Evaluating value-at-risk forecasts

dc.contributor.authorWied, Dominik
dc.contributor.authorWeiß, Gregor N. F.
dc.contributor.authorZiggel, Daniel
dc.date.accessioned2015-04-13T08:48:51Z
dc.date.available2015-04-13T08:48:51Z
dc.date.issued2015
dc.description.abstractWe propose two new tests for detecting clustering in multivariate Value-at-Risk (VaR) forecasts. First, we consider CUSUM-tests to detect first-order instationarities in the matrix of VaR-violations. Second, we propose χ 2-tests for detecting cross-sectional and serial dependence in the VaR-forecasts. Moreover, we combine our new backtests with a test of unconditional coverage to yield two new backtests of multivariate conditional coverage. In all cases, a bootstrap approximation is possible, but not mandatory in terms of empirical size and power.en
dc.identifier.urihttp://hdl.handle.net/2003/33998
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-7210
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;9/2015en
dc.subjectModel Risken
dc.subjectValue-at-Risken
dc.subjectMultivariate Backtestingen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleEvaluating value-at-risk forecastsen
dc.title.alternativeA new set of multivariate backtestsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_0915_SFB823_Wied_Weiss_Ziggel.pdf
Size:
149.96 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: