51 45.58± 0.46 45.94± 0.93 56.20± 0.65 57.76± 0.53 57.44± 0.24 47.08± 0.26 48.84± 0.10 48.61± 0.55

Table A.4.6: Mean wF1[%] of the TCNNsoftmaxfuse ↑LARa−MMDSource
and IMU-TCNNsoftmaxfuse ↑LARa−MMDSource

using the joint poses and the synthetic data.
The Nconv changes from c1 to c1,2,3,4 keeping 100% of the DSource. Subsequently, the Nconv corresponding to highest wF1[%] is fixed and
[10,30,50,75]% of the DTarget are deployed for fine-tuning. The mean and SD from the wF1 [%] are given as training procedure is repeated 5×.
Values in bold are not statistically significant to the highest; hence, they represent the best performance. The comparison are carried out with respect to
the data proportion or the transposed layers.

Dataset
TCNNsoftmaxFC ↑LARa−MMDSource

IMU-TCNNsoftmaxFC ↑LARa−MMDSource

Baseline
LARa-M LARa-SOBD LARa-Mb

Baseline
LARa-M LARa-SOBD LARa-Mb

FC TPP FC TPP FC TPP FC TPP FC TPP FC TPP

N
c
o
n
v

Tr
.L

ay
er

s

c1

71.88± 0.34

71.67± 0.63 62.75± 0.55 63.83± 2.57 64.32± 0.26 73.22±0.53 64.45± 0.69

71.21± 0.58

73.09±0.46 68.85± 0.80 63.59± 0.87 70.04± 0.54 72.11± 1.41 69.53± 0.20

c1,2 72.02± 0.58 64.12± 0.31 65.12± 2.46 64.14± 0.64 72.52± 1.13 64.59± 0.93 72.34± 0.85 69.19± 0.54 63.25± 0.31 69.16± 0.29 72.45± 1.19 67.29± 0.53

c1−3 72.29± 0.53 64.47± 0.78 65.00± 1.63 64.43± 0.63 73.26±0.41 64.02± 0.33 72.42± 1.06 69.04± 0.55 63.85± 1.59 69.21± 0.41 72.54± 1.05 67.37± 0.57

c1−4 72.80±0.85 62.88± 0.65 67.08± 1.71 64.88± 0.52 72.60± 0.63 63.50± 0.50 72.11± 0.94 67.84± 0.58 63.28± 0.50 69.23± 1.07 71.09± 1.34 68.60± 0.65

c1−4 71.15± 0.89 61.31± 0.83 63.74± 2.03 64.37± 0.17 71.34± 0.79 42.87± 0.06 64.52± 0.78 53.81± 0.31 63.85± 1.59 54.57± 0.11 71.26± 0.93 63.12± 0.27

%
D
t
r

.

75 43.69± 1.32 69.64± 0.54 61.31± 0.83 70.49±0.65 63.52± 0.39 69.31± 0.46 62.25± 0.44 44.36± 2.44 70.99±1.87 51.08± 0.15 70.41± 0.75 68.76± 0.53 70.39± 1.18 69.12± 0.06

50 42.11± 0.82 68.42±0.62 58.87± 0.97 67.28± 1.61 59.26± 1.94 66.90± 1.05 58.93± 0.67 43.32± 1.33 68.05±0.29 51.27± 0.25 62.93± 0.54 66.47± 0.48 66.91± 1.33 66.43± 0.40

25 41.66± 2.36 65.95±2.24 53.19± 1.23 65.97±1.61 52.70± 0.93 61.21± 1.08 53.39± 0.67 42.54± 1.06 59.78± 1.96 49.28± 0.21 61.07± 0.49 58.12± 1.76 62.22±1.78 59.95± 1.68
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Table A.4.7: Mean wF1[%] of the TCNNLARa−MbDSource
and IMU-TCNNLARa−MbDSource

using the joint poses and the synthetic data. The Nconv = c4

corresponding to highest wF1[%] is fixed, and [10,30,50,75]% of the DTarget are deployed for fine-tuning. SD wF1[%] lies around 0.01. The
mean from the wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they
represent the best performance. The comparison are carried out with respect to the data proportion.

TCNNsoftmaxFC ↑LARa−MbDSource
IMU-TCNNsoftmaxFC ↑LARa−MbDSource

Dataset
JHMDB CAD60 NTU RGB+D Baseline JHMDB CAD60 NTU RGB+D Baseline

SOBD Pose SOBD Pose Synth Pose %wF1 SOBD Pose SOBD Pose SOBD Pose %wF1

%
D
t
r

.

80 65.26 60.93 62.90 62.90 62.61 62.95 63.83 62.93 63.92 63.67 57.25 62.08 63.54 64.86

60 59.37 54.74 51.70 52.73 53.42 57.67 53.14 60.09 59.99 55.49 54.70 59.95 59.95 59.37

20 53.80 50.09 45.75 52.20 51.12 50.84 51.19 56.10 57.79 46.12 51.10 53.53 54.96 53.40

10 47.41 46.81 51.36 48.95 51.57 43.32 47.06 51.67 48.38 50.21 47.64 49.62 49.86 44.41

1
7

5



appendix

a.4.2 Opportunity Locomotion

Table A.4.8: The two scripted ADL runs from the Opp.

ADL-Run Drill-Run

Start Open and Close the fridge
Groom Open and Close the dishwasher
Relax Open and Close 3 drawers (at different heights)
Prepare Coffee Open and Close door 1
Drink Coffee Open and Close door 2
Prepare sandwich Turn on and off the lights
Eat sandwich Clean table
Cleanup Drink (standing)
Break Drink (sitting)

Baseline

Table A.4.13 presents the baseline of the Opploc and Oppges. The sensor measurements
contained in each human limb LA, LL, RA, RL, and NT are set to the five corresponding
branches of the Attr-IMU-tCNN and IMU-TCNN; Figure 6.1.2b shows the sensor cor-
respondences. Contrary to [RSA15, OR16], Table A.4.13 shows that using max-pooling
layers does not negatively influence the networks’ performances, even for short sequence
inputs.

Table A.4.9 and Table A.4.10 show the learned attributes using the EA-Attr-IMU-
tCNNDTarget

LARa−M and the attribute representation of the LARa-M on the Opploc and Oppges
respectively. The LARa attributes represent the activities from Opp. Even though the
Opp does not define the activities and their particularities of the recordings, the EA-Attr-
IMU-tCNN finds attributes that are semantically related to the activities. For example,
the Walk activity is represented by Gait Cycle, Step, Upwards, Downwards, Torso Rotation,
Left Hand, Tool, Cart, None. The Gait Cycle and Step describe when the subject carries
out a displacement with more than three steps and step small movements with the feet.
Table A.4.14 shows the performance when using the learnt attribute representation from
EA-TCNNattributeFC .

Transfer Learning for Opportunity

locomotion Table A.4.15 shows the performance of the architecture on the Opploc.
The architectures are trained from scratch, or pretrained on LARa-M30, LARa-Mb30
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A.4 results per dataset

Table A.4.9: Attribute representation A ∈ B19 of the Opploc dataset found using the EA-Attr-IMU-
tCNNLARa−M.

Attributes

Activity
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Null 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Stand 0 1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0

Walk 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0

Sit 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1

Lie 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1

and LARa-SOBD30. Table A.4.15 presents also the performance on the Opploc un-
der different proportions of the training set, [10, 20, 40, 60, 80]%. The architectures’ per-
formances improve when pretraining with LARa datasets. Interestingly, the IMU-
TCNNattributefuse ↑OpplocDSource

presents a poorer performance compared to TCNNattributefuse ↑OpplocDSource
.

This outcome might be explained by combining the larger amount of architecture parame-
ters with the shorter segmented windows, the subsampling of the source domains, and
the re-organization of the measurements per limb following the IMU-TCNN with five
convolutional blocks.

Table A.4.11 presents the precision and recall of the architectures on the Opploc per
activity class. In general, the performance of the activity classes improves when using the
TCNNLARa−M30 with respect to the TCNN that is trained from scratch. These activity
classes are similar to LARa dataset, except the Sit class. The Lie improves, although
this activity is far from being present in the intralogistics where LARa is recorded. This
outcome contrasts with the class Lie results on the Pamap2.

Table A.4.16 shows the classification performance of the transfer learning on the Opploc
dataset. The TCNNOpploc is considered as baseline. Only the TCNNsoftmaxFC ↑OpplocJ−HMDBPose

using pose annotations and TCNNsoftmaxFC ↑OpplocNTUPose
improve the performance. In the

case of having [10, 30, 50]% of the DTarget, the pre-trained networks on J-HMDB and
CAD60 significantly improved the performance.
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Table A.4.10: Attribute representation A ∈ B19 of the Oppges dataset found using the EA-Attr-IMU-
tCNNLARa−M.

Attributes
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Null 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1

Open Door 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0

Open Door 2 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

Close Door 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1

Close Door 2 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0

Open Fridge 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1

Close Fridge 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1

Open Dishwasher 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1

Close Dishwasher 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1 1 1

Open Drawer 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1

Close Drawer 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

Open Drawer 2 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Close Drawer 2 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0

Open Drawer 3 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0

Close Drawer 3 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1

Clean Table 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 0

Drink from Cup 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0

Toggle Switch 0 1 0 1 1 0 1 0 0 0 1 0 0 0 1 1 1 1 1

Table A.4.11: Precision and Recall [%] per class activity for the Opploc dataset using the TCNN, trained from
scratch and using the LARa-M30 as data source. Numbers in bold are selected according to harmonic mean,
see Section 6.2.

Activity
TCNN TCNNattributeFC ↑Opploc

LARa−M30

Precision Recall Precision Recall

None 88.89± 2.7 55.53± 6.7 89.40±2.3 72.48±2.6

Stand 73.73± 2.2 91.94± 2.8 81.08±2.5 91.54±2.9

Walk 75.59± 1.0 74.99± 1.8 81.27±1.9 78.77±3.5

Sit 95.98± 2.1 95.42± 0.4 96.21±0.9 97.35±0.3

Lie 94.63± 0.3 98.92± 0.6 94.73±0.3 99.71±0.3

gestures Table A.4.17 shows the performance of the architecture on the Oppges.
Besides, it also presents the performance on the two additional versions of gestures under
different proportions of the training set, [10, 20, 40, 60, 80]%.
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A.4 results per dataset

The TCNN performance improves when pretraining with LARa-M30. However, the
performances of the IMU-TCNN are poorer comparing the TCNN.

Table A.4.12 presents the precision and recall of the architectures on the Oppges dataset
per activity class. The Oppges dataset mostly includes manual activity classes. These
activities are strongly related to the activities in the intralogistics from LARa, e.g., order-
picking activities. The performance of most of the activities in Oppges improves with
respect to a network that is trained from scratch.

Table A.4.12: Precision and Recall [%] per class activity for the and Oppges dataset using the TCNN, trained
from scratch and using the LARa-M30 as data source. DW stays for Dishwasher. Numbers in bold are
selected according to harmonic mean between the precision and recall.

Activity
TCNN TCNNattributeFC ↑Opploc

LARa−Mb30

Precision Recall Precision Recall

None 92.94± 0.3 96.2± 0.7 93.67±0.3 95.81±0.7
Open Door 1 60.65± 5.0 56.51± 3.1 63.90±6.3 56.51±0.4
Open Door 2 79.75± 4.2 53.24± 11.6 80.74±5.7 67.43±6.0
Close Door 1 64.87±9.1 69.69±3.9 61.20± 5.1 68.98± 1.0
Close Door 2 66.05± 6.3 89.75± 5.9 73.68±3.0 91.00±3.0
Open Fridge 80.68± 34.0 47.31± 5.5 83.86±1.6 47.48±2.8
Close Fridge 72.07± 1.2 68.17± 6.4 73.80±5.8 74.79±5.3
Open DW 41.05±2.9 48.09±6.9 37.42± 3.1 51.10± 0.4
Close DW 28.51± 2.6 49.08± 8.8 41.86±8.1 44.47±2.1
Open Drawer 1 55.48±3.9 35.60±5.3 50.77± 9.0 34.68± 0.9
Close Drawer 1 57.14± 4.6 19.95± 4.6 48.04±0.7 34.17±17.2
Open Drawer 2 60.09±12.1 23.89±6.5 59.69± 15.0 20.21± 2.1
Close Drawer 2 56.77± 16.2 25.58± 10.7 58.56±10.2 33.97±3.6
Open Drawer 3 57.32±8.7 55.89±13.1 46.21± 2.1 60.03± 17.2
Close Drawer 3 47.81± 11.1 62.22± 9.9 49.26±8.3 61.81±11.6
Clean Table 94.58± 2.1 39.37± 2.6 88.61±1.3 45.64±0.2
Drink f. Cup 67.69± 12.8 51.40± 2.8 60.31±4.8 59.14±1.2
Toggle Switch 78.59± 4.4 22.40± 0.6 77.46±1.7 30.38±1.2

Table A.4.18 presents the performance of the three pre-trained architectures on the
Oppges. In comparison with the Opploc, pre-training the TCNN with the three source
datasets with both the pose annotations or the SOBDs influences the performance on
the DSource significantly, especially when transferring the first convolutional layer. The
performance in all scenarios improves significantly when considering [30, 50]% of the
training material from the DTarget and pre-training with the three DSource using pose
annotations or the SOBDs.
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Table A.4.13: The best validation wF1 [%] computed from solving M-HAR using the TCNN and the IMU-TCNN on the Opp. The mean
and SD from the wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest;
hence, they represent the best performance. The comparison are carried out with respect to the same fuse layer.

TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

Oppges 89.05± 0.29 89.23± 0.31 89.02± 0.36 89.14± 0.33 89.09± 0.29 89.06± 0.24 75.90± 0.09 76.02± 0.04 76.04± 0.03 76.35± 0.45 76.72± 1.73 77.09± 2.53

Opploc 85.77± 1.11 86.83± 0.18 85.34± 0.75 86.52± 0.24 85.41± 0.49 86.10± 0.89 53.24± 0.85 63.82± 1.86 65.69± 1.78 67.70± 1.87 10.84± 7.67 31.09± 13.39

IMU-TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

Oppges 89.82± 0.23 89.84± 0.10 89.94± 0.20 88.48± 0.19 88.55± 0.36 88.78± 0.32 88.48± 0.19 78.56± 0.13 78.68± 0.29 86.49± 0.04 86.43± 0.13 86.28± 0.25
Opploc 86.02± 0.36 85.34± 0.45 86.15± 0.22 84.28± 0.52 84.17± 1.31 84.23± 1.44 66.34± 0.99 71.44± 0.41 71.25± 1.97 76.91± 0.60 71.77± 4.54 73.60± 2.39

Table A.4.14: The wF1 [%] computed from solving M-HAR using the TCNN and the IMU-TCNN on the OBD datasets. The mean and SD
from the wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they
represent the best performance. The comparison are carried out with respect to classifier.

TCNNattributefuse IMU-TCNNattributefuse

Dataset FC LSTM FCN TPP FC LSTM FCN TPP

Oppges 86.49± 0.85 88.14± 0.29 75.84± 0.02 76.66± 0.27 88.22± 0.30 88.00± 0.60 75.83± 0.01 84.58± 0.38

Opploc 85.84± 1.15 80.69± 0.90 43.77± 2.69 66.18± 1.23 83.54± 0.68 81.83± 0.46 39.15± 2.50 74.30± 0.94
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Table A.4.15: Mean wF1[%] of the TCNNsoftmaxFC ↑Opploc
DSource

and IMU-TCNNsoftmaxFC ↑Opploc
DSource

using the joint poses and the synthetic data.
The Nconv changes from c1 to c1,2,3,4 keeping 100% of the DSource. Subsequently, the Nconv corresponding to highest wF1[%] is fixed and
[10,30,50,75]% of the DTarget are deployed for fine-tuning. The mean and SD from the wF1 [%] are given as training procedure is repeated 5×.
Values in bold are not statistically significant to the highest; hence, they represent the best performance. The comparison are carried out with respect to
the data proportion or the transposed layers.

Dataset
TCNNsoftmaxFC ↑Opploc

DSource
IMU-TCNNsoftmaxFC ↑Opploc

DSource

Baseline
LARa-M LARa-SOBD LARa-Mb

Baseline
LARa-M LARa-SOBD LARa-Mb

FC TPP FC TPP FC TPP FC TPP FC TPP FC TPP

N
c
o
n
v

Tr
.L

ay
er

s

c1

85.77± 1.11

88.56± 0.22 74.00± 1.24 88.19± 0.21 69.91± 1.89 88.31± 0.30 75.75± 1.09

86.02± 0.36

87.14± 0.38 82.61± 0.62 86.88± 0.09 82.03± 0.83 87.63± 0.08 82.68± 0.58

c1,2 88.45± 0.08 75.03± 0.46 88.41± 0.29 75.56± 0.06 88.34± 0.26 74.97± 0.73 87.76± 0.21 83.26± 0.85 87.66± 0.23 83.02± 0.47 87.59± 0.39 82.59± 0.40

c1−3 88.21± 0.28 71.82± 2.65 88.88± 0.08 75.16± 1.41 87.92± 0.31 75.47± 0.38 87.87± 0.46 82.89± 0.43 87.53± 0.41 82.78± 0.78 87.55± 0.20 83.15± 0.56

c1−4 88.73± 0.35 73.57± 2.66 88.24± 0.08 73.94± 1.27 88.19± 0.17 74.78± 1.01 88.17± 0.48 83.12± 0.64 87.69± 0.36 83.39± 0.76 87.21± 0.18 82.43± 0.28

c1−4 89.09± 0.04 40.47± 0.20 87.98± 0.19 33.85± 0.18 87.85± 0.15 44.80± 0.33 87.86± 0.11 69.82± 0.07 87.02± 0.33 74.97± 0.53 84.05± 0.43 70.20± 0.10

%
D
t
r

.

80 81.85± 1.29 81.62± 0.62 66.26± 1.48 82.33± 0.37 64.15± 8.37 81.32± 0.75 67.68± 1.11 70.37± 5.65 74.41± 2.13 76.11± 0.76 79.51± 0.22 77.58± 0.05 78.58± 1.20 75.61± 0.63

60 75.66± 1.65 77.58± 1.18 58.63± 2.71 75.79± 0.52 66.28± 0.94 74.26± 1.49 65.31± 0.97 48.66± 23.28 71.18± 1.30 69.48± 0.86 72.28± 0.45 70.62± 0.46 73.18± 0.89 70.01± 1.19

40 63.57± 20.23 72.85± 1.38 54.65± 2.64 73.36± 0.99 64.03± 0.90 73.56± 2.66 60.47± 2.17 13.26± 5.70 69.78± 1.31 64.80± 0.60 69.79± 1.03 68.16± 0.78 72.44± 1.05 67.39± 1.03

20 63.85± 8.91 67.77± 0.87 48.62± 4.38 67.99± 1.74 40.76± 0.95 66.23± 4.44 48.36± 6.00 8.63± 3.24 60.87± 3.28 60.86± 1.26 68.54± 0.60 64.75± 0.42 66.54± 2.18 61.15± 0.97

10 52.60± 0.1 56.40± 2.69 34.62± 4.45 55.77± 1.59 33.32± 0.53 39.93± 5.29 29.54± 2.04 21.36± 12.48 35.25± 3.67 54.71± 0.80 52.82± 1.30 52.06± 1.38 32.70± 3.60 44.39± 5.38

Table A.4.16: MeanwF1[%] of the TCNNOpploc
DSource

and IMU-TCNNOpploc
DSource

using the joint poses and the synthetic data. TheNconv = c4 correspond-
ing to highest wF1[%] is fixed, and [10,20,60,80]% of the DTarget are deployed for fine-tuning. SD wF1[%] lies around 0.01. The mean from the
wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they represent the best
performance. The comparison are carried out with respect to the data proportion.

TCNNattributefuse ↑Opploc
DSource

IMU-TCNNattributefuse ↑Opploc
DSource

Dataset
JHMDB CAD60 NTU RGB+D Baseline JHMDB CAD60 NTU RGB+D Baseline

Synth Pose Synth Pose Synth Pose %wF1 Synth Pose Synth Pose Synth Pose %wF1

%
D
t
r

.

75 85.90 87.33 86.01 85.67 86.67 86.26 81.85 84.64 83.59 85.83 85.89 84.14 84.34 70.37

60 85.18 85.60 85.62 85.46 85.62 85.03 75.66 83.83 83.15 83.86 85.73 83.15 83.25 48.66

20 84.23 84.05 84.32 83.74 83.78 81.46 63.85 81.87 82.71 82.02 83.09 81.52 81.80 8.63

10 55.16 54.77 54.90 53.12 55.33 53.61 52.60 44.09 47.74 48.98 48.43 44.00 46.14 21.36
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xTable A.4.17: Mean wF1[%] of the TCNNsoftmaxFC ↑Oppges

DSource
and IMU-TCNNsoftmaxFC ↑Oppges

DSource
using the joint poses and the synthetic data.

The Nconv changes from c1 to c1,2,3,4 keeping 100% of the DSource. Subsequently, the Nconv corresponding to highest wF1[%] is fixed and
[10,30,50,75]% of the DTarget are deployed for fine-tuning. The mean and SD from the wF1 [%] are given as training procedure is repeated 5×.
Values in bold are not statistically significant to the highest; hence, they represent the best performance. The comparison are carried out with respect to
the data proportion or the transposed layers.

Dataset
TCNNsoftmaxFC ↑Opploc

DSource
IMU-TCNNsoftmaxFC ↑Opploc

DSource

Baseline
LARa-M LARa-SOBD LARa-Mb

Baseline
LARa-M LARa-SOBD LARa-Mb

FC TPP FC TPP FC TPP FC TPP FC TPP FC TPP

Tr
.L

ay
er

s

c1

89.05± 0.29

87.84± 0.67 78.02± 1.70 86.60± 0.33 77.10± 0.70 88.34± 0.40 79.05± 1.53

89.82± 0.23

89.58± 0.15 87.07± 0.16 89.02± 0.09 83.75± 0.27 90.10± 0.12 87.09± 0.25

c1,2 87.82± 0.61 87.96± 0.46 87.37± 0.37 77.31± 0.30 88.67± 0.35 79.28± 0.86 89.92± 0.16 87.30± 0.21 89.34± 0.21 84.13± 0.30 89.80± 0.51 86.83± 0.12

c1−3 88.85± 0.40 78.16± 2.10 87.94± 0.32 77.01± 0.59 88.08± 0.32 79.20± 2.17 90.26± 0.04 87.16± 0.30 89.89± 0.16 87.35± 0.13 90.28± 0.17 87.02± 0.08

c1−4 88.68± 0.55 80.69± 2.03 88.36± 0.23 80.71± 0.62 89.86± 0.48 80.68± 0.42 90.26± 0.28 86.98± 0.18 89.68± 0.37 83.36± 0.29 90.16± 0.20 87.17± 0.24

c1−4 88.03± 0.25 75.83± 0.00 86.00± 1.34 75.83± 0.00 88.57± 0.34 75.82± 0.01 90.16± 0.12 78.54± 0.09 90.23± 0.14 80.36± 0.02 87.66± 0.18 78.18± 0.14

%
D
t
r

.

80 85.17± 0.87 87.20± 0.36 80.27± 0.73 87.37± 0.37 81.25± 0.27 87.27± 0.21 80.17± 0.23 86.67± 0.79 87.13± 0.26 85.09± 0.08 86.74± 0.77 82.35± 4.39 87.37± 0.17 85.35± 0.43

60 82.56± 1.23 82.99± 0.34 77.98± 0.28 83.25± 0.49 78.60± 0.38 84.15± 0.17 77.95± 0.92 83.88± 0.63 83.90± 0.36 82.89± 0.31 84.07± 0.37 82.91± 0.04 84.35± 0.17 83.07± 0.45

40 79.97± 0.53 80.66± 0.39 76.95± 1.01 79.72± 1.12 78.30± 0.56 81.85± 0.35 78.36± 0.38 79.82± 0.37 78.98± 0.13 80.47± 0.26 79.40± 0.52 80.87± 0.39 79.89± 0.45 81.06± 0.03

20 80.52± 0.35 80.48± 0.70 76.09± 0.33 79.23± 0.11 76.93± 0.60 81.07± 0.09 76.36± 0.30 78.91± 0.39 78.61± 0.30 77.82± 0.11 78.82± 0.10 79.21± 0.30 80.10± 0.25 78.98± 0.11

10 74.54± 1.45 75.50± 1.19 75.79± 0.03 77.11± 0.18 75.91± 0.11 76.51± 1.11 75.84± 0.05 75.83± 0.00 75.95± 0.56 75.87± 0.05 76.45± 0.38 75.83± 0.00 77.54± 0.77 76.29± 0.34

Table A.4.18: MeanwF1[%] of the TCNNOppges

DSource
and IMU-TCNNOppges

DSource
using the joint poses and the synthetic data. TheNconv = c4 correspond-

ing to highest wF1[%] is fixed, and [10,20,60,80]% of the DTarget are deployed for fine-tuning. SD wF1[%] lies around 0.01. The mean from the
wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they represent the best
performance. The comparison are carried out with respect to the data proportion.

TCNNattributefuse ↑Oppges

DSource
IMU-TCNNattributefuse ↑Oppges

DSource

Dataset
JHMDB CAD60 NTU RGB+D Baseline JHMDB CAD60 NTU RGB+D Baseline

Synth Pose Synth Pose Synth Pose %wF1 Synth Pose Synth Pose Synth Pose %wF1

%
D
t
r

.

80 87.33 87.41 87.44 87.12 88.14 88.28 85.17 87.23 86.83 87.58 86.22 87.23 87.45 86.67

60 87.06 87.04 87.01 86.77 86.96 86.77 82.56 86.23 86.49 86.49 85.57 86.78 86.63 83.88

20 85.22 85.06 84.62 84.93 84.80 84.60 80.52 84.39 82.67 84.37 83.05 84.29 83.74 78.91

10 76.47 75.99 76.54 76.11 75.67 75.67 74.54 76.62 75.92 76.47 76.15 75.67 75.98 75.83
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A.4 results per dataset

a.4.3 Pamap2

Baseline

Table A.4.19: Precision and Recall [%] per class activity for the Pamap2 dataset using the TCNN, trained from
scratch and using the LARa-SOBD as data source. Numbers in bold are selected according to harmonic mean,
see Section 6.2.

Activity
tCNN TCNNattributeFC ↑Opploc

LARa−SOBD

Precision Recall Precision Recall

Rope Jump. 16.7± 28.9 8.33± 14.4 33.33±57.7 31.05±53.8

Lying 99.5±0.6 97.32±1.3 98.57± 1.3 98.09± 1.7

Sitting 94.5± 1.1 92.09± 2.5 97.70±1.8 93.30±3.1

Standing 70.8± 2.1 47.33± 22.5 87.11±5.2 58.86±35.8

Walking 96.8± 2.2 97.26± 1.1 96.37±2.3 98.49±0.8

Running 100.0±0.0 95.46±3.9 99.91± 0.2 94.77± 2.0

Cycling 98.1± 2.4 95.17± 4.5 99.30±0.6 95.44±1.9

Nordic Walk 96.7± 2.1 96.44± 1.7 98.84±0.9 98.09±0.4

Asc. Stairs 80.7± 15.2 77.70± 3.2 92.03±2.4 88.33±7.4

Desc. Stairs 82.6± 10.5 90.02± 4.0 82.02±9.5 91.92±2.1

VC* 90.9± 3.7 86.05± 7.2 92.62±1.8 93.81±2.3

Ironing 69.7± 1.9 89.55± 17.8 80.24±14.7 99.54±0.7

The sensor measurements contained in each human limb LA, LL, RA, RL, and NT are set
to the five corresponding branches of the Attr-IMU-tCNN and IMU-TCNN; Figure 6.1.2b
shows the sensor correspondences. Pamap2 contains recordings only from the dominant
wrist and its corresponding side’s ankle. Thus, the recordings of the dominant’s side wrist
and ankle recordings where used for both, the LA, RA and LL, RL branches respectively.

Table A.4.21 presents the testing performance of the baseline networks TCNNsoftmaxfuse

and IMU-TCNNsoftmaxfuse for Pamap2 for the four fusion alternatives [FC, FCN, LSTM, TPP]
and the max-pooling. The FCN fuser does not show promising results. The IMU-TCNN
shows the better performance for all configurations.

Using max-Pooling does not affect negatively the performance; [1− 2]MaxPool im-
proves significantly the performance when IMU-TCNNsoftmaxLSTM . Table A.4.22 shows the
performance when using SpectralPooling. This pooling does not negatively affect the
performance when using TCNN, even showing a slight increase. Table A.4.20 presents
the semantic attributes learnt with EA-Attr-IMU-tCNN. The activities that are not shared
with LARa set the attribute Error, corresponding to the assigned semantic meaning by the
creators of the LARa. The locomotion activities contain the attribute Gait Cycle or Step,
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and they do not contain Standing Still. Table A.4.23 shows the performance of usage of
attributes on the Pamap2.

Table A.4.20: Attribute representation A ∈ B19 of the Pamap2 dataset found using the evolutionary algorithm
and the TCNNattributeFC .

Attributes

Activity
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rope jumping 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0

lying 1 0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0

sitting 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1

standing 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0

walking 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1

running 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1

cycling 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

nordic watching 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0

ascending stairs 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1

descending stairs 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0

vacuum cleaning 0 0 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0

ironing 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0

Transfer Learning for Pamap2

Table A.4.24 shows the performance of the architecture on the Pamap2. The architectures
are trained from scratch and using the LARa-SOBD, LARa-M, LARa-Mb. Table A.4.24

presents also the performance on the Pamap2 under different proportions of the training
set, [10, 20, 40, 60, 80]%. The validation and testing sets remain equal.

Pretraining both architectures using the different LARa datasets shows a positive effect
on their performances. Transferring the learnt filters from the three datasets versions
improves the performance of the architectures. Interestingly, pretraining the architectures
and finetuning them using 50% of the Pamap2 training sets yields the best performances.
Table A.4.19 presents the performance of the architectures on the Pamap2 per activity class.
The performance per activity classes improves when transferring across different datasets,
i.e., different amount of devices and activity annotations. Interestingly, the performance
of activity class that is strange in intralogistic scenarios, lying did not improve on the test
datasets. This implies that convolutional filters are rather generic, considering. Results
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A.4 results per dataset

differ from [OMR16] as probably they considered longer extracted windows for learning
longer temporal-relations. Those temporal relations are rather scenario-specific.

Table A.4.19 shows the performance of the networks TCNNDTarget and IMU-TCNNDTarget

on the Pamap2 dataset as target. The TCNNsoftmaxFC ↑Pamap2DSource
TCNNPamap2Ds

is pre-
trained using the DSource: J-HMDB, CAD60, and NTU datasets. The performance on the
Pamap2 dataset significantly increases when pre-training with the J-HMDB. Considering
a limited amount of dataset for training, i.e., [10, 30, 50, 75]%, the synthetic datasets from
the three DSource show a positive influence.

Table A.4.25 shows the precision and recall for each activity class of the Pamap2 and
the shared ones in the J-HMDB datasets. The TCNNPamap2J−HMDB using the network with
the c1 pretrained on the synthetic on-body devices of the J-HMDB and finetuned on the
Pamap2. For comparing the performance of the networks, the harmonic mean (HM) of
precision and recall are computed for each activity—the highest HMs are highlighted
in bold. The activities Climb Stairs, Sit, Run, Walk, and Stand are common between the
Pamap2 and J-HMDB. The performance of these shared activities increase. Activities that
are only in Pamap2, but are semantically near to those in JHMDB, also showed a boost in
performance, e.g., Climb StairsJ−HMDB-Desc. StairsPamap2, StandJ−HMDB-IroningPamap2,
as person performs the activity standing and the activity is picking centred.
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Table A.4.21: The best validation wF1 [%] computed from solving M-HAR using the TCNN and the IMU-TCNN on the Pamap2 dataset.
The mean and SD from the wF1 are given as training procedure is repeated 5×. Values in bold are not statistically significant to the
highest; hence, they represent the best performance. The comparison are carried out with respect to the same fuse layer.

TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

Pamap2 88.24± 0.97 88.43± 1.52 88.23± 0.99 86.81± 0.49 87.07± 0.54 86.91± 0.44 43.37± 3.94 41.82± 3.79 47.39± 4.63 70.93± 0.37 66.94± 1.86 67.57± 2.13

IMU-TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

Pamap2 88.86± 1.74 88.26± 1.24 88.25± 0.80 89.48± 1.50 89.48± 2.64 91.54± 2.20 65.30± 1.04 61.68± 1.57 61.17± 0.79 81.76± 0.21 79.10± 1.63 78.02± 2.44

Table A.4.22: The testing wF1 [%] computed from solving M-HAR using the TCNNsoftmaxTPP and the IMU-TCNNsoftmaxTPP on the Pamap2

datasets. The mean and SD from the wF1 are given as training procedure is repeated 5×. Values in bold are not statistically significant to
the highest; hence, they represent the best performance. The comparison are carried out with respect to the same pooling layer.

Dataset
TCNNsoftmaxFC TCNNsoftmaxTPP IMU-TCNNsoftmaxFC IMU-TCNNsoftmaxTPP

[0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool

Pamap2 88.24± 0.97 88.41± 1.35 88.77± 1.20 67.42± 1.48 70.32± 2.19 68.86± 1.04 88.86± 1.74 87.74± 0.47 87.65± 0.09 80.08± 1.53 79.37± 2.73 76.99± 1.68

Table A.4.23: The wF1 [%] computed from solving M-HAR using the TCNN and the IMU-TCNN on the Pamap2 datasets. The mean and
SD from the wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence,
they represent the best performance. The comparison are carried out with respect to classifier.

Dataset
TCNNattributefuse IMU-TCNNattributefuse

FC LSTM FCN TPP FC LSTM FCN TPP

Pamap2 86.12± 0.81 86.21± 0.70 65.18± 1.70 65.18± 1.70 86.95± 0.50 88.82± 2.04 50.26± 1.71 77.60± 1.75
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Table A.4.24: Mean wF1[%] of the TCNNsoftmaxFC ↑Pamap2DSource
and IMU-TCNNsoftmaxFC ↑Pamap2DSource

using the joint poses and the synthetic data.
The Nconv changes from c1 to c1,2,3,4 keeping 100% of the DSource. Subsequently, the Nconv corresponding to highest wF1[%] is fixed and
[10,30,50,75]% of the DTarget are deployed for fine-tuning. The mean and SD from the wF1 [%] are given as training procedure is repeated 5×.
Values in bold are not statistically significant to the highest; hence, they represent the best performance. The comparison are carried out with respect to
the data proportion or the transposed layers.

Dataset
TCNNsoftmaxFC ↑Pamap2DSource

IMU-TCNNsoftmaxFC ↑Pamap2DSource

Baseline
LARa-M LARa-SOBD LARa-Mb

Baseline
LARa-M LARa-SOBD LARa-Mb

FC TPP FC TPP FC TPP FC TPP FC TPP FC TPP

Tr
.L

ay
er

s

c1

88.24± 0.97

88.76± 0.89 67.44± 3.15 90.06± 0.61 62.98± 4.23 89.87± 1.58 70.02± 3.23

88.86± 1.74

88.60± 0.13 84.45± 1.06 87.91± 0.41 81.58± 1.18 88.84± 0.32 84.61± 1.13

c1,2 89.37± 1.78 70.87± 3.21 89.71± 0.93 65.90± 4.41 88.51± 0.58 71.31± 5.05 89.76± 2.54 83.55± 1.61 88.45± 0.17 85.54± 0.79 89.11± 0.20 80.53± 1.76

c1−3 89.99± 1.33 71.49± 4.33 88.57± 0.82 62.83± 5.71 88.63± 0.94 69.31± 2.99 89.13± 0.91 84.38± 1.68 59.33± 40.59 87.77± 1.69 88.87± 0.18 80.74± 1.46

c1−4 91.49± 0.28 74.87± 6.15 87.80± 0.84 77.61± 1.91 90.37± 0.86 73.98± 3.71 89.44± 0.78 86.35± 2.52 87.36± 0.72 88.88± 0.74 88.77± 0.26 83.65± 2.32

c1−4 90.81± 0.57 47.50± 0.89 88.50± 0.20 5.90± 0.13 92.21± 0.31 72.34± 0.38 88.91± 0.52 75.98± 0.45 87.79± 0.32 78.41± 0.32 88.05± 0.35 79.83± 1.60

%
D
t
r

.

80 80.18± 9.62 91.01± 0.35 59.27± 4.39 90.91± 1.17 77.61± 1.91 89.41± 0.68 67.00± 5.02 87.10± 0.82 90.31± 0.44 80.78± 0.62 87.75± 0.61 85.26± 1.00 88.69± 0.72 85.31± 0.81

60 81.55± 2.66 89.48± 1.74 50.32± 1.94 91.21± 0.47 73.35± 3.55 89.62± 0.83 66.68± 7.22 86.68± 1.55 89.66± 1.10 73.81± 3.11 86.39± 1.42 83.24± 1.18 85.23± 0.54 77.30± 2.34

40 72.51± 11.99 90.74± 0.46 46.54± 5.49 90.95± 0.60 74.39± 7.55 90.02± 0.58 67.32± 4.15 87.41± 0.99 89.79± 0.89 74.61± 4.16 86.90± 0.68 85.10± 1.65 85.80± 1.40 76.66± 0.74

20 25.78± 8.13 63.79± 3.33 15.35± 8.54 57.94± 1.81 42.76± 2.00 50.99± 2.31 13.82± 4.95 54.62± 5.21 50.19± 5.38 48.18± 5.83 56.91± 3.82 54.60± 0.36 55.43± 5.22 48.48± 0.62

10 24.11± 9.32 67.32± 5.98 12.99± 3.34 60.78± 1.47 42.24± 3.05 50.25± 2.02 18.50± 7.60 52.43± 14.01 54.94± 3.62 46.24± 3.54 55.24± 2.78 55.12± 3.54 56.73± 1.38 46.74± 0.80

Table A.4.25: MeanwF1[%] of the TCNNPamap2DSource
and IMU-TCNNPamap2DSource

using the joint poses and the synthetic data. TheNconv = c4 correspond-
ing to highest wF1[%] is fixed, and [10,20,60,80]% of the DTarget are deployed for fine-tuning. SD wF1[%] lies around 0.01. The mean from the
wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they represent the best
performance. The comparison are carried out with respect to the data proportion.

TCNNattributefuse ↑Pamap2DSource
IMU-TCNNattributefuse ↑Pamap2DSource

Dataset
JHMDB CAD60 NTU RGB+D Baseline JHMDB CAD60 NTU RGB+D Baseline

Synth Pose Synth Pose Synth Pose %wF1 Synth Pose Synth Pose Synth Pose %wF1

%
D
t
r

.

80 89.64 89.60 88.16 80.18 88.73 88.02 80.18 86.25 86.23 86.14 85.84 88.41 86.52 87.10

60 89.63 86.93 85.76 89.03 85.95 85.15 81.55 85.38 85.65 83.63 83.49 85.93 84.91 86.68

20 58.70 49.00 51.98 50.27 81.98 70.71 25.78 67.71 70.01 64.43 60.29 66.96 73.68 54.62

10 50.97 46.75 47.26 45.93 43.93 51.36 24.11 40.20 40.20 40.20 40.20 51.30 59.59 52.43
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appendix

a.4.4 Order Picking

Baseline

A 3-fold validation is followed as the dataset is scarce, with only three subjects per
warehouse, in which one subject is taken as the testing set and the other two as the
training set. The IMU-TCNNsoftmaxfuse contains three branches for each of the three OBD
from the dataset, similarly to LARa-MM. The permutation test used [12567, 17436, 16799]
samples for each of the three persons as the test set. Table A.4.28 presents the performance
of the baseline per subject and per warehouse A or B from the OPD. The architectures
using the TPP fuser on the OPDB show the best performance. This outcome is not
the case for the OPDA. The max and the spectral pooling do not negatively affect the
performance on both warehouses, as Table A.4.28 and Table A.4.29 show. The IMU-TCNN
architectures obtain significantly better performances for both warehouses. Computing
temporal dependencies and obtaining a feature representation per limb show favourable
behaviour. The FCN fuser shows a negative performance with respect to the other layers,
similar to the performance on the other target datasets.

Table A.4.26 and Table A.4.27 present the learnt attributes using the EA-aimutcnn from
LARa. The EA sets the Error attribute on the activities that are not appearing in LARa;
this attribute was intended for such purpose. The None is found for the Unknown activity
on the OPDA. Interestingly, 1−None represents also the Unknown activity on the OPDB.
The attributes Gait Cycle is part of the representation of Walk activity on the OPDA as
proposed by the LARa authors. Contrary, the Step attribute represents this activity on the
OPDB. Semantically, the Step refers to when the subject uses one of his feet as part of the
main movement of either standing with minor steps or when handling with an additional
lounge-like movement.

Transfer Learning for Order Picking

Nevertheless, the architectures easily overfit to the training data, so deploying a feature
extractor learnt from the related LARa dataset helps reduce the effect of the overfitting;
thus, Transfer Learning for HAR shows a positive influence on the performance when
freezing the transferred convolutional layers. The LARa-SOBD becomes an interestingly
good source for the OPD dataset.
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A.4 results per dataset

Table A.4.26: Attribute representation A ∈ B19 of the OPDA dataset found using the evolutionary algorithm
and the TCNNattributeFC .
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UNKNOWN 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0

FLIP 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1

WALK 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0

SEARCH 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1

PICK 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0

INFO 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0

CARRY 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1

ACK 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1

Table A.4.27: Attribute representation A ∈ B19 of the OPDB dataset found using the evolutionary algorithm
and the TCNNattributeFC .
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UNKNOWN 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0

FLIP 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1

WALK 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1

SEARCH 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0

PICK 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0

SCAN 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1

INFO 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1
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Table A.4.28: The wF1 computed from solving M-HAR using the TCNN and the IMU-TCNN on the two sets of OPD. The mean and std
from the wF1 are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they
represent the best performance. The comparison are carried out with respect to the same fuse layer.

TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

OPDA P1 70.94± 1.20 70.67± 0.79 70.94± 1.01 63.89± 2.78 68.49± 3.12 70.09± 1.49 59.46± 0.57 60.61± 0.66 60.75± 0.32 58.24± 1.17 59.68± 1.06 60.61± 0.63
OPDA P2 60.17± 1.63 59.61± 2.47 61.52± 2.10 62.08± 1.34 63.56± 2.05 61.37± 1.74 57.86± 0.77 58.41± 1.16 58.70± 0.52 55.43± 1.88 56.57± 1.45 57.60± 1.47
OPDA P3 67.22± 1.99 67.22± 0.99 66.96± 1.59 61.04± 1.40 62.49± 1.34 63.84± 1.49 57.34± 0.66 57.89± 0.84 57.44± 0.73 52.45± 1.18 54.26± 0.71 54.50± 1.39
OPDA 66.11± 5.47 65.83± 5.66 66.47± 4.73 62.34± 1.44 64.85± 3.20 65.10± 4.50 58.22± 1.11 58.97± 1.44 58.96± 1.67 55.38± 2.90 56.84± 2.72 57.57± 3.06

OPDB P1 72.17± 2.45 71.09± 4.28 68.56± 2.07 71.17± 3.59 72.02± 1.41 72.02± 1.47 72.40± 0.43 72.57± 0.24 72.78± 0.88 71.17± 2.02 73.55± 2.70 71.03± 1.85
OPDB P2 70.42± 0.30 70.33± 0.57 70.87± 0.60 68.10± 1.01 68.47± 0.45 72.02± 1.47 60.33± 0.43 60.21± 0.82 60.24± 0.81 61.29± 1.40 62.95± 0.58 61.32± 0.67
OPDB P3 81.20± 0.62 82.15± 0.95 82.22± 0.48 81.06± 0.91 81.23± 0.21 81.68± 0.91 76.98± 0.41 76.83± 0.65 77.06± 0.19 78.16± 1.01 77.81± 0.71 76.86± 1.35
OPDB 74.60± 5.79 74.52± 6.61 73.88± 7.31s 73.44± 6.77 73.91± 6.58 73.72± 7.25 69.90± 8.60 69.87± 8.63 70.03± 8.74 70.21± 1.48 71.43± 7.65 69.74± 7.85

IMU-TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

OPDA P1 70.09± 1.90 70.89± 0.45 70.92± 0.56 67.10± 1.23 68.17± 1.32 70.17± 1.35 62.00± 0.43 63.26± 0.68 63.55± 0.41 63.92± 1.12 63.19± 0.53 62.90± 1.31
OPDA P2 61.12± 2.26 60.60± 0.78 60.29± 1.73 65.51± 1.67 64.86± 1.93 65.81± 2.41 61.41± 0.72 61.26± 0.56 61.74± 0.58 57.27± 0.90 59.52± 1.06 60.29± 0.49
OPDA P3 60.70± 0.96 64.47± 1.28 66.42± 3.49 62.35± 1.40 62.61± 1.29 63.28± 0.95 57.97± 0.31 57.41± 0.44 57.79± 0.30 57.52± 0.78 57.75± 0.83 57.64± 1.36
OPDA 65.07± 4.58 65.32± 5.20 65.29± 5.34 64.44± 3.34 65.22± 2.79 64.66± 2.95 60.46± 2.18 60.64± 2.98 61.03± 2.94 59.57± 3.77 60.15± 2.78 60.28± 2.63

OPDB P1 63.34± 7.88 61.99± 8.98 66.69± 1.84 65.28± 2.43 66.63± 1.77 65.79± 2.23 71.90± 1.45 73.69± 1.24 71.02± 2.31 76.55± 1.24 76.08± 1.01 76.13± 0.83
OPDB P2 70.01± 0.29 70.95± 0.51 41.71± 1.98 69.26± 0.43 69.93± 0.45 69.63± 0.41 62.11± 0.33 62.90± 0.50 62.72± 0.72 66.50± 0.92 64.54± 0.46 64.74± 0.83
OPDB P3 83.64± 0.44 84.32± 0.60 59.90± 3.65 84.45± 0.60 84.07± 0.63 84.61± 0.40 79.03± 0.45 79.10± 0.39 79.04± 0.33 82.18± 0.31 82.14± 0.58 81.65± 0.53
OPDB 72.33± 10.35 72.42± 11.24 73.31± 9.48 73.00± 10.12 73.54± 9.26 73.34± 9.94 71.01± 8.49 71.90± 8.25 70.93± 8.16 75.08± 0.82 74.25± 8.94 74.17± 8.62

Table A.4.29: The testing wF1 [%] computed from solving M-HAR using the TCNNsoftmaxTPP and the IMU-TCNNsoftmaxTPP on the OBD
datasets. The mean and SD from the wF1 are given as training procedure is repeated 5×. Values in bold are not statistically significant to
the highest; hence, they represent the best performance. The comparison are carried out with respect to the same pooling layer.

Dataset
TCNNsoftmaxFC TCNNsoftmaxTPP IMU-TCNNsoftmaxFC IMU-TCNNsoftmaxTPP

[0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool

OPDA 66.11± 5.47 65.28± 5.36 65.72± 4.71 55.38± 2.90 57.17± 2.30 57.22± 2.51 65.07± 4.58 66.34± 4.35 65.91± 3.89 59.57± 3.77 60.33± 3.26 59.95± 3.61
OPDB 74.60± 5.79 74.94± 0.93 74.66± 1.27 70.21± 1.48 70.31± 1.17 70.11± 1.17 72.33± 10.35 72.25± 2.10 73.19± 2.27 75.08± 0.82 73.59± 0.75 74.48± 0.61
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Table A.4.30: The wF1 [%] computed from solving M-HAR using the TCNN and the IMU-TCNN on the OPD datasets. The mean and SD
from the wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they
represent the best performance. The comparison are carried out with respect to classifier.

Dataset
TCNNsoftmaxfuse TCNNattributefuse IMU-TCNNsoftmaxfuse IMU-TCNNattributefuse

FC TPP FC TPP FC TPP FC TPP

OPDA 66.11± 5.47 55.38± 2.90 63.79± 6.51 53.19± 1.93 65.07± 4.58 59.57± 3.77 61.86± 4.35 57.61± 3.59

OPDB 74.60± 5.79 70.21± 1.48 73.63± 5.84 67.93± 9.34 72.33± 10.35 75.08± 0.82 74.28± 6.70 74.35± 9.07

Table A.4.31: Mean wF1[%] of the TCNNsoftmaxFC ↑OPDDSource
and IMU-TCNNsoftmaxFC ↑OPDDSource

using the joint poses and the synthetic data.
The Nconv changes from c1 to c1,2,3,4 keeping 100% of the DSource. Subsequently, the Nconv corresponding to highest wF1[%] is fixed and
[10,30,50,75]% of the DTarget are deployed for fine-tuning. The mean and SD from the wF1 [%] are given as training procedure is repeated 5×.
Values in bold are not statistically significant to the highest; hence, they represent the best performance. The comparison are carried out with respect to
the data proportion or the transposed layers.

Dataset
TCNNsoftmaxFC ↑OPDDSource

IMU-TCNNsoftmaxFC ↑OPDDSource

Baseline
LARa-M LARa-SOBD LARa-Mb

Baseline
LARa-M LARa-SOBD LARa-Mb

FC TPP FC TPP FC TPP FC TPP FC TPP FC TPP

N
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c1

66.11± 5.47

67.85± 3.56 56.03± 2.25 65.80± 5.16 54.55± 1.25 68.29± 2.50 54.15± 1.49

65.07± 4.58

66.62± 3.78 59.92± 2.88 65.68± 3.95 59.19± 2.86 67.40± 3.86 59.80± 2.77

c1,2 66.37± 5.34 51.72± 4.33 65.52± 4.87 55.54± 1.25 67.64± 3.55 45.88± 1.80 65.32± 4.47 61.82± 3.01 66.35± 4.59 59.49± 3.34 68.46± 4.55 60.09± 3.17

c1−3 66.84± 3.93 52.57± 3.19 66.65± 4.22 56.26± 2.09 67.58± 3.90 48.55± 9.26 66.55± 3.51 62.68± 3.78 66.69± 4.11 59.29± 3.20 68.87± 4.26 60.41± 3.38

c1−4 66.81± 2.82 55.02± 4.89 67.36± 3.14 56.32± 3.89 68.59± 2.80 55.45± 3.71 64.17± 2.63 61.79± 2.86 66.29± 4.38 60.57± 3.34 68.48± 4.01 62.00± 3.81

c1−4 69.78± 2.88 14.24± 3.34 70.56± 4.14 41.10± 4.42 69.66± 3.24 30.53± 6.59 67.60± 3.13 58.92± 1.84 66.89± 3.25 62.34± 3.71 67.14± 5.21 60.50± 5.34

Dataset
TCNNsoftmaxFC ↑OPDDSource

IMU-TCNNsoftmaxFC ↑OPDDSource

Baseline
LARa-M LARa-SOBD LARa-Mb

Baseline
LARa-M LARa-SOBD LARa-Mb

FC TPP FC TPP FC TPP FC TPP FC TPP FC TPP

N
c
o
n
v
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.L

ay
er

s

c1

74.60± 5.79

71.24± 9.65 63.12± 9.35 73.40± 7.23 66.16± 11.14 72.67± 7.99 60.59± 5.75

72.33± 10.35

73.75± 9.12 74.33± 8.20 74.12± 9.49 72.87± 8.50 73.96± 9.84 73.07± 9.89

c1,2 74.22± 6.59 68.19± 8.11 74.20± 6.78 67.46± 6.26 74.05± 7.75 59.52± 3.44 73.61± 9.49 75.12± 7.31 74.43± 9.02 75.20± 7.23 73.75± 10.13 74.54± 7.75

c1−3 73.71± 6.84 66.67± 8.01 74.41± 6.44 69.19± 8.79 73.31± 7.91 63.03± 11.36 75.05± 8.60 73.67± 6.40 74.14± 9.45 75.44± 6.75 75.32± 8.54 73.96± 6.17

c1−4 73.02± 8.24 65.37± 8.16 74.72± 6.36 69.83± 7.72 73.58± 7.82 63.52± 8.59 75.14± 8.20 74.56± 7.23 72.80± 11.13 75.49± 7.54 74.75± 9.44 73.26± 7.64

c1−4 73.96± 8.55 22.71± 10.66 74.41± 7.30 28.38± 9.77 74.97± 6.27 18.30± 9.93 75.52± 7.66 71.57± 8.69 73.36± 9.10 71.38± 11.33 71.08± 12.20 67.08± 10.83
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appendix

a.4.5 MotionMiners

Baseline

Table A.4.33 presents the performance of the baseline for MM. In general, the IMU-tCNN
with [FC, LSTM] fusers perform relatively equally. The FCN layer does not perform
as well as the other two fusers. It indicates that the tCNN layers are good extractors.
Layers allowing a holistic aggregation along the time of the features are required for the
classification of the sequence.

Table A.4.32 shows the learnt attributes using the EA-Attr-IMU-tCNN trained with the
LARa dataset. The EA allows finding the Error only for the Background activity. However,
the attributes related to displacement show a variate outcome. The attributes Gait Cycle
and Step represent the Standing activity, and the Standing Still and Step attributes represent
the Walking activity. Both the Standing and Walking share the attribute Step, which was
intended to short movements of the leg, either at standing or at handling items; hence,
there is a sort of relation to the definition of the attribute given by LARa. However, this
outcome also indicates that the annotation given to Walking from MM also considers short
leg movements that are not necessarily a gait cycle. Nevertheless, the attributes related
to order picking or handling are not found on the Walking activity, e.g., Right Hand, Left
Hand, Bulky Unit, and Handy Unit. The attributes associated with handling activities in
the LARa represent the Handling activity from MM, namely Upwards, Centred, Downwards,
and the hand attributesRight Hand, and Left Hand.

Table A.4.32: Attribute representation A ∈ B19 of the MM dataset found using the evolutionary algorithm
and the TCNNattributeFC .
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Background 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1

Walking 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0

Standing 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0

Handling 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0

Driving 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0

Sitting 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0
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A.4 results per dataset

Transfer Learning for MotionMiners

For observing the effects of TL, five different versions of the LARa-MM are created.
These versions contain different proportions of the datasets, specifically, with % =

[10, 20, 40, 60, 80] of the recordings from the training set; respectively—the validation
and testing sets remain equal.

Table A.4.36 displays the performance for M-HAR on the different proportions of
the MM, and when transferring the convolutional layers. Interestingly, the IMU-TCNN
perform relatively well when facing the situation when a proportion of the dataset is
available as annotated, compared to the textitTCNN. This outcome empirically supports
that the limb-oriented structure of the IMU-TCNN computes a descriptive representation
of the sequence according to the limb movements related to the movement. All the source
datasets provide relatively good material for pretraining deep architectures for improving
M-HAR on MM. The IMU-TCNN using the TPP layer shows the best performance.
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Table A.4.33: The wF1 computed from solving M-HAR using the TCNN and the IMU-TCNN on the MM. The mean and std from the wF1
are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they represent the
best performance. The comparison are carried out with respect to the same fuse layer.

TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

MM 82.89± 0.58 82.87± 0.37 83.04± 0.43 82.87± 0.63 82.41± 0.16 81.93± 1.10 52.84± 1, .2 51.60± 2.69 51.31± 2.55 66.44± 1.80 68.06± 0.38 68.58± 0.56

IMU-TCNNsoftmaxfuse

Dataset
FC LSTM FCN TPP

[0]NoPool [1]MaxPool [1-2]MaxPool [0]NoPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool [0]MaxPool [1]MaxPool [1-2]MaxPool

MM 82.75± 0.46 82.64± 0.84 83.13± 0.61 80.22± 2.05 79.96± 1.67 80.70± 0.59 77.81± 0.54 78.54± 0.32 78.99± 0.13 82.72± 0.31 82.79± 0.55 82.67± 0.22

Table A.4.34: The testing wF1 [%] computed from solving M-HAR using the TCNNsoftmaxTPP and the IMU-TCNNsoftmaxTPP on the OBD
datasets. The mean and SD from the wF1 are given as training procedure is repeated 5×. Values in bold are not statistically significant to
the highest; hence, they represent the best performance. The comparison are carried out with respect to the same pooling layer.

Dataset
TCNNsoftmaxFC TCNNsoftmaxTPP IMU-TCNNsoftmaxFC IMU-TCNNsoftmaxTPP

[0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool [0]NoPool [1]SpectralPool [1-2]SpectralPool

MM 82.89± 0.58 83.07± 0.64 82.84± 0.39 66.44± 1.80 67.88± 0.71 67.72± 0.87 82.75± 0.46 81.70± 1.39 83.23± 0.58 82.72± 0.31 82.58± 0.49 81.68± 0.86

Table A.4.35: The wF1 [%] computed from solving M-HAR using the TCNN and the IMU-TCNN on the MM datasets. The mean and SD
from the wF1 [%] are given as training procedure is repeated 5×. Values in bold are not statistically significant to the highest; hence, they
represent the best performance. The comparison are carried out with respect to classifier.

