Distributed Hybrid Genetic Programming for Learning Boolean Functions

dc.contributor.authorDroste, Stefande
dc.contributor.authorHeutelbeck, Dominicde
dc.contributor.authorWegener, Ingode
dc.date.accessioned2004-12-07T08:20:28Z
dc.date.available2004-12-07T08:20:28Z
dc.date.created2000de
dc.date.issued2001-10-17de
dc.description.abstractWhen genetic programming (GP)is used to find programs with Boolean inputs and outputs, ordered binary decision diagrams (OBDDs) are often used successfully. In all known OBDD-based GP-systems the variable ordering, a crucial factor for the size of OBDDs, is preset to an optimal ordering of the known test function. Certainly this cannot be done in practical applications, where the function to learn and hence its optimal variable ordering are unknown. Here, the first GP-system is presented that evolves the variable ordering of the OBDDs and the OBDDs itself by using a distributed hybrid approach. For the experiments presented the unavoidable size increase compared to the optimal variable ordering is quite small. Hence,this approach is a big step towards learning well-generalizing Boolean functions.en
dc.format.extent191777 bytes
dc.format.extent546013 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5393
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15246
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 90de
dc.subject.ddc004de
dc.titleDistributed Hybrid Genetic Programming for Learning Boolean Functionsen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ci90.pdf
Size:
187.28 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
ci90.ps
Size:
533.22 KB
Format:
Postscript Files