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Abstract

The classical approach to testing for structural change employs retrospective tests using a historical
data set of a given length. Here we consider a wide array of fluctuation-type tests in a monitoring
situation – given a history period for which a regression relationship is known to be stable, we test
whether incoming data are consistent with the previously established relationship. Procedures based on
estimates of the regression coefficients are extended in three directions: we introduce (a) procedures
based on OLS residuals, (b) rescaled statistics and (c) alternative asymptotic boundaries. Compared to
the existing tests our extensions offer better power against certain alternatives, improved size in finite
samples for dynamic models and ease of computation respectively. We apply our methods to two data
sets, German M1 money demand and U.S. labor productivity.
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1 Introduction

Structural stability is of prime importance in applied time series econometrics. Estimates derived from
unstable relationships erroneously considered as stable are not meaningful, inferences can be severely
biased, and forecasts lose accuracy. In a comprehensive study using a sample of 76 representative US
monthly time series and several thousand forecasting relations derived from them, Stock and Watson (1996)
found evidence for parameter instability in a substantial fraction of their models. Not surprisingly, a recent
special issue commemorating the twentieth anniversary of the Journal of Business & Economic Statistics
in 2002, which reprints ten of the most frequently cited papers published in the Journal, includes two
influential articles on structural change, Hansen (1992b) and Zivot and Andrews (1992).

The by now classical approach to the detection of structural changes attempts to detect breaks ex post, see
Hansen (2001) for a state of the art survey. Starting with the pioneering work of Chu, Stinchcombe, and
White (1996) a second line of research has emerged: given that in the real world new data arrive steadily
it is frequently more natural to check whether incoming data are consistent with a previously established
relationship, i.e., to employ a monitoring approach. Below we implement a variety of procedures for the
monitoring situation.

Tests for structural change can be divided into two classes: F tests that are designed for a single-shift (of
unknown timing) alternative (Hansen 1992b; Andrews 1993; Andrews and Ploberger 1994), and fluctuation
tests that do not assume a particular pattern of structural change. Fluctuation tests can in turn either be
based on estimates of the regression coefficients or on regression residuals (recursive or OLS), both from
a widening data window or from a moving window of fixed size. The probably best-known test from the
fluctuation test framework is the recursive (or standard) CUSUM test introduced by Brown, Durbin, and
Evans (1975), later extended by Krämer, Ploberger, and Alt (1988) to dynamic models. A unifying view
on fluctuation-type tests in historical samples is provided by Kuan and Hornik (1995).
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These tests are commonly used to detect structural change ex post (historical tests). The class of fluctu-
ation tests can be extended to the monitoring of structural changes, i.e. for detecting shifts online. Chu
et al. (1996) introduced the first fluctuation test for monitoring by extending the recursive estimates test
of Ploberger, Krämer, and Kontrus (1989). Leisch, Hornik, and Kuan (2000) generalized these results
and established a class of estimates-based fluctuation tests for monitoring. We briefly summarize their
results at the beginning of Section 3 and then extend the class of fluctuation tests for monitoring in three
directions: we consider processes based on OLS residuals, rescale estimates-based processes in order to
improve the empirical size, and consider alternative boundaries for the Brownian bridge in order to improve
power against certain alternatives. In Section 4 we apply the methods introduced as well as some historical
tests to two data sets: German M1 money demand (Lütkepohl, Teräsvirta, and Wolters 1999) – where one
might suspect a structural shift following the German monetary union in 1990 – and U.S. labor productivity
(Hansen 2001). The conclusions will be summarized in Section 5.

2 The model

Consider the standard linear regression model

yi = x�
i βi + ui (i = 1, . . . , n, n + 1, . . .), (1)

where at time i, yi is the observation of the dependent variable, xi = (1, xi2, . . . , xik)� is a k × 1 vector
of regressors, with the first component usually equal to unity, and βi is the k × 1 vector of regression
coefficients.

We refer to the data from i = 1, . . . , n as the history period, where the regression coefficients are assumed
to be constant, i.e. βi ≡ β0, i = 1, . . . , n, and we want to monitor new data from time n+1 onwards to test
whether any structural change occurs in this monitoring period. Thus, tests for monitoring are concerned
with the hypothesis that

βi = β0 (i > n) (2)

against the alternative that at some point in the future the coefficient vector βi changes.

The results in this paper are based on two assumptions as in, e.g., Krämer et al. (1988), one about the
disturbances and one about the regressors:

(A1) {ui} is a homoskedastic martingale difference sequence with respect to Ai, the σ-field generated by
{ys, xs, us|s < i}, with E[u2

i |Ai] = σ2.

(A2) {xi} is such that lim supn→∞
1
n

∑n
i=1 ||xi||2+δ < ∞ for some δ > 0 and || · || the Euclidean norm;

and furthermore that
1
n

n∑
i=1

xix
�
i

p−→ Q

for some finite regular nonstochastic matrix Q.

Assumption (A2) allows for dynamic models, provided the regressors are (almost) stationary.

In what follows, β̂(i,j) is the ordinary least squares (OLS) estimate of the regression coefficients based
on the observations i + 1, . . . , i + j, similarly matrices Q(i,j) indexed with (i, j) are composed using the

observations from the same data window. Analogously, β̂(i) ≡ β̂(1,i) denotes the OLS estimate based
on all observations from 1 through i, and Q(i) is shorthand for Q(1,i). The OLS residuals are denoted as

ûi = yi − x�
i β̂(n) and σ̂2 is some suitable estimator of the disturbance variance, e.g., σ̂2 = 1

n−k

∑n
i=1 û2

i .

The general idea behind all of the procedures we consider is to derive a process that captures the fluctua-
tion either in estimates or in residuals of a regression model and to reject the null hypothesis of stability
whenever there is excessive fluctuation in these processes, as assessed against asymptotic boundaries that
the limiting processes are known to cross with a given probability. The following section presents a class
of such fluctuation-type tests and extends them in several directions.
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3 The generalized fluctuation test for monitoring

3.1 Estimates-based processes

Chu et al. (1996) were the first to extend a fluctuation test, namely the recursive estimates (RE) test, to the
monitoring case. They suggested to employ the recursive estimates process

Yn (t) =
i

σ̂
√

n
· Q(n)

1
2

(
β̂(i) − β̂(n)

)
, (3)

where Q(n) = ·X(n)
�X(n)/n and i = �k+t(n−k)� with t ≥ 0, and to reject the null hypothesis whenever

(one component of) the process Yn(t) crosses the boundary ±b1(t) where

b1(t) =

√
t(t − 1)

[
λ2 + log

(
t

t − 1

)]
(4)

in the monitoring period 1 < t < T and λ determines the significance level of this procedure, or equiva-
lently when maxi |Yin(t)|, i = 1, . . . , k, crosses b1(t).
Leisch et al. (2000) introduced the generalized fluctuation test for monitoring, which contains the test of
Chu et al. (1996) as a special case. Specifically, they considered processes that reflect the fluctuation within
estimates of the regression coefficients to detect structural changes. Another special case of this class of
tests is the ME test which uses moving rather than recursive estimates, i.e.

Zn ( t|h) =
�nh�
σ̂
√

n
· Q(n)

1
2

(
β̂(�nt�−�nh�,�nh�) − β̂(n)

)
, (t ≥ h) (5)

and rejects the null hypothesis if (one component of) the process crosses the boundary ±c(t), where

c(t) = λ ·
√

log+ t, (6)

in the monitoring period 1 < t < T , where log+ t is 1 for t ≤ e and log t otherwise. In theory the end of
the monitoring period T may be infinity but in many applications using a finite T is more natural because
the monitoring period, or at least a reasonable upper bound for it, is known in advance. In that way no size
is lost for an infinite monitoring period on [T,∞). In addition, Leisch et al. (2000) consider tests based on
the same processes but capturing the fluctuation with the range instead of the maximum of the deviation of
the estimates.

3.2 Residual-based processes

As for tests for structural change in the history period, fluctuation tests for monitoring can not only be
based on the differences of estimates of the regression coefficients but also on residuals; this was already
considered by Chu et al. (1996) although they focused on the recursive estimates approach. Whereas they
used a CUSUM procedure based on recursive residuals we will introduce monitoring processes based on
the computationally much more convenient OLS residuals. The OLS residual- and estimates-based types
of tests are equivalent in the case where there is only a constant regressor, a common situation in statistical
quality control. The idea is as intuitive as for the estimates-based processes: the regression coefficients are
just estimated once for the history period and based on these estimates the residuals of the observations in
the monitoring period are computed. If there is a structural change in the monitoring period the residuals
should deviate systematically from their zero mean. Thus, we introduce monitoring processes based on the
OLS residuals

û
(n)
i = yi − x�

i β̂(n). (7)

The OLS-based CUSUM process for monitoring is then defined as:

B0
n(t) =

1
σ̂
√

n

�nt�∑
i=1

û
(n)
i (t ≥ 0). (8)
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The following functional central limit (FCLT) holds for B0
n(t):

B0
n(t) ⇒ W 0(t) = W (t) − t · W (1), (9)

where W and W 0 are the (1-dimensional) Brownian motion and Brownian bridge, respectively. The proof
for (9) is essentially the same as in Ploberger and Krämer (1992) for the ordinary OLS-based CUSUM test
except that t is from the compact interval [0, T ], with T > 1, rather than from [0, 1]: Rewrite (8) as

σ̂B0
n(t) =

1√
n

�nt�∑
i=1

ui − 1√
n

�nt�∑
i=1

x�
i

(
β̂(n) − β

)
. (10)

As in Ploberger and Krämer (1992) the following relation holds uniformly in t on [0, T ]:

1√
n

�nt�∑
i=1

x�
i

(
β̂(n) − β

)
=

t√
n

n∑
i=1

ui + op(1). (11)

Hence (9) follows from the well-known fact that

1√
n


�nt�∑

i=1

ui − t
n∑

i=1

ui


 ⇒ σ (W (t) − tW (1)) = σW 0(t). (12)

The OLS-based MOSUM process for monitoring is defined analogously as:

M0
n(t|h) =

1
σ̂
√

n


 �ηt�∑

i=�ηt�−�nh�+1

ûi


 (t ≥ h) (13)

= B0
n

(�ηt�
n

)
− B0

n

(�ηt� − �nh�
n

)
, (14)

where η = (n − �nh�)/(1 − h). From (14) together with (9) it follows directly that M0
n(t|h) satisfies the

following FCLT:
M0

n(t|h) ⇒ W 0(t) − W 0(t − h), (15)

i.e., the OLS-based MOSUM process converges towards the process of the increments of the Brown-
ian bridge. Therefore the limiting process for the OLS-based CUSUM and MOSUM process is the 1-
dimensional special case of the k-dimensional recursive and moving estimates process. The respective
empirical processes are in fact equivalent if xt = 1 for all t. Thus, the boundaries given in the previous
section can be used as well for the OLS-based processes.

The advantage of estimates-based processes is that there is a process for each regression coefficient, hence
it can be determined which coefficient(s) is (are) responsible for the rejection of the null hypothesis. The
OLS-based processes on the other hand are much easier to compute because a linear model has to be fit
only once for the whole process (and not in every single step) and then just residuals have to be computed.
In many applications, like macroeconomics, computation time is not an issue because the time series con-
sidered are often relatively short. However, the situation may be different for real-time monitoring of
high-frequency data in financial applications.

3.3 Rescaling of estimates-based processes

The estimates-based processes from (3) and (5) scale the estimates of the regression coefficients with the
estimate Q(n) of their asymptotic covariance matrix Q that is based on the observations in the history
period. Kuan and Chen (1994) showed by simulation of empirical sizes that the tests can be seriously
distorted in dynamic models and suggested to rescale the processes to repair this defect. Instead of estimat-
ing Q always on the basis of the full history period, each estimate β̂(i,j) is scaled with the corresponding
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estimate of the covariance matrix Q(i,j), i.e., the modified processes can be written as

Y ∗
n (t) =

i

σ̂
√

n
· Q(i)

1
2

(
β̂(i) − β̂(n)

)
, (16)

Z∗
n ( t|h) =

�nh�
σ̂
√

n
· Q(�nt�−�nh�,�nh�)

1
2

(
β̂(�nt�−�nh�,�nh�) − β̂(n)

)
. (17)

The respective limiting processes remain of course the same, because both estimates of the covariance
matrices also converge to Q as n → ∞, but Kuan and Chen (1994) show that they converge faster in
dynamic models. Using the same idea it is quite intuitive that the rescaling of the estimates-based processes
might also provide benefits for monitoring in dynamic models.

Following Kuan and Chen (1994) we consider three data generating processes (DGPs):

yi = � · yi−1 + ui, y0 = 0, (18)

yi = 2 + � · yi−1 + ui, y0 = 0, (19)

yi = 2 + � · xi + ui, xi = � · xi−1 + εi, (20)

with ui and εi n.i.d.(0,1), and simulate the size of the corresponding tests for a range of sample sizes and
of � with α = 0.1 and h = 0.5. We use four different values for the sample size (n = 10, 25, 50, 100) and
two different values for the monitoring period (T = 2, 10) and compute the empirical size based on 1000
replications. Our simulations show that the problem is the same in the monitoring case, especially for short
history and long monitoring periods: For large values of � the empirical size of the ME test is seriously
distorted, see Table 1.

DGP T n Autocorrelation coefficient �
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 12.7 14.2 17.1 18.6 21.5 22.0 26.5 32.6 39.7 51.4
25 10.6 8.3 12.6 13.2 15.1 17.0 21.3 26.1 34.1 48.5
50 14.1 12.6 12.2 11.5 14.6 14.1 16.7 20.1 24.2 36.4

2

100 10.5 8.8 11.2 10.3 12.3 12.8 13.3 17.1 19.9 28.3
10 44.8 54.1 62.6 68.9 74.0 85.5 90.7 94.2 98.6 99.9
25 21.0 23.7 30.2 39.2 49.9 63.4 75.6 89.5 98.8 100.0
50 15.8 17.4 21.4 29.3 35.0 46.1 61.7 77.7 93.9 99.7

(18)

10

100 10.7 12.2 11.9 14.4 14.4 18.8 22.2 26.8 39.2 67.1
10 16.5 24.1 24.4 32.1 39.2 49.9 62.5 81.6 93.5 93.8
25 13.7 13.0 15.6 17.1 24.9 30.5 42.8 56.2 78.7 98.8
50 18.3 10.5 11.1 14.7 16.8 18.3 22.7 36.8 62.9 93.7

2

100 10.1 11.4 11.5 13.6 14.0 12.9 17.1 21.9 40.0 78.6
10 61.5 69.4 81.2 85.4 92.1 97.0 99.7 100.0 100.0 100.0
25 23.5 33.6 42.0 50.2 66.0 79.3 93.3 99.2 99.9 100.0
50 18.6 24.5 30.5 36.0 48.6 62.5 79.1 90.7 99.8 100.0

(19)

10

100 11.3 11.7 14.0 14.4 19.0 21.3 30.8 38.1 65.1 99.2
10 18.5 17.1 18.2 20.6 23.1 22.4 25.8 28.0 28.7 37.3
25 12.1 12.1 12.0 13.5 11.5 15.7 15.3 17.9 23.1 26.4
50 13.2 11.9 9.2 12.3 10.1 13.2 11.7 15.0 14.8 22.5

2

100 11.2 9.6 10.1 10.0 8.4 10.9 11.0 11.2 12.4 17.2
10 61.3 67.8 80.0 84.3 92.6 98.0 99.9 100.0 100.0 100.0
25 24.8 33.8 44.6 55.8 66.6 81.7 93.0 99.8 100.0 100.0
50 20.2 22.9 29.0 37.5 49.8 63.3 78.3 92.7 99.7 100.0

(20)

10

100 10.8 10.3 11.9 10.6 11.0 12.0 13.0 13.8 17.3 30.1

Table 1: Empirical size of the ME test

5



Kuan and Chen (1994) illustrate this phenomenon with the following equation for the DGP (18):

E

(
Q(n)

Q(�nt�)

)
= 1 − 2(1 + �2)(n − �nt�)

n�nt�(1 − �2)
+ O(n−2). (21)

The second term on the right hand side is a bias term tending to 0 for n → ∞ for fixed �, but for a fixed
sample size n it approaches infinity for � → 1. However this bias is even enhanced if t > 1, so that
rescaling will even increase the distortion of the empirical size of this test. Therefore rescaling makes no
sense in the case of the recursive estimates test for monitoring, but it does for the moving estimates test,
because the parameter that determines the window size is not t but h and h ≤ 1. This is confirmed by our
simulations: Table 2 shows that the bias is much smaller for the rescaled processes, especially when the
history size n is reasonably large.

DGP T n Autocorrelation coefficient �
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 12.0 15.3 16.2 19.3 18.4 23.8 24.1 27.9 32.5 39.4
25 9.9 12.0 11.7 14.0 15.7 12.9 17.1 21.2 27.3 35.3
50 11.9 8.7 10.1 10.5 12.3 11.9 12.4 16.0 20.3 28.4

2

100 7.7 10.1 10.3 10.3 9.6 10.4 10.8 11.6 15.7 22.7
10 20.0 18.2 23.8 23.5 27.0 29.9 37.2 41.1 51.0 60.7
25 13.6 12.5 13.0 15.1 15.7 17.4 22.4 26.9 33.6 50.5
50 10.2 11.2 13.3 13.1 13.4 17.5 18.3 19.8 31.1 40.7

(18)

10

100 10.9 12.4 10.5 9.9 11.4 13.9 13.9 16.5 19.7 31.1
10 13.2 12.0 15.1 13.9 15.8 15.8 18.9 18.6 22.8 33.5
25 9.3 9.2 10.2 11.3 12.3 11.6 10.5 12.4 15.2 21.0
50 11.8 8.4 8.0 10.3 12.3 11.8 13.1 13.1 10.9 15.4

2

100 9.6 9.8 9.2 8.5 9.9 9.4 10.7 10.4 10.5 13.6
10 17.4 16.3 19.1 22.0 20.7 24.0 27.9 27.7 31.5 43.4
25 11.0 10.6 11.2 10.7 14.4 15.0 17.3 17.8 18.1 23.4
50 10.0 10.4 10.6 11.0 11.6 13.8 14.5 17.4 18.1 17.9

(19)

10

100 10.8 10.0 9.2 10.9 11.4 10.8 12.3 12.5 13.3 11.4
10 15.2 17.0 17.0 14.6 15.6 18.2 18.5 21.1 21.8 25.4
25 9.4 10.4 10.6 10.3 10.3 11.7 11.5 13.2 13.3 16.8
50 10.5 9.8 11.0 7.2 10.6 10.5 11.1 11.7 12.8 16.0

2

100 8.4 11.6 9.4 10.5 11.2 9.2 8.0 8.3 11.3 13.2
10 16.8 16.2 19.4 20.3 22.1 22.8 25.1 27.1 32.7 45.5
25 8.4 9.2 9.9 13.7 12.9 16.1 16.9 21.1 19.7 21.3
50 9.8 10.4 10.7 10.8 11.8 14.5 17.6 13.8 17.4 18.9

(20)

10

100 10.1 9.7 9.5 11.4 10.1 11.1 7.6 11.4 12.1 14.5

Table 2: Empirical size of the rescaled ME test

3.4 Boundaries

The shape of the boundaries for empirical fluctuation processes does not make a big difference under the
null hypothesis, because they are always chosen to be crossed with the (asymptotic) probability α; but then
again under the alternative they can affect very much the chance to detect certain patterns of structural
changes. For example, the CUSUM tests (in historical samples) perform poorly if a change occurs late in
the sample period. Zeileis (2000) suggests alternative boundaries which are able to increase the detection
chances of the OLS-based CUSUM test for early and late changes. Also in the case of monitoring the
detection properties for structural changes in the monitoring period strongly depend on the shape of the
boundaries—a topic which has not yet been studied in detail.

Chu et al. (1996) already state that the RE test for monitoring has good chances to detect changes early in
the monitoring period, but gets increasingly insensitive to late structural changes. This is due to the fact that
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Figure 1: Comparison of hitting times for RE and ME process with standard boundaries

most of the size of the test is used at the very beginning of the monitoring period as Figure 1 shows. It shows
the distribution of hitting times (from 10,000 runs) for the Brownian bridge, the asymptotic approximation
to the RE process, with the standard boundary (4) at level α = 0.1 and for the increments of a Brownian
bridge (with h = 0.5). It can be seen that the size of the ME test is spread much more evenly; in fact 25
% of the size of the RE test is used on the interval [1, 1.09]. This is caused by the shape of the boundary
b1(t), which can be seen in Figure 3: it starts together with the Brownian bridge in 0 at t = 1 and so most
random crossings will occur very early. We will introduce boundaries for the RE process that distribute the
size more evenly. The reason that we control size rather than power is that it is easier on the one hand and
also reasonable on the other due to the close connection between the two: typically, the empirical processes
start to fluctuate and deviate from their zero mean at the time of the structural change.
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Figure 2: Hitting times for RE process with alternative boundaries

For obtaining a boundary that does not use up the size of the corresponding test at the beginning of the
monitoring period it seems natural to choose a boundary with an offset in t = 1, but with the correct
asymptotical growth rate t. The simplest boundary that fulfills these requirements is

b2(t) = λ · t. (22)

One might want to consider a boundary which is constant at the beginning of the monitoring period like the
boundary (6), but this is inappropriate for a process with growing variance such as the Brownian bridge,
because simulations show that most of the size will then be used at the point where the boundary changes
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from being constant to growing. Because there is no (known) closed-form result for the crossing probability
of a Brownian bridge for the boundary (22), we simulate the appropriate critical values of λ for different
values of T as for the ME test.
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Figure 3: Boundaries for the Brownian bridge

The size of the corresponding test is also distributed more evenly (see Figure 2). Figure 3 shows the
resulting alternative boundary b2(t) (at level 0.1) in comparison to the standard boundary. It can be seen
that the boundaries cross at about t = 1.3 which means that the detection chances decrease only for very
early changes, but increase for all other changes. This is emphasized by simulations under a single shift
alternative like in Chu et al. (1996) and Leisch et al. (2000) with the following setup: the data generating
process is n.i.d.(2,1) with a history size of n = 100 and a monitoring period T = 10. Under the alternative
the mean switches from 2 to 2.8 in the monitoring period either at t = 1.1 or at t = 3. Leisch et al. (2000)
showed (by simulation with 1,000 replications) that the mean detection delay in this scenario for the RE
test (with standard boundaries) at the 10% level is 27, i.e., the structural break at observation 1.1n = 110
is discovered on average at observation 137. With the new boundaries, the RE test performs a bit (but
not dramatically) worse for such an early shift: the mean of the detection delay is 35. However if the the
change occurs late in the sample period at 3n = 300 the mean detection delay for the standard boundaries
is 128 but only 100 for the linear boundary b2(t), the standard deviation is also reduced. The results can
also be seen in Table 3 in comparison to the ME test.

shift date ME RE (with b1) RE (with b2)
110 32(12) 27(16) 35(14)
300 36(21) 128(74) 100(55)

Table 3: Mean (and standard deviation) of detection delay

It is desirable, of course, to have a more flexible and less heuristic instrument to select the boundaries for
fluctuation tests: one might want to choose the boundaries according to a specified prior distribution for
the timing of the shift under the alternative. This issue is currently under investigation.

4 Applications

We illustrate the methods introduced in the previous section by applying them to two dynamic models:
German M1 money demand (Lütkepohl et al. 1999) and U.S. labor productivity (Hansen 2001).
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4.1 German M1 money demand

Lütkepohl et al. (1999) investigated the stability and linearity of a German M1 money demand function
based on data from the German central bank using seasonally unadjusted quarterly data from 1961(1) to
1995(4). The data are available online in the data archive of the Journal of Applied Econometrics (http:
//qed.econ.queensu.ca/jae/1999-v14.5/lutkepohl-terasvirta-wolters/).
Lütkepohl et al. (1999) found a stable relationship for the M1 money demand for the time before the
German monetary unification on 1990-06-01 but a clear structural instability for the extended sample period
up to 1995(4), which they modelled by smooth transition regression techniques. Specifically, Lütkepohl
et al. (1999) established a stable and linear regression relationship for the German M1 money demand using
an error correction model (ECM) based on data for the logarithm of real M1 per capita mt, the logarithm
of a price index pt, the logarithm of the real per capita gross national product yt and the long-run interest
rate Rt. The time series can be seen in Figure 4.

OLS estimation of their model gives the following result for the phase from 1961(1) to 1990(2) before the
German monetary unification:

∆mt = −0.30∆yt−2 − 0.67∆Rt − 1.00∆Rt−1 − 0.53∆pt

−0.12mt−1 + 0.13yt−1 − 0.62Rt−1 (23)

−0.05 − 0.13Q1 − 0.016Q2 − 0.11Q3 + ût,

where Q1 − Q3 are seasonal dummies and all coefficients (except the intercept) are highly significant; the
fitted model gives an adjusted R2 = 0.943. In a cointegration relationship, the estimators of coefficients
on I(1) variables converge at a faster rate than the coefficients on I(0) variables, hence they may be treated
as known when monitoring the error correction model. We therefore aggregate the cointegrated variables
mt−1, yt−1 and Rt−1 to a single variable et−1 = −0.12mt−1 +0.13yt−1−0.62Rt−1 to assure stationarity
of this regressor in the ECM. This way of testing for structural change in ECMs is similar to the procedure
suggested by Hansen (1992a).

Standard CUSUM test
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Figure 5: Historic residual-based fluctuation tests

The structural change modelled by Lütkepohl et al. (1999) can be detected with fluctuation tests in two
ways: either with historical tests finding a structural change ex post or using the monitoring methods
introduced in the previous section detecting the structural change online. Although we focus on the latter
approach in this paper we will first carry out historical tests as well. All computations and simulations
have been performed in the statistical software package R (http://www.R-project.org/) and in
particular the package strucchange (Zeileis, Leisch, Hornik, and Kleiber 2002).

Firstly two residual-based fluctuation tests—the recursive (or standard) and the OLS-based CUSUM test—
are applied to the model (23). Figure 5 shows that both CUSUM processes lack any significant fluctuation;
thus, both tests fail to detect structural change in the data. However, two estimates-based tests—the RE and
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the ME test—both show a clear peak or shift respectively in the beginning of the 90s (cf. Fig. 5), i.e., both
tests detect the structural change after the monetary unification that is also described by Lütkepohl et al.
(1999). The reason that the residual-based tests are insensitive to this change while the estimates-based
tests are not is the well-known fact that the power of both CUSUM tests depends on the angle between the
shift and the mean regressor; in particular they do not have power against shifts orthogonal to the mean
regressor (Krämer et al. 1988; Ploberger and Krämer 1992). The suspicion that this might be the case in
the given data is confirmed: the estimate for the angle is 90.27◦ (assuming that there is just one structural
shift, which is a reasonable hypothesis for the present data).

Fluctuation test (recursive estimates test)
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ME test (moving estimates test)
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Figure 6: Historic estimates-based fluctuation tests

Now we will confirm the instability of the coefficients in the regression relationship for the money demand
function using the tools introduced in Section 3: the OLS-based CUSUM process with the alternative
boundary b2(t) from (22) and the rescaled moving estimates process. We consider the observations from
1961(1)-1990(2) as the history period of the monitoring process and the observations after the monetary
unification from 1990(3)-1995(4) as the monitoring period. Thus, we put ourselves in the position of a
researcher in 1990 who wants to find out whether the model established for the pre-1990 money demand
becomes unstable following the monetary unification.

Monitoring with OLS−based CUSUM test
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Figure 7: OLS-based CUSUM process
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Figure 7 shows the OLS-CUSUM process with the history period left of the vertical dashed line and the
monitoring period on the right. Whereas the process does not exhibit much fluctuation before 1990 it
does so after the start of the monitoring period and crosses the standard boundary after ten observations in
1992(4) and the alternative boundary another seven observations later. As the break occurs immediately
after the end of the monitoring period the standard boundaries perfom a bit better, but note that there is
almost a crossing in 1990(4) after just two observations. In a “real” monitoring situation it would be hard
to decide if such a crossing was just a type I error or caused by a structural change. The moving estimates
process also has a clear shift (see Figure 8), but crosses its boundary a little bit later: in the third quarter
of 1994. Hence we can find overwhelming evidence that there has been a structural change in the money
demand relationship after the monetary unification.

Monitoring with ME test (moving estimates test)
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Figure 8: Moving estimates process

4.2 U.S. labor productivity

In his recent overview of “The new econometrics of structural change” Hansen (2001), examines U.S. labor
productivity in the manufacturing/durables sector, a monthly time series with observations from 1947(2)
through 2001(4) which is available from Bruce Hansen’s homepage (http://www.ssc.wisc.edu/
˜bhansen/). He uses a first order autoregressive model for the U.S. labor productivity in the manufactur-
ing/durables sector which is measured by xt, the growth rate of the Industrial Production Index to average
weekly labor hours. The time series for the period considered is depicted in Figure 9.

Hansen (2001) finds a clear structural change in about 1994 and two weaker changes in 1963 and 1982.
For illustration, we choose the time from 1964(1) until 1979(12) as the history period, because we are
interested in monitoring the two later changes. We exclude the time before 1964, because there must not
be a break in the history period. OLS estimation of the coefficients in the historical AR(1) model gives

xt = 0.0025 − 0.186xt−1 + ût, (24)

with both coefficients being highly significant. As for the money demand data we monitor the data using the
OLS-based CUSUM process with boundaries b2(t) from (22) and the rescaled moving estimates process.

This approach is slightly different from the one in our first example: there is no known event that might
cause an instability in the model considered. We rather assume that we are in a position where we have
established a model equation we want to work with, and we want to learn whether we have to update it or
not.
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Figure 9: Labor productivity in the manufacturing/durables sector

The OLS-based CUSUM process in Figure 10 reveals two clear structural changes: the first in about 1983,
where the path starts to depart from 0, and the second in about 1991. Neither the standard nor the alternative
boundaries detect the first shift at the 5% level, but the process crosses both boundaries after the second
break: the new boundary already in 1998(2) the standard one only in 2000(5). The moving estimates
process (see Figure 11) also exhibits two breaks. However, it drifts off somewhat later compared to the
CUSUM process. It also does not detect the first change at the 5% level but crosses its boundary after the
second change in 1998(8).

Monitoring with OLS−based CUSUM test
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Figure 10: OLS-based CUSUM process

The reason that the OLS-based CUSUM test performs better than the ME test on this particular data set is
the usage of the new boundaries. An RE test with standard boundaries would even fail to detect a significant
change at the 5% level.

However, the moving estimates have the additional benefit that they allow to determine the nature of the
break. The 2-dimensional process for the estimates of the intercept and the coefficient on xt−1 can be
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Monitoring with ME test (moving estimates test)
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Figure 11: Moving estimates process
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Figure 12: 2-dimensional moving estimates process
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plotted separately as in Figure 12. This shows that the break in the 1980s affects both parameters, because
both processes have a shift, but not significantly so. The second break in the 1990s just affects the intercept
but not the AR coefficient, thus we are able to conclude that the type of the detected structural shift is
instability in the intercept term.

5 Conclusions

Online monitoring of regression relationships that are known to be stable for a history period is frequently
more natural and more practical than the commonly employed retrospective tests. In this paper, we have
presented a unified approach to the online monitoring of econometric models which includes three new
extensions to tests based on regression estimates: processes based on OLS residuals, rescaled processes and
alternative boundaries. These offer advantages concerning power against certain alternatives, finite sample
properties in dynamic models and ease of computation. We have illustrated the feasibility of the methods
introduced using fluctuation-type tests on two standard dynamic models, a stationary autoregression and
an error correction model.

The determination of optimal asymptotic boundaries, in the sense of minimal detection delay, deserves
further study.
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