Nonparametric and high-dimensional functional graphical models

dc.contributor.authorSolea, Eftychia
dc.contributor.authorDette, Holger
dc.date.accessioned2021-03-25T13:57:41Z
dc.date.available2021-03-25T13:57:41Z
dc.date.issued2021
dc.description.abstractWe consider the problem of constructing nonparametric undirected graphical models for highdimensional functional data. Most existing statistical methods in this context assume either a Gaussian distribution on the vertices or linear conditional means. In this article we provide a more flexible model which relaxes the linearity assumption by replacing it by an arbitrary additive form. The use of functional principal components offers an estimation strategy that uses a group lasso penalty to estimate the relevant edges of the graph. We establish statistical guarantees for the resulting estimators, which can be used to prove consistency if the dimension and the number of functional principal components diverge to infinity with the sample size. We also investigate the empirical performance of our method through simulation studies and a real data application.en
dc.identifier.urihttp://hdl.handle.net/2003/40101
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21978
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;9/2021
dc.subjectundirected graphical modelsen
dc.subjectbrain networksen
dc.subjectEEG dataen
dc.subjectlassoen
dc.subjectadditive modelsen
dc.subjectfunctional dataen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleNonparametric and high-dimensional functional graphical modelsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_0921_SFB823_Solea_Dette.pdf
Size:
873.01 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: