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ABSTRACT Stochastic Model Predictive Control (SMPC) is a promising solution for controlling
multivariable systems in the presence of uncertainty. However, a core challenge lies in obtaining a
probabilistic system model. Recently, multi-step system identification has been proposed as a solution.
Multi-step models simultaneously predict a finite sequence of future states, which traditionally involves
recursive evaluation of a state-space model. Particularly in the stochastic context, the recursive evaluation
of identified state-space models has several drawbacks, making multi-step models an appealing choice.
As a main novelty of this work, we propose a probabilistic multi-step identification method for a linear
system with noisy state measurements and unknown process and measurement noise covariances. We show
that, in expectation, evaluating the identified multi-step model is equivalent to estimating the initial state
distribution and subsequently propagating this distribution using the known system dynamics. Therefore,
using only recorded data of an unknown linear system, our proposed method yields a probabilistic multi-
step model, including the state estimation task, that can be directly used for SMPC. As an additional novelty,
our proposed SMPC formulation considers parametric uncertainties of the identified multi-step model.
We demonstrate our method in two simulation studies, showcasing its effectiveness even for a nonlinear
system with output feedback.

INDEX TERMS Stochastic model predictive control, system identification, multi-step identification,
data-based control.

I. INTRODUCTION
Model predictive control (MPC) is a popular strategy to
control multivariable systems with constraints [1]. At its
core, MPC uses a system model to predict and optimize
the future behavior of the system. Obtaining a suitable
system model is therefore a central requirement for MPC and
has been recognized as a major challenge for decades [2].
Traditionally, state-space representations of the prediction
model have been used for MPC and other control schemes.
A state-space representation is the obvious choice for models
that are obtained from first principles and typically employed
for data-based system identification [3], [4]. Under ideal
conditions, state-space models can exactly describe the
system dynamics with the fewest number of parameters.
To obtain predictions over multiple timesteps, as required
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for MPC, the state-space model can be evaluated recursively.
However, a recent trend in system identification is to directly
identify multi-step prediction models [5], [6], [7], [8].

A multi-step model can simultaneously predict finite
sequences of future states with an individual function for
each step of the sequence. At first glance, a multi-step
model appears to add unnecessary complexity to the system
identification and control task. However, recent work has
shown that multi-step identification can have significant
advantages over state-space identification [7], [8]. Most
importantly, multi-step models can have a better accuracy
than state-space models and complexity is added only to the
offline identification task, not to the online control task.

A closely related trend to multi-step model identification is
data-enabled predictive control (DeePC) [9], [10], [11], [12].
DeePC draws from behavioral systems theory and combines
an implicit multi-step model identification and control task
in a single optimization problem. The close relationship
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between DeePC and MPC with multi-step prediction models
has recently been shown in [12], [13].
Another major challenge for the application of MPC is

the presence of uncertainty. While nominal MPC provides
a certain robustness, it is often not sufficient, especially
if the system operates close to safety-critical constraints.
A promising approach to handle this situation is stochastic
MPC (SMPC) [14], [15]. SMPC can be applied when
the uncertainty in the model follows a known probability
distribution function and it relies on the formulation of chance
constraints, that is, constraints with specified probability of
violation.

Tackling the challenges of data-based identification and
control under uncertainty with state-space and multi-step
models is a prominent field of research [6], [7], [8], [17].
There are, however, important limitations in previous works
using multi-step identification and SMPC. For example,
it was previously assumed that the process and measure-
ment noise covariances are known for the identification
of the probabilistic multi-step model [8]. Unfortunately,
this assumption significantly limits the applicability in
practice, as the process noise typically represents unknown
disturbances of the system. Additionally, most stochastic
MPC formulations require state-feedback to solve the optimal
control problem [14], [15], which is often not available in
practice.

As a main contribution of this work, we propose a stochas-
tic MPC formulation based on multi-step identification
without knowledge of the process and measurement noise
covariances. Our proposed method is derived for systems
with noisy statemeasurements andwe formulate the objective
function and chance constraints of the SMPC problem in
terms of these measurements. We show that with maximum
likelihood estimation, we identify a multi-step model that,
in expectation, describes the true distribution of the future
measurements of the system. Crucially, this true distribution
also considers the uncertainty for the initial state which is
estimated from the initial measurement using a Kalman fil-
ter [1]. Therefore, evaluating our identified multi-step model
with noisy state measurements is equivalent to estimating
the initial state distribution and subsequently propagating
this distribution using the known system dynamics. Finally,
we show that this property is a unique advantage of multi-
step models and does not apply to recursively evaluated
state-space models.

The identified multi-step model is thus readily applicable
for the formulation of an SMPC problem with noisy state-
feedback. As another contribution of this work, our proposed
SMPC formulation directly considers the parametric uncer-
tainties of the identified multi-step model. This is in contrast
to previous work, where the parametric uncertainties were
included as an ellipsoidal uncertainty set [8]. As a final
contribution, we investigate the proposed SMPC controller
based on multi-step models, comparing it to a variant relying
on identified state-space models. We conduct this evaluation
in two simulation studies, showcasing the effectiveness of

SMPC with identified multi-step model, even for a nonlinear
system with output feedback.

This paper is structured as follows. In Section II,
we introduce the stochastic optimal control problem for
a linear dynamic system with known system matrices
and noise covariances. In Section III, we assume that
this information is not available and discuss probabilistic
multi-step identification from data. In Section IV, the
proposed SMPC problem based on the identified multi-step
model is presented. We investigate our method with a linear
building system in Section VI, and a nonlinear CSTR system
in Section VII. The work is concluded in Section VIII.

II. STOCHASTIC MODEL PREDICTIVE CONTROL
We consider a linear and uncertain dynamic system given in
the discrete-time formulation as:

xk+1 = Axk + Buk + Exex,k , (1a)

yk = Cxk + Eyey,k , (1b)

with states x ∈ Rnx , inputs u ∈ Rnu , measurements y ∈ Rny ,
process noise ex,k ∈ Rne,x and measurement noise ey,k ∈

Rne,y . The system is described with the matrices A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx , Ex ∈ Rnx×ne,x and Ey ∈ Rny×ne,y .
As in previous related work [8], we introduce the following
assumption.
Assumption 1: The system (1) is subject to noisy state-

feedback, that is C = I .
For practical applications, this assumption can be relaxed
to output-feedback, as we demonstrate in Section VII.
Furthermore, we assume the following properties of the
system noise.
Assumption 2: The system (1) is subject to additive

Gaussian process noise and measurement noise, that is:
ex,k ∼ N (0, 6x) and ey,k ∼ N (0, 6y), ∀k.
As a main premise of this work, we consider the system
matrices A,B,Ex and Ey and the covariance matrices 6x
and 6y as unknown. In the following subsection, we derive
multi-step models from the state-space representation in (1),
and propose an identification method of the parameters of the
multi-step model in Section III.

A. MULTI-STEP PREDICTIONS
To formulate the stochastic model predictive control problem
in Subsection II-C, we require the probability distribution of
the future sequence of system measurements. If the system
matrices are known, a multi-step prediction can be obtained
by recursively evaluating the state state-space model in (1).
Considering Assumption 1, we have:

y[1,N ] = O(A)x0 + T (A,B)u[0,N−1]

+ T (A,Ex)ex,[0,N−1] + (IN ⊗ Ey)ey,[1,N ], (2)

where y⊤[1,N ] =
[
y⊤1 , . . . , y⊤N

]
denotes a finite sequence of

outputs, ⊗ is the Kronecker product and IN is the identity
matrix of dimension N . The element in block i, j of the
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matrices T (·, ·) and O(·) can be obtained as:

[T (A,B)]i,j =

{
Ai−jB, if i ≥ j
0, otherwise

∀i, j ∈ I[1,N ], (3a)

[O(A)]i,1 = Ai ∀i ∈ I[1,N ]. (3b)

We denote with I[1,N ] the set of integers from 1 to N .
Considering (2) and Assumption 2, it follows for the
distributed multi-step predictions:

p(y[1,N ]|x0,u[0,N−1]) = N (ȳ[1,N ], 6y,[1,N ]), (4a)

with:

ȳ[1,N ] = O(A)x0 + T (A,B)u[0,N−1], (4b)

6y,[1,N ] = T (A,Ex)(IN ⊗ 6x)T (A,Ex)⊤

+ IN ⊗ (Ey6yE⊤
y ). (4c)

The covariance in (4c) is obtained by considering the
distributions ex,[0,N−1] ∼ N (0, IN ⊗ 6x) and ey,[1,N ] ∼

N (0, IN ⊗ 6y), the properties of a linear transformation of
a normally distributed variable [18, 20.23 b], and the mixed
product rule for the Kronecker product [18, 11.11 a].

B. INCORPORATING THE STATE ESTIMATION
The predictive distribution in (4) is conditional on the initial
state x0. However, due to the presence of measurement
noise, the initial state x0 is unknown and must be estimated.
The optimal state estimator for system (1) and considering
Assumption 2 is the Kalman filter [1]. The Kalman filter
yields a distribution for the estimated initial state which
should also be considered for the distributed multi-step
prediction.

In the following lemma, we incorporate the estimated
distribution of the initial state to obtain the distribution
p(ŷ[1,N ]|y0,u[0,N−1]). In contrast to (4), this distribution is
conditional on the noise affected measurement y0 instead of
the unknown x0. Obtaining this distribution allows to directly
state the stochastic optimal control problem for the measured
initial state in the following subsection. Furthermore, we will
revisit this distribution for the multi-step identification in
Section III.

For the state estimation, we require a prior distribution
of x0. Without loss of generality and for ease of notation, we
assume that this prior has a zero mean.
Assumption 3: The states of the dynamic system are

distributed according to x0 ∼ N (0, 6x,0).
This allows to state the following lemma.
Lemma 1: Assumption 1-3 hold. The distribution of the

multi-step prediction, conditional on y0 and u[0,N−1], can be
described with:

p(ŷ[1,N ]|y0,u[0,N−1]) = N ( ˆ̄y[1,N ], 6̂y,[1,N ]). (5)

The mean and covariance in (5) are:

ˆ̄y[1,N ] = O(A)Ly0 + T (A,B)u[0,N−1], (6a)

6̂y,[1,N ] = 6y,[1,N ] +O(A)(I − L)6x,0O(A)⊤, (6b)

where6y,[1,N ] is defined in (4c), and the Kalman gain can be
computed as:

L = 6x,0(6x,0 + Ey6yE⊤
y )

−1. (6c)

Proof: With observed measurements y0, and prior
distribution of the states x0 from Assumption 3, we can
perform a Kalman filter correction step [1]:

L = 6x,0C⊤(C6x,0 + Ey6yE⊤
y )

−1,

x̄+

0 = x̄0 + L(y0 − Cx̄0),

6+

x,0 = (I − LC)6x,0,

with prior mean x̄0 = 0, posterior mean x̄+

0 and posterior
covariance6+

x,0. With C = I , due to Assumption 1, and x̄0 =

0, due to Assumption 3, we obtain:

L = 6x,0(6x,0 + Ey6yE⊤
y )

−1,

x̄+

0 = Ly0,

6+

x,0 = (I − L)6x,0,

With mean x̄+

0 and covariance 6+

x,0, we have the posterior
distribution:

x0 ∼ N (Ly0, (I − L)6x,0). (7)

Substituting the distribution (7) in (2) yields (6). □
We omit the prediction step of the Kalman filter in

Lemma 1 for reasons that will be clarified in Subsection IV-A.
For the discussion in this section, the prediction step
is implicitly considered through Assumption 3, that is,
we assume to have the true prior distribution of the states.

C. STOCHASTIC OPTIMAL CONTROL PROBLEM
With the distributed multi-step system response (5), we can
now state the stochastic optimal control problem. As is
commonly the case for data-based MPC [9], we formulate
cost and constraints for the measured outputs of the system.
Furthermore, we directly incorporate the state estimation in
the formulation and consider the uncertainty of the distributed
initial state as shown in the previous subsection.

With expectation E(·), and probability P(·), we have the
stochastic optimal control problem:

min
u[0,N−1]∈A

E
[
∥ŷ[1,N ]∥

2
Q + ∥u[0,N−1]∥

2
R

]
s.t. P

[
a⊤
j ŷ[1,N ] ≤ bj

]
≥ (1 − ϵ) ∀j ∈ I[1,nc], (8)

with ŷ[1,N ] ∼ N ( ˆ̄y[1,N ], 6̂y,[1,N ]) obtained from (5), positive
definite weighting matrices Q ≻ 0, R ≻ 0 and convex
constraint set A. We denote the norm ∥y∥2Q = y⊤Qy. The nc
chance constraints, can be violatedwith probability ϵ ∈]0, 1[,
and are introduced as individual halfspaces [19, 2.2.1] with
aj ∈ Rny and bj ∈ R for j ∈ I[1,nc].
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In the described setting, we can reformulate (8) as
a deterministic problem, which yields the same optimal
solution [15]:

min
u[0,N−1]∈A

∥ˆ̄y[1,N ]∥
2
Q + ∥u[0,N−1]∥

2
R + trace

(
Q6̂y,[1,N ]

)
s.t. a⊤

j
ˆ̄y[1,N ] ≤ bj − cp(ϵ)∥aj∥6̂y,[1,N ]

∀j ∈ I[1,nc], (9)

with ˆ̄y[1,N ] and 6̂y,[1,N ] from (6). The factor cp(ϵ) =
√
2erf−1(1 − 2ϵ) is the quantile of the standard normal

distribution and erf−1 denotes the inverse error-function [20].
Problem (9) is a quadratic optimization problem depending

on the measured initial state y0 and implicitly considers a
Kalman filter for the state estimation.

III. PROBABILISTIC MULTI-STEP IDENTIFICATION
For the formulation of the stochastic optimal control
problem (9), we require the multi-step distribution in (5).
Commonly, the parameters of this distribution are obtained
from the system matrices in (1) and the covariances
of process and measurement noise from Assumption 2.
However, In many practical applications this information is
unavailable.

In this section, we propose to use maximum likelihood
estimation to identify directly the parameters of the multi-
step distribution in (5) from system data. In contrast to
previous work [8], we do not assume knowledge of the
process and measurement noise covariances. As a main
contribution, we present Theorem 1. The theorem establishes
that, with the expected values for the estimated parameters
and covariance matrix, we obtain the distributed multi-step
prediction in (5). The identified multi-step model thus
implicitly estimates the initial state distribution from noisy
measurements.

A. PRELIMINARIES
To simplify the successive notation, we formulate the
multi-step prediction model (2) as:

t = W⊤z+ et , (10)

with independent variable z = [x⊤

0 , u⊤

[0,N−1]]
⊤

∈ Rnz , and
response variable t = y[1,N ] ∈ Rnt . We have nz = nx + Nnu
independent variables and nt = Nny response variables. The
transposed parameters are

WT
= [O(A), T (A,B)], (11)

and we have additive noise et ∼ N (0, 6t ), with 6t =

6y,[1,N ]. It follows directly for the distribution of the response
variables:

p(t|z,W , 6t ) = N (W⊤z, 6t ). (12)

Due to measurement noise, the true value of z is unknown and
we introduce

v = z+ ev, (13)

with ev ∼ N (0, 6v) and 6v = diag(Ey6yE⊤
y ,0). We denote

with diag(A,B) the block-diagonal matrix with A and B on
the diagonal.

B. PARAMETER AND COVARIANCE ESTIMATION
We seek to identify the multi-step system response from data.
To this end, we gatherm sequences of the dynamic system and
introduce:

vi =

[
y(i)⊤0 , u(i)⊤[0,N−1]

]⊤

, t i = y(i)[1,N ] ∀i ∈ I[1,m], (14)

We have the set D = {V ,T} with design matrix [21] V =

[vi, . . . , vm]⊤ and T = [t i, . . . , tm]⊤. The linear model (10)
is compactly evaluated for all samples with:

T = VW + Et , (15)

where the vectorized residual matrix Et has the distribution
vec(Et ) ∼ N (0, 6t ⊗ Im). We require the following
assumption for the design matrix.
Assumption 4: We have m > nz samples and the design

matrix V ∈ Rm×nz has full rank, that is, rank(V ) = nz.
In practice, Assumption 4 also implies that the gathered input
sequences must be persistently exciting [10].
This allows to state the following theorem for the

identification of the probabilistic multi-step model.
Theorem 1: Assumption 1 and 2 hold. We have data

samples from (14) that satisfy Assumption 3 and 4. The bias
corrected maximum likelihood approach yields the estimated
parameters and covariance matrix:

Ŵ
∗

= 6∗
pV

⊤T , (16a)

6̂
∗

t =
1

m− nz
(VŴ

∗
− T )⊤(VŴ

∗
− T ), (16b)

with:

6̂
∗

p = (V⊤V )−1. (16c)

We partition the estimated parameters as

Ŵ
∗⊤

= [Ô∗

A, T̂ ∗

A,B],

and have 6̂
∗

t = 6̂
∗

y,[1,N ]. The estimated parameters and
covariance matrix have the property:

E[Ô∗

A] = O(A)L, (17a)

E[T̂ ∗

A,B] = T (A,B), (17b)

E[6̂∗

y,[1,N ]] = 6y,[1,N ] +O(A)(I − L)6x,0O(A)⊤. (17c)

In expectation, the estimated parameters and covariance
matrix are thus identical to the true parameters and
covariance matrix in (5).

Proof: We consider the multi-step model in the form
of (12) and have noise disturbed independent variables
from (13). Only as an intermediate step of the derivation,
we introduce the assumption that u[0,N−1] ∼ N (0, 6u,0).
This allows to state the distribution z ∼ N (0, 6z) with
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6z = diag(6x,0, 6u,0). We state the joint distribution of t
and v as shown in [22]:

p
(
[t, v]⊤|W , 6t

)
= N

([
0
0

]
,

[
W⊤6zW + 6t W⊤6z

6zW 6z + 6v

])
, (18)

and the resulting conditional probability follows directly from
the properties of a Gaussian normal distribution:

p(t|v,W , 6t )

= N (W⊤Kv, 6t +W⊤(6z − K6z)W ), (19)

with reliability matrix [23]:

K = 6z(6z + 6v)−1. (20)

Furthermore, we introduce Ŵ
⊤

= W⊤K and 6̂t = 6t +

W⊤(6z − K6z)W and state (19) as:

p(t|v, Ŵ , 6̂t ) = N (Ŵ
⊤
v, 6̂t ). (21)

Of the independent variables, only y0 is affected by measure-
ment error. We therefore introduce 6v = diag(E6yE⊤,0),
and can further simplify (20):

K =

[
6x,0 0
0 6u,0

] ([
6x,0 + Ey6yE⊤

y 0
0 6u,0

])−1

=

[
6x,0(6x,0 + Ey6yE⊤

y )
−1 0

0 I

]
(6c)
=

[
L 0
0 I

]
.

The previously introduced 6u,0 thus vanishes from the
expression. We substitute K = diag(L, I) in (19) and
consider the definition of the parameters W from (11).
We obtain:

Ŵ
⊤

= [O(A)L, T (A,B)], (22a)

6̂t = 6y,[1,N ] +O(A)(I − L)6x,0O(A)⊤. (22b)

With the distribution of the response variables in (21), we
have the likelihood:

p(t = T |V , Ŵ , 6̂t ) = p(D|Ŵ , 6̂t ). (23)

To compute the likelihood, we vectorize (15) and consider the
properties of the Kronecker product [18, 11.16]:

p(D|Ŵ , 6̂t ) = N ((I ⊗ V )vec(Ŵ ), 6̂t ⊗ Im). (24)

We then maximize the likelihood:

Ŵ
∗
, 6̂

∗

t = arg max
Ŵ ,6̂t

p(D|Ŵ , 6̂t ). (25)

Problem (25) has the explicit solution shown in (16) with
bias corrected covariance matrix [21], [23]. The inverse
in (16c) always exists and we have m > nz in (16b) due
to Assumption 4. The estimated parameters and covariance
have the property that [21], [23]:

E(Ŵ
∗
) = Ŵ ,

E(6̂∗

t ) = 6̂t .

Considering the definition of Ŵ and 6̂t in (22),
we obtain (17). □
As a main consequence of Theorem 1, we have that the

estimated parameters and covariance in (16) are, in expec-
tation, identical to the parameters and covariance of the
distribution (5). Therefore, we directly obtain the distributed
multi-step predictions that incorporates the state estimation.
Finally, we want to remark that the computational com-

plexity of the estimation boils down to the operations in (16)
which are tractable even for larger systems.

C. PARAMETRIC UNCERTAINTY
Theorem 1 allows to efficiently estimate the unknown
parameters and the full covariance matrix of the probabilistic
multi-step model in (5). While we have the favorable
property that the estimated parameters are unbiased, we can,
in practice, only consider a finite number of samples for
the identification task. Consequently, we must consider the
parametric uncertainty of the estimated parameters for which
we introduce the following theorem.
Theorem 2: Assumptions 1-4 hold, and we have a

non-informative prior distribution for the parameters Ŵ .
We havem samples of data from (14) andmaximum likelihood
estimates of the parameter and covariance matrix from (16).
Considering the posterior distribution of the parameters, i.e.
the parametric uncertainty, we have the distributed multi-step
prediction:

p(ŷ∗[1,N ]|D, y0,u[0,N−1]) = N ( ˆ̄y∗[1,N ], α(v)6̂
∗

y,[1,N ]), (26a)

with:

ˆ̄y∗[1,N ] = Ô∗

Ay0 + T̂ ∗

A,Bu[0,N−1], (26b)

α(v) = (1 + v⊤6̂
∗

pv), (26c)

where v⊤ = [y⊤0 ,u⊤

[0,N−1]].
Proof:We consider themulti-stepmodel in the form of (12)

and have noise disturbed independent variables from (13).
We have estimated parameters Ŵ

∗
and 6̂

∗

t from Theorem 1.
The posterior of the identified parameters is

p(Ŵ
∗
|D, 6̂

∗

t ) =
p(D|Ŵ

∗
, 6̂

∗

t )p(Ŵ
∗
)

p(D|6̂
∗

t )
. (27)

For the likelihood, we again consider the vectorized formula-
tion in (24).With the non-informative prior, i.e. p(Ŵ ) ∼ 1, we
obtain the posterior distribution for the vectorized parameters
vec(Ŵ

∗
):

p(vec(Ŵ )|D, 6̂
∗

t ) = N (vec(Ŵ ), 6̂
∗

t ⊗ 6̂
∗

p). (28)

We then vectorize the linear model (10) for a single test point,
yielding:

t⊤ = v⊤Ŵ + e⊤t
vec(·)
⇔ t = vec

(
v⊤Ŵ

)
+ et

=

(
I ⊗ v⊤

)
vec

(
Ŵ

)
+ et .
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Considering the distribution of the vectorized parameters
in (28), we obtain a multivariate normal distribution for the
response variables with mean E[t] = Ŵ

⊤
v and covariance

Cov[t] = (I ⊗ v⊤)(6̂
∗

t ⊗ 6̂
∗

p)(I ⊗ v⊤)⊤ + 6̂
∗

t

= 6̂
∗

t ⊗ v⊤6̂
∗

pv+ 6̂
∗

t .

The first equality stems from the properties of a linear
transformation of a normally distributed random variable
[18, 20.23 b], and the second equality follows from the mixed
product property of the Kronecker product [18, 11.11]. For
a single test point v, the term v⊤6̂

∗

pv is a scalar and the
Kronecker product simplifies to a scalar multiplication:

Cov[t] = (v⊤6̂
∗

pv)6
∗
t + 6̂

∗

t = (v⊤6̂
∗

pv+ 1)6̂
∗

t = α(v)6̂
∗

t .

With mean and covariance, we thus have the distribution:

p(t|D, v) = N (Ŵ
∗⊤
v, α(v)6̂

∗

t ). (29)

From the definition of v, t and considering (16), we obtain the
distributed multi-step prediction in (26). □
The distributed multi-step prediction including the para-

metric uncertainty is thus given in (26). We observe the
following behavior as the number of samples m used for the
identification increases. As shown in [21, 3.3.2], we have for
m → ∞ that α(v) → 1. In the same limit, the identified
parameters and covariance matrix converge to their expec-
tation in (17) and we recover exactly the distribution (5).
We demonstrate this behavior in the numerical example in
Section VI.

IV. STOCHASTIC MPC WITH IDENTIFIED MULTI-STEP
MODEL
With the distribution in (26) we have the data-based
equivalent to (5) including the parametric uncertainty from
the identification task. The deterministic formulation of
the stochastic optimal control problem (9) with identified
multi-step model is given as:

min
u[0,N−1]∈A

∥ˆ̄y∗[1,N ]∥
2
Q + ∥u[0,N−1]∥

2
R

+ trace
(
α(v)Q6̂

∗

y,[1,N ]

)
(30a)

s.t. a⊤
j

ˆ̄y∗[1,N ]≤bj−cp(ϵ)∥aj∥α(v)6̂
∗

y,[1,N ]
∀j∈I[1,nc]. (30b)

The weight matrices Q and R, constraint set A and the
chance constraints, defined with aj, bj ∀j ∈ I[1,nc] and ϵ, are
analogous to (9). As a main difference between (9) and (30),
the mean ˆ̄y∗[1,N ] and covariance 6̂

∗

y,[1,N ] now stem from
distribution (26). The parametric uncertainty of the identified
model results in the factor α(v), introduced in (26c), where
v⊤ = [y⊤0 , u⊤

[0,N−1]].
Due to the parametric uncertainty, and in contrast to (9),

the optimization problem in (30) is not a quadratic problem
anymore. We show in Appendix A that problem (30) consti-
tutes a convex second-order cone program [19]. In contrast
to previous work [8], where the parametric uncertainty is

included as an ellipsoidal uncertainty set, we propose to solve
problem (30) directly.

A. RECURSIVE APPLICATION
The stochastic optimal control problem in (30) is solved
repeatedly at each sampling time to yield closed-loop control
actions. This introduces the well known challenges to guar-
antee recursive feasibility and stability [14]. Additionally,
we have to consider a limitation of the identified multi-
step model. As shown in Theorem 1, the multi-step model
identifies the parameters and covariance matrix for the
distribution in (5). This distribution incorporates a Kalman
filter correction step, considering the prior distribution of the
initial state pprior(x0) and the current measurement. However,
this prior for the initial state distribution is not explicitly
formulated. Instead, it coincides with the distribution of the
initial state from the sampled data psamp.(x0), as required
for Theorem 1. In other words, the multi-step model always
considers the same prior distribution, that is, pprior(x0) =

psamp.(x0).
This has two important limitations. First, it is imperative

that the multi-step model is evaluated only for initial states
x0,eval that are reasonably probable in terms of the distribution
of the initial state from the sampled data. This is an intuitive
limitation, as it is detrimental to perform a Kalman filter
correction step with poorly selected prior state distribution.
It is, however, a limitation in the sense that data for the
identification task must be sampled in the same range that
is expected for the closed-loop operation.

The second limitation arises from the fact that with
identified multi-step model the prior state distribution is
not updated. Updating the prior distribution is typically
an important step of Kalman filtering and allows for
convergence to the true state distribution over multiple
iterations. In practice, this limitation increases the uncertainty
of the predicted future measurements and may lead to more
conservative control actions of the SMPC controller.

V. STATE-SPACE IDENTIFICATION
To have a comparative baseline for our proposed method,
we also employ a probabilistic state-space identification
approach. We consider the same data for the identification
task which stems from system (1) with unknown parameters
and process and measurement noise covariances. In particu-
lar, we have the data with individual samples:

vi =

[
y(i)⊤0 , u(i)⊤0

]⊤

, t i = y(i)1 ∀i ∈ I[1,m]. (31)

A. CHALLENGES WITH STATE-SPACE IDENTIFICATION
We can identify a state-space model as a special case of the
described multi-step identification approach with N = 1.
In that case, it follows from (3) thatO(A) = A and T (A,B) =

B. Unfortunately, state-space identification poses two major
challenges which both stem from the requirement that the
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identified model must be recursively evaluated to obtain the
multi-step prediction.

The first challenge is related to the measurement noise of
the system. From Theorem 1, we obtain parameters Â

∗
, B̂

∗

and 6̂
∗

y,1 with the properties:

E[Â
∗
] = AL,

E[B̂
∗
] = B,

E[6̂∗

y,1] = 6y,1 + A(6x,0 + L6x,0)A⊤,

where

6y,1 = AEx6xE⊤
x A

⊤
+ Ey6yE⊤

y . (32)

In expectation, the identified parameters are thus identical to
the parameters in (6). With:

ˆ̄y∗1 = Â
∗
y0 + B̂

∗
u0, (33)

we thus have the conditional distribution (5) for N = 1:

p(ŷ∗1|y0,u0) = N ( ˆ̄y∗1, 6̂
∗

y,1). (34)

We can recursively evaluate (34) to obtain a distributed
multi-step prediction ŷ[1,N ]. Unfortunately, this will not yield
the correct multi-step prediction in (5) for N > 1. This is
due to the fact that (32) contains contributions from both
the process noise and the measurement noise. The recursive
evaluation of (34) thus propagates the measurement noise
which can significantly inflate the uncertainty of the multi-
step prediction.
The second challenge with state-space identification is the

parametric uncertainty discussed in Subsection III-C. This
uncertainty can be considered for a single-step prediction
with (26) and N = 1. However, there is no closed-form
solution for the recursive application of (34) if parametric
uncertainties are considered.

B. IDENTIFIED STATE-SPACE MODEL FOR SMPC
The distributed multi-step system response obtained from
the recursively evaluated state-space model is expected to
have significant shortcomings due to the challenges discussed
above. Regardless, we suggest an approach to formulate
the stochastic MPC problem with the identified state-space
model. The approach serves as an important comparative
baseline, as it is obtained under the same premises as for the
multi-step identification.
We formulate the stochastic MPC problem as in (9), using

the identified state-space model with parameters Â
∗
, B̂

∗

and covariance 6̂
∗

y,1. The distributed multi-step prediction is
obtained by recursively evaluating (34) without considering
the parametric uncertainty.

VI. LINEAR CASE STUDY
In this and the following section, we investigate the proposed
method in two simulation studies. We first consider a linear
system with noisy state-feedback and investigate a nonlinear
system with noisy output-feedback in Section VII. For both

simulation studies, the complete code and our results are
available online.1

A. SYSTEM DESCRIPTION
We consider the linear building model previously presented
in [24]. The system has five states x = [T1, . . . , T4, Ta]⊤,
where Ti [◦C] is the temperature in room i and Ta
[◦C] the ambient temperature. The room temperatures are
controlled with combined heating and cooling units u =

[Q̇1, . . . , Q̇4]⊤ [kW]. The dynamics are modeled as a
resistance network [25].We assume that an uncertain forecast
Tf [◦C] of the ambient temperature is available, and model
this situation with Ṫa = τa(Tf − Ta) + eT ,a, and significant
process noise. The model is parameterized as in [24],
including τa = 1/72.000 and discretized with timestep
1t = 3600 s. Furthermore, we define the variances σ⊤

x =

[0, 0, 0, 0, 0.5] and σ⊤
y = 10−1

· [1, 1, 1, 1, 1] for the process
and measurement noise. The covariance matrices are then
obtained as 6x = diag(σ 2

x ) and 6y = diag(σ 2
y ).

B. SYSTEM IDENTIFICATION
In our first investigation, we seek to show that with the
proposed multi-step identification, we obtain a data-based
model that represents the distributed system response in (5).
We want to highlight, in particular, that this distribution
incorporates the effect of the state estimation as discussed in
Subsection II-B.
For the investigation, we first determine an initial state dis-

tribution according to Assumption 3. With standard deviation
σ⊤

x,0 = [2, 2, 2, 2, 5] and mean x̄⊤

0 = [20, 20, 20, 20, 15],
we have:

x0 ∼ N (x̄0, diag(σ 2
x,0)). (35)

Two multi-step models, both with horizon N = 12, are
identified. We denote MSMa for the identified multi-step
model using m = 1000 sequences, and MSMb for the
identified multi-step model with m = 100 sequences. All
sequences start from a random initial state according to
distribution (35) and we normalize the data to achieve a
zero-mean as required for Assumption 3.
Additionally, we obtain the ground truth for the predictive

distribution. To this end, we consider the true system and
covariance matrices and evaluate distribution (5), which
includes the Kalman filter correction step for the prior
distribution in (35).

In Figure 1, we display the distributedmulti-step prediction
p(ŷ[1,N ]) over the prediction horizon. We show the mean
and the standard deviation for T1, T2 and Ta. The other
states are omitted from the plot to improve readability.
Furthermore, we show the joint distribution p(Ti,Tj) at t =

12 h. In comparison to the ground truth, MSMa yields almost
the identical predictive distribution. This is consistent with
our theoretical results presented in Theorem 1. Due to the
large number of samples the identified parameters are almost

1https://github.com/4flixt/2023_Stochastic_MSM
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FIGURE 1. Distributed multi-step prediction of the building system for an initial measurement y0 and random control sequence u[0,N−1] for N = 12.
Comparison of true distribution (5) and two identified multi-step models (MSM). The distribution of MSMa with m = 1000 samples and MSMb with
m = 100 samples are obtained according to (26).

identical to their expectation in (17), and we recover the
true distribution in (5) from data. On the other hand, MSMb
is identified with only m = 100 samples and therefore
experiences significant parametric uncertainty, according to
Theorem 2. However, while the obtained distribution is
broader and the mean is shifted, it still approximates the true
distribution in (5).

C. STOCHASTIC MPC
We formulate a stochastic MPC controller based on the
identifiedmulti-step model (MSM-SMPC). As a comparative
baseline, we also formulate a stochastic MPC controller
based on an identified state-space model (SSM-SMPC). Both
models are obtained from the same data as described in the
previous subsection.

For the control objective, we choose the cost function:

J (u[0,N−1]) =

N−2∑
k=0

(5∥uk∥22 + 10∥uk+1 − uk∥22) + ∥uN−1∥
2
2.

The actuators (heating and cooling power) are limited to
−6 kW ≤ Q̇i ≤ 6 kW for all rooms. We have the individual
chance constraints P(Ti ≥ 18) ≥ (1 − ϵ), which can
be violated with probability ϵ = 10−3. The stochastic
optimal control problem is implemented and solved using
CasADi [26] with IPOPT [27].
In a first investigation, we compare the open-loop predic-

tions of both controllers. We define a scenario with initial
state x0 = [23, 20, 20, 20, 10]⊤◦C and corresponding
noise disturbed measurement y0. We then solve the optimal
control problem in (30) for the multi-step model and (9) for
the state-space model. As discussed in Section V, the SMPC
controller based on the state-space model does not consider
the parametric uncertainty.

TABLE 1. Building system: Closed-loop performance over a period of 50h
with mean and standard deviation computed over 20 samples.

The resulting open-loop predictions are shown in Figure 2.
We display the predicted mean ŷ[1,N ] and standard deviation,
considering cp(ϵ) for the chosen violation probability. Fur-
thermore, we show 50 samples of the true system response for
the optimal open-loop input sequence, considering the same
initial state and randomly drawn process and measurement
noise. It can be seen in Figure 2 that the MSM-SMPC
controller yields a suitable sequence of inputs to minimize the
cost function while satisfying the chance constraints. While
the chance constraints are also satisfied for the SSM-SMPC
controller, the predicted uncertainty bounds are much larger
and overly conservative. In the investigated scenario, with
forecasted ambient temperature of Tf = 10 ◦C, this
leads to suboptimal controls action with unnecessarily high
energy consumption. This effect is expected, as discussed
in Section V, as the identified state-space model incorrectly
propagates the measurement noise.

In a second investigation, we compare the closed-loop
performance of the two controllers. To this end, we consider
the same initial state as in the previous section and recursively
control the system for a period of 50 h with either the
MSM-SMPCor SSM-SMPC controller. The samples differ in
the randomly drawn sequences of process and measurement
noise. Finally, we obtain the percentage of constraint
violations and the total energy consumption for each run and
compute mean and standard deviation of these values. The
performance metrics are shown in Table 1. The MSM-SMPC
controller yields on average 8.3% less energy consumption
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FIGURE 2. Building system: Comparison of open-loop prediction (mean and predicted standard deviation) of SMPC with multi-step model and SMPC
with state-space model for the same initial measurement. The standard deviation is scaled with cp introduced in (9). Using the open-loop control
inputs, 50 samples of the true system response are drawn.

than the SSM-SMPC controller. Both controllers satisfy the
chance constraints with no violations.

VII. NONLINEAR CASE STUDY WITH OUTPUT-FEEDBACK
The proposed multi-step identification approach is derived
for linear systems with noisy state-feedback. Additionally,
we explore its applicability to a nonlinear system with
output-feedback in this section. The application to nonlinear
systems is motivated by interpreting the process noise in (1a)
as an additive nonlinear term. While this interpretation
violates Assumption 2, that is, the process noise is not
normally distributed, we expect to identify amulti-stepmodel
where the identified uncertainty approximately encompasses
the nonlinearities.

As in the previous section, we compare the SMPC based
on an identified multi-step model with a variant based on
state-space identification.

A. SYSTEM DESCRIPTION
For the nonlinear case study, we consider the continuously
stirred tank reactor (CSTR) previously introduced in [28].
The reactor is modeledwith four states x⊤

= [cA, cB,TR,Tk ],
with the concentrations cA [mol L−1] and cB [mol L−1] and
the temperatures TR [◦C] of the reactor and TK [◦C] of the
cooling jacket. As control inputs, we have the flow rate
V̇ [m3 s−1] which is normalized with the reactor volume
VR [m3], yielding F = V̇/VR, and the heat removed
from the jacket Q̇ [kJ h−1]. For the safe operation of the
CSTR, the states and inputs must lie within the bounds
shown in Table 2. In our investigated scenario, the nonlinear

TABLE 2. Bounds for the CSTR system. 1Chance constraint for SMPC.

CSTR system experiences measurement noise with standard
deviation σ⊤

y = [0.01, 0.01, 0.5, 0.5] but no additional
process noise.

The nonlinear model is created and simulated in do-
mpc [29] with a timestep of 18 s. The model equations and
parameters can be found in [28] or online.2

B. SYSTEM IDENTIFICATION
As in the previous section, we compare the identified
state-space model (SSM) and multi-step model (MSM).
Furthermore, we also investigate the effect of having full
state-feedback vs. output-feedback for system identification
and the successive control application. As in related data-
based approaches [5], [6], [9], [11], output-feedback can be
incorporated in the proposed methods by introducing the
state:

x⊤
k = [y⊤[k−l,k],u

⊤

[k−l,k−1]]. (36)

If the system is observable, and with l chosen larger than
the system lag, the introduction of state (36) allows to

2https://github.com/4flixt/2023_Stochastic_MSM
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FIGURE 3. Nonlinear CSTR system: Comparison of log-predictive density
for the identified state-space model (SSM) vs. the multi-step model
(MSM). The predictive density is computed for 100 test cases as shown
in (37). Representation as box-plot with filtered outliers, inter-quartile
range, minimum-maximum range and median.

reformulate the system with output-feedback in the form
of (1) [11] and satisfies Assumption 1. Unfortunately,
considering output-feedback, by introducing the state in (36),
violates Assumption 2 as the additive measurement noise on
the newly introduced state (36) is now correlated. While this
correlation is known to yield biased estimates [3, Sec. 5], we
show in the following example that the proposed method can
still lead to good results.

For the system identification, we gather m = 500 simu-
lated sequences of length L = N + l with N = 20 and
l = 1 for the models with state-feedback and l = 3 for
model with output-feedback. For both cases we also create
m = 100 sequences of test data. All sampled sequences are
created with uniformly random initial state, within the bounds
shown in Table 2, and with persistently exciting random
inputs.

In contrast to the linear case study in Section VI, there is no
ground-truth distribution to evaluate the performance of the
identified models. We therefore investigate the quality of the
obtained probabilistic models by computing the logarithm of
the predicted distribution, that is:

log p
(
y[1,N ] = y(i)[1,N ]|D, y(i)0 ,u(i)[0,N−1]

)
, (37)

for the test samples
(
y(i)[0,N ], u

(i)
[0,N−1]

)
∀i ∈ I[1,m]. The log-

predictive density is an expressive measure for the quality of
the identified probabilistic model. High values indicate high
confidence in correct predictions, while low values indicate
high confidence in incorrect predictions.

We display the log-predictive density in Figure 3 in the
form of a box-plot to visualize the median, the quartile
range, minimum and maximum as well as outliers. The
identified multi-step model shows clear advantages over
the recursively evaluated state-space model. Both, for
state-feedback and output-feedback, the median and quartile
ranges of the log-predictive density are significantly higher
for the multi-step model. We also see that the log-predictive
density obtained with the MSM is increased in the case of

FIGURE 4. Nonlinear CSTR: Output-feedback SMPC closed-loop results
and future prediction with uncertainty bounds. Comparison of SMPC and
prediction with identified multi-step model (MSM) and identified
state-space model (SSM) for an exemplary initial condition.

TABLE 3. Nonlinear CSTR system: Closed-loop SMPC performance over
50 experiments. Comparison of MSM and SSM models with state or
output-feedback.

state-feedback. The state-space model, on the other hand,
experiences more severe outliers for state-feedback, reducing
the overall log-predictive density. We reason that with
state-feedback the uncertainty in the predictive distribution is
reduced as more information is available. However, this only
benefits the log-predictive density of the MSM which yields
accurate predictions with high confidence in that case.

C. STOCHASTIC MPC
We proceed our investigation with an analysis of the stochas-
tic MPC controllers obtained with the multi-step model
(MSM-SMPC) and the state-spacemodel (SSM-SMPC). Fur-
thermore, we continue to investigate the differences between
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output-feedback and state-feedback for the identified systems
and the control application.

All investigated controller variants are implemented with
the control objective to maximize the production of compo-
nent B. Furthermore, we seek to penalize rapid changes of the
control inputs. To this end, we propose the cost function:

J (y[1,N ],u[0,N−1])

= −

N∑
k=1

cB,k +

N−1∑
k=1

(
10−21FK + 10−51Q̇k

)
,

with1Fk = Fk −Fk−1 and1Q̇k = Q̇k −Q̇k−1. The problem
is formulated with horizon N = 20 and must consider the
constraints in Table 2. Of those constraints, we formulate the
safety critical bound of the reactor temperature as a chance
constraint P(TR ≤ 135) ≥ (1 − ϵ), with probability of
violation ϵ = 10−3.
To illustrate the behavior of the MSM-SMPC and

SSM-SMPC controllers, we showcase an exemplary closed-
loop trajectory in Figure 4, for the case of output-feedback.
Both controllers run for 40 timesteps, corresponding to
12min of simulation time. Additionally, we display mean
and standard deviation, scaled with cp(ϵ), of the open-loop
prediction for the final timestep. Both controllers achieve
satisfactory control performance in the example, yielding a
high concentration of cB while safely avoiding the constraint
TR ≤ 135. However, we see in Figure 4 that the SMPC
controller with multi-step model can operate significantly
closer to the chance constraint for the reactor temperature.
This allows to realize a higher product concentration cB and
higher normalized flow rate F , which yields overall more
product.

To further quantify the performance of SSM-MPC and
MSM-SMPC, also for the case of state-feedback, we present
the results in Table 3. We display the amount of produced
component B and the maximum constraint violation of the
chance constraint TR ≤ 135 for all investigated controller
variants. These performance indicators are computed as
mean and standard deviation for 50 independent experiments
with different initial state sampled uniformly within the
bounds in Table 2. The table supports the qualitative finding
from Figure 4. MSM-SMPC outperforms SSM-SMPC in the
scenario with state-feedback and for the scenario with output-
feedback. For the output-feedback scenario, we also see that
SSM-SMPC leads to minor constraint violations. Finally,
we observe that both controllers have a better performance,
in terms of the obtained product, when state-feedback is
available. In the case of state-feedback the MSM-SMPC
controllers results, on average, in 16.4% more product than
the SSM-SMPC controller.

VIII. CONCLUSION
In this work, we propose a novel approach that com-
bines probabilistic multi-step system identification with
stochastic Model Predictive Control (SMPC). Our identifi-
cation procedure is derived for linear systems with noisy

state-feedback and with Gaussian process and measurement
noise. In contrast to previouswork, our proposedmethod does
not require knowledge of the noise covariance matrices.

As a main contribution, we derive that the identified
multi-step model yields, in expectation, the true distribution
of the future measurements. We show that evaluating our
identified model with noisy state-measurements is equivalent
to estimating the initial state distribution and propagating this
distribution with the known system dynamics. In this way,
the identified multi-step model performs an implicit state
estimation and can directly be used to formulate an SMPC
problem for noisy state-measurements.

We demonstrate the theoretical findings and the perfor-
mance of our proposed data-based SMPC controller in two
simulation studies. In comparison to a SMPC controller
based on an identified state-space model, we achieve signif-
icantly better performance and safer operation. Furthermore,
we showcase in the second simulation study that our proposed
method can also be applied to a nonlinear systemwith output-
feedback, despite not being originally derived for this context.

In future work, we seek to rigorously extend our method
to linear systems with output-feedback, by considering the
correlation of the measurement noise. Furthermore, we seek
to extend the method by updating the identified multi-step
model with new data in a recursive fashion.

APPENDIX
A. CONVEXITY OF SMPC PROBLEM WITH PARAMETRIC
UNCERTAINTY
We show that problem (30) is a convex optimization problem.
The last term in the objective function in (30a) can be
reformulated as:

trace
(
α(v)Q6∗

y,[1,N ]

)
=

(
1 + v⊤6̂

∗

pv
)
trace

(
Q6∗

y,[1,N ]

)
,

with positive definite matrix 6̂
∗

p due to Assumption 4. Adding
the convex term to the overall objective function does not
change the convexity of the problem. The expression ˆ̄y∗[1,N ]
in (26b) is linear in the optimization variables u[0,N−1].
It remains to show that the inequality constraint (30b) is
convex. To this end, we show in the following lemma
that (30b) represents a second order cone and is thus
convex [19].
Lemma 2: Let Assumption 4 hold. The constraint (30b)

has the form ∀j ∈ I[1,nc]:

gj(v) ≤ 0,

with:

gj(v) = ã⊤

j v+

√
v⊤6̂

∗

pv+ 1 − b̃j, (38)

where:

ã⊤

j = a⊤
j [T̂

∗

A,B, Ô∗

A]cp(ϵ)
−1d−1/2

j , (39a)

b̃j = bjcp(ϵ)−1d−1/2
j , (39b)
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and:

dj = a⊤
j 6̂

∗

y,[1,N ]aj. (40)

The constraint represents a second order cone.
Proof: To obtain the form in (38), we first insert (26b)

in (30b) and consider the definition of v:

a⊤
j [T̂

∗

A,B, Ô∗

A]v ≤ bj − cp(ϵ)∥aj∥α6̂
∗

y,[1,N ]
. (41)

We expand the term ∥aj∥α6̂
∗

y,[1,N ]
and obtain:

∥aj∥α6̂
∗

y,[1,N ]
=

√
αa⊤

j 6̂
∗

y,[1,N ]aj =
√
dj

√
α,

=
√
dj

√
1 + v⊤6̂

∗

pv, (42)

with constant dj introduced in (40). We insert (42) in (41)
and divide by

√
djcp(ϵ). By introducing and substituting the

expressions (39), we obtain the desired expression (38). □
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