Towards an Optimal Control Perspective of ResNet Training
dc.contributor.author | Püttschneider, Jens | |
dc.contributor.author | Heilig, Simon | |
dc.contributor.author | Fischer, Asja | |
dc.contributor.author | Faulwasser, Timm | |
dc.date.accessioned | 2025-07-08T12:32:27Z | |
dc.date.available | 2025-07-08T12:32:27Z | |
dc.date.issued | 2025 | |
dc.description.abstract | We propose a training formulation for ResNets reflecting an optimal control problem that is applicable for standard architectures and general loss functions. We suggest bridging both worlds via penalizing intermediate outputs of hidden states corresponding to stage cost terms in optimal control. For standard ResNets, we obtain intermediate outputs by propagating the state through the subsequent skip connections and the output layer. We demonstrate that our training dynamic biases the weights of the unnecessary deeper residual layers to vanish. This indicates the potential for a theory-grounded layer pruning strategy. | en |
dc.identifier.uri | http://hdl.handle.net/2003/43792 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-25566 | |
dc.language.iso | en | |
dc.relation.ispartofseries | TRR 391 Working Paper; 6 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | ResNets | en |
dc.subject | optimal control | en |
dc.subject | regularization | en |
dc.subject | network depth | en |
dc.subject.ddc | 310 | |
dc.title | Towards an Optimal Control Perspective of ResNet Training | en |
dc.type | Text | |
dc.type.publicationtype | WorkingPaper | |
dcterms.accessRights | open access | |
eldorado.secondarypublication | false |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.82 KB
- Format:
- Item-specific license agreed upon to submission
- Description: