NP-Optimal Kernels for Nonparametric Sequential Detection Rules

dc.contributor.authorSteland, Ansgarde
dc.date.accessioned2004-12-06T18:38:43Z
dc.date.available2004-12-06T18:38:43Z
dc.date.issued2004
dc.description.abstractAn attractive nonparametric method to detect change-points sequentially is to apply control charts based on kernel smoothers. Recently, the strong convergence of the associated normed delay associated with such a sequential stopping rule has been studied under sequences of out-of-control models. Kernel smoothers employ a kernel function to downweight past data. Since kernel functions with values in the unit interval are sufficient for that task, we study the problem to optimize the asymptotic normed delay over a class of kernels ensuring that restriction and certain additional moment constraints. We apply the key theorem to discuss several important examples where explicit solutions exist to illustrate that the results are applicable.en
dc.format.extent211798 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/4865
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15068
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectcontrol chartsen
dc.subjectfinancial dataen
dc.subjectnonparametric regressionen
dc.subjectquality controlen
dc.subjectstatistical geneticsen
dc.subject.ddc310de
dc.titleNP-Optimal Kernels for Nonparametric Sequential Detection Rulesen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr09-04.pdf
Size:
206.83 KB
Format:
Adobe Portable Document Format
Description:
DNB