Dataset
TCNNsoftmaxfuse TCNNattributefuse IMU-TCNNsoftmaxfuse IMU-TCNNattributefuse

FC TPP FC TPP FC TPP FC TPP

MM 82.89± 0.58 66.44± 1.80 83.33± 0.29 72.50± 4.57 82.75± 0.46 82.72± 0.31 83.35± 0.86 84.76± 0.34
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Table A.4.36: Mean wF1[%] of the TCNNsoftmaxfuse ↑MMDSource
and IMU-TCNNsoftmaxfuse ↑MMDSource

using the joint poses and the synthetic data.
The Nconv changes from c1 to c1,2,3,4 keeping 100% of the DSource. Subsequently, the Nconv corresponding to highest wF1[%] is fixed and
[10,30,50,75]% of the DTarget are deployed for fine-tuning. The mean and SD from the wF1 [%] are given as training procedure is repeated 5×.
Values in bold are not statistically significant to the highest; hence, they represent the best performance. The comparison are carried out with respect to
the data proportion or the transposed layers.

Dataset
TCNNsoftmaxFC ↑LARa−MMDSource

IMU-TCNNsoftmaxFC ↑LARa−MMDSource

Baseline
LARa-M LARa-SOBD LARa-Mb

Baseline
LARa-M LARa-SOBD LARa-Mb

FC TPP FC TPP FC TPP FC TPP FC TPP FC TPP

Tr
.L

ay
er

s

c1

82.89± 0.58

82.40± 0.48 78.63± 0.85 81.90± 0.46 77.97± 1.58 81.88± 0.51 79.55± 1.22

82.75± 0.46

83.57± 1.36 85.61± 0.53 84.69± 0.97 85.80± 0.26 83.06± 0.28 85.92± 0.33

c1,2 82.25± 0.60 79.51± 0.97 81.76± 0.78 79.19± 0.89 83.20± 0.27 79.95± 0.65 81.61± 1.54 85.59± 0.28 83.96± 0.45 85.46± 0.38 83.34± 0.90 85.58± 0.44
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%
D
t
r

.
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A C R O N Y M S

Adaptable Attr-IMU-tCNN Adaptable Attribute IMU-Temporal Convolutional Neural
Network.

ADL Activities of Daily Living.
ANN Artificial Neural Network.
AP Average Precision.
Attr-based M-HAR Attribute-based Multi-channel Time-Series HAR.
Attr-based Transfer Learning for M-HAR Attribute-based Transfer Learning for Multi-

channel Time-Series HAR.
Attr-IMU-tCNN Attribute IMU-Temporal Convolutional Neural Network.
Attr-tCNN Attribute Temporal Convolutional Neural Network.

B-LSTM Bidirectional-LSTM.
BagFR Bag of Features Representation.
BCE Binary Cross-Entropy.
BGD Batch Gradient Descent.
BPM Business Process Model.
BPTT BackPropagation Through Time.

CAD-60 Cornell Activity Dataset.
CNN Convolutional Neural Network.
CRF Conditional Random Field.
CSSM Computational State-Space Model.

DAP Direct Attribute Prediction.
DBMM Dynamic Bayesian Mixture Model.
DDA Data-Driven Attribute.
DeepConvLSTM Deep Convolutional LSTM.
DFT Discrete Fourier Transform.
DIP Deep Inertial Poser.
DL Deep Learning.
DNN Deep Neural Network.
DT Decision Tree.
DTW Dynamic Time Warping.
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acronyms

EA Evolutionary Algorithm.
ED Euclidean Distance.

FC Fully Connected Layer.
FCN Fully Convolutional Layer.
FLW Lehrstuhl für Förder- und Lagerwesen.
FN False Negative.
FP False Positive.

GD Gradient Descent.
GDAP Generalized Direct Attribute Prediction.
GMM Gaussian Mixture Model.

HAR Human Activity Recognition.
HARetr Human Activity Retrieval.
HLA Human-Labeled Attribute.
HMDB Human Motion DataBase.
HMM Hidden Markov Model.

i.i.d. Independent and Identically Distributed.
IAP Indirect Attribute Prediction.
IDFT Inverse Discrete Fourier Transform.
IMU-tCNN IMU Temporal Convolutional Neural Network.
IS Transfer Learning Informed Supervised Transfer Learning.
ITL Inductive Transfer Learning.
IU Transfer Learning Informed Unsupervised Transfer Learning.

J-HMDB Joints Human Motion DataBase.
JB Joint Boosting.

KDA Kernel Discriminant Analysis.
KNN K-Nearest Neighbour.

LA Left Arm.
LARa Logistic Activity Recognition Challenge.
LARa-M LARa-MoCap.
LARa-Mb LARa-Mbientlab.
LARa-MM LARa-MotionMiners.
LARa-SOBD LARa-Synthetic OBD.
LDA Linear Discriminant Analysis.
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acronyms

LL Left Leg.
LR Logistic Regression.
LSM Least Squares Method.
LSTM Long short-term Memory.
LTCOV Leave-Two-Class-Out Cross Validation.

M-HAR multi-channel time-series Human Activity Recognition.
marker-based MoCap marker-based Motion Capturing System.
MLP Multi-Layer Perceptron.
MM MotionMiners Dataset.
multi-channel Time-Series multi-channel Time-Series.
multi-channel time-series Space multi-channel time-series Space.

NB Naïve Bayes.
NN Nearest Neighbour.
NNA Nearest Neighbour Approximation.
NT Neck or Torso.
NTU RGB+D A large Scale RGB+Depth Dataset for 3D HAR from the Nanyang Techno-

logical University.

OBD On-body Device.
OPD Order-Picking Dataset.
Opp Opportunity Challenge Dataset.

PAF Part Affinity Field.
Pamap2 Physical Activity Monitoring Data Set.
PCA Principal Component Analysis.
PDDL Planning Domain Definition Language.
PDF Probability Density Function.
PHOC Pyramidal Histogram of Characters.
PHOCNet Pyramidal Histogram of Characters Network.
pose-based HAR pose-based Human Activity Recognition.
PRM Probabilistic Retrieval Model.
pRSL Probabilistic Rule Stacking Learner.

QbA Query-by-Attribute.
QbAR Query-by-Attribute Representation.
QbC Query-by-Class.
QbE Query-by-Example.

221



acronyms

QbS Query-by-String.
QbX Query-by-eXpression.
QDA Quadratic Discriminant Analysis.
QPP Quadratic Programming Problem.

RA Right Arm.
ReLU Rectified Linear Unit.
RF Random Forest.
RFE Recursive Feature Elimination.
RL Right Leg.
RNN Recurrent Neural Network.
RP Random Projection.

SBFS Sequential Backward Feature Selection.
SBGD Stochastic Batch Gradient Descent.
SD Standard Deviation.
sEMG Surface Electromyography Sensors.
Sensor-based HAR Sensor-based Human Activity Recognition.
SFFS Sequential Forward Feature Selection.
SGD Stochastic Gradient Descent.
SLP Single-Layer Perceptron.
SMGD Stochastic Minibatch Gradient Descent.
SMPL Skinned Multi-Person Linear Model.
SOBD Synthetic On-body Device.
SPP Spatial Pyramid Pooling.
SPP Layer SPP Layer.
STIP Spatio-Temporal Interest Points.
SVM Support Vector Machine.

TBCE Total Binary Cross-Entropy.
TCCE Total Categorical Cross-Entropy.
tCNN Temporal Convolutional Neural Network.
TL Transfer Learning.
TM Template Maching.
TN True Negative.
TP True Positive.
TPP Temporal Pyramid Pooling.
Transfer Learning for HAR Transfer Learning for Human Activity Recognition.
Transfer Learning for M-HAR Transfer Learning for Multi-channel Time-Series HAR.
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acronyms

TSSE Total Sum Squared Error.
TTL Transductive Transfer Learning.

US Transfer Learning Uninformed Supervised Transfer Learning.
UU Transfer Learning Uninformed Unsupervised Transfer Learning.

video-based HAR video-based Human Activity Recognition.

Zero-Shot HAR Zero-Shot Human Activity Recognition.
Zero-Shot M-HAR Zero-Shot Multi-channel Time-Series HAR.
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