Blind spots for direct detection with simplified DM models and the LHC
Loading...
Date
2017-05-11
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Using the existing simplified model framework, we build several dark matter models which have suppressed spin-independent scattering cross section. We show that the scattering cross section can vanish due to interference effects with models obtained by simple combinations of simplified models. For weakly interacting massive particle (WIMP) masses ≳10 GeV, collider limits are usually much weaker than the direct detection limits coming from LUX or XENON100. However, for our model combinations, LHC analyses are more competitive for some parts of the parameter space. The regions with direct detection blind spots can be strongly constrained from the complementary use of several Large Hadron Collider (LHC) searches like mono-jet, jets + missing transverse energy, heavy vector resonance searches, etc. We evaluate the strongest limits for combinations of scalar + vector, “squark” + vector, and scalar + “squark” mediator, and present the LHC 14 TeV projections.
Description
Table of contents
Keywords
Dark matter, Simplified models, Direct detection, Blind spots, LHC