Eldorado - Repository of the TU Dortmund

Resources for and from Research, Teaching and Studying

This is the institutional repository of the TU Dortmund. Ressources for Research, Study and Teaching are archived and made publicly available.

Dini Certificate 2022 Logo
 

Recent Submissions

Item
Evolved readers of 5-carboxylcytosine CpG dyads reveal a high versatility of the methyl-CpG-binding domain for recognition of noncanonical epigenetic marks
(2024-01-29) Kosel, Brinja; Bigler, Katrin; Buchmuller, Benjamin C.; Acharyya, Suchandra R.; Linser, Rasmus; Summerer, Daniel
Mammalian genomes are regulated by epigenetic cytosine (C) modifications in palindromic CpG dyads. Including canonical cytosine 5-methylation (mC), a total of four different 5-modifications can theoretically co-exist in the two strands of a CpG, giving rise to a complex array of combinatorial marks with unique regulatory potentials. While tailored readers for individual marks could serve as versatile tools to study their functions, it has been unclear whether a natural protein scaffold would allow selective recognition of marks that vastly differ from canonical, symmetrically methylated CpGs. We conduct directed evolution experiments to generate readers of 5-carboxylcytosine (caC) dyads based on the methyl-CpG-binding domain (MBD), the widely conserved natural reader of mC. Despite the stark steric and chemical differences to mC, we discover highly selective, low nanomolar binders of symmetric and asymmetric caC-dyads. Together with mutational and modelling studies, our findings reveal a striking evolutionary flexibility of the MBD scaffold, allowing it to completely abandon its conserved mC recognition mode in favour of noncanonical dyad recognition, highlighting its potential for epigenetic reader design.
Item
Nonlinear impact of electrolyte solutions on protein dynamics
(2024-02-23) Daronkola, Hosein Geraili; Söldner, Benedikt; Singh, Himanshu; Linser, Rasmus; Vila Verde, Ana
Halophilic organisms have adapted to multi-molar salt concentrations, their cytoplasmic proteins functioning despite stronger attraction between hydrophobic groups. These proteins, of interest in biotechnology because of decreasing fresh-water resources, have excess acidic amino acids. It has been suggested that conformational fluctuations – critical for protein function – decrease in the presence of a stronger hydrophobic effect, and that an acidic proteome would counteract this decrease. However, our understanding of the salt- and acidic amino acid dependency of enzymatic activity is limited. Here, using solution NMR relaxation and molecular dynamics simulations for in total 14 proteins, we show that salt concentration has a limited and moreover non-monotonic impact on protein dynamics. The results speak against the conformational-fluctuations model, instead indicating that maintaining protein dynamics to ensure protein function is not an evolutionary driving force behind the acidic proteome of halophilic proteins.
Item
Transient structural properties of the Rho GDP‐dissociation inhibitor
(2024-06-09) Medina Gomez, Sara; Visco, Ilaria; Merino, Felipe; Bieling, Peter; Linser, Rasmus
Rho GTPases, master spatial regulators of a wide range of cellular processes, are orchestrated by complex formation with guanine nucleotide dissociation inhibitors (RhoGDIs). These have been thought to possess an unstructured N-terminus that inhibits nucleotide exchange of their client upon binding/folding. Via NMR analyses, molecular dynamics simulations, and biochemical assays, we reveal instead pertinent structural properties transiently maintained both, in the presence and absence of the client, imposed onto the terminus context-specifically by modulating interactions with the surface of the folded C-terminal domain. These observations revise the long-standing textbook picture of the GTPases’ mechanism of membrane extraction. Rather than by a disorder-to-order transition upon binding of an inhibitory peptide, the intricate and highly selective extraction process of RhoGTPases is orchestrated via a dynamic ensemble bearing preformed transient structural properties, suitably modulated by the specific surrounding along the multi-step process.
Item
Sedimentation of large, soluble proteins up to 140 kDa for 1H-detected MAS NMR and 13C DNP NMR – practical aspects
(2024-06-21) Bell, Dallas; Lindemann, Florian; Gerland, Lisa; Aucharova, Hanna; Klein, Alexander; Friedrich, Daniel; Hiller, Matthias; Grohe, Kristof; Meier, Tobias; van Rossum, Barth; Diehl, Anne; Hughes, Jon; Mueller, Leonard J.; Linser, Rasmus; Miller, Anne-Frances; Oschkinat, Hartmut
Solution NMR is typically applied to biological systems with molecular weights < 40 kDa whereas magic-angle-spinning (MAS) solid-state NMR traditionally targets very large, oligomeric proteins and complexes exceeding 500 kDa in mass, including fibrils and crystalline protein preparations. Here, we propose that the gap between these size regimes can be filled by the approach presented that enables investigation of large, soluble and fully protonated proteins in the range of 40–140 kDa. As a key step, ultracentrifugation produces a highly concentrated, gel-like state, resembling a dense phase in spontaneous liquid-liquid phase separation (LLPS). By means of three examples, a Sulfolobus acidocaldarius bifurcating electron transfer flavoprotein (SaETF), tryptophan synthases from Salmonella typhimurium (StTS) and their dimeric β-subunits from Pyrococcus furiosus (PfTrpB), we show that such samples yield well-resolved proton-detected 2D and 3D NMR spectra at 100 kHz MAS without heterogeneous broadening, similar to diluted liquids. Herein, we provide practical guidance on centrifugation conditions and tools, sample behavior, and line widths expected. We demonstrate that the observed chemical shifts correspond to those obtained from µM/low mM solutions or crystalline samples, indicating structural integrity. Nitrogen line widths as low as 20–30 Hz are observed. The presented approach is advantageous for proteins or nucleic acids that cannot be deuterated due to the expression system used, or where relevant protons cannot be re-incorporated after expression in deuterated medium, and it circumvents crystallization. Importantly, it allows the use of low-glycerol buffers in dynamic nuclear polarization (DNP) NMR of proteins as demonstrated with the cyanobacterial phytochrome Cph1.