Model checks in inverse regression models with convolution-type operators
| dc.contributor.author | Bissantz, Nicolai | de |
| dc.contributor.author | Dette, Holger | de |
| dc.contributor.author | Proksch, Katharina | de |
| dc.date.accessioned | 2009-10-29T10:28:54Z | |
| dc.date.available | 2009-10-29T10:28:54Z | |
| dc.date.issued | 2009-10-16 | de |
| dc.description.abstract | We consider the problem of testing parametric assumptions in an inverse regression model with a convolution-type operator. An L^2-type goodness-of-fit test is proposed which compares the distance between a parametric and a nonparametric estimate of the regression function. Asymptotic normality of the corresponding test statistic is shown under the null hypothesis and under a general nonparametric alternative with different rates of convergence in both cases. The feasibility of the proposed test is demonstrated by means of a small simulation study. In particular, the power of the test against certain types of alternative is investigated. | en |
| dc.identifier.uri | http://hdl.handle.net/2003/26501 | |
| dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-751 | |
| dc.language.iso | en | de |
| dc.relation.ispartofseries | Discussion Paper / SFB 823; 29/2009 | de |
| dc.subject | goodness-of-fit test | en |
| dc.subject | imit theorems for quadratic forms | en |
| dc.subject | model selection | en |
| dc.subject | nverse problems | en |
| dc.subject.ddc | 310 | de |
| dc.subject.ddc | 330 | de |
| dc.subject.ddc | 620 | de |
| dc.title | Model checks in inverse regression models with convolution-type operators | en |
| dc.type | Text | de |
| dc.type.publicationtype | report | de |
| dcterms.accessRights | open access | |
| eldorado.dnb.deposit | true |
Files
Original bundle
1 - 1 of 1
