Nonparametric density estimation for multivariate bounded data using two nonnegative multiplicative bias correction methods

dc.contributor.authorFunke, Benedikt
dc.contributor.authorKawka, Rafael
dc.date.accessioned2014-12-03T16:51:45Z
dc.date.available2014-12-03T16:51:45Z
dc.date.issued2014
dc.description.abstractIn this article we propose two new Multiplicative Bias Correction (MBC) techniques for nonparametric multivariate density estimation. We deal with positively supported data but our results can easily be ex- tended to the case of mixtures of bounded and unbounded supports. Both methods improve the optimal rate of convergence of the mean squared error up to O(n-8=(8+d)), where d is the dimension of the under- lying data set. Moreover, they overcome the boundary effect near the origin and their values are always non-negative. We investigate asymptotic properties like bias and variance as well as the performance of our estimators in Monte Carlo Simulations and in a real data example.en
dc.identifier.urihttp://hdl.handle.net/2003/33762
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-84
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;39/2014
dc.subjectasymmetric kernelsen
dc.subjectmultivariate density estimationen
dc.subjectbias correctionen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleNonparametric density estimation for multivariate bounded data using two nonnegative multiplicative bias correction methodsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_3914_SFB823_Funke_Kawka.pdf
Size:
966.76 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: